WorldWideScience

Sample records for volcanic ash hazard

  1. Volcanic ash hazards and aviation risk: Chapter 4

    Science.gov (United States)

    Guffanti, Marianne C.; Tupper, Andrew C.

    2015-01-01

    The risks to safe and efficient air travel from volcanic-ash hazards are well documented and widely recognized. Under the aegis of the International Civil Aviation Organization, globally coordinated mitigation procedures are in place to report explosive eruptions, detect airborne ash clouds and forecast their expected movement, and issue specialized messages to warn aircraft away from hazardous airspace. This mitigation framework is based on the integration of scientific and technical capabilities worldwide in volcanology, meteorology, and atmospheric physics and chemistry. The 2010 eruption of Eyjafjallajökull volcano in Iceland, which led to a nearly week-long shutdown of air travel into and out of Europe, has prompted the aviation industry, regulators, and scientists to work more closely together to improve how hazardous airspace is defined and communicated. Volcanic ash will continue to threaten aviation and scientific research will continue to influence the risk-mitigation framework.

  2. Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards

    Science.gov (United States)

    Ham, H. J.; Lee, S.; Choi, S. H.; Yun, W. S.

    2015-12-01

    Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards Hee Jung Ham1, Seung-Hun Choi1, Woo-Seok Yun1, Sungsu Lee2 1Department of Architectural Engineering, Kangwon National University, Korea 2Division of Civil Engineering, Chungbuk National University, Korea ABSTRACT In this study, fragility functions are developed to estimate expected volcanic ash damages of the agricultural sector in Korea. The fragility functions are derived from two approaches: 1) empirical approach based on field observations of impacts to agriculture from the 2006 eruption of Merapi volcano in Indonesia and 2) the FOSM (first-order second-moment) analytical approach based on distribution and thickness of volcanic ash observed from the 1980 eruption of Mt. Saint Helens and agricultural facility specifications in Korea. Fragility function to each agricultural commodity class is presented by a cumulative distribution function of the generalized extreme value distribution. Different functions are developed to estimate production losses from outdoor and greenhouse farming. Seasonal climate influences vulnerability of each agricultural crop and is found to be a crucial component in determining fragility of agricultural commodities to an ash fall. In the study, the seasonality coefficient is established as a multiplier of fragility function to consider the seasonal vulnerability. Yields of the different agricultural commodities are obtained from Korean Statistical Information Service to create a baseline for future agricultural volcanic loss estimation. Numerically simulated examples of scenario ash fall events at Mt. Baekdu volcano are utilized to illustrate the application of the developed fragility functions. Acknowledgements This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering Potential Volcanic Risk around Korea' [MPSS-NH-2015-81] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of

  3. The Global Framework for Providing Information about Volcanic-Ash Hazards to International Air Navigation

    Science.gov (United States)

    Romero, R. W.; Guffanti, M.

    2009-12-01

    The International Civil Aviation Organization (ICAO) created the International Airways Volcano Watch (IAVW) in 1987 to establish a requirement for international dissemination of information about airborne ash hazards to safe air navigation. The IAVW is a set of operational protocols and guidelines that member countries agree to follow in order to implement a global, multi-faceted program to support the strategy of ash-cloud avoidance. Under the IAVW, the elements of eruption reporting, ash-cloud detecting, and forecasting expected cloud dispersion are coordinated to culminate in warnings sent to air traffic controllers, dispatchers, and pilots about the whereabouts of ash clouds. Nine worldwide Volcanic Ash Advisory Centers (VAAC) established under the IAVW have the responsibility for detecting the presence of ash in the atmosphere, primarily by looking at imagery from civilian meteorological satellites, and providing advisories about the location and movement of ash clouds to aviation meteorological offices and other aviation users. Volcano Observatories also are a vital part of the IAVW, as evidenced by the recent introduction of a universal message format for reporting the status of volcanic activity, including precursory unrest, to aviation users. Since 2003, the IAVW has been overseen by a standing group of scientific, technical, and regulatory experts that assists ICAO in the development of standards and other regulatory material related to volcanic ash. Some specific problems related to the implementation of the IAVW include: the lack of implementation of SIGMET (warning to aircraft in flight) provisions and delayed notifications of volcanic eruptions. Expected future challenges and developments involve the improvement in early notifications of volcanic eruptions, the consolidation of the issuance of SIGMETs, and the possibility of determining a “safe” concentration of volcanic ash.

  4. Characterization of Montserrat volcanic ash for the assessment of respiratory health hazards

    International Nuclear Information System (INIS)

    Horwell, Claire Judith

    2002-01-01

    Volcanic ash, generated in the long-lived eruption of the Soufriere Hills volcano, Montserrat, is shown to contain respirable (sub-4 μm) particles and the crystalline silica polymorph, cristobalite. Respirable particles of cristobalite can cause silicosis, raising the possibility that volcanic ash is a respiratory health hazard. This study considers some of the main factors that affect human exposure to volcanic particles: the composition, proportions and surface reactivity of respirable ash and the composition and concentrations of re-worked and airborne suspended particulates. Dome-collapse ash-fall deposits are significantly richer in respirable particles (12 weight %) than the other tephra samples, in particular the matrices of dome-collapse pyroclastic-flow deposits (3 weight %). Within the respirable fraction, dome-collapse ash contains the highest proportion of crystalline silica particles (20-27 number %, of which 97 % is cristobalite), compared with other primary tephra types (0.4-5.6 number %). The results are explained by significant fractionation during fragmentation of pyroclastic flows due to the size and strength of particles and the selective elutriation of fines into the lofting ash plume. This result in a fines-depleted dome-collapse matrix and a fines-rich dome-collapse ash deposit. For all sample types, the sub-4 μm fraction comprises 45-55 weight % of the sub-10 μm fraction. Re-worked and airborne samples show enrichment of crystalline silica in the respirable fraction (10-18 number %) but have low proportions of respirable ash (∼ 3 weight %) compared to primary ash samples. The concentration of ash particles re-suspended by road vehicles on Montserrat is found to decrease exponentially with height above the ground, indicating higher exposure for children compared with adults: PM 4 concentration at 0.9 m (height of two year old child) is three times that at 1.8m (adult height). Surface- and free-radical production has been closely linked

  5. Characterization of Montserrat volcanic ash for the assessment of respiratory health hazards

    Energy Technology Data Exchange (ETDEWEB)

    Horwell, Claire Judith

    2002-07-01

    Volcanic ash, generated in the long-lived eruption of the Soufriere Hills volcano, Montserrat, is shown to contain respirable (sub-4 {mu}m) particles and the crystalline silica polymorph, cristobalite. Respirable particles of cristobalite can cause silicosis, raising the possibility that volcanic ash is a respiratory health hazard. This study considers some of the main factors that affect human exposure to volcanic particles: the composition, proportions and surface reactivity of respirable ash and the composition and concentrations of re-worked and airborne suspended particulates. Dome-collapse ash-fall deposits are significantly richer in respirable particles (12 weight %) than the other tephra samples, in particular the matrices of dome-collapse pyroclastic-flow deposits (3 weight %). Within the respirable fraction, dome-collapse ash contains the highest proportion of crystalline silica particles (20-27 number %, of which 97 % is cristobalite), compared with other primary tephra types (0.4-5.6 number %). The results are explained by significant fractionation during fragmentation of pyroclastic flows due to the size and strength of particles and the selective elutriation of fines into the lofting ash plume. This result in a fines-depleted dome-collapse matrix and a fines-rich dome-collapse ash deposit. For all sample types, the sub-4 {mu}m fraction comprises 45-55 weight % of the sub-10 {mu}m fraction. Re-worked and airborne samples show enrichment of crystalline silica in the respirable fraction (10-18 number %) but have low proportions of respirable ash ({approx} 3 weight %) compared to primary ash samples. The concentration of ash particles re-suspended by road vehicles on Montserrat is found to decrease exponentially with height above the ground, indicating higher exposure for children compared with adults: PM{sub 4} concentration at 0.9 m (height of two year old child) is three times that at 1.8m (adult height). Surface- and free-radical production has been

  6. Volcanic Ash Hazards and Risk in Argentina: Scientific and Social Collaborative Approaches.

    Science.gov (United States)

    Rovere, E. I., II; Violante, R. A.; Vazquez Herrera, M. D.; Martinez Fernandez, M. D. L. P.

    2015-12-01

    Due to the absence of alerts or volcanic impacts during 60 years (from 1932, Quizapu-Descabezado Grande -one of the major eruptions of the XX Century- until 1991 Hudson eruption) there was mild remembrance of volcanic hazards in the collective memory of the Argentina citizens. Since then and until April 2015, the social perception changed according to different factors: age, location, education, culture, vulnerability. This variability produces a maze of challenges that go beyond the scientific knowledge. Volcanic health hazards began to be understood in 2008 after the eruption of Chaiten volcano. The particle size of ashfall (concern on epidemiological monitoring. In 2011 the volcanic complex Puyehue - Cordon Caulle eruption produced ashfall through plumes that reached densely populated cities like San Carlos de Bariloche and Buenos Aires. Farther away in South Africa and New Zealand ash plumes forced airlines to cancel local and international flights for several weeks. The fear of another eruption did not wait long when Calbuco volcano started activity in April 2015, it came at a time when Villarrica volcano was also in an eruptive phase, and the SERNAGEOMIN Chile, through the Observatory OVDAS of the Southern Andes, faced multiple natural disasters at the same time, 3 volcanoes in activity, lahars, pyroclastic flows and floods in the North. In Argentina, critical infrastructure, farming, livestock and primary supplies were affected mainly in the western region. Copahue volcano, is increasing unstability on seismic and geochemistry data since 2012. Caviahue resort village, distant only 8 Km. from the active vent happens to be a high vulnerable location. In 2014 GEVAS (Geology, Volcanoes, Environment and Health) Network ARGENTINA Civil Association started collaborative activities with SEGEMAR and in 2015 with the IAPG (Geoethics, Argentina), intending to promote Best Practices in volcanic and geological hazards. Geoscientists and the volcano vulnerable population

  7. Volcanic-Ash Hazards to Aviation—Changes and Challenges since the 2010 Eruption of Eyjafjallajökull, Iceland

    Science.gov (United States)

    Guffanti, M.; Tupper, A.; Mastin, L. G.; Lechner, P.

    2012-12-01

    In response to the severe disruptions to civil aviation that resulted from atmospheric transport of ash from the eruption of Eyjafjallajökull volcano in Iceland in April and May 2010, the International Civil Aviation Organization (ICAO) quickly formed the International Volcanic Ash Task Force (IVATF), charging it to support the accelerated development of a global risk-management framework for volcanic-ash hazards to aviation. Recognizing the need for scientifically based advice on best methods to detect ash in the atmosphere and depict zones of hazardous airspace, the IVATF sought input from the global scientific community, primarily by means of the Volcanic Ash Scientific Advisory Group which was established in May 2010 by the World Meteorological Organization (WMO) and International Union of Geodesy and Geophysics to serve as a scientific resource for ICAO. The IVATF finished its work in June 2012 (see http://www.icao.int/safety/meteorology/ivatf/Pages/default.aspx for a record of its results). A major science-based outcome is that production of charts depicting areas of airspace expected to have specific ash-concentration values (e.g. 4 mg/cu. m) will not be required of the world's nine Volcanic Ash Advisory Centers (VAACs). The VAACs are responsible for issuing warning information to the aviation sector regarding ash-cloud position and expected movement. Forecast concentrations in these charts are based primarily on dispersion models that have at least an order of magnitude in uncertainty in their output and therefore do not delineate hazardous airspace with the level of confidence needed by the aviation sector. The recommended approach to improving model-forecast accuracy is to assimilate diverse observations (e.g., satellite thermal-infrared measurements, lidar, radar, direct airborne sampling, visual sightings, etc.) into model simulations; doing that during an eruption in the demanding environment of aviation operations is a substantial challenge. A

  8. Computation of probabilistic hazard maps and source parameter estimation for volcanic ash transport and dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Madankan, R. [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Pouget, S. [Department of Geology, University at Buffalo (United States); Singla, P., E-mail: psingla@buffalo.edu [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Bursik, M. [Department of Geology, University at Buffalo (United States); Dehn, J. [Geophysical Institute, University of Alaska, Fairbanks (United States); Jones, M. [Center for Computational Research, University at Buffalo (United States); Patra, A. [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Pavolonis, M. [NOAA-NESDIS, Center for Satellite Applications and Research (United States); Pitman, E.B. [Department of Mathematics, University at Buffalo (United States); Singh, T. [Department of Mechanical and Aerospace Engineering, University at Buffalo (United States); Webley, P. [Geophysical Institute, University of Alaska, Fairbanks (United States)

    2014-08-15

    Volcanic ash advisory centers are charged with forecasting the movement of volcanic ash plumes, for aviation, health and safety preparation. Deterministic mathematical equations model the advection and dispersion of these plumes. However initial plume conditions – height, profile of particle location, volcanic vent parameters – are known only approximately at best, and other features of the governing system such as the windfield are stochastic. These uncertainties make forecasting plume motion difficult. As a result of these uncertainties, ash advisories based on a deterministic approach tend to be conservative, and many times over/under estimate the extent of a plume. This paper presents an end-to-end framework for generating a probabilistic approach to ash plume forecasting. This framework uses an ensemble of solutions, guided by Conjugate Unscented Transform (CUT) method for evaluating expectation integrals. This ensemble is used to construct a polynomial chaos expansion that can be sampled cheaply, to provide a probabilistic model forecast. The CUT method is then combined with a minimum variance condition, to provide a full posterior pdf of the uncertain source parameters, based on observed satellite imagery. The April 2010 eruption of the Eyjafjallajökull volcano in Iceland is employed as a test example. The puff advection/dispersion model is used to hindcast the motion of the ash plume through time, concentrating on the period 14–16 April 2010. Variability in the height and particle loading of that eruption is introduced through a volcano column model called bent. Output uncertainty due to the assumed uncertain input parameter probability distributions, and a probabilistic spatial-temporal estimate of ash presence are computed.

  9. Volcanic hazards to airports

    Science.gov (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  10. Geoethics implications in volcanic hazards in Argentina: 24 years of uninterrupted ash-fall

    Science.gov (United States)

    Rovere, Elizabeth I.; Violante, Roberto A.; Uber, Silvia M.; Vázquez Herrera, Marcelo

    2016-04-01

    The impact of falling ash reaches all human activities, has effects on human and animal health and is subject to climate and ecosystem of the affected regions. From 1991 until 2015 (24 years), more than 5 eruptions with VEI ≥ 4 in the Southern Volcanic Zone of the Andes occurred; pyroclastic, dust and volcanic ash were deposited (mostly) in Argentina. A recurring situation during eruptions of Hudson (1991), Chaiten (2008), Puyehue-Cordon Caulle (2011) and Calbuco (2015) volcanoes was the accumulation, storage and dump of volcanic ash in depressed areas, beaches, lakes, ditches, storm drains, areas of landfills and transfer stations. The issues that this practice has taken are varied: pollution of aquifers, changes in geomorphology and water courses, usually in "inconspicuous" zones, often in places where there are precarious population or high poverty settlements. The consequences are not immediate but the effects in the mid and long term bring serious drawbacks. On the contrary, a good example of intelligent management of the volcanic impact occurred many years before, during the eruption of Descabezado Grande (Quizapu) volcano in 1932. In that case, and as an example, the city of Trenque Lauquen, located nearly 770 km east of the volcano, decided a communitarian task of collection and burial of the ashfall in small areas, this was a very successful performance. The Quizapu ash plumes transported by the Westerlies (winds) covered with a blanket of volcanic ash the city, ashfall also reached the capital cities of Argentina (Buenos Aires) and Uruguay (Montevideo). Also, the bagging process of volcanic ash with reinforced plastics was an example of Good Practice in the management of the emergency. This allowed the entire affected community to take advantage of this "mineral resource" and contributes to achieving collective and participatory work leading to commercialization and sustainability of these products availed as fertilizers, granular base for ceramics and

  11. Volcanic ash and aviation–The challenges of real-time, global communication of a natural hazard

    Science.gov (United States)

    Lechner, Peter; Tupper, Andrew C.; Guffanti, Marianne C.; Loughlin, Sue; Casadevall, Thomas

    2017-01-01

    More than 30 years after the first major aircraft encounters with volcanic ash over Indonesia in 1982, it remains challenging to inform aircraft in flight of the exact location of potentially dangerous ash clouds on their flight path, particularly shortly after the eruption has occurred. The difficulties include reliably forecasting and detecting the onset of significant explosive eruptions on a global basis, observing the dispersal of eruption clouds in real time, capturing their complex structure and constituents in atmospheric transport models, describing these observations and modelling results in a manner suitable for aviation users, delivering timely warning messages to the cockpit, flight planners and air traffic management systems, and the need for scientific development in order to undertake operational enhancements. The framework under which these issues are managed is the International Airways Volcano Watch (IAVW), administered by the International Civil Aviation Organization (ICAO). ICAO outlines in its standards and recommended practices (International Civil Aviation Organization, 2014) the basic volcanic monitoring and communication that is necessary at volcano observatories in Member States (countries). However, not all volcanoes are monitored and not all countries with volcanoes have mandated volcano observatories or equivalents. To add to the efforts of volcano observatories, a system of Meteorological Watch Offices, Air Traffic Management Area Control Centres, and nine specialist Volcanic Ash Advisory Centres (VAACs) are responsible for observing, analysing, forecasting and communicating the aviation hazard (airborne ash), using agreed techniques and messages in defined formats. Continuous improvement of the IAVW framework is overseen by expert groups representing the operators of the system, the user community, and the science community. The IAVW represents a unique marriage of two scientific disciplines - volcanology and meteorology - with the

  12. Volcanic Ash Advisory Database, 1983-2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanic ash is a significant hazard to aviation and can also affect global climate patterns. To ensure safe navigation and monitor possible climatic impact, the...

  13. Modeling volcanic ash dispersal

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...

  14. Assessment of the potential respiratory hazard of volcanic ash from future Icelandic eruptions: A study of archived basaltic to rhyolitic ash samples

    Science.gov (United States)

    Damby, David; Horwell, Claire J.; Larsen, Gudrun; Thordarson, Thorvaldur; Tomatis, Maura; Fubini, Bice; Donaldson, Ken

    2017-01-01

    BackgroundThe eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011), Iceland, triggered immediate, international consideration of the respiratory health hazard of inhaling volcanic ash, and prompted the need to estimate the potential hazard posed by future eruptions of Iceland’s volcanoes to Icelandic and Northern European populations. MethodsA physicochemical characterization and toxicological assessment was conducted on a suite of archived ash samples spanning the spectrum of past eruptions (basaltic to rhyolitic magmatic composition) of Icelandic volcanoes following a protocol specifically designed by the International Volcanic Health Hazard Network. ResultsIcelandic ash can be of a respirable size (up to 11.3 vol.% < 4 μm), but the samples did not display physicochemical characteristics of pathogenic particulate in terms of composition or morphology. Ash particles were generally angular, being composed of fragmented glass and crystals. Few fiber-like particles were observed, but those present comprised glass or sodium oxides, and are not related to pathogenic natural fibers, like asbestos or fibrous zeolites, thereby limiting concern of associated respiratory diseases. None of the samples contained cristobalite or tridymite, and only one sample contained quartz, minerals of interest due to the potential to cause silicosis. Sample surface areas are low, ranging from 0.4 to 1.6 m2 g−1, which aligns with analyses on ash from other eruptions worldwide. All samples generated a low level of hydroxyl radicals (HO•), a measure of surface reactivity, through the iron-catalyzed Fenton reaction compared to concurrently analyzed comparative samples. However, radical generation increased after ‘refreshing’ sample surfaces, indicating that newly erupted samples may display higher reactivity. A composition-dependent range of available surface iron was measured after a 7-day incubation, from 22.5 to 315.7 μmol m−2, with mafic samples releasing more iron

  15. Assessment of the potential respiratory hazard of volcanic ash from future Icelandic eruptions: a study of archived basaltic to rhyolitic ash samples.

    Science.gov (United States)

    Damby, David E; Horwell, Claire J; Larsen, Gudrun; Thordarson, Thorvaldur; Tomatis, Maura; Fubini, Bice; Donaldson, Ken

    2017-09-11

    The eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011), Iceland, triggered immediate, international consideration of the respiratory health hazard of inhaling volcanic ash, and prompted the need to estimate the potential hazard posed by future eruptions of Iceland's volcanoes to Icelandic and Northern European populations. A physicochemical characterization and toxicological assessment was conducted on a suite of archived ash samples spanning the spectrum of past eruptions (basaltic to rhyolitic magmatic composition) of Icelandic volcanoes following a protocol specifically designed by the International Volcanic Health Hazard Network. Icelandic ash can be of a respirable size (up to 11.3 vol.% fiber-like particles were observed, but those present comprised glass or sodium oxides, and are not related to pathogenic natural fibers, like asbestos or fibrous zeolites, thereby limiting concern of associated respiratory diseases. None of the samples contained cristobalite or tridymite, and only one sample contained quartz, minerals of interest due to the potential to cause silicosis. Sample surface areas are low, ranging from 0.4 to 1.6 m 2  g -1 , which aligns with analyses on ash from other eruptions worldwide. All samples generated a low level of hydroxyl radicals (HO • ), a measure of surface reactivity, through the iron-catalyzed Fenton reaction compared to concurrently analyzed comparative samples. However, radical generation increased after 'refreshing' sample surfaces, indicating that newly erupted samples may display higher reactivity. A composition-dependent range of available surface iron was measured after a 7-day incubation, from 22.5 to 315.7 μmol m -2 , with mafic samples releasing more iron than silicic samples. All samples were non-reactive in a test of red blood cell-membrane damage. The primary particle-specific concern is the potential for future eruptions of Iceland's volcanoes to generate fine, respirable material and, thus, to

  16. Volcanic hazards and aviation safety

    Science.gov (United States)

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,

    1996-01-01

    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  17. Volcanic ash impacts on critical infrastructure

    Science.gov (United States)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  18. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  19. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    Science.gov (United States)

    Bonasia, Rosanna; Scaini, Chiara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2014-01-01

    Popocatépetl is one of Mexico's most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene-Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl's reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the "Ochre Pumice" Plinian eruption (4965 14C yr BP

  20. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    Science.gov (United States)

    Bonasia, Rosanna; Scaini, Chirara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2013-01-01

    Popocatépetl is one of Mexico’s most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene–Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl’s reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the “Ochre Pumice” Plinian eruption (4965 14C

  1. Variational data assimilation of satellite observations to estimate volcanic ash emissions

    NARCIS (Netherlands)

    Lu, S.

    2017-01-01

    Volcanic eruptions release a large amount of volcanic ash, which can pose hazard to human and animal health, land transportation, and aviation safety. Volcanic Ash Transport and Dispersion (VATD) models are critical tools to provide advisory information and timely volcanic ash forecasts. Due to the

  2. Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards: Part II. Validation of satellite-derived Volcanic Sulphur Dioxide Levels.

    Science.gov (United States)

    Koukouli, MariLiza; Balis, Dimitris; Dimopoulos, Spiros; Clarisse, Lieven; Carboni, Elisa; Hedelt, Pascal; Spinetti, Claudia; Theys, Nicolas; Tampellini, Lucia; Zehner, Claus

    2014-05-01

    The eruption of the Icelandic volcano Eyjafjallajökull in the spring of 2010 turned the attention of both the public and the scientific community to the susceptibility of the European airspace to the outflows of large volcanic eruptions. The ash-rich plume from Eyjafjallajökull drifted towards Europe and caused major disruptions of European air traffic for several weeks affecting the everyday life of millions of people and with a strong economic impact. This unparalleled situation revealed limitations in the decision making process due to the lack of information on the tolerance to ash of commercial aircraft engines as well as limitations in the ash monitoring and prediction capabilities. The European Space Agency project Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards, was introduced to facilitate the development of an optimal End-to-End System for Volcanic Ash Plume Monitoring and Prediction. This system is based on comprehensive satellite-derived ash plume and sulphur dioxide [SO2] level estimates, as well as a widespread validation using supplementary satellite, aircraft and ground-based measurements. The validation of volcanic SO2 levels extracted from the sensors GOME-2/MetopA and IASI/MetopA are shown here with emphasis on the total column observed right before, during and after the Eyjafjallajökull 2010 eruptions. Co-located ground-based Brewer Spectrophotometer data extracted from the World Ozone and Ultraviolet Radiation Data Centre, WOUDC, were compared to the different satellite estimates. The findings are presented at length, alongside a comprehensive discussion of future scenarios.

  3. eVADE: Volcanic Ash Detection Raman LIDAR, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Volcanic ash is a significant hazard to aircraft engine and electronics and has caused damage to unwary aircraft and disrupted air travel for thousands of travelers,...

  4. Volcanic Ash Detection Using Raman LIDAR: "VADER", Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Volcanic ash is a significant hazard to aircraft engine and electronics and has caused damage to unwary aircraft and disrupted air travel for thousands of travelers,...

  5. Coping with volcanic hazards; a global perspective

    Science.gov (United States)

    Tilling, R.I.

    1990-01-01

    Compared to some other natural hazards-such as floods, storms, earthquakes, landslides- volcanic hazards strike infrequently. However, in populated areas , even very small eruptions can wreak havoc and cause widespread devastation. For example, the 13 November 1985 eruption of Nevado del Ruiz in Colombia ejected only about 3 percent of the volume of ash produced during the 18 May 1980 eruption of Mount St. Helens. Yet, the mudflows triggered by this tiny eruption killed more than 25,000 people.

  6. Considerations on comprehensive risk assessment and mitigation planning of volcanic ash-fall

    International Nuclear Information System (INIS)

    Toshida, Kiyoshi

    2010-01-01

    Volcanic ash-fall is inevitable hazard throughout Japan, and causes wide range of effects due to its physical and chemical properties. Nuclear power plants in Japan face the necessity to assess the risk from volcanic ash-fall. Risk assessment of the volcanic ash-fall should include engineering solution and mitigation planning as well as the ash-fall hazard. This report points out the characteristics for reducing the various effects of volcanic ash-fall as follows. Large-scale eruptions produce prominent volcanic ash-falls that can approach power plants at a great distance. Aftermath hazards of ash-fall events, such as remobilization of fine ash particles and generation of lahars, require further assessments. The kind and extent of damages becomes greater whenever ash is wet. Wet ash requires separate assessments in contrast to dry ash. The mitigation and recovery measures at power plants involve quick cleanup operations of volcanic ash. Those operations should be prepared through comprehensive risk assessment, and by cooperation with authorities, during pre-eruption repose period. The comprehensive assessment for volcanic ash-fall hazards, however, has yet to be conducted. Development of risk communication method may result in increased implementation mitigation planning. Numerical analysis of the ash-fall hazards provides quantitative data on particle motions that can be used in the risk assessment. In order to implement the quantitative assessment method, the verification on the effect of ambient air condition to the altitude of volcanic ash cloud is necessary. We need to develop a three-dimensional model of volcanic ash cloud, and calculate motions of ash clouds under multiple conditions of ambient air. (author)

  7. Improved prediction and tracking of volcanic ash clouds

    Science.gov (United States)

    Mastin, Larry G.; Webley, Peter

    2009-01-01

    During the past 30??years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality. ?? 2008 Elsevier B.V.

  8. A robust method to forecast volcanic ash clouds

    Science.gov (United States)

    Denlinger, Roger P.; Pavolonis, Mike; Sieglaff, Justin

    2012-01-01

    Ash clouds emanating from volcanic eruption columns often form trails of ash extending thousands of kilometers through the Earth's atmosphere, disrupting air traffic and posing a significant hazard to air travel. To mitigate such hazards, the community charged with reducing flight risk must accurately assess risk of ash ingestion for any flight path and provide robust forecasts of volcanic ash dispersal. In response to this need, a number of different transport models have been developed for this purpose and applied to recent eruptions, providing a means to assess uncertainty in forecasts. Here we provide a framework for optimal forecasts and their uncertainties given any model and any observational data. This involves random sampling of the probability distributions of input (source) parameters to a transport model and iteratively running the model with different inputs, each time assessing the predictions that the model makes about ash dispersal by direct comparison with satellite data. The results of these comparisons are embodied in a likelihood function whose maximum corresponds to the minimum misfit between model output and observations. Bayes theorem is then used to determine a normalized posterior probability distribution and from that a forecast of future uncertainty in ash dispersal. The nature of ash clouds in heterogeneous wind fields creates a strong maximum likelihood estimate in which most of the probability is localized to narrow ranges of model source parameters. This property is used here to accelerate probability assessment, producing a method to rapidly generate a prediction of future ash concentrations and their distribution based upon assimilation of satellite data as well as model and data uncertainties. Applying this method to the recent eruption of Eyjafjallajökull in Iceland, we show that the 3 and 6 h forecasts of ash cloud location probability encompassed the location of observed satellite-determined ash cloud loads, providing an

  9. Communicating Uncertainty in Volcanic Ash Forecasts: Decision-Making and Information Preferences

    Science.gov (United States)

    Mulder, Kelsey; Black, Alison; Charlton-Perez, Andrew; McCloy, Rachel; Lickiss, Matthew

    2016-04-01

    The Robust Assessment and Communication of Environmental Risk (RACER) consortium, an interdisciplinary research team focusing on communication of uncertainty with respect to natural hazards, hosted a Volcanic Ash Workshop to discuss issues related to volcanic ash forecasting, especially forecast uncertainty. Part of the workshop was a decision game in which participants including forecasters, academics, and members of the Aviation Industry were given hypothetical volcanic ash concentration forecasts and asked whether they would approve a given flight path. The uncertainty information was presented in different formats including hazard maps, line graphs, and percent probabilities. Results from the decision game will be presented with a focus on information preferences, understanding of the forecasts, and whether different formats of the same volcanic ash forecast resulted in different flight decisions. Implications of this research will help the design and presentation of volcanic ash plume decision tools and can also help advise design of other natural hazard information.

  10. Estimation of volcanic ash emissions using trajectory-based 4D-Var data assimilation

    NARCIS (Netherlands)

    Lu, S.; Lin, X.; Heemink, A.W.; Fu, G.; Segers, A.J.

    2015-01-01

    Volcanic ash forecasting is a crucial tool in hazard assessment and operational volcano monitoring. Emission parameters such as plume height, total emission mass, and vertical distribution of the emission plume rate are essential and important in the implementation of volcanic ash models. Therefore,

  11. Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface

    Science.gov (United States)

    Tomasek, Ines; Horwell, Claire J.; Bisig, Christoph; Damby, David; Comte, Pierre; Czerwinski, Jan; Petri-Fink, Alke; Clift, Martin J D; Drasler, Barbara; Rothen-Rutishauer, Barbara

    2018-01-01

    Communities resident in urban areas located near active volcanoes can experience volcanic ash exposures during, and following, an eruption, in addition to sustained exposures to high concentrations of anthropogenic air pollutants (e.g., vehicle exhaust emissions). Inhalation of anthropogenic pollution is known to cause the onset of, or exacerbate, respiratory and cardiovascular diseases. It is further postulated similar exposure to volcanic ash can also affect such disease states. Understanding of the impact of combined exposure of volcanic ash and anthropogenic pollution to human health, however, remains limited.The aim of this study was to assess the biological impact of combined exposure to respirable volcanic ash (from Soufrière Hills volcano (SHV), Montserrat and Chaitén volcano (ChV), Chile; representing different magmatic compositions and eruption styles) and freshly-generated complete exhaust from a gasoline vehicle. A multicellular human lung model (an epithelial cell-layer composed of A549 alveolar type II-like cells complemented with human blood monocyte-derived macrophages and dendritic cells cultured at the air-liquid interface) was exposed to diluted exhaust (1:10) continuously for 6 h, followed by immediate exposure to the ash as a dry powder (0.54 ± 0.19 μg/cm2 and 0.39 ± 0.09 μg/cm2 for SHV and ChV ash, respectively). After an 18 h incubation, cells were exposed again for 6 h to diluted exhaust, and a final 18 h incubation (at 37 °C and 5% CO2). Cell cultures were then assessed for cytotoxic, oxidative stress and (pro-)inflammatory responses.Results indicate that, at all tested (sub-lethal) concentrations, co-exposures with both ash samples induced no significant expression of genes associated with oxidative stress (HMOX1, NQO1) or production of (pro-)inflammatory markers (IL-1β, IL-8, TNF-α) at the gene and protein levels. In summary, considering the employed experimental conditions, combined exposure of

  12. Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface.

    Science.gov (United States)

    Tomašek, Ines; Horwell, Claire J; Bisig, Christoph; Damby, David E; Comte, Pierre; Czerwinski, Jan; Petri-Fink, Alke; Clift, Martin J D; Drasler, Barbara; Rothen-Rutishauser, Barbara

    2018-07-01

    Communities resident in urban areas located near active volcanoes can experience volcanic ash exposures during, and following, an eruption, in addition to sustained exposures to high concentrations of anthropogenic air pollutants (e.g., vehicle exhaust emissions). Inhalation of anthropogenic pollution is known to cause the onset of, or exacerbate, respiratory and cardiovascular diseases. It is further postulated similar exposure to volcanic ash can also affect such disease states. Understanding of the impact of combined exposure of volcanic ash and anthropogenic pollution to human health, however, remains limited. The aim of this study was to assess the biological impact of combined exposure to respirable volcanic ash (from Soufrière Hills volcano (SHV), Montserrat and Chaitén volcano (ChV), Chile; representing different magmatic compositions and eruption styles) and freshly-generated complete exhaust from a gasoline vehicle. A multicellular human lung model (an epithelial cell-layer composed of A549 alveolar type II-like cells complemented with human blood monocyte-derived macrophages and dendritic cells cultured at the air-liquid interface) was exposed to diluted exhaust (1:10) continuously for 6 h, followed by immediate exposure to the ash as a dry powder (0.54 ± 0.19 μg/cm 2 and 0.39 ± 0.09 μg/cm 2 for SHV and ChV ash, respectively). After an 18 h incubation, cells were exposed again for 6 h to diluted exhaust, and a final 18 h incubation (at 37 °C and 5% CO 2 ). Cell cultures were then assessed for cytotoxic, oxidative stress and (pro-)inflammatory responses. Results indicate that, at all tested (sub-lethal) concentrations, co-exposures with both ash samples induced no significant expression of genes associated with oxidative stress (HMOX1, NQO1) or production of (pro-)inflammatory markers (IL-1β, IL-8, TNF-α) at the gene and protein levels. In summary, considering the employed experimental conditions, combined exposure of

  13. Microphysical Properties of Alaskan Volcanic Ash

    Science.gov (United States)

    Puthukkudy, A.; Espinosa, R.; Rocha Lima, A.; Remer, L.; Colarco, P. R.; Whelley, P.; Krotkov, N. A.; Young, K.; Dubovik, O.; Wallace, K.; Martins, J. V.

    2017-12-01

    Volcanic ash has the potential to cause a variety of severe problems for human health and the environment. Therefore, effective monitoring of the dispersion and fallout from volcanic ash clouds and characterization of the aerosol particle properties are essential. One way to acquire information from volcanic clouds is through satellite remote sensing: such images have greater coverage than ground-based observations and can present a "big picture" perspective. A challenge of remote sensing is that assumptions of certain properties of the target are often a pre-requisite for making accurate and quantitative retrievals. For example, detailed information about size distribution, sphericity, and optical properties of the constituent matter is needed or must be assumed. The same kind of information is also needed for atmospheric transport models to properly simulate the dispersion and fallout of volcanic ash. Presented here is a laboratory method to determine the microphysical and optical properties of volcanic ash samples collected from two Alaskan volcanoes with markedly different compositions. Our method uses a Polarized Imaging Nephelometer (PI-Neph) and a system that re-suspends the particles in an air flow. The PI-Neph measures angular light scattering and polarization of the re-suspended particles from 3o to 175o in scattering angle, with an angular resolution of 1o . Primary measurements include phase function and polarized phase function at three wavelengths (445nm, 532nm, and 661nm). Size distribution, sphericity, and complex refractive index are retrieved indirectly from the PI-Neph measurements using the GRASP (Generalized Retrieval of Aerosol and Surface Properties) inversion algorithm. We report the results of this method applied to samples from the Mt. Okmok (2008) and Mt. Katmai (1912) volcanic eruptions. To our knowledge, this is the first time direct measurements of phase matrix elements of ash from Mt. Okmok and Mt. Katmai have been reported. Retrieved

  14. Improving volcanic ash forecasts with ensemble-based data assimilation

    NARCIS (Netherlands)

    Fu, Guangliang

    2017-01-01

    The 2010 Eyjafjallajökull volcano eruption had serious consequences to civil aviation. This has initiated a lot of research on volcanic ash forecasting in recent years. For forecasting the volcanic ash transport after eruption onset, a volcanic ash transport and diffusion model (VATDM) needs to be

  15. Volcanic hazards in Central America

    Science.gov (United States)

    Rose, William I.; Bluth, Gregg J.S.; Carr, Michael J.; Ewert, John W.; Patino, Lina C.; Vallance, James W.

    2006-01-01

    This volume is a sampling of current scientific work about volcanoes in Central America with specific application to hazards. The papers reflect a variety of international and interdisciplinary collaborations and employ new methods. The book will be of interest to a broad cross section of scientists, especially volcanologists. The volume also will interest students who aspire to work in the field of volcano hazards mitigation or who may want to work in one of Earth’s most volcanically active areas.

  16. Volcanic Ash from the 1999 Eruption of Mount Cameroon Volcano ...

    African Journals Online (AJOL)

    2008-10-21

    Oct 21, 2008 ... fluorine (F) content of the ash was determined by the selective ion electrode method. The results ... the main mineral in volcanic ash responsible for causing silicosis. The F ... volcanic ash with little or no attention to the < 4 µm.

  17. X-ray microanalysis of volcanic ash

    International Nuclear Information System (INIS)

    Kearns, S L; Buse, B

    2012-01-01

    The 2010 eruption of Eyjafjallajökull volcano in Iceland demonstrated the disruptive nature of high-level volcanic ash emissions to the world's air traffic. The chemistry of volcanic material is complex and varied. Different eruptions yield both compositional and morphological variation. Equally a single eruption, such as that in Iceland will evolve over time and may potentially produce a range of volcanic products of varying composition and morphology. This variability offers the petrologist the opportunity to derive a tracer to the origins both spatially and temporally of a single particle by means of electron microbeam analysis. EPMA of volcanic ash is now an established technique for this type of analysis as used in tephrachronology. However, airborne paniculate material may, as in the case of Eyjafjallajökull, result in a particle size that is too small and too dispersed for preparation of standard EPMA mounts. Consequently SEM-EDS techniques are preferred for this type of quantitative analysis . Results of quantitative SEM-EDS analysis yield data with a larger precision error than EPMA yet sufficient to source the original eruption. Uncoated samples analyzed using variable pressure SEM yield slightly poorer results at modest pressures.

  18. Volcanic ash in ancient Maya ceramics of the limestone lowlands: implications for prehistoric volcanic activity in the Guatemala highlands

    Science.gov (United States)

    Ford, Anabel; Rose, William I.

    1995-07-01

    In the spirit of collaborative research, Glicken and Ford embarked on the problem of identifying the source of volcanic ash used as temper in prehistoric Maya ceramics. Verification of the presence of glass shards and associated volcanic mineralogy in thin sections of Maya ceramics was straightforward and pointed to the Guatemala Highland volcanic chain. Considering seasonal wind rose patterns, target volcanoes include those from the area west of and including Guatemala City. Joint field research conducted in 1983 by Glicken and Ford in the limestone lowlands of Belize and neighboring Guatemala, 300 km north of the volcanic zone and 150 km from the nearest identified ash deposits, was unsuccessful in discovering local volcanic ash deposits. The abundance of the ash in common Maya ceramic vessels coupled with the difficulties of long-distance procurement without draft animals lead Glicken to suggest that ashfall into the lowlands would most parsimoniously explain prehistoric procurement; it literally dropped into their hands. A major archaeological problem with this explanation is that the use of volcanic ash occurring over several centuries of the Late Classic Period (ca. 600-900 AD). To accept the ashfall hypothesis for ancient Maya volcanic ash procurement, one would have to demonstrate a long span of consistent volcanic activity in the Guatemala Highlands for the last half of the first millennium AD. Should this be documented through careful petrographic, microprobe and tephrachronological studies, a number of related archaeological phenomena would be explained. In addition, the proposed model of volcanic activity has implications for understanding volcanism and potential volcanic hazards in Central America over a significantly longer time span than the historic period. These avenues are explored and a call for further collaborative research of this interdisciplinary problem is extended in this paper.

  19. A Bayesian method to rank different model forecasts of the same volcanic ash cloud: Chapter 24

    Science.gov (United States)

    Denlinger, Roger P.; Webley, P.; Mastin, Larry G.; Schwaiger, Hans F.

    2012-01-01

    Volcanic eruptions often spew fine ash high into the atmosphere, where it is carried downwind, forming long ash clouds that disrupt air traffic and pose a hazard to air travel. To mitigate such hazards, the community studying ash hazards must assess risk of ash ingestion for any flight path and provide robust and accurate forecasts of volcanic ash dispersal. We provide a quantitative and objective method to evaluate the efficacy of ash dispersal estimates from different models, using Bayes theorem to assess the predictions that each model makes about ash dispersal. We incorporate model and measurement uncertainty and produce a posterior probability for model input parameters. The integral of the posterior over all possible combinations of model inputs determines the evidence for each model and is used to compare models. We compare two different types of transport models, an Eulerian model (Ash3d) and a Langrangian model (PUFF), as applied to the 2010 eruptions of Eyjafjallajökull volcano in Iceland. The evidence for each model benefits from common physical characteristics of ash dispersal from an eruption column and provides a measure of how well each model forecasts cloud transport. Given the complexity of the wind fields, we find that the differences between these models depend upon the differences in the way the models disperse ash into the wind from the source plume. With continued observation, the accuracy of the estimates made by each model increases, increasing the efficacy of each model’s ability to simulate ash dispersal.

  20. Volcanic Ash Data Assimilation System for Atmospheric Transport Model

    Science.gov (United States)

    Ishii, K.; Shimbori, T.; Sato, E.; Tokumoto, T.; Hayashi, Y.; Hashimoto, A.

    2017-12-01

    The Japan Meteorological Agency (JMA) has two operations for volcanic ash forecasts, which are Volcanic Ash Fall Forecast (VAFF) and Volcanic Ash Advisory (VAA). In these operations, the forecasts are calculated by atmospheric transport models including the advection process, the turbulent diffusion process, the gravitational fall process and the deposition process (wet/dry). The initial distribution of volcanic ash in the models is the most important but uncertain factor. In operations, the model of Suzuki (1983) with many empirical assumptions is adopted to the initial distribution. This adversely affects the reconstruction of actual eruption plumes.We are developing a volcanic ash data assimilation system using weather radars and meteorological satellite observation, in order to improve the initial distribution of the atmospheric transport models. Our data assimilation system is based on the three-dimensional variational data assimilation method (3D-Var). Analysis variables are ash concentration and size distribution parameters which are mutually independent. The radar observation is expected to provide three-dimensional parameters such as ash concentration and parameters of ash particle size distribution. On the other hand, the satellite observation is anticipated to provide two-dimensional parameters of ash clouds such as mass loading, top height and particle effective radius. In this study, we estimate the thickness of ash clouds using vertical wind shear of JMA numerical weather prediction, and apply for the volcanic ash data assimilation system.

  1. Volcanic hazards and public response

    Science.gov (United States)

    Peterson, Donald W.

    1988-05-01

    Although scientific understanding of volcanoes is advancing, eruptions continue to take a substantial toll of life and property. Some of these losses could be reduced by better advance preparation, more effective flow of information between scientists and public officials, and better understanding of volcanic behavior by all segments of the public. The greatest losses generally occur at volcanoes that erupt infrequently where people are not accustomed to dealing with them. Scientists sometimes tend to feel that the blame for poor decisions in emergency management lies chiefly with officials or journalists because of their failure to understand the threat. However, the underlying problem embraces a set of more complex issues comprising three pervasive factors. The first factor is the volcano: signals given by restless volcanoes are often ambiguous and difficult to interpret, especially at long-quiescent volcanoes. The second factor is people: people confront hazardous volcanoes in widely divergent ways, and many have difficulty in dealing with the uncertainties inherent in volcanic unrest. The third factor is the scientists: volcanologists correctly place their highest priority on monitoring and hazard assessment, but they sometimes fail to explain clearly their conclusions to responsible officials and the public, which may lead to inadequate public response. Of all groups in society, volcanologists have the clearest understanding of the hazards and vagaries of volcanic activity; they thereby assume an ethical obligation to convey effectively their knowledge to benefit all of society. If society resists, their obligation nevertheless remains. They must use the same ingenuity and creativity in dealing with information for the public that they use in solving scientific problems. When this falls short, even excellent scientific results may be nullified.

  2. Detecting Volcanic Ash Plumes with GNSS Signals

    Science.gov (United States)

    Rainville, N.; Larson, K. M.; Palo, S. E.; Mattia, M.; Rossi, M.; Coltelli, M.; Roesler, C.; Fee, D.

    2016-12-01

    Global Navigation Satellite Systems (GNSS) receivers are commonly placed near volcanic sites to measure ground deformation. In addition to the carrier phase data used to measure ground position, these receivers also record Signal to Noise ratio (SNR) data. Larson (2013) showed that attenuations in SNR data strongly correlate with ash emissions at a series of eruptions of Redoubt Volcano. This finding has been confirmed at eruptions for Tongariro, Mt Etna, Mt Shindake, and Sakurajima. In each of these detections, very expensive geodetic quality GNSS receivers were used. If low-cost GNSS instruments could be used instead, a networked array could be deployed and optimized for plume detection and tomography. The outputs of this sensor array could then be used by both local volcanic observatories and Volcano Ash Advisory Centers. Here we will describe progress in developing such an array. The sensors we are working with are intended for navigation use, and thus lack the supporting power and communications equipment necessary for a networked system. Reliably providing those features is major challenge for the overall sensor design. We have built prototypes of our Volcano Ash Plume Receiver (VAPR), with solar panels, lithium-ion batteries and onboard data storage for preliminary testing. We will present results of our field tests of both receivers and antennas. A second critical need for our array is a reliable detection algorithm. We have tested our algorithm on data from recent eruptions and have incorporated the noise characteristics of the low-cost GNSS receiver. We have also developed a simulation capability so that the receivers can be deployed to optimize vent crossing GNSS signals.

  3. Assessment of volcanic hazards, vulnerability, risk and uncertainty (Invited)

    Science.gov (United States)

    Sparks, R. S.

    2009-12-01

    A volcanic hazard is any phenomenon that threatens communities . These hazards include volcanic events like pyroclastic flows, explosions, ash fall and lavas, and secondary effects such as lahars and landslides. Volcanic hazards are described by the physical characteristics of the phenomena, by the assessment of the areas that they are likely to affect and by the magnitude-dependent return period of events. Volcanic hazard maps are generated by mapping past volcanic events and by modelling the hazardous processes. Both these methods have their strengths and limitations and a robust map should use both approaches in combination. Past records, studied through stratigraphy, the distribution of deposits and age dating, are typically incomplete and may be biased. Very significant volcanic hazards, such as surge clouds and volcanic blasts, are not well-preserved in the geological record for example. Models of volcanic processes are very useful to help identify hazardous areas that do not have any geological evidence. They are, however, limited by simplifications and incomplete understanding of the physics. Many practical volcanic hazards mapping tools are also very empirical. Hazards maps are typically abstracted into hazards zones maps, which are some times called threat or risk maps. Their aim is to identify areas at high levels of threat and the boundaries between zones may take account of other factors such as roads, escape routes during evacuation, infrastructure. These boundaries may change with time due to new knowledge on the hazards or changes in volcanic activity levels. Alternatively they may remain static but implications of the zones may change as volcanic activity changes. Zone maps are used for planning purposes and for management of volcanic crises. Volcanic hazards maps are depictions of the likelihood of future volcanic phenomena affecting places and people. Volcanic phenomena are naturally variable, often complex and not fully understood. There are

  4. Volcanic Ash Impacts on Air Traffic from the 2009 Mt. Redoubt Eruption

    Science.gov (United States)

    Murray, J. J.; Matus, A. V.; Hudnall, L. A.; Krueger, A. J.; Haynes, J. A.; Pippin, M. R.

    2009-12-01

    study was completed to help improve volcanic ash detection, forecast models and warnings and to assist policy makers and the airlines to refine preparatory measures for the prevention of future volcanic ash encounters. It’s overarching objective is not only to reduce the potentially catastrophic loss of aircraft and human life posed by the volcanic ash hazard, but more often to mitigate the economic impact from flight delays and cancellations. In that vein, this project supports Sub Goal 3A of the NASA Strategic Plan, “Study Earth from space to advance scientific understanding and meet societal needs.”

  5. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    International Nuclear Information System (INIS)

    Hackett, W.R.; Smith, R.P.

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 x 10 -5 per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 x 10 -5 per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis

  6. Volcanic ash as fertiliser for the surface ocean

    Directory of Open Access Journals (Sweden)

    B. Langmann

    2010-04-01

    Full Text Available Iron is a key limiting micro-nutrient for marine primary productivity. It can be supplied to the ocean by atmospheric dust deposition. Volcanic ash deposition into the ocean represents another external and so far largely neglected source of iron. This study demonstrates strong evidence for natural fertilisation in the iron-limited oceanic area of the NE Pacific, induced by volcanic ash from the eruption of Kasatochi volcano in August 2008. Atmospheric and oceanic conditions were favourable to generate a massive phytoplankton bloom in the NE Pacific Ocean which for the first time strongly suggests a connection between oceanic iron-fertilisation and volcanic ash supply.

  7. Solid State Multiwavelength LIDAR for Volcanic Ash Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. proposes to develop a compact, multiwavelength LIDAR with polarization analysis capability that will be able to identify volcanic ash clouds...

  8. Meteorological Controls on Local and Regional Volcanic Ash Dispersal.

    Science.gov (United States)

    Poulidis, Alexandros P; Phillips, Jeremy C; Renfrew, Ian A; Barclay, Jenni; Hogg, Andrew; Jenkins, Susanna F; Robertson, Richard; Pyle, David M

    2018-05-02

    Volcanic ash has the capacity to impact human health, livestock, crops and infrastructure, including international air traffic. For recent major eruptions, information on the volcanic ash plume has been combined with relatively coarse-resolution meteorological model output to provide simulations of regional ash dispersal, with reasonable success on the scale of hundreds of kilometres. However, to predict and mitigate these impacts locally, significant improvements in modelling capability are required. Here, we present results from a dynamic meteorological-ash-dispersion model configured with sufficient resolution to represent local topographic and convectively-forced flows. We focus on an archetypal volcanic setting, Soufrière, St Vincent, and use the exceptional historical records of the 1902 and 1979 eruptions to challenge our simulations. We find that the evolution and characteristics of ash deposition on St Vincent and nearby islands can be accurately simulated when the wind shear associated with the trade wind inversion and topographically-forced flows are represented. The wind shear plays a primary role and topographic flows a secondary role on ash distribution on local to regional scales. We propose a new explanation for the downwind ash deposition maxima, commonly observed in volcanic eruptions, as resulting from the detailed forcing of mesoscale meteorology on the ash plume.

  9. Biomimetic thermal barrier coating in jet engine to resist volcanic ash deposition

    Science.gov (United States)

    Song, Wenjia; Major, Zsuzsanna; Schulz, Uwe; Muth, Tobias; Lavallée, Yan; Hess, Kai-Uwe; Dingwell, Donald B.

    2017-04-01

    The threat of volcanic ash to aviation safety is attracting extensive attention when several commercial jet aircraft were damaged after flying through volcanic ash clouds from the May 1980 eruptions of Mount St. Helen in Washington, U.S. and especially after the air traffic disruption in 2010 Eyjafjallajökull eruption. A major hazard presented by volcanic ash to aircraft is linked to the wetting and spreading of molten ash droplets on engine component surfaces. Due to the fact ash has a lower melting point, around 1100 °C, than the gas temperature in the hot section (between 1400 to 2000 °C), this cause the ash to melt and potentially stick to the internal components (e.g., combustor and turbine blades), this cause the ash to melt and potentially stick to the internal components of the engine creating, substantial damage or even engine failure after ingestion. Here, inspiring form the natural surface of lotus leaf (exhibiting extreme water repellency, known as 'lotus effect'), we firstly create the multifunctional surface thermal barrier coatings (TBCs) by producing a hierarchical structure with femtosecond laser pulses. In detail, we investigate the effect of one of primary femtosecond laser irradiation process parameter (scanning speed) on the hydrophobicity of water droplets onto the two kinds of TBCs fabricated by electron-beam physical vapor deposition (EB-PVD) and air plasma spray (APS), respectively as well as their corresponding to morphology. It is found that, comparison with the original surface (without femtosecond laser ablation), all of the irradiated samples demonstrate more significant hydrophobic properties due to nanostructuring. On the basis of these preliminary room-temperature results, the wettability of volcanic ash droplets will be analysed at the high temperature to constrain the potential impact of volcanic ash on the jet engines.

  10. The Earth System Science Pathfinder VOLCAM Volcanic Hazard Mission

    Science.gov (United States)

    Krueger, Arlin J.

    1999-01-01

    The VOLCAM mission is planned for research on volcanic eruptions and as a demonstration of a satellite system for measuring the location and density of volcanic eruption clouds for use in mitigating hazards to aircraft by the operational air traffic control systems. A requirement for 15 minute time resolution is met by flight as payloads of opportunity on geostationary satellites. Volcanic sulfur dioxide and ash are detected using techniques that have been developed from polar orbiting TOMS (UV) and AVHRR (IR) data. Seven band UV and three band IR filter wheel cameras are designed for continuous observation of the full disk of the earth with moderate (10 - 20 km) ground resolution. This resolution can be achieved with small, low cost instruments but is adequate for discrimination of ash and sulfur dioxide in the volcanic clouds from meteorological clouds and ozone. The false alarm rate is small through use of sulfur dioxide as a unique tracer of volcanic clouds. The UV band wavelengths are optimized to detect very small sulfur dioxide amounts that are present in pre-eruptive outgassing of volcanoes. The system is also capable of tracking dust and smoke clouds, and will be used to infer winds at tropopause level from the correlation of total ozone with potential vorticity.

  11. Volcanism and associated hazards: the Andean perspective

    Science.gov (United States)

    Tilling, R. I.

    2009-12-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (Colombia) killed about 25 000 people - the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant

  12. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    Science.gov (United States)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  13. Delineation of a volcanic ash body using electrical resistivity profiling

    International Nuclear Information System (INIS)

    Xia, Jianghai; Ludvigson, Greg; Miller, Richard D; Mayer, Lindsay; Haj, Adel

    2010-01-01

    Four lines of electrical resistivity profiling (ERP) were performed to define the extent of a shallow Quaternary volcanic ash deposit being mined in the United States. Inversion results of ERP proved suitable for defining the thickness and lateral extent of the volcanic ash deposit at this testing site. These interpretations were confirmed by shallow borehole drilling. The model sensitivity information indicates that inverted models possess sufficient resolving power down to a depth of 7 m and are fairly consistent in terms of horizontal resolution along the four ERP lines. The bottom of most of the volcanic ash deposit in the study area is less than 7 m in depth. Based on synthesis of the ERP and drill information, the limits of the mineable ash bed resources were clearly defined. Moreover, by integrating the ERP results with a minimal number of optimally placed borings, the volume of the volcanic ash deposit was established at a lesser cost, and with greater accuracy than would be possible with a traditionally designed grid drilling programme

  14. Treatment of low-level radioactive waste using Volcanic ash

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Marcelo, E.A.; Junio, J.B.; Caseria, E.S.; Salom, D.S.; Alamares, A.L.

    1997-01-01

    The effective application of volcanic ash, an indigenous adsorptive material abundant in the Mt. Pinatubo area, in the removal of radioiodine from radioactive waste streams was demonstrated. Factors such as availability, low cost and comparative retention capacity with respect to activated charcoal make volcanic ash an attractive alternative in the conditioning of radioactive waste containing radioiodine. Chemical precipitation was employed in the treatment of low level aqueous waste containing 137 Cs. It was shown that there exists an optimum concentration of ferric ion that promotes maximum precipitation of caesium. It was further demonstrated that complete removal of caesium can be achieved with the addition of nickel hexacyanoferrate. (author). 5 refs, 3 figs

  15. Treatment of low-level radioactive waste using Volcanic ash

    Energy Technology Data Exchange (ETDEWEB)

    Valdezco, E M; Marcelo, E A; Junio, J B; Caseria, E S; Salom, D S; Alamares, A L [Philippine Nuclear Research Inst., Manila (Philippines). Radiation Protection Services

    1997-02-01

    The effective application of volcanic ash, an indigenous adsorptive material abundant in the Mt. Pinatubo area, in the removal of radioiodine from radioactive waste streams was demonstrated. Factors such as availability, low cost and comparative retention capacity with respect to activated charcoal make volcanic ash an attractive alternative in the conditioning of radioactive waste containing radioiodine. Chemical precipitation was employed in the treatment of low level aqueous waste containing {sup 137}Cs. It was shown that there exists an optimum concentration of ferric ion that promotes maximum precipitation of caesium. It was further demonstrated that complete removal of caesium can be achieved with the addition of nickel hexacyanoferrate. (author). 5 refs, 3 figs.

  16. Evaluation of added phosphorus in six volcanic ash soils

    International Nuclear Information System (INIS)

    Pino N, I.; Casas G, L.; Urbinsa P, M.C.

    1984-01-01

    The behaviour of added phosphorus in six volcanic ash soils (Andepts) was studied. Two phosphate retention solution were used; one of them labeled with 32 P carrier free. The phosphate retention solution (25 ml) was added to 5 gr of air dry soil. The remainder phosphorus in solution was measured through colorimetry and liquid scintillation. Over 85% phosphorus retention was measured in five soils. A phosphate retention solution labeled with 32 P carrier free proved to be efficient for the determination of phosphorus retention rates in the volcanic ash soils studied. (Author)

  17. STABILIZATION OF GRANULAR VOLCANIC ASH IN SANA'A AREA

    Directory of Open Access Journals (Sweden)

    SUBHI A. ALI

    2014-02-01

    Full Text Available This paper presents the findings of compaction and strength characteristics of a Granular Volcanic Ash from Sana'a city center, which was mixed with various percentages of two binders to form a stabilized material namely; fine soil and Portland cement. The study showed a significant improvement of the Volcanic Ash properties. The maximum dry density and California bearing ration (CBR were considerably increased by addition of stabilizers at different rates for different binder contents. Optimum fine soil content for the maximum dry density and CBR is determined. A relationship between the optimum moisture content and the binder combination content for different fine soil percentages was established.

  18. The Effect of Volcanic Ash Composition on Ice Nucleation Affinity

    Science.gov (United States)

    Genareau, K. D.; Cloer, S.; Primm, K.; Woods, T.; Tolbert, M. A.

    2017-12-01

    Understanding the role that volcanic ash plays in ice nucleation is important for knowledge of lightning generation in both volcanic plumes and in clouds developing downwind from active volcanoes. Volcanic ash has long been suggested to influence heterogeneous ice nucleation following explosive eruptions, but determining precisely how composition and mineralogy affects ice nucleation affinity (INA) is poorly constrained. For the study presented here, volcanic ash samples with different compositions and mineral/glass contents were tested in both the deposition and immersion modes, following the methods presented in Schill et al. (2015). Bulk composition was determined with X-ray fluorescence (XRF), grain size distribution was determined with laser diffraction particle size analysis (LDPSA), and mineralogy was determined with X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results of the deposition-mode experiments reveal that there is no relationship between ice saturation ratios (Sice) and either mineralogy or bulk ash composition, as all samples have similar Sice ratios. In the immersion-mode experiments, frozen fractions were determined from -20 °C to -50 °C using three different amounts of ash (0.5, 1.0, and 2.0 wt% of slurry). Results from the immersion freezing reveal that the rhyolitic samples (73 wt% SiO2) nucleate ice at higher temperatures compared to the basaltic samples (49 wt% SiO2). There is no observed correlation between frozen fractions and mineral content of ash samples, but the two most efficient ice nuclei are rhyolites that contain the greatest proportion of amorphous glass (> 90 %), and are enriched in K2O relative to transition metals (MnO and TiO2), the latter of which show a negative correlation with frozen fraction. Higher ash abundance in water droplets increases the frozen fraction at all temperatures, indicating that ash amount plays the biggest role in ice nucleation. If volcanic ash can reach sufficient abundance (

  19. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    NARCIS (Netherlands)

    Fu, G.; Heemink, A.; Lu, S.; Segers, A.; Weber, K.; Lin, H.X.

    2016-01-01

    The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain,

  20. The aggregation efficiency of very fine volcanic ash

    Science.gov (United States)

    Del Bello, E.; Taddeucci, J.; Scarlato, P.

    2013-12-01

    Explosive volcanic eruptions can discharge large amounts of very small sized pyroclasts (under 0.090 mm) into the atmosphere that may cause problems to people, infrastructures and environment. The transport and deposition of fine ash are ruled by aggregation that causes premature settling of fine ash and, as consequence, significantly reduces the concentration of airborne material over long distances. Parameterizing the aggregation potential of fine ash is then needed to provide accurate modelling of ash transport and deposition from volcanic plumes. Here we present the first results of laboratory experiments investigating the aggregation efficiency of very fine volcanic particles. Previous laboratory experiments have shown that collision kinetic and relative humidity provide the strongest effect on aggregation behaviour but were only limited to particles with size > 0.125 mm. In our work, we focus on natural volcanic ash at ambient humidity with particles size aggregation potential. Two types of ash were used in our experiments: fresh ash, collected during fall-out from a recent plume-forming eruption at Sakurajima (Japan -July 2013) and old ash, collected from fall-out tephra deposits at Campi Flegrei (Italy, ca. 10 ka), to account for the different chemical composition and morphoscopic effects of altered ash on aggregation efficiency. Total samples were hand sieved to obtain three classes with unimodal grain size distributions (sieved from the top of a transparent tank where a fan, placed at the bottom, allows turbulent dispersion of particles. Collision and sticking of particles on a vertical glass slide were filmed with a high speed cameras at 6000 fps. Our lenses arrangement provide high image resolution allowing to capture particles down to 0.005 mm in diameter. Video sequences of particles motion and collision were then processed with image analysis and particle tracking tools to determine i) the particle number density and ii) the grain size distribution

  1. Tephra stratification of volcanic ash soils in Nothern Ecuador

    NARCIS (Netherlands)

    Tonneijck, F.H.; Hageman, J.A.; Sevink, J.; Verstraten, J.M.

    2008-01-01

    We combined proxies traditionally used in stratigraphic research (mineral assemblages, grain size distribution, and element ratios) with soil organic carbon contents and radiocarbon dating both at a high vertical resolution, to unravel the tephra stratigraphy in volcanic ash soils. Our results show

  2. Natural radioactivity in volcanic ash from Mt. Pinatubo eruption

    International Nuclear Information System (INIS)

    Duran, E.B.; De Vera, C.M.; Garcia, T.Y.; Dela Cruz, F.M.; Esguerra, L.V.; Castaneda, S.S.

    1992-01-01

    Last June 15, 1991, a major pyroclastic eruption occurred from Mt. Pinatubo volcano located in Zambales, Central Luzon. The radiological impact of this eruption was assessed based on the concentrations of the principal naturally occurring radionuclides observed in volcanic ash. The volcanic ash samples were collected from locations which are within 50-km radius of Mt. Pinatubo at various times after the eruption. The mean activity concentrations in Bq/kg wet weight of the natural radionuclides in volcanic ash were as follows: 12.6 for 238 U, 14.0 for 232 Th and 330 for 40 K. These values are significantly higher than the mean activity concentrations of these radionuclides observed in topsoil in the same provinces before the eruption. This suggests that with the deposition of large quantities of volcanic ash and lahar in Central Luzon and concomitant topographic changes, the distribution and quantities of radionuclides which gave rise to terrestrial radiation may have also changed. Outdoor radon concentrations measured three days and later after the eruption were within normal background values. (auth.). 4 refs.; 5 tabs.; 1 fig

  3. Ash production by attrition in volcanic conduits and plumes.

    Science.gov (United States)

    Jones, T J; Russell, J K

    2017-07-17

    Tephra deposits result from explosive volcanic eruption and serve as indirect probes into fragmentation processes operating in subsurface volcanic conduits. Primary magmatic fragmentation creates a population of pyroclasts through volatile-driven decompression during conduit ascent. In this study, we explore the role that secondary fragmentation, specifically attrition, has in transforming primary pyroclasts upon transport in volcanic conduits and plumes. We utilize total grain size distributions from a suite of natural and experimentally produced tephra to show that attrition is likely to occur in all explosive volcanic eruptions. Our experimental results indicate that fine ash production and surface area generation is fast (eruption column stability, tephra dispersal, aggregation, volcanic lightening generation, and has concomitant effects on aviation safety and Earth's climate.

  4. Hail formation triggers rapid ash aggregation in volcanic plumes.

    Science.gov (United States)

    Van Eaton, Alexa R; Mastin, Larry G; Herzog, Michael; Schwaiger, Hans F; Schneider, David J; Wallace, Kristi L; Clarke, Amanda B

    2015-08-03

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized 'wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits.

  5. Risks associated with volcanic ash fallout from Mt.Etna with reference to industrial filtration systems

    International Nuclear Information System (INIS)

    Milazzo, Maria Francesca; Ancione, Giuseppa; Salzano, Ernesto; Maschio, Giuseppe

    2013-01-01

    The recent eruption of the Icelandic volcano has focused the worldwide attention on volcanic ash effects for the population, road, rail and air traffic and production activities. This paper aims to study of technological (industrial) accidental scenarios triggered by ash fallout and, more specifically, to define and quantify the potential damage on filtration systems. Malfunctions due to the filter clogging and service interruptions caused by the rupture of the filtering surface have been analysed in order to define the vulnerability of the equipment to such damages. Results are given in terms of threshold values of deposit on the filtering surface and exceedance probability curves of ash concentrations and the duration of the ash emission. This data can be easily implemented in the standard risk assessment with the aim to include the estimation of Natural-Technological (Na-Tech) hazards

  6. Bubbles and Dust: Dissolution Rates of Unhydrated Volcanic Ash as a Function of Morphology, Composition, and Particle Size

    Science.gov (United States)

    Wygel, C. M.; Sahagian, D. L.

    2017-12-01

    Volcanic eruptions are natural hazards due to their explosive nature and widespread transportation and deposition of ash particles. After deposition and subsequent leaching in soils or water bodies, ash deposition positively (nutrients) and negatively (contaminants) impacts the health of flora and fauna, including humans. The effects of ash leachates have been difficult to replicate in field and laboratory studies due to the many complexities and differences between ash particles. Ash morphology is characteristic for each eruption, dependent upon eruption energy, and should play a critical role in determining leaching rates. Morphology reflects overall particle surface area, which is strongly influenced by the presence of surface dust. In addition, ash composition, which in part controls morphology and particle size, may also affect leaching rates. This study determines the extent to which ash morphology, surface area, composition, and particle size control ash dissolution rates. Further, it is necessary to determine whether compound vesicular ash particles permit water into their interior structures to understand if both the internal and external surface areas are available for leaching. To address this, six fresh, unhydrated ash samples from diverse volcanic environments and a large range in morphology, from Pele's spheres to vesicular compound ash, are tested in the laboratory. Ash morphology was characterized on the Scanning Electron Microscope (SEM) before and after leaching and surface area was quantified by Brunauer Emmett Teller (BET) analysis and with geometric calculations. Column Leachate Tests (CLT) were conducted to compare leaching rates over a range of basaltic to silicic ashes as a function of time and surface area, to recreate the effects of ash deposition in diverse volcanic environments. After the CLT, post-leaching water analyses were conducted by Ion Coupled Plasma-Mass Spectrometry (ICP-MS) and Ion Chromatography (IC). We find that leaching

  7. Volcanic air pollution hazards in Hawaii

    Science.gov (United States)

    Elias, Tamar; Sutton, A. Jeff

    2017-04-20

    Noxious sulfur dioxide gas and other air pollutants emitted from Kīlauea Volcano on the Island of Hawai‘i react with oxygen, atmospheric moisture, and sunlight to produce volcanic smog (vog) and acid rain. Vog can negatively affect human health and agriculture, and acid rain can contaminate household water supplies by leaching metals from building and plumbing materials in rooftop rainwater-catchment systems. U.S. Geological Survey scientists, along with health professionals and local government officials are working together to better understand volcanic air pollution and to enhance public awareness of this hazard.

  8. Holocene volcanic geology, volcanic hazard, and risk on Taveuni, Fiji

    International Nuclear Information System (INIS)

    Cronin, S.J.; Neall, V.E.

    2001-01-01

    The Holocene volcanic geology of Taveuni has been mapped in order to produce a volcanic hazard and risk assessment for the island. Taveuni is the third-largest island of the Fiji group and home to 14,500 people. At least cubic km 2.7 of olivine-alkali-basalt magma was erupted from over 100 events throughout the Holocene. Vents are concentrated along a northeast-striking rift zone that is parallel to other regional structural trends. There is an overall trend of younging southward along the rift. Holocene lavas and tephras are grouped within six newly defined eruptive periods, established on a basis of radiocarbon dating. Within these periods, 14 tephra layers, useful as local marker horizons, are recognised. At least 58% of Holocene eruptions produced lava flows, while almost all produced some tephra. Individual eruption event volumes ranged between 0.001 and cubic km 0.20 (dense rock equivalent). Many eruptions involved at least some phases of phreatic and/or phreato-magmatic activity, although dominant hydrovolcanic activity was limited to only a few events. A volcanic hazard map is presented, based on the Holocene geology map and statistical analyses of eruption recurrence. The highest levels of ground-based and near-vent hazards are concentrated along the southern portion of the island's rift axis, with the paths of initial lava flows predicted from present topography. Tephra fall hazards are based on eruption parameters interpreted from mapped Holocene tephra layers. Hawaiian explosive-style eruptions appear to be a dominant eruptive process, with prevailing low-level (<3 km) southeasterly winds dispersing most tephra to the northwestern quadrant. Vulnerable elements (population centres, infrastructure, and economy) on Taveuni have been considered in deriving a volcanic risk assessment for the island. A number of infrastructural and subdivision developments are either under way or planned for the island, driven by its highly fertile soils and availability of

  9. FALL3D: A computational model for transport and deposition of volcanic ash

    Science.gov (United States)

    Folch, A.; Costa, A.; Macedonio, G.

    2009-06-01

    FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of volcanic ashes and lapilli. The model solves the advection-diffusion-sedimentation (ADS) equation on a structured terrain-following grid using a second-order finite differences (FD) explicit scheme. Different parameterizations for the eddy diffusivity tensor and for the particle terminal settling velocities can be used. The code, written in FORTRAN 90, is available in both serial and parallel versions for Windows and Unix/Linux/Mac X operating systems (OS). A series of pre- and post-process utility programs and OS-dependent scripts to launch them are also included in the FALL3D distribution package. Although the model has been designed to forecast volcanic ash concentration in the atmosphere and ash loading at ground, it can also be used to model the transport of any kind of airborne solid particles. The model inputs are meteorological data, topography, grain-size distribution, shape and density of particles, and mass rate of particle injected into the atmosphere. Optionally, FALL3D can be coupled with the output of the meteorological processor CALMET, a diagnostic model which generates 3-D time-dependent zero-divergence wind fields from mesoscale forecasts incorporating local terrain effects. The FALL3D model can be a tool for short-term ash deposition forecasting and for volcanic fallout hazard assessment. As an example, an application to the 22 July 1998 Etna eruption is also presented.

  10. The future of volcanic ash-aircraft interactions from technical and policy perspectives

    Science.gov (United States)

    Casadevall, T. J.; Guffanti, M.

    2010-12-01

    growth in the risks facing aviation operation owing to volcanic ash hazard (http://www2.icao.int/en/anb/met-aim/met/ivatf/Documents/Final.Alltext.pdf) Modifications of international procedures for air traffic management, a new assessment of equipment vulnerability, and efforts to detect and to more precisely forecast the distribution and concentration of volcanic ash are underway. These efforts will result in modification and updating of current practices for advising and warning pilots and airspace managers about volcanic ash, and also in better understandings of the threat volcanic ash presents to aviation operations. While technical and policy changes will help improve flight safety, there continues to be a role for earth scientists to work with the aviation community to improve monitoring of volcanoes, especially in remote regions, and in understanding of explosive volcanic processes. A paramount need continues for improved communications amongst all of the scientific and technical parties to address and successfully mitigate the risks of volcanic ash to aviation operations.

  11. WSR-88D observations of volcanic ash

    Science.gov (United States)

    Wood, J.; Scott, C.; Schneider, D.

    2007-01-01

    Conclusions that may impact operations are summarized below: ??? Current VCPs may not be optimal for the scharacterization of volcanic events. Therefore, the development of a new VCP that combines the enhanced low level elevation density and increased temporal resolution of VCP 12 with the enhanced sensitivity of VCP 31. ??? Given currently available scan strategies, this preliminary investigation would suggest that it is advisable to use VCP 12 during the initial explosive phase of an eruptive event. Once the maximum reflectivity has dropped below 30 dBZ, VCP 31 should be used. ??? This study clearly indicates that WSR-88D Level II data offers many advantages over Level III data currently available in Alaska. The ability to access this data would open up greater opportunities for research. Given the proximity of WSR-88D platforms to active volcanoes in Alaska, as well as in the western Lower 48 states and Hawaii, radar data will likely play a major operational role when volcanic eruptions again pose a threat to life and property. The utilization of this tool to its maximum capability is vital.

  12. Remote Sensing of Volcanic ASH at the Met Office

    Directory of Open Access Journals (Sweden)

    Marenco F.

    2016-01-01

    Full Text Available The eruption of Eyjafjallajökull in 2010 has triggered the rapid development of volcanic ash remote sensing activities at the Met Office. Volcanic ash qualitative and quantitative mapping have been achieved using lidar on board the Facility for Airborne Atmospheric Measurements (FAAM research aircraft, and using improved satellite retrieval algorithms. After the eruption, a new aircraft facility, the Met Office Civil Contingencies Aircraft (MOCCA, has been set up to enable a rapid response, and a network of ground-based remote sensing sites with lidars and sunphotometers is currently being developed. Thanks to these efforts, the United Kingdom (UK will be much better equipped to deal with such a crisis, should it happen in the future.

  13. Video Games in Volcanic Hazard Communications: Methods & Issues

    Science.gov (United States)

    Mani, Lara; Cole, Paul; Stewart, Iain

    2016-04-01

    Educational outreach plays a vital role in improving the resilience of vulnerable populations at risk from natural disasters. Currently, that activity is undertaken in many guises including the distribution of leaflets and posters, maps, presentations, education sessions and through radio and TV broadcasts. Such tried-and-tested communication modes generally target traditional stakeholder groups, but it is becoming increasingly important to engage with the new generation of learners who, due to advancements in technology, obtain information in ways different to their predecessors. That new generation is defined by a technological way of life and it remains a challenge to keep them motivated. On the eastern Caribbean island of St. Vincent, the La Soufriere Volcano lies in quiescence since the last eruption in 1979. Since then, an entire generation - over 56% of the population (Worldbank, 2015) - has little or no direct experience of a volcanic eruption. The island experiences, more frequently, other hazards (hurricanes, flooding, earthquakes landsliding), such that disaster preparedness measures give less priority to volcanic threats, which are deemed to pose less of a risk. With no accurate predictions to warn of the next eruption, it is especially important to educate residents about the potential of future volcanic hazards on the island, and to motivate them to prepare to mitigate their risk. This research critically examines the application of video games in supporting and enhancing existing public education and outreach programmes for volcanic hazards. St. Vincent's Volcano is a computer game designed to improve awareness and knowledge of the eruptive phenomena from La Soufriere that could pose a threat to residents. Within an interactive and immersive environment, players become acquainted with a 3D model of St. Vincent together with an overlay of the established volcanic hazard map (Robertson, 2005). Players are able to view visualisations of two historical

  14. Using Volcanic Ash to Remove Dissolved Uranium and Lead

    Science.gov (United States)

    McKay, David S.; Cuero, Raul G.

    2009-01-01

    Experiments have shown that significant fractions of uranium, lead, and possibly other toxic and/or radioactive substances can be removed from an aqueous solution by simply exposing the solution, at ambient temperature, to a treatment medium that includes weathered volcanic ash from Pu'u Nene, which is a cinder cone on the Island of Hawaii. Heretofore, this specific volcanic ash has been used for an entirely different purpose: simulating the spectral properties of Martian soil. The treatment medium can consist of the volcanic ash alone or in combination with chitosan, which is a natural polymer that can be produced from seafood waste or easily extracted from fungi, some bacteria, and some algae. The medium is harmless to plants and animals and, because of the abundance and natural origin of its ingredient( s), is inexpensive. The medium can be used in a variety of ways and settings: it can be incorporated into water-filtration systems; placed in contact or mixed with water-containing solids (e.g., soils and sludges); immersed in bodies of water (e.g., reservoirs, lakes, rivers, or wells); or placed in and around nuclear power plants, mines, and farm fields.

  15. Volcanic ash modeling with the NMMB-MONARCH-ASH model: quantification of offline modeling errors

    Science.gov (United States)

    Marti, Alejandro; Folch, Arnau

    2018-03-01

    Volcanic ash modeling systems are used to simulate the atmospheric dispersion of volcanic ash and to generate forecasts that quantify the impacts from volcanic eruptions on infrastructures, air quality, aviation, and climate. The efficiency of response and mitigation actions is directly associated with the accuracy of the volcanic ash cloud detection and modeling systems. Operational forecasts build on offline coupled modeling systems in which meteorological variables are updated at the specified coupling intervals. Despite the concerns from other communities regarding the accuracy of this strategy, the quantification of the systematic errors and shortcomings associated with the offline modeling systems has received no attention. This paper employs the NMMB-MONARCH-ASH model to quantify these errors by employing different quantitative and categorical evaluation scores. The skills of the offline coupling strategy are compared against those from an online forecast considered to be the best estimate of the true outcome. Case studies are considered for a synthetic eruption with constant eruption source parameters and for two historical events, which suitably illustrate the severe aviation disruptive effects of European (2010 Eyjafjallajökull) and South American (2011 Cordón Caulle) volcanic eruptions. Evaluation scores indicate that systematic errors due to the offline modeling are of the same order of magnitude as those associated with the source term uncertainties. In particular, traditional offline forecasts employed in operational model setups can result in significant uncertainties, failing to reproduce, in the worst cases, up to 45-70 % of the ash cloud of an online forecast. These inconsistencies are anticipated to be even more relevant in scenarios in which the meteorological conditions change rapidly in time. The outcome of this paper encourages operational groups responsible for real-time advisories for aviation to consider employing computationally

  16. Magmatic and fragmentation controls on volcanic ash surface chemistry

    Science.gov (United States)

    Ayris, Paul M.; Diplas, Spyros; Damby, David E.; Hornby, Adrian J.; Cimarelli, Corrado; Delmelle, Pierre; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    The chemical effects of silicate ash ejected by explosive volcanic eruptions on environmental systems are fundamentally mediated by ash particle surfaces. Ash surfaces are a composite product of magmatic properties and fragmentation mechanisms, as well as in-plume and atmospheric alteration processes acting upon those surfaces during and after the eruption. Recent attention has focused on the capacity of alteration processes to shape ash surfaces; most notably, several studies have utilised X-ray photoelectron spectroscopy (XPS), a technique probing the elemental composition and coordination state of atoms within the top 10 nm of ash surfaces, to identify patterns of elemental depletions and enrichments relative to bulk ash chemical composition. Under the presumption of surface and bulk equivalence, any disparities have been previously attributed to surface alteration processes, but the ubiquity of some depletions (e.g., Ca, Fe) across multiple ash studies, irrespective of eruptive origin, could suggest these to be features of the surface produced at the instant of magma fragmentation. To investigate this possibility further, we conducted rapid decompression experiments at different pressure conditions and at ambient and magmatic temperature on porous andesitic rocks. These experiments produced fragmented ash material untouched by secondary alteration, which were compared to particles produced by crushing of large clasts from the same experiments. We investigated a restricted size fraction (63-90 μm) from both fragmented and crushed materials, determining bulk chemistry and mineralogy via XRF, SEM-BSE and EPMA, and investigated the chemical composition of the ash surface by XPS. Analyses suggest that fragmentation under experimental conditions partitioned a greater fraction of plagioclase-rich particles into the selected size fraction, relative to particles produced by crushing. Trends in surface chemical composition in fragmented and crushed particles mirror that

  17. Volcanic Ash -Aircraft Encounter Damages: in Volcanological Point of View

    Science.gov (United States)

    Aydar, Erkan; Aladaǧ, Çaǧdaş Hakan; Menteş, Turhan

    2017-04-01

    The jet era or age began at 1930 and 40's in aviation sector, with the production of first jet engine for the aircrafts. Since 1950's, the commercial aviation with regular flights were established. Civil aviation and air-transport drastically increased due to intensive demand, and declared at least 10 fold since 1970 by IATA report. Parallelly to technological and economical developpement, the commercial jets became more comfortable, secure and rapid, bringing the world smaller, the countries closer. On the other hand, according to Global Volcanism Program Catalogues of Smithsonian Institute, about 1,500 volcanoes have erupted in the Holocene, 550 of them have had historical eruptions and considered as active. Besides an average of 55-60 volcanoes erupt each year, and about 8-10 of these eruptions produce ash clouds that reach aircraft flight altitudes (Salinas and Watt, 2004). Volcanic ash can be expected to be in air routes at altitudes greater than 9 km (30,000 ft) for roughly 20 days per year worldwide (Miller &Casadeval, 2000). A precious compilation of incidents due to encounters of aircrafts with volcanic ash clouds covering the years between 1953 and 2009 was used in this work (Guffanti et al., 2010-USGS Report) with an additional information on Eyfjallajökull-2010 eruption. According to this compilation,129 incidents happened within the concerned time interval. The damages, in general, fall in second and third class of Severity index, indicating the damages are limited on airframe of the planes, or some abrasions in jet engine, windblast etc.. We focused on fourth class of severity index involving the damages on jet engine of aircraft (engine fail) due to ingestion of volcanic ash and investigate eruption style and caused damage relationships. During the eruptive sequences of Mts Saint Helen (USA), Galunggung (Indonesia, 2 incidents), Redoubt (USA), Pinatubo (Philipinnes), Unzen (Japan), Manam (Papua New Guinea), Soufriere Hills (Lesser Antilles), Chaiten

  18. Communicating Volcanic Hazards in the North Pacific

    Science.gov (United States)

    Dehn, J.; Webley, P.; Cunningham, K. W.

    2014-12-01

    For over 25 years, effective hazard communication has been key to effective mitigation of volcanic hazards in the North Pacific. These hazards are omnipresent, with a large event happening in Alaska every few years to a decade, though in many cases can happen with little or no warning (e.g. Kasatochi and Okmok in 2008). Here a useful hazard mitigation strategy has been built on (1) a large database of historic activity from many datasets, (2) an operational alert system with graduated levels of concern, (3) scenario planning, and (4) routine checks and communication with emergency managers and the public. These baseline efforts are then enhanced in the time of crisis with coordinated talking points, targeted studies and public outreach. Scientists naturally tend to target other scientists as their audience, whereas in effective monitoring of hazards that may only occur on year to decadal timescales, details can distract from the essentially important information. Creating talking points and practice in public communications can help make hazard response a part of the culture. Promoting situational awareness and familiarity can relieve indecision and concerns at the time of a crisis.

  19. Detection and characterization of volcanic ash plumes over Lille during the Eyjafjallajökull eruption

    Directory of Open Access Journals (Sweden)

    A. Mortier

    2013-04-01

    Full Text Available Routine sun-photometer and micro-lidar measurements were performed in Lille, northern France, in April and May 2010 during the Eyjafjallajökull volcanic eruption. The impact of such an eruption emphasized significance of hazards for human activities and importance of observations of the volcanic aerosol particles. This paper presents the main results of a joint micro-lidar/sun-photometer analysis performed in Lille, where volcanic ash plumes were observed during at least 22 days, whenever weather conditions permitted. Aerosol properties retrieved from automatic sun-photometer measurements (AERONET were strongly changed during the volcanic aerosol plumes transport over Lille. In most cases, the aerosol optical depth (AOD increased, whereas Ångström exponent decreased, thus indicating coarse-mode dominance in the volume size distribution. Moreover, the non-spherical fraction retrieved by AERONET significantly increased. The real part of the complex refractive index was up to 1.55 at 440 nm during the eruption, compared to background data of about 1.46 before the eruption. Collocated lidar data revealed that several aerosol layers were present between 2 and 5 km, all originating from the Iceland region as confirmed by backward trajectories. The volcanic ash AOD was derived from lidar extinction profiles and sun-photometer AOD, and its maximum was estimated around 0.37 at 532 nm on 18 April 2010. This value was observed at an altitude of 1700 m and corresponds to an ash mass concentration (AMC slightly higher than 1000 μg m−3 (±50%. An effective lidar ratio of ash particles of 48 sr was retrieved at 532 nm for 17 April during the early stages of the eruption, a value which agrees with several other studies carried out on this topic. Even though the accuracy of the retrievals is not as high as that obtained from reference multiwavelength lidar systems, this study demonstrates the opportunity of micro-lidar and sun-photometer joint data

  20. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    Directory of Open Access Journals (Sweden)

    G. Fu

    2016-07-01

    Full Text Available The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain, resulting in inaccurate volcanic ash forecasts in these distal areas. In our approach, we use real-life aircraft in situ observations, measured in the northwestern part of Germany during the 2010 Eyjafjallajökull eruption, in an ensemble-based data assimilation system combined with a volcanic ash transport model to investigate the potential improvement on the forecast accuracy with regard to the distal volcanic ash plume. We show that the error of the analyzed volcanic ash state can be significantly reduced through assimilating real-life in situ measurements. After a continuous assimilation, it is shown that the aviation advice for Germany, the Netherlands and Luxembourg can be significantly improved. We suggest that with suitable aircrafts measuring once per day across the distal volcanic ash plume, the description and prediction of volcanic ash clouds in these areas can be greatly improved.

  1. Thermoluminescence dating. Application to the chronology of volcanic ashes

    International Nuclear Information System (INIS)

    Pilleyre, T.

    1991-09-01

    Thermoluminescent (TL) dating is generally used for minerals heated in the past and can be used for absolute chronology of volcanic ashes but seems limited to less than 15.000 years. The aim of the thesis is the study of thermoluminescent properties of quartz for high doses and long irradiations using the red TL peak of quartz which is situated at high temperature (about 370 deg. C) to extend the method for higher ages. A theory, based on spatial correlation between electron and hole created during the same ionization, is developed. A chapter is devoted to dosimetry because of its importance in TL dating, especially alpha scintillation counting and the influence of humidity on the determination of annual dose. Volcanic samples are dated from 10.000 to 80.000 years before present

  2. The influence of using volcanic ash and lime ash as filler on compressive strength in self compacting concrete

    Science.gov (United States)

    Karolina, Rahmi; Panatap Simanjuntak, Murydrischy

    2018-03-01

    Self Compacting Concrete (SCC) is a technology which is developing today in which concrete solidifies by itself without using vibrator. Casting conventional concrete which has a lot of reinforcement bars sometimes finds difficulty in achieving optimal solidity. The method used to solve this problem is by using SCC technology. SCC was made by using filler, volcanic ash, and lime ash as the filling materials so that the concrete became more solid and hollow space could be filled up. The variation of using these two materials was 10%, 15%, 20%, and 25% of the cementitious mass and using 1% of superplasticizer from cementitious material. The supporting testing was done by using the test when the concrete was still fluid and when it was solid. Malleable concrete was tested by using EFNARC 2002 standard in slump flow test, v-funnel test, l-shaped box test, and j-ring test to obtain filling ability and passing ability. In this malleable lime concrete test, there was the decrease, compared with normal SCC concrete without adding volcanic ash and lime ash. Testing was also done in solid concrete in compressive strength, tensile strength, and concrete absorption. The result of the testing showed that the optimum tensile strength in Variation 1, without volcanic ash and lime ash – with 1% of superplasticizer was 39.556 MPa, the optimum tensile strength in Variation 1, without volcanic ash and lime ash- with 1% of super-plasticizer was 3.563 MPa, while the value of optimum absorption which occurred in Variation 5 (25% of volcanic ash + 25% of lime ash + 50% of cement + 1% of superplasticizer) was 1.313%. This was caused by the addition of volcanic ash and lime ash which had high water absorption.

  3. Volcanic Hazards in Site Evaluation for Nuclear Installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    This publication provides comprehensive and updated guidance for site evaluation in relation to volcanic hazards. It includes recommendations on assessing the volcanic hazards at a nuclear installation site, in order to identify and characterize, in a comprehensive manner, all potentially hazardous phenomena that may be associated with future volcanic events. It describes how some of these volcanic phenomena may affect the acceptability of the selected site, resulting in exclusion of a site or determining the corresponding design basis parameters for the installation. This Safety Guide is applicable to both existing and new sites, and a graded approach is recommended to cater for all types of nuclear installations. Contents: 1. Introduction; 2. Overview of volcanic hazard assessment; 3. General recommendations; 4. Necessary information and investigations (database); 5. Screening of volcanic hazards; 6. Site specific volcanic hazard assessment; 7. Nuclear installations other than nuclear power plants; 8. Monitoring and preparation for response; 9. Management system for volcanic hazard assessment; Annex I: Volcanic hazard scenarios; Annex II: Worldwide sources of information.

  4. Volcanic unrest and hazard communication in Long Valley Volcanic Region, California

    Science.gov (United States)

    Hill, David P.; Mangan, Margaret T.; McNutt, Stephen R.

    2017-01-01

    emissions. Initial response plans developed by county and state agencies in response to the volcanic unrest began with “The Mono County Volcano Contingency Plan” and “Plan Caldera” by the California Office of Emergency Services in 1982–84. They subsequently became integrated in the regularly updated County Emergency Operation Plan. The alert level system employed by the USGS also evolved from the three-level “Notice-Watch-Warning” system of the early 1980s through a five level color-code to the current “Normal-Advisory-Watch-Warning” ground-based system in conjunction with the international 4-level aviation color-code for volcanic ash hazards. Field trips led by the scientists proved to be a particularly effective means of acquainting local residents and officials with the geologically active environment in which they reside. Relative caldera quiescence from 2000 through 2011 required continued efforts to remind an evolving population that the hazards posed by the 1980–2000 unrest persisted. Renewed uplift of the resurgent dome from 2011 to 2014 was accompanied by an increase in low-level earthquake activity in the caldera and beneath Mammoth Mountain and continues through May 2016. As unrest levels continue to wax and wane, so will the communication challenges.

  5. Selective extraction methods for aluminium, iron and organic carbon from montane volcanic ash soils

    NARCIS (Netherlands)

    Jansen, B.; Tonneijck, F.H.; Verstraten, J.M.

    2011-01-01

    Montane volcanic ash soils contain disproportionate amounts of soil organic carbon and thereby play an often underestimated role in the global carbon cycle. Given the central role of Al and Fe in stabilizing organic matter in volcanic ash soils, we assessed various extraction methods of Al, Fe, and

  6. Juvenile tree growth on some volcanic ash soils disturbed by prior forest harvest.

    Science.gov (United States)

    J. Michael Geist; John W. Hazard; Kenneth W. Seidel

    2008-01-01

    The effects of mechanical disturbance from traditional ground-based logging and site preparation on volcanic ash soil and associated tree growth were investigated by using two study approaches in a retrospective study. This research was conducted on volcanic ash soils within previously harvested units in the Blue Mountains of northeast Oregon and southwest Washington....

  7. Utilizing NASA Earth Observations to Model Volcanic Hazard Risk Levels in Areas Surrounding the Copahue Volcano in the Andes Mountains

    Science.gov (United States)

    Keith, A. M.; Weigel, A. M.; Rivas, J.

    2014-12-01

    Copahue is a stratovolcano located along the rim of the Caviahue Caldera near the Chile-Argentina border in the Andes Mountain Range. There are several small towns located in proximity of the volcano with the two largest being Banos Copahue and Caviahue. During its eruptive history, it has produced numerous lava flows, pyroclastic flows, ash deposits, and lahars. This isolated region has steep topography and little vegetation, rendering it poorly monitored. The need to model volcanic hazard risk has been reinforced by recent volcanic activity that intermittently released several ash plumes from December 2012 through May 2013. Exposure to volcanic ash is currently the main threat for the surrounding populations as the volcano becomes more active. The goal of this project was to study Copahue and determine areas that have the highest potential of being affected in the event of an eruption. Remote sensing techniques were used to examine and identify volcanic activity and areas vulnerable to experiencing volcanic hazards including volcanic ash, SO2 gas, lava flow, pyroclastic density currents and lahars. Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), EO-1 Advanced Land Imager (ALI), Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mission (SRTM), ISS ISERV Pathfinder, and Aura Ozone Monitoring Instrument (OMI) products were used to analyze volcanic hazards. These datasets were used to create a historic lava flow map of the Copahue volcano by identifying historic lava flows, tephra, and lahars both visually and spectrally. Additionally, a volcanic risk and hazard map for the surrounding area was created by modeling the possible extent of ash fallout, lahars, lava flow, and pyroclastic density currents (PDC) for future eruptions. These model results were then used to identify areas that should be prioritized for disaster relief and evacuation orders.

  8. Aircraft and Volcanic Ash a Key Focus of EGU Meeting

    Science.gov (United States)

    Showstack, Randy

    2010-05-01

    The erupting Eyjafjallajökull volcano in southern Iceland, which has intermittently disrupted European air traffic since 14 April, provided a dramatic backdrop for the recent European Geosciences Union (EGU) General Assembly in Vienna, Austria, about 2700 kilometers to the east. EGU organized several last-minute conference sessions about the eruption, and a number of scientists, including some from Iceland, discussed the latest situation, monitoring and assessment needs, and new guidance about flying through volcanic ash, which volcanologist and incoming EGU president-elect Donald Dingwell of the University of Munich, Germany, called “one of the ugliest cocktails nature throws up.” Although the eruption was small compared with those at Mount St. Helens in 1980 or Mount Pinatubo in 1991, the event produced an estimated 0.1 ± 0.05 cubic kilometer of tephra between 14 and 16 April, according to preliminary numbers from the Institute of Earth Sciences in Reykjavik, Iceland (see the related news item in this issue). An enormous amount of ash from the eruption got lofted into the jet stream toward the United Kingdom and the European mainland. European air traffic controllers, operating under the best guidance and guidelines available at that time—which indicated no flying in ash—shut down European air space to avoid a potential catastrophe if ash clogged up an aircraft's engines.

  9. The Detection, Characterization and Tracking of Recent Aleutian Island Volcanic Ash Plumes and the Assessment of Their Impact on Aviation

    Science.gov (United States)

    Murray, John J.; Hudnall, L. A.; Matus, A.; Krueger, A. J.; Trepte, C. r.

    2010-01-01

    The Aleutian Islands of Alaska are home to a number of major volcanoes which periodically present a significant hazard to aviation. During summer of 2008, the Okmok and Kasatochi volcanoes experienced moderate eruptive events. These were followed a dramatic, major eruption of Mount Redoubt in late March 2009. The Redoubt case is extensively covered in this paper. Volcanic ash and SO2 from each of these eruptions dispersed throughout the atmosphere. This created the potential for major problems for air traffic near the ash dispersions and at significant distances downwind. The NASA Applied Sciences Weather Program implements a wide variety of research projects to develop volcanic ash detection, characterization and tracking applications for NASA Earth Observing System and NOAA GOES and POES satellites. Chemistry applications using NASA AURA satellite Ozone Monitoring System (OMI) retrievals produced SO2 measurements to trace the dispersion of volcanic aerosol. This work was complimented by advanced multi-channel imager applications for the discrimination and height assignment of volcanic ash using NASA MODIS and NOAA GOES and POES imager data. Instruments similar to MODIS and OMI are scheduled for operational deployment on NPOESS. In addition, the NASA Calipso satellite provided highly accurate measurements of aerosol height and dispersion for the calibration and validation of these algorithms and for corroborative research studies. All of this work shortens the lead time for transition to operations and ensures that research satellite data and applications are operationally relevant and utilized quickly after the deployment of operational satellite systems. Introduction

  10. Lipid peroxidation and cytotoxicity induced by respirable volcanic ash

    Energy Technology Data Exchange (ETDEWEB)

    Cervini-Silva, Javiera, E-mail: jcervini@correo.cua.uam.mx [Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana Unidad Cuajimalpa, México City (Mexico); Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Nieto-Camacho, Antonio [Laboratorio de Pruebas Biológicas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Gomez-Vidales, Virginia [Laboratorio de Resonancia Paramagnética Electrónica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Ramirez-Apan, María Teresa [Laboratorio de Pruebas Biológicas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Palacios, Eduardo; Montoya, Ascención [Dirección de Investigación y Posgrado, Instituto Mexicano del Petróleo (Mexico); Kaufhold, Stephan [BGR Bundesansaltfür Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); and others

    2014-06-01

    Highlights: • Respirable volcanic ash induces oxidative degradation of lipids in cell membranes. • Respirable volcanic ash triggers cytotoxicity in murin monocyle/macrophage cells. • Oxidative stress is surface controlled but not restricted by surface- Fe{sup 3+}. • Surface Fe{sup 3+} acts as a stronger inductor in allophanes vs phyllosilicates or oxides. • Registered cell-viability values were as low as 68.5 ± 6.7%. - Abstract: This paper reports that the main component of respirable volcanic ash, allophane, induces lipid peroxidation (LP), the oxidative degradation of lipids in cell membranes, and cytotoxicity in murin monocyle/macrophage cells. Naturally-occurring allophane collected from New Zealand, Japan, and Ecuador was studied. The quantification of LP was conducted using the Thiobarbituric Acid Reactive Substances (TBARS) assay. The cytotoxic effect was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay. Electron-Paramagnetic Resonance (EPR) determinations of naturally-occurring allophane confirmed the incorporation in the structure and clustering of structural Fe{sup 3+}, and nucleation and growth of small-sized Fe (oxyhydr)oxide or gibbsite. LP induced by allophane varied with time, and solid concentration and composition, reaching 6.7 ± 0.2 nmol TBARS mg prot{sup −1}. LP was surface controlled but not restricted by structural or surface-bound Fe{sup 3+}, because redox processes induced by soluble components other than perferryl iron. The reactivity of Fe{sup 3+} soluble species stemming from surface-bound Fe{sup 3+} or small-sized Fe{sup 3+} refractory minerals in allophane surpassed that of structural Fe{sup 3+} located in tetrahedral or octahedral sites of phyllosilicates or bulk iron oxides. Desferrioxamine B mesylate salt (DFOB) or ethylenediaminetetraacetic acid (EDTA) inhibited LP. EDTA acted as a more effective inhibitor, explained by multiple electron transfer pathways. Registered cell

  11. Uncertainty propagation analysis applied to volcanic ash dispersal at Mt. Etna by using a Lagrangian model

    Science.gov (United States)

    de'Michieli Vitturi, Mattia; Pardini, Federica; Spanu, Antonio; Neri, Augusto; Vittoria Salvetti, Maria

    2015-04-01

    Volcanic ash clouds represent a major hazard for populations living nearby volcanic centers producing a risk for humans and a potential threat to crops, ground infrastructures, and aviation traffic. Lagrangian particle dispersal models are commonly used for tracking ash particles emitted from volcanic plumes and transported under the action of atmospheric wind fields. In this work, we present the results of an uncertainty propagation analysis applied to volcanic ash dispersal from weak plumes with specific focus on the uncertainties related to the grain-size distribution of the mixture. To this aim, the Eulerian fully compressible mesoscale non-hydrostatic model WRF was used to generate the driving wind, representative of the atmospheric conditions occurring during the event of November 24, 2006 at Mt. Etna. Then, the Lagrangian particle model LPAC (de' Michieli Vitturi et al., JGR 2010) was used to simulate the transport of mass particles under the action of atmospheric conditions. The particle motion equations were derived by expressing the Lagrangian particle acceleration as the sum of the forces acting along its trajectory, with drag forces calculated as a function of particle diameter, density, shape and Reynolds number. The simulations were representative of weak plume events of Mt. Etna and aimed to quantify the effect on the dispersal process of the uncertainty in the particle sphericity and in the mean and variance of a log-normal distribution function describing the grain-size of ash particles released from the eruptive column. In order to analyze the sensitivity of particle dispersal to these uncertain parameters with a reasonable number of simulations, and therefore with affordable computational costs, response surfaces in the parameter space were built by using the generalized polynomial chaos technique. The uncertainty analysis allowed to quantify the most probable values, as well as their pdf, of the number of particles as well as of the mean and

  12. Hazards Associated With Recent Popocatepetl Ash Emissions

    Science.gov (United States)

    Nieto, A.; Martin, A.; Espinasa-Pereña, R.; Ferres, D.

    2013-05-01

    Popocatepetl has been producing ash from small eruptions since 1994. Until 2012 about 650 small ash emissions have been recorded at the monitoring system of Popocatépetl Volcano. Ash consists mainly of glassy lithic clasts from the recent crater domes, plagioclase and pyroxene crystals, and in major eruptions, olivine and/or hornblende. Dome forming eruptions produced a fine white ash which covers the coarser ash. This fine ash consists of plagioclase, glass and cristobalite particles mostly under15 microns. During the recent crisis at Popocatépetl, April and May2012 ash fell on villages to the east and west of the volcano, reaching Mexico City (more than 20 million people) and Puebla (2 million people). In 14 cases the plumes had heights over 2 km, the largest on May 2 and 11 (3 and 4 km in height, respectively). Heavier ash fall occurred on April 13, 14, 20, and 23 and May 2, 3, 5, 11, 14, 23, 24 and 25. A database for ash fall was constructed from April 13 with field observations, reports emitted by the Centro Nacional de Comunicaciones (CENACOM), ash fall advisories received at CENAPRED and alerts from the Servicios a la Navegación en el Espacio Aéreo Mexicano (SENEAM). This aim of this database is to calculate areas affected by the ash and estimate the ash fall volume emitted by Popocatépetl in each of these events. Heavy ash fall from the May 8 to May 11 combined with reduced visibility due to fog forced to closure of the Puebla airport during various periods of time, for up to 13 hours. Domestic and international flights were cancelled. Ash eruptions have caused respiratory conditions in the state of Puebla, to the east of the volcano, since 1994 (Rojas et al, 2001), but because of the changing wind conditions in the summer mainly, some of these ash plumes go westward to towns in the State of Mexico and even Mexico City. Preliminary analyses of these eruptions indicate that some ash emissions produced increased respiratory noninfectious problems

  13. Reference dataset of volcanic ash physicochemical and optical properties for atmospheric measurement retrievals and transport modelling

    Science.gov (United States)

    Vogel, Andreas; Durant, Adam; Sytchkova, Anna; Diplas, Spyros; Bonadonna, Costanza; Scarnato, Barbara; Krüger, Kirstin; Kylling, Arve; Kristiansen, Nina; Stohl, Andreas

    2016-04-01

    Explosive volcanic eruptions emit up to 50 wt.% (total erupted mass) of fine ash particles (estimates of the volcanic source term and the nature of the constituent volcanic ash properties. Consequently, it is important to include a quantitative assessment of measurement uncertainties of ash properties to provide realistic ash forecast uncertainty. Currently, information on volcanic ash physicochemical and optical properties is derived from a small number of somewhat dated publications. In this study, we provide a reference dataset for physical (size distribution and shape), chemical (bulk vs. surface chemistry) and optical properties (complex refractive index in the UV-vis-NIR range) of a representative selection of volcanic ash samples from 10 different volcanic eruptions covering the full variability in silica content (40-75 wt.% SiO2). Through the combination of empirical analytical methods (e.g., image analysis, Energy Dispersive Spectroscopy, X-ray Photoelectron Spectroscopy, Transmission Electron Microscopy and UV/Vis/NIR/FTIR Spectroscopy) and theoretical models (e.g., Bruggeman effective medium approach), it was possible to fully capture the natural variability of ash physicochemical and optical characteristics. The dataset will be applied in atmospheric measurement retrievals and atmospheric transport modelling to determine the sensitivity to uncertainty in ash particle characteristics.

  14. Environmental and anthropogenic factors affecting the respiratory toxicity of volcanic ash in vitro

    Science.gov (United States)

    Tomašek, Ines; Horwell, Claire J.; Damby, David E.; Ayris, Paul M.; Barošová, Hana; Geers, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Clift, Martin J. D.

    2016-04-01

    Human exposure to inhalable volcanic ash particles following an eruption is a health concern, as respirable-sized particles can potentially contribute towards adverse respiratory health effects, such as the onset or exacerbation of respiratory and cardiovascular diseases. Although there is substantial information on the mineralogical properties of volcanic ash that may influence its biological reactivity, knowledge as to how external factors, such as air pollution, contribute to and augment the potential reactivity is limited. To determine the respiratory effects of volcanic particle interactions with anthropogenic pollution and volcanic gases we will experimentally assess: (i) physicochemical characteristics of volcanic ash relevant to respiratory toxicity; (ii) the effects of simultaneously inhaling anthropogenic pollution (i.e. diesel exhaust particles (DEP)) and volcanic ash (of different origins); (iii) alteration of volcanic ash toxicity following interaction with volcanic gases. In order to gain a first understanding of the biological impact of the respirable fraction of volcanic ash when inhaled with DEP in vitro, we used a sophisticated 3D triple cell co-culture model of the human alveolar epithelial tissue barrier. The multi-cellular system was exposed to DEP [0.02 mg/mL] and then exposed to either a single or repeated dose of well-characterised respirable volcanic ash (0.26 ± 0.09 or 0.89 ± 0.29 μg/cm2, respectively) from the Soufrière Hills volcano, Montserrat for a period of 24 hours using a pseudo-air liquid interface approach. Cultures were subsequently assessed for adverse biological endpoints including cytotoxicity, oxidative stress and (pro)-inflammatory responses. Results indicated that the combination of DEP and respirable volcanic ash at sub-lethal concentrations incited a significant release of pro-inflammatory markers that was greater than the response for either DEP or volcanic ash, independently. Further work is planned, to determine if

  15. Experimental study on the effect of calcination on the volcanic ash activity of diatomite

    Science.gov (United States)

    Xiao, Liguang; Pang, Bo

    2017-09-01

    The volcanic ash activity of diatomite was studied under the conditions of aerobic calcination and vacuum calcination by the combined water rate method, it was characterized by XRD, BET and SEM. The results showed that the volcanic ash activity of diatomite under vacuum conditions was higher than that of aerobic calcination, 600°C vacuum calcination 2h, the combined water rate of diatomite-Ca(OH)2-H2O system was increased from 6.24% to 71.43%, the volcanic ash activity reached the maximum value, the specific surface

  16. In vitro toxicology of respirable Montserrat volcanic ash.

    Science.gov (United States)

    Wilson, M R; Stone, V; Cullen, R T; Searl, A; Maynard, R L; Donaldson, K

    2000-11-01

    In July 1995 the Soufriere Hills volcano on the island of Montserrat began to erupt. Preliminary reports showed that the ash contained a substantial respirable component and a large percentage of the toxic silica polymorph, cristobalite. In this study the cytotoxicity of three respirable Montserrat volcanic ash (MVA) samples was investigated: M1 from a single explosive event, M2 accumulated ash predominantly derived from pyroclastic flows, and M3 from a single pyroclastic flow. These were compared with the relatively inert dust TiO(2) and the known toxic quartz dust, DQ12. Surface area of the particles was measured with the Brunauer, Emmet, and Teller (BET) adsorption method and cristobalite content of MVA was determined by x ray diffraction (XRD). After exposure to particles, the metabolic competence of the epithelial cell line A549 was assessed to determine cytotoxic effects. The ability of the particles to induce sheep blood erythrocyte haemolysis was used to assess surface reactivity. Treatment with either MVA, quartz, or titanium dioxide decreased A549 epithelial cell metabolic competence as measured by ability to reduce 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). On addition of mannitol, the cytotoxic effect was significantly less with M1, quartz, and TiO(2). All MVA samples induced a dose dependent increase in haemolysis, which, although less than the haemolysis induced by quartz, was significantly greater than that induced by TiO(2). Addition of mannitol and superoxide dismutase (SOD) significantly reduced the haemolytic activity only of M1, but not M2 or M3, the samples derived from predominantly pyroclastic flow events. Neither the cristobalite content nor the surface area of the MVA samples correlated with observed in vitro reactivity. A role for reactive oxygen species could only be shown in the cytotoxicity of M1, which was the only sample derived from a purely explosive event. These results suggest that in general the

  17. Volcanic ash dosage calculator: A proof-of-concept tool to support aviation stakeholders during ash events

    Science.gov (United States)

    Dacre, H.; Prata, A.; Shine, K. P.; Irvine, E.

    2017-12-01

    The volcanic ash clouds produced by Icelandic volcano Eyjafjallajökull in April/May 2010 resulted in `no fly zones' which paralysed European aircraft activity and cost the airline industry an estimated £1.1 billion. In response to the crisis, the Civil Aviation Authority (CAA), in collaboration with Rolls Royce, produced the `safe-to-fly' chart. As ash concentrations are the primary output of dispersion model forecasts, the chart was designed to illustrate how engine damage progresses as a function of ash concentration. Concentration thresholds were subsequently derived based on previous ash encounters. Research scientists and aircraft manufactures have since recognised the importance of volcanic ash dosages; the accumulated concentration over time. Dosages are an improvement to concentrations as they can be used to identify pernicious situations where ash concentrations are acceptably low but the exposure time is long enough to cause damage to aircraft engines. Here we present a proof-of-concept volcanic ash dosage calculator; an innovative, web-based research tool, developed in close collaboration with operators and regulators, which utilises interactive data visualisation to communicate the uncertainty inherent in dispersion model simulations and subsequent dosage calculations. To calculate dosages, we use NAME (Numerical Atmospheric-dispersion Modelling Environment) to simulate several Icelandic eruption scenarios, which result in tephra dispersal across the North Atlantic, UK and Europe. Ash encounters are simulated based on flight-optimal routes derived from aircraft routing software. Key outputs of the calculator include: the along-flight dosage, exposure time and peak concentration. The design of the tool allows users to explore the key areas of uncertainty in the dosage calculation and to visualise how this changes as the planned flight path is varied. We expect that this research will result in better informed decisions from key stakeholders during

  18. Volcanic hazards of North Island, New Zealand-overview

    Science.gov (United States)

    Dibble, R. R.; Nairn, I. A.; Neall, V. E.

    1985-10-01

    In October 1980, a National Civil Defence Planning Committee on Volcanic Hazards was formed in New Zealand, and solicited reports on the likely areas and types of future eruptions, the risk to public safety, and the need for special precautions. Reports for eight volcanic centres were received, and made available to the authors. This paper summarises and quantifies the type and frequency of hazard, the public risk, and the possibilities for mitigation at the 7 main volcanic centres: Northland, Auckland, White Island, Okataina, Taupo, Tongariro, and Egmont. On the basis of Recent tephrostratigraphy, eruption probabilities up to 20% per century (but commonly 5%), and tephra volumes up to 100 km 3 are credible.

  19. Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities

    Science.gov (United States)

    Connor, Charles

    2014-05-01

    Worldwide, tremendous progress has been made in recent decades in forecasting volcanic events, such as episodes of volcanic unrest, eruptions, and the potential impacts of eruptions. Generally these forecasts are divided into two categories. Short-term forecasts are prepared in response to unrest at volcanoes, rely on geophysical monitoring and related observations, and have the goal of forecasting events on timescales of hours to weeks to provide time for evacuation of people, shutdown of facilities, and implementation of related safety measures. Long-term forecasts are prepared to better understand the potential impacts of volcanism in the future and to plan for potential volcanic activity. Long-term forecasts are particularly useful to better understand and communicate the potential consequences of volcanic events for populated areas around volcanoes and for siting critical infrastructure, such as nuclear facilities. Recent work by an international team, through the auspices of the International Atomic Energy Agency, has focused on developing guidelines for long-term volcanic hazard assessments. These guidelines have now been implemented for hazard assessment for nuclear facilities in nations including Indonesia, the Philippines, Armenia, Chile, and the United States. One any time scale, all volcanic hazard assessments rely on a geologically reasonable conceptual model of volcanism. Such conceptual models are usually built upon years or decades of geological studies of specific volcanic systems, analogous systems, and development of a process-level understanding of volcanic activity. Conceptual models are used to bound potential rates of volcanic activity, potential magnitudes of eruptions, and to understand temporal and spatial trends in volcanic activity. It is these conceptual models that provide essential justification for assumptions made in statistical model development and the application of numerical models to generate quantitative forecasts. It is a

  20. The phosphorus status of andisols as influenced by nanoparticles of volcanic ash and rock phosphate

    Science.gov (United States)

    Devnita, Rina; Joy, Benny; Arifin, Mahfud; Setiawan, Ade; Rosniawaty, Santi; Meidina, Felia Shella

    2018-02-01

    Andisols need to be ameliorated to improve the phosphorus status. The objective of this research is to investigate the effect of nanoparticles of volcanic ash and rock phosphate as ameliorants in Andisols to P-retention, available P and potential P in Andisols. The research used a complete randomized experimental design in factorial with two factors. The first factor was nanoparticle of volcanic ash (a) and the second factor was rock phosphate (p). Both ameliorants consist of four doses on soil weight percentage (0%, 2.5%, 5.0% and 7.5%). The combined treatments were replicated three times. The soil and treatments were mixed and incubated for 4 months. Soil samples were taken after one month and four months of incubation to be analyzed the P-retention, available P and potential P. The results showed that there are interactions between the volcanic ash and rock phosphate on available P and potential P after one month of incubation. However, there were no interactions occurring between the volcanic ash and rock phosphate on P-retention after one and four months of incubation and no interactions on available P and potential P after four months. The best combined treatments in increasing available P and potential P after one month was obtained in 2.5% of volcanic ash and 5% of rock phosphate that increased available P to 405.75 ppm. The 2.5% of volcanic ash and 7.5% of rock phosphate increased potential P to 2190.26 mg/100 g. Independently, 7.5% of volcanic ash and rock phosphate decreased P-retention to 71.49% after one month and 89.74% after four months. Higher effect on the application of nanoparticle of volcanic ash and rock phosphate to the phosphorus status of Andisols recieved after one month of incubation is compared with four months of incubation.

  1. FINE-GRAINED THE FIBER CONCRETE WITH APPLICATION VOLCANIC ASH, REINFORCED BY THE BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    I. A. Dzugulov

    2015-01-01

    Full Text Available The compositions of fine-grained concrete with the application of volcanic ash are developed. Are investigated compositions and properties of fine-grained fiber concrete with the volcanic ash with the application of methods of the mathematical planning of experiment. It is revealed, that the reinforcement of finegrained concrete by basaltic fibers substantially increases their strength with the bend. 

  2. Estimating Losses from Volcanic Ash in case of a Mt. Baekdu Eruption

    Science.gov (United States)

    Yu, Soonyoung; Yoon, Seong-Min; Kim, Sung-Wook; Choi, Eun-Kyeong

    2014-05-01

    We will present the preliminary result of economic losses in South Korea in case of a Mt. Baedu eruption. The Korean peninsula has Mt. Baekdu in North Korea, which will soon enter an active phase, according to volcanologists. The anticipated eruption will be explosive given the viscous and grassy silica-rich magma, and is expected to be one of the largest in recent millennia. We aim to assess the impacts of this eruption to South Korea and help government prepare for the volcanic disasters. In particular, the economic impact from volcanic ash is estimated given the distance from Mt. Baedu to South Korea. In order to scientifically estimate losses from volcanic ash, we need volcanic ash thickness, inventory database, and damage functions between ash thickness and damage ratios for each inventory item. We use the volcanic ash thickness calculated by other research groups in Korea, and they estimated the ash thickness for each eruption scenario using average wind fields. Damage functions are built using the historical damage data in the world, and inventory database is obtained from available digital maps in Korea. According to the preliminary results, the economic impact from volcanic ash is not significant because the ash is rarely deposited in South Korea under general weather conditions. However, the ash can impact human health and environment. Also worst case scenarios can have the significant economic impacts in Korea, and may result in global issues. Acknowledgement: This research was supported by a grant [NEMA-BAEKDUSAN-2012-1-3] from the Volcanic Disaster Preparedness Research Center sponsored by National Emergency Management Agency of Korea.

  3. Long term volcanic hazard analysis in the Canary Islands

    Science.gov (United States)

    Becerril, L.; Galindo, I.; Laín, L.; Llorente, M.; Mancebo, M. J.

    2009-04-01

    Historic volcanism in Spain is restricted to the Canary Islands, a volcanic archipelago formed by seven volcanic islands. Several historic eruptions have been registered in the last five hundred years. However, and despite the huge amount of citizens and tourist in the archipelago, only a few volcanic hazard studies have been carried out. These studies are mainly focused in the developing of hazard maps in Lanzarote and Tenerife islands, especially for land use planning. The main handicap for these studies in the Canary Islands is the lack of well reported historical eruptions, but also the lack of data such as geochronological, geochemical or structural. In recent years, the use of Geographical Information Systems (GIS) and the improvement in the volcanic processes modelling has provided an important tool for volcanic hazard assessment. Although this sophisticated programs are really useful they need to be fed by a huge amount of data that sometimes, such in the case of the Canary Islands, are not available. For this reason, the Spanish Geological Survey (IGME) is developing a complete geo-referenced database for long term volcanic analysis in the Canary Islands. The Canarian Volcanic Hazard Database (HADA) is based on a GIS helping to organize and manage volcanic information efficiently. HADA includes the following groups of information: (1) 1:25.000 scale geologic maps, (2) 1:25.000 topographic maps, (3) geochronologic data, (4) geochemical data, (5) structural information, (6) climatic data. Data must pass a quality control before they are included in the database. New data are easily integrated in the database. With the HADA database the IGME has started a systematic organization of the existing data. In the near future, the IGME will generate new information to be included in HADA, such as volcanological maps of the islands, structural information, geochronological data and other information to assess long term volcanic hazard analysis. HADA will permit

  4. Adsorption of 2,4-Dichlorophenoxyacetic Acid onto Volcanic Ash Soils:

    Directory of Open Access Journals (Sweden)

    Ei Ei Mon

    2009-01-01

    Full Text Available The quantification of the linear adsorption coefficient (Kd for soils plays a vital role to predict fate and transport of pesticides in the soil-water environment. In this study, we measured Kd values for 2,4-Dichlorophenoxyacetic acid (2,4-D adsorption onto Japanese volcanic ash soils with different amount of soil organic matter (SOM in batch experiments under different pH conditions. All measurements followed well both linear and Freundlich adsorption isotherms. Strong correlations were found between measured Kd values and pH as well as SOM. The 2,4-D adsorption increased with decreasing pH and with increasing SOM. Based on the data, a predictive Kd equation for volcanic ash soils, log (Kd = 2.04 - 0.37 pH + 0.91 log (SOM, was obtained by the multiple regression analysis. The predictive Kd equation was tested against measured 2,4-D sorption data for other volcanic ash soils and normal mineral soils from literature. The proposed Kd equation well predicted Kd values for other volcanic ash soils and slightly over- or under-predicted Kd values for normal mineral soils. The proposed Kd equation performed well against volcanic ash soils from different sites and countries, and is therefore recommended for predicting Kd values at different pH and SOM conditions for volcanic ash soils when calculating and predicting 2,4-D mobility and fate in soil and groundwater.

  5. Heterogeneous Ice Nucleation by Soufriere Hills Volcanic Ash Immersed in Water Droplets.

    Directory of Open Access Journals (Sweden)

    T P Mangan

    Full Text Available Fine particles of ash emitted during volcanic eruptions may sporadically influence cloud properties on a regional or global scale as well as influencing the dynamics of volcanic clouds and the subsequent dispersion of volcanic aerosol and gases. It has been shown that volcanic ash can trigger ice nucleation, but ash from relatively few volcanoes has been studied for its ice nucleating ability. In this study we quantify the efficiency with which ash from the Soufriere Hills volcano on Montserrat nucleates ice when immersed in supercooled water droplets. Using an ash sample from the 11th February 2010 eruption, we report ice nucleating efficiencies from 246 to 265 K. This wide range of temperatures was achieved using two separate droplet freezing instruments, one employing nanolitre droplets, the other using microlitre droplets. Soufriere Hills volcanic ash was significantly more efficient than all other ash samples that have been previously examined. At present the reasons for these differences are not understood, but may be related to mineralogy, amorphous content and surface chemistry.

  6. Heterogeneous Ice Nucleation by Soufriere Hills Volcanic Ash Immersed in Water Droplets.

    Science.gov (United States)

    Mangan, T P; Atkinson, J D; Neuberg, J W; O'Sullivan, D; Wilson, T W; Whale, T F; Neve, L; Umo, N S; Malkin, T L; Murray, B J

    2017-01-01

    Fine particles of ash emitted during volcanic eruptions may sporadically influence cloud properties on a regional or global scale as well as influencing the dynamics of volcanic clouds and the subsequent dispersion of volcanic aerosol and gases. It has been shown that volcanic ash can trigger ice nucleation, but ash from relatively few volcanoes has been studied for its ice nucleating ability. In this study we quantify the efficiency with which ash from the Soufriere Hills volcano on Montserrat nucleates ice when immersed in supercooled water droplets. Using an ash sample from the 11th February 2010 eruption, we report ice nucleating efficiencies from 246 to 265 K. This wide range of temperatures was achieved using two separate droplet freezing instruments, one employing nanolitre droplets, the other using microlitre droplets. Soufriere Hills volcanic ash was significantly more efficient than all other ash samples that have been previously examined. At present the reasons for these differences are not understood, but may be related to mineralogy, amorphous content and surface chemistry.

  7. Size limits for rounding of volcanic ash particles heated by lightning

    Science.gov (United States)

    Wadsworth, Fabian B.; Vasseur, Jérémie; Llewellin, Edward W.; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B.

    2017-03-01

    Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high-temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1-D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters—capillary, Fourier, Stark, Biot, and Peclet numbers—to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension-driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first-order estimate of lightning conditions in volcanic plumes.

  8. Some aspects of volcanic ash layers in the Central Indian Basin.

    Digital Repository Service at National Institute of Oceanography (India)

    Sukumaran, N.P.; Banerjee, R.; Borole, D.V.; Gupta, S.M.

    Intercalated volcanic ash layers in two deep-sea sediment cores from the Central Indian Basin (CIB) are examined for the possibility of an in situ source of suboceanic volcanism. An in situ source has been predicated based on the bottom...

  9. Scattering matrices of volcanic ash particles of Mount St. Helens, Redoubt, and Mount Spurr Volcanoes

    NARCIS (Netherlands)

    Munoz, O.; Volten, H.; Hovenier, J.W.; Veihelmann, B.; Zande, W.J. van der; Waters, L.; Rose, W.I.

    2004-01-01

    [1] We present measurements of the whole scattering matrix as a function of the scattering angle at a wavelength of 632.8 nm in the scattering angle range 3degrees - 174degrees of randomly oriented particles taken from seven samples of volcanic ashes corresponding to four different volcanic

  10. Scattering matrices of volcanic ash particles of Mount St. Helens, Redoubt, and Mount Spurr Volcanoes

    NARCIS (Netherlands)

    Muñoz, O.; Volten, H.; Hovenier, J.W.; Veihelmann, B.; van der Zande, W.J.; Waters, L.B.F.M.; Rose, W.I.

    2004-01-01

    We present measurements of the whole scattering matrix as a function of the scattering angle at a wavelength of 632.8 nm in the scattering angle range 3°-174° of randomly oriented particles taken from seven samples of volcanic ashes corresponding to four different volcanic eruptions: the 18 May 1980

  11. A Conceptual Model of Future Volcanism at Medicine Lake Volcano, California - With an Emphasis on Understanding Local Volcanic Hazards

    Science.gov (United States)

    Molisee, D. D.; Germa, A.; Charbonnier, S. J.; Connor, C.

    2017-12-01

    Medicine Lake Volcano (MLV) is most voluminous of all the Cascade Volcanoes ( 600 km3), and has the highest eruption frequency after Mount St. Helens. Detailed mapping by USGS colleagues has shown that during the last 500,000 years MLV erupted >200 lava flows ranging from basalt to rhyolite, produced at least one ash-flow tuff, one caldera forming event, and at least 17 scoria cones. Underlying these units are 23 additional volcanic units that are considered to be pre-MLV in age. Despite the very high likelihood of future eruptions, fewer than 60 of 250 mapped volcanic units (MLV and pre-MLV) have been dated reliably. A robust set of eruptive ages is key to understanding the history of the MLV system and to forecasting the future behavior of the volcano. The goals of this study are to 1) obtain additional radiometric ages from stratigraphically strategic units; 2) recalculate recurrence rate of eruptions based on an augmented set of radiometric dates; and 3) use lava flow, PDC, ash fall-out, and lahar computational simulation models to assess the potential effects of discrete volcanic hazards locally and regionally. We identify undated target units (units in key stratigraphic positions to provide maximum chronological insight) and obtain field samples for radiometric dating (40Ar/39Ar and K/Ar) and petrology. Stratigraphic and radiometric data are then used together in the Volcano Event Age Model (VEAM) to identify changes in the rate and type of volcanic eruptions through time, with statistical uncertainty. These newly obtained datasets will be added to published data to build a conceptual model of volcanic hazards at MLV. Alternative conceptual models, for example, may be that the rate of MLV lava flow eruptions are nonstationary in time and/or space and/or volume. We explore the consequences of these alternative models on forecasting future eruptions. As different styles of activity have different impacts, we estimate these potential effects using simulation

  12. Improving volcanic ash predictions with the HYSPLIT dispersion model by assimilating MODIS satellite retrievals

    Science.gov (United States)

    Chai, Tianfeng; Crawford, Alice; Stunder, Barbara; Pavolonis, Michael J.; Draxler, Roland; Stein, Ariel

    2017-02-01

    Currently, the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) runs the HYSPLIT dispersion model with a unit mass release rate to predict the transport and dispersion of volcanic ash. The model predictions provide information for the Volcanic Ash Advisory Centers (VAAC) to issue advisories to meteorological watch offices, area control centers, flight information centers, and others. This research aims to provide quantitative forecasts of ash distributions generated by objectively and optimally estimating the volcanic ash source strengths, vertical distribution, and temporal variations using an observation-modeling inversion technique. In this top-down approach, a cost functional is defined to quantify the differences between the model predictions and the satellite measurements of column-integrated ash concentrations weighted by the model and observation uncertainties. Minimizing this cost functional by adjusting the sources provides the volcanic ash emission estimates. As an example, MODIS (Moderate Resolution Imaging Spectroradiometer) satellite retrievals of the 2008 Kasatochi volcanic ash clouds are used to test the HYSPLIT volcanic ash inverse system. Because the satellite retrievals include the ash cloud top height but not the bottom height, there are different model diagnostic choices for comparing the model results with the observed mass loadings. Three options are presented and tested. Although the emission estimates vary significantly with different options, the subsequent model predictions with the different release estimates all show decent skill when evaluated against the unassimilated satellite observations at later times. Among the three options, integrating over three model layers yields slightly better results than integrating from the surface up to the observed volcanic ash cloud top or using a single model layer. Inverse tests also show that including the ash-free region to constrain the model is not

  13. Fission-track ages of Neogene and Quaternary volcanic ashes in south of Osaka, Japan

    International Nuclear Information System (INIS)

    Yokoyama, Takuo; Nakagawa, Yonosuke; Danhara, Tohru.

    1984-01-01

    A calculation method is proposed for the fission-track ages of zircon crystals in volcanic material. In this method, it is checked whether the spontaneous fission-track number of respective zircon crystals follows the Poisson distribution. If it does, the age is calculated by population method with all crystals, and if not, only with those crystals following the Poisson distribution, eliminating abnormal crystals. Extraneous zircon crystals are thus excluded and crystals with spontaneous fission-track number zero are not ignored. The following ages were obtained: Tamateyama volcanic ash in the Nijo group, 14.0 +- 0.6 Ma; pink volcanic ash in the Osaka group, 1.0 +- 0.2 Ma; Matsuo volcanic ash in the Ko-Osaka group, 1.5 +- 0.4 Ma; pumice volcanic ash in the Ko-Osaka group, 2.3 +- 0.4 Ma; Asashiro volcanic ash in the Ko-Osaka group, 2.9 +- 0.6 Ma. (Mori, K.)

  14. APhoRISM FP7 project: the Multi-platform volcanic Ash Cloud Estimation (MACE) infrastructure

    Science.gov (United States)

    Merucci, Luca; Corradini, Stefano; Bignami, Christian; Stramondo, Salvatore

    2014-05-01

    APHORISM is an FP7 project that aims to develop innovative products to support the management and mitigation of the volcanic and the seismic crisis. Satellite and ground measurements will be managed in a novel manner to provide new and improved products in terms of accuracy and quality of information. The Multi-platform volcanic Ash Cloud Estimation (MACE) infrastructure will exploit the complementarity between geostationary, and polar satellite sensors and ground measurements to improve the ash detection and retrieval and to fully characterize the volcanic ash clouds from source to the atmosphere. The basic idea behind the proposed method consists to manage in a novel manner, the volcanic ash retrievals at the space-time scale of typical geostationary observations using both the polar satellite estimations and in-situ measurements. The typical ash thermal infrared (TIR) retrieval will be integrated by using a wider spectral range from visible (VIS) to microwave (MW) and the ash detection will be extended also in case of cloudy atmosphere or steam plumes. All the MACE ash products will be tested on three recent eruptions representative of different eruption styles in different clear or cloudy atmospheric conditions: Eyjafjallajokull (Iceland) 2010, Grimsvotn (Iceland) 2011 and Etna (Italy) 2011-2012. The MACE infrastructure will be suitable to be implemented in the next generation of ESA Sentinels satellite missions.

  15. Volcanic Ash fall Impact on Vegetation, Colima 2005

    Science.gov (United States)

    Garcia, M. G.; Martin, A.; Fonseca, R.; Nieto, A.; Radillo, R.; Armienta, M.

    2007-05-01

    An ash sampling network was established arround Colima Volcano in 2005. Ash fall was sampled on the North, Northeast, East, Southeast, South, Southwest and West of the volcano. Samples were analyzed for ash components, geochemistry and leachates. Ash fall ocurred on April (12), May (10, 23), June (2, 6, 9, 10, 12, 14), July (27), September (27), October (23) and November (24). Most of the ash is made of andesitic dome-lithics but shows diferences in crystal, juvenile material and lithic content. In May, some samples contained grey and dark pumice (scoria). Texture varies from phi >4 to phi 0. Leachate concentration were low: SO4 (7.33-54.19) Cl- (2.29-4.97) and F- (0.16-0.37). During 2005, Colima Volcano's ash fall rotted some of the guava and peach fruits and had a drying effect on spearment and epazote plants. Even these small ash amounts could have hindered sugar cane and agave growth.

  16. Volcanic hazard zonation of the Nevado de Toluca volcano, México

    Science.gov (United States)

    Capra, L.; Norini, G.; Groppelli, G.; Macías, J. L.; Arce, J. L.

    2008-10-01

    The Nevado de Toluca is a quiescent volcano located 20 km southwest of the City of Toluca and 70 km west of Mexico City. It has been quiescent since its last eruptive activity, dated at ˜ 3.3 ka BP. During the Pleistocene and Holocene, it experienced several eruptive phases, including five dome collapses with the emplacement of block-and-ash flows and four Plinian eruptions, including the 10.5 ka BP Plinian eruption that deposited more than 10 cm of sand-sized pumice in the area occupied today by Mexico City. A detailed geological map coupled with computer simulations (FLOW3D, TITAN2D, LAHARZ and HAZMAP softwares) were used to produce the volcanic hazard assessment. Based on the final hazard zonation the northern and eastern sectors of Nevado de Toluca would be affected by a greater number of phenomena in case of reappraisal activity. Block-and-ash flows will affect deep ravines up to a distance of 15 km and associated ash clouds could blanket the Toluca basin, whereas ash falls from Plinian events will have catastrophic effects for populated areas within a radius of 70 km, including the Mexico City Metropolitan area, inhabited by more than 20 million people. Independently of the activity of the volcano, lahars occur every year, affecting small villages settled down flow from main ravines.

  17. Volcanic ash activates the NLRP3 inflammasome in murine and human macrophages

    Science.gov (United States)

    Damby, David; Horwell, Claire J.; Baxter, Peter J.; Kueppers, Ulrich; Schnurr, Max; Dingwell, Donald B.; Duewell, Peter

    2018-01-01

    Volcanic ash is a heterogeneous mineral dust that is typically composed of a mixture of amorphous (glass) and crystalline (mineral) fragments. It commonly contains an abundance of the crystalline silica (SiO2) polymorph cristobalite. Inhalation of crystalline silica can induce inflammation by stimulating the NLRP3 inflammasome, a cytosolic receptor complex that plays a critical role in driving inflammatory immune responses. Ingested material results in the assembly of NLRP3, ASC, and caspase-1 with subsequent secretion of the interleukin-1 family cytokine IL-1β. Previous toxicology work suggests that cristobalite-bearing volcanic ash is minimally reactive, calling into question the reactivity of volcanically derived crystalline silica, in general. In this study, we target the NLRP3 inflammasome as a crystalline silica responsive element to clarify volcanic cristobalite reactivity. We expose immortalized bone marrow-derived macrophages of genetically engineered mice and primary human peripheral blood mononuclear cells (PBMCs) to ash from the Soufrière Hills volcano as well as representative, pure-phase samples of its primary componentry (volcanic glass, feldspar, cristobalite) and measure NLRP3 inflammasome activation. We demonstrate that respirable Soufrière Hills volcanic ash induces the activation of caspase-1 with subsequent release of mature IL-1β in a NLRP3 inflammasome-dependent manner. Macrophages deficient in NLRP3 inflammasome components are incapable of secreting IL-1β in response to volcanic ash ingestion. Cellular uptake induces lysosomal destabilization involving cysteine proteases. Furthermore, the response involves activation of mitochondrial stress pathways leading to the generation of reactive oxygen species. Considering ash componentry, cristobalite is the most reactive pure-phase with other components inducing only low-level IL-1β secretion. Inflammasome activation mediated by inhaled ash and its potential relevance in chronic pulmonary

  18. Volcanic hazard studies for the Yucca Mountain project

    International Nuclear Information System (INIS)

    Crowe, B.; Turrin, B.; Wells, S.; Perry, F.; McFadden, L.; Renault, C.E.; Champion, D.; Harrington, C.

    1989-01-01

    Volcanic hazard studies are ongoing to evaluate the risk of future volcanism with respect to siting of a repository for disposal of high-level radioactive waste at the Yucca Mountain site. Seven Quaternary basaltic volcanic centers are located a minimum distance of 12 km and a maximum distance of 47 km from the outer boundary of the exploration block. The conditional probability of disruption of a repository by future basaltic volcanism is bounded by the range of 10/sup /minus/8/ to 10/sup /minus/10/ yr/sup /minus/1/. These values are currently being reexamined based on new developments in the understanding of the evaluation of small volume, basaltic volcanic centers including: (1) Many, perhaps most, of the volcanic centers exhibit brief periods of eruptive activity separated by longer periods of inactivity. (2) The centers may be active for time spans exceeding 10 5 yrs, (3) There is a decline in the volume of eruptions of the centers through time, and (4) Small volume eruptions occurred at two of the Quaternary centers during latest Pleistocene or Holocene time. We classify the basalt centers as polycyclic, and distinguish them from polygenetic volcanoes. Polycyclic volcanism is characterized by small volume, episodic eruptions of magma of uniform composition over time spans of 10 3 to 10 5 yrs. Magma eruption rates are low and the time between eruptions exceeds the cooling time of the magma volumes. 25 refs., 2 figs

  19. ASH REDISTRIBUTION FOLLOWING A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    J. Pelletier; S. deLong; M.L. Cline; C. Harrington; G. Keating

    2005-01-01

    The redistribution of contaminated tephra by hillslope, fluvial, and pedologic processes is a poorly-constrained but important aspect of evaluating the radiological dose from an unlikely volcanic eruption at Yucca Mountain (YM). To better evaluate this hazard, we developed a spatially distributed, numerical model of tephra redistribution that integrates contaminated tephra from hill slopes and active channels, mixes it with clean sediment in the channel system, distributes it on the fan, and migrates it into the soil column. The model is coupled with an atmospheric dispersion model that predicts the deposition of radioactive waste-contaminated tephra at specified grid points. The redistribution model begins in the upper Fortymile Wash drainage basin where it integrates the tephra deposited on steep slopes and active channel beds within a GIS framework. The Fortymile Wash drainage basin is the focus of this model because tephra from only this basin reaches the Fortymile Wash alluvial fan by fluvial processes, and it is on this fan where the radiological dose to a hypothetical individual is compared to the regulatory standard (via additional biosphere models). The dilution effect of flood scour, mixing, and re-deposition within the upper basin is modeled using a dilution-mixing model widely used in the contaminant-transport literature. The accuracy of this model is established by comparing the model prediction with tephra concentrations measured in channels draining the Lathrop Wells volcanic center. The model combines the contaminated tephra transported from the upper basin with the tephra deposited directly on the fan as primary fallout. On the Fortymile Wash fan, channels and interchannel-divide areas are divided on the basis of soil-geomorphic mapping according to whether they are Holocene or Pleistocene in age. This approach allows the model to incorporate the effects of channel migration on the fan within the past 10,000 yr. The model treats the redistribution

  20. Search for possible relationship between volcanic ash particles and thunderstorm lightning activity

    Science.gov (United States)

    Várai, A.; Vincze, M.; Lichtenberger, J.; Jánosi, I. M.

    2011-12-01

    Explosive volcanic eruptions that eject columns of ash from the crater often generate lightning discharges strong enough to be remotely located by very low frequency radio waves. A fraction of volcanic ash particles can stay and disperse long enough to have an effect on weather phenomena days later such as thunderstorms and lightnings. In this work we report on lightning activity analysis over Europe following two recent series of volcanic eruptions in order to identify possible correlations between ash release and subsequent thunderstorm flash frequency. Our attempts gave negative results which can be related to the fact that we have limited information on local atmospheric variables of high enough resolution, however lightning frequency is apparently determined by very local circumstances.

  1. Search for possible relationship between volcanic ash particles and thunderstorm lightning activity

    International Nuclear Information System (INIS)

    Várai, A; Vincze, M; Jánosi, I M; Lichtenberger, J

    2011-01-01

    Explosive volcanic eruptions that eject columns of ash from the crater often generate lightning discharges strong enough to be remotely located by very low frequency radio waves. A fraction of volcanic ash particles can stay and disperse long enough to have an effect on weather phenomena days later such as thunderstorms and lightnings. In this work we report on lightning activity analysis over Europe following two recent series of volcanic eruptions in order to identify possible correlations between ash release and subsequent thunderstorm flash frequency. Our attempts gave negative results which can be related to the fact that we have limited information on local atmospheric variables of high enough resolution, however lightning frequency is apparently determined by very local circumstances.

  2. Geotourism and volcanoes: health hazards facing tourists at volcanic and geothermal destinations.

    Science.gov (United States)

    Heggie, Travis W

    2009-09-01

    Volcano tourism and tourism to geothermal destinations is increasingly popular. If such endeavors are to be a sustainable sector of the tourism industry, tourists must be made aware of the potential health hazards facing them in volcanic environments. With the aim of creating awareness amongst the tourism industry and practitioners of travel medicine, this paper reviews the potential influences and effects of volcanic gases such as carbon dioxide (CO(2)), hydrogen sulfide (H(2)S), sulfur dioxide (SO(2)), and hydrogen chloride/hydrochloric acid (HCl). It also reviews the negative health impacts of tephra and ash, lava flows, landslides, and mudflows. Finally, future research striving to quantify the health risks facing volcano tourists is recommended.

  3. Screening criteria of volcanic hazards aspect in the NPP site evaluation

    International Nuclear Information System (INIS)

    Nur Siwhan

    2013-01-01

    Studies have been conducted on the completeness of regulation in Indonesia particularly on volcanic hazards aspects in the evaluation of nuclear power plant site. Volcanic hazard aspect needed to identify potential external hazards that may endanger the safety of the operation of nuclear power plants. There are four stages for evaluating volcanic hazards, which are initial assessment, characterization sources of volcanic activity in the future, screening volcanic hazards and assessment of capable volcanic hazards. This paper discuss the third stage of the general evaluation which is the screening procedure of volcanic hazards. BAPETEN Chairman Regulation No. 2 Year of 2008 has only one screening criteria for missile volcanic phenomena, so it required screening criteria for other hazard phenomena that are pyroclastic flow density; lava flows; avalanche debris materials; lava; opening hole new eruptions, volcano missile; tsunamis; ground deformation; and hydrothermal system and ground water anomaly. (author)

  4. Impact of Volcanic Ash on Road and Airfield Surface Skid Resistance

    Directory of Open Access Journals (Sweden)

    Daniel M. Blake

    2017-08-01

    Full Text Available Volcanic ash deposited on paved surfaces during volcanic eruptions often compromises skid resistance, which is a major component of safety. We adopt the British pendulum test method in laboratory conditions to investigate the skid resistance of road asphalt and airfield concrete surfaces covered by volcanic ash sourced from various locations in New Zealand. Controlled variations in ash characteristics include type, depth, wetness, particle size and soluble components. We use Stone Mastic Asphalt (SMA for most road surface experiments but also test porous asphalt, line-painted road surfaces, and a roller screed concrete mix used for airfields. Due to their importance for skid resistance, SMA surface macrotexture and microtexture are analysed with semi-quantitative image analysis, microscopy and a standardised sand patch volumetric test, which enables determination of the relative effectiveness of different cleaning techniques. We find that SMA surfaces covered by thin deposits (~1 mm of ash result in skid resistance values slightly lower than those observed on wet uncontaminated surfaces. At these depths, a higher relative soluble content for low-crystalline ash and a coarser particle size results in lower skid resistance. Skid resistance results for relatively thicker deposits (3–5 mm of non-vesiculated basaltic ash are similar to those for thin deposits. There are similarities between road asphalt and airfield concrete, although there is little difference in skid resistance between bare airfield surfaces and airfield surfaces covered by 1 mm of ash. Based on our findings, we provide recommendations for maintaining road safety and effective cleaning techniques in volcanic ash environments.

  5. Volcanic Ash Cloud Observations with the DLR-Falcon over Europe during Airspace Closure

    Science.gov (United States)

    Schumann, Ulrich; Weinzierl, Bernadett; Reitebuch, Oliver; Minikin, Andreas; Schlager, Hans; Rahm, Stephan; Scheibe, Monika; Lichtenstern, Michael; Forster, Caroline

    2010-05-01

    At the time of the EGU conference, the volcano ash plume originating from the Eyjafjallajökull volcano eruption in Iceland was probed during 9 flights with the DLR Falcon research aircraft in the region between Germany and Iceland at 1-11 km altitudes between April 19 and May 3, 2010. The Falcon was instrumented with a downward looking, scanning 2-µm-Wind-Lidar (aerosol backscattering and horizontal wind, 100 m vertical resolution), and several in-situ instruments. The particle instrumentation, including wing station probes (PCASP, FSSP-300) cover particle number and size from 5 nm to some tens of µm. Further in-situ instruments measured O3, CO, SO2, H2O, and standard meteorological parameters. Flight planning was based on numerical weather forecasts, trajectory-based particle-dispersion models, satellite observations and ground based Lidar observations, from many sources. During the flight on April 19, 2010, layers of volcanic ash were detected first by Lidar and then probed in-situ. The horizontal and vertical distribution of the volcanic ash layers over Eastern Germany was highly variable at that time. Calculations with the particle dispersion model FLEXPART indicate that the volcanic ash plumes measured by the Falcon had an age of 4-5 days. The concentrations of large particles measured in the volcanic aerosol layers are comparable to concentrations measured typically in fresh (age 3000 kg/s, strong chemistry - Lidar signal and FSSP-300 signal strongly dependent on refractive index, ash density, particle size spectrum 1- 50 µm - Mid-European airspace closure was justified until Sat. April 17; thereafter ageing ash clouds dominated. - Keflavik/Iceland was found to be free of ash as predicted on April 29 - May 2 - The Quality of forecasts was found to be quite reliable for aviation planning - For the future we recommend combinations of models + lidar + satellite + in-situ - We suggest an improved linking between operations and academia - The DLR Falcon will

  6. First experimental observations on melting and chemical modification of volcanic ash during lightning interaction.

    Science.gov (United States)

    Mueller, S P; Helo, C; Keller, F; Taddeucci, J; Castro, J M

    2018-01-23

    Electrification in volcanic ash plumes often leads to syn-eruptive lightning discharges. High temperatures in and around lightning plasma channels have the potential to chemically alter, re-melt, and possibly volatilize ash fragments in the eruption cloud. In this study, we experimentally simulate temperature conditions of volcanic lightning in the laboratory, and systematically investigate the effects of rapid melting on the morphology and chemical composition of ash. Samples of different size and composition are ejected towards an artificially generated electrical arc. Post-experiment ash morphologies include fully melted spheres, partially melted particles, agglomerates, and vesiculated particles. High-speed imaging reveals various processes occurring during the short lightning-ash interactions, such as particle melting and rounding, foaming, and explosive particle fragmentation. Chemical analyses of the flash-melted particles reveal considerable bulk loss of Cl, S, P and Na through thermal vaporization. Element distribution patterns suggest convection as a key process of element transport from the interior of the melt droplet to rim where volatiles are lost. Modeling the degree of sodium loss delivers maximum melt temperatures between 3290 and 3490 K. Our results imply that natural lighting strikes may be an important agent of syn-eruptive morphological and chemical processing of volcanic ash.

  7. Volcanic ash detection and retrievals using MODIS data by means of neural networks

    Directory of Open Access Journals (Sweden)

    M. Picchiani

    2011-12-01

    Full Text Available Volcanic ash clouds detection and retrieval represent a key issue for aviation safety due to the harming effects on aircraft. A lesson learned from the recent Eyjafjallajokull eruption is the need to obtain accurate and reliable retrievals on a real time basis.

    In this work we have developed a fast and accurate Neural Network (NN approach to detect and retrieve volcanic ash cloud properties from the Moderate Resolution Imaging Spectroradiometer (MODIS data in the Thermal InfraRed (TIR spectral range. Some measurements collected during the 2001, 2002 and 2006 Mt. Etna volcano eruptions have been considered as test cases.

    The ash detection and retrievals obtained from the Brightness Temperature Difference (BTD algorithm are used as training for the NN procedure that consists in two separate steps: ash detection and ash mass retrieval. The ash detection is reduced to a classification problem by identifying two classes: "ashy" and "non-ashy" pixels in the MODIS images. Then the ash mass is estimated by means of the NN, replicating the BTD-based model performances. A segmentation procedure has also been tested to remove the false ash pixels detection induced by the presence of high meteorological clouds. The segmentation procedure shows a clear advantage in terms of classification accuracy: the main drawback is the loss of information on ash clouds distal part.

    The results obtained are very encouraging; indeed the ash detection accuracy is greater than 90%, while a mean RMSE equal to 0.365 t km−2 has been obtained for the ash mass retrieval. Moreover, the NN quickness in results delivering makes the procedure extremely attractive in all the cases when the rapid response time of the system is a mandatory requirement.

  8. Hazard map for volcanic ballistic impacts at El Chichón volcano (Mexico)

    Science.gov (United States)

    Alatorre-Ibarguengoitia, Miguel; Ramos-Hernández, Silvia; Jiménez-Aguilar, Julio

    2014-05-01

    The 1982 eruption of El Chichón Volcano in southeastern Mexico had a strong social and environmental impact. The eruption resulted in the worst volcanic disaster in the recorded history of Mexico, causing about 2,000 casualties, displacing thousands, and producing severe economic losses. Even when some villages were relocated after the 1982 eruption, many people still live and work in the vicinities of the volcano and may be affected in the case of a new eruption. The hazard map of El Chichón volcano (Macías et al., 2008) comprises pyroclastic flows, pyroclastic surges, lahars and ash fall but not ballistic projectiles, which represent an important threat to people, infrastructure and vegetation in the case of an eruption. In fact, the fatalities reported in the first stage of the 1982 eruption were caused by roof collapse induced by ashfall and lithic ballistic projectiles. In this study, a general methodology to delimit the hazard zones for volcanic ballistic projectiles during volcanic eruptions is applied to El Chichón volcano. Different scenarios are defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with ballistic projectiles ejected during previous eruptions. A ballistic model is used to reconstruct the "launching" kinetic energy of the projectiles observed in the field. The maximum ranges expected for the ballistics in the different explosive scenarios defined for El Chichón volcano are presented in a ballistic hazard map which complements the published hazard map. These maps assist the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.

  9. MAFALDA: An early warning modeling tool to forecast volcanic ash dispersal and deposition

    Science.gov (United States)

    Barsotti, S.; Nannipieri, L.; Neri, A.

    2008-12-01

    Forecasting the dispersal of ash from explosive volcanoes is a scientific challenge to modern volcanology. It also represents a fundamental step in mitigating the potential impact of volcanic ash on urban areas and transport routes near explosive volcanoes. To this end we developed a Web-based early warning modeling tool named MAFALDA (Modeling and Forecasting Ash Loading and Dispersal in the Atmosphere) able to quantitatively forecast ash concentrations in the air and on the ground. The main features of MAFALDA are the usage of (1) a dispersal model, named VOL-CALPUFF, that couples the column ascent phase with the ash cloud transport and (2) high-resolution weather forecasting data, the capability to run and merge multiple scenarios, and the Web-based structure of the procedure that makes it suitable as an early warning tool. MAFALDA produces plots for a detailed analysis of ash cloud dynamics and ground deposition, as well as synthetic 2-D maps of areas potentially affected by dangerous concentrations of ash. A first application of MAFALDA to the long-lasting weak plumes produced at Mt. Etna (Italy) is presented. A similar tool can be useful to civil protection authorities and volcanic observatories in reducing the impact of the eruptive events. MAFALDA can be accessed at http://mafalda.pi.ingv.it.

  10. Synthesis of a one-part geopolymer system for soil stabilizer using fly ash and volcanic ash

    Directory of Open Access Journals (Sweden)

    Tigue April Anne S.

    2018-01-01

    Full Text Available A novel approach one-part geopolymer was employed to investigate the feasibility of enhancing the strength of in-situ soil for possible structural fill application in the construction industry. Geopolymer precursors such as fly ash and volcanic ash were utilized in this study for soil stabilization. The traditional geopolymer synthesis uses soluble alkali activators unlike in the case of ordinary Portland cement where only water is added to start the hydration process. This kind of synthesis is an impediment to geopolymer soil stabilizer commercial viability. Hence, solid alkali activators such as sodium silicate (SS, sodium hydroxide (SH, and sodium aluminate (SA were explored. The influence of amount of fly ash (15% and 25%, addition of volcanic ash (0% and 12.5%, and ratio of alkali activator SS:SH:SA (50:50:0, 33:33:33, 50:20:30 were investigated. Samples cured for 28 days were tested for unconfined compressive strength (UCS. To evaluate the durability, sample yielding highest UCS was subjected to sulfuric acid resistance test for 28 days. Analytical techniques such as X-ray fluorescence (XRF, X-ray diffraction (XRD, and scanning electron microscope/energy-dispersive X-ray spectroscopy (SEM/EDX were performed to examine the elemental composition, mineralogical properties, and microstructure of the precursors and the geopolymer stabilized soil.

  11. Volcanic Hazards Associated with the NE Sector of Tacaná Volcano, Guatemala.

    Science.gov (United States)

    Hughes, S. R.; Saucedo, R.; Macias, J.; Arce, J.; Garcia-Palomo, A.; Mora, J.; Scolamacchia, T.

    2003-12-01

    Tacaná volcano, with a height of 4,030 m above sea level, straddles the southern Mexico/Guatemala border. Last active in 1986, when there was a small phreatic event with a duration of a few days, this volcano presents an impending hazard to over 250,000 people. The NE sector of the volcano reveals the violent volcanic history of Tacaná that may be indicative of a serious potential risk to the area. Its earliest pyroclastic history appears to consist of fall, flow, and surge deposits, together with lavas, that have formed megablocks within a series of old debris avalanche deposits. This sector collapse event is overlain by a sequence of pumice fall and ash flow deposits, of which the youngest, less-altered pumice fall deposit shows a minimum thickness of > 4 m, with a dispersal axis trending toward the NE. A second debris avalanche deposit, separated from the above deposits by a paleosoil, is dominated by megablocks of lava and scoriaceous dome material. The current topography around the northeastern flank of the volcano is determined by a third, and most recent debris avalanche deposit, a thick (> 20 m) sequence of six block and ash flows dated at around 16,000 years BP, each separated by 1-10 cm thick ash cloud surge deposit, together with secondary lahar deposits. These are followed by a at least 4 lava flows that extend 2 km down the flank of the volcano. It appears that the most recent pyroclastic event at Tacaná is also recorded in this sector of the volcano: above the block and ash flows occurs a > 1 m thick ash flow unit that can be seen at least 5 km from the vent. Lastly, the Santa Maria Ash fall deposit, produced in 1902, has capped most of the deposits at Tacaná.

  12. Earth Girl Volcano: An Interactive Casual Game about Complex Volcanic Hazards

    Science.gov (United States)

    Kerlow, I.

    2017-12-01

    Earth Girl Volcano is an interactive casual strategy game for disaster preparedness. The project is designed for mainstream audiences, particularly for children, as an engaging and fun way to learn about volcano hazards, monitoring, and mitigation strategies. The game is deceptively simple but it provides a toolbox to address practically all volcanic hazards ranging from gas and ash fall to pyroclastic flows, lava and lahars. This presentation shows the basic dynamic to explore the area, assess the risk, choose the best-suited tools and execute a mitigation strategy within the available budget. This game is a real-time simulation of a crowd evacuation that allows players to intervene before and during the disaster.

  13. Conceptual model of volcanism and volcanic hazards of the region of Ararat valley, Armenia

    Science.gov (United States)

    Meliksetian, Khachatur; Connor, Charles; Savov, Ivan; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Ghukasyan, Yura; Gevorgyan, Hripsime

    2015-04-01

    Armenia and the adjacent volcanically active regions in Iran, Turkey and Georgia are located in the collision zone between the Arabian and Eurasian lithospheric plates. The majority of studies of regional collision related volcanism use the model proposed by Keskin, (2003) where volcanism is driven by Neo-Tethyan slab break-off. In Armenia, >500 Quaternary-Holocene volcanoes from the Gegham, Vardenis and Syunik volcanic fields are hosted within pull-apart structures formed by active faults and their segments (Karakhanyan et al., 2002), while tectonic position of the large in volume basalt-dacite Aragats volcano and periphery volcanic plateaus is different and its position away from major fault lines necessitates more complex volcano-tectonic setup. Our detailed volcanological, petrological and geochemical studies provide insight into the nature of such volcanic activity in the region of Ararat Valley. Most magmas, such as those erupted in Armenia are volatile-poor and erupt fairly hot. Here we report newly discovered tephra sequences in Ararat valley, that were erupted from historically active Ararat stratovolcano and provide evidence for explosive eruption of young, mid K2O calc-alkaline and volatile-rich (>4.6 wt% H2O; amph-bearing) magmas. Such young eruptions, in addition to the ignimbrite and lava flow hazards from Gegham and Aragats, present a threat to the >1.4 million people (~ ½ of the population of Armenia). We will report numerical simulations of potential volcanic hazards for the region of Ararat valley near Yerevan that will include including tephra fallout, lava flows and opening of new vents. Connor et al. (2012) J. Applied Volcanology 1:3, 1-19; Karakhanian et al. (2002), JVGR, 113, 319-344; Keskin, M. (2003) Geophys. Res. Lett. 30, 24, 8046.

  14. Spatio-volumetric hazard estimation in the Auckland volcanic field

    Science.gov (United States)

    Bebbington, Mark S.

    2015-05-01

    The idea of a volcanic field `boundary' is prevalent in the literature, but ill-defined at best. We use the elliptically constrained vents in the Auckland Volcanic Field to examine how spatial intensity models can be tested to assess whether they are consistent with such features. A means of modifying the anisotropic Gaussian kernel density estimate to reflect the existence of a `hard' boundary is then suggested, and the result shown to reproduce the observed elliptical distribution. A new idea, that of a spatio-volumetric model, is introduced as being more relevant to hazard in a monogenetic volcanic field than the spatiotemporal hazard model due to the low temporal rates in volcanic fields. Significant dependencies between the locations and erupted volumes of the observed centres are deduced, and expressed in the form of a spatially-varying probability density. In the future, larger volumes are to be expected in the `gaps' between existing centres, with the location of the greatest forecast volume lying in the shipping channel between Rangitoto and Castor Bay. The results argue for tectonic control over location and magmatic control over erupted volume. The spatio-volumetric model is consistent with the hypothesis of a flat elliptical area in the mantle where tensional stresses, related to the local tectonics and geology, allow decompressional melting.

  15. STRUCTURAL CHARACTERIZATION OF VOLCANIC ASH OF THE NEVADO DEL RUIZ: ZEOLITE PHASE IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    Heiddy P. Quiroz

    2014-08-01

    Full Text Available This paper presents a study of the structural properties obtained from volcanic ash from Nevado del Ruiz located in the Central Range of Andes - Colombia. The volcanic ash samples were subjected to hydration processes and heat treatments in situ during characterization stage material. During the hydration process, which consisted of introducing 2.4875 ± 0.0002g of volcanic ash in 20ml of water for 48 hours, the organic fraction present was removed from the particulate suspension in the aqueous medium. From measurements of X-ray diffraction (XRD, it was observed, that the temperature variations between 323 and 673 K influence the phase formation of zeolite with structures Heulandite -Ca, Stellerita and gmelinite. XRD measurements were performed in vacuum and atmospheric pressure. X'pert Highscore Plus program and simulation Rietveld refinement were used for to obtain the structures of each of the phases. It was found, using the Scherrer equation, that crystallite sizes (Δ (2θ are influenced by changes crystal-chemical caused by hydration, heat treatment and pressure conditions during the characterization. A variation of Δ ( 2θ between 37 and 106.9 nm from XRD measurements was found. It was determined that from 423K in the sample of un-hydrated volcanic ash, the formation of zeolite Stellerita presents with a stable phase up to 673 K.

  16. A Comprehensive Training Data Set for the Development of Satellite-Based Volcanic Ash Detection Algorithms

    Science.gov (United States)

    Schmidl, Marius

    2017-04-01

    We present a comprehensive training data set covering a large range of atmospheric conditions, including disperse volcanic ash and desert dust layers. These data sets contain all information required for the development of volcanic ash detection algorithms based on artificial neural networks, urgently needed since volcanic ash in the airspace is a major concern of aviation safety authorities. Selected parts of the data are used to train the volcanic ash detection algorithm VADUGS. They contain atmospheric and surface-related quantities as well as the corresponding simulated satellite data for the channels in the infrared spectral range of the SEVIRI instrument on board MSG-2. To get realistic results, ECMWF, IASI-based, and GEOS-Chem data are used to calculate all parameters describing the environment, whereas the software package libRadtran is used to perform radiative transfer simulations returning the brightness temperatures for each atmospheric state. As optical properties are a prerequisite for radiative simulations accounting for aerosol layers, the development also included the computation of optical properties for a set of different aerosol types from different sources. A description of the developed software and the used methods is given, besides an overview of the resulting data sets.

  17. Hydrothermal and magmatic components in the Ruapehu, Pinatubo, Lonquimay and Yasur volcanic ashes

    International Nuclear Information System (INIS)

    Reyes, A.G.; Trompetter, W.J.

    2005-01-01

    Fresh ash from explosive volcanic eruptions of Ruapehu in New Zealand (1995-1996), Pinatubo in the Philippines (1991), Lonquimay in Chile (1989) and Ysur in Vanuatu (1988) were leached in distilled water in a boiling water bath. The leachates were analysed by ion chromatography and ICP-MS and the chemical composition of leached ash measured by IBA, NAA and XRF. Water-soluble minerals adhering on ash surfaces were examined under SEM-EDX and thin sections of the ash were mineralogically analysed under petrographic microscope. The leachates contain mainly adsorbed material from the volcanic plume and the leached ash insoluble plume precipitates or primary volcanic mineral. At Yasur and Lonquimay, where the erupted material is entirely magmatic, the F/S and F/Cl ratios are 100x to 1000x higher and the S/B ratio 10x lower than in Pinatubo where an extensive hydrothermal system had been extant prior to eruption. In Ruhapehu, the adsorbed material contains a significant component of evaporated Crater Lake water. (author). 9 refs., 1 fig

  18. Development of Air Quality Impact Assessment Method of Potential Volcanic Hazard near the Korean Peninsula

    Science.gov (United States)

    Sunwoo, Y.; Kim, Y. J.; Kim, D.; Park, J. E.; Hong, K. H.

    2016-12-01

    Many volcanos are located within 1,500 km of Korea which implies that a potential disaster is always possible. Several eruption precursors were observed rather recently at Mt. Baekdu, which has sparked intensive research on volcanic disasters in Korea. For assessment of potential volcanic hazard in Korea, we developed classification method of volcanic eruption dates using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT-4) regarding air quality impact. And, we conducted 3 dimensional chemistry transport modeling for selected eruption dates. WRF-ARW(version 3.6.1) meteorological modeling was employed for high resolution HYSPLIT input meteorological data,. The modeling domain covers Northeast Asia including Korea, Japan, east China, and part of Russia. Forward trajectories were calculated every 3 hours for 1 year (2010) and the trajectories were initiated from 3 volcanoes, Mt. Baekdu, Mt. Aso, and Mt. Tarumae. Selected eruption dates were classified into 5 classes using 4 parameters, PBL, trajectory retention time, initial trajectory altitude and exposed population. The number of significant days for volcanic eruption impact were 7 for Mt. Baekdu (spring and fall), 7 for Mt. Aso (summer), 1 for Mt. Tarumae (spring), and these were classified as class A, with the highest risk of incurring severe air pollution episodes in the receptor area. In addition, we analyzed the spatio-temporal distributions of these trajectories in the receptor area to help determine the period and domain of the volcanic eruption 3 dimensional chemistry transport modeling. Using class A eruption dates, we conducted CMAQ(v5.0.2) modeling for calculate full chemical reactions of volcanic gases and ashes in troposphere.

  19. Occurrence of volcanic ash in the Quaternary alluvial deposits, lower ...

    Indian Academy of Sciences (India)

    of finely laminated silty sand and gravel lenses. ... undulating upper contact following the pre-existing ... The ash material is light with its specific .... negative Eu-anomaly, area enclosed within blue line indicates compositional range of the distal ...

  20. Reactive Uptake of Sulfur Dioxide and Ozone on Volcanic Glass and Ash at Ambient Temperature

    Science.gov (United States)

    Maters, Elena C.; Delmelle, Pierre; Rossi, Michel J.; Ayris, Paul M.

    2017-09-01

    The atmospheric impacts of volcanic ash from explosive eruptions are rarely considered alongside those of volcanogenic gases/aerosols. While airborne particles provide solid surfaces for chemical reactions with trace gases in the atmosphere, the reactivity of airborne ash has seldom been investigated. Here we determine the total uptake capacity (NiM) and initial uptake coefficient (γM) for sulfur dioxide (SO2) and ozone (O3) on a compositional array of volcanic ash and glass powders at 25°C in a Knudsen flow reactor. The measured ranges of NiSO2 and γSO2 (1011-1013 molecules cm-2 and 10-3-10-2) and NiO3 and γO3 (1012-1013 molecules cm-2 and 10-3-10-2) are comparable to values reported for mineral dust. Differences in ash and glass reactivity toward SO2 and O3 may relate to varying abundances of, respectively, basic and reducing sites on these materials. The typically lower SO2 and O3 uptake on ash compared to glass likely results from prior exposure of ash surfaces to acidic and oxidizing conditions within the volcanic eruption plume/cloud. While sequential uptake experiments overall suggest that these gases do not compete for reactive surface sites, SO2 uptake forming adsorbed S(IV) species may enhance the capacity for subsequent O3 uptake via redox reaction forming adsorbed S(VI) species. Our findings imply that ash emissions may represent a hitherto neglected sink for atmospheric SO2 and O3.

  1. Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco volcano, Chile

    Science.gov (United States)

    Van Eaton, Alexa; Amigo, Álvaro; Bertin, Daniel; Mastin, Larry G.; Giacosa, Raúl E; González, Jerónimo; Valderrama, Oscar; Fontijn, Karen; Behnke, Sonja A

    2016-01-01

    Soon after the onset of an eruption, model forecasts of ash dispersal are used to mitigate the hazards to aircraft, infrastructure and communities downwind. However, it is a significant challenge to constrain the model inputs during an evolving eruption. Here we demonstrate that volcanic lightning may be used in tandem with satellite detection to recognize and quantify changes in eruption style and intensity. Using the eruption of Calbuco volcano in southern Chile on 22-23 April 2015, we investigate rates of umbrella cloud expansion from satellite observations, occurrence of lightning, and mapped characteristics of the fall deposits. Our remote-sensing analysis gives a total erupted volume that is within uncertainty of the mapped volume (0.56 ±0.28 km3 bulk). Observations and volcanic plume modeling further suggest that electrical activity was enhanced both by ice formation in the ash clouds >10 km asl and development of a low-level charge layer from ground-hugging currents.

  2. MODIS volcanic ash retrievals vs FALL3D transport model: a quantitative comparison

    Science.gov (United States)

    Corradini, S.; Merucci, L.; Folch, A.

    2010-12-01

    Satellite retrievals and transport models represents the key tools to monitor the volcanic clouds evolution. Because of the harming effects of fine ash particles on aircrafts, the real-time tracking and forecasting of volcanic clouds is key for aviation safety. Together with the security reasons also the economical consequences of a disruption of airports must be taken into account. The airport closures due to the recent Icelandic Eyjafjöll eruption caused millions of passengers to be stranded not only in Europe, but across the world. IATA (the International Air Transport Association) estimates that the worldwide airline industry has lost a total of about 2.5 billion of Euro during the disruption. Both security and economical issues require reliable and robust ash cloud retrievals and trajectory forecasting. The intercomparison between remote sensing and modeling is required to assure precise and reliable volcanic ash products. In this work we perform a quantitative comparison between Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of volcanic ash cloud mass and Aerosol Optical Depth (AOD) with the FALL3D ash dispersal model. MODIS, aboard the NASA-Terra and NASA-Aqua polar satellites, is a multispectral instrument with 36 spectral bands operating in the VIS-TIR spectral range and spatial resolution varying between 250 and 1000 m at nadir. The MODIS channels centered around 11 and 12 micron have been used for the ash retrievals through the Brightness Temperature Difference algorithm and MODTRAN simulations. FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of volcanic particles that outputs, among other variables, cloud column mass and AOD. Three MODIS images collected the October 28, 29 and 30 on Mt. Etna volcano during the 2002 eruption have been considered as test cases. The results show a general good agreement between the retrieved and the modeled volcanic clouds in the first 300 km from the vents. Even if the

  3. Volcanic hazard maps of the Nevado del Ruiz volcano, Colombia

    Science.gov (United States)

    Parra, Eduardo; Cepeda, Hector

    1990-07-01

    Although the potential hazards associated with an eruption of Nevado del Ruiz volcano were known to civil authorities before the catastrophic eruption there in November 1985, their low perception of risk and the long quiescent period since the last eruption (140 years), caused them to wait for stronger activity before developing an eruption alert system. Unfortunately, the eruption occurred suddenly after a period of relative quiet, and as a result more than 25,000 people were killed. Although it was accurate and reasonably comprehensive, the hazard map that existed before the eruption was poorly understood by the authorities and even less so by the general population, because the scientific terminology and probabilistic approach to natural hazards were unfamiliar to many of them. This confusion was shared by the communication media, which at critical times placed undue emphasis on the possibility of lava flows rather than on the more imminent threat from mudflows, in keeping with the popular but often inaccurate perception of volcanic eruptions. This work presents an updated hazard map of Nevado del Ruiz that combines information on various hazardous phenomena with their relative probability of occurrence in order to depict numerical "hazard levels" that are easily comprehensible to nonspecialists and therefore less susceptible to misinterpretation. The scale of relative risk is arbitrary, ranging from five to one, and is intended to provide an intuitive indication of danger to people, property and crops. The map is meant to facilitate emergency preparedness and management by political and civil authorities, to educate the public concerning volcanic hazards and to assist in land-use planning decisions.

  4. Preliminary volcano-hazard assessment for the Katmai volcanic cluster, Alaska

    Science.gov (United States)

    Fierstein, Judy; Hildreth, Wes

    2000-01-01

    The world’s largest volcanic eruption of the 20th century broke out at Novarupta (fig. 1) in June 1912, filling with hot ash what came to be called the Valley of Ten Thousand Smokes and spreading downwind more fallout than all other historical Alaskan eruptions combined. Although almost all the magma vented at Novarupta, most of it had been stored beneath Mount Katmai 10 km away, which collapsed during the eruption. Airborne ash from the 3-day event blanketed all of southern Alaska, and its gritty fallout was reported as far away as Dawson, Ketchikan, and Puget Sound (fig. 21). Volcanic dust and sulfurous aerosol were detected within days over Wisconsin and Virginia; within 2 weeks over California, Europe, and North Africa; and in latter-day ice cores recently drilled on the Greenland ice cap. There were no aircraft in Alaska in 1912—fortunately! Corrosive acid aerosols damage aircraft, and ingestion of volcanic ash can cause abrupt jet-engine failure. Today, more than 200 flights a day transport 20,000 people and a fortune in cargo within range of dozens of restless volcanoes in the North Pacific. Air routes from the Far East to Europe and North America pass over and near Alaska, many flights refueling in Anchorage. Had this been so in 1912, every airport from Dillingham to Dawson and from Fairbanks to Seattle would have been enveloped in ash, leaving pilots no safe option but to turn back or find refuge at an Aleutian airstrip west of the ash cloud. Downwind dust and aerosol could have disrupted air traffic anywhere within a broad swath across Canada and the Midwest, perhaps even to the Atlantic coast. The great eruption of 1912 focused scientific attention on Novarupta, and subsequent research there has taught us much about the processes and hazards associated with such large explosive events (Fierstein and Hildreth, 1992). Moreover, work in the last decade has identified no fewer than 20 discrete volcanic vents within 15 km of Novarupta (Hildreth and others

  5. Volcanic-glacial interactions: GIS applications to the assessment of lahar hazards (case study of Kamchatka

    Directory of Open Access Journals (Sweden)

    Ya. D. Muraviev

    2014-01-01

    Full Text Available On the Kamchatka peninsula, lahars or volcanogenic mudflows arise as a result of intensive snow melting caused by incandescent material ejected by volcanoes onto the surface. Such flows carrying volcanic ash and cinders together with lava fragments and blocks move with a speed up to 70 km/h that can result in significant destructions and even human victims. Formation of such water flows is possible during the whole year.Large-scale GIS «Hazards of lahars (volcanogenic mudflows» has been developed for some volcano group as well as for individual volcanoes on the peninsula in framework of the GIS «Volcanic hazard of the Kuril-Kamchatka island arc». Main components of this database are the following: physic-geographical information on region of active volcanism and adjacent areas, on human settlements; data on the mudflow activity; data on distribution of the snow and ice reserves. This database is aimed at mapping of surrounding territories and estimating a hazard of lahars.For illustration the paper presents a map of the lahar hazards, results of calculations of the distances of ejects and maximal area of ejected material spreading in dependence on a character and power of an eruption. In future we plan to perform operational calculations of maximal possible volumes of such flows and areas of their spreading. The calculations will be made on the basis of the GIS «Volcanic hazard of the Kuril-Kamchatka island arc».A volume of hard material carried by lahars onto slopes and down to foot of the Kluchevskaya volcanic massif is estimated on the basis of data on the snow and ice reserves on volcano slopes. On the average for many years, the snow accumulation in zones of the mudflow formations their volume often reaches 15–17 millions of cubic meters. Depending on the snowfall activity in different years this value may vary within 50% relative to the norm. Further on, calculations of maximal possible volume of such flows will be performed in a

  6. Reconnaissance map showing thickness of volcanic ash deposits in the greater Hilo area, Hawaii

    Science.gov (United States)

    Buchanan-Banks, Jane M.

    1983-01-01

    This study was undertaken to determine the thickness and distribution of volcanic ash deposits in the greater Hilo area, Hawaii, as a step toward evaluating their susceptibility to failure during earthquake shaking. On several occasions their instability has resulted in serious damage. For example, the 1868 earthquake (m=7+), following a prolonged rainy period, caused a debris flow of hillside ash deposits that killed 31 people in Wood Valley (Bringham, 1869). The 1973 Honomu earthquake (m=6.2) resulted in more damage from shaking to areas underlain by ash deposits in the older part of Hilo than in other areas, and soil slips in ash, as well as rockfalls, were common along the roads north of town (Nielsen and others, 1977). 

  7. The Volcanic Hazards Assessment Support System for the Online Hazard Assessment and Risk Mitigation of Quaternary Volcanoes in the World

    Directory of Open Access Journals (Sweden)

    Shinji Takarada

    2017-12-01

    Full Text Available Volcanic hazards assessment tools are essential for risk mitigation of volcanic activities. A number of offline volcanic hazard assessment tools have been provided, but in most cases, they require relatively complex installation procedure and usage. This situation causes limited usage of volcanic hazard assessment tools among volcanologists and volcanic hazards communities. In addition, volcanic eruption chronology and detailed database of each volcano in the world are essential key information for volcanic hazard assessment, but most of them are isolated and not connected to and with each other. The Volcanic Hazard Assessment Support System aims to implement a user-friendly, WebGIS-based, open-access online system for potential hazards assessment and risk-mitigation of Quaternary volcanoes in the world. The users can get up-to-date information such as eruption chronology and geophysical monitoring data of a specific volcano using the direct link system to major volcano databases on the system. Currently, the system provides 3 simple, powerful and notable deterministic modeling simulation codes of volcanic processes, such as Energy Cone, Titan2D and Tephra2. The system provides deterministic tools because probabilistic assessment tools are normally much more computationally demanding. By using the volcano hazard assessment system, the area that would be affected by volcanic eruptions in any location near the volcano can be estimated using numerical simulations. The system is being implemented using the ASTER Global DEM covering 2790 Quaternary volcanoes in the world. The system can be used to evaluate volcanic hazards and move this toward risk-potential by overlaying the estimated distribution of volcanic gravity flows or tephra falls on major roads, houses and evacuation areas using the GIS-enabled systems. The system is developed for all users in the world who need volcanic hazards assessment tools.

  8. Long-range volcanic ash transport and fallout during the 2008 eruption of Chaiten volcano, Chile

    Science.gov (United States)

    Durant, A. J.; Prata, A. J.; Villarosa, G.; Rose, W. I.; Delmelle, P.; Viramonte, J.

    2012-04-01

    The May 2008 eruption of Chaitén volcano, Chile, provided a rare opportunity to measure the long-range transport of volcanic emissions and characteristics of a widely-dispersed terrestrial ash deposit. Airborne ash mass, quantified using thermal infrared satellite remote sensing, ranged between 0.2-0.4 Tg during the period 3-7 May 2008. A high level of spatiotemporal correspondence was observed between cloud trajectories and changes in surface reflectivity, which was inferred to indicate ash deposition. The evolution of the deposit was mapped for the first time using satellite-based observations of surface reflectivity. The distal (>80 km) ash deposit was poorly sorted and fine grained, and mean particle size varied very little beyond a distance >300 km. There were 3 consistent particle size subpopulations in fallout at distances >300 km which suggests that aggregation influenced particle settling. Discrete temporal sampling and characterisation of fallout demonstrated contributions from specific eruptive phases. Some evidence for winnowing was identified through comparison of samples collected at the time of deposition to bulk samples collected months after deposition. X-Ray Photoelectron Spectroscopy (XPS) analyses revealed surface enrichments in Ca, Na and Fe and the presence of coatings of mixed Ca-, Na- and Fe-rich salts on ash particles prior to deposition. XPS analyses revealed strong surface Fe enrichments (in contrast to the results from bulk leachate analyses), which indicates that surface analysis techniques should be applied to investigate potential influences on ocean productivity in response to volcanic ash fallout over oceans. Low S:Cl ratios in leachates indicate that the eruption had a low S content, and high Cl:F ratios imply gas-ash interaction within a Cl-rich environment. We estimate that ash fallout had potential to scavenge ~42 % of total S released into the atmosphere prior to deposition.

  9. Integrating Volcanic Hazard Data in a Systematic Approach to Develop Volcanic Hazard Maps in the Lesser Antilles

    Directory of Open Access Journals (Sweden)

    Jan M. Lindsay

    2018-04-01

    Full Text Available We report on the process of generating the first suite of integrated volcanic hazard zonation maps for the islands of Dominica, Grenada (including Kick ‘em Jenny and Ronde/Caille, Nevis, Saba, St. Eustatius, St. Kitts, Saint Lucia, and St Vincent in the Lesser Antilles. We developed a systematic approach that accommodated the range in prior knowledge of the volcanoes in the region. A first-order hazard assessment for each island was used to develop one or more scenario(s of likely future activity, for which scenario-based hazard maps were generated. For the most-likely scenario on each island we also produced a poster-sized integrated volcanic hazard zonation map, which combined the individual hazardous phenomena depicted in the scenario-based hazard maps into integrated hazard zones. We document the philosophy behind the generation of this suite of maps, and the method by which hazard information was combined to create integrated hazard zonation maps, and illustrate our approach through a case study of St. Vincent. We also outline some of the challenges we faced using this approach, and the lessons we have learned by observing how stakeholders have interacted with the maps over the past ~10 years. Based on our experience, we recommend that future map makers involve stakeholders in the entire map generation process, especially when making design choices such as type of base map, use of colour and gradational boundaries, and indeed what to depict on the map. We also recommend careful consideration of how to evaluate and depict offshore hazard of island volcanoes, and recommend computer-assisted modelling of all phenomena to generate more realistic hazard footprints. Finally, although our systematic approach to integrating individual hazard data into zones generally worked well, we suggest that a better approach might be to treat the integration of hazards on a case-by-case basis to ensure the final product meets map users' needs. We hope that

  10. Volcanic Ash and SO2 Monitoring Using Suomi NPP Direct Broadcast OMPS Data

    Science.gov (United States)

    Seftor, C. J.; Krotkov, N. A.; McPeters, R. D.; Li, J. Y.; Brentzel, K. W.; Habib, S.; Hassinen, S.; Heinrichs, T. A.; Schneider, D. J.

    2014-12-01

    NASA's Suomi NPP Ozone Science Team, in conjunction with Goddard Space Flight Center's (GSFC's) Direct Readout Laboratory, developed the capability of processing, in real-time, direct readout (DR) data from the Ozone Mapping and Profiler Suite (OMPS) to perform SO2 and Aerosol Index (AI) retrievals. The ability to retrieve this information from real-time processing of DR data was originally developed for the Ozone Monitoring Instrument (OMI) onboard the Aura spacecraft and is used by Volcano Observatories and Volcanic Ash Advisory Centers (VAACs) charged with mapping ash clouds from volcanic eruptions and providing predictions/forecasts about where the ash will go. The resulting real-time SO2 and AI products help to mitigate the effects of eruptions such as the ones from Eyjafjallajokull in Iceland and Puyehue-Cordón Caulle in Chile, which cause massive disruptions to airline flight routes for weeks as airlines struggle to avoid ash clouds that could cause engine failure, deeply pitted windshields impossible to see through, and other catastrophic events. We will discuss the implementation of real-time processing of OMPS DR data by both the Geographic Information Network of Alaska (GINA) and the Finnish Meteorological Institute (FMI), which provide real-time coverage over some of the most congested airspace and over many of the most active volcanoes in the world, and show examples of OMPS DR processing results from recent volcanic eruptions.

  11. Initial fate of fine ash and sulfur from large volcanic eruptions

    Directory of Open Access Journals (Sweden)

    S. Self

    2009-11-01

    Full Text Available Large volcanic eruptions emit huge amounts of sulfur and fine ash into the stratosphere. These products cause an impact on radiative processes, temperature and wind patterns. In simulations with a General Circulation Model including detailed aerosol microphysics, the relation between the impact of sulfur and fine ash is determined for different eruption strengths and locations, one in the tropics and one in high Northern latitudes. Fine ash with effective radii between 1 μm and 15 μm has a lifetime of several days only. Nevertheless, the strong absorption of shortwave and long-wave radiation causes additional heating and cooling of ±20 K/day and impacts the evolution of the volcanic cloud. Depending on the location of the volcanic eruption, transport direction changes due to the presence of fine ash, vortices develop and temperature anomalies at ground increase. The results show substantial impact on the local scale but only minor impact on the evolution of sulfate in the stratosphere in the month after the simulated eruptions.

  12. Volcanic Ash and Aviation - the 2014 Eruptions of Kelut and Sangeang Api, Indonesia

    Science.gov (United States)

    Tupper, A. C.; Jansons, E.

    2014-12-01

    Two significant eruptions in Indonesia during the first part of 2014 have highlighted the continuing challenges of safe air traffic management around volcanic ash clouds. The stratospheric eruption of Kelut (also known as Kelud) in Java late on 13 February 2014 resulted in widespread aviation disruption over Indonesia and at least one serious volcanic ash encounter from an international airline. An upper-tropospheric eruption of Sangeang Api in the Lesser Sunda Islands on 30 May 2014 did not result in any known aircraft encounters, but did result in many delays and flight cancellations between Indonesia and Australia. In both cases, the eruption and resultant ash clouds were relatively well observed, if subject to the usual issues in characterising such clouds. For example, as tropical eruptions frequently reach 15 km amsl and above due to the height of the tropical tropopause, it is frequently very difficult to provide an accurate estimation of conditions at the cruising levels of aircraft, at 10-11 km (or lower for shorter domestic routes). More critically, the challenge of linking operational results from two scientific professions (volcanology and meteorology) with real-time aviation users remains strongly evident. Situational awareness of domestic and international airlines, ground-based monitoring and communications prior to and during the eruption, receiving and sharing pilot reports of volcanic ash, and appropriate flight responses all remain inadequate even in relatively fine conditions, with an unacceptable ongoing risk of serious aviation encounters should improvements not be made. Despite the extensive efforts of the International Civil Aviation Organization, World Meteorological Organization, and all partners in the International Airways Volcano Watch, and despite the acceleration of work on the issue since 2010, volcanic ash management remains sub-optimal.

  13. Update of map the volcanic hazard in the Ceboruco volcano, Nayarit, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Camarena-Garcia, M. A.; Nunez-Cornu, F. J.

    2012-12-01

    (Hibiscus sabdariffa). Recently it has established tomato and green pepper crops in greenhouses. The regional commercial activities are concentrated in the localities of Ixtlán, Jala and Ahuacatlán. The updated hazard maps are: a) Hazard map of pyroclastic flows, b) Hazard map of lahars and debris flow, and c) Hazard map of ash-fall. The cartographic and database information obtained will be the basis for updating the Operational Plan of the Ceboruco Volcano by the State Civil & Fire Protection Unit of Nayarit, Mexico, and the urban development plans of surrounding municipalities, in order to reduce their vulnerability to the hazards of the volcanic activity.

  14. Volcanic Hazard Education through Virtual Field studies of Vesuvius and Laki Volcanoes

    Science.gov (United States)

    Carey, S.; Sigurdsson, H.

    2011-12-01

    Volcanic eruptions pose significant hazards to human populations and have the potential to cause significant economic impacts as shown by the recent ash-producing eruptions in Iceland. Demonstrating both the local and global impact of eruptions is important for developing an appreciation of the scale of hazards associated with volcanic activity. In order to address this need, Web-based virtual field exercises at Vesuvius volcano in Italy and Laki volcano in Iceland have been developed as curriculum enhancements for undergraduate geology classes. The exercises are built upon previous research by the authors dealing with the 79 AD explosive eruption of Vesuvius and the 1783 lava flow eruption of Laki. Quicktime virtual reality images (QTVR), video clips, user-controlled Flash animations and interactive measurement tools are used to allow students to explore archeological and geological sites, collect field data in an electronic field notebook, and construct hypotheses about the impacts of the eruptions on the local and global environment. The QTVR images provide 360o views of key sites where students can observe volcanic deposits and formations in the context of a defined field area. Video sequences from recent explosive and effusive eruptions of Carribean and Hawaiian volcanoes are used to illustrate specific styles of eruptive activity, such as ash fallout, pyroclastic flows and surges, lava flows and their effects on the surrounding environment. The exercises use an inquiry-based approach to build critical relationships between volcanic processes and the deposits that they produce in the geologic record. A primary objective of the exercises is to simulate the role of a field volcanologist who collects information from the field and reconstructs the sequence of eruptive processes based on specific features of the deposits. Testing of the Vesuvius and Laki exercises in undergraduate classes from a broad spectrum of educational institutions shows a preference for the

  15. Resident perception of volcanic hazards and evacuation procedures

    Directory of Open Access Journals (Sweden)

    D. K. Bird

    2009-02-01

    Full Text Available Katla volcano, located beneath the Mýrdalsjökull ice cap in southern Iceland, is capable of producing catastrophic jökulhlaup. The Icelandic Civil Protection (ICP, in conjunction with scientists, local police and emergency managers, developed mitigation strategies for possible jökulhlaup produced during future Katla eruptions. These strategies were tested during a full-scale evacuation exercise in March 2006. A positive public response during a volcanic crisis not only depends upon the public's knowledge of the evacuation plan but also their knowledge and perception of the possible hazards. To improve the effectiveness of residents' compliance with warning and evacuation messages it is important that emergency management officials understand how the public interpret their situation in relation to volcanic hazards and their potential response during a crisis and apply this information to the ongoing development of risk mitigation strategies. We adopted a mixed methods approach in order to gain a broad understanding of residents' knowledge and perception of the Katla volcano in general, jökulhlaup hazards specifically and the regional emergency evacuation plan. This entailed field observations during the major evacuation exercise, interviews with key emergency management officials and questionnaire survey interviews with local residents. Our survey shows that despite living within the hazard zone, many residents do not perceive that their homes could be affected by a jökulhlaup, and many participants who perceive that their homes are safe, stated that they would not evacuate if an evacuation warning was issued. Alarmingly, most participants did not receive an evacuation message during the exercise. However, the majority of participants who took part in the exercise were positive about its implementation. This assessment of resident knowledge and perception of volcanic hazards and the evacuation plan is the first of its kind in

  16. Furthering the investigation of eruption styles through quantitative shape analyses of volcanic ash particles

    Science.gov (United States)

    Nurfiani, D.; Bouvet de Maisonneuve, C.

    2018-04-01

    Volcanic ash morphology has been quantitatively investigated for various aims such as studying the settling velocity of ash for modelling purposes and understanding the fragmentation processes at the origin of explosive eruptions. In an attempt to investigate the usefulness of ash morphometry for monitoring purposes, we analyzed the shape of volcanic ash particles through a combination of (1) traditional shape descriptors such as solidity, convexity, axial ratio and form factor and (2) fractal analysis using the Euclidean Distance transform (EDT) method. We compare ash samples from the hydrothermal eruptions of Iwodake (Japan) in 2013, Tangkuban Perahu (Indonesia) in 2013 and Marapi (Sumatra, Indonesia) in 2015, the dome explosions of Merapi (Java, Indonesia) in 2013, the Vulcanian eruptions of Merapi in 2010 and Tavurvur (Rabaul, Papaua New Guinea) in 2014, and the Plinian eruption of Kelud (Indonesia) in 2014. Particle size and shape measurements were acquired from a Particle Size Analyzer with a microscope camera attached to the instrument. Clear differences between dense/blocky particles from hydrothermal or dome explosions and vesicular particles produced by the fragmentation of gas-bearing molten magma are well highlighted by conventional shape descriptors and the fractal method. In addition, subtle differences between dense/blocky particles produced by hydrothermal explosions, dome explosions, or quench granulation during phreatomagmatic eruptions can be evidenced with the fractal method. The combination of shape descriptors and fractal analysis is therefore potentially able to distinguish between juvenile and non-juvenile magma, which is of importance for eruption monitoring.

  17. The relation between pre-eruptive bubble size distribution, ash particle morphology, and their internal density: Implications to volcanic ash transport and dispersion models

    Science.gov (United States)

    Proussevitch, Alexander

    2014-05-01

    Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.

  18. The Complex Refractive Index of Volcanic Ash Aerosol Retrieved From Spectral Mass Extinction

    Science.gov (United States)

    Reed, Benjamin E.; Peters, Daniel M.; McPheat, Robert; Grainger, R. G.

    2018-01-01

    The complex refractive indices of eight volcanic ash samples, chosen to have a representative range of SiO2 contents, were retrieved from simultaneous measurements of their spectral mass extinction coefficient and size distribution. The mass extinction coefficients, at 0.33-19 μm, were measured using two optical systems: a Fourier transform spectrometer in the infrared and two diffraction grating spectrometers covering visible and ultraviolet wavelengths. The particle size distribution was measured using a scanning mobility particle sizer and an optical particle counter; values for the effective radius of ash particles measured in this study varied from 0.574 to 1.16 μm. Verification retrievals on high-purity silica aerosol demonstrated that the Rayleigh continuous distribution of ellipsoids (CDEs) scattering model significantly outperformed Mie theory in retrieving the complex refractive index, when compared to literature values. Assuming the silica particles provided a good analogue of volcanic ash, the CDE scattering model was applied to retrieve the complex refractive index of the eight ash samples. The Lorentz formulation of the complex refractive index was used within the retrievals as a convenient way to ensure consistency with the Kramers-Kronig relation. The short-wavelength limit of the electric susceptibility was constrained by using independently measured reference values of the complex refractive index of the ash samples at a visible wavelength. The retrieved values of the complex refractive indices of the ash samples showed considerable variation, highlighting the importance of using accurate refractive index data in ash cloud radiative transfer models.

  19. High-precision zircon U-Pb geochronology of astronomically dated volcanic ash beds from the Mediterranean Miocene

    NARCIS (Netherlands)

    Wotzlaw, Jörn Frederik; Hüsing, Silja K.; Hilgen, Frederik J.; Schaltegger, Urs

    2014-01-01

    Several orbitally tuned Miocene sedimentary sequences around the Mediterranean contain abundant intercalated volcanic ash beds. These sequences provide the rare opportunity to directly compare radioisotopic dating methods with independent and accurate deposition ages derived from astrochronology. We

  20. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Volcanic Ash Detection and Height Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of volcanic ash from the Visible Infrared Imaging Radiometer (VIIRS) instrument...

  1. 16 CFR 1305.4 - Artificial fireplace ash and embers as banned hazardous products.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Artificial fireplace ash and embers as... RESPIRABLE FREE-FORM ASBESTOS § 1305.4 Artificial fireplace ash and embers as banned hazardous products. On... mesothelioma to the public, artificial fireplace ash and embers containings respirable free-form asbestos are...

  2. Source and Extent of Volcanic Ashes at the Permian-Triassic Boundary in South China and Its implications

    Science.gov (United States)

    Wang, M.; Zhong, Y. T.; Hou, Y. L.; He, B.

    2017-12-01

    Highly correlated with the Permian-Triassic Boundary (PTB) Mass Extinction in stratigraphic section, volcanic ashes around the P-T Boundary in South China have been suggested to be a likely cause of the PTB Mass Extinction. So the nature, source and extent of these volcanic ashes have great significance in figuring out the cause of the PTB Mass Extinction. In this study, we attempt to constrain the source and extent of the PTB volcanic ashes in South China by studying pyroclastic sedimentary rocks and the spatial distribution of tuffs and ashes in South China. The detrital zircons of tuffaceous sandstones from Penglaitan section yield an age spectrum peaked at 252Ma, with ɛHf(t) values varying from -20 to -5 ,and have Nb/Hf, Th/Nb and Hf/Th ratios similar to those from arc/orogenic-related settings. Coarse tuffaceous sandstones imply that their source is in limited distance. Those pyroclastic sedimentary rocks in Penglaitan are well correlated with the PTB volcanic ashes in Meishan GSSP section in stratigraphy. In the spatial distribution, pyroclastic sedimentary rocks and tuffs distribute only in southwest of South China, while finer volcanic ashes are mainly in the northern part. This spatial distribution suggests the source of tuffs and ashes was to the south or southwest of South China. Former studies especially that of Permian-Triassic magmatism in Hainan Island have supported the existence of a continental arc related to the subduction and closure of Palaeo-Tethys on the southwestern margin of South China during Permian to early Triassic. It is suggested that the PTB ashes possibly derived from this Paleo-Tethys continental arc. The fact that volcanic ashes haven't been reported or found in PTB stratum in North China or Northwest China implies a limited extent of the volcanism, which thus is too small to cause the PTB mass extinction.

  3. Effect of Aggregate Structure on VOC Gas Adsorption onto Volcanic Ash Soil

    OpenAIRE

    濱本, 昌一郎

    2008-01-01

    The understanding of the gaseous adsorption process and the parameters of volatile organic compounds such as organic solvents or fuels onto soils is very important in the analysis of the transport or fate of these chemicals in soils. Batch adsorption experiments with six different treatments were conducted to determine the adsorption of isohexane, a gaseous aliphatic, onto volcanic ash soil (Tachikawa loam). The measured gas adsorption coefficient for samples of Tachikawa loam used in the fir...

  4. Applying the GNSS Volcanic Ash Plume Detection Technique to Consumer Navigation Receivers

    Science.gov (United States)

    Rainville, N.; Palo, S.; Larson, K. M.

    2017-12-01

    Global Navigation Satellite Systems (GNSS) such as the Global Positioning System (GPS) rely on predictably structured and constant power RF signals to fulfill their primary use for navigation and timing. When the received strength of GNSS signals deviates from the expected baseline, it is typically due to a change in the local environment. This can occur when signal reflections from the ground are modified by changes in snow or soil moisture content, as well as by attenuation of the signal from volcanic ash. This effect allows GNSS signals to be used as a source for passive remote sensing. Larson et al. (2017) have developed a detection technique for volcanic ash plumes based on the attenuation seen at existing geodetic GNSS sites. Since these existing networks are relatively sparse, this technique has been extended to use lower cost consumer GNSS receiver chips to enable higher density measurements of volcanic ash. These low-cost receiver chips have been integrated into a fully stand-alone sensor, with independent power, communications, and logging capabilities as part of a Volcanic Ash Plume Receiver (VAPR) network. A mesh network of these sensors transmits data to a local base-station which then streams the data real-time to a web accessible server. Initial testing of this sensor network has uncovered that a different detection approach is necessary when using consumer GNSS receivers and antennas. The techniques to filter and process the lower quality data from consumer receivers will be discussed and will be applied to initial results from a functioning VAPR network installation.

  5. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard.

    Science.gov (United States)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina

    2016-04-01

    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  6. Volcanic ash and daily mortality in Sweden after the Icelandic volcano eruption of May 2011.

    Science.gov (United States)

    Oudin, Anna; Carlsen, Hanne K; Forsberg, Bertil; Johansson, Christer

    2013-12-10

    In the aftermath of the Icelandic volcano Grimsvötn's eruption on 21 May 2011, volcanic ash reached Northern Europe. Elevated levels of ambient particles (PM) were registered in mid Sweden. The aim of the present study was to investigate if the Grimsvötn eruption had an effect on mortality in Sweden. Based on PM measurements at 16 sites across Sweden, data were classified into an ash exposed data set (Ash area) and an unexposed data set (No ash area). Data on daily all-cause mortality were obtained from Statistics Sweden for the time period 1 April through 31 July 2011. Mortality ratios were calculated as the ratio between the daily number of deaths in the Ash area and the No ash area. The exposure period was defined as the week following the days with elevated particle concentrations, namely 24 May through 31 May. The control period was defined as 1 April through 23 May and 1 June through 31 July. There was no absolute increase in mortality during the exposure period. However, during the exposure period the mean mortality ratio was 2.42 compared with 2.17 during the control period, implying a relatively higher number of deaths in the Ash area than in the No ash area. The differences in ratios were mostly due to a single day, 31 May, and were not statistically significant when tested with a Mann-Whitney non-parametric test (p > 0.3). The statistical power was low with only 8 days in the exposure period (24 May through 31 May). Assuming that the observed relative differences were not due to chance, the results would imply an increase of 128 deaths during the exposure period 24-31 May. If 31 May was excluded, the number of extra deaths was reduced to 20. The results of the present study are contradicting and inconclusive, but may indicate that all-cause mortality was increased by the ash-fall from the Grimsvötn eruption. Meta-analysis or pooled analysis of data from neighboring countries might make it possible to reach sufficient statistical power to study effects

  7. Volcanic Ash and Daily Mortality in Sweden after the Icelandic Volcano Eruption of May 2011

    Science.gov (United States)

    Oudin, Anna; Carlsen, Hanne K.; Forsberg, Bertil; Johansson, Christer

    2013-01-01

    In the aftermath of the Icelandic volcano Grimsvötn’s eruption on 21 May 2011, volcanic ash reached Northern Europe. Elevated levels of ambient particles (PM) were registered in mid Sweden. The aim of the present study was to investigate if the Grimsvötn eruption had an effect on mortality in Sweden. Based on PM measurements at 16 sites across Sweden, data were classified into an ash exposed data set (Ash area) and an unexposed data set (No ash area). Data on daily all-cause mortality were obtained from Statistics Sweden for the time period 1 April through 31 July 2011. Mortality ratios were calculated as the ratio between the daily number of deaths in the Ash area and the No ash area. The exposure period was defined as the week following the days with elevated particle concentrations, namely 24 May through 31 May. The control period was defined as 1 April through 23 May and 1 June through 31 July. There was no absolute increase in mortality during the exposure period. However, during the exposure period the mean mortality ratio was 2.42 compared with 2.17 during the control period, implying a relatively higher number of deaths in the Ash area than in the No ash area. The differences in ratios were mostly due to a single day, 31 May, and were not statistically significant when tested with a Mann-Whitney non-parametric test (p > 0.3). The statistical power was low with only 8 days in the exposure period (24 May through 31 May). Assuming that the observed relative differences were not due to chance, the results would imply an increase of 128 deaths during the exposure period 24–31 May. If 31 May was excluded, the number of extra deaths was reduced to 20. The results of the present study are contradicting and inconclusive, but may indicate that all-cause mortality was increased by the ash-fall from the Grimsvötn eruption. Meta-analysis or pooled analysis of data from neighboring countries might make it possible to reach sufficient statistical power to study

  8. Phosphorus dynamics of representative volcanic ash soils through the use of conventional and isotopic techniques

    International Nuclear Information System (INIS)

    Pino, I.; Parada, A.M.; Luzio, W.

    2002-01-01

    In Chile, the total extension covered by volcanic ash soils including recent and old volcanic deposits is around 5,244,400 ha. This study was carried out in 'La Araucania and Los Lagos' regions (IX and X Regions of Chile respectively), which cover approximately 2,350,000 ha. The main chemical characteristics of these soils are: very low available P (Olsen); a high P retention capacity and a high quantity of aluminum (Al) associated to a high amount of short-range order minerals. The main objective of this study was the characterization of the P dynamics of representative volcanic soils through the use of conventional and isotopic techniques. In the X Region (Los Lagos) of Chile samples from the arable layer (0-20 cm) of eleven soils (Ultisols and Andisols) were collected. Four entire soil profiles were sampled in the IX Region (Araucania). The characterization of soils was made utuilising conventional and isotopic analyses. The P retention was over 85% in all soils, except for the Metrenco soil series (Paleudult). Nevertheless, the P retention of this soil, from 72% to 79% can be also considered high for a non-volcanic ash soil. In the same way, the Al+1/2 Fe (ox) in all profiles showed high values for non-volcanic ash soils. These results indicate the great difficulty in increasing the available P in these soils, even when high rates of phosphate fertilizers are applied. The principal P-limiting factor in both regions was the P intensity factor. (author)

  9. The Source of Volcanic Ash in Late Classic Maya Pottery at El Pilar, Belize

    Science.gov (United States)

    Catlin, B. L.; Ford, A.; Spera, F. J.

    2007-12-01

    The presence of volcanic ash used as temper in Late Classic Maya pottery (AD 600-900) at El Pilar has been long known although the volcano(s) contributing ash have not been identified. We use geochemical fingerprinting, comparing compositions of glass shards in potsherds with volcanic sources to identify the source(s). El Pilar is located in the Maya carbonate lowlands distant from volcanic sources. It is unlikely Maya transported ash from distant sites: ash volumes are too large, the terrain too rugged, and no draft animals were available. Ash layer mining is unlikely because mine sites have not been found despite intensive surveys. Nearest volcanic sources to El Pilar, Belize and Guatemala, are roughly 450 km to the south and east. The ash found in potsherds has a cuspate morphology. This suggests ash was collected during, or shortly after, an ash airfall event following eruption. Analyses of n=333 ash shards from 20 ceramic (pottery) sherds was conducted by electron microprobe for major elements, and LA-ICPMS for trace elements and Pb isotopes. These analyses can be compared to volcanic materials from candidate volcanoes in the region. The 1982 El Chichon eruption caused airfall deposition (archaeological samples and El Chichon has been made. The atomic ratios of La/Yb, Nb/Ta, Zr/Hf, Sr/Ba and Th/U of n=215 glass shards in the potsherds are 12.2±7.1, 10.9±3.4, 31.2±11.5, 0.09±0.05 and 2.5±0.9, respectively. These ratios for 1982 El Chichon are 15.4±2.1, 26.3, 36.1±5.3, 1.4±0.06 and 3.16, respectively. Data for the 1475 AD El Chichon eruption (Macias et al, 2003) can also be compared; the ratios from are 13.2±2.2, 7.3±1.8, 30.4±9.6, 1.51±0.4 and 2.88±0.23, respectively. The mean 208Pb/206Pb ratio of n=5 potsherds is 2.0523±0.002 compared to 2.0514±0.00074 for n=7 samples from El Chichon. The two most recent eruptions from El Chichon overlap with the potsherd glass data except for Sr/Ba, which might be modified by Sr-Ca exchange during firing. In

  10. An Early-Warning System for Volcanic Ash Dispersal: The MAFALDA Procedure

    Science.gov (United States)

    Barsotti, S.; Nannipieri, L.; Neri, A.

    2006-12-01

    Forecasts of the dispersal of volcanic ash is a fundamental goal in order to mitigate its potential impact on urbanized areas and transport routes surrounding explosive volcanoes. To this aim we developed an early- warning procedure named MAFALDA (Modeling And Forecasting Ash Loading and Dispersal in the Atmosphere). Such tool is able to quantitatively forecast the atmospheric concentration of ash as well as the ground deposition as a function of time over a 3D spatial domain.\\The main features of MAFALDA are: (1) the use of the hybrid Lagrangian-Eulerian code VOL-CALPUFF able to describe both the rising column phase and the atmospheric dispersal as a function of weather conditions, (2) the use of high-resolution weather forecasting data, (3) the short execution time that allows to analyse a set of scenarios and (4) the web-based CGI software application (written in Perl programming language) that shows the results in a standard graphical web interface and makes it suitable as an early-warning system during volcanic crises.\\MAFALDA is composed by a computational part that simulates the ash cloud dynamics and a graphical interface for visualizing the modelling results. The computational part includes the codes for elaborating the meteorological data, the dispersal code and the post-processing programs. These produces hourly 2D maps of aerial ash concentration at several vertical levels, extension of "threat" area on air and 2D maps of ash deposit on the ground, in addition to graphs of hourly variations of column height.\\The processed results are available on the web by the graphical interface and the users can choose, by drop-down menu, which data to visualize. \\A first partial application of the procedure has been carried out for Mt. Etna (Italy). In this case, the procedure simulates four volcanological scenarios characterized by different plume intensities and uses 48-hrs weather forecasting data with a resolution of 7 km provided by the Italian Air Force.

  11. Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption

    Directory of Open Access Journals (Sweden)

    F. Prata

    2017-09-01

    Full Text Available The separation of volcanic ash and sulfur dioxide (SO2 gas is sometimes observed during volcanic eruptions. The exact conditions under which separation occurs are not fully understood but the phenomenon is of importance because of the effects volcanic emissions have on aviation, on the environment, and on the earth's radiation balance. The eruption of Grímsvötn, a subglacial volcano under the Vatnajökull glacier in Iceland during 21–28 May 2011 produced one of the most spectacular examples of ash and SO2 separation, which led to errors in the forecasting of ash in the atmosphere over northern Europe. Satellite data from several sources coupled with meteorological wind data and photographic evidence suggest that the eruption column was unable to sustain itself, resulting in a large deposition of ash, which left a low-level ash-rich atmospheric plume moving southwards and then eastwards towards the southern Scandinavian coast and a high-level predominantly SO2 plume travelling northwards and then spreading eastwards and westwards. Here we provide observational and modelling perspectives on the separation of ash and SO2 and present quantitative estimates of the masses of ash and SO2 that erupted, the directions of transport, and the likely impacts. We hypothesise that a partial column collapse or sloughing fed with ash from pyroclastic density currents (PDCs occurred during the early stage of the eruption, leading to an ash-laden gravity intrusion that was swept southwards, separated from the main column. Our model suggests that water-mediated aggregation caused enhanced ash removal because of the plentiful supply of source water from melted glacial ice and from entrained atmospheric water. The analysis also suggests that ash and SO2 should be treated with separate source terms, leading to improvements in forecasting the movement of both types of emissions.

  12. Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption

    Science.gov (United States)

    Prata, Fred; Woodhouse, Mark; Huppert, Herbert E.; Prata, Andrew; Thordarson, Thor; Carn, Simon

    2017-09-01

    The separation of volcanic ash and sulfur dioxide (SO2) gas is sometimes observed during volcanic eruptions. The exact conditions under which separation occurs are not fully understood but the phenomenon is of importance because of the effects volcanic emissions have on aviation, on the environment, and on the earth's radiation balance. The eruption of Grímsvötn, a subglacial volcano under the Vatnajökull glacier in Iceland during 21-28 May 2011 produced one of the most spectacular examples of ash and SO2 separation, which led to errors in the forecasting of ash in the atmosphere over northern Europe. Satellite data from several sources coupled with meteorological wind data and photographic evidence suggest that the eruption column was unable to sustain itself, resulting in a large deposition of ash, which left a low-level ash-rich atmospheric plume moving southwards and then eastwards towards the southern Scandinavian coast and a high-level predominantly SO2 plume travelling northwards and then spreading eastwards and westwards. Here we provide observational and modelling perspectives on the separation of ash and SO2 and present quantitative estimates of the masses of ash and SO2 that erupted, the directions of transport, and the likely impacts. We hypothesise that a partial column collapse or sloughing fed with ash from pyroclastic density currents (PDCs) occurred during the early stage of the eruption, leading to an ash-laden gravity intrusion that was swept southwards, separated from the main column. Our model suggests that water-mediated aggregation caused enhanced ash removal because of the plentiful supply of source water from melted glacial ice and from entrained atmospheric water. The analysis also suggests that ash and SO2 should be treated with separate source terms, leading to improvements in forecasting the movement of both types of emissions.

  13. Volcanic ash in feed coal and its influence on coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Brownfield, I.K.; Hower, J.C.; Stricker, G.D.; O' Connor, J.T.

    2000-07-01

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana Utility to determine the physical and chemical properties of feed coal and coal combustion products (CCPs) from a coal-fired power plant. The plant utilizes a low-sulfur (.23--.47 weight percent S) coal from the Powder River Basin, Wyoming. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis of feed coal samples identified two mineral suites. A primary suite (not authigenic) consisting of quartz (detrital and volcanic beta-form grains), biotite, and minor zircon and a secondary authigenic mineral suite containing calcite, alumino-phosphates (crandallite and gorceixite), kaolinite, quartz, anatase, barite, and pyrite. The authigenic minerals are attributed to air-fall and reworked volcanic ash that was deposited in peat-forming mires. The Powder River Basin feed coals contain higher amounts of Ba, Ca, Mg, Na, Sr, and P compared to other analyzed eastern coals. These elements are associated with alumino-phosphate, biotite, calcite, and clay minerals. The element associations are indicative of coal that incorporated volcanic ash during deposition. XRD analysis of CCPs revealed a predominance of glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals in the fly ash; and quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite in the bottom ash. Microprobe and SEM analysis of fly ash samples revealed quartz, zircon, monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, and rounded grains of wollastonite with periclase. The abundant Ca and Mg mineral phases in the fly ashes are related to the presence of carbonate, clay, and phosphate minerals in the feed coal. The Ca- and Mg-rich mineral phases in the CCPs can be attributed to volcanic minerals deposited in the

  14. Dispersed Volcanic Ash in Sediment Entering NW Pacific Ocean Subduction Zones: Towards a Regional Perspective

    Science.gov (United States)

    Scudder, R. P.; Murray, R. W.; Underwood, M.; Kutterolf, S.; Plank, T.; Dyonisius, M.; Arshad, M. A.

    2011-12-01

    Volcanic ash has long been recognized to be an important component of the global sedimentary system. Ash figures prominently in a number of sedimentary and petrophysical investigations, including how the fluid budget of subducting sediment will be affected by hydration/dehydration reactions. Additionally, many studies focus on discrete ash layers, and how to link their presence with volcanism, climate, arc evolution, biological productivity, and other processes. Less widely recognized is the ash that is mixed into the bulk sediment, or "dispersed" ash. Dispersed ash is quantitatively significant and is an under-utilized source of critical geochemical and tectonic information. Based on geochemical studies of ODP Site 1149, a composite of DSDP Sites 579 & 581, as well as IODP Sites C0011 & C0012 drilled during Expedition 322, we will show the importance of dispersed ash to the Izu-Bonin-Marianas, Kurile-Kamchatka and Nankai subduction zones. Initial geochemical analyses of the bulk sediment, as related to dispersed ash entering these subduction systems are presented here. Geochemical analysis shows that the characteristics of the three sites exhibit some variability consistent with observed lithological variations. For example, the average SiO2/Al2O3 ratios at Site 1149, Site C0011 and Site C0012 average 3.7. The composite of Sites 579 & 581 exhibits a higher average of 4.6. There are contrasts between other key major elemental indicators as well (e.g., Fe2O3). Ternary diagrams such as K2O-Na2O-CaO show that there are at least two distinct geochemical fields with Sites 1149, C0011 and C0012 clustering in one and Sites 579 & 581 in the other. Q-mode Factor Analysis was performed on the bulk sediment chemical data in order to determine the composition of potential end members of these sites. The multivariate statistics indicate that Site 1149 has 3-4 end members, consistent with the results of Scudder et al. (2009, EPSL, v. 284, pp 639), while each of the other sites

  15. Long term exposure to respirable volcanic ash on Montserrat: a time series simulation

    Science.gov (United States)

    Hincks, T. K.; Aspinall, W. P.; Baxter, P. J.; Searl, A.; Sparks, R. S. J.; Woo, G.

    2006-01-01

    Frequent ash fallout from long-lived eruptions (with active phases greater than 5 years) may lead to local populations experiencing unacceptably high cumulative exposures to respirable particulate matter. Ash from Montserrat has been shown to contain significant levels of cristobalite and other reactive agents that are associated with an increased risk of developing pneumoconiosis (including silicosis) and other long-term health problems. There are a number of difficulties associated with estimating risks in populations due to uncertain and wide ranging individual exposures, change in behaviour with time and the natural variation in individual response. Present estimates of risk in workers and other population groups are simplifications based on a limited number of exposure measurements taken on Montserrat (1996-1999), and exposure-response curves from epidemiological studies of coal workers exposed to siliceous dust. In this paper we present a method for calculating the long-term cumulative exposure to cristobalite from volcanic ash by Monte Carlo simulation. Code has been written to generate synthetic time series for volcanic activity, rainfall, ash deposition and erosion to give daily ash deposit values and cristobalite fraction at a range of locations. The daily mean personal exposure for PM10 and cristobalite is obtained by sampling from a probability distribution, with distribution parameters dependent on occupation, ground deposit depth and daily weather conditions. Output from multiple runs is processed to calculate the exceedance probability for cumulative exposure over a range of occupation types, locations and exposure periods. Results are interpreted in terms of current occupational standards, and epidemiological exposure-response functions for silicosis are applied to quantify the long-term health risk. Assuming continuing volcanic activity, median risk of silicosis (profusion 1/0 or higher) for an average adult after 20 years continuous exposure is

  16. Four-year prospective study of the respiratory effects of volcanic ash from Mt. St. Helens

    International Nuclear Information System (INIS)

    Buist, A.S.; Vollmer, W.M.; Johnson, L.R.; Bernstein, R.S.; McCamant, L.E.

    1986-01-01

    This report describes the 4-yr follow-up of 712 loggers exposed over an extended period to varying levels of fresh volcanic ash from the 1980 eruptions of Mt. St. Helens. Concerns related to the irritant effect the ash might have on the airways and also to its fibrogenic potential if exposures were intense and continued over many years. Our subjects were divided into 3 groups: high, low, and no exposure. Baseline testing was begun in June 1980, 1 month after the major eruption, and follow-up testing continued on an annual basis through 1984; 88% of the loggers have been tested at least 3 times. Analysis of lung function data showed that a significant, exposure-related decline in FEV1 occurred during the first year after the eruption. The decline was short-lived, however, and by 1984 the differences between exposure groups were no longer significant. Self-reported symptoms of cough, phlegm, and wheeze showed a similar pattern. No ash-related changes were seen in chest roentgenograms taken in 1980 and in 1984. Our findings are consistent with the hypothesis that the inhaled ash caused mucus hypersecretion and/or airway inflammation that reversed when the exposure levels decreased. The ash levels to which the loggers were exposed were low compared with permissible occupational levels for nuisance dusts, but generally higher than the total suspended particulate levels permissible in ambient air

  17. Spain as an emergency air traffic hub during volcanic air fall events? Evidence of past volcanic ash air fall over Europe during the late Pleistocene

    Science.gov (United States)

    Hardiman, Mark; Lane, Christine; Blockley, Simon P. E.; Moreno, Ana; Valero-Garcés, Blas; Ortiz, José E.; Torres, Trino; Lowe, John J.; Menzies, Martin A.

    2010-05-01

    Past volcanic eruptions often leave visible ash layers in the geological record, for example in marine or lake sedimentary sequences. Recent developments, however, have shown that non-visible volcanic ash layers are also commonly preserved in sedimentary deposits. These augment the record of past volcanic events by demonstrating that past ash dispersals have been more numerous and widely disseminated in Europe than previously appreciated. The dispersal ‘footprints' of some large late Pleistocene European eruptions are examined here in the light of the recent Eyjafjallajökull eruption. For example, the Vedde Ash which was erupted from Iceland around 12 thousand years ago, delivered distal (and non-visible) glass deposits as far south as Switzerland and as far east as the Ural Mountains in Russia, with an overall European distribution remarkably similar to the dominant tracks of the recent Eyjafjallajökull plumes. The Eyjafjallajökull eruption has demonstrated that relatively small amounts of distal volcanic ash in the atmosphere can seriously disrupt aviation activity, with attendant economic and other consequences. It has raised fundamental questions about the likelihood of larger or more prolonged volcanic activity in the near future, and the possibility of even more serious consequences than those experienced recently. Given that there are several other volcanic centres that could cause such disruption in Europe (e.g. Campania and other volcanic centres in Italy; Aegean volcanoes), a key question is whether there are parts of Europe less prone to ash plumes and which could therefore operate as emergency air traffic hubs during times of ash dispersal. Although not generated to answer this question, the recent geological record might provide a basis for seeking the answer. For example, four palaeo-records covering the time frame of 8 - 40 Ka BP that are geographically distributed across Spain have been examined for non-visible distal ash content. All four have

  18. UK Hazard Assessment for a Laki-type Volcanic Eruption

    Science.gov (United States)

    Witham, Claire; Felton, Chris; Daud, Sophie; Aspinall, Willy; Braban, Christine; Loughlin, Sue; Hort, Matthew; Schmidt, Anja; Vieno, Massimo

    2014-05-01

    Following the impacts of the Eyjafjallajokull eruption in 2010, two types of volcanic eruption have been added to the UK Government's National Risk Register for Civil Emergencies. One of these, a large gas-rich volcanic eruption, was identified as a high impact natural hazard, one of the three highest priority natural hazards faced by the UK. This eruption scenario is typified by the Laki eruption in Iceland in 1783-1784. The Civil Contingency Secretariat (CCS) of the UK's Cabinet Office, responsible for Civil Protection in the UK, has since been working on quantifying the risk and better understanding its potential impacts. This involves cross-cutting work across UK Government departments and the wider scientific community in order to identify the capabilities needed to respond to an effusive eruption, to exercise the response and develop increased resilience where possible. As part of its current work, CCS has been working closely with the UK Met Office and other UK agencies and academics (represented by the co-authors and others) to generate and assess the impacts of a 'reasonable worst case scenario', which can be used for decision making and preparation in advance of an eruption. Information from the literature and the findings of an expert elicitation have been synthesised to determine appropriate eruption source term parameters and associated uncertainties. This scenario is then being used to create a limited ensemble of model simulations of the dispersion and chemical conversion of the emissions of volcanic gases during such an eruption. The UK Met Office's NAME Lagrangian dispersion model and the Centre for Ecology and Hydrology's EMEP4UK Eulerian model are both being used. Modelling outputs will address the likelihood of near-surface concentrations of sulphur and halogen species being above specified health thresholds. Concentrations at aviation relevant altitudes will also be evaluated, as well as the effects of acid deposition of volcanic species on

  19. Volcanic Hazard Assessments for Nuclear Installations: Methods and Examples in Site Evaluation

    International Nuclear Information System (INIS)

    2016-07-01

    To provide guidance on the protection of nuclear installations against the effects of volcanoes, the IAEA published in 2012 IAEA Safety Standards Series No. SSG-21, Volcanic Hazards in Site Evaluation for Nuclear Installations. SSG-21 addresses hazards relating to volcanic phenomena, and provides recommendations and general guidance for evaluation of these hazards. Unlike seismic hazard assessments, models for volcanic hazard assessment have not undergone decades of review, evaluation and testing for suitability in evaluating hazards at proposed nuclear installations. Currently in volcanology, scientific developments and detailed methodologies to model volcanic phenomena are evolving rapidly.This publication provides information on detailed methodologies and examples in the application of volcanic hazard assessment to site evaluation for nuclear installations, thereby addressing the recommendations in SSG-21. Although SSG-21 develops a logical framework for conducting a volcanic hazard assessment, this publication demonstrates the practicability of evaluating the recommendations in SSG-21 through a systematic volcanic hazard assessment and examples from Member States. The results of this hazard assessment can be used to derive the appropriate design bases and operational considerations for specific nuclear installations

  20. An extreme wind erosion event of the fresh Eyjafjallajökull 2010 volcanic ash.

    Science.gov (United States)

    Arnalds, Olafur; Thorarinsdottir, Elin Fjola; Thorsson, Johann; Waldhauserova, Pavla Dagsson; Agustsdottir, Anna Maria

    2013-01-01

    Volcanic eruptions can generate widespread deposits of ash that are subsequently subjected to erosive forces which causes detrimental effects on ecosystems. We measured wind erosion of the freshly deposited Eyjafjallajökull ash at a field site the first summer after the 2010 eruption. Over 30 wind erosion events occurred (June-October) at wind speeds > 10 m s(-1) in each storm with gusts up to 38.7 m s(-1). Surface transport over one m wide transect (surface to 150 cm height) reached > 11,800 kg m(-1) during the most intense storm event with a rate of 1,440 kg m(-1) hr(-1) for about 6½ hrs. This storm is among the most extreme wind erosion events recorded on Earth. The Eyjafjallajökull wind erosion storms caused dust emissions extending several hundred km from the volcano affecting both air quality and ecosystems showing how wind erosion of freshly deposited ash prolongs impacts of volcanic eruptions.

  1. The significance of volcanic ash in Greenland ice cores during the Common Era

    Science.gov (United States)

    Plunkett, G.; Pilcher, J. R.; McConnell, J. R.; Sigl, M.; Chellman, N.

    2017-12-01

    Volcanic forcing is now widely regarded as a leading natural factor in short-term climate variability. Polar ice cores provide an unrivalled and continuous record of past volcanism through their chemical and particulate content. With an almost annual precision for the Common Era, the ice core volcanic record can be combined with historical data to investigate the climate and social impacts of the eruptions. The sulfate signature in ice cores is critical for determining the possible climate effectiveness of an eruption, but the presence and characterization of volcanic ash (tephra) in the ice is requisite for establishing the source eruption so that location and eruptive style can be better factored in to climate models. Here, we review the Greenland tephra record for the Common Era, and present the results of targeted sampling for tephra of volcanic events that are of interest either because of their suspected climate and societal impacts or because of their potential as isochrons in paleoenvironmental (including ice core) archives. The majority of identifiable tephras derive from Northern Hemisphere mid- to high latitude eruptions, demonstrating the significance of northern extra-tropical volcanic regions as a source of sulfates in Greenland. A number of targets are represented by sparse or no tephra, or shards that cannot be firmly correlated with a source. We consider the challenges faced in isolating and characterizing tephra from low latitude eruptions, and the implications for accurately modelling climate response to large, tropical events. Finally, we compare the ice core tephra record with terrestrial tephrostratigraphies in the circum-North Atlantic area to evaluate the potential for intercontinental tephra linkages and the refinement of volcanic histories.

  2. Iron dissolution from volcanic ash in low-pH atmospheric water: a key control on volcanic iron input to the surface ocean?

    Science.gov (United States)

    Maters, E.; Delmelle, P.; Ayris, P. M.; Opfergelt, S.

    2012-12-01

    A low concentration of dissolved iron (Fe) limits phytoplankton growth in approximately 30% of the ocean. The input of soluble Fe to these High-Nutrient Low-Chlorophyll (HNLC) regions has the potential to boost primary production and thereby enhance the drawdown of atmospheric carbon dioxide (CO2). Over geological timescales, volcanic activity may alter the flux of Fe to the surface ocean and so contribute to modulating atmospheric CO2 concentrations, ultimately impacting the global climate. Ocean Fe fertilisation has also recently been found to contribute to century-scale carbon sequestration via the export of biomass to the seafloor. Atmospherically deposited volcanic ash is now increasingly seen as an intermittent source of Fe to the surface ocean. Understanding the process of Fe release from ash in solution is key for assessing the potential for ash, particularly that produced by large but rare explosive eruptions or during sustained periods of intense volcanism, to fertilise the marine environment. Previous studies have measured the release of Fe from ash in near-neutral pH solution, but the influence of interaction between ash and acidic cloud- or rainwater during transport on Fe release is poorly understood. In this study, seven volcanic ash samples ranging from tephrite to rhyolite (49-74 wt.% SiO2) were leached in pH 1 H2SO4 in batch reactors for 336 h, at a 1:500 ash-to-solution ratio, to investigate Fe release under acidic conditions. Major element concentrations were measured by inductively coupled plasma- atomic emission spectroscopy (ICP-AES) across a time series of ash leachates. Changes in ash surface composition induced by contact with acid solution were assessed by X-ray photoelectron spectroscopy (XPS). The Fe2+/Fe3+ ratio in ash leachates was also determined for the first time, using the Ferrozine method. The ash samples released 42 to 411 μmol m-2 of Fe over 336 h of leaching. High initial Fe release rates (>1 μmol m-2 h-1) sustained for up

  3. Chemistry of ash-leachates to monitor volcanic activity: An application to Popocatepetl volcano, central Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Armienta, M.A., E-mail: victoria@geofisica.unam.mx [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico); De la Cruz-Reyna, S. [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico); Soler, A. [Grup de Mineralogia Aplicada i Medi Ambient, Dep. Cristal.lografia, Mineralogia i Diposits Minerals, Fac. Geologia, Universidad de Barcelona (Spain); Cruz, O.; Ceniceros, N.; Aguayo, A. [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico)

    2010-08-15

    Monitoring volcanic activity and assessing volcanic risk in an on-going eruption is a problem that requires the maximum possible independent data to reduce uncertainty. A quick, relatively simple and inexpensive method to follow the development of an eruption and to complement other monitoring parameters is the chemical analysis of ash leachates, particularly in the case of eruptions related to dome emplacement. Here, the systematic analysis of SO{sub 4}{sup 2-}, Cl{sup -} and F{sup -} concentrations in ash leachates is proposed as a valuable tool for volcanic activity monitoring. However, some results must be carefully assessed, as is the case for S/Cl ratios, since eruption of hydrothermally altered material may be confused with degassing of incoming magma. Sulfur isotopes help to identify SO{sub 4} produced by hydrothermal processes from magmatic SO{sub 2}. Lower S isotopic values correlated with higher F{sup -} percentages represent a better indicator of fresh magmatic influence that may lead to stronger eruptions and emplacement of new lava domes. Additionally, multivariate statistical analysis helps to identify different eruption characteristics, provided that the analyses are made over a long enough time to sample different stages of an eruption.

  4. Chemistry of ash-leachates to monitor volcanic activity: An application to Popocatepetl volcano, central Mexico

    International Nuclear Information System (INIS)

    Armienta, M.A.; De la Cruz-Reyna, S.; Soler, A.; Cruz, O.; Ceniceros, N.; Aguayo, A.

    2010-01-01

    Monitoring volcanic activity and assessing volcanic risk in an on-going eruption is a problem that requires the maximum possible independent data to reduce uncertainty. A quick, relatively simple and inexpensive method to follow the development of an eruption and to complement other monitoring parameters is the chemical analysis of ash leachates, particularly in the case of eruptions related to dome emplacement. Here, the systematic analysis of SO 4 2- , Cl - and F - concentrations in ash leachates is proposed as a valuable tool for volcanic activity monitoring. However, some results must be carefully assessed, as is the case for S/Cl ratios, since eruption of hydrothermally altered material may be confused with degassing of incoming magma. Sulfur isotopes help to identify SO 4 produced by hydrothermal processes from magmatic SO 2 . Lower S isotopic values correlated with higher F - percentages represent a better indicator of fresh magmatic influence that may lead to stronger eruptions and emplacement of new lava domes. Additionally, multivariate statistical analysis helps to identify different eruption characteristics, provided that the analyses are made over a long enough time to sample different stages of an eruption.

  5. Quantitative physical models of volcanic phenomena for hazards assessment of critical infrastructures

    Science.gov (United States)

    Costa, Antonio

    2016-04-01

    Volcanic hazards may have destructive effects on economy, transport, and natural environments at both local and regional scale. Hazardous phenomena include pyroclastic density currents, tephra fall, gas emissions, lava flows, debris flows and avalanches, and lahars. Volcanic hazards assessment is based on available information to characterize potential volcanic sources in the region of interest and to determine whether specific volcanic phenomena might reach a given site. Volcanic hazards assessment is focussed on estimating the distances that volcanic phenomena could travel from potential sources and their intensity at the considered site. Epistemic and aleatory uncertainties strongly affect the resulting hazards assessment. Within the context of critical infrastructures, volcanic eruptions are rare natural events that can create severe hazards. In addition to being rare events, evidence of many past volcanic eruptions is poorly preserved in the geologic record. The models used for describing the impact of volcanic phenomena generally represent a range of model complexities, from simplified physics based conceptual models to highly coupled thermo fluid dynamical approaches. Modelling approaches represent a hierarchy of complexity, which reflects increasing requirements for well characterized data in order to produce a broader range of output information. In selecting models for the hazard analysis related to a specific phenomenon, questions that need to be answered by the models must be carefully considered. Independently of the model, the final hazards assessment strongly depends on input derived from detailed volcanological investigations, such as mapping and stratigraphic correlations. For each phenomenon, an overview of currently available approaches for the evaluation of future hazards will be presented with the aim to provide a foundation for future work in developing an international consensus on volcanic hazards assessment methods.

  6. Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2011-05-01

    Full Text Available The April–May, 2010 volcanic eruptions of Eyjafjallajökull, Iceland caused significant economic and social disruption in Europe whilst state of the art measurements and ash dispersion forecasts were heavily criticized by the aviation industry. Here we demonstrate for the first time that large improvements can be made in quantitative predictions of the fate of volcanic ash emissions, by using an inversion scheme that couples a priori source information and the output of a Lagrangian dispersion model with satellite data to estimate the volcanic ash source strength as a function of altitude and time. From the inversion, we obtain a total fine ash emission of the eruption of 8.3 ± 4.2 Tg for particles in the size range of 2.8–28 μm diameter. We evaluate the results of our model results with a posteriori ash emissions using independent ground-based, airborne and space-borne measurements both in case studies and statistically. Subsequently, we estimate the area over Europe affected by volcanic ash above certain concentration thresholds relevant for the aviation industry. We find that during three episodes in April and May, volcanic ash concentrations at some altitude in the atmosphere exceeded the limits for the "Normal" flying zone in up to 14 % (6–16 %, 2 % (1–3 % and 7 % (4–11 %, respectively, of the European area. For a limit of 2 mg m−3 only two episodes with fractions of 1.5 % (0.2–2.8 % and 0.9 % (0.1–1.6 % occurred, while the current "No-Fly" zone criterion of 4 mg m−3 was rarely exceeded. Our results have important ramifications for determining air space closures and for real-time quantitative estimations of ash concentrations. Furthermore, the general nature of our method yields better constraints on the distribution and fate of volcanic ash in the Earth system.

  7. FALL3D: A Computational Model for Trans-port and Deposition of Volcanic Ash

    OpenAIRE

    Folch, A.; Costa, A.; Macedonio, G.

    2008-01-01

    FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of 8 volcanic ash. The model solves the advection-diffusion-sedimentation (ADS) equa- 9 tion on a structured terrain-following grid using a second-order Finite Differences 10 (FD) explicit scheme. Different parameterizations for the eddy diffusivity tensor 11 and for the particle terminal settling velocities can be used. The code, written 12 in FORTRAN 90, is available in both serial and parallel ver...

  8. Improvements on Near Real Time Detection of Volcanic Ash Emissions for Emergency Monitoring with Limited Satellite Bands

    Directory of Open Access Journals (Sweden)

    Torge Steensen

    2015-03-01

    Full Text Available Quantifying volcanic ash emissions syneruptively is an important task for the global aviation community. However, due to the near real time nature of volcano monitoring, many parameters important for accurate ash mass estimates cannot be obtained easily. Even when using the best possible estimates of those parameters, uncertainties associated with the ash masses remain high, especially if the satellite data is only available in the traditional 10.8 and 12.0 μm bands. To counteract this limitation, we developed a quantitative comparison between the ash extents in satellite and model data. The focus is the manual cloud edge definition based on the available satellite reverse absorption (RA data as well as other knowledge like pilot reports or ground-based observations followed by an application of the Volcanic Ash Retrieval on the defined subset with an RA threshold of 0 K. This manual aspect, although subjective to the experience of the observer, can show a significant improvement as it provides the ability to highlight ash that otherwise would be obscured by meteorological clouds or, by passing over different surfaces with unaccounted temperatures, might be lost entirely and thus remains undetectable for an automated satellite approach. We show comparisons to Volcanic Ash Transport and Dispersion models and outline a quantitative match as well as percentages of overestimates based on satellite or dispersion model data which can be converted into a level of reliability for near real time volcano monitoring. 

  9. Regional-scale input of dispersed and discrete volcanic ash to the Izu-Bonin and Mariana subduction zones

    Science.gov (United States)

    Scudder, Rachel P.; Murray, Richard W.; Schindlbeck, Julie C.; Kutterolf, Steffen; Hauff, Folkmar; McKinley, Claire C.

    2014-11-01

    We have geochemically and statistically characterized bulk marine sediment and ash layers at Ocean Drilling Program Site 1149 (Izu-Bonin Arc) and Deep Sea Drilling Project Site 52 (Mariana Arc), and have quantified that multiple dispersed ash sources collectively comprise ˜30-35% of the hemipelagic sediment mass entering the Izu-Bonin-Mariana subduction system. Multivariate statistical analyses indicate that the bulk sediment at Site 1149 is a mixture of Chinese Loess, a second compositionally distinct eolian source, a dispersed mafic ash, and a dispersed felsic ash. We interpret the source of these ashes as, respectively, being basalt from the Izu-Bonin Front Arc (IBFA) and rhyolite from the Honshu Arc. Sr-, Nd-, and Pb isotopic analyses of the bulk sediment are consistent with the chemical/statistical-based interpretations. Comparison of the mass accumulation rate of the dispersed ash component to discrete ash layer parameters (thickness, sedimentation rate, and number of layers) suggests that eruption frequency, rather than eruption size, drives the dispersed ash record. At Site 52, the geochemistry and statistical modeling indicates that Chinese Loess, IBFA, dispersed BNN (boninite from Izu-Bonin), and a dispersed felsic ash of unknown origin are the sources. At Site 1149, the ash layers and the dispersed ash are compositionally coupled, whereas at Site 52 they are decoupled in that there are no boninite layers, yet boninite is dispersed within the sediment. Changes in the volcanic and eolian inputs through time indicate strong arc-related and climate-related controls.

  10. Fractionation and Mobility of Thallium in Volcanic Ashes after Eruption of Eyjafjallajökull (2010) in Iceland.

    Science.gov (United States)

    Karbowska, Bozena; Zembrzuski, Wlodzimierz

    2016-07-01

    Volcanic ash contains thallium (Tl), which is highly toxic to the biosphere. The aim of this study was to determine the Tl concentration in fractions of volcanic ash samples originating from the Eyjafjallajökull volcano. A sequential extraction scheme allowed for a study of element migration in the environment. Differential pulse anodic stripping voltammetry using a flow measuring system was selected as the analytical method to determine Tl content. The highest average content of Tl in volcanic ash was determined in the fraction entrapped in the aluminosilicate matrix (0.329 µg g(-1)), followed by the oxidizable fraction (0.173 µg g(-1)). The lowest content of Tl was found in the water soluble fraction (0.001 µg g(-1)); however, this fraction is important due to the fact that Tl redistribution among all the fractions occurs through the aqueous phase.

  11. Volcanic ash supply to the surface ocean – remote sensing of biological responses and their wider biogeochemical significance

    Directory of Open Access Journals (Sweden)

    Thomas J. Browning

    2015-03-01

    Full Text Available Transient micronutrient enrichment of the surface ocean can enhance phytoplankton growth rates and alter microbial community structure with an ensuing spectrum of biogeochemical feedbacks. Strong phytoplankton responses to micronutrients supplied by volcanic ash have been reported recently. Here we: (i synthesize findings from these recent studies; (ii report the results of a new remote sensing study of ash fertilization; and (iii calculate theoretical bounds of ash-fertilized carbon export. Our synthesis highlights that phytoplankton responses to ash do not always simply mimic that of iron amendment; the exact mechanisms for this are likely biogeochemically important but are not yet well understood. Inherent optical properties of ash-loaded seawater suggest rhyolitic ash biases routine satellite chlorophyll-a estimation upwards by more than an order of magnitude for waters with 0.5 mg chlorophyll-a m-3. For this reason post-ash-deposition chlorophyll-a changes in oligotrophic waters detected via standard Case 1 (open ocean algorithms should be interpreted with caution. Remote sensing analysis of historic events with a bias less than a factor of 2 provided limited stand-alone evidence for ash-fertilization. Confounding factors were poor coverage, incoherent ash dispersal, and ambiguity ascribing biomass changes to ash supply over other potential drivers. Using current estimates of iron release and carbon export efficiencies, uncertainty bounds of ash-fertilized carbon export for 3 events are presented. Patagonian iron supply to the Southern Ocean from volcanic eruptions is less than that of windblown dust on thousand year timescales but can dominate supply at shorter timescales. Reducing uncertainties in remote sensing of phytoplankton response and nutrient release from ash are avenues for enabling assessment of the oceanic response to large-scale transient nutrient enrichment.

  12. VolcLab: A balloon-borne instrument package to measure ash, gas, electrical, and turbulence properties of volcanic plumes

    Science.gov (United States)

    Airey, Martin; Harrison, Giles; Nicoll, Keri; Williams, Paul; Marlton, Graeme

    2017-04-01

    Release of volcanic ash into the atmosphere poses a significant hazard to air traffic. Exposure to appreciable concentrations (≥4 mg m-3) of ash can result in engine shutdown, air data system loss, and airframe damage, with sustained lower concentrations potentially causing other long-term detrimental effects [1]. Disruption to flights also has a societal impact. For example, the closure of European airspace following the 2010 eruption of Eyjafjallajökull resulted in global airline industry losses of order £1100 million daily and disruption to 10 million passengers. Accurate and effective measurement of the mass of ash in a volcanic plume along with in situ characterisation of other plume properties such as charge, turbulence, and SO2 concentration can be used in combination with plume dispersion modelling, remote sensing, and more sophisticated flight ban thresholds to mitigate the impact of future events. VolcLab is a disposable instrument package that may be attached to a standard commercial radiosonde, for rapid emergency deployment on a weather balloon platform. The payload includes a newly developed gravimetric sensor using the oscillating microbalance principle to measure mass directly without assumptions about particles' optical properties. The package also includes an SO2 gas detector, an optical sensor to detect ash and cloud backscatter from an LED source [2], a charge sensor to characterise electrical properties of the plume [3], and an accelerometer to measure in-plume turbulence [4]. VolcLab uses the established PANDORA interface [5], to provide data exchange and power from the radiosonde. In addition to the VolcLab measurements, the radiosonde provides standard meteorological data of temperature, pressure, and relative humidity, and GPS location. There are several benefits of using this instrument suite in this design and of using this method of deployment. Firstly, this is an all-in-one device requiring minimal expertise on the part of the end

  13. Encounters of aircraft with volcanic ash clouds; A compilation of known incidents, 1953-2009

    Science.gov (United States)

    Guffanti, Marianne; Casadevall, Thomas J.; Budding, Karin

    2010-01-01

    Information about reported encounters of aircraft with volcanic ash clouds from 1953 through 2009 has been compiled to document the nature and scope of risks to aviation from volcanic activity. The information, gleaned from a variety of published and other sources, is presented in database and spreadsheet formats; the compilation will be updated as additional encounters occur and as new data and corrections come to light. The effects observed by flight crews and extent of aircraft damage vary greatly among incidents, and each incident in the compilation is rated according to a severity index. Of the 129 reported incidents, 94 incidents are confirmed ash encounters, with 79 of those having various degrees of airframe or engine damage; 20 are low-severity events that involve suspected ash or gas clouds; and 15 have data that are insufficient to assess severity. Twenty-six of the damaging encounters involved significant to very severe damage to engines and (or) airframes, including nine encounters with engine shutdown during flight. The average annual rate of damaging encounters since 1976, when reporting picked up, has been approximately 2 per year. Most of the damaging encounters occurred within 24 hours of the onset of ash production or at distances less than 1,000 kilometers from the source volcanoes. The compilation covers only events of relatively short duration for which aircraft were checked for damage soon thereafter; documenting instances of long-term repeated exposure to ash (or sulfate aerosols) will require further investigation. Of 38 source volcanoes, 8 have caused 5 or more encounters, of which the majority were damaging: Augustine (United States), Chaiten (Chile), Mount St. Helens (United States), Pacaya (Guatemala), Pinatubo (Philippines), Redoubt (United States), Sakura-jima (Japan), and Soufriere Hills (Montserrat, Lesser Antilles, United Kingdom). Aircraft have been damaged by eruptions ranging from small, recurring episodes to very large

  14. Improved Near Real Time WRF-Chem Volcanic Emission Prediction and Impacts of Ash Aerosol on Weather.

    Science.gov (United States)

    Stuefer, M.; Webley, P. W.; Hirtl, M.

    2017-12-01

    We use the numerical Weather Research Forecasting (WRF) model with online Chemistry (WRF-Chem) to investigate the regional effects of volcanic aerosol on weather. A lot of observational data have become available since the Icelandic eruption of Eyjafjallajökull in spring 2010. The observed plume characteristics and meteorological data have been exploited for volcanic WRF-Chem case studies. We concluded that the Eyjafjallajökull ash plume resulted in significant direct aerosol effects altering the state of the atmosphere over large parts of Europe. The WRF-Chem model runs show near surface temperature differences up to 3ºC, altered vertical stability, changed pressure- and wind fields within the atmosphere loaded with ash aerosol. The modeled results have been evaluated with lidar network data, and ground and balloon based observations all over Europe. Besides case studies, we use WRF-Chem to build an improved volcanic ash decision support system that NOAA can use within the Volcanic Ash Advisory Center (VAAC) system. Realistic eruption source parameter (ESP) estimates are a main challenge in predicting volcanic emission dispersion in near real time. We implemented historic ESP into the WRF-Chem preprocessing routine, which can be used as a first estimate to assess a volcanic plume once eruption activity is reported. In a second step, a range of varying plume heights has been associated with the different ash variables within WRF-Chem, resulting in an assembly of different plume scenarios within one WRF-Chem model run. Once there is plume information available from ground or satellite observations, the forecaster has the option to select the corresponding ash variable that best matches the observations. In addition we added an automatic domain generation tool to create near real time WRF-Chem model runs anywhere on the globe by reducing computing expenses at the same time.

  15. The stability of clay using volcanic ash of Mount Sinabung North Sumatera and sugarcane bagasse ash with cbr and uct value

    Directory of Open Access Journals (Sweden)

    Hastuty Ika Puji

    2017-01-01

    Full Text Available Soil is the fundamental material that is extremely as the place of establishment of a structure or construction, both building and road constructions. However, not all soil is well used in the constructions field, as there are several types of soil that are problematic in terms of both the soil bearing capacity and deformation. The clay with carrying capacity and low shear strength needs to stabilized in order to meet the technical requirements to be used as sub grade. The add materials that are typically used for soil stabilization are cement, lime or a mixture of two or three of the added materials. In this study, the added material use volcanic ash of Mount Sinabung at North Sumatera and sugarcane bagasse ash. The purpose of this study was to determine an index value of properties as the result of the addition of 4% volcanic ash and variations in content of bagasse ash on clay and then to determine the compressive strength for maximum testing UCT (Unconfined Compression Test and understand the value of CBR (California Bearing Capacity as the consequence of the addition of a stabilizing agent, as well as optimum level of addition of bagasse ash. The result showed that the original soil sample has the water content 12.35%, specific gravity of 2.65, liquid limit of 46.73% and plasticity index of 26.44%. The compressive strength value of 1.38 kg/cm2. Base on the USCS classification, the soil sample including the type CL while base on AASHTO classification, soil samples are include this A-7-6 type. After the soil is stabilized with a wide variety of sugarcane bagasse ash content value obtained the largest unconfined compression test in 4% addition level volcanic ash + 10% sugarcane bagasse ash is equal to 5.1kg/cm2 and the result California Bearing capacity value on the optimal mix of 4% volcanic ash + 4% sugarcane bagasse ash is equal to 13.91%.

  16. Compressive Strength of Volcanic Ash/Ordinary Portland Cement Laterized Concrete

    Directory of Open Access Journals (Sweden)

    Olusola K. O.

    2010-01-01

    Full Text Available This study investigates the effect of partial replacement of cement with volcanic ash (VA on the compressive strength of laterized concrete. A total of 192 cubes of 150mm dimensions were cast and cured in water for 7, 14, 21, and 28 days of hydration with cement replacement by VA and sand replacement by laterite both ranging from 0 to 30% respectively, while a control mix of 28-day target strength of 25 N/mm2 was adopted. The results show that the density and compressive strength of concrete decreased with increase in volcanic ash content. The 28-day, density dropped from 2390 kg/m3 to 2285 kg/m3 (i.e. 4.4% loss and the compressive strength from 25.08 N/mm2 to 17.98 N/mm2 (i.e. 28% loss for 0-30% variation of VA content with no laterite introduced. The compressive strength also decreased with increase in laterite content; the strength of the laterized concrete however increases as the curing age progresses.

  17. Effect of aggregate structure on VOC gas adsorption onto volcanic ash soil.

    Science.gov (United States)

    Hamamoto, Shoichiro; Seki, Katsutoshi; Miyazaki, Tsuyoshi

    2009-07-15

    The understanding of the gaseous adsorption process and the parameters of volatile organic compounds such as organic solvents or fuels onto soils is very important in the analysis of the transport or fate of these chemicals in soils. Batch adsorption experiments with six different treatments were conducted to determine the adsorption of isohexane, a gaseous aliphatic, onto volcanic ash soil (Tachikawa loam). The measured gas adsorption coefficient for samples of Tachikawa loam used in the first three treatments, Control, AD (aggregate destroyed), and AD-OMR (aggregate destroyed and organic matter removed), implied that the aggregate structure of volcanic ash soil as well as organic matter strongly enhanced gas adsorption under the dry condition, whereas under the wet condition, the aggregate structure played an important role in gas adsorption regardless of the insolubility of isohexane. In the gas adsorption experiments for the last three treatments, soils were sieved in different sizes of mesh and were separated into three different aggregate or particle size fractions (2.0-1.0mm, 1.0-0.5mm, and less than 0.5mm). Tachikawa loam with a larger size fraction showed higher gas adsorption coefficient, suggesting the higher contributions of macroaggregates to isohexane gas adsorption under dry and wet conditions.

  18. The European air traffic management response to volcanic ash crises: towards institutionalised aviation crisis management.

    Science.gov (United States)

    Dopagne, Jacques

    2011-06-01

    A cloud of ash drifting from the erupting Eyjafjallajökull volcano in Iceland in April and May 2010 covered Europe and created an unprecedented situation. It resulted in an almost complete lockdown of European airspace in the period from 15th to 21st April, 2010: more than 100,000 flights were cancelled, 10 million people were affected and over US$1.8bn was lost by airlines globally. This paper presents the air traffic management (ATM) view of the situation. Through an analysis of the evolution of the events in the affected region, the paper will provide more details on ATM planning, reaction and follow-up actions. Furthermore, the influence of this event on the identification of further improvements needed to advance volcanic procedures internationally will be discussed. Actions undertaken since the end of the event - the establishment of the European Aviation Crisis Coordination Cell, running of the International Civil Aviation Organization VOLCEX 11/01 volcanic ash exercise and European response to the Grimsvötn eruption in May 2011 - will be discussed at the end of the paper.

  19. Trace elements release from volcanic ash to seawater. Natural concentrations in Central Mediterranean sea

    Science.gov (United States)

    Randazzo, L. A.; Censi, P.; Saiano, F.; Zuddas, P.; Aricò, P.; Mazzola, S.

    2009-04-01

    Distributions and concentrations of many minor and trace elements in epicontinental basins, as Mediterranean Sea, are mainly driven to atmospheric fallout from surroundings. This mechanism supplies an estimated yearly flux of about 1000 kg km-2 of terrigenous matter of different nature on the whole Mediterranean basin. Dissolution of these materials and processes occurring at solid-liquid interface along the water column drive the distributions of many trace elements as V, Cr, Mn, Co, Cu, and Pb with contents ranging from pmol l-1 (Co, Cd, Pb) to nmol l-1 scale in Mediterranean seawater, with some local differences in the basin. The unwinding of an oceanographic cruise in the coastal waters of Ionian Sea during the Etna's eruptive activity in summer 2001 led to the almost unique chance to test the effects of large delivery of volcanic ash to a coastal sea water system through the analyses of distribution of selected trace elements along several seawater columns. The collection of these waters and their analyses about V, Cr, Mn, Co, Cu, and Pb contents evidenced trace element concentrations were always higher (about 1 order of magnitude at least) than those measured concentrations in the recent past in Mediterranean seawater, apart from Pb. Progressive increase of concentrations of some elements with depth, sometimes changing in a "conservative" behaviour without any clear reason and the observed higher concentrations required an investigation about interaction processes occurring at solid-liquid interface between volcanic ash and seawater along water columns. This investigation involving kinetic evaluation of trace element leaching to seawater, was carried out during a 6 months time period under laboratory conditions. X-ray investigations, SEM-EDS observations and analyses on freshly-erupted volcanic ash evidenced formation of alteration clay minerals onto glass fraction surfaces. Chemical analyses carried out on coexisting liquid phase demonstrated that trace

  20. Treatment of liquid radioactive waste by adsorption of some radionuclides on calcite sand, volcanic ash and comparing it with nickel ferro-cyanide

    International Nuclear Information System (INIS)

    Takriti, S.; Ali, A. F.

    2009-09-01

    Adsorption of 137 Cs existed in the liquid radioactive waste on the calcite sand and volcanic ash has been investigated. X-ray studies of sand and ash were used to have more information about the geological composition. The geological results show that the sand used is calcium carbonate and the ash is uncrystalline old volcanic ash. The radioactive measurements indicated that the calcite sand able to adsorb the 137 Cs with weak bond that can not resist the water flow. Otherwise, the volcanic ash can maintain the 137 Cs for long time and the water flow can not liberate the 137 Cs adsorbed into the volcanic ash. The adsorption of 137 Cs on nickel ferro-cyanide was more effective than other compounds. (author)

  1. Violent Explosive Eruptions in the Ararat Valley, Armenia and Associated Volcanic Hazards

    Science.gov (United States)

    Meliksetian, Khachatur; Savov, Ivan; Connor, Charles; Gevorgyan, Hripsime; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Jrbashyan, Ruben; Ghukasyan, Yura

    2016-04-01

    The Anatolian-Armenian-Iranian volcanically active orogenic plateau is located in the collision zone between the Arabian and Eurasian plates. The majority of regional geodynamic and petrologic models of collision-related magmatism use the model proposed by Keskin (2003), where volcanism is driven by Neo-Tethyan slab break-off, however an updated model by Neill et al. (2015) and Skolbeltsyn et al.(2014) comprise break-off of two slabs. One of the significant (and understudied) features of the regionally extensive collision zone volcanism is the diversity of eruption styles and also the presence of large number of highly explosive (Plinian) eruptions with VEI≥5 during the Middle-Upper Pleistocene. Geological records of the Ararat depression include several generations of thick low aspect ratio Quaternary ignimbrites erupted from Aragats volcano, as well as up to 3 m thick ash and pumice fall deposit from the Holocene-historically active Ararat volcano. The Ararat tephra fall deposit is studied at 12 newly discovered outcrops covering an area ˜1000 km2. It is noteworthy, that the Ararat tephra deposits are loose and unwelded and observed only in cross-sections in small depressions or in areas where they were rapidly covered by younger, colluvium deposits, presumably of Holocene age. Therefore, the spatial extent of the explosive deposits of Ararat is much bigger but not well preserved due to rapid erosion. Whole rock elemental, isotope (Sr, Nd) and mineral chemistry data demonstrate significant difference in the magma sources of the large Aragats and Ararat stratovolcanoes. Lavas and pyroclastic products of Aragats are high K calc-alkaline, and nearly always deprived from H2O rich phases such as amphibole. In contrasts lavas and pyroclastic products from Ararat are medium K calc-alkaline and volatile-rich (>4.6 wt% H2O and amphibole bearing) magmas. Here we shall attempt to reveal possible geochemical triggers of explosive eruptions in these volcanoes and assess

  2. Geochemistry of volcanic ashes, thermal waters and gases ejected during the 1979 eruption of Ontake Volcano, Japan

    International Nuclear Information System (INIS)

    Sugiura, Tumomu; Sugisaki, Ryuichi; Mizutani, Yoshihiko; Kusakabe, Minoru.

    1980-01-01

    Ontake Volcano suddenly began to erupt on its south-western flank near the summit at 05sup(h)20sup(m) on Oct. 28, 1979, forming several new craters and ejecting large amounts of volcanic ash and steam. Up to that time, the volcano had been believed to be dormant, though there were weak geothermal activities at a part of the south-western flank of the volcano, Jigokudani. This paper reports some results obtained by preliminary examination of volcanic ashes, thermal waters and gases collected on and around Ontake Volcano during the early stage of eruptive activity. The volcanic ashes are homogeneous in chemical and mineralogical compositions, and similar in chemical composition to the pre-historic volcanic ashes. The ashes contain pyrite, anhydrite, cristobalite and clay minerals. The sulfur isotopic equilibrium temperature is estimated to be about 400 0 C for pyrite-anhydrite pairs in the volcanic ashes. The estimated temperature is apparently too high for the temperature of phreatic explosion. The interpretation of this isotopic data remains unsettled. The thermal waters collected from the boiling pools in craters are enriched in D and 18 O. The isotopic enrichment is probably caused by evaporation of water at the surface of boiling pool. The hydrogen and oxygen isotopic data also suggest that spring waters issuing around Ontake Volcano are meteoric in origin. Nigorigo Hot Spring, about 4 km north-west of Ontake Volcano, showed significant increase in the concentrations of major dissolved chemical components soon after the eruption, but since then no significant change in chemical and isotopic composition has been observed. (author)

  3. Fluidal deep-sea volcanic ash as an indicator of explosive volcanism (Invited)

    Science.gov (United States)

    Clague, D. A.; Portner, R. A.; Paduan, J. B.; Dreyer, B. M.

    2013-12-01

    Fluidal glassy lava fragments are now known to be abundant at sites of submarine eruptions including the mid-ocean ridge system, near-ridge seamount chains, mid-plate volcanoes and the submarine rifts of ocean islands, deep-sea (4200m) alkalic lava fields, back-arc spreading centers, and arc volcanoes. Fluidal fragments at these diverse settings have compositions including basanite, tholeiite, boninite, andesite, dacite, and rhyolite. Fragments include straight, bent, curved, and coiled Pele's hair; flat, curved, twisted, folded, bent, or keeled ribbons; and flat, curved, or intensely folded limu o Pele. Most of these morphologies attach to blocky glass fragments. The fluidal fragments from different settings and depths are strikingly similar in morphology with variable vesicularity and particle thickness. They have been sampled flat and steep, rocky to sediment-covered substrates. Two different mechanisms are proposed to explain their origin: magmatic-volatile fragmentation during eruption and sea floor lava-water interactions. Volatiles in the melts and ambient water are present in all submarine volcanic settings, making it difficult to separate their role in forming the fragments. Submarine bubble-burst (strombolian) activity has been observed in situ at an active vent at -1200m on West Mata Volcano. However, lava-water interaction at elevated pressure has not been observed to make such fluidal fragments except in laboratory simulations. Lava-water interaction models suggest that pore water in sediment trapped beneath advancing lava flows migrates into the overlying flow where it expands to steam, and the expanding steam bubble escapes explosively through the flow top to form the fluidal fragments. This is different from the hollow (water-filled) pillars that form in inflating flows as trapped water escapes. Pillars grow upwards at contacts between flow lobes, thus the water exiting through pillars never enters (or exits) the molten lava flow interior. Another

  4. Contrasting styles of post-caldera volcanism along the Main Ethiopian Rift: Implications for contemporary volcanic hazards

    Science.gov (United States)

    Fontijn, Karen; McNamara, Keri; Zafu Tadesse, Amdemichael; Pyle, David M.; Dessalegn, Firawalin; Hutchison, William; Mather, Tamsin A.; Yirgu, Gezahegn

    2018-05-01

    The Main Ethiopian Rift (MER, 7-9°N) is the type example of a magma-assisted continental rift. The rift axis is populated with regularly spaced silicic caldera complexes and central stratovolcanoes, interspersed with large fields of small mafic scoria cones. The recent (latest Pleistocene to Holocene) history of volcanism in the MER is poorly known, and no eruptions have occurred in the living memory of the local population. Assessment of contemporary volcanic hazards and associated risk is primarily based on the study of the most recent eruptive products, typically those emplaced within the last 10-20 ky. We integrate new and published field observations and geochemical data on tephra deposits from the main Late Quaternary volcanic centres in the central MER to assess contemporary volcanic hazards. Most central volcanoes in the MER host large mid-Pleistocene calderas, with typical diameters of 5-15 km, and associated ignimbrites of trachyte and peralkaline rhyolite composition. In contrast, post-caldera activity at most centres comprises eruptions of peralkaline rhyolitic magmas as obsidian flows, domes and pumice cones. The frequency and magnitude of events varies between individual volcanoes. Some volcanoes have predominantly erupted obsidian lava flows in their most recent post-caldera stage (Fentale), whereas other have had up to 3 moderate-scale (VEI 3-4) explosive eruptions per millennium (Aluto). At some volcanoes we find evidence for multiple large explosive eruptions (Corbetti, Bora-Baricha, Boset-Bericha) which have deposited several centimetres to metres of pumice and ash in currently densely populated regions. This new overview has important implications when assessing the present-day volcanic hazard in this rapidly developing region. Supplementary Table 2 Main Ethiopian Rift outcrop localities with brief description of geology. All coordinates in Latitude - Longitude, WGS84 datum. Sample names (as listed in Supplementary Table 3a) follow outcrop name

  5. The operational eEMEP model version 10.4 for volcanic SO2 and ash forecasting

    Science.gov (United States)

    Steensen, Birthe M.; Schulz, Michael; Wind, Peter; Valdebenito, Álvaro M.; Fagerli, Hilde

    2017-05-01

    This paper presents a new version of the EMEP MSC-W model called eEMEP developed for transportation and dispersion of volcanic emissions, both gases and ash. EMEP MSC-W is usually applied to study problems with air pollution and aerosol transport and requires some adaptation to treat volcanic eruption sources and effluent dispersion. The operational set-up of model simulations in case of a volcanic eruption is described. Important choices have to be made to achieve CPU efficiency so that emergency situations can be tackled in time, answering relevant questions of ash advisory authorities. An efficient model needs to balance the complexity of the model and resolution. We have investigated here a meteorological uncertainty component of the volcanic cloud forecast by using a consistent ensemble meteorological dataset (GLAMEPS forecast) at three resolutions for the case of SO2 emissions from the 2014 Barðarbunga eruption. The low resolution (40 × 40 km) ensemble members show larger agreement in plume position and intensity, suggesting that the ensemble here does not give much added value. To compare the dispersion at different resolutions, we compute the area where the column load of the volcanic tracer, here SO2, is above a certain threshold, varied for testing purposes between 0.25 and 50 Dobson units. The increased numerical diffusion causes a larger area (+34 %) to be covered by the volcanic tracer in the low resolution simulations than in the high resolution ones. The higher resolution (10 × 10 km) ensemble members show higher column loads farther away from the volcanic eruption site in narrower clouds. Cloud positions are more varied between the high resolution members, and the cloud forms resemble the observed clouds more than the low resolution ones. For a volcanic emergency case this means that to obtain quickly results of the transport of volcanic emissions, an individual simulation with our low resolution is sufficient; however, to forecast peak

  6. MODIFICATION OF KELUD VOLCANIC ASH 2014 AS SELECTIVE ADSORBENT MATERIAL FOR COPPER(II METAL ION

    Directory of Open Access Journals (Sweden)

    Susila Kristianingrum

    2017-01-01

      This research aims to prepare an adsorbent from Kelud volcanic ash for better Cu(II adsorption efficiency than Kiesel gel 60G E'Merck. Adsorbent synthesis was done by dissolving 6 grams of volcanic ash activated 700oC 4 hours and washed with HCl 0.1 M into 200 ml of 3M sodium hydroxide with stirring and heating of 100 °C for 1 hour. The filtrate sodium silicate was then neutralized using sulfuric acid. The mixture was allowed to stand for 24 hours then filtered and washed with aquaDM, then dried and crushed. The procedure is repeated for nitric acid, acetic acid and formic acid with a contact time of 24 hours. The products were then characterized using FTIR and XRD, subsequently determined acidity, moisture content, and tested for its adsorption of the ion Cu (II with AAS. The results showed that the type of acid that produced highest rendemen is AK-H2SO4-3M ie 36.93%, acidity of the adsorbent silica gel synthesized similar to Kiesel gel 60G E'Merck ie adsorbent AK-CH3COOH-3M and the water content of the silica gel adsorbent synthesized similar to Kiesel gel 60G E'Merck ie adsorbent AK-H2SO4-2 M. The character of the functional groups of silica gel synthesized all have similarities with Kiesel gel 60G E'Merck as a comparison. Qualitative analysis by XRD for all modified adsorbent showed a dominant peak of SiO2 except adsorbent AK-H2SO4 amorphous and chemical bonds with FTIR indicates that it has formed a bond of Si-O-Si and Si-OH. The optimum adsorption efficiency of the metal ions Cu(II obtained from AK-H2SO4-5M adsorbent that is equal to 93.2617% and the optimum adsorption capacity of the Cu(II metal ions was obtained from the adsorbent AK-CH3COOH-3M is equal to 2.4919 mg/ g.   Keywords: adsorbents, silica gel, adsorption, kelud volcanic ash

  7. Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador

    NARCIS (Netherlands)

    Tonneijck, F.H.; Jansen, B.; Nierop, K.G.J.; Verstraten, J.M.; Sevink, J.; de Lange, L.

    2010-01-01

    Volcanic ash soils contain very large stocks of soil organic matter (SOM) per unit area. Consequently, they constitute potential sources or sinks for the greenhouse gas carbon dioxide. Whether soils become a net carbon source or sink with climate and/or land-use change depends on the stability of

  8. Impacts of forest harvest on active carbon and microbial properties of a volcanic ash cap soil in northern Idaho

    Science.gov (United States)

    Deborah S. Page-Dumroese; Matt D. Busse; Steven T. Overby; Brian D. Gardner; Joanne M. Tirocke

    2015-01-01

    Soil quality assessments are essential for determining impacts on belowground microbial community structure and function. We evaluated the suitability of active carbon (C), a rapid field test, as an indicator of soil biological quality in five paired forest stands (clear cut harvested 40 years prior and unharvested) growing on volcanic ash-cap soils in northern Idaho....

  9. Volcanic Ash and SO2 retrievals using synthetic MODIS TIR data: comparison between inversion procedures and sensitivity analysis

    Directory of Open Access Journals (Sweden)

    Stefano Corradini

    2015-02-01

    Full Text Available In this work the volcanic ash and SO2 retrievals obtained by applying three different procedures (LUT - Look Up Table, NN - Neural Network and VPR - Volcanic Plume Removal on MODIS Thermal InfraRed (TIR synthetic measurements have been compared. The synthetic measurements are generated using MODTRAN Radiative Transfer Model (RTM for defined volcanic cloud configurations. The results, presented as the percentage difference between the retrieved ash and SO2 total masses and the true values used for the synthetic data generation, indicate maximum differences of +/- 15% and +/- 10% for all the procedures and for ash and SO2 retrievals respectively. A sensitivity analysis has been also realized to investigate the influence of volcanic cloud altitude and water vapour profile on SO2 retrievals at 7.3 and 8.6 μm. Results confirm the high sensitivity of the 7.3 μm retrieval to the volcanic cloud altitude and show that the SO2 total masses estimated at 7.3 and 8.6 μm separately can be used to improve the information on the plume height. Finally, the water vapour profile is used to compute the minimum altitude over which the 7.3 μm retrieval is effective. 

  10. Efficiency of (32P) triple superphosphate on four soils derived from volcanic ashes

    International Nuclear Information System (INIS)

    Pino, I.; Casas, L.; Michaud, A.

    1986-01-01

    The efficiency of triple superphosphate on four soils derived from volcanic ashes (Andepts) was evaluated. Experiments in greenhouse with rye grass was carried out. Three doses of superphosphate (150,300 and 600 kg P 2 O 5 /ha) labeled with 32 P were used. The fertilizer was located 2.5 cm underneath the seed. The phosphorus derived from the fertilizer represented a 70 percent from the total P absorved by the plant. The utilization of aggregated nutrient ranged from 2.1 to 5.2, the lower values being obtained for the higher rates. Value 'A' increased with the rate applied but it evaluated comparatively the four soils studied. The isotopic method distinguished quantitatively the P coming from the soil in distinction to the P coming from the fertilizer. (Author)

  11. Efficiency of (/sup 32/P) triple superphosphate on four soils derived from volcanic ashes

    Energy Technology Data Exchange (ETDEWEB)

    Pino, I; Casas, L; Michaud, A

    1986-10-01

    The efficiency of triple superphosphate on four soils derived from volcanic ashes (Andepts) was evaluated. Experiments in greenhouse with rye grass was carried out. Three doses of superphosphate (150,300 and 600 kg P/sub 2/O/sub 5//ha) labeled with /sup 32/P were used. The fertilizer was located 2.5 cm underneath the seed. The phosphorus derived from the fertilizer represented a 70 percent from the total P absorved by the plant. The utilization of aggregated nutrient ranged from 2.1 to 5.2, the lower values being obtained for the higher rates. Value 'A' increased with the rate applied but it evaluated comparatively the four soils studied. The isotopic method distinguished quantitatively the P coming from the soil in distinction to the P coming from the fertilizer.

  12. Integrating multidisciplinary science, modelling and impact data into evolving, syn-event volcanic hazard mapping and communication: A case study from the 2012 Tongariro eruption crisis, New Zealand

    Science.gov (United States)

    Leonard, Graham S.; Stewart, Carol; Wilson, Thomas M.; Procter, Jonathan N.; Scott, Bradley J.; Keys, Harry J.; Jolly, Gill E.; Wardman, Johnny B.; Cronin, Shane J.; McBride, Sara K.

    2014-10-01

    New Zealand's Tongariro National Park volcanoes produce hazardous eruptions every few years to decades. On 6 August 2012 the Te Maari vent of Tongariro Volcano erupted, producing a series of explosions and a fine ash of minor volume which was dispersed rapidly to the east. This manuscript presents a summary of the eruption impacts and the way these supported science communication during the crisis, particularly in terms of hazard map development. The most significant proximal impact was damage from pyroclastic surges and ballistics to the popular and economically-important Tongariro Alpine Crossing track. The only hazard to affect the medial impact zone was a few mms of ashfall with minor impacts. Field testing indicated that the Te Maari ash had extremely low resistivity when wetted, implying a very high potential to cause disruption to nationally-important power transmission networks via the mechanism of insulator flashover. This was not observed, presumably due to insufficient ash accumulation on insulators. Virtually no impacts from distal ashfall were reported. Post-event analysis of PM10 data demonstrates the additional value of regional air quality monitoring networks in quantifying population exposure to airborne respirable ash. While the eruption was minor, it generated a high level of public interest and a demand for information on volcanic hazards and impacts from emergency managers, the public, critical infrastructure managers, health officials, and the agriculture sector. Meeting this demand fully taxed available resources. We present here aspects of the New Zealand experience which may have wider applicability in moving towards improved integration of hazard impact information, mapping, and communication. These include wide use of a wiki technical clearinghouse and email listservs, a focus on multi-agency consistent messages, and a recently developed environment of collaboration and alignment of both research funding and technical science advice

  13. Assessing qualitative long-term volcanic hazards at Lanzarote Island (Canary Islands)

    Science.gov (United States)

    Becerril, Laura; Martí, Joan; Bartolini, Stefania; Geyer, Adelina

    2017-07-01

    Conducting long-term hazard assessment in active volcanic areas is of primary importance for land-use planning and defining emergency plans able to be applied in case of a crisis. A definition of scenario hazard maps helps to mitigate the consequences of future eruptions by anticipating the events that may occur. Lanzarote is an active volcanic island that has hosted the largest (> 1.5 km3 DRE) and longest (6 years) eruption, the Timanfaya eruption (1730-1736), on the Canary Islands in historical times (last 600 years). This eruption brought severe economic losses and forced local people to migrate. In spite of all these facts, no comprehensive hazard assessment or hazard maps have been developed for the island. In this work, we present an integrated long-term volcanic hazard evaluation using a systematic methodology that includes spatial analysis and simulations of the most probable eruptive scenarios.

  14. Assessing qualitative long-term volcanic hazards at Lanzarote Island (Canary Islands

    Directory of Open Access Journals (Sweden)

    L. Becerril

    2017-07-01

    Full Text Available Conducting long-term hazard assessment in active volcanic areas is of primary importance for land-use planning and defining emergency plans able to be applied in case of a crisis. A definition of scenario hazard maps helps to mitigate the consequences of future eruptions by anticipating the events that may occur. Lanzarote is an active volcanic island that has hosted the largest (>  1.5 km3 DRE and longest (6 years eruption, the Timanfaya eruption (1730–1736, on the Canary Islands in historical times (last 600 years. This eruption brought severe economic losses and forced local people to migrate. In spite of all these facts, no comprehensive hazard assessment or hazard maps have been developed for the island. In this work, we present an integrated long-term volcanic hazard evaluation using a systematic methodology that includes spatial analysis and simulations of the most probable eruptive scenarios.

  15. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    Science.gov (United States)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  16. Volcanic hazards from Bezymianny- and Bandai-type eruptions

    Science.gov (United States)

    Siebert, L.; Glicken, H.; Ui, T.

    1987-01-01

    Major slope failures are a significant degradational process at volcanoes. Slope failures and associated explosive eruptions have resulted in more than 20 000 fatalities in the past 400 years; the historic record provides evidence for at least six of these events in the past century. Several historic debris avalanches exceed 1 km3 in volume. Holocene avalanches an order of magnitude larger have traveled 50-100 km from the source volcano and affected areas of 500-1500 km2. Historic eruptions associated with major slope failures include those with a magmatic component (Bezymianny type) and those solely phreatic (Bandai type). The associated gravitational failures remove major segments of the volcanoes, creating massive horseshoe-shaped depressions commonly of caldera size. The paroxysmal phase of a Bezymianny-type eruption may include powerful lateral explosions and pumiceous pyroclastic flows; it is often followed by construction of lava dome or pyroclastic cone in the new crater. Bandai-type eruptions begin and end with the paroxysmal phase, during which slope failure removes a portion of the edifice. Massive volcanic landslides can also occur without related explosive eruptions, as at the Unzen volcano in 1792. The main potential hazards from these events derive from lateral blasts, the debris avalanche itself, and avalanche-induced tsunamis. Lateral blasts produced by sudden decompression of hydrothermal and/or magmatic systems can devastate areas in excess of 500km2 at velocities exceeding 100 m s-1. The ratio of area covered to distance traveled for the Mount St. Helens and Bezymianny lateral blasts exceeds that of many pyroclastic flows or surges of comparable volume. The potential for large-scale lateral blasts is likely related to the location of magma at the time of slope failure and appears highest when magma has intruded into the upper edifice, as at Mount St. Helens and Bezymianny. Debris avalanches can move faster than 100 ms-1 and travel tens of

  17. Real-Time Estimation of Volcanic ASH/SO2 Cloud Height from Combined Uv/ir Satellite Observations and Numerical Modeling

    Science.gov (United States)

    Vicente, Gilberto A.

    An efficient iterative method has been developed to estimate the vertical profile of SO2 and ash clouds from volcanic eruptions by comparing near real-time satellite observations with numerical modeling outputs. The approach uses UV based SO2 concentration and IR based ash cloud images, the volcanic ash transport model PUFF and wind speed, height and directional information to find the best match between the simulated and the observed displays. The method is computationally fast and is being implemented for operational use at the NOAA Volcanic Ash Advisory Centers (VAACs) in Washington, DC, USA, to support the Federal Aviation Administration (FAA) effort to detect, track and measure volcanic ash cloud heights for air traffic safety and management. The presentation will show the methodology, results, statistical analysis and SO2 and Aerosol Index input products derived from the Ozone Monitoring Instrument (OMI) onboard the NASA EOS/Aura research satellite and from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument in the MetOp-A. The volcanic ash products are derived from AVHRR instruments in the NOAA POES-16, 17, 18, 19 as well as MetOp-A. The presentation will also show how a VAAC volcanic ash analyst interacts with the system providing initial condition inputs such as location and time of the volcanic eruption, followed by the automatic real-time tracking of all the satellite data available, subsequent activation of the iterative approach and the data/product delivery process in numerical and graphical format for operational applications.

  18. Synthesis of zeolitic materials from volcanic ash in presence and absence of cetyltrimethylammonium bromide

    Energy Technology Data Exchange (ETDEWEB)

    Sanhueza N, V. M.; Bennun T, L. D., E-mail: vsanhuez@udec.cl [Universidad de Concepcion, Facultad de Ciencias Quimicas, Edmundo Larenas 129, Region del Biobio (Chile)

    2015-07-01

    Zeolitic materials as Na-phillipsite, Na-K-phillipsite-like zeolites and the mixtures of zeolites (phillipsite+analcime and phillipsite+chabazite+analcime) were synthesized from volcanic ash, either in presence and absence of cetiltrimetilamonium bromide (CTAB). The ash sample used in the laboratory experiments contains 75.36% SiO{sub 2} and 14.11% Al{sub 2}O{sub 3}, abundances. The reaction time as well as the influence of CTAB were studied in the zeolitic materials crystallization. The experiments were carried out under hydrothermal conditions, autogenic pressure and temperature of 150 grades C, as well as reaction time from 8 to 116 h. Products from this hydrothermal treatment were identified by X-ray diffraction (XRD) and characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy (Sem-EDS). Of the zeolitic materials obtained the Na-K-phillipsite-like zeolite was found to be the most effective for the retention of cations Pb{sup 2+}, Zn{sup 2+} and Ba{sup 2+}. (Author)

  19. Multiphase flow modelling of volcanic ash particle settling in water using adaptive unstructured meshes

    Science.gov (United States)

    Jacobs, C. T.; Collins, G. S.; Piggott, M. D.; Kramer, S. C.; Wilson, C. R. G.

    2013-02-01

    Small-scale experiments of volcanic ash particle settling in water have demonstrated that ash particles can either settle slowly and individually, or rapidly and collectively as a gravitationally unstable ash-laden plume. This has important implications for the emplacement of tephra deposits on the seabed. Numerical modelling has the potential to extend the results of laboratory experiments to larger scales and explore the conditions under which plumes may form and persist, but many existing models are computationally restricted by the fixed mesh approaches that they employ. In contrast, this paper presents a new multiphase flow model that uses an adaptive unstructured mesh approach. As a simulation progresses, the mesh is optimized to focus numerical resolution in areas important to the dynamics and decrease it where it is not needed, thereby potentially reducing computational requirements. Model verification is performed using the method of manufactured solutions, which shows the correct solution convergence rates. Model validation and application considers 2-D simulations of plume formation in a water tank which replicate published laboratory experiments. The numerically predicted settling velocities for both individual particles and plumes, as well as instability behaviour, agree well with experimental data and observations. Plume settling is clearly hindered by the presence of a salinity gradient, and its influence must therefore be taken into account when considering particles in bodies of saline water. Furthermore, individual particles settle in the laminar flow regime while plume settling is shown (by plume Reynolds numbers greater than unity) to be in the turbulent flow regime, which has a significant impact on entrainment and settling rates. Mesh adaptivity maintains solution accuracy while providing a substantial reduction in computational requirements when compared to the same simulation performed using a fixed mesh, highlighting the benefits of an

  20. High resolution 3D confocal microscope imaging of volcanic ash particles.

    Science.gov (United States)

    Wertheim, David; Gillmore, Gavin; Gill, Ian; Petford, Nick

    2017-07-15

    We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100μm in size and include PM 10 s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Thermal co-treatment of combustible hazardous waste and waste incineration fly ash in a rotary kiln.

    Science.gov (United States)

    Huber, Florian; Blasenbauer, Dominik; Mallow, Ole; Lederer, Jakob; Winter, Franz; Fellner, Johann

    2016-12-01

    As current disposal practices for municipal solid waste incineration (MSWI) fly ash are either associated with significant costs or negative environmental impacts, an alternative treatment was investigated in a field scale experiment. Thereto, two rotary kilns were fed with hazardous waste, and moistened MSWI fly ash (water content of 23%) was added to the fuel of one kiln with a ratio of 169kg/Mg hazardous waste for 54h and 300kg/Mg hazardous waste for 48h while the other kiln was used as a reference. It was shown that the vast majority (>90%) of the inserted MSWI fly ash was transferred to the bottom ash of the rotary kiln. This bottom ash complied with the legal limits for non-hazardous waste landfills, thereby demonstrating the potential of the investigated method to transfer hazardous waste (MSWI fly ash) into non-hazardous waste (bottom ash). The results of a simple mixing test (MSWI fly ash and rotary kiln bottom ash have been mixed accordingly without thermal treatment) revealed that the observed transformation of hazardous MSWI fly ash into non-hazardous bottom ash during thermal co-treatment cannot be referred to dilution, as the mixture did not comply with legal limits for non-hazardous waste landfills. For the newly generated fly ash of the kiln, an increase in the concentration of Cd, K and Pb by 54%, 57% and 22%, respectively, was observed. In general, the operation of the rotary kiln was not impaired by the MSWI fly ash addition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Speciation analysis of antimony in extracts of size-classified volcanic ash by HPLC-ICP-MS.

    Science.gov (United States)

    Miravet, R; López-Sánchez, J F; Rubio, R; Smichowski, P; Polla, G

    2007-03-01

    Although there is concern about the presence of toxic elements and their species in environmental matrices, for example water, sediment, and soil, speciation analysis of volcanic ash has received little attention. Antimony, in particular, an emerging element of environmental concern, has been less studied than other potentially toxic trace elements. In this context, a study was undertaken to assess the presence of inorganic Sb species in ash emitted from the Copahue volcano (Argentina). Antimony species were extracted from size-classified volcanic ash (<36 microm, 35-45 microm, 45-150 microm, and 150-300 microm) by use of 1 mol L(-1) citrate buffer at pH 5. Antimony(III) and (V) in the extracts were separated and quantified by high-performance liquid chromatography combined on-line with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Antimony species concentrations (microg g(-1)) in the four fractions varied from 0.14 to 0.67 for Sb(III) and from 0.02 to 0.03 for Sb(V). The results reveal, for the first time, the occurrence of both inorganic Sb species in the extractable portion of volcanic ash. Sb(III) was always the predominant species.

  3. Volcanic ash ingestion by a large gas turbine aeroengine: fan-particle interaction

    Science.gov (United States)

    Vogel, Andreas; Clarkson, Rory; Durant, Adam; Cassiani, Massimo; Stohl, Andreas

    2016-04-01

    Airborne particles from explosive volcanic eruptions are a major safety threat for aviation operations. The fine fraction of the emitted particles (fan blades and rotor-path components, and can also cause contamination or blockage of electrical systems and the fuel system such as fuel nozzles and air bleed filters. Ash particles that enter the hot-section of the engine (combustor and turbine stages; temperature between 1400-1800°C) are rapidly heated above the glass transition temperature (about 650-1000°C) and become soft (or form a melt) and can stick as re-solidified deposits on nozzle guide vanes. The glass deposits change the internal aerodynamic airflow in the engine and can affect the cooling capability of the different components by clogging the cooling inlets/outlets, which can lead to a loss of power or flame-out. The nature of volcanic ash ingestion is primarily influenced by the fan at the front of the engine which produces the thrust that drives the aircraft. The ingested air is split between the core (compressor/combustor/turbine) and bypass (thrust) at a ratio of typically between, 1:5-10 on modern engines. Consequently, the ash particles are fractionated between the core and bypass by the geometry and dynamics of the fan blades. This study uses computational fluid dynamics (CFD) simulations of particle-laden airflows into a turbofan engine under different atmospheric and engine operation conditions. The main aim was to investigate the possible centrifugal effect of the fan blades as a function of particle size, and to relate this to the core intake concentration. We generated a generic 3D axial high-bypass turbofan engine using realistic dimensions of the turbofan, engine intake and other aerodynamically relevant parts. The CFD experiments include three scenarios of aircraft performance (climb, cruise and descent) and for two different typical altitude ranges (10000 and 39000 ft). The fluid dynamics simulations were carried out using a commercial

  4. Integrating geological and geophysical data to improve probabilistic hazard forecasting of Arabian Shield volcanism

    Science.gov (United States)

    Runge, Melody G.; Bebbington, Mark S.; Cronin, Shane J.; Lindsay, Jan M.; Moufti, Mohammed R.

    2016-02-01

    During probabilistic volcanic hazard analysis of volcanic fields, a greater variety of spatial data on crustal features should help improve forecasts of future vent locations. Without further examination, however, geophysical estimations of crustal or other features may be non-informative. Here, we present a new, robust, non-parametric method to quantitatively determine the existence of any relationship between natural phenomena (e.g., volcanic eruptions) and a variety of geophysical data. This provides a new validation tool for incorporating a range of potentially hazard-diagnostic observable data into recurrence rate estimates and hazard analyses. Through this study it is shown that the location of Cenozoic volcanic fields across the Arabian Shield appear to be related to locations of major and minor faults, at higher elevations, and regions where gravity anomaly values were between - 125 mGal and 0 mGal. These findings support earlier hypotheses that the western shield uplift was related to Cenozoic volcanism. At the harrat (volcanic field)-scale, higher vent density regions are related to both elevation and gravity anomaly values. A by-product of this work is the collection of existing data on the volcanism across Saudi Arabia, with all vent locations provided herein, as well as updated maps for Harrats Kura, Khaybar, Ithnayn, Kishb, and Rahat. This work also highlights the potential dangers of assuming relationships between observed data and the occurrence of a natural phenomenon without quantitative assessment or proper consideration of the effects of data resolution.

  5. Episodic eruptions of volcanic ash trigger a reversible cascade of nuisance species outbreaks in pristine coral habitats.

    Directory of Open Access Journals (Sweden)

    Tom Schils

    Full Text Available Volcanically active islands abound in the tropical Pacific and harbor complex coral communities. Whereas lava streams and deep ash deposits are well-known to devastate coral communities through burial and smothering, little is known about the effect of moderate amounts of small particulate ash deposits on reef communities. Volcanic ash contains a diversity of chemical compounds that can induce nutrient enrichments triggering changes in benthic composition. Two independently collected data sets on the marine benthos of the pristine and remote reefs around Pagan Island, Northern Mariana Islands, reveal a sudden critical transition to cyanobacteria-dominated communities in 2009-2010, which coincides with a period of continuous volcanic ash eruptions. Concurrently, localized outbreaks of the coral-killing cyanobacteriosponge Terpios hoshinota displayed a remarkable symbiosis with filamentous cyanobacteria, which supported the rapid overgrowth of massive coral colonies and allowed the sponge to colonize substrate types from which it has not been documented before. The chemical composition of tephra from Pagan indicates that the outbreak of nuisance species on its reefs might represent an early succession stage of iron enrichment (a.k.a. "black reefs" similar to that caused by anthropogenic debris like ship wrecks or natural events like particulate deposition from wildfire smoke plumes or desert dust storms. Once Pagan's volcanic activity ceased in 2011, the cyanobacterial bloom disappeared. Another group of well-known nuisance algae in the tropical Pacific, the pelagophytes, did not reach bloom densities during this period of ash eruptions but new species records for the Northern Mariana Islands were documented. These field observations indicate that the study of population dynamics of pristine coral communities can advance our understanding of the resilience of tropical reef systems to natural and anthropogenic disturbances.

  6. Episodic eruptions of volcanic ash trigger a reversible cascade of nuisance species outbreaks in pristine coral habitats.

    Science.gov (United States)

    Schils, Tom

    2012-01-01

    Volcanically active islands abound in the tropical Pacific and harbor complex coral communities. Whereas lava streams and deep ash deposits are well-known to devastate coral communities through burial and smothering, little is known about the effect of moderate amounts of small particulate ash deposits on reef communities. Volcanic ash contains a diversity of chemical compounds that can induce nutrient enrichments triggering changes in benthic composition. Two independently collected data sets on the marine benthos of the pristine and remote reefs around Pagan Island, Northern Mariana Islands, reveal a sudden critical transition to cyanobacteria-dominated communities in 2009-2010, which coincides with a period of continuous volcanic ash eruptions. Concurrently, localized outbreaks of the coral-killing cyanobacteriosponge Terpios hoshinota displayed a remarkable symbiosis with filamentous cyanobacteria, which supported the rapid overgrowth of massive coral colonies and allowed the sponge to colonize substrate types from which it has not been documented before. The chemical composition of tephra from Pagan indicates that the outbreak of nuisance species on its reefs might represent an early succession stage of iron enrichment (a.k.a. "black reefs") similar to that caused by anthropogenic debris like ship wrecks or natural events like particulate deposition from wildfire smoke plumes or desert dust storms. Once Pagan's volcanic activity ceased in 2011, the cyanobacterial bloom disappeared. Another group of well-known nuisance algae in the tropical Pacific, the pelagophytes, did not reach bloom densities during this period of ash eruptions but new species records for the Northern Mariana Islands were documented. These field observations indicate that the study of population dynamics of pristine coral communities can advance our understanding of the resilience of tropical reef systems to natural and anthropogenic disturbances.

  7. Toward a pro-active scientific advice on global volcanic activity within the multi-hazard framework of the EU Aristotle project

    Science.gov (United States)

    Barsotti, Sara; Duncan, Melanie; Loughlin, Susan; Gísladóttir, Bryndis; Roberts, Matthew; Karlsdóttir, Sigrún; Scollo, Simona; Salerno, Giuseppe; Corsaro, Rosa Anna; Charalampakis, Marinos; Papadopoulos, Gerassimos

    2017-04-01

    The demand for timely analysis and advice on global volcanic activity from scientists is growing. At the same time, decision-makers require more than an understanding of hazards; they need to know what impacts to expect from ongoing and future events. ARISTOTLE (All Risk Integrated System TOwards Trans-boundary hoListic Early-warning) is a two-year EC funded pilot project designed to do just that. The Emergency Response Coordination Centre (ERCC) works to support and coordinate response to disasters both inside and outside Europe using resources from the countries participating in the European Union Civil Protection Mechanism. Led by INGV and ZAMG, the ARISTOTLE consortium comprises 15 institutions across Europe and aims to deliver multi-hazard advice on natural events, including their potential interactions and impact, both inside and outside of Europe to the ERCC. Where possible, the ERCC would like a pro-active provision of scientific advice by the scientific group. Iceland Met Office leads the volcanic hazards work, with BGS, INGV and NOA comprising the volcano observatory team. At this stage, the volcanology component of the project comprises mainly volcanic ash and gas dispersal and potential impact on population and ground-based critical infrastructures. We approach it by relying upon available and official volcano monitoring institutions' reporting of activity, existing assessments and global databases of past events, modelling tools, remote-sensing observational systems and official VAAC advisories. We also make use of global assessments of volcanic hazards, country profiles, exposure and proxy indicators of threat to livelihoods, infrastructure and economic assets (e.g. Global Volcano Model outputs). Volcanic ash fall remains the only hazard modelled at the global scale. Volcanic risk assessments remain in their infancy, owing to challenges related to the multitude of hazards, data availability and model representation. We therefore face a number of

  8. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations

    International Nuclear Information System (INIS)

    Crowe, B.M.; Vaniman, D.T.; Carr, W.J.

    1983-03-01

    Volcanism studies of the Nevada Test Site (NTS) region are concerned with hazards of future volcanism with respect to underground disposal of high-level radioactive waste. The hazards of silicic volcanism are judged to be negligible; hazards of basaltic volcanism are judged through research approaches combining hazard appraisal and risk assessment. The NTS region is cut obliquely by a N-NE trending belt of volcanism. This belt developed about 8 Myr ago following cessation of silicic volcanism and contemporaneous with migration of basaltic activity toward the southwest margin of the Great Basin. Two types of fields are present in the belt: (1) large-volume, long-lived basalt and local rhyolite fields with numerous eruptive centers and (2) small-volume fields formed by scattered basaltic scoria cones. Late Cenozoic basalts of the NTS region belong to the second field type. Monogenetic basalt centers of this region were formed mostly by Strombolian eruptions; Surtseyean activity has been recognized at three centers. Geochemically, the basalts of the NTS region are classified as straddle A-type basalts of the alkalic suite. Petrological studies indicate a volumetric dominance of evolved hawaiite magmas. Trace- and rare-earth-element abundances of younger basalt ( - 8 to 10 - 10 as calculated for a 1-yr period. Potential disruptive and dispersal effects of magmatic penetration of a repository are controlled primarily by the geometry of basalt feeder systems, the mechanism of waste incorporation in magma, and Strombolian eruption processes

  9. Preliminary volcanic hazards evaluation for Los Alamos National Laboratory Facilities and Operations : current state of knowledge and proposed path forward

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Gordon N.; Schultz-Fellenz, Emily S.; Miller, Elizabeth D.

    2010-09-01

    The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.

  10. A first Event-tree for the Bárðarbunga volcanic system (Iceland): from the volcanic crisis in 2014 towards a tool for hazard assessment

    Science.gov (United States)

    Barsotti, Sara; Tumi Gudmundsson, Magnús; Jónsdottir, Kristín; Vogfjörd, Kristín; Larsen, Gudrun; Oddsson, Björn

    2015-04-01

    Bárdarbunga volcano is part of a large volcanic system that had its last confirmed eruption before the present unrest in 1910. This system is partially covered by ice within the Vatnajökull glacier and it extends further to the NNE as well as to SW. Based on historical data, its eruptive activity has been predominantly characterized by explosive eruptions, originating beneath the glacier, and important effusive eruptions in the ice-free part of the system itself. The largest explosive eruptions took place on the southern side of the fissure system in AD 1477 producing about 10 km3 of tephra. Due to the extension and location of this volcanic system, the range of potential eruptive scenarios and associated hazards is quite wide. Indeed, it includes: inundation, due to glacial outburst; tephra fallout, due to ash-rich plume generated by magma-water interaction; abundant volcanic gas release; and lava flows. Most importantly these phenomena are not mutually exclusive and might happen simultaneously, creating the premise for a wide spatial and temporal impact. During the ongoing volcanic crisis at Bárdarbunga, which started on 16 August, 2014, the Icelandic Meteorological Office, together with the University of Iceland and Icelandic Civil Protection started a common effort of drawing, day-by-day, the potential evolution of the ongoing rifting event and, based on the newest data from the monitoring networks, updated and more refined scenarios have been identified. Indeed, this volcanic crisis created the occasion for pushing forward the creation of the first Event-tree for the Bárðarbunga volcanic system. We adopted the approach suggested by Newhall and Pallister (2014) and a preliminary ET made of nine nodes has been constructed. After the two initial nodes (restless and genesis) the ET continues with the identification of the location of aperture of future eruptive vents. Due to the complex structure of the system and historical eruptions, this third node

  11. Sustained effects of volcanic ash on biofilm stoichiometry, enzyme activity and community composition in North- Patagonia streams.

    Science.gov (United States)

    Carrillo, Uara; Díaz-Villanueva, Verónica; Modenutti, Beatriz

    2018-04-15

    Volcanic eruptions are extreme perturbations that affect ecosystems. These events can also produce persistent effects in the environment for several years after the eruption, with increased concentrations of suspended particles and the introduction of elements in the water column. On 4th June 2011, the Puyehue-Cordón Caulle Volcanic Complex (40.59°S-72.11°W, 2200m.a.s.l.) erupted explosively in southern Chile. The area affected by the volcano was devastated; a thick layer of volcanic ash (up to 30cm) was deposited in areas 50 km east of the volcano towards Argentina. The aim of the present study was to evaluate the effect of volcanic ash deposits on stream ecosystems four years after the eruption, comparing biofilm stoichiometry, alkaline phosphatase activity, and primary producer's assemblage in streams which were severely affected by the volcano with unaffected streams. We confirmed in the laboratory that ash deposited in the catchment of affected streams still leach phosphorus (P) into the water four years after eruption. Results indicate that affected streams still receive volcanic particles and that these particles release P, thus stream water exhibits high P concentration. Biofilm P content was higher and the C:P ratio lower in affected streams compared to unaffected streams. As a consequence of less P in unaffected streams, the alkaline phosphatase activity was higher compared to affected streams. Cyanobacteria increased their abundances (99.9% of total algal biovolume) in the affected streams suggesting that the increase in P may positively affect this group. On the contrary, unaffected streams contained a diatom dominant biofilm. In this way, local heterogeneity was created between sub-catchments located within 30 km of each other. These types of events should be seen as opportunities to gather valuable ecological information about how severe disturbances, like volcanic eruptions, shape landscapes and lotic systems for several years after the event

  12. Influence of management practices on C stabilization pathways in agricultural volcanic ash soils (Canary Islands, Spain)

    Science.gov (United States)

    Hernandez, Zulimar; María Álvarez, Ana; Carral, Pilar; de Figueiredo, Tomas; Almendros, Gonzalo

    2014-05-01

    Although C stabilization mechanisms in agricultural soils are still controversial [1], a series of overlapped pathways has been suggested [2] such as: i) insolubilization of low molecular weight precursors of soil organic matter (SOM) with reactive minerals through physical and chemical bonding, ii) selective accumulation of biosynthetic substances which are recalcitrant because of its inherent chemical composition, and iii) preservation and furter diagenetic transformation of particulate SOM entrapped within resistant microaggregates, where diffusion of soil enzymes is largely hampered. In some environments where carbohydrate and N compounds are not readily biodegraded, e.g., with water saturated micropores, an ill-known C stabilization pathway may involve the formation of Maillard's reaction products [3]. In all cases, these pathways converge in the formation of recalcitrant macromolecular substances, sharing several properties with the humic acid (HA) fraction [4]. In template forests, the selective preservation and further microbial reworking of plant biomass has been identified as a prevailing mechanism in the accumulation of recalcitrant SOM forms [5]. However, in volcanic ash soils with intense organomineral interactions, condensation reactions of low molecular weight precursors with short-range minerals may be the main mechanism [6]. In order to shed some light about the effect of agricultural management on soil C stabilization processes on volcanic ash soils, the chemical composition of HA and some structural proxies of SOM informing on its origin and potential resistance to biodegradation, were examined in 30 soils from Canary Islands (Spain) by visible, infrared (IR) and 13C nuclear magnetic resonance (NMR) spectroscopies, elementary analysis and pyrolytic techniques. The results of multivariate treatments, suggested at least three simultaneous C stabilization biogeochemical trends: i) diagenetic alteration of plant biomacromolecules in soils receiving

  13. Correlations of volcanic ash texture with explosion earthquakes from vulcanian eruptions at Sakurajima volcano, Japan

    Science.gov (United States)

    Miwa, T.; Toramaru, A.; Iguchi, M.

    2009-07-01

    We compare the texture of volcanic ash with the maximum amplitude of explosion earthquakes ( Aeq) for vulcanian eruptions from Sakurajima volcano. We analyze the volcanic ash emitted by 17 vulcanian eruptions from 1974 to 1987. Using a stereoscopic microscope, we classify the glassy particles into smooth surface particles (S-type particles) and non-smooth surface particles (NS-type particles) according to their surface conditions—gloss or non-gloss appearance—as an indicator of the freshness of the particles. S-type particles are further classified into V-type particles (those including vesicles) and NV-type particles (those without vesicles) by means of examinations under a polarized microscopic of polished thin sections. Cross-correlated examinations against seismological data show that: 1) the number fraction of S-type particles (S-fraction) has a positive correlation with Aeq, 2) the number ratio of NV-type particles to V-type particles (the N/V number ratio) has a positive correlation with Aeq, and 3) for explosions accompanied with BL-type earthquake swarms, the N/V number ratio has a negative correlation with the duration of the BL-Swarms. BL-Swarms refer to the phenomenon of numerous BL-type earthquakes occurring within a few days, prior to an increase in explosive activity [Kamo, K., 1978. Some phenomena before the summit crater eruptions at Sakura-zima volcano. Bull. Volcanol. Soc. Japan., 23, 53-64]. The positive correlation between the N/V number ratio and Aeq could indicate that a large amount of separated gas from fresh magma results in a large Aeq. Plagioclase microlite textual analysis of NV-type particles from five explosive events without BL-Swarms shows that the plagioclase microlite number density (MND) and the L/ W (length/width) ratio have a positive correlation with Aeq. A comparison between textural data (MND, L/ W ratio, crystallinity) and the result of a decompression-induced crystallization experiment [Couch, S., Sparks, R

  14. Encapsulation of mixed radioactive and hazardous waste contaminated incinerator ash in modified sulfur cement

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    Some of the process waste streams incinerated at various Department of Energy (DOE) facilities contain traces of both low-level radioactive (LLW) and hazardous constituents, thus yielding ash residues that are classified as mixed waste. Work is currently being performed at Brookhaven National Laboratory (BNL) to develop new and innovative materials for encapsulation of DOE mixed wastes including incinerator ash. One such material under investigation is modified sulfur cement, a thermoplastic developed by the US Bureau of Mines. Monolithic waste forms containing as much as 55 wt % incinerator fly ash from Idaho national Engineering Laboratory (INEL) have been formulated with modified sulfur cement, whereas maximum waste loading for this waste in hydraulic cement is 16 wt %. Compressive strength of these waste forms exceeded 27.6 MPa. Wet chemical and solid phase waste characterization analyses performed on this fly ash revealed high concentrations of soluble metal salts including Pb and Cd, identified by the Environmental Protection Agency (EPA) as toxic metals. Leach testing of the ash according to the EPA Toxicity Characteristic Leaching Procedure (TCLP) resulted in concentrations of Pb and Cd above allowable limits. Encapsulation of INEL fly ash in modified sulfur cement with a small quantity of sodium sulfide added to enhance retention of soluble metal salts reduced TCLP leachate concentrations of Pb and Cd well below EPA concentration criteria for delisting as a toxic hazardous waste. 12 refs., 4 figs., 2 tabs

  15. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations. Volume II

    International Nuclear Information System (INIS)

    Crowe, B.M.; Wohletz, K.H.; Vaniman, D.T.; Gladney, E.; Bower, N.

    1986-01-01

    Volcanic hazard investigations during FY 1984 focused on five topics: the emplacement mechanism of shallow basalt intrusions, geochemical trends through time for volcanic fields of the Death Valley-Pancake Range volcanic zone, the possibility of bimodal basalt-rhyolite volcanism, the age and process of enrichment for incompatible elements in young basalts of the Nevada Test Site (NTS) region, and the possibility of hydrovolcanic activity. The stress regime of Yucca Mountain may favor formation of shallow basalt intrusions. However, combined field and drill-hole studies suggest shallow basalt intrusions are rare in the geologic record of the southern Great Basin. The geochemical patterns of basaltic volcanism through time in the NTS region provide no evidence for evolution toward a large-volume volcanic field or increases in future rates of volcanism. Existing data are consistent with a declining volcanic system comparable to the late stages of the southern Death Valley volcanic field. The hazards of bimodal volcanism in this area are judged to be low. The source of a 6-Myr pumice discovered in alluvial deposits of Crater Flat has not been found. Geochemical studies show that the enrichment of trace elements in the younger rift basalts must be related to an enrichment of their mantle source rocks. This geochemical enrichment event, which may have been metasomatic alteration, predates the basalts of the silicic episode and is, therefore, not a young event. Studies of crater dimensions of hydrovolcanic landforms indicate that the worst case scenario (exhumation of a repository at Yucca Mountain by hydrovolcanic explosions) is unlikely. Theoretical models of melt-water vapor explosions, particularly the thermal detonation model, suggest hydrovolcanic explosion are possible at Yucca Mountain. 80 refs., 21 figs., 5 tabs

  16. Investigating the use of the Saharan dust index as a tool for the detection of volcanic ash in SEVIRI imagery

    Science.gov (United States)

    Taylor, Isabelle; Mackie, Shona; Watson, Matthew

    2015-10-01

    Despite the similar spectral signatures of ash and desert dust, relatively little has been done to explore the application of dust detection techniques to the problem of volcanic ash detection. The Saharan dust index (SDI) is routinely implemented for dust monitoring at some centres and could be utilised for volcanic ash detection with little computational expense, thereby providing a product that forecasters already have some familiarity with to complement the suite of existing ash detection tools. We illustrate one way in which the index could be implemented for the purpose of ash detection by applying it to three scenes containing volcanic ash from the 2010 Eyjafjallajökull eruption, Iceland and the 2011 eruption of Puyehue, Chile. It was also applied to an image acquired over Etna in January 2011, where a volcanic plume is clearly visible but is unlikely to contain any ash. These examples demonstrate the potential of the SDI as a tool for ash monitoring under different environmental and atmospheric conditions. In addition to presenting a valuable qualitative product to aid monitoring, this work includes a quantitative assessment of the detection skill using a manually constructed expert ash mask. The optimum implementation of any technique is likely to be dependent on both atmospheric conditions and on the properties of the imaged ash (which is often unknown in a real-time situation). Here we take advantage of access to a 'truth' rarely available in a real-time situation and calculate an ash mask based on the optimum threshold for the specific scene, which is then used to demonstrate the potential of the SDI. The SDI mask is compared to masks calculated from a simplistic implementation of the more traditional split window method, again exploiting our access to the 'truth' to set the most appropriate threshold for each scene, and to a probabilistic method that is implemented without reference to the 'truth' and which provides useful insights into the likely

  17. Design and construction of a testbed for the application of real volcanic ash from the Eyjafjallajökull and Grimsvötn eruptions to microgas turbines

    Science.gov (United States)

    Weber, Konradin; Fischer, Christian; Lange, Martin; Schulz, Uwe; Naraparaju, Ravisankar; Kramer, Dietmar

    2017-04-01

    It is well known that volcanic ash clouds emitted from erupting volcanoes pose a considerable threat to the aviation. The volcanic ash particles can damage the turbine blades and their thermal barrier coatings as well as the bearings of the turbine. For a detailed investigation of this damaging effect a testbed was designed and constructed, which allowed to study the damaging effects of real volcanic ash to an especially for these investigations modified microgas turbine. The use of this microgas turbine had the advantage that it delivers near reality conditions, using kerosene and operating at similar temperatures as big turbines, but at a very cost effective level. The testbed consisted out of a disperser for the real volcanic ash and all the equipment needed to control the micro gas turbine. Moreover, in front and behind the microgas turbine the concentration and the distribution of the volcanic ash were measured online by optical particle counters (OPCs). The particle concentration and size distribution of the volcanic ash particles in the intake in front of the microgas turbine was measured by an optical particle counter (OPC) combined with an isokinetic intake. Behind the microgas turbine in the exhaust gas additionally to the measurement with a second OPC ash particles were caught with an impactor, in order to enable the later analysis with an electron microscope concerning the morphology to verify possible melting processes of the ash particles. This testbed is of high importance as it allows detailed investigations of the impact of volcanic ash to jet turbines and appropriate countermeasures.

  18. Assessment of Muria geochemistry evolution and related to volcanic hazard to NPP site at Muria

    International Nuclear Information System (INIS)

    Basuki Wibowo; June Mellawati; Heni Susiati

    2011-01-01

    Study of geochemistry evolution aspect in Mt. Muria cycle to predict the level of volcanic hazards posed in the future on Muria nuclear power plant site was conducted. The purpose of the study was to determine the Muria geochemistry condition, tectonic patterns and to predict the level of volcanic hazard in the future on Muria nuclear power plant sites. The methodology used is the collection of secondary data on the complex geochemical conditions Muria volcanic in their life cycle, perform correlation geochemical cycle in its path towards conditions that most likely experienced tectonic, volcanic, and interpretation of the hazard posed. The study shows that geochemical conditions in Muria Volcano complex composed of potassium, low-yield product predicted high-temperature molten magma (decompression) and high potassium levels (compression). Pattern of tectonic decompression geochemical conditions associated with low potassium in Muria old, while the pattern of tectonic compression geochemical conditions associated with high potassium in young Muria. The level of volcanic hazard in the future indicated by the nature of non capable of Mt. Muria. (author)

  19. Volcanic stratigraphy and geochemistry of the Soufrière Volcanic Centre, Saint Lucia with implications for volcanic hazards

    Science.gov (United States)

    Lindsay, Jan M.; Trumbull, Robert B.; Schmitt, Axel K.; Stockli, Daniel F.; Shane, Phil A.; Howe, Tracy M.

    2013-05-01

    The Soufrière Volcanic Complex (SVC), Saint Lucia, represents one of the largest silicic centres in the Lesser Antilles arc. It comprises extensive pumiceous pyroclastic flow deposits, lava flows as well as Peléan-style domes and dome collapse block-and-ash-flow deposits. These deposits occur within and around the Qualibou Depression, a ~ 10-km diameter wide sector collapse structure. To date, vent locations for SVC pyroclastic deposits and their relationship to the sector collapse have been unclear because of limited stratigraphic correlation and few radiometric ages. In this study we reconstruct the geologic history of the SVC in light of new and recently published (U-Th)/He, U-Th and U-Pb zircon chronostratigraphic data, aided by mineralogical and geochemical correlation. Compositionally, SVC deposits are monotonous medium-K, calc-alkaline rocks with 61.6 to 67.7 wt.% SiO2 and display similar trace element abundances. Combined U-Th and (U-Th)/He zircon dating together with 14C ages and mineral fingerprinting reveals significant explosive eruptions at 640, 515, 265, 104, 60 and 40 ka (producing deposits previously grouped together as the "Choiseul" unit) and at 20 ka (Belfond unit). The mineralogically and geochemically distinct Belfond unit is a large, valley-filling pumiceous pyroclastic flow deposit distributed to the north, northeast, south and southeast of the Qualibou Depression that was probably deposited during a single plinian eruption. The unit previously referred to as ‘Choiseul tuff' is much less well defined. The typical Choiseul unit comprises a series of yellowish-white, crystal-poor, non-welded pumiceous pyroclastic deposits cropping out to the north and southeast of the Qualibou depression; however its age is poorly constrained. A number of other units previously mapped as Choiseul can be distinguished based on age, and in some cases mineral and whole rock chemistry. Pyroclastic deposits at Micoud (640 ± 19 ka), Bellevue (264 ± 8 ka), Anse

  20. The influence of using quicklime and volcanic ash as stabilizing materials in clay viewed from CBR value

    Science.gov (United States)

    Hastuty, Ika Puji; Sofyan, Tri Alby; Roesyanto

    2017-11-01

    The condition of the soil in Indonesia in varied, viewed from its bearing capacity. The soil is one of the materials which plays a very important role in a construction or foundation so that it is very necessary to have soil with its adequate technical properties. In reality, often founding inadequate soil properties such as in its compressibility, permeability, and plasticity. The objective of the research was to find out the physical properties, technical properties, CBR value, and stabilization of clay by adding quicklime and volcanic ash as stabilizing materials. The mixing combination is 2%, 4% quicklime, and 2%-24% volcanic ash. The value of Water Content for original soil was 34.33% and Specific Gravity original soil was 2.65. The result of the research showed that the stabilizing materials from quicklime and volcanic ash could improve the physical and mechanical properties of clay. The value of Atterberg Limits decreased from 29.88% to 11.33% in the variation of 4% Q+24% VA, while the most maximal value of CBR was found in the variation of 4% Q+8% VA at 9.01%.

  1. Imaginary refractive index and other microphysical properties of volcanic ash, Sarahan dust, and other mineral aerosols

    Science.gov (United States)

    Rocha Lima, A.; Martins, J.; Krotkov, N. A.; Artaxo, P.; Todd, M.; Ben Ami, Y.; Dolgos, G.; Espinosa, R.

    2013-12-01

    Aerosol properties are essential to support remote sensing measurements, atmospheric circulation and climate models. This research aims to improve the understanding of the optical and microphysical properties of different types of aerosols particles. Samples of volcanic ash, Saharan dust and other mineral aerosols particles were analyzed by different techniques. Ground samples were sieved down to 45um, de-agglomerated and resuspended in the laboratory using a Fluidized Bed Aerosol Generator (FBAG). Particles were collected on Nuclepore filters into PM10, PM2.5, or PM1.0. and analyzed by different techniques, such as Scanning Electron Microscopy (SEM) for determination of size distribution and shape, spectral reflectance for determination of the optical absorption properties as a function of the wavelength, material density, and X-Ray fluorescence for the elemental composition. The spectral imaginary part of refractive index from the UV to the short wave infrared (SWIR) wavelength was derived empirically from the measurements of the spectral mass absorption coefficient, size distribution and density of the material. Some selected samples were also analyzed with the Polarized Imaging Nephelometer (PI-Neph) instrument for the characterization of the aerosol polarized phase function. This work compares results of the spectral refractive index of different materials obtained by our methodology with those available in the literature. In some cases there are significant differences both in magnitude and spectral dependence of the imaginary refractive index. These differences are evaluated and discussed in this work.

  2. Transfer factors of radioiodine from volcanic-ash soil (Andosol) to crops

    International Nuclear Information System (INIS)

    Ban-Nai, Tadaaki; Muramatsu, Yasuyuki

    2003-01-01

    In order to obtain soil-to-plant transfer factors (TFs) of radioiodine from volcanic-ash soil to agricultural crops, we carried out radiotracer experiments. The mean values of TFs (on a wet weight basis) of radioiodine from Andosol to edible parts of crops were as follows: water dropwort, 0.24; lettuce, 0.00098; onion, 0.0011; radish, 0.0044; turnip, 0.0013 and eggplant, 0.00010. The mean value of the TFs of radioiodine for edible parts of wheat (on a dry weight basis) was 0.00015. We also studied the distributions of iodine in crops. There was a tendency for the TFs of leaves to be higher than those of tubers, fruits and grains. A very high TF was found for water dropwort, because this plant was cultivated under a waterlogged condition, in which iodine desorbed from soil into soil solution with a drop in the Eh value. The data obtained in this study should be helpful to assess the long-lived 129 I (half life: 1.57 x l0 7 yr) pathway related to the fuel cycle. (author)

  3. Neural network multispectral satellite images classification of volcanic ash plumes in a cloudy scenario

    Directory of Open Access Journals (Sweden)

    Matteo Picchiani

    2015-03-01

    Full Text Available This work shows the potential use of neural networks in the characterization of eruptive events monitored by satellite, through fast and automatic classification of multispectral images. The algorithm has been developed for the MODIS instrument and can easily be extended to other similar sensors. Six classes have been defined paying particular attention to image regions that represent the different surfaces that could possibly be found under volcanic ash clouds. Complex cloudy scenarios composed by images collected during the Icelandic eruptions of the Eyjafjallajökull (2010 and Grimsvötn (2011 volcanoes have been considered as test cases. A sensitivity analysis on the MODIS TIR and VIS channels has been performed to optimize the algorithm. The neural network has been trained with the first image of the dataset, while the remaining data have been considered as independent validation sets. Finally, the neural network classifier’s results have been compared with maps classified with several interactive procedures performed in a consolidated operational framework. This comparison shows that the automatic methodology proposed achieves a very promising performance, showing an overall accuracy greater than 84%, for the Eyjafjalla - jökull event, and equal to 74% for the Grimsvötn event. 

  4. Transfer factors of radioiodine from volcanic-ash soil (Andosol) to crops

    Energy Technology Data Exchange (ETDEWEB)

    Ban-Nai, Tadaaki; Muramatsu, Yasuyuki [National Inst. of Radiological Sciences, Chiba (Japan). Environmental and Toxicological Sciences Research Group

    2003-03-01

    In order to obtain soil-to-plant transfer factors (TFs) of radioiodine from volcanic-ash soil to agricultural crops, we carried out radiotracer experiments. The mean values of TFs (on a wet weight basis) of radioiodine from Andosol to edible parts of crops were as follows: water dropwort, 0.24; lettuce, 0.00098; onion, 0.0011; radish, 0.0044; turnip, 0.0013 and eggplant, 0.00010. The mean value of the TFs of radioiodine for edible parts of wheat (on a dry weight basis) was 0.00015. We also studied the distributions of iodine in crops. There was a tendency for the TFs of leaves to be higher than those of tubers, fruits and grains. A very high TF was found for water dropwort, because this plant was cultivated under a waterlogged condition, in which iodine desorbed from soil into soil solution with a drop in the Eh value. The data obtained in this study should be helpful to assess the long-lived {sup 129}I (half life: 1.57 x l0{sup 7} yr) pathway related to the fuel cycle. (author)

  5. Spatial distribution of volcanic ash deposits of 2011 Puyehue-Cordón Caulle eruption in Patagonia as measured by a perturbation in NDVI temporal dynamics

    Science.gov (United States)

    Easdale, M. H.; Bruzzone, O.

    2018-03-01

    Volcanic ash fallout is a recurrent environmental disturbance in forests, arid and semi-arid rangelands of Patagonia, South America. The ash deposits over large areas are responsible for several impacts on ecological processes, agricultural production and health of local communities. Public policy decision making needs monitoring information of the affected areas by ash fallout, in order to better orient social, economic and productive aids. The aim of this study was to analyze the spatial distribution of volcanic ash deposits from the eruption of Puyehue-Cordón Caulle in 2011, by identifying a sudden change in the Normalized Difference Vegetation Index (NDVI) temporal dynamics, defined as a perturbation located in the time series. We applied a sparse-wavelet transform using the Basis Pursuit algorithm to NDVI time series obtained from the Moderate Resolution Image Spectroradiometer (MODIS) sensor, to identify perturbations at a pixel level. The spatial distribution of the perturbation promoted by ash deposits in Patagonia was successfully identified and characterized by means of a perturbation in NDVI temporal dynamics. Results are encouraging for the future development of a new platform, in combination with data from forecasting models and tracking of ash cloud trajectories and dispersion, to inform stakeholders to mitigate impact of volcanic ash on agricultural production and to orient public intervention strategies after a volcanic eruption followed by ash fallout over a wide region.

  6. Long-term volcanic hazard assessment on El Hierro (Canary Islands)

    Science.gov (United States)

    Becerril, L.; Bartolini, S.; Sobradelo, R.; Martí, J.; Morales, J. M.; Galindo, I.

    2014-07-01

    Long-term hazard assessment, one of the bastions of risk-mitigation programs, is required for land-use planning and for developing emergency plans. To ensure quality and representative results, long-term volcanic hazard assessment requires several sequential steps to be completed, which include the compilation of geological and volcanological information, the characterisation of past eruptions, spatial and temporal probabilistic studies, and the simulation of different eruptive scenarios. Despite being a densely populated active volcanic region that receives millions of visitors per year, no systematic hazard assessment has ever been conducted on the Canary Islands. In this paper we focus our attention on El Hierro, the youngest of the Canary Islands and the most recently affected by an eruption. We analyse the past eruptive activity to determine the spatial and temporal probability, and likely style of a future eruption on the island, i.e. the where, when and how. By studying the past eruptive behaviour of the island and assuming that future eruptive patterns will be similar, we aim to identify the most likely volcanic scenarios and corresponding hazards, which include lava flows, pyroclastic fallout and pyroclastic density currents (PDCs). Finally, we estimate their probability of occurrence. The end result, through the combination of the most probable scenarios (lava flows, pyroclastic density currents and ashfall), is the first qualitative integrated volcanic hazard map of the island.

  7. Collateral variations between the concentrations of mercury and other water soluble ions in volcanic ash samples and volcanic activity during the 2014-2016 eruptive episodes at Aso volcano, Japan

    Science.gov (United States)

    Marumoto, Kohji; Sudo, Yasuaki; Nagamatsu, Yoshizumi

    2017-07-01

    During 2014-2016, the Aso volcano, located in the center of the Kyushu Islands, Japan, erupted and emitted large amounts of volcanic gases and ash. Two episodes of the eruption were observed; firstly Strombolian magmatic eruptive episodes from 25 November 2014 to the middle of May 2015, and secondly phreatomagmatic and phreatic eruptive episodes from September 2015 to February 2016. Bulk chemical analyses on total mercury (Hg) and major ions in water soluble fraction in volcanic ash fall samples were conducted. During the Strombolian magmatic eruptive episodes, total Hg concentrations averaged 1.69 ± 0.87 ng g- 1 (N = 33), with a range from 0.47 to 3.8 ng g- 1. In addition, the temporal variation of total Hg concentrations in volcanic ash varied with the amplitude change of seismic signals. In the Aso volcano, the volcanic tremors are always observed during eruptive stages and quiet interludes, and the amplitudes of tremors increase at eruptive stages. So, the temporal variation of total Hg concentrations could provide an indication of the level of volcanic activity. During the phreatomagmatic and phreatic eruptive episodes, on the other hand, total Hg concentrations in the volcanic ash fall samples averaged 220 ± 88 ng g- 1 (N = 5), corresponding to 100 times higher than those during the Strombolian eruptive episode. Therefore, it is possible that total Hg concentrations in volcanic ash samples are largely varied depending on the eruptive type. In addition, the ash fall amounts were also largely different among the two eruptive episodes. This can be also one of the factors controlling Hg concentrations in volcanic ash.

  8. Conceptual Development of a National Volcanic Hazard Model for New Zealand

    Science.gov (United States)

    Stirling, Mark; Bebbington, Mark; Brenna, Marco; Cronin, Shane; Christophersen, Annemarie; Deligne, Natalia; Hurst, Tony; Jolly, Art; Jolly, Gill; Kennedy, Ben; Kereszturi, Gabor; Lindsay, Jan; Neall, Vince; Procter, Jonathan; Rhoades, David; Scott, Brad; Shane, Phil; Smith, Ian; Smith, Richard; Wang, Ting; White, James D. L.; Wilson, Colin J. N.; Wilson, Tom

    2017-06-01

    We provide a synthesis of a workshop held in February 2016 to define the goals, challenges and next steps for developing a national probabilistic volcanic hazard model for New Zealand. The workshop involved volcanologists, statisticians, and hazards scientists from GNS Science, Massey University, University of Otago, Victoria University of Wellington, University of Auckland, and University of Canterbury. We also outline key activities that will develop the model components, define procedures for periodic update of the model, and effectively articulate the model to end-users and stakeholders. The development of a National Volcanic Hazard Model is a formidable task that will require long-term stability in terms of team effort, collaboration and resources. Development of the model in stages or editions that are modular will make the process a manageable one that progressively incorporates additional volcanic hazards over time, and additional functionalities (e.g. short-term forecasting). The first edition is likely to be limited to updating and incorporating existing ashfall hazard models, with the other hazards associated with lahar, pyroclastic density currents, lava flow, ballistics, debris avalanche, and gases/aerosols being considered in subsequent updates.

  9. Conceptual Development of a National Volcanic Hazard Model for New Zealand

    Directory of Open Access Journals (Sweden)

    Mark Stirling

    2017-06-01

    Full Text Available We provide a synthesis of a workshop held in February 2016 to define the goals, challenges and next steps for developing a national probabilistic volcanic hazard model for New Zealand. The workshop involved volcanologists, statisticians, and hazards scientists from GNS Science, Massey University, University of Otago, Victoria University of Wellington, University of Auckland, and University of Canterbury. We also outline key activities that will develop the model components, define procedures for periodic update of the model, and effectively articulate the model to end-users and stakeholders. The development of a National Volcanic Hazard Model is a formidable task that will require long-term stability in terms of team effort, collaboration, and resources. Development of the model in stages or editions that are modular will make the process a manageable one that progressively incorporates additional volcanic hazards over time, and additional functionalities (e.g., short-term forecasting. The first edition is likely to be limited to updating and incorporating existing ashfall hazard models, with the other hazards associated with lahar, pyroclastic density currents, lava flow, ballistics, debris avalanche, and gases/aerosols being considered in subsequent updates.

  10. Combining Geological and Geophysical Data in Volcanic Hazard Estimation for Dominica, Lesser Antilles

    Science.gov (United States)

    George, O.; Latchman, J. L.; Connor, C.; Malservisi, R.; Connor, L.

    2014-12-01

    Risk posed by volcanic eruptions are generally quantified in a few ways; in the short term geophysical data such as seismic activity or ground deformation are used to assess the state of volcanic unrest while statistical approaches such as spatial density estimates are used for long term hazard assessment. Spatial density estimates have been used in a number of monogenetic volcanic fields for hazard map generation and utilize the age, location and volumes of previous eruptions to calculate the probability of a new event occurring at a given location within this field. In a previously unpublished study, spatial density estimates of the Lesser Antilles volcanic arc showed the island of Dominica to have the highest likelihood of future vent formation. In this current study, this technique was used in combination with relocated seismic events occurring beneath Dominica within the last ~ 20 years as well as InSAR images of ground deformation to generate a hazard map which not only takes into consideration the past events but also the current state of unrest. Here, geophysical data serve as a weighting factor in the estimates with those centers showing more vigorous activity receiving stronger favorability in the assessment for future activity. In addition to this weighting, the bandwidth utilized in the 2D-radially symmetric kernel density function was optimized using the SAMSE method so as to find the value which best minimizes the error in the estimate. The end results of this study are dynamic volcanic hazards maps which will be readily updatable as changes in volcanic unrest occurs within the system.

  11. Rising from the ashes: Changes in salmonid fish assemblages after 30 months of the Puyehue-Cordon Caulle volcanic eruption.

    Science.gov (United States)

    Lallement, Mailén; Macchi, Patricio J; Vigliano, Pablo; Juarez, Santiago; Rechencq, Magalí; Baker, Matthew; Bouwes, Nicolaas; Crowl, Todd

    2016-01-15

    Events such as volcanic eruptions may act as disturbance agents modifying the landscape spatial diversity and increasing environmental instability. On June 4, 2011 the Puyehue-Cordon Caulle volcanic complex located on Chile (2236 m.a.s.l., 40° 02' 24" S- 70° 14' 26" W) experience a rift zone eruption ejecting during the first day 950 million metric tons into the atmosphere. Due to the westerly winds predominance, ash fell differentially upon 24 million ha of Patagonia Argentinean, been thicker deposits accumulated towards the West. In order to analyze changes on stream fish assemblages we studied seven streams 8, 19 and 30 months after the eruption along the ash deposition gradient, and compare those data to pre eruption ones. Habitat features and structure of the benthic macroinvertebrate food base of fish was studied. After the eruption, substantial environmental changes were observed in association with the large amount of ash fallout. In western sites, habitat loss due to ash accumulation, changes in the riparian zone and morphology of the main channels were observed. Turbidity was the water quality variable which reflected the most changes throughout time, with NTU values decreasing sharply from West to East sites. In west sites, increased Chironomid densities were recorded 8 months after the initial eruption as well as low EPT index values. These relationships were reversed in the less affected streams farther away from the volcano. Fish assemblages were greatly influenced both by habitat and macroinvertebrate changes. The eruption brought about an initial sharp decline in fish densities and the almost total loss of young of the year in the most western streams affecting recruitment. This effect diminished rapidly with distance from the emission center. Thirty months after the eruption, environmental changes are still occurring as a consequence of basin wide ash remobilization and transport.

  12. Studies on P availability of volcanic ash soils from Chile amended with various P fertilizers

    International Nuclear Information System (INIS)

    Pino, I.; Parada, A.M.; Luzio, W.

    2002-01-01

    A high P retention capacity and a low P availability to plants characterize the volcanic ash soils from Chile. For this reason, the purpose of this incubation study was to compare different extraction methods, P sorption, and estimations of the agronomic efficiencies of different fertilizers in these soils. In order to study the agronomic effectiveness of rock phosphates and their suitability for direct application, 32 P was used for assessing the bioavailability of P and the efficiency in rock phosphate materials. Incubation experiments were carried out to measure the soil parameters of Intensity, Quantity and Capacity. Triple superphosphate (TSP, 20% P) was applied to the soil in granular form, whereas local Bahia Inglesa PR (7.68% P) was added as powder. These Chilean soils have a very high P fixing capacity with maximum P adsorption values greater than 1000 mg P/kg soil. Moreover these soils also exhibit higher fixation strength compared to the Venezuelan soils. In relation to isotopic exchangeable P, (E value), the Chilean soils have a low value of isotopic exchangeable P without added P. There is a progressive increase in E value, under increasing P fertilizer rates, particularly at 500 ppm P and above. The P application as PR or TSP did not reduce the P retention capacity of the Perquenco soil. Nevertheless, it exists a positive effect when the P sources are applied as mixtures, which induces a decrease in the P retention percentage. Available P in this soil increased from 3.6 ppm P for the check to a maximum of 20 ppm P for the highest TSP rates, reaching medium to high values according to the extraction methodology used. (author)

  13. Inexpensive Instrument for In Situ Characterization of Particulate Matter in Volcanic Ash Plumes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Volcanic research is a significant part of the "Earth Surface & Interior" focus area of the NASA Earth Science program. After a volcanic eruption, the smallest...

  14. Volcanic hazard map for Telica, Cerro Negro and El Hoyo volcanoes, Nicaragua

    Science.gov (United States)

    Asahina, T.; Navarro, M.; Strauch, W.

    2007-05-01

    A volcano hazard study was conducted for Telica, Cerro Negro and El Hoyo volcanoes, Nicaragua, based on geological and volcanological field investigations, air photo analyses, and numerical eruption simulation. These volcanoes are among the most active volcanoes of the country. This study was realized 2004-2006 through technical cooperation of Japan International Cooperation Agency (JICA) with INETER, upon the request of the Government of Nicaragua. The resulting volcanic hazard map on 1:50,000 scale displays the hazards of lava flow, pyroclastic flows, lahars, tephra fall, volcanic bombs for an area of 1,300 square kilometers. The map and corresponding GIS coverage was handed out to Central, Departmental and Municipal authorities for their use and is included in a National GIS on Georisks developed and maintained by INETER.

  15. Using video games for volcanic hazard education and communication: an assessment of the method and preliminary results

    Science.gov (United States)

    Mani, Lara; Cole, Paul D.; Stewart, Iain

    2016-07-01

    This paper presents the findings from a study aimed at understanding whether video games (or serious games) can be effective in enhancing volcanic hazard education and communication. Using the eastern Caribbean island of St. Vincent, we have developed a video game - St. Vincent's Volcano - for use in existing volcano education and outreach sessions. Its twin aims are to improve residents' knowledge of potential future eruptive hazards (ash fall, pyroclastic flows and lahars) and to integrate traditional methods of education in a more interactive manner. Here, we discuss the process of game development including concept design through to the final implementation on St. Vincent. Preliminary results obtained from the final implementation (through pre- and post-test knowledge quizzes) for both student and adult participants provide indications that a video game of this style may be effective in improving a learner's knowledge. Both groups of participants demonstrated a post-test increase in their knowledge quiz score of 9.3 % for adults and 8.3 % for students and, when plotted as learning gains (Hake, 1998), show similar overall improvements (0.11 for adults and 0.09 for students). These preliminary findings may provide a sound foundation for the increased integration of emerging technologies within traditional education sessions. This paper also shares some of the challenges and lessons learnt throughout the development and testing processes and provides recommendations for researchers looking to pursue a similar study.

  16. Aircraft observations and model simulations of concentration and particle size distribution in the Eyjafjallajökull volcanic ash cloud

    Directory of Open Access Journals (Sweden)

    H. F. Dacre

    2013-02-01

    Full Text Available The Eyjafjallajökull volcano in Iceland emitted a cloud of ash into the atmosphere during April and May 2010. Over the UK the ash cloud was observed by the FAAM BAe-146 Atmospheric Research Aircraft which was equipped with in-situ probes measuring the concentration of volcanic ash carried by particles of varying sizes. The UK Met Office Numerical Atmospheric-dispersion Modelling Environment (NAME has been used to simulate the evolution of the ash cloud emitted by the Eyjafjallajökull volcano during the period 4–18 May 2010. In the NAME simulations the processes controlling the evolution of the concentration and particle size distribution include sedimentation and deposition of particles, horizontal dispersion and vertical wind shear. For travel times between 24 and 72 h, a 1/t relationship describes the evolution of the concentration at the centre of the ash cloud and the particle size distribution remains fairly constant. Although NAME does not represent the effects of microphysical processes, it can capture the observed decrease in concentration with travel time in this period. This suggests that, for this eruption, microphysical processes play a small role in determining the evolution of the distal ash cloud. Quantitative comparison with observations shows that NAME can simulate the observed column-integrated mass if around 4% of the total emitted mass is assumed to be transported as far as the UK by small particles (< 30 μm diameter. NAME can also simulate the observed particle size distribution if a distal particle size distribution that contains a large fraction of < 10 μm diameter particles is used, consistent with the idea that phraetomagmatic volcanoes, such as Eyjafjallajökull, emit very fine particles.

  17. Volcanic ash leaching as a means of tracing the environmental impact of the 2011 Grímsvötn eruption, Iceland.

    Science.gov (United States)

    Cabré, J; Aulinas, M; Rejas, M; Fernandez-Turiel, J L

    2016-07-01

    The Grímsvötn volcanic eruption, from 21 to 28 May, 2011, was the largest eruption of the Grímsvötn Volcanic System since 1873, with a Volcanic Explosivity Index (VEI) of magnitude 4. The main geochemical features of the potential environmental impact of the volcanic ash-water interaction were determined using two different leaching methods as proxies (batch and vertical flow-through column experiments). Ash consists of glass with minor amounts of plagioclase, clinopyroxene, diopside, olivine and iron sulphide; this latter mineral phase is very rare in juvenile ash. Ash grain morphology and size reflect the intense interaction of magma and water during eruption. Batch and column leaching tests in deionised water indicate that Na, K, Ca, Mg, Si, Cl, S and F had the highest potential geochemical fluxes to the environment. Release of various elements from volcanic ash took place immediately through dissolution of soluble salts from the ash surface. Element solubilities of Grímsvötn ash regarding bulk ash composition were <1 %. Combining the element solubilities and the total estimated mass of tephra (7.29 × 10(14) g), the total inputs of environmentally important elements were estimated to be 8.91 × 10(9) g Ca, 7.02 × 10(9) g S, 1.10 × 10(9) g Cl, 9.91 × 10(8) g Mg, 9.91 × 10(8) g Fe and 1.45 × 10(8) g P The potential environmental problems were mainly associated with the release of F (5.19 × 10(9) g).

  18. The dispersal of ash during explosive eruptions from central volcanoes and calderas: an underestimated hazard for the central Mediterranean area

    Energy Technology Data Exchange (ETDEWEB)

    Sulpizio, Roberto [CIRISIVU, c/o Dipartimento Geomineralogico, via Orabona 4, 70125, Bari (Italy); Caron, Benoit; Zanchetta, Giovanni; Santacroce, Roberto [Dipartimento di Scienze della Terra, via S. Maria 53, 56126, Pisa (Italy); Giaccio, Biagio [Istituto di Geologia Ambientale e Geoingegneria, CNR, Via Bolognola 7, 00138 Rome (Italy); Paterne, Martine [LSCE, Laboratoire Mixte CEA-CNRS-UVSQ, Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex (France); Siani, Giuseppe [IDES-UMR 8148, Universite Paris-XI, 91405 Orsay Cedex (France)], E-mail: r.sulpizio@geomin.uniba.it

    2008-10-01

    The central Mediterranean area comprises some of the most active volcanoes of the northern hemisphere. Some of their names recall myths or events in human history: Somma-Vesuvius, Etna, Stromboli, Vulcano, Ischia and Campi Flegrei. These volcanoes are still active today, and produce both effusive and explosive eruptions. In particular, explosive eruptions can produce and disperse large amount of volcanic ash, which pose a threat to environment, economy and human health over a large part of the Mediterranean area. We present and discuss data of ash dispersal from some explosive eruptions of southern Italy volcanoes, which dispersed centimetre -thick ash blankets hundred of kilometres from the source, irrespective of the more limited dispersal of the respective coarse grained fallout and PDC deposits. The collected data also highlight the major role played by lower atmosphere winds in dispersal of ash from weak plumes and ash clouds that accompany PDC emplacement.

  19. Cristobalite in volcanic ash of the soufriere hills volcano, montserrat, british west indies

    Science.gov (United States)

    Baxter; Bonadonna; Dupree; Hards; Kohn; Murphy; Nichols; Nicholson; Norton; Searl; Sparks; Vickers

    1999-02-19

    Crystalline silica (mostly cristobalite) was produced by vapor-phase crystallization and devitrification in the andesite lava dome of the Soufriere Hills volcano, Montserrat. The sub-10-micrometer fraction of ash generated by pyroclastic flows formed by lava dome collapse contains 10 to 24 weight percent crystalline silica, an enrichment of 2 to 5 relative to the magma caused by selective crushing of the groundmass. The sub-10-micrometer fraction of ash generated by explosive eruptions has much lower contents (3 to 6 percent) of crystalline silica. High levels of cristobalite in respirable ash raise concerns about adverse health effects of long-term human exposure to ash from lava dome eruptions.

  20. Scale effect on the water retention curve of a volcanic ash

    Science.gov (United States)

    Damiano, Emilia; Comegna, Luca; Greco, Roberto; Guida, Andrea; Olivares, Lucio; Picarelli, Luciano

    2015-04-01

    During the last decades, a number of flowslides and debris flows triggered by intense rainfall affected a wide mountainous area surrounding the "Campania Plain" (southern Italy). The involved slopes are constituted by shallow unsaturated air-fall deposits of pyroclastic nature, which stability is guaranteed by the contribution of suction on shear strength. To reliably predict the onset of slope failure triggered by critical precipitations, is essential to understand the infiltration process and the soil suction distribution in such granular deposits. The paper presents the results of a series of investigation performed at different scales to determine the soil water retention curve (SWRC) of a volcanic ash which is an es-sential element in the analysis of the infiltration processes. The soil, a silty sand, was taken at Cervinara hillslope, 30 km East of Naples, just aside an area which had been subjected to a catastrophic flowslide. The SWRC was obtained through: - standard tests in a suction-controlled triaxial apparatus (SCTX), in a pressure plate and by the Wind technique (1968) on small natural and reconstituted soil samples (sample dimensions in the order of the 1•10-6m3) ; - infiltration tests on small-scale model slopes reconstituted in an instrumented flume (sample dimensions in the order of 5•10-3m3); - suction and water content monitoring at the automatic station installed along the Cervinara hillslope. The experimental points generally were defined by coupling suction measurements through jet-fill tensiometers and water content through TDR probes installed close each others. The obtained data sets individuate three different curves characterized by different shapes in the transition zone: at larger volume element dimensions correspond curves which exhibit steeper slopes and lower values of the water content in the transition zone. This result confirms the great role of the volume element dimensions in the de-termination of hydraulic characteristics

  1. Evaluation of rainfall infiltration characteristics in a volcanic ash soil by time domain reflectometry method

    Directory of Open Access Journals (Sweden)

    S. Hasegawa

    1997-01-01

    Full Text Available Time domain reflectometry (TDR was used to monitor soil water conditions and to evaluate infiltration characteristics associated with rainfall into a volcanic-ash soil (Hydric Hapludand with a low bulk density. Four 1 m TDR probes were installed vertically along a 6 m line in a bare field. Three 30 cm and one 60 cm probes were installed between the 1 m probes. Soil water content was measured every half or every hour throughout the year. TDR enabled prediction of the soil water content precisely even though the empirical equation developed by Topp et al. (1980 underestimated the water content. Field capacity, defined as the amount of water stored to a depth of 1 m on the day following heavy rainfall, was 640 mm. There was approximately 100 mm difference in the amount of water stored between field capacity and the driest period. Infiltration characteristics of rainfall were investigated for 36 rainfall events exceeding 10 mm with a total amount of rain of 969 mm out of an annual rainfall of 1192 mm. In the case of 25 low intensity rainfall events with less than 10 mm h-1 on to dry soils, the increase in the amount of water stored to a depth of 1 m was equal to the cumulative rainfall. For rain intensity in excess of 10 mm h-1, non-uniform infiltration occurred. The increase in the amount of water stored at lower elevation locations was 1.4 to 1.6 times larger than at higher elevation locations even though the difference in ground height among the 1 m probes was 6 cm. In the two instances when rainfall exceeded 100 mm, including the amount of rain in a previous rainfall event, the increase in the amount of water stored to a depth of 1 m was 65 mm lower than the total quantity of rain on the two occasions (220 mm; this indicated that 65 mm of water or 5.5% of the annual rainfall had flowed away either by surface runoff or bypass flow. Hence, approximately 95% of the annual rainfall was absorbed by the soil matrix but it is not possible to simulate

  2. Volcanic ash and its enigma: A case study from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.

    An ash layer occurs between 10-35 cm depth in sediment cores from the Central Indian Ocean basin. Morphology, major, trace and rare earth element composition of glass shards from the ash layer suggest that the Youngest Toba Tuff of ~74 ka from...

  3. The evaluation of chosen properties of ashes created by thermal utilization of hazardous and communal wastes

    Directory of Open Access Journals (Sweden)

    Damian Krawczykowski

    2005-11-01

    Full Text Available One of methods of the waste neutralization is their thermal transformation in suitable installations or devices in order to achieve the state, which is no longer dangerous for the human health and life or for the environment. In effect of the thermal transformation the “new” wastes are created, which, by law are suppose a to be utilized first. These wastes may be utilized if their properties are suitable. In the paper, the process of thermal utilization of hazardous and municipal wastes is presented, together with the investigation results of the grain composition, surface area, density and of the initial chemical analysis of the created ashes. The research of the grain composition was conducted by using the “Fritsch” apparatus. On the base of the grain composition, the surface area of ashes under investigation was determined, whereas the density was determined by using the helium pycnometer. The purpose of the research was to determine how the properties of ashes are changed and if the differences allow to use these ashes in future.

  4. A study of the effectiveness of the use of gypsum and volcanic ash against the stability of clay soil in terms of UCT and CBR values

    Science.gov (United States)

    Roesyanto; Iskandar, R.; Hastuty, IP; Lubis, AIU

    2018-02-01

    Soil stabilization is an effort to improve engineering properties of soil. The conventional soil stabilization is by adding additives to the soil such as Portland cement, lime, and bitumen. The clay stabilization research was done by adding gypsum and volcanic ash. The research purposes were to find out the value of engineering properties of clay due to the addition of 2% gypsum and 2% - 15% volcanic ash. The soil was classified as Clay - Low Plasticity (CL) based on USCS and was classified as A-7-6 (10) based on AASHTO classification system. The UCT values of original soil and original soil plus 2% gypsum were 1.40 kg/cm2 and 1.66 kg/cm2 respectively. The CBR soaked and unsoaked values of original soil were 4.44% and 6.28% correspondingly. Meanwhile, CBR soaked and CBR unsoaked values of original soil plus 2% gypsum were 6.74% and 8.02% respectively. The research results showed that the additives materials of gypsum and volcanic ash improved the engineering properties of clay. The UCT result from the stabilized soil by 2% gypsum and 10% volcanic ash gave value of 2.79 kg/cm2 (increased 99.28% from original soil). For CBR test, the most effective mixture were in variation of 2% gypsum and 9% volcanic ash which gave value of 9.07% (104.27% increase from original soil) for CBR soaked and 10.29% (63.85% increase from original soil) for CBR unsoaked. The stabilized soil with 2% gypsum and 9% volcanic ash was classified as CL based on USCS and was classified as A-6 (4) based on AASHTO classification system.

  5. Differentiation of volcanic ash-fall and water-borne detrital layers in the Eocene Senakin coal bed, Tanjung Formation, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, L F; Moore, T A [US Geological Survey, Reston, VA (USA). National Center

    1993-02-01

    The Sangsang deposit of the Eocene Senakin coal bed, Tanjung Formation, southeastern Kalimantan, Indonesia, contains 11 layers, which are thin ([lt] 5 cm) and high in ash ([gt] 70%). These layers are characterized by their pelitic macroscopic texture. Examination of eight of the layers by scanning-electron microscopy, energy-dispersive X-ray, and X-ray diffraction analyses show that they are composed primarily of fairly well-crystallized kaolinite, much of which is vermicular. Accessory minerals include abundant Ti oxide, rare-earth element-rich Ca and Al phosphates, quartz that luminesces in the blue colour range, and euhedral to subhedral pyrooxene, hornblende, zircon, and sanidine. Although this mineral suite is suggestive of volcanic ash-fall material, only the four pelitic layers in the middle of the bed are thought to be solely derived from volcanic ash-falls on the basis of diagnostic minerals, replaced glass shards, and lithostratigraphic relationships observed in core and outcrop. The three uppermost pelitic layers contain octahedral chromites, some quartz grains that luminesce in the organic colour range, and some quartz grains that contain two-phase fluid inclusions. These layers are interpreted to be derived from a combination of volcanic ash-fall material and hydrologic transport of volcaniclastic sediment. In contrast, the lowermost pelitic layer, which contains large, rounded FeMg-rich chromites, is thought to have been dominantly deposited by water. The source of the volcanic ash-fall material may have been middle Tertiary volcanism related to plate tectonic activity between Kalimantan and Sulawesi. The volcanic ash was deposited in sufficient amounts to be preserved as layers within the coal only in the northern portions of the Senakin region: the southern coal beds in the region do not contain pelitic layers. 29 refs., 8 figs., 3 tabs.

  6. UNCOVERING BURIED VOLCANOES: NEW DATA FOR PROBABILISTIC VOLCANIC HAZARD ASSESSMENT AT YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    F.V. Perry

    2005-01-01

    Basaltic volcanism poses a potential hazard to the proposed Yucca Mountain nuclear waste repository because multiple episodes of basaltic volcanism have occurred in the Yucca Mountain region (YMR) in the past 11 Ma. Intervals between eruptive episodes average about 1 Ma. Three episodes have occurred in the Quaternary at approximately 1.1 Ma (5 volcanoes), 350 ka (2 volcanoes), and 80 ka (1 volcano). Because Yucca Mountain lies within the Basin and Range Province, a significant portion of the pre-Quaternary volcanic history of the YMR may be buried in alluvial-filled basins. An exceptionally high-resolution aeromagnetic survey and subsequent drilling program sponsored by the U.S. Department of Energy (DOE) began in 2004 and is gathering data that will enhance understanding of the temporal and spatial patterns of Pliocene and Miocene volcanism in the region (Figure 1). DOE has convened a ten-member expert panel of earth scientists that will use the information gathered to update probabilistic volcanic hazard estimates originally obtained by expert elicitation in 1996. Yucca Mountain is a series of north-trending ridges of eastward-tilted fault blocks that are bounded by north to northeast-trending normal faults. Topographic basins filled with up to 500 m of alluvium surround it to the east, south and west. In the past several decades, nearly 50 holes have been drilled in these basins, mainly for Yucca Mountain Project Site Characterization and the Nye County Early Warning Drilling Program. Several of these drill holes have penetrated relatively deeply buried (300-400 m) Miocene basalt; a Pliocene basalt dated at 3.8 Ma was encountered at a relatively shallow depth (100 m) in the northern Amargosa Desert (Anomaly B in Figure 1). The current drilling program is the first to specifically target and characterize buried basalt. Based on the new aeromagnetic survey and previous air and ground magnetic surveys (Connor et al. 2000; O'Leary et al. 2002), at least eight drill

  7. Advances in Monitoring, Modelling and Forecasting Volcanic Ash Plumes over the Past 5 Years and the Impact on Preparedness from the London VAAC Perspective

    Science.gov (United States)

    Lee, D. S.; Lisk, I.

    2015-12-01

    Hosted and run by the Met Office, the London VAAC (Volcanic Ash Advisory Centre) is responsible for issuing advisories on the location and likely dispersion of ash clouds originating from volcanoes in the North East Atlantic, primarily from Iceland. These advisories and additional guidance products are used by the civil aviation community to make decisions on airspace flight management. London VAAC has specialist forecasters who use a combination of volcano source data, satellite-based, ground-based and aircraft observations, weather forecast models and dispersion models. Since the eruption of the Icelandic volcano Eyjafjallajökull in 2010, which resulted in the decision by many northern European countries to impose significant restrictions on the use of their airspace, London VAAC has been active in further developing its volcanic ash monitoring, modelling and forecasting capabilities, collaborating with research organisations, industry, other VAACs, Meteorological Services and the Volcano Observatory in Iceland. It has been necessary to advance operational capabilities to address evolving requirements, including for more quantitative assessments of volcanic ash in the atmosphere. Here we summarise advances in monitoring, modelling and forecasting of volcanic ash plumes over the past 5 years from the London VAAC perspective, and the realization of science into operations. We also highlight the importance of collaborative activities, such as the 'VAAC Best Practice' Workshop, where information is exchanged between all nine VAACs worldwide on the operational practices in monitoring and forecasting volcanic ash, with the aim of working toward a more harmonized service for decision makers in the aviation community. We conclude on an evaluation of how better we are prepared for the next significant ash-rich Icelandic eruption, and the challenges still remaining.

  8. Inclusion of ash and SO2 emissions from volcanic eruptions in WRF-Chem: development and some applications

    Directory of Open Access Journals (Sweden)

    M. Stuefer

    2013-04-01

    Full Text Available We describe a new functionality within the Weather Research and Forecasting (WRF model with coupled Chemistry (WRF-Chem that allows simulating emission, transport, dispersion, transformation and sedimentation of pollutants released during volcanic activities. Emissions from both an explosive eruption case and a relatively calm degassing situation are considered using the most recent volcanic emission databases. A preprocessor tool provides emission fields and additional information needed to establish the initial three-dimensional cloud umbrella/vertical distribution within the transport model grid, as well as the timing and duration of an eruption. From this source condition, the transport, dispersion and sedimentation of the ash cloud can be realistically simulated by WRF-Chem using its own dynamics and physical parameterization as well as data assimilation. Examples of model applications include a comparison of tephra fall deposits from the 1989 eruption of Mount Redoubt (Alaska and the dispersion of ash from the 2010 Eyjafjallajökull eruption in Iceland. Both model applications show good coincidence between WRF-Chem and observations.

  9. A Middle Pennsylvanian (Bolsovian) peat-forming forest preserved in situ in volcanic ash of the Whetstone Horizon in the Radnice Basin, Czech Republic

    OpenAIRE

    Opluštil, Stanislav; Pšenicka, Josef; Libertín, Milan; Bashforth, Arden Roy; Šimunek, Zbynek; Drábková, Jana; Dašková, Jirina

    2009-01-01

    Udgivelsesdato: 2009 The precursory mire of the Middle Pennsylvanian (Bolsovian) Lower Radnice Coal was buried in situ by volcanic ash, preserving the taxonomic composition, spatial distribution, vertical strati¿cation, and synecology of this peat-forming ecosystem in extraordinary detail. Plant fossil remains represent the pre- eruption vegetation of the swamp, which resulted from accumulation of peat in a high-ash, planar (rheotrophic) mire situated in a narrow palaeovalley containing an...

  10. A database of volcanic hazards and their physical impacts to critical infrastructure

    Science.gov (United States)

    Wilson, Grant; Wilson, Thomas; Deligne, Natalia

    2013-04-01

    Approximately 10% of the world's population lives within 100 km of historically active volcanoes. Consequently, considerable critical infrastructure is at risk of being affected by volcanic eruptions, where critical infrastructure includes: electricity and wastewater networks; water supply systems; transport routes; communications; and buildings. Appropriate risk management strategies are required to minimise the risk to infrastructure, which necessitates detailed understanding of both volcanic hazards and infrastructure parameters and vulnerabilities. To address this, we are developing a database of the physical impacts and vulnerability of critical infrastructure observed during/following historic eruptions, placed in the context of event-specific volcanic hazard and infrastructure parameters. Our database considers: volcanic hazard parameters for each case study eruption (tephra thickness, dynamic pressure of PDCs, etc.); inventory of infrastructure elements present within the study area (geographical extent, age, etc.); the type and number of impacts and disruption caused to particular infrastructure sectors; and the quantified assessment of the vulnerability of built environments. Data have been compiled from a wide range of literature, focussing in particular on impact assessment studies which document in detail the damage sustained by critical infrastructure during a given eruption. We are creating a new vulnerability ranking to quantify the vulnerability of built environments affected by volcanic eruptions. The ranking is based upon a range of physical impacts and service disruption criteria, and is assigned to each case study. This ranking will permit comparison of vulnerabilities between case studies as well as indicate expected vulnerability during future eruptions. We are also developing hazard intensity thresholds indicating when specific damage states are expected for different critical infrastructure sectors. Finally, we have developed a data quality

  11. Probabilistic short-term volcanic hazard in phases of unrest: A case study for tephra fallout

    Science.gov (United States)

    Selva, Jacopo; Costa, Antonio; Sandri, Laura; Macedonio, Giovanni; Marzocchi, Warner

    2014-12-01

    During volcanic crises, volcanologists estimate the impact of possible imminent eruptions usually through deterministic modeling of the effects of one or a few preestablished scenarios. Despite such an approach may bring an important information to the decision makers, the sole use of deterministic scenarios does not allow scientists to properly take into consideration all uncertainties, and it cannot be used to assess quantitatively the risk because the latter unavoidably requires a probabilistic approach. We present a model based on the concept of Bayesian event tree (hereinafter named BET_VH_ST, standing for Bayesian event tree for short-term volcanic hazard), for short-term near-real-time probabilistic volcanic hazard analysis formulated for any potential hazardous phenomenon accompanying an eruption. The specific goal of BET_VH_ST is to produce a quantitative assessment of the probability of exceedance of any potential level of intensity for a given volcanic hazard due to eruptions within restricted time windows (hours to days) in any area surrounding the volcano, accounting for all natural and epistemic uncertainties. BET_VH_ST properly assesses the conditional probability at each level of the event tree accounting for any relevant information derived from the monitoring system, theoretical models, and the past history of the volcano, propagating any relevant epistemic uncertainty underlying these assessments. As an application example of the model, we apply BET_VH_ST to assess short-term volcanic hazard related to tephra loading during Major Emergency Simulation Exercise, a major exercise at Mount Vesuvius that took place from 19 to 23 October 2006, consisting in a blind simulation of Vesuvius reactivation, from the early warning phase up to the final eruption, including the evacuation of a sample of about 2000 people from the area at risk. The results show that BET_VH_ST is able to produce short-term forecasts of the impact of tephra fall during a rapidly

  12. Hazard Potential of Volcanic Flank Collapses Raised by New Megatsunami Evidence

    Science.gov (United States)

    Ramalho, R. S.; Winckler, G.; Madeira, J.; Helffrich, G. R.; Hipólito, A.; Quartau, R.; Adena, K.; Schaefer, J. M.

    2015-12-01

    Large-scale gravitational flank collapses of steep volcanic islands are hypothetically capable of triggering megatsunamis with highly catastrophic effects. Yet evidence for the existence and impact of collapsed-triggered megatsunamis and their run-up heights remains scarce and/or is highly contentious. Therefore a considerable debate still exists over the potential magnitude of collapse-triggered tsunamis and their inherent hazard. In particular, doubts still remain whether or not large-scale flank failures typically generate enough volume flux to result in megatsunamis, or alternatively operate by slow-moving or multiple smaller episodic failures with much lower tsunamigenic potential. Here we show that one of the tallest and most active oceanic volcanoes on Earth - Fogo, in the Cape Verde Islands - collapsed catastrophically and triggered a megatsunami with devastating near-field effects ~73,000 years ago. Our deductions are based on the recent discovery and cosmogenic 3He dating of tsunamigenic deposits - comprising fields of stranded megaclasts, chaotic conglomerates, and sand sheets - found on the adjacent Santiago Island, which attest to the impact of this megatsunami and document wave run-up heights exceeding 270 m. The evidence reported here implies that Fogo's flank failure involved at least one sudden and voluminous event that resulted in a megatsunami, in contrast to what has been suggested before. Our work thus provides another line of evidence that large-scale flank failures at steep volcanic islands may indeed happen catastrophically and are capable of triggering tsunamis of enormous height and energy. This new line of evidence therefore reinforces the hazard potential of volcanic island collapses and stands as a warning that such hazard should not be underestimated, particularly in areas where volcanic island edifices are close to other islands or to highly populated continental margins.

  13. Chemical signature of two Permian volcanic ash deposits within a bentonite bed from Melo, Uruguay

    Directory of Open Access Journals (Sweden)

    Liane M. Calarge

    2006-09-01

    Full Text Available A Permian bentonite deposit at Melo, Uruguay is composed of a calcite-cemented sandstone containing clay pseudomorphs of glass shards (0-0.50 m overlying a pink massive clay deposit (0.50-2.10m. The massive bed is composed of two layers containing quartz and smectite or pure smectite respectively. The smectite is remarkably homogeneous throughout the profile: it is a complex mixed layer composed of three layer types whose expandability with ethylene glycol (2EG 1EG or 0EG sheets in the interlayer zone which correspond to low-, medium- and high-charge layers respectively varies with the cation saturating the interlayer zone. The smectite homogeneity through the profile is the signature of an early alteration process in a lagoonal water which was over saturated with respect to calcite. Compaction during burial has made the bentonite bed a K-depleted closed system in which diagenetic illitization was inhibited. Variations in major, REE and minor element abundances throughout the massive clay deposit suggest that it originated from two successive ash falls. The incompatible element abundances are consistent with that of a volcanic glass fractionated from a rhyolite magma formed in a subduction/collision geological context.Um depósito Permiano de bentonita em Melo, Uruguai,é composto por um arenito com cimento calcítico contendo pseudomorfos de argila sobre detritos vítreos(0-0.50 m superpostos a um deposito maciço de argila rosado (0.50-2.10 m. A camada maciça é composta por dois níveis contendo quartzo e esmectita ou esmectita pura, respectivamente. A homogeneidade de esmectita ao longo do perfil é notável: trata-se de um interestratificado composto de três tipos de camadas, cuja expansibilidade com etileno-glicol (folhas 2EG, 1EG ou 0EG na zona interfoliar correspondentes a camadas com baixa, média e alta carga, respectivamente variam com o tipo de cátion que satura a zona interfoliar. A homogeneidade da esmectita ao longo do perfil

  14. Characterization of a volcanic ash episode in southern Finland caused by the Grimsvötn eruption in Iceland in May 2011

    Directory of Open Access Journals (Sweden)

    V.-M. Kerminen

    2011-12-01

    Full Text Available The volcanic eruption of Grimsvötn in Iceland in May 2011 affected surface-layer air quality at several locations in Northern Europe. In Helsinki, Finland, the main pollution episode lasted for more than 8 h around the noon of 25 May. We characterized this episode by relying on detailed physical, chemical and optical aerosol measurements. The analysis was aided by air mass trajectory calculations, satellite measurements, and dispersion model simulations. During the episode, volcanic ash particles were present at sizes from less than 0.5 μm up to sizes >10 μm. The mass mean diameter of ash particles was a few μm in the Helsinki area, and the ash enhanced PM10 mass concentrations up to several tens of μg m−3. Individual particle analysis showed that some ash particles appeared almost non-reacted during the atmospheric transportation, while most of them were mixed with sea salt or other type of particulate matter. Also sulfate of volcanic origin appeared to have been transported to our measurement site, but its contribution to the aerosol mass was minor due the separation of ash-particle and sulfur dioxide plumes shortly after the eruption. The volcanic material had very little effect on PM1 mass concentrations or sub-micron particle number size distributions in the Helsinki area. The aerosol scattering coefficient was increased and visibility was slightly decreased during the episode, but in general changes in aerosol optical properties due to volcanic aerosols seem to be difficult to be distinguished from those induced by other pollutants present in a continental boundary layer. The case investigated here demonstrates clearly the power of combining surface aerosol measurements, dispersion model simulations and satellite measurements in analyzing surface air pollution episodes caused by volcanic eruptions. None of these three approaches alone would be sufficient to forecast, or even to unambiguously identify

  15. Differentiation of volcanic ash-fall and water-borne detrital layers in the Eocene Senakin coal bed, Tanjung Formation, Indonesia

    Science.gov (United States)

    Ruppert, L.F.; Moore, T.A.

    1993-01-01

    The Sangsang deposit of the Eocene Senakin coal bed, Tanjung Formation, southeastern Kalimantan, Indonesia, contains 11 layers, which are thin ( 70%). These layers are characterized by their pelitic macroscopic texture. Examination of eight of the layers by scanning-electron microscopy, energy-dispersive X-ray, and X-ray diffraction analyses show that they are composed primarily of fairly well-crystallized kaolinite, much of which is vermicular. Accessory minerals include abundant Ti oxide, rare-earth element-rich Ca and A1 phosphates, quartz that luminescences in the blue color range, and euhedral to subhedral pyroxene, hornblende, zircon, and sanidine. Although this mineral suite is suggestive of volcanic ash-fall material, only the four pelitic layers in the middle of the bed are thought to be solely derived from volcanic ash-falls on the basis of diagnostic minerals, replaced glass shards, and lithostratigraphic relationships observed in core and outcrop. The three uppermost pelitic layers contain octahedral chromites, some quartz grains that luminesce in teh orange color range, and some quartz grains that contain two-phase fluid inclusions. These layers are interpreted to be derived from a combination of volcanic ash-fall material and hydrologic transport of volcaniclastic sediment. In contrast, the lowermost pelitic layer, which contains large, rounded FeMg-rich chromites, is thought to have been dominantly deposited by water. The source of the volcanic ash-fall material may have been middle Tertiary volcanism related to plate tectonic activity between Kalimantan and Sulawesi. The volcanic ash was deposited in sufficient amounts to be preserved as layers within the coal only in the northern portions of the Senakin region: the southern coal beds in the region do not contain pelitic layers. ?? 1993.

  16. Hazards of volcanic lakes: analysis of Lakes Quilotoa and Cuicocha, Ecuador

    Directory of Open Access Journals (Sweden)

    G. Gunkel

    2008-01-01

    Full Text Available Volcanic lakes within calderas should be viewed as high-risk systems, and an intensive lake monitoring must be carried out to evaluate the hazard of potential limnic or phreatic-magmatic eruptions. In Ecuador, two caldera lakes – Lakes Quilotoa and Cuicocha, located in the high Andean region >3000 a.s.l. – have been the focus of these investigations. Both volcanoes are geologically young or historically active, and have formed large and deep calderas with lakes of 2 to 3 km in diameter, and 248 and 148 m in depth, respectively. In both lakes, visible gas emissions of CO2 occur, and an accumulation of CO2 in the deep water body must be taken into account.

    Investigations were carried out to evaluate the hazards of these volcanic lakes, and in Lake Cuicocha intensive monitoring was carried out for the evaluation of possible renewed volcanic activities. At Lake Quilotoa, a limnic eruption and diffuse CO2 degassing at the lake surface are to be expected, while at Lake Cuicocha, an increased risk of a phreatic-magmatic eruption exists.

  17. Living in Harmony with Disaster: Exploring Volcanic Hazard Vulnerability in Indonesia

    Directory of Open Access Journals (Sweden)

    Sea Eun Cho

    2016-08-01

    Full Text Available This article illustrates the multi-faceted notion of hazard vulnerability and the complicated relations a community has with a hazardous area based on a joint urban planning and design studio between Seoul National University and Diponegoro University in 2014. The study focused on an area in Central Java, Indonesia, surrounded by four active volcanic mountains, and explored the economic, environmental and social vulnerability associated with the site. Although initially the study focused on drawing up and improving the relocation plan, it was soon discovered that eliminating environmental vulnerability by relocating residents to new sites may in fact increase their economic vulnerability. This led the study to embrace the concept of living in harmony with disaster. In conclusion, the results of the study are discussed in terms recognizing environmental hazards as a vehicle for understanding local perceptions, and utilizing these perceptions to suggest mitigation measures that are more responsive to the site at risk.

  18. PENENTUAN KOMPOSISI KIMIA ABU VULKANIK DARI ERUPSI GUNUNG MERAPI (Determination of Chemical Composition of Volcanic Ash from Merapi Mt. Eruption

    Directory of Open Access Journals (Sweden)

    Endang Tri Wahyuni

    2012-07-01

     In order to identify the utilizing potential and the environmental effect of ash from Merapi Mount eruption in 2010, determination of its chemical composition has been performed, including major, minor and trace elements. In addition,  pH of the ash, and iron concentration in rivers, wells, and  tower for water collection were also determined. The ash samples was taken in December 2010- January 2011, after the eruption stopped, located in Magelang, Sleman, and Klaten regions, in various distances from the summit.The results of the determination show that the Merapi Mt. ash contains major (Al, Si, Ca, and  Fe, minor (K, Mg, Mn, Na, P, S, and Ti, and  trace elements (Au ,As, Ba, Co, Cr, Cu, Mo, Ni, Pb, S, Sb, Sn, Sr, V, Zn, dan Zr.   The elements can be categorized into  widely used elements, i.e.   Al, Si, Ca, Fe, Ti, V, and  Zn, and economic high value element,  i.e.  Au, as well as  the environment and health negative affect elements  such as As, Cr, Cr, Cu, Pb, Ni, and S. It is also found that the  ash taken from different locations with farther distances from the mountain, has similar chemical composition.  Moreover, based on the large content of Al, Ca, and  Si  (around 56%, 4%, and  18 %respectively,  enabling the ash to be used as raw material for  cement or other cement based materials production. In addition, since Ti and Fe is also found in adequate level in the ash, it is also possible to extract the metals to get the pure one having wide and valuable functions. The presence of K and P, as fertilizer components, in the ash with significant amount, it is also interesting to evaluate the effect of the ash covering the soil on its fertile. However, the low pH of the ash is also observed that is due  to the presence of S in considerable amount, leading to the soil becomes unfertile. Although the hazard heavy (Pb, Cd, Cr, Cu, and Ni are found in the ash, the contamination of the metals in the rivers and wells are not detected

  19. Geological hazards in the Azores archipelago: Volcanic terrain instability and human vulnerability

    Science.gov (United States)

    Malheiro, A.

    2006-08-01

    The islands of the Azores archipelago are geologically young and located in a tectonically and volcanically active region. Not surprisingly, the islands are subject to many geological hazards, including earthquakes, landslides, and coastal erosion; some selected examples are discussed in this paper. As demonstrated by two recent earthquakes (1980, Terceira; 1998, Faial), the principal damage was related to one or more of these factors: (1) unsafe location of structures near faults; (2) unstable foundation soils; (3) poor quality of building materials and construction methods; (4) disregard of building codes; and (5) lack of building maintenance. Major landsliding events in the Azores (e.g., Ponta da Fajã, Ribeira Quente, and Fajã dos Cubres) typically are triggered by intense, long-duration precipitation and (or) earthquake-induced ground shaking. The loose, unconsolidated nature of the rocks and soils of these volcanic islands is another significant contributing factor, sometimes aggravated by ground instability caused by human activity. Coastal erosion is prevalent on the north coast of São Miguel and the south coast of Faial, mostly resulting from natural circumstances (e.g., steepness of cliffs, differential erosion, intense wave action during storms) and also from human activity (e.g., poorly engineered drainage works on cliff faces). Where severe, coastal erosion can pose a risk to populations and societal infrastructures situated near the tops of the seacliffs. To mitigate the risk of these and other geological hazards in the Azores, it is necessary to (1) prepare hazards and risks maps of the affected areas; (2) adopt prudent land-use planning that considers the hazards; (3) upgrade the building codes in the hazardous areas; (4) initiate slope-stabilization programs; (5) preserve the natural environmental integrity of the regions; and (6) educate the affected populace and governmental officials about the possibilities and consequences of hazardous

  20. Field Courses for Volcanic Hazards Mapping at Parícutinand Jorullo Volcanoes (Mexico)

    Science.gov (United States)

    Victoria Morales, A.; Delgado Granados, H.; Roberge, J.; Farraz Montes, I. A.; Linares López, C.

    2007-05-01

    During the last decades, Mexico has suffered several geologic phenomena-related disasters. The eruption of El Chichón volcano in 1982 killed >2000 people and left a large number of homeless populations and severe economic damages. The best way to avoid and mitigate disasters and their effects is by making geologic hazards maps. In volcanic areas these maps should show in a simplified fashion, but based on the largest geologic background possible, the probable (or likely) distribution in time and space of the products related to a variety of volcanic processes and events, according to likely magnitude scenarios documented on actual events at a particular volcano or a different one with similar features to the volcano used for calibration and weighing geologic background. Construction of hazards maps requires compilation and acquisition of a large amount of geological data in order to obtain the physical parameters needed to calibrate and perform controlled simulation of volcanic events under different magnitude-scenarios in order to establish forecasts. These forecasts are needed by the authorities to plan human settlements, infrastructure, and economic development. The problem is that needs are overwhelmingly faster than the adjustments of university programs to include courses. At the Earth Science División of the Faculty of Engineering at the Universidad Nacional Autónoma de México, the students have a good background that permits to learn the methodologies for hazards map construction but no courses on hazards evaluations. Therefore, under the support of the university's Program to Support Innovation and Improvement of Teaching (PAPIME, Programa de Apoyo para la Innovación y Mejoramiento de la Enseñanza) a series of field-based intensive courses allow the Earth science students to learn what kind of data to acquire, how to record, and process in order to carry out hazards evaluations. This training ends with hazards maps that can be used immediately by the

  1. Sedimentary cycles and volcanic ash beds in the Lower Pliocene lacustrine succession of Ptolemais (NW Greece): discrepancy between 40 Ar/39 Ar and astronomical ages

    NARCIS (Netherlands)

    Steenbrink, J.; Vugt, N. van; Hilgen, F.J.; Wijbrans, J.R.; Meulenkamp, J.E.

    1999-01-01

    A high-resolution cyclostratigraphy for the rhythmically bedded lignite-marl sequences of the Lower Pliocene Ptole-mais Formation is combined with 40 Ar= 39 Ar dating results of intercalated volcanic ash beds. Detailed field reconnaissance in three open-pit lignite mines reveals three end-member

  2. LAV@HAZARD: a web-GIS interface for volcanic hazard assessment

    Directory of Open Access Journals (Sweden)

    Giovanni Gallo

    2011-12-01

    Full Text Available Satellite data, radiative power of hot spots as measured with remote sensing, historical records, on site geological surveys, digital elevation model data, and simulation results together provide a massive data source to investigate the behavior of active volcanoes like Mount Etna (Sicily, Italy over recent times. The integration of these heterogeneous data into a coherent visualization framework is important for their practical exploitation. It is crucial to fill in the gap between experimental and numerical data, and the direct human perception of their meaning. Indeed, the people in charge of safety planning of an area need to be able to quickly assess hazards and other relevant issues even during critical situations. With this in mind, we developed LAV@HAZARD, a web-based geographic information system that provides an interface for the collection of all of the products coming from the LAVA project research activities. LAV@HAZARD is based on Google Maps application programming interface, a choice motivated by its ease of use and the user-friendly interactive environment it provides. In particular, the web structure consists of four modules for satellite applications (time-space evolution of hot spots, radiant flux and effusion rate, hazard map visualization, a database of ca. 30,000 lava-flow simulations, and real-time scenario forecasting by MAGFLOW on Compute Unified Device Architecture.

  3. Volcanic hazard assessment for the Canary Islands (Spain using extreme value theory

    Directory of Open Access Journals (Sweden)

    R. Sobradelo

    2011-10-01

    Full Text Available The Canary Islands are an active volcanic region densely populated and visited by several millions of tourists every year. Nearly twenty eruptions have been reported through written chronicles in the last 600 yr, suggesting that the probability of a new eruption in the near future is far from zero. This shows the importance of assessing and monitoring the volcanic hazard of the region in order to reduce and manage its potential volcanic risk, and ultimately contribute to the design of appropriate preparedness plans. Hence, the probabilistic analysis of the volcanic eruption time series for the Canary Islands is an essential step for the assessment of volcanic hazard and risk in the area. Such a series describes complex processes involving different types of eruptions over different time scales. Here we propose a statistical method for calculating the probabilities of future eruptions which is most appropriate given the nature of the documented historical eruptive data. We first characterize the eruptions by their magnitudes, and then carry out a preliminary analysis of the data to establish the requirements for the statistical method. Past studies in eruptive time series used conventional statistics and treated the series as an homogeneous process. In this paper, we will use a method that accounts for the time-dependence of the series and includes rare or extreme events, in the form of few data of large eruptions, since these data require special methods of analysis. Hence, we will use a statistical method from extreme value theory. In particular, we will apply a non-homogeneous Poisson process to the historical eruptive data of the Canary Islands to estimate the probability of having at least one volcanic event of a magnitude greater than one in the upcoming years. This is done in three steps: First, we analyze the historical eruptive series to assess independence and homogeneity of the process. Second, we perform a Weibull analysis of the

  4. Bioaccumulation of selenium from coal fly ash and associated environmental hazards in a freshwater fish community

    International Nuclear Information System (INIS)

    Besser, J.; Giesy, J.; Brown, R.; Herdt, T.; Dawson, G.

    1995-01-01

    Bioaccumulation of Se by fish from Pigeon River and Pigeon Lake, Michigan, which receive inputs of Se from a coal fly-ash disposal facility, was studied to assess potential hazards of Se toxicity to fish and wildlife. Se concentrations in fish from sites receiving Se inputs from fly ash disposal ponds were significantly greater than concentrations in fish from upstream sites, which were near normal background concentrations. Se bioaccumulation differed substantially among fish species, especially in the most contaminated site, where whole-body Se concentrations for the five species analyzed ranged from 1.4 to 3.8 microg/g (wet wt.). The top predator in the community, northern pike (Esox lucius), had Se concentrations less than those in likely prey species. Among lower-order consumers, Se concentrations were greater in limnetic species (spottail shiner, Notropis hudsonius, and yellow perch, Perca flavescens), than in benthic species (white sucker, Catostomus commersoni, and rock bass, Ambloplites rupestris). Se concentrations in tissues of fish from the lower Pigeon River and Pigeon Lake approached, but did not exceed lowest observable effect concentrations (LOAECs) for Se in tissues of sensitive fish species. However, Se concentrations in several fish species exceeded LOAECs for dietary Se exposure of sensitive species of birds and mammals, suggesting that consumption of fish in these areas may pose a hazard to piscivorous wildlife

  5. Ash cloud aviation advisories

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Ellis, J.S. [Lawrence Livermore National Lab., CA (United States); Schalk, W.W.; Nasstrom, J.S. [EG and G, Inc., Pleasanton, CA (United States)

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  6. Agronomic behavior of phosphoric rock from Bahia Inglesa using isotopic techniques. 2. Greenhouse experiment in three volcanic ash soils

    International Nuclear Information System (INIS)

    Pino N, I.; Casas G, L.

    1989-01-01

    With the aim to evaluate the behaviour of phosphoric rock in regard to the sorption capacity from three volcanic ash soils, a greenhouse trial was carried out. The isotopic dilution method with triple superphosphate labeled P32 (TSP-32) was used. Total dry matter, P total was determined by colorimetry and the liquid scintillation method for P32 was used. The evaluation of the rock was measured through different isotopical parameters such as A value and P derived from the rock. The behaviour of this material was affected by the different properties of the soils mainly on account of the diverse sorption capacity of them giving an inverse relation among sorption and effectiveness of the rock. The results showed a higher efficiency of TSP for the three soils compared with the phosphoric rock either concentrated or not. (author)

  7. Anomalously high porosity in subduction inputs to the Nankai Trough (SW Japan) potentially caused by volcanic ash and pumice

    Science.gov (United States)

    Huepers, A.; Ikari, M.; Underwood, M.; Kopf, A.

    2013-12-01

    At convergent margins, the sedimentary section seaward of the trench on the subducting oceanic lithosphere provides the source material for accretionary prisms and eventually becomes the host rock of the plate boundary megathrust. The mechanical properties of the sediments seaward of the subduction zone have therefore a first order control on subduction zone forearc mechanics and hydrogeology. At the Nankai Trough (SW Japan) the majority of sediment approaching the subduction zone is clay-rich. Scientific drilling expeditions in the framework of the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP) have revealed an anomalous zone of high porosity in a major lithologic unit known as the Upper Shikoku Basin facies (USB), which is associated with elevated volcanic ash content and high amounts of silica in the interstitial water. The existence of the high porosity zone has previously been associated with advanced silica cementation, driven by the dual diagenetic transition of opal-A to opal-CT, and opal-CT to quartz. However, temperature estimates from recent drilling expeditions offshore the Kii peninsula reveal different in situ temperatures at the proposed diagenetic boundary in the Shikoku Basin. Furthermore, laboratory measurements using core samples from the USB show that cohesive strength is not elevated in the high porosity zone, suggesting that a process other than cementation may be responsible. The USB sediment is characterized by abundant volcanic ash and pumice, therefore the high porosity zone in the USB may be closely linked to the mechanical behavior of this phase. We conducted consolidation tests in the range 0.1 to 8 MPa effective vertical stress on artificial ash-smectite and pumice-smectite mixtures, as well as intact and remolded natural samples from the IODP Sites C0011 and C0012 to investigate the role of the volcanic constituent on porosity loss with progressive burial. Our results show that both remolded and intact

  8. P retention and cation exchange as affected by nanoparticle of volcanic ash and application of phosphate solubilizing bacteria on Andisol Ciater, West Java, Indonesia

    Science.gov (United States)

    Fitriatin, Betty Natalie; Arifin, Mahfud; Devnita, Rina; Yuniarti, Anni; Haryanto, Rachmat; Setiabudi, Mariska Amalia

    2018-02-01

    Andisols is a soil with high retention of phosphate and cannot be absorbed by plants. Some of soil bacteria have the ability to solubilize P and make it available to growing plants are known phosphate solubilizing bacteria (PSB). The research aims to study the effect of nanoparticle volcanic ash and phosphate solubilising bacteria (PSB) on P retention and cation exchangeable (CEC) in Andisol Ciater, West Java. This research was conducted from October 2016 to March 2017. The design of the analysis used was a complete randomized factorial design with two factors. The first factor was nanoparticle volcanic ash (a) consists of four dosages based on weight percentage (0%, 2.5%, 5.0% and 7.5%) and the second factor was PSB (h) consists of two dosages (without biofertilizer and with biofertilizer 1 g/Kg soil). The combination treatments replicated three times were incubated for 4 months. Soil samples were analyzed at first month and fourth month after incubation. The results showed that all dosages of nanoparticle volcanic ash and application of PSB decreased P retention by 75-77% at the first month after incubation. Nanoparticle volcanic ash dosage decreased to 7.5% the P retention reaches 90.36% in the fourth month after incubation. The nanoparticle of volcanic ash dosage 7.5% increased with CEC (24.787 cmol.kg-1 and 16.555 cmol.kg-1) at the first and fourth months after incubation. The application of PSB increased the CEC (28.606 cmol.kg-1) in the first month after incubation.

  9. The effect of steel slag as a coarse aggregate and Sinabung volcanic ash a filler on high strength concrete

    Science.gov (United States)

    Karolina, R.; Putra, A. L. A.

    2018-02-01

    The Development of concrete technology is continues to grow. The requisite for efficient constructions that are often viewed in terms of concrete mechanical behavior, application on the field, and cost estimation of implementation increasingly require engineers to optimize construction materials, especially for concrete materials. Various types of concrete have now been developed according to their needs, such as high strength concrete. On high strength concrete design, it is necessary to consider several factors that will affect the reach of the quality strength, Those are cement, water cement ratio (w/c), aggregates, and proper admixture. In the use of natural mineral, it is important for an engineer to keep an eye on the natural conditions that have been explored. So the selection of aggregates as possible is a material that is not causing nature destruction. On this experiment the use of steel slag from PT.Growth Sumatra Industry as a substitute of coarse and fine aggregate, and volcanic ash of mount Sinabung as microsilka in concrete mixture substituted to create high strength concrete that is harmless for the environment. The use of mount sinabung volcanic ash as microsilika coupled with the use of Master Glenium Sky 8614 superplasticizer. This experiment intend to compare high strength concrete based slag steel as the main constituent aggregates and high strength concrete with a conventional mixture. The research result for 28 days old concrete shows that conventional concrete compressive strength is 67.567 MPa, slag concrete 75.958 Mpa, conventional tensile strength 5.435 Mpa while slag concrete 5.053 Mpa, conventional concrete bending strength 44064.96 kgcm while concrete slag 51473.94 kgcm and modulus of conventional concrete fracture 124.978 kg / cm2 while slag concrete 145.956 kg / cm2. Both concrete slump values shows similar results due to the use of superplasticizer.

  10. Runoff and Erosion Effects after Prescribed Fire and Wildfire on Volcanic Ash-Cap Soils

    Science.gov (United States)

    P. R. Robichaud; F. B. Pierson; R. E. Brown

    2007-01-01

    After prescribed burns at three locations and one wildfire, rainfall simulations studies were completed to compare postfire runoff rates and sediment yields on ash-cap soil in conifer forest regions of northern Idaho and western Montana. The measured fire effects were differentiated by burn severity (unburned, low, moderate, and high). Results...

  11. Physicochemical and toxicological profiling of ash from the 2010 and 2011 eruptions of Eyjafjallajökull and Grímsvötn volcanoes, Iceland using a rapid respiratory hazard assessment protocol.

    Science.gov (United States)

    Horwell, C J; Baxter, P J; Hillman, S E; Calkins, J A; Damby, D E; Delmelle, P; Donaldson, K; Dunster, C; Fubini, B; Kelly, F J; Le Blond, J S; Livi, K J T; Murphy, F; Nattrass, C; Sweeney, S; Tetley, T D; Thordarson, T; Tomatis, M

    2013-11-01

    , despite substantial differences in the sample mineralogy and eruptive styles. The value of the pro-inflammatory profiles in differentiating the potential respiratory health hazard of volcanic ashes remains uncertain in a protocol designed to inform public health risk assessment, and further research on their role in volcanic crises is warranted. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Lidar observation and model simulation of a volcanic-ash-induced cirrus cloud during the Eyjafjallajökull eruption

    Directory of Open Access Journals (Sweden)

    C. Rolf

    2012-11-01

    Full Text Available Heterogeneous ice formation induced by volcanic ash from the Eyjafjallajökull volcano eruption in April 2010 is investigated based on the combination of a cirrus cloud observed with a backscatter lidar over Jülich (western Germany and model simulations along backward trajectories. The microphysical properties of the cirrus cloud could only be represented by the microphysical model under the assumption of an enhanced number of efficient ice nuclei originating from the volcanic eruption. The ice nuclei (IN concentration determined by lidar measurements directly before and after cirrus cloud occurrence implies a value of around 0.1 cm−3 (in comparison normal IN conditions: 0.01 cm−3. This leads to a cirrus cloud with rather small ice crystals having a mean radius of 12 μm and a modification of the ice particle number (0.08 cm−3 instead of 3 × 10−4 cm−3 under normal IN conditions. The effectiveness of ice nuclei was estimated by the use of the microphysical model and the backward trajectories based on ECMWF data, establishing a freezing threshold of around 105% relative humidity with respect to ice in a temperature range from −45 to −55 °C . Only with these highly efficient ice nuclei was it possible for the cirrus cloud to be formed in a slightly supersaturated environment.

  13. Ponderosa pine growth response to soil strength in the volcanic ash soils of central Oregon.

    Science.gov (United States)

    R.T. Parker; D.A. Maguire; D.D. Marshall; P. Cochran

    2007-01-01

    Mechanical harvesting and associated logging activities have the capacity to compact soil across large portions of harvest units. Two thinning treatments (felled only versus felled and skidded) in 70- to 80-year-old ponderosa pine stands were replicated at three sites with volcanic soils in central Oregon. Growth in diameter, height, and volume of residual trees were...

  14. MED SUV TASK 6.3 Capacity building and interaction with decision makers: Improving volcanic risk communication through volcanic hazard tools evaluation, Campi Flegrei Caldera case study (Italy)

    Science.gov (United States)

    Nave, Rosella; Isaia, Roberto; Sandri, Laura; Cristiani, Chiara

    2016-04-01

    In the communication chain between scientists and decision makers (end users), scientific outputs, as maps, are a fundamental source of information on hazards zoning and the related at risk areas definition. Anyway the relationship between volcanic phenomena, their probability and potential impact can be complex and the geospatial information not easily decoded or understood by not experts even if decision makers. Focusing on volcanic hazard the goal of MED SUV WP6 Task 3 is to improve the communication efficacy of scientific outputs, to contribute in filling the gap between scientists and decision-makers. Campi Flegrei caldera, in Neapolitan area has been chosen as the pilot research area where to apply an evaluation/validation procedure to provide a robust evaluation of the volcanic maps and its validation resulting from end users response. The selected sample involved are decision makers and officials from Campanian Region Civil Protection and municipalities included in Campi Flegrei RED ZONE, the area exposed to risk from to pyroclastic currents hazard. Semi-structured interviews, with a sample of decision makers and civil protection officials have been conducted to acquire both quantitative and qualitative data. The tested maps have been: the official Campi Flegrei Caldera RED ZONE map, three maps produced by overlapping the Red Zone limit on Orthophoto, DTM and Contour map, as well as other maps included a probabilistic one, showing volcanological data used to border the Red Zone. The outcomes' analysis have assessed level of respondents' understanding of content as displayed, and their needs in representing the complex information embedded in volcanic hazard. The final output has been the development of a leaflet as "guidelines" that can support decision makers and officials in understanding volcanic hazard and risk maps, and also in using them as a communication tool in information program for the population at risk. The same evaluation /validation process

  15. Multi-level emulation of a volcanic ash transport and dispersion model to quantify sensitivity to uncertain parameters

    Science.gov (United States)

    Harvey, Natalie J.; Huntley, Nathan; Dacre, Helen F.; Goldstein, Michael; Thomson, David; Webster, Helen

    2018-01-01

    Following the disruption to European airspace caused by the eruption of Eyjafjallajökull in 2010 there has been a move towards producing quantitative predictions of volcanic ash concentration using volcanic ash transport and dispersion simulators. However, there is no formal framework for determining the uncertainties of these predictions and performing many simulations using these complex models is computationally expensive. In this paper a Bayesian linear emulation approach is applied to the Numerical Atmospheric-dispersion Modelling Environment (NAME) to better understand the influence of source and internal model parameters on the simulator output. Emulation is a statistical method for predicting the output of a computer simulator at new parameter choices without actually running the simulator. A multi-level emulation approach is applied using two configurations of NAME with different numbers of model particles. Information from many evaluations of the computationally faster configuration is combined with results from relatively few evaluations of the slower, more accurate, configuration. This approach is effective when it is not possible to run the accurate simulator many times and when there is also little prior knowledge about the influence of parameters. The approach is applied to the mean ash column loading in 75 geographical regions on 14 May 2010. Through this analysis it has been found that the parameters that contribute the most to the output uncertainty are initial plume rise height, mass eruption rate, free tropospheric turbulence levels and precipitation threshold for wet deposition. This information can be used to inform future model development and observational campaigns and routine monitoring. The analysis presented here suggests the need for further observational and theoretical research into parameterisation of atmospheric turbulence. Furthermore it can also be used to inform the most important parameter perturbations for a small operational

  16. Multi-level emulation of a volcanic ash transport and dispersion model to quantify sensitivity to uncertain parameters

    Directory of Open Access Journals (Sweden)

    N. J. Harvey

    2018-01-01

    Full Text Available Following the disruption to European airspace caused by the eruption of Eyjafjallajökull in 2010 there has been a move towards producing quantitative predictions of volcanic ash concentration using volcanic ash transport and dispersion simulators. However, there is no formal framework for determining the uncertainties of these predictions and performing many simulations using these complex models is computationally expensive. In this paper a Bayesian linear emulation approach is applied to the Numerical Atmospheric-dispersion Modelling Environment (NAME to better understand the influence of source and internal model parameters on the simulator output. Emulation is a statistical method for predicting the output of a computer simulator at new parameter choices without actually running the simulator. A multi-level emulation approach is applied using two configurations of NAME with different numbers of model particles. Information from many evaluations of the computationally faster configuration is combined with results from relatively few evaluations of the slower, more accurate, configuration. This approach is effective when it is not possible to run the accurate simulator many times and when there is also little prior knowledge about the influence of parameters. The approach is applied to the mean ash column loading in 75 geographical regions on 14 May 2010. Through this analysis it has been found that the parameters that contribute the most to the output uncertainty are initial plume rise height, mass eruption rate, free tropospheric turbulence levels and precipitation threshold for wet deposition. This information can be used to inform future model development and observational campaigns and routine monitoring. The analysis presented here suggests the need for further observational and theoretical research into parameterisation of atmospheric turbulence. Furthermore it can also be used to inform the most important parameter perturbations

  17. A mixture of exponentials distribution for a simple and precise assessment of the volcanic hazard

    Directory of Open Access Journals (Sweden)

    A. T. Mendoza-Rosas

    2009-03-01

    Full Text Available The assessment of volcanic hazard is the first step for disaster mitigation. The distribution of repose periods between eruptions provides important information about the probability of new eruptions occurring within given time intervals. The quality of the probability estimate, i.e., of the hazard assessment, depends on the capacity of the chosen statistical model to describe the actual distribution of the repose times. In this work, we use a mixture of exponentials distribution, namely the sum of exponential distributions characterized by the different eruption occurrence rates that may be recognized inspecting the cumulative number of eruptions with time in specific VEI (Volcanic Explosivity Index categories. The most striking property of an exponential mixture density is that the shape of the density function is flexible in a way similar to the frequently used Weibull distribution, matching long-tailed distributions and allowing clustering and time dependence of the eruption sequence, with distribution parameters that can be readily obtained from the observed occurrence rates. Thus, the mixture of exponentials turns out to be more precise and much easier to apply than the Weibull distribution. We recommended the use of a mixture of exponentials distribution when regimes with well-defined eruption rates can be identified in the cumulative series of events. As an example, we apply the mixture of exponential distributions to the repose-time sequences between explosive eruptions of the Colima and Popocatépetl volcanoes, México, and compare the results obtained with the Weibull and other distributions.

  18. Magmatism, ash-flow tuffs, and calderas of the ignimbrite flareup in the western Nevada volcanic field, Great Basin, USA

    Science.gov (United States)

    Christopher D. Henry,; John, David A.

    2013-01-01

    The western Nevada volcanic field is the western third of a belt of calderas through Nevada and western Utah. Twenty-three calderas and their caldera-forming tuffs are reasonably well identified in the western Nevada volcanic field, and the presence of at least another 14 areally extensive, apparently voluminous ash-flow tuffs whose sources are unknown suggests a similar number of undiscovered calderas. Eruption and caldera collapse occurred between at least 34.4 and 23.3 Ma and clustered into five ∼0.5–2.7-Ma-long episodes separated by quiescent periods of ∼1.4 Ma. One eruption and caldera collapse occurred at 19.5 Ma. Intermediate to silicic lavas or shallow intrusions commonly preceded caldera-forming eruptions by 1–6 Ma in any specific area. Caldera-related as well as other magmatism migrated from northeast Nevada to the southwest through time, probably resulting from rollback of the formerly shallow-dipping Farallon slab. Calderas are restricted to the area northeast of what was to become the Walker Lane, although intermediate and effusive magmatism continued to migrate to the southwest across the future Walker Lane.Most ash-flow tuffs in the western Nevada volcanic field are rhyolites, with approximately equal numbers of sparsely porphyritic (≤15% phenocrysts) and abundantly porphyritic (∼20–50% phenocrysts) tuffs. Both sparsely and abundantly porphyritic rhyolites commonly show compositional or petrographic evidence of zoning to trachydacites or dacites. At least four tuffs have volumes greater than 1000 km3, with one possibly as much as ∼3000 km3. However, the volumes of most tuffs are difficult to estimate, because many tuffs primarily filled their source calderas and/or flowed and were deposited in paleovalleys, and thus are irregularly distributed.Channelization and westward flow of most tuffs in paleovalleys allowed them to travel great distances, many as much as ∼250 km (original distance) to what is now the western foothills of the

  19. Assessing the long-term probabilistic volcanic hazard for tephra fallout in Reykjavik, Iceland: a preliminary multi-source analysis

    Science.gov (United States)

    Tonini, Roberto; Barsotti, Sara; Sandri, Laura; Tumi Guðmundsson, Magnús

    2015-04-01

    Icelandic volcanism is largely dominated by basaltic magma. Nevertheless the presence of glaciers over many Icelandic volcanic systems results in frequent phreatomagmatic eruptions and associated tephra production, making explosive eruptions the most common type of volcanic activity. Jökulhlaups are commonly considered as major volcanic hazard in Iceland for their high frequency and potentially very devastating local impact. Tephra fallout is also frequent and can impact larger areas. It is driven by the wind direction that can change with both altitude and season, making impossible to predict a priori where the tephra will be deposited during the next eruptions. Most of the volcanic activity in Iceland occurs in the central eastern part, over 100 km to the east of the main population centre around the capital Reykjavík. Therefore, the hazard from tephra fallout in Reykjavík is expected to be smaller than for communities settled near the main volcanic systems. However, within the framework of quantitative hazard and risk analyses, less frequent and/or less intense phenomena should not be neglected, since their risk evaluation depends on the effects suffered by the selected target. This is particularly true if the target is highly vulnerable, as large urban areas or important infrastructures. In this work we present the preliminary analysis aiming to perform a Probabilistic Volcanic Hazard Assessment (PVHA) for tephra fallout focused on the target area which includes the municipality of Reykjavík and the Keflavík international airport. This approach reverts the more common perspective where the hazard analysis is focused on the source (the volcanic system) and it follows a multi-source approach: indeed, the idea is to quantify, homogeneously, the hazard due to the main hazardous volcanoes that could pose a tephra fallout threat for the municipality of Reykjavík and the Keflavík airport. PVHA for each volcanic system is calculated independently and the results

  20. A model for Nb-Zr-REE-Ga enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes

    Science.gov (United States)

    Dai, Shifeng; Nechaev, Victor P.; Chekryzhov, Igor Yu.; Zhao, Lixin; Vysotskiy, Sergei V.; Graham, Ian; Ward, Colin R.; Ignatiev, Alexander V.; Velivetskaya, Tatyana A.; Zhao, Lei; French, David; Hower, James C.

    2018-03-01

    Clay-altered volcanic ash with highly-elevated concentrations of Nb(Ta), Zr(Hf), rare earth elements (REE), and Ga, is a new type of critical metal deposit with high commercial prospects that has been discovered in Yunnan Province, southwest China. Previous studies showed that the volcanic ashes had been subjected to hydrothermal fluids, the nature of which, however, is not clear. Here we show that the volcanic ashes were originated from alkaline magmatism, followed by a continuous hydrothermal-weathering process. Heated meteoric waters, which were sourced from acidic rains and mixed with CO2 from degassing of the Emeishan plume, have caused partial, but widespread, acidic leaching of Nb, Ta, Zr, Hf, REE, and Ga into ground water and residual enrichment of these elements, along with Al and Ti, in the deeply altered rocks. Subsequent alteration occurring under cooler, neutral or alkaline conditions, caused by water-rock interaction, resulted in precipitation of the leached critical metals in the deposit. Polymetallic mineralization of similar origin may be found in other continental regions subjected to explosive alkaline volcanism associated with deep weathering in humid conditions.

  1. Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay

    Energy Technology Data Exchange (ETDEWEB)

    Singh, I.B. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India)]. E-mail: ibsingh58@yahoo.com; Chaturvedi, K. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India); Morchhale, R.K. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India); Yegneswaran, A.H. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India)

    2007-03-06

    Waste generated from galvanizing and metal finishing processes is considered to be a hazardous due to the presence of toxic metals like Pb, Cu, Cr, Zn, etc. Thermal treatment of such types of wastes in the presence of clay and fly ash can immobilizes their toxic metals to a maximum level. After treatment solidified mass can be utilized in construction or disposed off through land fillings without susceptibility of re-mobilization of toxic metals. In the present investigation locally available clay and fly ash of particular thermal power plant were used as additives for thermal treatment of both of the wastes in their different proportions at 850, 900 and 950 deg. C. Observed results indicated that heating temperature to be a key factor in the immobilization of toxic metals of the waste. It was noticed that the leachability of metals of the waste reduces to a negligible level after heating at 950 deg. C. Thermally treated solidified specimen of 10% waste and remaining clay have shown comparatively a higher compressive strength than clay fired bricks used in building construction. Though, thermally heated specimens made of galvanizing waste have shown much better strength than specimen made of metal finishing waste. The lechability of toxic metals like Cr, Cu, Pb and Zn became far below from their regulatory threshold after heating at 950 deg. C. Addition of fly ash did not show any improvement either in engineering property or in leachability of metals from the solidified mass. X-ray diffraction (XRD) analysis of the solidified product confirmed the presence of mixed phases of oxides of metals.

  2. Long-term volcanic hazard forecasts based on Somma-Vesuvio past eruptive activity

    Science.gov (United States)

    Lirer, Lucio; Petrosino, Paola; Alberico, Ines; Postiglione, Immacolata

    2001-02-01

    Distributions of pyroclastic deposits from the main explosive events at Somma-Vesuvio during the 8,000-year B.P.-A.D. 1906 time-span have been analysed to provide maps of volcanic hazard for long-term eruption forecasting. In order to define hazard ratings, the spatial distributions and loads (kg/m2) exerted by the fall deposits on the roofs of buildings have been considered. A load higher than 300 kg/m2 is defined as destructive. The relationship load/frequency (the latter defined as the number of times that an area has been impacted by the deposition of fall deposits) is considered to be a suitable parameter for differentiating among areas according to hazard rating. Using past fall deposit distributions as the basis for future eruptive scenarios, the total area that could be affected by the products of a future Vesuvio explosive eruption is 1,500 km2. The perivolcanic area (274 km2) has the greatest hazard rating because it could be buried by pyroclastic flow deposits thicker than 0.5 m and up to several tens of metres in thickness. Currently, the perivolcanic area also has the highest risk because of the high exposed value, mainly arising from the high population density.

  3. Effective removal of hazardous trace metals from recovery boiler fly ashes.

    Science.gov (United States)

    Kinnarinen, Teemu; Golmaei, Mohammad; Jernström, Eeva; Häkkinen, Antti

    2018-02-15

    The objective of this study is to introduce a treatment sequence enabling straightforward and effective recovery of hazardous trace elements from recovery boiler fly ash (RBFA) by a novel method, and to demonstrate the subsequent removal of Cl and K with the existing crystallization technology. The treatment sequence comprises two stages: dissolution of most other RBFA components than the hazardous trace elements in water in Step 1 of the treatment, and crystallization of the process chemicals in Step 2. Solid-liquid separation has an important role in the treatment, due to the need to separate first the small solid residue containing the trace elements, and to separate the valuable crystals, containing Na and S, from the liquid rich in Cl and K. According to the results, nearly complete recovery of cadmium, lead and zinc can be reached even without pH adjustment. Some other metals, such as Mg and Mn, are removed together with the hazardous metals. Regarding the removal of Cl and K from the process, in this non-optimized case the removal efficiency was satisfactory: 60-70% for K when 80% of sodium was recovered, and close to 70% for Cl when 80% of sulfate was recovered. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Fractal analysis: A new tool in transient volcanic ash plume characterization.

    Science.gov (United States)

    Tournigand, Pierre-Yves; Peña Fernandez, Juan Jose; Taddeucci, Jacopo; Perugini, Diego; Sesterhenn, Jörn

    2017-04-01

    Transient volcanic plumes are time-dependent features generated by unstable eruptive sources. They represent a threat to human health and infrastructures, and a challenge to characterize due to their intrinsic instability. Plumes have been investigated through physical (e.g. visible, thermal, UV, radar imagery), experimental and numerical studies in order to provide new insights about their dynamics and better anticipate their behavior. It has been shown experimentally that plume dynamics is strongly dependent to source conditions and that plume shape evolution holds key to retrieve these conditions. In this study, a shape evolution analysis is performed on thermal high-speed videos of volcanic plumes from three different volcanoes Sakurajima (Japan), Stromboli (Italy) and Fuego (Guatemala), recorded with a FLIR SC655 thermal camera during several field campaigns between 2012 and 2016. To complete this dataset, three numerical gas-jet simulations at different Reynolds number (2000, 5000 and 10000) have been used in order to set reference values to the natural cases. Turbulent flow shapes are well known to feature scale-invariant structures and a high degree of complexity. For this reason we characterized the bi-dimensional shape of natural and synthetic plumes by using a fractal descriptor. Such method has been applied in other studies on experimental turbulent jets as well as on atmospheric clouds and have shown promising results. At each time-step plume contour has been manually outlined and measured using the box-counting method. This method consists in covering the image with squares of variable sizes and counting the number of squares containing the plume outline. The negative slope of the number of squares in function of their size in a log-log plot gives the fractal dimension of the plume at a given time. Preliminary results show an increase over time of the fractal dimension for natural volcanic plume as well as for the numerically simulated ones, but at

  5. A Middle Pennsylvanian (Bolsovian) peat-forming forest preserved in situ in volcanic ash of the Whetstone Horizon in the Radnice Basin, Czech Republic

    DEFF Research Database (Denmark)

    Opluštil, Stanislav; Pšenicka, Josef; Libertín, Milan

    2009-01-01

    represent the pre- eruption vegetation of the swamp, which resulted from accumulation of peat in a high-ash, planar (rheotrophic) mire situated in a narrow palaeovalley containing an active ¿uvial system. A tuff bed (the Belka) at the base of the volcaniclastic Whetstone Horizon was exposed in two......The precursory mire of the Middle Pennsylvanian (Bolsovian) Lower Radnice Coal was buried in situ by volcanic ash, preserving the taxonomic composition, spatial distribution, vertical strati¿cation, and synecology of this peat-forming ecosystem in extraordinary detail. Plant fossil remains...

  6. Catastrophic debris flows transformed from landslides in volcanic terrains : mobility, hazard assessment and mitigation strategies

    Science.gov (United States)

    Scott, Kevin M.; Macias, Jose Luis; Naranjo, Jose Antonio; Rodriguez, Sergio; McGeehin, John P.

    2001-01-01

    Communities in lowlands near volcanoes are vulnerable to significant volcanic flow hazards in addition to those associated directly with eruptions. The largest such risk is from debris flows beginning as volcanic landslides, with the potential to travel over 100 kilometers. Stratovolcanic edifices commonly are hydrothermal aquifers composed of unstable, altered rock forming steep slopes at high altitudes, and the terrain surrounding them is commonly mantled by readily mobilized, weathered airfall and ashflow deposits. We propose that volcano hazard assessments integrate the potential for unanticipated debris flows with, at active volcanoes, the greater but more predictable potential of magmatically triggered flows. This proposal reinforces the already powerful arguments for minimizing populations in potential flow pathways below both active and selected inactive volcanoes. It also addresses the potential for volcano flank collapse to occur with instability early in a magmatic episode, as well as the 'false-alarm problem'-the difficulty in evacuating the potential paths of these large mobile flows. Debris flows that transform from volcanic landslides, characterized by cohesive (muddy) deposits, create risk comparable to that of their syneruptive counterparts of snow and ice-melt origin, which yield noncohesive (granular) deposits, because: (1) Volcano collapses and the failures of airfall- and ashflow-mantled slopes commonly yield highly mobile debris flows as well as debris avalanches with limited runout potential. Runout potential of debris flows may increase several fold as their volumes enlarge beyond volcanoes through bulking (entrainment) of sediment. Through this mechanism, the runouts of even relatively small collapses at Cascade Range volcanoes, in the range of 0.1 to 0.2 cubic kilometers, can extend to populated lowlands. (2) Collapse is caused by a variety of triggers: tectonic and volcanic earthquakes, gravitational failure, hydrovolcanism, and

  7. An oscillating microbalance for meteorological measurements of ice and volcanic ash accumulation from a weather balloon platform

    Science.gov (United States)

    Airey, Martin; Harrison, Giles; Nicoll, Keri; Williams, Paul; Marlton, Graeme

    2017-04-01

    A new, low cost, instrument has been developed for meteorological measurements of the accumulation of ice and volcanic ash that can be readily deployed using commercial radiosondes and weather balloons. It is based on principles used by [1], an instrument originally developed to measure supercooled liquid water profiles in clouds. This new instrument introduces numerous improvements in terms of reduced complexity and cost. It uses the oscillating microbalance principle, whereby a wire vibrating at its natural frequency is subjected to increased loading of the property to be measured. The increase in mass modifies the wire properties such that its natural frequency of oscillation changes. By measuring this frequency, the increase in mass can be inferred and transmitted to a ground base station through the radiosonde's UHF antenna via the PANDORA interface [2], which has been previously developed to provide power and connection to the radiosonde telemetry. The device consists of a simple circuit board controlled by an ATMEGA microcontroller. For calibration, the controller is capable of driving the wire at specified frequencies via excitation by a piezo sounder upon which the wire is mounted. The same piezo sounder is also used during active operation to measure the frequency of the wire in its non-driven state in order to infer the mass change on the wire. A phase-locked loop implemented on the board identifies when resonance occurs and the measured frequency is stable, prompting the microcontroller to send the measurement through the data interface. The device may be used for any application that requires the measurement of incremental mass variation e.g. ice accumulation, frosting, or particle accumulation such as dust and volcanic ash. For the solid particle accumulation, a low temperature, high-tack, adhesive may be applied to the wire prior to deployment to collect the material. In addition, the same instrument may be used for ground-based applications, such as

  8. Multitasking in academia: Effective combinations of research, education and public outreach illustrated by a volcanic ash warning system

    Science.gov (United States)

    Bye, B. L.; Plag, H.

    2011-12-01

    Science permeates our society. Its role and its perceived importance evolves with time. Scientists today are highly specialized, yet society demands they master a variety of skills requiring not only a number of different competencies but also a broad mindset. Scientists are subjected to a meritocracy in terms of having to produce scientific papers. Peer-reviewed scientific publications used to be sufficient to meet the various laws and regulations with respect to dissemination of scientific results. This has dramatically changed; both expressed directly through public voices (such as in the climate change discourses), but also by politicians and policy makers. In some countries research funding now comes with specific requirements concerning public outreach that go way beyond peer-reviewed publications and presentation at scientific conferences. Science policies encourage multidisciplinary cooperation and scientific questions themselves often cannot be answered without knowledge and information from several scientific areas. Scientists increasingly need to communicate knowledge and results in more general terms as well as educating future generations. A huge challenge lies in developing the knowledge, human capacity and mindset that will allow an individual academician to contribute to education, communicate across scientific fields and sectors in multidisciplinary cross sectoral cooperations and also reach out to the general public while succeeding within the scientific meritocracy. We demonstrate how research, education and communication within and outside academia can effectively be combined through a presentation of the International Airways Volcano Watch that encompasses an operational volcanic ash warning system for the aviation industry. This presentation will show the role of science throughout the information flow, from basic science to the pilots' decision-making. Furthermore, it will illustrate how one can connect specific scientific topics to societal

  9. Controls on carbon storage and weathering in volcanic ash soils across a climate gradient on Mauna Kea, Hawaii

    Science.gov (United States)

    Kramer, M. G.; Chadwick, O.

    2017-12-01

    Volcanic ash soils retain the largest and most persistent soil carbon pools of any ecosystem. However, the mechanisms governing soil carbon accumulation and weathering during initial phases of weathering are not well understood. We examined soil organic matter dynamics and weathering across a high altitude (3563 - 3013 m) 20 ky climate gradient on Mauna Kea in Hawaii. Four elevation sites were selected ( 250-500 mm rainfall) which range from arid-periglacial to sites which contain a mix of shrubs and grasses. At each site, between 2-3 pits were dug and major diagnostic horizons down to bedrock (in-tact lava) were sampled. Soils were analyzed for particle size, organic C and N, soil pH, exchangeable cations, base saturation, NaF pH, phosphorous sorption and bulk elements. Mass loss and pedogenic metal accumulation (hydroxlamine Fe, Al and Si extractions) were used to measure extent of weathering, leaching, changes in soil mineralogy and carbon accumulation with the short-range-ordered (SRO) minerals. Reactive-phase (SRO) minerals show a general trend of increasing abundance through the soil depth profile with increasing rainfall. However carbon accumulation patterns across the climate gradient are largely decoupled from these trends. The results suggest that after 20ky, pedogenic processes have altered the nature and composition of the volcanic ash such that it is capable of retaining soil C even where organic acid influences from plant material and leaching from rainfall is severely limited. Comparisons with lower elevation soils on Mauna Kea and other moist mesic (2500mm rainfall) sites on Hawaii suggest that these soils have reached only between 1-15 % of their capacity to retain carbon. Our results suggest that in low rainfall and a cold climate, after 20ky, weathering has advanced but is decoupled from soil carbon accumulation patterns and the associated influence of vegetation on soil development. Changes in soil carbon composition and amount across the entire

  10. Non-equilibrium processes in ash-laden volcanic plumes: new insights from 3D multiphase flow simulations

    Science.gov (United States)

    Esposti Ongaro, Tomaso; Cerminara, Matteo

    2016-10-01

    In the framework of the IAVCEI (International Association of Volcanology and Chemistry of the Earth Interior) initiative on volcanic plume models intercomparison, we discuss three-dimensional numerical simulations performed with the multiphase flow model PDAC (Pyroclastic Dispersal Analysis Code). The model describes the dynamics of volcanic and atmospheric gases (in absence of wind) and two pyroclastic phases by adopting a non-equilibrium Eulerian-Eulerian formulation. Accordingly, gas and particulate phases are treated as interpenetrating fluids, interacting with each other through momentum (drag) and heat exchange. Numerical results describe the time-wise and spatial evolution of weak (mass eruption rate: 1.5 × 106 kg/s) and strong (mass eruption rate: 1.5 × 109 kg/s) plumes. The two tested cases display a remarkably different phenomenology, associated with the different roles of atmospheric stratification, compressibility and mechanism of buoyancy reversal, reflecting in a different structure of the plume, of the turbulent eddies and of the atmospheric circulation. This also brings about different rates of turbulent mixing and atmospheric air entrainment. The adopted multiphase flow model allows to quantify temperature and velocity differences between the gas and particles, including settling, preferential concentration by turbulence and thermal non-equilibrium, as a function of their Stokes number, i.e., the ratio between their kinetic equilibrium time and the characteristic large-eddy turnover time of the turbulent plume. As a result, the spatial and temporal distribution of coarse ash in the atmosphere significantly differs from that of the fine ash, leading to a modification of the plume shape. Finally, three-dimensional numerical results have been averaged in time and across horizontal slices in order to obtain a one-dimensional picture of the plume in a stationary regime. For the weak plume, the results are consistent with one-dimensional models, at

  11. ST-HASSET for volcanic hazard assessment: A Python tool for evaluating the evolution of unrest indicators

    Science.gov (United States)

    Bartolini, Stefania; Sobradelo, Rosa; Martí, Joan

    2016-08-01

    Short-term hazard assessment is an important part of the volcanic management cycle, above all at the onset of an episode of volcanic agitation (unrest). For this reason, one of the main tasks of modern volcanology is to use monitoring data to identify and analyse precursory signals and so determine where and when an eruption might occur. This work follows from Sobradelo and Martí [Short-term volcanic hazard assessment through Bayesian inference: retrospective application to the Pinatubo 1991 volcanic crisis. Journal of Volcanology and Geothermal Research 290, 111, 2015] who defined the principle for a new methodology for conducting short-term hazard assessment in unrest volcanoes. Using the same case study, the eruption on Pinatubo (15 June 1991), this work introduces a new free Python tool, ST-HASSET, for implementing Sobradelo and Martí (2015) methodology in the time evolution of unrest indicators in the volcanic short-term hazard assessment. Moreover, this tool is designed for complementing long-term hazard assessment with continuous monitoring data when the volcano goes into unrest. It is based on Bayesian inference and transforms different pre-eruptive monitoring parameters into a common probabilistic scale for comparison among unrest episodes from the same volcano or from similar ones. This allows identifying common pre-eruptive behaviours and patterns. ST-HASSET is especially designed to assist experts and decision makers as a crisis unfolds, and allows detecting sudden changes in the activity of a volcano. Therefore, it makes an important contribution to the analysis and interpretation of relevant data for understanding the evolution of volcanic unrest.

  12. The Campanian Ignimbrite Eruption: New Data on Volcanic Ash Dispersal and Its Potential Impact on Human Evolution

    Science.gov (United States)

    Fitzsimmons, Kathryn E.; Hambach, Ulrich; Veres, Daniel; Iovita, Radu

    2013-01-01

    The Campanian Ignimbrite (CI) volcanic eruption was the most explosive in Europe in the last 200,000 years. The event coincided with the onset of an extremely cold climatic phase known as Heinrich Event 4 (HE4) approximately 40,000 years ago. Their combined effect may have exacerbated the severity of the climate through positive feedbacks across Europe and possibly globally. The CI event is of particular interest not only to investigate the role of volcanism on climate forcing and palaeoenvironments, but also because its timing coincides with the arrival into Europe of anatomically modern humans, the demise of Neanderthals, and an associated major shift in lithic technology. At this stage, however, the degree of interaction between these factors is poorly known, based on fragmentary and widely dispersed data points. In this study we provide important new data from Eastern Europe which indicate that the magnitude of the CI eruption and impact of associated distal ash (tephra) deposits may have been substantially greater than existing models suggest. The scale of the eruption is modelled by tephra distribution and thickness, supported by local data points. CI ashfall extends as far as the Russian Plain, Eastern Mediterranean and northern Africa. However, modelling input is limited by very few data points in Eastern Europe. Here we investigate an unexpectedly thick CI tephra deposit in the southeast Romanian loess steppe, positively identified using geochemical and geochronological analyses. We establish the tephra as a widespread primary deposit, which blanketed the topography both thickly and rapidly, with potentially catastrophic impacts on local ecosystems. Our discovery not only highlights the need to reassess models for the magnitude of the eruption and its role in climatic transition, but also suggests that it may have substantially influenced hominin population and subsistence dynamics in a region strategic for human migration into Europe. PMID:23799050

  13. Volcanically-Triggered Rainfall and the Effect on Volcanological Hazards at Soufriere Hills, Montserrat

    Science.gov (United States)

    Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian

    2014-05-01

    Atmospheric flow simulations over and around the Soufriere Hills volcano in the island of Montserrat in the Caribbean are studied, through a series of numerical model experiments, in order to link interactions between the volcano and the atmosphere. A heated surface is added on the top of the mountain, in order to simulate the dome of an active volcano that is not undergoing an eruption. A series of simulations with different atmospheric conditions and control parameters for the volcano will be presented. Simulations are made using the Weather Research and Forecasting (WRF) model, with a high resolution digital elevation map of Montserrat. Simulations with an idealised topography have also been examined, in order for the results to have general applicability to similar-sized volcanoes located in the Tropics. The model was initialised with soundings from representative days of qualitatively different atmospheric conditions from the rainy season. The heated volcanic dome changes the orographic flow response significantly, depending upon the atmospheric conditions and the magnitude of the dome surface temperature anomaly. The flow regime and qualitative characteristic features, such orographic clouds and rainfall patterns, can all change significantly. For example, the orographic rainfall over the volcano can be significantly enhanced with increased dome temperatures. The implications of these changes on the eruptive behaviour of the volcano and resulting secondary volcanic hazards, such as lahars, will be discussed.

  14. Doubly stochastic models for volcanic hazard assessment at Campi Flegrei caldera

    CERN Document Server

    Bevilacqua, Andrea

    2016-01-01

    This study provides innovative mathematical models for assessing the eruption probability and associated volcanic hazards, and applies them to the Campi Flegrei caldera in Italy. Throughout the book, significant attention is devoted to quantifying the sources of uncertainty affecting the forecast estimates. The Campi Flegrei caldera is certainly one of the world’s highest-risk volcanoes, with more than 70 eruptions over the last 15,000 years, prevalently explosive ones of varying magnitude, intensity and vent location. In the second half of the twentieth century the volcano apparently once again entered a phase of unrest that continues to the present. Hundreds of thousands of people live inside the caldera and over a million more in the nearby city of Naples, making a future eruption of Campi Flegrei an event with potentially catastrophic consequences at the national and European levels.

  15. Monitoring volcanic ash cloud top height through simultaneous retrieval of optical data from polar orbiting and geostationary satellites

    Directory of Open Access Journals (Sweden)

    K. Zakšek

    2013-03-01

    Full Text Available Volcanic ash cloud-top height (ACTH can be monitored on the global level using satellite remote sensing. Here we propose a photogrammetric method based on the parallax between data retrieved from geostationary and polar orbiting satellites to overcome some limitations of the existing methods of ACTH retrieval. SEVIRI HRV band and MODIS band 1 are a good choice because of their high resolution. The procedure works well if the data from both satellites are retrieved nearly simultaneously. MODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection we use two sequential SEVIRI images (one before and one after the MODIS retrieval and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. The proposed method was tested for the case of the Eyjafjallajökull eruption in April 2010. The parallax between MODIS and SEVIRI data can reach 30 km, which implies an ACTH of approximately 12 km at the beginning of the eruption. At the end of April eruption an ACTH of 3–4 km is observed. The accuracy of ACTH was estimated to be 0.6 km.

  16. Influence of Curing Age and Mix Composition on Compressive Strength of Volcanic Ash Blended Cement Laterized Concrete

    Directory of Open Access Journals (Sweden)

    Babafemi A.J.

    2012-01-01

    Full Text Available This study investigates the influence of curing age and mix proportions on the compressive strength of volcanic ash (VA blended cement laterized concrete. A total of 288 cubes of 100mm dimensions were cast and cured in water for 3, 7, 28, 56, 90 and 120 days of hydration with cement replacement by VA and sand replacement by laterite both ranging from 0 to 30% respectively while a control mix of 28-day target strength of 25N/mm2 (using British Method was adopted. The results show that the compressive strength of the VA-blended cement laterized concrete increased with the increase in curing age but decreased as the VA and laterite (LAT contents increased. The optimum replacement level was 20%LAT/20%VA. At this level the compressive strength increased with curing age at a decreasing rate beyond 28 days. The target compressive strength of 25N/mm2 was achieved for this mixture at 90 days of curing. VA content and curing age was noted to have significant effect (α ≤ 0.5 on the compressive strength of the VA-blended cement laterized concrete.

  17. Correlation and stratigraphic eruption age of the pyroclastic flow deposits and wide spread volcanic ashes intercalated in the Pliocene-Pleistocene strata, central Japan

    International Nuclear Information System (INIS)

    Nagahashi, Yoshitaka; Satoguchi, Yasufumi; Yoshikawa, Shusaku

    2000-01-01

    Three pyroclastic flow deposits in the Takayama and Omine area, central Honshu, are correlated to the distal widespread volcanic ashes intercalated in the Plio-Pleistocene boundary strata in central Japan. The correlation is based on these stratigraphic relationships, facies, magnetostratigraphy, petrographic properties such as mineral assemblage, refractive index and chemical composition of the volcanic glasses and orthopyroxene. As the result of these correlation, the eruption age of the proximal pyroclastic flow deposits have become clear. And precise correlation between proximal eruption units and distal depositional units is now possible. Ho-Kd 39 Tephra erupted at about 1.76 Ma, forming a co-ignimbrite ash, which deposited in the Kanto sedimentary basin. Eb-Fukuda Tephra erupted at about 1.75 Ma, and distal volcaniclastic deposit sedimented in the Kinki, Niigata and Kanto sedimentary basins. The eruptional and depositional phase are divided into the stage 1, stage 2 (early), stage 2 (late) and stage 3. Stage 1 is phreato-plinian type eruption phase, forming distal ash fall deposit. Stage 2 (early) is plinian pumice fall, intra-plinian pyroclastic flow and plinian pumice fall eruption phase, forming distal ash fall. Stage 2 (late) is final eruptional phase of the biggest pyroclastic flow of the Eb-Fukuda Tephra, forming a co-ignimbrite ash fall. Stage 3 is resedimented stage after the end of the explosive eruption. It is notable that resedimented volcaniclastic deposit reached Osaka sedimentary basin 300 km away from the eruption center. Om-SK110 Tephra erupted at about 1.65 Ma, divided into the stage 1, stage 2 and stage 3. Stage 1 is eruption phase of the plinian pumice fall and first pyroclastic flow. Stage 2 is pauses in eruption activity. Stage 3 is second pyroclastic flow phase, it is inferred that the pyroclastic flow of the stage 3 directly entered the Niigata sedimentary basin and simultaneously formed a co-ignimbrite ash. (author)

  18. Formation of obsidian pyroclasts by sintering of ash particles in the volcanic conduit

    Science.gov (United States)

    Gardner, James E.; Llewellin, Edward W.; Watkins, James M.; Befus, Kenneth S.

    2017-02-01

    The ranges in intensity and style of volcanic eruptions, from highly explosive Plinian eruptions to quiescent lava extrusions, depend on the style and efficiency of gas loss from ascending magma. Obsidian pyroclasts - small, glassy pieces of quenched magma found in some volcanic tephra beds - may preserve valuable information about magma degassing in their vesicle textures and volatile contents. Accurate interpretation of their textures and volatiles, however, requires understanding the mechanism of formation of the pyroclasts. Obsidian pyroclasts from the ca. 1325-1350 C.E. North Mono eruption of Mono Craters (CA, USA) were analyzed and found to have H2O and CO2 contents indicating that they were formed at pressures in the approximate range of 3-40 MPa. Many also contain domains with differing vesicle textures, separated by boundaries containing xenocrystic material, indicating that they are composed of smaller fragments that have sutured together. More than half of the pyroclasts analyzed contained small (∼10 μm), highly distorted vesicles, with multi-cuspate morphology, interpreted as the remnants of interstitial gas trapped amongst sintered fragments of melt/glass. Rounded vesicles are also common and are interpreted to result from surface tension-driven relaxation of the distorted vesicles. Calculated timescales of sintering and relaxation are consistent with timescales for pyroclast formation indicated by H2O re-equilibration within the heterogeneous pyroclasts. This sintering model for the origin of obsidian pyroclasts is further supported by the observation that spherical vesicles are found mainly in H2O-rich pyroclasts, and distorted vesicles mainly in H2O-poor pyroclasts. We conclude that obsidian pyroclasts generated during the North Mono eruption were formed by cycles of fragmentation, sintering/suturing, and relaxation, over a very wide range of depths within the conduit; we find no evidence to support pumice (foam) collapse as the formation

  19. Combining probabilistic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Sandri, Laura; Jolly, Gill; Lindsay, Jan; Howe, Tracy; Marzocchi, Warner

    2010-05-01

    One of the main challenges of modern volcanology is to provide the public with robust and useful information for decision-making in land-use planning and in emergency management. From the scientific point of view, this translates into reliable and quantitative long- and short-term volcanic hazard assessment and eruption forecasting. Because of the complexity in characterizing volcanic events, and of the natural variability of volcanic processes, a probabilistic approach is more suitable than deterministic modeling. In recent years, two probabilistic codes have been developed for quantitative short- and long-term eruption forecasting (BET_EF) and volcanic hazard assessment (BET_VH). Both of them are based on a Bayesian Event Tree, in which volcanic events are seen as a chain of logical steps of increasing detail. At each node of the tree, the probability is computed by taking into account different sources of information, such as geological and volcanological models, past occurrences, expert opinion and numerical modeling of volcanic phenomena. Since it is a Bayesian tool, the output probability is not a single number, but a probability distribution accounting for aleatory and epistemic uncertainty. In this study, we apply BET_VH in order to quantify the long-term volcanic hazard due to base surge invasion in the region around Auckland, New Zealand's most populous city. Here, small basaltic eruptions from monogenetic cones pose a considerable risk to the city in case of phreatomagmatic activity: evidence for base surges are not uncommon in deposits from past events. Currently, we are particularly focussing on the scenario simulated during Exercise Ruaumoko, a national disaster exercise based on the build-up to an eruption in the Auckland Volcanic Field. Based on recent papers by Marzocchi and Woo, we suggest a possible quantitative strategy to link probabilistic scientific output and Boolean decision making. It is based on cost-benefit analysis, in which all costs

  20. Natural phenomena hazards, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity

  1. Fluoride in ash leachates: environmental implications at Popocatépetl volcano, central Mexico

    Directory of Open Access Journals (Sweden)

    M. A. Armienta

    2011-07-01

    Full Text Available Ash emitted by volcanic eruptions, even of moderate magnitude, may affect the environment and the health of humans and animals through different mechanisms at distances significantly larger than those indicated in the volcanic hazard maps. One such mechanism is the high capacity of ash to transport toxic volatiles like fluoride, as soluble condensates on the particles' surface. The mobilization and hazards related to volcanic fluoride are discussed based on the data obtained during the recent activity of Popocatépetl volcano in Central Mexico.

  2. Volcanic risk and tourism in southern Iceland: Implications for hazard, risk and emergency response education and training

    Science.gov (United States)

    Bird, Deanne K.; Gisladottir, Gudrun; Dominey-Howes, Dale

    2010-01-01

    This paper examines the relationship between volcanic risk and the tourism sector in southern Iceland and the complex challenge emergency management officials face in developing effective volcanic risk mitigation strategies. An early warning system and emergency response procedures were developed for communities surrounding Katla, the volcano underlying the Mýrdalsjökull ice cap. However, prior to and during the 2007 tourist season these mitigation efforts were not effectively communicated to stakeholders located in the tourist destination of Þórsmörk despite its location within the hazard zone of Katla. The hazard zone represents the potential extent of a catastrophic jökulhlaup (glacial outburst flood). Furthermore, volcanic risk mitigation efforts in Þórsmörk were based solely on information derived from physical investigations of volcanic hazards. They did not consider the human dimension of risk. In order to address this gap and provide support to current risk mitigation efforts, questionnaire surveys were used to investigate tourists' and tourism employees' hazard knowledge, risk perception, adoption of personal preparedness measures, predicted behaviour if faced with a Katla eruption and views on education. Results indicate that tourists lack hazard knowledge and they do not adopt preparedness measures to deal with the consequences of an eruption. Despite a high level of risk perception, tourism employees lack knowledge about the early warning system and emergency response procedures. Results show that tourists are positive about receiving information concerning Katla and its hazards and therefore, the reticence of tourism employees with respect to disseminating hazard information is unjustified. In order to improve the tourism sector's collective capacity to positively respond during a future eruption, recommendations are made to ensure adequate dissemination of hazard, risk and emergency response information. Most importantly education campaigns

  3. Atmospheric control on ground and space based early warning system for hazard linked to ash injection into the atmosphere

    Science.gov (United States)

    Caudron, Corentin; Taisne, Benoit; Whelley, Patrick; Garces, Milton; Le Pichon, Alexis

    2014-05-01

    Violent volcanic eruptions are common in the Southeast Asia which is bordered by active subduction zones with hundreds of active volcanoes. The physical conditions at the eruptive vent are difficult to estimate, especially when there are only a few sensors distributed around the volcano. New methods are therefore required to tackle this problem. Among them, satellite imagery and infrasound may rapidly provide information on strong eruptions triggered at volcanoes which are not closely monitored by on-site instruments. The deployment of an infrasonic array located at Singapore will increase the detection capability of the existing IMS network. In addition, the location of Singapore with respect to those volcanoes makes it the perfect site to identify erupting blasts based on the wavefront characteristics of the recorded signal. There are ~750 active or potentially active volcanoes within 4000 kilometers of Singapore. They have been combined into 23 volcanic zones that have clear azimuth with respect to Singapore. Each of those zones has been assessed for probabilities of eruptive styles, from moderate (Volcanic Explosivity Index of 3) to cataclysmic (VEI 8) based on remote morphologic analysis. Ash dispersal models have been run using wind velocity profiles from 2010 to 2012 and hypothetical eruption scenarios for a range of eruption explosivities. Results can be used to estimate the likelihood of volcanic ash at any location in SE Asia. Seasonal changes in atmospheric conditions will strongly affect the potential to detect small volcanic eruptions with infrasound and clouds can hide eruption plumes from satellites. We use the average cloud cover for each zone to estimate the probability of eruption detection from space, and atmospheric models to estimate the probability of eruption detection with infrasound. Using remote sensing in conjunction with infrasound improves detection capabilities as each method is capable of detecting eruptions when the other is 'blind

  4. Non-Volcanic release of CO2 in Italy: quantification, conceptual models and gas hazard

    Science.gov (United States)

    Chiodini, G.; Cardellini, C.; Caliro, S.; Avino, R.

    2011-12-01

    Central and South Italy are characterized by the presence of many reservoirs naturally recharged by CO2 of deep provenance. In the western sector, the reservoirs feed hundreds of gas emissions at the surface. Many studies in the last years were devoted to (i) elaborating a map of CO2 Earth degassing of the region; (ii) to asses the gas hazard; (iii) to develop methods suitable for the measurement of the gas fluxes from different types of emissions; (iv) to elaborate the conceptual model of Earth degassing and its relation with the seismic activity of the region and (v) to develop physical numerical models of CO2 air dispersion. The main results obtained are: 1) A general, regional map of CO2 Earth degassing in Central Italy has been elaborated. The total flux of CO2 in the area has been estimated in ~ 10 Mt/a which are released to the atmosphere trough numerous dangerous gas emissions or by degassing spring waters (~ 10 % of the CO2 globally estimated to be released by the Earth trough volcanic activity). 2) An on line, open access, georeferenced database of the main CO2 emissions (~ 250) was settled up (http://googas.ov.ingv.it). CO2 flux > 100 t/d characterise 14% of the degassing sites while CO2 fluxes from 100 t/d to 10 t/d have been estimated for about 35% of the gas emissions. 3) The sites of the gas emissions are not suitable for life: the gas causes many accidents to animals and people. In order to mitigate the gas hazard a specific model of CO2 air dispersion has been developed and applied to the main degassing sites. A relevant application regarded Mefite d'Ansanto, southern Apennines, which is the largest natural emission of low temperature CO2 rich gases, from non-volcanic environment, ever measured in the Earth (˜2000 t/d). Under low wind conditions, the gas flows along a narrow natural channel producing a persistent gas river which has killed over a period of time many people and animals. The application of the physical numerical model allowed us to

  5. Comparative study of P uptake and utilization from P fertilizers by Chilean wheat genotypes in volcanic ash soils

    International Nuclear Information System (INIS)

    Pino, I.; Parada, A.M.; Zapata, F.; Navia, M.; Luzio, W.

    2002-01-01

    The intensification of the agricultural production in Southern Chile demand the application of P fertilizers to volcanic ash soils for optimum plant growth and crop yields. Due to the high P sorption capacities of these soils, high amounts of water-soluble phosphatic fertilizers need to be applied. Therefore, the direct application of locally available Bahia Inglesa phosphate rock has been utilized to supply P to crops in these acid soils. Phosphate rock is a very efficient P input for crops with long growth cycles or crop rotations nevertheless water-soluble P fertilizers must still be applied to crops of short growth cycle. Combined with these strategic P inputs, the use of acid-tolerant and P-efficient genotypes can further contribute to agricultural sustainability. Greenhouse studies were undertaken to explore and identify genotypic variations in P efficiency of wheat grown in Andisols of Southern Chile. 32 P isotopic techniques were utilized to measure the uptake of P from triple superphosphate, a water-soluble P fertilizer and the locally available Bahia Inglesa phosphate rock. Substantial genotypic variations in P use efficiency were found among the Chilean wheat genotypes tested. The utilization of the 32 P isotopic techniques enabled to quantify the P taken up from the P fertilizer and the assessment of differences among the genotypes. Significant genotypic differences were obtained in the P uptake from the local phosphate rock Bahia Inglesa. Much higher applications of phosphate rock were required in Santa Barbara soil series (Andisol) due to its high P retention. A sustainable strategy for agricultural production in the Andisols of Chile would therefore, be the combined utilization of those efficient wheat genotypes and the local phosphate rock Bahia Inglesa. As P efficiency is a multi-faceted trait, which interacts with a range of environmental factors, further field-testing and validation is required accompanied by in depth studies to assess the

  6. Ellipsometry and electronic microscopy of ashes swept of the Popocatepetl volcano; Elipsometria y microscopia electronica de barrido de las cenizas del volcan Popocatepetl

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Aaron; Munoz, Rafel; Falcon, Nelson [Universidad de Carabobo, Valencia (Venezuela); Chavira, Enrique [Instituto Nacional de Astrofisica Optica y Electronica, Puebla (Mexico)

    2001-12-01

    The ellipsometry and the scanning electronic microscopy is applied to the study of the optic properties of Popocatepetl volcano ash in connection with the form, ruggedness and elemental chemical composition of the microparticles, also to argue about the relation with atmospheric conditions. [Spanish] Se aplica la eliposometria y la microscopia electronica de barrido al estudio de las propiedades opticas de las cenizas de volcan Popocatepetl en relacion con la forma, rugosidad y composicion quimica elemental de las microparticulas, destacandose su vinculacion con las condiciones de visibilidad.

  7. Preparing for Volcanic Hazards: An Examination of Lahar Knowledge, Risk Perception, and Preparedness around Mount Baker and Glacier Peak, WA

    Science.gov (United States)

    Corwin, K.; Brand, B. D.

    2015-12-01

    As the number of people living at risk from volcanic hazards in the U.S. Pacific Northwest continues to rise, so does the need for improved hazard science, mitigation, and response planning. The effectiveness of these efforts relies not only on scientists and policymakers, but on individuals and their risk perception and preparedness levels. This study examines the individual knowledge, perception, and preparedness of over 500 survey respondents living or working within the lahar zones of Mount Baker and Glacier Peak volcanoes. We (1) explore the common disconnect between accurate risk perception and adequate preparedness; (2) determine how participation in hazard response planning influences knowledge, risk perception, and preparedness; and (3) assess the effectiveness of current lahar hazard maps for public risk communication. Results indicate that a disconnect exists between perception and preparedness for the majority of respondents. While 82% of respondents accurately anticipate that future volcanic hazards will impact the Skagit Valley, this knowledge fails to motivate increased preparedness. A majority of respondents also feel "very responsible" for their own protection and provision of resources during a hazardous event (83%) and believe they have the knowledge and skills necessary to respond effectively to such an event (56%); however, many of these individuals still do not adequately prepare. When asked what barriers prevent them from preparing, respondents primarily cite a lack of knowledge about relevant local hazards. Results show that participation in response-related activities—a commonly recommended solution to this disconnect—minimally influences preparedness. Additionally, although local hazard maps successfully communicate the primary hazard—97% of respondents recognize the lahar hazard—many individuals incorrectly interpret other important facets of the maps. Those who participate in response-related activities fail to understand these

  8. Hazards from radioactivity of fly ash of Greek coal power plants (CPP)

    International Nuclear Information System (INIS)

    Papastefanou, C.; Charalambous, S.

    1980-01-01

    Fly ash and fine dispersion releases from coal combustion in Greek coal power plants were studied. Concentrations in the fly ash up to 20 pCi/g and 10 pCi/g were measured for 238 U and 226 Ra respectively (not in secular equilibrium). Risk from the fly ash derives from its escape in particulate form or fine dispersion and from its use as a substitute for cement in concrete. The new data indicate that coal power plants discharge relatively larger quantities of radioactive material into the atmosphere than nuclear power plants of comparable size, during normal operation. (H.K.)

  9. Local and remote infrasound from explosive volcanism

    Science.gov (United States)

    Matoza, R. S.; Fee, D.; LE Pichon, A.

    2014-12-01

    Explosive volcanic eruptions can inject large volumes of ash into heavily travelled air corridors and thus pose a significant societal and economic hazard. In remote volcanic regions, satellite data are sometimes the only technology available to observe volcanic eruptions and constrain ash-release parameters for aviation safety. Infrasound (acoustic waves ~0.01-20 Hz) data fill this critical observational gap, providing ground-based data for remote volcanic eruptions. Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. Advances in infrasound technology and the efficient propagation of infrasound in the atmosphere therefore greatly enhance our ability to monitor volcanoes in remote regions such as the North Pacific Ocean. Infrasound data can be exploited to detect, locate, and provide detailed chronologies of the timing of explosive volcanic eruptions for use in ash transport and dispersal models. We highlight results from case studies of multiple eruptions recorded by the International Monitoring System and dedicated regional infrasound networks (2008 Kasatochi, Alaska, USA; 2008 Okmok, Alaska, USA; 2009 Sarychev Peak, Kuriles, Russian Federation; 2010 Eyjafjallajökull, Icleand) and show how infrasound is currently used in volcano monitoring. We also present progress towards characterizing and modeling the variability in source mechanisms of infrasound from explosive eruptions using dedicated local infrasound field deployments at volcanoes Karymsky, Russian Federation and Sakurajima, Japan.

  10. Geology and petrology of the Woods Mountains Volcanic Center, southeastern California: Implications for the genesis of peralkaline rhyolite ash flow tuffs

    Science.gov (United States)

    McCurry, Michael

    1988-12-01

    The Woods Mountains Volcanic Center is a middle Miocene silicic caldera complex located at the transition from the northern to the southern Basin and Range provinces of the western United States. It consists of a trachyte-trachydacite-rhyolite-peralkaline rhyolite association of lava flows, domes, plugs, pyroclastic rocks, and epiclastic breccia. Volcanism began at about 16.4 Ma, near the end of a local resurgence of felsic to intermediate magmatism and associated crustal extension. Numerous metaluminous high-K trachyte, trachydacite, and rhyolite lava flows, domes, and pyroclastic deposits accumulated from vents scattered over an area of 200 km2 forming a broad volcanic field with an initial volume of about 10 km3. At 15.8 Ma, about 80 km3 of metaluminous to mildly peralkaline high-K rhyolite ash flows were erupted from vents in the western part of fhe field in three closely spaced pulses, resulting in the formation of a trap door caldera 10 km in diameter. The ash flows formed the Wild Horse Mesa Tuff, a compositionally zoned ash flow sheet that originally covered an area of about 600 km2 to a maximum thickness of at least 320 m. High-K trachyte pumice lapilli, some of which are intimately banded with rhyolite, were produced late in the two later eruptions, Intracaldera volcanism from widely distributed vents rapidly filled the caldera with about 10 km3 of high-K, mildly peralkaline, high-silica rhyolite lava flows and pyroclastic deposits. These are interlayered with breccia derived from the caldera scarp. They are intruded by numerous compositionally similar plugs, some of which structurally uplifted and fractured the center of the caldera. The center evolved above a high-K trachyte magma chamber about 10 km in diameter that had developed and differentiated within the upper crust at about 15.8 Ma. Petrological, geochemical, and geophysical data are consistent with the idea that a cap of peralkaline rhyolite magma formed within the trachyte chamber as a result

  11. Hazards from radioactivity of fly ash of Greek coal power plants (CPP)

    International Nuclear Information System (INIS)

    Papastefanou, C.; Charalambous, C.

    1980-01-01

    Fly ash and fine dispersion releases by coal combustion in Greek coal power plants are radioactive. Concentrations in the fly ash up to 20 pCi/g and 10 pCi/g were measured for 238 U and 226 Ra respectively (not in secular equilibrium). The radioactivity of fly ash deduces risks in two ways: a) from the escaping fly ash in particulate form or fine dispersion and b) from using fly ash as substitute for cement in concrete. In a room of dimensions 10 x 10x4 m 3 the concentration of Radon in the air will be about 10 -9 μCi/cm 3 . For the above estimation a concrete porosity of 5% and a wall thickness of 20 cm was used. The estimated concentration of Radon was about two orders of magnitude lower than that of the MPC of Radon in the air, which is about 10 -9 μCi/cm 3 . It is pointed out that if a 25% porosity were used, the Radon concentration will be an order of magnitude higher. (U.K.)

  12. Eruptive dynamics and hazards associated with obsidian bearing ignimbrites of the Geghama Volcanic Highland, Central Armenia: a textural insight

    Science.gov (United States)

    Matthews, Zoe; Manning, Christina J.

    2017-04-01

    The Geghama Volcanic highland in central Armenia is an ideal setting to study the young ( 750-25 ka [1]) volcanism that characterises the Lesser Caucasus region. The volcanism in the area is bimodal in composition: the eastern highlands are dominated by numerous monogenetic scoria cones, whilst the west shows more evolved volcanism centered on two obsidian bearing, polygenetic domes (Hatis and Gutanasar) [2]. Activity at Hatis and Gutanasar is thought to have spanned 550ka-200ka [3] and produced a range of products including obsidian flows, ignimbrites and basaltic scoria cones, consistent with long lived and complex magma storage systems. During a similar time period there is evidence for the presence of hominin groups in the surrounding region [3] and it is likely that at least some of the volcanic activity at Hatis and Gutanasar impacted on their distribution [4]. A better understanding of the eruptive behaviour of these volcanoes during this period could therefore shed light on the effect of volcanic activity on the dispersal of man through this period. Whilst large regional studies have striven to better understand the timing and source of volcanism in Armenia, there have been few detailed studies on single volcanoes. Obsidian is ubiquitous within the volcanic material of both Gutanasar and Hatis as lava flows, dome deposits and within ignimbrites. This study aims to better understand the eruptive history of Gutanasar, with specific focus upon the determination of the petrogenetic history of obsidian lenses observed within the ignimbrite deposits. Identification of these obsidians as the result of welding or in-situ melting will help constrain eruptive volumes and flow thickness, important for the reconstruction of palaeo-volcanic hazards. In order to interpret how this obsidian was deposited, macro textural analysis is combined with micro textural measurements of microlite crystals. Quantitative measurements of microlites in obsidian can provide significant

  13. Updating Parameters for Volcanic Hazard Assessment Using Multi-parameter Monitoring Data Streams And Bayesian Belief Networks

    Science.gov (United States)

    Odbert, Henry; Aspinall, Willy

    2014-05-01

    Evidence-based hazard assessment at volcanoes assimilates knowledge about the physical processes of hazardous phenomena and observations that indicate the current state of a volcano. Incorporating both these lines of evidence can inform our belief about the likelihood (probability) and consequences (impact) of possible hazardous scenarios, forming a basis for formal quantitative hazard assessment. However, such evidence is often uncertain, indirect or incomplete. Approaches to volcano monitoring have advanced substantially in recent decades, increasing the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Interpreting these multiple strands of parallel, partial evidence thus becomes increasingly complex. In practice, interpreting many timeseries requires an individual to be familiar with the idiosyncrasies of the volcano, monitoring techniques, configuration of recording instruments, observations from other datasets, and so on. In making such interpretations, an individual must consider how different volcanic processes may manifest as measureable observations, and then infer from the available data what can or cannot be deduced about those processes. We examine how parts of this process may be synthesised algorithmically using Bayesian inference. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple strands of evidence (e.g. observations, model results and interpretations) and their associated uncertainties in a methodical manner. BBNs are usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic data from the long-lived eruption at Soufriere Hills Volcano, Montserrat. We discuss

  14. Importance of nanoparticles and colloids from volcanic ash for riverine transport of trace elements to the ocean: evidence from glacial-fed rivers after the 2010 eruption of Eyjafjallajökull Volcano, Iceland.

    Science.gov (United States)

    Tepe, Nathalie; Bau, Michael

    2014-08-01

    Volcanic ashes are often referenced as examples for natural nanoparticles, yet the particle size distribution eruptions at Eyjafjallajökull in 2010. In addition to the dissolved concentrations of rare earth elements (REE), Zr, Hf, Nb, and Th in the 450 nm-filtered waters, we also studied the respective filter residues (river particulates >450 nm) and volcanic ash. In spite of the low solubilities and high particle-reactivities of the elements studied, most water samples show high dissolved concentrations, such as up to 971 ng/kg of Ce and 501 ng/kg of Zr. Except for the pure glacial meltwater and glacial base flow, all waters display the same shale-normalized REE patterns with pronounced light and heavy REE depletion and positive Eu anomalies. While such patterns are unusual for river waters, they are similar to those of the respective river particulates and the volcanic ash, though at different concentration levels. The distribution of dissolved Zr, Hf, Nb, and Th in the waters also matches that of filter residues and ash. This strongly suggests that in all 450 nm-filtered river waters, the elements studied are associated with solid ash particles smaller than 450 nm. This reveals that volcanic ash-derived nanoparticles and colloids are present in these glacial-fed rivers and that such ultrafine particles control the trace element distribution in the surface runoff. Subsequent to explosive volcanic eruptions, these waters provide terrigenous input from landmasses to estuaries, that is characterized by a unique trace element signature and that subsequent to modification by estuarine processes delivers a pulse of nutrients to coastal seawater in regions not affected by plume fall-out. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A statistical method linking geological and historical eruption time series for volcanic hazard estimations: Applications to active polygenetic volcanoes

    Science.gov (United States)

    Mendoza-Rosas, Ana Teresa; De la Cruz-Reyna, Servando

    2008-09-01

    The probabilistic analysis of volcanic eruption time series is an essential step for the assessment of volcanic hazard and risk. Such series describe complex processes involving different types of eruptions over different time scales. A statistical method linking geological and historical eruption time series is proposed for calculating the probabilities of future eruptions. The first step of the analysis is to characterize the eruptions by their magnitudes. As is the case in most natural phenomena, lower magnitude events are more frequent, and the behavior of the eruption series may be biased by such events. On the other hand, eruptive series are commonly studied using conventional statistics and treated as homogeneous Poisson processes. However, time-dependent series, or sequences including rare or extreme events, represented by very few data of large eruptions require special methods of analysis, such as the extreme-value theory applied to non-homogeneous Poisson processes. Here we propose a general methodology for analyzing such processes attempting to obtain better estimates of the volcanic hazard. This is done in three steps: Firstly, the historical eruptive series is complemented with the available geological eruption data. The linking of these series is done assuming an inverse relationship between the eruption magnitudes and the occurrence rate of each magnitude class. Secondly, we perform a Weibull analysis of the distribution of repose time between successive eruptions. Thirdly, the linked eruption series are analyzed as a non-homogeneous Poisson process with a generalized Pareto distribution as intensity function. As an application, the method is tested on the eruption series of five active polygenetic Mexican volcanoes: Colima, Citlaltépetl, Nevado de Toluca, Popocatépetl and El Chichón, to obtain hazard estimates.

  16. Evaluation of Animal Hazard to Spot-Seeded White Ash In Central Tennessee

    Science.gov (United States)

    T.E. Russell

    1976-01-01

    Screen protection of seedspots more than doubled white ash seedling establishnient on forested sites of the Cumberland Plateau. For 3 years seeds were sown in fall and spring and given either no protection, or covered with 1-inch mesh screen, or covered with ¼-inch mesh hardware cloth. Unprotected seeds and those covered with 1-inch mesh screen suffered heavy...

  17. Comparative lahar hazard mapping at Volcan Citlaltépetl, Mexico using SRTM, ASTER and DTED-1 digital topographic data

    Science.gov (United States)

    Hubbard, Bernard E.; Sheridan, Michael F.; Carrasco-Nunez, Gerardo; Diaz-Castellon, Rodolfo; Rodriguez, Sergio R.

    2007-01-01

    In this study, we evaluated and compared the utility of spaceborne SRTM and ASTER DEMs with baseline DTED-1 “bald-earth” topography for mapping lahar inundation hazards from volcan Citlaltépetl, Mexico, a volcano which has had a history of producing debris flows of various extents. In particular, we tested the utility of these topographic datasets for resolving ancient valley-filling deposits exposed around the flanks of the volcano, for determining their magnitude using paleohydrologic methods and for forecasting their inundation limits in the future. We also use the three datasets as inputs to a GIS stream inundation flow model, LAHARZ, and compare the results.

  18. Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) project and a next-generation real-time volcano hazard assessment system

    Science.gov (United States)

    Takarada, S.

    2012-12-01

    The first Workshop of Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER1) was held in Tsukuba, Ibaraki Prefecture, Japan from February 23 to 24, 2012. The workshop focused on the formulation of strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis, and volcanic eruptions. More than 150 participants attended the workshop. During the workshop, the G-EVER1 accord was approved by the participants. The Accord consists of 10 recommendations like enhancing collaboration, sharing of resources, and making information about the risks of earthquakes and volcanic eruptions freely available and understandable. The G-EVER Hub website (http://g-ever.org) was established to promote the exchange of information and knowledge among the Asia-Pacific countries. Several G-EVER Working Groups and Task Forces were proposed. One of the working groups was tasked to make the next-generation real-time volcano hazard assessment system. The next-generation volcano hazard assessment system is useful for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is planned to be developed based on volcanic eruption scenario datasets, volcanic eruption database, and numerical simulations. Defining volcanic eruption scenarios based on precursor phenomena leading up to major eruptions of active volcanoes is quite important for the future prediction of volcanic eruptions. Compiling volcanic eruption scenarios after a major eruption is also important. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and styles, is important for the next-generation volcano hazard assessment system. The volcanic eruption database is developed based on past eruption results, which only represent a subset of possible future scenarios. Hence, different distributions from the previous deposits are mainly observed due to the differences in

  19. GIS-Based emergency and evacuation planning for volcanic hazards in New Zealand

    DEFF Research Database (Denmark)

    Cole, J. W.; Sabel, C. E.; Blumenthal, E.

    2005-01-01

    (reduction, readiness, response and recovery) can benefit from CIS, including applications related to transportation systems, a critical element in managing effective lifelines in an emergency. This is particularly true immediately before and during a volcanic eruption. The potential for volcanic activity...... in New Zealand is high, with 10 volcanoes or volcanic centres (Auckland, Bay of Islands, Haroharo, Mayor Island, Ruapehu, Taranaki, Tarawera, Taupo, Tongariro (including Ngauruhoe) and White Island) recognised as active or potentially active. In addition there are many active and potentially active...... volcanoes along the Kermadec Island chain. There is a great deal of background information on all of these volcanoes, and GIS is currently being used for some aspects of monitoring (e.g. ERS and Envisat radar interferometry for observing deformation prior to eruptions). If an eruption is considered imminent...

  20. T.sup.0./sup. peat-forming plant assemblage preserved in growth position by volcanic ash-fall: A case study from the Middle Pennsylvanian of the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Opluštil, S.; Pšenička, J.; Bek, Jiří; Wang, J.; Feng, Z.; Libertín, M.; Šimůnek, Z.; Bureš, J.; Drábková, J.

    2014-01-01

    Roč. 89, č. 4 (2014), s. 773-813 ISSN 1214-1119 R&D Projects: GA ČR GAP210/12/2053 Institutional support: RVO:67985831 Keywords : Pennsylvanian * T 0 plant assemblage * coal forests * volcanic ash beds * Radnice Basin Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.515, year: 2014

  1. Validation of a continuous flow method for the determination of soluble iron in atmospheric dust and volcanic ash.

    Science.gov (United States)

    Simonella, Lucio E; Gaiero, Diego M; Palomeque, Miriam E

    2014-10-01

    Iron is an essential micronutrient for phytoplankton growth and is supplied to the remote areas of the ocean mainly through atmospheric dust/ash. The amount of soluble Fe in dust/ash is a major source of uncertainty in modeling-Fe dissolution and deposition to the surface ocean. Currently in the literature, there exist almost as many different methods to estimate fractional solubility as researchers in the field, making it difficult to compare results between research groups. Also, an important constraint to evaluate Fe solubility in atmospheric dust is the limited mass of sample which is usually only available in micrograms to milligrams amounts. A continuous flow (CF) method that can be run with low mass of sediments (solubility studies on dust/ash. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Introducing Geoscience Students to Numerical Modeling of Volcanic Hazards: The example of Tephra2 on VHub.org

    Directory of Open Access Journals (Sweden)

    Leah M. Courtland

    2012-07-01

    Full Text Available The Tephra2 numerical model for tephra fallout from explosive volcanic eruptions is specifically designed to enable students to probe ideas in model literacy, including code validation and verification, the role of simplifying assumptions, and the concepts of uncertainty and forecasting. This numerical model is implemented on the VHub.org website, a venture in cyberinfrastructure that brings together volcanological models and educational materials. The VHub.org resource provides students with the ability to explore and execute sophisticated numerical models like Tephra2. We present a strategy for using this model to introduce university students to key concepts in the use and evaluation of Tephra2 for probabilistic forecasting of volcanic hazards. Through this critical examination students are encouraged to develop a deeper understanding of the applicability and limitations of hazard models. Although the model and applications are intended for use in both introductory and advanced geoscience courses, they could easily be adapted to work in other disciplines, such as astronomy, physics, computational methods, data analysis, or computer science.

  3. Neotectonics of Graciosa island (Azores: a contribution to seismic hazard assessment of a volcanic area in a complex geodynamic setting

    Directory of Open Access Journals (Sweden)

    Ana Hipólito

    2014-02-01

    Full Text Available Graciosa is a mid-Pleistocene to Holocene volcanic island that lies in a complex plate boundary between the North American, Eurasian, and Nubian plates. Large fault scarps displace the oldest (Middle Pleistocene volcanic units, but in the younger areas recent volcanism (Holocene to Upper Pleistocene conceals the surface expression of faulting, limiting neotectonic observations. The large displacement accumulated by the older volcanic units when compared with the younger formations suggests a variability of deformation rates and the possibility of alternating periods of higher and lower tectonic deformation rates; this would increase the recurrence interval of surface rupturing earthquakes. Nevertheless, in historical times a few destructive earthquakes affected the island attesting for its seismic hazard. Regarding the structural data, two main fault systems, incompatible with a single stress field, were identified at Graciosa Island. Thus, it is proposed that the region is affected by two alternating stress fields. The stress field #1 corresponds to the regional stress regime proposed by several authors for the interplate shear zone that constitutes the Azorean segment of the Eurasia-Nubia plate boundary. It is suggested that the stress field #2 will act when the area under the influence of the regional stress field #1 narrows as a result of variations in the differential spreading rates north and south of Azores. The islands closer to the edge of the sheared region will temporarily come under the influence of a different (external stress field (stress field #2. Such data support the concept that, in the Azores, the Eurasia-Nubia boundary corresponds to a complex and wide deformation zone, variable in time.

  4. Local seismic hazard assessment in explosive volcanic settings by 3D numerical analyses

    Science.gov (United States)

    Razzano, Roberto; Pagliaroli, Alessandro; Moscatelli, Massimiliano; Gaudiosi, Iolanda; Avalle, Alessandra; Giallini, Silvia; Marcini, Marco; Polpetta, Federica; Simionato, Maurizio; Sirianni, Pietro; Sottili, Gianluca; Vignaroli, Gianluca; Bellanova, Jessica; Calamita, Giuseppe; Perrone, Angela; Piscitelli, Sabatino

    2017-04-01

    This work deals with the assessment of local seismic response in the explosive volcanic settings by reconstructing the subsoil model of the Stracciacappa maar (Sabatini Volcanic District, central Italy), whose pyroclastic succession records eruptive phases ended about 0.09 Ma ago. Heterogeneous characteristics of the Stracciacappa maar (stratification, structural setting, lithotypes, and thickness variation of depositional units) make it an ideal case history for understanding mechanisms and processes leading to modifications of amplitude-frequency-duration of seismic waves generated at earthquake sources and propagating through volcanic settings. New geological map and cross sections, constrained with recently acquired geotechnical and geophysical data, illustrate the complex geometric relationships among different depositional units forming the maar. A composite interfingering between internal lacustrine sediments and epiclastic debris, sourced from the rim, fills the crater floor; a 45 meters thick continuous coring borehole was drilled in the maar with sampling of undisturbed samples. Electrical Resistivity Tomography surveys and 2D passive seismic arrays were also carried out for constraining the geological model and the velocity profile of the S-waves, respectively. Single station noise measurements were collected in order to define natural amplification frequencies. Finally, the nonlinear cyclic soil behaviour was investigated through simple shear tests on the undisturbed samples. The collected dataset was used to define the subsoil model for 3D finite difference site response numerical analyses by using FLAC 3D software (ITASCA). Moreover, 1D and 2D numerical analyses were carried out for comparison purposes. Two different scenarios were selected as input motions: a moderate magnitude (volcanic event) and a high magnitude (tectonic event). Both earthquake scenarios revealed significant ground motion amplification (up to 15 in terms of spectral acceleration

  5. Volcanic Characteristics of Kueishantao in Northeast Taiwan and Their Implications

    Directory of Open Access Journals (Sweden)

    Ching-Lung Chiu

    2010-01-01

    Full Text Available Kueishantao (KST is a small offshore volcanic island located at the southernmost part of the Okinawa Trough. In this study, we conducted a detailed mapping incorporating the new high resolution LiDAR DTM laser scanning device to accurately construct a volcanic sequence. A new 1/5000 geological map was established. One primary volcanic cone, composed of layers of both lava flows and pyroclastic rocks constituted the major edifice of KST. The other minor volcanic cone, which consists of volcanic lapillis and blocks, is seated to the east of the main cone. The escarped and nearly straight coast in the southern part of the KST indicates that the volcano suffered a large post-volcanic edifice collapse erasing nearly one half of the volume of both volcanic cones. The increase in the abundance of the xenoliths of sedimentary rocks from the lower to the upper part of the volcanic sequence indicates that the formation of volcanic rocks of the KST involved an intensification of crustal contamination. The possibility of volcanic eruption can not be excluded in the future based on the present thermolu¬minescene age data of 7 ka. The associated eruptive ash fall and tsunami induced by the further collapse of the KST volcanic edifice might have great influence to the adjacent inland. Thus, long-term monitoring of volcanic activities around KST should be required for future hazard assessments.

  6. The effectiveness of stone ash and volcanic ash of mount Sinabung as a filler on the initial strength of self-compacting concrete

    Science.gov (United States)

    Karolina, R.; Muhammad, W.; Saragih, M. D. S. M.; Mustaqa, T.

    2018-02-01

    Self Compacting Concrete is a concrete variant that has a high degree of workability and also has great initial strength, but low water cement factor. It is also self-flowable that can be molded on formwork with a very little or no compacted use of compactors. This concrete, using a variety of aggregate sizes, aggregate portions and superplasticizer admixture to achieve a special viscosity that allows it to flow on its own without the aid of a compactor. Lightweight concrete brick is a type of brick made from cement, sand, water, and developers. Lightweight concrete bricks are divided into 2 based on the developed materials used are AAC (Autoclave Aerated Concrete) using aluminum paste and CLC (Cellular Lightweight Concrete) that use Foaming Agent from BASF as a developer material. In this experiment, the lightweight bricks that will be made are CLC type which uses Foaming Agent as the developer material by mixing the Ash Stone produced by Stone Crusher machine which has the density of 2666 kg / m3 as Partial Pair Substitution. In this study the variation of Ash Stone used is 10%, 15%, and 20% of the planned amount of sand. After doing the tasting the result is obtained for 10% variation. Compressive Strength and Absorption Increase will decrease by 25.07% and 39.005% and Variation of 15% compressive strength will decrease by 65,8% and decrease of absorbtion equal to 17,441% and variation of 20% compressive strength will decreased by 67,4 and absorption increase equal to 17,956%.

  7. Volcanic Risk Perception and Preparedness in Communities within the Mount Baker and Glacier Peak Lahar Hazard Zones

    Science.gov (United States)

    Corwin, K.; Brand, B. D.

    2014-12-01

    A community's ability to effectively respond to and recover from natural hazards depends on both the physical characteristics of the hazard and the community's inherent resilience. Resilience is shaped by a number of factors including the residents' perception of and preparedness for a natural hazard as well as the level of institutional preparedness. This study examines perception of and preparedness for lahar hazards from Mount Baker and Glacier Peak in Washington's Skagit Valley. Through an online survey, this study isolates the influence of specific variables (e.g., knowledge, past experience, scientific background, trust in various information sources, occupation, self-efficacy, sense of community) on risk perception and explores reasons behind the frequent disconnect between perception and preparedness. We anticipate that individuals with more extensive education in the sciences, especially geology or earth science, foster greater trust in scientists and a more accurate knowledge, understanding, and perception of the volcanic hazards in their community. Additionally, little research exists examining the extent to which first responders and leaders in response-related institutions prepare on a personal level. Since these individuals work toward community preparedness professionally, we hypothesize that they will be more prepared at home than members of the general public. Finally, the Skagit Valley has a significant history of flooding. We expect that the need to respond to and recover from frequent flooding creates a community with an inherently higher level of preparedness for other hazards such as lahars. The results of this study will contribute to the understanding of what controls risk perception and the interplay between perception and preparedness. At a broader level, this study provides local and state-level emergency managers information to evaluate and improve response capabilities and communication with the public and key institutions in order to

  8. Removal of chloride from fly ash produced in hazardous waste incineration by leaching and displacement washing in a vertical filter press.

    Science.gov (United States)

    Kinnarinen, Teemu; Huhtanen, Mikko; Penttilä, Mika; Häkkinen, Antti

    2013-02-01

    Fly ash is generated in large quantities by waste incineration processes. Chloride is commonly present in the fly ash produced by the incineration of hazardous materials, such as polyvinylchloride plastic. Major difficulties related to the disposal and handling of fly ash include the high concentration of easily leachable chlorides, heavy metals and toxic compounds. In order to avoid adverse environmental effects from the disposal of fly ash, the content of soluble chlorides must be reduced. One of the most effective options for chloride removal is leaching and displacement washing in a filter press. The primary aim of this study was to obtain efficient removal of chloride from fly ash by utilizing a leaching and displacement washing process, carried out in a filter press. The secondary objective was to obtain high filtration capacities and low filter cake moisture contents. The slurry was prepared by mixing fly ash with water at an ash:water ratio of 1:2 and filtered to separate the solids from the liquid. After solid-liquid separation, most of the dissolved residual chloride was removed from the filter cake by washing the cake with fresh water in the second stage of separation. It was possible to remove up to 98% of the total chloride and to obtain sufficient filtration capacities. The residual moisture content of the filter cakes varied from 22 to 35 wt%, which meant that the cakes could be disposed of in landfill, or possibly utilized as a construction material.

  9. Spectroscopic and Microscopic Characterization of Volcanic Ash from Puyehue-(Chile Eruption: Preliminary Approach for the Application in the Arsenic Removal

    Directory of Open Access Journals (Sweden)

    Irma Lia Botto

    2013-01-01

    Full Text Available Volcanic ash from Puyehue Cordon Caulle Volcanic Complex (Chile, emitted on June 4, 2011, and deposited in Villa La Angostura at ~40 km of the source, was collected and analyzed by Raman spectroscopy, optical and scanning electron microscopy (SEM-EDS, X-ray diffraction (XRD, surface area (BET, and chemical analysis (ICP-AES-MS technique. The mineralogical and physicochemical study revealed that the pyroclastic mixture contains iron oxides in the form of magnetite and hematite as well as pyroxene and plagioclase mineral species and amorphous pumiceous shards. Carbonaceous material was also identified. Physicochemical techniques allow us to select two representative samples (average composition and Fe-rich materials which were used to analyze their performances in the adsorption process to remove arsenic from water. Additional iron activation by means of ferric salts was performed under original sample. Results showed that the low-cost feedstock exhibited a good adsorption capacity to remove the contaminant, depending on the iron content and the water pH.

  10. Assessing volcanic hazard at the most populated caldera in the world: Campi Flegrei, Southern Italy

    Science.gov (United States)

    Somma, R.; de Natale, G.; Troise, C.; Kilburn, C.; Moretti, R.

    2017-12-01

    Naples and its hinterland in Southern Italy are one of the most urbanized areas in the world under threat from volcanic activity. The region lies within range of three active volcanic centers: Vesuvius, Campi Flegrei, and Ischia. The Campi Flegrei caldera, in particular, has been in unrest for six decades. The unrest followed four centuries of quiescence and has heightened concern about an increased potential for eruption. Innovative geochemical and geophysical analysis, combined with scientific drilling, are being used to investigate Campi Flegrei. Results highlight key directions for better understanding the mechanisms of caldera formation and the respective roles of magma intrusion and hydrothermal activity in determining the volcano's behavior. They also provide a framework for evaluating and mitigating the risk from this caldera and other large ones worldwide.

  11. Spreading of Somma-Vesuvio Volcanic Complex: is the Hazard for Plinian Eruptions being reduced?

    Science.gov (United States)

    Borgia, A.; Tizzani, P.; Solaro, G.; Luongo, G.; Fusi, N.

    2003-12-01

    Contrary to what is the common knowledge, a detailed structural study of active faulting and rifting of the summit area of Somma-Vesuvio volcanic complex, combined with INSAR, levelling data and seismic profiling at sea suggests that the present-day long-term dynamic behaviour of the complex and of its summit caldera is characterized by volcanic spreading. The structural evolution is controlled by a number of asymmetric, intersecting leaf-grabens. The boundary faults of these grabens intersect at different angles the Somma caldera walls generating a set of wedge-horsts. While normal faulting characterizes the Somma caldera walls, the lavas of the past 150 years, infilling the caldera, have been rifted all around the southern, eastern and northern base of Vesuvio's cone, which, in turn, is being displaced seaward. Associated to the subsidence and extension of the summit area, relative uplift occurs along the coast; in addition, deformation of recent sediments 6-18 km offshore also indicate compression and uplift, which appears to be unrelated to regional tectonics. A preliminary evaluation indicates that rifting of the lavas is in the order of 1-2 mm/a with a southwestward average direction of displacement. Based on these data, we suggest that a wide sector of Somma-Vesuvio is spreading on its plastic sedimentary substratum, which have been identified by drilling. Volcanic spreading appears to have controlled the magmatic evolution and the energy decrease of major historic explosive eruptions since 79 AD. If our interpretation is correct, major plinian eruptions should not occur in the near future. On the other hand, rifting around the caldera suggests that volcanic activity could soon be renewed.

  12. Volcanic ash deposition, eelgrass beds, and inshore habitat loss from the 1920s to the 1990s at Chignik, Alaska

    Science.gov (United States)

    Zimmermann, Mark; Ruggerone, Gregory T.; Freymueller, Jeffrey T.; Kinsman, Nicole; Ward, David H.; Hogrefe, Kyle R.

    2018-03-01

    We quantified the shallowing of the seafloor in five of six bays examined in the Chignik region of the Alaska Peninsula, confirming National Ocean Service observations that 1990s hydrographic surveys were shallower than previous surveys from the 1920s. Castle Bay, Chignik Lagoon, Hook Bay, Kujulik Bay and Mud Bay lost volume as calculated from Mean Lower Low Water (Chart Datum) to the deepest depths and four of these sites lost volume from Mean High Water to the deepest depths. Calculations relative to each datum were made because tidal datum records exhibited an increase in tidal range in this region from the 1920s to the 1990s. Our analysis showed that Mud Bay is quickly disappearing while Chignik Lagoon is being reduced to narrow channels. Anchorage Bay was the only site that increased in depth over time, perhaps due to erosion. Volcanoes dominate the landscape of the Chignik area. They have blanketed the region in deep ash deposits before the time frame of this study, and some have had smaller ash-producing eruptions during the time frame of this study. Remobilization of land-deposited ash and redeposition in marine areas - in some locations facilitated by extensive eelgrass (Zostera marina) beds (covering 54% of Chignik Lagoon and 68% of Mud Bay in 2010) - is the most likely cause of shallowing in the marine environment. Loss of shallow water marine habitat may alter future abundance and distribution of several fish, invertebrate and avian species.

  13. Monitoring and forecasting Etna volcanic plumes

    Directory of Open Access Journals (Sweden)

    S. Scollo

    2009-09-01

    Full Text Available In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV. The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i downloading weather forecast data from meteorological mesoscale models; ii running models of tephra dispersal, iii plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  14. Observation of the volcanic plume of Eyjafjallajoekull over continental Europe by MAX-DOAS

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, S.; Bobrowski, N.; Friess, U.; Platt, U. [IUP, University of Heidelberg (Germany); Flentje, H. [DWD, Hohenpeissenberg (Germany); Hoermann, C.; Sihler, H. [IUP, University of Heidelberg (Germany); MPI, Mainz (Germany); Kern, C. [USGS, Vancouver (Canada); Wagner, T. [MPI, Mainz (Germany)

    2011-07-01

    The recent eruption of Eyjafjallajoekull Volcano (Iceland) and the emitted ash plume which disrupted commercial air traffic over Europe has led to an exhaustive debate on how to improve our ability to quantitatively determine the ash load in the atmosphere as a function of time and geographical location. Satellite instruments detecting ash and SO{sub 2} and ground-based LIDAR stations can help constrain atmospheric transport and meteorology models used to predict ash dispersion. However, MAX-DOAS represents an additional tool with considerable potential for the quantitative detection of elevated volcanic ash and SO{sub 2} plumes. It performs especially well during weather conditions in which satellites and LIDARs are impeded in their effectiveness, e.g. in the case of dense clouds above or below the plume, respectively. Here, the advantages and disadvantages of the DOAS technique are discussed, and its potential for monitoring of volcanic ash hazards explored. Results of ash and SO{sub 2} measurements of the Eyjafjallajoekull plume as it passed over Heidelberg are presented as an example of a positive detection of a highly diluted volcanic plume. Their low cost and complementary nature makes MAX-DOAS a promising technology in the field of aviation hazard detection and management.

  15. Tephrostratigraphy and potassium-argon age determinations of seven volcanic ash layers in the Muddy Creek formation of southern Nevada

    International Nuclear Information System (INIS)

    Metcalf, L.A.

    1982-04-01

    Seven silicic tephra layers occur in alluvial deposits of the Muddy Creek and equivalent formations at three localities in southern Nevada. Chemical and petrographic characterization indicate the tephra were derived from seven different volcanic eruptions and do not represent any previously known tephra layers. K-Ar age determinations on minerals or glass from each layer yielded 6 to 12 m.y. ages. Discordant ages were obtained on multiple mineral phases due to incorporation of detrital contaminants. The tephra are sufficiently distinctive to constitute stratigraphic marker horizons in the Muddy Creek and equivalent formations. Derivation from the southwestern Nevada volcanic field, active 16 to 6 m.y., is highly likely for some of the tephra. The K-Ar results suggest substantial parts of the Muddy Creek Formation and equivalent basin-fill are 6 to 12 m.y., indicating basin-range faulting began prior to 12 m.y. Little tectonic deformation or physiographic change has occurrred in the past 6 m.y

  16. Pyroclastic Density Current Hazards in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Brand, B. D.; Gravley, D.; Clarke, A. B.; Bloomberg, S. H.

    2012-12-01

    The most dangerous phenomena associated with phreatomagmatic eruptions are dilute pyroclastic density currents (PDCs). These are turbulent, ground-hugging sediment gravity currents that travel radially away from the explosive center at up to 100 m/s. The Auckland Volcanic Field (AVF), New Zealand, consists of approximately 50 eruptive centers, at least 39 of which have had explosive phreatomagmatic behaviour. A primary concern for future AVF eruptions is the impact of dilute PDCs in and around the Auckland area. We combine field observations from the Maungataketake tuff ring, which has one of the best exposures of dilute PDC deposits in the AVF, with a quantitative model for flow of and sedimentation from a radially-spreading, steady-state, depth-averaged dilute PDC (modified from Bursik and Woods, 1996 Bull Volcanol 58:175-193). The model allows us to explore the depositional mechanisms, macroscale current dynamics, and potential impact on societal infrastructure of dilute PDCs from a future AVF eruption. The lower portion of the Maungataketake tuff ring pyroclastic deposits contains trunks, limbs and fragments of Podocarp trees (strength of the wood, we calculate that dynamic pressures (Pdyn) of 10-75 kPa are necessary to topple trees of this size and composition. Thus the two main criteria for model success based on the field evidence include (a) Pdyn must be >10 kPa nearer than 0.9 km to the vent, and 35 kPa can be expected within 3 km from source, ensuring complete destruction of the area; Pdyn > 15 kPa up to 5 km from source, resulting in heavy structural damage to most buildings and near destruction of weaker buildings; and Pdyn <10 kPa at ~6 km from source, resulting in severe damage to weaker structures at least up to this distance. This exercise illustrates our ability to combine field measurements with numerical techniques to explore controlling parameters of dilute PDC dynamics. These tools can be used to understand and estimate the damage potential and

  17. Assessment of volcanic and tectonic hazards to high level radioactive waste repositories

    International Nuclear Information System (INIS)

    Wallmann, P.C.; Miller, I.; Kossik, R.

    1993-01-01

    Golder Associates Inc. (GAI) has developed a computer program (RIP) for performing probabilistic total system performance assessment and site characterization strategy evaluation which can be applied in an iterative manner to evaluate repository site suitability and to guide characterization activities. The performance assessment model incorporated in RIP has three basic component models: (1) waste package behavior, (2) radionuclide transport pathways, and (3) disruptive events. Classes of disruptive events are specified in RIP by (1) a disruption rate (events/yr.), (2) open-quotes event descriptorsclose quotes which describe event characteristics and magnitude, and (3) the consequences associated with an event. One of the strengths of RIP is its flexibility, which allows it to evaluate different sites and conceptual models. Examples of seismic and volcanic disruptive event models constructed by GAI for Yucca Mountain are presented. Analysis of the results of these models indicates that for the simulated models, neither of these event classes significantly impacts the performance of the proposed repository over a 10,000 year time span

  18. Sorption behavior of bensulfuron-methyl on andisols and ultisols volcanic ash-derived soils: Contribution of humic fractions and mineral-organic complexes

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, Jeannette; Fuentes, Edwar [Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Olivos 1007, Casilla 233, Santiago (Chile); Baez, Maria E., E-mail: mbaez@ciq.uchile.c [Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Olivos 1007, Casilla 233, Santiago (Chile)

    2009-12-15

    Bensulfuron-methyl sorption was studied in Andisol and Ultisol soils in view of their characteristic physical and chemical properties, presenting acidic pH and variable charge. Humic and fulvic acids (HA and FA) and humin (HUM) contributions were established. Sorption was studied by using two synthetic sorbents, an aluminum-silicate with iron oxide coverage and the same sorbent coated with humic acid. Freundlich model described Bensulfuron-methyl behavior in all sorbents (R{sup 2} 0.969-0.998). K{sub f} for soils (8.3-20.7 mug{sup 1-1/n} mL{sup 1/n} g{sup -1}) were higher than those reported in the literature. Organic matter, halloysite or kaolinite, and specific surface area contributed to the global process. The highest K{sub f} for HA, FA and HUM were 539.5, 82.9, and 98.7 mug{sup 1-1/n} mL{sup 1/n} g{sup -1}. Model sorbents described the participation of variable charge materials with high adsorption capacity. The constant capacitance model was used to assess effects of Bensulfuron-methyl adsorption on the distribution of SOH, SOH{sub 2}{sup +} and SO{sup -} sites of sorbents. - Organic matter, phyllosilicates, variable charge minerals and organo-mineral complexes contribute to bensulfuron-methyl sorption on volcanic ash-derived soils.

  19. Efect of diferent rates of phosphorus and forms of application in the efficiency of triple superphosphate in a soil derived from volcanic ashes

    International Nuclear Information System (INIS)

    Pino, I.; Casas, L.

    1988-01-01

    Greenhouse experiments with a soil derived from volcanic ash were carried out in order to determine the efficiency of triple Superphosphate with different rates and forms of application. Oat (Avena Sativa L.) was used as reference crop. The P 32 labeled fertilizer was applied located 2,5 cm underneath the seeds. At the same time 500 mg P were applied located, mixed and in the surface of the soil. The P in the plant coming from the fertilizer was about 65%. This value was independent from the rates. The A value showed some fluctuations with the utmost rates of P. The fertilizer applied located and in the surface of the soil proved to be the most efficient form of application. The A value useful to compare the different treatments. The fertilizer efficiency was very low in both experiments, being the higher efficiency (5,9%) at the lowest rate which is not associated to a higher production. The best treatment was obtained with 500 mg of P located underneath the seed. (author)

  20. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  1. Local to global: a collaborative approach to volcanic risk assessment

    Science.gov (United States)

    Calder, Eliza; Loughlin, Sue; Barsotti, Sara; Bonadonna, Costanza; Jenkins, Susanna

    2017-04-01

    Volcanic risk assessments at all scales present challenges related to the multitude of volcanic hazards, data gaps (hazards and vulnerability in particular), model representation and resources. Volcanic hazards include lahars, pyroclastic density currents, lava flows, tephra fall, ballistics, gas dispersal and also earthquakes, debris avalanches, tsunamis and more ... they can occur in different combinations and interact in different ways throughout the unrest, eruption and post-eruption period. Volcanoes and volcanic hazards also interact with other natural hazards (e.g. intense rainfall). Currently many hazards assessments consider the hazards from a single volcano but at national to regional scales the potential impacts of multiple volcanoes over time become important. The hazards that have the greatest tendency to affect large areas up to global scale are those transported in the atmosphere: volcanic particles and gases. Volcanic ash dispersal has the greatest potential to directly or indirectly affect the largest number of people worldwide, it is currently the only volcanic hazard for which a global assessment exists. The quantitative framework used (primarily at a regional scale) considers the hazard at a given location from any volcano. Flow hazards such as lahars and floods can have devastating impacts tens of kilometres from a source volcano and lahars can be devastating decades after an eruption has ended. Quantitative assessment of impacts is increasingly undertaken after eruptions to identify thresholds for damage and reduced functionality. Some hazards such as lava flows could be considered binary (totally destructive) but others (e.g. ash fall) have varying degrees of impact. Such assessments are needed to enhance available impact and vulnerability data. Currently, most studies focus on physical vulnerability but there is a growing emphasis on social vulnerability showing that it is highly variable and dynamic with pre-eruption socio

  2. Combined exposure of diesel exhaust particles and respirable Soufrière Hills volcanic ash causes a (pro-)inflammatory response in an in vitro multicellular epithelial tissue barrier model

    Science.gov (United States)

    Tomašek, Ines; Horwell, Claire J.; Damby, David; Barošová, Hana; Geers, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Clift, Martin J. D.

    2016-01-01

    BackgroundThere are justifiable health concerns regarding the potential adverse effects associated with human exposure to volcanic ash (VA) particles, especially when considering communities living in urban areas already exposed to heightened air pollution. The aim of this study was, therefore, to gain an imperative, first understanding of the biological impacts of respirable VA when exposed concomitantly with diesel particles.MethodsA sophisticated in vitro 3D triple cell co-culture model of the human alveolar epithelial tissue barrier was exposed to either a single or repeated dose of dry respirable VA (deposited dose of 0.26 ± 0.09 or 0.89 ± 0.29 μg/cm2, respectively) from Soufrière Hills volcano, Montserrat for a period of 24 h at the air-liquid interface (ALI). Subsequently, co-cultures were exposed to co-exposures of single or repeated VA and diesel exhaust particles (DEP; NIST SRM 2975; 0.02 mg/mL), a model urban pollutant, at the pseudo-ALI. The biological impact of each individual particle type was also analysed under these precise scenarios. The cytotoxic (LDH release), oxidative stress (depletion of intracellular GSH) and (pro-)inflammatory (TNF-α, IL-8 and IL-1β) responses were assessed after the particulate exposures. The impact of VA exposure upon cell morphology, as well as its interaction with the multicellular model, was visualised via confocal laser scanning microscopy (LSM) and scanning electron microscopy (SEM), respectively.ResultsThe combination of respirable VA and DEP, in all scenarios, incited an heightened release of TNF-α and IL-8 as well as significant increases in IL-1β, when applied at sub-lethal doses to the co-culture compared to VA exposure alone. Notably, the augmented (pro-)inflammatory responses observed were not mediated by oxidative stress. LSM supported the quantitative assessment of cytotoxicity, with no changes in cell morphology within the barrier model evident. A direct interaction of the VA with all

  3. Automatized near-real-time short-term Probabilistic Volcanic Hazard Assessment of tephra dispersion before eruptions: BET_VHst for Vesuvius and Campi Flegrei during recent exercises

    Science.gov (United States)

    Selva, Jacopo; Costa, Antonio; Sandri, Laura; Rouwet, Dmtri; Tonini, Roberto; Macedonio, Giovanni; Marzocchi, Warner

    2015-04-01

    Probabilistic Volcanic Hazard Assessment (PVHA) represents the most complete scientific contribution for planning rational strategies aimed at mitigating the risk posed by volcanic activity at different time scales. The definition of the space-time window for PVHA is related to the kind of risk mitigation actions that are under consideration. Short temporal intervals (days to weeks) are important for short-term risk mitigation actions like the evacuation of a volcanic area. During volcanic unrest episodes or eruptions, it is of primary importance to produce short-term tephra fallout forecast, and frequently update it to account for the rapidly evolving situation. This information is obviously crucial for crisis management, since tephra may heavily affect building stability, public health, transportations and evacuation routes (airports, trains, road traffic) and lifelines (electric power supply). In this study, we propose a methodology named BET_VHst (Selva et al. 2014) for short-term PVHA of volcanic tephra dispersal based on automatic interpretation of measures from the monitoring system and physical models of tephra dispersal from all possible vent positions and eruptive sizes based on frequently updated meteorological forecasts. The large uncertainty at all the steps required for the analysis, both aleatory and epistemic, is treated by means of Bayesian inference and statistical mixing of long- and short-term analyses. The BET_VHst model is here presented through its implementation during two exercises organized for volcanoes in the Neapolitan area: MESIMEX for Mt. Vesuvius, and VUELCO for Campi Flegrei. References Selva J., Costa A., Sandri L., Macedonio G., Marzocchi W. (2014) Probabilistic short-term volcanic hazard in phases of unrest: a case study for tephra fallout, J. Geophys. Res., 119, doi: 10.1002/2014JB011252

  4. A combined field and numerical approach to understanding dilute pyroclastic density current dynamics and hazard potential: Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Brand, Brittany D.; Gravley, Darren M.; Clarke, Amanda B.; Lindsay, Jan M.; Bloomberg, Simon H.; Agustin-Flores, Javier; Németh, Károly

    2014-04-01

    The most dangerous and deadly hazards associated with phreatomagmatic eruptions in the Auckland Volcanic Field (AVF; Auckland, New Zealand) are those related to volcanic base surges - dilute, ground-hugging, particle laden currents with dynamic pressures capable of severe to complete structural damage. We use the well-exposed base surge deposits of the Maungataketake tuff ring (Manukau coast, Auckland), to reconstruct flow dynamics and destructive potential of base surges produced during the eruption. The initial base surge(s) snapped trees up to 0.5 m in diameter near their base as far as 0.7-0.9 km from the vent. Beyond this distance the trees were encapsulated and buried by the surge in growth position. Using the tree diameter and yield strength of the wood we calculate that dynamic pressures (Pdyn) in excess of 12-35 kPa are necessary to cause the observed damage. Next we develop a quantitative model for flow of and sedimentation from a radially-spreading, dilute pyroclastic density currents (PDCs) to determine the damage potential of the base surges produced during the early phases of the eruption and explore the implications of this potential on future eruptions in the region. We find that initial conditions with velocities on the order of 65 m s- 1, bulk density of 38 kg m- 3 and initial, near-vent current thicknesses of 60 m reproduce the field-based Pdyn estimates and runout distances. A sensitivity analysis revealed that lower initial bulk densities result in shorter run-out distances, more rapid deceleration of the current and lower dynamic pressures. Initial velocity does not have a strong influence on run-out distance, although higher initial velocity and slope slightly decrease runout distance due to higher rates of atmospheric entrainment. Using this model we determine that for base surges with runout distances of up to 4 km, complete destruction can be expected within 0.5 km from the vent, moderate destruction can be expected up to 2 km, but much

  5. Progress in Near Real-Time Volcanic Cloud Observations Using Satellite UV Instruments

    Science.gov (United States)

    Krotkov, N. A.; Yang, K.; Vicente, G.; Hughes, E. J.; Carn, S. A.; Krueger, A. J.

    2011-12-01

    Volcanic clouds from explosive eruptions can wreak havoc in many parts of the world, as exemplified by the 2010 eruption at the Eyjafjöll volcano in Iceland, which caused widespread disruption to air traffic and resulted in economic impacts across the globe. A suite of satellite-based systems offer the most effective means to monitor active volcanoes and to track the movement of volcanic clouds globally, providing critical information for aviation hazard mitigation. Satellite UV sensors, as part of this suite, have a long history of making unique near-real time (NRT) measurements of sulfur dioxide (SO2) and ash (aerosol Index) in volcanic clouds to supplement operational volcanic ash monitoring. Recently a NASA application project has shown that the use of near real-time (NRT,i.e., not older than 3 h) Aura/OMI satellite data produces a marked improvement in volcanic cloud detection using SO2 combined with Aerosol Index (AI) as a marker for ash. An operational online NRT OMI AI and SO2 image and data product distribution system was developed in collaboration with the NOAA Office of Satellite Data Processing and Distribution. Automated volcanic eruption alarms, and the production of volcanic cloud subsets for multiple regions are provided through the NOAA website. The data provide valuable information in support of the U.S. Federal Aviation Administration goal of a safe and efficient National Air Space. In this presentation, we will highlight the advantages of UV techniques and describe the advances in volcanic SO2 plume height estimation and enhanced volcanic ash detection using hyper-spectral UV measurements, illustrated with Aura/OMI observations of recent eruptions. We will share our plan to provide near-real-time volcanic cloud monitoring service using the Ozone Mapping and Profiler Suite (OMPS) on the Joint Polar Satellite System (JPSS).

  6. Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: Importance of an effective hazards-warning system

    Science.gov (United States)

    De la Cruz-Reyna, Servando; Tilling, Robert I.

    2008-01-01

    Volcanic eruptions and other potentially hazardous natural phenomena occur independently of any human actions. However, such phenomena can cause disasters when a society fails to foresee the hazardous manifestations and adopt adequate measures to reduce its vulnerability. One of the causes of such a failure is the lack of a consistent perception of the changing hazards posed by an ongoing eruption, i.e., with members of the scientific community, the Civil Protection authorities and the general public having diverging notions about what is occurring and what may happen. The problem of attaining a perception of risk as uniform as possible in a population measured in millions during an evolving eruption requires searching for communication tools that can describe—as simply as possible—the relations between the level of threat posed by the volcano, and the level of response of the authorities and the public. The hazards-warning system adopted at Popocatépetl Volcano, called the Volcanic Traffic Light Alert System(VTLAS), is a basic communications protocol that translates volcano threat into seven levels of preparedness for the emergency-management authorities, but only three levels of alert for the public (color coded green–yellow–red). The changing status of the volcano threat is represented as the most likely scenarios according to the opinions of an official scientific committee analyzing all available data. The implementation of the VTLAS was intended to reduce the possibility of ambiguous interpretations of intermediate levels by the endangered population. Although the VTLAS is imperfect and has not solved all problems involved in mass communication and decision-making during a volcanic crisis, it marks a significant advance in the management of volcanic crises in Mexico.

  7. Trace elements in coal ash

    Science.gov (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  8. Nature, source and composition of volcanic ash in sediments from a fracture zone trace of Rodriguez Triple Junction in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas-Pereira, M.B.L.; Nath, B.N.; Borole, D.V.; Gupta, S.M.

    Volcanic glasses associated with pumice, micro nodules and palagonite like lithic fragments were recovered from a volcanic terrain in a fracture zone defined as Rodriguez Triple Junction trace in the Central Indian Basin. Morphologically, the tephra...

  9. Visualizing Volcanic Clouds in the Atmosphere and Their Impact on Air Traffic.

    Science.gov (United States)

    Gunther, Tobias; Schulze, Maik; Friederici, Anke; Theisel, Holger

    2016-01-01

    Volcanic eruptions are not only hazardous in the direct vicinity of a volcano, but they also affect the climate and air travel for great distances. This article sheds light on the Grímsvötn, Puyehue-Cordón Caulle, and Nabro eruptions in 2011. The authors study the agreement of the complementary satellite data, reconstruct sulfate aerosol and volcanic ash clouds, visualize endangered flight routes, minimize occlusion in particle trajectory visualizations, and focus on the main pathways of Nabro's sulfate aerosol into the stratosphere. The results here were developed for the 2014 IEEE Scientific Visualization Contest, which centers around the fusion of multiple satellite data modalities to reconstruct and assess the movement of volcanic ash and sulfate aerosol emissions. Using data from three volcanic eruptions that occurred in the span of approximately three weeks, the authors study the agreement of the complementary satellite data, reconstruct sulfate aerosol and volcanic ash clouds, visualize endangered flight routes, minimize occlusion in particle trajectory visualizations, and focus on the main pathways of sulfate aerosol into the stratosphere. This video provides animations of the reconstructed ash clouds. https://youtu.be/D9DvJ5AvZAs.

  10. About a double process of soil acidification under the influence of recent volcanic ashes. Example of the Soufriere of Guadeloupe, after the 1976-1977 eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Cabidoche, Y.M.; Sobesky, O.; Feller, C.; Larque, P.

    1987-04-21

    A fast and durable acidification was observed in Andisols, after the ash-deposits of the 1976-1977 Soufriere eruptions. This phenomenon is due to an original connection of a double process, concerning with the initial ash composition: an immediate aluminic acidity coming from the inter-layer Al smectites, a gradual protonic acidification due to oxydation of pyrites.

  11. Potential ash impact from Antarctic volcanoes: Insights from Deception Island's most recent eruption.

    Science.gov (United States)

    Geyer, A; Marti, A; Giralt, S; Folch, A

    2017-11-28

    Ash emitted during explosive volcanic eruptions may disperse over vast areas of the globe posing a threat to human health and infrastructures and causing significant disruption to air traffic. In Antarctica, at least five volcanoes have reported historic activity. However, no attention has been paid to the potential socio-economic and environmental consequences of an ash-forming eruption occurring at high southern latitudes. This work shows how ash from Antarctic volcanoes may pose a higher threat than previously believed. As a case study, we evaluate the potential impacts of ash for a given eruption scenario from Deception Island, one of the most active volcanoes in Antarctica. Numerical simulations using the novel MMB-MONARCH-ASH model demonstrate that volcanic ash emitted from Antarctic volcanoes could potentially encircle the globe, leading to significant consequences for global aviation safety. Results obtained recall the need for performing proper hazard assessment on Antarctic volcanoes, and are crucial for understanding the patterns of ash distribution at high southern latitudes with strong implications for tephrostratigraphy, which is pivotal to synchronize palaeoclimatic records.

  12. Measurement of natural activity in peat ashes

    International Nuclear Information System (INIS)

    Suomela, J.

    1985-01-01

    High proportions of radioactive materials in peat ashes may involve radiation hazards during handling and deposition of these waste materials. Measurements have been performed to determine the content of radioactive materials in ashes from peat burning. The activities in fly ash and ''solid'' ash in seven peat-fired power plants in Sweden are presented. The methods of analysing and measuring peat ashes for activity from different radionuclides are described. The activity levels in ash samples are given

  13. Modeling Volcanic Eruption Parameters by Near-Source Internal Gravity Waves.

    Science.gov (United States)

    Ripepe, M; Barfucci, G; De Angelis, S; Delle Donne, D; Lacanna, G; Marchetti, E

    2016-11-10

    Volcanic explosions release large amounts of hot gas and ash into the atmosphere to form plumes rising several kilometers above eruptive vents, which can pose serious risk on human health and aviation also at several thousands of kilometers from the volcanic source. However the most sophisticate atmospheric models and eruptive plume dynamics require input parameters such as duration of the ejection phase and total mass erupted to constrain the quantity of ash dispersed in the atmosphere and to efficiently evaluate the related hazard. The sudden ejection of this large quantity of ash can perturb the equilibrium of the whole atmosphere triggering oscillations well below the frequencies of acoustic waves, down to much longer periods typical of gravity waves. We show that atmospheric gravity oscillations induced by volcanic eruptions and recorded by pressure sensors can be modeled as a compact source representing the rate of erupted volcanic mass. We demonstrate the feasibility of using gravity waves to derive eruption source parameters such as duration of the injection and total erupted mass with direct application in constraining plume and ash dispersal models.

  14. Propiedades insecticidas de la ceniza del complejo volcánico Puyehue-Cordón Caulle y su posible impacto ambiental: Insecticidal properties of ashes from the volcanic complex Puyehue-Caulle Range and their possible environmental impact

    Directory of Open Access Journals (Sweden)

    Micaela Buteler

    2011-12-01

    insecticidal effect of volcanic ash and its environmental impact, focusing on the ash accumulated as a result of the eruption of the volcanic complex Puyehue- Caulle Range currently affecting an area of over 7.5 million hectares in the Argentine Patagonia. The chemical composition of ashes from the Puyehue-Caulle Range was analyzed by EDS showing that its major components are O, Si, Al, Fe, Na and K. Laboratory bioassays using two species of insects as a biological model, found that the ashes thoroughly adhere to the insect body surface and are toxic to both species tested, when mixed into the substrate at low concentrations. Susceptibility to ashes differs between the two species when tested in a seven day continuous exposure bioassay [CL99(Oryzaephilus surinamensis L. = 10.25 mg.g-1; CL99((Tribolium castaneum (Herbst = 4.96 mg.g-1]. These results agree with those reported in the literature on effects of volcanic eruptions and suggest that the impact of the ashes from the Puyehue-Caulle Range volcanic complex on the insect community may be radical in the acute deposition phase, with substantial qualitative effects in the chronic phase of exposure. Also, the recovery of populations affected by ash in desert areas where dry ash persists will be slower, and this will have tangible and long-term consequences for insect host plants, pollination and on the development of populations of vertebrate insectivores. By contrast, the presence of ash in humid regions will impact the ecosystem by the addition of nutrients, which in combination with water retention by the ash will lead to a qualitative and quantitative recovery of the populations under favorable conditions.

  15. The Online GVP/USGS Weekly Volcanic Activity Report: Providing Timely Information About Worldwide Volcanism

    Science.gov (United States)

    Mayberry, G. C.; Guffanti, M. C.; Luhr, J. F.; Venzke, E. A.; Wunderman, R. L.

    2001-12-01

    The awesome power and intricate inner workings of volcanoes have made them a popular subject with scientists and the general public alike. About 1500 known volcanoes have been active on Earth during the Holocene, approximately 50 of which erupt per year. With so much activity occurring around the world, often in remote locations, it can be difficult to find up-to-date information about current volcanism from a reliable source. To satisfy the desire for timely volcano-related information the Smithsonian Institution and US Geological Survey combined their strengths to create the Weekly Volcanic Activity Report. The Smithsonian's Global Volcanism Program (GVP) has developed a network of correspondents while reporting worldwide volcanism for over 30 years in their monthly Bulletin of the Global Volcanism Network. The US Geological Survey's Volcano Hazards Program studies and monitors volcanoes in the United States and responds (upon invitation) to selected volcanic crises in other countries. The Weekly Volcanic Activity Report is one of the most popular sites on both organization's websites. The core of the Weekly Volcanic Activity Report is the brief summaries of current volcanic activity around the world. In addition to discussing various types of volcanism, the summaries also describe precursory activity (e.g. volcanic seismicity, deformation, and gas emissions), secondary activity (e.g. debris flows, mass wasting, and rockfalls), volcanic ash hazards to aviation, and preventative measures. The summaries are supplemented by links to definitions of technical terms found in the USGS photoglossary of volcano terms, links to information sources, and background information about reported volcanoes. The site also includes maps that highlight the location of reported volcanoes, an archive of weekly reports sorted by volcano and date, and links to commonly used acronyms. Since the Weekly Volcanic Activity Report's inception in November 2000, activity has been reported at

  16. Statistical analysis of dispersal and deposition patterns of volcanic emissions from Mt. Sakurajima, Japan

    Science.gov (United States)

    Poulidis, Alexandros P.; Takemi, Tetsuya; Shimizu, Atsushi; Iguchi, Masato; Jenkins, Susanna F.

    2018-04-01

    With the eruption of Eyjafjallajökull (Iceland) in 2010, interest in the transport of volcanic ash after moderate to major eruptions has increased with regards to both the physical and the emergency hazard management aspects. However, there remain significant gaps in the understanding of the long-term behaviour of emissions from volcanoes with long periods of activity. Mt. Sakurajima (Japan) provides us with a rare opportunity to study such activity, due to its eruptive behaviour and dense observation network. In the 6-year period from 2009 to 2015, the volcano was erupting at an almost constant rate introducing approximately 500 kt of ash per month to the atmosphere. The long-term characteristics of the transport and deposition of ash and SO2 in the area surrounding the volcano are studied here using daily surface observations of suspended particulate matter (SPM) and SO2 and monthly ashfall values. Results reveal different dispersal patterns for SO2 and volcanic ash, suggesting volcanic emissions' separation in the long-term. Peak SO2 concentrations at different locations on the volcano vary up to 2 orders of magnitude and decrease steeply with distance. Airborne volcanic ash increases SPM concentrations uniformly across the area surrounding the volcano, with distance from the vent having a secondary effect. During the period studied here, the influence of volcanic emissions was identifiable both in SO2 and SPM concentrations which were, at times, over the recommended exposure limits defined by the Japanese government, European Union and the World Health Organisation. Depositional patterns of volcanic ash exhibit elements of seasonality, consistent with previous studies. Climatological and topographic effects are suspected to impact the deposition of volcanic ash away from the vent: for sampling stations located close to complex topographical elements, sharp changes in the deposition patterns were observed, with ash deposits for neighbouring stations as close as

  17. Lunar ash flows - Isothermal approximation.

    Science.gov (United States)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  18. Correlation of upper Llandovery–lower Wenlock bentonites in the När (Gotland, Sweden and Ventspils (Latvia drill cores: role of volcanic ash clouds and shelf sea currents in determining areal distribution of bentonite

    Directory of Open Access Journals (Sweden)

    Tarmo Kiipli

    2012-11-01

    Full Text Available Study of volcanic ash beds using biostratigraphy, sanidine composition and immobile elements within bentonites has manifested several well-established and some provisional correlations between Gotland and East Baltic sections. Energy dispersive X-ray fluorescence microanalysis of phenocrysts has revealed bentonites containing Mg-rich or Fe-rich biotite. Sanidine phenocrysts contain, in addition to a major Na and K component, often a few per cent of Ca and Ba. On the basis of new correlations the mapping of the distribution areas of bentonites has been extended from the East Baltic to Gotland. The bentonite distribution can be separated into two parts in North Latvia–South Estonia, indicating the existence of shelf sea currents in the Baltic Silurian Basin.

  19. Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes.

    Science.gov (United States)

    Bourne, A J; Abbott, P M; Albert, P G; Cook, E; Pearce, N J G; Ponomareva, V; Svensson, A; Davies, S M

    2016-07-21

    Widespread ash dispersal poses a significant natural hazard to society, particularly in relation to disruption to aviation. Assessing the extent of the threat of far-travelled ash clouds on flight paths is substantially hindered by an incomplete volcanic history and an underestimation of the potential reach of distant eruptive centres. The risk of extensive ash clouds to aviation is thus poorly quantified. New evidence is presented of explosive Late Pleistocene eruptions in the Pacific Arc, currently undocumented in the proximal geological record, which dispersed ash up to 8000 km from source. Twelve microscopic ash deposits or cryptotephra, invisible to the naked eye, discovered within Greenland ice-cores, and ranging in age between 11.1 and 83.7 ka b2k, are compositionally matched to northern Pacific Arc sources including Japan, Kamchatka, Cascades and Alaska. Only two cryptotephra deposits are correlated to known high-magnitude eruptions (Towada-H, Japan, ca 15 ka BP and Mount St Helens Set M, ca 28 ka BP). For the remaining 10 deposits, there is no evidence of age- and compositionally-equivalent eruptive events in regional volcanic stratigraphies. This highlights the inherent problem of under-reporting eruptions and the dangers of underestimating the long-term risk of widespread ash dispersal for trans-Pacific and trans-Atlantic flight routes.

  20. Lahar—River of volcanic mud and debris

    Science.gov (United States)

    Major, Jon J.; Pierson, Thomas C.; Vallance, James W.

    2018-05-09

    Lahar, an Indonesian word for volcanic mudflow, is a mixture of water, mud, and volcanic rock flowing swiftly along a channel draining a volcano. Lahars can form during or after eruptions, or even during periods of inactivity. They are among the greatest threats volcanoes pose to people and property. Lahars can occur with little to no warning, and may travel great distances at high speeds, destroying or burying everything in their paths.Lahars form in many ways. They commonly occur when eruptions melt snow and ice on snow-clad volcanoes; when rains fall on steep slopes covered with fresh volcanic ash; when crater lakes, volcano glaciers or lakes dammed by volcanic debris suddenly release water; and when volcanic landslides evolve into flowing debris. Lahars are especially likely to occur at erupting or recently active volcanoes.Because lahars are so hazardous, U.S. Geological Survey scientists pay them close attention. They study lahar deposits and limits of inundation, model flow behavior, develop lahar-hazard maps, and work with community leaders and governmental authorities to help them understand and minimize the risks of devastating lahars.

  1. Hazard Map of the Poás Volcano

    Directory of Open Access Journals (Sweden)

    Gustavo Barrantes Castillo

    2015-07-01

    Full Text Available The Poás volcano presents a series of hazards to the lives and activities of the communities in its surroundings; these hazards include ash fall, volcanic gases, ballistic projection, pyroclastic flows, lahars and lava flows. In the study described in this article, risks were zoned and integrated to form combined hazard maps for later use in territorial planning processes. With respect to methodology, the study was based on a heuristic approximation, which was supported with cartographic, geomorphological, and historical impact criteria to achieve a suitable product in terms of scale and ease of interpretation. These maps present greater detail and integration than other works and cartographies of volcanic hazards in Costa Rica.

  2. Triple oxygen and sulfur isotope analyses of sulfate extracted from voluminous volcanic ashes in the Oligocene John Day Formation: insight into dry climate conditions and ozone contribution to supereruptions

    Science.gov (United States)

    Workman, J.; Bindeman, I. N.; Martin, E.; Retallack, G.; Palandri, J. L.; Weldon, N.

    2014-12-01

    Large volume pyroclastic silicic eruptions emit hundreds of megatons of SO2 into the troposphere and stratosphere that is oxidized into sulfuric acid (H2SO4) by a variety of reactions with mass independent oxygen signatures (MIF), Δ17O>0. Sulfuric acid is then preserved as gypsum in parental volcanic deposits. Diagenic effects are mass dependent and can dilute, but otherwise do not affect MIF ratios. Pleistocene Yellowstone and Bishop tuffs and modern volcanic eruptions preserved under arid climate conditions in North American playa lakes, preserve small amounts of volcanic sulfate as gypsum. This gypsum's Δ17O>0, in combination with isotopic variations of δ18O, δ33S and δ34S is distinct from sedimentary sulfate and reveals its original MIF sulfate isotopic signal and the effect of super eruptions on the atmosphere, and ozone consumption in particular. We use linear algebraic equations to resolve volcanic versus sedimentary (MIF=0) sources. We have found that many large volume ignimbrites have very high initial Δ17O in volcanic sulfate that can only be acquired from reaction with stratospheric ozone. We here investigate nine thick (>2 m) ash beds ranging in age from ~33-23 Ma in the John Day Formation of central Oregon, including massive 28.6 Ma Picture Gorge tuff of newly identified Crooked River supercaldera. The 28.6 Ma Picture Gorge tuff (PGT) has the highest measured Δ17O of 3.5‰, and other tuffs (Tin Roof, Biotite, Deep Creek) have +1.3 to 3.4‰ Δ17O excesses. Sulfate from modern smaller tropospheric eruptions studied for comparison have a resolvable 0.4‰ range consistent with liquid-phase based H2O2 oxidation. The PGT is coeval with the ignimbrite flare-up in western N. America, the 28-29 Ma eruption of the 5000 km3 Fish Canyon tuff and the 28 Ma Never Summer Field eruption in Nebraska-Colorado that have the highest measured Δ17O of 6‰ (Bao et al. 2003). We speculate on the climatic/atmospheric effects of these multiple ~28 Ma supereruptions

  3. Satellite-based detection of volcanic sulphur dioxide from recent eruptions in Central and South America

    Directory of Open Access Journals (Sweden)

    D. Loyola

    2008-01-01

    Full Text Available Volcanic eruptions can emit large amounts of rock fragments and fine particles (ash into the atmosphere, as well as several gases, including sulphur dioxide (SO2. These ejecta and emissions are a major natural hazard, not only to the local population, but also to the infrastructure in the vicinity of volcanoes and to aviation. Here, we describe a methodology to retrieve quantitative information about volcanic SO2 plumes from satellite-borne measurements in the UV/Visible spectral range. The combination of a satellite-based SO2 detection scheme and a state-of-the-art 3D trajectory model enables us to confirm the volcanic origin of trace gas signals and to estimate the plume height and the effective emission height. This is demonstrated by case-studies for four selected volcanic eruptions in South and Central America, using the GOME, SCIAMACHY and GOME-2 instruments.

  4. Jurassic ash-flow sheets, calderas, and related intrusions of the Cordilleran volcanic arc in southeastern Arizona: implications for regional tectonics and ore deposits

    Science.gov (United States)

    Lipman, P.W.; Hagstrum, J.T.

    1992-01-01

    Volcanologic, petrologic, and paleomagnetic studies of widespread Jurassic ash-flow sheets in the Huachuca-southern Dragoon Mountains area have led to identification of four large source calderas and associated comagnetic intracaldera intrusions. Stratigraphic, facies, and contact features of the caldera-related tuffs also provide constraints on the locations, lateral displacements, and very existence for some major northwest-trending faults and inferred regional thrusts in southeastern Arizona. Silicic alkalic compositions of the Jurassic caldera-related, ash-flow tuffs; bimodal associated mafic magmatism; and interstratified coarse sedimentary deposits provide evidence for synvolcanic extension and rifting within the Cordilleran magmatic arc. Gold-copper mineralization is associated with subvolcanic intrusions at several of the Jurassic calderas. -from Authors

  5. Operational short-term Probabilistic Volcanic Hazard Assessment of tephra fallout: an example from the 1982-1984 unrest at Campi Flegrei

    Science.gov (United States)

    Sandri, Laura; Selva, Jacopo; Costa, Antonio; Macedonio, Giovanni; Marzocchi, Warner

    2014-05-01

    Probabilistic Volcanic Hazard Assessment (PVHA) represents the most complete scientific contribution for planning rational strategies aimed at mitigating the risk posed by volcanic activity at different time scales. The definition of the space-time window for PVHA is related to the kind of risk mitigation actions that are under consideration. Short intervals (days to weeks) are important for short-term risk mitigation actions like the evacuation of a volcanic area. During volcanic unrest episodes or eruptions, it is of primary importance to produce short-term tephra fallout forecast, and frequently update it to account for the rapidly evolving situation. This information is obviously crucial for crisis management, since tephra may heavily affect building stability, public health, transportations and evacuation routes (airports, trains, road traffic) and lifelines (electric power supply). In this study, we propose a methodology for the short-term PVHA and its operational implementation, based on the model BET_EF, in which measures from the monitoring system are used to routinely update the forecast of some parameters related to the eruption dynamics, that is, the probabilities of eruption, of every possible vent position and every possible eruption size. Then, considering all possible vent positions and eruptive sizes, tephra dispersal models are coupled with frequently updated meteorological forecasts. Finally, these results are merged through a Bayesian procedure, accounting for epistemic uncertainties at all the considered steps. As case study we retrospectively study some stages of the volcanic unrest that took place in Campi Flegrei (CF) in 1982-1984. In particular, we aim at presenting a practical example of possible operational tephra fall PVHA on a daily basis, in the surroundings of CF at different stages of the 1982-84 unrest. Tephra dispersal is simulated using the analytical HAZMAP code. We consider three possible eruptive sizes (a low, a medium and a

  6. The Dilemmas of Risk-Sensitive Development on a Small Volcanic Island

    Directory of Open Access Journals (Sweden)

    Emily Wilkinson

    2016-06-01

    Full Text Available In the Small Islands Developing State (SIDS of St Vincent and the Grenadines in the Caribbean, the most destructive disasters in terms of human casualties have been the multiple eruptions of La Soufrière volcano situated in the north of St Vincent. Despite this major threat, people continue to live close to the volcano and national development plans do not include risk reduction measures for volcanic hazards. This paper examines the development options in volcanic SIDS and presents a number of conundrums for disaster risk management on the island of St Vincent. Improvements in monitoring of volcanic hazards and ongoing programmes to enhance communications systems and encourage community preparedness planning have increased awareness of the risks associated with volcanic hazards, yet this has not translated into more risk-informed development planning decisions. The current physical development plan in fact promotes investment in infrastructure in settlements located within the zone designated very high-hazard. However, this is not an anomaly or an irrational decision: severe space constraints in SIDS, as well as other historical social and economic factors, limit growth and options for low-risk development. Greater attention needs to be placed on developing measures to reduce risk, particularly from low-intensity hazards like ash, limiting where possible exposure to volcanic hazards and building the resilience of communities living in high-risk areas. This requires planning for both short- and longer-term impacts from renewed activity. Volcanic SIDS face multiple hazards because of their geography and topography, so development plans should identify these interconnected risks and options for their reduction, alongside measures aimed at improving personal preparedness plans so communities can learn to live with risk.

  7. Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico - behavior, and implications for hazard assessment

    Science.gov (United States)

    Capra, L.; Macías, J. L.; Scott, K. M.; Abrams, M.; Garduño-Monroy, V. H.

    2002-03-01

    Volcanoes of the Trans-Mexican Volcanic Belt (TMVB) have yielded numerous sector and flank collapses during Pleistocene and Holocene times. Sector collapses associated with magmatic activity have yielded debris avalanches with generally limited runout extent (e.g. Popocatépetl, Jocotitlán, and Colima volcanoes). In contrast, flank collapses (smaller failures not involving the volcano summit), both associated and unassociated with magmatic activity and correlating with intense hydrothermal alteration in ice-capped volcanoes, commonly have yielded highly mobile cohesive debris flows (e.g. Pico de Orizaba and Nevado de Toluca volcanoes). Collapse orientation in the TMVB is preferentially to the south and northeast, probably reflecting the tectonic regime of active E-W and NNW faults. The differing mobilities of the flows transformed from collapses have important implications for hazard assessment. Both sector and flank collapse can yield highly mobile debris flows, but this transformation is more common in the cases of the smaller failures. High mobility is related to factors such as water content and clay content of the failed material, the paleotopography, and the extent of entrainment of sediment during flow (bulking). The ratio of fall height to runout distance commonly used for hazard zonation of debris avalanches is not valid for debris flows, which are more effectively modeled with the relation inundated area to failure or flow volume coupled with the topography of the inundated area.

  8. Probabilistic Volcanic Multi-Hazard Assessment at Somma-Vesuvius (Italy): coupling Bayesian Belief Networks with a physical model for lahar propagation

    Science.gov (United States)

    Tierz, Pablo; Woodhouse, Mark; Phillips, Jeremy; Sandri, Laura; Selva, Jacopo; Marzocchi, Warner; Odbert, Henry

    2017-04-01

    Volcanoes are extremely complex physico-chemical systems where magma formed at depth breaks into the planet's surface resulting in major hazards from local to global scales. Volcano physics are dominated by non-linearities, and complicated spatio-temporal interrelationships which make volcanic hazards stochastic (i.e. not deterministic) by nature. In this context, probabilistic assessments are required to quantify the large uncertainties related to volcanic hazards. Moreover, volcanoes are typically multi-hazard environments where different hazardous processes can occur whether simultaneously or in succession. In particular, explosive volcanoes are able to accumulate, through tephra fallout and Pyroclastic Density Currents (PDCs), large amounts of pyroclastic material into the drainage basins surrounding the volcano. This addition of fresh particulate material alters the local/regional hydrogeological equilibrium and increases the frequency and magnitude of sediment-rich aqueous flows, commonly known as lahars. The initiation and volume of rain-triggered lahars may depend on: rainfall intensity and duration; antecedent rainfall; terrain slope; thickness, permeability and hydraulic diffusivity of the tephra deposit; etc. Quantifying these complex interrelationships (and their uncertainties), in a tractable manner, requires a structured but flexible probabilistic approach. A Bayesian Belief Network (BBN) is a directed acyclic graph that allows the representation of the joint probability distribution for a set of uncertain variables in a compact and efficient way, by exploiting unconditional and conditional independences between these variables. Once constructed and parametrized, the BBN uses Bayesian inference to perform causal (e.g. forecast) and/or evidential reasoning (e.g. explanation) about query variables, given some evidence. In this work, we illustrate how BBNs can be used to model the influence of several variables on the generation of rain-triggered lahars

  9. Optimal likelihood-based matching of volcanic sources and deposits in the Auckland Volcanic Field

    Science.gov (United States)

    Kawabata, Emily; Bebbington, Mark S.; Cronin, Shane J.; Wang, Ting

    2016-09-01

    In monogenetic volcanic fields, where each eruption forms a new volcano, focusing and migration of activity over time is a very real possibility. In order for hazard estimates to reflect future, rather than past, behavior, it is vital to assemble as much reliable age data as possible on past eruptions. Multiple swamp/lake records have been extracted from the Auckland Volcanic Field, underlying the 1.4 million-population city of Auckland. We examine here the problem of matching these dated deposits to the volcanoes that produced them. The simplest issue is separation in time, which is handled by simulating prior volcano age sequences from direct dates where known, thinned via ordering constraints between the volcanoes. The subproblem of varying deposition thicknesses (which may be zero) at five locations of known distance and azimuth is quantified using a statistical attenuation model for the volcanic ash thickness. These elements are combined with other constraints, from widespread fingerprinted ash layers that separate eruptions and time-censoring of the records, into a likelihood that was optimized via linear programming. A second linear program was used to optimize over the Monte-Carlo simulated set of prior age profiles to determine the best overall match and consequent volcano age assignments. Considering all 20 matches, and the multiple factors of age, direction, and size/distance simultaneously, results in some non-intuitive assignments which would not be produced by single factor analyses. Compared with earlier work, the results provide better age control on a number of smaller centers such as Little Rangitoto, Otuataua, Taylors Hill, Wiri Mountain, Green Hill, Otara Hill, Hampton Park and Mt Cambria. Spatio-temporal hazard estimates are updated on the basis of the new ordering, which suggest that the scale of the 'flare-up' around 30 ka, while still highly significant, was less than previously thought.

  10. Assessment of volcanic and geothermal activity in the Pasco Basin and vicinity

    International Nuclear Information System (INIS)

    Davis, J.D.

    1980-01-01

    Event network analyses indicate the most likely volcanic hazard to the Pasco Basin is influx of ash fall tephra from source areas in the Cascade Range. Less likely, but still notable, is the possibility of water flooding the Pasco Basin as a result of volcanic damming of one or more major drainages in the region. The least probable hazards include (1) influx of ash flows from eruptions in the Cascade Range or the Basin and Range Province, (2) renewed flood basalt volcanism, and (3) breaching of a repository by a dike or fissure. It is highly unlikely that volcanism will pose a direct threat to the integrity of any nuclear waste repositories in the Pasco Basin. Low-temperature geothermal water (20 degrees--90 degrees C) is present at random locations within the Pasco Basin and vicinity. This water may represent a potential resource only for direct heating purposes. Available data indicate no geothermal reservoirs with temperatures high enough and depths shallow enough for economical production of electricity are present within the Pasco Basin. 70 refs., 16 figs., 7 tabs

  11. Early in-flight detection of SO2 via Differential Optical Absorption Spectroscopy: a feasible aviation safety measure to prevent potential encounters with volcanic plumes

    Directory of Open Access Journals (Sweden)

    U. Platt

    2011-09-01

    Full Text Available Volcanic ash constitutes a risk to aviation, mainly due to its ability to cause jet engines to fail. Other risks include the possibility of abrasion of windshields and potentially serious damage to avionic systems. These hazards have been widely recognized since the early 1980s, when volcanic ash provoked several incidents of engine failure in commercial aircraft. In addition to volcanic ash, volcanic gases also pose a threat. Prolonged and/or cumulative exposure to sulphur dioxide (SO2 or sulphuric acid (H2SO4 aerosols potentially affects e.g. windows, air frame and may cause permanent damage to engines. SO2 receives most attention among the gas species commonly found in volcanic plumes because its presence above the lower troposphere is a clear proxy for a volcanic cloud and indicates that fine ash could also be present. Up to now, remote sensing of SO2 via Differential Optical Absorption Spectroscopy (DOAS in the ultraviolet spectral region has been used to measure volcanic clouds from ground based, airborne and satellite platforms. Attention has been given to volcanic emission strength, chemistry inside volcanic clouds and measurement procedures were adapted accordingly. Here we present a set of experimental and model results, highlighting the feasibility of DOAS to be used as an airborne early detection system of SO2 in two spatial dimensions. In order to prove our new concept, simultaneous airborne and ground-based measurements of the plume of Popocatépetl volcano, Mexico, were conducted in April 2010. The plume extended at an altitude around 5250 m above sea level and was approached and traversed at the same altitude with several forward looking DOAS systems aboard an airplane. These DOAS systems measured SO2 in the flight direction and at ±40 mrad (2.3° angles relative to it in both, horizontal and vertical directions. The approaches started at up to 25 km distance to the plume and SO2 was measured at all times well above the

  12. [Effects of volcanic eruptions on environment and health].

    Science.gov (United States)

    Zuskin, Eugenija; Mustajbegović, Jadranka; Doko Jelinić, Jagoda; Pucarin-Cvetković, Jasna; Milosević, Milan

    2007-12-01

    Volcanoes pose a threat to almost half a billion people; today there are approximately 500 active volcanoes on Earth, and every year there are 10 to 40 volcanic eruptions. Volcanic eruptions produce hazardous effects for the environment, climate, and the health of the exposed persons, and are associated with the deterioration of social and economic conditions. Along with magma and steam (H2O), the following gases surface in the environment: carbon dioxide (CO2) and sulphur dioxide (SO2), carbon monoxide (CO), hydrogen sulphide (H2S), carbon sulphide (CS), carbon disulfide (CS2), hydrogen chloride (HCl), hydrogen (H2), methane (CH4), hydrogen fluoride (HF), hydrogen bromide (HBr) and various organic compounds, as well as heavy metals (mercury, lead, gold).Their unfavourable effects depend on the distance from a volcano, on magma viscosity, and on gas concentrations. The hazards closer to the volcano include pyroclastic flows, flows of mud, gases and steam, earthquakes, blasts of air, and tsunamis. Among the hazards in distant areas are the effects of toxic volcanic ashes and problems of the respiratory system, eyes and skin, as well as psychological effects, injuries, transport and communication problems, waste disposal and water supplies issues, collapse of buildings and power outage. Further effects are the deterioration of water quality, fewer periods of rain, crop damages, and the destruction of vegetation. During volcanic eruptions and their immediate aftermath, increased respiratory system morbidity has been observed as well as mortality among those affected by volcanic eruptions. Unfavourable health effects could partly be prevented by timely application of safety measures.

  13. An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea.

    Science.gov (United States)

    Park, Seung Bum; Jang, Young Il; Lee, Jun; Lee, Byung Jae

    2009-07-15

    This study evaluates quality properties and toxicity of coal bottom ash coarse aggregate and analyzes mechanical properties of porous concrete depending on mixing rates of coal bottom ash. As a result, soundness and resistance to abrasion of coal bottom ash coarse aggregate were satisfied according to the standard of coarse aggregate for concrete. To satisfy the standard pertaining to chloride content, the coarse aggregates have to be washed more than twice. In regards to the result of leaching test for coal bottom ash coarse aggregate and porous concrete produced with these coarse aggregates, it was satisfied with the environment criteria. As the mixing rate of coal bottom ash increased, influence of void ratio and permeability coefficient was very little, but compressive and flexural strength decreased. When coal bottom ash was mixed over 40%, strength decreased sharply (compressive strength: by 11.7-27.1%, flexural strength: by maximum 26.4%). Also, as the mixing rate of coal bottom ash increased, it was confirmed that test specimens were destroyed by aggregate fracture more than binder fracture and interface fracture. To utilize coal bottom ash in large quantities, it is thought that an improvement method in regards to strength has to be discussed such as incorporation of reinforcing materials and improvement of aggregate hardness.

  14. UPDATING AN EXPERT ELICITATION IN THE LIGHT OF NEW DATA: TEN YEARS OF PROBABILISTIC VOLCANIC HAZARD ANALYSIS FOR THE PROPOSED HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    F.V. Perry; A. Cogbill; R. Kelley

    2005-01-01

    The U.S. Department of Energy (DOE) considers volcanism to be a potentially disruptive class of events that could affect the safety of the proposed high-level waste repository at Yucca Mountain. Volcanic hazard assessment in monogenetic volcanic fields depends on an adequate understanding of the temporal and spatial pattern of past eruptions. At Yucca Mountain, the hazard is due to an 11 Ma-history of basaltic volcanism with the latest eruptions occurring in three Pleistocene episodes to the west and south of Yucca Mountain. An expert elicitation convened in 1995-1996 by the DOE estimated the mean hazard of volcanic disruption of the repository as slightly greater than 10 -8 dike intersections per year with an uncertainty of about two orders of magnitude. Several boreholes in the region have encountered buried basalt in alluvial-filled basins; the youngest of these basalts is dated at 3.8 Ma. The possibility of additional buried basalt centers is indicated by a previous regional aeromagnetic survey conducted by the USGS that detected approximately 20 magnetic anomalies that could represent buried basalt volcanoes. Sensitivity studies indicate that the postulated presence of buried post-Miocene volcanoes to the east of Yucca Mountain could increase the hazard by an order of magnitude, and potentially significantly impact the results of the earlier expert elicitation. Our interpretation of the aeromagnetic data indicates that post-Miocene basalts are not present east of Yucca Mountain, but that magnetic anomalies instead represent faulted and buried Miocene basalt that correlates with nearby surface exposures. This interpretation is being tested by drilling. The possibility of uncharacterized buried volcanoes that could significantly change hazard estimates led DOE to support an update of the expert elicitation in 2004-2006. In support of the expert elicitation data needs, the DOE is sponsoring (1) a new higher-resolution, helicopter-borne aeromagnetic survey

  15. Volcanism Studies: Final Report for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is

  16. Early in-flight detection of SO2 via Differential Optical Absorption Spectroscopy: A feasible aviation safety measure to prevent potential encounters with volcanic plumes

    Science.gov (United States)

    Vogel, L.; Galle, B.; Kern, C.; Delgado, Granados H.; Conde, V.; Norman, P.; Arellano, S.; Landgren, O.; Lubcke, P.; Alvarez, Nieves J.M.; Cardenas, Gonzales L.; Platt, U.

    2011-01-01

    Volcanic ash constitutes a risk to aviation, mainly due to its ability to cause jet engines to fail. Other risks include the possibility of abrasion of windshields and potentially serious damage to avionic systems. These hazards have been widely recognized 5 since the early 1980s, when volcanic ash provoked several incidents of engine failure in commercial aircraft. In addition to volcanic ash, volcanic gases also pose a threat. Prolonged and/or cumulative exposure to sulphur dioxide (SO2) or sulphuric acid (H2SO4) aerosols potentially affects e.g. windows, air frame and may cause permanent damage to engines. SO2 receives most attention among the gas species commonly found in 10 volcanic plumes because its presence above the lower troposphere is a clear proxy for a volcanic cloud and indicates that fine ash could also be present. Up to now, remote sensing of SO2 via Differential Optical Absorption Spectroscopy (DOAS) in the ultraviolet spectral region has been used to measure volcanic clouds from ground based, airborne and satellite platforms. Attention has been given to vol- 15 canic emission strength, chemistry inside volcanic clouds and measurement procedures were adapted accordingly. Here we present a set of experimental and model results, highlighting the feasibility of DOAS to be used as an airborne early detection system of SO2 in two spatial dimensions. In order to prove our new concept, simultaneous airborne and ground-based measurements of the plume of Popocatepetl volcano, Mexico, were conducted in April 2010. The plume extended at an altitude around 5250 m above sea level and was approached and traversed at the same altitude with several forward looking DOAS systems aboard an airplane. These DOAS systems measured SO2 in the flight direction and at ±40 mrad (2.3◦) angles relative to it in both, horizontal and vertical directions. The approaches started at up to 25 km distance to 25 the plume and SO2 was measured at all times well above the detection

  17. Remote Sensing and GIS as Tools for Identifying Risk for Phreatomagmatic Eruptions in the Bishoftu Volcanic Field, Ethiopia

    Science.gov (United States)

    Pennington, H. G.; Graettinger, A.

    2017-12-01

    Bishoftu is a fast-growing town in the Oromia region of Ethiopia, located 47 km southeast of the nation's capital, Addis Ababa. It is situated atop a monogenetic basaltic volcanic field, called the Bishoftu Volcanic Field (BVF), which is composed of maar craters, scoria cones, lava flows, and rhyolite domes. Although not well dated, the morphology and archeological evidence have been used to infer a Holocene age, indicating that the community is exposed to continued volcanic risk. The presence of phreatomagmatic constructs in particular indicates that the hazards are not only vent-localized, but may have far reaching impacts. Hazard mapping is an essential tool for evaluating and communicating risks. This study presents the results of GIS analyses of proximal and distal syn-eruptive hazards associated with phreatomagmatic eruptions in the BVF. A digitized infrastructure map based on a SPOT 6 satellite image is used to identify the areas at risk from eruption scenarios. Parameters such as wind direction, vent location, and explosion energy are varied for hazard simulations to quantify the area impacted by different eruption scenarios. Proximal syn-eruptive hazards include tephra fall, base pyroclastic surges, and ballistic bombs. Distal hazards include predominantly ash fall. Eruption scenarios are simulated using Eject and Plumeria models as well as similar case studies from other urban volcanic fields. Within 5 km of the volcanic field center, more than 30 km2 of residential and commercial/industrial infrastructure will be damaged by proximal syn-eruptive hazards, in addition to 34 km2 of agricultural land, 291 km of roads, more than 10 km of railway, an airport, and two health centers. Within 100 km of the volcanic field center, ash fall will affect 3946 km2 of agricultural land, 179 km2 of residential land, and 28 km2 of commercial/industrial land. Approximately 2700 km of roads and railways, 553 km of waterways, an airport, and 14 health centers are located

  18. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): An introduction of occupational health hazards

    International Nuclear Information System (INIS)

    Oliveira, Marcos L.S.; Marostega, Fabiane; Taffarel, Silvio R.; Saikia, Binoy K.; Waanders, Frans B.; DaBoit, Kátia; Baruah, Bimala P.

    2014-01-01

    Coal derived nano-particles has been received much concern recently around the world for their adverse effects on human health and the environment during their utilization. In this investigation the mineral matter present in some industrially important Indian coals and their ash samples are addressed. Coal and fly ash samples from the coal-based captive power plant in Meghalaya (India) were collected for different characterization and nano-mineralogy studies. An integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS analysis, and Mössbauer spectroscopy were used to know their extent of risks to the human health when present in coal and fly ash. The study has revealed that the coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals in lesser quantities were found to be present in the coal fly ash. Fly ash carbons were present as chars. Indian coal fly ash also found to contain nanominerals and ultrafine particles. The coal-fired power plants are observed to be the largest anthropogenic source of Hg emitted to the atmosphere and expected to increase its production in near future years. The Multi Walled Carbon Nano-Tubes (MWCNTs) are detected in our fly ashes, which contains residual carbonaceous matter responsible for the Hg capture/encapsulation. This detailed investigation on the inter-relationship between the minerals present in the samples and their ash components will also be useful for fulfilling the clean coal technology principles. - Highlights: • We research changes in the level of ultrafine and nanoparticles about coal–ash quality. • Increasing dates will increase human health quality in this Indian coal area. • Welfare effects depend on ex-ante or ex-post assumptions about

  19. Volcanic Gas

    Science.gov (United States)

    ... offensive odor. It is sometimes referred to as sewer gas. Interestingly, the human nose is more sensitive ... the atmosphere where they can potentially cause acid rain. In an ash -producing eruption, ash particles are ...

  20. Introduction to Plate Boundaries and Natural Hazards

    NARCIS (Netherlands)

    Duarte, João C.; Schellart, Wouter P.

    2016-01-01

    A great variety of natural hazards occur on Earth, including earthquakes, volcanic eruptions, tsunamis, landslides, floods, fires, tornadoes, hurricanes, and avalanches. The most destructive of these hazards, earthquakes, tsunamis, and volcanic eruptions, are mostly associated with tectonic plate

  1. Applications of the PUFF model to forecasts of volcanic clouds dispersal from Etna and Vesuvio

    Science.gov (United States)

    Daniele, P.; Lirer, L.; Petrosino, P.; Spinelli, N.; Peterson, R.

    2009-05-01

    display significantly different dispersal axes as a consequence of the different local wind field acting at the respective eruptive vents. At the Vesuvio the volcano, a plinian eruptive event with the dynamical parameters of the 79 A.D. eruption was simulated daily for one year, from 1st July 2005 to 30th June 2006. The statistical processing of results points out that, although in most cases the ash cloud dispersal encompasses many different areas, generally the easterly southeasterly direction is preferred. Our results highlight the significant role of wind field trends in influencing the distribution of ash particles from eruptive columns and prove that the dynamical parameters that most influence the variability of plume dispersal are the duration of the eruption and the maximum column height. Finally, the possible use of cloud simulations for refining hazard maps of areas exposed to volcanic ash dispersal is proposed.

  2. Effects of volcanic deposit disaggregation on exposed water composition

    Science.gov (United States)

    Back, W. E.; Genareau, K. D.

    2016-12-01

    Explosive volcanic eruptions produce a variety of hazards. Pyroclastic material can be introduced to water through ash fallout, pyroclastic flows entering water bodies, and/or lahars. Remobilization of tephras can occur soon after eruption or centuries later, introducing additional pyroclastic material into the environment. Introduction of pyroclastic material may alter the dissolved element concentration and pH of exposed waters, potentially impacting drinking water supplies, agriculture, and ecology. This study focuses on the long-term impacts of volcanic deposits on water composition due to the mechanical breakup of volcanic deposits over time. Preliminary work has shown that mechanical milling of volcanic deposits will cause significant increases in dissolved element concentrations, conductivity, and pH of aqueous solutions. Pyroclastic material from seven eruptions sites was collected, mechanically milled to produce grain sizes Soufriere Hills, Ruapehu), mafic (Lathrop Wells) and ultramafic (mantle xenoliths) volcanic deposits. Lathrop Wells has an average bulk concentration of 49.15 wt.% SiO2, 6.11 wt. % MgO, and 8.39 wt. % CaO and produces leachate concentrations of 85.69 mg/kg for Ca and 37.22 mg/kg for Mg. Taupo and Valles Caldera samples have a bulk concentration of 72.9 wt.% SiO2, 0.59 wt. % MgO, and 1.48 wt. % CaO, and produces leachate concentrations of 4.08 mg/kg for Ca and 1.56 mg/kg for Mg. Similar testing will be conducted on the intermediate and ultramafic samples to test the hypothesis that bulk magma composition and mineralogy will directly relate to the increased dissolved element concentration of exposed waters. The measured effects on aqueous solutions will aid in evaluation of impacts to marine and freshwater systems exposed to volcanic deposits.

  3. Studies of crustal structure, seismic precursors to volcanic eruptions and earthquake hazard in the eastern provinces of the Democratic Republic of Congo

    CSIR Research Space (South Africa)

    Mavonga, T

    2010-11-01

    Full Text Available In recent decades, civil wars in the eastern provinces of the Democratic Republic of Congo have caused massive social disruptions, which have been exacerbated by volcanic and earthquake disasters. Seismic data were gathered and analysed as part...

  4. Natural Environmental Hazards Reflected in High-Altitude Patagonian Lake Sediments (lake Caviahue, Argentina)

    Science.gov (United States)

    Müller, Anne; Scharf, Burkhard; von Tümpling, Wolf; Pirrung, Michael

    2009-03-01

    Two 6-m long sediment cores drilled in the two basins of Lake Caviahue give new evidence of the impact of natural hazards such as ash fallouts linked to nearby volcanic eruptions in the ecologically sensitive environment of the high-altitude region of the Argentinan Patagonian Andes. The two cores show distinct signals of changes in autochthonous productivity and terrigenous input into the lake from ash fallout as well as from river load and shore erosion. Multiproxy records of the sediments indicate whether these changes can be related to volcanic activity. High values of magnetic susceptibility in the cores reflect periods of basaltic ash fallouts during eruptions of the nearby Copahue Volcano. The southern basin is located in the prevalent direction of ash fallouts and has been affected by these volcanic inputs more intensely than the northern basin of the lake. In contrast, sedimentation and authochthonous productivity in the northern basin are strongly affected by fluvial inputs such as suspended river load and acidic stream waters.

  5. The Elusive Evidence of Volcanic Lightning.

    Science.gov (United States)

    Genareau, K; Gharghabi, P; Gafford, J; Mazzola, M

    2017-11-14

    Lightning strikes are known to morphologically alter and chemically reduce geologic formations and deposits, forming fulgurites. A similar process occurs as the result of volcanic lightning discharge, when airborne volcanic ash is transformed into lightning-induced volcanic spherules (LIVS). Here, we adapt the calculations used in previous studies of lightning-induced damage to infrastructure materials to determine the effects on pseudo-ash samples of simplified composition. Using laboratory high-current impulse experiments, this research shows that within the lightning discharge channel there is an ideal melting zone that represents roughly 10% or less of the total channel radius at which temperatures are sufficient to melt the ash, regardless of peak current. The melted ash is simultaneously expelled from the channel by the heated, expanding air, permitting particles to cool during atmospheric transport before coming to rest in ash fall deposits. The limited size of this ideal melting zone explains the low number of LIVS typically observed in volcanic ash despite the frequent occurrence of lightning during explosive eruptions.

  6. Ash resuspension related to the 2011-2012 Cordón Caulle eruption, Chile, in a rural community of Patagonia, Argentina

    Science.gov (United States)

    Forte, Pablo; Domínguez, Lucia; Bonadonna, Costanza; Gregg, Chris E.; Bran, Donaldo; Bird, Deanne; Castro, Jonathan M.

    2018-01-01

    The 2011-2012 Cordón Caulle eruption emitted about 1 km3 of rhyodacitic tephra. Dominant westerly winds in the region caused most of the primary tephra to deposit in neighboring Argentina. In addition to the impact of widespread dispersal and fallout of primary tephra during the eruption, Argentina was also significantly affected by remobilization of the primary ash even several years after the climactic phase of the eruption. In this mixed methods study, we combine aspects of natural and social sciences to characterize the ash resuspension events associated with the 2011-2012 Cordón Caulle deposits and assess the impacts on the Argentinian farming community of Ingeniero Jacobacci in the Patagonian Steppe. Our findings show the primary importance of wind, rainfall and ash availability in controlling the occurrence and persistence of ash resuspension events. The role played by these variables was also reflected in the seasonal distribution of events observed. Regarding the impacts, our results complement those of earlier studies and demonstrate that ash resuspension events can exacerbate the negative impact of primary tephra fallout events from the time of deposition to many years after the eruption. Only after five years has the environment and the farming community begun to show signs of recovery. Our findings also highlight the importance of assessing ash resuspension events in multi-hazard scenarios involving volcanic and hydrometeorologic hazards.

  7. Abstracts for the October 2012 meeting on Volcanism in the American Southwest, Flagstaff, Arizona

    Science.gov (United States)

    Lowenstern, Jacob B.

    2013-01-01

    Though volcanic eruptions are comparatively rare in the American Southwest, the States of Arizona, Colorado, New Mexico, Nevada, and Utah host Holocene volcanic eruption deposits and are vulnerable to future volcanic activity. Compared with other parts of the western United States, comparatively little research has been focused on this area, and eruption probabilities are poorly constrained. Monitoring infrastructure consists of a variety of local seismic networks, and ”backbone“ geodetic networks with little integration. Emergency response planning for volcanic unrest has received little attention by either Federal or State agencies. On October 18–20, 2012, 90 people met at the U.S. Geological Survey campus in Flagstaff, Arizona, providing an opportunity for volcanologists, land managers, and emergency responders to meet, converse, and begin to plan protocols for any future activity. Geologists contributed data on recent findings of eruptive ages, eruption probabilities, and hazards extents (plume heights, ash dispersal). Geophysicists discussed evidence for magma intrusions from seismic, geodetic, and other geophysical techniques. Network operators publicized their recent work and the relevance of their equipment to volcanic regions. Land managers and emergency responders shared their experiences with emergency planning for earthquakes. The meeting was organized out of the recognition that little attention had been paid to planning for or mitigation of volcanic hazards in the American Southwest. Moreover, few geological meetings have hosted a session specifically devoted to this topic. This volume represents one official outcome of the meeting—a collection of abstracts related to talks and poster presentations shared during the first two days of the meeting. In addition, this report includes the meeting agenda as a record of the proceedings. One additional intended outcome will be greater discussion and coordination among emergency responders, geologists

  8. Multiple edifice-collapse events in the Eastern Mexican Volcanic Belt: The role of sloping substrate and implications for hazard assessment

    Science.gov (United States)

    Carrasco-Nunez, Gerardo; Diaz-Castellon, Rodolfo; Siebert, L.; Hubbard, B.; Sheridan, M.F.; Rodriguez, Sergio R.

    2006-01-01

    The Citlalte??petl-Cofre de Perote volcanic chain forms an important physiographic barrier that separates the Central Altiplano (2500??masl) from the Gulf Coastal Plain (GCP) (1300??masl). The abrupt eastward drop in relief between these provinces gives rise to unstable conditions and consequent gravitational collapse of large volcanic edifices built at the edge of the Altiplano. Eastward sloping substrate, caused by the irregular configuration of the basement rocks, is the dominant factor that controls the direction of collapsing sectors in all major volcanoes in the region to be preferentially towards the GCP. These collapses produced voluminous debris avalanches and lahars that inundated the well-developed drainages and clastic aprons that characterize the Coastal Plain. Large catastrophic collapses from Citlalte??petl, Las Cumbres, and Cofre de Perote volcanoes are well documented in the geologic record. Some of the avalanches and transformed flows have exceptionally long runouts and reach the Gulf of Mexico traveling more than 120??km from their source. So far, no direct evidence has been found for magmatic activity associated with the initiation of these catastrophic flank-collapses. Apparently, instability of the volcanic edifices has been strongly favored by very intense hydrothermal alteration, abrupt topographic change, and intense fracturing. In addition to the eastward slope of the substrate, the reactivation of pre-volcanic basement structures during the Late Tertiary, and the E-W to ENE-SSW oriented regional stress regimes may have played an important role in the preferential movement direction of the avalanches and flows. In addition to magmatic-hydrothermal processes, high amounts of rainfall in the area is another factor that enhances alteration and eventually weakens the rocks. It is very likely that seismic activity may be the principal triggering mechanism that caused the flank collapse of large volcanic edifices in the Eastern Mexican Volcanic

  9. Buckets of ash track tephra flux from Halema'uma'u Crater, Hawai'i

    Science.gov (United States)

    Swanson, Don; Wooten, Kelly M.; Orr, Tim R.

    2009-01-01

    The 2008–2009 eruption at Kīlauea Volcano's summit made news because of its eight small discrete explosive eruptions and noxious volcanic smog (vog) created from outgassing sulfur dioxide. Less appreciated is the ongoing, weak, but continuous output of tephra, primarily ash, from the new open vent in Halema'uma'u Crater. This tephra holds clues to processes causing the eruption and forming the new crater-in-a-crater, and its flux is important to hazard evaluations.The setting of the vent–easily accessible from the Hawaiian Volcano Observatory (HVO)—is unusually favorable for neardaily tracking of tephra mass flux during this small prolonged basaltic eruption. Recognizing this, scientists from HVO are collecting ash and documenting how ejection masses, components, and chemical compositions vary through time.

  10. Characteristics and management of the 2006-2008 volcanic crisis at the Ubinas volcano (Peru)

    Science.gov (United States)

    Rivera, Marco; Thouret, Jean-Claude; Mariño, Jersy; Berolatti, Rossemary; Fuentes, José

    2010-12-01

    Ubinas volcano is located 75 km East of Arequipa and ca. 5000 people are living within 12 km from the summit. This composite cone is considered the most active volcano in southern Peru owing to its 24 low to moderate magnitude (VEI 1-3) eruptions in the past 500 years. The onset of the most recent eruptive episode occurred on 27 March 2006, following 8 months of heightened fumarolic activity. Vulcanian explosions occurred between 14 April 2006 and September 2007, at a time ejecting blocks up to 40 cm in diameter to distances of 2 km. Ash columns commonly rose to 3.5 km above the caldera rim and dispersed fine ash and aerosols to distances of 80 km between April 2006 and April 2007. Until April 2007, the total volume of ash was estimated at 0.004 km 3, suggesting that the volume of fresh magma was small. Ash fallout has affected residents, livestock, water supplies, and crop cultivation within an area of ca. 100 km 2 around the volcano. Continuous degassing and intermittent mild vulcanian explosions lasted until the end of 2008. Shortly after the initial explosions on mid April 2006 that spread ash fallout within 7 km of the volcano, an integrated Scientific Committee including three Peruvian institutes affiliated to the Regional Committee of Civil Defense for Moquegua, aided by members of the international cooperation, worked together to: i) elaborate and publish volcanic hazard maps; ii) inform and educate the population; and iii) advise regional authorities in regard to the management of the volcanic crisis and the preparation of contingency plans. Although the 2006-2008 volcanic crisis has been moderate, its management has been a difficult task even though less than 5000 people now live around the Ubinas volcano. However, the successful management has provided experience and skills to the scientific community. This volcanic crisis was not the first one that Peru has experienced but the 2006-2008 experience is the first long-lasting crisis that the Peruvian civil

  11. Synergistic effect of biogenic Fe3+ coupled to S° oxidation on simultaneous bioleaching of Cu, Co, Zn and As from hazardous Pyrite Ash Waste.

    Science.gov (United States)

    Panda, Sandeep; Akcil, Ata; Mishra, Srabani; Erust, Ceren

    2017-03-05

    Pyrite ash, a waste by-product formed during roasting of pyrite ores, is a good source of valuable metals. The waste is associated with several environmental issues due to its dumping in sea and/or land filling. Although several other management practices are available for its utilization, the waste still awaits and calls for an eco-friendly biotechnological application for metal recovery. In the present study, chemolithotrophic meso-acidophilic iron and sulphur oxidisers were evaluated for the first time towards simultaneous mutli-metal recovery from pyrite ash. XRD and XRF analysis indicated higher amount of Hematite (Fe 2 O 3 ) in the sample. ICP-OES analysis indicated concentrations of Cu>Zn>Co>As that were considered for bioleaching. Optimization studies indicated Cu - 95%, Co - 97%, Zn - 78% and As - 60% recovery within 8days at 10% pulp density, pH - 1.75, 10% (v/v) inoculum and 9g/L Fe 2+ . The productivity of the bioleaching system was found to be Cu - 1696ppm/d (12% dissolution/d), Co - 338ppm/d (12.2% dissolution/d), Zn k 576ppm/d (9.8% dissolution/d) and As - 75ppm/d (7.5% dissolution/d). Synergistic actions for Fe 2+ - S° oxidation by iron and sulphur oxidisers were identified as the key drivers for enhanced metal dissolution from pyrite ash sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Use of fly ash, phosphogypsum and red mud as a liner material for the disposal of hazardous zinc leach residue waste.

    Science.gov (United States)

    Coruh, Semra; Ergun, Osman Nuri

    2010-01-15

    Increasing amounts of residues and waste materials coming from industrial activities in different processes have become an increasingly urgent problem for the future. The release of large quantities of heavy metals into the environment has resulted in a number of environmental problems. The present study investigated the safe disposal of the zinc leach residue waste using industrial residues such as fly ash, phosphogypsum and red mud. In the study, leachability of heavy metals from the zinc leach residue has been evaluated by mine water leaching procedure (MWLP) and toxicity characteristic leaching procedure (TCLP). Zinc removal from leachate was studied using fly ash, phosphogypsum and red mud. The adsorption capacities and adsorption efficiencies were determined. The adsorption rate data was analyzed according to the pseudo-second-order kinetic, Elovich kinetic and intra-particle diffusion kinetic models. The pseudo-second-order kinetic was the best fit kinetic model for the experimental data. The results show that addition of fly ash, phosphogypsum and red mud to the zinc leach residue drastically reduces the heavy metal content in the leachate and could be used as liner materials.

  13. A great volcanic eruption around AD 1300 recorded in lacustrine ...

    Indian Academy of Sciences (India)

    2National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, .... Island; and (d) sampling sites of sediment cores DY6 in Cattle Pond. ..... African dust and volcanic ash inputs to terra rossa soils on.

  14. Hazard maps of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events

  15. [Effects of volcanic eruptions on human health in Iceland. Review].

    Science.gov (United States)

    Gudmundsson, Gunnar; Larsen, Guðrun

    2016-01-01

    Volcanic eruptions are common in Iceland and have caused health problems ever since the settlement of Iceland. Here we describe volcanic activity and the effects of volcanic gases and ash on human health in Iceland. Volcanic gases expelled during eruptions can be highly toxic for humans if their concentrations are high, irritating the mucus membranes of the eyes and upper respiratory tract at lower concentrations. They can also be very irritating to the skin. Volcanic ash is also irritating for the mucus membranes of the eyes and upper respiratory tract. The smalles particles of volcanic ash can reach the alveoli of the lungs. Described are four examples of volcanic eruptions that have affected the health of Icelanders. The eruption of Laki volcanic fissure in 1783-1784 is the volcanic eruption that has caused the highest mortality and had the greatest effects on the well-being of Icelanders. Despite multiple volcanic eruptions during the last decades in Iceland mortality has been low and effects on human health have been limited, although studies on longterm effects are lacking. Studies on the effects of the Eyjafjallajökul eruption in 2010 on human health showed increased physical and mental symptoms, especially in those having respiratory disorders. The Directorate of Health in Iceland and other services have responded promptly to recurrent volcanic eruptions over the last few years and given detailed instructions on how to minimize the effects on the public health. Key words: volcanic eruptions, Iceland, volcanic ash, volcanic gases, health effects, mortality. Correspondence: Gunnar Guðmundsson, ggudmund@landspitali.is.

  16. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.; Bowker, L. M.

    1997-09-23

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the

  17. The frequency of explosive volcanic eruptions in Southeast Asia.

    Science.gov (United States)

    Whelley, Patrick L; Newhall, Christopher G; Bradley, Kyle E

    There are ~750 active and potentially active volcanoes in Southeast Asia. Ash from eruptions of volcanic explosivity index 3 (VEI 3) and smaller pose mostly local hazards while eruptions of VEI ≥ 4 could disrupt trade, travel, and daily life in large parts of the region. We classify Southeast Asian volcanoes into five groups, using their morphology and, where known, their eruptive history and degassing style. Because the eruptive histories of most volcanoes in Southeast Asia are poorly constrained, we assume that volcanoes with similar morphologies have had similar eruption histories. Eruption histories of well-studied examples of each morphologic class serve as proxy histories for understudied volcanoes in the class. From known and proxy eruptive histories, we estimate that decadal probabilities of VEI 4-8 eruptions in Southeast Asia are nearly 1.0, ~0.6, ~0.15, ~0.012, and ~0.001, respectively.

  18. Clay formation and metal fixation during weathering of coal fly ash

    International Nuclear Information System (INIS)

    Zevenbergen, C.; Bradley, J.P.; Reeuwijk, L.P. Van; Shyam, A.K.; Hjelmar, O.; Comans, R.N.J.

    1999-01-01

    The enormous and worldwide production of coal fly ash cannot be durably isolated from the weathering cycle, and the weathering characteristics of fly ash must be known to understand the long-term environmental impact. The authors studied the weathering of two coal fly ashes and compared them with published data from weathered volcanic ash, it's closest natural analogue. Both types of ash contain abundant aluminosilicate glass, which alters to noncrystalline clay. However, this study reveals that the kinetics of coal fly ash weathering are more rapid than those of volcanic ash because the higher pH of fresh coal fly ash promotes rapid dissolution of the glass. After about 10 years of weathering, the noncrystalline clay content of coal fly ash is higher than that of 250-year-old volcanic ash. The observed rapid clay formation together with heavy metal fixation imply that the long-term environmental impact of coal fly ash disposal may be less severe and the benefits more pronounced than predicted from previous studies on unweathered ash. Their findings suggest that isolating coal fly ash from the weathering cycle may be counterproductive because, in the long-term under conditions of free drainage, fly ash is converted into fertile soil capable of supporting agriculture

  19. Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials-Bottom Ash and De-Oiled Soya as adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Alok [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462007 (India)]. E-mail: aljymittal@yahoo.co.in; Mittal, Jyoti [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462007 (India); Kurup, Lisha [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462007 (India); Singh, A.K. [Department of Applied Chemistry, University Institute of Technology, RGPV, Bhopal 462036 (India)

    2006-11-02

    Erythrosine is a water-soluble xanthene class of dye. It is widely used as colorant in foods, textiles, drugs and cosmetics. It is highly toxic, causes various types of allergies, thyroid activities, carcinogenicity, DNA damage behaviour, neurotoxicity and xenoestrogen nature in the humans and animals. The photochemical and biochemical degradation of the erythrosine is not recommended due to formation of toxic by-products. The present paper is an attempt to remove erythrosine from wastewater using adsorption over Bottom Ash-a power plant waste and De-Oiled Soya-an agricultural waste. Under the batch studies, effect of concentration of dye, temperature, pH of the solution, dosage of adsorbents, sieve size of adsorbents, etc., have been studied for the uptake of the dye over both adsorbents. The adsorption process verifies Langmuir and Freundlich adsorption isotherms in both the cases and based on the data different thermodynamic parameters have been evaluated. Batch studies also include kinetic measurements, rate constant study, mass transfer behaviour and establishment of mechanistic pathway for both the cases. For the bulk removal of the dye column operations have been carried out and breakthrough capacities of the Bottom Ash and De-Oiled Soya columns have been calculated. Attempts have also been made for the recovery of the adsorbed dye from exhausted columns by eluting dilute NaOH and more than 90% of the dye was recovered.

  20. Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials-Bottom Ash and De-Oiled Soya as adsorbents

    International Nuclear Information System (INIS)

    Mittal, Alok; Mittal, Jyoti; Kurup, Lisha; Singh, A.K.

    2006-01-01

    Erythrosine is a water-soluble xanthene class of dye. It is widely used as colorant in foods, textiles, drugs and cosmetics. It is highly toxic, causes various types of allergies, thyroid activities, carcinogenicity, DNA damage behaviour, neurotoxicity and xenoestrogen nature in the humans and animals. The photochemical and biochemical degradation of the erythrosine is not recommended due to formation of toxic by-products. The present paper is an attempt to remove erythrosine from wastewater using adsorption over Bottom Ash-a power plant waste and De-Oiled Soya-an agricultural waste. Under the batch studies, effect of concentration of dye, temperature, pH of the solution, dosage of adsorbents, sieve size of adsorbents, etc., have been studied for the uptake of the dye over both adsorbents. The adsorption process verifies Langmuir and Freundlich adsorption isotherms in both the cases and based on the data different thermodynamic parameters have been evaluated. Batch studies also include kinetic measurements, rate constant study, mass transfer behaviour and establishment of mechanistic pathway for both the cases. For the bulk removal of the dye column operations have been carried out and breakthrough capacities of the Bottom Ash and De-Oiled Soya columns have been calculated. Attempts have also been made for the recovery of the adsorbed dye from exhausted columns by eluting dilute NaOH and more than 90% of the dye was recovered

  1. 14C age of the ash found in the peat bed of upland dog, Nakagawa-Gun, Hokkaido

    International Nuclear Information System (INIS)

    Igarashi, Yaeko; Kondo, Tsutomu; Fujiwara, Koichiro.

    1983-01-01

    The determination of the 14 C age of volcanic ash forming thin layer, which was found in a peat bed, was carried out. The samples were collected from the peat bed which distributes on the flat top of upland about 450m above sea level. The moor spread in the experimental plantation of the agricultural department of Hokkaido University. The thin layer of volcanic ash was found 20 cm deep in the peat bed and with about 1-3 cm thickness. The determination of 14 C age was made on the peat directly beneath the volcanic ash layer, along with the mineralogical studies. The obtained 14 C age was 480 480 +- 100 Y.B.P. (A.D. 1470), and this is presumed to be the age of eruption of the volcanic ash. The color of the ash was greenish yellow or orange in wet state, and grayish white in dry state. The volcanic ash was fine grained pumiceous, and round or nearly round grains predominate. By macroscopic observation, the grains were found to be composed of fibrous volcanic glass. The volcanic ash was well sorted, and the central grain size was 0.11 mm. Heavy liquid method was applied for the determination of heavy minerals. The weight percentage of heavy minerals was 1.59, and the characteristic of this ash was the entire absence of amphibole. Further investigation is necessary for clarifying the distribution of volcanic ash and the source of eruption. (Ishimitsu, A.)

  2. Monitoring Persistent Volcanic Emissions from Sulphur Springs, Saint Lucia: A Community Approach to Disaster Risk Reduction

    Science.gov (United States)

    Joseph, E. P.; Beckles, D. M.; Cox, L.; Jackson, V. B.; Alexander, D.

    2014-12-01

    Volcanic and geothermal emissions are known natural sources of volatiles to the atmosphere. Volcanogenic air pollutants known to cause the most serious impact are carbon dioxide (CO2), sulphur dioxide (SO2), hydrogen chloride (HCl) and hydrogen fluoride (HF). Some studies into the potential for volcanic emissions to produce chronic diseases in humans indicate that areas of major concern include respiratory problems, particularly silicosis (Allen et al. 2000; Baxter et al. 1999; Buist et al. 1986), psychological stress (Shore et al. 1986), and chemical impacts of gas or ash (Giammanco et al. 1998). Sulphur Springs Park in Saint Lucia has a very high recreational value with >200,000 visitors annually, while the nearby town of Soufrière has >8,400 residents. Residents and visitors have raised concerns about the volcanic emissions and its health effects. As part of the volcanic surveillance programme undertaken by the UWI, Seismic Research Centre (SRC) in Saint Lucia, a new monitoring network has been established for quantifying the ambient SO2 in air, to which staff and visitors at the volcanic park are exposed to. The implementation and continued operation of this network has involved the training of local personnel in the active field sampling and analytical techniques required for the assessment of ambient SO2 concentrations, using a low cost monitor as well as commercial passive samplers. This approach recognizes that environmental hazards are a usual part of life and productive livelihoods, and to minimize post-disaster response and recovery it is beneficial to promote preparedness and mitigation, which is best achieved at the local level with community involvement. It is also intended that the volcanic emissions monitoring network could be used as a method to establish and maintain community-based initiatives that would also be helpful when volcanic threat manifests.

  3. Earth's Largest Terrestrial Landslide (The Markagunt Gravity Slide of Southwest Utah): Insights from the Catastrophic Collapse of a Volcanic Field

    Science.gov (United States)

    Hacker, D. B.; Biek, R. F.; Rowley, P. D.

    2015-12-01

    The newly discovered Miocene Markagunt gravity slide (MGS; Utah, USA) represents the largest volcanic landslide structure on Earth. Recent geologic mapping of the MGS indicates that it was a large contiguous volcanic sheet of allochthonous andesitic mudflow breccias and lava flows, volcaniclastic rocks, and intertonguing regional ash-flow tuffs that blanketed an area of at least 5000 km2 with an estimated volume of ~3000 km3. Fr