WorldWideScience

Sample records for volatiles involved magma

  1. Volatile element loss during planetary magma ocean phases

    Science.gov (United States)

    Dhaliwal, Jasmeet K.; Day, James M. D.; Moynier, Frédéric

    2018-01-01

    Moderately volatile elements (MVE) are key tracers of volatile depletion in planetary bodies. Zinc is an especially useful MVE because of its generally elevated abundances in planetary basalts, relative to other MVE, and limited evidence for mass-dependent isotopic fractionation under high-temperature igneous processes. Compared with terrestrial basalts, which have δ66Zn values (per mille deviation of the 66Zn/64Zn ratio from the JMC-Lyon standard) similar to some chondrite meteorites (∼+0.3‰), lunar mare basalts yield a mean δ66Zn value of +1.4 ± 0.5‰ (2 st. dev.). Furthermore, mare basalts have average Zn concentrations ∼50 times lower than in typical terrestrial basaltic rocks. Late-stage lunar magmatic products, including ferroan anorthosite, Mg- and Alkali-suite rocks have even higher δ66Zn values (+3 to +6‰). Differences in Zn abundance and isotopic compositions between lunar and terrestrial rocks have previously been interpreted to reflect evaporative loss of Zn, either during the Earth-Moon forming Giant Impact, or in a lunar magma ocean (LMO) phase. To explore the mechanisms and processes under which volatile element loss may have occurred during a LMO phase, we developed models of Zn isotopic fractionation that are generally applicable to planetary magma oceans. Our objective was to identify conditions that would yield a δ66Zn signature of ∼+1.4‰ within the lunar mantle. For the sake of simplicity, we neglect possible Zn isotopic fractionation during the Giant Impact, and assumed a starting composition equal to the composition of the present-day terrestrial mantle, assuming both the Earth and Moon had zinc 'consanguinity' following their formation. We developed two models: the first simulates evaporative fractionation of Zn only prior to LMO mixing and crystallization; the second simulates continued evaporative fractionation of Zn that persists until ∼75% LMO crystallization. The first model yields a relatively homogenous bulk solid

  2. Magma buoyancy and volatile ascent driving autocyclic eruptivity at Hekla Volcano (Iceland)

    Science.gov (United States)

    Hautmann, Stefanie; Sacks, I. Selwyn; Linde, Alan T.; Roberts, Matthew J.

    2017-09-01

    Volcanic eruptions are typically accompanied by ground deflation due to the withdrawal of magma from depth and its effusion at the surface. Here, based on continuous high-resolution borehole strain data, we show that ground deformation was absent during the major effusion phases of the 1991 and 2000 eruptions of Hekla Volcano, Iceland. This lack of surface deformation challenges the classic model of magma intrusion/withdrawal as source for volcanic ground uplift/subsidence. We incorporate geodetic and geochemical observables into theoretical models of magma chamber dynamics in order to constrain quantitatively alternative co- and intereruptive physical mechanisms that govern magma propagation and system pressurization. We find the lack of surface deformation during lava effusion to be linked to chamber replenishment from below whilst magma migrates as a buoyancy-driven flow from the magma chamber towards the surface. We further demonstrate that intereruptive pressure build-up is likely to be generated by volatile ascent within the chamber rather than magma injection. Our model explains the persistent periodic eruptivity at Hekla throughout historic times with self-initiating cycles and is conceptually relevant to other volcanic systems.

  3. Intraplate mantle oxidation by volatile-rich silicic magmas

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Audrey M.; Médard, Etienne; Righter, Kevin; Lanzirotti, Antonio

    2017-11-01

    The upper subcontinental lithospheric mantle below the French Massif Central is more oxidized than the average continental lithosphere, although the origin of this anomaly remains unknown. Using iron oxidation analysis in clinopyroxene, oxybarometry, and melt inclusions in mantle xenoliths, we show that widespread infiltration of volatile (HCSO)-rich silicic melts played a major role in this oxidation. We propose the first comprehensive model of magmatism and mantle oxidation at an intraplate setting. Two oxidizing events occurred: (1) a 365–286 Ma old magmatic episode that produced alkaline vaugnerites, potassic lamprophyres, and K-rich calc-alkaline granitoids, related to the N–S Rhenohercynian subduction, and (2) < 30 Ma old magmatism related to W–E extension, producing carbonatites and hydrous potassic trachytes. These melts were capable of locally increasing the subcontinental lithospheric mantle fO2 to FMQ + 2.4. Both events originate from the melting of a metasomatized lithosphere containing carbonate + phlogopite ± amphibole. The persistence of this volatile-rich lithospheric source implies the potential for new episodes of volatile-rich magmatism. Similarities with worldwide magmatism also show that the importance of volatiles and the oxidation of the mantle in intraplate regions is underestimated.

  4. Volatile-induced magma differentiation in the plumbing system of Mt. Etna volcano (Italy): evidence from glass in tephra of the 2001 eruption

    Science.gov (United States)

    Ferlito, Carmelo; Viccaro, Marco; Cristofolini, Renato

    2008-02-01

    Mount Etna volcano was shaken during the summer 2001 by one of the most singular eruptive episodes of the last centuries. For about 3 weeks, several eruptive fractures developed, emitting lava flows and tephra that significantly modified the landscape of the southern flank of the volcano. This event stimulated the attention of the scientific community especially for the simultaneous emission of petrologically distinct magmas, recognized as coming from different segments of the plumbing system. A stratigraphically controlled sampling of tephra layers was performed at the most active vents of the eruption, in particular at the 2,100 m (CAL) and at the 2,550 m (LAG) scoria cones. Detailed scanning electron microscope and energy dispersive x-ray spectrometer (SEM-EDS) analyses performed on glasses found in tephra and comparison with lava whole rock compositions indicate an anomalous increase in Ti, Fe, P, and particularly of K and Cl in the upper layers of the LAG sequence. Mass balance and thermodynamic calculations have shown that this enrichment cannot be accounted for by “classical” differentiation processes, such as crystal fractionation and magma mixing. The analysis of petrological features of the magmas involved in the event, integrated with the volcanological evolution, has evidenced the role played by volatiles in controlling the magmatic evolution within the crustal portion of the plumbing system. Volatiles, constituted of H2O, CO2, and Cl-complexes, originated from a deeply seated magma body (DBM). Their upward migration occurred through a fracture network possibly developed by the seismic swarms during the period preceding the event. In the upper portion of the plumbing system, a shallower residing magma body (ABT) had chemical and physical conditions to receive migrating volatiles, which hence dissolved the mobilized elements producing the observed selective enrichment. This volatile-induced differentiation involved exclusively the lowest erupted

  5. Geochemistry and volatile content of magmas feeding explosive eruptions at Telica volcano (Nicaragua)

    Science.gov (United States)

    Robidoux, P.; Rotolo, S. G.; Aiuppa, A.; Lanzo, G.; Hauri, E. H.

    2017-07-01

    Telica volcano, in north-west Nicaragua, is a young stratovolcano of intermediate magma composition producing frequent Vulcanian to phreatic explosive eruptions. The Telica stratigraphic record also includes examples of (pre)historic sub-Plinian activity. To refine our knowledge of this very active volcano, we analyzed major element composition and volatile content of melt inclusions from some stratigraphically significant Telica tephra deposits. These include: (1) the Scoria Telica Superior (STS) deposit (2000 to 200 years Before Present; Volcanic Explosive Index, VEI, of 2-3) and (2) pyroclasts from the post-1970s eruptive cycle (1982; 2011). Based on measurements with nanoscale secondary ion mass spectrometry, olivine-hosted (forsterite [Fo] > 80) glass inclusions fall into 2 distinct clusters: a group of H2O-rich (1.8-5.2 wt%) inclusions, similar to those of nearby Cerro Negro volcano, and a second group of CO2-rich (360-1700 μg/g CO2) inclusions (Nejapa, Granada). Model calculations show that CO2 dominates the equilibrium magmatic vapor phase in the majority of the primitive inclusions (XCO2 > 0.62-0.95). CO2, sulfur (generally 400 MPa) and early crystallization of magmas. Chlorine exhibits a wide concentration range (400-2300 μg/g) in primitive olivine-entrapped melts (likely suggesting variable source heterogeneity) and is typically enriched in the most differentiated melts (1000-3000 μg/g). Primitive, volatile-rich olivine-hosted melt inclusions (entrapment pressures, 5-15 km depth) are exclusively found in the largest-scale Telica eruptions (exemplified by STS in our study). These eruptions are thus tentatively explained as due to injection of deep CO2-rich mafic magma into the shallow crustal plumbing system. More recent (post-1970), milder (VEI 1-2) eruptions, instead, do only exhibit evidence for low-pressure (P viscosity of resident magma in shallow plumbing system (< 2.4 km), due to crystallization and degassing.

  6. Volatile Contents in Mafic Magmas from two Aleutian volcanoes: Augustine and Makushin

    Science.gov (United States)

    Zimmer, M. M.; Plank, T.; Hauri, E. H.; Nye, C.; Faust Larsen, J.; Kelemen, P. B.

    2004-12-01

    There are several competing theories for the origin of tholeiitic (TH) vs. calc-alkaline (CA) fractionation trends in arc magmas. One relates to water (TH-dry magma, CA-wet magma), another to pressure (TH-low pressure crystallization, CA-high pressure), and a third to primary magma composition (TH-low Si/Fe#, CA-hi Si/Fe#) These theories have been difficult to test without quantitative measures of the water contents and pressures of crystallization of arc magmas. We are in the process of studying several Aleutian arc tephra suites (phenocrysts and melt inclusions) with the aim of obtaining volatile element concentrations (by SIMS), major and trace element concentrations and thermobarometric data (by EMP and laser-ICPMS). We report preliminary results on olivine-hosted melt inclusions from Augustine and Makushin volcanoes that support the role of water in calc-alkaline fractionation. Basaltic melt inclusions from Augustine, a low-K2O, calc-alkaline volcano, are hosted in Fo80-82 olivine. The inclusions yield high water contents, up to 5 wt%, and contain 60-90 ppm CO2, 3000-4500 ppm S, and 3000-6000 ppm Cl. Inclusions record vapor-saturation pressures near 2 kbar. Cl/K2O ratios in Augustine inclusions (ave. 1.9) are among the highest documented in an arc setting, and likely record a Cl- and H2O- rich fluid from the subducting plate. High water contents in Augustine primary melts may have contributed to the strong calc-alkaline trend observed at this volcano. Basaltic melt inclusions from Pakushin, a medium-K2O, tholeiitic cone on the flanks of Makushin volcano, are hosted in Fo80-86 olivine. These inclusions have low water contents (pressures (high sulfur (2000-4000 ppm) and Cl (>2000 ppm) in Pakushin melt inclusions, however, indicate that degassing was minimal. The low water contents and low vapor saturation pressures recorded in Pakushin melt inclusions are consistent with development of its tholeiitic trend, but we cannot distinguish whether the low water

  7. Evolution of C-O-H-N volatile species in the magma ocean during core formation.

    Science.gov (United States)

    Dalou, C.; Le Losq, C.; Hirschmann, M. M.; Jacobsen, S. D.; Fueri, E.

    2017-12-01

    understanding of species abundances and gas phase equilibria should constrain the contribution of magma ocean degassing to the Hadean atmosphere. As reactions involving CO, N2, and OH are sufficient to form amino acids, and NH2, NH3, CH3, and CH4 are amino acid components, the availability of such reduced molecules for outgassing from the magma ocean suggest a central role in the formation of the first organic molecules.

  8. Constraining the Volatile Regime of Primitive Somma-Vesuvius Magmas Based on the Compositions of Phenocrysts and Melt Inclusions

    Science.gov (United States)

    Danyushevsky, L. V.; Esposito, R.; De Vivo, B.; Redi, D.; Lima, A.; Bodnar, R. J.; Gurenko, A.

    2017-12-01

    The volcanic complex of Mt. Somma-Vesuvius is located in the Campanian Plain on east of Naples. We present the results of a mineralogical and melt inclusion studies of primitive volcanic products erupted during the last 2 magmatic cycles of Soma-Vesuvius, aimed at better understanding the volatile fluxes and eruptive behaviour of the volcano. Our results suggest that despite large differences in the compositions of the erupted magmas (from olivine-bearing basaltic lavas to leucite-bearing phonolites) and the eruption style (from plinian to strombolian), there was very little change in the nature of the parental magmas. Melt inclusions in olivine phenocrysts in all volcanic products and styles reveal the highest volatile contents in the most magnesian, early formed crystals (Fo90; H2O 4-5 wt%; CO2 3,000-4,000 ppm), decreasing to near 0 levels of concentrations in olivine Fo70. Major and trace element compositions of the clinopyroxene phenocrysts (Mg#92-70) also suggest a similar parental magma composition and similar liquid lines of decent for all Somma-Vesuvius eruptions. Our results are best explained by a model which relates the eruption style to the intensity of melt supply under the volcano. High intensity plinian eruptions occur after a prolonged repose time, whereas strombolian eruptions occur during periods of more frequent volcanic activity [1]. We will also discuss possible implications for the role of carbonate assimilation during magma evolution of Somma-Vesuvius and for total volatile budget of the SOmma-Vesuvius eruptions. [1] [42] Lima, A., Danyushevsky, L.V., De Vivo, B. and Fedele, L. 2003: A model for the evolution of the Mt. Somma-Vesuvius magmatic system based on fluid and melt inclusion investigations. In: Melt Inclusions in volcanic systems: Methods, applications and Problems (B. De Vivo & R.J. Bodnar, Eds), Series: Developments in Volcanology. No. 5 Elsevier, Amsterdam, 227-251

  9. Melt inclusion evidence for a volatile-enriched (H2O, Cl, B) component in parental magmas of Gorgona Island komatiites

    Science.gov (United States)

    Kamenetsky, V.; Sobolev, A.; McDonough, W.

    2003-04-01

    Late Cretaceous komatiites of Gorgona Island are unambiguous samples of ultra-mafic melts related to a hot and possibly 'wet' mantle plume. Despite significant efforts in studying komatiites, their volatile abundances remain largely unknown because of significant alteration of rocks and lack of fresh glasses. This work presents major, trace and volatile element data for 22 partially homogenised (at 1275oC and 1 bar pressure) melt inclusions in olivine (Fo 90.5-91.5) from a Gorgona Isl. komatiite (# Gor 94-3). Major element compositions (except FeO which is notably lower by up to 5 wt% as a result of post-entrapment re-equilibration) and most lithophile trace elements of melt inclusions are indistinguishable from the whole rock komatiites. With the exception of three inclusions that have low Na, H2O, Cl, F and S (likely compromised and degassed during heating) most compositions are characterised by relatively constant and high volatile abundances (H2O 0.4-0.8 wt%, Cl 0.02-0.03 wt%, B 0.8-1.4 ppm). These are interpreted as representative of original volatiles in parental melts because they correspond to the internal volatile pressure in the closed inclusions significantly exceeding 1 bar pressure of heating experiment. Although H2O is strongly enriched (PM-normalised H2O/Ce 10-17) its concentrations correlate well with many elements (e.g. Yb, Er, Y, Ti, Sr, Be). Other positive anomalies on the overall depleted (La/Sm 0.26-0.33) PM normalized compositional spectra of melt inclusions are shown by B (B/K 2.4-5.4) and Cl (Cl/K 11-16). Compositions of melt inclusions, when corrected for Fe loss and recalculated in equilibrium with host olivine, have high MgO (15.4-16.4 wt%; Mg# of 74) and substantial H2O (0.4-0.6 wt%) contents. This together with the data on other 'enriched' elements argues for the presence of previously unknown volatile-enriched component in the parental melts of Gorgona Isl. komatiites. We discuss contamination of magmas by altered oceanic crust in the

  10. The Evidence from Inclusions in Pumices for the Direct Degassing of Volatiles from the Magma to the Hydrothermal Fluids in the Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    YU Zenghui; ZHAI Shikui; ZHAO Guangtao

    2002-01-01

    This article presents the evidence in support of the direct magma degassing as the principal mechanism of volatilesreleasing into the hydrothermal fluids in the Okinawa Trough, as contrasted to the argument for the hydrothermal strippingof volatiles from the volcanic rocks.Laser Raman microprobe and stepped-heating techniques are employed to determine the compositions and contents of thevolatiles in pumices in the middle Okinawa Trough. The results show that the volatiles are similar to the gases in the hy-drothermal fluids and hydrothermal minerals in composition, the mean percent content of each component and variationtrend. This indicates the direct influence of magma degassing on the hydrothermal fluids. In addition, the contents ofvolatiles in pumices are rather low and do not support the hydrothermal stripping as the main mechanism to enrich the fluidswith gases. The results are consistent with the idea that the direct magma degassing is more important than hydrothermalstripping in supplying gases to the hydrothermal fluids in the Okinawa Trough.

  11. Numerical modeling of magma-repository interactions

    NARCIS (Netherlands)

    Bokhove, Onno

    2001-01-01

    This report explains the numerical programs behind a comprehensive modeling effort of magma-repository interactions. Magma-repository interactions occur when a magma dike with high-volatile content magma ascends through surrounding rock and encounters a tunnel or drift filled with either a magmatic

  12. Magma Expansion and Fragmentation in a Propagating Dike (Invited)

    Science.gov (United States)

    Jaupart, C. P.; Taisne, B.

    2010-12-01

    The influence of magma expansion due to volatile exsolution and gas dilation on dike propagation is studied using a new numerical code. Many natural magmas contain sufficient amounts of volatiles for fragmentation to occur well below Earth's surface. Magma fragmentation has been studied for volcanic flows through open conduits but it should also occur within dikes that rise towards Earth's surface. We consider the flow of a volatile-rich magma in a hydraulic fracture. The mixture of melt and gas is treated as a compressible viscous fluid below the fragmentation level and as a gas phase carrying melt droplets above it. A numerical code solves for elastic deformation of host rocks, the flow of the magmatic mixture and fracturing at the dike tip. With volatile-free magma, a dike fed at a constant rate in a uniform medium adopts a constant shape and width and rises at a constant velocity. With volatiles involved, magma expands and hence the volume flux of magma increases. With no fragmentation, this enhanced flux leads to acceleration of the dike. Simple scaling laws allow accurate predictions of dike width and ascent rate for a wide range of conditions. With fragmentation, dike behavior is markedly different. Due to the sharp drop of head loss that occurs in gas-rich fragmented material, large internal overpressures develop below the tip and induce swelling of the nose region, leading to deceleration of the dike. Thus, the paradoxical result is that, with no viscous impediment on magma flow and a large buoyancy force, the dike stalls. This process may account for some of the tuffisite veins and intrusions that are found in and around magma conduits, notably in the Unzen drillhole, Japan. We apply these results to the two-month long period of volcanic unrest that preceded the May 1980 eruption of Mount St Helens. An initial phase of rapid earthquake migration from the 7-8 km deep reservoir to shallow levels was followed by very slow progression of magma within the

  13. Magma Transport from Deep to Shallow Crust and Eruption

    Science.gov (United States)

    White, R. S.; Greenfield, T. S.; Green, R. G.; Brandsdottir, B.; Hudson, T.; Woods, J.; Donaldson, C.; Ágústsdóttir, T.

    2016-12-01

    We have mapped magma transport paths from the deep (20 km) to the shallow (6 km) crust and in two cases to eventual surface eruption under several Icelandic volcanoes (Askja, Bardarbunga, Eyjafjallajokull, Upptyppingar). We use microearthquakes caused by brittle fracture to map magma on the move and tomographic seismic studies of velocity perturbations beneath volcanoes to map the magma storage regions. High-frequency brittle failure earthquakes with magnitudes of typically 0-2 occur where melt is forcing its way through the country rock, or where previously frozen melt is repeatedly re-broken in conduits and dykes. The Icelandic crust on the rift zones where these earthquakes occur is ductile at depths greater than 7 km beneath the surface, so the occurrence of brittle failure seismicity at depths as great as 20 km is indicative of high strain rates, for which magma movement is the most likely explanation. We suggest that high volatile pressures caused by the exsolution of carbon dioxide in the deep crust is driving the magma movement and seismicity at depths of 15-20 km. Eruptions from shallow crustal storage areas are likewise driven by volatile exsolution, though additional volatiles, and in particular water are also involved in the shallow crust.

  14. Volatility

    Directory of Open Access Journals (Sweden)

    María Sánchez

    2016-11-01

    Full Text Available The action consists of moving with small kicks a tin of cola refresh -without Brand-from a point of the city up to other one. During the path I avoid bollards, the slope differences between sidewalks, pedestrians, parked motorcycles, etc. Volatility wants to say exactly that the money is getting lost. That the money is losing by gentlemen and by ladies who are neither financial sharks, nor big businessmen… or similarly, but ingenuous people, as you or as me, who walk down the street.

  15. Involvement of a volatile metabolite during phosphoramide mustard-induced ovotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Madden, Jill A. [Department of Animal Science, Iowa State University, Ames, IA 50011 (United States); Hoyer, Patricia B. [Department of Physiology, University of Arizona, Tucson, AZ 85724 (United States); Devine, Patrick J. [INRS—Institut Armand-Frappier Research Centre, University of Quebec, Laval, QC H7V 1B7 (Canada); Keating, Aileen F., E-mail: akeating@iastate.edu [Department of Animal Science, Iowa State University, Ames, IA 50011 (United States); Department of Physiology, University of Arizona, Tucson, AZ 85724 (United States)

    2014-05-15

    The finite ovarian follicle reserve can be negatively impacted by exposure to chemicals including the anti-neoplastic agent, cyclophosphamide (CPA). CPA requires bioactivation to phosphoramide mustard (PM) to elicit its therapeutic effects however; in addition to being the tumor-targeting metabolite, PM is also ovotoxic. In addition, PM can break down to a cytotoxic, volatile metabolite, chloroethylaziridine (CEZ). The aim of this study was initially to characterize PM-induced ovotoxicity in growing follicles. Using PND4 Fisher 344 rats, ovaries were cultured for 4 days before being exposed once to PM (10 or 30 μM). Following eight additional days in culture, relative to control (1% DMSO), PM had no impact on primordial, small primary or large primary follicle number, but both PM concentrations induced secondary follicle depletion (P < 0.05). Interestingly, a reduction in follicle number in the control-treated ovaries was observed. Thus, the involvement of a volatile, cytotoxic PM metabolite (VC) in PM-induced ovotoxicity was explored in cultured rat ovaries, with control ovaries physically separated from PM-treated ovaries during culture. Direct PM (60 μM) exposure destroyed all stage follicles after 4 days (P < 0.05). VC from nearby wells depleted primordial follicles after 4 days (P < 0.05), temporarily reduced secondary follicle number after 2 days, and did not impact other stage follicles at any other time point. VC was determined to spontaneously liberate from PM, which could contribute to degradation of PM during storage. Taken together, this study demonstrates that PM and VC are ovotoxicants, with different follicular targets, and that the VC may be a major player during PM-induced ovotoxicity observed in cancer survivors. - Highlights: • PM depletes all stage ovarian follicles in a temporal pattern. • A volatile ovotoxic compound is liberated from PM. • The volatile metabolite depletes primordial follicles.

  16. Volcanic emission of radionuclides and magma dynamics

    International Nuclear Information System (INIS)

    Lambert, G.; Le Cloarec, M.F.; Ardouin, B.; Le Roulley, J.C.

    1985-01-01

    210 Pb, 210 Bi and 210 Po, the last decay products of the 238 U series, are highly enriched in volcanic plumes, relative to the magma composition. Moreover this enrichment varies over time and from volcano to volcano. A model is proposed to describe 8 years of measurements of Mt. Etna gaseous emissions. The lead and bismuth coefficients of partition between gaseous and condensated phases in the magma are determined by comparing their concentrations in lava flows and condensated volatiles. In the case of volatile radionuclides, an escaping time is calculated which appears to be related to the volcanic activity. Finally, it is shown that that magma which is degassing can already be partly degassed; it should be considered as a mixture of a few to 50% of deep non-degassed magma with a well degassed superficial magma cell. (orig.)

  17. Lunar magma transport phenomena

    Science.gov (United States)

    Spera, Frank J.

    1992-01-01

    An outline of magma transport theory relevant to the evolution of a possible Lunar Magma Ocean and the origin and transport history of the later phase of mare basaltic volcanism is presented. A simple model is proposed to evaluate the extent of fractionation as magma traverses the cold lunar lithosphere. If Apollo green glasses are primitive and have not undergone significant fractionation en route to the surface, then mean ascent rates of 10 m/s and cracks of widths greater than 40 m are indicated. Lunar tephra and vesiculated basalts suggest that a volatile component plays a role in eruption dynamics. The predominant vapor species appear to be CO CO2, and COS. Near the lunar surface, the vapor fraction expands enormously and vapor internal energy is converted to mixture kinetic energy with the concomitant high-speed ejection of vapor and pyroclasts to form lunary fire fountain deposits such as the Apollo 17 orange and black glasses and Apollo 15 green glass.

  18. Better constraints on the size and volatile content of the Mount St. Helens magma reservoir following the end of the 2004-2008 eruption

    Science.gov (United States)

    Mastin, L. G.; Lisowski, M.; Beeler, N.; Roeloffs, E.

    2008-12-01

    The October 2004-January 2008 eruption of Mount St. Helens produced about 93 million cubic meters dense-rock equivalent (DRE) lava at a continuous rate that decreased monotonically from ~6 m3 s-1 to zero over its duration. From late October 2004 through the end of the eruption, continuous GPS stations around the mountain recorded inward deflation at a rate that dropped monotonically below the noise level by early 2007. The geodetic signal is consistent with a volume change Δ Vc of ~16-25M m3 in an ellipsoidal reservoir of volume Vc centered at ~9-14 km depth beneath the crater. Throughout the eruption we used physically based models to extrapolate trends in lava-dome volume and deflation, and to forecast the duration and final erupted volume, Ve, using assumed or geologically constrained values of Vc, average recharge rate R into the reservoir, and compressibilities of magma (Km = ( 1/ρ m )( ∂ ρ m /∂ p )) and of the reservoir (Kc = ( 1/Vc )( ∂ Vc /∂ p )), where ρ m is magma density and p is pressure). Curves that neglected recharge consistently under-predicted both the final duration and volume, while those that assumed a constant recharge rate predicted indefinite duration and volume. The fact that the eruption ended several months after deflation stopped suggests that the long-term average recharge was close to zero, or at least much less than the average eruption rate. The discrepancy between Ve (93M m3) and Δ VC (16-25M m3) can be accounted for by the elastic relation Ve /Δ Vc = ( 1 + Km /Kc ), with Km = 3 - 4 × 10- 10 Pa-1 calculated for reservoir magma with 1- 1.5% bubbles (constrained from gas studies of the erupted lava), and Kc = 1.1 - 1.5 × 10 - 10 Pa-1. Assuming that the pressure drop dp in the reservoir was only slightly greater than the ~5 MPa increase in pressure at the 2004 vent elevation due to growth of the 220-m-high lava dome, the elastic relation Ve = VC dp( Kc + Km ) suggests that the eruption could have been fed by a reservoir

  19. Radiographic visualization of magma dynamics in an erupting volcano.

    Science.gov (United States)

    Tanaka, Hiroyuki K M; Kusagaya, Taro; Shinohara, Hiroshi

    2014-03-10

    Radiographic imaging of magma dynamics in a volcanic conduit provides detailed information about ascent and descent of magma, the magma flow rate, the conduit diameter and inflation and deflation of magma due to volatile expansion and release. Here we report the first radiographic observation of the ascent and descent of magma along a conduit utilizing atmospheric (cosmic ray) muons (muography) with dynamic radiographic imaging. Time sequential radiographic images show that the top of the magma column ascends right beneath the crater floor through which the eruption column was observed. In addition to the visualization of this magma inflation, we report a sequence of images that show magma descending. We further propose that the monitoring of temporal variations in the gas volume fraction of magma as well as its position in a conduit can be used to support existing eruption prediction procedures.

  20. The origin of volatiles in the Earth's mantle

    Science.gov (United States)

    Hier-Majumder, Saswata; Hirschmann, Marc M.

    2017-08-01

    The Earth's deep interior contains significant reservoirs of volatiles such as H, C, and N. Due to the incompatible nature of these volatile species, it has been difficult to reconcile their storage in the residual mantle immediately following crystallization of the terrestrial magma ocean (MO). As the magma ocean freezes, it is commonly assumed that very small amounts of melt are retained in the residual mantle, limiting the trapped volatile concentration in the primordial mantle. In this article, we show that inefficient melt drainage out of the freezing front can retain large amounts of volatiles hosted in the trapped melt in the residual mantle while creating a thick early atmosphere. Using a two-phase flow model, we demonstrate that compaction within the moving freezing front is inefficient over time scales characteristic of magma ocean solidification. We employ a scaling relation between the trapped melt fraction, the rate of compaction, and the rate of freezing in our magma ocean evolution model. For cosmochemically plausible fractions of volatiles delivered during the later stages of accretion, our calculations suggest that up to 77% of total H2O and 12% of CO2 could have been trapped in the mantle during magma ocean crystallization. The assumption of a constant trapped melt fraction underestimates the mass of volatiles in the residual mantle by more than an order of magnitude.Plain Language SummaryThe Earth's deep interior contains substantial amounts of volatile elements like C, H, and N. How these elements got sequestered in the Earth's interior has long been a topic of debate. It is generally assumed that most of these elements escaped the interior of the Earth during the first few hundred thousand years to create a primitive atmosphere, leaving the mantle reservoir nearly empty. In this work, we show that the key to this paradox involves the very early stages of crystallization of the mantle from a global magma ocean. Using numerical models, we show

  1. The mechanics of shallow magma reservoir outgassing

    Science.gov (United States)

    Parmigiani, A.; Degruyter, W.; Leclaire, S.; Huber, C.; Bachmann, O.

    2017-08-01

    Magma degassing fundamentally controls the Earth's volatile cycles. The large amount of gas expelled into the atmosphere during volcanic eruptions (i.e., volcanic outgassing) is the most obvious display of magmatic volatile release. However, owing to the large intrusive:extrusive ratio, and considering the paucity of volatiles left in intrusive rocks after final solidification, volcanic outgassing likely constitutes only a small fraction of the overall mass of magmatic volatiles released to the Earth's surface. Therefore, as most magmas stall on their way to the surface, outgassing of uneruptible, crystal-rich magma storage regions will play a dominant role in closing the balance of volatile element cycling between the mantle and the surface. We use a numerical approach to study the migration of a magmatic volatile phase (MVP) in crystal-rich magma bodies ("mush zones") at the pore scale. Our results suggest that buoyancy-driven outgassing is efficient over crystal volume fractions between 0.4 and 0.7 (for mm-sized crystals). We parameterize our pore-scale results for MVP migration in a thermomechanical magma reservoir model to study outgassing under dynamical conditions where cooling controls the evolution of the proportion of crystal, gas, and melt phases and to investigate the role of the reservoir size and the temperature-dependent viscoelastic response of the crust on outgassing efficiency. We find that buoyancy-driven outgassing allows for a maximum of 40-50% volatiles to leave the reservoir over the 0.4-0.7 crystal volume fractions, implying that a significant amount of outgassing must occur at high crystal content (>0.7) through veining and/or capillary fracturing.

  2. Experimental Study of Lunar and SNC Magmas

    Science.gov (United States)

    Rutherford, Malcolm J.

    1998-01-01

    The research described in this progress report involved the study of petrological, geochemical and volcanic processes that occur on the Moon and the SNC parent body, generally accepted to be Mars. The link between these studies is that they focus on two terrestrial-type parent bodies somewhat smaller than earth, and the fact that they focus on the role of volatiles in magmatic processes and on processes of magma evolution on these planets. The work on the lunar volcanic glasses has resulted in some exciting new discoveries over the years of this grant. We discovered small metal blebs initially in the Al5 green glass, and determined the significant importance of this metal in fixing the oxidation state of the parent magma (Fogel and Rutherford, 1995). More recently, we discovered a variety of metal blebs in the Al7 orange glass. Some of these Fe-Ni metal blebs were in the glass; others were in olivine phenocrysts. The importance of these metal spheres is that they fix the oxidation state of the parent magma during the eruption, and also indicate changes during the eruption (Weitz et al., 1997) They also yield important information about the composition of the gas phase present, the gas which drove the lunar fire-fountaining. One of the more exciting and controversial findings in our research over the past year has been the possible fractionation of H from D during shock (experimental) of hornblende bearing samples (Minitti et al., 1997). This research is directed at explaining some of the low H2O and high D/H observed in hydrous phases in the SNC meteorites.

  3. Major and trace element and volatile constraints on magma systematics of seamounts and axial ridge glasses from the East Pacific Rise between 8°N and 12°N

    Science.gov (United States)

    Lytle, M. L.; Kelley, K. A.; Wanless, V. D.; Hauri, E. H.

    2017-12-01

    The East Pacific Rise is a fast spreading mid-ocean ridge system (6-16cm/yr) consisting of many spreading ridges and transform faults. Focusing on a well-studied segment between 8-12°N, we present new SIMS measurements of magmatic volatiles (H2O, CO2, S, Cl, F) and new LA-ICP-MS trace element data in both on-axis and off-axis glasses, coupled with previously published data and use these data to relate melt composition to crystallization and melting processes. The seamounts range in composition from evolved (MgO = 5.54 wt%) to fairly primitive (MgO = 9.70 wt%), whereas on-axis samples have a narrower range of MgO (5.85 - 8.83 wt%). Seamounts span a wide range of enrichment in trace element compositions (La/Sm 0.45 - 4.63; Th/La 0.02 - 0.14; K/Ti 0.02 - 0.66), whereas on-axis glasses reflect NMORB compositions (La/Sm 0.5 - 1; Th/La 0.035 - 0.07; K/Ti 0.05 - 0.15). Light rare earth elements in the seamounts vary from depleted to enriched and have variable Eu anomalies (0.79 - 1.10), while on-axis samples have NMORB patterns with more negative Eu anomalies (0.74 - 1.00). The H2O content of the seamounts ranges from dry (0.05 wt%) to fairly wet (0.96 wt%), whereas on-axis samples have a narrower range (0.15 - 0.31 wt%). Cl contents show variable mixing between seawater and a magmatic component, with seamounts assimilating more seawater. Magmatic liquid lines of descent (LLD), recorded in glass, reflect fractional crystallization of olivine, plagioclase, and clinopyroxene, consistent with modal phenocryst abundances of the rocks. A multi-element approach (e.g., MgO vs. Al2O3, CaO, CaO/Al2O3), constrains LLDs, providing fractionation slopes, allowing mafic basalt compositions to be accurately corrected back to primary melts in equilibrium with Fo90. Using these melts, pressures and temperatures of melt equilibration can be constrained using melt thermobarometry. On-axis samples reflect higher PT conditions (1371°C; 1.37 GPa), although within error of seamounts (1340

  4. Ilchulbong tuff cone, Jeju Island, Korea, revisited: A compound monogenetic volcano involving multiple magma batches, shifting vents, and discrete eruptive phases

    Science.gov (United States)

    Sohn, Y.; Brenna, M.; Smith, I. E.; Nemeth, K.; White, J. D.; Murtagh, R.; Jeon, Y.; Kwon, C.; Cronin, S. J.

    2010-12-01

    Ilchulbong (Sunrise Peak) tuff cone is a UNESCO World Heritage site that owes its scientific importance to the outstanding coastal exposures that surround it. It is also one of the classic sites that provided the sedimentary evidence for the primary pyroclastic processes that occur during phreatomagmatic basaltic eruptions. It has been long considered, based on the cone morphology, that this classic cone was produced via eruption from a single vent site. Reanalysis of the detailed sedimentary sequence has now revealed that two subtle paraconformities occur in this deposition sequence, one representing a significant time break of perhaps days to weeks or months, during which erosion and compaction of the lower cone occurred, the conduit cooled and solidified and a subsequent resumption of eruption took place in a new vent location. Detailed geochemical study of the juvenile clasts through this cone reveals that three separate alkali basaltic magma batches were erupted, the first and third erupted may be genetically related, with the latter showing evidence for longer periods of shallow-level fractionation. The second magma batch erupted was generated in a different mantle source area. Reconstructing the eruption sequence, the lower Ilchulbong cone was formed by eruption of magma 1. Cessation of eruption was accompanied by erosion to generate a volcano-wide unconformity, associated with reworked deposits in the lower cone flanks. The eruption resumed with magma 2 that, due to the cooled earlier conduit, was forced to erupt in a new site to the west of the initial vent. This formed the middle cone sequence over the initially formed structure. The third magma batch erupted with little or no interval after magma 2 from the same vent location, associated with cone instability and slumping, and making up the deposits of the upper cone. These results demonstrate how critical the examination for sedimentary evidence for time breaks in such eruption sequences is for

  5. The Biosynthesis of Unusual Floral Volatiles and Blends Involved in Orchid Pollination by Deception: Current Progress and Future Prospects

    Directory of Open Access Journals (Sweden)

    Darren C. J. Wong

    2017-11-01

    Full Text Available Flowers have evolved diverse strategies to attract animal pollinators, with visual and olfactory floral cues often crucial for pollinator attraction. While most plants provide reward (e.g., nectar, pollen in return for the service of pollination, 1000s of plant species, particularly in the orchid family, offer no apparent reward. Instead, they exploit their often specific pollinators (one or few by mimicking signals of female insects, food source, and oviposition sites, among others. A full understanding of how these deceptive pollination strategies evolve and persist remains an open question. Nonetheless, there is growing evidence that unique blends that often contain unusual compounds in floral volatile constituents are often employed to secure pollination by deception. Thus, the ability of plants to rapidly evolve new pathways for synthesizing floral volatiles may hold the key to the widespread evolution of deceptive pollination. Yet, until now the biosynthesis of these volatile compounds has been largely neglected. While elucidating the biosynthesis in non-model systems is challenging, nonetheless, these cases may also offer untapped potential for biosynthetic breakthroughs given that some of the compounds can be exclusive or dominant components of the floral scent and production is often tissue-specific. In this perspective article, we first highlight the chemical diversity underpinning some of the more widespread deceptive orchid pollination strategies. Next, we explore the potential metabolic pathways and biosynthetic steps that might be involved. Finally, we offer recommendations to accelerate the discovery of the biochemical pathways in these challenging but intriguing systems.

  6. The Biosynthesis of Unusual Floral Volatiles and Blends Involved in Orchid Pollination by Deception: Current Progress and Future Prospects.

    Science.gov (United States)

    Wong, Darren C J; Pichersky, Eran; Peakall, Rod

    2017-01-01

    Flowers have evolved diverse strategies to attract animal pollinators, with visual and olfactory floral cues often crucial for pollinator attraction. While most plants provide reward (e.g., nectar, pollen) in return for the service of pollination, 1000s of plant species, particularly in the orchid family, offer no apparent reward. Instead, they exploit their often specific pollinators (one or few) by mimicking signals of female insects, food source, and oviposition sites, among others. A full understanding of how these deceptive pollination strategies evolve and persist remains an open question. Nonetheless, there is growing evidence that unique blends that often contain unusual compounds in floral volatile constituents are often employed to secure pollination by deception. Thus, the ability of plants to rapidly evolve new pathways for synthesizing floral volatiles may hold the key to the widespread evolution of deceptive pollination. Yet, until now the biosynthesis of these volatile compounds has been largely neglected. While elucidating the biosynthesis in non-model systems is challenging, nonetheless, these cases may also offer untapped potential for biosynthetic breakthroughs given that some of the compounds can be exclusive or dominant components of the floral scent and production is often tissue-specific. In this perspective article, we first highlight the chemical diversity underpinning some of the more widespread deceptive orchid pollination strategies. Next, we explore the potential metabolic pathways and biosynthetic steps that might be involved. Finally, we offer recommendations to accelerate the discovery of the biochemical pathways in these challenging but intriguing systems.

  7. Controls on the organization of the plumbing system of subduction volcanoes : the roles of volatiles and edifice load

    Science.gov (United States)

    Roman, A. M.; Bergal-Kuvikas, O.; Shapiro, N.; Taisne, B.; Gordeev, E.; Jaupart, C. P.

    2017-12-01

    Geochemical data indicate that subduction zone magmas are extracted from the mantle and rises through the crust, with a wide range of volatile contents. The main controls on magma ascent, storage and location of eruptive vents are not well understood. Flow through a volcanic system depends on magma density and viscosity, which depend in turn on chemical composition and volatile content. Thus, one expects that changes of eruption sites in space and time are related to geochemical variations. To test this hypothesis, we have focussed on Klyuchevskoy volcano, Kamchatka, a very active island arc volcano which erupts lavas with a wide range of volatile contents (e.g. 3-7 H20 wt. %). The most primitive high-Mg magmas were able to erupt and build a sizable edifice in an initial phase of activity. As the edifice grew, eruption of these magmas was suppressed in the focal area and occurred in distal parts of the volcano whilst summit eruptions involved differentiated high alumina basalts. Here we propose a new model for the development of the Klyuchevskoy plumbing system which combines edifice load, far field tectonic stress and the presence of volatiles. We calculate dyke trajectories and overpressures by taking into account the exsolution of volatiles in the magma. The most striking result is the progressive deflection of dykes towards the axial area as the edifice size increases. In this model, the critical parameters are the depth of volatile exsolution and the edifice size. Volatile-rich magmas degas at depth and experience a large increase in buoyancy which may overcome edifice-induced stresses at shallow levels. However, as the volcano grows, the stress barrier migrates downwards and may eventually act to stall dykes before gas exsolution takes place. Such conditions are likely to induce the formation of a shallow central reseroir, in which further magma focussing, mixing and contamination may take place. This model accounts for the co-evolution of magma composition

  8. Possible stakeholder concerns regarding volatile organic compound in arid soils integrated demonstration technologies not evaluated in the stakeholder involvement program

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    The Volatile Organic Compounds in Arid Soils Integrated Demonstration (VOC-Arid ID) supported the demonstration of a number of innovative technologies, not all of which were evaluated in the integrated demonstration's stakeholder involvement program. These technologies have been organized into two categories and the first category ranked in order of priority according to interest in the evaluation of the technology. The purpose of this report is to present issues stakeholders would likely raise concerning each of the technologies in light of commentary, insights, data requirements, concerns, and recommendations offered during the VOC-Arid ID's three-year stakeholder involvement, technology evaluation program. A secondary purpose is to provide a closeout status for each of the technologies associated with the VOC-Arid ID. This report concludes with a summary of concerns and requirements that stakeholders have for all innovative technologies

  9. The roles of fractional crystallization, magma mixing, crystal mush remobilization and volatile-melt interactions in the genesis of a young basalt-peralkaline rhyolite suite, the greater Olkaria volcanic complex, Kenya Rift valley

    Science.gov (United States)

    Macdonald, R.; Belkin, H.E.; Fitton, J.G.; Rogers, N.W.; Nejbert, K.; Tindle, A.G.; Marshall, A.S.

    2008-01-01

    The Greater Olkaria Volcanic Complex is a young (???20 ka) multi-centred lava and dome field dominated by the eruption of peralkaline rhyolites. Basaltic and trachytic magmas have been erupted peripherally to the complex and also form, with mugearites and benmoreites, an extensive suite of magmatic inclusions in the rhyolites. The eruptive rocks commonly represent mixed magmas and the magmatic inclusions are themselves two-, three- or four-component mixes. All rock types may carry xenocrysts of alkali feldspar, and less commonly plagioclase, derived from magma mixing and by remobilization of crystal mushes and/or plutonic rocks. Xenoliths in the range gabbro-syenite are common in the lavas and magmatic inclusions, the more salic varieties sometimes containing silicic glass representing partial melts and ranging in composition from anorthite ?? corundum- to acmite-normative. The peralkaline varieties are broadly similar, in major element terms, to the eruptive peralkaline rhyolites. The basalt-trachyte suite formed by a combination of fractional crystallization, magma mixing and resorption of earlier-formed crystals. Matrix glass in metaluminous trachytes has a peralkaline rhyolitic composition, indicating that the eruptive rhyolites may have formed by fractional crystallization of trachyte. Anomalous trace element enrichments (e.g. ??? 2000 ppm Y in a benmoreite) and negative Ce anomalies may have resulted from various Na- and K-enriched fluids evolving from melts of intermediate composition and either being lost from the system or enriched in other parts of the reservoirs. A small group of nepheline-normative, usually peralkaline, magmatic inclusions was formed by fluid transfer between peralkaline rhyolitic and benmoreitic magmas. The plumbing system of the complex consists of several independent reservoirs and conduits, repeatedly recharged by batches of mafic magma, with ubiquitous magma mixing. ?? The Author 2008. Published by Oxford University Press. All

  10. Eruptive dynamics during magma decompression: a laboratory approach

    Science.gov (United States)

    Spina, L.; Cimarelli, C.; Scheu, B.; Wadsworth, F.; Dingwell, D. B.

    2013-12-01

    A variety of eruptive styles characterizes the activity of a given volcano. Indeed, eruptive styles can range from effusive phenomena to explosive eruptions, with related implications for hazard management. Rapid changes in eruptive style can occur during an ongoing eruption. These changes are, amongst other, related to variations in the magma ascent rate, a key parameter affecting the eruptive style. Ascent rate is in turn dependent on several factors such as the pressure in the magma chamber, the physical properties of the magma and the rate at which these properties change. According to the high number of involved parameters, laboratory decompression experiments are the best way to achieve quantitative information on the interplay of each of those factors and the related impact on the eruption style, i.e. by analyzing the flow and deformation behavior of the transparent volatile-bearing analogue fluid. We carried out decompression experiments following different decompression paths and using silicone oil as an analogue for the melt, with which we can simulate a range of melt viscosity values. For a set of experiments we added rigid particles to simulate the presence of crystals in the magma. The pure liquid or suspension was mounted into a transparent autoclave and pressurized to different final pressures. Then the sample was saturated with argon for a fixed amount of time. The decompression path consists of a slow decompression from the initial pressure to the atmospheric condition. Alternatively, samples were decompressed almost instantaneously, after established steps of slow decompression. The decompression path was monitored with pressure transducers and a high-speed video camera. Image analysis of the videos gives quantitative information on the bubble distribution with respect to depth in the liquid, pressure and time of nucleation and on their characteristics and behavior during the ongoing magma ascent. Furthermore, we also monitored the evolution of

  11. El Hierro's floating stones as messengers of crust-magma interaction at depth

    Science.gov (United States)

    Burchardt, S.; Troll, V. R.; Schmeling, H.; Koyi, H.; Blythe, L. S.; Longpré, M. A.; Deegan, F. M.

    2012-04-01

    During the early stages of the submarine eruption that started on October 10 2011 south of El Hierro, Canary Islands, Spain, peculiar eruption products were found floating on the sea surface. These centimetre- to decimetre-sized "bombs" have been termed "restingolites" after the nearby village La Restinga and consist of a basaltic rind and a white to light grey core that resembles pumice in texture. According to Troll et al. (2011; see also Troll et al. EGU 2012 Abstracts), this material consists of a glassy matrix hosting extensive vesicle networks, which results in extremely low densities allowing these rocks to float on sea water. Mineralogical and geochemical analyses reveal that the "restingolites" originate from the sedimentary rocks (sand-, silt-, and mudstones) that form layer 1 of the oceanic crust beneath El Hierro. During the onset and early stages of the eruption, magma ponded at the base of this sedimentary sequence, breaking its way through the sedimentary rocks to the ocean floor. The textures of the "restingolites" reveal that crust-magma interaction during fragmentation and transport of the xenoliths involved rapid partial melting and volatile exsolution. Xenoliths strikingly similar to those from El Hierro are known from eruptions on other Canary Islands (e.g. La Palma, Gran Canaria, and Lanzarote). In fact, they resemble in texture xenoliths of various protoliths from volcanic areas worldwide (e.g. Krakatao, Indonesia, Cerro Quemado, Guatemala, Laacher See, Germany). This indicates that the process of partial melting and volatile exsolution, which the "restingolites" bear witness of, is probably occurring frequently during shallow crustal magma emplacement. Thermomechanical numerical models of the effect of the density decrease associated with the formation of vesicle networks in partially molten xenoliths show that xenoliths of crustal rocks initially sink in a magma chamber, but may start to float to the chamber roof once they start to heat up

  12. Temperature evolution during magma ascent in basaltic effusive eruptions: A numerical application to Stromboli volcano

    Science.gov (United States)

    La Spina, G.; Burton, M.; de'Michieli Vitturi, M.

    2015-09-01

    The dynamics of magma ascent are controlled by the complex, interdependent processes of crystallisation, rheological evolution, gas exsolution, outgassing, non-ideal gas expansion and temperature evolution. Temperature changes within the conduit, in particular, play a key role on ascent dynamics, since temperature strongly controls the crystallisation process, which in turn has an impact on viscosity and thus on magma ascent rate. The cooling produced by gas expansion is opposed by the heat produced by crystallisation, and therefore the temperature profile within the conduit is quite complex. This complexity means that unravelling the dynamics controlling magma ascent requires a numerical model. Unfortunately, comprehensive, integrated models with full thermodynamic treatment of multiple phases and rheological evolution are challenging to produce, due to the numerical challenges involved. Until now, models have tended to focus on aspects of the problem, without a holistic approach in which petrological, thermodynamic, rheological and degassing processes, and their interactions, were all explicitly addressed and quantified. Here, we present a new, multiphase steady-state model for magma ascent in which the main physical and chemical processes, such as crystallisation, degassing, outgassing, rheological evolution and temperature variations, are quantitatively calculated. Basaltic magma's crystallisation and flow are sensitive to initial temperature and volatile content, and therefore we investigate temperature variations during magma ascent in a basaltic system with a range of volatile contents. As a test case, we use one of the most well-studied recent basaltic effusive eruptions: the 2007 eruption of Stromboli, Italy. Assuming equilibrium crystallisation and exsolution, we compare the solutions obtained both with and without an isothermal constraint, finding that temperature variations within the conduit have a significant influence on the ascent dynamics and

  13. The Meaning of "Magma"

    Science.gov (United States)

    Bartley, J. M.; Glazner, A. F.; Coleman, D. S.

    2016-12-01

    Magma is a fundamental constituent of the Earth, and its properties, origin, evolution, and significance bear on issues ranging from volcanic hazards to planetary evolution. Unfortunately, published usages indicate that the term "magma" means distinctly different things to different people and this can lead to miscommunication among Earth scientists and between scientists and the public. Erupting lava clearly is magma; the question is whether partially molten rock imaged at depth and too crystal-rich to flow should also be called magma. At crystal fractions > 50%, flow can only occur via crystal deformation and solution-reprecipitation. As the solid fraction increases to 90% or more, the material becomes a welded crystal framework with melt in dispersed pores and/or along grain boundaries. Seismic images commonly describe such volumes of a few % melt as magma, yet the rheological differences between melt-rich and melt-poor materials make it vital not to confuse a large rock volume that contains a small melt fraction with melt-rich material. To ensure this, we suggest that "magma" be reserved for melt-rich materials that undergo bulk fluid flow on timescales consonant with volcanic eruptions. Other terms should be used for more crystal-rich and largely immobile partially molten rock (e.g., "crystal mush," "rigid sponge"). The distinction is imprecise but useful. For the press, the public, and even earth scientists who do not study magmatic systems, "magma" conjures up flowing lava; reports of a large "magma" body that contains a few percent melt can engender the mistaken perception of a vast amount of eruptible magma. For researchers, physical processes like crystal settling are commonly invoked to account for features in plutonic rocks, but many such processes are only possible in melt-rich materials.

  14. INTERACTIONS BETWEEN GABBROID AND GRANITOID MAGMAS DURING FORMATION OF THE PREOBRAZHENSKY INTRUSION, EAST KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    S. V. Khromykh

    2017-01-01

    Full Text Available The paper reports on studies of the Preobrazhensky gabbro‐granitoid intrusion, East Kazakhstan, com‐ posed of the rocks that belong to four phases of intrusion, from quartz monzonites and gabbroids to granite‐ leucogranites. Specific relationships between basite and granitoid rocks are usually classified as the result of interac‐ tions and mixing of liquid magmas, i.e. magma mingling and mixing. Basite rocks are represented by a series from biotite gabbros to monzodiorites. Granitoids rocks are biotite‐amphibole granites. Porphyric granosyenites, com‐ bining the features of both granites and monzodiorites, are also involved in mingling. It is established that the primary granitoid magmas contained granosyenite/quartz‐monzonite and occurred in the lower‐medium‐crust conditions in equilibrium with the garnet‐rich restite enriched with plagioclase. Monzodiorites formed during fractionation of the parent gabbroid magma that originated from the enriched mantle source. We propose a magma interaction model describing penetration of the basite magma into the lower horizons of the granitoid source, which ceased below the viscoplastic horizon of granitoids. The initial interaction assumes the thermal effect of basites on the almost crystal‐ lized granitic magma and saturation of the boundary horizons of the basite magma with volatile elements, which can change the composition of the crystallizing melt from gabbroid to monzodiorite. A ‘boundary’ layer of monzodiorite melt is formed at the boundary of the gabbroid and granitoid magmas, and interacts with granitoids. Due to chemical interactions, hybrid rocks – porphyric granosyenites – are formed. The heterogeneous mixture of monzodiorites and granosyenites is more mobile in comparison with the overlying almost crystallized granites. Due to contraction frac‐ turing in the crystallized granites, the heterogeneous mixture of monzodiorites and granosyenites penetrate into the

  15. Long term storage of explosively erupted magma at Nevado de Toluca volcano, Mexico

    Science.gov (United States)

    Arce, J. L.; Gardner, J.; Macias, J. L.

    2007-12-01

    Dacitic magmas production is common in subduction-related volcanoes, occurring in those with a long period of activity as a result of the magmatic evolution. However, in this evolution many factors (i.e. crystal fractionation, assimilation, magma mixing) can interact to produce dacites. Nevado de Toluca volcano (4,680 masl; 19°09'N; 99°45'W) Central Mexico has recorded a long period of time producing dacites explosively, at least during 42 ka of activity, involving several km3 of magma, with two important Plinian-type eruptions occurred at ~21.7 ka (Lower Toluca Pumice) and ~10.5 ka (Upper Toluca Pumice). Questions like, what was the mechanism responsible to produce voluminous dacitic magma and how the volatiles and pressure changed in the Nevado de Toluca system, remain without answers. Dacites from the Lower Toluca Pumice (LTP) contain plagioclase, amphibole, iron-titanium oxides, and minor resorbed biotite, set in a glassy-vesicular matrix and the Upper Toluca Pumice (UTP) dacites contain the same mineral phases plus orthopyroxene. Ilmenite- ulvospinel geothermometry yielded a temperature of ~860°C for the LTP dacite, a little hotter than the UTP (~ 840°C). Based on hydrothermal experiments data, amphibole is stable above 100 MPa under 900°C, while plagioclase crystallizes up to 250-100 MPa at temperatures of 850-900°C. Pyroxene occurs only at pressures of 200-100 MPa with its respective temperatures of 825-900°C. Water contents in the LTP magma (2-3.5 wt %) are similar to that calculated for the UTP magma (1.3-3.6 wt %). So, there are only small changes in temperature and pressure from ~21.7 ka to 10.5 ka. It is noteworthy that orthopyroxene is absent in the LTP, however reaction-rimmed biotite (probably xenocrystic) is commonly observed in all dacites. Hence, almost all dacitic magmas seem to be stored at relatively similar pressures, water contents, and temperatures. All of these data could suggest repetitive basic magma injections producing the

  16. Use of a free-jet expansion, molecular beam mass spectrometer to understand processes involving volatile corrosion products

    International Nuclear Information System (INIS)

    Jacobson, N.S.

    1997-01-01

    Many high-temperature corrosion processes generate volatile products in addition to condensed phase products. Examples of these volatile products are chlorides, oxychlorides, and certain oxides and hydroxyl species. One of the best techniques to identify high temperature vapor molecules is mass spectrometry. Most mass spectrometers operate in high vacuum and are generally used to examine processes ocurring at greatly reduced pressures. However, a free-jet expansion, molecular beam mass spectrometer system allows direct sampling of volatile corrosion products. This instrument is described. Several examples from our studies on chlorination/oxidation of metals and ceramics are discussed. In addition, reactions of Cr 2 O 3 , SiO 2 , and Al 2 O 3 with water vapor, which produce volatile hydroxyl species are discussed. (orig.)

  17. Rapid Crystallization of the Bishop Magma

    Science.gov (United States)

    Gualda, G. A.; Anderson, A. T.; Sutton, S. R.

    2007-12-01

    is 2 orders of magnitude smaller than the shortest durations derived from geochronology. In the current paradigm, this implies that the Bishop magma existed virtually free of crystals for 100-200 ka. Occasional recharge of the system could cause resorption of crystals. The challenge, however, is to explain how a large- volume, liquid- and volatile-rich system, was prevented from erupting for over 100 ka. The trouble is such that it puts into question the whole concept of a long-lived, liquid-rich magma body. Evidence has accumulated to show that the Bishop magma was stratified and did not convect during crystallization, the stratification was established prior to phenocryst crystallization, and crystal migration did not significantly perturb the stratification. All these are simpler to explain if liquid-rich magma only existed for a short period of time, and we estimate the time as being on the order of 1 ka. The geospeedometric timescale inferred can be reconciled with the geochronological evidence if we interpret zircon crystallization ages as reflecting episodic growth in response to waxing and waning of a mushy body, rather than continuous crystallization from liquid-rich magma in a long-lived, large-volume magma body. We speculate that only after 100-200 ka did favorable conditions emerge and allowed for the generation of a large volume of liquid-rich magma. Once such a body of magma was established, it progressed rather quickly towards eruption.

  18. Isolation and identification of volatile kairomone that affects acarine predator-prey interactions: involvement of host plant in its production.

    NARCIS (Netherlands)

    Dicke, M.; Beek, van T.A.; Posthumus, M.A.; Dom, Ben N.; Bokhoven, van H.; Groot, de Ae.

    1990-01-01

    A volatile kairomone emitted from lima bean plants (Phaseolus lunatus) infested with the spider miteTetranychus urticae, was collected on Tenax-TA and analyzed with GC-MS. Two components were identified as the methylene monoterpene (3E)-4,8-dimethyl-1,3,7-nonatriene and the methylene sesquiterpene

  19. Mush Column Magma Chambers

    Science.gov (United States)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  20. The influence of magma viscosity on convection within a magma chamber

    Science.gov (United States)

    Schubert, M.; Driesner, T.; Ulmer, P.

    2012-12-01

    Magmatic-hydrothermal ore deposits are the most important sources of metals like Cu, Mo, W and Sn and a major resource for Au. It is well accepted that they are formed by the release of magmatic fluids from a batholith-sized magma body. Traditionally, it has been assumed that crystallization-induced volatile saturation (called "second boiling") is the main mechanism for fluid release, typically operating over thousands to tens of thousands of years (Candela, 1991). From an analysis of alteration halo geometries caused by magmatic fluids, Cathles and Shannon (2007) suggested much shorter timescales in the order of hundreds of years. Such rapid release of fluids cannot be explained by second boiling as the rate of solidification scales with the slow conduction of heat away from the system. However, rapid fluid release is possible if convection is assumed within the magma chamber. The magma would degas in the upper part of the magma chamber and volatile poor magma would sink down again. Such, the rates of degassing can be much higher than due to cooling only. We developed a convection model using Navier-Stokes equations provided by the computational fluid dynamics platform OpenFOAM that gives the possibility to use externally derived meshes with complex (natural) geometries. We implemented a temperature, pressure, composition and crystal fraction dependent viscosity (Ardia et al., 2008; Giordano et al., 2008; Moore et al., 1998) and a temperature, pressure, composition dependent density (Lange1994). We found that the new viscosity and density models strongly affect convection within the magma chamber. The dependence of viscosity on crystal fraction has a particularly strong effect as the steep viscosity increase at the critical crystal fraction leads to steep decrease of convection velocity. As the magma chamber is cooling from outside to inside a purely conductive layer is developing along the edges of the magma chamber. Convection continues in the inner part of the

  1. The Surtsey Magma Series.

    Science.gov (United States)

    Schipper, C Ian; Jakobsson, Sveinn P; White, James D L; Michael Palin, J; Bush-Marcinowski, Tim

    2015-06-26

    The volcanic island of Surtsey (Vestmannaeyjar, Iceland) is the product of a 3.5-year-long eruption that began in November 1963. Observations of magma-water interaction during pyroclastic episodes made Surtsey the type example of shallow-to-emergent phreatomagmatic eruptions. Here, in part to mark the 50(th) anniversary of this canonical eruption, we present previously unpublished major-element whole-rock compositions, and new major and trace-element compositions of sideromelane glasses in tephra collected by observers and retrieved from the 1979 drill core. Compositions became progressively more primitive as the eruption progressed, with abrupt changes corresponding to shifts between the eruption's four edifices. Trace-element ratios indicate that the chemical variation is best explained by mixing of different proportions of depleted ridge-like basalt, with ponded, enriched alkalic basalt similar to that of Iceland's Eastern Volcanic Zone; however, the systematic offset of Surtsey compositions to lower Nb/Zr than other Vestmannaeyjar lavas indicates that these mixing end members are as-yet poorly contained by compositions in the literature. As the southwestern-most volcano in the Vestmannaeyjar, the geochemistry of the Surtsey Magma Series exemplifies processes occurring within ephemeral magma bodies on the extreme leading edge of a propagating off-axis rift in the vicinity of the Iceland plume.

  2. E-β-ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Alban Maisonnasse

    Full Text Available BACKGROUND: In honey bee colony, the brood is able to manipulate and chemically control the workers in order to sustain their own development. A brood ester pheromone produced primarily by old larvae (4 and 5 days old larvae was first identified as acting as a contact pheromone with specific effects on nurses in the colony. More recently a new volatile brood pheromone has been identified: E-β-ocimene, which partially inhibits ovary development in workers. METHODOLOGY AND PRINCIPAL FINDING: Our analysis of E-β-ocimene production revealed that young brood (newly hatched to 3 days old produce the highest quantity of E-β-ocimene relative to their body weight. By testing the potential action of this molecule as a non-specific larval signal, due to its high volatility in the colony, we demonstrated that in the presence of E-β-ocimene nest workers start to forage earlier in life, as seen in the presence of real brood. CONCLUSIONS/SIGNIFICANCE: In this way, young larvae are able to assign precedence to the task of foraging by workers in order to increase food stores for their own development. Thus, in the complexity of honey bee chemical communication, E-β-ocimene, a pheromone of young larvae, provides the brood with the means to express their nutritional needs to the workers.

  3. Comparative Magma Oceanography

    Science.gov (United States)

    Jones, J. H.

    1999-01-01

    The question of whether the Earth ever passed through a magma ocean stage is of considerable interest. Geochemical evidence strongly suggests that the Moon had a magma ocean and the evidence is mounting that the same was true for Mars. Analyses of martian (SNC) meteorites have yielded insights into the differentiation history of Mars, and consequently, it is interesting to compare that planet to the Earth. Three primary features of Mars contrast strongly to those of the Earth: (i) the extremely ancient ages of the martian core, mantle, and crust (about 4.55 b.y.); (ii) the highly depleted nature of the martian mantle; and (iii) the extreme ranges of Nd isotopic compositions that arise within the crust and depleted mantle. The easiest way to explain the ages and diverse isotopic compositions of martian basalts is to postulate that Mars had an early magma ocean. Cumulates of this magma ocean were later remelted to form the SNC meteorite suite and some of these melts assimilated crustal materials enriched in incompatible elements. The REE pattern of the crust assimilated by these SNC magmas was LREE enriched. If this pattern is typical of the crust as a whole, the martian crust is probably similar in composition to melts generated by small degrees of partial melting (about 5%) of a primitive source. Higher degrees of partial melting would cause the crustal LREE pattern to be essentially flat. In the context of a magma ocean model, where large degrees of partial melting presumably prevailed, the crust would have to be dominated by late-stage, LREE-enriched residual liquids. Regardless of the exact physical setting, Nd and W isotopic evidence indicates that martian geochemical reservoirs must have formed early and that they have not been efficiently remixed since. The important point is that in both the Moon and Mars we see evidence of a magma ocean phase and that we recognize it as such. Several lines of theoretical inference point to an early Earth that was also hot

  4. Phenomena associated with magma expansion into a drift

    International Nuclear Information System (INIS)

    Gaffney, E.S.

    2002-01-01

    One of the significant threats to the proposed Yucca Mountain nuclear waste repository has been identified as the possibility of intersection of the underground structure by a basaltic intrusion. Based on the geology of the region, it is assumed that such an intrusion would consist of an alkali basalt similar to the nearby Lathrop Wells cone, which has been dated at about 78 ka. The threat of radioactive release may be either from eruption through the surface above the repository of basalt that had been contaminated or from migration through ground water of radionucleides released as a result of damage to waste packages that interact with the magma. As part of our study of these threats, we are analyzing the phenomena associated with magma expansion into drifts in tuff. The early phenomena of the encounter of volatile-rich basaltic magma with a drift are discussed here.

  5. Iron Redox Systematics of Shergottites and Martian Magmas

    Science.gov (United States)

    Righter, Kevin; Danielson, L. R.; Martin, A. M.; Newville, M.; Choi, Y.

    2010-01-01

    Martian meteorites record a range of oxygen fugacities from near the IW buffer to above FMQ buffer [1]. In terrestrial magmas, Fe(3+)/ SigmaFe for this fO2 range are between 0 and 0.25 [2]. Such variation will affect the stability of oxides, pyroxenes, and how the melt equilibrates with volatile species. An understanding of the variation of Fe(3+)/SigmaFe for martian magmas is lacking, and previous work has been on FeO-poor and Al2O3-rich terrestrial basalts. We have initiated a study of the iron redox systematics of martian magmas to better understand FeO and Fe2O3 stability, the stability of magnetite, and the low Ca/high Ca pyroxene [3] ratios observed at the surface.

  6. Magma heating by decompression-driven crystallization beneath andesite volcanoes.

    Science.gov (United States)

    Blundy, Jon; Cashman, Kathy; Humphreys, Madeleine

    2006-09-07

    Explosive volcanic eruptions are driven by exsolution of H2O-rich vapour from silicic magma. Eruption dynamics involve a complex interplay between nucleation and growth of vapour bubbles and crystallization, generating highly nonlinear variation in the physical properties of magma as it ascends beneath a volcano. This makes explosive volcanism difficult to model and, ultimately, to predict. A key unknown is the temperature variation in magma rising through the sub-volcanic system, as it loses gas and crystallizes en route. Thermodynamic modelling of magma that degasses, but does not crystallize, indicates that both cooling and heating are possible. Hitherto it has not been possible to evaluate such alternatives because of the difficulty of tracking temperature variations in moving magma several kilometres below the surface. Here we extend recent work on glassy melt inclusions trapped in plagioclase crystals to develop a method for tracking pressure-temperature-crystallinity paths in magma beneath two active andesite volcanoes. We use dissolved H2O in melt inclusions to constrain the pressure of H2O at the time an inclusion became sealed, incompatible trace element concentrations to calculate the corresponding magma crystallinity and plagioclase-melt geothermometry to determine the temperature. These data are allied to ilmenite-magnetite geothermometry to show that the temperature of ascending magma increases by up to 100 degrees C, owing to the release of latent heat of crystallization. This heating can account for several common textural features of andesitic magmas, which might otherwise be erroneously attributed to pre-eruptive magma mixing.

  7. Carbon dioxide in magmas and implications for hydrothermal systems

    Science.gov (United States)

    Lowenstern, J. B.

    2001-01-01

    This review focuses on the solubility, origin, abundance, and degassing of carbon dioxide (CO2) in magma-hydrothermal systems, with applications for those workers interested in intrusion-related deposits of gold and other metals. The solubility of CO2 increases with pressure and magma alkalinity. Its solubility is low relative to that of H2O, so that fluids exsolved deep in the crust tend to have high CO2/H2O compared with fluids evolved closer to the surface. Similarly, CO2/H2O will typically decrease during progressive decompression- or crystallization-induced degassing. The temperature dependence of solubility is a function of the speciation of CO2, which dissolves in molecular form in rhyolites (retrograde temperature solubility), but exists as dissolved carbonate groups in basalts (prograde). Magnesite and dolomite are stable under a relatively wide range of mantle conditions, but melt just above the solidus, thereby contributing CO2 to mantle magmas. Graphite, diamond, and a free CO2-bearing fluid may be the primary carbon-bearing phases in other mantle source regions. Growing evidence suggests that most CO2 is contributed to arc magmas via recycling of subducted oceanic crust and its overlying sediment blanket. Additional carbon can be added to magmas during magma-wallrock interactions in the crust. Studies of fluid and melt inclusions from intrusive and extrusive igneous rocks yield ample evidence that many magmas are vapor saturated as deep as the mid crust (10-15 km) and that CO2 is an appreciable part of the exsolved vapor. Such is the case in both basaltic and some silicic magmas. Under most conditions, the presence of a CO2-bearing vapor does not hinder, and in fact may promote, the ascent and eruption of the host magma. Carbonic fluids are poorly miscible with aqueous fluids, particularly at high temperature and low pressure, so that the presence of CO2 can induce immiscibility both within the magmatic volatile phase and in hydrothermal systems

  8. Making mushy magma chambers in the lower continental crust: Cold storage and compositional bimodality

    Science.gov (United States)

    Jackson, Matthew; Blundy, Jon; Sparks, Steve

    2017-04-01

    the local melt fraction is too low to form a mobile magma. The model results are consistent with geochemical data suggesting that lower crustal magma reservoirs supply silicic and mafic melts to arc volcanoes, but intermediate magmas are formed by mixing in shallower reservoirs. We suggest here that lower crustal magma chambers primarily form in response to changes in bulk composition caused by melt migration and chemical reaction in a mush reservoir. This process is different to the conventional and widely applied models of magma chamber formation. Similar processes are likely to operate in shallow mush reservoirs, but will likely be further complicated by the presence of volatile phases, and mixing of different melt compositions sourced from deeper mush reservoirs.

  9. Eruption Depths, Magma Storage and Magma Degassing at Sumisu Caldera, Izu-Bonin Arc: Evidence from Glasses and Melt Inclusions

    Science.gov (United States)

    Johnson, E. R.

    2015-12-01

    Island arc volcanoes can become submarine during cataclysmal caldera collapse. The passage of a volcanic vent from atmospheric to under water environment involves complex modifications of the eruption style and subsequent transport of the pyroclasts. Here, we use FTIR measurements of the volatile contents of glass and melt inclusions in the juvenile pumice clasts in the Sumisu basin and its surroundings (Izu-Bonin arc) to investigate changes in eruption depths, magma storage and degassing over time. This study is based on legacy cores from ODP 126, where numerous unconsolidated (250 m), massive to normally graded pumice lapilli-tuffs were recovered over four cores (788C, 790A, 790B and 791A). Glass and clast geochemistry indicate the submarine Sumisu caldera as the source of several of these pumice lapilli-tuffs. Glass chips and melt inclusions from these samples were analyzed using FTIR for H2O and CO2 contents. Glass chips record variable H2O contents; most chips contain 0.6-1.6 wt% H2O, corresponding to eruption depths of 320-2100 mbsl. Variations in glass H2O and pressure estimates suggest that edifice collapse occurred prior-to or during eruption of the oldest of these samples, and that the edifice may have subsequently grown over time. Sanidine-hosted melt inclusions from two units record variably degassed but H2O-rich melts (1.1-5.6 wt% H2O). The lowest H2O contents overlap with glass chips, consistent with degassing and crystallization of melts until eruption, and the highest H2O contents suggest that large amounts of degassing accompanied likely explosive eruptions. Most inclusions, from both units, contain 2-4 wt% H2O, which further indicates that the magmas crystallized at pressures of ~50-100 MPa, or depths ~400-2800 m below the seafloor. Further glass and melt inclusion analyses, including major element compositions, will elucidate changes in magma storage, degassing and evolution over time.

  10. Probing the molecular forces involved in binding of selected volatile flavour compounds to salt-extracted pea proteins.

    Science.gov (United States)

    Wang, Kun; Arntfield, Susan D

    2016-11-15

    Molecular interactions between heterologous classes of flavour compounds with salt-extracted pea protein isolates (PPIs) were determined using various bond disrupting agents followed by GC/MS analysis. Flavour bound by proteins decreased in the order: dibutyl disulfide>octanal>hexyl acetate>2-octanone=benzaldehyde. Benzaldehyde, 2-octanone and hexyl acetate interacted non-covalently with PPIs, whereas octanal bound PPIs via covalent and non-covalent forces. Dibutyl disulfide reacted with PPIs covalently, as its retention was not diminished by urea and guanidine hydrochloride. Using propylene glycol, H-bonding and ionic interactions were implicated for hexyl acetate, benzaldehyde, and 2-octanone. A protein-destabilising salt (Cl3CCOONa) reduced bindings for 2-octanone, hexyl acetate, and benzaldehyde; however, retention for octanal and dibutyl disulfide increased. Conversely, a protein-stabilising salt (Na2SO4) enhanced retention for benzaldehyde, 2-octanone, hexyl acetate and octanal. Formation of a volatile flavour by-product, 1-butanethiol, from dibutyl disulfide when PPIs were treated with dithiothreitol indicated occurrence of sulfhydryl-disulfide interchange reactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Petrology of the 1995/2000 Magma of Copahue, Argentina

    Science.gov (United States)

    Goss, A.; Varekamp, J. C.

    2001-05-01

    Phreatomagmatic eruptions of Copahue in July/August,1995 and July/August 2000 produced mixed juvenile clasts, silica-rich debris from the hydrothermal system, and magmatic scoria with 88 percent SiO2. These high-SiO2 clasts carry an as yet unidentified (crystobalite?), euhedral silica phase in great abundance, which is riddled with tan, primary melt inclusions. The mixed clasts have bands of mafic material with small euhedral olivine, clinopyroxene, and plagioclase that are mixed with an intermediate magma with coarser, resorbed phenocrysts of olivine, plagioclase, clino- and ortho- pyroxene, and rare occurrences of the silica phase. These ejecta are intimate mixtures of a relatively felsic magma similar to Pleistocene Copahue lavas and a mafic basaltic andesite, with minor contributions of a magma contaminated with silica-rich hydrothermal wallrock material. Two-pyroxene geothermometry indicates crystallization temperatures of 1020 deg - 1045 deg C. Glass inclusions (59-63 percent SiO2) in plagioclase and olivine crystals yield very low volatile contents in the melt (0.4-1.5 percent H2O). The 1995/2000 magmas resided at shallow level and degassed into the active volcano-hydrothermal system which discharges acid fluids into the Copahue crater lake and hot springs. More mafic magma intruded this shallow batch and the mixture rose into the hydrothermal system and assimilated siliceous wall rock. A Ti-diffusion profile in a magnetite crystal suggests that the period between magma mixing and eruption was on the order of 4-10 weeks, and the temperature difference between resident and intruding magma was about 50-60 oC.

  12. Magma reservoirs and neutral buoyancy zones on Venus - Implications for the formation and evolution of volcanic landforms

    Science.gov (United States)

    Head, James W.; Wilson, Lionel

    1992-01-01

    The production of magma reservoirs and neutral buoyancy zones (NBZs) on Venus and the implications of their development for the formation and evolution of volcanic landforms are examined. The high atmospheric pressure on Venus reduces volatile exsolution and generally serves to inhibit the formation of NBZs and shallow magma reservoirs. For a range of common terrestrial magma-volatile contents, magma ascending and erupting near or below mean planetary radius (MPR) should not stall at shallow magma reservoirs; such eruptions are characterized by relatively high total volumes and effusion rates. For the same range of volatile contents at 2 km above MPR, about half of the cases result in the direct ascent of magma to the surface and half in the production of neutral buoyancy zones. NBZs and shallow magma reservoirs begin to appear as gas content increases and are nominally shallower on Venus than on earth. For a fixed volatile content, NBZs become deeper with increasing elevation: over the range of elevations treated in this study (-1 km to +4.4 km) depths differ by a factor of 2-4. Factors that may account for the low height of volcanoes on Venus are discussed.

  13. Reconciling Gases With Glasses: Magma Degassing, Overturn and Mixing at Kilauea Volcano, Hawai`i

    Science.gov (United States)

    Edmonds, M.; Gerlach, T. M.

    2006-12-01

    Our understanding of the volatile budget at Kilauea Volcano is based on measurements of the abundance of volatile elements in volcanic glasses and gases. Observations of volcanic gases gave rise to a fundamental model describing volatile fractionation between the summit and rift zone during the current eruption [Gerlach and Graeber, 1985]. Other workers' analysis of glasses from the Puna Ridge, Kilauea Iki and Pu`u `O`o indicate that magma degassing, drain-back, mixing and assimilation are important processes at Kilauea Volcano. Volcanic gases have not illustrated these kinds of processes clearly in the past, owing to infrequent and poorly resolved data. New, detailed studies of volcanic gas emissions have refined our understanding of volatile degassing and magma budgets at Kilauea Volcano. Open Path Fourier Transform Infra-Red spectroscopy measurements carried out during 2004-2005 allow retrieval of the relative abundances of the major volatile species H2O, CO2 and SO2, which together make up >99 vol% of the magmatic vapor phase. The proportions of these gases vary over time and space and can be used to infer magma transport, ascent, degassing, overturn and mixing and gas segregation processes within the plumbing system of Kilauea Volcano. Gases from Pu`u `O`o in 2004-2005 display a range in composition. A trend relates molar C/S to the total H2O content of the gases over time and space; total H2O ranges from 60-98 mol %, while molar C/S ranges from 50. The range in volcanic gas composition over time and space is caused by magma degassing, overturn and mixing of partially degassed magma with fresh primary magma beneath Pu`u `O`o. Measurements of the mean rate of magma degassing (from SO2 emissions) and mean lava effusion rate (from geophysical measurements of lava tube flux) suggest that a larger volume (DRE) of magma is degassing than is being erupted, on average. This analysis suggests that magma storage in the Rift Zone might be important during eruptions as

  14. Superheat in magma oceans

    Science.gov (United States)

    Jakes, Petr

    1992-01-01

    The existence of 'totally molten' planets implies the existence of a superheat (excess of heat) in the magma reservoirs since the heat buffer (i.e., presence of crystals having high latent heat of fusion) does not exist in a large, completely molten reservoir. Any addition of impacting material results in increase of the temperature of the melt and under favorable circumstances heat is stored. The behavior of superheat melts is little understood; therefore, we experimentally examined properties and behavior of excess heat melts at atmospheric pressures and inert gas atmosphere. Highly siliceous melts (70 percent SiO2) were chosen for the experiments because of the possibility of quenching such melts into glasses, the slow rate of reaction in highly siliceous composition, and the fact that such melts are present in terrestrial impact craters and impact-generated glasses. Results from the investigation are presented.

  15. Tube pumices as strain markers of the ductile-brittle transition during magma fragmentation

    Science.gov (United States)

    Martí, J.; Soriano, C.; Dingwell, D. B.

    1999-12-01

    Magma fragmentation-the process by which relatively slow-moving magma transforms into a violent gas flow carrying fragments of magma-is the defining feature of explosive volcanism. Yet of all the processes involved in explosively erupting systems, fragmentation is possibly the least understood. Several theoretical and laboratory studies on magma degassing and fragmentation have produced a general picture of the sequence of events leading to the fragmentation of silicic magma. But there remains a debate over whether magma fragmentation is a consequence of the textural evolution of magma to a foamed state where disintegration of walls separating bubbles becomes inevitable due to a foam-collapse criterion, or whether magma is fragmented purely by stresses that exceed its tensile strength. Here we show that tube pumice-where extreme bubble elongation is observed-is a well-preserved magmatic `strain marker' of the stress state immediately before and during fragmentation. Structural elements in the pumice record the evolution of the magma's mechanical response from viscous behaviour (foaming and foam elongation) through the plastic or viscoelastic stage, and finally to brittle behaviour. These observations directly support the hypothesis that fragmentation occurs when magma undergoes a ductile-brittle transition and stresses exceed the magma's tensile strength.

  16. Implications of magma transfer between multiple reservoirs on eruption cycling.

    Science.gov (United States)

    Elsworth, Derek; Mattioli, Glen; Taron, Joshua; Voight, Barry; Herd, Richard

    2008-10-10

    Volcanic eruptions are episodic despite being supplied by melt at a nearly constant rate. We used histories of magma efflux and surface deformation to geodetically image magma transfer within the deep crustal plumbing of the Soufrière Hills volcano on Montserrat, West Indies. For three cycles of effusion followed by discrete pauses, supply of the system from the deep crust and mantle was continuous. During periods of reinitiated high surface efflux, magma rose quickly and synchronously from a deflating mid-crustal reservoir (at about 12 kilometers) augmented from depth. During repose, the lower reservoir refilled from the deep supply, with only minor discharge transiting the upper chamber to surface. These observations are consistent with a model involving the continuous supply of magma from the deep crust and mantle into a voluminous and compliant mid-crustal reservoir, episodically valved below a shallow reservoir (at about 6 kilometers).

  17. Halogen degassing during ascent and eruption of water-poor basaltic magma

    Science.gov (United States)

    Edmonds, M.; Gerlach, T.M.; Herd, Richard A.

    2009-01-01

    A study of volcanic gas composition and matrix glass volatile concentrations has allowed a model for halogen degassing to be formulated for K??lauea Volcano, Hawai'i. Volcanic gases emitted during 2004-2005 were characterised by a molar SO2/HCl of 10-64, with a mean of 33; and a molar HF/HCl of 0-5, with a mean of 1.0 (from approximately 2500 measurements). The HF/HCl ratio was more variable than the SO2/HCl ratio, and the two correlate weakly. Variations in ratio took place over rapid timescales (seconds). Matrix glasses of Pele's tears erupted in 2006 have a mean S, Cl and F content of 67, 85 and 173??ppm respectively, but are associated with a large range in S/F. A model is developed that describes the open system degassing of halogens from parental magmas, using the glass data from this study, previously published results and parameterisation of sulphur degassing from previous work. The results illustrate that halogen degassing takes place at pressures of < 1??MPa, equivalent to < ~ 35??m in the conduit. Fluid-melt partition coefficients for Cl and F are low (< 1.5); F only degasses appreciably at < 0.1??MPa above atmospheric pressure, virtually at the top of the magma column. This model reproduces the volcanic gas data and other observations of volcanic activity well and is consistent with other studies of halogen degassing from basaltic magmas. The model suggests that variation in volcanic gas halogen ratios is caused by exsolution and gas-melt separation at low pressures in the conduit. There is no evidence that either diffusive fractionation or near-vent chemical reactions involving halogens is important in the system, although these processes cannot be ruled out. The fluxes of HCl and HF from K??lauea during 2004-5 were ~ 25 and 12??t/d respectively. ?? 2008 Elsevier B.V.

  18. Magma emplacement in 3D

    Science.gov (United States)

    Gorczyk, W.; Vogt, K.

    2017-12-01

    Magma intrusion is a major material transfer process in Earth's continental crust. Yet, the mechanical behavior of the intruding magma and its host are a matter of debate. In this study, we present a series of numerical thermo-mechanical experiments on mafic magma emplacement in 3D.In our model, we place the magmatic source region (40 km diameter) at the base of the mantle lithosphere and connect it to the crust by a 3 km wide channel, which may have evolved at early stages of magmatism during rapid ascent of hot magmatic fluids/melts. Our results demonstrate continental crustal response due to magma intrusion. We observe change in intrusion geometries between dikes, cone-sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions as well as injection time. The rheology and temperature of the host-rock are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favours host rock displacement and magma pools along the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle-crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle-crust. Low-density source magma results in T-shaped intrusions in cross-section with magma sheets at the surface.

  19. Noble gas solubility in silicate melts:a review of experimentation and theory, and implications regarding magma degassing processes

    Directory of Open Access Journals (Sweden)

    A. Paonita

    2005-06-01

    Full Text Available Noble gas solubility in silicate melts and glasses has gained a crucial role in Earth Sciences investigations and in the studies of non-crystalline materials on a micro to a macro-scale. Due to their special geochemical features, noble gases are in fact ideal tracers of magma degassing. Their inert nature also allows them to be used to probe the structure of silicate melts. Owing to the development of modern high pressure and temperature technologies, a large number of experimental investigations have been performed on this subject in recent times. This paper reviews the related literature, and tries to define our present state of knowledge, the problems encountered in the experimental procedures and the theoretical questions which remain unresolved. Throughout the manuscript I will also try to show how the thermodynamic and structural interpretations of the growing experimental dataset are greatly improving our understanding of the dissolution mechanisms, although there are still several points under discussion. Our improved capability of predicting noble gas solubilities in conditions closer to those found in magma has allowed scientists to develop quantitative models of magma degassing, which provide constraints on a number of questions of geological impact. Despite these recent improvements, noble gas solubility in more complex systems involving the main volatiles in magmas, is poorly known and a lot of work must be done. Expertise from other fields would be extremely valuable to upcoming research, thus focus should be placed on the structural aspects and the practical and commercial interests of the study of noble gas solubility.

  20. Re-appraisal of the Magma-rich versus Magma-poor Paradigm at Rifted Margins: consequences for breakup processes

    Science.gov (United States)

    Tugend, J.; Gillard, M.; Manatschal, G.; Nirrengarten, M.; Harkin, C. J.; Epin, M. E.; Sauter, D.; Autin, J.; Kusznir, N. J.; McDermott, K.

    2017-12-01

    Rifted margins are often classified based on their magmatic budget only. Magma-rich margins are commonly considered to have excess decompression melting at lithospheric breakup compared with steady state seafloor spreading while magma-poor margins have suppressed melting. New observations derived from high quality geophysical data sets and drill-hole data have revealed the diversity of rifted margin architecture and variable distribution of magmatism. Recent studies suggest, however, that rifted margins have more complex and polyphase tectono-magmatic evolutions than previously assumed and cannot be characterized based on the observed volume of magma alone. We compare the magmatic budget related to lithospheric breakup along two high-resolution long-offset deep reflection seismic profiles across the SE-Indian (magma-poor) and Uruguayan (magma-rich) rifted margins. Resolving the volume of magmatic additions is difficult. Interpretations are non-unique and several of them appear plausible for each case involving variable magmatic volumes and mechanisms to achieve lithospheric breakup. A supposedly 'magma-poor' rifted margin (SE-India) may show a 'magma-rich' lithospheric breakup whereas a 'magma-rich' rifted margin (Uruguay) does not necessarily show excess magmatism at lithospheric breakup compared with steady-state seafloor spreading. This questions the paradigm that rifted margins can be subdivided in either magma-poor or magma-rich margins. The Uruguayan and other magma-rich rifted margins appear characterized by an early onset of decompression melting relative to crustal breakup. For the converse, where the onset of decompression melting is late compared with the timing of crustal breakup, mantle exhumation can occur (e.g. SE-India). Our work highlights the difficulty in determining a magmatic budget at rifted margins based on seismic reflection data alone, showing the limitations of margin classification based solely on magmatic volumes. The timing of

  1. Magmas near the critical degassing pressure drive volcanic unrest towards a critical state

    Science.gov (United States)

    Chiodini, Giovanni; Paonita, Antonio; Aiuppa, Alessandro; Costa, Antonio; Caliro, Stefano; De Martino, Prospero; Acocella, Valerio; Vandemeulebrouck, Jean

    2016-01-01

    During the reawaking of a volcano, magmas migrating through the shallow crust have to pass through hydrothermal fluids and rocks. The resulting magma–hydrothermal interactions are still poorly understood, which impairs the ability to interpret volcano monitoring signals and perform hazard assessments. Here we use the results of physical and volatile saturation models to demonstrate that magmatic volatiles released by decompressing magmas at a critical degassing pressure (CDP) can drive volcanic unrest towards a critical state. We show that, at the CDP, the abrupt and voluminous release of H2O-rich magmatic gases can heat hydrothermal fluids and rocks, triggering an accelerating deformation that can ultimately culminate in rock failure and eruption. We propose that magma could be approaching the CDP at Campi Flegrei, a volcano in the metropolitan area of Naples, one of the most densely inhabited areas in the world, and where accelerating deformation and heating are currently being observed. PMID:27996976

  2. Volatility Discovery

    DEFF Research Database (Denmark)

    Dias, Gustavo Fruet; Scherrer, Cristina; Papailias, Fotis

    The price discovery literature investigates how homogenous securities traded on different markets incorporate information into prices. We take this literature one step further and investigate how these markets contribute to stochastic volatility (volatility discovery). We formally show...... that the realized measures from homogenous securities share a fractional stochastic trend, which is a combination of the price and volatility discovery measures. Furthermore, we show that volatility discovery is associated with the way that market participants process information arrival (market sensitivity......). Finally, we compute volatility discovery for 30 actively traded stocks in the U.S. and report that Nyse and Arca dominate Nasdaq....

  3. A magma ocean and the Earth's internal water budget

    Science.gov (United States)

    Ahrens, Thomas J.

    1992-01-01

    There are lines of evidence which relate bounds on the primordial water content of the Earth's mantle to a magma ocean and the accompanying Earth accretion process. We assume initially (before a magma ocean could form) that as the Earth accreted, it grew from volatile- (H2O, CO2, NH3, CH4, SO2, plus noble) gas-rich planetesimals, which accreted to form an initial 'primitive accretion core' (PAC). The PAC retained the initial complement of planetesimal gaseous components. Shock wave experiments in which both solid, and more recently, the gaseous components of materials such as serpentine and the Murchison meteorite have demonstrated that planetesimal infall velocities of less than 0.5 km/sec, induce shock pressures of less than 0.5 GPa and result in virtually complete retention of planetary gases.

  4. Magma flow instability and cyclic activity at soufriere hills volcano, montserrat, british west indies

    Science.gov (United States)

    Voight; Sparks; Miller; Stewart; Hoblitt; Clarke; Ewart; Aspinall; Baptie; Calder; Cole; Druitt; Hartford; Herd; Jackson; Lejeune; Lockhart; Loughlin; Luckett; Lynch; Norton; Robertson; Watson; Watts; Young

    1999-02-19

    Dome growth at the Soufriere Hills volcano (1996 to 1998) was frequently accompanied by repetitive cycles of earthquakes, ground deformation, degassing, and explosive eruptions. The cycles reflected unsteady conduit flow of volatile-charged magma resulting from gas exsolution, rheological stiffening, and pressurization. The cycles, over hours to days, initiated when degassed stiff magma retarded flow in the upper conduit. Conduit pressure built with gas exsolution, causing shallow seismicity and edifice inflation. Magma and gas were then expelled and the edifice deflated. The repeat time-scale is controlled by magma ascent rates, degassing, and microlite crystallization kinetics. Cyclic behavior allows short-term forecasting of timing, and of eruption style related to explosivity potential.

  5. The decompression of basaltic magma into a sub-surface repository

    NARCIS (Netherlands)

    Bokhove, Onno; Woods, A.W.

    2002-01-01

    We examine the ascent of volatile-rich basaltic magma through a vertical dike that intersects a horizontal tunnel of comparable cross-sectional area to the dike and located 300 $m$ below the surface and initially filled with air at atmospheric pressure. This process is a simplified representation of

  6. The Magma Chamber Simulator: Modeling the Impact of Wall Rock Composition on Mafic Magmas during Assimilation-Fractional Crystallization

    Science.gov (United States)

    Creamer, J. B.; Spera, F. J.; Bohrson, W. A.; Ghiorso, M. S.

    2012-12-01

    Although stoichiometric titration is often used to model the process of concurrent Assimilation and Fractional Crystallization (AFC) within a compositionally evolving magma body, a more complete treatment of the problem involves simultaneous and self-consistent determination of stable phase relationships and separately evolving temperatures of both Magma (M) and Wall Rock (WR) that interact as a composite M-WR system. Here we present results of M-WR systems undergoing AFC forward modeled with the Magma Chamber Simulator (MCS), which uses the phase modeling capabilities of MELTS (Ghiorso & Sack 1995) as the thermodynamic basis. Simulations begin with one of a variety of mafic magmas (e.g. HAB, MORB, AOB) intruding a set mass of Wall Rock (e.g. lherzolite, gabbro, diorite, granite, metapelite), and heat is exchanged as the M-WR system proceeds towards thermal equilibrium. Depending on initial conditions, the early part of the evolution can involve closed system FC while the WR heats up. The WR behaves as a closed system until it is heated beyond the solidus to critical limit for melt fraction extraction (fc), ranging between 0.08 and 0.12 depending on WR characteristics including composition and, rheology and stress field. Once fc is exceeded, a portion of the anatectic liquid is assimilated into the Magma. The MCS simultaneously calculates mass and composition of the mineral assemblage (Magma cumulates and WR residue) and melt (anatectic and Magma) at each T along the equilibration trajectory. Sensible and latent heat lost or gained plus mass gained by the Magma are accounted for by the MCS via governing Energy Constrained- Recharge Assimilation Fractional Crystallization (EC-RAFC) equations. In a comparison of two representative MCS results, consider a granitic WR intruded by HAB melt (51 wt. % SiO2) at liquidus T in shallow crust (0.1 GPa) with a WR/M ratio of 1.25, fc of 0.1 and a QFM oxygen buffer. In the first example, the WR begins at a temperature of 100o

  7. Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust.

    Science.gov (United States)

    Parmigiani, A; Faroughi, S; Huber, C; Bachmann, O; Su, Y

    2016-04-28

    Volcanic eruptions transfer huge amounts of gas to the atmosphere. In particular, the sulfur released during large silicic explosive eruptions can induce global cooling. A fundamental goal in volcanology, therefore, is to assess the potential for eruption of the large volumes of crystal-poor, silicic magma that are stored at shallow depths in the crust, and to obtain theoretical bounds for the amount of volatiles that can be released during these eruptions. It is puzzling that highly evolved, crystal-poor silicic magmas are more likely to generate volcanic rocks than plutonic rocks. This observation suggests that such magmas are more prone to erupting than are their crystal-rich counterparts. Moreover, well studied examples of largely crystal-poor eruptions (for example, Katmai, Taupo and Minoan) often exhibit a release of sulfur that is 10 to 20 times higher than the amount of sulfur estimated to be stored in the melt. Here we argue that these two observations rest on how the magmatic volatile phase (MVP) behaves as it rises buoyantly in zoned magma reservoirs. By investigating the fluid dynamics that controls the transport of the MVP in crystal-rich and crystal-poor magmas, we show how the interplay between capillary stresses and the viscosity contrast between the MVP and the host melt results in a counterintuitive dynamics, whereby the MVP tends to migrate efficiently in crystal-rich parts of a magma reservoir and accumulate in crystal-poor regions. The accumulation of low-density bubbles of MVP in crystal-poor magmas has implications for the eruptive potential of such magmas, and is the likely source of the excess sulfur released during explosive eruptions.

  8. Virtual volatility

    Science.gov (United States)

    Silva, A. Christian; Prange, Richard E.

    2007-03-01

    We introduce the concept of virtual volatility. This simple but new measure shows how to quantify the uncertainty in the forecast of the drift component of a random walk. The virtual volatility also is a useful tool in understanding the stochastic process for a given portfolio. In particular, and as an example, we were able to identify mean reversion effect in our portfolio. Finally, we briefly discuss the potential practical effect of the virtual volatility on an investor asset allocation strategy.

  9. Iodine volatility

    International Nuclear Information System (INIS)

    Beahm, E.C.; Shockley, W.E.

    1984-01-01

    The ultimate aim of this program is to couple experimental aqueous iodine volatilities to a fission product release model. Iodine partition coefficients, for inorganic iodine, have been measured during hydrolysis and radiolysis. The hydrolysis experiments have illustrated the importance of reaction time on iodine volatility. However, radiolysis effects can override hydrolysis in determining iodine volatility. In addition, silver metal in radiolysis samples can react to form silver iodide accompanied by a decrease in iodine volatility. Experimental data are now being coupled to an iodine transport and release model that was developed in the Federal Republic of Germany

  10. Weak solutions of magma equations

    International Nuclear Information System (INIS)

    Krishnan, E.V.

    1999-01-01

    Periodic solutions in terms of Jacobian cosine elliptic functions have been obtained for a set of values of two physical parameters for the magma equation which do not reduce to solitary-wave solutions. It was also obtained solitary-wave solutions for another set of these parameters as an infinite period limit of periodic solutions in terms of Weierstrass and Jacobian elliptic functions

  11. Magma flow through elastic-walled dikes

    NARCIS (Netherlands)

    Bokhove, Onno; Woods, A.W.; de Boer, A

    2005-01-01

    A convection–diffusion model for the averaged flow of a viscous, incompressible magma through an elastic medium is considered. The magma flows through a dike from a magma reservoir to the Earth’s surface; only changes in dike width and velocity over large vertical length scales relative to the

  12. Molecular cloning and expression of Chimonanthus praecox farnesyl pyrophosphate synthase gene and its possible involvement in the biosynthesis of floral volatile sesquiterpenoids.

    Science.gov (United States)

    Xiang, Lin; Zhao, Kaige; Chen, Longqing

    2010-01-01

    Farnesyl pyrophosphate (FPP) synthase catalyzes the biosynthesis of FPP, which is the precursors of sesquiterpenoids such as floral scent volatiles, from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). cDNA encoding wintersweet (Chimonanthus praecox L.) FPP synthase was isolated by the RT-PCR and RACE methods. The deduced amino acid sequence showed a high identity to plant FPP synthases. Expression of the gene in Escherichia coli yielded FPPS activity that catalyzed the synthesis of FPP as a main product. Tissue-specific and developmental analyses of the mRNA levels of CpFPPS and volatile sesquiterpenoids levels in C. praecox flowers revealed that the FPPS may play a regulatory role in floral volatile sesquiterpenoids of wintersweet. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  13. Dynamics of differentiation in magma reservoirs

    Science.gov (United States)

    Jaupart, Claude; Tait, Stephen

    1995-09-01

    In large magma chambers, gradients of temperature and composition develop due to cooling and to fractional crystallization. Unstable density differences lead to differential motions between melt and crystals, and a major goal is to explain how this might result in chemical differentiation of magma. Arriving at a full description of the physics of crystallizing magma chambers is a challenge because of the large number of processes potentially involved, the many coupled variables, and the different geometrical shapes. Furthermore, perturbations are caused by the reinjection of melt from a deep source, eruption to the Earth's surface, and the assimilation of country rock. Physical models of increasing complexity have been developed with emphasis on three fundamental approaches. One is, given that large gradients in temperature and composition may occur, to specify how to apply thermodynamic constraints so that coexisting liquid and solid compositions may be calculated. The second is to leave the differentiation trend as the solution to be found, i.e., to specify how cooling occurs and to predict the evolution of the composition of the residual liquid and of the solid forming. The third is to simplify the physics so that the effects of coupled heat and mass transfer may be studied with a reduced set of variables. The complex shapes of magma chambers imply that boundary layers develop with density gradients at various angles to gravity, leading to various convective flows and profiles qf liquid stratification. Early studies were mainly concerned with describing fluid flow in the liquid interior of large reservoirs, due to gradients developed at the margins. More recent work has focused on the internal structure and flow field of boundary layers and in particular on the gradients of solid fraction and interstitial melt composition which develop within them. Crystal settling may occur in a surprisingly diverse range of regimes and may lead to intermittent deposition

  14. Caldera resurgence driven by magma viscosity contrasts.

    Science.gov (United States)

    Galetto, Federico; Acocella, Valerio; Caricchi, Luca

    2017-11-24

    Calderas are impressive volcanic depressions commonly produced by major eruptions. Equally impressive is the uplift of the caldera floor that may follow, dubbed caldera resurgence, resulting from magma accumulation and accompanied by minor eruptions. Why magma accumulates, driving resurgence instead of feeding large eruptions, is one of the least understood processes in volcanology. Here we use thermal and experimental models to define the conditions promoting resurgence. Thermal modelling suggests that a magma reservoir develops a growing transition zone with relatively low viscosity contrast with respect to any newly injected magma. Experiments show that this viscosity contrast provides a rheological barrier, impeding the propagation through dikes of the new injected magma, which stagnates and promotes resurgence. In explaining resurgence and its related features, we provide the theoretical background to account for the transition from magma eruption to accumulation, which is essential not only to develop resurgence, but also large magma reservoirs.

  15. The Effect of Thermal Cycling on Crystal-Liquid Separation During Lunar Magma Ocean Differentiation

    Science.gov (United States)

    Mills, Ryan D.

    2013-01-01

    Differentiation of magma oceans likely involves a mixture of fractional and equilibrium crystallization [1]. The existence of: 1) large volumes of anorthosite in the lunar highlands and 2) the incompatible- rich (KREEP) reservoir suggests that fractional crystallization may have dominated during differentiation of the Moon. For this to have occurred, crystal fractionation must have been remarkably efficient. Several authors [e.g. 2, 3] have hypothesized that equilibrium crystallization would have dominated early in differentiation of magma oceans because of crystal entrainment during turbulent convection. However, recent numerical modeling [4] suggests that crystal settling could have occurred throughout the entire solidification history of the lunar magma ocean if crystals were large and crystal fraction was low. These results indicate that the crystal size distribution could have played an important role in differentiation of the lunar magma ocean. Here, I suggest that thermal cycling from tidal heating during lunar magma ocean crystallization caused crystals to coarsen, leading to efficient crystal-liquid separation.

  16. Unstable volatility

    DEFF Research Database (Denmark)

    Casas, Isabel; Gijbels, Irène

    2012-01-01

    The objective of this paper is to introduce the break-preserving local linear (BPLL) estimator for the estimation of unstable volatility functions for independent and asymptotically independent processes. Breaks in the structure of the conditional mean and/or the volatility functions are common...... in Finance. Nonparametric estimators are well suited for these events due to the flexibility of their functional form and their good asymptotic properties. However, the local polynomial kernel estimators are not consistent at points where the volatility function has a break. The estimator presented...

  17. Partially molten magma ocean model

    International Nuclear Information System (INIS)

    Shirley, D.N.

    1983-01-01

    The properties of the lunar crust and upper mantle can be explained if the outer 300-400 km of the moon was initially only partially molten rather than fully molten. The top of the partially molten region contained about 20% melt and decreased to 0% at 300-400 km depth. Nuclei of anorthositic crust formed over localized bodies of magma segregated from the partial melt, then grew peripherally until they coverd the moon. Throughout most of its growth period the anorthosite crust floated on a layer of magma a few km thick. The thickness of this layer is regulated by the opposing forces of loss of material by fractional crystallization and addition of magma from the partial melt below. Concentrations of Sr, Eu, and Sm in pristine ferroan anorthosites are found to be consistent with this model, as are trends for the ferroan anorthosites and Mg-rich suites on a diagram of An in plagioclase vs. mg in mafics. Clustering of Eu, Sr, and mg values found among pristine ferroan anorthosites are predicted by this model

  18. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions.

    Science.gov (United States)

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N; Stern, Richard A; D'Abzac, Francois-Xavier; Schaltegger, Urs

    2015-09-10

    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 10(3) to 10(4) years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption.

  19. Oxygen isotope study of the Long Valley magma system, California: isotope thermometry and convection in large silicic magma bodies

    Science.gov (United States)

    Bindeman, Ilya; Valley, John

    2002-07-01

    of their longevity (>105 years) and convection. However, remaining isotopic zoning in some quartz phenocrysts, trace element gradients in feldspars, and quartz and zircon crystal size distributions are more consistent with far shorter timescales (102-104 years). We propose a sidewall-crystallization model that promotes convective homogenization, roofward accumulation of more evolved and stagnant, volatile-rich liquid, and develops compositional and temperature gradients in pre-climactic magma chamber. Crystal + melt + gas bubbles mush near chamber walls of variable δ18O gets periodically remobilized in response to chamber refill by new hotter magmas. One such episode of chamber refill by high-Ti, Sr, Ba, Zr, and volatile-richer magma happened 103-104 years prior to the 0.76-Ma caldera collapse that caused magma mixing at the base, mush thawing near the roof and walls, and downward settling of phenocrysts into this hybrid melt.

  20. Chasing volatility

    DEFF Research Database (Denmark)

    Caporin, Massimiliano; Rossi, Eduardo; Santucci de Magistris, Paolo

    The realized volatility of financial returns is characterized by persistence and occurrence of unpreditable large increments. To capture those features, we introduce the Multiplicative Error Model with jumps (MEM-J). When a jump component is included in the multiplicative specification, the condi......The realized volatility of financial returns is characterized by persistence and occurrence of unpreditable large increments. To capture those features, we introduce the Multiplicative Error Model with jumps (MEM-J). When a jump component is included in the multiplicative specification...... estimate alternative specifications of the model using a set of daily bipower measures for 7 stock indexes and 16 individual NYSE stocks. The estimates of the jump component confirm that the probability of jumps dramatically increases during the financial crisis. Compared to other realized volatility...... models, the introduction of the jump component provides a sensible improvement in the fit, as well as for in-sample and out-of-sample volatility tail forecasts....

  1. Slab melting and magma formation beneath the southern Cascade arc

    Science.gov (United States)

    Walowski, Kristina J.; Wallace, Paul J.; Clynne, Michael A.; Rasmussen, D.J.; Weis, D.

    2016-01-01

    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO>7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the

  2. Mantle to surface degassing of carbon- and sulphur-rich alkaline magma at El Hierro, Canary Islands

    Science.gov (United States)

    Longpré, Marc-Antoine; Stix, John; Klügel, Andreas; Shimizu, Nobumichi

    2017-02-01

    Basaltic volcanoes transfer volatiles from the mantle to the surface of the Earth. The quantification of deep volatile fluxes relies heavily on estimates of the volatile content of primitive magmas, the best archive of which is provided by melt inclusions. Available data from volcanoes producing mafic alkaline lavas in a range of tectonic settings suggest high volatile fluxes, but information remains sparse, particularly for intraplate ocean islands. Here we present measurements of volatile and trace element concentrations, as well as sulphur speciation, in olivine-hosted melt inclusions and matrix glasses from quenched basanite lava balloon samples from the 2011-2012 submarine eruption at El Hierro, Canary Islands. The results reveal remarkably high concentrations of dissolved volatiles and incompatible trace elements in this magma, with ∼80 ppm Nb and up to 3420 ppm CO2, 3.0 wt.% H2O and 5080 ppm S. Reconstructed primitive CO2 contents, considering CO2/Nb systematics and possible CO2 sequestration in shrinkage bubbles, reach weight percent levels, indicating that carbon is a major constituent of Canary Island magmas at depth and that exsolution of a CO2-rich fluid begins in the mantle at pressures in excess of 1 GPa. Correlations between sulphur concentration, sulphur speciation and water content suggest strong reduction of an initially oxidised mantle magma, likely controlled by coupled H2O and S degassing. This late-stage redox change may have triggered sulphide saturation, recorded by globular sulphide inclusions in clinopyroxene and ulvöspinel. The El Hierro basanite thus had a particularly high volatile-carrying capacity and released a minimum of 1.3-2.1 Tg CO2 and 1.8-2.9 Tg S to the environment, causing substantial stress on the local submarine ecosystem. These results highlight the important contribution of alkaline ocean island volcanoes, such as the Canary Islands, to volatile fluxes from the mantle.

  3. Volatility in energy prices

    International Nuclear Information System (INIS)

    Duffie, D.

    1999-01-01

    This chapter with 58 references reviews the modelling and empirical behaviour of volatility in energy prices. Constant volatility and stochastic volatility are discussed. Markovian models of stochastic volatility are described and the different classes of Markovian stochastic volatility model are examined including auto-regressive volatility, option implied and forecasted volatility, Garch volatility, Egarch volatility, multivariate Garch volatility, and stochastic volatility and dynamic hedging policies. Other volatility models and option hedging are considered. The performance of several stochastic volatility models as applied to heating oil, light oil, natural gas, electricity and light crude oil are compared

  4. Disclosing Multiple Magma Degassing Sources Offers Unique Insights of What's Behind the Campi Flegrei Caldera Unrest

    Science.gov (United States)

    Moretti, R.; Civetta, L.; Orsi, G.; Arienzo, I.; D'Antonio, M.; Di Renzo, V.

    2013-12-01

    The definition of the structure and evolution of the magmatic system of Campi Flegrei caldera (CFc), Southern Italy, has been a fundamental tool for the assessment of the short-term volcanic hazard. The ensemble of geophysical and petrologic data show that the CFc magmatic system has been -and still is- characterized by two major reservoirs at different depths. From the deep one (around 8 km), less evolved magmas crystallize and degas, supplying fluids and magmas to the shallow (3-4 km) reservoirs. A thorough reconstruction of processes occurring in magma chamber/s prior and/or during the CFc eruptions has shown that magmas entering shallow reservoirs mixed with resident and crystallized batches. Also the 1982-85 unrest episode has been related to a magma intrusion of 2.1 x 10^7 m^3 at 3-4 km depth, on the basis of geophysical data (ground deformation, gravimetry, seismic imaging) and their interpretation. Thermodynamic evaluation of magma properties, at the time of emplacement, suggests for such an intrusion a bulk density of 2.000 kg/m^3 . Such a value testifies the high amount of exsolved volatiles within the system. The available record of geochemical and isotopic data on surface fumaroles, coupled with melt inclusion data, has already shown that dual (deep and shallow) magma degassing from such two reservoirs, as well as their interaction with the hydrothermal system, allows explaining the relevant fluctuations observed at crater fumaroles after the 1982-85 magma intrusion. An important role was played by the rapid crystallization (around 30 years) of the shallow magma, such that in the recent years gas discharges should be fuelled mostly by the deep magma. Such a process is well recorded in the fumarolic gas composition of the last ~10 years, but has to be reconciled with the unrest dynamics which took place after year 2000, characterized by a slow but continuous ground uplift. All geochemical indicators (major species and noble gases) point to three possible

  5. Magma-derived CO2 emissions in the Tengchong volcanic field, SE Tibet: Implications for deep carbon cycle at intra-continent subduction zone

    Science.gov (United States)

    Zhang, Maoliang; Guo, Zhengfu; Sano, Yuji; Zhang, Lihong; Sun, Yutao; Cheng, Zhihui; Yang, Tsanyao Frank

    2016-09-01

    Active volcanoes at oceanic subduction zone have long been regard as important pathways for deep carbon degassed from Earth's interior, whereas those at continental subduction zone remain poorly constrained. Large-scale active volcanoes, together with significant modern hydrothermal activities, are widely distributed in the Tengchong volcanic field (TVF) on convergent boundary between the Indian and Eurasian plates. They provide an important opportunity for studying deep carbon cycle at the ongoing intra-continent subduction zone. Soil microseepage survey based on accumulation chamber method reveals an average soil CO2 flux of ca. 280 g m-2 d-1 in wet season for the Rehai geothermal park (RGP). Combined with average soil CO2 flux in dry season (ca. 875 g m-2 d-1), total soil CO2 output of the RGP and adjacent region (ca. 3 km2) would be about 6.30 × 105 t a-1. Additionally, we conclude that total flux of outgassing CO2 from the TVF would range in (4.48-7.05) × 106 t a-1, if CO2 fluxes from hot springs and soil in literature are taken into account. Both hot spring and soil gases from the TVF exhibit enrichment in CO2 (>85%) and remarkable contribution from mantle components, as indicated by their elevated 3He/4He ratios (1.85-5.30 RA) and δ13C-CO2 values (-9.00‰ to -2.07‰). He-C isotope coupling model suggests involvement of recycled organic metasediments and limestones from subducted Indian continental lithosphere in formation of the enriched mantle wedge (EMW), which has been recognized as source region of the TVF parental magmas. Contamination by crustal limestone is the first-order control on variations in He-CO2 systematics of volatiles released by the EMW-derived melts. Depleted mantle and recycled crustal materials from subducted Indian continental lithosphere contribute about 45-85% of the total carbon inventory, while the rest carbon (about 15-55%) is accounted by limestones in continental crust. As indicated by origin and evolution of the TVF

  6. Interaction of coeval felsic and mafic magmas from the Kanker ...

    Indian Academy of Sciences (India)

    66

    20 crystallization of the latter, results in hybrid magmas under the influence of thermal and. 21 chemical exchange. The mechanical exchange occurs between the coexisting magmas due to. 22 viscosity contrast, if the mafic magma enters slightly later into the magma chamber, when the. 23 felsic magma started to crystallize.

  7. Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments

    Science.gov (United States)

    Ferguson, David J.; Gonnermann, Helge M.; Ruprecht, Philipp; Plank, Terry; Hauri, Erik H.; Houghton, Bruce F.; Swanson, Donald A.

    2016-10-01

    The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behavior. In this study, we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of Kīlauea volcano, Hawaii. Incomplete exsolution of H2O, CO2, and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modeled to infer the average decompression rate. We obtain average rates of ~0.05-0.45 MPa s-1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 min from depths of ~2 to ~4 km, respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied, this varies from 0.1 to 3.2 wt% but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather, they suggest that for these eruptions, decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses, it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions.

  8. Chemical consequences of compaction within the freezing front of a crystallizing magma ocean

    Science.gov (United States)

    Hier-Majumder, S.; Hirschmann, M. M.

    2013-12-01

    The thermal and compositional evolution of planetary magma oceans have profound influences on the early development and differentiation of terrestrial planets. During crystallization, rejection of elements incompatible in precipitating solids leads to petrologic and geochemical planetary differentiation, including potentially development of a compositionally stratified early mantle and evolution of thick overlying atmospheres. In cases of extremely efficient segregation of melt and crystals, solidified early mantles can be nearly devoid of key incompatible species including heat-producing (U, Th, K) and volatile (H,C,N,& noble gas) elements. A key structural component of a crystallizing magma ocean is the partially molten freezing front. The dynamics of this region influences the distribution of incompatible elements between the earliest mantle and the initial surficial reservoirs. It also can be the locus of heating owing to the dissipation of large amounts of tidal energy potentially available from the early Moon. The dynamics are influenced by the solidification rate, which is coupled to the liberation of volatiles owing to the modulating greenhouse effects in the overlying thick atmosphere. Compaction and melt retention in the freezing front of a magma ocean has received little previous attention. While the front advances during the course of crystallization, coupled conservation of mass, momentum, and energy within the front controls distribution and retention of melt within this layer. Due to compaction within this layer, melt distribution is far from uniform, and the fraction of melt trapped within this front depends on the rate of freezing of the magma ocean. During phases of rapid freezing, high amount of trapped melt within the freezing front retains a larger quantity of dissolved volatiles and the reverse is true during slow periods of crystallization. Similar effects are known from inferred trapped liquid fractions in layered mafic intrusions. Here we

  9. Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments

    Science.gov (United States)

    Ferguson, David J.; Gonnermann, Helge M.; Ruprecht, Philipp; Plank, Terry; Hauri, Erik H.; Houghton, Bruce F.; Swanson, Donald A.

    2016-01-01

    The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behavior. In this study, we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of Kīlauea volcano, Hawaii. Incomplete exsolution of H2O, CO2, and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modeled to infer the average decompression rate. We obtain average rates of ~0.05–0.45 MPa s−1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 min from depths of ~2 to ~4 km, respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied, this varies from 0.1 to 3.2 wt% but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather, they suggest that for these eruptions, decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses, it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions.

  10. Io's theothermal (sulfur) - Lithosphere cycle inferred from sulfur solubility modeling of Pele's magma supply

    Science.gov (United States)

    Battaglia, Steven M.; Stewart, Michael A.; Kieffer, Susan W.

    2014-06-01

    Surface deposits of volatile compounds such as water (Earth) or sulfur (Io) on volcanically active bodies suggest that a magmatic distillation process works to concentrate volatiles in surface reservoirs. On Earth, this is the combined hydrologic and tectonic cycle. On Io, sulfurous compounds are transferred from the interior to the surface reservoirs through a combination of a mantle-sourced magmatic system, vertical cycling of the lithosphere, and a sulfur-dominated crustal thermal system that we here call the "theothermal" system. We present a geochemical analysis of this process using previously inferred temperature and oxygen fugacity constraints of Pele's basaltic magma to determine the behavior of sulfur in the ionian magmas. Sulfate to sulfide ratios of Pele's magma are -4.084 ± 0.6 and -6.442 ± 0.7 log10 units, comparable to or lower than those of mid-ocean ridge basalts. This reflects the similarity of Io's oxidation state with Earth's depleted mantle as previously suggested by Zolotov and Fegley (Zolotov, M.Y., Fegley, B. [2000]. Geophys. Res. Lett. 27, 2789-2792). Our calculated limits of sulfur solubility in melts from Pele's patera (˜1100-1140 ppm) are also comparable to terrestrial mid-ocean ridge basalts, reflecting a compositional similarity of mantle sources. We propose that the excess sulfur obvious on Io's surface comes from two sources: (1) an insoluble sulfide liquid phase in the magma and (2) theothermal near-surface recycling.

  11. Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica

    Science.gov (United States)

    Oppenheimer, C.; Moretti, R.; Kyle, P.R.; Eschenbacher, A.; Lowenstern, J. B.; Hervig, R.L.; Dunbar, N.W.

    2011-01-01

    Continental intraplate volcanoes, such as Erebus volcano, Antarctica, are associated with extensional tectonics, mantle upwelling and high heat flow. Typically, erupted magmas are alkaline and rich in volatiles (especially CO2), inherited from low degrees of partial melting of mantle sources. We examine the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake. Remarkably different gas signatures are associated with passive and explosive gas emissions, representative of volatile contents and redox conditions that reveal contrasting shallow and deep degassing sources. We show that this unexpected degassing signature provides a unique probe for magma differentiation and transfer of CO2-rich oxidised fluids from the mantle to the surface, and evaluate how these processes operate in time and space. Extensive crystallisation driven by CO2 fluxing is responsible for isobaric fractionation of parental basanite magmas close to their source depth. Magma deeper than 4kbar equilibrates under vapour-buffered conditions. At shallower depths, CO2-rich fluids accumulate and are then released either via convection-driven, open-system gas loss or as closed-system slugs that ascend and result in Strombolian eruptions in the lava lake. The open-system gases have a reduced state (below the QFM buffer) whereas the closed-system gases preserve their deep oxidised signatures (close to the NNO buffer). ?? 2011 Elsevier B.V.

  12. Stochastic volatility of volatility in continuous time

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Veraart, Almut

    This paper introduces the concept of stochastic volatility of volatility in continuous time and, hence, extends standard stochastic volatility (SV) models to allow for an additional source of randomness associated with greater variability in the data. We discuss how stochastic volatility...... of volatility can be defined both non-parametrically, where we link it to the quadratic variation of the stochastic variance process, and parametrically, where we propose two new SV models which allow for stochastic volatility of volatility. In addition, we show that volatility of volatility can be estimated...

  13. Influence of extrusion rate and magma rheology on the growth of lava domes: Insights from particle-dynamics modeling

    Science.gov (United States)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2014-09-01

    Lava domes are structures that grow by the extrusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Repeated cycles of growth are punctuated by collapse, as the structure becomes oversized for the strength of the composite magma that rheologically stiffens and strengthens at its surface. Here we explore lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional carapace that caps a ductile magma core. Extrusion rate and magma rheology together with crystallization temperature and volatile content govern the distribution of strength in the composite structure. This new model is calibrated against existing observational models of lava dome growth. Results show that the shape and extent of the ductile core and the overall structure of the lava dome are strongly controlled by the infusion rate. The effects of extrusion rate on magma rheology are sensitive to material stiffness, which in turn is a function of volatile content and crystallinity. Material stiffness and material strength are key model parameters which govern magma rheology and subsequently the morphological character of the lava dome and in turn stability. Degassing induced crystallization causes material stiffening and enhances material strength reflected in non-Newtonian magma behavior. The increase in stiffness and strength of the injected magma causes a transition in the style of dome growth, from endogenous expansion of a ductile core, to stiffer and stronger intruding material capable of punching through the overlying material and resulting in the development of a spine or

  14. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    Science.gov (United States)

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  15. Degassing during magma ascent in the Mule Creek vent (USA)

    Science.gov (United States)

    Stasiuk, M.V.; Barclay, J.; Carroll, M.R.; Jaupart, Claude; Ratte, J.C.; Sparks, R.S.J.; Tait, S.R.

    1996-01-01

    The structures and textures of the rhyolite in the Mule Creek vent (New Mexico, USA) indicate mechanisms by which volatiles escape from silicic magma during eruption. The vent outcrop is a 300-m-high canyon wall comprising a section through the top of a feeder conduit, vent and the base of an extrusive lava dome. Field relations show that eruption began with an explosive phase and ended with lava extrusion. Analyses of glass inclusions in quartz phenocrysts from the lava indicate that the magma had a pre-eruptive dissolved water content of 2.5-3.0 wt% and, during eruption, the magma would have been water-saturated over the vertical extent of the present outcrop. However, the vesicularity of the rhyolite is substantially lower than that predicted from closed-system models of vesiculation under equilibrium conditions. At a given elevation in the vent, the volume fraction of primary vesicles in the rhyolite increases from zero close to the vent margin to values of 20-40 vol.% in the central part. In the centre the vesicularity increases upward from approximately 20 vol.% at 300 m below the canyon rim to approximately 40 vol.% at 200 m, above which it shows little increase. To account for the discrepancy between observed vesicularity and measured water content, we conclude that gas escaped during ascent, probably beginning at depths greater than exposed, by flow through the vesicular magma. Gas escape was most efficient near the vent margin, and we postulate that this is due both to the slow ascent of magma there, giving the most time for gas to escape, and to shear, favouring bubble coalescence. Such shear-related permeability in erupting magma is supported by the preserved distribution of textures and vesicularity in the rhyolite: Vesicles are flattened and overlapping near the dense margins and become progressively more isolated and less deformed toward the porous centre. Local zones have textures which suggest the coalescence of bubbles to form permeable

  16. Geochemical evidences of magma dynamics at Campi Flegrei (Italy)

    Science.gov (United States)

    Caliro, S.; Chiodini, G.; Paonita, A.

    2014-05-01

    Campi Flegrei caldera, within the Neapolitan area of Italy, is potentially one of the most dangerous volcanoes in the world, and during the last decade it has shown clear signs of reactivation, marked by the onset of uplift and changes in the geochemistry of gas emissions. We describe a 30-year-long data set of the CO2-He-Ar-N2 compositions of fumarolic emissions from La Solfatara crater, which is located in the center of the caldera. The data display continuous decreases in both the N2/He and N2/CO2 ratios since 1985, paralleled by an increase in He/CO2. These variations cannot be explained by either processes of boiling/condensation in the local hydrothermal system or with changes in the mixing proportions between a magmatic vapor and hydrothermal fluids. We applied the magma degassing model of Nuccio and Paonita (2001, Earth Planet. Sci. Lett. 193, 467-481) using the most recent inert-gas solubilities in order to interpret these peculiar features in accordance with petrologic constraints derived from the ranges of the melt compositions and reservoir pressures at Campi Flegrei. The model simulations for mafic melts (trachybasalt and shoshonite) show a remarkably good agreement with the measured data. Both decompressive degassing of an ascending magma and mixing between magmatic fluids exsolved at various levels along the ascent path can explain the long-term geochemical changes. Recalling that (i) a sill-like reservoir of gases at a depth of 3-4 km seems to be the main source of ground inflation and (ii) there is petrologic and geophysical evidence for a reservoir of magma at about 8 km below Campi Flegrei, we suggest that the most-intense episodes of inflation occur when the gas supply to the sill-like reservoir comes from the 8 km-deep magma, although fluids exsolved by magma bodies at shallower depths also contribute to the gas budget. Our work highlights that, in caldera systems where the presence of hydrothermal aquifers commonly masks the magmatic signature

  17. A nonparametric approach to forecasting realized volatility

    OpenAIRE

    Adam Clements; Ralf Becker

    2009-01-01

    A well developed literature exists in relation to modeling and forecasting asset return volatility. Much of this relate to the development of time series models of volatility. This paper proposes an alternative method for forecasting volatility that does not involve such a model. Under this approach a forecast is a weighted average of historical volatility. The greatest weight is given to periods that exhibit the most similar market conditions to the time at which the forecast is being formed...

  18. Magma Reservoirs Feeding Giant Radiating Dike Swarms: Insights from Venus

    Science.gov (United States)

    Grosfils, E. B.; Ernst, R. E.

    2003-01-01

    Evidence of lateral dike propagation from shallow magma reservoirs is quite common on the terrestrial planets, and examination of the giant radiating dike swarm population on Venus continues to provide new insight into the way these complex magmatic systems form and evolve. For example, it is becoming clear that many swarms are an amalgamation of multiple discrete phases of dike intrusion. This is not surprising in and of itself, as on Earth there is clear evidence that formation of both magma reservoirs and individual giant radiating dikes often involves periodic magma injection. Similarly, giant radiating swarms on Earth can contain temporally discrete subswarms defined on the basis of geometry, crosscutting relationships, and geochemical or paleomagnetic signatures. The Venus data are important, however, because erosion, sedimentation, plate tectonic disruption, etc. on Earth have destroyed most giant radiating dike swarm's source regions, and thus we remain uncertain about the geometry and temporal evolution of the magma sources from which the dikes are fed. Are the reservoirs which feed the dikes large or small, and what are the implications for how the dikes themselves form? Does each subswarm originate from a single, periodically reactivated reservoir, or do subswarms emerge from multiple discrete geographic foci? If the latter, are these discrete foci located at the margins of a single large magma body, or do multiple smaller reservoirs define the character of the magmatic center as a whole? Similarly, does the locus of magmatic activity change with time, or are all the foci active simultaneously? Careful study of giant radiating dike swarms on Venus is yielding the data necessary to address these questions and constrain future modeling efforts. Here, using giant radiating dike swarms from the Nemesis Tessera (V14) and Carson (V43) quadrangles as examples, we illustrate some of the dike swarm focal region diversity observed on Venus and briefly explore some

  19. Depth of origin of magma in eruptions.

    Science.gov (United States)

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-09-26

    Many volcanic hazard factors--such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses--relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11-15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011-2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide.

  20. Shear thinning behaviors in magmas

    Science.gov (United States)

    Vetere, F. P.; Cassetta, M.; Perugini, D.

    2017-12-01

    Studies on magma rheology are of fundamental importance to understanding magmatic processes from depth to surface. Since viscosity is one of the most important parameter controlling eruption mechanisms, as well as lava flow emplacement, a comprehensive knowledge on the evolution of magma viscosities during crystallization is required. We present new viscosity data on partly crystalized basalt, andesite and analogue lavas comparable to those erupted on Mercury's northern volcanic plains. High-temperature viscosity measurements were performed using a rotational Anton Paar RheolabQC viscometer head at the PVRG labs, in Perugia (Italy) (http://pvrg.unipg.it). The relative proportion of phases in each experimental run were determined by image analysis on BS-SEM images at different magnifications; phases are glasses, clinopyroxene, spinel, plagioclase for the basalt, plagioclase and spinel for the andesite and pure enstatite and clinopyroxenes, for the analogue Mercury's composition. Glass and crystalline fractions determined by image analysis well correlate with compositions of residual melts. In order to constrain the viscosity (η) variations as a function of crystallinity, shear rate (γ) was varied from 0.1 to 5 s-1. Viscosity vs. time at constant temperature shows a typical S-shape curve. In particular, for basaltic composition η vary from 3.1-3.8 Pa s [log η] at 1493 K and crystallinity of 19 area % as γ vary from 1.0 to 0.1 s-1; the andesite viscosity evolution is 3.2 and 3.7 Pa s [log η] as γ varies from 1 to 0.1 at 1493 K and crystal content of 17 area %; finally, Mercury's analogue composition was investigated at different temperature ranging from 1533 to 1502 K (Vetere et al., 2017). Results, for γ = 0.1, 1.0 and 5.0 s-1, show viscosity variation between 2.7-4.0, 2.5-3.4 and 2.0-3.0 [log η inPa s] respectively while crystallinity vary from 9 to 27 (area %). As viscosity decreases as shear rate increases, these data points to a shear thinning behaviour

  1. The timing of compositionally-zoned magma reservoirs and mafic 'priming' weeks before the 1912 Novarupta-Katmai rhyolite eruption

    Science.gov (United States)

    Singer, Brad S.; Costa, Fidel; Herrin, Jason S.; Hildreth, Wes; Fierstein, Judith

    2016-01-01

    The June 6, 1912 eruption of more than 13 km3 of dense rock equivalent (DRE) magma at Novarupta vent, Alaska was the largest of the 20th century. It ejected >7 km3 of rhyolite, ~1.3 km3 of andesite and ~4.6 km3 of dacite. Early ideas about the origin of pyroclastic flows and magmatic differentiation (e.g., compositional zonation of reservoirs) were shaped by this eruption. Despite being well studied, the timing of events that led to the chemically and mineralogically zoned magma reservoir remain poorly known. Here we provide new insights using the textures and chemical compositions of plagioclase and orthopyroxene crystals and by reevaluating previous U-Th isotope data. Compositional zoning of the magma reservoir likely developed a few thousand years before the eruption by several additions of mafic magma below an extant silicic reservoir. Melt compositions calculated from Sr contents in plagioclase fill the compositional gap between 68 and 76% SiO2 in whole pumice clasts, consistent with uninterrupted crystal growth from a continuum of liquids. Thus, our findings support a general model in which large volumes of crystal-poor rhyolite are related to intermediate magmas through gradual separation of melt from crystal-rich mush. The rhyolite is incubated by, but not mixed with, episodic recharge pulses of mafic magma that interact thermochemically with the mush and intermediate magmas. Hot, Mg-, Ca-, and Al-rich mafic magma intruded into, and mixed with, deeper parts of the reservoir (andesite and dacite) multiple times. Modeling the relaxation of the Fe-Mg concentrations in orthopyroxene and Mg in plagioclase rims indicates that the final recharge event occurred just weeks prior to the eruption. Rapid addition of mass, volatiles, and heat from the recharge magma, perhaps aided by partial melting of cumulate mush below the andesite and dacite, pressurized the reservoir and likely propelled a ~10 km lateral dike that allowed the overlying rhyolite to reach the surface.

  2. Numerical modeling of bubble dynamics in magmas

    Science.gov (United States)

    Huber, Christian; Su, Yanqing; Parmigiani, Andrea

    2014-05-01

    Understanding the complex non-linear physics that governs volcanic eruptions is contingent on our ability to characterize the dynamics of bubbles and its effect on the ascending magma. The exsolution and migration of bubbles has also a great impact on the heat and mass transport in and out of magma bodies stored at shallow depths in the crust. Multiphase systems like magmas are by definition heterogeneous at small scales. Although mixture theory or homogenization methods are convenient to represent multiphase systems as a homogeneous equivalent media, these approaches do not inform us on possible feedbacks at the pore-scale and can be significantly misleading. In this presentation, we discuss the development and application of bubble-scale multiphase flow modeling to address the following questions : How do bubbles impact heat and mass transport in magma chambers ? How efficient are chemical exchanges between the melt and bubbles during magma decompression? What is the role of hydrodynamic interactions on the deformation of bubbles while the magma is sheared? Addressing these questions requires powerful numerical methods that accurately model the balance between viscous, capillary and pressure stresses. We discuss how these bubble-scale models can provide important constraints on the dynamics of magmas stored at shallow depth or ascending to the surface during an eruption.

  3. Evidence for seismogenic fracture of silicic magma.

    Science.gov (United States)

    Tuffen, Hugh; Smith, Rosanna; Sammonds, Peter R

    2008-05-22

    It has long been assumed that seismogenic faulting is confined to cool, brittle rocks, with a temperature upper limit of approximately 600 degrees C (ref. 1). This thinking underpins our understanding of volcanic earthquakes, which are assumed to occur in cold rocks surrounding moving magma. However, the recent discovery of abundant brittle-ductile fault textures in silicic lavas has led to the counter-intuitive hypothesis that seismic events may be triggered by fracture and faulting within the erupting magma itself. This hypothesis is supported by recent observations of growing lava domes, where microearthquake swarms have coincided with the emplacement of gouge-covered lava spines, leading to models of seismogenic stick-slip along shallow shear zones in the magma. But can fracturing or faulting in high-temperature, eruptible magma really generate measurable seismic events? Here we deform high-temperature silica-rich magmas under simulated volcanic conditions in order to test the hypothesis that high-temperature magma fracture is seismogenic. The acoustic emissions recorded during experiments show that seismogenic rupture may occur in both crystal-rich and crystal-free silicic magmas at eruptive temperatures, extending the range of known conditions for seismogenic faulting.

  4. Examining shear processes during magma ascent

    Science.gov (United States)

    Kendrick, J. E.; Wallace, P. A.; Coats, R.; Lamur, A.; Lavallée, Y.

    2017-12-01

    Lava dome eruptions are prone to rapid shifts from effusive to explosive behaviour which reflects the rheology of magma. Magma rheology is governed by composition, porosity and crystal content, which during ascent evolves to yield a rock-like, viscous suspension in the upper conduit. Geophysical monitoring, laboratory experiments and detailed field studies offer the opportunity to explore the complexities associated with the ascent and eruption of such magmas, which rest at a pivotal position with regard to the glass transition, allowing them to either flow or fracture. Crystal interaction during flow results in strain-partitioning and shear-thinning behaviour of the suspension. In a conduit, such characteristics favour the formation of localised shear zones as strain is concentrated along conduit margins, where magma can rupture and heal in repetitive cycles. Sheared magmas often record a history of deformation in the form of: grain size reduction; anisotropic permeable fluid pathways; mineral reactions; injection features; recrystallisation; and magnetic anomalies, providing a signature of the repetitive earthquakes often observed during lava dome eruptions. The repetitive fracture of magma at ( fixed) depth in the conduit and the fault-like products exhumed at spine surfaces indicate that the last hundreds of meters of ascent may be controlled by frictional slip. Experiments on a low-to-high velocity rotary shear apparatus indicate that shear stress on a slip plane is highly velocity dependent, and here we examine how this influences magma ascent and its characteristic geophysical signals.

  5. Diffusive exchange of trace elements between basaltic-andesite and dacitic melt: Insights into potential metal fractionation during magma mixing

    Science.gov (United States)

    Fiege, A.; Ruprecht, P.; Simon, A. C.; Holtz, F.

    2017-12-01

    Mafic magma recharge is a common process that triggers physical and chemical mixing in magmatic systems and drives their evolution, resulting in, e.g., hybridization and volcanic eruptions. Once magma-magma contact is initiated, rapid heat-flux commonly leads to the formation of a cooling-induced crystal mush on the mafic side of the interface. Here, on a local scale (µm to cm), at the magma-magma interface, melt-melt diffusive exchange is required to approach equilibrium. Significant chemical potential gradients drive a complex, multi-element mass flux between the two systems (Liang, 2010). This diffusive-equilibration often controls crystal dissolution rates within the boundary layers and, thus, the formation of interconnected melt or fluid networks. Such networks provide important pathways for the transport of volatiles and trace metals from the mafic recharge magma to the felsic host magma, where the latter may feed volcanic activities and ore deposits. While major element diffusion in silicate melts is mostly well understood, even in complex systems, the available data for many trace element metals are limited (Liang, 2010; Zhang et al., 2010). Differences in diffusivity in a dynamic, mixing environment can cause trace element fractionation, in particular during crystallization and volatile exsolution and separation. This may affect trace element signatures in phenocrysts and magmatic volatile phases that can form near a magma-magma boundary. As a result, the chemistry of volcanic gases and magmatic-hydrothermal ore deposits may be partially controlled by such mixing phenomena. We performed melt-melt diffusion-couple experiments at 150 MPa, 1100°C, FMQ, FMQ+1 and FMQ+3 (FMQ: fayalite-magnetite-quartz oxygen fugacity buffer). Hydrated, sulfur-bearing cylinders of dacite and basaltic andesite were equilibrated for up to 20 h. Major and trace element gradients were measured by using laser-ablation ICP-MS and electron microprobe analyses. The results we will

  6. Upward migration of Vesuvius magma chamber over the past 20,000 years.

    Science.gov (United States)

    Scaillet, B; Pichavant, M; Cioni, R

    2008-09-11

    Forecasting future eruptions of Vesuvius is an important challenge for volcanologists, as its reawakening could threaten the lives of 700,000 people living near the volcano. Critical to the evaluation of hazards associated with the next eruption is the estimation of the depth of the magma reservoir, one of the main parameters controlling magma properties and eruptive style. Petrological studies have indicated that during past activity, magma chambers were at depths between 3 and 16 km (refs 3-7). Geophysical surveys have imaged some levels of seismic attenuation, the shallowest of which lies at 8-9 km depth, and these have been tentatively interpreted as levels of preferential magma accumulation. By using experimental phase equilibria, carried out on material from four main explosive events at Vesuvius, we show here that the reservoirs that fed the eruptive activity migrated from 7-8 km to 3-4 km depth between the ad 79 (Pompeii) and ad 472 (Pollena) events. If data from the Pomici di Base event 18.5 kyr ago and the 1944 Vesuvius eruption are included, the total upward migration of the reservoir amounts to 9-11 km. The change of preferential magma ponding levels in the upper crust can be attributed to differences in the volatile content and buoyancy of ascending magmas, as well as to changes in local stress field following either caldera formation or volcano spreading. Reservoir migration, and the possible influence on feeding rates, should be integrated into the parameters used for defining expected eruptive scenarios at Vesuvius.

  7. Evidence for degassing of fresh magma during the 2004-2008 eruption of Mount St. Helens: Subtle signals from the hydrothermal system

    Science.gov (United States)

    Bergfeld, Deborah; Evans, William C.; Spicer, Kurt R.; Hunt, Andrew G.; Kelly, Peter

    2017-01-01

    Results from chemical and isotopic analyses of water and gas collected between 2002 and 2016 from sites on and around Mount St. Helens are used to assess magmatic degassing related to the 2004-2008 eruption. During 2005 the chemistry of hot springs in The Breach of Mount St. Helens showed no obvious response to the eruption, and over the next few years, changes were subtle, giving only slight indications of perturbations in the system. By 2010 however, water chemistry, temperatures, and isotope compositions (δD and δ18O) clearly indicated some inputs of volatiles and heat associated with the eruption, but the changes were such that they could be attributed to a pre-existing, gas depleted magma. An increase of ~ 1.5‰ in the δ13C values of dissolved carbon in the springs was noted in 2006 and continued through 2009, a change that was mirrored by a similar shift in δ13C-CO2 in bubble gas emissions. These changes require input of a new source of carbon to the hydrothermal system and provide clear evidence of CO2 from an undegassed body of magma. Rising trends in 3He/4He ratios in gas also accompanied the increases in δ13C. Since 2011 maximum RC/RA values are ≥ 6.4 and are distinctly higher than 5 samples collected between 1986 and 2002, and provide additional evidence for some involvement of new magma as early as 2006, and possibly earlier, given the unknown time needed for CO2 and He to traverse the system and arrive at the springs.

  8. Comments on 'Generation of Deccan Trap magmas'

    Indian Academy of Sciences (India)

    R.Narasimhan(krishtel emaging)1461 1996 Oct 15 13:05:22

    Comments on 'Generation of Deccan Trap magmas' by Gautam Sen ... Department of Geology & Geophysics, School of Ocean & Earth Science & Technology (SOEST), University of .... Mahoney J J, Sheth H C, Chandrasekharan D and Peng Z.

  9. The Boycott effect in magma chambers

    Science.gov (United States)

    Blanchette, F.; Peacock, T.; Bush, J. W. M.

    2004-03-01

    We investigate the plausibility of the stratified Boycott effect as a source of layering in magma chambers. Crystal settling within the magma chamber will generate buoyant fluid near the sloping sidewalls whose vertical ascent may be limited by the ambient stratification associated with vertical gradients in SiO2. The resulting flow may be marked by a layered structure, each layer taking the form of a convection cell spanning the lateral extent of the magma chamber. Using parameters relevant to magma chambers, we estimate that such convection cells would be established over a timescale of a month and have a depth on the order of 4m, which is roughly consistent with field observations of strata within solidified chambers.

  10. Magma Chambers, Thermal Energy, and the Unsuccessful Search for a Magma Chamber Thermostat

    Science.gov (United States)

    Glazner, A. F.

    2015-12-01

    Although the traditional concept that plutons are the frozen corpses of huge, highly liquid magma chambers ("big red blobs") is losing favor, the related notion that magma bodies can spend long periods of time (~106years) in a mushy, highly crystalline state is widely accepted. However, analysis of the thermal balance of magmatic systems indicates that it is difficult to maintain a significant portion in a simmering, mushy state, whether or not the system is eutectic-like. Magma bodies cool primarily by loss of heat to the Earth's surface. The balance between cooling via energy loss to the surface and heating via magma accretion can be denoted as M = ρLa/q, where ρ is magma density, L is latent heat of crystallization, a is the vertical rate of magma accretion, and q is surface heat flux. If M>1, then magma accretion outpaces cooling and a magma chamber forms. For reasonable values of ρ, L, and q, the rate of accretion amust be > ~15 mm/yr to form a persistent volume above the solidus. This rate is extremely high, an order of magnitude faster than estimated pluton-filling rates, and would produce a body 10 km thick in 700 ka, an order of magnitude faster than geochronology indicates. Regardless of the rate of magma supply, the proportion of crystals in the system must vary dramatically with depth at any given time owing to transfer of heat. Mechanical stirring (e.g., by convection) could serve to homogenize crystal content in a magma body, but this is unachievable in crystal-rich, locked-up magma. Without convection the lower part of the magma body becomes much hotter than the top—a process familiar to anyone who has scorched a pot of oatmeal. Thermal models that succeed in producing persistent, large bodies of magma rely on scenarios that are unrealistic (e.g., omitting heat loss to the planet's surface), self-fulfilling prophecies (e.g., setting unnaturally high temperatures as fixed boundary conditions), or physically unreasonable (e.g., magma is intruded

  11. Silicic magma generation at Askja volcano, Iceland

    Science.gov (United States)

    Sigmarsson, O.

    2009-04-01

    Rate of magma differentiation is an important parameter for hazard assessment at active volcanoes. However, estimates of these rates depend on proper understanding of the underlying magmatic processes and magma generation. Differences in isotope ratios of O, Th and B between silicic and in contemporaneous basaltic magmas have been used to emphasize their origin by partial melting of hydrothermally altered metabasaltic crust in the rift-zones favoured by a strong geothermal gradient. An alternative model for the origin of silicic magmas in the Iceland has been proposed based on U-series results. Young mantle-derived mafic protolith is thought to be metasomatized and partially melted to form the silicic end-member. However, this model underestimates the compositional variations of the hydrothermally-altered basaltic crust. New data on U-Th disequilibria and O-isotopes in basalts and dacites from Askja volcano reveal a strong correlation between (230Th/232Th) and delta 18O. The 1875 AD dacite has the lowest Th- and O isotope ratios (0.94 and -0.24 per mille, respectively) whereas tephra of evolved basaltic composition, erupted 2 months earlier, has significantly higher values (1.03 and 2.8 per mille, respectively). Highest values are observed in the most recent basalts (erupted in 1920 and 1961) inside the Askja caldera complex and out on the associated fissure swarm (Sveinagja basalt). This correlation also holds for older magma such as an early Holocene dacites, which eruption may have been provoked by rapid glacier thinning. Silicic magmas at Askja volcano thus bear geochemical signatures that are best explained by partial melting of extensively hydrothermally altered crust and that the silicic magma source has remained constant during the Holocene at least. Once these silicic magmas are formed they appear to erupt rapidly rather than mixing and mingling with the incoming basalt heat-source that explains lack of icelandites and the bi-modal volcanism at Askja

  12. A Thermodynamic Approach for Modeling H2O-CO2 Solubility in Alkali-rich Mafic Magmas at Mid-crustal Pressures

    Science.gov (United States)

    Allison, C. M.; Roggensack, K.; Clarke, A. B.

    2017-12-01

    Volatile solubility in magmas is dependent on several factors, including composition and pressure. Mafic (basaltic) magmas with high concentrations of alkali elements (Na and K) are capable of dissolving larger quantities of H2O and CO2 than low-alkali basalt. The exsolution of abundant gases dissolved in alkali-rich mafic magmas can contribute to large explosive eruptions. Existing volatile solubility models for alkali-rich mafic magmas are well calibrated below 200 MPa, but at greater pressures the experimental data is sparse. To allow for accurate interpretation of mafic magmatic systems at higher pressures, we conducted a set of mixed H2O-CO2 volatile solubility experiments between 400 and 600 MPa at 1200 °C in six mafic compositions with variable alkali contents. Compositions include magmas from volcanoes in Italy, Antarctica, and Arizona. Results from our experiments indicate that existing volatile solubility models for alkali-rich mafic magmas, if extrapolated beyond their calibrated range, over-predict CO2 solubility at mid-crustal pressures. Physically, these results suggest that volatile exsolution can occur at deeper levels than what can be resolved from the lower-pressure experimental data. Existing thermodynamic models used to calculate volatile solubility at different pressures require two experimentally derived parameters. These parameters represent the partial molar volume of the condensed volatile species in the melt and its equilibrium constant, both calculated at a standard temperature and pressure. We derived these parameters for each studied composition and the corresponding thermodynamic model shows good agreement with the CO2 solubility data of the experiments. A general alkali basalt solubility model was also constructed by establishing a relationship between magma composition and the thermodynamic parameters. We utilize cation fractions from our six compositions along with four compositions from the experimental literature in a linear

  13. Magma addition rates in continental arcs: New methods of calculation and global implications

    Science.gov (United States)

    Ratschbacher, B. C.; Paterson, S. R.

    2017-12-01

    The transport of mass, heat and geochemical constituents (elements and volatiles) from the mantle to the atmosphere occurs via magma addition to the lithosphere. Calculation of magma addition rates (MARs) in continental arcs based on exposed proportions of igneous arc rocks is complex and rarely consistently determined. Multiple factors influence MAR calculations such as crust versus mantle contributions to magmas, a change in MARs across the arc and with depths throughout the arc crustal column, `arc tempos' with periods of high and low magmatic activity, the loss of previous emplaced arc rocks by subsequent magmatism and return to the mantle, arc migration, variations in the intrusive versus extrusive additions and evolving arc widths and thicknesses during tectonism. All of these factors need to be considered when calculating MARs.This study makes a new attempt to calculate MARs in continental arcs by studying three arc sections: the Famatinian arc, Argentina, the Sierra Nevada batholith, California and the Coast Mountain batholith, Washington and British Columbia. Arcs are divided into fore-arc, main arc and back arc sections and `boxes' with a defined width, length and thickness spanning upper middle and lower crustal levels are assigned to each section. Representative exposed crustal slices for each depth are then used to calculate MARs based on outcrop proportions for each box. Geochemical data is used to infer crustal recycling percentages and total thickness of the arc. Preliminary results show a correlation between MARs, crustal thicknesses and magmatic flare-up durations. For instance, the Famatinian arc shows a strong decrease in MARs between the main arc section (9.4 km3/Ma/arc-km) and the fore-arc (0.61 km3/Ma/arc-km) and back-arc (1.52 km3/Ma/arc-km) regions and an increase in the amount of magmatism with depth.Global MARs over geologic timescales have the potential to investigate mantle melt generation rates and the volatile outgassing contribution

  14. Pricing Volatility Referenced Assets

    Directory of Open Access Journals (Sweden)

    Alan De Genaro Dario

    2006-12-01

    Full Text Available Volatility swaps are contingent claims on future realized volatility. Variance swaps are similar instruments on future realized variance, the square of future realized volatility. Unlike a plain vanilla option, whose volatility exposure is contaminated by its asset price dependence, volatility and variance swaps provide a pure exposure to volatility alone. This article discusses the risk-neutral valuation of volatility and variance swaps based on the framework outlined in the Heston (1993 stochastic volatility model. Additionally, the Heston (1993 model is calibrated for foreign currency options traded at BMF and its parameters are used to price swaps on volatility and variance of the BRL / USD exchange rate.

  15. Can Fractional Crystallization of a Lunar Magma Ocean Produce the Lunar Crust?

    Science.gov (United States)

    Rapp, Jennifer F.; Draper, David S.

    2013-01-01

    New techniques enable the study of Apollo samples and lunar meteorites in unprecedented detail, and recent orbital spectral data reveal more about the lunar farside than ever before, raising new questions about the supposed simplicity of lunar geology. Nevertheless, crystallization of a global-scale magma ocean remains the best model to account for known lunar lithologies. Crystallization of a lunar magma ocean (LMO) is modeled to proceed by two end-member processes - fractional crystallization from (mostly) the bottom up, or initial equilibrium crystallization as the magma is vigorously convecting and crystals remain entrained, followed by crystal settling and a final period of fractional crystallization [1]. Physical models of magma viscosity and convection at this scale suggest that both processes are possible. We have been carrying out high-fidelity experimental simulations of LMO crystallization using two bulk compositions that can be regarded as end-members in the likely relevant range: Taylor Whole Moon (TWM) [2] and Lunar Primitive Upper Mantle (LPUM) [3]. TWM is enriched in refractory elements by 1.5 times relative to Earth, whereas LPUM is similar to the terrestrial primitive upper mantle, with adjustments made for the depletion of volatile alkalis observed on the Moon. Here we extend our earlier equilibrium-crystallization experiments [4] with runs simulating full fractional crystallization

  16. Magma-sponge hypothesis and stratovolcanoes: Case for a compressible reservoir and quasi-steady deep influx at Soufrière Hills Volcano, Montserrat

    Science.gov (United States)

    Voight, Barry; Widiwijayanti, Christina; Mattioli, Glen; Elsworth, Derek; Hidayat, Dannie; Strutt, M.

    2010-02-01

    We use well-documented time histories of episodic GPS surface deformation and efflux of compressible magma to resolve apparent magma budget anomalies at Soufrière Hills volcano (SHV) on Montserrat, WI. We focus on data from 2003 to 2007, for an inflation succeeded by an episode of eruption-plus-deflation. We examine Mogi-type and vertical prolate ellipsoidal chamber geometries to accommodate both mineralogical constraints indicating a relatively shallow pre-eruption storage, and geodetic constraints inferring a deeper mean-pressure source. An exsolved phase involving several gas species greatly increases andesite magma compressibility to depths >10 km (i.e., for water content >4 wt%, crystallinity ˜40%), and this property supports the concept that much of the magma transferred into or out of the crustal reservoir could be accommodated by compression or decompression of stored reservoir magma (i.e., the “magma-sponge”). Our results suggest quasi-steady deep, mainly mafic magma influx of the order of 2 m3s-1, and we conclude that magma released in eruptive episodes is approximately balanced by cumulative deep influx during the eruptive episode and the preceding inflation. Our magma-sponge model predicts that between 2003 and 2007 there was no evident depletion of magma reservoir volume at SHV, which comprises tens of km3 with radial dimensions of order ˜1-2 km, in turn implying a long-lived eruption.

  17. Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma

    Science.gov (United States)

    Wiebe, R. A.; Collins, W. J.

    1998-09-01

    Many granitic plutons contain sheet-like masses of dioritic to gabbroic rocks or swarms of mafic to intermediate enclaves which represent the input of higher temperature, more mafic magma during crystallization of the granitic plutons. Small-scale structures associated with these bodies (e.g. load-cast and compaction features, silicic pipes extending from granitic layers into adjacent gabbroic sheets) indicate that the sheets and enclave swarms were deposited on a floor of the magma chamber (on granitic crystal mush and beneath crystal-poor magma) while the mafic magma was incompletely crystallized. These structures indicate 'way up', typically toward the interior of the intrusions, and appear to indicate that packages of mafic sheets and enclave concentrations in these plutons are a record of sequential deposition. Hence, these plutons preserve a stratigraphic history of events involved in the construction (filling, replenishment) and crystallization of the magma chamber. The distinctive features of these depositional portions of plutons allow them to be distinguished from sheeted intrusions, which usually preserve mutual intrusive contacts and 'dike-sill' relations of different magma types. The considerable thickness of material that can be interpreted as depositional, and the evidence for replenishment, suggest that magma chamber volumes at any one time were probably much less than the final size of the pluton. Thus, magma chambers may be constructed much more slowly than presently envisaged. The present steep attitudes of these structures in many plutons may have developed gradually as the floor of the chamber (along with the underlying solidified granite and country rock) sank during continuing episodes of magma chamber replenishment. These internal magmatic structures support recent suggestions that the room problem for granites could be largely accommodated by downward movement of country rock beneath the magma chamber.

  18. Magma Chamber Model of Batur Caldera, Bali, Indonesia: Compositional Variation of Two Facies, Large-Volume Dacitic Ignimbrites

    Directory of Open Access Journals (Sweden)

    Igan S. Sutawidjaja

    2015-05-01

    Full Text Available DOI:10.17014/ijog.2.2.111-124Batur is one of the finest known calderas on Earth, and is the source of at least two major ignimbrite eruptions with a combined volume of some 84 km3 and 19 km3. These ignimbrites have a similar compositions, raising the question of whether they are geneticaly related. The Batur Ignimbrite-1 (BI-1 is crystal poor, containing rhyodacitic (68 - 70wt % SiO2, white to grey pumices and partly welded and unwelded. The overlying Batur Ignimbrite-2 (BI-2 is a homogeneous grey to black dacitic pumices (64 - 66 wt % SiO2, unwelded and densely welded (40 - 60% vesicularity, crystal and lithic rich. Phase equilibria indicate that the Batur magma equilibrated at temperatures of 1100 - 1300oC with melt water contents of 3 - 6 wt%. The post-eruptive Batur magma was cooler (<1100oC and it is melt more water rich (> 6 wt % H2O. A pressure of 20 kbar is infered from mineral barometry for the Batur magma chamber. Magmatic chamber model is one in which crystals and melt separate from a convecting Batur magma by density differences, resulting in a stratified magma chamber with a homogeneous central zone, a crystal-rich accumulation zone near the walls or base, and a buoyant, melt-rich zone near the top. This is consistent with the estimated magma temperatures and densities: the pre-eruptive BI-1 magma was hoter (1300oC and more volatile rich (6 wt % H2O with density 2.25 g/cm3 than the BI-2 magma (1200oC; 4 wt % H2O in density was higher (2.50 g/cm3. Batur melt characteristics and intensive parameters are consistent with a volatile oversaturation-driven eruption. However, the higher H2O content, high viscosity and low crystal content of the BI-1 magma imply an external eruption trigger.

  19. A Physical Model for Three-Phase Compaction in Silicic Magma Reservoirs

    Science.gov (United States)

    Huber, Christian; Parmigiani, Andrea

    2018-04-01

    We develop a model for phase separation in magma reservoirs containing a mixture of silicate melt, crystals, and fluids (exsolved volatiles). The interplay between the three phases controls the dynamics of phase separation and consequently the chemical and physical evolution of magma reservoirs. The model we propose is based on the two-phase damage theory approach of Bercovici et al. (2001, https://doi.org/10.1029/2000JB900430) and Bercovici and Ricard (2003, https://doi.org/10.1046/j.1365-246X.2003.01854.x) because it offers the leverage of considering interface (in the macroscopic limit) between phases that can deform depending on the mechanical work and phase changes taking place locally in the magma. Damage models also offer the advantage that pressure is defined uniquely to each phase and does not need to be equal among phases, which will enable us to consider, in future studies, the large capillary pressure at which fluids are mobilized in mature, crystal-rich, magma bodies. In this first analysis of three-phase compaction, we solve the three-phase compaction equations numerically for a simple 1-D problem where we focus on the effect of fluids on the efficiency of melt-crystal separation considering the competition between viscous and buoyancy stresses only. We contrast three sets of simulations to explore the behavior of three-phase compaction, a melt-crystal reference compaction scenario (two-phase compaction), a three-phase scenario without phase changes, and finally a three-phase scenario with a parameterized second boiling (crystallization-induced exsolution). The simulations show a dramatic difference between two-phase (melt crystals) and three-phase (melt-crystals-exsolved volatiles) compaction-driven phase separation. We find that the presence of a lighter, significantly less viscous fluid hinders melt-crystal separation.

  20. Degassing vs. eruptive styles at Mt. Etna volcano (Sicily, Italy): Volatile stocking, gas fluxing, and the shift from low-energy to highly-explosive basaltic eruptions

    Science.gov (United States)

    Moretti, Roberto; Métrich, Nicole; Di Renzo, Valeria; Aiuppa, Alessandro; Allard, Patrick; Arienzo, Ilenia

    2017-04-01

    Basaltic magmas can transport and release large amounts of volatiles into the atmosphere, especially in subduction zones, where slab-derived fluids enrich the mantle wedge. Depending on magma volatile content, basaltic volcanoes thus display a wide spectrum of eruptive styles, from common Strombolian-type activity to Plinian events. Mt. Etna in Sicily, is a typical basaltic volcano where the volatile control on such a variable activity can be investigated. Based on a melt inclusion study in products from Strombolian or lava-fountain activity to Plinian eruptions, here we show that for the same initial volatile content, different eruptive styles reflect variable degassing paths throughout the composite Etnean plumbing system. The combined influence of i) crystallization, ii) deep degassing and iii) CO2 gas fluxing can explain the evolution of H2O, CO2, S and Cl in products from such a spectrum of activity. Deep crystallization produces the CO2-rich gas fluxing the upward magma portions, which will become buoyant and easily mobilized in small gas-rich batches stored within the plumbing system. When reaching gas dominated conditions (i.e., a gas/melt mass ratio of 0.3 and CO2,gas/H2Ogas molar ratio 5 ), these will erupt effusively or mildly explosively, whilst in case of the 122 BC Plinian eruption, open-system degassing conditions took place within the plumbing system, such that continuous CO2-fluxing determined gas accumulation on top of the magmatic system. The emission of such a cap in the early eruptive phase triggered the arrival of deep H2O-rich whose fast decompression and bubble nucleation lead to the highly explosive character, enhanced by abundant microlite crystallization and consequent increase of magma effective viscosity. This could explain why open system basaltic systems like Etna may experience highly explosive or even Plinian episodes during eruptions that start with effusive to mildly explosive phases. The proposed mechanism also determines a

  1. Magma wagging and whirling in volcanic conduits

    Science.gov (United States)

    Liao, Yang; Bercovici, David; Jellinek, Mark

    2018-02-01

    Seismic tremor characterized by 0.5-7 Hz ground oscillations commonly occur before and during eruptions at silicic volcanoes with widely ranging vent geometries and edifice structures. The ubiquitous characteristics of this tremor imply that its causes are potentially common to silicic volcanoes. Here we revisit and extend to three dimensions the magma-wagging model for tremor (Jellinek and Bercovici, 2011; Bercovici et al., 2013), wherein a stiff magma column rising in a vertical conduit oscillates against a surrounding foamy annulus of bubbly magma, giving rise to tremor. While prior studies were restricted to two-dimensional lateral oscillations, here we explore three-dimensional motion and additional modes of oscillations. In the absence of viscous damping, the magma column undergoes 'whirling' motion: the center of each horizontal section of the column traces an elliptical trajectory. In the presence of viscous effect we identify new 'coiling' and 'uncoiling' column bending shapes with relatively higher and comparable rates of dissipation to the original two-dimensional magma wagging model. We also calculate the seismic P-wave response of the crustal material around the volcanic conduit to the new whirling motions and propose seismic diagnostics for different wagging patterns using the time-lag between seismic stations. We test our model by analyzing pre-eruptive seismic data from the 2009 eruption of Redoubt Volcano. In addition to suggesting that the occurrence of elliptical whirling motion more than 1 week before the eruption, our analysis of seismic time-lags also implies that the 2009 eruption was accompanied by qualitative changes in the magma wagging behavior including fluctuations in eccentricity and a reversal in the direction of elliptical whirling motion when the eruption was immediately impending.

  2. Improving Student Understanding of Magmatic Differentiation Using an M&M Magma Chamber

    Science.gov (United States)

    Wirth, K. R.

    2003-12-01

    Many students, especially those in introductory geology courses, have difficulty developing a deep understanding of the processes of magmatic differentiation. In particular, students often struggle to understand Bowen's reaction series and fractional crystallization. The process of fractional crystallization by gravity settling can be illustrated using a model magma chamber consisting of M&M's. In this model, each major cation (e.g., Si, Ti, Al, Fe, Mg, Ca, Na, K) is represented by a different color M&M; other kinds of differently colored or shaped pieces could also be used. Appropriate numbers of each color M&M are combined to approximate the cation proportions of a basaltic magma. Students then fractionate the magma by moving M&M's to the bottom of the magma chamber forming a series of cumulus layers; the M&M's are removed in the stoichiometric proportions of cations in the crystallizing minerals (e.g., olivine, pyroxene, feldspars, quartz, magnetite, ilmenite). Students observe the changing cation composition (proportions of colors of M&M's) in the cumulus layers and in the magma chamber and graph the results using spreadsheet software. More advanced students (e.g., petrology course) can classify the cumulates and resulting liquid after each crystallization step, and they can compare the model system with natural magmatic systems (e.g., absence of important fractionating phases, volatiles). Students who have completed this exercise generally indicate a positive experience and demonstrate increased understanding of Bowen's reaction series and fractionation processes. They also exhibit greater familiarity with mineral stoichiometry, classification, solid-solution in minerals, element behavior (e.g., incompatibility), and chemical variation diagrams. Other models (e.g., paths of equilibrium and fractional crystallization on phase diagrams) can also be used to illustrate differentiation processes in upper level courses (e.g., mineralogy and petrology).

  3. Magma Mixing: Why Picrites are Not So Hot

    Science.gov (United States)

    Natland, J. H.

    2010-12-01

    Oxide gabbros or ferrogabbros are the late, low-temperature differentiates of tholeiitic magma and usually form as cumulates that can have 2-30% of the magmatic oxides, ilmenite and magnetite. They are common in the ocean crust and are likely ubiquitous wherever extensive tholeiitic magmatism has occurred, especially beneath thick lava piles such as at Hawaii, Iceland, oceanic plateaus, island arcs and ancient continental crust. When intruded by hot primitive magma including picrite, the oxide-bearing portions of these rocks are readily partially melted or assimilated into the magma and contribute to it a degree of iron and titanium enrichment that is not reflective of the mantle source of the primitive magma. The most extreme examples of such mixing are meimechites and ferropicrites, but this type of end-member mixing is even common in MORB. To the extent this process occurs, the eruptive picrite cannot be used to estimate compositions of partial melts of mantle rocks, nor their eruptive or potential temperatures, using olivine-liquid FeO-MgO backtrack procedures. Most picrites have glasses with compositions approximating those expected from low-pressure multiphase cotectic crystallization, and olivine that on average crystallized from liquids of nearly those compositions. The hallmark of such rocks is the presence of minerals other than olivine among phenocrysts (plagioclase at Iceland, clinopyroxene at many oceanic islands), Fe- and Ti-rich chromian spinel (ankaramites, ferropicrites and meimichites), and in some cases the presence of iron-rich olivine (hortonolite ~Fo65 in ferropicrites), Ti-rich kaersutitic amphibole and even apatite (meimechites); the latter two derive from late-stage, hydrous and geochemically enriched metamorphic or alkalic assimilants. This type of mixing, however, does not necessarily involve depleted and enriched mixing components. To avoid such mixing, primitive melts have to rise primarily through upper mantle rocks of near-zero melt

  4. Juvenile pumice and pyroclastic obsidian reveal the eruptive conditions necessary for the stability of Plinian eruption of rhyolitic magma

    Science.gov (United States)

    Giachetti, T.; Shea, T.; Gonnermann, H. M.; McCann, K. A.; Hoxsie, E. C.

    2016-12-01

    Significant explosive activity generally precedes or coexists with the large effusion of rhyolitic lava (e.g., Mono Craters; Medicine Lake Volcano; Newberry; Chaitén; Cordón Caulle). Such explosive-to-effusive transitions and, ultimately, cessation of activity are commonly explained by the overall waning magma chamber pressure accompanying magma withdrawal, albeit modulated by magma outgassing. The tephra deposits of such explosive-to-effusive eruptions record the character of the transition - abrupt or gradual - as well as potential changes in eruptive conditions, such as magma composition, volatiles content, mass discharge rate, conduit size, magma outgassing. Results will be presented from a detailed study of both the gas-rich (pumice) and gas-poor (obsidian) juvenile pyroclasts produced during the Plinian phase of the 1060 CE Glass Mountain eruption of Medicine Lake Volcano, California. In the proximal deposits, a multitude of pumice-rich sections separated by layers rich in dense clasts suggests a pulsatory behavior of the explosive phase. Density measurements on 2,600 pumices show that the intermediate, most voluminous deposits have a near constant median porosity of 65%. However, rapid increase in porosity to 75-80% is observed at both the bottom and the top of the fallout deposits, suggestive of rapid variations in magma degassing. In contrast, a water content of pyroclastic obsidians of approximately 0.6 wt% does remain constant throughout the eruption, suggesting that the pyroclastic obsidians degassed up to a constant pressure of a few megapascals. Numerical modeling of eruptive magma ascent and degassing is used to provide constraints on eruption conditions.

  5. Finite-element modeling of magma chamber-host rock interactions prior to caldera collapse

    Science.gov (United States)

    Kabele, Petr; Žák, Jiří; Somr, Michael

    2017-06-01

    Gravity-driven failure of shallow magma chamber roofs and formation of collapse calderas are commonly accompanied by ejection of large volumes of pyroclastic material to the Earth's atmosphere and thus represent severe volcanic hazards. In this respect, numerical analysis has proven as a key tool in understanding the mechanical conditions of caldera collapse. The main objective of this paper is to find a suitable approach to finite-element simulation of roof fracturing and caldera collapse during inflation and subsequent deflation of shallow magma chambers. Such a model should capture the dominant mechanical phenomena, for example, interaction of the host rock with magma and progressive deformation of the chamber roof. To this end, a comparative study, which involves various representations of magma (inviscid fluid, nearly incompressible elastic, or plastic solid) and constitutive models of the host rock (fracture and plasticity), was carried out. In particular, the quasi-brittle fracture model of host rock reproduced well the formation of tension-induced radial and circumferential fractures during magma injection into the chamber (inflation stage), especially at shallow crustal levels. Conversely, the Mohr-Coulomb shear criterion has shown to be more appropriate for greater depths. Subsequent magma withdrawal from the chamber (deflation stage) results in further damage or even collapse of the chamber roof. While most of the previous studies of caldera collapse rely on the elastic stress analysis, the proposed approach advances modeling of the process by incorporating non-linear failure phenomena and nearly incompressible behaviour of magma. This leads to a perhaps more realistic representation of the fracture processes preceding roof collapse and caldera formation.

  6. Artificial magma and applications of the blasting technique

    Energy Technology Data Exchange (ETDEWEB)

    Ichioka, K [Chugoku Kaki KK, Japan

    1974-01-01

    Artifical magma is discussed. Solid magma is a high temperature source and fluid magma is also a heat carrier. Iron ores are examples of solid magma, silica-borate is an example of a hydrophobic heat carrier magma assuming a liquid phase at 600/sup 0/C, and S, Ag, Pb, etc. are also examples of heat carrier magma. In addition to these examples, basic salts such as NaNO/sub 3/, KNO/sub 3/, NaCl, CaCl, KCl, BaCl, and Na/sub 4/B/sub 4/O/sub 7/ can be used as artifical magma. These are artifical magmas or heat mediums capable of capturing geothermal heat when circulated inside volcanoes. The blasting technique's applications in geothermal wells are also discussed. The technique can be used to expand a well's diameter, repair the well bottom, regenerate old wells, clean wells, or cut steel pipe. Two figures and one table are provided.

  7. Volatile and non-volatile/semi-volatile compounds and in vitro bioactive properties of Chilean Ulmo (Eucryphia cordifolia Cav.) honey.

    Science.gov (United States)

    Acevedo, Francisca; Torres, Paulina; Oomah, B Dave; de Alencar, Severino Matias; Massarioli, Adna Prado; Martín-Venegas, Raquel; Albarral-Ávila, Vicenta; Burgos-Díaz, César; Ferrer, Ruth; Rubilar, Mónica

    2017-04-01

    Ulmo honey originating from Eucryphia cordifolia tree, known locally in the Araucania region as the Ulmo tree is a natural product with valuable nutritional and medicinal qualities. It has been used in the Mapuche culture to treat infections. This study aimed to identify the volatile and non-volatile/semi-volatile compounds of Ulmo honey and elucidate its in vitro biological properties by evaluating its antioxidant, antibacterial, antiproliferative and hemolytic properties and cytotoxicity in Caco-2 cells. Headspace volatiles of Ulmo honey were isolated by solid-phase microextraction (SPME); non-volatiles/semi-volatiles were obtained by removing all saccharides with acidified water and the compounds were identified by GC/MS analysis. Ulmo honey volatiles consisted of 50 compounds predominated by 20 flavor components. Two of the volatile compounds, lyrame and anethol have never been reported before as honey compounds. The non-volatile/semi-volatile components of Ulmo honey comprised 27 compounds including 13 benzene derivatives accounting 75% of the total peak area. Ulmo honey exhibited weak antioxidant activity but strong antibacterial activity particularly against gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA), the main strain involved in wounds and skin infections. At concentrations >0.5%, Ulmo honey reduced Caco-2 cell viability, released lactate dehydrogenase (LDH) and increased reactive oxygen species (ROS) production in a dose dependent manner in the presence of foetal bovine serum (FBS). The wide array of volatile and non-volatile/semi-volatile constituents of Ulmo honey rich in benzene derivatives may partly account for its strong antibacterial and antiproliferative properties important for its therapeutic use. Our results indicate that Ulmo honey can potentially inhibit cancer growth at least partly by modulating oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Boyce, J. W.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Magna, T.; Ni, P.; Tartese, R.; hide

    2017-01-01

    The chapter will begin with an introduction that defines magmatic volatiles (e.g., H, F, Cl, S) versus geochemical volatiles (e.g., K, Rb, Zn). We will discuss our approach of understanding both types of volatiles in lunar samples and lay the ground work for how we will determine the overall volatile budget of the Moon. We will then discuss the importance of endogenous volatiles in shaping the "Newer Views of the Moon", specifically how endogenous volatiles feed forward into processes such as the origin of the Moon, magmatic differentiation, volcanism, and secondary processes during surface and crustal interactions. After the introduction, we will include a re-view/synthesis on the current state of 1) apatite compositions (volatile abundances and isotopic compositions); 2) nominally anhydrous mineral phases (moderately to highly volatile); 3) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar pyroclastic glass beads; 4) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar basalts; 5) volatile (moderately to highly volatile) abundances in and isotopic compositions of melt inclusions; and finally 6) experimental constraints on mineral-melt partitioning of moderately to highly volatile elements under lunar conditions. We anticipate that each section will summarize results since 2007 and focus on new results published since the 2015 Am Min review paper on lunar volatiles [9]. The next section will discuss how to use sample abundances of volatiles to understand the source region and potential caveats in estimating source abundances of volatiles. The following section will include our best estimates of volatile abundances and isotopic compositions (where permitted by available data) for each volatile element of interest in a number of important lunar reservoirs, including the crust, mantle, KREEP, and bulk Moon. The final section of the chapter will focus upon future work, outstanding questions

  9. Timing of Crystallisation of the Lunar Magma Ocean Constrained by the Oldest Zircon

    Science.gov (United States)

    Nemchin, A.; Timms, N.; Pidgeon, R.; Geisler, T.; Reddy, S.; Meyer, C.

    2009-01-01

    The presently favoured concept for the early evolution of the Moon involves consolidation of debris from a giant impact of a Mars sized body with Earth forming a primitive Moon with a thick global layer of melt referred to as the Lunar Magma Ocean1 . It is widely accepted that many significant features observed on the Moon today are the result of crystallisation of this magma ocean. However, controversy exists over the precise timing and duration of the crystallisation process. Resolution of this problem depends on the establishment of precise and robust key crystallisation time points. We report a 4417 6 Myr old zircon in lunar breccia sample 72215,195, which provides a precisely determined younger limit for the solidification of the Lunar Magma Ocean. A model based on these data, together with the age of the Moon forming giant impact, defines an exponential time frame for crystallisation and suggests formation of anorthositic crust after about 80-85% of the magma ocean was solidified. In combination with other zircon ages the 4417 +/- 6 Myr age also suggests that the very small (less than a few per cent) residual portion of the magma ocean continued to solidify during the following 300-500 m.y.

  10. Loki Patera: A Magma Sea Story

    Science.gov (United States)

    Veeder, G. J.; Matson, D. L.; Rathbun, A. G.

    2005-01-01

    We consider Loki Patera on Io as the surface expression of a large uniform body of magma. Our model of the Loki magma sea is some 200 km across; larger than a lake but smaller than an ocean. The depth of the magma sea is unknown, but assumed to be deep enough that bottom effects can be ignored. Edge effects at the shore line can be ignored to first order for most of the interior area. In particular, we take the dark material within Loki Patera as a thin solidified lava crust whose hydrostatic shape follows Io's isostatic surface (approx. 1815 km radius of curvature). The dark surface of Loki appears to be very smooth on both regional and local (subresolution) scales. The thermal contrast between the low and high albedo areas within Loki is consistent with the observed global correlation. The composition of the model magma sea is basaltic and saturated with dissolved SO2 at depth. Its average, almost isothermal, temperature is at the liquidus for basalt. Additional information is included in the original extended abstract.

  11. Probing magma reservoirs to improve volcano forecasts

    Science.gov (United States)

    Lowenstern, Jacob B.; Sisson, Thomas W.; Hurwitz, Shaul

    2017-01-01

    When it comes to forecasting eruptions, volcano observatories rely mostly on real-time signals from earthquakes, ground deformation, and gas discharge, combined with probabilistic assessments based on past behavior [Sparks and Cashman, 2017]. There is comparatively less reliance on geophysical and petrological understanding of subsurface magma reservoirs.

  12. Iron Redox Systematics of Martian Magmas

    Science.gov (United States)

    Righter, K.; Danielson, L.; Martin, A.; Pando, K.; Sutton, S.; Newville, M.

    2011-01-01

    Martian magmas are known to be FeO-rich and the dominant FeO-bearing mineral at many sites visited by the Mars Exploration rovers (MER) is magnetite [1]. Morris et al. [1] propose that the magnetite appears to be igneous in origin, rather than of secondary origin. However, magnetite is not typically found in experimental studies of martian magmatic rocks [2,3]. Magnetite stability in terrestrial magmas is well understood, as are the stability of FeO and Fe2O3 in terrestrial magmas [4,5]. In order to better understand the variation of FeO and Fe2O3, and the stability of magnetite (and other FeO-bearing phases) in martian magmas we have undertaken an experimental study with two emphases. First we document the stability of magnetite with temperature and fO2 in a shergottite bulk composition. Second, we determine the FeO and Fe2O3 contents of the same shergottite bulk composition at 1 bar and variable fO2 at 1250 C, and at variable pressure. These two goals will help define not only magnetite stability, but pyroxene-melt equilibria that are also dependent upon fO2.

  13. Unusual Iron Redox Systematics of Martian Magmas

    Science.gov (United States)

    Danielson, L.; Righter, K.; Pando, K.; Morris, R. V.; Graff, T.; Agresti, D.; Martin, A.; Sutton, S.; Newville, M.; Lanzirotti, A.

    2012-01-01

    Martian magmas are known to be FeO-rich and the dominant FeO-bearing mineral at many sites visited by the Mars Exploration rovers (MER) is magnetite. Morris et al. proposed that the magnetite appears to be igneous in origin, rather than of secondary origin. However, magnetite is not typically found in experimental studies of martian magmatic rocks. Magnetite stability in terrestrial magmas is well understood, as are the stabilities of FeO and Fe2O3 in terrestrial magmas. In order to better understand the variation of FeO and Fe2O3, and the stability of magnetite (and other FeO-bearing phases) in martian magmas, we have undertaken an experimental study with two emphases. First, we determine the FeO and Fe2O3 contents of super- and sub-liquidus glasses from a shergottite bulk composition at 1 bar to 4 GPa, and variable fO2. Second, we document the stability of magnetite with temperature and fO2 in a shergottite bulk composition.

  14. NanoSIMS results from olivine-hosted melt embayments: Magma ascent rate during explosive basaltic eruptions

    Science.gov (United States)

    Lloyd, Alexander S.; Ruprecht, Philipp; Hauri, Erik H.; Rose, William; Gonnermann, Helge M.; Plank, Terry

    2014-08-01

    The explosivity of volcanic eruptions is governed in part by the rate at which magma ascends and degasses. Because the time scales of eruptive processes can be exceptionally fast relative to standard geochronometers, magma ascent rate remains difficult to quantify. Here we use as a chronometer concentration gradients of volatile species along open melt embayments within olivine crystals. Continuous degassing of the external melt during magma ascent results in diffusion of volatile species from embayment interiors to the bubble located at their outlets. The novel aspect of this study is the measurement of concentration gradients in five volatile elements (CO2, H2O, S, Cl, F) at fine-scale (5-10 μm) using the NanoSIMS. The wide range in diffusivity and solubility of these different volatiles provides multiple constraints on ascent timescales over a range of depths. We focus on four 100-200 μm, olivine-hosted embayments erupted on October 17, 1974 during the sub-Plinian eruption of Volcán de Fuego. H2O, CO2, and S all decrease toward the embayment outlet bubble, while F and Cl increase or remain roughly constant. Compared to an extensive melt inclusion suite from the same day of the eruption, the embayments have lost both H2O and CO2 throughout the entire length of the embayment. We fit the profiles with a 1-D numerical diffusion model that allows varying diffusivities and external melt concentrations as a function of pressure. Assuming a constant decompression rate from the magma storage region at approximately 220 MPa to the surface, H2O, CO2 and S profiles for all embayments can be fit with a relatively narrow range in decompression rates of 0.3-0.5 MPa/s, equivalent to 11-17 m/s ascent velocity and an 8 to 12 minute duration of magma ascent from ~ 10 km depth. A two stage decompression model takes advantage of the different depth ranges over which CO2 and H2O degas, and produces good fits given an initial stage of slow decompression (0.05-0.3 MPa/s) at high

  15. Magma-poor vs. magma-rich continental rifting and breakup in the Labrador Sea

    Science.gov (United States)

    Gouiza, M.; Paton, D.

    2017-12-01

    Magma-poor and magma-rich rifted margins show distinct structural and stratigraphic geometries during the rift to breakup period. In magma-poor margins, crustal stretching is accommodated mainly by brittle faulting and the formation of wide rift basins shaped by numerous graben and half-graben structures. Continental breakup and oceanic crust accretion are often preceded by a localised phase of (hyper-) extension where the upper mantle is embrittled, serpentinized, and exhumed to the surface. In magma-rich margins, the rift basin is narrow and extension is accompanied by a large magmatic supply. Continental breakup and oceanic crust accretion is preceded by the emplacement of a thick volcanic crust juxtaposing and underplating a moderately thinned continental crust. Both magma-poor and magma-rich rifting occur in response to lithospheric extension but the driving forces and processes are believed to be different. In the former extension is assumed to be driven by plate boundary forces, while in the latter extension is supposed to be controlled by sublithospheric mantle dynamics. However, this view fails in explaining observations from many Atlantic conjugate margins where magma-poor and magma-rich segments alternate in a relatively abrupt fashion. This is the case of the Labrador margin where the northern segment shows major magmatic supply during most of the syn-rift phase which culminate in the emplacement of a thick volcanic crust in the transitional domain along with high density bodies underplating the thinned continental crust; while the southern segment is characterized mainly by brittle extension, mantle seprentinization and exhumation prior to continental breakup. In this work, we use seismic and potential field data to describe the crustal and structural architectures of the Labrador margin, and investigate the tectonic and mechanical processes of rifting that may have controlled the magmatic supply in the different segments of the margin.

  16. Behavior of volatiles in arc volcanism : geochemical and petrologic evidence from active volcanoes in Indonesia

    NARCIS (Netherlands)

    Hoog, J.C.M. de

    2001-01-01

    Large amounts of material are recycled along subduction zones by uprising magmas, of which volcanoes are the surface expression. This thesis focuses on the behavior of volatiles elements (S, Cl, H) during these recycling processes. The study area is the Indonesian arc system, which

  17. Io: Loki Patera as a Magma Sea

    Science.gov (United States)

    Matson, Dennis L.; Davies, Ashley Gerard; Veeder, Glenn J.; Rathbun, Julie A.; Johnson, Torrence V.; Castillo, Julie C.

    2006-01-01

    We develop a physical model for Loki Patera as a magma sea. We calculate the total volume of magma moving through the Loki Patera volcanic system every resurfacing cycle (approx.540 days) and the resulting variation in thermal emission. The rate of magma solidification at times reaches 3 x 10(exp 6) kg per second, with a total solidified volume averaging 100 cu km per year. A simulation of gas physical chemistry evolution yields the crust porosity profile and the timescale when it will become dense enough to founder in a manner consistent with observations. The Loki Patera surface temperature distribution shows that different areas are at different life cycle stages. On a regional scale, however, there can be coordinated activity, indicated by the wave of thermal change which progresses from Loki Patera's SW quadrant toward the NE at a rate of approx.1 km per day. Using the observed surface temperature distribution, we test several mechanisms for resurfacing Loki Patera, finding that resurfacing with lava flows is not realistic. Only the crustal foundering process is consistent with observations. These tests also discovered that sinking crust has a 'heat deficit' which promotes the solidification of additional magma onto the sinking plate ("bulking up"). In the limiting case, the mass of sinking material can increase to a mass of approx.3 times that of the foundering plate. With all this solid matter sinking, there is a compensating upward motion in the liquid magma. This can be in excess of 2 m per year. In this manner, solid-liquid convection is occurring in the sea.

  18. Asymmetric Realized Volatility Risk

    Directory of Open Access Journals (Sweden)

    David E. Allen

    2014-06-01

    Full Text Available In this paper, we document that realized variation measures constructed from high-frequency returns reveal a large degree of volatility risk in stock and index returns, where we characterize volatility risk by the extent to which forecasting errors in realized volatility are substantive. Even though returns standardized by ex post quadratic variation measures are nearly Gaussian, this unpredictability brings considerably more uncertainty to the empirically relevant ex ante distribution of returns. Explicitly modeling this volatility risk is fundamental. We propose a dually asymmetric realized volatility model, which incorporates the fact that realized volatility series are systematically more volatile in high volatility periods. Returns in this framework display time varying volatility, skewness and kurtosis. We provide a detailed account of the empirical advantages of the model using data on the S&P 500 index and eight other indexes and stocks.

  19. Pb isotopes during crustal melting and magma mingling - A cautionary tale from the Miki Fjord macrodike, central east Greenland

    DEFF Research Database (Denmark)

    Waight, Tod Earle; Lesher, Charles

    2010-01-01

    Pb isotopic data are presented for hybrid rocks formed by mingling between mantle-derived tholeiitic magma of the Eocene Miki Fjord macrodike (East Greenland) and melt derived from the adjacent Precambrian basement. Bulk mixing and AFC processes between end-members readily identified in the field...... grain boundaries during disequilibrium melting of the host rock by the mafic magma. The crustal melt involved in magma interactions was therefore heterogeneous with respect to Pb isotopes on a metre-scale. These results illustrate the difficulties inherent in interpreting isotopic variations...... in contaminated mafic magmas even when the end-members are well constrained by field relations. We show that the Pb isotopic composition of the crustal contaminants and contamination trajectories for the Miki Fjord hybrid magmatic lithologies are markedly different from regional basement gneisses and contaminated...

  20. Deep magma transport at Kilauea volcano, Hawaii

    Science.gov (United States)

    Wright, T.L.; Klein, F.W.

    2006-01-01

    The shallow part of Kilauea's magma system is conceptually well-understood. Long-period and short-period (brittle-failure) earthquake swarms outline a near-vertical magma transport path beneath Kilauea's summit to 20 km depth. A gravity high centered above the magma transport path demonstrates that Kilauea's shallow magma system, established early in the volcano's history, has remained fixed in place. Low seismicity at 4-7 km outlines a storage region from which magma is supplied for eruptions and intrusions. Brittle-failure earthquake swarms shallower than 5 km beneath the rift zones accompany dike emplacement. Sparse earthquakes extend to a decollement at 10-12 km along which the south flank of Kilauea is sliding seaward. This zone below 5 km can sustain aseismic magma transport, consistent with recent tomographic studies. Long-period earthquake clusters deeper than 40 km occur parallel to and offshore of Kilauea's south coast, defining the deepest seismic response to magma transport from the Hawaiian hot spot. A path connecting the shallow and deep long-period earthquakes is defined by mainshock-aftershock locations of brittle-failure earthquakes unique to Kilauea whose hypocenters are deeper than 25 km with magnitudes from 4.4 to 5.2. Separation of deep and shallow long-period clusters occurs as the shallow plumbing moves with the volcanic edifice, while the deep plumbing is centered over the hotspot. Recent GPS data agrees with the volcano-propagation vector from Kauai to Maui, suggesting that Pacific plate motion, azimuth 293.5?? and rate of 7.4 cm/yr, has been constant over Kilauea's lifetime. However, volcano propagation on the island of Hawaii, azimuth 325??, rate 13 cm/yr, requires southwesterly migration of the locus of melting within the broad hotspot. Deep, long-period earthquakes lie west of the extrapolated position of Kilauea backward in time along a plate-motion vector, requiring southwesterly migration of Kilauea's magma source. Assumed ages of 0

  1. Magma Dynamics in Dome-Building Volcanoes

    Science.gov (United States)

    Kendrick, J. E.; Lavallée, Y.; Hornby, A. J.; Schaefer, L. N.; Oommen, T.; Di Toro, G.; Hirose, T.

    2014-12-01

    The frequent and, as yet, unpredictable transition from effusive to explosive volcanic behaviour is common to active composite volcanoes, yet our understanding of the processes which control this evolution is poor. The rheology of magma, dictated by its composition, porosity and crystal content, is integral to eruption behaviour and during ascent magma behaves in an increasingly rock-like manner. This behaviour, on short timescales in the upper conduit, provides exceptionally dynamic conditions that favour strain localisation and failure. Seismicity released by this process can be mimicked by damage accumulation that releases acoustic signals on the laboratory scale, showing that the failure of magma is intrinsically strain-rate dependent. This character aids the development of shear zones in the conduit, which commonly fracture seismogenically, producing fault surfaces that control the last hundreds of meters of ascent by frictional slip. High-velocity rotary shear (HVR) experiments demonstrate that at ambient temperatures, gouge behaves according to Byerlee's rule at low slip velocities. At rock-rock interfaces, mechanical work induces comminution of asperities and heating which, if sufficient, may induce melting and formation of pseudotachylyte. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The bulk composition, mineralogy and glass content of the magma all influence frictional behaviour, which supersedes buoyancy as the controlling factor in magma ascent. In the conduit of dome-building volcanoes, the fracture and slip processes are further complicated: slip-rate along the conduit margin fluctuates. The shear-thinning frictional melt yields a tendency for extremely unstable slip thanks to its pivotal position with regard to the glass transition. This thermo-kinetic transition bestows the viscoelastic melt with the ability to either flow or

  2. The crustal magma storage system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity

    Science.gov (United States)

    Bergantz, George W.; Cooper, Kari M.; Hildreth, Edward; Ruprecht, Phillipp

    2012-01-01

    Crystal zoning as well as temperature and pressure estimates from phenocryst phase equilibria are used to constrain the architecture of the intermediate-sized magmatic system (some tens of km3) of Volcán Quizapu, Chile, and to document the textural and compositional effects of magma mixing. In contrast to most arc magma systems, where multiple episodes of open-system behavior obscure the evidence of major magma chamber events (e.g. melt extraction, magma mixing), the Quizapu magma system shows limited petrographic complexity in two large historical eruptions (1846–1847 and 1932) that have contrasting eruptive styles. Quizapu magmas and peripheral mafic magmas exhibit a simple binary mixing relationship. At the mafic end, basaltic andesite to andesite recharge magmas complement the record from peripheral cones and show the same limited range of compositions. The silicic end-member composition is almost identical in both eruptions of Quizapu. The effusive 1846–1847 eruption records significant mixing between the mafic and silicic end-members, resulting in hybridized andesites and mingled dacites. These two compositionally simple eruptions at Volcán Quizapu present a rare opportunity to isolate particular aspects of magma evolution—formation of homogeneous dacite magma and late-stage magma mixing—from other magma chamber processes. Crystal zoning, trace element compositions, and crystal-size distributions provide evidence for spatial separation of the mafic and silicic magmas. Dacite-derived plagioclase phenocrysts (i.e. An25–40) show a narrow range in composition and limited zonation, suggesting growth from a compositionally restricted melt. Dacite-derived amphibole phenocrysts show similar restricted compositions and furthermore constrain, together with more mafic amphibole phenocrysts, the architecture of the magmatic system at Volcán Quizapu to be compositionally and thermally zoned, in which an andesitic mush is overlain by a homogeneous dacitic

  3. Timescale of Petrogenetic Processes Recorded in the Mount Perkins Magma System, Northern Colorado River Extension Corridor, Arizona

    Science.gov (United States)

    Danielson, Lisa R.; Metcalf, Rodney V.; Miller, Calvin F.; Rhodes Gregory T.; Wooden, J. L.

    2013-01-01

    The Miocene Mt. Perkins Pluton is a small composite intrusive body emplaced in the shallow crust as four separate phases during the earliest stages of crustal extension. Phase 1 (oldest) consists of isotropic hornblende gabbro and a layered cumulate sequence. Phase 2 consists of quartz monzonite to quartz monzodiorite hosting mafic microgranitoid enclaves. Phase 3 is composed of quartz monzonite and is subdivided into mafic enclave-rich zones and enclave-free zones. Phase 4 consists of aphanitic dikes of mafic, intermediate and felsic compositions hosting mafic enclaves. Phases 2-4 enclaves record significant isotopic disequilibrium with surrounding granitoid host rocks, but collectively enclaves and host rocks form a cogenetic suite exhibiting systematic variations in Nd-Sr-Pb isotopes that correlate with major and trace elements. Phases 2-4 record multiple episodes of magma mingling among cogenetic hybrid magmas that formed via magma mixing and fractional crystallization at a deeper crustal. The mafic end-member was alkali basalt similar to nearby 6-4 Ma basalt with enriched OIB-like trace elements and Nd-Sr-Pb isotopes. The felsic end-member was a subalkaline crustal-derived magma. Phase 1 isotropic gabbro exhibits elemental and isotopic compositional variations at relatively constant SiO2, suggesting generation of isotropic gabbro by an open-system process involving two mafic end-members. One end-member is similar in composition to the OIB-like mafic end-member for phases 2-4; the second is similar to nearby 11-8 Ma tholeiite basalt exhibiting low epsilon (sub Nd), and depleted incompatible trace elements. Phase 1 cumulates record in situ fractional crystallization of an OIB-like mafic magma with isotopic evidence of crustal contamination by partial melts generated in adjacent Proterozoic gneiss. The Mt Perkins pluton records a complex history in a lithospheric scale magma system involving two distinct mantle-derived mafic magmas and felsic magma sourced in the

  4. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Anand, M.; Boyce, J. W.; Burney, D.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Klima, R. L.; Magna, T.; Ni, P.; Steenstra, E.; Tartèse, R.; Vander Kaaden, K. E.

    2018-04-01

    This abstract discusses numerous outstanding questions on the topic of endogenous lunar volatiles that will need to be addressed in the coming years. Although substantial insights into endogenous lunar volatiles have been gained, more work remains.

  5. Storage, Ascent, and Release of Silicic Magma in Caldera-forming Eruptions

    Science.gov (United States)

    Myers, Madison Logan

    The mechanisms and timescales associated with the triggering of caldera-forming eruptions remain ambiguous and poorly constrained. Do such eruptions start vigorously, then escalate, or can there be episodicity? Are they triggered through internal processes (e.g. recharge, buoyancy), or can external modulations play an important role? Key to answering these questions is the ability to reconstruct the state of the magma body immediately prior to eruption. My dissertation research seeks to answer these questions through detailed investigation of four voluminous caldera-forming eruptions: (1) 650 km3, 0.767 Ma Bishop Tuff, Long Valley, (2) 530 km3, 25.4 ka Oruanui eruption, Taupo, (3) 2,500 km3, 2.08 Ma Huckleberry Ridge Tuff, Yellowstone and (4) 250 km3, 26.91 Ma Cebolla Creek Tuff, Colorado. The main techniques I applied integrated glass geochemistry (major, trace and volatile), diffusion modeling, and detailed field sampling. In chapters two, three, and four these methods are applied to the initial fall deposits of three supereruptions (Bishop, Oruanui and Huckleberry Ridge) that preserve field-evidence for different opening behaviors. These behaviors range from continuous deposition of fall deposits and ignimbrite (Bishop), to repetitive start/stop behavior, with time breaks between eruptive episodes on the order of weeks to months (Oruanui, Huckleberry Ridge). To reconstruct the timescales of opening activity and relate this to conduit processes, I used two methods that exploit diffusion of volatiles through minerals and melt, providing estimates for the rate at which magmas ascended to the surface. This knowledge is then integrated with the pre-eruptive configuration of the magma body, based on melt inclusion chemistry, to interpret what triggered these systems into unrest. Finally, in chapter five I take a different approach by integrating geochemical data for melt inclusions and phenocryst minerals to test whether the mechanism of heat and volatile recharge

  6. Magma ocean formation due to giant impacts

    Science.gov (United States)

    Tonks, W. B.; Melosh, H. J.

    1993-01-01

    The thermal effects of giant impacts are studied by estimating the melt volume generated by the initial shock wave and corresponding magma ocean depths. Additionally, the effects of the planet's initial temperature on the generated melt volume are examined. The shock pressure required to completely melt the material is determined using the Hugoniot curve plotted in pressure-entropy space. Once the melting pressure is known, an impact melting model is used to estimate the radial distance melting occurred from the impact site. The melt region's geometry then determines the associated melt volume. The model is also used to estimate the partial melt volume. Magma ocean depths resulting from both excavated and retained melt are calculated, and the melt fraction not excavated during the formation of the crater is estimated. The fraction of a planet melted by the initial shock wave is also estimated using the model.

  7. Illuminating magma shearing processes via synchrotron imaging

    Science.gov (United States)

    Lavallée, Yan; Cai, Biao; Coats, Rebecca; Kendrick, Jackie E.; von Aulock, Felix W.; Wallace, Paul A.; Le Gall, Nolwenn; Godinho, Jose; Dobson, Katherine; Atwood, Robert; Holness, Marian; Lee, Peter D.

    2017-04-01

    Our understanding of geomaterial behaviour and processes has long fallen short due to inaccessibility into material as "something" happens. In volcanology, research strategies have increasingly sought to illuminate the subsurface of materials at all scales, from the use of muon tomography to image the inside of volcanoes to the use of seismic tomography to image magmatic bodies in the crust, and most recently, we have added synchrotron-based x-ray tomography to image the inside of material as we test it under controlled conditions. Here, we will explore some of the novel findings made on the evolution of magma during shearing. These will include observations and discussions of magma flow and failure as well as petrological reaction kinetics.

  8. Nonvolatile, semivolatile, or volatile: redefining volatile for volatile organic compounds.

    Science.gov (United States)

    Võ, Uyên-Uyén T; Morris, Michael P

    2014-06-01

    Although widely used in air quality regulatory frameworks, the term "volatile organic compound" (VOC) is poorly defined. Numerous standardized tests are currently used in regulations to determine VOC content (and thus volatility), but in many cases the tests do not agree with each other, nor do they always accurately represent actual evaporation rates under ambient conditions. The parameters (time, temperature, reference material, column polarity, etc.) used in the definitions and the associated test methods were created without a significant evaluation of volatilization characteristics in real world settings. Not only do these differences lead to varying VOC content results, but occasionally they conflict with one another. An ambient evaporation study of selected compounds and a few formulated products was conducted and the results were compared to several current VOC test methodologies: SCAQMD Method 313 (M313), ASTM Standard Test Method E 1868-10 (E1868), and US. EPA Reference Method 24 (M24). The ambient evaporation study showed a definite distinction between nonvolatile, semivolatile, and volatile compounds. Some low vapor pressure (LVP) solvents, currently considered exempt as VOCs by some methods, volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents they are meant to replace. Conversely, bio-based and heavy hydrocarbons did not readily volatilize, though they often are calculated as VOCs in some traditional test methods. The study suggests that regulatory standards should be reevaluated to more accurately reflect real-world emission from the use of VOC containing products. The definition of VOC in current test methods may lead to regulations that exclude otherwise viable alternatives or allow substitutions of chemicals that may limit the environmental benefits sought in the regulation. A study was conducted to examine volatility of several compounds and a few formulated products under several current VOC test

  9. Normalization for Implied Volatility

    OpenAIRE

    Fukasawa, Masaaki

    2010-01-01

    We study specific nonlinear transformations of the Black-Scholes implied volatility to show remarkable properties of the volatility surface. Model-free bounds on the implied volatility skew are given. Pricing formulas for the European options which are written in terms of the implied volatility are given. In particular, we prove elegant formulas for the fair strikes of the variance swap and the gamma swap.

  10. Pressure waves in a supersaturated bubbly magma

    Science.gov (United States)

    Kurzon, I.; Lyakhovsky, V.; Navon, O.; Chouet, B.

    2011-01-01

    We study the interaction of acoustic pressure waves with an expanding bubbly magma. The expansion of magma is the result of bubble growth during or following magma decompression and leads to two competing processes that affect pressure waves. On the one hand, growth in vesicularity leads to increased damping and decreased wave amplitudes, and on the other hand, a decrease in the effective bulk modulus of the bubbly mixture reduces wave velocity, which in turn, reduces damping and may lead to wave amplification. The additional acoustic energy originates from the chemical energy released during bubble growth. We examine this phenomenon analytically to identify conditions under which amplification of pressure waves is possible. These conditions are further examined numerically to shed light on the frequency and phase dependencies in relation to the interaction of waves and growing bubbles. Amplification is possible at low frequencies and when the growth rate of bubbles reaches an optimum value for which the wave velocity decreases sufficiently to overcome the increased damping of the vesicular material. We examine two amplification phase-dependent effects: (1) a tensile-phase effect in which the inserted wave adds to the process of bubble growth, utilizing the energy associated with the gas overpressure in the bubble and therefore converting a large proportion of this energy into additional acoustic energy, and (2) a compressive-phase effect in which the pressure wave works against the growing bubbles and a large amount of its acoustic energy is dissipated during the first cycle, but later enough energy is gained to amplify the second cycle. These two effects provide additional new possible mechanisms for the amplification phase seen in Long-Period (LP) and Very-Long-Period (VLP) seismic signals originating in magma-filled cracks.

  11. Yamato 980459: Crystallization of Martian Magnesian Magma

    Science.gov (United States)

    Koizumi, E.; Mikouchi, T.; McKay, G.; Monkawa, A.; Chokai, J.; Miyamoto, M.

    2004-01-01

    Recently, several basaltic shergottites have been found that include magnesian olivines as a major minerals. These have been called olivinephyric shergottites. Yamato 980459, which is a new martian meteorite recovered from the Antarctica by the Japanese Antarctic expedition, is one of them. This meteorite is different from other olivine-phyric shergottites in several key features and will give us important clues to understand crystallization of martian meteorites and the evolution of Martian magma.

  12. Isotopic disequilibrium among commingled hybrid magmas: Evidence for a two-stage magma mixing-commingling process in the Mt. Perkins Pluton, Arizona

    International Nuclear Information System (INIS)

    Metcalf, R.V.; Smith, E.I.; Reed, R.C.

    1995-01-01

    The syn-extensional Miocene Mt. Perkins pluton, northwestern Arizona, cooled rapidly due to its small size (6 km 2 ) and shallow emplacement (7.5 km) and allows examination of commingled rocks that experienced little isotopic exchange. Within the pluton, quartz dioritic to granodioritic host rocks (58-68 wt% SiO 2 ) enclose dioritic enclaves (50-55 wt% SiO 2 ) and a portion contains enclave-free granodiorite (70-74 wt% SiO 2 ). Fine-grained, crenulate enclave margins and a lack of advanced mixing structures (e.g., schlieren, flow fabrics, etc.) indicate an incipient stage of commingling. Isotopic variation between enclaves and enclosing host rocks is large (6.8 to 10.6 ε Nd units; 0.0036 to 0.0046 87 Sr/ 86 Sr units), suggesting isotopic disequilibrium. Comparison of an enclave core and rim suggests that isotopic exchange with the host magma was limited to the enclave rim. Enclaves and hosts collectively form a calc-alkaline suite exhibiting a large range of ε Nd (+1.2 to -12.5) and initial 87 Sr/ 86 Sr (0.705 to 0.71267) with a correlation among ε Nd , initial 87 Sr/ 86 Sr, and major and trace element compositions. Modeling suggests that the suite formed by magma hybridization involving magma mixing accompanied by fractional crystallization. The magma mixing must have predated commingling at the present exposure level and indicates a larger mixing chamber at depth. Isotopic and trace element data suggests mixing end-members were asthenospheric mantle-derived mafic and crustal-derived felsic magmas. Fractional crystallization facilitated mixing by reducing the rheological contrasts between the mafic and felsic mixing end-members. 58 refs., 11 figs., 3 tabs

  13. Realized Volatility Risk

    NARCIS (Netherlands)

    D.E. Allen (David); M.J. McAleer (Michael); M. Scharth (Marcel)

    2013-01-01

    textabstractIn this paper we document that realized variation measures constructed from highfrequency returns reveal a large degree of volatility risk in stock and index returns, where we characterize volatility risk by the extent to which forecasting errors in realized volatility are substantive.

  14. Shallow magma diversions during explosive maar-diatreme eruptions in mafic volcanic fields

    Science.gov (United States)

    Le Corvec, N.; Muirhead, J.; White, J. D. L.

    2017-12-01

    Maar-diatremes are inverted conical structures formed by subterranean excavation and remobilization of country rocks during explosive volcanism and common in mafic volcanic fields. We focus on impacts of excavation and filling of maar-diatremes on the local state of stress, and its subsequent influence on underlying feeder dikes, which are critical for understanding the development of intrusive networks that feed surface eruptions. We address this issue using finite element models in COMSOL Multiphysics®. Inverted conical structures of varying sizes are excavated in a gravitationally loaded elastic half-space, and then progressively filled with volcaniclastic material, resulting in changes in the orientations and magnitudes of stresses generated within surrounding rocks and within the filling portion of the maar-diatreme. Our results show that rapid unloading during maar-diatreme excavation generates a horizontal compressive stress state beneath diatremes. These stresses allow magma to divert laterally as saucer-shaped sills and circumferential dikes at varying depths in the shallow feeder system, and produce intrusion geometries consistent with both field observations from exhumed volcanic fields and conceptual models of diatreme growth. Stresses generated in these models also provide an explanation for the evolving locations of fragmentation zones over the course of diatreme's filling. In particular, results from this study suggest that: (1) extensional stresses at the base of the diatreme fill favor magma ascent in the lower half of the structure, and possibly promote volatile exsolution and magma fragmentation; and (2) increased filling of diatremes creates a shallow compressive stress state that can inhibit magma ascent to the surface, promoting widespread intra-diatreme explosions, efficient mixing of host rock, and upward widening of the diatreme structure.

  15. Zircon crytallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean arc)

    Science.gov (United States)

    Bachman, O.; Charlier, B.L.A.; Lowenstern, J. B.

    2007-01-01

    In contrast to most large-volume silicic magmas in continental arcs, which are thought to evolve as open systems with significant assimilation of preexisting crust, the Kos Plateau Miff magma formed dominantly by crystal fractionation of mafic parents. Deposits from this ??? 60 km3 pyroclastic eruption (the largest known in the Aegean arc) lack xenocrystic zircons [secondary ion mass spectrometry (SIMS) U-Pb ages on zircon cores never older than 500 ka] and display Sr-Nd whole-rock isotopic ratios within the range of European mantle in an area with exposed Paleozoic and Tertiary continental crust; this evidence implies a nearly closed-system chemical differentiation. Consequently, the age range provided by zircon SIMS U-Th-Pb dating is a reliable indicator of the duration of assembly and longevity of the silicic magma body above its solidus. The age distribution from 160 ka (age of eruption by sanidine 40Ar/39Ar dating; Smith et al., 1996) to ca. 500 ka combined with textural characteristics (high crystal content, corrosion of most anhydrous phenocrysts, but stability of hydrous phases) suggest (1) a protracted residence in the crust as a crystal mush and (2) rejuvenation (reduced crystallization and even partial resorption of minerals) prior to eruption probably induced by new influx of heat (and volatiles). This extended evolution chemically isolated from the surrounding crust is a likely consequence of the regional geodynamics because the thinned Aegean microplate acts as a refractory container for magmas in the dying Aegean subduction zone (continent-continent subduction). ?? 2007 Geological Society of America.

  16. Zircon crystallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean arc)

    Science.gov (United States)

    Bachman, O.; Charlier, B.L.A.; Lowenstern, J. B.

    2007-01-01

    In contrast to most large-volume silicic magmas in continental arcs, which are thought to evolve as open systems with significant assimilation of preexisting crust, the Kos Plateau Tuff magma formed dominantly by crystal fractionation of mafic parents. Deposits from this ~60 km3 pyroclastic eruption (the largest known in the Aegean arc) lack xenocrystic zircons [secondary ion mass spectrometry (SIMS) U-Pb ages on zircon cores never older than 500 ka] and display Sr-Nd whole-rock isotopic ratios within the range of European mantle in an area with exposed Paleozoic and Tertiary continental crust; this evidence implies a nearly closed-system chemical differentiation. Consequently, the age range provided by zircon SIMS U-Th-Pb dating is a reliable indicator of the duration of assembly and longevity of the silicic magma body above its solidus. The age distribution from 160 ka (age of eruption by sanidine 40Ar/39Ar dating; Smith et al., 1996) to ca. 500 ka combined with textural characteristics (high crystal content, corrosion of most anhydrous phenocrysts, but stability of hydrous phases) suggest (1) a protracted residence in the crust as a crystal mush and (2) rejuvenation (reduced crystallization and even partial resorption of minerals) prior to eruption probably induced by new influx of heat (and volatiles). This extended evolution chemically isolated from the surrounding crust is a likely consequence of the regional geodynamics because the thinned Aegean microplate acts as a refractory container for magmas in the dying Aegean subduction zone (continent-continent subduction).

  17. Adakitic magmas: modern analogues of Archaean granitoids

    Science.gov (United States)

    Martin, Hervé

    1999-03-01

    Both geochemical and experimental petrological research indicate that Archaean continental crust was generated by partial melting of an Archaean tholeiite transformed into a garnet-bearing amphibolite or eclogite. The geodynamic context of tholeiite melting is the subject of controversy. It is assumed to be either (1) subduction (melting of a hot subducting slab), or (2) hot spot (melting of underplated basalts). These hypotheses are considered in the light of modern adakite genesis. Adakites are intermediate to felsic volcanic rocks, andesitic to rhyolitic in composition (basaltic members are lacking). They have trondhjemitic affinities (high-Na 2O contents and K 2O/Na 2O˜0.5) and their Mg no. (0.5), Ni (20-40 ppm) and Cr (30-50 ppm) contents are higher than in typical calc-alkaline magmas. Sr contents are high (>300 ppm, until 2000 ppm) and REE show strongly fractionated patterns with very low heavy REE (HREE) contents (Yb≤1.8 ppm, Y≤18 ppm). Consequently, high Sr/Y and La/Yb ratios are typical and discriminating features of adakitic magmas, indicative of melting of a mafic source where garnet and/or hornblende are residual phases. Adakitic magmas are only found in subduction zone environments, exclusively where the subduction and/or the subducted slab are young (subducted and where the adakitic character of the lavas correlates well with the young age of the subducting oceanic lithosphere. In typical subduction zones, the subducted lithosphere is older than 20 Ma, it is cool and the geothermal gradient along the Benioff plane is low such that the oceanic crust dehydrates before it reaches the solidus temperature of hydrated tholeiite. Consequently, the basaltic slab cannot melt. The released large ion lithophile element (LILE)-rich fluids rise up into the mantle wedge, inducing both its metasomatism and partial melting. Afterwards, the residue is made up of olivine+clinopyroxene+orthopyroxene, such that the partial melts are HREE-rich (low La/Yb and Sr

  18. Evolution of silicic magmas in the Kos-Nisyros volcanic center, Greece: a petrological cycle associated with caldera collapse

    Science.gov (United States)

    Bachmann, Olivier; Deering, Chad D.; Ruprecht, Janina S.; Huber, Christian; Skopelitis, Alexandra; Schnyder, Cedric

    2012-01-01

    Multiple eruptions of silicic magma (dacite and rhyolites) occurred over the last ~3 My in the Kos-Nisyros volcanic center (eastern Aegean sea). During this period, magmas have changed from hornblende-biotite-rich units with low eruption temperatures (≤750-800°C; Kefalos and Kos dacites and rhyolites) to hotter, pyroxene-bearing units (>800-850°C; Nisyros rhyodacites) and are transitioning back to cooler magmas (Yali rhyolites). New whole-rock compositions, mineral chemistry, and zircon Hf isotopes show that these three types of silicic magmas followed the same differentiation trend: they all evolved by crystal fractionation and minor crustal assimilation (AFC) from parents with intermediate compositions characterized by high Sr/Y and low Nb content, following a wet, high oxygen fugacity liquid line of descent typical of subduction zones. As the transition between the Kos-Kefalos and Nisyros-type magmas occurred immediately and abruptly after the major caldera collapse in the area (the 161 ka Kos Plateau Tuff; KPT), we suggest that the efficient emptying of the magma chamber during the KPT drew out most of the eruptible, volatile-charged magma and partly solidified the unerupted mush zone in the upper crust due to rapid unloading, decompression, and coincident crystallization. Subsequently, the system reestablished a shallow silicic production zone from more mafic parents, recharged from the mid to lower crust. The first silicic eruptions evolving from these parents after the caldera collapse (Nisyros units) were hotter (up to >100°C) than the caldera-forming event and erupted from reservoirs characterized by different mineral proportions (more plagioclase and less amphibole). We interpret such a change as a reflection of slightly drier conditions in the magmatic column after the caldera collapse due to the decompression event. With time, the upper crustal intermediate mush progressively transitioned into the cold-wet state that prevailed during the Kefalos

  19. The impairment of MAGMAS function in human is responsible for a severe skeletal dysplasia.

    Directory of Open Access Journals (Sweden)

    Cybel Mehawej

    2014-05-01

    Full Text Available Impairment of the tightly regulated ossification process leads to a wide range of skeletal dysplasias and deciphering their molecular bases has contributed to the understanding of this complex process. Here, we report a homozygous mutation in the mitochondria-associated granulocyte macrophage colony stimulating factor-signaling gene (MAGMAS in a novel and severe spondylodysplastic dysplasia. MAGMAS, also referred to as PAM16 (presequence translocase-associated motor 16, is a mitochondria-associated protein involved in preprotein translocation into the matrix. We show that MAGMAS is specifically expressed in trabecular bone and cartilage at early developmental stages and that the mutation leads to an instability of the protein. We further demonstrate that the mutation described here confers to yeast strains a temperature-sensitive phenotype, impairs the import of mitochondrial matrix pre-proteins and induces cell death. The finding of deleterious MAGMAS mutations in an early lethal skeletal dysplasia supports a key role for this mitochondrial protein in the ossification process.

  20. An attempt to model the timing of magma formation by means of radioactive disequilibria

    International Nuclear Information System (INIS)

    Cortini, M.

    1985-01-01

    In order to quantitatively determine the timing of magma formation, the Th series radioactive disequilibria for the Etna and Stromboli volcanoes have been re-examined in the light of new isotopic evidence that shows that magma formation is a chemically open-system process. This aim was but partially reached. It is shown that single-stage models of magma formation are not consistent with the experimental data. Short-life disequilibria require that magma formation undergoes: (1) a Th and Ra enrichment stage (a few years long); (2) a closed-system stage (a few tens to some hundreds years long); (3) a second Th and Ra enrichment stage (a few years long), different from the former in terms of Ra/Th ratio. The whole process can be described by a group of equations, derived from open-system non-equilibrium thermodynamics, which were integrated with numerical methods. However, too many unknowns are involved to allow a one-to-one solution based on the available data. (orig.)

  1. Cost-benefit analyses for the development of magma power

    International Nuclear Information System (INIS)

    Haraden, John

    1992-01-01

    Magma power is the potential generation of electricity from shallow magma bodies in the crust of the Earth. Considerable uncertainty still surrounds the development of magma power, but most of that uncertainty may be eliminated by drilling the first deep magma well. The uncertainty presents no serious impediments to the private drilling of the well. For reasons unrelated to the uncertainty, there may be no private drilling and there may be justification for public drilling. In this paper, we present cost-benefit analyses for private and public drilling of the well. Both analyses indicate there is incentive for drilling. (Author)

  2. Na, Rb and Cs partitioning between metal, silicate and sulfide: Implications for volatile depletion in terrestrial planets

    Science.gov (United States)

    Boujibar, A.; Fei, Y.; Du, Z.; Righter, K.; Bullock, E. S.

    2017-12-01

    Inner Solar System materials are known for their depletion in volatile elements, including the moderately volatile alkalis: Na, K, Rb, and Cs. The origin of this depletion is still uncertain, as several processes could have been involved, during the nebular condensation or planetary accretion. Volatile depletion is commonly estimated through comparison of alkali concentrations relatively to those of chondrites, assuming they remain in planetary mantles during core segregation. However, experimental studies show that substantial K can partition into metals that are enriched in sulfur and oxygen. Several models have also suggested that sulfides may have played an important role during episodes of sulfide segregation from a crystallizing magma ocean (sulfide matte) or accretion of S-rich planetary embryos. For Mercury, a sulfide layer could be present between core and mantle, due to immiscibility between Si-rich and S-rich metals. Therefore, here we investigate whether alkali elements (Na, Cs and Rb) could be partly sequestered in planetary cores during their differentiation. We conducted experiments at high pressure and temperature (1 to 5 GPa and up to 1900 °C) to determine partition coefficients of Na, Rb and Cs between metal and silicate. Our results show that pressure, temperature, sulfur and oxygen in metals enhance the partitioning of Na, Rb and Cs into metals, as previously found for K. For all three investigated alkalis (Na, Rb and Cs), we found a maximum partition coefficient of 1 between sulfides containing 13 wt% O and silicate melt. Therefore, S-rich cores or sulfide layers formed due to immiscibility in Fe-S-O systems could have acted as important geochemical reservoirs for alkali elements. Using our experimental data and different assumptions on initial bulk abundances, we evaluate volatile depletion in terrestrial planets, by comparing resulting mantle alkali concentrations after core segregation, with actual concentrations in the Earth's mantle.

  3. Outgassing From Open And Closed Magma Foams

    Science.gov (United States)

    von Aulock, Felix W.; Kennedy, Ben M.; Maksimenko, Anton; Wadsworth, Fabian B.; Lavallée, Yan

    2017-06-01

    During magma ascent, bubbles nucleate, grow, coalesce, and form a variably permeable porous network. The volcanic system opens and closes as bubble walls reorganize, seal or fail. In this contribution we cause obsidian to nucleate and grow bubbles to high gas volume fraction at atmospheric pressure by heating samples to 950 ºC for different times and we image the growth through a furnace. Following the experiment, we imaged the internal pore structure of selected samples in 3D and then dissected for analysis of textures and dissolved water content remnant in the glass. We demonstrate that in these high viscosity systems, during foaming and subsequent foam-maturation, bubbles near a free surface resorb via diffusion to produce an impermeable skin of melt around a foam. The skin thickens nonlinearly through time. The water concentrations at the outer and inner skin margins reflect the solubility of water in the melt at the partial pressure of water in atmospheric and water-rich bubble conditions, respectively. In this regime, mass transfer of water out of the system is diffusion limited and the sample shrinks slowly. In a second set of experiments in which we polished off the skin of the foamed samples and placed them back in the furnace, we observe rapid sample contraction and collapse of the connected pore network under surface tension as the system efficiently outgasses. In this regime, mass transfer of water is permeability limited. The mechanisms described here are relevant to the evolution of pore network heterogeneity in permeable magmas. We conclude that diffusion-driven skin formation can efficiently seal connectivity in foams. When rupture of melt film around gas bubbles (i.e. skin removal) occurs, then rapid outgassing and consequent foam collapse modulate gas pressurisation in the vesiculated magma.

  4. Experimental Constraints on a Vesta Magma Ocean

    Science.gov (United States)

    Hoff, C.; Jones, J. H.; Le, L.

    2014-01-01

    A magma ocean model was devised to relate eucrites (basalts) and diogenites (orthopyroxenites), which are found mixed together as clasts in a suite of polymict breccias known as howardites. The intimate association of eucritic and diogenitic clasts in howardites argues strongly that these three classes of achondritic meteorites all originated from the same planetoid. Reflectance spectral evidence (including that from the DAWN mission) has long suggested that Vesta is indeed the Eucrite Parent Body. Specifically, the magma ocean model was generated as follows: (i) the bulk Vesta composition was taken to be 0.3 CV chondrite + 0.7 L chondrite but using only 10% of the Na2O from this mixture; (ii) this composition is allowed to crystallize at 500 bar until approx. 80% of the system is solid olivine + low-Ca pyroxene; (iii) the remaining 20% liquid crystallizes at one bar from 1250C to 1110C, a temperature slightly above the eucrite solidus. All crystallization calculations were performed using MELTS. In this model, diogenites are produced by cocrystallization of olivine and pyroxene in the >1250C temperature regime, with Main Group eucrite liquids being generated in the 1300-1250C temperature interval. Low-Ca pyroxene reappears at 1210C in the one-bar calculations and fractionates the residual liquid to produce evolved eucrite compositions (Stannern Trend). We have attempted to experimentally reproduce the magma ocean. In the MELTS calculation, the change from 500 bar to one bar results in a shift of the olivine:low-Ca pyroxene boundary so that the 1250C liquid is now in the olivine field and, consequently, olivine should be the first-crystallizing phase, followed by low-Ca pyroxene at 1210C, and plagioclase at 1170C. Because at one bar the olivine:low-Ca pyroxene boundary is a peritectic, fractional crystallization of the 1210C liquid proceeds with only pyroxene crystallization until plagioclase appears. Thus, the predictions of the MELTS calculation are clear and

  5. Outgassing from Open and Closed Magma Foams

    Directory of Open Access Journals (Sweden)

    Felix W. von Aulock

    2017-06-01

    Full Text Available During magma ascent, bubbles nucleate, grow, coalesce, and form a variably permeable porous network. The reorganization, failing and sealing of bubble walls may contribute to the opening and closing of the volcanic system. In this contribution we cause obsidian to nucleate and grow bubbles to high gas volume fraction at atmospheric pressure by heating samples to 950°C for different times and we image the growth through a furnace. Following the experiment, we imaged the internal pore structure of selected samples in 3D and then dissected for analysis of textures and dissolved water content remnant in the glass. We demonstrate that in these high viscosity systems, during foaming and subsequent foam-maturation, bubbles near a free surface resorb via diffusion to produce an impermeable skin of melt around a foam. The skin thickens non-linearly through time. The water concentrations at the outer and inner skin margins reflect the solubility of water in the melt at the partial pressure of water in atmospheric and water-rich bubble conditions, respectively. In this regime, mass transfer of water out of the system is diffusion limited and the sample shrinks slowly. In a second set of experiments in which we polished off the skin of the foamed samples and placed them back in the furnace to allow open system outgassing, we observe rapid sample contraction and collapse of the connected pore network under surface tension as the system efficiently outgasses. In this regime, mass transfer of water is permeability limited. We conclude that diffusion-driven skin formation can efficiently seal connectivity in foams. When rupture of melt film around gas bubbles (i.e., skin removal occurs, then rapid outgassing and consequent foam collapse modulate gas pressurization in the vesiculated magma. The mechanisms described here are relevant to the evolution of pore network heterogeneity in permeable magmas.

  6. Special relativity derived from spacetime magma.

    Science.gov (United States)

    Greensite, Fred

    2014-01-01

    We present a derivation of relativistic spacetime largely untethered from specific physical considerations, in constrast to the many physically-based derivations that have appeared in the last few decades. The argument proceeds from the inherent magma (groupoid) existing on the union of spacetime frame components [Formula: see text] and Euclidean [Formula: see text] which is consistent with an "inversion symmetry" constraint from which the Minkowski norm results. In this context, the latter is also characterized as one member of a class of "inverse norms" which play major roles with respect to various unital [Formula: see text]-algebras more generally.

  7. Special relativity derived from spacetime magma.

    Directory of Open Access Journals (Sweden)

    Fred Greensite

    Full Text Available We present a derivation of relativistic spacetime largely untethered from specific physical considerations, in constrast to the many physically-based derivations that have appeared in the last few decades. The argument proceeds from the inherent magma (groupoid existing on the union of spacetime frame components [Formula: see text] and Euclidean [Formula: see text] which is consistent with an "inversion symmetry" constraint from which the Minkowski norm results. In this context, the latter is also characterized as one member of a class of "inverse norms" which play major roles with respect to various unital [Formula: see text]-algebras more generally.

  8. Magma evolution inside the 1631 Vesuvius magma chamber and eruption triggering

    Science.gov (United States)

    Stoppa, Francesco; Principe, Claudia; Schiazza, Mariangela; Liu, Yu; Giosa, Paola; Crocetti, Sergio

    2017-03-01

    Vesuvius is a high-risk volcano and the 1631 Plinian eruption is a reference event for the next episode of explosive unrest. A complete stratigraphic and petrographic description of 1631 pyroclastics is given in this study. During the 1631 eruption a phonolite was firstly erupted followed by a tephritic phonolite and finally a phonolitic tephrite, indicating a layered magma chamber. We suggest that phonolitic basanite is a good candidate to be the primitive parental-melt of the 1631 eruption. Composition of apatite from the 1631 pyroclastics is different from those of CO2-rich melts indicating negligible CO2 content during magma evolution. Cross checking calculations, using PETROGRAPH and PELE software, accounts for multistage evolution up to phonolite starting from a phonolitic basanite melt similar to the Vesuvius medieval lavas. The model implies crystal settling of clinopyroxene and olivine at 6 kbar and 1220°C, clinopyroxene plus leucite at a pressure ranging from 2.5 to 0.5 kbar and temperature ranging from 1140 to 940°C. Inside the phonolitic magma chamber K-feldspar and leucite would coexist at a temperature ranging from from 940 to 840°C and at a pressure ranging from 2.5 to0.5 kbar. Thus crystal fractionation is certainly a necessary and probably a sufficient condition to evolve the melt from phono tephritic to phonolitic in the 1631 magma chamber. We speculate that phonolitic tephrite magma refilling from deeper levels destabilised the chamber and triggered the eruption, as testified by the seismic precursor phenomena before 1631 unrest.

  9. Magma evolution inside the 1631 Vesuvius magma chamber and eruption triggering

    Directory of Open Access Journals (Sweden)

    Stoppa Francesco

    2017-03-01

    Full Text Available Vesuvius is a high-risk volcano and the 1631 Plinian eruption is a reference event for the next episode of explosive unrest. A complete stratigraphic and petrographic description of 1631 pyroclastics is given in this study. During the 1631 eruption a phonolite was firstly erupted followed by a tephritic phonolite and finally a phonolitic tephrite, indicating a layered magma chamber. We suggest that phonolitic basanite is a good candidate to be the primitive parental-melt of the 1631 eruption. Composition of apatite from the 1631 pyroclastics is different from those of CO2-rich melts indicating negligible CO2 content during magma evolution. Cross checking calculations, using PETROGRAPH and PELE software, accounts for multistage evolution up to phonolite starting from a phonolitic basanite melt similar to the Vesuvius medieval lavas. The model implies crystal settling of clinopyroxene and olivine at 6 kbar and 1220°C, clinopyroxene plus leucite at a pressure ranging from 2.5 to 0.5 kbar and temperature ranging from 1140 to 940°C. Inside the phonolitic magma chamber K-feldspar and leucite would coexist at a temperature ranging from from 940 to 840°C and at a pressure ranging from 2.5 to0.5 kbar. Thus crystal fractionation is certainly a necessary and probably a sufficient condition to evolve the melt from phono tephritic to phonolitic in the 1631 magma chamber. We speculate that phonolitic tephrite magma refilling from deeper levels destabilised the chamber and triggered the eruption, as testified by the seismic precursor phenomena before 1631 unrest.

  10. Volatility in Equilibrium

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Sizova, Natalia; Tauchen, George

    Stock market volatility clusters in time, carries a risk premium, is fractionally inte- grated, and exhibits asymmetric leverage effects relative to returns. This paper develops a first internally consistent equilibrium based explanation for these longstanding empirical facts. The model is cast i......, and the dynamic cross-correlations of the volatility measures with the returns calculated from actual high-frequency intra-day data on the S&P 500 aggregate market and VIX volatility indexes....

  11. Mantle enrichment by volatiles as the Nazca plate subducts beneath the Payenia backarc of the Southern Volcanic Zone, Argentina

    DEFF Research Database (Denmark)

    Brandt, Frederik Ejvang

    The thesis is a contribution towards the understanding of the generation of the source mantle for magmas related to the subduction of the Nazca plate under South America with an emphasis on the geochemistry of the volatiles Cl, F, S, H2O and CO2. The study presents analytical data for tephra, min...

  12. Constraining the volatile budget of the lunar interior

    Science.gov (United States)

    Potts, N. J.; Bromiley, G. D.

    2017-12-01

    Measurements of volatiles (F, Cl, S, H2O) in a range of lunar samples confirm the presence of volatile material in lunar magmas. It remains unknown, however, where this volatile material is stored and when it was delivered to the Moon. On Earth, point defects within mantle olivine, and its high-pressure polymorphs, are thought to be the largest reservoir of volatile material. However, as volatiles have been cycled into and out of the Earth's mantle throughout geological time, via subduction and volcanism, this masks any original volatile signatures. As the Moon has no plate tectonics, it is expected that any volatile material present in the deep lunar interior would have been inherited during accretion and differentiation, providing insight into the delivery of volatiles to the early Earth-Moon system. Our aim was, therefore, to test the volatile storage capacity of the deep lunar mantle and determine mineral/melt partitioning for key volatiles. Experiments were performed in a primitive lunar mantle composition and run at relevant T, P, and at fO2 below the IW buffer. Experiments replicated the initial stages of LMO solidification with either olivine + melt, olivine + pyroxene + melt, or pyroxene + melt as the only phases present. Mineral-melt partition coefficients (Dx) derived for volatile material (F, Cl, S, H2O) vary significantly compared to those derived for terrestrial conditions. An order of magnitude more H2O was found to partition into lunar olivine compared to the terrestrial upper mantle. DF derived for lunar olivine are comparable to the highest terrestrial derived values whilst no Cl was found to partition into lunar olivine under these conditions. Furthermore, an inverse trend between DF and DOH hints towards coupled-substitution mechanisms between H and F under low-fO2/lunar bulk composition. These results suggest that if volatile material was present in the LMO a significant proportion could be partitioned into the lower lunar mantle. The

  13. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber.

    Science.gov (United States)

    Burchardt, Steffi; Troll, Valentin R; Mathieu, Lucie; Emeleus, Henry C; Donaldson, Colin H

    2013-10-08

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system.

  14. Magmatic Volatiles as an Amplifier of Centrifugal Volcanism

    Science.gov (United States)

    Pratt, V. R.

    2017-12-01

    There is a striking correlation between negated Length of Day -LOD and the 60-70 year period in 20th century global climate, associated by some with the so-called Atlantic Multidecadal Oscillation or AMO. A number of authors have suggested mechanisms by which the former might cause the latter. One such that this author finds quite compelling is that gravity fluctuations at low latitudes increase essentially linearly with LOD fluctuations and therefore moves magma towards or away from the surface as LOD decreases or increases, i.e. angular velocity increases or decreases, respectively. At AGU FM2016 we proposed the term "centrifugal volcanism" for this mechanism and listed four possible objections to it, explaining three to our satisfaction. The remaining objection is the very obvious one that the 4 ms increase in LOD between 1880 and 1910 seems far too small to be able to account for the observed variation of about a quarter of a degree. A basic mechanism underlying many violent eruptions is the strong positive feedback between reduction of pressure in magma and evaporation of dissolved volatiles found in some magmas, driving the magma outwards and thereby further reducing the pressure. The normal state of magma is equilibrium. Any fluctuation in gravity, even a very small one, can be sufficient to shift this equilibrium sufficiently far to set this positive feedback in motion. The relevant electrical analogy would be an operational amplifier whose amplification is greatly increased by a positive feedback. We therefore propose that the same mechanism responsible for some violent eruptions also serves to amplify the tiny changes in gravity sufficiently to increase or decrease the vertical component of the movement of magma in general. This movement, felt throughout the planet albeit most strongly at low latitudes, influences the temperature at ocean bottoms wherever there is a significant level of magmatic volatiles. This in turn creates thermals that are large

  15. The role of crystallization-driven exsolution on the sulfur mass balance in volcanic arc magmas

    Science.gov (United States)

    Su, Yanqing; Huber, Christian; Bachmann, Olivier; Zajacz, Zoltán; Wright, Heather M.; Vazquez, Jorge A.

    2016-01-01

    The release of large amounts of sulfur to the stratosphere during explosive eruptions affects the radiative balance in the atmosphere and consequentially impacts climate for up to several years after the event. Quantitative estimations of the processes that control the mass balance of sulfur between melt, crystals, and vapor bubbles is needed to better understand the potential sulfur yield of individual eruption events and the conditions that favor large sulfur outputs to the atmosphere. The processes that control sulfur partitioning in magmas are (1) exsolution of volatiles (dominantly H2O) during decompression (first boiling) and during isobaric crystallization (second boiling), (2) the crystallization and breakdown of sulfide or sulfate phases in the magma, and (3) the transport of sulfur-rich vapor (gas influx) from deeper unerupted regions of the magma reservoir. Vapor exsolution and the formation/breakdown of sulfur-rich phases can all be considered as closed-system processes where mass balance arguments are generally easier to constrain, whereas the contribution of sulfur by vapor transport (open system process) is more difficult to quantify. The ubiquitous “excess sulfur” problem, which refers to the much higher sulfur mass released during eruptions than what can be accounted for by amount of sulfur originally dissolved in erupted melt, as estimated from melt inclusion sulfur concentrations (the “petrologic estimate”), reflects the challenges in closing the sulfur mass balance between crystals, melt, and vapor before and during a volcanic eruption. In this work, we try to quantify the relative importance of closed- and open-system processes for silicic arc volcanoes using kinetic models of sulfur partitioning during exsolution. Our calculations show that crystallization-induced exsolution (second boiling) can generate a significant fraction of the excess sulfur observed in crystal-rich arc magmas. This result does not negate the important role of

  16. Viscosity controlled magma-carbonate interaction: a comparison of Mt. Vesuvius (Italy) and Mt. Merapi (Indonesia).

    Science.gov (United States)

    Blythe, L. S.; Misiti, V.; Masotta, M.; Taddeucci, J.; Freda, C.; Troll, V. R.; Deegan, F. M.; Jolis, E. M.

    2012-04-01

    Magma-carbonate interaction is increasingly seen as a viable and extremely important cause of magma contamination, and the generation of a crustally sourced CO2 phase (Goff et al., 2001; Freda et al., 2010). Even though the process is well recognized at certain volcanoes e.g. Popocatépetl, (Mexico); Merapi, (Indonesia); and Colli Albani, (Italy) (Goff et al., 2001; Deegan et al., 2010; Freda et al., 2010), neither the kinetics of carbonate assimilation nor its consequences for controlling the explosivity of eruptions have been constrained. Here we show the results of magma-carbonate interaction experiments conducted at 1200 °C and 0.5 GPa for varying durations (0 s, 60 s, 90 s and 300 s) for the Mt. Merapi (Indonesia) and Mt. Vesuvius (Italy) volcanic systems. We performed experiments using glassy starting materials specific to each volcano (shoshonite for Mt. Vesuvius, basaltic-andesite for Mt. Merapi) with different degrees of hydration (anhydrous vs hydration with ~ 2 wt % water) and using carbonate fragments of local origin; see Deegan et al., (2010) and Jolis et al., (2011). Experimental products include a gas phase (CO2-rich) and two melt phases, one pristine (Ca-normal) and one contaminated (Ca-rich) separated by a 'contamination front' which propagates outwards from the carbonate clast. Vesicles appear to nucleate in the contaminated glass and then migrate into the pristine one. Both contamination front propagation and bubble migration away from the carbonate are slower in anhydrous basaltic-andesite (Merapi anhydrous series) than in hydrated basaltic-andesite and shoshonite (Merapi and Vesuvius hydrated series), suggesting that assimilation speed is strongly controlled by the degree of hydration and the SiO2 content, both of which influence melt viscosity and hence diffusivity. As the carbonate dissolution proceeds in our experiments, initially dissolved and eventually exsolved CO2 builds up in the contaminated Ca-rich melt phase. Once melt volatile

  17. Quantitative evaluation of the effect of H2O degassing on the oxidation state of magmas

    Science.gov (United States)

    Lange, R. A.; Waters, L.

    2014-12-01

    The extent to which degassing of the H2O component affects the oxidation state of hydrous magmas is widely debated. Several researchers have examined how degassing of mixed H-C-O-S-Cl fluids may change the Fe3+/FeT ratio of various magmas, whereas our focus is on the H2O component. There are two ways that degassing of H2O by itself may cause oxidation: (1) the reaction: H2O (melt) + 2FeO (melt) = H2 (fluid) + Fe2O3 (melt), and/or (2) if dissolved water preferentially enhances the activity of ferrous vs. ferric iron in magmatic liquids. In this study, a comparison is made between the pre-eruptive oxidation states of 14 crystal-poor, jet-black obsidian samples (obtained from two Fe-Ti oxides) and their post-eruptive values (analyzed with the Wilson 1960 titration method tested against USGS standards). The obsidians are from Medicine Lake (CA), Long Valley (CA), and the western Mexican arc; all have low FeOT (1.1-2.1 wt%), rendering their Fe2+/Fe3+ ratios highly sensitive to the possible effects of substantial H2O degassing. The Fe-Ti oxide thermometer/oxybarometer of Ghiorso and Evans, (2008) gave temperatures for the 14 samples that range for 720 to 940°C and ΔNNO values of -0.9 to +1.4. With temperature known, the plagioclase-liquid hygrometer was applied and show that ≤ 6.5 wt% H2O was dissolved in the melts prior to eruption. In addition, pre-eruptive Cl and S concentrations were constrained on the basis of apatite analyses (Webster et al., 2009) and sulfur concentrations needed for saturation with pyrrhotite (Clemente et al., 2004), respectively. Maximum pre-eruptive chlorine and sulfur contents are 6000 and 200 ppm, respectively. After eruption, the rhyolites lost nearly all of their volatiles. Our results indicate no detectable change between pre- and post-eruptive Fe2+ concentrations, with an average deviation of ± 0.1 wt % FeO. Although degassing of large concentrations of S and/or Cl may affect the oxidation state of magmas, at the pre-eruptive levels

  18. Fault-magma interactions during early continental rifting: Seismicity of the Magadi-Natron-Manyara basins, Africa

    Science.gov (United States)

    Weinstein, A.; Oliva, S. J.; Ebinger, C. J.; Roecker, S.; Tiberi, C.; Aman, M.; Lambert, C.; Witkin, E.; Albaric, J.; Gautier, S.; Peyrat, S.; Muirhead, J. D.; Muzuka, A. N. N.; Mulibo, G.; Kianji, G.; Ferdinand-Wambura, R.; Msabi, M.; Rodzianko, A.; Hadfield, R.; Illsley-Kemp, F.; Fischer, T. P.

    2017-10-01

    Although magmatism may occur during the earliest stages of continental rifting, its role in strain accommodation remains weakly constrained by largely 2-D studies. We analyze seismicity data from a 13 month, 39-station broadband seismic array to determine the role of magma intrusion on state-of-stress and strain localization, and their along-strike variations. Precise earthquake locations using cluster analyses and a new 3-D velocity model reveal lower crustal earthquakes beneath the central basins and along projections of steep border faults that degas CO2. Seismicity forms several disks interpreted as sills at 6-10 km below a monogenetic cone field. The sills overlie a lower crustal magma chamber that may feed eruptions at Oldoinyo Lengai volcano. After determining a new ML scaling relation, we determine a b-value of 0.87 ± 0.03. Focal mechanisms for 65 earthquakes, and 13 from a catalogue prior to our array reveal an along-axis stress rotation of ˜60° in the magmatically active zone. New and prior mechanisms show predominantly normal slip along steep nodal planes, with extension directions ˜N90°E north and south of an active volcanic chain consistent with geodetic data, and ˜N150°E in the volcanic chain. The stress rotation facilitates strain transfer from border fault systems, the locus of early-stage deformation, to the zone of magma intrusion in the central rift. Our seismic, structural, and geochemistry results indicate that frequent lower crustal earthquakes are promoted by elevated pore pressures from volatile degassing along border faults, and hydraulic fracture around the margins of magma bodies. Results indicate that earthquakes are largely driven by stress state around inflating magma bodies.

  19. Fault-Magma Interactions during Early Continental Rifting: Seismicity of the Magadi-Natron-Manyara basins, Africa

    Science.gov (United States)

    Weinstein, A.; Oliva, S. J.; Ebinger, C.; Aman, M.; Lambert, C.; Roecker, S. W.; Tiberi, C.; Muirhead, J.

    2017-12-01

    Although magmatism may occur during the earliest stages of continental rifting, its role in strain accommodation remains weakly constrained by largely 2D studies. We analyze seismicity data from a 13-month, 39-station broadband seismic array to determine the role of magma intrusion on state-of-stress and strain localization, and their along-strike variations. Precise earthquake locations using cluster analyses and a new 3D velocity model reveal lower crustal earthquakes along projections of steep border faults that degas CO2. Seismicity forms several disks interpreted as sills at 6-10 km below a monogenetic cone field. The sills overlie a lower crustal magma chamber that may feed eruptions at Oldoinyo Lengai volcano. After determining a new ML scaling relation, we determine a b-value of 0.87 ± 0.03. Focal mechanisms for 66 earthquakes, and a longer time period of relocated earthquakes from global arrays reveal an along-axis stress rotation of 50 o ( N150 oE) in the magmatically active zone. Using Kostrov summation of local and teleseismic mechanisms, we find opening directions of N122ºE and N92ºE north and south of the magmatically active zone. The stress rotation facilitates strain transfer from border fault systems, the locus of early stage deformation, to the zone of magma intrusion in the central rift. Our seismic, structural, and geochemistry results indicate that frequent lower crustal earthquakes are promoted by elevated pore pressures from volatile degassing along border faults, and hydraulic fracture around the margins of magma bodies. Earthquakes are largely driven by stress state around inflating magma bodies, and more dike intrusions with surface faulting, eruptions, and earthquakes are expected.

  20. Intrusion of basaltic magma into a crystallizing granitic magma chamber: The Cordillera del Paine pluton in southern Chile

    Science.gov (United States)

    Michael, Peter J.

    1991-10-01

    The Cordillera del Paine pluton in the southernmost Andes of Chile represents a deeply dissected magma chamber where mafic magma intruded into crystallizing granitic magma. Throughout much of the 10x15 km pluton, there is a sharp and continuous boundary at a remarkably constant elevation of 1,100 m that separates granitic rocks (Cordillera del Paine or CP granite: 69 77% SiO2) which make up the upper levels of the pluton from mafic and comingled rocks (Paine Mafic Complex or PMC: 45 60% SiO2) which dominate the lower exposures of the pluton. Chilled, crenulate, disrupted contacts of mafic rock against granite demonstrate that partly crystallized granite was intruded by mafic magma which solidified prior to complete crystallization of the granitic magma. The boundary at 1,100 m was a large and stable density contrast between the denser, hotter mafic magma and cooler granitic magma. The granitic magma was more solidified near the margins of the chamber when mafic intrusion occurred, and the PMC is less disrupted by granites there. Near the pluton margins, the PMC grades upward irregularly from cumulate gabbros to monzodiorites. Mafic magma differentiated largely by fractional crystallization as indicated by the presence of cumulate rocks and by the low levels of compatible elements in most PMC rocks. The compositional gap between the PMC and CP granite indicates that mixing (blending) of granitic magma into the mafic magma was less important, although it is apparent from mineral assemblages in mafic rocks. Granitic magma may have incorporated small amounts of mafic liquid that had evolved to >60% SiO2 by crystallization. Mixing was inhibited by the extent of crystallization of the granite, and by the thermal contrast and the stable density contrast between the magmas. PMC gabbros display disequilibrium mineral assemblages including early formed zoned olivine (with orthopyroxene coronas), clinopyroxene, calcic plagioclase and paragasite and later-formed amphibole

  1. Volatile elements - water, carbon, nitrogen, noble gases - on Earth

    Science.gov (United States)

    Marty, B.

    2017-12-01

    Understanding the origin and evolution of life-bearing volatile elements (water, carbon, nitrogen) on Earth is a fruitful and debated area of research. In his pioneering work, W.W. Rubey inferred that the terrestrial atmosphere and the oceans formed from degassing of the mantle through geological periods of time. Early works on noble gas isotopes were consistent with this view and proposed a catastrophic event of mantle degassing early in Earth's history. We now have evidence, mainly from noble gas isotopes, that several cosmochemical sources contributed water and other volatiles at different stages of Earth's accretion. Potential contributors include the protosolar nebula gas that equilibrated with magma oceans, inner solar system bodies now represented by chondrites, and comets. Stable isotope ratios suggest volatiles where primarily sourced by planetary bodies from the inner solar system. However, recent measurements by the European Space Agency Rosetta probe on the coma of Comet 67P/Churyumov-Gerasimenko permit to set quantitative constraints on the cometary contribution to the surface of our planet. The surface and mantle reservoirs volatile elements exchanged volatile elements through time, with rates that are still uncertain. Some mantle regions remained isolated from whole mantle convection within the first tens to hundreds million years after start of solar system formation. These regions, now sampled by some mantle plumes (e.g., Iceland, Eifel) preserved their volatile load, as indicated by extinct and extant radioactivity systems. The abundance of volatile elements in the mantle is still not well known. Different approaches, such as high pressure experimental petrology, noble gas geochemistry, modelling, resulted in somewhat contrasted estimates, varying over one order of magnitude for water. Comparative planetology, that is, the study of volatiles on the Moon, Venus, Mars, Vesta, will shed light on the sources and strengths of these elements in the

  2. Discovering Mathematics with Magma Reducing the Abstract to the Concrete

    CERN Document Server

    Bosma, Wieb

    2006-01-01

    With a design based on the ontology and semantics of algebra, Magma enables users to rapidly formulate and perform calculations in the more abstract parts of mathematics. This book introduces the role Magma plays in advanced mathematical research through 14 case studies which, in most cases, describe computations underpinning theoretical results.

  3. Zircons reveal magma fluxes in the Earth's crust.

    Science.gov (United States)

    Caricchi, Luca; Simpson, Guy; Schaltegger, Urs

    2014-07-24

    Magma fluxes regulate the planetary thermal budget, the growth of continents and the frequency and magnitude of volcanic eruptions, and play a part in the genesis and size of magmatic ore deposits. However, because a large fraction of the magma produced on the Earth does not erupt at the surface, determinations of magma fluxes are rare and this compromises our ability to establish a link between global heat transfer and large-scale geological processes. Here we show that age distributions of zircons, a mineral often present in crustal magmatic rocks, in combination with thermal modelling, provide an accurate means of retrieving magma fluxes. The characteristics of zircon age populations vary significantly and systematically as a function of the flux and total volume of magma accumulated in the Earth's crust. Our approach produces results that are consistent with independent determinations of magma fluxes and volumes of magmatic systems. Analysis of existing age population data sets using our method suggests that porphyry-type deposits, plutons and large eruptions each require magma input over different timescales at different characteristic average fluxes. We anticipate that more extensive and complete magma flux data sets will serve to clarify the control that the global heat flux exerts on the frequency of geological events such as volcanic eruptions, and to determine the main factors controlling the distribution of resources on our planet.

  4. Understanding Financial Market Volatility

    NARCIS (Netherlands)

    A. Opschoor (Anne)

    2014-01-01

    markdownabstract__Abstract__ Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. Loosely speaking, volatility is defined as the average magnitude of fluctuations observed in some phenomenon over

  5. Improving Garch Volatility Forecasts

    NARCIS (Netherlands)

    Klaassen, F.J.G.M.

    1998-01-01

    Many researchers use GARCH models to generate volatility forecasts. We show, however, that such forecasts are too variable. To correct for this, we extend the GARCH model by distinguishing two regimes with different volatility levels. GARCH effects are allowed within each regime, so that our model

  6. Asymmetric Realized Volatility Risk

    NARCIS (Netherlands)

    D.E. Allen (David); M.J. McAleer (Michael); M. Scharth (Marcel)

    2014-01-01

    markdownabstract__Abstract__ In this paper we document that realized variation measures constructed from high-frequency returns reveal a large degree of volatility risk in stock and index returns, where we characterize volatility risk by the extent to which forecasting errors in realized

  7. U-series isotopes in arc magma

    Energy Technology Data Exchange (ETDEWEB)

    Hawkesworth, C.; Turner, S.; McDermott, F.; Peate, D.; Van Calsteren, P.

    1997-12-31

    Thorium is not readily mobilized in the fluid component along destructive plate margins. Uranium is mobilized, and the resultant fractionation in U/Th can be used to estimate the rates of transfer slab derived components through the mantle wedge. The variations in Th/Yb, and by implication in the fractionation-corrected Th abundances of arc magmas largely depend on the contributions from subducted sediments. It is inferred that the distinctive high Th/Ta ratios of subduction related magmas primarily reflect the Th/Ta ratios of the subducted sediments, and that such high Th/Ta ratios are generated by processes other than those associated with recent subduction-related magmatism. Uranium and thorium isotopes have also been used to evaluate magma residence times within the crust. Thus, separated minerals and groundmass from six rocks erupted in the last 4,000 years from Soufriere on St. Vincent in the Lesser Antilles, scatter about a 50,000 year errorchron on the U-Th equiline diagram (Heath et al., 1977). Models are currently being developed to investigate how such apparent ages may relate to calculated replenishment times in steady state systems. Bulk continental crust has a lower U/Th ratio (0.25) than at least some estimates for the bulk Earth (0.26) and the depleted upper mantle (0.39). However, the island arc rocks with low U/Th ratios appear to have inherited those from subducted sediments, and arc rocks with a low sediment contribution have significantly higher U/Th. Consequently, the U/Th ratios of new crustal material generated along destructive plate margins are significantly higher than those of bulk continental crust. The low average U/Th of bulk crust may be primarily due to different crust generation processes in the Archaean, when U would be less mobile because conditions were less oxidising, and when residual garnet may have had more of a role in crust generation processes. Extended abstract. 4 figs., 23 refs.

  8. Hydrogen isotopic fractionation during crystallization of the terrestrial magma ocean

    Science.gov (United States)

    Pahlevan, K.; Karato, S. I.

    2016-12-01

    Models of the Moon-forming giant impact extensively melt and partially vaporize the silicate Earth and deliver a substantial mass of metal to the Earth's core. The subsequent evolution of the terrestrial magma ocean and overlying vapor atmosphere over the ensuing 105-6 years has been largely constrained by theoretical models with remnant signatures from this epoch proving somewhat elusive. We have calculated equilibrium hydrogen isotopic fractionation between the magma ocean and overlying steam atmosphere to determine the extent to which H isotopes trace the evolution during this epoch. By analogy with the modern silicate Earth, the magma ocean-steam atmosphere system is often assumed to be chemically oxidized (log fO2 QFM) with the dominant atmospheric vapor species taken to be water vapor. However, the terrestrial magma ocean - having held metallic droplets in suspension - may also exhibit a much more reducing character (log fO2 IW) such that equilibration with the overlying atmosphere renders molecular hydrogen the dominant H-bearing vapor species. This variable - the redox state of the magma ocean - has not been explicitly included in prior models of the coupled evolution of the magma ocean-steam atmosphere system. We find that the redox state of the magma ocean influences not only the vapor speciation and liquid-vapor partitioning of hydrogen but also the equilibrium isotopic fractionation during the crystallization epoch. The liquid-vapor isotopic fractionation of H is substantial under reducing conditions and can generate measurable D/H signatures in the crystallization products but is largely muted in an oxidizing magma ocean and steam atmosphere. We couple equilibrium isotopic fractionation with magma ocean crystallization calculations to forward model the behavior of hydrogen isotopes during this epoch and find that the distribution of H isotopes in the silicate Earth immediately following crystallization represents an oxybarometer for the terrestrial

  9. The volatility of HOL

    International Nuclear Information System (INIS)

    Wren, D.J.; Sanipelli, G.

    1985-01-01

    The volatility of HOI has been measured using a mass spectrometer to analyze the gas phase above an aqueous solution. The HOI in solution was generated continuously in a flow reactor that combined I/sup -/ and OCl/sup -/ solutions. The analysis has resulted in a lower limit of 6X10/sup 3/ mol . dm/sup -3/ . atm/sup -1/ for the equilibrium constant for the reaction HOI(g)/equilibrium/HOI(aq). This value is a factor 30 greater than the best previous estimate. This new limit for HOI volatility results in higher total iodine partition coefficients, particularly for solutions with pH>8. The upper limit for the equilibrium constant is consistent with essentially zero volatility for HOI. The effect of HOI volatility on total iodine volatility is briefly discussed as a function of solution chemistry and kinetics

  10. Modelling of Magma Density and Viscocity Changes and Their Influences towards the Characteristic of Kelud Volcano Eruption

    Directory of Open Access Journals (Sweden)

    Hanik Humaida

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i4.129The effusive eruption of Kelud Volcano in 2007 was different from the previous ones, which in general were more explosive. Among others, density and viscosity are factors that determine the type of eruption. Therefore, the study on the difference of the recent eruption style based on the density and viscosity of magma was carried out. The method used in this study was based on geochemical analysis of the rock and then a modeling was established by using the above parameter. The study on the explosive eruption was emphasized on the data of 1990 eruption, whereas the effusive eruption was based on the data of 2007 eruption. The result shows that the magma viscosity of Kelud Volcano depend on the H O concentration as one of the volatile compound in magma, and temperature which gives the exponential equation. The higher the increase of H O content the smaller the value of its viscosity as well as the higher the temperature. The H O content in silica fluid can break the polymer bond of the silica fluid, because a shorter polymer will produce a lower viscosity. The density of the silica content of Kelud Volcano ranges between andesitic and basaltic types, but andesite is more likely. The fluid density of the material of 1990 eruption is different from 2007 eruption. Compared to the 2007, the 1990 eruption material gave a lower density value in its silica fluid than that of the 2007 one. The low density value of the silica fluid of the 1990 eruption material was reflecting a more acid magma. The level of density value of silica fluid depends on its temperature. At the temperature of 1073 K the density of the 1990 Kelud magma is 2810 kg/m3 and the 2007 magma is 2818 kg/m3, whereas at a temperature of 1673 K, the density is 2672 kg/m3 and 2682 kg/m3 of the 1990 and 2007 eruptions respectively. A modeling by using an ideal gas law of Henry’s Law illustrated that the ascent of Kelud’s magma to the surface may cause changes

  11. Influence of volatile degassing on the eruptibility of large igneous province magmatic systems

    Science.gov (United States)

    Mittal, T.; Richards, M. A.

    2017-12-01

    Magmatic volatiles, in particular their buoyancy, may play a critical role in determining whether a magma reservoir can build up enough overpressure leading to drive flood basalt eruptions (Black & Manga 2017). Thus, it is important to understand the extent to which volatiles can remain trapped in a magmatic system and how they influence the eruptibility. Although the high-temperature metamorphic aureloe around a magma chamber is typically considered to have low permeability due to ductile creep, recent theoretical, experimental, and field work (e.g. Noriaki et al. 2017) have highlighted the role of dynamic permeability in magmatic systems. Consequently, the effective permeability of the crust when magma is present in the system can be orders of magnitude larger than that of exhumed rock samples. We model dynamic permeability changes as a competition between hydro-fracturing (increased porosity) and fracture closure by ductile creep and hydrothermal mineral precipitation (reduced porosity) and find yearly-to-decadal time-scales for periodic fracturing and fluid loss events and an increase in average permeability. We then use a fully coupled poro-thermo-elastic framework to model to explore the macroscopic influence of volatile loss on the stress state of the crust in this higher time-averaged permeability setting. We derive new semi-analytical solutions and combine them with a magma chamber box model (modified from Degruyter & Huber 2014) to analyze system-scale dynamics for both basaltic and silicic magmatic systems. We find that passive degassing likely has a substantial temporal influence on the stress distribution in the crust and the highly crystalline mush zone immediately surrounding a magma reservoir, and find an additional scale : pore-pressure diffusion timescale that exerts a first-order control on the magnitude and frequency of volcanic eruptions. We also explore how disconnected magma batches interact indirectly with each other and its implications for

  12. Longevity of magma in the near subsurface

    International Nuclear Information System (INIS)

    Marsh, B.D.; Resmini, R.G.

    1992-01-01

    Small, sporadic occurrences of basaltic volcanism are particularly difficult to evaluate in terms of long term threat to mankind because of their short overall eruptive history. Insight into future eruptive vigor and possible subsurface magma storage may be furnished by studying the ages of crystals in the eruptive products themselves. In this paper, the authors do this by applying the method of crystal size distribution theory (CSD) to a stack of basaltic lavas within the Nevada test site; namely the Dome Mtn. lavas. Preliminary results suggest a pre-eruptive residence time of 10 - 20 years, decreasing with decreasing age of lava within the sequence. These times are similar to those found by M.T. Mangan for the 1959 Kilauea (Hawaii) eruptions, and may suggest a relatively vigorous magmatic system at this time some 8 m.y. ago. Work is progressing on a greatly expanded CSD analysis of the Dome Mtn. lavas

  13. Permeability During Magma Expansion and Compaction

    Science.gov (United States)

    Gonnermann, Helge. M.; Giachetti, Thomas; Fliedner, Céline; Nguyen, Chinh T.; Houghton, Bruce F.; Crozier, Joshua A.; Carey, Rebecca J.

    2017-12-01

    Plinian lapilli from the 1060 Common Era Glass Mountain rhyolitic eruption of Medicine Lake Volcano, California, were collected and analyzed for vesicularity and permeability. A subset of the samples were deformed at a temperature of 975°, under shear and normal stress, and postdeformation porosities and permeabilities were measured. Almost all undeformed samples fall within a narrow range of vesicularity (0.7-0.9), encompassing permeabilities between approximately 10-15 m2 and 10-10 m2. A percolation threshold of approximately 0.7 is required to fit the data by a power law, whereas a percolation threshold of approximately 0.5 is estimated by fitting connected and total vesicularity using percolation modeling. The Glass Mountain samples completely overlap with a range of explosively erupted silicic samples, and it remains unclear whether the erupting magmas became permeable at porosities of approximately 0.7 or at lower values. Sample deformation resulted in compaction and vesicle connectivity either increased or decreased. At small strains permeability of some samples increased, but at higher strains permeability decreased. Samples remain permeable down to vesicularities of less than 0.2, consistent with a potential hysteresis in permeability-porosity between expansion (vesiculation) and compaction (outgassing). We attribute this to retention of vesicle interconnectivity, albeit at reduced vesicle size, as well as bubble coalescence during shear deformation. We provide an equation that approximates the change in permeability during compaction. Based on a comparison with data from effusively erupted silicic samples, we propose that this equation can be used to model the change in permeability during compaction of effusively erupting magmas.

  14. Variations in magma supply rate at Kilauea Volcano, Hawaii

    Science.gov (United States)

    Dvorak, John J.; Dzurisin, Daniel

    1993-01-01

    When an eruption of Kilauea lasts more than 4 months, so that a well-defined conduit has time to develop, magma moves freely through the volcano from a deep source to the eruptive site at a constant rate of 0.09 km3/yr. At other times, the magma supply rate to Kilauea, estimated from geodetic measurements of surface displacements, may be different. For example, after a large withdrawal of magma from the summit reservoir, such as during a rift zone eruption, the magma supply rate is high initially but then lessens and exponentially decays as the reservoir refills. Different episodes of refilling may have different average rates of magma supply. During four year-long episodes in the 1960s, the annual rate of refilling varied from 0.02 to 0.18 km3/yr, bracketing the sustained eruptive rate of 0.09 km3/yr. For decade-long or longer periods, our estimate of magma supply rate is based on long-term changes in eruptive rate. We use eruptive rate because after a few dozen eruptions the volume of magma that passes through the summit reservoir is much larger than the net change of volume of magma stored within Kilauea. The low eruptive rate of 0.009 km3/yr between 1840 and 1950, compared to an average eruptive rate of 0.05 km3/yr since 1950, suggests that the magma supply rate was lower between 1840 and 1950 than it has been since 1950. An obvious difference in activity before and since 1950 was the frequency of rift zone eruptions: eight rift zone eruptions occurred between 1840 and 1950, but more than 20 rift zone eruptions have occurred since 1950. The frequency of rift zone eruptions influences magma supply rate by suddenly lowering pressure of the summit magma reservoir, which feeds magma to rift zone eruptions. A temporary drop of reservoir pressure means a larger-than-normal pressure difference between the reservoir and a deeper source, so magma is forced to move upward into Kilauea at a faster rate.

  15. Drilling Magma for Science, Volcano Monitoring, and Energy

    Science.gov (United States)

    Eichelberger, J. C.; Lavallée, Y.; Blankenship, D.

    2017-12-01

    Magma chambers are central to understanding magma evolution, formation of continental crust, volcanism, and renewal of hydrothermal systems. Information from geology, petrology, laboratory experiments, and geophysical imagery has led to little consensus except a trend to see magma systems as being crystal-dominant (mush) rather than melt dominant. At high melt viscosities, crystal-liquid fractionation may be achieved by separation of melt from mush rather than crystals from liquid suspension. That the dominant volume has properties more akin to solid than liquid might explain the difficulty in detecting magma geophysically. Recently, geothermal drilling has intersected silicic magma at the following depths and SiO2 contents are: Puna, Hawaii, 2.5 km, 67 wt%; Menengai, Kenya 2.1 km, 67 wt%; Krafla, Iceland, 2.1 km, 75 wt%. Some similarities are: 1) Drillers encountered a "soft", sticky formation; 2) Cuttings or chips of clear quenched glass were recovered; 3) The source of the glass flowed up the well; 4) Transition from solid rock to recovering crystal-poor glass occurred in tens of meters, apparently without an intervening mush zone. Near-liquidus magma at the roof despite rapid heat loss there presents a paradox that may be explained by very recent intrusion of magma, rise of liquidus magma to the roof replacing partially crystallized magma, or extremely skewed representation of melt over mush in cuttings (Carrigan et al, this session). The latter is known to occur by filter pressing of ooze into lava lake coreholes (Helz, this session), but cannot be verified in actual magma without coring. Coring to reveal gradients in phase composition and proportions is required for testing any magma chamber model. Success in drilling into and controlling magma at all three locations, in coring lava lakes to over 1100 C, and in numerical modeling of coring at Krafla conditions (Su, this session) show this to be feasible. Other unprecedented experiments are using the known

  16. Interior Volatile Reservoirs in Mercury

    Science.gov (United States)

    Anzures, B. A.; Parman, S. W.; Milliken, R. E.; Head, J. W.

    2018-05-01

    More measurements of 1) surface volatiles, and 2) pyroclastic deposits paired with experimental volatile analyses in silicate minerals can constrain conditions of melting and subsequent eruption on Mercury.

  17. Time-resolved seismic tomography detects magma intrusions at Mount Etna.

    Science.gov (United States)

    Patanè, D; Barberi, G; Cocina, O; De Gori, P; Chiarabba, C

    2006-08-11

    The continuous volcanic and seismic activity at Mount Etna makes this volcano an important laboratory for seismological and geophysical studies. We used repeated three-dimensional tomography to detect variations in elastic parameters during different volcanic cycles, before and during the October 2002-January 2003 flank eruption. Well-defined anomalous low P- to S-wave velocity ratio volumes were revealed. Absent during the pre-eruptive period, the anomalies trace the intrusion of volatile-rich (>/=4 weight percent) basaltic magma, most of which rose up only a few months before the onset of eruption. The observed time changes of velocity anomalies suggest that four-dimensional tomography provides a basis for more efficient volcano monitoring and short- and midterm eruption forecasting of explosive activity.

  18. Magma Ocean Depth and Oxygen Fugacity in the Early Earth--Implications for Biochemistry.

    Science.gov (United States)

    Righter, Kevin

    2015-09-01

    A large class of elements, referred to as the siderophile (iron-loving) elements, in the Earth's mantle can be explained by an early deep magma ocean on the early Earth in which the mantle equilibrated with metallic liquid (core liquid). This stage would have affected the distribution of some of the classic volatile elements that are also essential ingredients for life and biochemistry - H, C, S, and N. Estimates are made of the H, C, S, and N contents of Earth's early mantle after core formation, considering the effects of variable temperature, pressure, oxygen fugacity, and composition on their partitioning. Assessment is made of whether additional, exogenous, sources are required to explain the observed mantle concentrations, and areas are identified where additional data and experimentation would lead to an improved understanding of this phase of Earth's history.

  19. Experimental simulation of magma-carbonate interaction beneath Mt. Vesuvius, Italy

    Science.gov (United States)

    Jolis, E. M.; Freda, C.; Troll, V. R.; Deegan, F. M.; Blythe, L. S.; McLeod, C. L.; Davidson, J. P.

    2013-11-01

    We simulated the process of magma-carbonate interaction beneath Mt. Vesuvius in short duration piston-cylinder experiments under controlled magmatic conditions (from 0 to 300 s at 0.5 GPa and 1,200 °C), using a Vesuvius shoshonite composition and upper crustal limestone and dolostone as starting materials. Backscattered electron images and chemical analysis (major and trace elements and Sr isotopes) of sequential experimental products allow us to identify the textural and chemical evolution of carbonated products during the assimilation process. We demonstrate that melt-carbonate interaction can be extremely fast (minutes), and results in dynamic contamination of the host melt with respect to Ca, Mg and 87Sr/86Sr, coupled with intense CO2 vesiculation at the melt-carbonate interface. Binary mixing between carbonate and uncontaminated melt cannot explain the geochemical variations of the experimental charges in full and convection and diffusion likely also operated in the charges. Physical mixing and mingling driven by exsolving volatiles seems to be a key process to promote melt homogenisation. Our results reinforce hypotheses that magma-carbonate interaction is a relevant and ongoing process at Mt. Vesuvius and one that may operate not only on a geological, but on a human timescale.

  20. Pluto's Volatile Transport

    Science.gov (United States)

    Young, Leslie

    2012-10-01

    Pluto's varying subsolar latitude and heliocentric distance leads to large variations in the surface volatile distribution and surface pressure. I present results of new volatile transport models (Young 2012a, b). The models include insolation, thermal emission, subsurface conduction, heating of a volatile slab, internal heat flux, latent heat of sublimation, and strict global mass balance. Numeric advances include initial conditions that allow for rapid convergence, efficient computation with matrix arithmetic, and stable Crank-Nicholson timesteps for both bare and volatile-covered areas. Runs of the model show six distinct seasons on Pluto. (1) As Pluto approaches perihelion, the volatiles on the old winter pole (the Rotational North Pole, RNP) becomes more directly illuminated , and the pressure and albedo rise rapidly. (2) When a new ice cap forms on the Rotational South Pole, RSP, volatiles are exchanged between poles. The pressure and albedo change more slowly. (3) When all volatiles have sublimed from the RNP, the albedo and pressure drop rapidly. (4-6) A similar pattern is repeated near aphelion with a reversal of the roles and the poles. I will compare results with earlier Pluto models of Hansen and Paige (1996), show the dependence on parameters such as substrate inertia, and make predictions for the New Horizons flyby of Pluto in 2015. This work was supported, in part, by funding from NASA Planetary Atmospheres Grant NNG06GF32G and the Spitzer project (JPL research support Agreement 1368573). Hansen, C. J. and D. A. Paige 1996. Seasonal Nitrogen Cycles on Pluto. Icarus 120, 247-265. Young, L. A. 2012a. Volatile transport on inhomogeneous surfaces: I - Analytic expressions, with application to Pluto’s day. Icarus, in press Young, L. A. 2012b. Volatile transport on inhomogeneous surfaces: II. Numerical calculations, with application to Pluto's season. In preparation.

  1. MAGMA: analysis of two-channel microarrays made easy.

    Science.gov (United States)

    Rehrauer, Hubert; Zoller, Stefan; Schlapbach, Ralph

    2007-07-01

    The web application MAGMA provides a simple and intuitive interface to identify differentially expressed genes from two-channel microarray data. While the underlying algorithms are not superior to those of similar web applications, MAGMA is particularly user friendly and can be used without prior training. The user interface guides the novice user through the most typical microarray analysis workflow consisting of data upload, annotation, normalization and statistical analysis. It automatically generates R-scripts that document MAGMA's entire data processing steps, thereby allowing the user to regenerate all results in his local R installation. The implementation of MAGMA follows the model-view-controller design pattern that strictly separates the R-based statistical data processing, the web-representation and the application logic. This modular design makes the application flexible and easily extendible by experts in one of the fields: statistical microarray analysis, web design or software development. State-of-the-art Java Server Faces technology was used to generate the web interface and to perform user input processing. MAGMA's object-oriented modular framework makes it easily extendible and applicable to other fields and demonstrates that modern Java technology is also suitable for rather small and concise academic projects. MAGMA is freely available at www.magma-fgcz.uzh.ch.

  2. Forecasting magma-chamber rupture at Santorini volcano, Greece.

    Science.gov (United States)

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-10-28

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011-2012 unrest period, that the measured 0.02% increase in volume of Santorini's shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano.

  3. Xe isotopic constraints on cycling of deep Earth volatiles

    Science.gov (United States)

    Parai, R.; Mukhopadhyay, S.

    2017-12-01

    The modern deep Earth volatile budget reflects primordial volatiles delivered during accretion, radiogenic ingrowth of volatile species (e.g., 40Ar produced by 40K decay), outgassing in association with mantle processing, and regassing via subduction. The noble gases are unique volatile tracers in that they are chemically inert, but are thought to be trapped within hydrous alteration phases in downwelling lithologies. Noble gases thus provide a tracer of volatile transport between the deep Earth and surface reservoirs. Constraints on the fluxes of noble gases between deep Earth and surface reservoirs over time can accordingly be used to provide insight into temperature conditions at subduction zones, limits on volatile cycling, and the evolving distribution of major volatile species in terrestrial reservoirs over time. Xe isotope systematics in mantle-derived rocks show that 80-90% of the mantle Xe budget is derived from recycling of atmospheric Xe, indicating that atmospheric Xe is retained in subducting slabs beyond depths of magma generation in subduction zones over Earth history. We present an integrated model of Xe cycling between the mantle and atmosphere in association with mantle processing over Earth history. We test a wide variety of outgassing and regassing rates and take the evolution of the atmospheric Xe isotopic composition [e.g., 1] into account. Models in which the deep Earth transitions from a net outgassing to net regassing regime best satisfy Xe isotopic constraints from mantle-derived rocks [2-6]. [1] Avice et al., 2017; Nature Communications, 8; [2] Mukhopadhyay, 2012, Nature 486, 101-104; [3] Parai et al., 2012, EPSL 359-360, 227-239; [4] Parai and Mukhopadhay, 2015, G-cubed 16, 719-735; [5] Peto et al., 2013, EPSL 369-370, 13-23; [6] Tucker et al., 2012, EPSL 355-356, 244-254.

  4. Magma paths at Piton de la Fournaise Volcano

    OpenAIRE

    Michon , Laurent; Ferrazzini , Valérie; Di Muro , Andrea

    2016-01-01

    International audience; Several patterns of magma paths have been proposed since the 1980s for Piton de la Fournaise volcano. Given the significant differences, which are presented here, we propose a reappraisal of the magma intrusion paths using a 17-years-long database of volcano-tectonic seismic events and a detailed mapping of the scoria cones. At the edifice scale, the magma propagates along two N120 trending rift zones. They are wide, linear, spotted by small to large scoria cones and r...

  5. Short-circuiting magma differentiation from basalt straight to rhyolite?

    Science.gov (United States)

    Ruprecht, P.; Winslow, H.

    2017-12-01

    Silicic magmas are the product of varying degrees of crystal fractionation and crustal assimilation/melting. Both processes lead to differentiation that is step-wise rather than continuous for example during melt separation from a crystal mush (Dufek and Bachmann, 2010). However, differentiation is rarely efficient enough to evolve directly from a basaltic to a rhyolitic magma. At Volcán Puyehue-Cordón Caulle, Chile, the magma series is dominated by crystal fractionation where mixing trends between primitive and felsic end members in the bulk rock compositions are almost absent (e.g. P, FeO, TiO2 vs. SiO2). How effective fraction is in this magmatic system is not well-known. The 2011-12 eruption at Cordón Caulle provides new constraints that rhyolitic melts may be derived directly from a basaltic mush. Minor, but ubiquitous mafic, crystal-rich enclaves co-erupted with the predominantly rhyolitic near-aphyric magma. These enclaves are among the most primitive compositions erupted at Puyehue-Cordón Caulle and geochemically resemble closely basaltic magmas that are >10 ka old (Singer et al. 2008) and that have been identified as a parental tholeiitic mantle-derived magma (Schmidt and Jagoutz, 2017) for the Southern Andean Volcanic Zone. The vesiculated nature, the presence of a microlite-rich groundmass, and a lack of a Eu anomaly in these encalves suggest that they represent recharge magma/mush rather than sub-solidus cumulates and therefore have potentially a direct petrogenetic link to the erupted rhyolites. Our results indicate that under some conditions crystal fractionation can be very effective and the presence of rhyolitic magmas does not require an extensive polybaric plumbing system. Instead, primitive mantle-derived magmas source directly evolved magmas. In the case, of the magma system beneath Puyehue-Cordón Caulle, which had three historic rhyolitic eruptions (1921-22, 1960, 2011-12) these results raise the question whether rhyolite magma extraction

  6. Genesis of felsic plutonic magmas and their igneous enclaves

    DEFF Research Database (Denmark)

    Clemens, John D.; Maas, Roland; Waight, Tod Earle

    2016-01-01

    -type Pyalong pluton was emplaced, apparently along an east-west-orientated fracture zone. Around 367 Ma, the main I-type Baynton pluton intruded as numerous shallow-dipping sheets. The last plutonic event was the intrusion of the broad, thin, flat-lying, and crosscutting sheet of the I-type Beauvallet pluton...... the relatively high abundance of igneous-textured microgranular enclaves (MEs). The MEs show neither chemical nor isotope mixing trends with each other or with the host magmas. Variations in the Baynton magmas were derived from the heterogeneity of the source terrane, with individual magma batches formed from...

  7. Non-volatile memories

    CERN Document Server

    Lacaze, Pierre-Camille

    2014-01-01

    Written for scientists, researchers, and engineers, Non-volatile Memories describes the recent research and implementations in relation to the design of a new generation of non-volatile electronic memories. The objective is to replace existing memories (DRAM, SRAM, EEPROM, Flash, etc.) with a universal memory model likely to reach better performances than the current types of memory: extremely high commutation speeds, high implantation densities and retention time of information of about ten years.

  8. Why Is There an Abrupt Transition from Solid Rock to Low Crystallinity Magma in Drilled Magma Bodies?

    Science.gov (United States)

    Eichelberger, J. C.; Carrigan, C. R.; Sun, Y.; Lavallée, Y.

    2017-12-01

    We report on a preliminary evaluation, from basic principles of heat and mass transfer, on the unexpectedly abrupt transition from cuttings of solid rock to fragments of crystal poor glass during drilling into magma bodies. Our analysis is based on conditions determined and inferred for the 2009 IDDP-1 well in Krafla Caldera, which entered apparently liquidus rhyolite magma at about 900oC at a depth of 2104 m. Simple conduction would predict some 30 m of crystallization and partial crystallization since the latest time the magma could have been intruded, approximately 30 years prior to discovery by drilling. Option 1: The expected crystallization of magma has occurred but interstitial melt remains. The pressure difference between lithostatic load of about 50 MPa on the mush and 20 MPa hydrostatic pressure in the well causes pore melt to flow from the permeable mush into the borehole, where it becomes the source of the quenched melt chips. To be viable, this mechanism must work over the time frame of a day. Option 2: The expected crystallization is occurring, but high Rayleigh number thermal convection in the magma chamber continuously displaces crystallizing roof magma by liquidus magma from the interior of the body. To be viable, this mechanism must result in overturning magma in the chamber on a time scale that is much shorter than that of crystallization. Option 3: Flow-induced crystal migration away from zones of high shear created during drilling into magma may preferentially produce low-crystal-content melt at the boundary of the borehole, which is then sampled.

  9. American options under stochastic volatility

    NARCIS (Netherlands)

    Chockalingam, A.; Muthuraman, K.

    2011-01-01

    The problem of pricing an American option written on an underlying asset with constant price volatility has been studied extensively in literature. Real-world data, however, demonstrate that volatility is not constant, and stochastic volatility models are used to account for dynamic volatility

  10. Using fumarolic inert gas composition to investigate magma dynamics at Campi Flegrei (Italy)

    Science.gov (United States)

    Chiodini, G.; Caliro, S.; Paonita, A.; Cardellini, C.

    2013-12-01

    volatiles, inert gases are the preferred species to achieve information on the dynamics and structure of the magma plumbing systems.

  11. Volatiles produced by the mycophagous soil bacterium Collimonas

    NARCIS (Netherlands)

    Garbeva, P.; Hordijk, C.; Gerards, S.; Boer, de W.

    2014-01-01

    It is increasingly recognized that volatile organic compounds play an import role during interactions between soil microorganisms. Here, we examined the possible involvement of volatiles in the interaction of Collimonas bacteria with soil fungi. The genus Collimonas is known for its ability to grow

  12. Sodium channels as targets for volatile anesthetics

    Directory of Open Access Journals (Sweden)

    Karl F. Herold

    2012-03-01

    Full Text Available The molecular mechanisms of modern inhaled anesthetics although widely used in clinical settings are still poorly understood. Considerable evidence supports effects on membrane proteins such as ligand- and voltage-gated ion channels of excitable cells. Na+ channels are crucial to action potential initiation and propagation, and represent potential targets for volatile anesthetics. Inhibition of presynaptic Na+ channels leads to reduced neurotransmitter release at the synapse and could therefore contribute to the mechanisms by which volatile anesthetics produce their characteristic effects: amnesia, unconsciousness, and immobility. Early studies on crayfish and squid giant axon showed inhibition of Na+ currents by volatile anesthetics. Subsequent studies using native neuronal preparations and heterologous expression systems with various mammalian Na+ channel isoforms implicated inhibition of presynaptic Na+ channels in anesthetic actions. Volatile anesthetics reduce peak Na+ current and shift the voltage of half-maximal steady-state inactivation towards more negative potentials, thus stabilizing the fast-inactivated state. Furthermore recovery from fast-inactivation is slowed together with an enhanced use-dependent block during pulse train protocols. These effects can reduce neurotransmitter release by depressing presynaptic excitability, depolarization and Ca entry, and ultimately transmitter release. This reduction in transmitter release is more portent for glutamatergic vs. GABAergic terminals. Involvement of Na+ channel inhibition in mediating the immobility caused by volatile anesthetics has been demonstrated in animal studies, in which intrathecal infusion of the Na+ channel blocker tetrodotoxin increases volatile anesthetic potency, whereas infusion of the Na+ channels agonist veratridine reduces anesthetic potency. These studies indicate that inhibition of presynaptic Na+ channels by volatile anesthetics is involved in mediating some of

  13. Water Partitioning in Planetary Embryos and Protoplanets with Magma Oceans

    Science.gov (United States)

    Ikoma, M.; Elkins-Tanton, L.; Hamano, K.; Suckale, J.

    2018-06-01

    The water content of magma oceans is widely accepted as a key factor that determines whether a terrestrial planet is habitable. Water ocean mass is determined as a result not only of water delivery and loss, but also of water partitioning among several reservoirs. Here we review our current understanding of water partitioning among the atmosphere, magma ocean, and solid mantle of accreting planetary embryos and protoplanets just after giant collisions. Magma oceans are readily formed in planetary embryos and protoplanets in their accretion phase. Significant amounts of water are partitioned into magma oceans, provided the planetary building blocks are water-rich enough. Particularly important but still quite uncertain issues are how much water the planetary building blocks contain initially and how water goes out of the solidifying mantle and is finally degassed to the atmosphere. Constraints from both solar-system explorations and exoplanet observations and also from laboratory experiments are needed to resolve these issues.

  14. Understanding the rheology of two and three-phase magmas

    Science.gov (United States)

    Coats, R.; Cai, B.; Kendrick, J. E.; Wallace, P. A.; Hornby, A. J.; Miwa, T.; von Aulock, F. W.; Ashworth, J. D.; Godinho, J.; Atwood, R. C.; Lee, P. D.; Lavallée, Y.

    2017-12-01

    The rheology of magma plays a fundamental role in determining the style of a volcanic eruption, be it explosive or effusive. Understanding how magmas respond to changes in stress/ strain conditions may help to enhance eruption forecast models. The presence of crystals and bubbles in magmas alter the viscosity of suspensions and favor a non-Newtonian response. Thus, with the aim of grasping the rheological behavior of volcanic materials, uniaxial compressive tests were performed on natural and synthetic samples. A suite of variably porous (10-32 vol.%), highly crystalline ( 50 vol.%) dacite from the 1991-95 eruption of Mt Unzen, Japan, was selected as the natural material, while synthetic samples were sintered with desired porosities (Diamond Light Source. Unexpectedly, these observations suggest that fractures nucleate in crystals due to crystal interactions, before propagating through the interstitial melt. This ongoing study promises to uncover the way crystal-bearing magmas flow or fail, necessary to constrain magmatic processes and volcanic hazards.

  15. Production and Preservation of Sulfide Layering in Mercury's Magma Ocean

    Science.gov (United States)

    Boukare, C.-E.; Parman, S. W.; Parmentier, E. M.; Anzures, B. A.

    2018-05-01

    Mercury's magma ocean (MMO) would have been sulfur-rich. At some point during MMO solidification, it likely became sulfide saturated. Here we present physiochemical models exploring sulfide layer formation and stability.

  16. Magma chamber processes in central volcanic systems of Iceland

    DEFF Research Database (Denmark)

    Þórarinsson, Sigurjón Böðvar; Tegner, Christian

    2009-01-01

    are composed of 2-10 m thick melanocratic layers rich in clinopyroxene and sometimes olivine, relative to the thicker overlying leucocratic oxide gabbros. While the overall compositional variation is limited (Mg# clinopyroxene 72-84; An% plagioclase 56-85), the melanocratic bases display spikes in Mg# and Cr2O......3 of clinopyroxene and magnetite indicative of magma replenishment. Some macrorhythmic units show mineral trends indicative of up-section fractional crystallisation over up to 100 m, whereas others show little variation. Two populations of plagioclase crystals (large, An-rich and small, less An......-rich) indicate that the recharge magma carried plagioclase xenocrysts (high An-type). The lack of evolved gabbros suggests formation in a dynamic magma chamber with frequent recharge, tapping and fractionation. Modelling of these compositional trends shows that the parent magma was similar to known transitional...

  17. Incremental assembly and prolonged consolidation of Cordilleran magma chambers--Evidence from the Southern Rocky Mountain volcanic field

    Science.gov (United States)

    Lipman, Peter W.

    2007-01-01

    Recent inference that Mesozoic Cordilleran plutons grew incrementally during >106 yr intervals, without the presence of voluminous eruptible magma at any stage, minimizes close associations with large ignimbrite calderas. Alternatively, Tertiary ignimbrites in the Rocky Mountains and elsewhere, with volumes of 1–5 × 103 km3, record multistage histories of magma accumulation, fractionation, and solidification in upper parts of large subvolcanic plutons that were sufficiently liquid to erupt. Individual calderas, up to 75 km across with 2–5 km subsidence, are direct evidence for shallow magma bodies comparable to the largest granitic plutons. As exemplified by the composite Southern Rocky Mountain volcanic field (here summarized comprehensively for the first time), which is comparable in areal extent, magma composition, eruptive volume, and duration to continental-margin volcanism of the central Andes, nested calderas that erupted compositionally diverse tuffs document deep composite subsidence and rapid evolution in subvolcanic magma bodies. Spacing of Tertiary calderas at distances of tens to hundreds of kilometers is comparable to Mesozoic Cordilleran pluton spacing. Downwind ash in eastern Cordilleran sediments records large-scale explosive volcanism concurrent with Mesozoic batholith growth. Mineral fabrics and gradients indicate unified flow-age of many pluton interiors before complete solidification, and some plutons contain ring dikes or other textural evidence for roof subsidence. Geophysical data show that low-density upper-crustal rocks, inferred to be plutons, are 10 km or more thick beneath many calderas. Most ignimbrites are more evolved than associated plutons; evidence that the subcaldera chambers retained voluminous residua from fractionation. Initial incremental pluton growth in the upper crust was likely recorded by modest eruptions from central volcanoes; preparation for caldera-scale ignimbrite eruption involved recurrent magma input and

  18. Shallow system rejuvenation and magma discharge trends at Piton de la Fournaise volcano (La Réunion Island)

    Science.gov (United States)

    Coppola, D.; Di Muro, A.; Peltier, A.; Villeneuve, N.; Ferrazzini, V.; Favalli, M.; Bachèlery, P.; Gurioli, L.; Harris, A. J. L.; Moune, S.; Vlastélic, I.; Galle, B.; Arellano, S.; Aiuppa, A.

    2017-04-01

    Basaltic magma chambers are often characterized by emptying and refilling cycles that influence their evolution in space and time, and the associated eruptive activity. During April 2007, the largest historical eruption of Piton de la Fournaise (Île de La Réunion, France) drained the shallow plumbing system (> 240 ×106 m3) and resulted in collapse of the 1-km-wide summit crater. Following these major events, Piton de la Fournaise entered a seven-year long period of near-continuous deflation interrupted, in June 2014, by a new phase of significant inflation. By integrating multiple datasets (lava discharge rates, deformation, seismicity, gas flux, gas composition, and lava chemistry), we here show that the progressive migration of magma from a deeper (below sea level) storage zone gradually rejuvenated and pressurized the above-sea-level portion of the magmatic system consisting of a vertically-zoned network of relatively small-volume magma pockets. Continuous inflation provoked four small (CO2 enrichment of summit fumaroles, and involving emission of less differentiated lavas, to end with, (iii) three short-lived (∼2 day-long) pulses in lava and gas flux, coupled with arrival of cumulative olivine at the surface and deflation. The activity observed at Piton de la Fournaise in 2014 and 2015 points to a new model of shallow system rejuvenation and discharge, whereby continuous magma supply causes eruptions from increasingly deeper and larger magma storage zones. Downward depressurization continues until unloading of the deepest, least differentiated magma triggers pulses in lava and gas flux, accompanied by rapid contraction of the volcano edifice, that empties the main shallow reservoir and terminates the cycle. Such an unloading process may characterize the evolution of shallow magmatic systems at other persistently active effusive centers.

  19. Seismic Tremors and Three-Dimensional Magma Wagging

    Science.gov (United States)

    Liao, Y.; Bercovici, D.

    2015-12-01

    Seismic tremor is a feature shared by many silicic volcanoes and is a precursor of volcanic eruption. Many of the characteristics of tremors, including their frequency band from 0.5 Hz to 7 Hz, are common for volcanoes with very different geophysical and geochemical properties. The ubiquitous characteristics of tremor imply that it results from some generation mechanism that is common to all volcanoes, instead of being unique to each volcano. Here we present new analysis on the magma-wagging mechanism that has been proposed to generate tremor. The model is based on the suggestion given by previous work (Jellinek & Bercovici 2011; Bercovici et.al. 2013) that the magma column is surrounded by a compressible, bubble-rich foam annulus while rising inside the volcanic conduit, and that the lateral oscillation of the magma inside the annulus causes observable tremor. Unlike the previous two-dimensional wagging model where the displacement of the magma column is restricted to one vertical plane, the three-dimensional model we employ allows the magma column to bend in different directions and has angular motion as well. Our preliminary results show that, without damping from viscous deformation of the magma column, the system retains angular momentum and develops elliptical motion (i.e., the horizontal displacement traces an ellipse). In this ''inviscid'' limit, the magma column can also develop instabilities with higher frequencies than what is found in the original two-dimensional model. Lateral motion can also be out of phase for various depths in the magma column leading to a coiled wagging motion. For the viscous-magma model, we predict a similar damping rate for the uncoiled magma column as in the two-dimensional model, and faster damping for the coiled magma column. The higher damping thus requires the existence of a forcing mechanism to sustain the oscillation, for example the gas-driven Bernoulli effect proposed by Bercovici et al (2013). Finally, using our new 3

  20. Magma chamber interaction giving rise to asymmetric oscillations

    Science.gov (United States)

    Walwer, D.; Ghil, M.; Calais, E.

    2017-12-01

    Geodetic time series at four volcanoes (Okmok, Akutan, Shishaldin, and Réunion) are processed using Multi-channel Singular Spectrum Analysis (M-SSA) and reveal sawtooth-shaped oscillations ; the latter are characterized by short intervals of fast inflations followed by longer intervals of slower deflations. At Okmok and Akutan, the oscillations are first damped and then accentuated. At Okmok, the increase in amplitude of the oscillations is followed by an eruption. We first show that the dynamics of these four volcanoes bears similarities with that of a simple nonlinear, dissipative oscillator, indicating that the inflation-deflation episodes are relaxation oscillations. These observations imply that ab initio dynamical models of magma chambers should possess an asymmetric oscillatory regime. Next, based on the work of Whitehead and Helfrich [1991], we show that a model of two magma chambers — connected by a cylindrical conduit in which the magma viscosity depends on temperature — gives rise to asymmetric overpressure oscillations in the magma reservoirs. These oscillations lead to surface deformations that are consistent with those observed at the four volcanoes in this study. This relaxation oscillation regime occurs only when the vertical temperature gradient in the host rock between the two magma chambers is large enough and when the magma flux entering the volcanic system is sufficiently high. The magma being supplied by a deeper source region, the input flux depends on the pressure difference between the source and the deepest reservoir. When this difference is not sufficiently high, the magma flux exponentially decreases, leading to damped oscillations as observed at Akutan and Okmok. The combination of observational and modeling results clearly supports the role of relaxation oscillations in the dynamics of volcanic systems.

  1. Crystalline heterogeneities and instabilities in thermally convecting magma chamber

    Science.gov (United States)

    Culha, C.; Suckale, J.; Qin, Z.

    2016-12-01

    A volcanic vent can supply different densities of crystals over an eruption time period. This has been seen in Hawai'i's Kilauea Iki 1959 eruption; however it is not common for all Kilauea or basaltic eruptions. We ask the question: Under what conditions can homogenous magma chamber cultivate crystalline heterogeneities? In some laboratory experiments and numerical simulations, a horizontal variation is observed. The region where crystals reside is identified as a retention zone: convection velocity balances settling velocity. Simulations and experiments that observe retention zones assume crystals do not alter the convection in the fluid. However, a comparison of experiments and simulations of convecting magma with crystals suggest that large crystal volume densities and crystal sizes alter fluid flow considerably. We introduce a computational method that fully resolves the crystalline phase. To simulate basaltic magma chambers in thermal convection, we built a numerical solver of the Navier-Stoke's equation, continuity equation, and energy equation. The modeled magma is assumed to be a viscous, incompressible fluid with a liquid and solid phase. Crystals are spherical, rigid bodies. We create Rayleigh-Taylor instability through a cool top layer and hot bottom layer and update magma density while keeping crystal temperature and size constant. Our method provides a detailed picture of magma chambers, which we compare to other models and experiments to identify when and how crystals alter magma chamber convection. Alterations include stratification, differential settling and instabilities. These characteristics are dependent on viscosity, convection vigor, crystal volume density and crystal characteristics. We reveal that a volumetric crystal density variation may occur over an eruption time period, if right conditions are met to form stratifications and instabilities in magma chambers. These conditions are realistic for Kilauea Iki's 1959 eruption.

  2. Experimental Fractional Crystallization of the Lunar Magma Ocean

    Science.gov (United States)

    Rapp, J. F.; Draper, D. S.

    2012-01-01

    The current paradigm for lunar evolution is of crystallization of a global scale magma ocean, giving rise to the anorthositic crust and mafic cumulate interior. It is thought that all other lunar rocks have arisen from this differentiated interior. However, until recently this paradigm has remained untested experimentally. Presented here are the first experimental results of fractional crystallization of a Lunar Magma Ocean (LMO) using the Taylor Whole Moon (TWM) bulk lunar composition [1].

  3. Magma Dynamics at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    D. Krier

    2005-01-01

    Small-volume basaltic volcanic activity at Yucca Mountain has been identified as one of the potential events that could lead to release of radioactive material from the U.S. Department of Energy (DOE) designated nuclear waste repository at Yucca Mountain. Release of material could occur indirectly as a result of magmatic dike intrusion into the repository (with no associated surface eruption) by changing groundwater flow paths, or as a result of an eruption (dike intrusion of the repository drifts, followed by surface eruption of contaminated ash) or volcanic ejection of material onto the Earth's surface and the redistribution of contaminated volcanic tephra. Either release method includes interaction between emplacement drifts and a magmatic dike or conduit, and natural (geologic) processes that might interrupt or halt igneous activity. This analysis provides summary information on two approaches to evaluate effects of disruption at the repository by basaltic igneous activity: (1) descriptions of the physical geometry of ascending basaltic dikes and their interaction with silicic host rocks similar in composition to the repository host rocks; and (2) a summary of calculations developed to quantify the response of emplacement drifts that have been flooded with magma and repressurized following blockage of an eruptive conduit. The purpose of these analyses is to explore the potential consequences that could occur during the full duration of an igneous event

  4. Magma Dynamics at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. Krier

    2005-08-29

    Small-volume basaltic volcanic activity at Yucca Mountain has been identified as one of the potential events that could lead to release of radioactive material from the U.S. Department of Energy (DOE) designated nuclear waste repository at Yucca Mountain. Release of material could occur indirectly as a result of magmatic dike intrusion into the repository (with no associated surface eruption) by changing groundwater flow paths, or as a result of an eruption (dike intrusion of the repository drifts, followed by surface eruption of contaminated ash) or volcanic ejection of material onto the Earth's surface and the redistribution of contaminated volcanic tephra. Either release method includes interaction between emplacement drifts and a magmatic dike or conduit, and natural (geologic) processes that might interrupt or halt igneous activity. This analysis provides summary information on two approaches to evaluate effects of disruption at the repository by basaltic igneous activity: (1) descriptions of the physical geometry of ascending basaltic dikes and their interaction with silicic host rocks similar in composition to the repository host rocks; and (2) a summary of calculations developed to quantify the response of emplacement drifts that have been flooded with magma and repressurized following blockage of an eruptive conduit. The purpose of these analyses is to explore the potential consequences that could occur during the full duration of an igneous event.

  5. The fluid dynamics of a basaltic magma chamber replenished by influx of hot, dense ultrabasic magma

    Science.gov (United States)

    Huppert, Herbert E.; Sparks, R. Stephen J.

    1981-09-01

    This paper describes a fluid dynamical investigation of the influx of hot, dense ultrabasic magma into a reservoir containing lighter, fractionated basaltic magma. This situation is compared with that which develops when hot salty water is introduced under cold fresh water. Theoretical and empirical models for salt/water systems are adapted to develop a model for magmatic systems. A feature of the model is that the ultrabasic melt does not immediately mix with the basalt, but spreads out over the floor of the chamber, forming an independent layer. A non-turbulent interface forms between this layer and the overlying magma layer across which heat and mass are transferred by the process of molecular diffusion. Both layers convect vigorously as heat is transferred to the upper layer at a rate which greatly exceeds the heat lost to the surrounding country rock. The convection continues until the two layers have almost the same temperature. The compositions of the layers remain distinct due to the low diffusivity of mass compared to heat. The temperatures of the layers as functions of time and their cooling rate depend on their viscosities, their thermal properties, the density difference between the layers and their thicknesses. For a layer of ultrabasic melt (18% MgO) a few tens of metres thick at the base of a basaltic (10% MgO) magma chamber a few kilometres thick, the temperature of the layers will become nearly identical over a period of between a few months and a few years. During this time the turbulent convective velocities in the ultrabasic layer are far larger than the settling velocity of olivines which crystallise within the layer during cooling. Olivines only settle after the two layers have nearly reached thermal equilibrium. At this stage residual basaltic melt segregates as the olivines sediment in the lower layer. Depending on its density, the released basalt can either mix convectively with the overlying basalt layer, or can continue as a separate

  6. Artificial magma program: Report on workshop held in Oak Ridge, Tennessee on March 29-30, 1994

    International Nuclear Information System (INIS)

    Naney, M.T.; Jacobs, G.K.

    1995-03-01

    A workshop was organized and conducted in Oak Ridge, Tennessee, on March 29 and 30, 1994, to evaluate the use of in situ vitrification (ISV) technology to produce large silicate melts that would serve as analogs for natural magmas for the study of magmatic properties and processes. ISV technology would permit experiments to test hypotheses or provide new data that cannot be tested or obtained through bench-top experimentation or the study of natural systems. The scale of ISV melts is intermediate between that of natural lava lakes and laboratory crucible experiments, with melt volumes from 15 to 300 m 3 easily obtained. This approach permits investigation of dynamic processes which operate on scales difficult to simulate through bench-top experimentation and that are not amenable to direct observation or control in natural systems (e.g., degassing, convection, and crystal settling). Several aspects of the ISV process make it uniquely applicable for the study of magma systems. The process produces open-quotes containerlessclose quotes silicate melts, which permits development of important analog components of natural magma systems including: partial melt zones, stopping, contact metamorphic haloes, and open-quotes hydrothermalclose quotes fluids. The lack of a melt open-quotes containerclose quotes also enables use of standard field-scale geophysical instrumentation for studying the seismic and electrical properties of the melt and host materials. In addition, volatile and particulate emissions from the melt can be sampled using methods that avoid reaction with, and contamination by, host rocks. The consensus of the group was that the use of melts generated by ISV technology provided unique opportunities to advance the understanding of magmas and magmatic processes and warranted development of a proposal

  7. Unscrambling the Omlette: a New Bubble and Crystal Clustering Mechanism in Chaotically Mixed Magma Flows

    Science.gov (United States)

    Robertson, J.; Metcalfe, G.; Wang, S.; Barnes, S. J.

    2014-12-01

    The concentration of bubbles, crystals or droplets into small volumes of magma is a key trigger for many interesting magmatic processes. For example, gas slugs driving Strombolian eruptions form from the coalesence of exsolved bubbles within a volcanic conduit, while Ni-Cu-PGE magmatic sulfide deposits require a concentration of dense sulfide droplets from a large volume of magma to form a massive ore body. However the physical mechanism for this clustering remains unresolved - especially since small particles in active magma flows are expected to mostly track flow streamlines rather than clustering. We have uncovered a previously unreported clustering mechanism which is applicable to magmatic flows. This mechanism involves the interaction of particles with two kinds of chaotic flow structure: (a) high-strain regions within the well-mixed chaotic zones of the flow, and (b) unmixed islands of stability within the chaotic flow, known as Kolmogorov-Arnold-Moser (KAM) regions. The first figure shows the difference between chaotic and KAM regions in a chaotic laminar pipe flow. Trapping occurs when particles are scattered from high-strain regions in the chaotic zones and become trapped in the KAM regions, leading to a rapid concentration of particles relative to their original distribution (shown in the second series of figures). Using a combination of these analogue experiments and theoretical analysis we outline the conditions under which this clustering process can occur. We examine the onset of secondary density-related instabilities and the effects of increased particle-particle interaction within the clustered particles, and highlight the impact of particle clustering on the dynamics of magma ascent and emplacement.

  8. Oil and stock market volatility: A multivariate stochastic volatility perspective

    International Nuclear Information System (INIS)

    Vo, Minh

    2011-01-01

    This paper models the volatility of stock and oil futures markets using the multivariate stochastic volatility structure in an attempt to extract information intertwined in both markets for risk prediction. It offers four major findings. First, the stock and oil futures prices are inter-related. Their correlation follows a time-varying dynamic process and tends to increase when the markets are more volatile. Second, conditioned on the past information, the volatility in each market is very persistent, i.e., it varies in a predictable manner. Third, there is inter-market dependence in volatility. Innovations that hit either market can affect the volatility in the other market. In other words, conditioned on the persistence and the past volatility in their respective markets, the past volatility of the stock (oil futures) market also has predictive power over the future volatility of the oil futures (stock) market. Finally, the model produces more accurate Value-at-Risk estimates than other benchmarks commonly used in the financial industry. - Research Highlights: → This paper models the volatility of stock and oil futures markets using the multivariate stochastic volatility model. → The correlation between the two markets follows a time-varying dynamic process which tends to increase when the markets are more volatile. → The volatility in each market is very persistent. → Innovations that hit either market can affect the volatility in the other market. → The model produces more accurate Value-at-Risk estimates than other benchmarks commonly used in the financial industry.

  9. Subsurface Connections and Magma Mixing as revealed by Olivine- and Pyroxene-Hosted Melt Inclusions from Cerro Negro Volcano and the Las Pilas-El Hoyo Complex, Nicaragua.

    Science.gov (United States)

    Venugopal, S.; Moune, S.; Williams-Jones, G.

    2015-12-01

    Cerro Negro, the youngest volcano in the Central American Volcanic Belt, is a polygenetic cinder cone with relatively frequent explosive basaltic eruptions. Las Pilas, on the other hand, is a much larger and older complex with milder and less frequent eruptions. Based on historical data, these two closely spaced volcanoes have shown concurrent eruptive behavior, suggesting a subsurface connection. To further investigate this link, melt inclusions, which are blebs of melt trapped in growing crystals, were the obvious choice for optimal comparison of sources and determination of pre-eruptive volatile contents and magmatic conditions. Olivine-hosted inclusions were chosen for both volcanoes and pyroxene-hosted inclusions were also sampled from Las Pilas to represent the evolved melt. Major, volatile and trace elements reveal a distinct geochemical continuum with Cerro Negro defining the primitive end member and Las Pilas representing the evolved end member. Volatile contents are high for Cerro Negro (up to 1260 ppm CO2, 4.27 wt% H2O and 1700 ppm S) suggesting that volatile exsolution is likely the trigger for Cerro Negro's explosive eruptions. Las Pilas volatile contents are lower but consistent with degassing and evolutionary trends shown by major oxides. Trace element contents are rather unique and suggest Cerro Negro magmas fractionally crystallize while Las Pilas magmas are the products of mixing. Magmatic conditions were estimated with major and volatile contents: at least 2.4 kbar and 1170 °C for Cerro Negro melts and 1.3 kbar and 1130 °C for Las Pilas melts with an overall oxygen fugacity at the NNO buffer. In combination with available literature data, this study suggests an interconnected subsurface plumbing system and thus Cerro Negro should be considered as the newest vent within the Las Pilas-El Hoyo Complex.

  10. Magma transport and storage at Kilauea volcano, Hawaii I: 1790-1952

    Science.gov (United States)

    Wright, T. L.; Klein, F.

    2011-12-01

    former time to 1918-1919 and the latter to 1924. Qualitative Mogi modeling of the 1921-1927 deformation data yields three centers, two shallow ones corresponding to sources 1 and 2, and a third deeper one that we interpret to represent draining of source 3. During recovery from the 1924 intrusion and collapse the tilt remained low, unlike the aftermath of more recent deflations. Small eruptions in Halemaumau between 1924 and 1934 used up the last of the magma that fed the lava lakes, and three passive East rift intrusions without a tilt signal are considered part of the recovery of source 3. Kilauea began inflating in March 1950, leading up to the long 1952 eruption in Halemaumau. Deep earthquakes occurred in 1950 and 1951, resulting in an increased magma supply rate of 0.062 km3/yr. An intense earthquake swarm occurred beneath the offshore south flank in March-April 1952 that unlocked the south flank to initiate the modern spreading regime. We interpret the 1924 intrusion as a critical event in stabilizing the modern magma system beneath the rift zone. Prior to that time it is probable that major caldera draining events in the 19th century involved the entire magmatic system. Measurements made at HVO are critical to the interpretations made in the pre-1952 period.

  11. Volatile liquid storage system

    International Nuclear Information System (INIS)

    Laverman, R.J.; Winters, P.J.; Rinehart, J.K.

    1992-01-01

    This patent describes a method of collecting and abating emission from a volatile liquid in an above ground storage tank. It comprises the liquid storage tank having a bottom, a vertical cylindrical circular wall having a lower edge portion joined to the bottom, and an external fixed roof, the tank having an internal floating roof floating on a volatile liquid stored in the tank, and air vent means in the tank in communication with a vapor space in the tank constituting at least the space above the floating roof when the floating roof floats on a predetermined maximum volume of volatile liquid in the tank; permitting ambient air; pumping emission laden air from the tank vapor space above the floating roof; and by means of the emissions abatement apparatus eliminating most of the emission from the emissions laden air with formation of a gaseous effluent and then discharging the resulting gaseous effluent to the atmosphere

  12. Understanding Interest Rate Volatility

    DEFF Research Database (Denmark)

    Volker, Desi

    This thesis is the result of my Ph.D. studies at the Department of Finance of the Copenhagen Business School. It consists of three essays covering topics related to the term structure of interest rates, monetary policy and interest rate volatility. The rst essay, \\Monetary Policy Uncertainty...... and Interest Rates", examines the role of monetary policy uncertainty on the term structure of interest rates. The second essay, \\A Regime-Switching A ne Term Structure Model with Stochastic Volatility" (co-authored with Sebastian Fux), investigates the ability of the class of regime switching models...... with and without stochastic volatility to capture the main stylized features of U.S. interest rates. The third essay, \\Variance Risk Premia in the Interest Rate Swap Market", investigates the time-series and cross-sectional properties of the compensation demanded for holding interest rate variance risk. The essays...

  13. Isolation and quantification of volatiles in fish by dynamic headspace sampling and mass spectrometry

    DEFF Research Database (Denmark)

    Refsgaard, Hanne; Haahr, Anne-Mette; Jensen, Benny

    1999-01-01

    A dynamic headspace sampling method for isolation of volatiles in fish has been developed. The sample preparation involved freezing of fish tissue in liquid nitrogen, pulverizing the tissue, and sampling of volatiles from an aqueous slurry of the fish powder. Similar volatile patterns were...

  14. Pricing Volatility of Stock Returns with Volatile and Persistent Components

    DEFF Research Database (Denmark)

    Zhu, Jie

    2009-01-01

    This paper introduces a two-component volatility model based on first moments of both components to describe the dynamics of speculative return volatility. The two components capture the volatile and the persistent part of volatility, respectively. The model is applied to 10 Asia-Pacific stock ma...... markets. A positive or risk-premium effect exists between the return and the volatile component, yet the persistent component is not significantly priced for the return dynamic process....... markets. Their in-mean effects on returns are tested. The empirical results show that the persistent component is much more important for the volatility dynamic process than is the volatile component. However, the volatile component is found to be a significant pricing factor of asset returns for most...

  15. Pricing Volatility of Stock Returns with Volatile and Persistent Components

    DEFF Research Database (Denmark)

    Zhu, Jie

    In this paper a two-component volatility model based on the component's first moment is introduced to describe the dynamic of speculative return volatility. The two components capture the volatile and persistent part of volatility respectively. Then the model is applied to 10 Asia-Pacific stock m......, a positive or risk-premium effect exists between return and the volatile component, yet the persistent component is not significantly priced for return dynamic process....... markets. Their in-mean effects on return are also tested. The empirical results show that the persistent component accounts much more for volatility dynamic process than the volatile component. However the volatile component is found to be a significant pricing factor of asset returns for most markets...

  16. The Relationship Between Carbonatitic, Melilititic and Potassic Trachytic Magma Types at the Saltpeterkop Carbonatite Complex, Sutherland, South Africa

    Science.gov (United States)

    Janney, P. E.; Marageni, M.

    2016-12-01

    The 74 Ma Saltpeterkop Carbonatite Complex near Sutherland, South Africa, is unusual in that it is one of the few southern African carbonatites with preserved volcanic features, including a 1 km-diameter tuff ring composed of silicified volcaniclastic breccia. Around the complex, the regionally flat-lying Karoo strata have been dramatically upwarped, with dips away from the Complex as high as 45°. Further, within about a 10 km radius of the center of the complex are hundreds of dikes, sills and diatremes composed mainly of carbonatite, potassic trachyte and olivine melilitite, with the spatial density of these intrusions decreasing with increasing distance. We have recently completed an in-depth geochemical reconnaissance of the Saltpeterkop complex, involving field sampling and whole-rock major and trace element analysis, with radiogenic and stable isotope measurements in progress. While the association with potassic trachytes is relatively common in southern African carbonatites, the presence of significant amounts of primitive olivine melilitite (30-40 wt.% SiO2, Mg# = 61-74) is unusual. Our preliminary model for the origin of the complex involves (1) ascent and intrusion of a mantle-derived carbonated and potassic magma into the mid-to upper crust, (2a) separation of an alkali carbonatite phase from this magma, resulting in intensive local fenitization and partial melting of mid-crustal rocks (thereby forming potassic trachytes), and possibly triggering the initial eruption, (2b) small amounts of primitive, but now less potassic, mantle-derived magma are emplaced as olivine melilitite dikes and diatremes, and (3) differentiation of the mantle-derived magma to generate significant quantities of mainly calcio- and ferro-carbonatite magmas emplaced as dykes and sills.

  17. Interactions between magma and the lithospheric mantle during Cenozoic rifting in Central Europe

    Science.gov (United States)

    Meyer, Romain; Elkins-Tanton, Linda T.

    2010-05-01

    During the Cenozoic, extensive intraplate volcanic activity occurred throughout Central Europe. Volcanic eruptions extend over France (the Massif Central), central Germany (Eifel, Vogelsberg, Rhön; Heldburg), the Czech Republic (the Eger graben) and SW Poland (Lower Silesia), a region ~1,200 km wide. The origin of this predominantly alkaline intraplate magmatism is often genetically linked to one or several mantle plumes, but there is no convincing evidence for this. We have measured Pb isotope ratios, together with major and trace elements, in a representative set of mafic to felsic igneous rocks from the intra-plate Cenozoic Rhön Mts. and the Heldburg dike swarm in order to gain insight into the melting source and petrogenetic history of these melts. Three different mafic rock types (tholeiitic basalt, alkali basalt, basanite) were distinguished based on petrography and geochemistry within the investigated areas. Except for the lherzolite-bearing phonolite from the Veste Heldburg all other evolved magmas are trachytes. REE geochemistry and calculated partial melting modeling experiments for the three mafic magma types point to different degrees of partial melting in a garnet-bearing mantle source. In addition a new version of the ternary Th-Hf-Ta diagram is presented in this study as a useful petrological tool. This diagram is not only able to define potentially involved melting source end-members (e.g. asthenosphere, sub-continental lithospheric mantle and continental crust) but also interactions between these members are illustrated. An advantage of this diagram compared to partial melting degree sensitive multi-element diagrams is that a ternary diagram is a closed system. An earlier version of this diagram has been recently used to establish the nature and extent of crust mantle melt interaction of volcanic rifted margins magmas (Meyer et al. 2009). The Th-Hf-Ta geochemistry of the investigated magmas is similar to spinel and garnet xenoliths from different

  18. Quantifying requirements volatility effects

    NARCIS (Netherlands)

    Kulk, G.P.; Verhoef, C.

    2008-01-01

    In an organization operating in the bancassurance sector we identified a low-risk IT subportfolio of 84 IT projects comprising together 16,500 function points, each project varying in size and duration, for which we were able to quantify its requirements volatility. This representative portfolio

  19. Idiosyncratic Volatility Puzzle

    DEFF Research Database (Denmark)

    Aslanidis, Nektarios; Christiansen, Charlotte; Lambertides, Neophytos

    from a large pool of macroeconomic and Önancial variables. Cleaning for macro-Önance e§ects reverses the puzzling negative relation between returns and idiosyncratic volatility documented previously. Portfolio analysis shows that the e§ects from macro-Önance factors are economically strong...

  20. Manure application and ammonia volatilization

    NARCIS (Netherlands)

    Huijsmans, J.F.M.

    2003-01-01

    Keywords: manure application, ammonia volatilization, environmental conditions, application technique, incorporation technique, draught force, work organization, costs Livestock manure applied on farmland is an important source of ammonia (NH3) volatilization, and NH3 is a major atmospheric

  1. A temporal record of pre-eruptive magmatic volatile contents at Campi Flegrei: Insights from texturally-constrained apatite analyses

    Science.gov (United States)

    Stock, Michael J.; Isaia, Roberto; Humphreys, Madeleine C. S.; Smith, Victoria C.; Pyle, David M.

    2016-04-01

    Apatite is capable of incorporating all major magmatic volatile species (H2O, CO2, S, Cl and F) into its crystal structure. Analysis of apatite volatile contents can be related to parental magma compositions through the application of pressure and temperature-dependent exchange reactions (Piccoli and Candela, 1994). Once included within phenocrysts, apatite inclusions are isolated from the melt and preserve a temporal record of magmatic volatile contents in the build-up to eruption. In this work, we measured the volatile compositions of apatite inclusions, apatite microphenocrysts and pyroxene-hosted melt inclusions from the Astroni 1 eruption of Campi Flegrei, Italy (Stock et al. 2016). These data are coupled with magmatic differentiation models (Gualda et al., 2012), experimental volatile solubility data (Webster et al., 2014) and thermodynamic models of apatite compositional variations (Piccoli and Candela, 1994) to decipher pre-eruptive magmatic processes. We find that apatite halogen/OH ratios decreased through magmatic differentiation, while melt inclusion F and Cl concentrations increased. Melt inclusion H2O contents are constant at ~2.5 wt%. These data are best explained by volatile-undersaturated differentiation over most of the crystallisation history of the Astroni 1 melt, with melt inclusion H2O contents reset at shallow levels during ascent. Given the high diffusivity of volatiles in apatite (Brenan, 1993), the preservation of volatile-undersaturated melt compositions in microphenocrysts suggests that saturation was only achieved 10 - 103 days before eruption. We suggest that late-stage transition into a volatile-saturated state caused an increase in magma chamber overpressure, which ultimately triggered the Astroni 1 eruption. This has major implications for monitoring of Campi Flegrei and other similar volcanic systems. Piccoli and Candela, 1994. Am. J. of Sc., 294, 92-135. Stock et al., 2016, Nat. Geosci. Gualda et al., 2012. J. Pet., 53, 875

  2. The exploitation of volatile oil

    Institute of Scientific and Technical Information of China (English)

    MENG Teng; ZHANG Da; TENG Xiangjin; LINing; HAO Zaibin

    2007-01-01

    Rose is a kind of favorite ornamental plant. This article briefly introduced the cultivation and the use of rose around the world both in ancient time and nowadays. Today, volatile oil becomes the mainstream of the rose industry. People pay attention to the effect of volatile oil; meanwhile, they speed up their research on extracting volatile oil and the ingredients.

  3. Alternative Asymmetric Stochastic Volatility Models

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2010-01-01

    textabstractThe stochastic volatility model usually incorporates asymmetric effects by introducing the negative correlation between the innovations in returns and volatility. In this paper, we propose a new asymmetric stochastic volatility model, based on the leverage and size effects. The model is

  4. Segregating gas from melt: an experimental study of the Ostwald ripening of vapor bubbles in magmas

    Science.gov (United States)

    Lautze, Nicole C.; Sisson, Thomas W.; Mangan, Margaret T.; Grove, Timothy L.

    2011-01-01

    Diffusive coarsening (Ostwald ripening) of H2O and H2O-CO2 bubbles in rhyolite and basaltic andesite melts was studied with elevated temperature–pressure experiments to investigate the rates and time spans over which vapor bubbles may enlarge and attain sufficient buoyancy to segregate in magmatic systems. Bubble growth and segregation are also considered in terms of classical steady-state and transient (non-steady-state) ripening theory. Experimental results are consistent with diffusive coarsening as the dominant mechanism of bubble growth. Ripening is faster in experiments saturated with pure H2O than in those with a CO2-rich mixed vapor probably due to faster diffusion of H2O than CO2 through the melt. None of the experimental series followed the time1/3 increase in mean bubble radius and time-1 decrease in bubble number density predicted by classical steady-state ripening theory. Instead, products are interpreted as resulting from transient regime ripening. Application of transient regime theory suggests that bubbly magmas may require from days to 100 years to reach steady-state ripening conditions. Experimental results, as well as theory for steady-state ripening of bubbles that are immobile or undergoing buoyant ascent, indicate that diffusive coarsening efficiently eliminates micron-sized bubbles and would produce mm-sized bubbles in 102–104 years in crustal magma bodies. Once bubbles attain mm-sizes, their calculated ascent rates are sufficient that they could transit multiple kilometers over hundreds to thousands of years through mafic and silicic melt, respectively. These results show that diffusive coarsening can facilitate transfer of volatiles through, and from, magmatic systems by creating bubbles sufficiently large for rapid ascent.

  5. Essays on nonparametric econometrics of stochastic volatility

    NARCIS (Netherlands)

    Zu, Y.

    2012-01-01

    Volatility is a concept that describes the variation of financial returns. Measuring and modelling volatility dynamics is an important aspect of financial econometrics. This thesis is concerned with nonparametric approaches to volatility measurement and volatility model validation.

  6. Magma storage in a strike-slip caldera.

    Science.gov (United States)

    Saxby, J; Gottsmann, J; Cashman, K; Gutiérrez, E

    2016-07-22

    Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions.

  7. What can Fe stable isotopes tell us about magmas?

    DEFF Research Database (Denmark)

    Stausberg, Niklas

    the differentiation of magmas from the perspective of Fe stable isotopes, integrated with petrology, by studying igneous rocks and their constituent phases (minerals and glasses) from the Bushveld Complex, South Africa, Thingmuli, Iceland, Pantelleria, Italy, and the Bishop Tuff, USA. The findings are interpreted......The majority of the Earth’s crust is formed by magmas, and understanding their production and differentiation is important to interpret the geologic rock record. A powerful tool to investigate magmatic processes is the distribution of the stable isotopes of the major redox-sensitive element...... in magmas, Fe. Fe isotope compositions of magmatic rocks exhibit systematic differences, where the heaviest compositions are found in rhyolites and granites. Understanding of these systematics is complicated by a lack of constraints on Fe isotope fractionation among minerals and liquids under magmatic...

  8. The magma ocean as an impediment to lunar plate tectonics

    Science.gov (United States)

    Warren, Paul H.

    1993-01-01

    The primary impediment to plate tectonics on the moon was probably the great thickness of its crust and particularly its high crust/lithosphere thickness ratio. This in turn can be attributed to the preponderance of low-density feldspar over all other Al-compatible phases in the lunar interior. During the magma ocean epoch, the moon's crust/lithosphere thickness ratio was at the maximum theoretical value, approximately 1, and it remained high for a long time afterwards. A few large regions of thin crust were produced by basin-scale cratering approximately contemporaneous with the demise of the magma ocean. However, these regions probably also tend to have uncommonly thin lithosphere, since they were directly heated and indirectly enriched in K, Th, and U by the same cratering process. Thus, plate tectonics on the moon in the form of systematic lithosphere subduction was impeded by the magma ocean.

  9. Complexities in Shallow Magma Transport at Kilauea (Invited)

    Science.gov (United States)

    Swanson, D. A.

    2013-12-01

    The standard model of Kilauea's shallow plumbing system includes magma storage under the caldera and conduits in the southwest rift zone (SWRZ) and the east rift zone (ERZ). As a field geologist, I find that seemingly aberrant locations and trends of some eruptive vents indicate complexities in shallow magma transport not addressed by the standard model. This model is not wrong but instead incomplete, because it does not account for the development of offshoots from the main plumbing. These offshoots supply magma to the surface at places that tell us much about the complicated stress system within the volcano. Perhaps most readily grasped are fissures peripheral to the north and south sides of the caldera. Somehow magma can apparently be injected into caldera-bounding faults from the summit reservoir complex, but the process and pathways are unclear. Of more importance is the presence of fissures with ENE trends on the east side of the caldera, including Kilauea Iki. Is this a rift zone that forms an acute angle with the ERZ? I think there is another explanation: the main part of the ERZ has migrated ~5 km SSE during the past few tens of thousands of years owing to seaward movement of the south flank, but older parts of the rift zone can be reactivated. The fissures east of the caldera have the ERZ trend and may record such reactivation; this interpretation includes the location of the largest eruption (15th century) known from Kilauea. Whether or not this interpretation has validity, the question remains: what changes in the plumbing system allow magma to erupt east of the caldera? The SWRZ can be divided into two sections, the SWRZ proper and the seismically active part (SASWRZ) southeast of the SWRZ. The total width of both sections is ~4 km. The SWRZ might be migrating SSE, as is the ERZ. Fissures in the SWRZ proper trend SW. Fissures in the SASWRZ, however, have ENE trends like that of the ERZ, although, because of en echelon offsets, the fissure zone itself

  10. Constraints on timescales and mechanics of magmatic underplating from InSAR observations of large active magma sills in the Earth's crust.

    Science.gov (United States)

    Fialko, Y.

    2002-12-01

    Theoretical models of the granitoid magma generation due to magmatic underplating predict that anatectic melts are produced on quite short timescales of the order of the crystallization time of typical mafic underplates (e.g., 102-10^3 years for sill intrusions that are a few tens to a few hundred meters thick). If so, the intrusion of mafic underplates, the volume changes associated with in situ melting, and the subsequent evacuation of the resulting granitoid magmas can each generate geodetically observable deformation. Geodetic measurements in areas of contemporaneous large active magma bodies may therefore provide critical constraints on the timescales and dynamics of crustal anatexis. We use Interferometric Synthetic Aperture Radar (InSAR) observations in regions of the ongoing crustal magmatism to constrain typical rates of the large-scale melt generation and/or migration, and to test the proposed models of the granitic melt production. Our primary targets include large mid-crustal magma bodies imaged by seismic studies, in particular, the Socorro (New Mexico, USA), the Altiplano-Puna (south America), and the south Tibet (Asia) magma bodies. All these magma bodies are located at depth of 19-20 km, suggesting a strong rheological or buoyancy control on the transition from a vertical to a horizontal magma flow. Stacked interferometric data from the Socorro magma body indicate a quasi-steady uplift with a maximum rate of 3-4 mm/yr over the last 10 years covered by the InSAR observations. The uplift morphology can be well described by an elastic inflation of the Socorro sill. We show that deformation models that allow for the viscous-like rheology of the mid-to-lower crust cannot be easily reconciled with the geodetic data. However, thermodynamic modeling, in conjunction with inferences of the nearly constant uplift rates, suggest that the deformations associated with the intrusion emplacement must involve a significant inelastic component. Such inelastic

  11. The Earth’s mantle before convection: Effects of magma oceans and the Moon (Invited)

    Science.gov (United States)

    Elkins-Tanton, L. T.; Smrekar, S. E.; Tobie, G.

    2009-12-01

    thick solid lid and diminished the likelihood of mantle remixing. Second, on an Earth-sized planet a magma ocean would solidify to produce very dense near-surface solids that also contain the bulk of the water held in the solid state, and the bulk of the incompatible elements. During gravitationally-driven overturn shallow, dense, damp solids carry their water as they sink into the perovskite stability zone and transform the bulk of their mineralogy into perovskite. The last solids that form near the surface exceed the likely water saturation levels of perovskite and will be forced to dewater as they cross the boundary into the lower mantle, leaving water behind in a rapid flux as the dense material sinks. This event will form a kind of “water catastrophe,” and would have the potential to partially melt the upper mantle, to produce a damp asthensosphere, and indeed to encourage convection. These results imply that planets in which perovskite is stable, that is, planets that are larger than Mars, are perhaps more likely to have an early initiation of plate tectonics, and that larger planets may have more violent and near-surface mantle volatile releases during any overturn event.

  12. Temporal evolution of granitic magmas in the Luanchuan metallogenic belt, east Qinling Orogen, central China: Implications for Mo metallogenesis

    Science.gov (United States)

    Li, Dong; Han, Jiangwei; Zhang, Shouting; Yan, Changhai; Cao, Huawen; Song, Yaowu

    2015-11-01

    The Luanchuan metallogenic belt, located within the eastern part of the Qinling Orogen, central China, hosts a number of world-class Mo deposits that are closely related to small late Mesozoic granitic plutons. Zircon U-Pb dating of distinct plutons in the Luanchuan metallogenic belt has yielded ages of 153 ± 1, 154 ± 2, 152 ± 2, and 148 ± 1 Ma. Molybdenite Re-Os isotopic compositions of Yuku ore district in the southern part of Luanchuan metallogenic belt has yielded an isochron age of 146 ± 1 Ma, which is consistent with the large-scale mineralization ages in the northern part of the Luanchuan metallogenic belt. A combination of previous studies and new geochronological and isotopic data show a concordant temporal and genetic link between granitic magmatism and Mo mineralization in the Luanchuan metallogenic belt, suggesting that this mineralization episode formed the most extensive Mo mineralization belt in the east Qinling Orogen. Zircon grains from Mo-related granitic plutons show similar trace element distributions. High-precision Multi Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) Pb isotope analysis of K-feldspar megacrysts from mineralization-related granites suggest that they were derived from the lower crust. Similarly, the Pb isotopic compositions of pyrite coprecipitated with molybdenite also suggest that the metals were derived form the lower crust, with probably minor mantle contribution. A continuum mineralization model that describes the sourcing of Mo from an evolving granitic magma over successive differentiation events, possibly in separate but connected magma chambers, could explain the remarkable Mo enrichment in the Luanchuan metallogenic belt. The volatile- and Mo-bearing granitic magmas ascended as diapirs from the deep crust, and were emplaced as dikes in the upper crust. Lithological differences between these Mo-bearing granites may relate to different stages in the evolution of individual magmas. Finally, ore

  13. Lunar Magma Ocean Crystallization: Constraints from Fractional Crystallization Experiments

    Science.gov (United States)

    Rapp, J. F.; Draper, D. S.

    2015-01-01

    The currently accepted paradigm of lunar formation is that of accretion from the ejecta of a giant impact, followed by crystallization of a global scale magma ocean. This model accounts for the formation of the anorthosite highlands crust, which is globally distributed and old, and the formation of the younger mare basalts which are derived from a source region that has experienced plagioclase extraction. Several attempts at modelling the crystallization of such a lunar magma ocean (LMO) have been made, but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. Geodynamic models of lunar accretion suggest that shortly following accretion the bulk of the lunar mass was hot, likely at least above the solidus]. Models of LMO crystallization that assume a deep magma ocean are therefore geodynamically favorable, but they have been difficult to reconcile with a thick plagioclase-rich crust. A refractory element enriched bulk composition, a shallow magma ocean, or a combination of the two have been suggested as a way to produce enough plagioclase to account for the assumed thickness of the crust. Recently however, geophysical data from the GRAIL mission have indicated that the lunar anorthositic crust is not as thick as was initially estimated, which allows for both a deeper magma ocean and a bulk composition more similar to the terrestrial upper mantle. We report on experimental simulations of the fractional crystallization of a deep (approximately 100km) LMO with a terrestrial upper mantle-like (LPUM) bulk composition. Our experimental results will help to define the composition of the lunar crust and mantle cumulates, and allow us to consider important questions such as source regions of the mare basalts and Mg-suite, the role of mantle overturn after magma ocean crystallization and the nature of KREEP

  14. Molybdenite saturation in silicic magmas: Occurrence and petrological implications

    Science.gov (United States)

    Audetat, A.; Dolejs, D.; Lowenstern, J. B.

    2011-01-01

    We identified molybdenite (MoS2) as an accessory magmatic phase in 13 out of 27 felsic magma systems examined worldwide. The molybdenite occurs as small (molybdenite-saturated samples reveal 1-13 ppm Mo in the melt and geochemical signatures that imply a strong link to continental rift basalt-rhyolite associations. In contrast, arc-associated rhyolites are rarely molybdenite-saturated, despite similar Mo concentrations. This systematic dependence on tectonic setting seems to reflect the higher oxidation state of arc magmas compared with within-plate magmas. A thermodynamic model devised to investigate the effects of T, f O2 and f S2 on molybdenite solubility reliably predicts measured Mo concentrations in molybdenite-saturated samples if the magmas are assumed to have been saturated also in pyrrhotite. Whereas pyrrhotite microphenocrysts have been observed in some of these samples, they have not been observed from other molybdenite-bearing magmas. Based on the strong influence of f S2 on molybdenite solubility we calculate that also these latter magmas must have been at (or very close to) pyrrhotite saturation. In this case the Mo concentration of molybdenite-saturated melts can be used to constrain both magmatic f O2 and f S2 if temperature is known independently (e.g. by zircon saturation thermometry). Our model thus permits evaluation of magmatic f S2, which is an important variable but is difficult to estimate otherwise, particularly in slowly cooled rocks. ?? The Author 2011. Published by Oxford University Press. All rights reserved.

  15. Failed magmatic eruptions: Late-stage cessation of magma ascent

    Science.gov (United States)

    Moran, S.C.; Newhall, C.; Roman, D.C.

    2011-01-01

    When a volcano becomes restless, a primary question is whether the unrest will lead to an eruption. Here we recognize four possible outcomes of a magmatic intrusion: "deep intrusion", "shallow intrusion", "sluggish/viscous magmatic eruption", and "rapid, often explosive magmatic eruption". We define "failed eruptions" as instances in which magma reaches but does not pass the "shallow intrusion" stage, i. e., when magma gets close to, but does not reach, the surface. Competing factors act to promote or hinder the eventual eruption of a magma intrusion. Fresh intrusion from depth, high magma gas content, rapid ascent rates that leave little time for enroute degassing, opening of pathways, and sudden decompression near the surface all act to promote eruption, whereas decreased magma supply from depth, slow ascent, significant enroute degassing and associated increases in viscosity, and impingement on structural barriers all act to hinder eruption. All of these factors interact in complex ways with variable results, but often cause magma to stall at some depth before reaching the surface. Although certain precursory phenomena, such as rapidly escalating seismic swarms or rates of degassing or deformation, are good indicators that an eruption is likely, such phenomena have also been observed in association with intrusions that have ultimately failed to erupt. A perpetual difficulty with quantifying the probability of eruption is a lack of data, particularly on instances of failed eruptions. This difficulty is being addressed in part through the WOVOdat database. Papers in this volume will be an additional resource for scientists grappling with the issue of whether or not an episode of unrest will lead to a magmatic eruption.

  16. Orientation of the eruption fissures controlled by a shallow magma chamber in Miyakejima

    Directory of Open Access Journals (Sweden)

    Nobuo Geshi

    2016-11-01

    Full Text Available Orientation of the eruption fissures and composition of the lavas of the Miyakejima volcano indicate tectonic influence of a shallow magma chamber on the distribution of eruption fissures. We examined the distributions and magmatic compositions of 23 fissures that formed within the last 2800 years, based on a field survey and a new dataset of 14C ages. The dominant orientation of the eruption fissures in the central portion of the volcano was found to be NE-SW, which is perpendicular to the direction of regional maximum horizontal compressive stress (σHmax. Magmas that show evidences of magma mixing between basaltic and andesitic magmas erupted mainly from the eruption fissures with a higher offset angle from the regional σHmax direction. The presence of a shallow dike-shaped magma chamber controls the distribution of the eruption fissures. The injection of basaltic magma into the shallow andesitic magma chamber caused the temporal rise of internal magmatic pressure in the shallow magma chamber. Dikes extending from the andesitic magma chamber intrude along the local compressive stress field which is generated by the internal excess pressure of the andesitic magma chamber. As the result, the eruption fissures trend parallel to the elongation direction of the shallow magma chamber. Injection of basaltic magma into the shallow andesitic magma chamber caused the magma mixing. Some basaltic dikes from the deep-seated magma chamber reach the ground surface without intersection with the andesitic magma chamber. The patterns of the eruption fissures can be modified in the future as was observed in the case of the destruction of the shallow magma chamber during the 2000 AD eruption.

  17. Volatile organometallic and semiconductor materials

    International Nuclear Information System (INIS)

    Dickson, R.S.

    1991-01-01

    This article reports on a project concerned with the metal organic chemical vapour deposition (MOCVD) of mercury-cadmium telluride (MCT) undertaken by a research consortium based in the Clayton area involving Monash University Chemistry Department, Telecom Research Laboratories, and CSIRO Division of Material Sciences and Technology. An M.R. Semicon 226 MOCVD reactor, operating near atmospheric presure with hydrogen carrier gas has been used. Most applications of MCT are direct consequence of its responsiveness to radiation in infrared region spectrum. The main aims of the project were to prepare and assess a range of volatile organometallics that might find use as a dopant sources for MCT, to prepare and study the properties of a range of different lanthanide complexes for MOCVD applications and to fully characterize the semiconductor wafers after growth. 19 refs., 3 figs

  18. Isotopic evidence for multiple contributions to felsic magma chambers

    DEFF Research Database (Denmark)

    Waight, Tod Earle; Wiebe, R.A.; Krogstad, E.J.

    2007-01-01

    The Gouldsboro Granite forms part of the Coastal Maine Magmatic Province, a region characterized by granitic plutons that are intimately linked temporally and petrogenetically with abundant co-existing mafic magmas. The pluton is complex and preserves a felsic magma chamber underlain...... with identical isotopic compositions to more mafic dikes suggest that closed system fractionation may be occurring in deeper level chambers prior to injection to shallower levels. The granitic portion of the pluton has the highest Nd isotopic composition (eNd=+3.0) of plutons in the region whereas the mafic...

  19. Silicic magma differentiation in ascent conduits. Experimental constraints

    Science.gov (United States)

    Rodríguez, Carmen; Castro, Antonio

    2017-02-01

    Crystallization of water-bearing silicic magmas in a dynamic thermal boundary layer is reproduced experimentally by using the intrinsic thermal gradient of piston-cylinder assemblies. The standard AGV2 andesite under water-undersaturated conditions is set to crystallize in a dynamic thermal gradient of about 35 °C/mm in 10 mm length capsules. In the hotter area of the capsule, the temperature is initially set at 1200 °C and decreases by programmed cooling at two distinct rates of 0.6 and 9.6 °C/h. Experiments are conducted in horizontally arranged assemblies in a piston cylinder apparatus to avoid any effect of gravity settling and compaction of crystals in long duration runs. The results are conclusive about the effect of water-rich fluids that are expelled out the crystal-rich zone (mush), where water saturation is reached by second boiling in the interstitial liquid. Expelled fluids migrate to the magma ahead of the solidification front contributing to a progressive enrichment in the fluxed components SiO2, K2O and H2O. The composition of water-rich fluids is modelled by mass balance using the chemical composition of glasses (quenched melt). The results are the basis for a model of granite magma differentiation in thermally-zoned conduits with application of in-situ crystallization equations. The intriguing textural and compositional features of the typical autoliths, accompanying granodiorite-tonalite batholiths, can be explained following the results of this study, by critical phenomena leading to splitting of an initially homogeneous magma into two magma systems with sharp boundaries. Magma splitting in thermal boundary layers, formed at the margins of ascent conduits, may operate for several km distances during magma transport from deep sources at the lower crust or upper mantle. Accordingly, conduits may work as chromatographic columns contributing to increase the silica content of ascending magmas and, at the same time, leave behind residual mushes that

  20. Regulatory, Land Ownership, and Water Availability Factors for a Magma Well: Long Valley Caldera and Coso Hot Springs, California

    Energy Technology Data Exchange (ETDEWEB)

    Blackett, Robert

    1985-09-01

    The U.S. Department of Energy is currently engaged in a program to demonstrate the engineering feasibility of extracting thermal energy from high-level molten magma bodies. The program is being carried out under the direction of Sandia National Laboratories where a number of individual projects support the overall program. The existing program elements include (1) high-temperature materials compatibility testing; (2) studies of properties of melts of various compositions; and (3) the investigation of the economics of a magma energy extraction system. Another element of the program is being conducted with the cooperation of the U.S. Geological Survey, and involves locating and outlining magma bodies at selected sites using various geophysical techniques. The ultimate goal here will be to define the limits of a magma body as a drilling target. During an earlier phase of the program, more than twenty candidate study sites considered were evaluated based upon: (1) the likelihood of the presence of a shallow magma chamber, (2) the accessibility of the site, and (3) physical and institutional constraints associated with each site with respect to performing long-term experiments. From these early phase activities, the number of candidate sites were eventually narrowed to just 2. The sites currently under consideration are Coso Hot Springs and the Long Valley caldera (Figure 1). This report describes certain attributes of these sites in order to help identify potential problems related to: (1) state and federal regulations pertaining to geothermal development; (2) land ownership; and (3) water resource availability. The information sources used in this study were mainly maps, publications, and informative documents gathered from the California Division of Oil and Gas and the U.S. Department of the Interior. Environmental studies completed for the entire Long Valley caldera study area, and for portions of the Coso Hot Springs study area were also used for reference.

  1. Eutectic propeties of primitive Earth's magma ocean

    Science.gov (United States)

    Lo Nigro, G.; Andrault, D.; Bolfan-Casanova, N.; Perillat, J.-P.

    2009-04-01

    It is widely accepted that the early Earth was partially molten (if not completely) due to the high energy dissipated by terrestrial accretion [1]. After core formation, subsequent cooling of the magma ocean has led to fractional crystallization of the primitive mantle. The residual liquid corresponds to what is now called the fertile mantle or pyrolite. Melting relations of silicates have been extensively investigated using the multi-anvil press, for pressures between 3 and 25 GPa [2,3]. Using the quench technique, it has been shown that the pressure affects significantly the solidus and liquidus curves, and most probably the composition of the eutectic liquid. At higher pressures, up to 65 GPa, melting studies were performed on pyrolite starting material using the laser-heated diamond anvil cell (LH-DAC) technique [4]. However, the quench technique is not ideal to define melting criteria, and furthermore these studies were limited in pressure range of investigation. Finally, the use of pyrolite may not be relevant to study the melting eutectic temperature. At the core-mantle boundary conditions, melting temperature is documented by a single data point on (Mg,Fe)2SiO4 olivine, provided by shock wave experiments at around 130-140 GPa [5]. These previous results present large uncertainties of ~1000 K. The aim of this study is to determine the eutectic melting temperature in the chemically simplified system composed of the two major lower mantle phases, the MgSiO3 perovskite and MgO periclase. We investigated melting in-situ using the laser-heated diamond anvil cell coupled with angle dispersive X-ray diffraction at the ID27 beamline of the ESRF [6]. Melting relations were investigated in an extended P-T range comparable to those found in the Earth's lower mantle, i.e. from 25 to 120 GPa and up to more than 5000 K. Melting was evidenced from (a) disappearance of one of the two phases in the diffraction pattern, (b) drastic changes of the diffraction image itself, and

  2. Imaging magma plumbing beneath Askja volcano, Iceland

    Science.gov (United States)

    Greenfield, Tim; White, Robert S.

    2015-04-01

    Volcanoes during repose periods are not commonly monitored by dense instrumentation networks and so activity during periods of unrest is difficult to put in context. We have operated a dense seismic network of 3-component, broadband instruments around Askja, a large central volcano in the Northern Volcanic Zone, Iceland, since 2006. Askja last erupted in 1961, with a relatively small basaltic lava flow. Since 1975 the central caldera has been subsiding and there has been no indication of volcanic activity. Despite this, Askja has been one of the more seismically active volcanoes in Iceland. The majority of these events are due to an extensive geothermal area within the caldera and tectonically induced earthquakes to the northeast which are not related to the magma plumbing system. More intriguing are the less numerous deeper earthquakes at 12-24km depth, situated in three distinct areas within the volcanic system. These earthquakes often show a frequency content which is lower than the shallower activity, but they still show strong P and S wave arrivals indicative of brittle failure, despite their location being well below the brittle-ductile boundary, which, in Askja is ~7km bsl. These earthquakes indicate the presence of melt moving or degassing at depth while the volcano is not inflating, as only high strain rates or increased pore fluid pressures would cause brittle fracture in what is normally an aseismic region in the ductile zone. The lower frequency content must be the result of a slower source time function as earthquakes which are both high frequency and low frequency come from the same cluster, thereby discounting a highly attenuating lower crust. To image the plumbing system beneath Askja, local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. Travel-time tables were created using a finite difference technique and the residuals were used to solve simultaneously for both the earthquake locations

  3. Volatile metabolites from actinomycetes

    DEFF Research Database (Denmark)

    Scholler, C.E.G.; Gurtler, H.; Pedersen, R.

    2002-01-01

    Twenty-six Streptomyces spp. were screened for their volatile production capacity on yeast starch agar. The volatile organic compounds (VOCs) were concentrated on a porous polymer throughout an 8-day growth period. VOCs were analyzed by gas chromatography with flame ionization detection...... and identified or characterized by gas chromatography-mass spectrometry. A total of 120 VOCs were characterized by retention index and mass spectra. Fifty-three compounds were characterized as terpenoid compounds, among which 18 could be identified. Among the VOCs were alkanes, alkenes, alcohols, esters, ketones....... The relationship between the excretion of geosmin and the production of spores was examined for one isolate. A good correlation between headspace geosmin and the number of spores was observed, suggesting that VOCs could be used to indicate the activity of these microorganisms in heterogeneous substrates....

  4. Pilot-Scale Demonstration of In-Situ Chemical Oxidation Involving Chlorinated Volatile Organic Compounds - Design and Deployment Guidelines (Parris Island, SC, U.S. Marine Corp Recruit Depot, Site 45 Pilot Study)

    Science.gov (United States)

    A pilot-scale in situ chemical oxidation (ISCO) demonstration, involving subsurface injections of sodium permanganate (NaMnO4), was performed at the US Marine Corp Recruit Depot (MCRD), site 45 (Parris Island (PI), SC). The ground water was originally contaminated with perchloroe...

  5. Minimum Tracking Error Volatility

    OpenAIRE

    Luca RICCETTI

    2010-01-01

    Investors assign part of their funds to asset managers that are given the task of beating a benchmark. The risk management department usually imposes a maximum value of the tracking error volatility (TEV) in order to keep the risk of the portfolio near to that of the selected benchmark. However, risk management does not establish a rule on TEV which enables us to understand whether the asset manager is really active or not and, in practice, asset managers sometimes follow passively the corres...

  6. Recovering volatile liquids

    Energy Technology Data Exchange (ETDEWEB)

    Bregeat, J H

    1925-07-30

    The products of hydrogenation of alicyclic compounds, such as terpenes, for example, pinene or oil of turpentine, are used as washing liquids for absorbing vapours of volatile liquids from gases, such as natural gases from petroliferous regions, gases from the distillation of coal, lignite, schist, peat, etc. or from the cracking of heavy oils. Other liquids such as tar oils vaseline oils, cresols, etc. may be added.

  7. Understanding Interest Rate Volatility

    OpenAIRE

    Volker, Desi

    2016-01-01

    This thesis is the result of my Ph.D. studies at the Department of Finance of the Copenhagen Business School. It consists of three essays covering topics related to the term structure of interest rates, monetary policy and interest rate volatility. The rst essay, \\Monetary Policy Uncertainty and Interest Rates", examines the role of monetary policy uncertainty on the term structure of interest rates. The second essay, \\A Regime-Switching A ne Term Structure Model with Stochast...

  8. The memory of volatility

    Directory of Open Access Journals (Sweden)

    Kai R. Wenger

    2018-03-01

    Full Text Available The focus of the volatility literature on forecasting and the predominance of theconceptually simpler HAR model over long memory stochastic volatility models has led to the factthat the actual degree of memory estimates has rarely been considered. Estimates in the literaturerange roughly between 0.4 and 0.6 - that is from the higher stationary to the lower non-stationaryregion. This difference, however, has important practical implications - such as the existence or nonexistenceof the fourth moment of the return distribution. Inference on the memory order is complicatedby the presence of measurement error in realized volatility and the potential of spurious long memory.In this paper we provide a comprehensive analysis of the memory in variances of international stockindices and exchange rates. On the one hand, we find that the variance of exchange rates is subject tospurious long memory and the true memory parameter is in the higher stationary range. Stock indexvariances, on the other hand, are free of low frequency contaminations and the memory is in the lowernon-stationary range. These results are obtained using state of the art local Whittle methods that allowconsistent estimation in presence of perturbations or low frequency contaminations.

  9. The role of amphibole in Merapi arc magma petrogenesis: insights from petrology and geochemistry of lava hosted xenoliths and xenocrysts

    Science.gov (United States)

    Chadwick, J. P.; Troll, V. R.; Schulz, B.; Dallai, L.; Freda, C.; Schwarzkopf, L. M.; Annersten, H.; Skogby, H.

    2010-05-01

    deep- to mid-crustal processes given the stability field of amphibole. The individual amphibole xenocrysts are also co-genetic to the Merapi magma system and indicative of high-pressure crystallisation. Hydrogen isotope analyses of these large amphibole megacrysts, record a broad range of dD ratios (permil deviation of D/H isotope ratio from Standard Mean Ocean Water). The dD values of some of these crystals appear to be modified significantly from expected primary compositions, particularly towards the rims of amphiboles showing breakdown textures. The measured dD values possibly result from H-isotope re-equilibration with surrounding volatile vapour during eruption or via dehydration reactions. Mossbauer analysis of a selected pristine amphibole megacryst from this suite records 67 % of iron as Fe3+ in the M-sites. Complementary IR spectroscopy of this amphibole indicates no serious loss of OH groups. High H2O pressures at formation depth for this crystal have stabilized full hydrous compositions at ~ 2% H2O concentration in the amphibole. Such fully hydrated amphiboles could release their H2O on depressurisation on ascent prior to eruption, a process that consistent with the dD data. Analysis of these samples is ongoing, however this initial data indicates that amphibole is a key phase in Merapi magmatic evolution and is a likely source of volatiles through dehydration on ascent. This is of particular significance given the fact that water content of magma has a considerable impact on the explosive potential of subduction zone volcanism. (1) Davidson et al., 2007. Geology, 35: 787-790. (2) Tiepolo et al., 2002 Contrib. Min. Pet., 144:1-15.

  10. Geochemical monitoring of volcano unrest and multi-step magma propagation: the example of the 2007-2011 Piton de la Fournaise activity.

    Science.gov (United States)

    Di Muro, Andrea; Métrich, Nicole; Deloule, Etienne; Civetta, Lucia

    2014-05-01

    between our petrological estimates of the potential SO2 release and the remotely derived fluxes, together with absence of hydrothermal signature in bulk rocks and melt inclusions, rule out a significant contribution of external fluids to PdF volatile budget. Regular monitoring of magma, crystal and glass compositions is an effective strategy for monitoring and interpreting magma storage and dynamics at a very active volcano like Piton de la Fournaise.

  11. Mantle ingredients for making the fingerprint of Etna alkaline magmas: implications for shallow partial melting within the complex geodynamic framework of Eastern Sicily

    Science.gov (United States)

    Viccaro, Marco; Zuccarello, Francesco

    2017-09-01

    able to produce magmas with variable compositions and volatile contents, which can then undergo distinct histories of ascent and evolution, leading to the wide range of eruptive styles observed at Mt. Etna volcano. Being partial melting confined in the spinel facies of the mantle, our model implies that the source of Mt. Etna magmas might be rather shallow (<2 GPa; i.e., lesser than ca. 60 km), excluding the presence of deep, plume-like mantle structures responsible for magma generation. Partial melting should occur consequently as a response of mantle decompression within the framework of regional tectonics affecting the Eastern Sicily, which could be triggered by extensional tectonics and/or subduction-induced mantle upwelling.

  12. Thermally-assisted Magma Emplacement Explains Restless Calderas.

    Science.gov (United States)

    Amoruso, Antonella; Crescentini, Luca; D'Antonio, Massimo; Acocella, Valerio

    2017-08-11

    Many calderas show repeated unrest over centuries. Though probably induced by magma, this unique behaviour is not understood and its dynamics remains elusive. To better understand these restless calderas, we interpret deformation data and build thermal models of Campi Flegrei caldera, Italy. Campi Flegrei experienced at least 4 major unrest episodes in the last decades. Our results indicate that the inflation and deflation of magmatic sources at the same location explain most deformation, at least since the build-up of the last 1538 AD eruption. However, such a repeated magma emplacement requires a persistently hot crust. Our thermal models show that this repeated emplacement was assisted by the thermal anomaly created by magma that was intruded at shallow depth ~3 ka before the last eruption. This may explain the persistence of the magmatic sources promoting the restless behaviour of the Campi Flegrei caldera; moreover, it explains the crystallization, re-melting and mixing among compositionally distinct magmas recorded in young volcanic rocks. Our model of thermally-assisted unrest may have a wider applicability, possibly explaining also the dynamics of other restless calderas.

  13. Automatic Compound Annotation from Mass Spectrometry Data Using MAGMa.

    NARCIS (Netherlands)

    Ridder, L.O.; Hooft, van der J.J.J.; Verhoeven, S.

    2014-01-01

    The MAGMa software for automatic annotation of mass spectrometry based fragmentation data was applied to 16 MS/MS datasets of the CASMI 2013 contest. Eight solutions were submitted in category 1 (molecular formula assignments) and twelve in category 2 (molecular structure assignment). The MS/MS

  14. Crystallization of Magma. CEGS Programs Publication Number 14.

    Science.gov (United States)

    Berry, R. W.

    Crystallization of Magma is one of a series of single-topic problem modules intended for use in undergraduate geology and earth science courses. Through problems and observations based on two sets of experiments, this module leads to an understanding of how an igneous rock can form from molten material. Environmental factors responsible for…

  15. Loki Patera as the Surface of a Magma Sea

    Science.gov (United States)

    Matson, D. L.; Davies, A. G.; Veeder, G. J.; Rathbun, J. A.; Johnson, T. V.

    2004-01-01

    Inspired by the finding of Schubert et al that Io's figure is consistent with a hydrostatic shape, we explore the consequences of modeling Loki Patera as the surface of a large magma sea. This model is attractive because of its sheer simplicity and its usefulness in interpreting and predicting observations. Here, we report on that work.

  16. Shallow magma diversions during explosive diatreme-forming eruptions.

    Science.gov (United States)

    Le Corvec, Nicolas; Muirhead, James D; White, James D L

    2018-04-13

    The diversion of magma is an important mechanism that may lead to the relocation of a volcanic vent. Magma diversion is known to occur during explosive volcanic eruptions generating subterranean excavation and remobilization of country and volcanic rocks. However, feedbacks between explosive crater formation and intrusion processes have not been considered previously, despite their importance for understanding evolving hazards during volcanic eruptions. Here, we apply numerical modeling to test the impacts of excavation and subsequent infilling of diatreme structures on stress states and intrusion geometries during the formation of maar-diatreme complexes. Explosive excavation and infilling of diatremes affects local stress states which inhibits magma ascent and drives lateral diversion at various depths, which are expected to promote intra-diatreme explosions, host rock mixing, and vent migration. Our models demonstrate novel mechanisms explaining the generation of saucer-shaped sills, linked with magma diversion and enhanced intra-diatreme explosive fragmentation during maar-diatreme volcanism. Similar mechanisms will occur at other volcanic vents producing crater-forming eruptions.

  17. 75 FR 28778 - Magma Flood Retarding Structure (FRS) Supplemental Watershed Plan, Pinal County, AZ

    Science.gov (United States)

    2010-05-24

    ... DEPARTMENT OF AGRICULTURE Natural Resources Conservation Service Magma Flood Retarding Structure... statement is not being prepared for the Magma Flood Retarding Structure (FRS) Supplemental Watershed Plan... rehabilitate the Magma FRS to provide for continued flood protection for a portion of the Town of Florence and...

  18. Extensive, water-rich magma reservoir beneath southern Montserrat

    Science.gov (United States)

    Edmonds, M.; Kohn, S. C.; Hauri, E. H.; Humphreys, M. C. S.; Cassidy, M.

    2016-05-01

    South Soufrière Hills and Soufrière Hills volcanoes are 2 km apart at the southern end of the island of Montserrat, West Indies. Their magmas are distinct geochemically, despite these volcanoes having been active contemporaneously at 131-129 ka. We use the water content of pyroxenes and melt inclusion data to reconstruct the bulk water contents of magmas and their depth of storage prior to eruption. Pyroxenes contain up to 281 ppm H2O, with significant variability between crystals and from core to rim in individual crystals. The Al content of the enstatites from Soufrière Hills Volcano (SHV) is used to constrain melt-pyroxene partitioning for H2O. The SHV enstatite cores record melt water contents of 6-9 wt%. Pyroxene and melt inclusion water concentration pairs from South Soufriere Hills basalts independently constrain pyroxene-melt partitioning of water and produces a comparable range in melt water concentrations. Melt inclusions recorded in plagioclase and in pyroxene contain up to 6.3 wt% H2O. When combined with realistic melt CO2 contents, the depth of magma storage for both volcanoes ranges from 5 to 16 km. The data are consistent with a vertically protracted crystal mush in the upper crust beneath the southern part of Montserrat which contains heterogeneous bodies of eruptible magma. The high water contents of the magmas suggest that they contain a high proportion of exsolved fluids, which has implications for the rheology of the mush and timescales for mush reorganisation prior to eruption. A depletion in water in the outer 50-100 μm of a subset of pyroxenes from pumices from a Vulcanian explosion at Soufrière Hills in 2003 is consistent with diffusive loss of hydrogen during magma ascent over 5-13 h. These timescales are similar to the mean time periods between explosions in 1997 and in 2003, raising the possibility that the driving force for this repetitive explosive behaviour lies not in the shallow system, but in the deeper parts of a vertically

  19. Seismic tremors and magma wagging during explosive volcanism.

    Science.gov (United States)

    Jellinek, A Mark; Bercovici, David

    2011-02-24

    Volcanic tremor is a ubiquitous feature of explosive eruptions. This oscillation persists for minutes to weeks and is characterized by a remarkably narrow band of frequencies from about 0.5 Hz to 7 Hz (refs 1-4). Before major eruptions, tremor can occur in concert with increased gas flux and related ground deformation. Volcanic tremor is thus of particular value for eruption forecasting. Most models for volcanic tremor rely on specific properties of the geometry, structure and constitution of volcanic conduits as well as the gas content of the erupting magma. Because neither the initial structure nor the evolution of the magma-conduit system will be the same from one volcano to the next, it is surprising that tremor characteristics are so consistent among different volcanoes. Indeed, this universality of tremor properties remains a major enigma. Here we employ the contemporary view that silicic magma rises in the conduit as a columnar plug surrounded by a highly vesicular annulus of sheared bubbles. We demonstrate that, for most geologically relevant conditions, the magma column will oscillate or 'wag' against the restoring 'gas-spring' force of the annulus at observed tremor frequencies. In contrast to previous models, the magma-wagging oscillation is relatively insensitive to the conduit structure and geometry, which explains the narrow band of tremor frequencies observed around the world. Moreover, the model predicts that as an eruption proceeds there will be an upward drift in both the maximum frequency and the total signal frequency bandwidth, the nature of which depends on the explosivity of the eruption, as is often observed.

  20. Mezcla de magmas en Vulcanello (Isla Vulcano, Italia

    Directory of Open Access Journals (Sweden)

    Aparicio, A.

    2008-06-01

    Full Text Available Volcanic activity in Vulcano starts about 350 ka ago and continues up to present day with the development of thre main episodes corresponding to the calderas of Piano and La Fossa, and Vulcanello. These cover a compositional range from rhyolitic to trachybasaltic rocks. This lithological diversity is produced by different petrogenetic processes such as fractional crystallization, assimilation coupled to fractional crystallization (AFC, mixing, etc.The eruption of Vulcanello area emitted trachyandesitic materials, including shoshonites and latites. A magma-mixing process is established between trachytes and shoshonites to origine latites. Trachytes and rhyolites are produced by fractional crystallization and by ACF processes (assimilation of sedimentary rocks from trachyandesitic magmas.La actividad volcánica de Isla Vulcano comienzó aproximadamente hace 350.000 años y continúa hasta la actualidad con el desarrollo de tres grandes episodios correspondientes a las caldera de Piano, caldera de Fossa y a Vulcanello, que han emitido piroclastos y coladas de composiciones muy variadas, desde riolitas a traquibasaltos. Esta variedad litológica ha sido relacionada con procesos petrogenéticos tan diversos como cristalización fraccionada, asimilación simultánea con cristalización (ACF, mezcla de magmas, etc.El episodio de Vulcanello emite rocas traquiandesíticas, con composiciones shoshoníticas y latíticas. Un proceso de mezcla de magmas es reconocido entre traquitas y shoshonitas para generar latitas. Traquitas y riolitas son producidas por procesos de cristalización fraccionada simple y por ACF con asimilación de rocas sedimentarias a partir de magmas traquiandesíticos.

  1. Noctuidae-induced plant volatiles: current situation and prospects

    Directory of Open Access Journals (Sweden)

    Vanusa Rodrigues Horas

    2014-01-01

    Full Text Available Noctuids are phytophagous lepidopterans with some species causing significant damage to agriculture. The host plants, in turn, have developed defense mechanisms to cope with them, for instance chemical defenses. In this study we review the literature on plant volatiles induced by noctuids, and discuss the methodologies used to induce the production of volatiles that are usually employed in plant defense mechanisms. Future prospects involving this line of research in pest control are also discussed.

  2. Monitoring volatile anaesthetic agents

    International Nuclear Information System (INIS)

    Russell, W.J.

    2000-01-01

    Full text: The methods that have been used for monitoring volatile anaesthetic agents depend on some physical property such as Density, Refractometry, Mass, Solubility, Raman scattering, or Infra-red absorption. Today, refractometry and infra-red techniques are the most common. Refractometry is used for the calibration of vaporizers. All anaesthetic agents increase the refractive index of the carrier gas. Provided the mixture is known then the refractive change measures the concentration of the volatile anaesthetic agent. Raman Scattering is when energy hits a molecule a very small fraction of the energy is absorbed and re-emitted at one or more lower frequencies. The shift in frequency is a function of the chemical bonds and is a fingerprint of the substance irradiated. Electromagnetic (Infra-red) has been the commonest method of detection of volatile agents. Most systems use a subtractive system, i.e. the agent in the sampling cell absorbed some of the infrared energy and the photo-detector therefore received less energy. A different approach is where the absorbed energy is converted into a pressure change and detected as sound (Acoustic monitor). This gives a more stable zero reference. More recently, the detector systems have used multiple narrow-band wavelengths in the infrared bands and by shape matching or matrix computing specific agent identification is achieved and the concentration calculated. In the early Datex AS3 monitors, a spectral sweep across the 3 micron infrared band was used to create spectral fingerprints. The recently released AS3 monitors use a different system with five very narrow band filters in the 8-10 micron region. The transmission through each of these filters is a value in a matrix which is solved by a micro computer to identify the agent and its concentration. These monitors can assist in improving the safety and efficiency of our anaesthetics but do not ensure that the patient is completely anaesthetized. Copyright (2000

  3. Monitoring volatile anaesthetic agents

    Energy Technology Data Exchange (ETDEWEB)

    Russell, W J [Royal Adelaide Hospital, SA (Australia). Department of Anaesthesia and Intensive Care

    2000-12-01

    Full text: The methods that have been used for monitoring volatile anaesthetic agents depend on some physical property such as Density, Refractometry, Mass, Solubility, Raman scattering, or Infra-red absorption. Today, refractometry and infra-red techniques are the most common. Refractometry is used for the calibration of vaporizers. All anaesthetic agents increase the refractive index of the carrier gas. Provided the mixture is known then the refractive change measures the concentration of the volatile anaesthetic agent. Raman Scattering is when energy hits a molecule a very small fraction of the energy is absorbed and re-emitted at one or more lower frequencies. The shift in frequency is a function of the chemical bonds and is a fingerprint of the substance irradiated. Electromagnetic (Infra-red) has been the commonest method of detection of volatile agents. Most systems use a subtractive system, i.e. the agent in the sampling cell absorbed some of the infrared energy and the photo-detector therefore received less energy. A different approach is where the absorbed energy is converted into a pressure change and detected as sound (Acoustic monitor). This gives a more stable zero reference. More recently, the detector systems have used multiple narrow-band wavelengths in the infrared bands and by shape matching or matrix computing specific agent identification is achieved and the concentration calculated. In the early Datex AS3 monitors, a spectral sweep across the 3 micron infrared band was used to create spectral fingerprints. The recently released AS3 monitors use a different system with five very narrow band filters in the 8-10 micron region. The transmission through each of these filters is a value in a matrix which is solved by a micro computer to identify the agent and its concentration. These monitors can assist in improving the safety and efficiency of our anaesthetics but do not ensure that the patient is completely anaesthetized. Copyright (2000

  4. Ambient Volatility of Triethyl Phosphate

    Science.gov (United States)

    2017-08-01

    of materials is predictable using Raoult’s law. This report details the measurement of the effect of water vapor partial pressure on the volatility...empirical correlation taking into account nonideal behavior was developed to enable estimation of TEPO volatility at any combination of ambient...of the second component is expected to be one-half as much as in the absence of water vapor. Similarly, the measured volatility of the second

  5. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 1. Intereruption deformation, 1997–2008

    Science.gov (United States)

    Lu, Zhong; Dzurisin, Daniel; Biggs, Juliet; Wicks, Charles; McNutt, Steve

    2010-01-01

    Starting soon after the 1997 eruption at Okmok volcano and continuing until the start of the 2008 eruption, magma accumulated in a storage zone centered ~3.5 km beneath the caldera floor at a rate that varied with time. A Mogi-type point pressure source or finite sphere with a radius of 1 km provides an adequate fit to the deformation field portrayed in time-sequential interferometric synthetic aperture radar images. From the end of the 1997 eruption through summer 2004, magma storage increased by 3.2–4.5 × 107 m3, which corresponds to 75–85% of the magma volume erupted in 1997. Thereafter, the average magma supply rate decreased such that by 10 July 2008, 2 days before the start of the 2008 eruption, magma storage had increased by 3.7–5.2 × 107 m3 or 85–100% of the 1997 eruption volume. We propose that the supply rate decreased in response to the diminishing pressure gradient between the shallow storage zone and a deeper magma source region. Eventually the effects of continuing magma supply and vesiculation of stored magma caused a critical pressure threshold to be exceeded, triggering the 2008 eruption. A similar pattern of initially rapid inflation followed by oscillatory but generally slowing inflation was observed prior to the 1997 eruption. In both cases, withdrawal of magma during the eruptions depressurized the shallow storage zone, causing significant volcano-wide subsidence and initiating a new intereruption deformation cycle.

  6. Density of alkaline magmas at crustal and upper mantle conditions by X-ray absorption

    Science.gov (United States)

    Seifert, R.; Malfait, W.; Petitgirard, S.; Sanchez-Valle, C.

    2011-12-01

    Silicate melts are essential components of igneous processes and are directly involved in differentiation processes and heat transfer within the Earth. Studies of the physical properties of magmas (e.g., density, viscosity, conductivity, etc) are however challenging and experimental data at geologically relevant pressure and temperature conditions remain scarce. For example, there is virtually no data on the density at high pressure of alkaline magmas (e.g., phonolites) typically found in continental rift zone settings. We present in situ density measurements of alkaline magmas at crustal and upper mantle conditions using synchrotron X-ray absorption. Measurements were conducted on ID27 beamline at ESRF using a panoramic Paris-Edinburgh Press (PE Press). The starting material is a synthetic haplo-phonolite glass similar in composition to the Plateau flood phonolites from the Kenya rift [1]. The glass was synthesized at 1673 K and 2.0 GPa in a piston-cylinder apparatus at ETH Zurich and characterized using EPMA, FTIR and density measurements. The sample contains less than 200 ppm water and is free of CO2. Single-crystal diamond cylinders (Øin = 0.5 mm, height = 1 mm) were used as sample containers and placed in an assembly formed by hBN spacers, a graphite heater and a boron epoxy gasket [2]. The density was determined as a function of pressure (1.0 to 3.1 GPa) and temperature (1630-1860 K) from the X-ray absorption contrast at 20 keV between the sample and the diamond capsule. The molten state of the sample during the data collection was confirmed by X-ray diffraction measurements. Pressure and temperature were determined simultaneously from the equation of state of hBN and platinum using the the double isochor method [3].The results are combined with available density data at room conditions to derive the first experimental equation of state (EOS) of phonolitic liquids at crustal and upper mantle conditions. We will compare our results with recent reports of the

  7. Pressure effect on Fe3+/FeT in silicate melts and applications to magma redox, particularly in magma oceans

    Science.gov (United States)

    Zhang, H.; Hirschmann, M. M.

    2014-12-01

    The proportions of Fe3+ and Fe2+ in magmas reflect the redox conditions of their origin and influence the chemical and physical properties of natural silicate liquids, but the relationship between Fe3+/FeT and oxygen fugacity depends on pressure owing to different molar volumes and compressibilities of Fe3+ and Fe2+ in silicates. An important case where the effect of pressure effect may be important is in magma oceans, where well mixed (and therefore potentially uniform Fe3+/FeT) experiencses a wide range of pressures, and therefore can impart different ƒO2 at different depths, influencing magma ocean degassing and early atmospheres, as well as chemical gradients within magma oceans. To investigate the effect of pressure on magmatic Fe3+/FeT we conducted high pressure expeirments on ƒO2-buffered andestic liquids. Quenched glasses were analyzed by Mössbauer spectroscopy. To verify the accuracy of Mössbauer determinations of Fe3+/FeT in glasses, we also conducted low temperature Mössbauer studies to determine differences in the recoilless fraction (ƒ) of Fe2+ and Fe3. These indicate that room temperature Mössbauer determinations of on Fe3+/FeT glasses are systematically high by 4% compared to recoilless-fraction corrected ratios. Up to 7 GPa, pressure decreases Fe3+/FeT, at fixed ƒO2 relative to metal-oxide buffers, meaning that an isochemical magma will become more reduced with decreasing pressure. Consequently, for small planetary bodies such as the Moon or Mercury, atmospheres overlying their MO will be highly reducing, consisting chiefly of H2 and CO. The same may also be true for Mars. The trend may reverse at higher pressure, as is the case for solid peridotite, and so for Earth, Venus, and possibly Mars, more oxidized atmospheres above MO are possible. Diamond anvil experiments are underway to examine this hypothesis.

  8. The expected greenhouse benefits from developing magma power at Long Valley, California

    International Nuclear Information System (INIS)

    Haraden, John.

    1995-01-01

    Magma power is the production of electricity from shallow magma bodies. Before magma becomes a practical source of power, many engineering problems must still be solved. When they are solved, the most likely site for the first magma power plant is Long Valley, California, USA. In this paper, we examine the greenhouse benefits from developing Long Valley. By generating magma power and by curtailing an equal amount of fossil power, we estimate the expected mass and the expected discounted value of reduced CO 2 emissions. For both measures, the expected benefits seem to be substantial. (author)

  9. Constraining magma physical properties and its temporal evolution from InSAR and topographic data only: a physics-based eruption model for the effusive phase of the Cordon Caulle 2011-2012 rhyodacitic eruption

    Science.gov (United States)

    Delgado, F.; Kubanek, J.; Anderson, K. R.; Lundgren, P.; Pritchard, M. E.

    2017-12-01

    The 2011-2012 eruption of Cordón Caulle volcano in Chile is the best scientifically observed rhyodacitic eruption and is thus a key place to understand the dynamics of these rare but powerful explosive rhyodacitic eruptions. Because the volatile phase controls both the eruption temporal evolution and the eruptive style, either explosive or effusive, it is important to constrain the physical parameters that drive these eruptions. The eruption began explosively and after two weeks evolved into a hybrid explosive - lava flow effusion whose volume-time evolution we constrain with a series of TanDEM-X Digital Elevation Models. Our data shows the intrusion of a large volume laccolith or cryptodome during the first 2.5 months of the eruption and lava flow effusion only afterwards, with a total volume of 1.4 km3. InSAR data from the ENVISAT and TerraSAR-X missions shows more than 2 m of subsidence during the effusive eruption phase produced by deflation of a finite spheroidal source at a depth of 5 km. In order to constrain the magma total H2O content, crystal cargo, and reservoir pressure drop we numerically solve the coupled set of equations of a pressurized magma reservoir, magma conduit flow and time dependent density, volatile exsolution and viscosity that we use to invert the InSAR and topographic data time series. We compare the best-fit model parameters with independent estimates of magma viscosity and total gas content measured from lava samples. Preliminary modeling shows that although it is not possible to model both the InSAR and the topographic data during the onset of the laccolith emplacement, it is possible to constrain the magma H2O and crystal content, to 4% wt and 30% which agree well with published literature values.

  10. Magma at depth: A retrospective analysis of the 1975 unrest at Mount Baker, Washington, USA

    Science.gov (United States)

    Crider, Juliet G.; Frank, David; Malone, Stephen D.; Poland, Michael P.; Werner, Cynthia; Caplan-Auerbach, Jacqueline

    2011-01-01

    Mount Baker volcano displayed a short interval of seismically-quiescent thermal unrest in 1975, with high emissions of magmatic gas that slowly waned during the following three decades. The area of snow-free ground in the active crater has not returned to pre-unrest levels, and fumarole gas geochemistry shows a decreasing magmatic signature over that same interval. A relative microgravity survey revealed a substantial gravity increase in the ~30 years since the unrest, while deformation measurements suggest slight deflation of the edifice between 1981-83 and 2006-07. The volcano remains seismically quiet with regard to impulsive volcano-tectonic events, but experiences shallow (10 km) long-period earthquakes. Reviewing the observations from the 1975 unrest in combination with geophysical and geochemical data collected in the decades that followed, we infer that elevated gas and thermal emissions at Mount Baker in 1975 resulted from magmatic activity beneath the volcano: either the emplacement of magma at mid-crustal levels, or opening of a conduit to a deep existing source of magmatic volatiles. Decadal-timescale, multi-parameter observations were essential to this assessment of magmatic activity.

  11. CO2 bubble generation and migration during magma-carbonate interaction

    Science.gov (United States)

    Blythe, L. S.; Deegan, F. M.; Freda, C.; Jolis, E. M.; Masotta, M.; Misiti, V.; Taddeucci, J.; Troll, V. R.

    2015-04-01

    We conducted quantitative textural analysis of vesicles in high temperature and pressure carbonate assimilation experiments (1200 °C, 0.5 GPa) to investigate CO2 generation and subsequent bubble migration from carbonate into magma. We employed Mt. Merapi (Indonesia) and Mt. Vesuvius (Italy) compositions as magmatic starting materials and present three experimental series using (1) a dry basaltic-andesite, (2) a hydrous basaltic-andesite (2 wt% H2O), and (3) a hydrous shoshonite (2 wt% H2O). The duration of the experiments was varied from 0 to 300 s, and carbonate assimilation produced a CO2-rich fluid and CaO-enriched melts in all cases. The rate of carbonate assimilation, however, changed as a function of melt viscosity, which affected the 2D vesicle number, vesicle volume, and vesicle size distribution within each experiment. Relatively low-viscosity melts (i.e. Vesuvius experiments) facilitated efficient removal of bubbles from the reaction site. This allowed carbonate assimilation to continue unhindered and large volumes of CO2 to be liberated, a scenario thought to fuel sustained CO2-driven eruptions at the surface. Conversely, at higher viscosity (i.e. Merapi experiments), bubble migration became progressively inhibited and bubble concentration at the reaction site caused localised volatile over-pressure that can eventually trigger short-lived explosive outbursts. Melt viscosity therefore exerts a fundamental control on carbonate assimilation rates and, by consequence, the style of CO2-fuelled eruptions.

  12. Volatiles from solids

    Energy Technology Data Exchange (ETDEWEB)

    Loughrey, C T

    1939-08-24

    To remove volatiles from solids, such as oil shale, gases, and/or vapours are passed through a mass of the materials, the vapours and gases separated, and the vapours condensed. The volatile-containing solid materials are fed to a retort, and a shaft is driven to rotate an impeller so as to displace the liquid and create a vortex tube, which draws in gas from the atmosphere through an intake, twyer, interstices in the material in the retort, a conduit, chamber, tubes, another chamber and cylinder. This gas is carried outwardly and upwardly by the vortices in the liquid and is carried to discharge through three conduits. The vapours entrained by the gas are part condensed in the liquid and the remainder directed to a condenser. Steam may be delivered to the twyer through a nozzle of a pipe, with or without air, and combustible hydrocarbon fuel may be fed through the burner nozzle or solid fuel may be directed from feeder and combusted in the twyer.

  13. Molecular plant volatile communication.

    Science.gov (United States)

    Holopainen, Jarmo K; Blande, James D

    2012-01-01

    Plants produce a wide array of volatile organic compounds (VOCs) which have multiple functions as internal plant hormones (e.g., ethylene, methyl jasmonate and methyl salicylate), in communication with conspecific and heterospecific plants and in communication with organisms of second (herbivores and pollinators) and third (enemies of herbivores) trophic levels. Species specific VOCs normally repel polyphagous herbivores and those specialised on other plant species, but may attract specialist herbivores and their natural enemies, which use VOCs as host location cues. Attraction of predators and parasitoids by VOCs is considered an evolved indirect defence, whereby plants are able to indirectly reduce biotic stress caused by damaging herbivores. In this chapter we review these interactions where VOCs are known to play a crucial role. We then discuss the importance of volatile communication in self and nonself detection. VOCs are suggested to appear in soil ecosystems where distinction of own roots from neighbours roots is essential to optimise root growth, but limited evidence of above-ground plant self-recognition is available.

  14. Terrestrial magma ocean and core segregation in the earth

    Science.gov (United States)

    Ohtani, Eiji; Yurimoto, Naoyoshi

    1992-01-01

    According to the recent theories of formation of the earth, the outer layer of the proto-earth was molten and the terrestrial magma ocean was formed when its radius exceeded 3000 km. Core formation should have started in this magma ocean stage, since segregation of metallic iron occurs effectively by melting of the proto-earth. Therefore, interactions between magma, mantle minerals, and metallic iron in the magma ocean stage controlled the geochemistry of the mantle and core. We have studied the partitioning behaviors of elements into the silicate melt, high pressure minerals, and metallic iron under the deep upper mantle and lower mantle conditions. We employed the multi-anvil apparatus for preparing the equilibrating samples in the ranges from 16 to 27 GPa and 1700-2400 C. Both the electron probe microanalyzer (EPMA) and the Secondary Ion Mass spectrometer (SIMS) were used for analyzing the run products. We obtained the partition coefficients of various trace elements between majorite, Mg-perovskite, and liquid, and magnesiowustite, Mg-perovskite, and metallic iron. The examples of the partition coefficients of some key elements are summarized in figures, together with the previous data. We may be able to assess the origin of the mantle abundances of the elements such as transition metals by using the partitioning data obtained above. The mantle abundances of some transition metals expected by the core-mantle equilibrium under the lower mantle conditions cannot explain the observed abundance of some elements such as Mn and Ge in the mantle. Estimations of the densities of the ultrabasic magma Mg-perovskite at high pressure suggest existence of a density crossover in the deep lower mantle; flotation of Mg-perovskite occurs in the deep magma ocean under the lower mantle conditions. The observed depletion of some transition metals such as V, Cr, Mn, Fe, Co, and Ni in the mantle may be explained by the two stage process, the core-mantle equilibrium under the lower

  15. Depths of Magma Chambers in the Icelandic Crust

    Science.gov (United States)

    Kelley, D. F.; Kapostasy, D. D.; Barton, M.

    2004-05-01

    There is considerable interest in the structure and thermal state of the crust in Iceland, which lies across the Mid Atlantic Ridge. However, interpretations of seismic and gravity data yield conflicting views of the nature of the lower crust. Some interpretations prefer a model in which the lower crust (15-25 km) is relatively cool and solid, whereas other interpretations, based largely on gravity data, prefer a model in which the lower crust is relatively warm and possibly partially molten. Knowledge of the depth of magma chambers is critical to constrain the geothermal gradient in Icelandic crust and to resolve discrepancies in interpretation of geophysical data. Analyses of aphyric lavas and of glasses in Icelandic lavas erupted from 11 volcanic centers have been compiled. The compositions are picritic and basaltic with SiO2 - 47 to 50 wt%, MgO - 6 to 15wt%, FeO - 8 to 14wt%, to, Na2O - 1.3 to 3.3 wt%, and K2O - 0.03-46 wt%. The pressures of equilibration of these liquids with ol, high-Ca pyx and plag were estimated qualitatively from projections into the pseudoternary system Ol-Di-Silica using methods described by Walker and coworkers and Grove and coworkers. The results (ca. 0.5 GPa) indicate crystallization in magma chambers located at about 16 km depth. Equilibration pressures were also calculated using the method described by Yang and coworkers and by a modified version of this method. Calculated pressures (0.45±0.15 GPa) indicate magma chambers located at 15±4 km depth. Equilibration pressures for Rekjanes Ridge glasses determined using the same techniques are 0.2±0.1 GPa, corresponding to depths of 7.6±3 km. The results indicate the presence of magma chambers in the deep Icelandic crust and that the latter is relatively warm. Shallower chambers (3-7 km) have been identified from seismic studies suggesting a complex magma plumbing system. The results also confirm that magma chambers beneath Iceland are located at greater depths than those beneath the

  16. When Magma Meets Carbonate: Explosive Criminals of Climate Change?

    Science.gov (United States)

    Carter, L. B.

    2017-12-01

    The natural carbon cycle is a key component of global climate change. Identifying and quantifying all processes in the cycle is essential to determine the effects of human greenhouse gas contributions and make future predictions. Volcanoes are the main natural source of carbon dioxide to the atmosphere [1]. In settings where carbonate rocks underlie the edifice, they can be consumed by magma passing through, which can release extra CO2, potentially explaining the extremely high emissions at Mount Etna in Italy [2-4]. We conduct laboratory experiments, mimicking conditions in the crust, to study how different carbonate rocks interact with hot magmas at pressure, and determine the amount of CO2 generated. We find that some types of magma can raise volcanic gas output and cause more explosive and dangerous eruptions [5-6]. Others are more likely to release hot fluids to the surrounding rocks, releasing CO2 by skarnification, which leaves economically important ores like in the western US [3,7] but can weaken the subsurface, potentially leading to landslides. Gas can also be released on the flanks of a volcano or in regions lacking an active volcano, due to the breakdown of certain carbonate rocks by heat [7], seen as bubbling springs in Yellowstone [8]. Our experiments indicate that if dolostone, not limestone, surrounds a magma chamber, over half the CO2 that was locked in the crust can escape even at lower temperatures a distance away. These processes are perhaps pertinent to why the Earth's climate was warm >50 million years ago, when more magma-carbonate interaction likely occurred than today [3] and thus contributed several times the current volcanic output [4] to the atmosphere. As significant parts of the long-term carbon cycle, it is necessary to include magma-carbonate reactions when considering climate changes before taking into account human input. [1] Aiuppa et al 2017 ESciRev (168) 24-47; [2] Ganino and Arndt 2009 Geol (37) 323-326; [3] Lee et al. 2013

  17. Driving magma to the surface: The 2011-2012 El Hierro Volcanic Eruption

    Science.gov (United States)

    López, Carmen; Benito-Saz, Maria A.; Martí, Joan; del-Fresno, Carmen; García-Cañada, Laura; Albert, Helena; Lamolda, Héctor

    2017-08-01

    We reanalyzed the seismic and deformation data corresponding to the preeruptive unrest on El Hierro (Canary Islands) in 2011. We considered new information about the internal structure of the island. We updated the seismic catalog to estimate the full evolution of the released seismic energy and demonstrate the importance of nonlocated earthquakes. Using seismic data and GPS displacements, we characterized the shear-tensile type of the predominant fracturing and modeled the strain and stress fields for different time periods. This enabled us to identify a prolonged first phase characterized by hydraulic tensile fracturing, which we interpret as being related to the emplacement of new magma below the volcanic edifice on El Hierro. This was followed by postinjection unidirectional migration, probably controlled by the stress field and the distribution of the structural discontinuities. We identified the effects of energetic magmatic pulses occurring a few days before the eruption that induced shear seismicity on preexisting faults within the volcano and raised the Coulomb stress over the whole crust. We suggest that these magmatic pulses reflect the crossing of the Moho discontinuity, as well as changes in the path geometry of the dyke migration toward the surface. The final phase involved magma ascent through a prefractured crust.

  18. Volatility Mean Reversion and the Market Price of Volatility Risk

    NARCIS (Netherlands)

    Boswijk, H.P.

    2001-01-01

    This paper analyzes sources of derivative pricing errors in a stochastic volatility model estimated on stock return data. It is shown that such pricing errors may reflect the existence of a market price of volatility risk, but also may be caused by estimation errors due to a slow mean reversion in

  19. It’s all about volatility of volatility

    DEFF Research Database (Denmark)

    Grassi, Stefano; Santucci de Magistris, Paolo

    2015-01-01

    The persistent nature of equity volatility is investigated by means of a multi-factor stochastic volatility model with time varying parameters. The parameters are estimated by means of a sequential matching procedure which adopts as auxiliary model a time-varying generalization of the HAR model f...

  20. VOLATILIZATION RATES FROM WATER TO INDOOR AIR ...

    Science.gov (United States)

    Contaminated water can lead to volatilization of chemicals to residential indoor air. Previous research has focused on only one source (shower stalls) and has been limited to chemicals in which gas-phase resistance to mass transfer is of marginal significance. As a result, attempts to extrapolate chemical emissions from high-volatility chemicals to lower volatility chemicals, or to sources other than showers, have been difficult or impossible. This study involved the development of two-phase, dynamic mass balance models for estimating chemical emissions from washing machines, dishwashers, and bathtubs. An existing model was adopted for showers only. Each model required the use of source- and chemical-specific mass transfer coefficients. Air exchange (ventilation) rates were required for dishwashers and washing machines as well. These parameters were estimated based on a series of 113 experiments involving 5 tracer chemicals (acetone, ethyl acetate, toluene, ethylbenzene, and cyclohexane) and 4 sources (showers, bathtubs, washing machines, and dishwashers). Each set of experiments led to the determination of chemical stripping efficiencies and mass transfer coefficients (overall, liquid-phase, gas-phase), and to an assessment of the importance of gas- phase resistance to mass transfer. Stripping efficiencies ranged from 6.3% to 80% for showers, 2.6% to 69% for bathtubs, 18% to 100% for dishwashers, and 3.8% to 100% for washing machines. Acetone and cyclohexane al

  1. Pre-eruptive conditions of the Hideaway Park topaz rhyolite: Insights into metal source and evolution of magma parental to the Henderson porphyry molybdenum deposit, Colorado

    Science.gov (United States)

    Mercer, Celestine N.; Hofstra, Albert H.; Todorov, Todor I.; Roberge, Julie; Burgisser, Alain; Adams, David T.; Cosca, Michael A.

    2015-01-01

    The Hideaway Park tuff is the only preserved extrusive volcanic unit related to the Red Mountain intrusive complex, which produced the world-class Henderson porphyry Mo deposit. Located within the Colorado Mineral Belt, USA, Henderson is the second largest Climax-type Mo deposit in the world, and is therefore an excellent location to investigate magmatic processes leading to Climax-type Mo mineralization. We combine an extensive dataset of major element, volatile, and trace element abundances in quartz-hosted melt inclusions and pumice matrix glass with major element geochemistry from phenocrysts to reconstruct the pre-eruptive conditions and the source and evolution of metals within the magma. Melt inclusions are slightly peraluminous topaz rhyolitic in composition and are volatile-charged (≤6 wt % H2O, ≤600 ppm CO2, ∼0·3–1·0 wt % F, ∼2300–3500 ppm Cl) and metal-rich (∼7–24 ppm Mo, ∼4–14 ppm W, ∼21–52 ppm Pb, ∼28–2700 ppm Zn, shallow ascent and eruption. Filter pressing, crystal settling, magma recharge and mixing of less evolved rhyolite melt, and volatile exsolution were important processes during magma evolution; the low estimated viscosities (∼105–1010 Pa s) of these H2O- and F-rich melts probably enhanced these processes. A noteworthy discrepancy between the metal contents in the pumice matrix glass and in the melt inclusions suggests that after quartz crystallization ceased upon shallow magma ascent and eruption, the Hideaway Park magma exsolved an aqueous fluid into which Mo, Bi, Ag, Zn, Mn, Cs, and Y strongly partitioned. Given that the Henderson deposit contains anomalous abundances of not only Mo, but also W, Pb, Zn, Cu, Bi, Ag, and Mn, we suggest that these metals were sourced from similar fluids exsolved from unerupted portions of the same magmatic system. Trace element ratios imply that Mo was sourced deep, from either the lower crust or metasomatized mantle. The origin of sulfur remains unresolved

  2. Magma ascent, fragmentation and depositional characteristics of "dry" maar volcanoes: Similarities with vent-facies kimberlite deposits

    Science.gov (United States)

    Berghuijs, Jaap F.; Mattsson, Hannes B.

    2013-02-01

    Several maar craters within the Lake Natron-Engaruka monogenetic volcanic field (LNE-MVF) of northern Tanzania show compelling evidence for magmatic fragmentation and dry deposition. This is in contradiction of the common belief that most maars are formed through the explosive interaction between ascending magma and ground- or surface water. We here present a detailed study on the eruptive and depositional characteristics of the Loolmurwak and Eledoi maar volcanoes, two of the largest craters in the LNE-MVF, focusing on high-resolution stratigraphy, sedimentology, grain size distribution, pyroclast textures and morphologies, bulk geochemistry and mineral chemistry. At both maars, ejected material has been emplaced by a combination of pyroclastic surges and fallout. Indicators of phreatomagmatic fragmentation and wet deposition, such as impact sags, accretionary lapilli, vesiculated tuffs and plastering against obstacles, are absent in the deposits. Juvenile material predominantly occurs as fluidal-shaped vesicular melt droplets and contains no glass shards produced by the breakage of bubble walls. The Eledoi deposits comprise a large amount of inversely graded beds and lenses, which result from grain flow in a dry depositional environment. Preferential deposition of fine material toward the northern side of its crater can be related to effective wind winnowing in a dry eruption plume. This large variety of observations testifies to the dominance of magmatic fragmentation as well as dry deposition at the Loolmurwak and Eledoi maars, which is in line with what has been found for other structures in the LNE-MVF but contrasts with current ideas on maar formation. We infer that a volatile-rich, olivine melilitic magma was formed by small amounts of partial melting at upper mantle depths. With minimum average ascent rates of 5.3 m s- 1 for Loolmurwak and 26.2 m s- 1 for Eledoi, this magma rapidly moved toward the surface and exsolved a substantial amount of volatiles

  3. Ultra-high chlorine in submarine Kı̄lauea glasses: Evidence for direct assimilation of brine by magma

    Science.gov (United States)

    Coombs, Michelle L.; Sisson, Thomas W.; Kimura, Jun-Ichi

    2004-01-01

    Basaltic glass grains from the submarine south flank of Kı̄lauea, Hawai′i, have Cl concentrations of 0.01–1.68 wt%, the latter being the highest Cl content yet recorded for a Hawaiian glass. The high-Cl glass grains are products of brine assimilation by tholeiite magma. The glasses are grains in a sandstone clast from bedded breccias draping the southwestern margin of Kı̄lauea’s submarine midslope bench. The clast contains two distinct suites of glass grains: abundant degassed tholeiites, perhaps derived from subaerial lavas of Mauna Loa that shattered upon ocean entry, and a smaller population of Kea-type tholeiite (n=17 analyzed) that erupted subaqueously, based on elevated S (780–1050 ppm), H2O (0.42–1.27 wt%), and CO2 (1000 ppm, six >5000 ppm, and two grains have >10 000 ppm dissolved Cl. Abundances of H2O, Na2O, K2O, and several trace elements increase regularly with Cl concentration, and we estimate that Cl enrichment was due to up to 13 wt% addition of a brine consisting of 78% H2O (wt), 13% Cl, 4.4% Na, 2.6% K, 2.6% Ca, 620 ppm Ba, 360 ppm Sr, 65 ppm Rb, and 7 ppm Pb. The large amounts of brine addition argue against bulk assimilation of low-porosity brine-bearing rock. The brine’s composition is appropriate for a seawater-derived hydrothermal fluid that reacted with basaltic wall rocks at T>100°C, losing Mg and S and gaining K, Ca, Rb, Ba, Sr, and Pb, followed by phase separation near 500°C and ∼50 MPa (5 km below sea level at hydrostatic pressure). Brine was assimilated at or near the depth it formed, as estimated on petrologic grounds, but under lithostatic conditions. The highest extents of assimilation either forced volatile saturation of the magma or enriched already coexisting magmatic vapor in H2O. Possible mechanisms for assimilation are: (1) forcible injection of brine into magma during bursting of overpressured pockets heated by new dikes, or (2) intrusion of magma into lenses or sills occupied by trapped brine.

  4. Finite automata over magmas: models and some applications in Cryptography

    Directory of Open Access Journals (Sweden)

    Volodymyr V. Skobelev

    2018-05-01

    Full Text Available In the paper the families of finite semi-automata and reversible finite Mealy and Moore automata over finite magmas are defined and analyzed in detail. On the base of these models it is established that the set of finite quasigroups is the most acceptable subset of the set of finite magmas at resolving model problems in Cryptography, such as design of iterated hash functions and stream ciphers. Defined families of finite semi-automata and reversible finite automata over finite $T$-quasigroups are investigated in detail. It is established that in this case models time and space complexity for simulation of the functioning during one instant of automaton time can be much lower than in general case.

  5. Evidence of a global magma ocean in Io's interior.

    Science.gov (United States)

    Khurana, Krishan K; Jia, Xianzhe; Kivelson, Margaret G; Nimmo, Francis; Schubert, Gerald; Russell, Christopher T

    2011-06-03

    Extensive volcanism and high-temperature lavas hint at a global magma reservoir in Io, but no direct evidence has been available. We exploited Jupiter's rotating magnetic field as a sounding signal and show that the magnetometer data collected by the Galileo spacecraft near Io provide evidence of electromagnetic induction from a global conducting layer. We demonstrate that a completely solid mantle provides insufficient response to explain the magnetometer observations, but a global subsurface magma layer with a thickness of over 50 kilometers and a rock melt fraction of 20% or more is fully consistent with the observations. We also place a stronger upper limit of about 110 nanoteslas (surface equatorial field) on the dynamo dipolar field generated inside Io.

  6. Somma-Vesuvius Plinian Eruptions fed by mafic magma: insights from bubbles in melt inclusions

    Science.gov (United States)

    Esposito, R.; Redi, D.; Cannatelli, C.; Danyushevsky, L. V.; Lima, A.; Bodnar, R. J.; De Vivo, B.

    2014-12-01

    Mt. Somma-Vesuvius Plinian eruptions were first described by Pliny the younger in 79 AD during the infamous eruption that destroyed Pompeii. Today, such eruptions are still a concern to the nearly 3 million people living in the Naples metropolitan area. Understanding the source for Mt. Somma-Vesuvius magma and the coexisting volatile phase is vital to better constrain the long-term eruptive behavior of this volcano. In the present study, ~ 50 olivine phenocrysts were selected from lavas and pumices produced during mild effusive events referred to as inter-Plinian eruptions, and from highly explosive Plinian eruptions that occurred at Mt. Somma-Vesuvius between 33000 ka and 1631 AD. Selected olivine phenocrysts containing MI were examined petrographically and analyzed for Fo content. Fo varies from 69 to 73 mole% for inter-Plinian olivine crystals and from 84 to 90 mole% with one zoned olivine containing 76-81 mole% Fo, for Plinian olivine crystals. Investigated MI vary from slightly crystallized to highly crystallized. Selected crystallized MI were reheated using the Vernadsky stage, and quenched to a homogeneous glass (Group 1) or glass plus a vapor bubble (Group 2). On one hand, MI of Group 1 are hosted in olivine ranging from Fo72 to Fo76 and were all erupted from the Pompeii eruption (white pumice deposit). On the other hand, MI of Group 2 are trapped in olivine ranging from Fo69 to Fo81 and from Fo84 to Fo90, and the hosts are representative of both Plinian and inter-Plinian events. The only eruption where Group-1 and Group-2 MI coexist is the Pompeii eruption. Group 2 MIs were further analyzed by Raman to test for the presence of volatiles (CO2 or H2O) in the vapor bubbles. CO2 was detected in all MI analyzed. CO2 density was determined using the distance between the two Fermi-diad peaks, and ranges between 0.14 and 0.55 g/cm3. Six MI also showed evidence for H2O in the vapor bubble. In addition, carbonates were detected at the glass-vapor interface of five

  7. Political institutions and economic volatility

    NARCIS (Netherlands)

    Klomp, Jeroen; de Haan, Jakob

    We examine the effect of political 'institutions' on economic growth volatility, using data from more than 100 countries over the period 1960 to 2005, taking into account various control variables as suggested in previous studies. Our indicator of volatility is the relative standard deviation of the

  8. Fundamental volatility is regime specific

    NARCIS (Netherlands)

    Arnold, I.J.M.; MacDonald, R.; Vries, de C.G.

    2006-01-01

    A widely held notion holds that freely floating exchange rates are excessively volatile when judged against fundamentals and when moving from fixed to floating exchange rates. We re-examine the data and conclude that the disparity between the fundamentals and exchange rate volatility is more

  9. Thermally-assisted Magma Emplacement Explains Restless Calderas

    Science.gov (United States)

    Amoruso, A.; Crescentini, L.; D'Antonio, M.; Acocella, V.

    2017-12-01

    Many calderas show repeated unrest over centuries. Though probably induced by magma, this unique behaviour is not understood and its dynamics remains elusive. To better understand these restless calderas, we interpret deformation data and build thermal models of Campi Flegrei, Italy, which is the best-known, yet most dangerous calderas, lying to the west of Naples and restless since the 1950s at least.Our elaboration of the geodetic data indicates that the inflation and deflation of magmatic sources at the same location explain most deformation, at least since the build-up of the last 1538 AD eruption. However, such a repeated magma emplacement requires a persistently hot crust.Our thermal models show that the repeated emplacement was assisted by the thermal anomaly created by magma that was intruded at shallow depth 3 ka before the last eruption and, in turn, contributed to maintain the thermal anomaly itself. This may explain the persistence of the magmatic sources promoting the restless behaviour of the Campi Flegrei caldera; moreover, it explains the crystallization, re-melting and mixing among compositionally distinct magmas recorded in young volcanic rocks.Available information at other calderas highlights similarities to Campi Flegrei, in the pattern and cause of unrest. All monitored restless calderas have either geodetically (Yellowstone, Aira Iwo-Jima, Askja, Fernandina and, partly, Long Valley) or geophysically (Rabaul, Okmok) detected sill-like intrusions inducing repeated unrest. Some calderas (Yellowstone, Long Valley) also show stable deformation pattern, where inflation insists on and mimics the resurgence uplift. The common existence of sill-like sources, also responsible for stable deformation patterns, in restless calderas suggests close similarities to Campi Flegrei. This suggests a wider applicability of our model of thermally-assisted sill emplacement, to be tested by future studies to better understand not only the dynamics of restless

  10. MAGMA: generalized gene-set analysis of GWAS data.

    Science.gov (United States)

    de Leeuw, Christiaan A; Mooij, Joris M; Heskes, Tom; Posthuma, Danielle

    2015-04-01

    By aggregating data for complex traits in a biologically meaningful way, gene and gene-set analysis constitute a valuable addition to single-marker analysis. However, although various methods for gene and gene-set analysis currently exist, they generally suffer from a number of issues. Statistical power for most methods is strongly affected by linkage disequilibrium between markers, multi-marker associations are often hard to detect, and the reliance on permutation to compute p-values tends to make the analysis computationally very expensive. To address these issues we have developed MAGMA, a novel tool for gene and gene-set analysis. The gene analysis is based on a multiple regression model, to provide better statistical performance. The gene-set analysis is built as a separate layer around the gene analysis for additional flexibility. This gene-set analysis also uses a regression structure to allow generalization to analysis of continuous properties of genes and simultaneous analysis of multiple gene sets and other gene properties. Simulations and an analysis of Crohn's Disease data are used to evaluate the performance of MAGMA and to compare it to a number of other gene and gene-set analysis tools. The results show that MAGMA has significantly more power than other tools for both the gene and the gene-set analysis, identifying more genes and gene sets associated with Crohn's Disease while maintaining a correct type 1 error rate. Moreover, the MAGMA analysis of the Crohn's Disease data was found to be considerably faster as well.

  11. Volatile organic compounds

    International Nuclear Information System (INIS)

    Silseth, May Liss

    1998-01-01

    The goal is: Not more emission of volatile organic compounds (VOCs) than necessary. The items discussed in this presentation are the VOCs, how to calculate emission of VOCs, how to reduce or avoid them, and different recovery processes. The largest source of Norwegian emissions of non methane VOCs (NMVOCs) is offshore loading of raw petroleum. Emissions of VOCs should be reduced mainly for two reasons: (1) on sunny days NMVOCs may react with NOx to form ozon and smog close to the surface, (2) ozone and smog close to the surface may be harmful to plants and animals, and they are hazardous to human health. As for the calculation of VOC emissions, the VOCON project will release the calculation program HCGASS in 1999. This project is a cooperative project headed by SINTEF/Marintek

  12. Governmentally amplified output volatility

    Science.gov (United States)

    Funashima, Yoshito

    2016-11-01

    Predominant government behavior is decomposed by frequency into several periodic components: updating cycles of infrastructure, Kuznets cycles, fiscal policy over business cycles, and election cycles. Little is known, however, about the theoretical impact of such cyclical behavior in public finance on output fluctuations. Based on a standard neoclassical growth model, this study intends to examine the frequency at which public investment cycles are relevant to output fluctuations. We find an inverted U-shaped relationship between output volatility and length of cycle in public investment. This implies that periodic behavior in public investment at a certain frequency range can cause aggravated output resonance. Moreover, we present an empirical analysis to test the theoretical implication, using the U.S. data in the period from 1968 to 2015. The empirical results suggest that such resonance phenomena change from low to high frequency.

  13. Jakartans, Institutionally Volatile

    Directory of Open Access Journals (Sweden)

    Masaaki OKAMOTO

    2014-01-01

    Full Text Available Jakarta recently has gained even more central political attention in Indonesia since Joko Widodo (Jokowi and Basuki Purnama (Ahok became, respectively, the province’s governor and vice-governor in 2012. They started a series of eye-catching and populist programmes, drawing popular support from not only the people of Jakarta, but also among Indonesians in general. Jokowi is now even the most popular candidate for the presidential election in 2014. Their rise is phenomenal in this sense, but it is understandable if we look at Jakartan voters’ behaviour and the institutional arrangement that leads to it. Jakarta, as the national capital, has a unique arrangement in that the province has no autonomous regency or city. This paper argues that this arrangement causes Jakartans to be more politically volatile and describes how this institutional arrangement was created by analysing the minutes of the meeting to discuss the laws concerning Jakarta Province.

  14. Emerging non-volatile memories

    CERN Document Server

    Hong, Seungbum; Wouters, Dirk

    2014-01-01

    This book is an introduction to the fundamentals of emerging non-volatile memories and provides an overview of future trends in the field. Readers will find coverage of seven important memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), Multiferroic RAM (MFRAM), Phase-Change Memories (PCM), Oxide-based Resistive RAM (RRAM), Probe Storage, and Polymer Memories. Chapters are structured to reflect diffusions and clashes between different topics. Emerging Non-Volatile Memories is an ideal book for graduate students, faculty, and professionals working in the area of non-volatile memory. This book also: Covers key memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), and Multiferroic RAM (MFRAM), among others. Provides an overview of non-volatile memory fundamentals. Broadens readers' understanding of future trends in non-volatile memories.

  15. The chlorine isotope fingerprint of the lunar magma ocean.

    Science.gov (United States)

    Boyce, Jeremy W; Treiman, Allan H; Guan, Yunbin; Ma, Chi; Eiler, John M; Gross, Juliane; Greenwood, James P; Stolper, Edward M

    2015-09-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free ("dry") Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because (37)Cl/(35)Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, (37)Cl/(35)Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high (37)Cl/(35)Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon's history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets.

  16. Isotopic abundances relevant to the identification of magma sources

    International Nuclear Information System (INIS)

    O'Nions, R.K.

    1984-01-01

    The behaviour of natural radiogenic isotope tracers in the Earth that have lithophile and atmophile geochemical affinity is reviewed. The isotope tracer signature of oceanic and continental crust may in favourable circumstances by sufficiently distinct from that of the mantle to render a contribution from these sources resolvable within the isotopic composition of the magma. Components derived from the sedimentary and altered basaltic portion of oceanic crust are recognized in some island arc magmas from their Sr, Nd and Pb isotopic signatures. The rare-gas isotope tracers (He, Ar, Xe in particular) are not readily recycled into the mantle and thus provide the basis of an approach that is complementary to that based on the lithophile tracers. In particular, a small mantle-derived helium component may be readily recognized in the presence of a predominant radiogenic component generated in the continents. The importance of assessing the mass balance of these interactions rather than merely a qualitative recognition is emphasized. The question of the relative, contribution of continental-oceanic crust and mantle to magma sources is an essential part of the problem of generation and evolution of continental crust. An approach to this problem through consideration of the isotopic composition of sediments is briefly discussed. (author)

  17. Parental magmas of Mare Fecunditatis - Evidence from pristine glasses

    International Nuclear Information System (INIS)

    Jin, Y.; Taylor, L.A.

    1990-01-01

    Results are presented on the petrography and electron microprobe analyses of 14 discrete glass beads from the Luna 16 core sample (21036,15) from Mare Fecunditatis regolith, that were previously characterized as representing pristine glasses. Compared to Apollo pristine glasses analyzed by Delano (1986), the Luna 16 pristine glasses have higher CaO and Al2O3 contents but lower MgO and Ni. On the basis of their contents of MgO, FeO, Al2O3, and CaO, these pristine glasses could be divided into two groups, A and B. It is suggested that at least two parental magmas are needed to explain the chemical variations among these glasses. The Group B glasses appear to represent primitive parental magma that evolved by olivine fractionation to the compositions of the Luna 16 aluminous mare basalts, whereas the Group A volcanic glasses may represent an unusual new basalt magma type that contains a high plagioclase component. 14 refs

  18. Automatic Compound Annotation from Mass Spectrometry Data Using MAGMa.

    Science.gov (United States)

    Ridder, Lars; van der Hooft, Justin J J; Verhoeven, Stefan

    2014-01-01

    The MAGMa software for automatic annotation of mass spectrometry based fragmentation data was applied to 16 MS/MS datasets of the CASMI 2013 contest. Eight solutions were submitted in category 1 (molecular formula assignments) and twelve in category 2 (molecular structure assignment). The MS/MS peaks of each challenge were matched with in silico generated substructures of candidate molecules from PubChem, resulting in penalty scores that were used for candidate ranking. In 6 of the 12 submitted solutions in category 2, the correct chemical structure obtained the best score, whereas 3 molecules were ranked outside the top 5. All top ranked molecular formulas submitted in category 1 were correct. In addition, we present MAGMa results generated retrospectively for the remaining challenges. Successful application of the MAGMa algorithm required inclusion of the relevant candidate molecules, application of the appropriate mass tolerance and a sufficient degree of in silico fragmentation of the candidate molecules. Furthermore, the effect of the exhaustiveness of the candidate lists and limitations of substructure based scoring are discussed.

  19. Concentration variance decay during magma mixing: a volcanic chronometer.

    Science.gov (United States)

    Perugini, Diego; De Campos, Cristina P; Petrelli, Maurizio; Dingwell, Donald B

    2015-09-21

    The mixing of magmas is a common phenomenon in explosive eruptions. Concentration variance is a useful metric of this process and its decay (CVD) with time is an inevitable consequence during the progress of magma mixing. In order to calibrate this petrological/volcanological clock we have performed a time-series of high temperature experiments of magma mixing. The results of these experiments demonstrate that compositional variance decays exponentially with time. With this calibration the CVD rate (CVD-R) becomes a new geochronometer for the time lapse from initiation of mixing to eruption. The resultant novel technique is fully independent of the typically unknown advective history of mixing - a notorious uncertainty which plagues the application of many diffusional analyses of magmatic history. Using the calibrated CVD-R technique we have obtained mingling-to-eruption times for three explosive volcanic eruptions from Campi Flegrei (Italy) in the range of tens of minutes. These in turn imply ascent velocities of 5-8 meters per second. We anticipate the routine application of the CVD-R geochronometer to the eruptive products of active volcanoes in future in order to constrain typical "mixing to eruption" time lapses such that monitoring activities can be targeted at relevant timescales and signals during volcanic unrest.

  20. Nonparametric methods for volatility density estimation

    NARCIS (Netherlands)

    Es, van Bert; Spreij, P.J.C.; Zanten, van J.H.

    2009-01-01

    Stochastic volatility modelling of financial processes has become increasingly popular. The proposed models usually contain a stationary volatility process. We will motivate and review several nonparametric methods for estimation of the density of the volatility process. Both models based on

  1. The link between multistep magma ascent and eruption intensity: examples from the recent activity of Piton de la Fournaise (La Réunion Island).

    Science.gov (United States)

    Di Muro, Andrea

    2014-05-01

    Caldera collapses represent catastrophic events, which induce drastic modification in a volcano plumbing system and can result in major and fast evolution of the system dynamics. At Piton de la Fournaise (PdF) volcano, the 2007 eruptive sequence extruded the largest lava volume (240 Mm3) since at least 3 centuries, provoking the collapse of a small (1 km wide; 340 m deep) summit caldera. In about 35 days, the 2007 major eruption generated i) the greatest lava output rate, ii) the strongest lava fountaining activity (> 200 m high), iii) the largest SO2 volume (> 230 kt) ever documented at PdF. This event ended a 9 year-long period (1998-2007) of continuous edifice inflation and sustained eruptive activity (3 eruptions per year on average). Unexpectedly and in spite of the large volume of magma erupted in 2007, volcano unrest and eruptive activity resumed quickly in 2008, soon after caldera collapse, and produced several closely spaced intracaldera eruptions and shallow intrusions. The post-2007 activity is associated with a trend of continuous volcano deflation and consists in small-volume (Pele's hairs, coarse ash fragments produced by lava-sea water interaction, glassy crust of lavas, high-temperature lavas quenched in water, matrix glasses) with the geophysical record of volcano unrest. Petro-chemical data suggest that the shallow PdF plumbing system is formed by a network of small sized magma pockets (sills). We explicitly link its formation and emptying with periodic magma recharges from deeper levels and repeated caldera collapses, which frequently affect the central cone of PdF. In spite of the large range in fountain intensity, dissolved volatiles contents are low and almost constant. Multistep ascent of magma inputs is identified as the key mechanism determining the evolution towards open system degassing and in fine controlling eruptive behavior.

  2. Buffered and unbuffered dike emplacement on Earth and Venus - Implications for magma reservoir size, depth, and rate of magma replenishment

    Science.gov (United States)

    Parfitt, E. A.; Head, J. W., III

    1993-01-01

    Models of the emplacement of lateral dikes from magma chambers under constant (buffered) driving pressure conditions and declining (unbuffered) driving pressure conditions indicate that the two pressure scenarios lead to distinctly different styles of dike emplacement. In the unbuffered case, the lengths and widths of laterally emplaced dikes will be severely limited and the dike lengths will be highly dependent on chamber size; this dependence suggests that average dike length can be used to infer the dimensions of the source magma reservoir. On Earth, the characteristics of many mafic-dike swarms suggest that they were emplaced in buffered conditions (e.g., the Mackenzie dike swarm in Canada and some dikes within the Scottish Tertiary). On Venus, the distinctive radial fractures and graben surrounding circular to oval features and edifices on many size scales and extending for hundreds to over a thousand km are candidates for dike emplacement in buffered conditions.

  3. Volatility Exposure for Strategic Asset Allocation

    OpenAIRE

    Briere, Marie; Burgues, Alexandre; Signori, Ombretta

    2008-01-01

    This paper examines the advantages of incorporating strategic exposure to equity volatility into the investment-opportunity set of a long-term equity investor. We consider two standard volatility investments: implied volatility and volatility risk premium strategies. To calibrate and assess the risk/return profile of the portfolio, we present an analytical framework offering pragmatic solutions for long-term investors seeking exposure to volatility. The benefit of volatility exposure for a co...

  4. Sources of Magmatic Volatiles Discharging from Subduction Zone Volcanoes

    Science.gov (United States)

    Fischer, T.

    2001-05-01

    5.4 Mmol/a of non-mantle N2). Other subduction zone volcanoes are currently degassing a much more substantial amount of volatiles. Popocatepetl, Mexico, has degassed approximately 14 Mt of SO2 to the atmosphere over the past 6 years (Witter et al. 2000). Satsuma-Iwojima, Japan, has degassed for longer than 800 years and is currently releasing 500-1000 tones/day (Kazahaya et al. 2000). At these volcanoes CO2 and N2 discharges from the magma should also be balanced by the supply from slab and crustal sources. The rate of subduction off Mexico and Japan, however, is similar to the rate at the Kuriles. Therefore, large amounts of slab derived volatiles must be, in some fashion, stored in the "subduction factory" to supply the large amounts degassing passively from these volcanoes. Kazahaya et al. (2000) Seventh Field Workshop on Volcanic Gases, IAVCEI. Witter et al (2000) Seventh Field Workshop on Volcanic Gases, IAVCEI.

  5. Latent Integrated Stochastic Volatility, Realized Volatility, and Implied Volatility: A State Space Approach

    DEFF Research Database (Denmark)

    Bach, Christian; Christensen, Bent Jesper

    process is downward biased. Implied volatility performs better than any of the alternative realized measures when forecasting future integrated volatility. The results are largely similar across the stock market (S&P 500), bond market (30-year U.S. T-bond), and foreign currency exchange market ($/£ )....

  6. Computer Simulation To Assess The Feasibility Of Coring Magma

    Science.gov (United States)

    Su, J.; Eichelberger, J. C.

    2017-12-01

    Lava lakes on Kilauea Volcano, Hawaii have been successfully cored many times, often with nearly complete recovery and at temperatures exceeding 1100oC. Water exiting nozzles on the diamond core bit face quenches melt to glass just ahead of the advancing bit. The bit readily cuts a clean annulus and the core, fully quenched lava, passes smoothly into the core barrel. The core remains intact after recovery, even when there are comparable amounts of glass and crystals with different coefficients of thermal expansion. The unique resulting data reveal the rate and sequence of crystal growth in cooling basaltic lava and the continuous liquid line of descent as a function of temperature from basalt to rhyolite. Now that magma bodies, rather than lava pooled at the surface, have been penetrated by geothermal drilling, the question arises as to whether similar coring could be conducted at depth, providing fundamentally new insights into behavior of magma. This situation is considerably more complex because the coring would be conducted at depths exceeding 2 km and drilling fluid pressures of 20 MPa or more. Criteria that must be satisfied include: 1) melt is quenched ahead of the bit and the core itself must be quenched before it enters the barrel; 2) circulating drilling fluid must keep the temperature of the coring assembling cooled to within operational limits; 3) the drilling fluid column must nowhere exceed the local boiling point. A fluid flow simulation was conducted to estimate the process parameters necessary to maintain workable temperatures during the coring operation. SolidWorks Flow Simulation was used to estimate the effect of process parameters on the temperature distribution of the magma immediately surrounding the borehole and of drilling fluid within the bottom-hole assembly (BHA). A solid model of the BHA was created in SolidWorks to capture the flow behavior around the BHA components. Process parameters used in the model include the fluid properties and

  7. Magma Mixing: Magmatic Enclaves in Morne Micotrin, Dominica

    Science.gov (United States)

    Hickernell, S.; Frey, H. M.; Manon, M. R. F.; Waters, L. E.

    2017-12-01

    Magmatic enclaves in volcanic rocks provide direct evidence of magma mingling/mixing within a magma reservoir and may reinvigorate the system and trigger eruption, as documented at the Soufriere Hills in Montserrat. Lava domes on the neighboring island of Dominica also contain multiple enclave populations and may be evidence for similar magma chamber processes. The central dome of Micotrin is at the head of the Roseau Valley, which was filled with 3 km3 of pyroclastic deposits from eruptions spanning 65 - 25 ka. There appear to be two distinct types of enclaves in the crystal-rich Micotrin andesites (60 wt% SiO2), fine-grained and coarse-grained. Fine-grained mafic enclaves (52 wt% SiO2) vary in size from 1 to 15 cm in diameter, whereas the coarse-grained enclaves are generally larger and range from 3-20 cm. Fine-grained enclaves are saturated in plag (35%) + opx (35%) + cpx (20%) + oxides (10%). Average pyroxenes are 0.01 to 0.02 cm in size, whereas plagioclase averages 0.05 cm and up to 0.1 cm. The texture of the fine-grained enclaves is cumulate-like, devoid of microlites and matrix glass. Coarse-grained enclaves lack cpx and have different modal abundances and textures: plag (75%) + opx (10%) + oxides (5%) + plag microlites (10%). Plagioclase are 0.1 cm in size and orthopyroxenes average 0.05 cm. The coarse-grained enclaves are highly vesicular, a notable difference from the host as well as the fine-grained enclaves. The boundaries of both the fine- and coarse-grained enclaves are quite sharp and distinct and there do not appear to be enclave minerals disaggregated in the host rock. Temperatures were determined by two oxides. The fine-grained enclaves had two populations of magnetite, yielding 847 + 21° and 920 + 17°C. The coarse-grained enclave was 890 + 42 °C, but the oxides were extensively exsolved. Plagioclase composition in both coarse and fine-grained samples was comparable, ranging from An50 to An80. Despite compositional similarity the textures of

  8. Mafic-silicic magma interaction in the layered 1.87 Ga Soukkio Complex in Mäntsälä, southern Finland

    Directory of Open Access Journals (Sweden)

    Toni T. Eerola

    2002-01-01

    Full Text Available The Svecofennian layered Soukkio Complex (1.87 Ga in Mäntsälä, southern Finland, consists of layered tholeiitic gabbro and porphyritic calc-alkaline monzonite, quartz monzonite and granite, mingled together. The gabbro belongs to a group of ten mafic-ultramafic intrusions of Mäntsälä, part of the 150 km long and 20 km wide, linear, E-W trending Hyvinkää–Mäntsälä Gabbroic Belt(HMGB, representing syn-collisional magmatism. Structures and textures related to magma mingling and mixing occur in a 1–2 km wide zone around Lake Kilpijärvi, located at the center of the Soukkio Complex. The complex is compositionally stratified and consists of four zones:its base, found at the Western Zone, is a dynamically layered gabbro. The followingtonalite is probably a result of magma mixing. Felsic amoeboid layers and pipes, alternating with or cutting the fine-grained gabbro in the Central-Western Zone, resemble those of mafic-silicic layered intrusions in general. Mafic magmatic enclaves (MMEs and pillows form the South-Central Zone and disrupted synplutonic mafic dykes or sheets intruded the granite in the Eastern Zone. The MMEs and disrupted synplutonic mafic dykes or sheets show cuspate and chilled margins against the felsic host, quartz ocelli, corroded K-feldspar xenocrysts with or without plagioclase mantles, and acicular apatite, all typical features of magma mingling and mixing. Mixing is suggested by intermediate composition of MMEs between granitoid and gabbro, as well as by their partly linear trends in some Harker diagrams. REE composition of the MMEs is similar to that of the Soukkio Gabbro, as expected for granite hosted MMEs. The model proposed for evolution of the Soukkio Complex involves intrusion of mafic magma into the crust, causing its partial melting. This generated granitic magma above the mafic chamber. Injections of mafic magma invaded the felsic chamber and those magmas interacted mainly by intermingling. Mingling and

  9. Magma evolution at Copahue volcano (Chile/Argentina border): insights from melt inclusions

    Science.gov (United States)

    Cannatelli, C.; Aracena, C.; Leisen, M.; Moncada, D.; Roulleau, E.; Vinet, N.; Petrelli, M.; Paolillo, A.; Barra, F.; Morata, D.

    2016-12-01

    Copahue volcano is an active stratovolcano in the Andean Southern Volcanic Zone (SVZ), straddling at the border between Central Chile and Argentina. The volcano's eruptive style during its history has changed from mainly effusive in the Pleistocene to explosive in the Holocene. The prehistoric eruptions can be divided into pre-glacial (PG), syn-glacial (SG) and post-glacial (PM) stages, with products ranging from basaltic andesites to andesites. In order to investigate the evolution of the magma source and volatiles through time, we have focused our study on the eruptive products from the SG to the 2014 eruption (SUM2014). Sampled rocks are glomero-porphyritic, with a paragenetic mineral sequence of feldspars, ortho- and clinopyroxene, and olivine in order of abundance. All samples present a variable number of vesicles, with SUM2014 samples containing the biggest amount. Feldspar composition varies from Na-rich (andesine) in SG to Ca-rich (labradorite) in SUM2014. Two pyroxene types are present in SG and PM samples (augite and enstatite), while SUM2014 presents augite, pigeonite and enstatite. Thermobarometric estimation, based on mineral chemistry, show a bimodal distribution for SG and SUM2014 (P=10-12 kbars and 5-8 kbars) and only one interval for PM (P=7-8 kbars). Melt Inclusions Assemblages (MIAs) are found in all mineral phases, mostly re-crystallized, with one or more bubbles and daughter oxide minerals. Compositions vary from trachy-andesitic to dacitic for SG, andesitic to trachydacitic for PM, and basaltic andesitic to trachydacitic for SUM2014. Major elements systematics show the existence of a bimodal distribution of pyroxene and feldspar hosted-MIA in SUM2014, which together with the co-presence of pigeonite (low-Ca pyroxene) and augite and the bimodal distribution of P, can be interpreted as evidence of mixing of two types of magmas, evolving at different depths. Trace elements systematics for MIA in SG, PM and SUM2014 show a negative anomaly for Nb

  10. Redox systematics of a magma ocean with variable pressure-temperature gradients and composition.

    Science.gov (United States)

    Righter, K; Ghiorso, M S

    2012-07-24

    Oxygen fugacity in metal-bearing systems controls some fundamental aspects of the geochemistry of the early Earth, such as the FeO and siderophile trace element content of the mantle, volatile species that influence atmospheric composition, and conditions for organic compounds synthesis. Redox and metal-silicate equilibria in the early Earth are sensitive to oxygen fugacity (fO(2)), yet are poorly constrained in modeling and experimentation. High pressure and temperature experimentation and modeling in metal-silicate systems usually employs an approximation approach for estimating fO(2) that is based on the ratio of Fe and FeO [called "ΔIW (ratio)" hereafter]. We present a new approach that utilizes free energy and activity modeling of the equilibrium: Fe + SiO(2) + O(2) = Fe(2)SiO(4) to calculate absolute fO(2) and relative to the iron-wüstite (IW) buffer at pressure and temperature [ΔIW (P,T)]. This equilibrium is considered across a wide range of pressures and temperatures, including up to the liquidus temperature of peridotite (4,000 K at 50 GPa). Application of ΔIW (ratio) to metal-silicate experiments can be three or four orders of magnitude different from ΔIW (P,T) values calculated using free energy and activity modeling. We will also use this approach to consider the variation in oxygen fugacity in a magma ocean scenario for various thermal structures for the early Earth: hot liquidus gradient, 100 °C below the liquidus, hot and cool adiabatic gradients, and a cool subsolidus adiabat. The results are used to assess the effect of increasing P and T, changing silicate composition during accretion, and related to current models for accretion and core formation in the Earth. The fO(2) in a deep magma ocean scenario may become lower relative to the IW buffer at hotter and deeper conditions, which could include metal entrainment scenarios. Therefore, fO(2) may evolve from high to low fO(2) during Earth (and other differentiated bodies) accretion. Any

  11. Parallel Prediction of Stock Volatility

    Directory of Open Access Journals (Sweden)

    Priscilla Jenq

    2017-10-01

    Full Text Available Volatility is a measurement of the risk of financial products. A stock will hit new highs and lows over time and if these highs and lows fluctuate wildly, then it is considered a high volatile stock. Such a stock is considered riskier than a stock whose volatility is low. Although highly volatile stocks are riskier, the returns that they generate for investors can be quite high. Of course, with a riskier stock also comes the chance of losing money and yielding negative returns. In this project, we will use historic stock data to help us forecast volatility. Since the financial industry usually uses S&P 500 as the indicator of the market, we will use S&P 500 as a benchmark to compute the risk. We will also use artificial neural networks as a tool to predict volatilities for a specific time frame that will be set when we configure this neural network. There have been reports that neural networks with different numbers of layers and different numbers of hidden nodes may generate varying results. In fact, we may be able to find the best configuration of a neural network to compute volatilities. We will implement this system using the parallel approach. The system can be used as a tool for investors to allocating and hedging assets.

  12. Magma viscosity estimation based on analysis of erupted products. Potential assessment for large-scale pyroclastic eruptions

    International Nuclear Information System (INIS)

    Takeuchi, Shingo

    2010-01-01

    After the formulation of guidelines for volcanic hazards in site evaluation for nuclear installations (e.g. JEAG4625-2009), it is required to establish appropriate methods to assess potential of large-scale pyroclastic eruptions at long-dormant volcanoes, which is one of the most hazardous volcanic phenomena on the safety of the installations. In considering the volcanic dormancy, magma eruptability is an important concept. The magma eruptability is dominantly controlled by magma viscosity, which can be estimated from petrological analysis of erupted materials. Therefore, viscosity estimation of magmas erupted in past eruptions should provide important information to assess future activities at hazardous volcanoes. In order to show the importance of magma viscosity in the concept of magma eruptability, this report overviews dike propagation processes from a magma chamber and nature of magma viscosity. Magma viscosity at pre-eruptive conditions of magma chambers were compiled based on previous petrological studies on past eruptions in Japan. There are only 16 examples of eruptions at 9 volcanoes satisfying data requirement for magma viscosity estimation. Estimated magma viscosities range from 10 2 to 10 7 Pa·s for basaltic to rhyolitic magmas. Most of examples fall below dike propagation limit of magma viscosity (ca. 10 6 Pa·s) estimated based on a dike propagation model. Highly viscous magmas (ca. 10 7 Pa·s) than the dike propagation limit are considered to lose eruptability which is the ability to form dikes and initiate eruptions. However, in some cases, small precursory eruptions of less viscous magmas commonly occurred just before climactic eruptions of the highly viscous magmas, suggesting that the precursory dike propagation by the less viscous magmas induced the following eruptions of highly viscous magmas (ca. 10 7 Pa·s). (author)

  13. Volatiles in the Martian regolith

    International Nuclear Information System (INIS)

    Clark, B.C.; Baird, A.K.

    1979-01-01

    An inventory of released volatiles on Mars has been derived based upon Viking measurements of atmospheric and surface chemical composition, and upon the inferred mineralogy of a ubiquitous regolith, assumed to average 200m in depth. This model is consistent with the relative abundances of volatiles (except for S) on the Earth's surface, but implies one-fifteenth of the volatile release of Earth if starting materials were comparable. All constituents are accommodated as chemical components of, or absorbed phases on, regolith materials--without the necessity of invoking unobservable deposits of carbonates, nitrates, or permafrost ice

  14. Consistent ranking of volatility models

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Lunde, Asger

    2006-01-01

    We show that the empirical ranking of volatility models can be inconsistent for the true ranking if the evaluation is based on a proxy for the population measure of volatility. For example, the substitution of a squared return for the conditional variance in the evaluation of ARCH-type models can...... variance in out-of-sample evaluations rather than the squared return. We derive the theoretical results in a general framework that is not specific to the comparison of volatility models. Similar problems can arise in comparisons of forecasting models whenever the predicted variable is a latent variable....

  15. Assimilation of carbonate country rock by the parent magma of the Panzhihua Fe-Ti-V deposit (SW China: Evidence from stable isotopes

    Directory of Open Access Journals (Sweden)

    Clément Ganino

    2013-09-01

    Full Text Available The Panzhihua intrusion in southwest China is part of the Emeishan Large Igneous Province and host of a large Fe-Ti-V ore deposit. During emplacement of the main intrusion, multiple generations of mafic dykes invaded carbonate wall rocks, producing a large contact aureole. We measured the oxygen-isotope composition of the intrusions, their constituent minerals, and samples of the country rock. Magnetite and plagioclase from Panzhihua intrusion have δ18O values that are consistent with magmatic equilibrium, and formed from magmas with δ18O values that were 1–2‰ higher than expected in a mantle-derived magma. The unmetamorphosed country rock has high δ18O values, ranging from 13.2‰ (sandstone to 24.6–28.6‰ (dolomite. The skarns and marbles from the aureole have lower δ18O and δ13C values than their protolith suggesting interaction with fluids that were in exchange equilibrium with the adjacent mafic magmas and especially the numerous mafic dykes that intruded the aureole. This would explain the alteration of δ18O of the dykes which have significantly higher values than expected for a mantle-derived magma. Depending on the exact δ18O values assumed for the magma and contaminant, the amount of assimilation required to produce the elevated δ18O value of the Panzhihua intrusion was between 8 and 13.7 wt.%, assuming simple mixing. The exact mechanism of contamination is unclear but may involve a combination of assimilation of bulk country rock, mixing with a melt of the country rock and exchange with CO2-rich fluid derived from decarbonation of the marls and dolomites. These mechanisms, particularly the latter, were probably involved in the formation of the Fe-Ti-V ores.

  16. A whiff of death: fatal volatile solvent inhalation abuse.

    Science.gov (United States)

    Steffee, C H; Davis, G J; Nicol, K K

    1996-09-01

    Inhalation abuse of volatile solvents, previously known generically as "glue sniffing," is typically pursued by adolescents. A wide range of legal, easily obtained products containing volatile substances are available for abuse. We report two illustrative cases of fatal volatile substance abuse: gasoline sniffing in a 20-year-old man and aerosol propellant gas inhalation (aerosol air freshener) in a 16-year-old girl with underlying reactive airway disease. Although the ratio of deaths to nonfatal inhalation escapades is extremely low, volatile solvent abuse carries the risk of sudden death due to cardiac arrest after a dysrhythmia or vasovagal event, central nervous system respiratory depression, hypoxia and hypercapnia due to the techniques of inhalation, and other mechanisms. Investigation of the patient's substance abuse history, examination of the scene of death, and special toxicologic analyses are critical to identifying volatile substance inhalation abuse as the cause of death because anatomic autopsy findings will typically be nonspecific. Above all, physicians must suspect the diagnosis of volatile substance inhalation abuse, especially in any case of sudden death involving an otherwise healthy young person.

  17. Stochastic volatility and stochastic leverage

    DEFF Research Database (Denmark)

    Veraart, Almut; Veraart, Luitgard A. M.

    This paper proposes the new concept of stochastic leverage in stochastic volatility models. Stochastic leverage refers to a stochastic process which replaces the classical constant correlation parameter between the asset return and the stochastic volatility process. We provide a systematic...... treatment of stochastic leverage and propose to model the stochastic leverage effect explicitly, e.g. by means of a linear transformation of a Jacobi process. Such models are both analytically tractable and allow for a direct economic interpretation. In particular, we propose two new stochastic volatility...... models which allow for a stochastic leverage effect: the generalised Heston model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by option prices derived from our new...

  18. Radioactive equilibria and disequilibria of U-series nuclides in erupting magmas from Izu arc volcanoes

    International Nuclear Information System (INIS)

    Sato, Jun; Kurihara, Yuichi; Takahashi, Masaomi

    2009-01-01

    Radioactive disequilibria among U-series nuclides are observed in the magmas from volcanoes in the world. Basaltic products from Izu arc volcanoes, including Izu-Oshima and Fuji volcanoes, show 230 Th 238 U and 226 Ra> 230 Th disequilibria, indicating that the addition of U-and Ra-rich fluid from the subducting slab to the mantle wedge at the magma genesis. The disequilibria of 226 Ra> 230 Th in the erupting magmas suggest that the timescale from magma genesis to the eruption may be less than 8000 years. (author)

  19. Long-Term Volumetric Eruption Rates and Magma Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Scott M. White Dept. Geological Sciences University of South Carolina Columbia, SC 29208; Joy A. Crisp Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA 91109; Frank J. Spera Dept. Earth Science University of California, Santa Barbara Santa Barbara, CA 93106

    2005-01-01

    A global compilation of 170 time-averaged volumetric volcanic output rates (Qe) is evaluated in terms of composition and petrotectonic setting to advance the understanding of long-term rates of magma generation and eruption on Earth. Repose periods between successive eruptions at a given site and intrusive:extrusive ratios were compiled for selected volcanic centers where long-term (>104 years) data were available. More silicic compositions, rhyolites and andesites, have a more limited range of eruption rates than basalts. Even when high Qe values contributed by flood basalts (9 ± 2 Å~ 10-1 km3/yr) are removed, there is a trend in decreasing average Qe with lava composition from basaltic eruptions (2.6 ± 1.0 Å~ 10-2 km3/yr) to andesites (2.3 ± 0.8 Å~ 10-3 km3/yr) and rhyolites (4.0 ± 1.4 Å~ 10-3 km3/yr). This trend is also seen in the difference between oceanic and continental settings, as eruptions on oceanic crust tend to be predominately basaltic. All of the volcanoes occurring in oceanic settings fail to have statistically different mean Qe and have an overall average of 2.8 ± 0.4 Å~ 10-2 km3/yr, excluding flood basalts. Likewise, all of the volcanoes on continental crust also fail to have statistically different mean Qe and have an overall average of 4.4 ± 0.8 Å~ 10-3 km3/yr. Flood basalts also form a distinctive class with an average Qe nearly two orders of magnitude higher than any other class. However, we have found no systematic evidence linking increased intrusive:extrusive ratios with lower volcanic rates. A simple heat balance analysis suggests that the preponderance of volcanic systems must be open magmatic systems with respect to heat and matter transport in order to maintain eruptible magma at shallow depth throughout the observed lifetime of the volcano. The empirical upper limit of Å`10-2 km3/yr for magma eruption rate in systems with relatively high intrusive:extrusive ratios may be a consequence of the fundamental parameters

  20. Coupling Thermal and Chemical Signatures of Crustal Magma Bodies: Energy-Constrained Eruption, Recharge, Assimilation, and Fractional Crystallization (E'RAχFC)

    Science.gov (United States)

    Bohrson, W. A.; Spera, F. J.

    2004-12-01

    Energy-Constrained Eruption, Recharge, Assimilation and Fractional Crystallization (E'RAχFC) tracks the evolution of an open-system magmatic system by coupling conservation equations governing energy, mass and species (isotopes and trace elements). By linking the compositional characteristics of a composite magmatic system (host magma, recharge magma, wallrock, eruptive reservoir) to its mass and energy fluxes, predictions can be made about the chemical evolution of systems characterized by distinct compositional and thermal characteristics. An interesting application of E'RAχFC involves documenting the influence distinct thermal regimes have on the chemical evolution of magmatic systems. Heat transfer between a magma-country rock system at epizonal depths can be viewed as a conjugate heat transfer problem in which the average country rock-magma boundary temperature, Tb, is governed by the relative vigor of hydrothermal convection in the country rock vs. magma convection. For cases where hydrothermal circulation is vigorous and magmatic heat is efficiently transported away from the boundary, contact aureole temperatures (~Tb) are low. In cases where magmatic heat can not be efficiently transported away from the boundary and hydrothermal cells are absent or poorly developed, Tb is relatively high. Simultaneous solution of the differential equations governing momentum and energy conservation and continuity for the coupled hydrothermal-magmatic conjugate heat transfer system enables calculation of the characteristic timescale for EC-RAFC evolution and development of hydrothermal deposits as a function of material and medium properties, sizes of systems and relative efficiency of hydrothermal vs. magmatic heat transfer. Characteristic timescales lie in the range 102-106 yr depending on system size, magma properties and permeability among other parameters. In E'RAχFC, Tb is approximated by the user-defined equilibration temperature, Teq, which is the temperature at

  1. It's the little things that matter most: The role of volatiles in volcanoes and their magmatic roots

    Science.gov (United States)

    Keller, T.; Suckale, J.

    2017-12-01

    Many volcanic eruptions are driven by volatiles - mostly H2O and CO2 - that degas from magmas rising up beneath the volcano. Gas expands during ascent, thus frequently creating lavas with upward of 50% vesicularity. That is a particularly compelling observation considering that volatiles are only present at concentrations of order 100 ppm in the mantle source. Yet, even at these small concentrations, volatiles significantly lower the peridotite solidus. That leads to the production of reactive volatile-rich melts at depth, which has important consequences for melt transport in the asthenosphere. Thus, volatiles have a pivotal role both at the beginning and the end of the magmatic storyline. A growing amount of observational evidence provides various perspectives on these systems. Volcanic products are characterised increasingly well by geochemical and petrological data. And, volcano monitoring now often provides continuous records of degassing flux and composition. What is missing to better interpret these data are coupled fluid mechanic and thermodynamic models that link melt production and reactive transport in the mantle and crust with degassing-driven volcanic activity at the surface. Such models need to describe the deformation and segregation of multiple material phases (liquids, solids, gases) and track the reactive transport of diverse chemical components (major elements, trace elements, volatiles). I will present progress towards a generalization of existing two-phase model for melt transport in the mantle, extending them to three-phase flows appropriate for magma circulation and degassing in volcanoes. What sets the two environments apart is the presence of a compressible vapor in volcanoes. Also, volcanic degassing may occur by convecting suspensions as well as porous segregation. The model framework we are developing for these processes is based on mixture theory. Uncovering the underlying physics that connects these diverse expressions of magma

  2. Grain to outcrop-scale frozen moments of dynamic magma mixing in the syenite magma chamber, Yelagiri Alkaline Complex, South India

    Directory of Open Access Journals (Sweden)

    M.L. Renjith

    2014-11-01

    Full Text Available Magma mixing process is unusual in the petrogenesis of felsic rocks associated with alkaline complex worldwide. Here we present a rare example of magma mixing in syenite from the Yelagiri Alkaline Complex, South India. Yelagiri syenite is a reversely zoned massif with shoshonitic (Na2O + K2O=5–10 wt.%, Na2O/K2O = 0.5–2, TiO2 <0.7 wt.% and metaluminous character. Systematic modal variation of plagioclase (An11–16 Ab82–88, K-feldspar (Or27–95 Ab5–61, diopside (En34–40Fs11–18Wo46–49, biotite, and Ca-amphibole (edenite build up three syenite facies within it and imply the role of in-situ fractional crystallization (FC. Evidences such as (1 disequilibrium micro-textures in feldspars, (2 microgranular mafic enclaves (MME and (3 synplutonic dykes signify mixing of shoshonitic mafic magma (MgO = 4–5 wt.%, SiO2 = 54–59 wt.%, K2O/Na2O = 0.4–0.9 with syenite. Molecular-scale mixing of mafic magma resulted disequilibrium growth of feldspars in syenite. Physical entity of mafic magma preserved as MME due to high thermal-rheological contrast with syenite magma show various hybridization through chemical exchange, mechanical dilution enhanced by chaotic advection and phenocryst migration. In synplutonic dykes, disaggregation and mixing of mafic magma was confined within the conduit of injection. Major-oxides mass balance test quantified that approximately 0.6 portions of mafic magma had interacted with most evolved syenite magma and generated most hybridized MME and dyke samples. It is unique that all the rock types (syenite, MME and synplutonic dykes share similar shoshonitic and metaluminous character; mineral chemistry, REE content, coherent geochemical variation in Harker diagram suggest that mixing of magma between similar composition. Outcrop-scale features of crystal accumulation and flow fabrics also significant along with MME and synplutonic dykes in syenite suggesting that Yelagiri syenite magma chamber had evolved

  3. Isotopic composition of carbon in dacitic gases from Usu volcano (Japan). Relationship between the 13C/12C ratio of volatiles and the 87Sr/86Sr ratio of silicates in arc volcanism

    International Nuclear Information System (INIS)

    Allard, Patrick

    1981-01-01

    CO 2 emitted at 568 deg C by the new dacitic intrusion in Usu volcano (Japan) has a 13 C/ 12 C ratio of -4.4 per mill vs PDB. Such a value, together with previous isotopic data from other volcanoes in Japan, Indonesia, Central America, Lesser Antilles and New Zealand, enhance that the carbon released by magmas in subduction zones is systematically 13 C-enriched with respect to the primary carbon from rift areas. Such a 13 C enrichment in volatiles is explained in terms of crustal contamination by sedimentary carbon, and can be sowewhat related to a simultaneous increase of 87 Sr in the magma [fr

  4. Chondritic Mn/Na ratio and limited post-nebular volatile loss of the Earth

    Science.gov (United States)

    Siebert, Julien; Sossi, Paolo A.; Blanchard, Ingrid; Mahan, Brandon; Badro, James; Moynier, Frédéric

    2018-03-01

    The depletion pattern of volatile elements on Earth and other differentiated terrestrial bodies provides a unique insight as to the nature and origin of planetary building blocks. The processes responsible for the depletion of volatile elements range from the early incomplete condensation in the solar nebula to the late de-volatilization induced by heating and impacting during planetary accretion after the dispersion of the H2-rich nebular gas. Furthermore, as many volatile elements are also siderophile (metal-loving), it is often difficult to deconvolve the effect of volatility from core formation. With the notable exception of the Earth, all the differentiated terrestrial bodies for which we have samples have non-chondritic Mn/Na ratios, taken as a signature of post-nebular volatilization. The bulk silicate Earth (BSE) is unique in that its Mn/Na ratio is chondritic, which points to a nebular origin for the depletion; unless the Mn/Na in the BSE is not that of the bulk Earth (BE), and has been affected by core formation through the partitioning of Mn in Earth's core. Here we quantify the metal-silicate partitioning behavior of Mn at deep magma ocean pressure and temperature conditions directly applicable to core formation. The experiments show that Mn becomes more siderophile with increasing pressure and temperature. Modeling the partitioning of Mn during core formation by combining our results with previous data at lower P-T conditions, we show that the core likely contains a significant fraction (20 to 35%) of Earth's Mn budget. However, we show that the derived Mn/Na value of the bulk Earth still lies on the volatile-depleted end of a trend defined by chondritic meteorites in a Mn/Na vs Mn/Mg plot, which tend to higher Mn/Na with increasing volatile depletion. This suggests that the material that formed the Earth recorded similar chemical fractionation processes for moderately volatile elements as chondrites in the solar nebula, and experienced limited post

  5. Magma interaction in the root of an arc batholith

    Science.gov (United States)

    Chapman, T.; Robbins, V.; Clarke, G. L.; Daczko, N. R.; Piazolo, S.

    2016-12-01

    Fiordland, New Zealand, preserves extensive Cretaceous arc plutons, emplaced into parts of the Delamerian/Ross Orogen. Dioritic to gabbroic material emplaced at mid to lower crustal levels are exposed in the Malaspina Pluton (c. 1.2 GPa) and the Breaksea Orthogneiss (c. 1.8 GPa). Distinct magmatic pulses can be mapped in both of these plutons consistent with cycles of melt advection. Relationships are consistent with predictions from lower crustal processing zones (MASH and hot zones) considered important in the formation of Cordilleran margins. Metamorphic garnet growth is enhanced along magmatic contacts, such as where hornblende gabbronorite is cut by garnet-clinopyroxene-bearing diorite. Such features are consistent with cycles of incremental emplacement, younger magma having induced localised garnet granulite metamorphism in wall rock of older material. Temperature estimates and microstructures preserved in garnet granulite are consistent with sub-solidus, water-poor conditions in both the Malaspina and Breaksea Orthogneiss. The extent and conditions of the metamorphism implies conditions and duration was incapable of partially melting older wall rock material. The nature of interactions in intermediate to basic compositions are assessed in terms of magma genesis in the Cretaceous batholith. Most of the upper crustal felsic I-type magmatism along the margin being controlled by high-pressure garnet-clinopyroxene fractionation.

  6. Boron isotope fractionation in magma via crustal carbonate dissolution.

    Science.gov (United States)

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  7. MAGMA-SMC: The Molecular Cloud Survey of the SMC

    Science.gov (United States)

    Muller, Erik; Wong, Tony; Hughes, Annie; Ott, Jürgen; Pineda, Jorge L.; MAGMA Collaboration

    2013-03-01

    We present a brief summary and description of the upcoming 12CO(1-0) Magellanic Mopra Assesment (MAGMA) SMC survey data release. The MAGMA-SMC survey has sampled 100% of the known CO in the SMC (at ˜33″ resolution; 12 pc at D = 60 kpc). Having explored 522 × 103 square parsecs throughout the SMC with 69 5' × 5' fields, to a sensitivity of ˜150 mK, we apply the cloudprops (Rosolowsky & Leroy 2006) cloud-search algorithm optimized for low S/N data, to detect more than 30 CO clouds with virial masses between 103-104 M⊙, mean radii ˜5 pc and 0.3-0.9 km s-1 velocity width. Typical brightness temperatures are ˜1 K T mb . All detected molecular regions are associated with at least one 24 μm compact emission source. Smoothing rarely increases the total detected CO flux, implying the CO emission is typically confined to small spatial scales. As recent dust maps of the SMC imply extended H2 mass, the apparent compact nature of the CO population indicates some departures from the canonical Galactic X CO-factor in the low-metallicity and relatively un-evolved ISM of the SMC.

  8. Boron isotope fractionation in magma via crustal carbonate dissolution

    Science.gov (United States)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to -41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  9. Volcanic-plutonic connections and metal fertility of highly evolved magma systems: A case study from the Herberton Sn-W-Mo Mineral Field, Queensland, Australia

    Science.gov (United States)

    Cheng, Yanbo; Spandler, Carl; Chang, Zhaoshan; Clarke, Gavin

    2018-03-01

    Understanding the connection between the highly evolved intrusive and extrusive systems is essential to explore the evolution of high silicic magma systems, which plays an important role in discussions of planetary differentiation, the growth of continents, crustal evolution, and the formation of highly evolved magma associated Sn-W-Mo mineral systems. To discern differences between "fertile" and "non-fertile" igneous rocks associated with Sn-W-Mo mineralization and reveal the genetic links between coeval intrusive and extrusive rocks, we integrate whole rock geochemistry, geochronology and Hf isotope signatures of igneous zircons from contemporaneous plutonic and volcanic rocks from the world-class Herberton Mineral Field of Queensland, Australia. The 310-300 Ma intrusive rocks and associated intra-plutonic W-Mo mineralization formed from relatively oxidized magmas after moderate degrees of crystal fractionation. The geochemical and isotopic features of the coeval volcanic succession are best reconciled utilizing the widely-accepted volcanic-plutonic connection model, whereby the volcanic rocks represent fractionated derivatives of the intrusive rocks. Older intrusions emplaced at 335-315 Ma formed from relatively low fO2 magmas that fractionated extensively to produce highly evolved granites that host Sn mineralization. Coeval volcanic rocks of this suite are compositionally less evolved than the intrusive rocks, thereby requiring a different model to link these plutonic-volcanic sequences. In this case, we propose that the most fractionated magmas were not lost to volcanism, but instead were effectively retained at the plutonic level, which allowed further localized build-up of volatiles and lithophile metals in the plutonic environment. This disconnection to the volcanism and degassing may be a crucial step for forming granite-hosted Sn mineralization. The transition between these two igneous regimes in Herberton region over a ∼30 m.y. period is attributed to

  10. Volatility Properties of Polonium

    International Nuclear Information System (INIS)

    Eichler, B.

    2002-06-01

    Thermodynamical constants to describe evaporation processes of polonium are summarized and critically discussed. Additionally, systematic changes of the properties of the chalcogenes are analyzed, empirical correlations are proofed and cyclic processes are balanced. Accordingly, the existing values of entropies for polonium are acceptable. Questionable, however, are those values of enthalpies, which have been deduced from results of the experimental investigations of the vapor pressure temperature dependency, of the melting point, and of the boiling temperatures. Technical difficulties and possible error sources of the measurements resulting from the radioactive decay properties of 210 Po are discussed. Using extrapolative standard enthalpies and entropies as well as their temperature dependency, the equilibrium partial pressure of the monomeric and dimeric polonium above the pure condensed phase and the equilibrium constant of the dimerization reaction in the gas phase are calculated: log p/pa Po (g) = (11.797 ± 0.024) -(9883.4 ± 9.5)/T (for T = 298-600 K); = (10.661 ± 0.057) - (9328.4 ± 4.9)/T (for T = 500-1300 K); log p/pa Po 2 (g) = (13.698 ± 0.049) - (8592.3 ± 19.6)/T (for T = 298-600 K); = (11.424 ± 0.124) - (7584.1 ± 98.1)/T (for T = 500-1300 K); log K (dim) = (-4.895 ± 0.012) + (11071 ± 6)/T. According to these calculations and in contrast to other works, polonium evaporates in the entire temperature range between 298 and 1300 K in the dimeric state. Hence, 'latent heats' of the volatilization processes are clearly larger compared to literature data. Especially in the temperature range of the solid polonium the calculated vapor pressure curve shifts significantly to lower values, whereas the boiling point was almost reproduced by the calculation. The results of the extrapolation for the standard enthalpy of the gaseous monomeric polonium and the dimerization enthalpy ΔH 0 298 Po (g) = 188.9 kJ/mol and ΔH 0 298 (form) Po 2 (g) = 211.5 kJ/mol are

  11. Advancing dynamic and thermodynamic modelling of magma oceans

    Science.gov (United States)

    Bower, Dan; Wolf, Aaron; Sanan, Patrick; Tackley, Paul

    2017-04-01

    The techniques for modelling low melt-fraction dynamics in planetary interiors are well-established by supplementing the Stokes equations with Darcy's Law. But modelling high-melt fraction phenomena, relevant to the earliest phase of magma ocean cooling, necessitates parameterisations to capture the dynamics of turbulent flow that are otherwise unresolvable in numerical models. Furthermore, it requires knowledge about the material properties of both solid and melt mantle phases, the latter of which are poorly described by typical equations of state. To address these challenges, we present (1) a new interior evolution model that, in a single formulation, captures both solid and melt dynamics and hence charts the complete cooling trajectory of a planetary mantle, and (2) a physical and intuitive extension of a "Hard Sphere" liquid equation of state (EOS) to describe silicate melt properties for the pressure-temperature (P-T) range of Earth's mantle. Together, these two advancements provide a comprehensive and versatile modelling framework for probing the far-reaching consequences of magma ocean cooling and crystallisation for Earth and other rocky planets. The interior evolution model accounts for heat transfer by conduction, convection, latent heat, and gravitational separation. It uses the finite volume method to ensure energy conservation at each time-step and accesses advanced time integration algorithms by interfacing with PETSc. This ensures it accurately and efficiently computes the dynamics throughout the magma ocean, including within the ultra-thin thermal boundary layers (modelling capabilities. The thermodynamics of mantle melting are represented using a pseudo-one-component model, which retains the simplicity of a standard one-component model while introducing a finite temperature interval for melting (important for multi-component systems). Our new high P-T liquid EOS accurately captures the energetics and physical properties of the partially molten

  12. Sixty thousand years of magmatic volatile history before the caldera-forming eruption of Mount Mazama, Crater Lake, Oregon

    Science.gov (United States)

    Wright, Heather M.; Bacon, Charles R.; Vazquez, Jorge A.; Sisson, Thomas W.

    2012-01-01

    The well-documented eruptive history of Mount Mazama, Oregon, provides an excellent opportunity to use pre-eruptive volatile concentrations to study the growth of an explosive silicic magmatic system. Melt inclusions (MI) hosted in pyroxene and plagioclase crystals from eight dacitic–rhyodacitic eruptive deposits (71–7.7 ka) were analyzed to determine variations in volatile-element concentrations and changes in magma storage conditions leading up to and including the climactic eruption of Crater Lake caldera. Temperatures (Fe–Ti oxides) increased through the series of dacites, then decreased, and increased again through the rhyodacites (918–968 to ~950 to 845–895 °C). Oxygen fugacity began at nickel–nickel-oxide buffer (NNO) +0.8 (71 ka), dropped slightly to NNO +0.3, and then climbed to its highest value with the climactic eruption (7.7 ka) at NNO +1.1 log units. In parallel with oxidation state, maximum MI sulfur concentrations were high early in the eruptive sequence (~500 ppm), decreased (to ~200 ppm), and then increased again with the climactic eruption (~500 ppm). Maximum MI sulfur correlates with the Sr content (as a proxy for LREE, Ba, Rb, P2O5) of recharge magmas, represented by basaltic andesitic to andesitic enclaves and similar-aged lavas. These results suggest that oxidized Sr-rich recharge magmas dominated early and late in the development of the pre-climactic dacite–rhyodacite system. Dissolved H2O concentrations in MI do not, however, correlate with these changes in dominant recharge magma, instead recording vapor solubility relations in the developing shallow magma storage and conduit region. Dissolved H2O concentrations form two populations through time: the first at 3–4.6 wt% (with a few extreme values up to 6.1 wt%) and the second at ≤2.4 wt%. CO2 concentrations measured in a subset of these inclusions reach up to 240 ppm in early-erupted deposits (71 ka) and are below detection in climactic deposits (7.7 ka). Combined H2O and

  13. Low-pressure evolution of arc magmas in thickened crust: The San Pedro-Linzor volcanic chain, Central Andes, Northern Chile

    Science.gov (United States)

    Godoy, Benigno; Wörner, Gerhard; Kojima, Shoji; Aguilera, Felipe; Simon, Klaus; Hartmann, Gerald

    2014-07-01

    Magmatism at Andean Central Volcanic Zone (CVZ), or Central Andes, is strongly influenced by differentiation and assimilation at high pressures that occurred at lower levels of the thick continental crust. This is typically shown by high light to heavy rare earth element ratios (LREE/HREE) of the erupted lavas at this volcanic zone. Increase of these ratios with time is interpreted as a change to magma evolution in the presence of garnet during evolution of Central Andes. Such geochemical signals could be introduced into the magmas be high-pressure fractionation with garnet on the liquidus and/or assimilation from crustal rocks with a garnet-bearing residue. However, lavas erupted at San Pedro-Linzor volcanic chain show no evidence of garnet fractionation in their trace element patterns. This volcanic chain is located in the active volcanic arc, between 22°00‧S and 22°30‧S, over a continental crust ˜70 km thick. Sampled lavas show Sr/Y and Sm/Yb ratios Chile. We relate our geochemical observations to shallow crustal evolution of primitive magmas involving a high degree of assimilation of upper continental crust. We emphasize that low pressure AFC- (Assimilation Fractional Crystallization) type evolution of the San Pedro-Linzor volcanic chain reflects storage, fractionation, and contamination of mantle-derived magmas at the upper felsic crust (<40 km depth). The ascent of mantle-derived magmas to mid-crustal levels is related with the extensional regime that has existed in this zone of arc-front offset since Late-Miocene age, and the relatively thin portion of mafic lower crust observed below the volcanic chain.

  14. Magmatic structures in the Krkonoše Jizera Plutonic Complex, Bohemian Massif: evidence for localized multiphase flow and small-scale thermal mechanical instabilities in a granitic magma chamber

    Science.gov (United States)

    Žák, Jiří; Klomínský, Josef

    2007-08-01

    The present paper examines magmatic structures in the Jizera and Liberec granites of the Krkonoše-Jizera Plutonic Complex, Bohemian Massif. The magmatic structures are here interpreted to preserve direct field evidence for highly localized magma flow and other processes in crystal-rich mushes, and to capture the evolution of physical processes in an ancient granitic magma chamber. We propose that after chamber-wide mixing and hybridization, as suggested by recent petrological studies, laminar magma flow became highly localized to weaker channel-like domains within the higher-strength crystal framework. Mafic schlieren formed at flow rims, and their formation presumably involved gravitational settling and velocity gradient flow sorting coupled with interstitial melt escape. Local thermal or compositional convection may have resulted in the formation of vertical schlieren tubes and ladder dikes whereas subhorizontal tubes or channels formed during flow driven by lateral gradients in magma pressure. After the cessation or deceleration of channel flow, gravity-driven processes (settling of crystals and enclaves, gravitational differentiation, development of downward dripping instabilities), accompanied by compaction, filter pressing and melt segregation, dominated in the crystal mush within the flow channels. Subsequently, magmatic folds developed in schlieren layers and the magma chamber recorded complex, late magmatic strains at high magma crystallinities. Late-stage magma pulsing into localized submagmatic cracks represents the latest events of magmatic history of the chamber prior to its final crystallization. We emphasize that the most favorable environments for the formation and preservation of magmatic structures, such as those hosted in the Jizera and Liberec granites, are slowly cooling crystal-rich mushes. Therefore, where preserved in plutons, these structures may lend strong support for a "mush model" of magmatic systems.

  15. Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body

    Energy Technology Data Exchange (ETDEWEB)

    Gualda, Guilherme A.R.; Pamukcu, Ayla S.; Ghiorso, Mark S.; Anderson, Jr. , Alfred T.; Sutton, Stephen R.; Rivers, Mark L. (OFM Res.); (Vanderbilt); (UC)

    2013-04-08

    Supereruptions violently transfer huge amounts (100 s-1000 s km{sup 3}) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted {approx}760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500-3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies.

  16. Zircon reveals protracted magma storage and recycling beneath Mount St. Helens

    Science.gov (United States)

    Claiborne, L.L.; Miller, C.F.; Flanagan, D.M.; Clynne, M.A.; Wooden, J.L.

    2010-01-01

    Current data and models for Mount St. Helens volcano (Washington, United States) suggest relatively rapid transport from magma genesis to eruption, with no evidence for protracted storage or recycling of magmas. However, we show here that complex zircon age populations extending back hundreds of thousands of years from eruption age indicate that magmas regularly stall in the crust, cool and crystallize beneath the volcano, and are then rejuvenated and incorporated by hotter, young magmas on their way to the surface. Estimated dissolution times suggest that entrained zircon generally resided in rejuvenating magmas for no more than about a century. Zircon elemental compositions reflect the increasing influence of mafic input into the system through time, recording growth from hotter, less evolved magmas tens of thousands of years prior to the appearance of mafic magmas at the surface, or changes in whole-rock geochemistry and petrology, and providing a new, time-correlated record of this evolution independent of the eruption history. Zircon data thus reveal the history of the hidden, long-lived intrusive portion of the Mount St. Helens system, where melt and crystals are stored for as long as hundreds of thousands of years and interact with fresh influxes of magmas that traverse the intrusive reservoir before erupting. ?? 2010 Geological Society of America.

  17. Continental rift architecture and patterns of magma migration: a dynamic analysis based on centrifuge models.

    NARCIS (Netherlands)

    Corti, G.; Bonini, M.; Sokoutis, D.; Innocenti, F.; Manetti, P.; Cloetingh, S.A.P.L.; Mulugeta, G.

    2004-01-01

    Small-scale centrifuge models were used to investigate the role of continental rift structure in controlling patterns of magma migration and emplacement. Experiments considered the reactivation of weakness zones in the lower crust and the presence of magma at Moho depths. Results suggest that

  18. Timescales of quartz crystallization and the longevity of the Bishop giant magma body.

    Science.gov (United States)

    Gualda, Guilherme A R; Pamukcu, Ayla S; Ghiorso, Mark S; Anderson, Alfred T; Sutton, Stephen R; Rivers, Mark L

    2012-01-01

    Supereruptions violently transfer huge amounts (100 s-1000 s km(3)) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ~760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies.

  19. Compressible magma flow in a two-dimensional elastic-walled dike

    NARCIS (Netherlands)

    Woods, A.W.; Bokhove, Onno; de Boer, A; Hill, B.E.

    2006-01-01

    The ascent of magma to the Earth's surface is commonly modeled by assuming a fixed dike or flow geometry from a deep subsurface reservoir to the surface. In practice, however, this flow geometry is produced by deformation of the crust by ascending overpressured magma. Here, we explore how this

  20. Testing for Volatility Co-movement in Bivariate Stochastic Volatility Models

    OpenAIRE

    Chen, Jinghui; Kobayashi, Masahito; McAleer, Michael

    2017-01-01

    markdownabstractThe paper considers the problem of volatility co-movement, namely as to whether two financial returns have perfectly correlated common volatility process, in the framework of multivariate stochastic volatility models and proposes a test which checks the volatility co-movement. The proposed test is a stochastic volatility version of the co-movement test proposed by Engle and Susmel (1993), who investigated whether international equity markets have volatility co-movement using t...

  1. The price of fixed income market volatility

    CERN Document Server

    Mele, Antonio

    2015-01-01

    Fixed income volatility and equity volatility evolve heterogeneously over time, co-moving disproportionately during periods of global imbalances and each reacting to events of different nature. While the methodology for options-based "model-free" pricing of equity volatility has been known for some time, little is known about analogous methodologies for pricing various fixed income volatilities. This book fills this gap and provides a unified evaluation framework of fixed income volatility while dealing with disparate markets such as interest-rate swaps, government bonds, time-deposits and credit. It develops model-free, forward looking indexes of fixed-income volatility that match different quoting conventions across various markets, and uncovers subtle yet important pitfalls arising from naïve superimpositions of the standard equity volatility methodology when pricing various fixed income volatilities. The ultimate goal of the authors´ efforts is to make interest rate volatility standardization a valuable...

  2. Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted emplacement processes and observations)

    Science.gov (United States)

    Head, James W.; Wilson, Lionel

    2017-02-01

    , inhibiting dike emplacement and surface eruptions. In contrast to small dike volumes and low propagation velocities in terrestrial environments, lunar dike propagation velocities are typically sufficiently high that shallow sill formation is not favored; local low-density breccia zones beneath impact crater floors, however, may cause lateral magma migration to form laccoliths (e.g., Vitello Crater) and sills (e.g., Humboldt Crater) in floor-fractured craters. Dikes emplaced into the shallow crust may stall and produce crater chains due to active and passive gas venting (e.g., Mendeleev Crater Chain) or, if sufficiently shallow, may create a near-surface stress field that forms linear and arcuate graben, often with pyroclastic and small-scale effusive eruptions (e.g., Rima Parry V). Effusive eruptions are modulated by effusion rates, eruption durations, cooling and supply limitations to flow length, and pre-existing topography. Relatively low effusion rate, cooling-limited flows lead to small shield volcanoes (e.g., Tobias Mayer, Milicius); higher effusion rate, cooling-limited flows lead to compound flow fields (e.g., most mare basins) and even higher effusion rate, long-duration flows lead to thermal erosion of the vent, effusion rate enhancement, and thermal erosion of the substrate to produce sinuous rilles (e.g., Rimae Prinz). Extremely high effusion rate flows on slopes lead to volume-limited flow with lengths of many hundreds of kilometers (e.g., the young Imbrium basin flows). Explosive, pyroclastic eruptions are common on the Moon. The low pressure environment in propagating dike crack-tips can cause gas formation at great depths and throughout dike ascent; at shallow crustal depths both the smelting reaction and the recently documented abundant magmatic volatiles in mare basalt magmas contribute to significant shallow degassing and pyroclastic activity associated with the dike as it erupts at the surface. Dikes penetrating to the surface produce a wide range of

  3. New Experimental Constraints on Crystallization Differentiation in a Deep Magma Ocean

    Science.gov (United States)

    Walter, M. J.; Ito, E.; Nakamura, E.; Tronnes, R.; Frost, D.

    2001-12-01

    Most of Earth's mass probably accreted as a consequence of numerous impacts between large bodies and proto-Earth, and a giant impact with a Mars-sized object is the most plausible explanation for a Moon forming event. 1 Physical models show that large impacts would have caused high-degrees of melting and a global magma ocean. 2 Crystallization differentiation in a deep magma ocean could impart stratification in the solidified mantle, forming large geochemical domains. To accurately model crystallization in a deep magma ocean the liquidus phase-relations of peridotite, as well as mineral/melt element partitioning, must be known at lower mantle conditions. Here, we report the results of liquidus experiments on fertile model peridotite compositions at 23 - 33 GPa. Experiments were performed in 6/8-type multi-anvil apparatus using carbide and sintered-diamond second-stage anvils with 4 and 2 mm truncations, respectively. Samples were encapsulated by either graphite or Re. High-temperatures were generated using LaCrO3 or Re furnaces, and temperatures were held from 2 to 50 minutes at 2300 - 2500 C. Run products were analyzed for major and trace elements using EPMA and SIMS. At 23 GPa the liquidus phase is majorite, followed closely down temperature by ferropericlase (Fp) and Mg-perovskite (Mg-Pv). At 24 GPa the liquidus phase has changed to Fp, followed closely by majorite and Mg-Pv. Ca-perovskite (Ca-Pv) is present only at much lower temperatures close to the solidus. At approximately 31 GPa Mg-Pv is the liquidus phase followed down-temperature by Fp then Ca-Pv. At ~ 33 GPa Ca-Pv crystallizes closer to the liquidus, within about 50 C, at a similar temperature to Fp. Thus, important phases crystallizing in a deep magma ocean are Mg-Pv, Ca-Pv and Fp. Crystallization models based on major element partitioning show that only very modest amounts of crystal separation of a Mg-Pv + Fp assemblage can be tolerated before Ca/Al, Al/Ti and Ca/Ti ratios become unrealistic for

  4. On the conditions of magma mixing and its bearing on andesite production in the crust.

    Science.gov (United States)

    Laumonier, Mickael; Scaillet, Bruno; Pichavant, Michel; Champallier, Rémi; Andujar, Joan; Arbaret, Laurent

    2014-12-15

    Mixing between magmas is thought to affect a variety of processes, from the growth of continental crust to the triggering of volcanic eruptions, but its thermophysical viability remains unclear. Here, by using high-pressure mixing experiments and thermal calculations, we show that hybridization during single-intrusive events requires injection of high proportions of the replenishing magma during short periods, producing magmas with 55-58 wt% SiO2 when the mafic end-member is basaltic. High strain rates and gas-rich conditions may produce more felsic hybrids. The incremental growth of crustal reservoirs limits the production of hybrids to the waning stage of pluton assembly and to small portions of it. Large-scale mixing appears to be more efficient at lower crustal conditions, but requires higher proportions of mafic melt, producing more mafic hybrids than in shallow reservoirs. Altogether, our results show that hybrid arc magmas correspond to periods of enhanced magma production at depth.

  5. Evidence for crustal recycling during the Archean: the parental magmas of the stillwater complex

    International Nuclear Information System (INIS)

    McCallum, I.S.

    1988-01-01

    The petrology and geochemistry of the Stillwater Complex, an Archean (2.7 Ga) layered mafic intrusion in the Beartooth Mountains of Montana, is discussed. Efforts to reconstruct the compositions of possible parental magmas and thereby place some constraints on the composition and history of their mantle source regions was studied. A high-Mg andesite or boninite magma best matches the crystallization sequences and mineral compositions of Stillwater cumulates, and represents either a primary magma composition or a secondary magma formed, for example, by assimilation of crustal material by a very Mg-rich melt such as komatiite. Isotopic data do not support the extensive amounts of assimilation required by the komatiite parent hypothesis, and it is argued that the Stillwater magma was generated from a mantle source that had been enriched by recycling and homogenization of older crustal material over a large area

  6. «Magma»: as origens de Guimarães Rosa

    Directory of Open Access Journals (Sweden)

    Luiz Cláudio Vieira de Oliveira

    2011-10-01

    Full Text Available Resumo: Leitura de Magma, de Guimarães Rosa, com o objetivo de indicar a presença de temas, fragmentos, personagens, expressões e recursos estilísticos ali existentes, em outros textos do autor, cronologicamente posteriores.Palavras-chave: Literatura brasileira; Guimarães Rosa; Magma.Résumé: Lecture de Magma, de Guimarães Rosa, ayant l’objectif de montrer la présence de quelques sujets, fragments, personnages, expressions et traits stylistiques, que y sont présents, et aussi dans autres textes du même auteur, chronologiquement postérieurs.Mots-clés: Littérature brésilienne; Guimarães Rosa; Magma.Keywords: Brazilian literature; Guimarães Rosa; Magma.

  7. Rapid mixing and short storage timescale in the magma dynamics of a steady-state volcano

    Science.gov (United States)

    Petrone, Chiara Maria; Braschi, Eleonora; Francalanci, Lorella; Casalini, Martina; Tommasini, Simone

    2018-06-01

    Steady-state volcanic activity implies equilibrium between the rate of magma replenishment and eruption of compositionally homogeneous magmas, lasting for tens to thousands of years in an open conduit system. The Present-day activity of Stromboli volcano (Aeolian Islands, Southern Italy) has long been recognised as typical of a steady-state volcano, with a shallow magmatic reservoir (highly porphyritic or hp-magma) continuously refilled by more mafic magma (with low phenocryst content or lp-magma) at a constant rate and accompanied by mixing, crystallisation and eruption. Our aim is to clarify the timescale and dynamics of the plumbing system at the establishment of the Present-day steady-state activity (volcanoes.

  8. Observability of market daily volatility

    Science.gov (United States)

    Petroni, Filippo; Serva, Maurizio

    2016-02-01

    We study the price dynamics of 65 stocks from the Dow Jones Composite Average from 1973 to 2014. We show that it is possible to define a Daily Market Volatility σ(t) which is directly observable from data. This quantity is usually indirectly defined by r(t) = σ(t) ω(t) where the r(t) are the daily returns of the market index and the ω(t) are i.i.d. random variables with vanishing average and unitary variance. The relation r(t) = σ(t) ω(t) alone is unable to give an operative definition of the index volatility, which remains unobservable. On the contrary, we show that using the whole information available in the market, the index volatility can be operatively defined and detected.

  9. Multiscaling and clustering of volatility

    Science.gov (United States)

    Pasquini, Michele; Serva, Maurizio

    1999-07-01

    The dynamics of prices in stock markets has been studied intensively both experimentally (data analysis) and theoretically (models). Nevertheless, while the distribution of returns of the most important indices is known to be a truncated Lévy, the behaviour of volatility correlations is still poorly understood. What is well known is that absolute returns have memory on a long time range, this phenomenon is known in financial literature as clustering of volatility. In this paper we show that volatility correlations are power laws with a non-unique scaling exponent. This kind of multiscale phenomenology is known to be relevant in fully developed turbulence and in disordered systems and it is pointed out here for the first time for a financial series. In our study we consider the New York Stock Exchange (NYSE) daily index, from January 1966 to June 1998, for a total of 8180 working days.

  10. Magma genesis at Gale Crater: Evidence for Pervasive Mantle Metasomatism

    Science.gov (United States)

    Filiberto, J.

    2017-12-01

    Basaltic rocks have been analyzed at Gale Crater with a larger range in bulk chemistry than at any other landing site [1]. Therefore, the rocks may have experienced significantly different formation conditions than those experienced by magmas at Gusev Crater or Meridiani Planum. Specifically, the rocks at Gale Crater have higher potassium than other Martian rocks, with a potential analog of the Nakhlite parental magma, and are consistent with forming from a metasomatized mantle source [2-4]. Mantle metasomatism would not only affect the bulk chemistry but mantle melting conditions, as metasomatism fluxes fluids into the source region. Here I will combine differences in bulk chemistry between Martian basalts to calculate formation conditions in the interior and investigate if the rocks at Gale Crater experienced magma genesis conditions consistent with metasomatism - lower temperatures and pressures of formation. To calculate average formation conditions, I rely on experimental results, where available, and silica-activity and Mg-exchange thermometry calculations for all other compositions following [5, 6]. The results show that there is a direct correlation between the calculated mantle potential temperature and the K/Ti ratio of Gale Crater rocks. This is consistent with fluid fluxed metasomatism introducing fluids to the system, which depressed the melting temperature and fluxed K but not Ti to the system. Therefore, all basalts at Gale Crater are consistent with forming from a metasomatized mantle source, which affected not only the chemistry of the basalts but also the formation conditions. References: [1] Cousin A. et al. (2017) Icarus. 288: 265-283. [2] Treiman A.H. et al. (2016) Journal of Geophysical Research: Planets. 121: 75-106. [3] Treiman A.H. and Medard E. (2016) Geological Society of America Abstracts with Programs. 48: doi: 10.1130/abs/2016AM-285851. [4] Schmidt M.E. et al. (2016) Geological Society of America Abstracts with Programs. 48: doi: 10

  11. Volcanic systems of Iceland and their magma source

    Science.gov (United States)

    Sigmarsson, Olgeir

    2017-04-01

    Several active hot-spot volcanoes produce magma from mantle sources which composition varies on decadal time scale. This is probably best demonstrated by the recent work of Pietruszka and collaborators on Kilauea, Hawaii. In marked contrast, basalt lavas from volcanic system in Iceland located above the presumed centre of the Iceland mantle plume have uniform isotope composition over the last 10 thousand years. Volcanic systems are composed of a central volcano and a fissure swarm, or a combination of both and they represent a fundamental component of the neovolcanic zones in Iceland. Four such systems, those of Askja, Bárðarbunga, Kverkfjöll and Grímsvötn in central Iceland were chosen for investigation. The last three have central volcanoes covered by the Vatnajökull ice-sheet whereas part of their fissure swarms is ice-free. Tephra produced during subglacial eruptions together with lavas from the fissure swarms of Holocene age have been collected and analysed for Sr, Nd and Th isotope ratios. Those volcanic formations that can be univocally correlated to a given volcanic system display uniform isotope ratio but different from one volcanic system to another. An exception to this regularity is that Askja products have isotope ratios indistinguishable from those of Gímsvötn, but since these volcanic systems lies far apart their lava fields do not overlap. A practical aspect of these findings was demonstrated during the rifting event of Bárðarbunga and fissure eruption forming the Holuhraun lava field. Relatively low, O isotope ratios in these basalts and heterogeneous macrocrystal composition have been ascribed to important metabasaltic crustal contamination with or without crystal mush recycling. In that case a surprisingly efficient magma mixing and melt homogenization must have occurred in the past beneath the volcanic systems. One possibility is that during the rapid deglaciation much mantle melting occurred and melts accumulated at the mantle

  12. One hundred volatile years of volcanic gas studies at the Hawaiian Volcano Observatory: Chapter 7 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Sutton, A.J.; Elias, Tamar; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The first volcanic gas studies in Hawai‘i, beginning in 1912, established that volatile emissions from Kīlauea Volcano contained mostly water vapor, in addition to carbon dioxide and sulfur dioxide. This straightforward discovery overturned a popular volatile theory of the day and, in the same action, helped affirm Thomas A. Jaggar, Jr.’s, vision of the Hawaiian Volcano Observatory (HVO) as a preeminent place to study volcanic processes. Decades later, the environmental movement produced a watershed of quantitative analytical tools that, after being tested at Kīlauea, became part of the regular monitoring effort at HVO. The resulting volatile emission and fumarole chemistry datasets are some of the most extensive on the planet. These data indicate that magma from the mantle enters the shallow magmatic system of Kīlauea sufficiently oversaturated in CO2 to produce turbulent flow. Passive degassing at Kīlauea’s summit that occurred from 1983 through 2007 yielded CO2-depleted, but SO2- and H2O-rich, rift eruptive gases. Beginning with the 2008 summit eruption, magma reaching the East Rift Zone eruption site became depleted of much of its volatile content at the summit eruptive vent before transport to Pu‘u ‘Ō‘ō. The volatile emissions of Hawaiian volcanoes are halogen-poor, relative to those of other basaltic systems. Information gained regarding intrinsic gas solubilities at Kīlauea and Mauna Loa, as well as the pressure-controlled nature of gas release, have provided useful tools for tracking eruptive activity. Regular CO2-emission-rate measurements at Kīlauea’s summit, together with surface-deformation and other data, detected an increase in deep magma supply more than a year before a corresponding surge in effusive activity. Correspondingly, HVO routinely uses SO2 emissions to study shallow eruptive processes and effusion rates. HVO gas studies and Kīlauea’s long-running East Rift Zone eruption also demonstrate that volatile emissions can

  13. HS-GC-MS Volatile compounds recovered in freshly pressed and commercial Wonderful pomegranate juices

    Science.gov (United States)

    Consumption and production of superfruits has been increasing. Highly colored fruits often have bitter and astringent components that may make them undesirable, especially when processed. Many pomegranate volatile reports involved commercial samples, complicated isolation methods, or blending and ...

  14. The 1994-2001 eruptive period at Rabaul, Papua New Guinea: Petrological and geochemical evidence for basalt injections into a shallow dacite magma reservoir, and significant SO2 flux

    Science.gov (United States)

    Patia, H.; Eggins, S. M.; Arculus, R. J.; McKee, C. O.; Johnson, R. W.; Bradney, A.

    2017-10-01

    The eruptions that began at Rabaul Caldera on 19 September 1994 had two focal points, the vents Tavurvur and Vulcan, located 6 km apart on opposing sides of the caldera. Vulcan eruptives define a tight cluster of dacite compositions, whereas Tavurvur eruptives span an array from equivalent dacite compositions to mafic andesites. The eruption of geochemically and mineralogically identical dacites from both vents indicates sourcing from the same magma reservoir. This, together with previously reported H2O-CO2 volatile contents of dacite melt inclusions, a caldera-wide seismic low-velocity zone, and a seismically active caldera ring fault structure are consistent with the presence at 3-6 km depth of an extensive, tabular dacitic magma body having volume of about 15-150 km3. The Tavurvur andesites form a linear compositional array and have strongly bimodal phenocryst assemblages that reflect dacite hybridisation with a mafic basalt. The moderately large volume SO2 flux documented in the Tavurvur volcanic plume (and negligible SO2 flux in the Vulcan plume) combined with high dissolved S contents of basaltic melt inclusions trapped in olivine of Tavurvur eruptives, indicate that the amount of degassed basaltic magma was 0.1 km3 and suggest that the injection of this magma was confined to the Tavurvur-side (eastern to northeastern sector) of the caldera. Circumstantial evidence suggests that the eruption was triggered and evolved in response to a series of basaltic magma injections that may have commenced in 1971 and continued up until at least the start of the 1994 eruptions. The presence of zoned plagioclase phenocrysts reflecting older basalt-dacite interaction events (i.e. anorthite cores overgrown with thick andesine rims), evaluation of limited available data for the products of previous eruptions in 1878 and 1937-1943, and the episodic occurrence of major intra-caldera seismo-deformational events indicates that the shallow magma system at Rabaul Caldera is

  15. Oil Volatility Risk and Expected Stock Returns

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Pan, Xuhui (Nick)

    After the financialization of commodity futures markets in 2004-05 oil volatility has become a strong predictor of returns and volatility of the overall stock market. Furthermore, stocks' exposure to oil volatility risk now drives the cross-section of expected returns. The difference in average...... return between the quintile of stocks with low exposure and high exposure to oil volatility is significant at 0.66% per month, and oil volatility risk carries a significant risk premium of -0.60% per month. In the post-financialization period, oil volatility risk is strongly related with various measures...

  16. Measurement of volatiles, semi-volatiles and heavy metals in an oil burn test

    International Nuclear Information System (INIS)

    Li, K.; Caron, T.; Landriault, M.; Pare, J.R.J.; Fingas, M.

    1992-01-01

    Tests involving meso-scale burning of Louisiana crude oil were conducted, and during each burn, extensive samples were taken from the oil, residue, and the smoke plume. The detailed analytical work employed to obtain and analyze the burn samples is outlined and discussed. The analytical parameters included volatiles and semi-volatiles of environmental interests as well as heavy metals typically contained in the starting crude oil. Because the smoke plume did not always impinge on the samplers, the ground samplers did not collect sufficient samples for a definitive analysis. Crude/residue analyses showed the burn resulted in a significant reduction of polycyclic aromatic hydrocarbons (PAH) in the original oil. Most of the reduction was thought to be simply evaporation or destruction from combustion. The residue did not have the degree of enrichment of the higher molecular weight PAHs as was the case in bench-scale burn experiments. Volatile organic compound and dioxin/furan measurements likewise did not show high levels of contamination from the burn itself. Most of the elevated levels of contaminants could probably be due to evaporation of the oil itself. Insufficient sampling was conducted to investigate the background levels from the weathering process. A novel means of sampling using a small remote controlled helicopter was attempted and sufficiently interesting results were obtained to indicate the potential of this passive sampling device for future work. 5 refs., 4 figs

  17. DOES ENERGY CONSUMPTION VOLATILITY AFFECT REAL GDP VOLATILITY? AN EMPIRICAL ANALYSIS FOR THE UK

    Directory of Open Access Journals (Sweden)

    Abdul Rashid

    2013-10-01

    Full Text Available This paper empirically examines the relation between energy consumption volatility and unpredictable variations in real gross domestic product (GDP in the UK. Estimating the Markov switching ARCH model we find a significant regime switching in the behavior of both energy consumption and GDP volatility. The results from the Markov regime-switching model show that the variability of energy consumption has a significant role to play in determining the behavior of GDP volatilities. Moreover, the results suggest that the impacts of unpredictable variations in energy consumption on GDP volatility are asymmetric, depending on the intensity of volatility. In particular, we find that while there is no significant contemporaneous relationship between energy consumption volatility and GDP volatility in the first (low-volatility regime, GDP volatility is significantly positively related to the volatility of energy utilization in the second (high-volatility regime.

  18. The Largs high-latitude oxygen isotope anomaly (New Zealand) and climatic controls of oxygen isotopes in magma

    International Nuclear Information System (INIS)

    Blattner, P.; Williams, J.G.

    1991-01-01

    In northern Fiordland the Brook Street terrane of New Zealand consists of two units - the predominantly basaltic Plato and the predominantly andesitic Largs terrane. The Permian Plato terrane has normal to slightly enriched δ 18 O values, whereas the Largs terrane, which is of similar pre-early Triassic age, has not yielded a single normal δ 18 O SMOW result, with all of 17 total rocks showing less than 3.2per mille, seven less than -4per mille, and two less than -9per mille. These strongly anomalous data confirm an earlier suggested terrestrial character of Largs deposition, and demand the presence of Permo-Triassic geothermal systems running on subAntarctic to Antarctic meteoric water. The skewed data spectrum suggests a relatively immature flow system and likely values for the recharge water are -20per mille δ 18 O or less. For a climate distribution similar to the present one, inlcuding polar ice caps, this would indicate over 70deg of southern latitude. Rafts and xenoliths of Largs rocks have been entrained within Mackay Intrusives in the early Triassic. On field evidence the Mackay magmas have also intruded an early Darran Complex, but this complex has been substantially reactivated in the Cretaceous. It has δ 18 O values near 5.0per mille, which is distinctly low for island arc magmas. Since the complex is isotopically homogenous, its δ 18 O is unlikely to be a direct effect of the relatively shallow Largs terrane. More probable is a climate related slight depression of the δ 18 O of magma sources, in which other high-latitude, low-δ 18 O sediments and geothermal systems have been involved. (orig.)

  19. Experimental interaction of magma and “dirty” coolants

    Science.gov (United States)

    Schipper, C. Ian; White, James D. L.; Zimanowski, Bernd; Büttner, Ralf; Sonder, Ingo; Schmid, Andrea

    2011-03-01

    The presence of water at volcanic vents can have dramatic effects on fragmentation and eruption dynamics, but little is known about how the presence of particulate matter in external water will further alter eruptions. Volcanic edifices are inherently “dirty” places, where particulate matter of multiple origins and grainsizes typically abounds. We present the results of experiments designed to simulate non-explosive interactions between molten basalt and various “coolants,” ranging from homogeneous suspensions of 0 to 30 mass% bentonite clay in pure water, to heterogeneous and/or stratified suspensions including bentonite, sand, synthetic glass beads and/or naturally-sorted pumice. Four types of data are used to characterise the interactions: (1) visual/video observations; (2) grainsize and morphology of resulting particles; (3) heat-transfer data from a network of eight thermocouples; and (4) acoustic data from three force sensors. In homogeneous coolants with ~20% sediment, heat transfer is by forced convection and conduction, and thermal granulation is less efficient, resulting in fewer blocky particles, larger grainsizes, and weaker acoustic signals. Many particles are droplet-shaped or/and “vesicular,” containing bubbles filled with coolant. Both of these particle types indicate significant hydrodynamic magma-coolant mingling, and many of them are rewelded into compound particles. The addition of coarse material to heterogeneous suspensions further slows heat transfer thus reducing thermal granulation, and variable interlocking of large particles prevents efficient hydrodynamic mingling. This results primarily in rewelded melt piles and inefficient distribution of melt and heat throughout the coolant volume. Our results indicate that even modest concentrations of sediment in water will significantly limit heat transfer during non-explosive magma-water interactions. At high concentrations, the dramatic reduction in cooling efficiency and increase in

  20. Mechanisms of differentiation in the Skaergaard magma chamber

    Science.gov (United States)

    Tegner, C.; Lesher, C. E.; Holness, M. B.; Jakobsen, J. K.; Salmonsen, L. P.; Humphreys, M. C. S.; Thy, P.

    2012-04-01

    The Skaergaard intrusion is a superb natural laboratory for studying mechanisms of magma chamber differentiation. The magnificent exposures and new systematic sample sets of rocks that solidified inwards from the roof, walls and floor of the chamber provide means to test the relative roles of crystal settling, diffusion, convection, liquid immiscibility and compaction in different regions of the chamber and in opposite positions relative to gravity. Examination of the melt inclusions and interstitial pockets has demonstrated that a large portion of intrusion crystallized from an emulsified magma chamber composed of immiscible silica- and iron-rich melts. The similarity of ratios of elements with opposite partitioning between the immiscible melts (e.g. P and Rb) in wall, floor and roof rocks, however, indicate that large-scale separation did not occur. Yet, on a smaller scale of metres to hundred of metres and close to the interface between the roof and floor rocks (the Sandwich Horizon), irregular layers and pods of granophyre hosted by extremely iron-rich cumulates point to some separation of the two liquid phases. Similar proportions of the primocryst (cumulus) minerals in roof, wall and floor rocks indicate that crystal settling was not an important mechanism. Likewise, the lack of fractionation of elements with different behavior indicate that diffusion and fluid-driven metasomatism played relatively minor roles. Compositional convection and/or compaction within the solidifying crystal mush boundary layer are likely the most important mechanisms. A correlation of low trapped liquid fractions (calculated from strongly incompatible elements) in floor rocks with high fractionation density (the density difference between the crystal framework and the liquid) indicate that compaction is the dominating process in expelling evolved liquid from the crystal mush layer. This is supported by high and variable trapped liquid contents in the roof rocks, where gravity

  1. Volatility Spillovers Across Petroleum Markets

    Czech Academy of Sciences Publication Activity Database

    Baruník, Jozef; Kočenda, Evžen; Vácha, Lukáš

    2015-01-01

    Roč. 36, č. 3 (2015), s. 309-329 ISSN 0195-6574 R&D Projects: GA ČR GA14-24129S Keywords : Volatility spillovers * Asymmetry * Petroleum markets Subject RIV: AH - Economics Impact factor: 1.662, year: 2015 http://library.utia.cas.cz/separaty/2014/E/barunik-0438407.pdf

  2. Stochastic Volatility and DSGE Models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper argues that a specification of stochastic volatility commonly used to analyze the Great Moderation in DSGE models may not be appropriate, because the level of a process with this specification does not have conditional or unconditional moments. This is unfortunate because agents may...

  3. TMVOC, simulator for multiple volatile organic chemicals

    International Nuclear Information System (INIS)

    Pruess, Karsten; Battistelli, Alfredo

    2003-01-01

    TMVOC is a numerical simulator for three-phase non-isothermal flow of water, soil gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. It is an extension of the TOUGH2 general-purpose simulation program developed at the Lawrence Berkeley National Laboratory. TMVOC is designed for applications to contamination problems that involve hydrocarbon fuel or organic solvent spills in saturated and unsaturated zones. It can model contaminant behavior under ''natural'' environmental conditions, as well as for engineered systems, such as soil vapor extraction, groundwater pumping, or steam-assisted source remediation. TMVOC is upwards compatible with T2VOC (Falta et al., 1995) and can be initialized from T2VOC-style initial conditions. The main enhancements in TMVOC relative to T2VOC are as follows: a multicomponent mixture of volatile organic chemicals can be modeled; any and all combinations of the three phases water-oil-gas are treated; several non-condensible gases may be present; diffusion is treated in all phases in a manner that is fully coupled with phase partitioning. This paper gives a brief summary of the methodology used in TMVOC as well as highlighting some implementation issues. Simulation of a NAPL spill and subsequent remediation is discussed for a 2-D vertical section of a saturated-unsaturated flow problem

  4. Characterisation of selected volatile organic compounds in ...

    African Journals Online (AJOL)

    GCMS), was used to identify volatile compounds at three different temperatures. Fifty volatile compounds, inclusive of 14 acids, 14 alcohols, and 22 esters were identified and quantified in the two brands of indigenous banana beer samples. Only 12 ...

  5. Time-Varying Periodicity in Intraday Volatility

    DEFF Research Database (Denmark)

    Andersen, Torben Gustav; Thyrsgaard, Martin; Todorov, Viktor

    We develop a nonparametric test for deciding whether return volatility exhibits time-varying intraday periodicity using a long time-series of high-frequency data. Our null hypothesis, commonly adopted in work on volatility modeling, is that volatility follows a stationary process combined...... with a constant time-of-day periodic component. We first construct time-of-day volatility estimates and studentize the high-frequency returns with these periodic components. If the intraday volatility periodicity is invariant over time, then the distribution of the studentized returns should be identical across...... with estimating volatility moments through their sample counterparts. Critical values are computed via easy-to-implement simulation. In an empirical application to S&P 500 index returns, we find strong evidence for variation in the intraday volatility pattern driven in part by the current level of volatility...

  6. A Fractionally Integrated Wishart Stochastic Volatility Model

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2013-01-01

    textabstractThere has recently been growing interest in modeling and estimating alternative continuous time multivariate stochastic volatility models. We propose a continuous time fractionally integrated Wishart stochastic volatility (FIWSV) process. We derive the conditional Laplace transform of

  7. Cost Linkages Transmit Volatility Across Markets

    DEFF Research Database (Denmark)

    Nguyen, Daniel Xuyen; Schaur, Georg

    We present and test a model relating a firm's idiosyncratic cost, its exporting status, and the volatilities of its domestic and export sales. In prior models of trade, supply costs for domestic and exports were linear and thus additively separable. We introduce a nonlinear cost function in order...... to link the domestic and export supply costs. This theoretical contribution has two new implications for the exporting firm. First, the demand volatility in the foreign market now directly affects the firm's domestic sales volatility. Second, firms hedge domestic demand volatility with exports. The model...... has several testable predictions. First, larger firms have lower total and domestic sales volatilities. Second, foreign market volatility increases domestic sales volatilities for exporters. Third, exporters allocate output across both markets in order to reduce total sales volatility. We find...

  8. Fluctuation behaviors of financial return volatility duration

    Science.gov (United States)

    Niu, Hongli; Wang, Jun; Lu, Yunfan

    2016-04-01

    It is of significantly crucial to understand the return volatility of financial markets because it helps to quantify the investment risk, optimize the portfolio, and provide a key input of option pricing models. The characteristics of isolated high volatility events above certain threshold in price fluctuations and the distributions of return intervals between these events arouse great interest in financial research. In the present work, we introduce a new concept of daily return volatility duration, which is defined as the shortest passage time when the future volatility intensity is above or below the current volatility intensity (without predefining a threshold). The statistical properties of the daily return volatility durations for seven representative stock indices from the world financial markets are investigated. Some useful and interesting empirical results of these volatility duration series about the probability distributions, memory effects and multifractal properties are obtained. These results also show that the proposed stock volatility series analysis is a meaningful and beneficial trial.

  9. Noble Gas Isotope Evidence for Mantle Volatiles in the Cu-Mo Porphyry and Main Stage Polymetallic Veins at Butte, Montana

    Science.gov (United States)

    Hofstra, A. H.; Rusk, B. G.; Manning, A. H.; Hunt, A. G.; Landis, G. P.

    2017-12-01

    Recent studies suggest that volatiles released from mafic intrusions may be important sources of heat, sulfur, and metals in porphyry Cu-Mo-Au and epithermal Au-Ag deposits associated with intermediate to silicic stocks. The huge Cu-Mo porphyry and Main Stage polymetallic vein deposits at Butte are well suited to test this hypothesis because there is no geologic or isotopic evidence of basaltic intrusions in the mine or drill holes. The Butte porphyry-vein system is associated with quartz monzonite stocks and dikes within the southwest part of the Late Cretaceous Boulder batholith. The Boulder batholith was emplaced into Mesoproterozoic to Mesozoic sedimentary rocks and Late Cretaceous volcanic rocks. The Boulder batholith and Butte intrusions have Sri and eNd values indicative of crustal contamination. Eu and Ce anomalies in zircon from Butte intrusions provide evidence of oxidation due to magma degassing. To ascertain the source of volatiles in this system, 11 samples from the Cu-Mo porphyry and 16 from Main Stage veins were selected. The isotopic composition of Ar, Ne, and He extracted from fluid inclusions in quartz, magnetite, pyrite, chalcopyrite, sphalerite, galena, enargite, and covellite were determined. Helium isotopes exceed blank levels in all samples and Ne and Ar in some samples. On a 38Ar/36Ar vs. 40Ar/36Ar diagram, data plot near air. On a 20Ne/22Ne vs. 21Ne/22Ne diagram, data extend from air along the trajectories of OIB and MORB. On a 36Ar/4He vs. 3He/4He RA diagram, data extend from crust toward the air-mantle mixing line. The maximum 3He/4He RA values in the Cu-Mo porphyry (2.86) and Main Stage veins (3.46) are from pyrite and these values correspond to 36 and 43 % mantle helium. The Ne and He results show that fluid inclusions contain volatiles discharged from mantle magmas and that these volatiles were diluted by groundwater containing He derived from country rocks. Despite the lack of mafic intrusions in the Butte magmatic center, noble gas

  10. Pyrolysis and volatilization of cocaine

    International Nuclear Information System (INIS)

    Martin, B.R.; Lue, L.P.; Boni, J.P.

    1989-01-01

    The increasing popularity of inhaling cocaine vapor prompted the present study, to determine cocaine's fate during this process. The free base of [3H]cocaine (1 microCi/50 mg) was added to a glass pipe, which was then heated in a furnace to simulate freebasing. Negative pressure was used to draw the vapor through a series of glass wool, ethanol, acidic, and basic traps. Air flow rate and temperature were found to have profound effects on the volatilization and pyrolysis of cocaine. At a temperature of 260 degrees C and a flow rate of 400 mL/min, 37% of the radioactivity remained in the pipe, 39% was found in the glass wool trap, and less than 1% in the remainder of the volatilization apparatus after a 10-min volatilization. Reducing the air flow rate to 100 mL/min reduced the amount of radioactivity collected in the glass wool trap to less than 10% of the starting material and increased the amount that remained in the pipe to 58%. GC/MS analysis of the contents of the glass wool trap after volatilization at 260 degrees C and a flow rate of 400 mL/min revealed that 60% of the cocaine remained intact, while approximately 6 and 2% of the starting material was recovered as benzoic acid and methylecgonidine, respectively. As the temperature was increased to 650 degrees C, benzoic acid and methylecgonidine accounted for 83 and 89% of the starting material, respectively, whereas only 2% of the cocaine remained intact. Quantitation of cocaine in the vapor during the course of volatilization revealed high concentrations during the first two min and low concentrations for the remaining time

  11. Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption.

    Science.gov (United States)

    Di Vito, Mauro A; Acocella, Valerio; Aiello, Giuseppe; Barra, Diana; Battaglia, Maurizio; Carandente, Antonio; Del Gaudio, Carlo; de Vita, Sandro; Ricciardi, Giovanni P; Ricco, Ciro; Scandone, Roberto; Terrasi, Filippo

    2016-08-25

    Calderas are collapse structures related to the emptying of magmatic reservoirs, often associated with large eruptions from long-lived magmatic systems. Understanding how magma is transferred from a magma reservoir to the surface before eruptions is a major challenge. Here we exploit the historical, archaeological and geological record of Campi Flegrei caldera to estimate the surface deformation preceding the Monte Nuovo eruption and investigate the shallow magma transfer. Our data suggest a progressive magma accumulation from ~1251 to 1536 in a 4.6 ± 0.9 km deep source below the caldera centre, and its transfer, between 1536 and 1538, to a 3.8 ± 0.6 km deep magmatic source ~4 km NW of the caldera centre, below Monte Nuovo; this peripheral source fed the eruption through a shallower source, 0.4 ± 0.3 km deep. This is the first reconstruction of pre-eruptive magma transfer at Campi Flegrei and corroborates the existence of a stationary oblate source, below the caldera centre, that has been feeding lateral eruptions for the last ~5 ka. Our results suggest: 1) repeated emplacement of magma through intrusions below the caldera centre; 2) occasional lateral transfer of magma feeding non-central eruptions within the caldera. Comparison with historical unrest at calderas worldwide suggests that this behavior is common.

  12. Reconstructing modalities of magma storage in the crust by thermo-rheological modelling

    Science.gov (United States)

    Caricchi, L.; Annen, C.; Rust, A.; Blundy, J.

    2012-04-01

    During my PhD I worked under the supervision of Luigi Burlini studying the rheological behaviour of magma. Luigi was not only a great teacher and friend but he was also able to project the science he was performing beyond the obvious applications. This aspect of Luigi's approach shaped my approach to research and brought me to think to ways of applying the studies we performed together to unravel the complexity of nature that impassioned and inspired him. This contribution comes from the motivation and interest that Luigi created in me during the short, but truly memorable journey we shared together. This study combines petrology, thermal modelling and magma rheology to characterise timescales and modalities of magma emplacement in the Earth's crust. Thermal modelling was performed to determine the influence of magma injection rates in the crust on the temperature evolution of a magmatic body. The injected tonalitic magma was considered to contain dioritic enclaves, common in plutons. The contrast in chemical composition between host and enclaves leads to different crystallinities of these magmas during cooling and produce a rheological contrast that permits reciprocal deformation only in restricted temperature ranges. Characterising the thermal and rheological evolution of host magma and enclaves, we traced the evolution of strain recorded by these inclusions during the construction of an intrusion, showing that the strain recorded by enclaves distributed in different portions of a pluton can be used to constrain thermal evolution in time, magmatic fluxes and timescale of assemblage of magmatic bodies in the crust.

  13. The magma plumbing system in the Mariana Trough back-arc basin at 18° N

    Science.gov (United States)

    Lai, Zhiqing; Zhao, Guangtao; Han, Zongzhu; Huang, Bo; Li, Min; Tian, Liyan; Liu, Bo; Bu, Xuejiao

    2018-04-01

    Mafic magmas are common in back-arc basin, once stalled in the crust, these magmas may undergo different evolution. In this paper, compositional and textural variations of plagioclase as well as mineral-melt geothermobarometry are presented for basalts erupted from the central Mariana Trough (CMT). These data reveal crystallization conditions and we attempt a reconstruction of the magma plumbing system of the CMT. Plagioclase megacrysts, phenocrysts, microphenocrysts, microlites, olivine, spinel, and clinopyroxene have been recognized in basalt samples, using BSE images and compositional features. The last three minerals are homogeneous as microphenocrysts. Mineral-melt barometry indicates that plagioclase crystals crystallized and eventually grew into phenocrysts and megacrysts in mush zone with depth of 5-9 km, in which the normal zoning plagioclases crystallized in the interval of various batches of basic magma recharging. Plagioclase megacrysts and phenocrysts were dissolved and/or resorbed, when new basic magmas injected into the mush zone near Moho depth. It is inferred that magma extracted from the mush zone, and adiabatically ascended via different pathways. Some basaltic magmas underwent plagioclase and clinopyroxene microphenocrysts crystallization in low-pressure before eruption. Plagioclase microlites and outermost rims probably crystallized after eruption.

  14. Locating the depth of magma supply for volcanic eruptions, insights from Mt. Cameroon.

    Science.gov (United States)

    Geiger, Harri; Barker, Abigail K; Troll, Valentin R

    2016-10-07

    Mt. Cameroon is one of the most active volcanoes in Africa and poses a possible threat to about half a million people in the area, yet knowledge of the volcano's underlying magma supply system is sparse. To characterize Mt. Cameroon's magma plumbing system, we employed mineral-melt equilibrium thermobarometry on the products of the volcano's two most recent eruptions of 1999 and 2000. Our results suggest pre-eruptive magma storage between 20 and 39 km beneath Mt. Cameroon, which corresponds to the Moho level and below. Additionally, the 1999 eruption products reveal several shallow magma pockets between 3 and 12 km depth, which are not detected in the 2000 lavas. This implies that small-volume magma batches actively migrate through the plumbing system during repose intervals. Evolving and migrating magma parcels potentially cause temporary unrest and short-lived explosive outbursts, and may be remobilized during major eruptions that are fed from sub-Moho magma reservoirs.

  15. Degassing during quiescence as a trigger of magma ascent and volcanic eruptions.

    Science.gov (United States)

    Girona, Társilo; Costa, Fidel; Schubert, Gerald

    2015-12-15

    Understanding the mechanisms that control the start-up of volcanic unrest is crucial to improve the forecasting of eruptions at active volcanoes. Among the most active volcanoes in the world are the so-called persistently degassing ones (e.g., Etna, Italy; Merapi, Indonesia), which emit massive amounts of gas during quiescence (several kilotonnes per day) and erupt every few months or years. The hyperactivity of these volcanoes results from frequent pressurizations of the shallow magma plumbing system, which in most cases are thought to occur by the ascent of magma from deep to shallow reservoirs. However, the driving force that causes magma ascent from depth remains unknown. Here we demonstrate that magma ascent can be triggered by the passive release of gas during quiescence, which induces the opening of pathways connecting deep and shallow magma reservoirs. This top-down mechanism for volcanic eruptions contrasts with the more common bottom-up mechanisms in which magma ascent is only driven by processes occurring at depth. A cause-effect relationship between passive degassing and magma ascent can explain the fact that repose times are typically much longer than unrest times preceding eruptions, and may account for the so frequent unrest episodes of persistently degassing volcanoes.

  16. Drilling into Rhyolitic Magma at Shallow depth at Krafla Volcanic Complex, NE-Iceland

    Science.gov (United States)

    Mortensen, A. K.; Markússon, S. H.; Gudmundsson, Á.; Pálsson, B.

    2017-12-01

    Krafla volcanic complex in NE-Iceland is an active volcano but the latest eruption was the Krafla Fires in 1975-1984. Though recent volcanic activity has consisted of basaltic fissure eruptions, then it is rhyolitic magma that has been intercepted on at least two occasions while drilling geothermal production wells in the geothermal field suggesting a layered magma plumbing system beneath the Krafla volcanic complex. In 2008 quenched rhyolitic glass was retrieved from the bottom of well KJ-39, which is 2865 m deep ( 2571 m true vertical depth). In 2009 magma was again encountered at an even shallower depth and in more than 2,5 km distance from the bottom of well KJ-39, but in 2009 well IDDP-1 was drilled into magma three times just below 2100 m depth. Only on the last occasion was quenched glass retrieved to confirm that magma had been encountered. In well KJ-39 the quenched glass was rhyolitic in composition. The glass contained resorbed minerals of plagioclase, clinopyroxene and titanomagnetite, but the composition of the glass resembles magma that has formed by partial melting of hydrated basalt. The melt was encountered among cuttings from impermeable, coarse basaltic intrusives at a depth, where the well was anticipated to penetrate the Hólseldar volcanic fissure. In IDDP-1 the quenched glass was also rhyolitic in composition. The glass contained less than 5% of phenocrysts, but the phenocryst assemblage included andesine plagioclase, augite, pigeonite, and titanomagnetite. At IDDP-1 the melt was encountered below a permeable zone composed of fine to coarse grained felsite and granophyre. The disclosure of magma in two wells at Krafla volcanic complex verify that rhyolitic magma can be encountered at shallow depth across a larger area within the caldera. The encounter of magma at shallow depth conforms with that superheated conditions have been found at >2000 m depth in large parts of Krafla geothermal field.

  17. Testing for Volatility Co-movement in Bivariate Stochastic Volatility Models

    NARCIS (Netherlands)

    J. Chen (Jinghui); M. Kobayashi (Masahito); M.J. McAleer (Michael)

    2017-01-01

    markdownabstractThe paper considers the problem of volatility co-movement, namely as to whether two financial returns have perfectly correlated common volatility process, in the framework of multivariate stochastic volatility models and proposes a test which checks the volatility co-movement. The

  18. The parent magma of the Nakhla (SNC) meteorite: Reconciliation of composition estimates from magmatic inclusions and element partitioning

    Science.gov (United States)

    Treiman, A. H.

    1993-01-01

    The composition of the parent magma of the Nakhla meteorite was difficult to determine, because it is accumulate rock, enriched in olivine and augite relative to a basalt magma. A parent magma composition is estimated from electron microprobe area analyses of magmatic inclusions in olivine. This composition is consistent with an independent estimate based on the same inclusions, and with chemical equilibria with the cores of Nakhla's augites. This composition reconciles most of the previous estimates of Nakhla's magma composition, and obviates the need for complex magmatic processes. Inconsistency between this composition and those calculated previously suggests that magma flowed through and crystallized into Nakhla as it cooled.

  19. The parent magma of xenoliths in shergottite EETA79001: Bulk and trace element composition inferred from magmatic inclusions

    Science.gov (United States)

    Treiman, Allan H.; Lindstrom, David J.; Martinez, Rene R.

    1994-01-01

    The SNC meteorites are samples of the Martian crust, so inferences about their origins and parent magmas are of wide planetologic significance. The EETA79001 shergottite, a basalt, contains xenoliths of pyroxene-olivine cumulate rocks which are possibly related to the ALHA77005 and LEW88516 SNC lherzolites. Olivines in the xenoliths contain magmatic inclusions, relics of magma trapped within the growing crystals. The magmatic inclusions allow a parent magma composition to be retrieved; it is similar to the composition reconstructed from xenolith pyroxenes by element distribution coefficients. The xenolith parent magma is similar but not identical to parent magmas for the shergottite lherzolites.

  20. Oil Volatility Risk and Expected Stock Returns

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Pan, Xuhui (Nick)

    return between the quintile of stocks with low exposure and high exposure to oil volatility is significant at 0.66% per month, and oil volatility risk carries a significant risk premium of -0.60% per month. In the post-financialization period, oil volatility risk is strongly related with various measures...

  1. Dynamic Factor Models for the Volatility Surface

    DEFF Research Database (Denmark)

    van der Wel, Michel; Ozturk, Sait R.; Dijk, Dick van

    The implied volatility surface is the collection of volatilities implied by option contracts for different strike prices and time-to-maturity. We study factor models to capture the dynamics of this three-dimensional implied volatility surface. Three model types are considered to examine desirable...

  2. The 2006-2009 activity of the Ubinas volcano (Peru): Petrology of the 2006 eruptive products and insights into genesis of andesite magmas, magma recharge and plumbing system

    Science.gov (United States)

    Rivera, Marco; Thouret, Jean-Claude; Samaniego, Pablo; Le Pennec, Jean-Luc

    2014-01-01

    Following a fumarolic episode that started six months earlier, the most recent eruptive activity of the Ubinas volcano (south Peru) began on 27 March 2006, intensified between April and October 2006 and slowly declined until December 2009. The chronology of the explosive episode and the extent and composition of the erupted material are documented with an emphasis on ballistic ejecta. A petrological study of the juvenile products allows us to infer the magmatic processes related to the 2006-2009 eruptions of the andesitic Ubinas volcano. The juvenile magma erupted during the 2006 activity shows a homogeneous bulk-rock andesitic composition (56.7-57.6 wt.% SiO2), which belongs to a medium- to high-K calc-alkaline series. The mineral assemblage of the ballistic blocks and tephra consists of plagioclase > two-pyroxenes > Fe-Ti oxide and rare olivine and amphibole set in a groundmass of the same minerals with a dacitic composition (66-67 wt.% SiO2). Thermo-barometric data, based on two-pyroxene and amphibole stability, records a magma temperature of 998 ± 14 °C and a pressure of 476 ± 36 MPa. Widespread mineralogical and textural features point to a disequilibrium process in the erupted andesite magma. These features include inversely zoned "sieve textures" in plagioclase, inversely zoned clinopyroxene, and olivine crystals with reaction and thin overgrowth rims. They indicate that the pre-eruptive magmatic processes were dominated by recharge of a hotter mafic magma into a shallow reservoir, where magma mingling occurred and triggered the eruption. Prior to 2006, a probable recharge of a mafic magma produced strong convection and partial homogenization in the reservoir, as well as a pressure increase and higher magma ascent rate after four years of fumarolic activity. Mafic magmas do not prevail in the Ubinas pre-historical lavas and tephras. However, mafic andesites have been erupted during historical times (e.g. AD 1667 and 2006-2009 vulcanian eruptions). Hence

  3. A dynamic balance between magma supply and eruption rate at Kilauea volcano, Hawaii

    Science.gov (United States)

    Denlinger, R.P.

    1997-01-01

    The dynamic balance between magma supply and vent output at Kilauea volcano is used to estimate both the volume of magma stored within Kilauea volcano and its magma supply rate. Throughout most of 1991 a linear decline in volume flux from the Kupaianaha vent on Kilauea's east rift zone was associated with a parabolic variation in the elevation of Kilauea's summit as vent output initially exceeded then lagged behind the magma supply to the volcano. The correspondence between summit elevation and tilt established with over 30 years of data provided daily estimates of summit elevation in terms of summit tilt. The minimum in the parabolic variation in summit tilt and elevation (or zero elevation change) occurs when the magma supply to the reservoir from below the volcano equals the magma output from the reservoir to the surface, so that the magma supply rate is given by vent flux on that day. The measurements of vent flux and tilt establish that the magma supply rate to Kilauea volcano on June 19, 1991, was 217,000 ?? 10,000 m3/d (or 0.079 ?? 0.004 km3/yr). This is close to the average eruptive rate of 0.08 km3/yr between 1958 and 1984. In addition, the predictable response of summit elevation and tilt to each east rift zone eruption near Puu Oo since 1983 shows that summit deformation is also a measure of magma reservoir pressure. Given this, the correlation between the elevation of the Puu Oo lava lake (4 km uprift of Kupaianaha and 18 km from the summit) and summit tilt provides an estimate for magma pressure changes corresponding to summit tilt changes. The ratio of the change in volume to the change in reservoir pressure (dV/dP) during vent activity may be determined by dividing the ratio of volume erupted to change in summit tilt (dV/dtilt) by the ratio of pressure change to change in summit tilt (dP/dtilt). This measure of dV/dP, when combined with laboratory measurements of the bulk modulus of tholeitic melt, provides an estimate of 240 ?? 50 km3 for the volume

  4. Enhancement of eruption explosivity by heterogeneous bubble nucleation triggered by magma mingling.

    Science.gov (United States)

    Paredes-Mariño, Joali; Dobson, Katherine J; Ortenzi, Gianluigi; Kueppers, Ulrich; Morgavi, Daniele; Petrelli, Maurizio; Hess, Kai-Uwe; Laeger, Kathrin; Porreca, Massimiliano; Pimentel, Adriano; Perugini, Diego

    2017-12-04

    We present new evidence that shows magma mingling can be a key process during highly explosive eruptions. Using fractal analysis of the size distribution of trachybasaltic fragments found on the inner walls of bubbles in trachytic pumices, we show that the more mafic component underwent fracturing during quenching against the trachyte. We propose a new mechanism for how this magmatic interaction at depth triggered rapid heterogeneous bubble nucleation and growth and could have enhanced eruption explosivity. We argue that the data support a further, and hitherto unreported contribution of magma mingling to highly explosive eruptions. This has implications for hazard assessment for those volcanoes in which evidence of magma mingling exists.

  5. Eruption and Degassing Processes in a Supervolcanic System: The Volatile Record Preserved in Melt Inclusions from the 3.49Ma Tara Ignimbrite in the Central Andes

    Science.gov (United States)

    Grocke, S.; de Silva, S. L.; Schmitt, A. K.; Wallace, P. J.

    2010-12-01

    Analysis of H2O and CO2 in quartz and sanidine-hosted melt inclusions from one of the youngest supervolcanic eruptions in the Altiplano Puna Volcanic Complex (APVC) in the Central Andes provides information on crystallization depths and eruption and degassing processes. At least 740 km3 of high-K, metaluminous, rhyodacite to rhyolite magma erupted from the Guacha Caldera in southwest Bolivia, producing three phases of the 3.49 Ma Tara Ignimbrite: a Plinian fall-deposit, an extensive ignimbrite, and several post-caldera domes. Infrared spectroscopic analyses of quartz-hosted melt inclusions from Tara Plinian pumice have H2O contents of ~4.5 wt % and variable CO2 contents (110-300 ppm), corresponding to vapor saturation pressures up to 180 MPa. In contrast, sanidine-hosted melt inclusions from the Plinian-fall deposit contain bubbles, lower water contents (1.4-2.2 wt %) and lower CO2 (87-143 ppm). These vesiculated melt inclusions and low volatile contents suggest that the sanidine crystals leaked on their ascent to the surface and therefore do not record accurate pre-eruptive melt volatile contents. In contrast, quartz-hosted melt inclusions from post-caldera dome samples contain lower H2O contents of 2.5-3.5 wt % (average 2.9 wt %) and no detectable CO2, corresponding to vapor saturation pressures of 50-90 MPa. These data indicate that the preeruptive plinian stage Tara magma was vapor saturated at the time of melt inclusion entrapment and stored between 5-6 km, while those from the post-caldera domes were trapped at 2-3 km. Differences in CO2 between Plinian and dome melt inclusions require that the post-caldera dome quartzes represent a different generation of crystals that grew as the magma slowly rose and progressively degassed at 2-3 km. During this shallow crystallization, the magma evolved further and eventually fed the post-caldera domes, one of which is a high-Si rhyolite. Consistent with this interpretation, melt inclusions from post-caldera dome samples

  6. Money growth volatility and the demand for money in Germany: Friedman's volatility hypothesis revisited

    OpenAIRE

    Brüggemann, Imke; Nautz, Dieter

    1997-01-01

    Recently, the Bundesbank claimed that monetary targeting has become considerably more diffcult by the increased volatility of short-term money growth. The present paper investigates the impact of German money growth volatility on income velocity and money demand in view of Friedman's money growth volatility hypothesis. Granger-causality tests provide some evidence for a velocity-volatility linkage. However the estimation of volatility-augmented money demand functions reveals that - in contras...

  7. Autoradiographic methods for studying marked volatile substances (1961)

    International Nuclear Information System (INIS)

    Cohen, Y.; Wepierre, J.

    1961-01-01

    The autoradiographic methods for animals used up to the present do not make it possible to localise exactly the distribution of marked volatile molecules. The Ullberg method (1954) which we have modified (Cohen, Delassue, 1959) involves cold desiccant. The method due to Pellerin (1957) avoids this desiccant but the histological comparison of the autoradiography with the biological document itself is difficult, if not impossible. Nevertheless, we have adopted certain points in the two methods and propose the following technique for the autoradiographic study of marked volatile molecules: 1- The surface of the frozen sample to be studied is prepared using a freezing microtome. 2- The last section, which is 20 μ thick and whose histological elements are parallel to those of the block, is dried by cooling and is used as the biological reference document for the autoradiography obtained, as is indicated in 3; 3- The radiography films are applied to the frozen block at -30 deg. C. The autoradiographs correspond to the radioactivity of the volatile molecule and of its non-volatile degradation products. 4- The radiographic film is also applied to the 20 μ section previously dried at -20 deg. C. This autoradiography corresponds to the radioactivity of the non-volatile degradation products of the molecule. 5- We confirmed the absence of diffusion of the volatile molecule and of pseudo-radiographic effects (photochemical and others). This method, which has enabled us to study the distribution of a carbide, para-cymene (C 14 ) 7, macroscopically in the case of a whole mouse and microscopically on the skin of a dog, can find general applications. (authors) [fr

  8. Impact of microorganism on polonium volatilization

    International Nuclear Information System (INIS)

    Momoshima, N.; Ishida, A.; Fukuda, A.; Yoshinaga, C.

    2007-01-01

    Volatilization of polonium by microorganisms, Chromobacterium violaceum, Escherichia coli and Bacillus subtilis was examined for pure cultures in LB medium at 30 deg C, showing relative Po emission intensity 100, 10 and 1, respectively. Chromobacterium violaceum pre-cultured in LB medium without Po and suspended in water with Po showed high Po volatilization in spite of poor nutriment condition. Antibiotics inhibit volatilization of Po and cultivation at low temperature greatly reduced volatilization. The results strongly support the biological effects on Po volatilization. (author)

  9. NVP melt/magma viscosity: insight on Mercury lava flows

    Science.gov (United States)

    Rossi, Stefano; Morgavi, Daniele; Namur, Olivier; Vetere, Francesco; Perugini, Diego; Mancinelli, Paolo; Pauselli, Cristina

    2016-04-01

    After more than four years of orbiting Mercury, NASA's MESSENGER spacecraft came to an end in late April 2015. MESSENGER has provided many new and surprising results. This session will again highlight the latest results on Mercury based on MESSENGER observations or updated modelling. The session will further address instrument calibration and science performance both retrospective on MESSENGER and on the ESA/JAXA BepiColombo mission. Papers covering additional themes related to Mercury are also welcomed. Please be aware that this session will be held as a PICO session. This will allow an intensive exchange of expertise and experience between the individual instruments and mission. NVP melt/magma viscosity: insight on Mercury lava flows S. Rossi1, D. Morgavi1, O. Namur2, D. Perugini1, F.Vetere1, P. Mancinelli1 and C. Pauselli1 1 Dipartimento di Fisica e Geologia, Università di Perugia, piazza Università 1, 06123 Perugia, Italy 2 Uni Hannover Institut für Mineralogie, Leibniz Universität Hannover, Callinstraβe 3, 30167 Hannover, Germany In this contribution we report new measurements of viscosity of synthetic komatitic melts, used the behaviour of silicate melts erupted at the surface of Mercury. Composition of Mercurian surface magmas was calculated using the most recent maps produced from MESSENGER XRS data (Weider et al., 2015). We focused on the northern hemisphere (Northern Volcanic Province, NVP, the largest lava flow on Mercury and possibly in the Solar System) for which the spatial resolution of MESSENGER measurements is high and individual maps of Mg/Si, Ca/Si, Al/Si and S/Si were combined. The experimental starting material contains high Na2O content (≈7 wt.%) that strongly influences viscosity. High temperature viscosity measurements were carried out at 1 atm using a concentric cylinder apparatus equipped with an Anton Paar RheolabQC viscometer head at the Department of Physics and Geology (PVRG_lab) at the University of Perugia (Perugia, Italy

  10. Barium isotope geochemistry of subduction-zone magmas

    Science.gov (United States)

    Yu, H.; Nan, X.; Huang, J.; Wörner, G.; Huang, F.

    2017-12-01

    Subduction zones are crucial tectonic setting to study material exchange between crust and mantle, mantle partial melting with fluid addition, and formation of ore-deposits1-3. The geochemical characteristics of arc lavas from subduction zones are different from magmas erupted at mid-ocean ridges4, because there are addition of fluids/melts from subducted AOC and its overlying sediments into their source regions in the sub-arc mantle4. Ba is highly incompatible during mantle melting5, and it is enriched in crust (456 ppm)6 relative to the mantle (7.0 ppm)7. The subducted sediments are also enriched in Ba (776 ppm of GLOSS)8. Moreover, because Ba is fluid soluble during subduction, it has been used to track contributions of subduction-related fluids to arc magmas9 or recycled sediments to the mantle10-11. To study the Ba isotope fractionation behavior during subduction process, we analyzed well-characterized, chemically-diverse arc lavas from Central American, Kamchatka, Central-Eastern Aleutian, and Southern Lesser Antilles. The δ137/134Ba of Central American arc lavas range from -0.13 to 0.24‰, and have larger variation than the arc samples from other locations. Except one sample from Central-Eastern Aleutian arc with obviously heavy δ137/134Ba values (0.27‰), all other samples from Kamchatka, Central-Eastern Aleutian, Southern Lesser Antilles arcs are within the range of OIB. The δ137/134Ba is not correlated with the distance to trench, partial melting degrees (Mg#), or subducting slab-derived components. The samples enriched with heavy Ba isotopes have low Ba contents, indicating that Ba isotopes can be fractionated at the beginning of dehydration process with small amount of Ba releasing to the mantle wedge. With the dehydration degree increasing, more Ba of the subducted slab can be added to the source of arc lavas, likely homogenizing the Ba isotope signatures. 1. Rudnick, R., 1995 Nature; 2. Tatsumi, Y. & Kogiso, T., 2003; 3. Sun, W., et al., 2015 Ore

  11. Volatile constituents of Trichothecium roseum.

    Science.gov (United States)

    Vanhaelen, M; Vanhaelen-Fastre, R; Geeraerts, J

    1978-06-01

    In the course of investigation of Trichothecium roseum (Fungi Imperfecti) for its attractancy against Tyrophagus putrescentiae (cheese mite), the twenty following volatile compounds produced at a very low concentration by the microfungus were identified by gc, gc/ms, gc/c.i.ms and tlc: 3-methyl-1-butanol, 3-octanone, 1-octen-3-one, 3-octanol, octa-1,5-dien-3 one, 1-octen-3-ol, 6-methyl-5-hepten-2-ol, octa-1,5-dien-3 ol, furfural, linalool, linalyl acetate, terpineol (alpha and beta) citronellyl acetate, nerol, citronellol, phenylacetaldehyde, benzyl alcohol geranyl acetate, 1-phenyl ethanol and nerolidol. Octa-1,5-dien-3-ol and octa-1,5-dien-3-one have not been previously isolated from fungi; octa-1,5-dien-3-ol is the most potent attractant amount the volatile compounds detected by gc.

  12. Chirospecific analysis of plant volatiles

    International Nuclear Information System (INIS)

    Tkachev, A V

    2007-01-01

    Characteristic features of the analysis of plant volatiles by enantioselective gas (gas-liquid) chromatography and gas chromatography/mass spectrometry are discussed. The most recent advances in the design of enantioselective stationary phases are surveyed. Examples of the preparation of the most efficient phases based on modified cyclodextrins are given. Current knowledge on the successful analytical resolution of different types of plant volatiles (aliphatic and aromatic compounds and mono-, sesqui- and diterpene derivatives) into optical antipodes is systematically described. Chiral stationary phases used for these purposes, temperature conditions and enantiomer separation factors are summarised. Examples of the enantiomeric resolution of fragrance compounds and components of plant extracts, wines and essential oils are given.

  13. Chirospecific analysis of plant volatiles

    Energy Technology Data Exchange (ETDEWEB)

    Tkachev, A V [N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2007-10-31

    Characteristic features of the analysis of plant volatiles by enantioselective gas (gas-liquid) chromatography and gas chromatography/mass spectrometry are discussed. The most recent advances in the design of enantioselective stationary phases are surveyed. Examples of the preparation of the most efficient phases based on modified cyclodextrins are given. Current knowledge on the successful analytical resolution of different types of plant volatiles (aliphatic and aromatic compounds and mono-, sesqui- and diterpene derivatives) into optical antipodes is systematically described. Chiral stationary phases used for these purposes, temperature conditions and enantiomer separation factors are summarised. Examples of the enantiomeric resolution of fragrance compounds and components of plant extracts, wines and essential oils are given.

  14. Forecasting volatility of crude oil markets

    International Nuclear Information System (INIS)

    Kang, Sang Hoon; Kang, Sang-Mok; Yoon, Seong-Min

    2009-01-01

    This article investigates the efficacy of a volatility model for three crude oil markets - Brent, Dubai, and West Texas Intermediate (WTI) - with regard to its ability to forecast and identify volatility stylized facts, in particular volatility persistence or long memory. In this context, we assess persistence in the volatility of the three crude oil prices using conditional volatility models. The CGARCH and FIGARCH models are better equipped to capture persistence than are the GARCH and IGARCH models. The CGARCH and FIGARCH models also provide superior performance in out-of-sample volatility forecasts. We conclude that the CGARCH and FIGARCH models are useful for modeling and forecasting persistence in the volatility of crude oil prices. (author)

  15. Forecasting volatility of crude oil markets

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sang Hoon [Department of Business Administration, Gyeongsang National University, Jinju, 660-701 (Korea); Kang, Sang-Mok; Yoon, Seong-Min [Department of Economics, Pusan National University, Busan, 609-735 (Korea)

    2009-01-15

    This article investigates the efficacy of a volatility model for three crude oil markets - Brent, Dubai, and West Texas Intermediate (WTI) - with regard to its ability to forecast and identify volatility stylized facts, in particular volatility persistence or long memory. In this context, we assess persistence in the volatility of the three crude oil prices using conditional volatility models. The CGARCH and FIGARCH models are better equipped to capture persistence than are the GARCH and IGARCH models. The CGARCH and FIGARCH models also provide superior performance in out-of-sample volatility forecasts. We conclude that the CGARCH and FIGARCH models are useful for modeling and forecasting persistence in the volatility of crude oil prices. (author)

  16. Money, banks and endogenous volatility

    OpenAIRE

    Pere Gomis-Porqueras

    2000-01-01

    In this paper I consider a monetary growth model in which banks provide liquidity, and the government fixes a constant rate of money creation. There are two underlying assets in the economy, money and capital. Money is dominated in rate of return. In contrast to other papers with a larger set of government liabilities, I find a unique equilibrium when agents' risk aversion is moderate. However, indeterminacies and endogenous volatility can be observed when agents are relatively risk averse.

  17. Magma degassing triggered by static decompression at Kīlauea Volcano, Hawai‘i

    Science.gov (United States)

    Poland, Michael P.; Jeff, Sutton A.; Gerlach, Terrence M.

    2009-01-01

    During mid-June 2007, the summit of Kīlauea Volcano, Hawai‘i, deflated rapidly as magma drained from the subsurface to feed an east rift zone intrusion and eruption. Coincident with the deflation, summit SO2 emission rates rose by a factor of four before decaying to background levels over several weeks. We propose that SO2 release was triggered by static decompression caused by magma withdrawal from Kīlauea's shallow summit reservoir. Models of the deflation suggest a pressure drop of 0.5–3 MPa, which is sufficient to trigger exsolution of the observed excess SO2 from a relatively small volume of magma at the modeled source depth beneath Kīlauea's summit. Static decompression may also explain other episodes of deflation accompanied by heightened gas emission, including the precursory phases of Kīlauea's 2008 summit eruption. Hazards associated with unexpected volcanic gas emission argue for increased awareness of magma reservoir pressure fluctuations.

  18. A basal magma ocean dynamo to explain the early lunar magnetic field

    Science.gov (United States)

    Scheinberg, Aaron L.; Soderlund, Krista M.; Elkins-Tanton, Linda T.

    2018-06-01

    The source of the ancient lunar magnetic field is an unsolved problem in the Moon's evolution. Theoretical work invoking a core dynamo has been unable to explain the magnitude of the observed field, falling instead one to two orders of magnitude below it. Since surface magnetic field strength is highly sensitive to the depth and size of the dynamo region, we instead hypothesize that the early lunar dynamo was driven by convection in a basal magma ocean formed from the final stages of an early lunar magma ocean; this material is expected to be dense, radioactive, and metalliferous. Here we use numerical convection models to predict the longevity and heat flow of such a basal magma ocean and use scaling laws to estimate the resulting magnetic field strength. We show that, if sufficiently electrically conducting, a magma ocean could have produced an early dynamo with surface fields consistent with the paleomagnetic observations.

  19. The Lunar Magma Ocean (LMO) Paradigm Versus the Realities of Lunar Anorthosites

    Science.gov (United States)

    Treiman, A. H.; Gross, J.

    2018-05-01

    The paradigm of the Lunar Magma Ocean (LMO) is inconsistent with much chemical and compositional data on lunar anorthosites. The paradigm of serial anorthosite diapirism is more consistent, though not a panacea.

  20. Role of syn-eruptive plagioclase disequilibrium crystallization in basaltic magma ascent dynamics.

    Science.gov (United States)

    La Spina, G; Burton, M; De' Michieli Vitturi, M; Arzilli, F

    2016-12-12

    Timescales of magma ascent in conduit models are typically assumed to be much longer than crystallization and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallization and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Here we use observations from Mount Etna's 2001 eruption and a magma ascent model to constrain timescales for crystallization and exsolution processes. Our results show that plagioclase reaches equilibrium in 1-2 h, whereas ascent times were magma ascent rate and disequilibrium crystallization and exsolution plays a key role in controlling eruption dynamics in basaltic volcanism.

  1. Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply.

    Science.gov (United States)

    Olive, J-A; Behn, M D; Ito, G; Buck, W R; Escartín, J; Howell, S

    2015-10-16

    Recent studies have proposed that the bathymetric fabric of the seafloor formed at mid-ocean ridges records rapid (23,000 to 100,000 years) fluctuations in ridge magma supply caused by sealevel changes that modulate melt production in the underlying mantle. Using quantitative models of faulting and magma emplacement, we demonstrate that, in fact, seafloor-shaping processes act as a low-pass filter on variations in magma supply, strongly damping fluctuations shorter than about 100,000 years. We show that the systematic decrease in dominant seafloor wavelengths with increasing spreading rate is best explained by a model of fault growth and abandonment under a steady magma input. This provides a robust framework for deciphering the footprint of mantle melting in the fabric of abyssal hills, the most common topographic feature on Earth. Copyright © 2015, American Association for the Advancement of Science.

  2. Earthquake swarms reveal submarine magma unrest induced by distant mega-earthquakes: Andaman Sea region

    Czech Academy of Sciences Publication Activity Database

    Špičák, Aleš; Vaněk, Jiří

    2016-01-01

    Roč. 116, February (2016), s. 155-163 ISSN 1367-9120 Institutional support: RVO:67985530 Keywords : earthquake swarms * magma migration * submarine volcanic arc Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.335, year: 2016

  3. Forecasting volatility for options valuation

    International Nuclear Information System (INIS)

    Belaifa, M.; Morimune, K.

    2006-01-01

    The petroleum sector plays a neuralgic role in the basement of world economies, and market actors (producers, intermediates, as well as consumers) are continuously subjected to the dynamics of unstable oil market. Huge amounts are being invested along the production chain to make one barrel of crude oil available to the end user. Adding to that are the effect of geopolitical dynamics as well as geological risks as expressed in terms of low chances of successful discoveries. In addition, fiscal regimes and regulations, technology and environmental concerns are also among some of the major factors that contribute to the substantial risk in the oil industry and render the market structure vulnerable to crises. The management of these vulnerabilities require modern tools to reduce risk to a certain level, which unfortunately is a non-zero value. The aim of this paper is, therefore, to provide a modern technique to capture the oil price stochastic volatility that can be implemented to value the exposure of an investor, a company, a corporate or a Government. The paper first analyses the regional dependence on oil prices, through a historical perspective and then looks at the evolution of pricing environment since the large price jumps of the 1970s. The main causes of oil prices volatility are treated in the third part of the paper. The rest of the article deals with volatility models and forecasts used in risk management, with an implication for pricing derivatives. (author)

  4. Human skin volatiles: a review.

    Science.gov (United States)

    Dormont, Laurent; Bessière, Jean-Marie; Cohuet, Anna

    2013-05-01

    Odors emitted by human skin are of great interest to biologists in many fields; applications range from forensic studies to diagnostic tools, the design of perfumes and deodorants, and the ecology of blood-sucking insect vectors of human disease. Numerous studies have investigated the chemical composition of skin odors, and various sampling methods have been used for this purpose. The literature shows that the chemical profile of skin volatiles varies greatly among studies, and the use of different sampling procedures is probably responsible for some of these variations. To our knowledge, this is the first review focused on human skin volatile compounds. We detail the different sampling techniques, each with its own set of advantages and disadvantages, which have been used for the collection of skin odors from different parts of the human body. We present the main skin volatile compounds found in these studies, with particular emphasis on the most frequently studied body regions, axillae, hands, and feet. We propose future directions for promising experimental studies on odors from human skin, particularly in relation to the chemical ecology of blood-sucking insects.

  5. Volatilization of gasoline from soil

    International Nuclear Information System (INIS)

    Arthus, P.

    1993-05-01

    Gasoline contaminated soil threatens water resources and air quality. The extent of the threat depends on gasoline behavior in soil, which is affected by various mechanisms such as volatilization. To quantify volatilization, gasoline spills were simulated in the laboratory using a synthetic gasoline and three dry soils. Total gasoline and individual gasoline compound concentrations in soil were monitored as a function of depth and time. The time to reduce overall gasoline concentration in coarse sand, sandy loam, and silt loam to 40% of initial concentration, averaged between surface and a 200-mm depth, ranged from 0.25 d to 10 d. A wicking phenomenon which contributed to gasoline flux toward the atmosphere was indicated by behavior of a low-volatility gasoline compound. Based on separate wicking experiments, this bulk immiscible movement was estimated at an upward velocity of 0.09 m/d for Delhi sandy loam and 0.05 m/d for Elora silt loam. 70 refs., 24 figs., 34 tabs

  6. Thermal evolution of magma reservoirs in the shallow crust and incidence on magma differentiation: the St-Jean-du-Doigt layered intrusion (Brittany, France)

    Science.gov (United States)

    Barboni, M.; Bussy, F.; Ovtcharova, M.; Schoene, B.

    2009-12-01

    Understanding the emplacement and growth of intrusive bodies in terms of mechanism, duration, thermal evolution and rates are fundamental aspects of crustal evolution. Recent studies show that many plutons grow in several Ma by in situ accretion of discrete magma pulses, which constitute small-scale magmatic reservoirs. The residence time of magmas, and hence their capacities to interact and differentiate, are controlled by the local thermal environment. The latter is highly dependant on 1) the emplacement depth, 2) the magmas and country rock composition, 3) the country rock thermal conductivity, 4) the rate of magma injection and 5) the geometry of the intrusion. In shallow level plutons, where magmas solidify quickly, evidence for magma mixing and/or differentiation processes is considered by many authors to be inherited from deeper levels. We show however that in-situ differentiation and magma interactions occurred within basaltic and felsic sills at shallow depth (0.3 GPa) in the St-Jean-du-Doigt bimodal intrusion, France. Field evidence coupled to high precision zircon U-Pb dating document progressive thermal maturation within the incrementally built laccolith. Early m-thick mafic sills are homogeneous and fine-grained with planar contacts with neighbouring felsic sills; within a minimal 0.5 Ma time span, the system gets warmer, adjacent sills interact and mingle, and mafic sills are differentiating in the top 40 cm of the layer. Rheological and thermal modelling show that observed in-situ differentiation-accumulation processes may be achieved in less than 10 years at shallow depth, provided that (1) the differentiating sills are injected beneath consolidated, yet still warm basalt sills, which act as low conductive insulating screens, (2) the early mafic sills accreted under the roof of the laccolith as a 100m thick top layer within 0.5 My, and (3) subsequent and sustained magmatic activity occurred on a short time scale (years) at an injection rate of ca. 0

  7. Formation of Intermediate Plutonic Rocks by Magma Mixing: the Shoshonite Suite of Timna, Southern Israel.

    Science.gov (United States)

    Fox, S.; Katzir, Y.

    2017-12-01

    In magmatic series considered to form by crystal fractionation intermediate rocks are usually much less abundant than expected. Yet, intermediate plutonic rocks, predominantly monzodiorites, are very abundant in the Neoproterozoic Timna igneous complex, S. Israel. A previously unnoticed plutonic shoshonitic suite was recently defined and mapped in Timna (Litvinovsky et al., 2015). It mostly comprises intermediate rocks in a seemingly 'continuous' trend from monzodiorite through monzonite to quartz syenite. Macroscale textures including gradational boundaries of mafic and felsic rocks and MME suggest that magma mixing is central in forming intermediate rocks in Timna. Our petrographic, microtextural and mineral chemistry study delineates the mode of incipient mixing, ultimate mingling and crystal equilibration in hybrid melts. An EMP study of plagioclase from rocks across the suite provides a quantitative evaluation of textures indicative of magma mixing/mingling, including recurrent/patchy zoning, Ca spike, boxy/sponge cellular texture and anti-Rapakivi texture. Each texture has an affinity to a particular mixing region. A modal count of these textures leads to a kinetic mixing model involving multi temporal and spatial scales necessary to form the hybrid intermediate rocks. A `shell'-like model for varying degrees of mixing is developed with the more intensive mixing at the core and more abundant felsic and mafic end-members towards the outer layer. REE patterns in zircon shows that it originated from both mafic and felsic parent melts. Whole rock Fe vs Sr plot suggests a two-stage mixing between the monzogabbro and quartz-syenite producing first mesocratic syenite, and subsequent mixing with a fractionating monzogabbro resulting in monzonitic compositions. A fractionating monzogabbro intruded into a syenitic melt sequentially. While slowly cooling, the monzogabbro heated the immediate syenitic melt, lowering the viscosity and rheological obstruction to overturn

  8. Magma-driven antiform structures in the Afar rift: The Ali Sabieh range, Djibouti

    Science.gov (United States)

    Le Gall, Bernard; Daoud, Mohamed Ahmed; Maury, René C.; Rolet, Joël; Guillou, Hervé; Sue, Christian

    2010-06-01

    The Ali Sabieh Range, SE Afar, is an antiform involving Mesozoic sedimentary rocks and synrift volcanics. Previous studies have postulated a tectonic origin for this structure, in either a contractional or extensional regime. New stratigraphic, mapping and structural data demonstrate that large-scale doming took place at an early stage of rifting, in response to a mafic laccolithic intrusion dated between 28 and 20 Ma from new K-Ar age determinations. Our 'laccolith' model is chiefly supported by: (i) the geometry of the intrusion roof, (ii) the recognition of roof pendants in its axial part, and (iii) the mapping relationships between the intrusion, the associated dyke-sill network, and the upper volcanic/volcaniclastic sequences. The laccolith is assumed to have inflated with time, and to have upwardly bent its sedimentary roof rocks. From the architecture of the ˜1 km-thick Mesozoic overburden sequences, ca. 2 km of roof lifting are assumed to have occurred, probably in association with reactivated transverse discontinuities. Computed paleostress tensors indicate that the minimum principal stress axis is consistently horizontal and oriented E-W, with a dominance of extensional versus strike-slip regimes. The Ali Sabieh laccolith is the first regional-scale magma-driven antiform structure reported so far in the Afro-Arabian rift system.

  9. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano.

    Science.gov (United States)

    Druitt, T H; Costa, F; Deloule, E; Dungan, M; Scaillet, B

    2012-02-01

    Caldera-forming volcanic eruptions are low-frequency, high-impact events capable of discharging tens to thousands of cubic kilometres of magma explosively on timescales of hours to days, with devastating effects on local and global scales. Because no such eruption has been monitored during its long build-up phase, the precursor phenomena are not well understood. Geophysical signals obtained during recent episodes of unrest at calderas such as Yellowstone, USA, and Campi Flegrei, Italy, are difficult to interpret, and the conditions necessary for large eruptions are poorly constrained. Here we present a study of pre-eruptive magmatic processes and their timescales using chemically zoned crystals from the 'Minoan' caldera-forming eruption of Santorini volcano, Greece, which occurred in the late 1600s BC. The results provide insights into how rapidly large silicic systems may pass from a quiescent state to one on the edge of eruption. Despite the large volume of erupted magma (40-60 cubic kilometres), and the 18,000-year gestation period between the Minoan eruption and the previous major eruption, most crystals in the Minoan magma record processes that occurred less than about 100 years before the eruption. Recharge of the magma reservoir by large volumes of silicic magma (and some mafic magma) occurred during the century before eruption, and mixing between different silicic magma batches was still taking place during the final months. Final assembly of large silicic magma reservoirs may occur on timescales that are geologically very short by comparison with the preceding repose period, with major growth phases immediately before eruption. These observations have implications for the monitoring of long-dormant, but potentially active, caldera systems.

  10. Effects of Rotation on the Differentiation of a terrestrial Magma Ocean

    Science.gov (United States)

    Maas, C.; Hansen, U.

    2014-12-01

    It is widely accepted that the Earth experienced several large impacts during its early evolution which led to the formation of one or more magma oceans. Differentiation processes in such a magma ocean are of great importance for the initial conditions of mantle convection and for the subsequent mantle structure. Convection in a magma ocean is most likely very vigorous. Further, rotation of the early Earth is supposed to be very fast. Therefore, and due to the small viscosity, it can be assumed that differentiation is strongly affected by rotation.To study the influence of rotation on the crystallization of a magma ocean, we employed a 3D Cartesian numerical model with low Prandtl number and used a discrete element method to describe silicate crystals.Our results show a crucial dependence on crystal density, rotation rate and latitude. Low rotation at the pole leads to a large fraction of suspended particles. With increasing rotation the particles settle at the bottom and form a stable stratified layer. In contrast to that at the equator at low rotation all particles settle at the bottom, at higher rotation they form a layer of significant thickness and at the highest rotation rate the particles accumulate in the middle of the magma ocean. In addition to that, we observe that due to the Coriolis force silicate crystals with different densities separate from each other. While lighter particles are at the bottom, denser particles accumulate at mid-depth at the same rotation rate. This could result in an unstable stratified mantle in the equatorial region after magma ocean solidification.All in all, rotation could lead to an asymmetrical crystallization of the magma ocean, with a contrary layering at the pole and the equator. This affects the composition of the early mantle and could explain the development of a localized magma ocean at the core-mantle boundary and the development of phase transitions observed in seismology, like the mantle transition zone.

  11. Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N.E.; Flexser, S.

    1984-12-01

    Recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. The areas studied were: (1) Salton Trough, (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent volcanic activity and published indications of crustal melt zones. 23 figs.

  12. Aleutian tholeiitic and calc-alkaline magma series I: The mafic phenocrysts

    Science.gov (United States)

    Kay, S. Mahlburg; Kay, Robert W.

    1985-07-01

    Diagnostic mafic silicate assemblages in a continuous spectrum of Aleutian volcanic rocks provide evidence for contrasts in magmatic processes in the Aleutian arc crust. Tectonic segmentation of the arc exerts a primary control on the variable mixing, fractional crystallization and possible assimilation undergone by the magmas. End members of the continuum are termed calc-alkaline (CA) and tholeiitic (TH). CA volcanic rocks (e.g., Buldir and Moffett volcanoes) have low FeO/MgO ratios and contain compositionally diverse phenocryst populations, indicating magma mixing. Their Ni and Cr-rich magnesian olivine and clinopyroxene come from mantle-derived mafic olivine basalts that have mixed with more fractionated magmas at mid-to lower-crustal levels immediately preceding eruption. High-Al amphibole is associated with the mafic end member. In contrast, TH lavas (e.g., Okmok and Westdahl volcanoes) have high FeO/MgO ratios and contain little evidence for mixing. Evolved lavas represent advanced stages of low pressure crystallization from a basaltic magma. These lavas contain groundmass olivine (FO 40 50) and lack Ca-poor pyroxene. Aleutian volcanic rocks with intermediate FeO/MgO ratios are termed transitional tholeiitic (TTH) and calc-alkaline (TCA). TCA magmas are common (e.g., Moffett, Adagdak, Great Sitkin, and Kasatochi volcanoes) and have resulted from mixing of high-Al basalt with more evolved magmas. They contain amphibole (high and low-Al) or orthopyroxene or both and are similar to the Japanese hypersthene-series. TTH magmas (e.g., Okmok and Westdahl) contain orthopyroxene or pigeonite or both, and show some indication of upper crustal mixing. They are mineralogically similar to the Japanese pigeonite-series. High-Al basalt lacks Mg-rich mafic phases and is a derivative magma produced by high pressure fractionation of an olivine tholeiite. The low pressure mineral assemblage of high-Al basalt results from crystallization at higher crustal levels.

  13. Crystallization of a compositionally stratified basal magma ocean

    Science.gov (United States)

    Laneuville, Matthieu; Hernlund, John; Labrosse, Stéphane; Guttenberg, Nicholas

    2018-03-01

    Earth's ∼3.45 billion year old magnetic field is regenerated by dynamo action in its convecting liquid metal outer core. However, convection induces an isentropic thermal gradient which, coupled with a high core thermal conductivity, results in rapid conducted heat loss. In the absence of implausibly high radioactivity or alternate sources of motion to drive the geodynamo, the Earth's early core had to be significantly hotter than the melting point of the lower mantle. While the existence of a dense convecting basal magma ocean (BMO) has been proposed to account for high early core temperatures, the requisite physical and chemical properties for a BMO remain controversial. Here we relax the assumption of a well-mixed convecting BMO and instead consider a BMO that is initially gravitationally stratified owing to processes such as mixing between metals and silicates at high temperatures in the core-mantle boundary region during Earth's accretion. Using coupled models of crystallization and heat transfer through a stratified BMO, we show that very high temperatures could have been trapped inside the early core, sequestering enough heat energy to run an ancient geodynamo on cooling power alone.

  14. Magma reservoir at Mt. Vesuvius: Deeper than 10 km

    International Nuclear Information System (INIS)

    Natale, M.; Luongo, G.; Nunziata, C.; Panza, G.F.

    2005-07-01

    One- and two-dimensional Vp models were obtained by TomoVes experiment, all characterized by low Vp in the uppermost 500 m and a sharp discontinuity at about 2-3 km beneath the volcano. Large amplitude late arrivals were identified as P- to S-phases converted at the top, between 8 and 10 km deep, of a low velocity layer with a dramatic drop of Vs, from approximately 3.6 km/s to less than 1.0 km/s. Here we synthesize the interpretation of Rayleigh wave dispersion measurements, made by several authors, to delineate the extent of such anomalous layer of hot, partially molten, crust material. Our non-linear inversion of broad-band dispersion measurements, gives a thickness not greater than 0.35 km, if we assume Vs equal to 1.0 km/s. The volume occupied by this very low velocity layer, sill shaped, is compatible with the size of Mt. Vesuvius cone, but it develops above a much larger hot mass which could be the parental source as the erupted products are only few percent of magma chamber. (author)

  15. Advancement of magma fragmentation by inhomogeneous bubble distribution.

    Science.gov (United States)

    Kameda, M; Ichihara, M; Maruyama, S; Kurokawa, N; Aoki, Y; Okumura, S; Uesugi, K

    2017-12-01

    Decompression times reported in previous studies suggest that thoroughly brittle fragmentation is unlikely in actual explosive volcanic eruptions. What occurs in practice is brittle-like fragmentation, which is defined as the solid-like fracture of a material whose bulk rheological properties are close to those of a fluid. Through laboratory experiments and numerical simulation, the link between the inhomogeneous structure of bubbles and the development of cracks that may lead to brittle-like fragmentation was clearly demonstrated here. A rapid decompression test was conducted to simulate the fragmentation of a specimen whose pore morphology was revealed by X-ray microtomography. The dynamic response during decompression was observed by high-speed photography. Large variation was observed in the responses of the specimens even among specimens with equal bulk rheological properties. The stress fields of the specimens under decompression computed by finite element analysis shows that the presence of satellite bubbles beneath a large bubble induced the stress concentration. On the basis of the obtained results, a new mechanism for brittle-like fragmentation is proposed. In the proposed scenario, the second nucleation of bubbles near the fragmentation surface is an essential process for the advancement of fragmentation in an upward magma flow in a volcanic conduit.

  16. Are Ferroan Anorthosites Direct Products of the Lunar Magma Ocean?

    Science.gov (United States)

    Neal, C. R.; Draper, D. S.

    2016-01-01

    According to Lunar Magma Ocean (LMO) theory, lunar samples that fall into the ferroan anorthosite (FAN) category represent the only samples we have of of the primordial crust of the Moon. Modeling indicates that plagioclase crystallizes after >70% LMO crystallization and formed a flotation crust, depending upon starting composition. The FAN group of highlands materials has been subdivided into mafic-magnesian, mafic-ferroan, anorthositic- sodic, and anorthositic-ferroan, although it is not clear how these subgroups are related. Recent radiogenic isotope work has suggested the range in FAN ages and isotopic systematics are inconsistent with formation of all FANs from the LMO. While an insulating lid could have theoretically extend the life of the LMO to explain the range of the published ages, are the FAN compositions consistent with crystallization from the LMO? As part of a funded Emerging Worlds proposal (NNX15AH76G), we examine this question through analysis of FAN samples. We compare the results with various LMO crystallization models, including those that incorporate the influence of garnet.

  17. A Hull and White Formula for a General Stochastic Volatility Jump-Diffusion Model with Applications to the Study of the Short-Time Behavior of the Implied Volatility

    Directory of Open Access Journals (Sweden)

    Elisa Alòs

    2008-01-01

    Full Text Available We obtain a Hull and White type formula for a general jump-diffusion stochastic volatility model, where the involved stochastic volatility process is correlated not only with the Brownian motion driving the asset price but also with the asset price jumps. Towards this end, we establish an anticipative Itô's formula, using Malliavin calculus techniques for Lévy processes on the canonical space. As an application, we show that the dependence of the volatility process on the asset price jumps has no effect on the short-time behavior of the at-the-money implied volatility skew.

  18. Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan

    Science.gov (United States)

    Hickey, James; Gottsmann, Joachim; Nakamichi, Haruhisa; Iguchi, Masato

    2016-01-01

    Ground deformation often precedes volcanic eruptions, and results from complex interactions between source processes and the thermomechanical behaviour of surrounding rocks. Previous models aiming to constrain source processes were unable to include realistic mechanical and thermal rock properties, and the role of thermomechanical heterogeneity in magma accumulation was unclear. Here we show how spatio-temporal deformation and magma reservoir evolution are fundamentally controlled by three-dimensional thermomechanical heterogeneity. Using the example of continued inflation at Aira caldera, Japan, we demonstrate that magma is accumulating faster than it can be erupted, and the current uplift is approaching the level inferred prior to the violent 1914 Plinian eruption. Magma storage conditions coincide with estimates for the caldera-forming reservoir ~29,000 years ago, and the inferred magma supply rate indicates a ~130-year timeframe to amass enough magma to feed a future 1914-sized eruption. These new inferences are important for eruption forecasting and risk mitigation, and have significant implications for the interpretations of volcanic deformation worldwide. PMID:27619897

  19. Magma mixing in granitic rocks of the central Sierra Nevada, California

    Science.gov (United States)

    Reid, John B.; Evans, Owen C.; Fates, Dailey G.

    1983-12-01

    The El Capitan alaskite exposed in the North American Wall, Yosemite National Park, was intruded by two sets of mafic dikes that interacted thermally and chemically with the host alaskite. Comparisons of petrographic and compositional data for these dikes and alaskite with published data for Sierra Nevada plutons lead us to suggest that mafic magmas were important in the generation of the Sierra Nevada batholith. Specifically, we conclude that: (1) intrusion of mafic magmas in the lower crust caused partial melting and generation of alaskite (rhyolitic) magmas; (2) interaction between the mafic and felsic magmas lead to the observed linear variation diagrams for major elements; (3) most mafic inclusions in Sierra Nevada plutons represent chilled pillows of mafic magmas, related by fractional crystallization and granitoid assimilation, that dissolve into their felsic host and contaminate it to intermediate (granodioritic) compositions; (4) vesiculation of hydrous mafic magma upon chilling may allow buoyant mafic inclusions and their disaggregation products to collect beneath a pluton's domed ceiling causing the zoning (mafic margins-to-felsic core) that these plutons exhibit.

  20. Rapid ascent of rhyolitic magma at Chaitén volcano, Chile.

    Science.gov (United States)

    Castro, Jonathan M; Dingwell, Donald B

    2009-10-08

    Rhyolite magma has fuelled some of the Earth's largest explosive volcanic eruptions. Our understanding of these events is incomplete, however, owing to the previous lack of directly observed eruptions. Chaitén volcano, in Chile's northern Patagonia, erupted rhyolite magma unexpectedly and explosively on 1 May 2008 (ref. 2). Chaitén residents felt earthquakes about 24 hours before ash fell in their town and the eruption escalated into a Plinian column. Although such brief seismic forewarning of a major explosive basaltic eruption has been documented, it is unprecedented for silicic magmas. As precursory volcanic unrest relates to magma migration from the storage region to the surface, the very short pre-eruptive warning at Chaitén probably reflects very rapid magma ascent through the sub-volcanic system. Here we present petrological and experimental data that indicate that the hydrous rhyolite magma at Chaitén ascended very rapidly, with velocities of the order of one metre per second. Such rapid ascent implies a transit time from storage depths greater than five kilometres to the near surface in about four hours. This result has implications for hazard mitigation because the rapidity of ascending rhyolite means that future eruptions may provide little warning.

  1. Temperatures and isotopic evolution of silicic magmas, Taupo Volcanic Zone and Coromandel, New Zealand

    International Nuclear Information System (INIS)

    Blattner, P.; Rui-Zhong H.; Graham, I.J.; Houston-Eleftheriadis, C.

    1996-01-01

    A new set of oxygen and strontium isotope data on rhyolitic lavas and ignimbrites of the Taupo Volcanic Zone (TVZ) and the Coromandel Peninsula provides new limits for petrogenic models. For oxygen isotopes, the rock matrix is frequently altered, so that values for magma need to be phenocryst based. Within TVZ a trend towards more negative δ 1 8O values for more recent magmas appears likely (average before about 1 Ma and for Coromandel near 8.0 per mille; after 1 Ma near 7.5 per mille). This could indicate the gradual removal of supracrustal contaminants from the zones of magma accumulation and extrusion. Similar trends within Coromandel cannot yet be resolved. A generally positive correlation is found for oxygen and strontium isotopes of magmas. Most magmas have a limited range of isotopic values, which then becomes a fingerprint (e.g., the Mamaku, Matahina, and Waiotapu Ignimbrites). A narrow range of eruption temperatures of 880 ± 60 o C is derived from quartz-plagioclase fractionations of 0.98 ± 0.25 per mille δ 1 8O values of quartz and feldspar phenocrysts are sufficiently low to suggest interaction between surface water and magma. However, large negative oxygen isotope anomalies (such as known from Yellowstone), could be no more than partially concealed by the isotopically less depleted meteoric water of New Zealand, and have not yet been found in New Zealand. (authors). 45 refs., 6 figs., 3 tabs

  2. Trace element and isotopic effects arising from magma migration beneath mid-ocean ridges

    International Nuclear Information System (INIS)

    Kenyon, P.M.

    1990-01-01

    The trace element concentrations and isotopic ratios in the magma erupted on mid-ocean ridges may differ from those in the source material due to physical effects such as porous flow dispersion, exchange of trace elements between the fluid and solid phases during magma migration, and convective mixing in magma chambers. These differences are in addition to those produced by better known processes such as fractional crystallization and partial melting. The effects of the three former processes are described. It is predicted that magma typically reaches the sub-ridge magma chambers with a spatial heterogeneity only slightly reduced from that of the source material, but with a subdued variation in time. Convective mixing then further reduces the spatial heterogeneity. Application of the results for convective mixing to a recent Fourier analysis of 87 Sr/ 86 Sr variations along the Mid-Atlantic Ridge suggests that the falloff in amplitude of variation observed with decreasing wavelength in the Mid-Atlantic Ridge data cannot be explained by convective mixing in magma chambers. Instead, it is postulated that this falloff is due to the mechanics of the production and/or the solid-state convective mixing of chemical and isotopic heterogeneities in the solid mantle. (orig.)

  3. Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan.

    Science.gov (United States)

    Hickey, James; Gottsmann, Joachim; Nakamichi, Haruhisa; Iguchi, Masato

    2016-09-13

    Ground deformation often precedes volcanic eruptions, and results from complex interactions between source processes and the thermomechanical behaviour of surrounding rocks. Previous models aiming to constrain source processes were unable to include realistic mechanical and thermal rock properties, and the role of thermomechanical heterogeneity in magma accumulation was unclear. Here we show how spatio-temporal deformation and magma reservoir evolution are fundamentally controlled by three-dimensional thermomechanical heterogeneity. Using the example of continued inflation at Aira caldera, Japan, we demonstrate that magma is accumulating faster than it can be erupted, and the current uplift is approaching the level inferred prior to the violent 1914 Plinian eruption. Magma storage conditions coincide with estimates for the caldera-forming reservoir ~29,000 years ago, and the inferred magma supply rate indicates a ~130-year timeframe to amass enough magma to feed a future 1914-sized eruption. These new inferences are important for eruption forecasting and risk mitigation, and have significant implications for the interpretations of volcanic deformation worldwide.

  4. The Krafla International Testbed (KMT): Ground Truth for the New Magma Geophysics

    Science.gov (United States)

    Brown, L. D.; Kim, D.; Malin, P. E.; Eichelberger, J. C.

    2017-12-01

    Recent developments in geophysics such as large N seismic arrays , 4D (time lapse) subsurface imaging and joint inversion algorithms represent fresh approaches to delineating and monitoring magma in the subsurface. Drilling at Krafla, both past and proposed, are unique opportunities to quantitatively corroborate and calibrate these new technologies. For example, dense seismic arrays are capable of passive imaging of magma systems with resolutions comparable to that achieved by more expensive (and often logistically impractical) controlled source surveys such as those used in oil exploration. Fine details of the geometry of magma lenses, feeders and associated fluid bearing fracture systems on the scale of meters to tens of meters are now realistic targets for surface seismic surveys using ambient energy sources, as are detection of their temporal variations. Joint inversions, for example of seismic and MT measurements, offer the promise of tighter quantitative constraints on the physical properties of the various components of magma and related geothermal systems imaged by geophysics. However, the accuracy of such techniques will remain captive to academic debate without testing against real world targets that have been directly sampled. Thus application of these new techniques to both guide future drilling at Krafla and to be calibrated against the resulting borehole observations of magma are an important step forward in validating geophysics for magma studies in general.

  5. WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal in Arabidopsis

    NARCIS (Netherlands)

    Mirabella, R.; Rauwerda, H.; Allmann, S.; Scala, A.; Spyropoulou, E.A.; de Vries, M.; Boersma, M.R.; Breit, T.M.; Haring, M.A.; Schuurink, R.C.

    Plants are known to be responsive to volatiles, but knowledge about the molecular players involved in transducing their perception remains scarce. We study the response of Arabidopsis thaliana to E-2-hexenal, one of the green leaf volatiles (GLV) that is produced upon wounding, herbivory or

  6. Beyond the network of plants volatile organic compounds

    OpenAIRE

    Vivaldo, Gianna; Masi, Elisa; Taiti, Cosimo; Caldarelli, Guido; Mancuso, Stefano

    2017-01-01

    Plants emission of volatile organic compounds (VOCs) is involved in a wide class of ecological functions, as VOCs play a crucial role in plants interactions with biotic and abiotic factors. Accordingly, they vary widely across species and underpin differences in ecological strategy. In this paper, VOCs spontaneously emitted by 109 plant species (belonging to 56 different families) have been qualitatively and quantitatively analysed in order to classify plants species. By using bipartite netwo...

  7. Stochastic volatility models and Kelvin waves

    Energy Technology Data Exchange (ETDEWEB)

    Lipton, Alex [Merrill Lynch, Mlfc Main, 2 King Edward Street, London EC1A 1HQ (United Kingdom); Sepp, Artur [Merrill Lynch, 4 World Financial Center, New York, NY 10080 (United States)], E-mail: Alex_Lipton@ml.com, E-mail: Artur_Sepp@ml.com

    2008-08-29

    We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics.

  8. Stochastic volatility models and Kelvin waves

    Science.gov (United States)

    Lipton, Alex; Sepp, Artur

    2008-08-01

    We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics.

  9. Stochastic volatility models and Kelvin waves

    International Nuclear Information System (INIS)

    Lipton, Alex; Sepp, Artur

    2008-01-01

    We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics

  10. Uncertainty of Volatility Estimates from Heston Greeks

    Directory of Open Access Journals (Sweden)

    Oliver Pfante

    2018-01-01

    Full Text Available Volatility is a widely recognized measure of market risk. As volatility is not observed it has to be estimated from market prices, i.e., as the implied volatility from option prices. The volatility index VIX making volatility a tradeable asset in its own right is computed from near- and next-term put and call options on the S&P 500 with more than 23 days and less than 37 days to expiration and non-vanishing bid. In the present paper we quantify the information content of the constituents of the VIX about the volatility of the S&P 500 in terms of the Fisher information matrix. Assuming that observed option prices are centered on the theoretical price provided by Heston's model perturbed by additive Gaussian noise we relate their Fisher information matrix to the Greeks in the Heston model. We find that the prices of options contained in the VIX basket allow for reliable estimates of the volatility of the S&P 500 with negligible uncertainty as long as volatility is large enough. Interestingly, if volatility drops below a critical value of roughly 3%, inferences from option prices become imprecise because Vega, the derivative of a European option w.r.t. volatility, and thereby the Fisher information nearly vanishes.

  11. Volatilization of multicomponent mixtures in soil vapor extraction applications

    International Nuclear Information System (INIS)

    Bass, D.H.

    1995-01-01

    In soil vapor extraction (SVE) applications involving multicomponent mixtures, prediction of mass removal by volatilization as a function remediation extent is required to estimate remediation time and to size offgas treatment equipment. SVE is a commonly used remediation technology which volatilizes and enhances aerobic biodegradation of contamination adsorbed to vadose zone soils. SVE is often applied at sites contaminated with petroleum products, which are usually mixtures of many different compounds with vapor pressures spanning several orders of magnitude. The most volatile components are removed first, so the vapor pressure of the remaining contaminant continually decreases over the course of the remediation. A method for assessing how vapor pressure, and hence the rate of volatilization, of a multicomponent mixture changes over the course of a vapor extraction remedy has been developed. Each component is listed, alone, with its mass fraction in the mixture, in decreasing order of pure component vapor pressure (where component analyses are unavailable, model compounds can be used), For most petroleum distillates, the vapor pressure for each component plotted against the cumulative mass fraction of the component in the mixture on semilog coordinates will produce a straight line with a high correlation coefficient. This regression can be integrated to produce an expression for vapor pressure of the overall mixture as a function of extent or remediation

  12. The evolution of volcanism, tectonics, and volatiles on Mars - An overview of recent progress

    Science.gov (United States)

    Zimbelman, James R.; Solomon, Sean C.; Sharpton, Virgil L.

    1991-01-01

    Significant results of the 'Mars: Evolution of Volcanism, Tectonics, and Volatiles' (MEVTV) project are presented. The data for the project are based on geological mapping from the Viking images, petrologic and chemical analyses of SNC meteorites, and both mapping and temporal grouping of major fault systems. The origin of the planet's crustal dichotomy is examined in detail, the kinematics and formation of wrinkle ridges are discussed, and some new theories are set forth. Because the SNC meteorites vary petrologically and isotopically, the sources of the parental Martian magma are heterogeneous. Transcurrent faulting coupled with the extensional strains that form Valles Marineris suggest early horizontal movement of lithospheric blocks. A theory which connects the formation of the crustal dichotomy to the Tharsis region associates the horizontal motions with plate tectonics that generated a new lithosphere.

  13. Autoradiographic methods for studying marked volatile substances (1961); Methode.d'etude autoradiographique de substances marquees volatiles (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Y; Wepierre, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The autoradiographic methods for animals used up to the present do not make it possible to localise exactly the distribution of marked volatile molecules. The Ullberg method (1954) which we have modified (Cohen, Delassue, 1959) involves cold desiccant. The method due to Pellerin (1957) avoids this desiccant but the histological comparison of the autoradiography with the biological document itself is difficult, if not impossible. Nevertheless, we have adopted certain points in the two methods and propose the following technique for the autoradiographic study of marked volatile molecules: 1- The surface of the frozen sample to be studied is prepared using a freezing microtome. 2- The last section, which is 20 {mu} thick and whose histological elements are parallel to those of the block, is dried by cooling and is used as the biological reference document for the autoradiography obtained, as is indicated in 3; 3- The radiography films are applied to the frozen block at -30 deg. C. The autoradiographs correspond to the radioactivity of the volatile molecule and of its non-volatile degradation products. 4- The radiographic film is also applied to the 20 {mu} section previously dried at -20 deg. C. This autoradiography corresponds to the radioactivity of the non-volatile degradation products of the molecule. 5- We confirmed the absence of diffusion of the volatile molecule and of pseudo-radiographic effects (photochemical and others). This method, which has enabled us to study the distribution of a carbide, para-cymene (C{sup 14}) 7, macroscopically in the case of a whole mouse and microscopically on the skin of a dog, can find general applications. (authors) [French] Les methodes d'autoradiographies sur l'animal, proposees jusqu'a present, ne permettent pas de localiser de facon precise la distribution de molecules marquees volatiles. En effet, la methode de Ullberg (1954) que nous avons modifiee (Cohen, Delassue, 1959) necessite la dessiccation par le froid. La methode

  14. Interactions between wall rocks around magma and hot water. Magma shuhen no hekigan/nessui sogo sayo

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, K.

    1992-12-01

    This paper describes interactions between wall rocks around magma and hot water. The paper discusses effects of hydrothermal environments on dynamic properties of rock minerals with respect to hydrolytic weakening (decrease in dynamic strength of a mineral under presence of water) and reaction enhanced deformation (deformation accelerated by chemical change occurring in a mineral itself). It also explains chemical reactivity of minerals under hydrothermal enviroments with respect to four types of chemical changes in minerals, factors governing mineral dissolution rates, and importance of equilibrium and non-equilibrium in main components in reactions between minerals and waters. These statements quote mainly results of indoor experiments. The paper indicates the following matters as problems to be discussed on interactions between wall rocks around intrusive rocks and hot waters: Deviation from chemical equilibrium in reactions between rocks and waters; change in permeability as a result of reactions between rocks and waters; and possibilities of hydrolytic weakening in rocks around intrusive rock bodies. 52 refs., 6 figs.

  15. Origin of Volatiles in Earth: Indigenous Versus Exogenous Sources Based on Highly Siderophile, Volatile Siderophile, and Light Volatile Elements

    Science.gov (United States)

    Righter, K.; Danielson, L.; Pando, K. M.; Marin, N.; Nickodem, K.

    2015-01-01

    Origin of Earth's volatiles has traditionally been ascribed to late accretion of material after major differentiation events - chondrites, comets, ice or other exogenous sources. A competing theory is that the Earth accreted its volatiles as it was built, thus water and other building blocks were present early and during differentiation and core formation (indigenous). Here we discuss geochemical evidence from three groups of elements that suggests Earth's volatiles were acquired during accretion and did not require additional sources after differentiation.

  16. Apatite: A New Tool For Understanding The Temporal Variability Of Magmatic Volatile Contents

    Science.gov (United States)

    Stock, M. J.; Humphreys, M.; Smith, V.; Pyle, D. M.; Isaia, R.

    2015-12-01

    The apatite crystal structure is capable of incorporating H2O, F and Cl, as well as trace CO2 and sulphur. These can be related to parental magma compositions through application of a series of pressure and temperature-dependent exchange reactions (Piccoli and Candela, 1994), permitting apatite crystals to preserve a record of all major volatile species in the melt. Furthermore, due to the general incompatibility of P in other rock-forming minerals, apatite is ubiquitous in igneous systems and often begins crystallising early, such that apatite inclusions within phenocrysts record melt volatile contents throughout magmatic differentiation. In this work, we compare the compositions of apatite inclusions and microphenocrysts with pyroxene-hosted melt inclusions from the Astroni 1 eruption of Campi Flegrei, Italy. These data are coupled with magmatic differentiation models (Gualda et al., 2012), experimental volatile solubility data (Webster et al., 2014) and thermodynamic models of apatite compositional variations (Piccoli and Candela, 1994) to determine a time-series of magmatic volatile evolution in the build-up to eruption. We find that apatite halogen/OH ratios decreased through magmatic differentiation, while melt inclusion F and Cl concentrations increased. Melt inclusion H2O contents are constant at ~2.5 wt%. These data are best explained by volatile-undersaturated differentiation over most of the crystallisation history of the Astroni 1 melt, with melt inclusion H2O contents reset during ascent, due to rapid H diffusion through the phenocryst hosts (Woods et al., 2000). Given the rapid diffusivity of volatiles in apatite (Brenan, 1993), preservation of undersaturated compositions in microphenocrysts suggests that saturation was only achieved a few days to months before eruption and that it may have been the transition into a volatile-saturated state that ultimately triggered eruption. Piccoli and Candela, 1994. Am. J. of Sc., 294, 92-135. Gualda et al., 2012

  17. U-Series disequilibria, magma petrogenesis and flux rates along the depleted Tonga-Kermadec Island Arc

    International Nuclear Information System (INIS)

    Turner, S.; Hawkesworth, C.; Rogers, N.; Bartlett, J.; Smith, I.; Worthington, T.; Smith, I.; Worthington, T.

    1997-01-01

    The fluid contribution to the lava source has been calculated as -1 ppm Rb, 10 ppm Ba, 0.02 ppm U, 600 ppm K 0.2 ppm Pb and 30 ppm Sr. It has 87 Sr/ 86 Sr = 0.7035 and 206 Pb/ 204 Pb = 18.5 and thus is inferred to be derived from dehydration of the subducting altered oceanic crust. U-Th isotope disequilibria reflect the time since fluid release from the subducting slab and a pseudo-isochron through the lowest ( 230 Th/ 232 Th) lavas constrains this to be ∼ 50 000 yr. Significantly, U-Th isotope data record similar timescales in the Lesser Antilles (∼40 000 yr, Turner et al., 1996) and in the Marianas (30 000 yr, Elliott et al., 1996) which provides encouragement that these data reflect some general aspect of the flux rates beneath island arcs. Large 226 Ra excesses have also been reported from Tonga-Kermadec (( 226 Ra/ 230 Th) = 1.5-3.0, Gill and Williams, 1990). Since 226 Ra will return to secular equilibrium with 230 Th (( 226 Ra/ 230 Th) = 1) within 7500 yr of Ra/Th fractionation the 238 U/ 230 Th and 226 Ra/ 230 Th disequilibria are clearly decoupled (see also Turner et al., 1996). This is an unexpected result and clearly the 226 Ra/ 230 Th disequilibria must have developed after the process responsible for the major U/Th fractionation. It is suggested that Th-Ra isotope disequilibria record the time since partial melting and thus indicate rapid channelled magma ascent. Olivine gabbro xenoliths from Raoul are interpreted as cumulates to their host lavas with which they form zero age U-Th isochrons indicating that minimal time was spent in magma chambers. The subduction signature is not observed in lavas from the back arc island of Niuafo'ou and thus does not penetrate as far 200 km beyond the arc front volcanoes. These were derived from partial melting of fertile peridotite at 130-160 km depth with melt rates around 2 x 10 -4 kg m -3 yr -1 , possibly due to volatiles released from the breakdown of phengite and lawsonite in the underlying slab at 200 km

  18. Dynamics of an open basaltic magma system: The 2008 activity of the Halema‘uma‘u Overlook vent, Kīlauea Caldera

    Science.gov (United States)

    Eychenne, Julia; Houghton, Bruce F.; Swanson, Don; Carey, Rebecca; Swavely, Lauren

    2015-01-01

    On March 19, 2008 a small explosive event accompanied the opening of a 35-m-wide vent (Overlook vent) on the southeast wall of Halema‘uma‘u Crater in Kīlauea Caldera, initiating an eruptive period that extends to the time of writing. The peak of activity, in 2008, consisted of alternating background open-system outgassing and spattering punctuated by sudden, short-lived weak explosions, triggered by collapses of the walls of the vent and conduit. Near-daily sampling of the tephra from this open system, along with exceptionally detailed observations, allow us to study the dynamics of the activity during two eruptive sequences in late 2008. Each sequence includes background activity preceding and following one or more explosions in September and October 2008 respectively. Componentry analyses were performed for daily samples to characterise the diversity of the ejecta. Nine categories of pyroclasts were identified in all the samples, including wall-rock fragments. The six categories of juvenile clasts can be grouped in three classes based on vesicularity: (1) poorly, (2) uniformly highly to extremely, and (3) heterogeneously highly vesicular. The wall-rock and juvenile clasts show dissimilar grainsize distributions, reflecting different fragmentation mechanisms. The wall-rock particles formed by failure of the vent and conduit walls above the magma free surface and were then passively entrained in the eruptive plume. The juvenile componentry reveals consistent contrasts in degassing and fragmentation processes before, during and after the explosive events. We infer a crude ‘layering’ developed in the shallow melt, in terms of both rheology and bubble and volatile contents, beneath a convecting free surface during background activity. A tens-of-centimetres thick viscoelastic surface layer was effectively outgassed and relatively cool, while at depths of less than 100 m, the melt remained slightly supersaturated in volatiles and actively vesiculating

  19. The change of magma chamber depth in and around the Baekdu Volcanic area from late Cenozoic

    Science.gov (United States)

    Lee, S. H.; Oh, C. W.; Lee, Y. S.; Lee, S. G.; Liu, J.

    2016-12-01

    The Baekdu Volcano is a 2750m high stratovolcanic cone resting on a basaltic shield and plateau and locates on the North Korea-China border. Its volcanic history can be divided into four stages (from the oldest to the youngest): (i) preshield plateau-forming eruptions, (ii) basalt shield formation, (iii) construction of a trachytic composite cone, and (iv) explosive ignimbrite forming eruptions. In the First stage, a fissure eruption produced basalts from the Oligocene to the Miocene (28-13 Ma) forming preshield plateau. Fissure and central eruptions occurred together during the shield-forming eruptions (4.21-1.70 Ma). In the third stage, the trachytic composite volcano formed during the Pleistocene (0.61-0.09 Ma). In this stage, magma changed to an acidic melt. The latest stage has been characterized by explosive ignimbrite-forming eruptions during the Holocene. The composite volcanic part consists of the Xiaobaishan, Lower, Middle and Upper Trachytes with rhyolites. The whole rock and clinopyroxene in basalts, trachytic and rhyolite, are analyzed to study the depth of magma chambers under the Baekdu Volcano. From the rhyolite, 9.8-12.7kbar is obtained for the depth of magma chamber. 3.7-4.1, 8.9-10.5 and 8.7 kbar are obtained from the middle, lower and Xiaobaishan trachytes. From the first and second stage basalts, 16.9-17.0 kbar and 14-14.4kbar are obtained respectively. The first stage basalt give extrusive age of 11.98 Ma whereas 1.12 and 1.09 Ma are obtained from the feldspar and groundmass in the second stage basalt. The Xiaobaishan trachyte and rhyolite give 0.25 and 0.21 Ma whereas the Middle trachyte gives 0.07-0.06 Ma. These data indicate that the magma chambers of the first and second stage basalts were located in the mantle and the magma chamber for the second stage basalt may have been underplated below continental crust. The Xiaobisan trachyte and rhyolite originated from the magma chamber in the depth of ca. 30-40 km and the Middle trachyte

  20. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer

    OpenAIRE

    Mungall, Emma L.; Abbatt, Jonathan P. D.; Wentzell, Jeremy J. B.; Lee, Alex K. Y.; Thomas, Jennie L.; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A.; Papakyriakou, Tim; Willis, Megan D.; Liggio, John

    2017-01-01

    A biogeochemical connection between the atmosphere and the ocean is demonstrated whereby a marine source of oxygenated volatile organic compounds is identified. Compounds of this type are involved in the formation of secondary organic aerosol, which remains one of the most poorly understood components of Earth’s climate system due in part to the diverse sources of its volatile organic compound precursors. This is especially the case for marine environments, where there are more oxygenated vol...

  1. Inflation Volatility and the Inflation-Growth Tradeoff in India

    OpenAIRE

    Raghbendra Jha; Varsha S. Kulkarni

    2012-01-01

    This paper amends the New Keynesian Phillips curve model to include inflation volatility and tests the determinants of such volatility for India. It provides results on the determinants of inflation volatility and expected inflation volatility for OLS and ARDL (1,1) models and for change in inflation volatility and change in expected inflation volatility using ECM models. Output gap affects change in expected inflation volatility along (in the ECM model) and not in the other models. Major det...

  2. From magma-poor Ocean Continent Transitions to steady state oceanic spreading: the balance between tectonic and magmatic processes

    Science.gov (United States)

    Gillard, Morgane; Manatschal, Gianreto; Autin, Julia; Decarlis, Alessandro; Sauter, Daniel

    2016-04-01

    The evolution of magma-poor rifted margins is linked to the development of a transition zone whose basement is neither clearly continental nor oceanic. The development of this Ocean-Continent Transition (OCT) is generally associated to the exhumation of serpentinized mantle along one or several detachment faults. That model is supported by numerous observations (IODP wells, dredges, fossil margins) and by numerical modelling. However, if the initiation of detachment faults in a magma-poor setting tends to be better understood by numerous studies in various area, the transition with the first steady state oceanic crust and the associated processes remain enigmatic and poorly studied. Indeed, this latest stage of evolution appears to be extremely gradual and involves strong interactions between tectonic processes and magmatism. Contrary to the proximal part of the exhumed domain where we can observe magmatic activity linked to the exhumation process (exhumation of gabbros, small amount of basalts above the exhumed mantle), in the most distal part the magmatic system appears to be independent and more active. In particular, we can observe large amounts of extrusive material above a previously exhumed and faulted basement (e.g. Alps, Australia-Antarctica margins). It seems that some faults can play the role of feeder systems for the magma in this area. Magmatic underplating is also important, as suggested by basement uplift and anomalously thick crust (e.g. East Indian margin). It results that the transition with the first steady state oceanic crust is marked by the presence of a hybrid basement, composed by exhumed mantle and magmatic material, whose formation is linked to several tectonic and magmatic events. One could argue that this basement is not clearly different from an oceanic basement. However, we consider that true, steady state oceanic crust only exists, if the entire rock association forming the crust is created during a single event, at a localized

  3. Volatile accretion history of the Earth.

    Science.gov (United States)

    Wood, B J; Halliday, A N; Rehkämper, M

    2010-10-28

    It has long been thought that the Earth had a protracted and complex history of volatile accretion and loss. Albarède paints a different picture, proposing that the Earth first formed as a dry planet which, like the Moon, was devoid of volatile constituents. He suggests that the Earth's complement of volatile elements was only established later, by the addition of a small veneer of volatile-rich material at ∼100 Myr (here and elsewhere, ages are relative to the origin of the Solar System). Here we argue that the Earth's mass balance of moderately volatile elements is inconsistent with Albarède's hypothesis but is well explained by the standard model of accretion from partially volatile-depleted material, accompanied by core formation.

  4. Volatile communication in plant-aphid interactions.

    Science.gov (United States)

    de Vos, Martin; Jander, Georg

    2010-08-01

    Volatile communication plays an important role in mediating the interactions between plants, aphids, and other organisms in the environment. In response to aphid infestation, many plants initiate indirect defenses through the release of volatiles that attract ladybugs, parasitoid wasps, and other aphid-consuming predators. Aphid-induced volatile release in the model plant Arabidopsis thaliana requires the jasmonate signaling pathway. Volatile release is also induced by infection with aphid-transmitted viruses. Consistent with mathematical models of optimal transmission, viruses that are acquired rapidly by aphids induce volatile release to attract migratory aphids, but discourage long-term aphid feeding. Although the ecology of these interactions is well-studied, further research is needed to identify the molecular basis of aphid-induced and virus-induced changes in plant volatile release. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Bonding of xenon to oxygen in magmas at depth

    Science.gov (United States)

    Leroy, Clémence; Sanloup, Chrystèle; Bureau, Hélène; Schmidt, Burkhard C.; Konôpková, Zuzana; Raepsaet, Caroline

    2018-02-01

    The field of noble gases chemistry has witnessed amazing advances in the last decade with over 100 compounds reported including Xe oxides and Xe-Fe alloys stable at the pressure-temperature conditions of planetary interiors. The chemistry of Xe with planetary materials is nonetheless still mostly ignored, while Xe isotopes are used to trace a variety of key planetary processes from atmosphere formation to underground nuclear tests. It is indeed difficult to incorporate the possibility of Xe reactivity at depth in isotopic geochemical models without a precise knowledge of its chemical environment. The structure of Xe doped hydrous silica-rich melts is investigated by in situ high energy synchrotron X-ray diffraction using resistive heating diamond anvil cells. Obtained pair distribution functions reveal the oxidation of Xe between 0.2 GPa and 4 GPa at high T up to 1000 K. In addition to the usual interatomic distances, a contribution at 2.05 ± 0.05 Å is observed. This contribution is not observed in the undoped melt, and is interpreted as the Xe-O bond, with a coordination number of about 12 consistent with Xe insertion in rings of the melt structure. Xe solubility measurements by electron microprobe and particle induced X-rays emission analysis confirm that Xe and Ar have similar solubility values in wt% in silicate melts. These values are nonetheless an order of magnitude higher than those theoretically calculated for Xe. The formation of Xe-O bonds explains the enhanced solubility of Xe in deep continental crust magmas, revealing a mechanism that could store Xe and fractionate its isotopes. Xenon is indeed atypical among noble gases, the atmosphere being notably depleted in elemental Xe, and very strongly depleted in Xe light isotopes. These observations are known as the 'missing' Xe paradox, and could be solved by the present findings.

  6. On the Role of Mantle Overturn during Magma Ocean Solidification

    Science.gov (United States)

    Boukaré, C. E.; Parmentier, E.; Parman, S. W.

    2017-12-01

    Solidification of potential global magma ocean(s) (MO) early in the history of terrestrial planets may play a key role in the evolution of planetary interiors by setting initial conditions for their long-term evolution. Constraining this initial structure of solid mantles is thus crucial but remains poorly understood. MO fractional crystallization has been proposed to generate gravitationally unstable Fe-Mg chemical stratification capable of driving solid-state mantle overturn. Fractional solidification and overturn hypothesis, while only an ideal limiting case, can explain important geochemical features of both the Moon and Mars. Current overturn models consider generally post-MO overturn where the cumulate pile remains immobile until the end of MO solidification. However, if the cumulate pile overturns during MO solidification, the general picture of early planet evolution might differ significantly from the static crystallization models. We show that the timing of mantle overturn can be characterized with a dimensionless number measuring the ratio of the MO solidification time and the purely compositional overturn timescale. Syn-solidification overturn occurs if this dimensionless parameter, Rc, exceeds a critical value. Rc is mostly affected by the competition between the MO solidification time and mantle viscosity. Overturn that occurs during solidification can result in smaller scales of mantle chemical heterogeneity that could persist for long times thus influencing the whole evolution of a planetary body. We will discuss the effects of compaction/percolation on mantle viscosity. If partially molten cumulate do not have time to compact during MO solidification, viscosity of cumulates would be significantly lower as the interstitcial melt fraction would be large. Both solid mantle remelting during syn-solidification overturn and porous convection of melt retained with the cumulates are expected to reduce the degree of fractional crystallization. Syn

  7. Primary and secondary fragmentation of crystal-bearing intermediate magma

    Science.gov (United States)

    Jones, Thomas J.; McNamara, Keri; Eychenne, Julia; Rust, Alison C.; Cashman, Katharine V.; Scheu, Bettina; Edwards, Robyn

    2016-11-01

    Crystal-rich intermediate magmas are subjected to both primary and secondary fragmentation processes, each of which may produce texturally distinct tephra. Of particular interest for volcanic hazards is the extent to which each process contributes ash to volcanic plumes. One way to address this question is by fragmenting pyroclasts under controlled conditions. We fragmented pumice samples from Soufriere Hills Volcano (SHV), Montserrat, by three methods: rapid decompression in a shock tube-like apparatus, impact by a falling piston, and milling in a ball mill. Grain size distributions of the products reveal that all three mechanisms produce fractal breakage patterns, and that the fractal dimension increases from a minimum of 2.1 for decompression fragmentation (primary fragmentation) to a maximum of 2.7 by repeated impact (secondary fragmentation). To assess the details of the fragmentation process, we quantified the shape, texture and components of constituent ash particles. Ash shape analysis shows that the axial ratio increases during milling and that particle convexity increases with repeated impacts. We also quantify the extent to which the matrix is separated from the crystals, which shows that secondary processes efficiently remove adhering matrix from crystals, particularly during milling (abrasion). Furthermore, measurements of crystal size distributions before (using x-ray computed tomography) and after (by componentry of individual grain size classes) decompression-driven fragmentation show not only that crystals influence particular size fractions across the total grain size distribution, but also that free crystals are smaller in the fragmented material than in the original pumice clast. Taken together, our results confirm previous work showing both the control of initial texture on the primary fragmentation process and the contributions of secondary processes to ash formation. Critically, however, our extension of previous analyses to characterisation

  8. Oxygen isotopes and volatile contents of the Gorgona komatiites, Colombia: A confirmation of the deep mantle origin of H2O

    Science.gov (United States)

    Gurenko, Andrey A.; Kamenetsky, Vadim S.; Kerr, Andrew C.

    2016-11-01

    We report O isotopes in olivine grains (Fo89-93) and volatile contents (CO2, H2O, F, S, Cl) in olivine-hosted melt inclusions from one Gorgona picrite and five komatiites with the aim of constraining the origin of H2O in these magmas. These samples have previously been analysed for major and trace elements and volatile concentrations (H2O, S, Cl) and B isotopes in melt inclusions. A distinctive feature of the included melts is relatively high contents of volatile components and boron, which show positive anomalies in, otherwise depleted, primitive mantle normalised trace and rare earth element patterns and range in δ11 B from -11.5 to 15.6‰. In this study, the olivines were systematically analysed for O isotopes (1) in the centre of grains, (2) near the grain boundaries and, (3) as close as possible to the studied melt inclusions. The majority of olivines (∼66%) are ;mantle;-like, 4.8 ‰ ≤δ18 O ≤ 5.5 ‰, with a subordinate but still significant number (∼33%) above, and only 2 grains below, this range. There is no systematic difference between the central and marginal parts of the grains. Higher than ;mantle; δ18OOl values are ascribed to low-T (Gorgona mafic and ultramafic magmas.

  9. Macroeconomic Volatility and Welfare in Developing Countries

    OpenAIRE

    Loayza, Norman V.; Rancière, Romain; Servén, Luis; Ventura, Jaume

    2007-01-01

    Macroeconomic Volatility and Welfare in Developing Countries: An Introduction Norman V. Loayza, Romain Ranciere, Luis Serven, ` and Jaume Ventura Macroeconomic volatility, both a source and a reflection of underdevelopment, is a fundamental concern for developing countries. This article provides a brief overview of the recent literature on macroeconomic volatility in developing countries, highlighting its causes, consequences, and possible remedies. to reduce domestic policy-induced macroecon...

  10. Identify and Manage the Software Requirements Volatility

    OpenAIRE

    Khloud Abd Elwahab; Mahmoud Abd EL Latif; Sherif Kholeif

    2016-01-01

    Management of software requirements volatility through development of life cycle is a very important stage. It helps the team to control significant impact all over the project (cost, time and effort), and also it keeps the project on track, to finally satisfy the user which is the main success criteria for the software project. In this research paper, we have analysed the root causes of requirements volatility through a proposed framework presenting the requirements volatility causes and how...

  11. Labour Demand and Exchange Rate Volatility

    OpenAIRE

    Udo Broll; Sabine Hansen

    2004-01-01

    The purpose of this paper is to assess under what conditions exchange rate volatility exerts a positive effect on a firm's labour demand. As the exchange rate volatility increases, so does the value of the export option provided the firm under study is flexible. Flexibility is important because it gives the firm option value. Higher volatility increases the potential gains from trade and may increase the demand for labour. This may explain part of the mixed empirical findings regarding the ef...

  12. Equity Volatility and Corporate Bond Yields

    OpenAIRE

    John Y. Campbell; Glen B. Taksler

    2002-01-01

    This paper explores the effect of equity volatility on corporate bond yields. Panel data for the late 1990s show that idiosyncratic firm-level volatility can explain as much cross-sectional variation in yields as can credit ratings. This finding, together with the upward trend in idiosyncratic equity volatility documented by Campbell, Lettau, Malkiel, and Xu (2001), helps to explain recent increases in corporate bond yields. The definitive version is available at www.blackwell-synergy.com.

  13. Rapid differentiation in a sill-like magma reservoir: a case study from the campi flegrei caldera.

    Science.gov (United States)

    Pappalardo, Lucia; Mastrolorenzo, Giuseppe

    2012-01-01

    In recent decades, geophysical investigations have detected wide magma reservoirs beneath quiescent calderas. However, the discovery of partially melted horizons inside the crust is not sufficient to put constraints on capability of reservoirs to supply cataclysmic eruptions, which strictly depends on the chemical-physical properties of magmas (composition, viscosity, gas content etc.), and thus on their differentiation histories. In this study, by using geochemical, isotopic and textural records of rocks erupted from the high-risk Campi Flegrei caldera, we show that the alkaline magmas have evolved toward a critical state of explosive behaviour over a time span shorter than the repose time of most volcanic systems and that these magmas have risen rapidly toward the surface. Moreover, similar results on the depth and timescale of magma storage were previously obtained for the neighbouring Somma-Vesuvius volcano. This consistency suggests that there might be a unique long-lived magma pool beneath the whole Neapolitan area.

  14. THE VISCOUS TO BRITTLE TRANSITION IN CRYSTAL- AND BUBBLE-BEARING MAGMAS

    Directory of Open Access Journals (Sweden)

    Mattia ePistone

    2015-11-01

    Full Text Available The transition from viscous to brittle behaviour in magmas plays a decisive role in determining the style of volcanic eruptions. While this transition has been determined for one- or two-phase systems, it remains poorly constrained for natural magmas containing silicic melt, crystals, and gas bubbles. Here we present new experimental results on shear-induced fracturing of three-phase magmas obtained at high-temperature (673-1023 K and high-pressure (200 MPa conditions over a wide range of strain-rates (5·10-6 s-1 to 4·10-3 s-1. During the experiments bubbles are deformed (i.e. capillary number are in excess of 1 enough to coalesce and generate a porous network that potentially leads to outgassing. A physical relationship is proposed that quantifies the critical stress required for magmas to fail as a function of both crystal (0.24 to 0.65 and bubble volume fractions (0.09 to 0.12. The presented results demonstrate efficient outgassing for low crystal fraction ( 0.44 promote gas bubble entrapment and inhibit outgassing. The failure of bubble-free, crystal-bearing systems is enhanced by the presence of bubbles that lower the critical failure stress in a regime of efficient outgassing, while the failure stress is increased if bubbles remain trapped within the crystal framework. These contrasting behaviours have direct impact on the style of volcanic eruptions. During magma ascent, efficient outgassing reduces the potential for an explosive eruption and favours brittle behaviour, contributing to maintain low overpressures in an active volcanic system resulting in effusion or rheological flow blockage of magma at depth. Conversely, magmas with high crystallinity experience limited loss of exsolved gas, permitting the achievement of larger overpressures prior to a p