WorldWideScience

Sample records for volatile pyrolysis products

  1. Thermodynamic analysis for syngas production from volatiles released in waste tire pyrolysis

    International Nuclear Information System (INIS)

    Martínez, Juan Daniel; Murillo, Ramón; García, Tomás; Arauzo, Inmaculada

    2014-01-01

    Highlights: • Pyrolysis experiments have been conducted in a continuous auger reactor. • Pyrolysis temperature influence on composition of both volatiles and char was studied. • A process for syngas production has been proposed from the volatiles. • Equivalence ratio down to 0.4 is a practical limit for syngas production. • The results provide essential data prior to perform any experimental campaign. - Abstract: This paper shows the maximum limit on syngas composition obtained from volatiles released in waste tire pyrolysis when they are submitted to an air–steam partial oxidation process. Thus, from mass and energy balances and a stoichiometric equilibrium model, syngas composition and reaction temperature as well as some process parameters were predicted by varying both the equivalence ratio (ER) and the steam to fuel ratio (SF). In addition, pyrolysis experiments were performed using a continuous auger reactor, and the influence of pyrolysis temperature on composition of both volatiles and char was studied. Consequently, the resulting syngas characteristics were correlated with the pyrolysis temperature. The stoichiometric equilibrium model showed that an ER down to 0.4 is a practical limit to perform the air–steam partial oxidation process. When the process is carried out only with air, volatiles obtained at high pyrolysis temperature lead to lower reaction temperature and higher LHV of syngas in comparison with those found at low pyrolysis temperature. The H 2 production is favored between 0.20 and 0.40 of ER and seems to be more influenced by the H/C ratio than by the water gas-shift reaction. On the other hand, the steam addition shows a more notable effect on the H 2 production for volatiles obtained at the highest pyrolysis temperature (600 °C) in agreement with the lower reaction temperature under these experimental conditions. This thermodynamic analysis provides essential data on the optimization of syngas production from volatiles

  2. Reforming sewage sludge pyrolysis volatile with Fe-embedded char: Minimization of liquid product yield.

    Science.gov (United States)

    Yu, Guotao; Chen, Dezhen; Arena, Umberto; Huang, Zhen; Dai, Xiaohu

    2018-03-01

    Obtaining high quality syngas from sewage sludge (SS) means transferring a low-grade SS into a high-grade fuel or raw materials for chemical products. In this study, Fe is added to SS in form of Fe 2 (SO 4 ) 3 to produce an effective and self-sufficient catalyst in order to obtain more syngas and minimize liquid products from SS pyrolysis. The Fe-embedded sewage sludge chars (SSCs) were used as catalysts for volatile reforming at 600°C. It has been found that the gas yield increases from 15.9 to 35.8wt% of the SS and that of liquids decreases from 31.9 to 10.2wt% after volatile reforming with Fe-embedded SSC when Fe was added equal to 7 % in the dried SS. In addition, the content of nitrogen-containing compounds in the oily products decreased. After reforming with Fe-embedded SSC, the molar fractions of syngas combustible components, including H 2 , CH 4 and CO, increase, and the higher heating value of the syngas increased to 17.0MJ/Nm 3 from the original 12.5MJ/Nm 3 obtained from SS pyrolysis at 550°C. Moreover, the volatile reforming seems to reduce the level of some important syngas pollutants, like H 2 S, HCl and HCN, even though it was also observed an increase of the contents of SO 2 , NH 3 , NO 2, HCNO and N 2 O. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Pyrolysis and volatilization of cocaine

    International Nuclear Information System (INIS)

    Martin, B.R.; Lue, L.P.; Boni, J.P.

    1989-01-01

    The increasing popularity of inhaling cocaine vapor prompted the present study, to determine cocaine's fate during this process. The free base of [3H]cocaine (1 microCi/50 mg) was added to a glass pipe, which was then heated in a furnace to simulate freebasing. Negative pressure was used to draw the vapor through a series of glass wool, ethanol, acidic, and basic traps. Air flow rate and temperature were found to have profound effects on the volatilization and pyrolysis of cocaine. At a temperature of 260 degrees C and a flow rate of 400 mL/min, 37% of the radioactivity remained in the pipe, 39% was found in the glass wool trap, and less than 1% in the remainder of the volatilization apparatus after a 10-min volatilization. Reducing the air flow rate to 100 mL/min reduced the amount of radioactivity collected in the glass wool trap to less than 10% of the starting material and increased the amount that remained in the pipe to 58%. GC/MS analysis of the contents of the glass wool trap after volatilization at 260 degrees C and a flow rate of 400 mL/min revealed that 60% of the cocaine remained intact, while approximately 6 and 2% of the starting material was recovered as benzoic acid and methylecgonidine, respectively. As the temperature was increased to 650 degrees C, benzoic acid and methylecgonidine accounted for 83 and 89% of the starting material, respectively, whereas only 2% of the cocaine remained intact. Quantitation of cocaine in the vapor during the course of volatilization revealed high concentrations during the first two min and low concentrations for the remaining time

  4. Hot char-catalytic reforming of volatiles from MSW pyrolysis

    International Nuclear Information System (INIS)

    Wang, Na; Chen, Dezhen; Arena, Umberto; He, Pinjing

    2017-01-01

    Highlights: • Volatile from MSW pyrolysis is reformed with hot char from the same pyrolysis process. • The yields of syngas increase evidently with H 2 being the main contributor and the major component of the syngas. • Pyrolysis oil becomes light and its composition distribution is narrowed. • The HHV, volatile elements and alkali metals contents in the char decrease. • The emissions including SO 2 , NO, NO 2 and HCN changed after reforming process. - Abstract: Volatile products obtained from pyrolysis of municipal solid waste (MSW), including syngas and pyrolysis oil, were forced to contact the hot char from the same pyrolysis process at 500–600 °C in a fixed bed reactor to be reformed. The yields and properties of syngas, char and pyrolysis liquid were investigated; and the energy re-distribution among the products due to char reforming was quantified. The preliminary investigation at lab scale showed that hot char-catalytic reforming of the volatiles leads to an increase in the dry syngas yield from 0.25 to 0.37 N m 3 kg −1 MSW at 550 °C. Accordingly, the carbon conversion ratio into syngas increases from 29.6% to 35.0%; and the MSW chemical energy transferred into syngas increased from 41.8% to 47.4%. The yield of pyrolysis liquid products, including pyrolysis oil and water, decreased from 27.3 to 16.5 wt%, and the molecular weight of the oil becoming lighter. Approximately 60% of the water vapour contained in the volatiles converted into syngas. After reforming, the concentrations of SO 2 and HCN in the syngas decreases, while those of NO and NO 2 increase. The char concentrations of N, H, C and alkali metal species decreased and its higher heating value decreased too.

  5. Volatile organic emissions from the distillation and pyrolysis of vegetation

    Directory of Open Access Journals (Sweden)

    J. P. Greenberg

    2006-01-01

    Full Text Available Leaf and woody plant tissue (Pinus ponderosa, Eucalyptus saligna, Quercus gambelli, Saccharum officinarum and Oriza sativa were heated from 30 to 300°C and volatile organic compound (VOC emissions were identified and quantified. Major VOC emissions were mostly oxygenated and included acetic acid, furylaldehyde, acetol, pyrazine, terpenes, 2,3-butadione, phenol and methanol, as well as smaller emissions of furan, acetone, acetaldehyde, acetonitrile and benzaldehyde. Total VOC emissions from distillation and pyrolysis were on the order of 10 gC/kgC dry weight of vegetation, as much as 33% and 44% of CO2 emissions (gC(VOC/gC(CO2 measured during the same experiments, in air and nitrogen atmospheres, respectively. The emissions are similar in identity and quantity to those from smoldering combustion of woody tissue and of different character than those evolved during flaming combustion. VOC emissions from the distillation of pools and endothermic pyrolysis under low turbulence conditions may produce flammable concentrations near leaves and may facilitate the propagation of wildfires. VOC emissions from charcoal production are also related to distillation and pyrolysis; the emissions of the highly reactive VOCs from production are as large as the carbon monoxide emissions.

  6. Bio-hydrogen production based on catalytic reforming of volatiles generated by cellulose pyrolysis: An integrated process for ZnO reduction and zinc nanostructures fabrication

    International Nuclear Information System (INIS)

    Maciel, Adriana Veloso; Job, Aldo Eloizo; Nova Mussel, Wagner da; Brito, Walter de; Duarte Pasa, Vanya Marcia

    2011-01-01

    The paper presents a process of cellulose thermal degradation with bio-hydrogen generation and zinc nanostructures synthesis. Production of zinc nanowires and zinc nanoflowers was performed by a novel processes based on cellulose pyrolysis, volatiles reforming and direct reduction of ZnO. The bio-hydrogen generated in situ promoted the ZnO reduction with Zn nanostructures formation by vapor-solid (VS) route. The cellulose and cellulose/ZnO samples were characterized by thermal analyses (TG/DTG/DTA) and the gases evolved were analyzed by FTIR spectroscopy (TG/FTIR). The hydrogen was detected by TPR (Temperature Programmed Reaction) tests. The results showed that in the presence of ZnO the cellulose thermal degradation produced larger amounts of H 2 when compared to pure cellulose. The process was also carried out in a tubular furnace with N 2 atmosphere, at temperatures up to 900 o C, and different heating rates. The nanostructures growth was catalyst-free, without pressure reduction, at temperatures lower than those required in the carbothermal reduction of ZnO with fossil carbon. The nanostructures were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The optical properties were investigated by photoluminescence (PL). One mechanism was presented in an attempt to explain the synthesis of zinc nanostructures that are crystalline, were obtained without significant re-oxidation and whose morphologies are dependent on the heating rates of the process. This route presents a potential use as an industrial process taking into account the simple operational conditions, the low costs of cellulose and the importance of bio-hydrogen and nanostructured zinc.

  7. Desulfurized gas production from vertical kiln pyrolysis

    Science.gov (United States)

    Harris, Harry A.; Jones, Jr., John B.

    1978-05-30

    A gas, formed as a product of a pyrolysis of oil shale, is passed through hot, retorted shale (containing at least partially decomposed calcium or magnesium carbonate) to essentially eliminate sulfur contaminants in the gas. Specifically, a single chambered pyrolysis vessel, having a pyrolysis zone and a retorted shale gas into the bottom of the retorted shale zone and cleaned product gas is withdrawn as hot product gas near the top of such zone.

  8. Production, properties and utilisation of pyrolysis oil

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K; Oasmaa, A; Arpiainen, V; Solantausta, Y; Leppaemaeki, E; Kuoppala, E; Levander, J; Kleemola, J; Saarimaeki, P [VTT Energy, Jyvaeskylae (Finland). Energy Production Technologies

    1997-12-01

    In this project VTT Energy co-ordinates the EU JOULE Project `Biofuel oil for power plants and boilers` supporting the development projects of Finnish enterprises, and participates in the Pyrolysis Project of IEA Bioenergy Agreement. Presently two pyrolysis devices with capacities of 150 g/h and 1 kg/h are used for the project. Hot gas filtering tests by using one ceramic candle equipment have been carried out with the 1 kg/h device for pyrolysis oil. The solids and alkali contents of the product oil were reduced clearly. Suitable conditions are being defined for continuous hot gas filtering. A PDU device of 20 kg/h is being commissioned. The main aim of the chemical characterisation of pyrolysis oil was to develop as simple a method as possible for differentiating pyrolysis oils and for finding correlations between the characteristics and behaviour of pyrolysis oils. Pyrolysis oils produced from various raw materials (hardwood, pine, straw) were analysed and compared with each other. VTT Energy participates in the pyrolysis network (EU/PYNE) of EU, the aim of which is to collect and disseminate research results of pyrolysis studies, i.e., through a journal with a wide circulation. VTT also participates in the pyrolysis activity of IEA (PYRA), the other partners being Great Britain, EU, Canada and the United States. I.e., quality criteria and improvement, occupational safety and pyrolysis kinetics are discussed in IEA/PYRA

  9. The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust

    International Nuclear Information System (INIS)

    Chang, Guozhang; Huang, Yanqin; Xie, Jianjun; Yang, Huikai; Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi

    2016-01-01

    Highlights: • The primarily pyrolysis composition of PKS lignin was p-hydroxyphenyl unit. • Higher phenol yield and lower gas energy yield were obtained from PKS pyrolysis. • PKS produced more bio-oil and biochar than WS and PS from pyrolysis at 650–850 °C. • PKS-char had poorer gasification reactivity due to higher ordering carbon degree. - Abstract: The lignin monomer composition of palm kernel shell (PKS) was characterized using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), and the characteristics and distributions of products obtained from PKS pyrolysis were investigated using Py-GC/MS, GC, and a specially designed pyrolysis apparatus. The gasification reactivity of PKS biochar was also characterized using thermogravimetry (TG) and Raman spectroscopy. All the results were compared with those obtained from wheat straw (WS) and pine sawdust (PS). The results showed that PKS lignin is primarily composed of p-hydroxyphenyl structural units, while WS and PS lignins are mainly made up of guaiacyl units. Both the mass and energy yields of non-condensable gases from PKS pyrolysis were lower than those obtained from WS and PS pyrolysis at 650–850 °C, owing to the lower volatile content (75.21%) and lack of methoxy groups in PKS. Compared with WS and PS, higher bio-oil productivity was observed during PKS pyrolysis. Phenols were the main component of PKS bio-oil from pyrolysis at 500 °C, and the phenol content of PKS bio-oil (13.49%) was higher than in WS bio-oil (1.62%) and PS bio-oil (0.55%). A higher yield of biochar (on an ash-free basis) was also obtained from PKS pyrolysis. Because of its greater relative degree of ordered carbon, PKS biochar exhibited lower in situ reactivity during CO_2 or H_2O gasification than WS and PS biochars. A longer residence time and addition of steam were found to be beneficial during PKS biochar gasification.

  10. Production of Lunar Oxygen Through Vacuum Pyrolysis

    National Research Council Canada - National Science Library

    Matchett, John

    2006-01-01

    .... The vacuum pyrolysis method of oxygen production from lunar regolith presents a viable option for in situ propellant production because of its simple operation involving limited resources from earth...

  11. NMR spectroscopy of coal pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Polonov, V.M.; Kalabin, G.A.; Kushnarev, D.F.; Shevchenko, G.G.

    1985-12-01

    The authors consider the scope for using H 1 and C 13 NMR spectroscopy to describe the products from coal pyrolysis and hydrogenization. The accuracy of the structural information provided by the best NMR methods is also considered. The stuctural parameters derived from H 1 and C 13 NMR spectra are presented. Results demonstrate the high accuracy and sensitivity of the structural information provided by H 1 AND C 13 NMR spectra for coal products. There are substantial structural differences between the soluble products from medium-temperature coking of Cheremkhov coal and high-speed pyrolysis of Kan-Acha coal, and also differences in behavior during hydrogenation. These differences are related to the structure of the organic matter in the initial coal and to differences in the pyrolysis mechanisms.

  12. Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects

    International Nuclear Information System (INIS)

    Chen, G.; Andries, J.; Luo, Z.; Spliethoff, H.

    2003-01-01

    The conventional biomass pyrolysis/gasification process for production of medium heating value gas for industrial or civil applications faces two disadvantages, i.e. low gas productivity and the accompanying corrosion of downstream equipment caused by the high content of tar vapour contained in the gas phase. The objective of this paper is to overcome these disadvantages, and therefore, the effects of the operating parameters on biomass pyrolysis are investigated in a laboratory setup based on the principle of keeping the heating value of the gas almost unchanged. The studied parameters include reaction temperature, residence time of volatile phase in the reactor, physico-chemical pretreatment of biomass particles, heating rate of the external heating furnace and improvement of the heat and mass transfer ability of the pyrolysis reactor. The running temperature of a separate cracking reactor and the geometrical configuration of the pyrolysis reactor are also studied. However, due to time limits, different types of catalysts are not used in this work to determine their positive influences on biomass pyrolysis behaviour. The results indicate that product gas production from biomass pyrolysis is sensitive to the operating parameters mentioned above, and the product gas heating value is high, up to 13-15 MJ/N m 3

  13. Product Characterization and Kinetics of Biomass Pyrolysis in a Three-Zone Free-Fall Reactor

    Directory of Open Access Journals (Sweden)

    Natthaya Punsuwan

    2014-01-01

    Full Text Available Pyrolysis of biomass including palm shell, palm kernel, and cassava pulp residue was studied in a laboratory free-fall reactor with three separated hot zones. The effects of pyrolysis temperature (250–1050°C and particle size (0.18–1.55 mm on the distribution and properties of pyrolysis products were investigated. A higher pyrolysis temperature and smaller particle size increased the gas yield but decreased the char yield. Cassava pulp residue gave more volatiles and less char than those of palm kernel and palm shell. The derived solid product (char gave a high calorific value of 29.87 MJ/kg and a reasonably high BET surface area of 200 m2/g. The biooil from palm shell is less attractive to use as a direct fuel, due to its high water contents, low calorific value, and high acidity. On gas composition, carbon monoxide was the dominant component in the gas product. A pyrolysis model for biomass pyrolysis in the free-fall reactor was developed, based on solving the proposed two-parallel reactions kinetic model and equations of particle motion, which gave excellent prediction of char yields for all biomass precursors under all pyrolysis conditions studied.

  14. Volatile characteristic of trace elements during microwave pyrolysis of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Jing-ru; Wang, Qing; Kong, Ling-wen; Bai, Zhang [Northeast Dianli Univ., Jilin (China). Engineering Research Centre

    2013-07-01

    Oil shale is abundant in the world. Today, the industry of oil shale retorting for producing shale oil is developing owing to high price of oil in the world. In order to study migratory behavior of trace elements in oil shale at microwave pyrolysis, tests were performed in laboratory with oil shale of the Huadian deposit of China at different powers from 400 to 700 W. The trace elements As, Cd, Hg, Mo, Pb, Se, Cr, Cu, Ni, V, Zn, Ba, Co, Mn present in oil shale and shale char were determined by the inductively coupled plasma-mass spectrometry (ICP-MS). By comparing the content of trace elements in oil shale and shale char, distribution characteristics of trace elements at retorting were studied. The overall trends of volatile ratio of trace elements are ascending with higher microwave power and higher than the conventional pyrolysis. The differences in the volatile ratio indicate that the trace elements investigated are bound with the oil shale kerogen and its mineral matter in different manner. So Float-sink experiments (FSE) were performed on oil shale. Huadian oil shale has more included mineral. The volatilization of organic matter is not the main reason for the volatilization of trace elements in oil shale. The trace elements combined with the mineral elements may be also certain volatility.

  15. Pyrolysis of biomass in a semi-industrial scale reactor: Study of the fuel-nitrogen oxidation during combustion of volatiles

    International Nuclear Information System (INIS)

    Mura, E.; Debono, O.; Villot, A.; Paviet, F.

    2013-01-01

    In this work, an experimental study of the NOx-fuel formation, carried out on a semi-industrial scale reactor during combustion of volatiles of the pyrolysis, is performed. Two different biomasses with different nitrogen contents such as a mixture of organic sludge and wood were tested. Results show that the temperature of pyrolysis does not obviously affect the production of NOx-fuel because of the most active precursors (NH 3 and HCN) are already released at low temperatures (400 °C). In the case of sludge mixture, the combustion conditions play the discriminating role in the production of NOx-fuel: the higher the excess air ratio the larger the production of nitrogen oxides from N-fuel. -- Highlights: • An experimental study of the pyrolysis of biomass from waste has been carried out. • The study consists in the analysis of NOx-fuel production during combustion. • The temperature of pyrolysis does not affect the production of NOx. • Only a small part of the N-fuel released in the volatile fraction is oxidized. • In the case of sewage sludge the excess air ratio affects the NOx production

  16. Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) mitigation in the pyrolysis process of waste tires using CO₂ as a reaction medium.

    Science.gov (United States)

    Kwon, Eilhann E; Oh, Jeong-Ik; Kim, Ki-Hyun

    2015-09-01

    Our work reported the CO2-assisted mitigation of PAHs and VOCs in the thermo-chemical process (i.e., pyrolysis). To investigate the pyrolysis of used tires to recover energy and chemical products, the experiments were conducted using a laboratory-scale batch-type reactor. In particular, to examine the influence of the CO2 in pyrolysis of a tire, the pyrolytic products including C1-5-hydrocarbons (HCs), volatile organic carbons (VOCs), and polycyclic aromatic hydrocarbons (PAHs) were evaluated qualitatively by gas chromatography (GC) with mass spectroscopy (MS) as well as with a thermal conductivity detector (TCD). The mass balance of the pyrolytic products under various pyrolytic conditions was established on the basis of their weight fractions of the pyrolytic products. Our experimental work experimentally validated that the amount of gaseous pyrolytic products increased when using CO2 as a pyrolysis medium, while substantially altering the production of pyrolytic oil in absolute content (7.3-17.2%) and in relative composition (including PAHs and VOCs). Thus, the co-feeding of CO2 in the pyrolysis process can be considered an environmentally benign and energy efficient process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. [Influence of impurities on waste plastics pyrolysis: products and emissions].

    Science.gov (United States)

    Zhao, Lei; Wang, Zhong-Hui; Chen, De-Zhen; Ma, Xiao-Bo; Luan, Jian

    2012-01-01

    The study is aimed to evaluate the impact of impurities like food waste, paper, textile and especially soil on the pyrolysis of waste plastics. For this purpose, emissions, gas and liquid products from pyrolysis of waste plastics and impurities were studied, as well as the transfer of element N, Cl, S from the substrates to the pyrolysis products. It was found that the presence of food waste would reduce the heat value of pyrolysis oil to 27 MJ/kg and increase the moisture in the liquid products, therefore the food residue should be removed from waste plastics; and the soil, enhance the waste plastics' pyrolysis by improving the quality of gas and oil products. The presence of food residue, textile and paper leaded to higher gas emissions.

  18. Novel technique for coal pyrolysis and hydrogenation product analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, L.D.; Boyle, J.

    1993-03-15

    A microjet reactor coupled to a VUV photoionization time-of-flight mass spectrometer has been used to obtain species measurements during high temperature pyrolysis and oxidation of a wide range of hydrocarbon compounds ranging from allene and acetylene to cyclohexane, benzene and toluene. Initial work focused on calibration of the technique, optimization of ion collection and detection and characterization of limitations. Using the optimized technique with 118 nm photoionization, intermediate species profiles were obtained for analysis of the hydrocarbon pyrolysis and oxidation mechanisms. The soft'' ionization, yielding predominantly molecular ions, allowed the study of reaction pathways in these high temperature systems where both sampling and detection challenges are severe. Work has focused on the pyrolysis and oxidative pyrolysis of aliphatic and aromatic hydrocarbon mixtures representative of coal pyrolysis and hydropyrolysis products. The detailed mass spectra obtained during pyrolysis and oxidation of hydrocarbon mixtures is especially important because of the complex nature of the product mixture even at short residence times and low primary reactant conversions. The combustion community has advanced detailed modeling of pyrolysis and oxidation to the C4 hydrocarbon level but in general above that size uncertainties in rate constant and thermodynamic data do not allow us to a priori predict products from mixed hydrocarbon pyrolyses using a detailed chemistry model. For pyrolysis of mixtures of coal-derived liquid fractions with a large range of compound structures and molecular weights in the hundreds of amu the modeling challenge is severe. Lumped models are possible from stable product data.

  19. Dynamic measurement of coal thermal properties and elemental composition of volatile matter during coal pyrolysis

    Directory of Open Access Journals (Sweden)

    Rohan Stanger

    2014-01-01

    Full Text Available A new technique that allows dynamic measurement of thermal properties, expansion and the elemental chemistry of the volatile matter being evolved as coal is pyrolysed is described. The thermal and other properties are measured dynamically as a function of temperature of the coal without the need for equilibration at temperature. In particular, the technique allows for continuous elemental characterisation of tars as they are evolved during pyrolysis and afterwards as a function of boiling point. The technique is demonstrated by measuring the properties of maceral concentrates from a coal. The variation in heats of reaction, thermal conductivity and expansion as a function of maceral composition is described. Combined with the elemental analysis, the results aid in the interpretation of the chemical processes contributing to the physical and thermal behaviour of the coal during pyrolysis. Potential applications in cokemaking studies are discussed.

  20. Microwave-assisted pyrolysis of biomass for liquid biofuels production

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Production of 2nd-generation biofuels from biomass residues and waste feedstock is gaining great concerns worldwide. Pyrolysis, a thermochemical conversion process involving rapid heating of feedstock under oxygen-absent condition to moderate temperature and rapid quenching of intermediate products......, is an attractive way for bio-oil production. Various efforts have been made to improve pyrolysis process towards higher yield and quality of liquid biofuels and better energy efficiency. Microwave-assisted pyrolysis is one of the promising attempts, mainly due to efficient heating of feedstock by ‘‘microwave...

  1. Catalytic reforming of nitrogen-containing volatiles evolved through pyrolysis of composted pig manure.

    Science.gov (United States)

    Meesuk, Sirimirin; Sato, Kazuyoshi; Cao, Jing-Pei; Hoshino, Akihiro; Utsumi, Kazuhiko; Takarada, Takayuki

    2013-12-01

    The pyrolysis of pig compost was performed in a two-stage fixed-bed reactor to determine the effects of decomposition temperatures and catalysts (i.e., transition-metal and non-transition-metal catalysts) on carbon and nitrogen conversions. The secondary decomposition was investigated at different temperatures from room temperature up to 750°C. Then the effects of various catalysts were investigated at 650°C. Approximately 60% of the carbon and 80% of the nitrogen in the pig compost were converted into volatiles during pyrolysis. Conversion of carbon and nitrogen species in tar into gas, and the evolution undesirable NH3 and HCN without catalyst increased with increasing decomposition temperature. Transition-metal catalysts showed excellent activity for conversion of condensable volatiles into gas and NH3 and HCN into N2. Although non-transition-metal catalysts had moderate activity for the conversion of volatiles into gas and negligible activity for the conversion of NH3 into N2, dolomite can provide liquid fuel with negligible amount of nitrogen species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Vacuum pyrolysis of swine manure : biochar production and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Verma, M. [Inst. de recherche et de developpement en agroenvironnement Inc., Quebec City, PQ (Canada); Centre de recherche industrielle du Quebec, Quebec City, PQ (Canada); Godbout, S.; Larouche, J.P.; Lemay, S.P.; Pelletier, F. [Inst. de recherche et de developpement en agroenvironnement Inc., Quebec City, PQ (Canada); Solomatnikova, O. [Centre de recherche industrielle du Quebec, Quebec City, PQ (Canada); Brar, S.K. [Inst. national de la recherche scientifique, eau, terre et environnement, Quebec City, PQ (Canada)

    2010-07-01

    Quebec accounts for nearly 25 per cent of swine production in Canada. The issue of swine manure is addressed through land spreading and conversion into fertilizer. However, current regulations restrict the use of swine manure as fertilizer on most farmlands due to the problem of surplus phosphorus and nitrogen. Although many technologies exist to separate phosphorus and nitrogen from the organic-rich dry matter in swine manure, about 40 per cent of the treated waste matter must still be disposed in an environmentally sound manner. This study investigated the technical feasibility of pretreating the swine manure solids into biofuels on a farm-scale basis using vacuum pyrolysis process. A custom built stainless steel pressure vessel was used to carry out pyrolysis reaction of swine manure biomass at a temperature range between 200 to 600 degrees C under vacuum. The pyrolytic vapour was condensed in 2 glass condensers in series. The biochar was collected directly from the pyrolysis vessel following completion of the pyrolysis batch. The non condensable vapour and gases were considered as losses. Biochar, bio-oil, an aqueous phase and a gas mixture were the 4 products of the pyrolysis process. A thermogravimetric analysis of the swine manure samples was conducted before the pyrolysis tests. The study showed that 238 degrees C is the optimal pyrolysis temperature for biochar production.

  3. Evaluation of co-pyrolysis petrochemical wastewater sludge with lignite in a thermogravimetric analyzer and a packed-bed reactor: Pyrolysis characteristics, kinetics, and products analysis.

    Science.gov (United States)

    Mu, Lin; Chen, Jianbiao; Yao, Pikai; Zhou, Dapeng; Zhao, Liang; Yin, Hongchao

    2016-12-01

    Co-pyrolysis characteristics of petrochemical wastewater sludge and Huolinhe lignite were investigated using thermogravimetric analyzer and packed-bed reactor coupled with Fourier transform infrared spectrometer and gas chromatography. The pyrolysis characteristics of the blends at various sludge blending ratios were compared with those of the individual materials. Thermogravimetric experiments showed that the interactions between the blends were beneficial to generate more residues. In packed-bed reactor, synergetic effects promoted the release of gas products and left less liquid and solid products than those calculated by additive manner. Fourier transform infrared spectrometer analysis showed that main functional groups in chars gradually disappeared with pyrolysis temperatures increasing, and H 2 O, CH 4 , CO, and CO 2 appeared in volatiles during pyrolysis. Gas compositions analysis indicated that, the yields of H 2 and CO clearly increased as the pyrolysis temperature and sludge blending ratio increasing, while the changes of CH 4 and CO 2 yields were relatively complex. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effect of oxidation on the chemical nature and distribution of low-temperature pyrolysis products from bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; MacPhee, J.A.; Vancea, L.; Ciavaglia, L.A.; Nandi, B.N.

    1983-04-01

    Two bituminous coals, a high volatile Eastern Canadian and a medium volatile Western Canadian, were used to investigate the effect of oxidation on yields and chemical composition of gases, liquids and chars produced during coal pyrolysis. Pyrolysis experiments were performed at 500 C using the Fischer assay method. Mild oxidation of coals resulted in a decrease of liquid hydrocarbon yields. Further coal oxidation increased the proportion of aromatic carbon in liquid products as determined by N.M.R. and also increased the content of oxygen in liquid products. The content of oxygen in chars was markedly lower than in corresponding coals. An attempt is made to explain reactions occurring during oxidation and subsequent pyrolysis of coal on the basis of differences in chemical composition of gases, liquids and chars. (19 refs.)

  5. Effect of oxidation on the chemical nature and distribution of low-temperature pyrolysis products from bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Ciavaglia, L.A.; MacPhee, J.A.; Nandi, B.N.; Vancea, L.

    1983-04-01

    Two bituminous coals, a high volatile Eastern Canadian and a medium volatile Western Canadian, were used to investigate the effect of oxidation on yields and chemical composition of gases, liquids and chars produced during coal pyrolysis. Pyrolysis experiments were performed at 500/sup 0/C using the Fischer assay method. Mild oxidation of coals resulted in a decrease of liquid hydrocarbon yields. Further coal oxidation increased the proportion of aromatic carbon in liquid products as determined by n.m.r., and also increased the content of oxygen in liquid products. The content of oxygen in chars was markedly lower than in corresponding coals. An attempt is made to explain reactions occurring during oxidation and subsequent pyrolysis of coal on the basis of differences in chemical composition of gases, liquids and chars.

  6. Distribution of sulphur into products from waste tire pyrolysis

    International Nuclear Information System (INIS)

    Susa, D.; Haydary, J.; Markos, J.

    2012-01-01

    Tire pyrolysis is getting growing attention as an effective waste tire disposal method in comparison to environmentally less friendly methods like dumping or incineration. But the scrap tire sulphur content can be a potential obstacle to scrap tire utilization as a fuel. In this paper the distribution of sulphur into tire pyrolysis yields, solid (char) and liquid (tar), was investigated. The pyrolysis experiments were carried out under different conditions to determine the partitioning of sulphur into pyrolysis products. The influence of different temperatures and reaction times was investigated in a laboratory flow reactor under nitrogen atmosphere. Solid and liquid residues were collected and analyzed by elemental analysis. The sulphur content in residual char and tar was determined using an elemental analyzer and the sulphur forms in tar were characterized by the X-ray photoelectron spectroscopy (XPS). (Authors)

  7. Perspectives for pyrolysis oil production and market in Scandinavia

    International Nuclear Information System (INIS)

    Sipilae, K.; Oasmaa, A.; Solantausta, Y.; Arpiainen, V.; Nyroenen, T.

    1999-01-01

    Commercial power production from biomass is mainly based on various combustion technologies, new gasification technologies being on pilot and demonstration scale in Europe. From the market viewpoint, there will be an attractive and large market volume for small and medium-scale combined heat and power production (CHP) and for liquid bioenergy products in order to meet the Kyoto challenges in Europe by the year 2010. Biomass pyrolysis technology offers a novel method of converting solid biomass to a liquid product which can easily be transported, stored and utilised for electricity production by diesel engines and gas turbines. The overall efficiency in pyrolysis oil production can be increased from 65 to 90 % (LHV) by integrating the big-oil production to a conventional boiler plant, the-system identified by VTT. A modern diesel power plant has an efficiency of 40 - 44 % with a high power-to-heat ratio. Parallel to diesel power plants, the big-oil can be used in existing heating oil boilers with minor burner modifications. The paper comprises an overview of market assessments in Scandinavia and a summary of pyrolysis oil production, stability and properties tests. The challenge of today is to understand and improve the properties of pyrolysis oils in order to reach a 12-month storage time without any changes in the homogeneity of pyrolysis oils. Reliable operation of oil-fired boilers and diesel power plants has to be demonstrated. As soon as these problems have been solved, biomass pyrolysis technologies will offer new attractive bioenergy market opportunities where a huge potential can be reached by conversing existing petroleum-fired boilers, 0.1 - 10 MW to big-oils and followed by combined heat and power production with high-efficiency diesel power plants in 0.1 - 10 MW scale. Pyrolysis technology is clearly the most attractive method for producing liquid biofuels, compared to bioalcohols and biodiesel. With the present price structure, pyrolysis oil can be

  8. Pyrolysis Process and Characteristics of Products from Sawdust Briquettes

    Directory of Open Access Journals (Sweden)

    Hua Yang

    2016-01-01

    Full Text Available The pyrolysis of briquettes made from biomass is an available and economic technological route for the production of briquette charcoal, but by-products (tar and gas cannot be brought into full utilization, leading to the waste of resources and the addition of environmental concerns. Temperature is the most important parameter that affects the distributions and properties of briquette charcoal. This work investigated the three kinds of products of the pyrolysis of sawdust briquette in a fixed bed across a wide temperature range (250 to 950 °C. The purpose of this experiment was to study the pyrolysis process and the properties of the resulting products (briquette charcoal, liquid, and gas of sawdust briquettes and explore the optimum operating temperature to generate good quality briquette charcoal, liquid, and gaseous products simultaneously. According to the results, the optimum pyrolysis temperature range was 450 to 650 °C, for which the briquette charcoal produced within this range had the highest calorific value (2,9.14 to 30.21 MJ/kg. Meanwhile, the liquid product is considered to be useful for liquid fuels or valuable chemical materials, and the low heating value of the gaseous product was 11.79 to 14.85 MJ/Nm3 in this temperature range.

  9. Fast pyrolysis of linseed. Product yields and compositions

    Energy Technology Data Exchange (ETDEWEB)

    Acikgoz, C.; Onay, O.; Kockar, O.M. [Department of Chemical Engineering, Faculty of Engineering and Architecture, Iki Eylul Campus, Anadolu University, Eskisehir 26470 (Turkey)

    2004-06-01

    Fixed-bed fast pyrolysis experiments have been conducted on a sample of linseed (Linum usitatissimum L.) to determine particularly the effect of pyrolysis temperature, heating rate, particle size and sweep gas flow rate on the pyrolysis product yields and their compositions. The maximum oil yield of 57.7wt.% was obtained at a final pyrolysis temperature of 550C, particle size range 0.6mmpyrolysis products were characterised by elemental analysis and various chromatographic and spectroscopic techniques. Chromatographic and spectroscopic studies on oil showed that it can be used as a renewable fuel and chemical feedstock, with a calorific value of 38.45MJ/kg and empirical formula of CH{sub 1.64}O{sub 0.11}N{sub 0.03}.

  10. Production of a transparent lavender flavour nanocapsule aqueous solution and pyrolysis characteristics of flavour nanocapsule.

    Science.gov (United States)

    Zhu, Guangyong; Xiao, Zuobing; Zhou, Rujun; Feng, Nienie

    2015-07-01

    Flavour plays an important role and has been widely used in many products. Usually, the components of flavour are volatile and the sensory perception can be changed as a result of volatilization, heating, oxidation and chemical interactions. Encapsulation can prevent the loss of volatile aromatic ingredients, provide protection and enhance the stability of the core materials. This work concentrated on production of a transparent lavender flavour nanocapsule aqueous solution. The results showed that a transparent lavender flavour microcapsule aqueous solution can be produced using hydroxypropyl-β-cyclodextrin (HP-β-CD) as wall material. The combination and interaction of flavour and wall materials were investigated by pyrolysis. Pyrolysis characteristics and kinetic parameters of the flavour nanocapsule were determined. During thermal degradation of blank HP-β-CD and flavour-HP-β-CD inclusion complex, three main stages can be distinguished. Due to the vaporization of lavender flavour encapsulated in HP-β-CD, the thermogravimetric (TG) curve of blank HP-β-CD shows a leveling-off from room temperature to 269 °C, while the TG curve of flavour-HP-β-CD inclusion complex is downward sloping in this temperature range. The kinetic parameters are helpful in understanding the mechanism of molecular recognition between hosts and guests.

  11. Biochar production from freshwater algae by slow pyrolysis

    Directory of Open Access Journals (Sweden)

    Tanongkiat Kiatsiriroat

    2012-05-01

    Full Text Available A study on the feasibility of biochar production from 3 kinds of freshwateralgae, viz. Spirulina, Spirogyra and Cladophora, was undertaken. Using a slow pyrolysis process in a specially designed reactor, biochar could be generated at 550oC under nitrogen atmosphere. The yields of biochar were between 28-31% of the dry algae.

  12. Kinetic study and syngas production from pyrolysis of forestry waste

    International Nuclear Information System (INIS)

    Hu, Mian; Wang, Xun; Chen, Jian; Yang, Ping; Liu, Cuixia; Xiao, Bo; Guo, Dabin

    2017-01-01

    Highlights: • Pyrolysis process can be divided into three stages using differential DTG method. • A modified discrete DAEM model fitted experimental data well. • Fe/biochar catalyst showed a good performance on catalytic reforming process. - Abstract: Kinetic study and syngas production from pyrolysis of forestry waste (pine sawdust (PS)) were investigated using a thermogravimetric analyzer (TGA) and a fixed-bed reactor, respectively. In TGA, it was found that the pyrolysis of PS could be divided into three stages and stage II was the major mass reduction stage with mass loss of 73–74%. The discrete distributed activation energy model (DAEM) with discrete 200 first-order reactions was introduced to study the pyrolysis kinetic. The results indicated that the DAEM with 200 first-order reactions could approximate the pyrolysis process with an excellent fit between experimental and calculated data. The apparent activation energies of PS ranged from 147.86 kJ·mol −1 to 395.76 kJ·mol −1 , with corresponding pre-exponential factors of 8.30 × 10 13 s −1 to 3.11 × 10 25 s −1 . In the fixed-bed reactor, char supported iron catalyst was prepared for tar cracking. Compared with no catalyst which the gas yield and tar yield were 0.58 N m 3 /kg biomass and 201.23 g/kg biomass, the gas yield was markedly increased to 1.02 N m 3 /kg biomass and the tar yield was decreased to only 26.37 g/kg biomass in the presence of char supported iron catalyst. These results indicated that char supported iron catalyst could potentially be used to catalytically decompose tar molecules in syngas generated via biomass pyrolysis.

  13. Overall concepts for utilisation of slow pyrolysis products - Hidaspyro II

    Energy Technology Data Exchange (ETDEWEB)

    Fagernas, L. [VTT Technical Research Centre of Finland, Espoo (Finland)], email: leena.fagernas@vtt.fi

    2012-07-01

    Slow pyrolysis is a promising technology to produce biochar (charcoal), distillates and gases for various purposes. However, scientific results on the effects of distillates and biochar on soil improvement are lacking, process conditions to produce biochar of good quality and optimal distillates are not known, and non-existence of environmental risks has to be proved prior to commercialization of the products. The goal is an optimised slow pyrolysis process for new applications of the products. The research carried out in the project Hidaspyro will be continued. The objectives are to determine the effect of biochar and distillates on growth of plants, soil improvement, and odour prevention; to define the quality criteria of biochar in plant production; and to assess the ecotoxicological and environmental impacts of the products.

  14. Volatile compounds in meat and meat products

    Directory of Open Access Journals (Sweden)

    Monika KOSOWSKA

    Full Text Available Abstract Meaty flavor is composed of a few hundreds of volatile compounds, only minor part of which are responsible for the characteristic odor. It is developed as a result of multi-directional reactions proceeding between non-volatile precursors contained in raw meat under the influence of temperature. The volatile compounds are generated upon: Maillard reactions, lipid oxidation, interactions between Maillard reaction products and lipid oxidation products as well as upon thiamine degradation. The developed flavor is determined by many factors associated with: raw material (breed, sex, diet and age of animal, conditions and process of slaughter, duration and conditions of meat storage, type of muscle, additives applied and the course of the technological process. The objective of this review article is to draw attention to the issue of volatile compounds characteristic for meat products and factors that affect their synthesis.

  15. Novel technique for coal pyrolysis and hydrogenation production analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, L.D.

    1990-01-01

    The overall objective of this study is to establish vacuum ultraviolet photoionization-MS and VUV pulsed EI-MS as useful tools for a simpler and more accurate direct mass spectrometric measurement of a broad range of hydrocarbon compounds in complex mixtures for ultimate application to the study of the kinetics of coal hydrogenation and pyrolysis processes. The VUV-MS technique allows ionization of a broad range of species with minimal fragmentation. Many compounds of interest can be detected with the 118 nm wavelength, but additional compound selectivity is achievable by tuning the wavelength of the photo-ionization source in the VUV. Resonant four wave mixing techniques in Hg vapor will allow near continuous tuning from about 126 to 106 nm. This technique would facilitate the scientific investigation of coal upgrading processes such as pyrolysis and hydrogenation by allowing accurate direct analysis of both stable and intermediate reaction products.

  16. Overall concepts for utilisation of slow pyrolysis products - Hidaspyro II

    Energy Technology Data Exchange (ETDEWEB)

    Fagernaes, L.; Kuoppala, E.; Ranta, J. (VTT Technical Research Centre of Finland, Espoo (Finland)), e-mail: leena.fagernas@vtt.fi; Setaelae, H.; Hagner, M. (University of Helsinki, Lahti (Finland), Dept. of Ecological and Environmental Sciences), e-mail: heikki.setala@helsinki.fi; Tiilikkala, K.; Palojaervi, A.; Lindqvist, B. (MTT Agrifood Research Finland, Jokioinen (Finland)), e-mail: kari.tiilikkala@mtt.fi

    2011-11-15

    The project aims at developing new distributed biorefineries and comprehensive concepts based on slow pyrolysis for SMEs. The research carried out in the project 'Hidaspyro' will be continued in the new project. The goal is an optimised slow pyrolysis process for new applications of the products. The objective is to determine the effects of biochar and distillates on growth of plants, soil improvement, carbon sequestration and emissions of cultivation, to define the quality criteria of biochar, to determine the potential of distillates in odour prevention and to assess the environmental impacts of the products. Optimal process parameters to produce distillates and biochar of high quality will be determined by well-controlled laboratory-scale slow pyrolysis testing facility to be constructed. The main feedstock material will be birchwood, but comparisons with other biomass feedstocks will also be carried out. The efficacy tests will show the effect of biochars and distillates on growth of plants, use of water and nutrients, and biological activity of soil. Demonstrations of soil improvement and odour prevention will be done in co-operation with the partner enterprises. The environmental effects of different biochars will be compared by following the changes in the activity of microbes and the composition of nematode community. The amount and quality of distillate and biochar safe to the environment will be defined. All the results will be utilised in the techno-economic assessment of different concepts. (orig.)

  17. Investigating and modeling the pyrolysis kinetic of leaves and stems of pistachio trees for biofuel production

    Directory of Open Access Journals (Sweden)

    M Ostad Hoseini

    2016-09-01

    Full Text Available Introduction The lignocelluloses materials have high potential for producing various types of biofuels. These materials include various parts of plants, especially leaves and stems that are left without a specific usage after annual pruning. These residues can be used through slow or fast pyrolysis process for production of liquid and gaseous biofuels. The slow pyrolysis is taking place at temperatures below 500°C while fast pyrolysis process takes place at a temperature above 700°C. Various studies on production of biofuels from plant residues have shown that the temperature, heating rate and the resident time of pyrolysis process are the main factors that affect the final product quality. At present time, in Iran, there are more than 360 thousands hectares of pistachio growing fields which annually produce over 215 thousands metric tons residues which are mainly leaves and stems. The main objective of this study was to measure the heating properties of the powders prepared from the leaves and the stem of pistachio trees. These properties include higher heating value (HHV, lower heating value (LHV and thermal gravimetric analysis (TGA of the powders. Then the powders were separately pyrolysed and the kinetic of the pyrolysis process for producing charcoal from them was investigated. Materials and Methods In this research, leaves and stems of pistachio trees were initially analyzed to determine their chemical constituents including moisture content, volatile compounds, carbon (C, hydrogen (H, nitrogen (N, sulfur (S and oxygen (O content. Using these constituents the height heating value and low heating value for the leaves and the stems were determined. The thermal gravimetric analysis (TGA of the powders was made to select a proper heating temperature for pyrolysis of the powders. In each experiment about 10 g of powder powders were pyrolyzed to produce char. Based on TGA results, the pyrolysis experiments were performed at 350, 400, 450 and

  18. Production of bran castor biochar through slow pyrolysis

    Science.gov (United States)

    Pissinati de Rezende, E. I.; Mangrich, A. S.; Batista, M. G. F.; Toledo, J. M. S.; Novotny, E. H.

    2012-04-01

    Pyrolysis is a thermal process of great importance in the present context, since it constitutes a significant alternative to adequate use of organic waste. The principal products obtained in the pyrolysis of discarded biomass are bio-oil, biogas and biochar. Biochar, in turn, may play a relevant role when applied to the soil to sequester carbon and as a soil conditioner, a material comparable to organic matter of Indians Black Earths from the Amazon Region [1]. Seeking to determine the best methods of preparation of biochar, we studied the pyrolysis of bran castor residue of the Brazilian biodiesel industry. Eight samples, from FM1 to FM8, were prepared in a factorial design 23 using two temperature (300 and 350 °C), two heating velocity (5 and 10 °C min-1) and two period of heating (30 and 60 min). The eight samples were studied using the spectroscopy: EPR, FTIR, RMN, XPS, and elemental analysis. By elemental analysis, the samples that keep for lower temperature of pyrolysis, 300 °C, showed H/C and N/C ratios greater than the samples of 350 °C. That higher value can be attributed to chemical structure more aliphatic than aromatic mainly in the FM7 sample (V = 10 °C min-1, T = 300 °C, P = 30 min). The greater N/C ratio correlated with a superior amount of nitrogenous functions, presenting by both FM7 and FM4 samples, as determined by 13C NMR spectroscopy with absorptions in 175 ppm (amide) and 55 ppm (N-alkyl).

  19. Pyrolysis of biomass for hydrogen production

    International Nuclear Information System (INIS)

    Constantinescu, Marius; David, Elena; Bucura, Felicia; Sisu, Claudia; Niculescu, Violeta

    2006-01-01

    Biomass processing is a new technology within the area of renewable energies. Current energy supplies in the world are dominated by fossil fuels (some 80% of the total use of over 400 EJ per year). Nevertheless, about 10-15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. On average, in the industrialized countries biomass contributes some 9-13% to the total energy supplies, but in developing countries the proportion is as high as a fifth to one third. In quite a number of countries biomass covers even over 50 to 90% of the total energy demand. Classic application of biomass combustion is heat production for domestic applications. A key issue for bio-energy is that its use should be modernized to fit into a sustainable development path. Especially promising are the production of electricity via advanced conversion concepts (i.e. gasification and state-of-the-art combustion and co-firing) and modern biomass derived fuels like methanol, hydrogen and ethanol from ligno-cellulosic biomass, which can reach competitive cost levels within 1-2 decades (partly depending on price developments with petroleum). (authors)

  20. Relationships between biomass composition and liquid products formed via pyrolysis

    Directory of Open Access Journals (Sweden)

    Fan eLin

    2015-10-01

    Full Text Available Thermal conversion of biomass is a rapid, low-cost way to produce a dense liquid product, known as bio-oil, that can be refined to transportation fuels. However, utilization of bio-oil is challenging due to its chemical complexity, acidity, and instability—all results of the intricate nature of biomass. A clear understanding of how biomass properties impact yield and composition of thermal products will provide guidance to optimize both biomass and conditions for thermal conversion. To aid elucidation of these associations, we first describe biomass polymers, including phenolics, polysaccharides, acetyl groups, and inorganic ions, and the chemical interactions among them. We then discuss evidence for three roles (i.e., models for biomass components in formation of liquid pyrolysis products: (1 as direct sources, (2 as catalysts, and (3 as indirect factors whereby chemical interactions among components and/or cell wall structural features impact thermal conversion products. We highlight associations that might be utilized to optimize biomass content prior to pyrolysis, though a more detailed characterization is required to understand indirect effects. In combination with high-throughput biomass characterization techniques this knowledge will enable identification of biomass particularly suited for biofuel production and can also guide genetic engineering of bioenergy crops to improve biomass features.

  1. Relationships between Biomass Composition and Liquid Products Formed via Pyrolysis

    International Nuclear Information System (INIS)

    Lin, Fan; Waters, Christopher L.; Mallinson, Richard G.; Lobban, Lance L.; Bartley, Laura E.

    2015-01-01

    Thermal conversion of biomass is a rapid, low-cost way to produce a dense liquid product, known as bio-oil, that can be refined to transportation fuels. However, utilization of bio-oil is challenging due to its chemical complexity, acidity, and instability – all results of the intricate nature of biomass. A clear understanding of how biomass properties impact yield and composition of thermal products will provide guidance to optimize both biomass and conditions for thermal conversion. To aid elucidation of these associations, we first describe biomass polymers, including phenolics, polysaccharides, acetyl groups, and inorganic ions, and the chemical interactions among them. We then discuss evidence for three roles (i.e., models) for biomass components in the formation of liquid pyrolysis products: (1) as direct sources, (2) as catalysts, and (3) as indirect factors whereby chemical interactions among components and/or cell wall structural features impact thermal conversion products. We highlight associations that might be utilized to optimize biomass content prior to pyrolysis, though a more detailed characterization is required to understand indirect effects. In combination with high-throughput biomass characterization techniques, this knowledge will enable identification of biomass particularly suited for biofuel production and can also guide genetic engineering of bioenergy crops to improve biomass features.

  2. Studies on Pyrolysis Kinetic of Newspaper Wastes in a Packed Bed Reactor: Experiments, Modeling, and Product Characterization

    Directory of Open Access Journals (Sweden)

    Aparna Sarkar

    2015-01-01

    Full Text Available Newspaper waste was pyrolysed in a 50 mm diameter and 640 mm long reactor placed in a packed bed pyrolyser from 573 K to 1173 K in nitrogen atmosphere to obtain char and pyro-oil. The newspaper sample was also pyrolysed in a thermogravimetric analyser (TGA under the same experimental conditions. The pyrolysis rate of newspaper was observed to decelerate above 673 K. A deactivation model has been attempted to explain this behaviour. The parameters of kinetic model of the reactions have been determined in the temperature range under study. The kinetic rate constants of volatile and char have been determined in the temperature range under study. The activation energies 25.69 KJ/mol, 27.73 KJ/mol, 20.73 KJ/mol and preexponential factors 7.69 min−1, 8.09 min−1, 0.853 min−1 of all products (solid reactant, volatile, and char have been determined, respectively. A deactivation model for pyrolysis of newspaper has been developed under the present study. The char and pyro-oil obtained at different pyrolysis temperatures have been characterized. The FT-IR analyses of pyro-oil have been done. The higher heating values of both pyro-products have been determined.

  3. Thermogravimetric Analysis of Rice Husk and Coconut Pulp for Potential Bio fuel Production by Flash Pyrolysis

    International Nuclear Information System (INIS)

    Noorhaza Alias; Norazana Ibrahim; Mohd Kamaruddin Abdul Hamid

    2014-01-01

    The purpose of this paper is to study the characteristics and thermal degradation behavior of rice husk and coconut pulp for bio fuel production via flash pyrolysis technology. The elemental properties of the feedstock were characterized by an elemental analyzer while thermal properties were investigated using thermogravimetric analyzer (TGA). The pyrolysis processes were carried out at room temperature up to 700 degree Celsius in the presence of nitrogen gas flowing at 150 ml/ min. The investigated parameters are particle sizes and heating rates. The particle sizes varied in the range of dp 1 < 0.30 mm and 0.30= dp 2 <0.50 mm. The heating rates applied were 50 degree Celsius/ min and 80 degree Celsius/ min. It was shown smaller particle size produces 2.11-3.59 % less volatile product when pyrolyzed at 50 degree Celsius/ min compared to 80 degree Celsius/ min. Higher heating rates causes biomass degrades in a narrow temperature range by 25 degree Celsius. It also increases the maximum peak rate by 0.01 mg/ s for rice husk at dp 1 and 0.02 mg/ s at dp 2 . In case of coconut pulp, the change is not significant for dp 1 but for dp 2 a 0.02 mg/ s changes was recorded. (author)

  4. Enhancing biogas production of corn stover by fast pyrolysis pretreatment.

    Science.gov (United States)

    Wang, Fang; Zhang, Deli; Wu, Houkai; Yi, Weiming; Fu, Peng; Li, Yongjun; Li, Zhihe

    2016-10-01

    A new thermo-chemical pretreatment by a lower temperature fast pyrolysis (LTFP) was applied to promote anaerobic digestion (AD) efficiency of corn stover (CS). The pretreatment experiment was performed by a fluidized bed pyrolysis reactor at 180, 200 and 220°C with a carrier gas flow rate of 4 and 3m(3)/h. The components characteristics, Scanning Electron Microscope (SEM) images and Crystal Intensity (CrI) of the pretreated CS were tested to explore effectiveness of the pretreatment. The results showed that the cumulative methane production at 180°C for 4 and 3m(3)/h were 199.8 and 200.3mL/g TS, respectively. As compared to the untreated CS, the LTFP pretreatment significantly (a<0.05) increased the methane production by 18.07% and 18.33%, respectively. Methane production was well fitted by the Gompertz models, and the maximum methane potential and AD efficiency was obtained at 180°C for 3m(3)/h. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  6. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels

    International Nuclear Information System (INIS)

    Wang, Ruixue; Xu, Zhenming

    2016-01-01

    Highlights: • Pyrolysis characteristics are conducted for a better understanding of LCDs pyrolysis. • Optimum design is developed which is significant to guide the further industrial process. • Acetic acid and TPP are recycled and separated. - Abstract: Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box–Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min"−"1 and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry.

  7. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixue; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2016-01-25

    Highlights: • Pyrolysis characteristics are conducted for a better understanding of LCDs pyrolysis. • Optimum design is developed which is significant to guide the further industrial process. • Acetic acid and TPP are recycled and separated. - Abstract: Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box–Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min{sup −1} and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry.

  8. Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan

    International Nuclear Information System (INIS)

    Kung, Chih-Chun; McCarl, Bruce A.; Cao, Xiaoyong

    2013-01-01

    Pyrolysis is an alternative form of renewable energy production and a potential source of greenhouse gas emissions mitigation. This study examines how poplar-based biochar can be applied in Taiwan for electricity generation and for soil improvement and to what extent it brings economic and environmental benefits. It is a preliminary study and focuses on the balances of different economic and environmental items. This paper reports on a case study examination of the economic and greenhouse gas implications of pyrolysis plus biochar utilization. The case study involves using poplar grown on set-aside land in Taiwan with the biochar applied to rice fields. We examine both fast and slow forms of pyrolysis and find how the profitability varies under different price structures. The results show that fast pyrolysis is more profitable than slow pyrolysis under current electricity price, GHG price and crop yield as the slow pyrolysis generates relatively less electricity but lower value product—biochar. We also find that fast pyrolysis and slow pyrolysis offset about 1.4 t and 1.57 t of CO 2 equivalent per ton of raw material, respectively. - Highlights: • Profitability varies due to sales revenue from electricity generation. • Neither fast pyrolysis nor slow pyrolysis is profitable under current electricity price. • Both systems offset about 1.4 t to 1.57 t of CO 2 equivalent per ton of raw material

  9. The catalytic cracking mechanism of lignite pyrolysis char on tar

    International Nuclear Information System (INIS)

    Lei, Z.; Huibin, H.; Xiangling, S.; Zhenhua, M.; Lei, Z.

    2017-01-01

    The influence of different pyrolysis conditions for tar catalytic cracking will be analyzed according to the lignite pyrolysis char as catalyst on pyrolytic tar in this paper. The pyrolysis char what is the by-product of the cracking of coal has an abundant of pore structure and it has good catalytic activity. On this basis, making the modified catalyst when the pyrolysis char is activation and loads Fe by impregnation method. The cracking mechanism of lignite pyrolytic tar is explored by applying gas chromatograph to analyze splitting products of tar. The experimental results showed that: (1) The effect of tar cracking as the pyrolysis temperature, the heating rate, the volatilization of pyrolysis char and particle size increasing is better and better. The effect of the catalytic and cracking of lignite pyrolysis char in tar is best when the heating rate, the pyrolysis temperature, the volatiles of pyrolysis char, particle size is in specific conditions.(2) The activation of pyrolysis char can improve the catalytic effect of pyrolysis char on the tar cracking. But it reduces the effect of the tar cracking when the pyrolysis char is activation loading Fe. (author)

  10. New approach to the characterization of pyrolysis coal products by gas chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Cappiello, A.; Mangani, F.; Bruner, F.; Bonfanti, L. [University of Urbino, Urbino (Italy)

    1996-06-07

    A method for the characterization of coal thermal behaviour, based on gas chromatographic-mass spectrometric analysis of the pyrolysate, is presented. Twelve different coal samples representative of the entire coal rank, were selected. The pyrolysis products, obtained at 800{degree}C, were first collected and then analysed in two GC-MS systems. The sampling apparatus consisted of three different traps in order to separate the products into three fractions on the basis of their volatility. The GC-MS analysis was also arranged according to this criterion. A packed column, coupled to a double-focusing magnetic mass spectrometer, was used for the volatile fractions of the pyrolysate and a capillary column, coupled to a quadruple analyser, was employed for the analysis of the condensed fraction. Sampling and analysis procedures were carried out separately, thus allowing careful optimization of the strategy for the characterization of the pyrolysate. The condensate was analysed in the selected-ion monitoring mode for the determination of different classes of compounds. Some evaluations and comparisons, extrapolated from the results obtained, are presented.

  11. Production Function of Outgassed Volatiles on Mercury: Implications for Polar Volatiles on Mercury and the Moon

    Science.gov (United States)

    Deutsch, A. N.; Head, J. W.

    2018-05-01

    We are interested in the flux of volatiles delivered to the polar regions of Mercury and the Moon through time. We integrate the production functions for volatile delivery from impacts, solar wind, and volcanism, which we focus on initially.

  12. Production of advanced biofuels: co-processing of upgraded pyrolysis oil in standard refinery units

    NARCIS (Netherlands)

    De Miguel Mercader, F.; de Miguel Mercader, F.; Groeneveld, M.J.; Hogendoorn, Kees; Kersten, Sascha R.A.; Way, N.W.J.; Schaverien, C.J.

    2010-01-01

    One of the possible process options for the production of advanced biofuels is the co-processing of upgraded pyrolysis oil in standard refineries. The applicability of hydrodeoxygenation (HDO) was studied as a pyrolysis oil upgrading step to allow FCC co-processing. Different HDO reaction end

  13. Novel technique for coal pyrolysis and hydrogenation product analysis. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, L.D.; Boyle, J.

    1993-03-15

    A microjet reactor coupled to a VUV photoionization time-of-flight mass spectrometer has been used to obtain species measurements during high temperature pyrolysis and oxidation of a wide range of hydrocarbon compounds ranging from allene and acetylene to cyclohexane, benzene and toluene. Initial work focused on calibration of the technique, optimization of ion collection and detection and characterization of limitations. Using the optimized technique with 118 nm photoionization, intermediate species profiles were obtained for analysis of the hydrocarbon pyrolysis and oxidation mechanisms. The ``soft`` ionization, yielding predominantly molecular ions, allowed the study of reaction pathways in these high temperature systems where both sampling and detection challenges are severe. Work has focused on the pyrolysis and oxidative pyrolysis of aliphatic and aromatic hydrocarbon mixtures representative of coal pyrolysis and hydropyrolysis products. The detailed mass spectra obtained during pyrolysis and oxidation of hydrocarbon mixtures is especially important because of the complex nature of the product mixture even at short residence times and low primary reactant conversions. The combustion community has advanced detailed modeling of pyrolysis and oxidation to the C4 hydrocarbon level but in general above that size uncertainties in rate constant and thermodynamic data do not allow us to a priori predict products from mixed hydrocarbon pyrolyses using a detailed chemistry model. For pyrolysis of mixtures of coal-derived liquid fractions with a large range of compound structures and molecular weights in the hundreds of amu the modeling challenge is severe. Lumped models are possible from stable product data.

  14. Thermodynamic analyses of hydrogen production from sub-quality natural gas. Part I: Pyrolysis and autothermal pyrolysis

    Science.gov (United States)

    Huang, Cunping; T-Raissi, Ali

    Sub-quality natural gas (SQNG) is defined as natural gas whose composition exceeds pipeline specifications of nitrogen, carbon dioxide (CO 2) and/or hydrogen sulfide (H 2S). Approximately one-third of the U.S. natural gas resource is sub-quality gas [1]. Due to the high cost of removing H 2S from hydrocarbons using current processing technologies, SQNG wells are often capped and the gas remains in the ground. We propose and analyze a two-step hydrogen production scheme using SQNG as feedstock. The first step of the process involves hydrocarbon processing (via steam-methane reformation, autothermal steam-methane reformation, pyrolysis and autothermal pyrolysis) in the presence of H 2S. Our analyses reveal that H 2S existing in SQNG is stable and can be considered as an inert gas. No sulfur dioxide (SO 2) and/or sulfur trioxide (SO 3) is formed from the introduction of oxygen to SQNG. In the second step, after the separation of hydrogen from the main stream, un-reacted H 2S is used to reform the remaining methane, generating more hydrogen and carbon disulfide (CS 2). Thermodynamic analyses on SQNG feedstock containing up to 10% (v/v) H 2S have shown that no H 2S separation is required in this process. The Part I of this paper includes only thermodynamic analyses for SQNG pyrolysis and autothermal pyrolysis.

  15. Use of palm oil decanter cake as a new substrate for the production of bio-oil by vacuum pyrolysis

    International Nuclear Information System (INIS)

    Dewayanto, Nugroho; Isha, Ruzinah; Nordin, Mohd Ridzuan

    2014-01-01

    Highlights: • Vacuum pyrolysis has been employed to produce bio-oil from palm oil waste. • Effect of the pyrolysis temperature was investigated in this study. • Bio-oil properties of cellulosic and oily based material were determined. • Bio-oil from decanter cake has potential to be used as fuel. - Abstract: The present study was carried out to investigate the potential of palm oil decanter cake (PDC) for bio-oil production at various temperatures by vacuum pyrolysis. PDC was first dried in oven at 105 °C for 24 h to remove moisture and ground to particle size of 0.85–2 mm. Pyrolysis experiments were carried out at 400, 450, 500, 550 and 600 °C, with heating rate of 15 °C/min. The highest yield of bio-oil (22.12 wt%) was obtained at pyrolysis temperature of 500 °C. The chemical characterization of bio-oil was studied using 1 H NMR, FTIR, CHNS analyzer and GC–MS. The other properties like pH, calorific value and thermal volatilization were also determined. The pH value recorded to be 6.38, which is found to be higher as compared to other bio-oils. The calorific value of PDC bio-oil found to be 36.79 MJ/kg, which is slightly lower than that of conventional liquid fuel such as gasoline and diesel fuel. However, the bio-oil obtained from PDC has better fuel characteristics than that of bio-oil derived from palm kernel shell (PKS)

  16. Rapid and slow pyrolysis of pistachio shell: effect of pyrolysis conditions on the product yields and characterization of the liquid product

    Energy Technology Data Exchange (ETDEWEB)

    Putun, Ayse E [Department of Chemical Engineering, Anadolu University, Eskisehir 26470, (Turkey); Ozbay, Nurgul [Bozuyuk Vocational School, Anadolu University, Bozuyuk/Bilecik, (Turkey); Varol, Esin Apaydin; Uzun, Basak B; Ates, Fuda [Department of Chemical Engineering, Anadolu University, Eskisehir 26470, (Turkey)

    2006-10-30

    This study reports the experimental results for the pyrolysis of pistachio shell under different conditions in a tubular reactor under a nitrogen flow. For the different conditions of pyrolysis temperature, nitrogen flow rate and heating rate, pyrolysis temperature of 773 K gave the highest bio-oil yield with a value of 27.7% when the heating rate and carrier gas flow rate were chosen as 300 K min{sup -1} and 100 cm{sup 3} min{sup -1}, respectively. Column chromatography was applied to this bio-oil and its subfractions were characterized by elemental analysis, FT-IR and 1H-NMR. Aliphatic subfraction was conducted to gas chromatography-mass spectroscopy for further characterization. The results for the characterization show that using pistachio shell as a renewable source to produce valuable liquid products is applicable via pyrolysis. (Author)

  17. Experimental study of Coal Pyrolysis 2.: Experimental characterisation of volatile matter

    International Nuclear Information System (INIS)

    Hugony, F.; Migliavacca, G.

    2008-01-01

    In this paper considerations about experiments conducted through T G-Ftir are reported, in order to study the gas composition coming from coal pyrolysis. In particular qualitative and semi-qualitative evaluation of hydrocarbon evolution rate, as CH4, C2H4 and C3H6 are reported. It has been observed a strict relation between the evolution rate of the listed compounds, the coal rank and their elementary composition. The reported data constitute a good support to the validation of the predictive models of coal devolatilization. To complete the study two papers will be published in the next months: one containing experimental data from pyrolysis process in a fixed bed reactor and another one concerning the NMR analysis of the produced char. [it

  18. Rapid analytical extraction of volatile fermentation products

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, N B; Flickinger, M C; Tsao, G T

    1979-10-01

    With renewed interest in production of liquid fuels and chemical feedstocks from carbohydrates, numerous authors have utilized gas-liquid chromatography (GC) for quantification of volatile products. Poor separation and short column life will result if residual sugars present in the medium are not separated from the volatile compounds before injection. In our current investigation of 2,3-butanediol production from xylose, we have developed a rapid GC assay for 2,3-butanediol, acetyl methyl carbinol (acetoin), 2,3-butanedione (diacetyl), and ethanol. This method extracts the fermentation products at high pH from residual xylose before injection into the GC. This routine is a modification of the method of Kolfenbach et al. and is more rapid than the method of separation of diacetyl and acetoin from carbohydrates by distillation reported by Gupta et al. Their erroneous reports of yields of 640 mg diacetyl + acetoin/g sugar are 30% higher than the theoretical maximum for Enterobacter cloacae (ATCC 27613) and points out the need for a reliable, accurate assay for these products.

  19. Co-pyrolysis of low rank coals and biomass: Product distributions

    Energy Technology Data Exchange (ETDEWEB)

    Soncini, Ryan M.; Means, Nicholas C.; Weiland, Nathan T.

    2013-10-01

    Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

  20. Fast pyrolysis product distribution of biopretreated corn stalk by methanogen.

    Science.gov (United States)

    Wang, Tipeng; Ye, Xiaoning; Yin, Jun; Jin, Zaixing; Lu, Qiang; Zheng, Zongming; Dong, Changqing

    2014-10-01

    After pretreated by methanogen for 5, 15 and 25 days, corn stalk (CS) were pyrolyzed at 250, 300, 350, 400, 450 and 500 °C by Py-GC/MS and product distribution in bio-oil was analyzed. Results indicated that methanogen pretreatment changed considerably the product distribution: the contents of sugar and phenols increased; the contents of linear carbonyls and furans decreased; the contents of linear ketones and linear acids changed slightly. Methanogen pretreatment improved significantly the pyrolysis selectivity of CS to phenols especially 4-VP. At 250 °C, the phenols content increased from 42.25% for untreated CS to 79.32% for biopretreated CS for 5 days; the 4-VP content increased from 28.6% to 60.9%. Increasing temperature was contributed to convert more lignin into 4-VP, but decreased its content in bio-oil due to more other chemicals formed. The effects of biopretreatment time on the chemicals contents were insignificant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed.

    Science.gov (United States)

    Heo, Hyeon Su; Park, Hyun Ju; Park, Young-Kwon; Ryu, Changkook; Suh, Dong Jin; Suh, Young-Woong; Yim, Jin-Heong; Kim, Seung-Soo

    2010-01-01

    The amount of waste furniture generated in Korea was over 2.4 million tons in the past 3 years, which can be used for renewable energy or fuel feedstock production. Fast pyrolysis is available for thermo-chemical conversion of the waste wood mostly into bio-oil. In this work, fast pyrolysis of waste furniture sawdust was investigated under various reaction conditions (pyrolysis temperature, particle size, feed rate and flow rate of fluidizing medium) in a fluidized-bed reactor. The optimal pyrolysis temperature for increased yields of bio-oil was 450 degrees C. Excessively smaller or larger feed size negatively affected the production of bio-oil. Higher flow and feeding rates were more effective for the production of bio-oil, but did not greatly affect the bio-oil yields within the tested ranges. The use of product gas as the fluidizing medium had a potential for increased bio-oil yields.

  2. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass

    NARCIS (Netherlands)

    Luque, L.; Westerhof, Roel Johannes Maria; van Rossum, G.; Oudenhoven, Stijn; Kersten, Sascha R.A.; Berruti, F.; Rehmann, L.

    2014-01-01

    This paper evaluates a novel biorefinery approach for the conversion of lignocellulosic biomass from pinewood. A combination of thermochemical and biochemical conversion was chosen with the main product being ethanol. Fast pyrolysis of lignocellulosic biomasss with fractional condensation of the

  3. Volatile products controlling Titan's tholins production

    KAUST Repository

    Carrasco, Nathalie

    2012-05-01

    A quantitative agreement between nitrile relative abundances and Titan\\'s atmospheric composition was recently shown with a reactor simulating the global chemistry occurring in Titan\\'s atmosphere (Gautier et al. [2011]. Icarus, 213, 625-635). Here we present a complementary study on the same reactor using an in situ diagnostic of the gas phase composition. Various initial N 2/CH 4 gas mixtures (methane varying from 1% to 10%) are studied, with a monitoring of the methane consumption and of the stable gas neutrals by in situ mass spectrometry. Atomic hydrogen is also measured by optical emission spectroscopy. A positive correlation is found between atomic hydrogen abundance and the inhibition function for aerosol production. This confirms the suspected role of hydrogen as an inhibitor of heterogeneous organic growth processes, as found in Sciamma-O\\'Brien et al. (Sciamma-O\\'Brien et al. [2010]. Icarus, 209, 704-714). The study of the gas phase organic products is focussed on its evolution with the initial methane amount [CH 4] 0 and its comparison with the aerosol production efficiency. We identify a change in the stationary gas phase composition for intermediate methane amounts: below [CH 4] 0=5%, the gas phase composition is mainly dominated by nitrogen-containing species, whereas hydrocarbons are massively produced for [CH 4] 0>5%. This predominance of N-containing species at lower initial methane amount, compared with the maximum gas-to solid conversion observed in Sciamma-O\\'Brien et al. (2010) for identical methane amounts confirms the central role played by N-containing gas-phase compounds to produce tholins. Moreover, two protonated imines (methanimine CH 2NH and ethanamine CH 3CHNH) are detected in the ion composition in agreement with Titan\\'s INMS measurements, and reinforcing the suspected role of these chemical species on aerosol production. © 2012 Elsevier Inc.

  4. Pyrolysis technology for production of biocarbon and energy i the smeltery industry

    International Nuclear Information System (INIS)

    Nygaard, L.; Christiansen, G.S.

    1997-01-01

    When silicon, Si, is produced from the mineral quartz, SiO 2 , the oxygen molecule is removed by means of carbon as a reduction agent. The process takes place at high temperature. At 2000 o C, however, the SiO which is left upon removal of one O atom too easily forms gas which escapes with the CO gas. This represents a considerable loss. If biocarbon was present, its high reactivity would help reclaim the escaping Si by forming SiC, a valuable solid. Unfortunately, the most suitable biocarbons, which come from charcoal and wood chips, are more expensive than those coming from coal and coke. In Norway, a research programme has been started aiming at optimizing the use of biocarbon in the silicon processes to make it profitable to increase its use. Today, no manufacturer of silicon or ferrosilicon are paying CO 2 tax and the possibility of a distinctly Norwegian CO 2 tax on the process industry is a worrying thought. The smeltery sector is quite particular about the choice of sources for biocarbon. However, current plans and ideas indicate that the concentration on bioenergy and biowoods will be so strong that a sufficient amount of suitable wood can be ''saved'' from total combustion and made to charcoal by pyrolysis. The surplus heat of the volatile constituents should be recovered. The authors of this conference paper believe that cheap and suitable wood would be most easily obtained in Russia, which is also where the heat recovered from the pyrolysis would be most easy to sell. Once charcoal production has been established in Russia, one might think of Russian blocks of wood being delivered to a charcoal plant near a large consumer of steam or hot water in Norway. 1 figure

  5. Results of the International Energy Agency Round Robin on Fast Pyrolysis Bio-oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Meier, Dietrich; Oasmaa, Anja; van de Beld, Bert; Bridgwater, Anthony V.; Marklund, Magnus

    2017-04-06

    An international round robin study of the production of fast pyrolysis bio-oil was undertaken. Fifteen institutions in six countries contributed. Three biomass samples were distributed to the laboratories for processing in fast pyrolysis reactors. Samples of the bio-oil produced were transported to a central analytical laboratory for analysis. The round robin was focused on validating the pyrolysis community understanding of production of fast pyrolysis bio-oil by providing a common feedstock for bio-oil preparation. The round robin included: •distribution of 3 feedstock samples from a common source to each participating laboratory; •preparation of fast pyrolysis bio-oil in each laboratory with the 3 feedstocks provided; •return of the 3 bio-oil products (minimum 500 ml) with operational description to a central analytical laboratory for bio-oil property determination. The analyses of interest were: density, viscosity, dissolved water, filterable solids, CHN, S, trace element analysis, ash, total acid number, pyrolytic lignin, and accelerated aging of bio-oil. In addition, an effort was made to compare the bio-oil components to the products of analytical pyrolysis through GC/MS analysis. The results showed that clear differences can occur in fast pyrolysis bio-oil properties by applying different reactor technologies or configurations. The comparison to analytical pyrolysis method suggested that Py-GC/MS could serve as a rapid screening method for bio-oil composition when produced in fluid-bed reactors. Furthermore, hot vapor filtration generally resulted in the most favorable bio-oil product, with respect to water, solids, viscosity, and total acid number. These results can be helpful in understanding the variation in bio-oil production methods and their effects on bio-oil product composition.

  6. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    George, Anthe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geier, Manfred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspended in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.

  7. The structure and pyrolysis product distribution of lignite from different sedimentary environment

    International Nuclear Information System (INIS)

    Liu, Peng; Zhang, Dexiang; Wang, Lanlan; Zhou, Yang; Pan, Tieying; Lu, Xilan

    2016-01-01

    Highlights: • Carbon structure of three lignites was measured by solid "1"3C NMR. • Effect of carbon structure on pyrolysis product distribution was studied. • Tar yield is influenced by aliphatic carbon and oxygen functional group. • C1–C4 content of pyrolysis gas is related to CH_2/CH_3 ratio. - Abstract: Low-temperature pyrolysis is an economically efficient method for lignite to obtain coal tar and improve its combustion calorific value. The research on the distribution of pyrolysis product (especially coal tar yield) plays an important role in energy application and economic development in the now and future. Pyrolysis test was carried out in a tube reactor at 873 K for 15 min. The structure of the lignite was measured by solid "1"3C nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR). The thermal analysis was analyzed by thermo-gravimetric (TG) analyzer. The results show that the pyrolysis product distribution is related to the breakage of branch structures of aromatic ring in lignites from different sedimentary environment. The gas yield and composition are related to the decomposition of carbonyl group and the breakage of aliphatic carbon. The tar yield derived from lignite pyrolysis follows the order: Xianfeng lignite (XF, 13.67 wt.%) > Xiaolongtan lignite (XLT, 7.97 wt.%) > Inner Mongolia lignite (IM, 6.30 wt.%), which is mainly influenced by the aliphatic carbon contents, the CH_2/CH_3 ratio and the oxygen functional groups in lignite. The pyrolysis water yield depends on the decomposition of oxygen functional groups. IM has the highest content of oxygen-linked carbon so that the pyrolysis water yield derived from IM is the highest (9.20 wt.%), and is far more than that from the other two lignites.

  8. Pyrolysis oil production, properties, and utilization; Pyrolyysioeljyn valmistus, ominaisuudet ja kaeyttoe

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K; Oasmaa, A; Arpiainen, V; Kuoppala, E; Leppaemaeki, E; Solantausta, Y; Levander, J. VTT Energia

    1996-12-31

    The main tasks for 1995 were: design and assembling of experimental reactors, and physical and chemical characterisation of pyrolysis oils. A PDU-unit (20 kg/h) has been designed and it will be assembled in April 1996. A 1 kg/h pyrolyzer has been constructed with a hot-filtration system (a ceramic candle filter) and direct quenching with a hydrocarbon oil. The equipment has worked well. Pine saw dust has been used as a feed and a good-quality solids-free product oil has been obtained. In addition to this, a smaller (150 g/h) pyrolyzer has been bought from Canada (University of Waterloo). The small equipment will be used for example for catalytic upgrading of pyrolysis vapours. Chemical characterisation of pyrolysis oil has been carried out 1995. Water extraction has been developed for a fractionation method. Pyrolysis oil samples produced from mixed hardwood, eucalyptus and straw have been employed. The objective of the study has been to develop a simple characterisation method for comparison of different pyrolysis oils. For example reactive compounds have been identified. Main analytical method for analysing the water-soluble fraction has been GC-MS. The research will be continued 1996. A literature review of chemical and physical characterization of pyrolysis oils has been published 1995. Testing of fuel oil analyses has been continued within the IEA pyrolysis project. VTT Energy is responsible for fuel oil analytical methods

  9. Pyrolysis oil production, properties, and utilization; Pyrolyysioeljyn valmistus, ominaisuudet ja kaeyttoe

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Oasmaa, A.; Arpiainen, V.; Kuoppala, E.; Leppaemaeki, E.; Solantausta, Y.; Levander, J. VTT Energia

    1995-12-31

    The main tasks for 1995 were: design and assembling of experimental reactors, and physical and chemical characterisation of pyrolysis oils. A PDU-unit (20 kg/h) has been designed and it will be assembled in April 1996. A 1 kg/h pyrolyzer has been constructed with a hot-filtration system (a ceramic candle filter) and direct quenching with a hydrocarbon oil. The equipment has worked well. Pine saw dust has been used as a feed and a good-quality solids-free product oil has been obtained. In addition to this, a smaller (150 g/h) pyrolyzer has been bought from Canada (University of Waterloo). The small equipment will be used for example for catalytic upgrading of pyrolysis vapours. Chemical characterisation of pyrolysis oil has been carried out 1995. Water extraction has been developed for a fractionation method. Pyrolysis oil samples produced from mixed hardwood, eucalyptus and straw have been employed. The objective of the study has been to develop a simple characterisation method for comparison of different pyrolysis oils. For example reactive compounds have been identified. Main analytical method for analysing the water-soluble fraction has been GC-MS. The research will be continued 1996. A literature review of chemical and physical characterization of pyrolysis oils has been published 1995. Testing of fuel oil analyses has been continued within the IEA pyrolysis project. VTT Energy is responsible for fuel oil analytical methods

  10. Novel technique for coal pyrolysis and hydrogenation product analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, L.D.

    1992-01-01

    This report covers the last quarter of the last year of the three-year grant period. In the final project year, we concentrated on the pyrolysis and oxidative pyrolysis of large hydrocarbons and mixtures of large and small hydrocarbons in order to develop the VUV-MS technique for compounds more representative of those in coal pyrolysis applications. Special focus was directed at the pyrolysis and oxidative pyrolysis of benzene and benzene acetylene mixtures. The acetylene/benzene mixtures were used to gain a better understanding of the mechanisms of molecular growth in such systems specifically to look at the kinetics of aryl-aryl reactions as opposed to small molecule addition to phenyl radicals. Sarofim and coworkers at MIT have recently demonstrated the importance of these reactions in coal processing environments. In the past, the growth mechanism for the formation of midsized PAH has been postulated to involve primarily successive acetylene additions to phenyl-type radicals, our work confmns this as an important mechanism especially for smaller PAH but also investigates conditions where biaryl formation can play an important role in higher hydrocarbon formation.

  11. Pyrolysis of forestry biomass by-products in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Zabaniotou, A.A.

    1999-06-01

    This article summarizes the technical characteristics of a biomass pyrolysis pilot plant recently constructed in central Greece. It highlights the considerations involved in achieving successful pyrolysis technology and environmental and developmental goals, by reviewing technical and nontechnical barriers associated with biomass treatment technology in Greece. Data from the start-up phase of the plant operation are presented and some aspects of the process are outlined. The capacity of the plant is 1200 1450 kg hr, based on wet biomass (Arbutus Unedo) and the pyrolysis temperature is approximately 400{sup o}C. Char yield is 1418 % weight on dry basis and is of good quality consisting of 76{sup o}C with heat content 6760 kcal kg. Bio-oil includes 63% C and its heat content is 6250 kcal kg. (author)

  12. Pyrolysis of forestry biomass by-products in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Zabaniotou, A.A. [Aristotle Univ. of Thessaloniki (Greece). Dept. of Chemical Engineering

    1999-06-01

    This article summarizes the technical characteristics of a biomass pyrolysis pilot plant recently constructed in central Greece. It highlights the considerations involved in achieving successful pyrolysis technology and environmental and developmental goals, by reviewing technical and nontechnical barriers associated with biomass treatment technology in Greece. Data from the start-up phase of the plant operation are presented and some aspects of the process are outlined. The capacity of the plant is 1200--1450 kg/hr, based on wet biomass (Arbutus Unedo) and the pyrolysis temperature is approximately 400 C. Char yield is 14--18% weight on dry basis and is of good quality consisting of 76% C with heat content 6760 kcal/kg. Bio-oil includes 64% C and its heat content is 6250 kcal/kg.

  13. Volatile Sulfur Compounds from Livestock Production

    DEFF Research Database (Denmark)

    Kasper, Pernille

    . Presently, the development of abatement technologies is limited by the lack of an accurate and reliable method for quantifying the effect on odor. To measure the impact of air cleaning techniques on perceived odor, common practice in Europe is to store odor samples in sample bags and quantify them......Volatile sulfur compounds, i.e. hydrogen sulfide, methanethiol and dimethyl sulfide have been identified as key odorants in livestock production due to their high concentration levels and low odor threshold values. At the same time their removal with abatement technologies based on mass transfer...... from a gas phase to a liquid phase, e.g. biotrickling filters, is decelerated due to their low partitioning coefficients. This can significantly limit the odor reduction obtained with these technologies. The present study examines the possibility of adding metal catalysts to enhance the mass transfer...

  14. Influence of Pyrolysis Temperature and Production Conditions on Switchgrass Biochar for Use as a Soil Amendment

    Directory of Open Access Journals (Sweden)

    Amanda Joy Ashworth

    2014-10-01

    Full Text Available Biochars form recalcitrant carbon and increase water and nutrient retention in soils; however, the magnitude is contingent upon production conditions and thermo-chemical conversion processes. Herein we aim at (i characterizing switchgrass (Panicum virgatum L.-biochar morphology, (ii estimating water-holding capacity under increasing ratios of char: soil; and, (iii determining nutrient profile variation as a function of pyrolysis conversion methodologies (i.e. continuous, auger pyrolysis system versus batch pyrolysis systems for terminal use as a soil amendment. Auger system chars produced at 600°C had the greatest lignin portion by weight among the biochars produced from the continuous system. On the other hand, a batch pyrolysis system (400 °C – 3h yielded biochar with 73.10% lignin (12 fold increases, indicating higher recalcitrance, whereas lower production temperatures (400 °C yielded greater hemicellulose (i.e. greater mineralization promoting substrate. Under both pyrolysis methods, increasing biochar soil application rates resulted in linear decreases in bulk density (g cm-3. Increases in auger-char (400 °C applications increased soil water-holding capacities; however, application rates of >2 Mt ha-1 are required. Pyrolysis batch chars did not influence water-holding abilities (P>0.05. Biochar macro and micronutrients increased, as the pyrolysis temperature increased in the auger system from 400 to 600 °C, and the residence time increased in the batch pyrolysis system from 1 to 3 h. Conversely, nitrogen levels tended to decrease under the two previously mentioned conditions. Consequently, not all chars are inherently equal, in that varying operation systems, residence times, and production conditions greatly affect uses as a soil amendment and overall rate of efficacy.

  15. Characterization of the liquid products obtained in tyre pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Laresgoiti, M.F.; Caballero, B.M.; De Marco, I.; Torres, A.; Cabrero, M.A.; Chomon, M.J. [Escuela Superior de Ingenieros de Bilbao, Alda. Urquijo s/n, Bilbao 48013 (Spain)

    2004-06-01

    Cross-section samples (2-3cm wide), representative of a whole car tyre, have been pyrolysed under nitrogen in a 3.5dm{sup 3} autoclave at 300, 400, 500, 600 and 700C. Over 500C there is no effect of temperature on gases and liquids yields ({approx}17 and 38%, respectively). Tyre pyrolysis liquids have been characterized, including elemental analysis, gross calorific value (GCV), gas chromatography/mass spectroscopy (GC/MS) and distillation. Tyre derived liquids are a complex mixture of C{sub 6}-C{sub 24} organic compounds, with a lot of aromatics (53.4-74.8%), some nitrogenated (2.47-3.5%) and some oxygenated compounds (2.29-4.85%). They have GCV (42MJkg{sup -1}) even higher than those specified for commercial heating oils, but sulphur contents (1-1.4%) near or slightly over the law limit value. Significant quantities of valuable light hydrocarbons such as benzene, toluene, xylene, limonene, etc. were obtained. The concentration of these compounds increase with temperature up to 500C and then decrease. There are an important proportion of polycyclic aromatics such as naphthalenes, phenanthrenes, fluorenes, diphenlys, etc.; their concentration as well as that of total aromatics increases significantly with temperature. Distillation data of the 500C oils showed that {approx}20% have the boiling range of light naphtha (<160C), {approx}10% of heavy naphtha (160-204C) and {approx}35% of middle distillate (204-350C). As far as distillation data are concerned, the tyre oil fractions with the same boiling range as commercial automotive diesel oils and heating diesel oils fulfil the present specifications of such commercial products.

  16. Characterization and pyrolysis of Chlorella vulgaris and Arthrospira platensis: potential of bio-oil and chemical production by Py-GC/MS analysis.

    Science.gov (United States)

    Almeida, Hanna N; Calixto, Guilherme Q; Chagas, Bruna M E; Melo, Dulce M A; Resende, Fabio M; Melo, Marcus A F; Braga, Renata Martins

    2017-06-01

    Biofuels have been seen as potential sources to meet future energy demand as a renewable and sustainable energy source. Despite the fact that the production technology of first-generation biofuels is consolidated, these biofuels are produced from foods crops such as grains, sugar cane, and vegetable oils competing with food for crop use and agricultural land. In recent years, it was found that microalgae have the potential to provide a viable alternative to fossil fuels as source of biofuels without compromising food supplies or arable land. On this scenario, this paper aims to demonstrate the energetic potential to produce bio-oil and chemicals from microalgae Chlorella vulgaris and Arthrospira platensis. The potential of these biomasses was evaluated in terms of physical-chemical characterization, thermogravimetric analysis, and analytical pyrolysis interfaced with gas chromatograph (Py-GC/MS). The results show that C. vulgaris and A. platensis are biomasses with a high heating value (24.60 and 22.43 MJ/kg) and low ash content, showing a high percentage of volatile matter (72.49 and 79.42%). These characteristics confirm their energetic potential for conversion process through pyrolysis, whereby some important aromatic compounds such as toluene, styrene, and phenol were identified as pyrolysis products, which could turn these microalgae a potential for biofuels and bioproduct production through the pyrolysis.

  17. Fixed-bed hydrogen pyrolysis of rapeseed: product yields and compositions

    International Nuclear Information System (INIS)

    Onay, O.; Kockar, O.M.; Gaines, A.F.; Snape, C.E.

    2006-01-01

    The fixed-bed hydro pyrolysis tests have been conducted on a sample of rapeseed to investigate the effect of hydro pyrolysis on the yields and chemical structures of bio-oils, with a view to improving overall product quality. A ammonium dioxydithiomolybdenate catalyst has been used in some tests to further increase conversion. The maximum bio-oil yield of 84% was obtained in hydrogen atmosphere (with catalyst) at hydrogen pressure of 15 MPa, hydrogen flow rate of 10 dm 3 min -1 , hydro pyrolysis temperature of 520 degree C, and heating rate of 5 o Cmin -1 . Then this bio-oil was characterized by elemental analysis and some spectroscopic and chromatographic techniques. And finally, this bio-oil yield and chemical composition compared with oil obtained from fast pyrolysis condition

  18. Controllable production of liquid and solid biofuels by doping-free, microwave-assisted, pressurised pyrolysis of hemicellulose

    International Nuclear Information System (INIS)

    Li, T.; Remón, J.; Shuttleworth, P.S.; Jiang, Z.; Fan, J.; Clark, J.H.; Budarin, V.L.

    2017-01-01

    Highlights: • Microwave pyrolysis of xylan in the absence of any external microwave absorber. • High energy-efficient and controllable production of biochar and bio-oil from xylan. • Water in liquid phase is needed for fast microwave pyrolysis. • Production of bio-oil and bio-char with HHVs 52% and 19% greater than that of xylan. - Abstract: Batch, pressurised microwave-assisted pyrolysis of hemicellulose in the absence of any external microwave absorber was found to be a promising route for the production of bio-based chemicals and biofuels. The experiments were conducted in a 10 mL batch reactor using a fixed power of 200 W employing different initial masses of xylan (0.1–0.7 g) for a maximum time, temperature and pressure of 10 min, 250 °C and 200 psi, respectively. The gas, bio-oil and solid (char) yields varied by 16–40%, 2–21% and 40–82%, respectively. Char production is preferential using a low amount of xylan (<0.25 g), while bio-oil production is favoured using a high amount of xylan (0.25–0.7 g). The effect of the sample mass is accounted for by the different physical state of the volatiles released during pyrolysis depending on the pressure attained during the experiment. This permits the process to be easily customised for the selective production of liquid (bio-oil) or solid (bio-char). Regarding the bio-oil, it is composed of a mixture of platform chemicals such as aldehydes, alkenes, phenols, polyaromatic hydrocarbons (PAHC), cyclic ketones and furans, with the composition varying depending on the initial mass of xylan. The char had a higher proportion of C together with a lower proportion of O than the original feedstock. Energy efficiencies of 100 and 26% were achieved for char and bio-oil production, respectively; thus leading to an increase in the HHV of the products (with respect to the original feedstock) of 52% for char and 19% for bio-oil.

  19. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo.

    Science.gov (United States)

    Chen, Dengyu; Zhou, Jianbin; Zhang, Qisheng

    2014-10-01

    Effects of heating rate on slow pyrolysis behaviors, kinetic parameters, and products properties of moso bamboo were investigated in this study. Pyrolysis experiments were performed up to 700 °C at heating rates of 5, 10, 20, and 30 °C/min using thermogravimetric analysis (TGA) and a lab-scale fixed bed pyrolysis reactor. The results show that the onset and offset temperatures of the main devolatilization stage of thermogravimetry/derivative thermogravimetry (TG/DTG) curves obviously shift toward the high-temperature range, and the activation energy values increase with increasing heating rate. The heating rate has different effects on the pyrolysis products properties, including biochar (element content, proximate analysis, specific surface area, heating value), bio-oil (water content, chemical composition), and non-condensable gas. The solid yields from the fixed bed pyrolysis reactor are noticeably different from those of TGA mainly because the thermal hysteresis of the sample in the fixed bed pyrolysis reactor is more thorough. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Simultaneous Determination of Cocaine, Cocaethylene, and Their Possible Pentafluoropropylated Metabolites and Pyrolysis Products by Gas Chromatography/Mass Spectrometry

    National Research Council Canada - National Science Library

    Cardona, Patrick

    2003-01-01

    .... Therefore, it is important to determine concentrations of COC and its metabolites ethanol analogs, and pyrolysis products for establishing the degree of toxicity that possible ingestion of ethanol...

  1. Pyrolysis of wood in arc plasma for syngas production

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, Milan; Konrád, Miloš; Kopecký, Vladimír; Hlína, Michal

    2006-01-01

    Roč. 10, č. 4 (2006), s. 557-570 ISSN 1093-3611 R&D Projects: GA ČR GA202/05/0669 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma pyrolysis * gasfication * syngas * thermal plasma * biomass Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.343, year: 2006

  2. Fuel production from microwave assisted pyrolysis of coal with carbon surfaces

    International Nuclear Information System (INIS)

    Mushtaq, Faisal; Mat, Ramli; Ani, Farid Nasir

    2016-01-01

    Highlights: • MW heating of coal was carried out with uniformly distributed carbon surfaces. • The effects of carbon loading, MW power and N 2 flow rate were investigated. • Heating profile, pyrolysis products are influenced by the process variables. • Highest coal-tar obtained when final temperature sustained for longer duration. • Coal-tar is mainly composed of aromatics and saturated aliphatics hydrocarbons. - Abstract: In this study, coal solids were subjected to Microwave (MW) pyrolysis conditions. Coconut Activated Carbon (CAC) solids used as a MW absorber was distributed uniformly over coal solids to reduce hotspots. Three process parameters; CAC loading, MW power and N 2 flow rate were studies on pyrolysis heating performance. The highest coal-tar yield of 18.59 wt% was obtained with 600 W, 75 wt% CAC loading and 4 Liter per Minute (LPM) of N 2 flow rate. This improved coal-tar yield is mainly of the fact that higher MW power and CAC loading produced sustained pyrolysis conditions for longer duration for the complete conversion of pyrolysis solids. The coal-tar was composed mainly of aromatics (naphthalenes, benzenes and xylene) and saturated aliphatics (alkanes and alkenes) hydrocarbons. The gas produced from pyrolysis of coal is mainly of H 2 40.23–65.22 vol%.

  3. THE EFFECT OF AMOUNT OF NATURAL ZEOLIT CATALYST IN PRODUCT OF POLYPROPILENE (PP PLASTIC WASTE PYROLYSIS

    Directory of Open Access Journals (Sweden)

    khalimatus sa'diyah

    2015-12-01

    Full Text Available To overcome the waste problem, especially plastic waste , environmental concerned scientists from various disciplines have conducted various research and actions. Catalytic pyrolysis processes was chosen as an alternative method to recycle plastic waste. The purpose of this experiment was to determine the effect of natural zeolit catalyst on the pyrolysis process with oxygen-free conditions to obtain maximum hydrocarbon compounds (gasoline fraction in C5-C9. The process of pyrolysis was conducted in 3.5 dm3 unstirred stainless steel semi-batch reactor. This process operated at atmospheric pressure with nitrogen injection. Plastic waste that used in this particular paper was 50 grams of polypropylene (PP. In pyrolysis process, natural zeolite catalysts was added 2,5 gram (5% weight of natural zeolite per weight of plastic waste samples, 5 gram (10% , and 10 gram (20%. Temperature of pyrolysis was 450°C and were maintained until 30 minutes. Steam that produced from pyrolisis was condensed and analysed by gas chromatography–mass spectrometry (GC-MS to determine yield of hydrocarbons produced. From the analysis of GC-MS, liquid products of pyrolysis contained lots of aromatic hydrocarbons. The optimal amount of catalyst that produce liquid with hydrocarbon compound that has the quality of gasoline was 10 gram (20% with ≤C9 composition as 29,16% n-paraffin, 9,22% cycloparaffin, and 61,64% aromatics.

  4. Microwave-assisted co-pyrolysis of brown coal and corn stover for oil production.

    Science.gov (United States)

    Zhang, Yaning; Fan, Liangliang; Liu, Shiyu; Zhou, Nan; Ding, Kuan; Peng, Peng; Anderson, Erik; Addy, Min; Cheng, Yanling; Liu, Yuhuan; Li, Bingxi; Snyder, John; Chen, Paul; Ruan, Roger

    2018-07-01

    The controversial synergistic effect between brown coal and biomass during co-pyrolysis deserves further investigation. This study detailed the oil production from microwave-assisted co-pyrolysis of brown coal (BC) and corn stover (CS) at different CS/BC ratios (0, 0.33, 0.50, 0.67, and 1) and pyrolysis temperatures (500, 550, and 600 °C). The results showed that a higher CS/BC ratio resulted in higher oil yield, and a higher pyrolysis temperature increased oil yield for brown coal and coal/corn mixtures. Corn stover and brown coal showed different pyrolysis characteristics, and positive synergistic effect on oil yield was observed only at CS/BC ratio of 0.33 and pyrolysis temperature of 600 °C. Oils from brown coal mainly included hydrocarbons and phenols whereas oils from corn stover and coal/corn mixtures were dominated by ketones, phenols, and aldehydes. Positive synergistic effects were observed for ketones, aldehydes, acids, and esters whereas negative synergistic effects for hydrocarbons, phenols and alcohols. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Liquid biofuel production from volatile fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Steinbusch, K.J.J.

    2010-03-19

    The production of renewable fuels and chemicals reduces the dependency on fossil fuels and limits the increase of CO2 concentration in the atmosphere only if a sustainable feedstock and an energy efficient process are used. The thesis assesses the possibility to use municipal and industrial waste as biomass feedstock to have little of no competition with food production, and to save greenhouse gasses emissions. Waste is a complex substrate with a diverse composition and high water content. It can be homogenized without losing its initial energy value by anaerobic conversion to volatile fatty acids (VFA). Using VFA gives the opportunity to process cheap and abundantly present biomass residues to a fuel and chemical instead of sugar containing crops or vegetable oil. This thesis describes the feasibility to convert VFA to compounds with a higher energy content using mixed culture fermentations by eliminating of oxygen and/or increasing the carbon and hydrogen content. At high hydrogen pressure, protons and electrons release via the reduction of organic products such as VFA becomes thermodynamically more attractive. Three VFA reduction reactions were studied: hydrogenation to an alcohol with (1) hydrogen and (2) an electrode as electron donor, and (3) by chain elongation with hydrogen and ethanol. Based on concentration, production rate and efficiency, elongation of acetate with hydrogen and/or ethanol was the best technique to convert VFA into a fuel. In a CSTR (Continuous-flow stirred-tank reactor), 10.5 g L{sup -1} caproic acid and 0.48 g L{sup -1} caprylic acid were produced with ethanol and/or hydrogen at a specific MCFA (medium-chain fatty acids) production activity of 2.9 g caproate and 0.09 g caprylate per gram VSS d{sup -1} (volatile suspended solids). The products were selectively removed by calcium precipitation and solvent extraction with ethyl hexanoate and petroleum ether. Microbial characterization revealed that the microbial populations were stable and

  6. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    Science.gov (United States)

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  7. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.

    Science.gov (United States)

    Hwang, In-Hee; Kobayashi, Jun; Kawamoto, Katsuya

    2014-02-01

    Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products. The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500°C but the polycyclic aromatic hydrocarbons became the major compounds at 900°C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700°C under steam gasification condition. For WBC, both char utilization by pyrolysis at low temperature (500°C) and syngas recovery by steam gasification at higher temperature (900°C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500°C) might be one of viable options. Steam gasification at 900°C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-25

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed

  9. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-28

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The “as received” feedstock to the pyrolysis plant will be “reactor ready.” This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps

  10. Selective pyrolysis of paper mill sludge by using pretreatment processes to enhance the quality of bio-oil and biochar products

    International Nuclear Information System (INIS)

    Reckamp, Joseph M.; Garrido, Rene A.; Satrio, Justinus A.

    2014-01-01

    Paper mill sludge (PMS) is a residual biomass that is generated at paper mills in large quantities. Currently, PMS is commonly disposed in landfills, which causes environmental issues through chemical leaching and greenhouse gas production. In this research, we are exploring the potential of fast pyrolysis process for converting PMS into useful bio-oil and biochar products. We demonstrate that by subjecting PMS to a combination of acid hydrolysis and torrefaction pre-treatment processes it is possible to alter the physicochemical properties and composition of the feedstock material. Fast pyrolysis of pretreated PMS produced bio-oil with significantly higher selectivity to levoglucosenone and significantly reduced the amount of ketone, aldehyde, and organic acid components. Pretreatment of PMS with combined 4% mass fraction phosphoric acid hydrolysis and 220 °C torrefaction processed prior to fast pyrolysis resulted in a 17 times increase of relative selectivity towards levoglucosenone in bio-oil product along with a reduction of acids, ketones, and aldehydes combined from 21 % to 11 %. Biochar, produced in higher yield, has characteristics that potentially make the solid byproduct ideal for soil amendment agent or sorbent material. This work reveals a promising process system to convert PMS waste into useful bio-based products. More in-depth research is required to gather more data information for assessing the economic and sustainability aspects of the process. - Highlights: • Acid hydrolysis and torrefaction reduce bio-oil yield, but improve quality. • Dilute acid conditions provide optimal treatment for bio-oil quality and yield. • Pyrolysis of treated PMS produces high selectivity to levoglucosenone formation. • Treated PMS produces bio-oil with reduced acid, ketone, and aldehyde content. • Pyrolysis of treated PMS produces biochar with low volatile matter in high yield

  11. Cannabis—XV . Pyrolysis of cannabidiol. Structure elucidation of four pyrolytic products

    NARCIS (Netherlands)

    Kuppers, F.J.E.M.; Bercht, C.A.L.; Salemink, C.A.; Lousberg, R.J.J.Ch.

    1975-01-01

    Pyrolysis of cannabidiol in nitrogen atmosphere affords at least six more products with longer GC-retention times than CBD, next to unconverted CBD. Two of these could be identified as Δ1(2)THC and CBN Two further products were investigated and their mass spectrometrical fragmentations and

  12. Effect of the fast pyrolysis temperature on the primary and secondary products of lignin

    NARCIS (Netherlands)

    Zhou, Shuai; Garcia-Perez, Manuel; Pecha, Brennan; Kersten, Sascha R.A.; McDonald, Armando G.; Westerhof, Roel Johannes Maria

    2013-01-01

    This paper presents results on the primary pyrolysis products of organosolv lignin at temperatures between 360 and 700 °C. To study the primary products, a vacuum screen heater (heating rate of 8000 °C/s, deep vacuum of 0.7 mbar, and very fast cooling at the wall temperature of −100 °C) was used.

  13. Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization

    International Nuclear Information System (INIS)

    Hu, Zhiquan; Zheng, Yang; Yan, Feng; Xiao, Bo; Liu, Shiming

    2013-01-01

    Pyrolysis experiments of blue-green algae blooms (BGAB) were carried out in a fixed-bed reactor to determine the effects of pyrolysis temperature, particle size and sweep gas flow rate on pyrolysis product yields and bio-oil properties. The pyrolysis temperature, particle size and sweep gas flow rate were varied in the ranges of 300–700 °C, below 0.25–2.5 mm and 50–400 mL min −1 , respectively. The maximum oil yield of 54.97% was obtained at a pyrolysis temperature of 500 °C, particle size below 0.25 mm and sweep gas flow rate of 100 mL min −1 . The elemental analysis and calorific value of the oil were determined, and the chemical composition of the oil was investigated using gas chromatography–mass spectroscopy (GC–MS) technique. The analysis of bio-oil composition showed that bio-oil from BGAB could be a potential source of renewable fuel with a heating value of 31.9 MJ kg −1 . - Highlights: ► Bio-oil production from pyrolysis of blue-green algae blooms in fixed bed reactor. ► Effects of pyrolysis conditions on product distribution were investigated. ► The maximum bio-oil yield reached 54.97 wt %. ► The bio-oil has high heating value and may be suitable as renewable fuel. ► Pyrolysis of algal biomass beneficial for energy recovery, eutrophication control

  14. Comparing Effects of Feedstock and Run Conditions on Pyrolysis Products Produced at Pilot-Scale

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, Timothy C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gaston, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wilcox, Esther [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-19

    Fast pyrolysis is a promising pathway for mass production of liquid transportable biofuels. The Thermochemical Process Development Unit (TCPDU) pilot plant at NREL is conducting research to support the Bioenergy Technologies Office's 2017 goal of a $3 per gallon biofuel. In preparation for down select of feedstock and run conditions, four different feedstocks were run at three different run conditions. The products produced were characterized extensively. Hot pyrolysis vapors and light gasses were analyzed on a slip stream, and oil and char samples were characterized post run.

  15. Volatiles production from the coking of coal; Sekitan no netsubunkai ni okeru kihatsubun seisei

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Y.; Saito, H.; Inaba, A. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    In order to simplify the coke manufacturing process, a coke production mechanism in coal pyrolysis was discussed. Australian bituminous coal which can produce good coke was used for the discussion. At a temperature raising rate of 50{degree}C per minute, coal weight loss increases monotonously. However, in the case of 3{degree}C, the weight loss reaches a peak at a maximum ultimate temperature of about 550{degree}C. The reaction mechanism varies with the temperature raising rates, and in the case of 50{degree}C per minute, volatiles other than CO2 and propane increased. Weight loss of coal at 3{degree}C per minute was caused mainly by methane production at 550{degree}C or lower. When the temperature is raised to 600{degree}C, tar and CO2 increased, and so did the weight loss. Anisotropy was discerned in almost of all coke particles at 450{degree}C, and the anisotropy became remarkable with increase in the maximum ultimate temperature. Coke and volatiles were produced continuously at a temperature raising rate of 50{degree}C per minute, and at 3{degree}C per minute, the production of the coke and volatiles progressed stepwise as the temperature has risen. 7 refs., 6 figs.

  16. Evaluation of the production potential of bio-oil from Vietnamese biomass resources by fast pyrolysis

    International Nuclear Information System (INIS)

    Phan, Binh M.Q.; Duong, Long T.; Nguyen, Viet D.; Tran, Trong B.; Nguyen, My H.H.; Nguyen, Luong H.; Nguyen, Duc A.; Luu, Loc C.

    2014-01-01

    Agricultural activities in Vietnam generate about 62 million tonnes of biomass (rice straw, rice husk, bagasse, corn cob, corn stover, etc.) annually. In this work, four different types of biomass from Vietnam, namely rice straw, rice husk, factory bagasse, and corn cob, have been studied as potential raw materials to produce bio-oil by fast pyrolysis technology. Test runs were conducted in a fluidized-bed reactor at a temperature of 500 °C and residence time less than 2 s. Size and moisture content of the feed were less than 2 mm and 2%, respectively. It was found that yields of bio-oil as a liquid product obtained from pyrolysis of these feedstocks were more than 50% and that obtained from the bagasse was the highest. Bio-oil quality from Vietnamese biomass resources satisfies ASTM D7544-12 standard for pyrolysis liquid biofuels. These results showed the potential of using biomass in Vietnam to produce bio-oil which could be directly used as a combustion fuel or upgraded into transportation fuels and chemicals. - Highlights: • Four types of Vietnamese biomass were firstly analyzed in detail. • Optimal conditions for fast pyrolysis reaction for Vietnamese biomass types. • Bio-oil product adapted to the standard specification for pyrolysis liquid biofuel

  17. Numerical simulation of vortex pyrolysis reactors for condensable tar production from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.S.; Bellan, J. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

    1998-08-01

    A numerical study is performed in order to evaluate the performance and optimal operating conditions of vortex pyrolysis reactors used for condensable tar production from biomass. A detailed mathematical model of porous biomass particle pyrolysis is coupled with a compressible Reynolds stress transport model for the turbulent reactor swirling flow. An initial evaluation of particle dimensionality effects is made through comparisons of single- (1D) and multi-dimensional particle simulations and reveals that the 1D particle model results in conservative estimates for total pyrolysis conversion times and tar collection. The observed deviations are due predominantly to geometry effects while directional effects from thermal conductivity and permeability variations are relatively small. Rapid ablative particle heating rates are attributed to a mechanical fragmentation of the biomass particles that is modeled using a critical porosity for matrix breakup. Optimal thermal conditions for tar production are observed for 900 K. Effects of biomass identity, particle size distribution, and reactor geometry and scale are discussed.

  18. Pyrolysis and oxidative pyrolysis experiments with organization exchange resin

    International Nuclear Information System (INIS)

    Chun, Ung Kyung

    1997-01-01

    Pyrolysis may be an important pretreatment step before vitrification in a cold crucible melter (CCM). During vitrification of organic resin the carbon or other remaining residues may harm the performance of the cold crucible melter of the eventual stability of the final glass product. Hence, it is important to reduce or prevent such harmful waste from entry into the cold crucible melter. Pretreatment with pyrolysis will generally provide volume reduction resulting in less amount of solid waste that needs to be handled by the CCM; in addition, the pyrolytic processes may breakdown much of the complex organics causing release through volatilization resulting in less carbon and other harmful substances. Hence, KEPRI has undertaken studies on the pyrolysis and oxidative pyrolysis of organic ion exchange resin. Pyrolysis and oxidative pyrolysis were examined with TGA and a tube furnace. TGA results for pyrolysis with the flow of nitrogen indicate that even after pyrolyzing from room temperature to about 900 deg C, a significant mass fraction of the original cationic resin remains, approximately 46 %. The anionic resin when pyrolytically heated in a flow of nitrogen only, from room temperature to about 900 deg C, produced a final residue mass fraction of about 8 percent. Oxidation at a ratio of air to nitrogen, 1:2, reduced the cationic resin to 5.3% when heated at 5 C/min. Oxidation of anionic resin at the same ratio and same heating rate left almost no solid residue. Pyrolysis (e.g. nitrogen-only environment) in the tube furnace of larger samples relative to the TGA produced very similar results to the TGA. The differences may be attributed to the scale effects such as surface area exposure to the gas stream, temperature distributions throughout the resin, etc. (author) 7 refs., 7 figs

  19. Pyrolysis and oxidative pyrolysis experiments with organization exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ung Kyung [Korea Electric Power Research Insititute, Taejon (Korea, Republic of)

    1997-12-31

    Pyrolysis may be an important pretreatment step before vitrification in a cold crucible melter (CCM). During vitrification of organic resin the carbon or other remaining residues may harm the performance of the cold crucible melter of the eventual stability of the final glass product. Hence, it is important to reduce or prevent such harmful waste from entry into the cold crucible melter. Pretreatment with pyrolysis will generally provide volume reduction resulting in less amount of solid waste that needs to be handled by the CCM; in addition, the pyrolytic processes may breakdown much of the complex organics causing release through volatilization resulting in less carbon and other harmful substances. Hence, KEPRI has undertaken studies on the pyrolysis and oxidative pyrolysis of organic ion exchange resin. Pyrolysis and oxidative pyrolysis were examined with TGA and a tube furnace. TGA results for pyrolysis with the flow of nitrogen indicate that even after pyrolyzing from room temperature to about 900 deg C, a significant mass fraction of the original cationic resin remains, approximately 46 %. The anionic resin when pyrolytically heated in a flow of nitrogen only, from room temperature to about 900 deg C, produced a final residue mass fraction of about 8 percent. Oxidation at a ratio of air to nitrogen, 1:2, reduced the cationic resin to 5.3% when heated at 5 C/min. Oxidation of anionic resin at the same ratio and same heating rate left almost no solid residue. Pyrolysis (e.g. nitrogen-only environment) in the tube furnace of larger samples relative to the TGA produced very similar results to the TGA. The differences may be attributed to the scale effects such as surface area exposure to the gas stream, temperature distributions throughout the resin, etc. (author) 7 refs., 7 figs.

  20. Renewable hydrogen production by catalytic steam reforming of peanut shells pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R.J.; Chornet, E.; Czernik, S.; Feik, C.; French, R.; Phillips, S. [National Renewable Energy Lab., Golden, CO (United States); Abedi, J.; Yeboah, Y.D. [Clark Atlanta Univ., Atlanta, GA (United States); Day, D.; Howard, J. [Scientific Carbons Inc., Blakely, GA (United States); McGee, D. [Enviro-Tech Enterprises Inc., Matthews, NC (United States); Realff, M.J. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2002-07-01

    A project was initiated to determine the feasibility of producing hydrogen from agricultural wastes at a cost comparable to methane-reforming technologies. It is possible that hydrogen can be produced cost competitively with natural gas reforming by integrating hydrogen production with existing waste product utilization processes. This report presents initial results of an engineering demonstration project involving the development of a steam reforming process by a team of government, industrial and academic organizations working at the thermochemical facility at the National Renewable Energy Laboratory. The process is to be used on the gaseous byproducts from a process for making activated carbon from densified peanut shells. The reactor is interfaced with a 20 kg/hour fluidized-bed fast pyrolysis system and takes advantage of process chemical analysis and computer control and monitoring capacity. The reactor will be tested on the pyrolysis vapors produced in the activated carbon process. The final phase of the project will look at the production of hydrogen through the conversion of residual CO to H{sub 2} over a shift catalyst and separating hydrogen from CO{sub 2} using pressure swing adsorption. The purified oxygen will be mixed with natural gas and used for transportation purposes. The study demonstrates the potential impact of hydrogen and bioenergy on the economic development and diversification of rural areas. 11 refs., 2 tabs., 5 figs.

  1. Solar Assisted Fast Pyrolysis: A Novel Approach of Renewable Energy Production

    Directory of Open Access Journals (Sweden)

    Mohammad U. H. Joardder

    2014-01-01

    Full Text Available Biofuel produced by fast pyrolysis from biomass is a promising candidate. The heart of the system is a reactor which is directly or indirectly heated to approximately 500°C by exhaust gases from a combustor that burns pyrolysis gas and some of the by-product char. In most of the cases, external biomass heater is used as heating source of the system while internal electrical heating is recently implemented as source of reactor heating. However, this heating system causes biomass or other conventional forms of fuel consumption to produce renewable energy and contributes to environmental pollution. In order to overcome these, the feasibility of incorporating solar energy with fast pyrolysis has been investigated. The main advantages of solar reactor heating include renewable source of energy, comparatively simpler devices, and no environmental pollution. A lab scale pyrolysis setup has been examined along with 1.2 m diameter parabolic reflector concentrator that provides hot exhaust gas up to 162°C. The study shows that about 32.4% carbon dioxide (CO2 emissions and almost one-third portion of fuel cost are reduced by incorporating solar heating system. Successful implementation of this proposed solar assisted pyrolysis would open a prospective window of renewable energy.

  2. Production of a transparent lavender flavour nanocapsule aqueous solution and pyrolysis characteristics of flavour nanocapsule

    OpenAIRE

    Zhu, Guangyong; Xiao, Zuobing; Zhou, Rujun; Feng, Nienie

    2014-01-01

    Flavour plays an important role and has been widely used in many products. Usually, the components of flavour are volatile and the sensory perception can be changed as a result of volatilization, heating, oxidation and chemical interactions. Encapsulation can prevent the loss of volatile aromatic ingredients, provide protection and enhance the stability of the core materials. This work concentrated on production of a transparent lavender flavour nanocapsule aqueous solution. The results showe...

  3. Effect of temperature on energy potential of pyrolysis products from oil palm shells

    OpenAIRE

    Lina María Romero Millán; María Alejandra Cruz Domínguez; Fabio Emiro Sierra Vargas

    2016-01-01

    Context: Taking into account that near 220 000 tons of oil palm shells are produced every year in Colombia, as a waste of the Elaeis Guineensis palm oil transformation process, the aim of this work is to determine the energy potential of oil palm shells, when transformed through slow pyrolysis process. Methods: Using a fixed bed lab scale reactor, different oil palm shells pyrolysis tests were performed between 300°C and 500°C. The effect of the temperature in the process product yield an...

  4. Continuous production of inorganic magnetic nanocomposites for biomedical applications by laser pyrolysis

    International Nuclear Information System (INIS)

    Veintemillas-Verdaguer, Sabino; Leconte, Yann; Costo, Rocio; Bomati-Miguel, Oscar; Bouchet-Fabre, Brigitte; Morales, M. Puerto; Bonville, Pierre; Perez-Rial, Sandra; Rodriguez, Ignacio; Herlin-Boime, Nathalie

    2007-01-01

    Magnetic composites of Fe-based nanoparticles encapsulated in carbon/silica (C/SiO 2 at Fe) or carbon (C at Fe) matrices were prepared by laser-induced pyrolysis of aerosols. The powders were dispersed in aqueous solutions at pH 7 resulting in biocompatible colloidal dispersions with a high resistance to biodegradation. Structural and magnetic properties and the suitability of aqueous dispersions as contrast agent for MRI were analyzed. The results of these characterizations and the NMR relaxivity data are very encouraging for application of laser pyrolysis products in the field of living tissues

  5. Influence of impregnation by inorganic substances on the yield of pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Shevkoplyas, V N; Saranchuk, V I [AN Ukrainskoj SSR, Donetsk (Ukraine). Inst. Fiziko-Organicheskoj Khimii i Uglekhimii

    1998-09-01

    In papers was shown that fossil coals impregnation by aqueous solution of inorganic substances with a subsequent pyrolysis leads to the rise of the rate and depth of its organic mass destruction into liquid and gaseous products. This is, apperently, conditioned by changes in coals structure already on the stage of treatment. But, there are few papers that study an activating effect of inorganic reactants upon natural coals structure and their behaviour at pyrolysis. One of the methods which allows to judge structural transformation in coals at their impregnation by inorganic substances is an X-ray analysis. (orig.)

  6. Broadband Microwave Study of Reaction Intermediates and Products Through the Pyrolysis of Oxygenated Biofuels

    Science.gov (United States)

    Abeysekera, Chamara; Hernandez-Castillo, Alicia O.; Fritz, Sean; Zwier, Timothy S.

    2017-06-01

    The rapidly growing list of potential plant-derived biofuels creates a challenge for the scientific community to provide a molecular-scale understanding of their combustion. Development of accurate combustion models rests on a foundation of experimental data on the kinetics and product branching ratios of their individual reaction steps. Therefore, new spectroscopic tools are necessary to selectively detect and characterize fuel components and reactive intermediates generated by pyrolysis and combustion. Substituted furans, including furanic ethers, are considered second-generation biofuel candidates. Following the work of the Ellison group, an 8-18 GHz microwave study was carried out on the unimolecular and bimolecular decomposition of the smallest furanic ether, 2-methoxy furan, and it`s pyrolysis intermediate, the 2-furanyloxy radical, formed in a high-temperature pyrolysis source coupled to a supersonic expansion. Details of the experimental setup and analysis of the spectrum of the radical will be discussed.

  7. Influence of the Pyrolysis Temperature on Sewage Sludge Product Distribution, Bio-Oil, and Char Properties

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Dam-Johansen, Kim

    2013-01-01

    Fast pyrolysis may be used for sewage sludge treatment with the advantages of a significant reduction of solid waste volume and production of a bio-oil that can be used as fuel. A study of the influence of the reaction temperature on sewage sludge pyrolysis has been carried out using a pyrolysis...... of 392 g/mol, and metal concentrations lower than 0.14 wt % on a dry basis (db). Less optimal oil properties with respect to industrial applications were observed for oil samples obtained at 475 and 625 °C. Char properties of the 575 °C sample were an ash content of 81 wt % and a HHV of 6.1 MJ/kg db...

  8. Effect of temperature on energy potential of pyrolysis products from oil palm shells

    Directory of Open Access Journals (Sweden)

    Lina María Romero Millán

    2016-06-01

    Full Text Available Context: Taking into account that near 220 000 tons of oil palm shells are produced every year in Colombia, as a waste of the Elaeis Guineensis palm oil transformation process, the aim of this work is to determine the energy potential of oil palm shells, when transformed through slow pyrolysis process. Methods: Using a fixed bed lab scale reactor, different oil palm shells pyrolysis tests were performed between 300°C and 500°C. The effect of the temperature in the process product yield and in the energy content of produced solids and gases were analyzed. Results: With a maximum mass yield of 50%, the char is considered the main product of oil palm shells pyrolysis, containing up to 73% of the raw biomass energy. The heating value of char raised with the temperature, from 29,6 MJ/kg at 300°C to 31,34 MJ/kg at 500°C. Moreover, the gas produced in the established temperature range had up to 13% of the energy content of the raw biomass, with a heating value near 12,5 MJ/m3. Conclusions: According to the results, slow pyrolysis can be considered an interesting process for the valorization of residual biomass as oil palm shells, through the production of solids and gases that can be used as fuels, or as precursor of other value-added products.

  9. Production and characterization of bio-oil from catalytic biomass pyrolysis

    Directory of Open Access Journals (Sweden)

    Antonakou Eleni V.

    2006-01-01

    Full Text Available Biomass flash pyrolysis is a very promising thermochemical process for the production of bio-fuels and/or chemicals. However, large-scale applications are still under careful consideration, because of the high bio-liquid upgrading cost. In this paper the production of bio-liquids from biomass flash pyrolysis in a single stage catalytic process is being investigated using a novel once through fluid bed reactor. This biomass pyrolysis unit was constructed in Chemical Process Engineering Research Institute and comprises of a catalyst regenerator, a biomass-vibrating hopper, a fluidization reactor (that consists of an injector and a riser reactor, a product stripper along with a hot cyclone and a filter housing and finally a product condensation/recovery section. The unit can process up to 20 g/min. of biomass (50-800 mm and can circulate up to 300 g/min. of catalyst or inert material. The experiments performed in the pilot plant showed that the unit operates without problems and with satisfactory mass balances in a wide range of experimental conditions both in the absence and presence of catalyst. With the incorporation of an FCC catalyst in the pyrolysis, the physical properties of the bio-oil produced changed, while more stable bio-oil was produced. .

  10. Geochemical characterization of the hydrous pyrolysis products from a recent cyanobacteria-dominated microbial mat

    Energy Technology Data Exchange (ETDEWEB)

    Franco, N.; Mendoça-Filho, J.G.; Silva, T.F.; Stojanovic, K.; Fontana, L.F.; Carvalhal-Gomes, S.B.V.; Silva, F.S.; Furukawa, G.G.

    2016-07-01

    Hydrous pyrolysis experiments were performed on a recent microbial mat sample from Lagoa Vermelha, Brazil, to determine whether crude oil can be generated and expelled during artificial maturation of the Organic Matter (OM). The experiments were conducted at 280ºC, 330ºC and 350ºC during 20h. Two types of liquid pyrolysis products, assigned as free oil and bitumen, were isolated and analyzed. Free oil represents free organic phase released by hydrous pyrolysis, whereas bitumen was obtained by extraction from the solid pyrolysis residue with dichloromethane. Changes in the OM maturity were determined using Rock-Eval parameters and biomarker maturity ratios of original sample and pyrolysis products. Biomarker compositions of original sample extract and liquid pyrolysates were used for determination of dominant bacterial source. The yields of free oil and bitumen showed that a microbial mat OM has a high liquid hydrocarbons generation potential. Rock-Eval maturity parameters, biopolymer and biomarker compositions indicate a significant increase of the OM maturity during hydrous pyrolysis. At 280ºC the release of free, adsorbed and occluded compounds was observed; however, without a cracking of the OM. At 330ºC the generation of bitumen and free oil is mostly related to the OM cracking. The highest yield of free oil was recorded at this temperature. Distribution of biomarkers in the extract of original sample and liquid pyrolysates confirms cyanobacteria-dominated microbial mats, whereas the identification of long chain n-alkane series, with maximum at C26, and prominent C30 hop-17(21)-ene additionally suggest the presence of sulfate reducing bacteria. (Author)

  11. Formation of Methoxybenzenes from Cellulose in the Presence of Tetramethylammonium Hydroxide by Pyrolysis

    International Nuclear Information System (INIS)

    Choi, Sungseen; Kim, Minchul; Kim, Yunki

    2013-01-01

    Pyrolysis-gas chromatography/mass spectrometry (Pyrolysis-GC/MS) has been extensively used for characterizing the structural information of various macromolecules such as humic substances, woods, and synthetic polymers. Challinor improved the technique by introducing simultaneous pyrolysis and methylation with tetramethylammonium hydroxide (TMAH). As the technique offers a number of advantages over conventional pyrolysis, it has been used widely for the characterization of a wide variety of macro-organic molecules such as polysaccharides. Thermally assisted hydrolysis and methylation of carbohydrates by TMAH has been investigated. This approach has improved the separation by methylation of acidic functional group. Several researchers have demonstrated that the role of TMAH is not only the methylation of the pyrolysis products but also assisting in bond cleavage. Because TMAH possesses a strong basicity, highly basic conditions are likely to induce a variety of reactions. Pyrolysis technique using TMAH renders polar pyrolysis products volatile enough to be eluted from the GC column by subsequent online methylation

  12. Pyrolysis of spent ion-exchanger resins

    International Nuclear Information System (INIS)

    Slametschka, Rainer; Braehler, Georg

    2012-01-01

    Initial tests have shown that ion exchangers (IEX) can be decomposed by pyrolysis with very good results, yielding an inert and chemically resistant product. No additives are necessary. The main constituent of the product, the pyrolysis residues or ash, is carbon. It has been discovered that the entire radioactive inventory remains in the pyrolysis residues during pyrolysis of the IEX. This is achieved by relatively low process temperatures that prevent highly volatile nuclides such as the caesium nuclides from passing into the gaseous phase. Sintered metal filters in pyrolysis plant ensure that even the radioactivity bonded to the dust remains in the pyrolysis residues. In addition to the radionuclides, the main constituents of the residue are carbon from the original polystyrene matrix and sulphur from the functional groups. The pyrolysis residues form a flowable solid material and not a melt. It is thus easy to handle and can be compacted or cemented, depending on the requirements for interim and permanent storage. Any further constituents such as inorganic filter materials or even other organic materials do not interfere with the process, they are dried, calcined or also pyrolysed. (orig.)

  13. Production of liquid fuels and chemicals from pyrolysis of Bangladeshi bicycle/rickshaw tire wastes

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M. Rofiqul; Tushar, M.S.H.K. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Haniu, H. [Department of Mechanical Engineering, Kitami Institute of Technology, Kitami City, Hokkaido 090-8507 (Japan)

    2008-05-15

    Tire wastes in the form of used bicycle/rickshaw tires available in Bangladesh were pyrolyzed in a fixed-bed fire-tube heating reactor under different pyrolysis conditions to determine the role of final temperature, sweeping gas flow rate and feed size on the product yields and liquid product composition. Final temperature range studied was between 375 and 575 C and the highest liquid product yield was obtained at 475 C. Liquid products obtained under the most suitable conditions were characterized by elemental analyses, FT-IR, {sup 1}H NMR and GC-MS techniques. The results show that it is possible to obtain liquid products that are comparable to petroleum fuels and valuable chemical feedstock from bicycle/rickshaw tire wastes if the pyrolysis conditions are chosen accordingly. (author)

  14. Co-Pyrolysis Behaviors of the Cotton Straw/PP Mixtures and Catalysis Hydrodeoxygenation of Co-Pyrolysis Products over Ni-Mo/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Derun Hua

    2015-12-01

    Full Text Available The doping of PP (polypropylene with cotton straw improved the bio-oil yield, which showed there was a synergy in the co-pyrolysis of the cotton straw and PP at the range of 380–480 °C. In a fixed-bed reactor, model compounds and co-pyrolysis products were used for reactants of hydrodeoxygenation (HDO over Ni-Mo/Al2O3. The deoxygenation rate of model compounds decreased over Ni-Mo/Al2O3 in the following order: alcohol > aldehyde > acetic acid > ethyl acetate. The upgraded oil mainly consisted of C11 alkane.

  15. Flash pyrolysis of linseed (Linum usitatissimum L.) for production of liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Acikgoz, C. [Department of Chemical Technology, Bilecik Higher Vocational School, GueluembeCampus, Anadolu University, 11030 Bilecik (Turkey); Kockar, O.M. [Department of Chemical Engineering, Faculty of Engineering and Architecture, iki Eyluel Campus, Anadolu University, 26470 Eskisehir (Turkey)

    2007-03-15

    Flash pyrolysis experiments of linseed (Linum usitatissimum L.) were performed in a tubular transport reactor at atmospheric pressure under nitrogen atmosphere. The effects of pyrolysis temperature and particle size on the yields of products were investigated with the sweep gas flow rate of 100 cm{sup 3} min{sup -1}. The temperature of pyrolysis and particle size were varied in the ranges 400-700 C and 0.6 mm < D{sub p} < 1.25 mm, 1.25 mm < D{sub p} < 1.8 mm, D{sub p} > 1.8 mm, respectively. The maximum oil yield of 68.8% was obtained at a pyrolysis temperature of 550 C, and the particle size of D{sub p} > 1.8 mm. The char and liquid product were analyzed to determine their elemental composition and calorific value. In particular, the chemical composition of the oil was investigated using chromatographic and spectroscopic techniques ({sup 1}H NMR, IR, column chromatography and GC). The chemical characterization has shown that the oil obtained from linseed can be used as a renewable fuel and chemical feedstock. (author)

  16. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: A review

    International Nuclear Information System (INIS)

    Galadima, Ahmad; Muraza, Oki

    2015-01-01

    Highlights: • Biomass upgrading by fast pyrolysis is an attractive bioaromatics production. • Zeolite catalysts are key important systems considered for the process. • Catalytic activity depend on zeolite structure, acidity and textural features. • Recent literature on the role of the zeolite catalysts critically tailored. • Hierarchical zeolites are prospective catalysts for industrial applications. - Abstract: The fast pyrolysis of biomass-based feedstocks is currently gaining considerable attention as an industrial and sustainable option for the production of gasoline-range bioaromatics. The complex composition of biomass molecules and a series of reactions involved during the upgrading process require the incorporation of sufficiently acidic and topological catalysts. This paper carefully documents and analyzes recent publications that have investigated the properties of zeolites to enhance the yield of bioaromatics during in situ fast pyrolysis. Issues related to the effects of zeolite’s textural, topological and acidic properties are critically examined. Factors responsible for catalyst deactivation and the mechanistic roles of the catalysts used are discussed. This paper also explores the prospects of hierarchical zeolites and municipal solid waste (MSW) as catalysts and feedstocks for the fast pyrolysis process.

  17. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.

    Science.gov (United States)

    Li, Dongbing; Briens, Cedric; Berruti, Franco

    2015-01-01

    Lignin pyrolysis was studied in a bubbling fluidized bed reactor equipped with a fractional condensation train, using nitrogen as the fluidization gas. The effect of different bed materials (silica sand, lignin char, activated lignin char, birch bark char, and foamed glass beads) on bio-oil yield and quality was investigated for a pyrolysis temperature of 550 °C. Results how that a bed of activated lignin char is preferable to the commonly used silica sand: pyrolysis of Kraft lignin with a bed of activated lignin char not only provides a pure char product, but also a higher dry bio-oil yield (with a relative increase of 43%), lower pyrolytic water production, and better bio-oil quality. The bio-oil obtained from Kraft lignin pyrolysis with a bed of activated lignin char has a lower average molecular weight, less tar, more phenolics, and less acidity than when sand is used as bed material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. 'Smoking' mephedrone: the identification of the pyrolysis products of 4-methylmethcathinone hydrochloride.

    Science.gov (United States)

    Kavanagh, Pierce; O'Brien, John; Power, John D; Talbot, Brian; McDermott, Seán D

    2013-05-01

    The ring-substituted cathinone - mephedrone - has gained popularity among recreational drug users over the past several years. It is generally consumed orally or by snorting but reports indicate that it is also ingested by vaporization/inhalation. This study examines the pyrolysis products produced by heating mephedrone under using simulated 'meth pipe' conditions. Thirteen pyrolysis products were identified, the major ones being iso-mephedrone, 4-methylpropiophenone, 4-methylphenylacetone, two pyrazine derivatives formed by dimerization of mephedrone, N-methylated mephedrone (N,N,4-trimethylcatinone), two hydroxylated oxidation products and a diketone. Other minor products formed were identified as 4-methylacetophenone, two α-chloro ketones and N-methylated iso-mephedrone. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Controlled air pyrolysis incinerator

    International Nuclear Information System (INIS)

    Dufrane, K.H.; Wilke, M.

    1982-01-01

    An advanced controlled air pyrolysis incinerator has been researched, developed and placed into commercial operation for both radioactive and other combustible wastes. Engineering efforts cocentrated on providing an incinerator which emitted a clean, easily treatable off-gas and which produced a minimum amount of secondary waste. Feed material is continuously fed by gravity into the system's pyrolysis chamber without sorting, shredding, or other such pretreatment. Metal objects, liquids such as oil and gasoline, or solid products such as resins, blocks of plastic, tire, animal carcasses, or compacted trash may be included along with normal processed waste. The temperature of the waste is very gradually increased in a reduced oxygen atmosphere. Volatile pyrolysis gases are produced, tar-like substances are cracked and the resulting product, a relatively uniform, easily burnable material, is introduced into the combustion chamber. Steady burning is thus accomplished under easily controlled excess air conditions with the off-gasthen passing through a simple dry clean-up system. Gas temperatures are then reduced by air dilution before passing through final HEPA filters. Both commercial and nuclear installations have been operated with the most recent application being the central incinerator to service West Germany's nuclear reactors

  20. Identification and quantification of phencyclidine pyrolysis products formed during smoking.

    Science.gov (United States)

    Lue, L P; Scimeca, J A; Thomas, B F; Martin, B R

    1986-01-01

    As a result of frequent phencyclidine (PCP) abuse, pyrolysis studies were conducted to further investigate its fate during smoking. Marijuana placebo cigarettes were impregnated with 3H-PCP X HCI and burned under conditions simulating smoking. Mainstream smoke was passed through glass wool filters as well as acidic and basic traps. Approximately 90% of the starting material could be accounted for in the first glass wool trap and cigarette holder. HPLC and GC/MS analysis of methanol extracts of these glass wool traps revealed the presence of 1-phenyl-1-cyclohexene (47% of the starting material) greater than PCP (40%) greater than piperidine (15%) greater than N-acetylpiperidine (9%). It was not possible to fully account for the remainder of the piperidine moiety. It has been reported that at high temperatures PCP is converted to numerous polynuclear aromatic compounds which include styrene, alpha-methylstyrene, naphthalene, 2-methylnaphthalene, 1-methylnaphthalene, biphenyl, cyclohexylbenzene, acenaphthene, phenanthrene, and anthracene. These compounds were not formed from PCP under smoking conditions.

  1. Identification and quantification of phencyclidine pyrolysis products formed during smoking

    International Nuclear Information System (INIS)

    Lue, L.P.; Scimeca, J.A.; Thomas, B.F.; Martin, B.R.

    1986-01-01

    As a result of frequent phencyclidine (PCP) abuse, pyrolysis studies were conducted to further investigate its fate during smoking. Marijuana placebo cigarettes were impregnated with 3 H-PCP HCl and burned under conditions simulating smoking. Mainstream smoke was passed through glass wool filters as well as acidic and basic traps. Approximately 90% of the starting material could be accounted for in the first glass wool trap and cigarette holder. HPLC and GC/MS analysis of methanol extracts of these glass wool traps revealed the presence of 1-phenyl-1-cyclohexene (47% of the starting material) > PCP (40%) > piperidine (15%) > N-acetylpiperidine (9%). It was not possible to fully account for the remainder of the piperidine moiety. It has been reported that at high temperatures PCP is converted to numerous polynuclear aromatic compounds which include styrene, α-methylstyrene, naphthalene, 2-methyl-naphthalene, 1-methylnaphthalene, biphenyl, cyclohexylbenzene, acenaphthene, phenanthrene, and anthracene. These compounds were not formed from PCP under smoking conditions

  2. Integrating sustainable biofuel and silver nanomaterial production for in situ upgrading of cellulosic biomass pyrolysis

    International Nuclear Information System (INIS)

    Xue, Junjie; Dou, Guolan; Ziade, Elbara; Goldfarb, Jillian L.

    2017-01-01

    Graphical abstract: Integrated production of biotemplated nanomaterials and upgraded biofuels (solid lines indicate current processes, dashed lines indicated proposed pathway). - Highlights: • Novel integrated process to co-produce nanomaterials and biofuels via pyrolysis. • Impregnation of biomass with silver nitrate upgrades bio-oil during pyrolysis. • Co-synthesis enhances syngas produced with more hydrogen. • Biomass template impacts bio-fuels and morphology of resulting nanomaterials. - Abstract: Replacing fossil fuels with biomass-based alternatives is a potential carbon neutral, renewable and sustainable option for meeting the world’s growing energy demand. However, pyrolytic conversions of biomass-to-biofuels suffer marginal total energy gain, and technical limitations such as bio-oils’ high viscosity and oxygen contents that result in unstable, corrosive and low-value fuels. This work demonstrates a new integrated biorefinery process for the co-production of biofuels and silver nanomaterials. By impregnating pure cellulose and corn stalk with silver nitrate, followed by pyrolysis, the gas yield (especially hydrogen) increases substantially. The condensable bio-oil components of the impregnated samples are considerably higher in furfurals (including 5-hydroxymethylfurfural). Though the overall activation energy barrier, as determined via the Distributed Activation Energy Model, does not change significantly with the silver nitrate pre-treatment, the increase in gases devolatilized, and improved 5-hydroxymethylfurfural yield, suggest a catalytic effect, potentially increasing decarboxylation reactions. After using this metal impregnation to improve pyrolysis fuel yield, following pyrolysis, the silver-char composite materials are calcined to remove the biomass template to yield silver nanomaterials. While others have demonstrated the ability to biotemplate such nanosilver on cellulosic biomass, they consider only impregnation and oxidation of the

  3. Syngas obtained by microwave pyrolysis of household wastes as feedstock for polyhydroxyalkanoate production in Rhodospirillum rubrum.

    Science.gov (United States)

    Revelles, Olga; Beneroso, Daniel; Menéndez, J Angel; Arenillas, Ana; García, J Luis; Prieto, M Auxiliadora

    2017-11-01

    The massive production of urban and agricultural wastes has promoted a clear need for alternative processes of disposal and waste management. The potential use of municipal solid wastes (MSW) as feedstock for the production of polyhydroxyalkanoates (PHA) by a process known as syngas fermentation is considered herein as an attractive bio-economic strategy to reduce these wastes. In this work, we have evaluated the potential of Rhodospirillum rubrum as microbial cell factory for the synthesis of PHA from syngas produced by microwave pyrolysis of the MSW organic fraction from a European city (Seville). Growth rate, uptake rate, biomass yield and PHA production from syngas in R. rubrum have been analysed. The results revealed the strong robustness of this syngas fermentation where the purity of the syngas is not a critical constraint for PHA production. Microwave-induced pyrolysis is a tangible alternative to standard pyrolysis, because it can reduce cost in terms of energy and time as well as increase syngas production, providing a satisfactory PHA yield. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. Exact probability distribution function for the volatility of cumulative production

    Science.gov (United States)

    Zadourian, Rubina; Klümper, Andreas

    2018-04-01

    In this paper we study the volatility and its probability distribution function for the cumulative production based on the experience curve hypothesis. This work presents a generalization of the study of volatility in Lafond et al. (2017), which addressed the effects of normally distributed noise in the production process. Due to its wide applicability in industrial and technological activities we present here the mathematical foundation for an arbitrary distribution function of the process, which we expect will pave the future research on forecasting of the production process.

  5. Reactions of oxygen containing structures in coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hodek, W.; Kirschstein, J.; Van Heek, K.-H. (DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany, F.R.))

    1991-03-01

    In coal pyrolysis O-containing structures such as ether bridges and phenolic groups play an important role. Their reactions were studied by non-isothermal pyrolysis of a high volatile bituminous coal and some model polymers with gas chromatographic detection of the gaseous pyrolysis products. The coal was separated into the maceral groups vitrinite, exinite and inertinite, which showed markedly different pyrolysis behaviour. The formation of CO, methane and benzene was measured versus temperature. By comparison with polyphenyleneoxide and phenol-formaldehyde resins, it was found that the main volatilization, during which most of the tar is evolved, is initiated by cleavage of alkyl-aryl-ethers. Rearrangements of the primarily formed radicals lead to the formation of CO and methane at higher temperatures. 5 refs., 8 figs., 1 tab.

  6. TG-FTIR analysis of biomass pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Bassilakis, R.; Carangelo, R.M.; Wojtowicz, M.A. [Advanced Fuel Research Inc., Hartford, CT (United States)

    2001-10-09

    A great need exists for comprehensive biomass-pyrolysis models that could predict yields and evolution patterns of selected volatile products as a function of feedstock characteristics and process conditions. A thermogravimetric analyzer coupled with Fourier transform infrared analysis of evolving products (TG-FTIR) can provide useful input to such models in the form of kinetic information obtained under low heating rate conditions. In this work, robust TG-FTIR quantification routes were developed for infrared analysis of volatile products relevant to biomass pyrolysis. The analysis was applied to wheat straw, three types of tobacco (Burley, Oriental, and Bright) and three biomass model compounds (xylan, chlorogenic acid, and D-glucose). Product yields were compared with literature data, and species potentially quantifiable by FT-IR are reviewed. Product-evolution patterns are reported for all seven biomass samples. 41 refs., 7 figs., 2 tabs.

  7. Contamination of Optical Surfaces Under Irradiation by Outgassed Volatile Products

    International Nuclear Information System (INIS)

    Khasanshin, R. H.; Grigorevskiy, A. V.; Galygin, A. N.; Alexandrov, N. G.

    2009-01-01

    Deposition of outgassed products of a polymeric composite on model material surfaces being irradiated by electrons and protons with initial energies of E e = 40 keV and E p = 30 keV respectively was studied. It was shown that deposition of volatile products on model material surfaces being under ionizing radiations results in increase of organic film growth rate.

  8. Sustainable Production of Bio-Combustibles from Pyrolysis of Agro-Industrial Wastes

    Directory of Open Access Journals (Sweden)

    Maurizio Volpe

    2014-11-01

    Full Text Available Evaluation of the sustainability of biomass pyrolysis requires a thorough assessment of the product yields and energy densities. With this purpose, a laboratory scale fixed bed reactor (FBR was adapted from the standard Gray-King (GK assay test on coal to conduct fixed bed pyrolysis experiments on agricultural and agro-industrial by-products. The present study provides results on the pyrolysis of two types of biomass: chipped olive tree trimmings (OT and olive pomace (OP. Solid (char and liquid (tar product yields are reported. Mass yields are determined and compared with values obtained in similar works. Results indicate that char yield decreases from 49% (OT-db and 50% (OP-db at 325 °C to 26% (OT db and 30% (OP-db at 650 °C. Tar yield is almost constant (42% at different reaction temperatures for OT, while it decreases slightly from 42% to 35% for OP. Energy density of the products at different peak temperatures is almost constant for OT (1.2, but slightly increases for OP (from a value of 1.3 to a value of 1.4.

  9. Lignin-rich biomass of cotton by-products for biorefineries via pyrolysis.

    Science.gov (United States)

    Chen, Jiao; Liang, Jiajin; Wu, Shubin

    2016-10-01

    Pyrolysis was demonstrated to investigate the thermal decomposition characteristics and potential of lignin-rich cotton by-products cotton exocarp (CE) and spent mushroom substrate consisted of cotton by-products (MSC) for biorefineries. The chemical component and structure alteration of CE and MSC was found to affect their thermochemical behaviors. The bio-oil yield from CE was 58.13wt% while the maximum yield from MSC was 45.01% at 600°C. The phenolic compounds obtained from CE and MSC were 33.9% and 39.2%, respectively. The yield of acetic acid from MSC between 400 and 600°C was about 30-38% lower than that from CE, which suggests the high quality of bio-oil was obtained. Biochar from MSC via slow pyrolysis had a high mass yield (44.38wt%) with well-developed pore structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Hydrogen production via catalytic steam reforming of fast pyrolysis oil fractions

    International Nuclear Information System (INIS)

    Wang, D.; Czernik, S.; Montane, D.; Mann, M.; Chornet, E.

    1997-01-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells, and as a co-adjuvant or autonomous transportation fuel in internal combustion engines. The conversion of biomass to hydrogen can be carried out through two distinct thermochemical strategies: (a) gasification followed by shift conversion; (b) catalytic steam reforming and shift conversion of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper shows that fast pyrolysis of biomass results in a bio-oil that can be adequately fractionated into valuable co-products leaving as by-product an aqueous fraction containing soluble organics (a mixture of alcohols, aldehydes and acids). This fraction can be converted to hydrogen by catalytic steam reforming followed by a shift conversion step. The methods used, the yields obtained and their economic significance will be discussed. (author)

  11. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production

    International Nuclear Information System (INIS)

    Chiaramonti, David; Prussi, Matteo; Buffi, Marco; Rizzo, Andrea Maria; Pari, Luigi

    2017-01-01

    Highlights: • A review of microalgae thermochemical conversion to bioliquids was carried out. • We focused on pyrolysis and hydrothermal liquefaction for biocrude/biofuels. • Original experimental research on microalgae pyrolysis was also carried out. • Starvation does not impact significant on the energy content of the biocrude. • This result is relevant for designing full scale microalgae production plants. - Abstract: Advanced Biofuels steadily developed during recent year, with several highly innovative processes and technologies explored at various scales: among these, lignocellulosic ethanol and CTO (Crude Tall Oil)-biofuel technologies already achieved early-commercial status, while hydrotreating of vegetable oils is today fully commercial, with almost 3.5 Mt/y installed capacity worldwide. In this context, microalgae grown in salt-water and arid areas represent a promising sustainable chain for advanced biofuel production but, at the same time, they also represent a considerable challenge. Processing microalgae in an economic way into a viable and sustainable liquid biofuel (a low-cost mass-product) is not trivial. So far, the most studied microalgae-based biofuel chain is composed by microorganism cultivation, lipid accumulation, oil extraction, co-product valorization, and algae oil conversion through conventional esterification into Fatty Acids Methyl Esters (FAME), i.e. Biodiesel, or Hydrotreated Esters and Fatty Acids (HEFA), the latter representing a very high quality drop-in biofuel (suitable either for road transport or for aviation). However, extracting the algae oil at low cost and industrial scale is not yet a mature process, and there is not yet industrial production of algae-biofuel from these two lipid-based chains. Another option can however be considered: processing the algae through dedicated thermochemical reactors into advanced biofuels, thus approaching the downstream processing of algae in a completely different way than

  12. Microwave-assisted and carbonaceous catalytic pyrolysis of crude glycerol from biodiesel waste for energy production

    International Nuclear Information System (INIS)

    Ng, Jo-Han; Leong, Swee Kim; Lam, Su Shiung; Ani, Farid Nasir; Chong, Cheng Tung

    2017-01-01

    Highlights: • Crude glycerol is pyrolysed catalytically via microwave irradiation to produce bioenergy. • Carbonaceous catalyst elevates pyrolysis temperature and promotes selectivity towards H_2 production. • Synthesis gas consisting of mainly H_2 and CH_4 was predominantly produced at long residence time and high temperature. • Production of bio-oil consisting of oxygenated compounds peaks at intermediate carrier gas flow rate. • Energy profit analysis shows positive energy gained with increasing residence time and decreasing reaction temperature. - Abstract: Biodiesel proliferation as a sustainable fuel has led to a glut of crude glycerol as co-product. This scenario made a previously lucrative co-product in the food and pharmaceutical sectors into a bioresource waste. The present study investigates the utilisation of a microwave-assisted pyrolysis technique to convert crude glycerol from biodiesel waste into usable bioenergy source. Operating conditions ranged from a temperature of 300–800 °C at carrier gas flow rates of 100–2000 mL/min, with the effects of carbonaceous catalyst on the selectivity of reaction pathway being investigated. Within the aforementioned conditions, the proportion of products phases is mainly dependent on the residence time inside the quartz reactor, followed by the reaction temperature. This is due to the combined factors of the reaction sequence and provision of activation energy to change product phases. The third factor of carbonaceous catalyst shows a predisposition towards hydrogen gas selectivity, leading to a lower overall gaseous product mass when factoring in products from all phases. An analysis of the energy content revealed that overall energy profit increases with decreasing temperature and increasing residence time. This concurs with solid energy content increasing in the same conditions, while it increases for liquid and gaseous products with decreasing temperature and flow rate, respectively. The

  13. Interaction of x-rays and food pyrolysis products in producing oncogenic transformation in vitro

    International Nuclear Information System (INIS)

    Borek, C.; Ong, A.

    1981-01-01

    In recent years it has become evident from epidemiological and experimental data that a large number of environmental factors, including diet, play a role in modifying the incidence of cancer. Cell culture systems in which oncogenic transformation serves as an end point are powerful tools for evaluating these questions. Using such systems it has been shown recently that pyrolysis products from charred surfaces of broiled meat and fish can transform hamster embryo cells in vitro as well as produce tumors in the animal. Our studies in vitro have demonstrated the oncogenic potential of ionizing radiation in both hamster and human cells and have established in hamster cells the dose response relationship at doses ranging from 1 to 600 rad for x-rays and 0.1 to 150 rad for neutrons. The present work was aimed at evaluating whether there exists a cocarcinogenic interaction between a pyrolysis product and x-rays in their ability to transform hamster embryo cells in vitro. We have found that when cells are exposed to x-rays prior to treatment with the pyrolysis product there appears to be a synergistic interaction between the two agents in their ability to transform the cells

  14. PYROLYSIS OF ISOCHRYSIS MICROALGAE WITH METAL OXIDE CATALYSTS FOR BIO-OIL PRODUCTION

    Directory of Open Access Journals (Sweden)

    TEVFİK AYSU

    2016-12-01

    Full Text Available Pyrolysis of Isochrysis microalgae was carried out in a fixed-bed reactor without and with metal oxide catalysts (CeO2, TiO2, Al2O3 at the temperatures of 450, 500 and 550 oC with a constant heating rate of 40 oC/min. The pyrolysis conditions including catalyst and temperature were studied in terms of their effects on the yields of pyrolysis products and quality. The amount of bio-char, bio-oil and gas products was calculated. The composition of the produced bio-oils was determined by Elemental analysis (EA, Fourier transform infrared spectroscopy (FT-IR, proton nuclear magnetic resonance (1H NMR and Gas chromatography/mass spectrometry (GC–MS techniques. As a result of the pyrolysis experiments, it is shown that there have been significant effects of both catalyst and temperature on the conversion of Isochrysis microalgae into solid, liquid (bio-oil and gas products. The highest bio-oil yield (24.30 % including aqueous phase was obtained in the presence of TiO2 (50% as catalyst at 500 °C. 98 different compounds were identified by GC-MS in bio-oils obtained at 500 oC. According to 1H NMR analysis, bio-oils contained ∼60-64 % aliphatic and ∼17-19 % aromatic structural units. EA showed that the bio-oils contained ∼66-69 % C and having 31-34 MJ/kg higher heating values.

  15. Pyrolysis and gasification of cashew nut (Anacardium occidentale L.) shell: liquid products characterization

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Renata Andrade; Figueiredo, Flavio Augusto Bueno; Sanchez, Caio Glauco; Sanchez, Elisabete Maria Saraiva [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Combustion Lab.]. E-mails: flavioa@fem.unicamp.br; renataaf@fem.unicamp.br; caio@fem.unicamp.br; bete@fem.unicamp.br; Arauzo, Jesus; Sanchez, Jose Luis; Gonzalo, Alberto [University of Zaragoza (Spain). Aragon Institute of Engineering Research. Thermo-chemical Processes Group (GPT)]. E-mails: qtarauzo@unizar.es; jlsance@unizar.es; agonca@unizar.es

    2008-07-01

    The environment contamination with effluents generated in the biomass pyrolysis process has been waking up the scientific community's interest and concern in a larger number of countries, that are adopting measures to quantify and reduce the generated effluents. The pyrolysis and gasification are processes that can serve as alternative for the recovery of energy in the biomass usage. Considering that Brazil is one of the greatest world producers of biomass, the theme of the biomass usage in the generation of energy has been largely discussed. By the processes of pyrolysis and gasification, depending on the biomass type, the same can be transformed in fuel (liquid, char and gases in different proportions). However, the gases have a level of impurity that should be controlled to use it in a motor or turbine. The main impurities that should be controlled are tars, chars, ashes and nitrogenated compounds. The biomass used in this work is the cashew nut shell, from the Northeast of Brazil. In northeast there are industries that process the cashew nut which can use the cashew nut main reject (shell) as fuel, avoiding landfill sanitary deposit. By thermal conversion of the biomass in the pyrolysis and gasification process, it was quantified the production of solids (char), liquids (tar) and gases. It was evaluated the influences of the final temperature (800, 900 and 1000 deg C) and the use of N{sub 2} in pyrolysis case, and a mixture of N{sub 2} and vapor of water in the gasification case, in the amounts of char, tar and gas. The exhausted gas passes through a tar (liquid) condensation system, which consists of two glass condenser vessels cooled with a mixture of ice and water and an electrostatic precipitator. The liquid fractions are extracted with isopropanol and the sample is analyzed for CG-MS and CG-FID for the identification and quantification of the present compositions. Around 50 different composed have been detected in the liquid fraction obtained, most of

  16. Lignin depolymerization and upgrading via fast pyrolysis and electrocatalysis for the production of liquid fuels and value-added products

    Science.gov (United States)

    Garedew, Mahlet

    The production of liquid hydrocarbon fuels from biomass is needed to replace fossil fuels, which are decreasing in supply at an unsustainable rate. Renewable fuels also address the rising levels of greenhouse gases, an issue for which the Intergovernmental Panel on Climate Change implicated humanity in 2013. In response, the Energy Independence and Security Act (EISA) mandates the production of 21 billion gallons of advanced biofuels by 2022. Biomass fast pyrolysis (BFP) uses heat (400-600 °C) without oxygen to convert biomass to liquids fuel precursors offering an alternative to fossil fuels and a means to meet the EISA mandate. The major product, bio-oil, can be further upgraded to liquid hydrocarbon fuels, while biochar can serve as a solid fuel or soil amendment. The combustible gas co-product is typically burned for process heat. Though the most valuable of the pyrolysis products, the liquid bio-oil is highly oxygenated, corrosive, low in energy content and unstable during storage. As a means of improving bio-oil properties, electrocatalytic hydrogenation (ECH) is employed to reduce and deoxygenate reactive compounds. This work specifically focuses on lignin as a feed material for BFP. As lignin comprises up to 30% of the mass and 40% of the energy stored in biomass, it offers great potential for the production of liquid fuels and value-added products by utilizing fast pyrolysis as a conversion method coupled with electrocatalysis as an upgrading method.

  17. Biomass pyrolysis: use of some agricultural wastes for alternative fuel production

    International Nuclear Information System (INIS)

    Kimura, Lygia Maestri; Santos, Larissa Cardoso; Vieira, Paula Fraga; Parreira, Priciane Martins; Henrique, Humberto Molinar

    2009-01-01

    The use of biomass for energy generation has aroused great attention and interest because of the global climate changes, environmental pollution and reduction of availability of fossil energy. This study deals with pyrolysis of four agricultural wastes (sawdust, sugarcane straw, chicken litter and cashew nut shell) in a fixed bed pyrolytic reactor. The yields of char, liquid and gas were quantified at 300, 400, 500, 600 and 700 deg C and the temperature and pressure effects were investigated. Pyrolytic liquids produced were separated into aqueous and oil phases. XRF spectroscopy was used for qualitative and quantitative elemental analysis of the liquids and solids produced at whole temperature range. Calorific value analysis of liquids and solids were also performed for energy content evaluation. Experimental results showed sawdust, sugarcane straw and cashew nut waste have very good potential for using in pyrolysis process for alternative fuel production. (author)

  18. Catalysis Meets Nonthermal Separation for the Production of (Alkyl)phenols and Hydrocarbons from Pyrolysis Oil.

    Science.gov (United States)

    Cao, Zhengwen; Engelhardt, Jan; Dierks, Michael; Clough, Matthew T; Wang, Guang-Hui; Heracleous, Eleni; Lappas, Angelos; Rinaldi, Roberto; Schüth, Ferdi

    2017-02-20

    A simple and efficient hydrodeoxygenation strategy is described to selectively generate and separate high-value alkylphenols from pyrolysis bio-oil, produced directly from lignocellulosic biomass. The overall process is efficient and only requires low pressures of hydrogen gas (5 bar). Initially, an investigation using model compounds indicates that MoC x /C is a promising catalyst for targeted hydrodeoxygenation, enabling selective retention of the desired Ar-OH substituents. By applying this procedure to pyrolysis bio-oil, the primary products (phenol/4-alkylphenols and hydrocarbons) are easily separable from each other by short-path column chromatography, serving as potential valuable feedstocks for industry. The strategy requires no prior fractionation of the lignocellulosic biomass, no further synthetic steps, and no input of additional (e.g., petrochemical) platform molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Temperature influence on the fast pyrolysis of manure samples: char, bio-oil and gases production

    Science.gov (United States)

    Fernandez-Lopez, Maria; Anastasakis, Kostas; De Jong, Wiebren; Valverde, Jose Luis; Sanchez-Silva, Luz

    2017-11-01

    Fast pyrolysis characterization of three dry manure samples was studied using a pyrolyzer. A heating rate of 600°C/s and a holding time of 10 s were selected to reproduce industrial conditions. The effect of the peak pyrolysis temperature (600, 800 and 1000°C) on the pyrolysis product yield and composition was evaluated. Char and bio-oil were gravimetrically quantified. Scanning electron microscopy (SEM) was used to analyse the char structure. H2, CH4, CO and CO2 were measured by means of gas chromatography (GC). A decrease in the char yield and an increase of the gas yield were observed when temperature increased. From 800°C on, it was observed that the char yield of samples Dig R and SW were constant, which indicated that the primary devolatilization reactions stopped. This fact was also corroborated by GC analysis. The bio-oil yield slightly increased with temperature, showing a maximum of 20.7 and 27.8 wt.% for samples Pre and SW, respectively, whereas sample Dig R showed a maximum yield of 16.5 wt.% at 800°C. CO2 and CO were the main released gases whereas H2 and CH4 production increased with temperature. Finally, an increase of char porosity was observed with temperature.

  20. Power production from biomass II with special emphasis on gasification and pyrolysis R and DD

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K; Korhonen, M [eds.; VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The Seminar on Power Production from Biomass II with special emphasis on gasification and pyrolysis R and DD, was organized by VTT Energy on 27 - 28 March 1995 in Espoo, Finland. All seminar speakers were invited in order to give a high-level overview of the achievements of biomass combustion, gasification and flash pyrolysis technologies. The sessions included presentations by all key industrial entrepreneurs in the field. The poster session was open to all groups interested. Globally bioenergy covers about 3 % of the primary energy consumption. Locally it has a significant role in many countries like in Finland, where bioenergy covers almost 15 % and peat 5 % of primary energy consumption. Today`s cost-effective heat and power production is based on industrial wood residues and spent cooking liquors in relatively large industrial units or municipal heating and power stations. Agricultural residues like straw and especially energy crops are becoming more interesting in co-utilization with other biomasses or fossil fuels. The seminar successfully displayed the status of present technologies as well as development targets for new gasification and flash pyrolysis technologies in the coming years. The many industrial participants showed that there are growing business possibilities in many countries all over the world. The proceedings include the most oral presentations given at the Seminar and also abstracts of poster presentations. (orig.)

  1. Temperature influence on the fast pyrolysis of manure samples: char, bio-oil and gases production

    Directory of Open Access Journals (Sweden)

    Fernandez-Lopez Maria

    2017-01-01

    Full Text Available Fast pyrolysis characterization of three dry manure samples was studied using a pyrolyzer. A heating rate of 600°C/s and a holding time of 10 s were selected to reproduce industrial conditions. The effect of the peak pyrolysis temperature (600, 800 and 1000°C on the pyrolysis product yield and composition was evaluated. Char and bio-oil were gravimetrically quantified. Scanning electron microscopy (SEM was used to analyse the char structure. H2, CH4, CO and CO2 were measured by means of gas chromatography (GC. A decrease in the char yield and an increase of the gas yield were observed when temperature increased. From 800°C on, it was observed that the char yield of samples Dig R and SW were constant, which indicated that the primary devolatilization reactions stopped. This fact was also corroborated by GC analysis. The bio-oil yield slightly increased with temperature, showing a maximum of 20.7 and 27.8 wt.% for samples Pre and SW, respectively, whereas sample Dig R showed a maximum yield of 16.5 wt.% at 800°C. CO2 and CO were the main released gases whereas H2 and CH4 production increased with temperature. Finally, an increase of char porosity was observed with temperature.

  2. Power production from biomass II with special emphasis on gasification and pyrolysis R and DD

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Korhonen, M. [eds.] [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The Seminar on Power Production from Biomass II with special emphasis on gasification and pyrolysis R and DD, was organized by VTT Energy on 27 - 28 March 1995 in Espoo, Finland. All seminar speakers were invited in order to give a high-level overview of the achievements of biomass combustion, gasification and flash pyrolysis technologies. The sessions included presentations by all key industrial entrepreneurs in the field. The poster session was open to all groups interested. Globally bioenergy covers about 3 % of the primary energy consumption. Locally it has a significant role in many countries like in Finland, where bioenergy covers almost 15 % and peat 5 % of primary energy consumption. Today`s cost-effective heat and power production is based on industrial wood residues and spent cooking liquors in relatively large industrial units or municipal heating and power stations. Agricultural residues like straw and especially energy crops are becoming more interesting in co-utilization with other biomasses or fossil fuels. The seminar successfully displayed the status of present technologies as well as development targets for new gasification and flash pyrolysis technologies in the coming years. The many industrial participants showed that there are growing business possibilities in many countries all over the world. The proceedings include the most oral presentations given at the Seminar and also abstracts of poster presentations. (orig.)

  3. Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Ted; Agblevor, Foster; Battaglia, Francine; Klein, Michael

    2013-01-18

    The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. The catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.

  4. The use of plant-specific pyrolysis products as biomarkers in peat deposits

    Science.gov (United States)

    Schellekens, Judith; Bradley, Jonathan A.; Kuyper, Thomas W.; Fraga, Isabel; Pontevedra-Pombal, Xabier; Vidal-Torrado, Pablo; Abbott, Geoffrey D.; Buurman, Peter

    2015-09-01

    Peatlands are archives of environmental change that can be driven by climate and human activity. Proxies for peatland vegetation composition provide records of (local) environmental conditions that can be linked to both autogenic and allogenic factors. Analytical pyrolysis offers a molecular fingerprint of peat, and thereby a suite of environmental proxies. Here we investigate analytical pyrolysis as a method for biomarker analysis. Pyrolysates of 48 peatland plant species were compared, comprising seventeen lichens, three Sphagnum species, four non-Sphagnum mosses, eleven graminoids (Cyperaceae, Juncaceae, Poaceae), five Ericaceae and six species from other families. This resulted in twenty-one potential biomarkers, including new markers for lichens (3-methoxy-5-methylphenol) and graminoids (ferulic acid methyl ester). The potential of the identified biomarkers to reconstruct vegetation composition is discussed according to their depth records in cores from six peatlands from boreal, temperate and tropical biomes. The occurrence of markers for Sphagnum, graminoids and lichens in all six studied peat deposits indicates that they persist in peat of thousands of years old, in different vegetation types and under different conditions. In order to facilitate the quantification of biomarkers from pyrolysates, typically expressed as proportion (%) of the total quantified pyrolysis products, an internal standard (5-α-androstane) was introduced. Depth records of the Sphagnum marker 4-isopropenylphenol from the upper 3 m of a Sphagnum-dominated peat, from samples analysed with and without internal standard showed a strong positive correlation (r2 = 0.72, P use of analytical pyrolysis in biomarker research by avoiding quantification of a high number of products.

  5. Thermodynamic analysis of volatile organometallic fission products

    International Nuclear Information System (INIS)

    Auxier II, J.D.; Hall, H.L.; Cressy, Derek

    2016-01-01

    The ability to perform rapid separations in a post nuclear weapon detonation scenario is an important aspect of national security. In the past, separations of fission products have been performed using solvent extraction, precipitation, etc. The focus of this work is to explore the feasibility of using thermochromatography, a technique largely employed in superheavy element chemistry, to expedite the separation of fission products from fuel components. A series of fission product complexes were synthesized and the thermodynamic parameters were measured using TGA/DSC methods. Once measured, these parameters were used to predict their retention times using thermochromatography. (author)

  6. Separation of volatile products from solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    White, W W

    1915-10-19

    A process is set forth for the separation of volatile products from solid carbonaceous materials, in which the vapors produced from the carbonaceous material at higher temperatures and withdrawn into the separate vapor chamber are led in succession through the lower temperature vapors as continuously to deposit their condensible ingredients in the chamber by the action of the successive cooler vapors.

  7. Production of fungal volatile organic compounds in bedding materials

    OpenAIRE

    S. LAPPALAINEN; A. PASANEN; P. PASANEN

    2008-01-01

    The high relative humidity of the air and many potential growth media, such as bedding materials, hay and grains in the horse stable, for example, provide suitable conditions for fungal growth. Metabolic activity of four common agricultural fungi incubated in peat and wood shavings at 25°C and 4°C was characterized in this study using previously specified volatile metabolites of micro-organisms and CO 2 production as indicators. The volatile organic compounds were collected into Tenax resin a...

  8. Study of mobilization and speciation of trace elements in coal pyrolysis

    International Nuclear Information System (INIS)

    Ting, B.T.G.

    1979-01-01

    Various types of coal contain high levels of a number of trace elements. Little is known of the fates of these trace elements during the conversion of coal to liquid and gaseous products. Studies were undertaken of mobilization and speciation of trace elements in coal pyrolysis, one of the major coal conversion processes. The bituminous coal was pyrolyzed to produce liquid and gaseous products. The pyrolysis products were collected in traps in an inert gas stream. In addition mildly hydrogenated coal was prepared by mixing with tetralin, a hydrogen donor solvent, at boiling temperature. In order to characterize each element specifically during pyrolysis, base samples of coal and mildly hydrogenated coal (H-coal) were spiked with heavy metal sulfides, trace metals bound to partially oxidized coal (coal humates), and halide salts prior to carrying out pyrolysis. Eight elements were investigated in this research. They are As, Br, Cl, Co, Cr, Mn, Se, and V. Pre-spiked hydrogenated coal, i.e., pulverized coal spiked with halide salts and heavy metal sulfides then hydrogenated with tetralin, was prepared and studied for the fates of these elements during pyrolysis. Chlorinated and brominated coals were also prepared to compare the volatility differences between organically and inorganically bound halogens during the pyrolysis reaction. These products and the coal char residues were analyzed for the spiked elements mainly by neutron activation analysis for the spiked elements to determine their degree of volatility. Volatility and recovery (mass balance) will be discussed for those elements that appeared highly volatile during pyrolysis. In order to understand the halogenated compounds in the pyrolysis products, gas chromatograms were taken to the collected pyrolysis products of coal, hydrogenated coal, NaCl spiked coal, NaBr spiked coal, chlorinated coal, and brominated coal

  9. Comparison of ethanol production from corn cobs and switchgrass following a pyrolysis-based biorefinery approach.

    Science.gov (United States)

    Luque, Luis; Oudenhoven, Stijn; Westerhof, Roel; van Rossum, Guus; Berruti, Franco; Kersten, Sascha; Rehmann, Lars

    2016-01-01

    One of the main obstacles in lignocellulosic ethanol production is the necessity of pretreatment and fractionation of the biomass feedstocks to produce sufficiently pure fermentable carbohydrates. In addition, the by-products (hemicellulose and lignin fraction) are of low value, when compared to dried distillers grains (DDG), the main by-product of corn ethanol. Fast pyrolysis is an alternative thermal conversion technology for processing biomass. It has recently been optimized to produce a stream rich in levoglucosan, a fermentable glucose precursor for biofuel production. Additional product streams might be of value to the petrochemical industry. However, biomass heterogeneity is known to impact the composition of pyrolytic product streams, as a complex mixture of aromatic compounds is recovered with the sugars, interfering with subsequent fermentation. The present study investigates the feasibility of fast pyrolysis to produce fermentable pyrolytic glucose from two abundant lignocellulosic biomass sources in Ontario, switchgrass (potential energy crop) and corn cobs (by-product of corn industry). Demineralization of biomass removes catalytic centers and increases the levoglucosan yield during pyrolysis. The ash content of biomass was significantly decreased by 82-90% in corn cobs when demineralized with acetic or nitric acid, respectively. In switchgrass, a reduction of only 50% for both acids could be achieved. Conversely, levoglucosan production increased 9- and 14-fold in corn cobs when rinsed with acetic and nitric acid, respectively, and increased 11-fold in switchgrass regardless of the acid used. After pyrolysis, different configurations for upgrading the pyrolytic sugars were assessed and the presence of potentially inhibitory compounds was approximated at each step as double integral of the UV spectrum signal of an HPLC assay. The results showed that water extraction followed by acid hydrolysis and solvent extraction was the best upgrading strategy

  10. CFD modeling of space-time evolution of fast pyrolysis products in a bench-scale fluidized-bed reactor

    International Nuclear Information System (INIS)

    Boateng, A.A.; Mtui, P.L.

    2012-01-01

    A model for the evolution of pyrolysis products in a fluidized bed has been developed. In this study the unsteady constitutive transport equations for inert gas flow and decomposition kinetics were modeled using the commercial computational fluid dynamics (CFD) software FLUENT-12. The Eulerarian-Eulerian multiphase model system described herein is a fluidized bed of sand externally heated to a predetermined temperature prior to introduction of agricultural biomass. We predict the spontaneous emergence of pyrolysis vapors, char and non-condensable (permanent) gases and confirm the observation that the kinetics are fast and that bio-oil vapor evolution is accomplished in a few seconds, and occupying two-thirds of the spatial volume of the reactor as widely reported in the open literature. The model could be advantageous in the virtual design of fast pyrolysis reactors and their optimization to meet economic scales required for distributed or satellite units. - Highlights: ► We model the evolution of pyrolysis products in a fluidized bed via CFD. ► We predict the spontaneous emergence of pyrolysis products. ► We confirm the experimental observation that the kinetics are fast. ► And that bio-oil vapor evolution is accomplished in a few seconds. ► The model is advantageous in the virtual design of fast pyrolysis reactors.

  11. Liquid biofuel production from volatile fatty acids

    NARCIS (Netherlands)

    Steinbusch, K.J.J.

    2010-01-01

    The production of renewable fuels and chemicals reduces the dependency on fossil fuels and limits the increase of CO2 concentration in the atmosphere only if a sustainable feedstock and an energy efficient process are used. The thesis assesses the possibility to use municipal and industrial waste as

  12. Product quality optimization in an integrated biorefinery: Conversion of pistachio nutshell biomass to biofuels and activated biochars via pyrolysis

    International Nuclear Information System (INIS)

    Işıtan, Seçil; Ceylan, Selim; Topcu, Yıldıray; Hintz, Chloe; Tefft, Juliann; Chellappa, Thiago; Guo, Jicheng; Goldfarb, Jillian L.

    2016-01-01

    Highlights: • Pyrolysis temperature key variable in manipulating biofuel quality. • Pyrolysis temperature does not impact activated biochar surface area. • Activation temperature key variable to optimize surface area of pistachio biochar. • Statistical model accurately predicts surface area of biochar, especially above 600 m"2/g. - Abstract: An economically viable transition to a renewable, sustainable energy future hinges on the ability to simultaneously produce multiple high value products from biomass precursors. Though there is considerable literature on the thermochemical conversion of biomass to biofuels and biochars, there are few holistic examinations that seek to understand trade-offs between biofuel quality and the associated pyrolysis conditions on activated carbons made from the resulting biochars. Using an Ordinary Least Squares regression analysis, this study probes the impact of pyrolysis and activation temperature on surface areas and pore volumes for 28 carbon dioxide-activated carbons. Activation temperature has the largest single impact of any other variable; increasing the temperature from 800 to 900 °C leads to an increase in surface area of more than 300 m"2/g. Contrary to some prior results, pyrolysis temperature has minimal effect on the resulting surface area and pore volume, suggesting that optimizing the temperature at which biofuels are extracted will have little impact on carbon dioxide-activated carbons. Increasing pyrolysis temperature increases methane formation but decreases gaseous hydrocarbons. Bio-oil obtained at lower pyrolysis temperatures shows fewer oxygenated compounds, indicating a greater stability, but higher pyrolysis temperatures maximize production of key biorefinery intermediaries such as furans. By analyzing data in such a holistic manner, it may be possible to optimize the production of biofuels and activated carbons from biomass by minimizing the amount of raw materials and energy necessary to maximize

  13. A kinetic reaction model for biomass pyrolysis processes in Aspen Plus

    International Nuclear Information System (INIS)

    Peters, Jens F.; Banks, Scott W.; Bridgwater, Anthony V.; Dufour, Javier

    2017-01-01

    Highlights: • Predictive kinetic reaction model applicable to any lignocellulosic feedstock. • Calculates pyrolysis yields and product composition as function of reactor conditions. • Detailed modelling of product composition (33 model compounds for the bio-oil). • Good agreement with literature regarding yield curves and product composition. • Successful validation with pyrolysis experiments in bench scale fast pyrolysis rig. - Abstract: This paper presents a novel kinetic reaction model for biomass pyrolysis processes. The model is based on the three main building blocks of lignocellulosic biomass, cellulose, hemicellulose and lignin and can be readily implemented in Aspen Plus and easily adapted to other process simulation software packages. It uses a set of 149 individual reactions that represent the volatilization, decomposition and recomposition processes of biomass pyrolysis. A linear regression algorithm accounts for the secondary pyrolysis reactions, thus allowing the calculation of slow and intermediate pyrolysis reactions. The bio-oil is modelled with a high level of detail, using up to 33 model compounds, which allows for a comprehensive estimation of the properties of the bio-oil and the prediction of further upgrading reactions. After showing good agreement with existing literature data, our own pyrolysis experiments are reported for validating the reaction model. A beech wood feedstock is subjected to pyrolysis under well-defined conditions at different temperatures and the product yields and compositions are determined. Reproducing the experimental pyrolysis runs with the simulation model, a high coincidence is found for the obtained fraction yields (bio-oil, char and gas), for the water content and for the elemental composition of the pyrolysis products. The kinetic reaction model is found to be suited for predicting pyrolysis yields and product composition for any lignocellulosic biomass feedstock under typical pyrolysis conditions

  14. Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes.

    Science.gov (United States)

    Corton, J; Donnison, I S; Patel, M; Bühle, L; Hodgson, E; Wachendorf, M; Bridgwater, A; Allison, G; Fraser, M D

    2016-09-01

    Waste biomass is generated during the conservation management of semi-natural habitats, and represents an unused resource and potential bioenergy feedstock that does not compete with food production. Thermogravimetric analysis was used to characterise a representative range of biomass generated during conservation management in Wales. Of the biomass types assessed, those dominated by rush ( Juncus effuses ) and bracken ( Pteridium aquilinum ) exhibited the highest and lowest volatile compositions respectively and were selected for bench scale conversion via fast pyrolysis. Each biomass type was ensiled and a sub-sample of silage was washed and pressed. Demineralization of conservation biomass through washing and pressing was associated with higher oil yields following fast pyrolysis. The oil yields were within the published range established for the dedicated energy crops miscanthus and willow. In order to examine the potential a multiple output energy system was developed with gross power production estimates following valorisation of the press fluid, char and oil. If used in multi fuel industrial burners the char and oil alone would displace 3.9 × 10 5  tonnes per year of No. 2 light oil using Welsh biomass from conservation management. Bioenergy and product development using these feedstocks could simultaneously support biodiversity management and displace fossil fuels, thereby reducing GHG emissions. Gross power generation predictions show good potential.

  15. Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn-C battery waste.

    Science.gov (United States)

    Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian

    2016-05-01

    Production of zinc and manganese oxide particles from alkaline and zinc-carbon battery black mass was studied by a pyrolysis process at 850-950°C with various residence times under 1L/minN2(g) flow rate conditions without using any additive. The particular and chemical properties of the battery waste were characterized to investigate the possible reactions and effects on the properties of the reaction products. The thermodynamics of the pyrolysis process were studied using the HSC Chemistry 5.11 software. The carbothermic reduction reaction of battery black mass takes place and makes it possible to produce fine zinc particles by a rapid condensation, after the evaporation of zinc from a pyrolysis batch. The amount of zinc that can be separated from the black mass is increased by both pyrolysis temperature and residence time. Zinc recovery of 97% was achieved at 950°C and 1h residence time using the proposed alkaline battery recycling process. The pyrolysis residue is mainly MnO powder with a low amount of zinc, iron and potassium impurities and has an average particle size of 2.9μm. The obtained zinc particles have an average particle size of about 860nm and consist of hexagonal crystals around 110nm in size. The morphology of the zinc particles changes from a hexagonal shape to s spherical morphology by elevating the pyrolysis temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Techno-economic and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Li, Boyan; Ou, Longwen; Dang, Qi; Meyer, Pimphan A.; Jones, Susanne B.; Brown, Robert C.; Wright, Mark

    2015-11-01

    This study evaluates the techno-economic uncertainty in cost estimates for two emerging biorefinery technologies for biofuel production: in situ and ex situ catalytic pyrolysis. Stochastic simulations based on process and economic parameter distributions are applied to calculate biorefinery performance and production costs. The probability distributions for the minimum fuel-selling price (MFSP) indicate that in situ catalytic pyrolysis has an expected MFSP of $4.20 per gallon with a standard deviation of 1.15, while the ex situ catalytic pyrolysis has a similar MFSP with a smaller deviation ($4.27 per gallon and 0.79 respectively). These results suggest that a biorefinery based on ex situ catalytic pyrolysis could have a lower techno-economic risk than in situ pyrolysis despite a slightly higher MFSP cost estimate. Analysis of how each parameter affects the NPV indicates that internal rate of return, feedstock price, total project investment, electricity price, biochar yield and bio-oil yield are significant parameters which have substantial impact on the MFSP for both in situ and ex situ catalytic pyrolysis.

  17. Australian pyrolysis technology leads the world in demonstrating renewable energy production and biosequestration

    International Nuclear Information System (INIS)

    Downie, Adriana; Crosky, Alan; Munroe, Paul; Zwieten, Lukas Van; Cowie, Annette; Chan, Yin; Kimber, Stephen

    2007-01-01

    Full text: Australian-developed slow pyrolysis technology is leading the world in carbon negative (removing C02 from the atmosphere) renewable energy production. The collaborative research, development and commercialisation program between BEST Energies and the NSW Department of Primary Industries (DPI) was awarded the United Nations Association of Australia 2007 World Environment Day Awards top honour for 'Meeting the Greenhouse Challenge'. 'BEST Energies' Australian developed pyrolysis technology is a genuinely innovative project with huge potential to reduce greenhouse gas emissions' according to the UN World Environment Day Awards Judging Panel. The technology has been recognised as a vital tool for climate change mitigation because it not only produces a renewable energy to displace the use of fossil fuel, but it also produces a very stable form of solid carbon which can be beneficially sequestered over the long term in soils. The technology involves heating low grade biomass without oxygen to generate a gaseous biofuel and a very stable, carbon-rich, char product. BEST Energies has a fully integrated pilot plant which has demonstrated the viability of the technology and assisted the design of commercial scale units. It is accepted that immediate action is required to reverse the adverse impacts on atmospheric C02 levels resulting from industrial processes. The logical next step for this technology is immediate industry adoption and large-scale roll out. Preliminary life cycle assessments have demonstrated that pyrolysis technology will deliver significant reductions in atmospheric C02 at a global scale in a relatively short time frame. Prof. Johannes Lehmann from Cornell University estimates that by the end of this century, char schemes and pyrolysis programs could store up to 9.5 billion tons of carbon a year. Once the high carbon char product is added as an amendment to agricultural soils some of the most remarkable and promising benefits of this technology

  18. TECHNO-ECONOMIC ANALYSIS: PRELIMINARY ASSESSMENT OF PYROLYSIS OIL PRODUCTION COSTS AND MATERIAL ENERGY BALANCE ASSOCIATED WITH A TRANSPORTABLE FAST PYROLYSIS SYSTEM

    Directory of Open Access Journals (Sweden)

    Phil Badger

    2011-02-01

    Full Text Available A techno-economic analysis was performed for a 100 dry-ton/day (90,719 kg/day fast pyrolysis transportable plant. Renewable Oil International® LLC provided the life cycle cost of operating a 100 dry-ton/day fast pyrolysis system using southern pine wood chips as feedstock. Since data was not available from an actual large-scale plant, the study examined data obtained from an actual 15 dry-ton/day pilot plant and from several smaller plants. These data were used to obtain base figures to aid in the development of models to generate scaled-up costs for a larger 100 dry-ton/day facility. Bio-oil represented 60% of mass of product yield. The cost for the bio-oil from fast pyrolysis was valued at $0.94/gal. Energy cost bio-oil and char was valued at $6.35/MMBTU. Costs associated with purchasing feedstocks can drastically influence the final cost of the bio-oil. The assumed cost of feedstocks was $25/wet ton or $50/dry ton. This paper is part of a larger study investigating the economic and environmental impacts for producing bio-oil / biocide wood preservatives.

  19. Hydrogen production from biomass pyrolysis gas via high temperature steam reforming process

    International Nuclear Information System (INIS)

    Wongchang, Thawatchai; Patumsawad, Suthum

    2010-01-01

    Full text: The aim of this work has been undertaken as part of the design of continuous hydrogen production using the high temperature steam reforming process. The steady-state test condition was carried out using syngas from biomass pyrolysis, whilst operating at high temperatures between 600 and 1200 degree Celsius. The main reformer operating parameters (e.g. temperature, resident time and steam to biomass ratio (S/B)) have been examined in order to optimize the performance of the reformer. The operating temperature is a key factor in determining the extent to which hydrogen production is increased at higher temperatures (900 -1200 degree Celsius) whilst maintaining the same as resident time and S/B ratio. The effects of exhaust gas composition on heating value were also investigated. The steam reforming process produced methane (CH 4 ) and ethylene (C 2 H 4 ) between 600 to 800 degree Celsius and enhanced production ethane (C 2 H 6 ) at 700 degree Celsius. However carbon monoxide (CO) emission was slightly increased for higher temperatures all conditions. The results show that the use of biomass pyrolysis gas can produce higher hydrogen production from high temperature steam reforming. In addition the increasing reformer efficiency needs to be optimized for different operating conditions. (author)

  20. Production of bio-oil with flash pyrolysis; Biooeljyn tuotanto flash-pyrolyysillae ja sen poltto

    Energy Technology Data Exchange (ETDEWEB)

    Nyroenen, T [Vapo Oy, Jyvaeskylae (Finland)

    1997-12-01

    The target of the R and D work is to study the production of bio-oils using Flash-pyrolysis technology and utilisation of the bio-oil in oil-fuelled boilers. The PDU-unit was installed at VTT Energy in Otaniemi in April 1996. The first test were carried out in June. In the whole project Vapo Oy is responsible for: acquiring the 20 kg/h PDU-device for development; follow up of the engine tests; the investment of 5 MW demonstration plant; to carry on the boiler and engine tests with Finnish bio-oils. (orig.)

  1. Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions.

    Science.gov (United States)

    Morgan, Trevor James; Turn, Scott Q; Sun, Ning; George, Anthe

    2016-01-01

    The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.

  2. Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions.

    Directory of Open Access Journals (Sweden)

    Trevor James Morgan

    Full Text Available The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C and four residence times (between ~1.2 and 12 s. The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals on pyrolysis products is: 1 to increase the dry bio-oil yield, 2 to decrease the amount of undetected material, 3 to produce a slight increase in CO yield or no change, 4 to slightly decrease CO2 yield or no change, and 5 to produce a more stable bio-oil (less aging. Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.

  3. Pyrolysis of azolla, sargassum tenerrimum and water hyacinth for production of bio-oil.

    Science.gov (United States)

    Biswas, Bijoy; Singh, Rawel; Krishna, Bhavya B; Kumar, Jitendra; Bhaskar, Thallada

    2017-10-01

    Pyrolysis of azolla, sargassum tenerrimum and water hyacinth were carried out in a fixed-bed reactor at different temperatures in the range of 300-450°C in the presence of nitrogen (inert atmosphere). The objective of this study is to understand the effect of compositional changes of various aquatic biomass samples on product distribution and nature of products during slow pyrolysis. The maximum liquid product yield of azolla, sargassum tenerrimum and water hyacinth (38.5, 43.4 and 24.6wt.% respectively) obtained at 400, 450 and 400°C. Detailed analysis of the bio-oil and bio-char was investigated using 1 H NMR, FT-IR, and XRD. The characterization of bio-oil showed a high percentage of aliphatic functional groups and presence of phenolic, ketones and nitrogen-containing group. The characterization results showed that the bio-oil obtained from azolla, sargassum tenerrimum and water hyacinth can be potentially valuable as a fuel and chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Power production from biomass III. Gasification and pyrolysis R and D and D for industry

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Korhonen, M. [eds.] [VTT Energy, Espoo (Finland). New Energy Technologies

    1999-07-01

    The Seminar on Power Production from Biomass III. Gasification and Pyrolysis R and D and D for Industry, was held on 14-15 September 1998 in Espoo. The seminar was organised by VTT Energy in co-operation with the University of Groningen, EU-Thermie Programme and Technology Development Centre, Finland (Tekes). Overviews of current activities on power production from biomass and wastes in Europe and in the United States were given, and all European and U. S. demonstration projects on biomass gasification were presented. In Europe, the target is to produce additional 90 Mtoe/a of bioenergy for the market by 2010. This is a huge challenge for the bioenergy sector, including biomass production and harvesting, conversion technology, energy companies, and end users. In USA, U.S. Department of Energy is promoting the Biomass Power Programme to encourage and assist industry in the development and validation of renewable, biomass-based electricity generation systems, the objective being to double the present use of 7 000 MW biomass power by the year 2010. The new Finnish PROGAS Programme initiated by VTT was also introduced. Several gasification projects are today on the demonstration stage prior to entering the commercial level. Pyrolysis technologies are not yet on the demonstration stage on the energy market. Bio-oils can easily be transported, stored and utilised in existing boiler and diesel plants. The proceedings include the presentations given by the keynote speakers and other invited speakers, as well as some extended poster presentations. (orig.)

  5. Time resolved pyrolysis of char

    DEFF Research Database (Denmark)

    Egsgaard, H.; Ahrenfeldt, J.; Henriksen, U.B.

    pyrolysis, and slow heating in direct combination with mass spectrometry, gas chromatography/mass spectrometry and flame ionization detection, respectively. Characteristic ions derived from the flash pyrolysis-gas chromatography/mass spectrometry data enable the release of volatiles to be time and, hence...

  6. Hydrogen-Rich Syngas Production from Gasification and Pyrolysis of Solar Dried Sewage Sludge: Experimental and Modeling Investigations

    Directory of Open Access Journals (Sweden)

    Aïda Ben Hassen Trabelsi

    2017-01-01

    Full Text Available Solar dried sewage sludge (SS conversion by pyrolysis and gasification processes has been performed, separately, using two laboratory-scale reactors, a fixed-bed pyrolyzer and a downdraft gasifier, to produce mainly hydrogen-rich syngas. Prior to SS conversion, solar drying has been conducted in order to reduce moisture content (up to 10%. SS characterization reveals that these biosolids could be appropriate materials for gaseous products production. The released gases from SS pyrolysis and gasification present relatively high heating values (up to 9.96 MJ/kg for pyrolysis and 8.02  9.96 MJ/kg for gasification due to their high contents of H2 (up to 11 and 7 wt%, resp. and CH4 (up to 17 and 5 wt%, resp.. The yields of combustible gases (H2 and CH4 show further increase with pyrolysis. Stoichiometric models of both pyrolysis and gasification reactions were determined based on the global biomass formula, CαHβOγNδSε, in order to assist in the products yields optimization.

  7. Pyrolysis of Polyolefins Using Rotating Arc Plasma Technology for Production of Acetylene

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2017-04-01

    Full Text Available Polyolefin, as one of the most widely used macromolecule materials, has been one of the most serious threats to the environment. Current treatment methods of waste polyolefin including landfill, incineration, and thermal degradation have suffered from severe problems such as secondary pollution and the generation of other toxic substances. In this article, we report for the first time a high-efficiency method to produce high-value C2H2 from polyolefins using a rotating direct current arc plasma reactor, using polyethylene and polypropylene as feedstocks. The essence of this method is that a reductive atmosphere of pyrolysis enables a thermodynamic preference to C2H2 over other carbon-containing gas and the rotating direct current arc plasma reactor allows for a uniform distribution of high temperature to ensure high conversion of polymers. Thermodynamic simulation of product composition was performed, and the effect of plasma input power, polyolefin feed rate, and working gas flow rate on the pyrolysis results was experimentally investigated. It was found that, with proper parameter control, approximately complete conversion of carbon in polyolefin could be obtained, with a C2H2 selectivity higher than 80% and a C2H2 yield higher than 70%. These results not only create new opportunities for the reuse of polymer waste, but are also instructive for the green production of C2H2.

  8. The vacuum pyrolysis of used tires. End-uses for oil and carbon black products

    Energy Technology Data Exchange (ETDEWEB)

    Roy, C.; Chaala, A.; Darmstadt, H. [Institut Pyrovac Inc., Parc Technologique du Quebec Metropolitain, rue Franquet, Sainte-Foy (Canada)

    1999-07-01

    By vacuum pyrolysis, the rubber portion of used tires is transformed into oil and gas and the carbon black filler is recovered as pyrolytic carbon black (CB{sub P}). Several commercial applications for the different products have been investigated and are reported in this article. CB{sub P} surface chemistry and activity are similar to those of commercial carbon blacks. Therefore, CB{sub P} has the potential to replace commercial carbon black grades in certain rubber applications. CB{sub P} was successfully tested as a filler in road pavement. The total pyrolytic oil can be used as a liquid fuel. The oil can also be distilled into different fractions: a light, a middle distillate and a heavy fraction. The light fraction was positively tested as a gasoline additive. Furthermore, this fraction contains valuable chemicals such as d,l-limonene. The middle fraction was successfully tested as a plasticizer in rubbers. The heavy fraction represents a good-quality feedstock for the production of coke and can also be used in road pavements. The pyrolytic gas can be used as a make-up heat source for the pyrolysis process

  9. Slow and fast pyrolysis of Douglas-fir lignin: Importance of liquid-intermediate formation on the distribution of products

    NARCIS (Netherlands)

    Zhou, Shuai; Pecha, Brennan; van Kuppevelt, Michiel; McDonald, Armando G.; Garcia-Perez, Manuel

    2014-01-01

    The formation of liquid intermediates and the distribution of products were studied under slow and fast pyrolysis conditions. Results indicate that monomers are formed from lignin oligomeric products during secondary reactions, rather than directly from the native lignin. Lignin from Douglas-fir

  10. The production of hydrogen-rich gas by wet sludge pyrolysis using waste heat from blast-furnace slag

    International Nuclear Information System (INIS)

    Luo, Siyi; Feng, Yu

    2016-01-01

    Blast furnace (BF) slag, a byproduct of steelmaking industry, contains a large amount of sensible heat and is composed of some metal oxides, which exhibits preferable catalytic performance in improving tar cracking and C_nH_m reforming. This paper presents a heat recovery system from the heat of BF slag, which generates hydrogen-rich gas via the endothermic reactions of sludge pyrolysis. The effects of various parameters including the slag temperature, the mass ratio of slag to sludge (B/S), particle size and feed moisture on product yields and gas characteristics were evaluated separately. It was found that the pyrolysis products distribution was significantly influenced by the BF slag temperature. The differences resulting from varying B/S practically disappear as higher temperature heat carrier is approached. The optimum feed moisture was in favour of sludge pyrolysis by getting char and tar participate in gasification reactions, improving gas yield and quality. BF slag as catalyst can greatly increase H_2 and CO contents of gas by improving tar degradation and reforming of biogas (CO_2 and CH_4). Decreasing the slag particles size was helpful to sludge primary pyrolysis to produce more light gases, less char and condensate, while its effects on gas compositions was not evident. - Highlights: • The sensible heat of molten slag was recovered and converted into combustible gas. • A novel rotary pyrolysis reactor using BF slag as heat carrier was presented. • The moisture in sludge was used as the gasification medium and hydrogen source.

  11. Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.

    Science.gov (United States)

    Li, Ning; Wang, Xiang; Bai, Xueyuan; Li, Zhihe; Zhang, Ying

    2015-10-01

    Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3.

  12. On-line gas chromatography combustion/pyrolysis isotope ratio mass spectrometry (HRGC-C/P-IRMS) of pineapple (Ananas comosus L. Merr.) volatiles.

    Science.gov (United States)

    Preston, Christina; Richling, Elke; Elss, Sandra; Appel, Markus; Heckel, Frank; Hartlieb, Ariane; Schreier, Peter

    2003-12-31

    By use of extracts prepared by liquid-liquid separation of the volatiles from self-prepared juices of pineapple fruits (Ananas comosus) (n = 14) as well as commercial pineapple recovery aromas/water phases (n = 3), on-line capillary gas chromatography-isotope ratio mass spectrometry was employed in the combustion (C) and the pyrolysis (P) modes (HRGC-C/P-IRMS) to determine the delta(13)C(VPDB) and delta(2)H(VSMOW) values of selected pineapple flavor constituents. In addition to methyl 2-methylbutanoate 1, ethyl 2-methylbutanoate 2, methyl hexanoate 3, ethyl hexanoate 4, and 2,5-dimethyl-4-methoxy-3[2H]-furanone 5, each originating from the fruit, the delta(13)C(VPDB) and delta(2)H(VSMOW) data of commercial synthetic 1-5 and "natural" (biotechnologically derived) 1-4 were determined. With delta(13)C(VPDB) data of pineapple volatiles 1-4 varying from -12.8 to -24.4 per thousand, the range expected for CAM metabolism was observed. Compound 5 showed higher depletion from -20.9 to -28.6 per thousand. A similar situation was given for the delta(2)H(VSMOW) values of 3-5 from pineapple ranging from -118 to -191 per thousand, whereas 1 and 2 showed higher depleted values from -184 to -263 per thousand. In nearly all cases, analytical differentiation of 1-5 from pineapple and natural as well as synthetic origin was possible. In general, natural and synthetic 1-5 exhibited delta(13)C(VPDB) data ranging from -11.8 to -32.2 per thousand and -22.7 to -35.9 per thousand, respectively. Their delta(2)H(VSMOW) data were in the range from -242 to -323 per thousand and -49 to -163 per thousand, respectively.

  13. Volatilization and reaction of fission products in flowing steam

    International Nuclear Information System (INIS)

    Johnson, I.; Steidl, D.V.; Johnson, C.E.

    1985-01-01

    The principal risk to the public from nuclear power plants derives from the highly radioactive atoms (fission products) generated as energy is produced in the nuclear fuel. The revolatilization of fission products from reactor system surfaces due to self-heating by radioactive decay has become a complicating factor in the source-term redefinition effort. It has had a major impact on calculations of fission product distributions in accident safety analyses. The focus of this research effort was to investigate the volatilization and transport of fission products and control rod materials in a flowing gaseous steam-hydrogen mixture. Fission product and control rod materials in various combinations were studied including CsI, CsOH, TeO 2 , SrO, Ag, In, Cd and Mn. The vaporization behavior of the deposits were characterized with respect to vaporization rates, chemical species and downstream transport behavior

  14. Pyrolysis of plastic waste for liquid fuel production as prospective energy resource

    Science.gov (United States)

    Sharuddin, S. D. A.; Abnisa, F.; Daud, W. M. A. W.; Aroua, M. K.

    2018-03-01

    The worldwide plastic generation expanded over years because of the variety applications of plastics in numerous sectors that caused the accumulation of plastic waste in the landfill. The growing of plastics demand definitely affected the petroleum resources availability as non-renewable fossil fuel since plastics were the petroleum-based material. A few options that have been considered for plastic waste management were recycling and energy recovery technique. Nevertheless, several obstacles of recycling technique such as the needs of sorting process that was labour intensive and water pollution that lessened the process sustainability. As a result, the plastic waste conversion into energy was developed through innovation advancement and extensive research. Since plastics were part of petroleum, the oil produced through the pyrolysis process was said to have high calorific value that could be used as an alternative fuel. This paper reviewed the thermal and catalytic degradation of plastics through pyrolysis process and the key factors that affected the final end product, for instance, oil, gaseous and char. Additionally, the liquid fuel properties and a discussion on several perspectives regarding the optimization of the liquid oil yield for every plastic were also included in this paper.

  15. Syngas Production from Pyrolysis of Nine Composts Obtained from Nonhybrid and Hybrid Perennial Grasses

    Directory of Open Access Journals (Sweden)

    Adéla Hlavsová

    2014-01-01

    Full Text Available A pyrolysis of compost for the production of syngas with an explicit H2/CO = 2 or H2/CO = 3 was investigated in this study. The composts were obtained from nonhybrid (perennial grasses (NHG and hybrid (perennial grasses (HG. Discrepancies in H2 evolution profiles were found between NHG and HG composts. In addition, positive correlations for NHG composts were obtained between (i H2 yield and lignin content, (ii H2 yield and potassium content, and (iii CO yield and cellulose content. All composts resulted in H2/CO = 2 and five of the nine composts resulted in H2/CO = 3. Exceptionally large higher heating values (HHVs of pyrolysis gas, very close to HHVs of feedstock, were obtained for composts made from mountain brome (MB, 16.23 MJ/kg, hybrid Becva (FB, 16.45 MJ/kg, and tall fescue (TF, 17.43 MJ/kg. The MB and FB composts resulted in the highest syngas formation with H2/CO = 2, whereas TF compost resulted in the highest syngas formation with H2/CO = 3.

  16. Volatility

    Directory of Open Access Journals (Sweden)

    María Sánchez

    2016-11-01

    Full Text Available The action consists of moving with small kicks a tin of cola refresh -without Brand-from a point of the city up to other one. During the path I avoid bollards, the slope differences between sidewalks, pedestrians, parked motorcycles, etc. Volatility wants to say exactly that the money is getting lost. That the money is losing by gentlemen and by ladies who are neither financial sharks, nor big businessmen… or similarly, but ingenuous people, as you or as me, who walk down the street.

  17. Experimental apparatus for furfural production from logging waste products by pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Karlivans, V.; Krumina, Z.; Zemite, G.; Kulkevics, A.; Pugulis, J.; Zav' yalov, V.A.; Ievins, I.; Daugavietis, M.; Tsirlin, Yu.A.; Fedotova, S.A.

    1981-01-01

    An experimental apparatus was developed for the manufacture of furfural (I) -containing condensates by pyrolysis of wood waste in the presence of 1.8% H2SO4. The highest yield of I (7.6%) was obtained when the waste was pyrolyzed at 210 degrees. The heat required for the manufacture of I-containing condensates is 712 kcal/kg. Commercial I isolated from the condensates meets the standards of GOST 10337-71.

  18. Integrated supply chain design for commodity chemicals production via woody biomass fast pyrolysis and upgrading.

    Science.gov (United States)

    Zhang, Yanan; Hu, Guiping; Brown, Robert C

    2014-04-01

    This study investigates the optimal supply chain design for commodity chemicals (BTX, etc.) production via woody biomass fast pyrolysis and hydroprocessing pathway. The locations and capacities of distributed preprocessing hubs and integrated biorefinery facilities are optimized with a mixed integer linear programming model. In this integrated supply chain system, decisions on the biomass chipping methods (roadside chipping vs. facility chipping) are also explored. The economic objective of the supply chain model is to maximize the profit for a 20-year chemicals production system. In addition to the economic objective, the model also incorporates an environmental objective of minimizing life cycle greenhouse gas emissions, analyzing the trade-off between the economic and environmental considerations. The capital cost, operating cost, and revenues for the biorefinery facilities are based on techno-economic analysis, and the proposed approach is illustrated through a case study of Minnesota, with Minneapolis-St. Paul serving as the chemicals distribution hub. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Production of fungal volatile organic compounds in bedding materials

    Directory of Open Access Journals (Sweden)

    S. LAPPALAINEN

    2008-12-01

    Full Text Available The high relative humidity of the air and many potential growth media, such as bedding materials, hay and grains in the horse stable, for example, provide suitable conditions for fungal growth. Metabolic activity of four common agricultural fungi incubated in peat and wood shavings at 25°C and 4°C was characterized in this study using previously specified volatile metabolites of micro-organisms and CO 2 production as indicators. The volatile organic compounds were collected into Tenax resin and analysed by gas chromatography. Several microbial volatile organic compounds (MVOCs, e.g. 1-butanol, 2-hexanone, 2-heptanone, 3-octanone, 1-octen-3-ol and 1-octanol were detected in laboratory experiments; however, these accounted for only 0.08-1.5% of total volatile organic com-pounds (TVOCs. Emission rates of MVOCs were 0.001-0.176 mg/kg of bedding materials per hour. Despite some limitations of the analytical method, certain individual MVOCs, 2-hexanone, 2-hep-tanone and 3-octanone, were also detected in concentrations of less than 4.6 mg/m 3 (0.07-0.31% of TVOC in a horse stable where peat and shavings were used as bedding materials. MVOC emission rate was estimated to be 0.2-2.0 mg/kg ´ h -1 from bedding materials in the stable, being about ten times higher than the rates found in the laboratory experiments. Some compounds, e.g. 3-octanone and 1-octen-3-ol, can be assumed to originate mainly from microbial metabolisms.;

  20. Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene

    International Nuclear Information System (INIS)

    Önal, Eylem; Uzun, Başak Burcu; Pütün, Ayşe Eren

    2014-01-01

    Highlights: • We investigate to see the effect of HDPE addition on thermal decomposition of lignocellulosic materials. • Increasing the proportion of HDPE in mixtures increases the oil yields. • After co-pyrolysis applied, obtained oil is more stable due to having lower oxygen content and higher heating value. • The addition of HDPE to aS has a positive effect on fuel properties of obtained oil. - Abstract: Biomass from almond shell (aS) was co-pyrolyzed with high density polyethylene (HDPE) polymer to investigate the synergistic effects on the product yields and compositions. The pyrolysis temperature was selected as 500 °C, based on results of TGA-DTG. Co-pyrolysis of HDPE-biomass mixtures were pyrolysed with various proportions such as 1:0, 1:1, 1:2, 2:1 and 0:1. The yield of liquids produced during co-pyrolysis enhanced 23%, as the weight ratio of HDPE in the mixture was doubled. Obtained bio-oils were analyzed with using column chromatography, 1 H NMR, GC/MS, and FT-IR. According to analyses results, produced liquids by co-pyrolysis had higher carbon (26% higher) and hydrogen contents (78% higher), lower oxygen content (%86 less) with a higher heating value (38% higher) than those of biomass oil

  1. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization.

    Science.gov (United States)

    Tinwala, Farha; Mohanty, Pravakar; Parmar, Snehal; Patel, Anant; Pant, Kamal K

    2015-01-01

    Pyrolysis of woody biomass, agro-residues and seed was carried out at 500 ± 10 °C in a fixed bed pyrolyser. Bio-oil yield was found varying from 20.5% to 47.5%, whereas the biochar and pyrolysis gas ranged from 27.5% to 40% and 24.5% to 40.5%, respectively. Pyrolysis gas was measured for flame temperature along with CO, CO2, H2, CH4 and other gases composition. HHV of biochar (29.4 MJ/kg) and pyrolitic gas (8.6 MJ/kg) of woody biomass was higher analogous to sub-bituminous coal and steam gasification based producer gas respectively, whereas HHV of bio-oil obtained from seed (25.6 MJ/kg) was significantly more than husks, shells and straws. TGA-DTG studies showed the husks as potential source for the pyrolysis. Bio-oils as a major by-product of intermediate pyrolysis have several applications like substitute of furnace oil, extraction of fine chemicals, whereas biochar as a soil amendment for enhancing soil fertility and gases for thermal application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Pyrolysis of Jatropha curcas pressed cake for bio-oil production in a fixed-bed system

    International Nuclear Information System (INIS)

    Jourabchi, Seyed Amirmostafa; Gan, Suyin; Ng, Hoon Kiat

    2014-01-01

    Highlights: • The pyrolysis of Jatropha curcas waste in a fixed-bed rig was studied. • Yield, calorific value, water content and acidity of bio-oil were compared. • Empirical correlations for bio-oil yield and specifications were developed. • Optimisation of bio-oil production based on combined specifications was achieved. - Abstract: This study investigated the effects of pyrolysis parameters on the yield and quality of bio-oil from Jatropha curcas pressed cake. This biomass was pyrolysed in a fixed-bed reactor over a temperature range of 573.15 K to 1073.15 K and a nitrogen linear speed range of 7.8 × 10 −5 m/s to 6.7 × 10 −2 m/s. The heating rate and biomass grain size were 50 K/min and <2 mm, respectively. The bio-oils were tested for the gross calorific value, water content and acidity. The pyrolysis process was simulated using Thermo-Gravimetric Analysis (TGA) and Differential Scanning Calorimeter (DSC) for mass and energy balances analyses. Empirical correlations between the bio-oil specifications and pyrolysis parameters were developed using linear and nonlinear multiple regression methods for process optimisation. At optimum pyrolysis conditions, above 50% of the waste is converted to bio-oil with less than 30% water content, a gross calorific value of 15.12 MJ/kg and a pH of 6.77

  3. Flash pyrolysis at high temperature of ligno-cellulosic biomass and its components - production of synthesis gas

    International Nuclear Information System (INIS)

    Couhert, C.

    2007-11-01

    Pyrolysis is the first stage of any thermal treatment of biomass and governs the formation of synthesis gas for the production of electricity, hydrogen or liquid fuels. The objective of this work is to establish a link between the composition of a biomass and its pyrolysis gas. We study experimental flash pyrolysis and fix the conditions in which quantities of gas are maximal, while aiming at a regime without heat and mass transfer limitations (particles about 100 μm): temperature of 950 C and residence time of about 2 s. Then we try to predict gas yields of any biomass according to its composition, applicable in this situation where thermodynamic equilibrium is not reached. We show that an additivity law does not allow correlating gas yields of a biomass with fractions of cellulose, hemi-cellulose and lignin contained in this biomass. Several explanations are suggested and examined: difference of pyrolytic behaviour of the same compound according to the biomass from which it is extracted, interactions between compounds and influence of mineral matter. With the aim of industrial application, we study pyrolysis of millimetric and centimetric size particles, and make a numerical simulation of the reactions of pyrolysis gases reforming. This simulation shows that the choice of biomass affects the quantities of synthesis gas obtained. (author)

  4. Modelling of biomass pyrolysis

    International Nuclear Information System (INIS)

    Kazakova, Nadezhda; Petkov, Venko; Mihailov, Emil

    2015-01-01

    Pyrolysis is an essential preliminary step in a gasifier. The first step in modelling the pyrolysis process of biomass is creating a model for the chemical processes taking place. This model should describe the used fuel, the reactions taking place and the products created in the process. The numerous different polymers present in the organic fraction of the fuel are generally divided in three main groups. So, the multistep kinetic model of biomass pyrolysis is based on conventional multistep devolatilization models of the three main biomass components - cellulose, hemicelluloses, and lignin. Numerical simulations have been conducted in order to estimate the influence of the heating rate and the temperature of pyrolysis on the content of the virgin biomass, active biomass, liquid, solid and gaseous phases at any moment. Keywords: kinetic models, pyrolysis, biomass pyrolysis.

  5. Radiation-induced volatile hydrocarbon production in platelets

    International Nuclear Information System (INIS)

    Radha, E.; Vaishnav, Y.N.; Kumar, K.S.; Weiss, J.F.

    1989-01-01

    Generation of volatile hydrocarbons (ethane, pentane) as a measure of lipid peroxidation was followed in preparations from platelet-rich plasma irradiated in vitro. The hydrocarbons in the headspace of sealed vials containing irradiated and nonirradiated washed platelets, platelet-rich plasma, or platelet-poor plasma increased with time. The major hydrocarbon, pentane, increased linearly and significantly with increasing log radiation dose, suggesting that reactive oxygen species induced by ionizing radiation result in lipid peroxidation. Measurements of lipid peroxidation products may give an indication of suboptimal quality of stored and/or irradiated platelets

  6. Pyrolysis of Mahua seed (Madhuca indica) – Production of biofuel and its characterization

    International Nuclear Information System (INIS)

    Pradhan, Debalaxmi; Singh, R.K.; Bendu, Harisankar; Mund, Rachna

    2016-01-01

    Highlights: • New feedstock reported as its superiority for biofuel production. • At optimum 525 °C the maximum bio-oil yield was 49% and bio-char yield was 18%. • Suitability of bio-oil from Mahua seed could be used an alternative to fossil fuel. • The high calorific value of bio-char indicates as good source of solid fuel. - Abstract: The thermal pyrolysis of Mahua seed (Madhuca indica) has been carried out in the present study to verify its potentiality for biofuel production. Pyrolysis was conducted in a semi-batch reactor at various temperatures from 450 to 600 °C under 30 mL/min nitrogen flow rate and at 20 °C/min constant heating rate. At an optimum temperature of 525 °C, the maximum bio-oil yield of 49% was obtained along with 18% of bio-char. Both the products were further physically and chemically characterized, and their results demonstrated their efficiency and potentiality as beneficial energy resources. The chemical characterizations through FTIR, "1H NMR, and GC–MS showed that the bio-oil consisted of significant number of aliphatic compounds than aromatics. The obtained calorific value of bio-oil was found to be 39.02 MJ/kg which is closer to the calorific values of the conventional petroleum fuels. Moreover, the morphological characteristics of bio-char was carried out using SEM and BET analysis which revealed their macroporous surface with a low surface area of 13.2 m"2/g. Bio-char had calorific value of 26.053 MJ/kg which is more than that of fossil fuel coal. Such favorable outcomes endorse the Mahua seed biofuel as a promising candidate to be used as hydrocarbon fuel and chemical feed stock.

  7. Organic sulphur in macromolecular sedimentary organic matter. II. Analysis of distributions of sulphur-containing pyrolysis products using multivariate techniques

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Eglinton, T.I.; Pool, W.; Leeuw, J.W. de; Eijkel, G.; Boon, J.J.

    1992-01-01

    This study describes the analysis of sulphur-containing products from Curie-point pyrolysis (Py) of eighty-five samples (kerogens, bitumen, and petroleum asphaltenes and coals) using gas chromatography (GC) in combination with sulphur-selective detection. Peak areas of approximately forty individual

  8. Pyrolysis in the Countries of the North Sea Region: Potentially available quantities of biomass waste for biochar production

    NARCIS (Netherlands)

    Kolk, van der J.W.H.; Zwart, K.B.

    2013-01-01

    One of the objectives of the Interreg IVB project Biochar: Climate Saving Soils is to assess the amount of available biomass that could be used for the production of biochar. In this publication the authors give an impression of the amounts of biomass available for pyrolysis.

  9. Report - Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Valkenburg, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walton, C. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, D. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Holladay, J. E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevens, D. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kinchin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Czernik, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-02-01

    The purpose of this design case study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels.

  10. Classification of photobacteria associated with spoilage of fish products by numerical taxanomy and pyrolysis mass spectrometry

    DEFF Research Database (Denmark)

    Dalgaard, Paw; Manfio, G.P.; Goodfellow, M.

    1997-01-01

    , from spoiled products and by using a specific detection method. The data were analysed using the similarity coefficient and the unweighted pair-group with arithmetic averages algorithm. In addition twenty-six of the fish isolates and five reference strains were analysed by Curie-point pyrolysis mass...... sub-groups. One sub-group of psychrotolerant P. phosphoreum strains, which was selected in modified atmosphere packed fish stored at low temperature, was also highlighted using each of the methods. The importance of classifying food spoilage bacteria has been shown and a simple key generated......Forty strains of luminous and non-luminous Photobacterium phosphoreum isolates from cod (Gadus morhua) and seven reference strains of psychrotolerant and mesophilic photobacteria were examined for 156 unit characters in a numerical taxonomic study. The fish strains were isolated from the intestines...

  11. On the composition of volatiles evolved during the production of carbon adsorbents from vegetable wastes

    Energy Technology Data Exchange (ETDEWEB)

    Razvigorova, M; Goranova, M; Minkova, V; Cerny, J [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of Organic Chemistry with Center of Phytochemistry

    1994-11-01

    Gas and liquid products evolved in the process of carbon adsorbent production by steam pyrolysis of apricot stones and coconut shells are investigated. The oils are separated by an extrographic procedure, and the obtained fractions are analysed by gas chromatography-mass spectrometry. The basic part of the identified compounds are derivatives of phenol, guaiacol, veratrol, syringol, resorcinol, free fatty acids and esters of fatty acids. The comparative study of the pyrolysis products of apricot stones and coconut shells reveals some differences, referring mainly to the lipid parts of the raw materials. 17 refs., 1 fig., 6 tabs.

  12. Evaluation of pyrolysis curves for volatile elements in aqueous standards and carbon-containing matrices in electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.F. [Delft University of Technology, Faculty of Applied Sciences, DelftChemTech, Julianalaan 136, 2628 BL Delft (Netherlands); Universidade Federal de Santa Catarina, Departamento de Quimica, 88040-900 Florianopolis, SC (Brazil); Welz, B. [Universidade Federal de Santa Catarina, Departamento de Quimica, 88040-900 Florianopolis, SC (Brazil); Loos-Vollebregt, M.T.C. de [Delft University of Technology, Faculty of Applied Sciences, DelftChemTech, Julianalaan 136, 2628 BL Delft (Netherlands)], E-mail: m.t.c.deloos-vollebregt@tudelft.nl

    2008-07-15

    Pyrolysis curves in electrothermal atomic absorption spectrometry (ET AAS) and electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) have been compared for As, Se and Pb in lobster hepatopancreas certified reference material using Pd/Mg as the modifier. The ET AAS pyrolysis curves confirm that the analytes are not lost from the graphite furnace up to a pyrolysis temperature of 800 deg. C. Nevertheless, a downward slope of the pyrolysis curve was observed for these elements in the biological material using ETV-ICP-MS. This could be related to a gain of sensitivity at low pyrolysis temperatures due to the matrix, which can act as carrier and/or promote changes in the plasma ionization equilibrium. Experiments with the addition of ascorbic acid to the aqueous standards confirmed that the higher intensities obtained in ETV-ICP-MS are related to the presence of organic compounds in the slurry. Pyrolysis curves for As, Se and Pb in coal and coal fly ash were also investigated using the same Pd/Mg modifier. Carbon intensities were measured in all samples using different pyrolysis temperatures. It was observed that pyrolysis curves for the three analytes in all slurry samples were similar to the corresponding graphs that show the carbon intensity for the same slurries for pyrolysis temperatures from 200 deg. C up to 1000 deg. C.

  13. Method for Hot Real-Time Analysis of Pyrolysis Vapors at Pilot Scale

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, Marc D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-29

    Pyrolysis oils contain more than 400 compounds, up to 60% of which do not re-volatilize for subsequent chemical analysis. Vapor chemical composition is also complicated as additional condensation reactions occur during quenching and collection of the product. Due to the complexity of the pyrolysis oil, and a desire to catalytically upgrade the vapor composition before condensation, online real-time analytical techniques such as Molecular Beam Mass Spectrometry (MBMS) are of great use. However, in order to properly sample hot pyrolysis vapors at the pilot scale, many challenges must be overcome.

  14. Determination of volatile organic compounds in eucalyptus fast pyrolysis bio-oil by full evaporation headspace gas chromatography.

    Science.gov (United States)

    Kosinski Lima, Nathalya; Romualdo Lopes, André; Gimenes Guerrero, Palimecio; Itsuo Yamamoto, Carlos; Augusto Hansel, Fabricio

    2018-01-01

    This paper reports a full evaporation (FE) headspace gas chromatographic (HS-GC) method for the determination of the volatile organic compounds (VOCs) in bio-oil (i.e. methanol, ethanol, acetone, acetic acid and furfural). The method uses a 4μL sample of bio-oil in a headspace vial (ca. 20mL). Complete evaporation of the compounds was achieved after seven minutes at 90°C. The method showed good precision and accuracy for methanol, ethanol, acetone and acetic acid. The recovery of furfural was low (74.3%). The results showed that the protocol can be applied for the determination of methanol, ethanol, acetone and acetic acid in bio-oil. Detection limits ranged from 0.13 to 0.16μg. Acetic acid was the dominant analyte in the heavy bio-oil and light bio-oil analysis (113. 3 and 85.1µgmg -1 , respectively), followed by methanol, ethanol, and acetone. The polymerisation of furfural was suspected as the cause of its poor quantification. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Volatile fatty acids production in ruminants and the role of ...

    African Journals Online (AJOL)

    Yomi

    organic volatile fatty acids (VFAs) and microbial protein then become available to the host. .... BE, Drewes LR (2003). Molecular features, regulation and ... Dynamics of ruminal volatile fatty acids in black and white bulls before and after feeding ...

  16. Production of brown algae pyrolysis oils for liquid biofuels depending on the chemical pretreatment methods

    International Nuclear Information System (INIS)

    Choi, Joonhyuk; Choi, Jae-Wook; Suh, Dong Jin; Ha, Jeong-Myeong; Hwang, Ji Won; Jung, Hyun Wook; Lee, Kwan-Young; Woo, Hee-Chul

    2014-01-01

    Highlights: • Pyrolysis of Saccharina japonica, brown algae to produce hydrocarbons. • Sulfuric acid pretreatment of macroalgae to remove inorganic elements. • CaCl 2 treatment of macroalgae to remove valuable fucoidan. • Sulfuric acid pretreatment suppressed the formation of large biochar chunks. • The pretreatment methods allowed the continuous operation of pyrolysis. - Abstract: Based on observations of rapidly growing biochar in fluidization beds, kelp (Saccharina japonica), a species of brown algae, was pretreated for the efficient operation of pyrolysis processes to produce pyrolysis oils. The removal of catalytically active inorganic minerals and the softening of polymeric seaweed structures were performed by means of chemical treatments, including a CaCl 2 treatment to isolate valuable and sticky fucoidan and a sulfuric acid treatment to remove catalytically active minerals. The sulfuric acid pretreatment significantly reduced the inorganic elements but did not significantly affect the properties of the pyrolysis oil compared to the non-treated kelp pyrolysis oil. Whereas the non-treated kelp produced significantly large chunks of biochar, which hindered the continuous operation of pyrolysis, the kelp treated with sulfuric acid did not produce aggregated large particles of biochar, thereby offering a means of developing reliable continuous pyrolysis processes

  17. Dual Layer Monolith ATR of Pyrolysis Oil for Distributed Synthesis Gas Production

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Adeniyi [Stevens Institute of Technology, Castle Point Hoboken NJ 07030

    2012-09-29

    We have successfully demonstrated a novel reactor technology, based on BASF dual layer monolith catalyst, for miniaturizing the autothermal reforming of pyrolysis oil to syngas, the second and most critical of the three steps for thermochemically converting biomass waste to liquid transportation fuel. The technology was applied to aged as well as fresh samples of pyrolysis oil derived from five different biomass feedstocks, namely switch-grass, sawdust, hardwood/softwood, golden rod and maple. Optimization of process conditions in conjunction with innovative reactor system design enabled the minimization of carbon deposit and control of the H2/CO ratio of the product gas. A comprehensive techno-economic analysis of the integrated process using in part, experimental data from the project, indicates (1) net energy recovery of 49% accounting for all losses and external energy input, (2) weight of diesel oil produced as a percent of the biomass to be ~14%, and (3) for a demonstration size biomass to Fischer-Tropsch liquid plant of ~ 2000 daily barrels of diesel, the price of the diesel produced is ~$3.30 per gallon, ex. tax. However, the extension of catalyst life is critical to the realization of the projected economics. Catalyst deactivation was observed and the modes of deactivation, both reversible and irreversible were identified. An effective catalyst regeneration strategy was successfully demonstrated for reversible catalyst deactivation while a catalyst preservation strategy was proposed for preventing irreversible catalyst deactivation. Future work should therefore be focused on extending the catalyst life, and a successful demonstration of an extended (> 500 on-stream hours) catalyst life would affirm the commercial viability of the process.

  18. Product Chemistry and Process Efficiency of Biomass Torrefaction, Pyrolysis and Gasification Studied by High-Throughput Techniques and Multivariate Analysis

    Science.gov (United States)

    Xiao, Li

    Despite the great passion and endless efforts on development of renewable energy from biomass, the commercialization and scale up of biofuel production is still under pressure and facing challenges. New ideas and facilities are being tested around the world targeting at reducing cost and improving product value. Cutting edge technologies involving analytical chemistry, statistics analysis, industrial engineering, computer simulation, and mathematics modeling, etc. keep integrating modern elements into this classic research. One of those challenges of commercializing biofuel production is the complexity from chemical composition of biomass feedstock and the products. Because of this, feedstock selection and process optimization cannot be conducted efficiently. This dissertation attempts to further evaluate biomass thermal decomposition process using both traditional methods and advanced technique (Pyrolysis Molecular Beam Mass Spectrometry). Focus has been made on data base generation of thermal decomposition products from biomass at different temperatures, finding out the relationship between traditional methods and advanced techniques, evaluating process efficiency and optimizing reaction conditions, comparison of typically utilized biomass feedstock and new search on innovative species for economical viable feedstock preparation concepts, etc. Lab scale quartz tube reactors and 80il stainless steel sample cups coupled with auto-sampling system were utilized to simulate the complicated reactions happened in real fluidized or entrained flow reactors. Two main high throughput analytical techniques used are Near Infrared Spectroscopy (NIR) and Pyrolysis Molecular Beam Mass Spectrometry (Py-MBMS). Mass balance, carbon balance, and product distribution are presented in detail. Variations of thermal decomposition temperature range from 200°C to 950°C. Feedstocks used in the study involve typical hardwood and softwood (red oak, white oak, yellow poplar, loblolly pine

  19. Occurrence and abatement of volatile sulfur compounds during biogas production.

    Science.gov (United States)

    Andersson, Fräs Annika T; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen

    2004-07-01

    Volatile sulfur compounds (VSCs) in biogas originating from a biogas production plant and from a municipal sewage water treatment plant were identified. Samples were taken at various stages of the biogas-producing process, including upgrading the gas to vehicle-fuel quality. Solid-phase microextraction was used for preconcentration of the VSCs, which were subsequently analyzed using gas chromatography in combination with mass spectrometry. Other volatile organic compounds present also were identified. The most commonly occurring VSCs in the biogas were hydrogen sulfide, carbonyl sulfide, methanethiol, dimethyl sulfide, and dimethyl disulfide, and hydrogen sulfide was not always the most abundant sulfur (S) compound. Besides VSCs, oxygenated organic compounds were commonly present (e.g., ketones, alcohols, and esters). The effect of adding iron chloride to the biogas reactor on the occurrence of VSCs also was investigated. It was found that additions of 500-g/m3 substrate gave an optimal removal of VSCs. Also, the use of a prefermentation step could reduce the amount of VSCs formed in the biogas process. Moreover, in the carbon dioxide scrubber used for upgrading the gas, VSCs were removed efficiently, leaving traces (ppbv levels). The scrubber also removed other organic compounds.

  20. Fast pyrolysis of Miscanthus sinensis in fluidized bed reactors: Characteristics of product yields and biocrude oil quality

    International Nuclear Information System (INIS)

    Bok, Jin Pil; Choi, Hang Seok; Choi, Joon Weon; Choi, Yeon Seok

    2013-01-01

    In the present work, fast pyrolysis of Miscanthus sinensis was performed and the product yields and properties of the resulting biocrude oil were determined for varying reactor configurations and pyrolysis temperatures. Two types of reactors (rectangular and cylindrical fluidized beds) were adopted, and pyrolysis temperature was increased from 400 °C to 550 °C. Based on the results, it was found that the reaction temperature greatly influenced the product yield and the characteristics of biocrude oil. The highest yield of biocrude oil for the rectangular reactor was 48.9 wt.%, produced at 500 °C, and the highest yield for the cylindrical reactor was 50.01 wt.%, produced at 450 °C. Additionally, the biocrude oil yield in the rectangular reactor sharply decreased when reaction temperature was increased to 550 °C, while only a slight decrease was observed in the cylindrical reactor. From GC/MS analysis, biocrude oil was found to contain various chemical components, such as nonaromatic ketones, furans, sugars, lignin-derived phenols, guaiacols and syringols. In particular, the sugar content of the biocrude oil produced in rectangular reactor (2.11–9.35 wt.%) was generally lower than that produced in the cylindrical reactor (7.93–10.79 wt.%). - Highlights: • Fast pyrolysis of Miscanthus sinensis was performed in two fluidized bed reactors to obtain biocrude oil. • The yield and characteristics of the biocrude oil were scrutinized with changing reaction temperature and reactor type. • The reaction temperature was found to be the most influencing parameter for the fast pyrolysis reaction. • The different heating rate caused by reactor type has an effect on the final product yield and characteristics

  1. Pyrolysis-GCMS Analysis of Solid Organic Products from Catalytic Fischer-Tropsch Synthesis Experiments

    Science.gov (United States)

    Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.

    2015-01-01

    Abiotic synthesis of complex organic compounds in the early solar nebula that formed our solar system is hypothesized to occur via a Fischer-Tropsch type (FTT) synthesis involving the reaction of hydrogen and carbon monoxide gases over metal and metal oxide catalysts. In general, at low temperatures (less than 200 C), FTT synthesis is expected to form abundant alkane compounds while at higher temperatures (greater than 200 C) it is expected to product lesser amounts of n-alkanes and greater amounts of alkene, alcohol, and polycyclic aromatic hydrocarbons (PAHs). Experiments utilizing a closed-gas circulation system to study the effects of FTT reaction temperature, catalysts, and number of experimental cycles on the resulting solid insoluble organic products are being performed in the laboratory at NASA Goddard Space Flight Center. These experiments aim to determine whether or not FTT reactions on grain surfaces in the protosolar nebula could be the source of the insoluble organic matter observed in meteorites. The resulting solid organic products are being analyzed at NASA Johnson Space Center by pyrolysis gas chromatography mass spectrometry (PY-GCMS). PY-GCMS yields the types and distribution of organic compounds released from the insoluble organic matter generated from the FTT reactions. Previously, exploratory work utilizing PY-GCMS to characterize the deposited organic materials from these reactions has been reported. Presented here are new organic analyses using magnetite catalyst to produce solid insoluble organic FTT products with varying reaction temperatures and number of experimental cycles.

  2. Co-pyrolysis of lignite and sugar beet pulp

    International Nuclear Information System (INIS)

    Yilgin, M.; Deveci Duranay, N.; Pehlivan, D.

    2010-01-01

    Today, worldwide studies have been undertaken on the biomass usage and co-conversion of biomass and coal to seek out alternative fuels for supplying energy in an environmental friendly way. The objective of this work is to study co-pyrolysis of lignite and sugar beet pulp in 50/50 (wt./wt.) ratio of blend pellets, to elucidate their thermal behaviour under pyrolysis conditions and to assess major decomposition products in terms of their yields. A special chamber, which has enabled very fast heating rates, was used in the pyrolysis experiments carried at 600 deg. C. The results were interpreted in the light of liquid, solid and gaseous yields, resulting from thermal decomposition, and kinetics of thermogravimetric analysis. Proximate volatile matter and ash contents of the blends were different compared to those found by using individual values. Sugar beet pulp decomposed faster within a relatively narrow temperature range than lignite and underwent a significant shrinkage during pyrolysis. It was found that the chars left behind after the flash pyrolysis of these pellets at 600 deg. C have substantial amounts of volatile matter that would evolve upon further heating.

  3. Slow and fast pyrolysis of Douglas-fir lignin: Importance of liquid-intermediate formation on the distribution of products

    International Nuclear Information System (INIS)

    Zhou, Shuai; Pecha, Brennan; Kuppevelt, Michiel van; McDonald, Armando G.; Garcia-Perez, Manuel

    2014-01-01

    The formation of liquid intermediates and the distribution of products were studied under slow and fast pyrolysis conditions. Results indicate that monomers are formed from lignin oligomeric products during secondary reactions, rather than directly from the native lignin. Lignin from Douglas-fir (Pseudotsuga menziesii) wood was extracted using the milled wood enzyme lignin isolation method. Slow pyrolysis using a microscope with hot-stage captured the liquid formation (>150 °C), shrinking, swelling (foaming), and evaporation behavior of lignin intermediates. The activation energy (E a ) for 5–80% conversions was 213 kJ mol −1 , and the pre-exponential factor (log A) was 24.34. Fast pyrolysis tests in a wire mesh reactor were conducted (300–650 °C). The formation of the liquid intermediate was visualized with a fast speed camera (250 Hz), showing the existence of three well defined steps: formation of lignin liquid intermediates, foaming and liquid intermediate swelling, and evaporation and droplet shrinking. GC/MS and UV-Fluorescence of the mesh reactor condensate revealed lignin oligomer formation but no mono-phenols were seen. An increase in pyrolytic lignin yield was observed as temperature increased. The molar mass determined by ESI-MS was not affected by pyrolysis temperature. SEM of the char showed a smooth surface with holes, evidence of a liquid intermediate with foaming; bursting from these foams could be responsible for the removal of lignin oligomers. Py-GC/MS studies showed the highest yield of guaiacol compounds at 450–550 °C. - Highlights: • The formation of a liquid intermediate phase is a critical step during lignin pyrolysis. • The lignin oligomers are thermally ejected from the liquid intermediate phase. • The mono-phenols are formed mainly from the secondary reactions of lignin oligomers

  4. Role of Brønsted acid in selective production of furfural in biomass pyrolysis.

    Science.gov (United States)

    Zhang, Haiyan; Liu, Xuejun; Lu, Meizhen; Hu, Xinyue; Lu, Leigang; Tian, Xiaoning; Ji, Jianbing

    2014-10-01

    In this work, the role of Brønsted acid for furfural production in biomass pyrolysis on supported sulfates catalysts was investigated. The introduction of Brønsted acid was shown to improve the degradation of polysaccharides to intermediates for furfural, which did not work well when only Lewis acids were used in the process. Experimental results showed that CuSO4/HZSM-5 catalyst exhibited the best performance for furfural (28% yield), which was much higher than individual HZSM-5 (5%) and CuSO4 (6%). The optimum reaction conditions called for the mass ratio of CuSO4/HZSM-5 to be 0.4 and the catalyst/biomass mass ratio to be 0.5. The recycled catalyst exhibited low productivity (9%). Analysis of the catalysts by Py-IR revealed that the CuSO4/HZSM-5 owned a stronger Brønsted acid intensity than HZSM-5 or the recycled CuSO4/HZSM-5. Therefore, the existence of Brønsted acid is necessary to achieve a more productive degradation of biomass for furfural. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Fast pyrolysis of creosote treated wood ties in a fluidized bed reactor and analytical characterization of product fractions

    International Nuclear Information System (INIS)

    Jung, Su-Hwa; Koo, Won-Mo; Kim, Joo-Sik

    2013-01-01

    A fraction of creosote treated wood ties was pyrolyzed in a pyrolysis plant equipped with a fluidized bed reactor and char-separation system at different temperatures. Analyses of each pyrolysis product, especially the oil, were carried out using a variety of analytical tools. The maximum oil yield was obtained at 458 °C with a value of 69.3 wt%. Oils obtained were easily separated into two phases, a creosote-derived fraction (CDF) and a wood-derived fraction (WDF). Major compounds of the WDF were acetic acid, furfural and levoglucosan, while the CDF was mainly composed of polycyclic aromatic hydrocarbons (PAHs), such as 1-methylnaphthalene, biphenyl, acenaphthene, dibenzofuran, fluorene, phenanthrene, anthracene, fluoranthene and pyrene. HPLC analysis showed that the concentration of PAHs of the CDF obtained at 458 °C constituted about 22.5 wt% of the oil. - Highlights: • Creosote treated wood ties was stably pyrolyzed in a fluidized bed reactor. • Pyrolysis oil contained extremely low metal content due to the char removal system. • Bio-oil components was quantitatively analyzed by relative response factor. • Creosote-derived pyrolysis oil fraction was composed of PHAs and has a high caloric value (39 MJ/kg)

  6. Mass production of chemicals from biomass-derived oil by directly atmospheric distillation coupled with co-pyrolysis

    Science.gov (United States)

    Zhang, Xue-Song; Yang, Guang-Xi; Jiang, Hong; Liu, Wu-Jun; Ding, Hong-Sheng

    2013-01-01

    Production of renewable commodity chemicals from bio-oil derived from fast pyrolysis of biomass has received considerable interests, but hindered by the presence of innumerable components in bio-oil. In present work, we proposed and experimentally demonstrated an innovative approach combining atmospheric distillation of bio-oil with co-pyrolysis for mass production of renewable chemicals from biomass, in which no waste was produced. It was estimated that 51.86 wt.% of distillate just containing dozens of separable organic components could be recovered using this approach. Ten protogenetic and three epigenetic compounds in distillate were qualitatively identified by gas chromatography/mass spectrometry and quantified by gas chromatography. Among them, the recovery efficiencies of acetic acid, propanoic acid, and furfural were all higher than 80 wt.%. Formation pathways of the distillate components in this process were explored. This work opens up a fascinating prospect for mass production of chemical feedstock from waste biomass. PMID:23350028

  7. Production of volatile organic compounds by cyanobacteria Synechococcus sp.

    Science.gov (United States)

    Hiraiwa, M.; Abe, M.; Hashimoto, S.

    2014-12-01

    Phytoplankton are known to produce volatile organic compounds (VOCs), which contribute to environmental problems such as global warming and decomposition of stratospheric ozone. For example, picophytoplankton, such as Prochlorococcus and Synechococcus, are distributed in freshwater and oceans worldwide, accounting for a large proportion of biomass and primary production in the open ocean. However, to date, little is known about the production of VOCs by picophytoplankton. In this study, VOCs production by cyanobacteria Synechococcus sp. (NIES-981) was investigated. Synechococcus sp. was obtained from the National Institute for Environmental Studies (NIES), Japan, and cultured at 24°C in autoclaved f/2-Si medium under 54 ± 3 µE m-2 s-1 (1 E = 1 mol of photons) with a 12-h light and 12-h dark cycle. VOCs concentrations were determined using a purge-and-trap gas chromatograph-mass spectrometer (Agilent 5973). The concentrations of chlorophyll a (Chl a) were also determined using a fluorometer (Turner TD-700). Bromomethane (CH3Br) and isoprene were produced by Synechococcus sp. Isoprene production was similar to those of other phytoplankton species reported earlier. Isoprene was produced when Chl a was increasing in the early stage of the incubation period (5-15 days of incubation time, exponential phase), but CH3Br was produced when Chl a was reduced in the late stage of the incubation period (30-40 days of incubation time, death phase).

  8. Formation of volatile decomposition products by self-radiolysis of tritiated thymidine

    International Nuclear Information System (INIS)

    Shiba, Kazuhiro; Mori, Hirofumi

    1997-01-01

    In order to estimate the internal exposure dose in an experiment using tritiated thymidine, the rate of volatile 3 H-decomposition of several tritiated thymidine samples was measured. The decomposition rate of (methyl- 3 H)thymidine in water was over 80% in less than one year after initial analysis. (methyl- 3 H)thymidine was decomposed into volatile and non-volatile 3 H-decomposition products. The ratio of volatile 3 H-decomposition products increased with increasing the rate of the decomposition of (methyl- 3 H) thymidine. The volatile 3 H-decomposition products consisted of two components, of which the main component was tritiated water. Internal exposure dose caused by the inhalation of such volatile 3 H-decomposition products of (methyl- 3 H) thymidine was assumed to be several μSv. (author)

  9. Distribution of volatile sulphur containing products during fixed bed pyrolysis and gasification of coals

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1991-08-01

    Various coals were used to study the evolution of H{sub 2}S COS, and SO{sub 2} in a fixed bed reactor. For all types of coal, most of H{sub 2}S and SO{sub 2} were released during the devolatilization stage. COS was formed only during the gasification stage in the presence of CO{sub 2}.

  10. Effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis

    International Nuclear Information System (INIS)

    Huang, Yu-Fong; Chiueh, Pei-Te; Kuan, Wen-Hui; Lo, Shang-Lien

    2015-01-01

    Agricultural residues are abundant resources to produce renewable energy and valuable chemicals. This study focused on the effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis of agricultural residues. When agricultural residues were under microwave radiation within 10 min, the maximum temperatures of approximately 320, 420, and 530 °C were achieved at the microwave power levels of 300, 400, and 500 W, respectively. Gas yield increased with increasing microwave power level, whereas solid and liquid yields decreased. Besides, gaseous products with higher H 2 content and higher calorific values can be obtained at higher microwave power levels. In addition to microwave power level, lignocellulosic composition was also an important factor. H 2 and CO 2 yields increased with increasing hemicellulose content, whereas CH 4 and CO yields increased with increasing cellulose content. Four empirical equations were derived to present the contributions of lignocellulosic materials to the yields of gaseous components. - Highlights: • About 530 °C was reached within 10 min at a microwave power level of 500 W. • Gas yield increased with increasing microwave power level. • A high correlation between hemicellulose content and either H 2 or CO 2 yield. • A high correlation between cellulose content and either CH 4 or CO yield. • Empirical equations depict contribution of lignocellulosic content to gas yield

  11. Effect of Glycerol Pretreatment on Levoglucosan Production from Corncobs by Fast Pyrolysis

    Directory of Open Access Journals (Sweden)

    Liqun Jiang

    2017-11-01

    Full Text Available In this manuscript, glycerol was used in corncobs’ pretreatment to promote levoglucosan production by fast pyrolysis first and then was further utilized as raw material for chemicals production by microbial fermentation. The effects of glycerol pretreatment temperatures (220–240 °C, time (0.5–3 h and solid-to-liquid ratios (5–20% were investigated. Due to the accumulation of crystalline cellulose and the removal of minerals, the levoglucosan yield was as high as 35.8% from corncobs pretreated by glycerol at 240 for 3 h with a 5% solid-to-liquid ratio, which was obviously higher than that of the control (2.2%. After glycerol pretreatment, the fermentability of the recovered glycerol remaining in the liquid stream from glycerol pretreatment was evaluated by Klebsiella pneumoniae. The results showed that the recovered glycerol had no inhibitory effect on the growth and metabolism of the microbe, which was a promising substrate for fermentation. The value-added applications of glycerol could reduce the cost of biomass pretreatment. Correspondingly, this manuscript offers a green, sustainable, efficient and economic strategy for an integrated biorefinery process.

  12. Pretreatment of macroalgae for volatile fatty acid production.

    Science.gov (United States)

    Pham, Thi Nhan; Um, Youngsoon; Yoon, Hyon Hee

    2013-10-01

    In this study, a novel method was proposed for the biological pretreatment of macroalgae (Laminaria japonica, Pachymeniopsis elliptica, and Enteromorpha crinita) for production of volatile fatty acid (VFA) by anaerobic fermentation. The amount of VFA produced from 40 g/L of L. japonica increased from 8.3 g/L (control) to 15.6 g/L when it was biologically pretreated with Vibrio harveyi. The biological treatment of L. japonica with Vibrio spp. was most effective likely due to the alginate lyase activity of Vibrio spp. However, a considerable effect was also observed after biological pretreatment of P. elliptica and E. crinita, which are red and green algae, respectively. Alkaline pretreatment of 40 g/L of L. japonica with 0.5 N NaOH resulted in an increase of VFA production to 12.2 g/L. These results indicate that VFA production from macroalgae can be significantly enhanced using the proposed biological pretreatments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils.

    Science.gov (United States)

    Aysu, Tevfik; Sanna, Aimaro

    2015-10-01

    Pyrolysis of Nannochloropsis was carried out in a fixed-bed reactor with newly prepared ceria based catalysts. The effects of pyrolysis parameters such as temperature and catalysts on product yields were investigated. The amount of bio-char, bio-oil and gas products, as well as the compositions of the resulting bio-oils was determined. The results showed that both temperature and catalyst had significant effects on conversion of Nannochloropsis into solid, liquid and gas products. The highest bio-oil yield (23.28 wt%) and deoxygenation effect was obtained in the presence of Ni-Ce/Al2O3 as catalyst at 500°C. Ni-Ce/Al2O3 was able to retain 59% of the alga starting energy in the bio-oil, compared to only 41% in absence of catalyst. Lower content of acids and oxygen in the bio-oil, higher aliphatics (62%), combined with HHV show promise for production of high-quality bio-oil from Nannochloropsis via Ni-Ce/Al2O3 catalytic pyrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Estimation of volatility of selected oil production projects

    International Nuclear Information System (INIS)

    Costa Lima, Gabriel A.; Suslick, Saul B.

    2006-01-01

    In oil project valuation and investment decision-making, volatility is a key parameter, but it is difficult to estimate. From a traditional investment viewpoint, volatility reduces project value because it increases its discount rate via a higher risk premium. Contrarily, according to the real-option pricing theory, volatility may aggregate value to the project, since the downside potential is limited whereas the upside is theoretically unbounded. However, the estimation of project volatility is very complicated since there is not a historical series of project values. In such cases, many analysts assume that oil price volatility is equal to that of project. In order to overcome such problems, in this paper an alternative numerical method based on present value of future cash flows and Monte Carlo simulation is proposed to estimate the volatility of projects. This method is applied to estimate the volatility of 12 deep-water offshore oil projects considering that oil price will evolve according to one of two stochastic processes: Geometric Brownian Motion and Mean-Reverting Motion. Results indicate that the volatility of commodity usually undervalue that of project. For the set of offshore projects analyzed in this paper, project volatility is at least 79% higher than that of oil prices and increases dramatically in those cases of high capital expenditures and low price. (author)

  15. Methane Pyrolysis for Hydrogen & Carbon Nanotube Recovery from Sabatier Products, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a microgravity and hypogravity compatible catalytic methane pyrolysis reactor is proposed to recover hydrogen which is lost as methane in the...

  16. Production of activated carbon by using pyrolysis process in an ammonia atmosphere

    Science.gov (United States)

    Indayaningsih, N.; Destyorini, F.; Purawiardi, R. I.; Insiyanda, D. R.; Widodo, H.

    2017-04-01

    Activated carbon is materials that have wide applications, including supercapacitor materials, absorbent in chemical industry, and absorbent material in the chemical industry. This study has carried out for the manufacturing of activated carbon from inexpensive materials through efficient processes. Carbon material was made from coconut fibers through pyrolysis process at temperature of 650, 700, 750 and 800°C. Aim of this study was to obtain carbon material that has a large surface area. Pyrolysis process is carried out in an inert atmosphere (N2 gas) at a temperature of 450°C for 30 minutes, followed by pyrolysis process in an ammonia atmosphere at 800°C for 2 hours. The pyrolysis results showed that the etching process in ammonia is occurred; as it obtained some greater surface area when compared with the pyrolisis process in an atmosphere by inert gas only. The resulted activated carbon also showed to have good properties in surface area and total pore volume.

  17. Microwave-assisted pyrolysis of methyl ricinoleate for continuous production of undecylenic acid methyl ester (UAME).

    Science.gov (United States)

    Nie, Yong; Duan, Ying; Gong, Ruchao; Yu, Shangzhi; Lu, Meizhen; Yu, Fengwen; Ji, Jianbing

    2015-06-01

    Undecylenic acid methyl ester (UAME) was continuously produced from methyl ricinoleate using a microwave-assisted pyrolysis system with atomization feeding. The UAME yield of 77 wt.% was obtained at 500°C using SiC as the microwave absorbent and heating medium. The methyl ricinoleate conversion and UAME yield from microwave-assisted pyrolysis process were higher than those from conventional pyrolysis. The effect of temperature on the pyrolysis process was also investigated. The methyl ricinoleate conversion increased but the cracking liquid yield decreased when the temperature increased from 460°C to 560°C. The maximum UAME yield was obtained at the temperature of 500°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Investigation on syngas production via biomass conversion through the integration of pyrolysis and air–steam gasification processes

    International Nuclear Information System (INIS)

    Alipour Moghadam, Reza; Yusup, Suzana; Azlina, Wan; Nehzati, Shahab; Tavasoli, Ahmad

    2014-01-01

    Highlights: • Innovation in gasifier design. • Integration of pyrolysis and steam gasification processes. • Energy saving, improvement of gasifier efficiency, syngas and hydrogen yield. • Overall investigation on gasification parameters. • Optimization conditions of integration of pyrolysis and gasification process. - Abstract: Fuel production from agro-waste has become an interesting alternative for energy generation due to energy policies and greater understanding of the importance of green energy. This research was carried out in a lab-scale gasifier and coconut shell was used as feedstock in the integrated process. In order to acquire the optimum condition of syngas production, the effect of the reaction temperature, equivalence ratio (ER) and steam/biomass (S/B) ratio was investigated. Under the optimized condition, H 2 and syngas yield achieved to 83.3 g/kg feedstock and 485.9 g/kg feedstock respectively, while LHV of produced gases achieved to 12.54 MJ/N m 3

  19. Occurence and dietary exposure of volatile and non-volatile N-Nitrosamines in processed meat products

    DEFF Research Database (Denmark)

    Herrmann, Susan Strange; Duedahl-Olesen, Lene; Granby, Kit

    Nitrite and nitrate have for many decades been used for preservation of meat. However, nitrite can react with secondary amines in meat to form N-Nitrosamines (NAs), many of which have been shown to be genotoxic1 . The use of nitrite therefore ought to be limited as much as possible. To maintain...... a high level of consumer protection Denmark obtains National low limits of the nitrite use in meat products. An estimation of the dietary exposure to volatile NAs (VNA) and non-volatile NAs (NVNA) is necessary when performing a risk assessment of the use of nitrite and nitrate for meat preservation....

  20. Pyrolysis technology for production of biocarbon and energy i the smeltery industry; Pyrolyseteknologi for produksjon av bio-karbon og energi i smelteverksindustrien

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, L.; Christiansen, G.S.

    1997-12-31

    When silicon, Si, is produced from the mineral quartz, SiO{sub 2}, the oxygen molecule is removed by means of carbon as a reduction agent. The process takes place at high temperature. At 2000{sup o}C, however, the SiO which is left upon removal of one O atom too easily forms gas which escapes with the CO gas. This represents a considerable loss. If biocarbon was present, its high reactivity would help reclaim the escaping Si by forming SiC, a valuable solid. Unfortunately, the most suitable biocarbons, which come from charcoal and wood chips, are more expensive than those coming from coal and coke. In Norway, a research programme has been started aiming at optimizing the use of biocarbon in the silicon processes to make it profitable to increase its use. Today, no manufacturer of silicon or ferrosilicon are paying CO{sub 2} tax and the possibility of a distinctly Norwegian CO{sub 2} tax on the process industry is a worrying thought. The smeltery sector is quite particular about the choice of sources for biocarbon. However, current plans and ideas indicate that the concentration on bioenergy and biowoods will be so strong that a sufficient amount of suitable wood can be ``saved`` from total combustion and made to charcoal by pyrolysis. The surplus heat of the volatile constituents should be recovered. The authors of this conference paper believe that cheap and suitable wood would be most easily obtained in Russia, which is also where the heat recovered from the pyrolysis would be most easy to sell. Once charcoal production has been established in Russia, one might think of Russian blocks of wood being delivered to a charcoal plant near a large consumer of steam or hot water in Norway. 1 figure

  1. Methods to assess secondary volatile lipid oxidation products in complex food matrices

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Yesiltas, Betül

    A range of different methods are available to determine secondary volatile lipid oxidation products. These methods include e.g. spectrophotometric determination of anisidine values and TBARS as well as GC based methods for determination of specific volatile oxidation products such as pentanal...... headspace methods on the same food matrices will be presented....

  2. Thermal degradation characteristics and products obtained after pyrolysis of specific polymers found in Waste Electrical and Electronic Equipment

    Institute of Scientific and Technical Information of China (English)

    Evangelia C.Vouvoudi; Aristea T.Rousi; Dimitris S.Achilias

    2017-01-01

    Modern societies strongly support the recycling practices over simple waste accumulation due to environmental harm caused.In the framework of sustainable recycling of plastics from WEEE,pyrolysis is proposed here as a means of obtaining secondary value-added products.The aim of this study was to investigate the thermal degradation and the products obtained after pyrolysis of specific polymers found in the plastic part of WEEE,using thermogravimetric analysis and a pyrolizer equipped with a GC/MS.Polymers studied include ABS,HIPS,PC and a blend having a composition similar to that appearing in WEEE.It was found that,PC shows greater heat endurance compared to the other polymers,whereas ABS depolymerizes in three-steps.The existence of several polymers in the blend results in synergistic effects which decrease the onset and final temperature of degradation.Moreover,the fragmentation occurred in the pyrolyzer,at certain temperatures,resulted in a great variety of compounds,depending on the polymer type,such as monomers,aromatic products,phenolic compounds and hydrocarbons.The main conclusion from this investigation is that pyrolysis could be an effective method for the sustainable recycling of the plastic part of WEEE resulting in a mixture of chemicals with varying composition but being excellent to be used as fuel retrieved from secondary recycling sources.

  3. Production of mono- and bimetallic nanoparticles of noble metals by pyrolysis of organic extracts on silicon dioxide

    International Nuclear Information System (INIS)

    Serga, V; Kulikova, L; Cvetkov, A; Krumina, A; Kodols, M; Chornaja, S; Dubencovs, K; Sproge, E

    2013-01-01

    In the present work the influence of the tri-n-octylammonium (Oct 3 NH + ) salt anion (PtCl 6 2- , PdCl 4 2- , AuCl 4 − ) nature on the phase composition and mean size of crystallites of the extract pyrolysis products on the SiO 2 nanopowder has been studied. The XRD phase analysis of the composites (metal loading 2.4 wt.%) made under the same conditions, at the pyrolysis of Pt- and Au-containing extracts has shown the formation of nanoparticles of Pt (d Pt = 15 nm) and Au (d Au = 33 nm), respectively. The end-product of the pyrolysis of the Pd-containing extract has an admixture phase of PdO along with the main metal phase (d Pd = 21 nm). At the preparation of bimetallic particles (Pt-Pd, Pt-Au, Pd-Au) on the SiO 2 nanopowder it has been found that the nanoparticles of the PtPd alloy, Pt and Au or Pd and Au nanoparticles are the products of the thermal decomposition of two-component mixtures of extracts. The investigation of catalytic properties of the produced composites in the reaction of glycerol oxidation by molecular oxygen in alkaline aqueous solutions has shown that all bimetallic composites exhibit catalytic activity in contrast to monometallic ones

  4. Energy and resource utilization of deinking sludge pyrolysis

    International Nuclear Information System (INIS)

    Lou, Rui; Wu, Shubin; Lv, Gaojin; Yang, Qing

    2012-01-01

    The thermochemical conversion technique was applied in deinking sludge from the pulp and papermaking industrial to indagate the utilization of sludge biomass to energy, and the pyrolysis characteristics and pyrolytic products of deinking sludge were studied with thermogravimetric analysis (TGA) and pyrolysis coupled with gas chromatograph–mass spectrometer (Py-GC/MS). The static tubular furnace as an applied industrial research was used to study deinking sludge pyrolysis. The solid, gas and liquid of products was characterized by electron probe microanalysis (EPMA), gas chromatograph (GC) and gas chromatograph–mass (GC/MS), respectively. The results revealed that the weight-loss process of deinking sludge was a non-isothermal reaction and composed of four stages, i.e. dewater stage, volatile releasing stage, carbon burnout stage and some calcium carbonate decomposition. Pyrolytic products from deinking sludge in the static tubular furnace were comprised of the gaseous (29.78%), condensed liquid (bio-oil, 24.41%) and solid residues (45.81%). The volatiles from deinking sludge pyrolyzing were almost aromatic hydrocarbons, i.e. styrene, toluene and benzene and few acids and the solid was calcium carbonate (CaCO 3 ) that can be reused as paper filler. Deinking sludge was converted into high-grade fuel and chemicals by means of thermochemical conversion techniques, hence, pyrolysis of paper deinking sludge had a promising development on the comprehensive utilization.

  5. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis

    International Nuclear Information System (INIS)

    Mullen, Charles A.; Boateng, Akwasi A.; Goldberg, Neil M.; Lima, Isabel M.; Laird, David A.; Hicks, Kevin B.

    2010-01-01

    Bio-oil and bio-char were produced from corn cobs and corn stover (stalks, leaves and husks) by fast pyrolysis using a pilot scale fluidized bed reactor. Yields of 60% (mass/mass) bio-oil (high heating values are ∼20 MJ kg -1 , and densities >1.0 Mg m -3 ) were realized from both corn cobs and from corn stover. The high energy density of bio-oil, ∼20-32 times on a per unit volume basis over the raw corn residues, offers potentially significant savings in transportation costs particularly for a distributed 'farm scale' bio-refinery system. Bio-char yield was 18.9% and 17.0% (mass/mass) from corn cobs and corn stover, respectively. Deploying the bio-char co-product, which contains most of the nutrient minerals from the corn residues, as well as a significant amount of carbon, to the land can enhance soil quality, sequester carbon, and alleviate environmental problems associated with removal of crop residues from fields.

  6. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, Charles A.; Boateng, Akwasi A.; Goldberg, Neil M.; Hicks, Kevin B. [Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 E. Mermaid Lane, Wyndmoor, PA 19038 (United States); Lima, Isabel M. [Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Blvd., New Orleans, LA 70124 (United States); Laird, David A. [National Soil Tilth Laboratory, U.S. Agricultural Research Service, U.S. Department of Agriculture, 2110 University Blvd., Ames, IA 50011 (United States)

    2010-01-15

    Bio-oil and bio-char were produced from corn cobs and corn stover (stalks, leaves and husks) by fast pyrolysis using a pilot scale fluidized bed reactor. Yields of 60% (mass/mass) bio-oil (high heating values are {proportional_to}20 MJ kg{sup -1}, and densities >1.0 Mg m{sup -3}) were realized from both corn cobs and from corn stover. The high energy density of bio-oil, {proportional_to}20-32 times on a per unit volume basis over the raw corn residues, offers potentially significant savings in transportation costs particularly for a distributed ''farm scale'' bio-refinery system. Bio-char yield was 18.9% and 17.0% (mass/mass) from corn cobs and corn stover, respectively. Deploying the bio-char co-product, which contains most of the nutrient minerals from the corn residues, as well as a significant amount of carbon, to the land can enhance soil quality, sequester carbon, and alleviate environmental problems associated with removal of crop residues from fields. (author)

  7. Effects of chemical form of sodium on the product characteristics of alkali lignin pyrolysis.

    Science.gov (United States)

    Guo, Da-liang; Yuan, Hong-you; Yin, Xiu-li; Wu, Chuang-zhi; Wu, Shu-bin; Zhou, Zhao-qiu

    2014-01-01

    The effects of Na as organic bound form or as inorganic salts form on the pyrolysis products characteristics of alkali lignin were investigated by using thermogravimetric analyzer coupled with Fourier transform infrared spectrometry (TG-FTIR), tube furnace and thermo-gravimetric analyzer (TGA). Results of TG-FTIR and tube furnace indicated that the two chemical forms Na reduced the releasing peak temperature of CO and phenols leading to the peak temperature of the maximum mass loss rate shifted to low temperature zone. Furthermore, organic bound Na obviously improved the elimination of alkyl substituent leading to the yields of phenol and guaiacol increased, while inorganic Na increased the elimination of phenolic hydroxyl groups promoting the formation of ethers. It was also found the two chemical forms Na had different effects on the gasification reactivity of chars. For inorganic Na, the char conversion decreased with increasing the char forming temperature, while organic bound Na was opposite. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  8. Effects of carbon dioxide on pyrolysis of peat

    International Nuclear Information System (INIS)

    Lee, Jechan; Yang, Xiao; Song, Hocheol; Ok, Yong Sik; Kwon, Eilhann E.

    2017-01-01

    This study focuses on the mechanistic understanding of effects of CO 2 on pyrolysis of peat. To do this, three pyrolytic products (i.e., syngas: H 2 and CO, pyrolytic oil (tar), and biochar) were characterized. Thermal cracking of volatile organic carbons (VOCs) generated from pyrolysis of peat was enhanced in the presence of CO 2 . Besides the enhanced thermal cracking of VOCs, unknown reaction between CO 2 and VOCs was also identified. Accordingly, CO 2 played a role in enhancing syngas production and in reducing tar formation in pyrolysis of peat. This study also reveals that peat-biochar produced in CO 2 exhibited a larger surface area than that produced in N 2 . The results shown in this paper would be used for various applications such as energy recovery from peat using a potent greenhouse gas (for example, CO 2 ). - Highlights: • More CO can be produced from pyrolysis of peat in CO 2 than in N 2 . • Less amount of tar produced from pyrolysis of peat in CO 2 than in N 2 . • Surface area of peat-biochar made in CO 2 is larger than that made in N 2 . • CO 2 can modify the quantity/quality of pyrolytic products from peat.

  9. Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    Renato O. Arazo

    2017-01-01

    Full Text Available The optimization of bio-oil produced from sewage sludge using fast pyrolysis in a fluidized bed reactor was investigated. Effects of temperature, sludge particle size and vapor residence time on bio-oil properties, such as yield, high heating value (HHV and moisture content were evaluated through experimental and statistical analyses. Characterization of the pyrolysis products (bio-oil and biogas was also done. Optimum conditions produced a bio-oil product with an HHV that is nearly twice as much as lignocellulosic-derived bio-oil, and with properties comparable to heavy fuel oil. Contrary to generally acidic bio-oil, the sludge-derived bio-oil has almost neutral pH which could minimize the pipeline and engine corrosions. The Fourier Transform Infrared and gas-chromatography and mass spectrometry analyses of bio-oil showed a dominant presence of gasoline-like compounds. These results demonstrate that fast pyrolysis of sewage sludge from domestic wastewater treatment plant is a favorable technology to produce biofuels for various applications.

  10. Pyrolysis of superfine pulverized coal. Part 3. Mechanisms of nitrogen-containing species formation

    International Nuclear Information System (INIS)

    Liu, Jiaxun; Jiang, Xiumin; Shen, Jun; Zhang, Hai

    2015-01-01

    Highlights: • NH 3 and NO formation mechanisms during superfine pulverized coal pyrolysis are investigated. • Influences of temperature, heating rate, particle size, atmosphere, and acid wash on the NH 3 and NO formation are analyzed. • Transformations of nitrogen-containing structures in coal/char during pyrolysis are recognized through XPS observation. • Relationships among nitrogen-containing gaseous species during pyrolysis are discussed. - Abstract: With more stringent regulations being implemented, elucidating the formation mechanisms of nitrogen-containing species during the initial pyrolysis step becomes important for developing new NO x control strategies. However, there is a lack of agreement on the origins of NO x precursors during coal pyrolysis, in spite of extensive investigations. Hence, it is important to achieve a more precise knowledge of the formation mechanisms of nitrogen-contain species during coal pyrolysis. In this paper, pyrolysis experiments of superfine pulverized coal were performed in a fixed bed at low heating rates. The influences of temperature, coal type, particle size and atmosphere on the NH 3 and NO evolution were discussed. There is a central theme to develop knowledge of the relationship between particle sizes and evolving behaviors of nitrogen-containing species. Furthermore, the catalytic role of inherent minerals in coal was proved to be effective on the partitioning of nitrogen during coal pyrolysis. In addition, the conversion pathways of heteroaromatic nitrogen structures in coal/char during pyrolysis were recognized through the X-ray photoelectron spectroscopy (XPS) analysis. Large quantities of pyridinic and quanternary nitrogen functionalities were formed during the thermal degradation. Finally, the relationships among the nitrogen-containing gaseous species during coal pyrolysis were discussed. In brief, a comprehensive picture of the volatile-nitrogen partitioning during coal pyrolysis is obtained in this

  11. Production of phenolic-rich bio-oil from catalytic fast pyrolysis of biomass using magnetic solid base catalyst

    International Nuclear Information System (INIS)

    Zhang, Zhi-bo; Lu, Qiang; Ye, Xiao-ning; Li, Wen-tao; Hu, Bin; Dong, Chang-qing

    2015-01-01

    Highlights: • Phenolic-rich bio-oil was selectively produced from catalytic fast pyrolysis of biomass using magnetic solid base catalyst. • The actual yield of twelve major phenolic compounds reached 43.9 mg/g. • The peak area% of all phenolics reached 68.5% at the catalyst-to-biomass ratio of 7. • The potassium phosphate/ferroferric oxide catalyst possessed promising recycling properties. - Abstract: A magnetic solid base catalyst (potassium phosphate/ferroferric oxide) was prepared and used for catalytic fast pyrolysis of poplar wood to selectively produce phenolic-rich bio-oil. Pyrolysis–gas chromatography/mass spectrometry experiments were conducted to investigate the effects of pyrolysis temperature and catalyst-to-biomass ratio on the product distribution. The actual yields of important pyrolytic products were quantitatively determined by the external standard method. Moreover, recycling experiments were performed to determine the re-utilization abilities of the catalyst. The results showed that the catalyst exhibited promising activity to selectively produce phenolic-rich bio-oil, due to its capability of promoting the decomposition of lignin to generate phenolic compounds and meanwhile inhibiting the devolatilization of holocellulose. The maximal phenolic yield was obtained at the pyrolysis temperature of 400 °C and catalyst-to-biomass ratio of 2. The concentration of the phenolic compounds increased monotonically along with the increasing of the catalyst-to-biomass ratio, with the peak area% value increasing from 28.1% in the non-catalytic process to as high as 68.5% at the catalyst-to-biomass ratio of 7. The maximal total actual yield of twelve quantified major phenolic compounds was 43.9 mg/g, compared with the value of 29.0 mg/g in the non-catalytic process. In addition, the catalyst could be easily recovered and possessed promising recycling properties.

  12. Analysis of the influencing factors of PAEs volatilization from typical plastic products.

    Science.gov (United States)

    Chen, Weidong; Chi, Chenchen; Zhou, Chen; Xia, Meng; Ronda, Cees; Shen, Xueyou

    2018-04-01

    The primary emphasis of this research was to investigate the foundations of phthalate (PAEs) pollutant source researches and then firstly confirmed the concept of the coefficient of volatile strength, namely phthalate total content in per unit mass and unit surface area of pollutant sources. Through surveying and evaluating the coefficient of volatile strength of PAEs from typical plastic products, this research carried out reasonable classification of PAEs pollutant sources into three categories and then investigated the relationship amongst the coefficient of volatile strength as well as other environmental factors and the concentration level of total PAEs in indoor air measured in environment chambers. Research obtained phthalate concentration results under different temperature, humidity, the coefficient of volatile strength and the closed time through the chamber experiment. In addition, this study further explored the correlation and ratio of influencing factors that affect the concentration level of total PAEs in environment chambers, including environmental factors, the coefficient of volatile strengths of PAEs and contents of total PAEs in plastic products. The research created an improved database system of phthalate the coefficient of volatile strengths of each type of plastic goods, and tentatively revealed that the volatile patterns of PAEs from different typical plastic goods, finally confirmed that the coefficient of volatile strengths of PAEs is a major factor that affects the indoor air total PAEs concentration, which laid a solid foundation for further establishing the volatile equation of PAEs from plastic products. Copyright © 2017. Published by Elsevier B.V.

  13. Novel technique for coal pyrolysis and hydrogenation product analysis. Quarterly report, June 1, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, L.D.

    1992-12-31

    This report covers the last quarter of the last year of the three-year grant period. In the final project year, we concentrated on the pyrolysis and oxidative pyrolysis of large hydrocarbons and mixtures of large and small hydrocarbons in order to develop the VUV-MS technique for compounds more representative of those in coal pyrolysis applications. Special focus was directed at the pyrolysis and oxidative pyrolysis of benzene and benzene acetylene mixtures. The acetylene/benzene mixtures were used to gain a better understanding of the mechanisms of molecular growth in such systems specifically to look at the kinetics of aryl-aryl reactions as opposed to small molecule addition to phenyl radicals. Sarofim and coworkers at MIT have recently demonstrated the importance of these reactions in coal processing environments. In the past, the growth mechanism for the formation of midsized PAH has been postulated to involve primarily successive acetylene additions to phenyl-type radicals, our work confmns this as an important mechanism especially for smaller PAH but also investigates conditions where biaryl formation can play an important role in higher hydrocarbon formation.

  14. Catalytic Fast Pyrolysis of Biomass Impregnated with Potassium Phosphate in a Hydrogen Atmosphere for the Production of Phenol and Activated Carbon

    Science.gov (United States)

    Lu, Qiang; Zhang, Zhen-xi; Wang, Xin; Guo, Hao-qiang; Cui, Min-shu; Yang, Yong-ping

    2018-01-01

    A new technique was proposed to co-produce phenol and activated carbon (AC) from catalytic fast pyrolysis of biomass impregnated with K3PO4 in a hydrogen atmosphere, followed by activation of the pyrolytic solid residues. Lab-scale catalytic fast pyrolysis experiments were performed to quantitatively determine the pyrolytic product distribution, as well as to investigate the effects of several factors on the phenol production, including pyrolysis atmosphere, catalyst type, biomass type, catalytic pyrolysis temperature, and catalyst impregnation content. In addition, the pyrolytic solid residues were activated to prepare ACs with high specific surface areas. The results indicated that phenol could be obtained due to the synergistic effects of K3PO4 and hydrogen atmosphere, with the yield and selectivity reaching 5.3 wt% and 17.8% from catalytic fast pyrolysis of poplar wood with 8 wt% K3PO4 at 550°C in a hydrogen atmosphere. This technique was adaptable to different woody materials for phenol production. Moreover, gas product generated from the pyrolysis process was feasible to be recycled to provide the hydrogen atmosphere, instead of extra hydrogen supply. In addition, the pyrolytic solid residue was suitable for AC preparation, using CO2 activation method, the specific surface area was as high as 1,605 m2/g. PMID:29515994

  15. Catalytic fast pyrolysis of biomass impregnated with potassium phosphate in a hydrogen atmosphere for the production of phenol and activated carbon

    Science.gov (United States)

    Lu, Qiang; Zhang, Zhen-xi; Wang, Xin; Guo, Hao-qiang; Cui, Min-shu; Yang, Yong-ping

    2018-02-01

    A new technique was proposed to co-produce phenol and activated carbon (AC) from catalytic fast pyrolysis of biomass impregnated with K3PO4 in a hydrogen atmosphere, followed by activation of the pyrolytic solid residues. Lab-scale catalytic fast pyrolysis experiments were performed to quantitatively determine the pyrolytic product distribution, as well as to investigate the effects of several factors on the phenol production, including pyrolysis atmosphere, catalyst type, biomass type, catalytic pyrolysis temperature, and catalyst impregnation content. In addition, the pyrolytic solid residues were activated to prepare ACs with high specific surface areas. The results indicated that phenol could be obtained due to the synergistic effects of K3PO4 and hydrogen atmosphere, with the yield and selectivity reaching 5.3 wt% and 17.8% from catalytic fast pyrolysis of poplar wood with 8 wt% K3PO4 at 550 oC in a hydrogen atmosphere. This technique was adaptable to different woody materials for phenol production. Moreover, gas product generated from the pyrolysis process was feasible to be recycled to provide the hydrogen atmosphere, instead of extra hydrogen supply. In addition, the pyrolytic solid residue was suitable for AC preparation, using CO2 activation method, the specific surface area was as high as 1605 m2/g.

  16. Incineration, pyrolysis and gasification of electronic waste

    Science.gov (United States)

    Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika

    2017-11-01

    Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins) while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  17. Incineration, pyrolysis and gasification of electronic waste

    Directory of Open Access Journals (Sweden)

    Gurgul Agnieszka

    2017-01-01

    Full Text Available Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  18. Modeling of biomass pyrolysis

    International Nuclear Information System (INIS)

    Samo, S.R.; Memon, A.S.; Akhund, M.A.

    1995-01-01

    The fuels used in industry and power sector for the last two decades have become expensive. As a result renewable energy source have been emerging increasingly important, of these, biomass appears to be the most applicable in the near future. The pyrolysis of biomass plays a key role amongst the three major and important process generally encountered in a gas producer, namely, pyrolysis, combustion and reduction of combustion products. Each biomass has its own pyrolysis characteristics and this important parameters must be known for the proper design and efficient operation of a gasification system. Thermogravimetric analysis has been widely used to study the devolatilization of solid fuels, such as biomass. It provides the weight loss history of a sample heated at a predetermined rate as a function of time and temperature. This paper presents the experimental results of modelling the weight loss curves of the main biomass components i.e. cellulose, hemicellulose and lignin. Thermogravimetric analysis of main components of biomass showed that pyrolysis is first order reaction. Furthermore pyrolysis of cellulose and hemicelluloe can be regarded as taking place in two stages, for while lignin pyrolysis is a single stage process. This paper also describes the Thermogravimetric Analysis (TGA) technique to predict the weight retained during pyrolysis at any temperature, for number of biomass species, such as cotton stalk, bagasse ad graoundnut shell. (author)

  19. Production of bio-fertilizer from microwave vacuum pyrolysis of waste palm shell for cultivation of oyster mushroom (Pleurotus ostreatus

    Directory of Open Access Journals (Sweden)

    Nam Wai Lun

    2017-01-01

    Full Text Available Microwave vacuum pyrolysis of waste palm shell (WPS was performed to produce biochar, which was then tested as bio-fertilizer in growing Oyster mushroom (Pleurotus ostreatus. The pyrolysis approach generated a biochar containing a highly porous structure with a high BET surface area (up to 1250 m2/g and a low moisture content (≤ 10 wt%, exhibiting desirable adsorption properties to be used as bio-fertilizer since it can act as a housing that provides many sites on which living microorganisms (mycelium or plant-growth promoting bacteria and organic nutrients can be attached or adsorbed onto. This could in turn stimulate plant growth by increasing the availability and supply of nutrients to the targeted host plant. The results from growing Oyster mushroom using the biochar record an impressive growth rate and a monthly production of up to about 550 g of mushroom. The shorter time for mycelium growth on whole baglog (30 days and the highest yield of Oyster mushroom (550 g was obtained from the cultivation medium added with 20 g of biochar. Our results demonstrate that the biochar-based bio-fertilizer produce from microwave vacuum pyrolysis of WPS show exceptional promise as an alternative growing substrate for mushroom cultivation.

  20. Production of bio-fertilizer from microwave vacuum pyrolysis of waste palm shell for cultivation of oyster mushroom (Pleurotus ostreatus)

    Science.gov (United States)

    Lun Nam, Wai; Huan Su, Man; Phang, Xue Yee; Chong, Min Yee; Keey Liew, Rock; Ma, Nyuk Ling; Lam, Su Shiung

    2017-11-01

    Microwave vacuum pyrolysis of waste palm shell (WPS) was performed to produce biochar, which was then tested as bio-fertilizer in growing Oyster mushroom (Pleurotus ostreatus). The pyrolysis approach generated a biochar containing a highly porous structure with a high BET surface area (up to 1250 m2/g) and a low moisture content (≤ 10 wt%), exhibiting desirable adsorption properties to be used as bio-fertilizer since it can act as a housing that provides many sites on which living microorganisms (mycelium or plant-growth promoting bacteria) and organic nutrients can be attached or adsorbed onto. This could in turn stimulate plant growth by increasing the availability and supply of nutrients to the targeted host plant. The results from growing Oyster mushroom using the biochar record an impressive growth rate and a monthly production of up to about 550 g of mushroom. The shorter time for mycelium growth on whole baglog (30 days) and the highest yield of Oyster mushroom (550 g) was obtained from the cultivation medium added with 20 g of biochar. Our results demonstrate that the biochar-based bio-fertilizer produce from microwave vacuum pyrolysis of WPS show exceptional promise as an alternative growing substrate for mushroom cultivation.

  1. Effects of biopretreatment of corn stover with white-rot fungus on low-temperature pyrolysis products.

    Science.gov (United States)

    Yang, Xuewei; Ma, Fuying; Yu, Hongbo; Zhang, Xiaoyu; Chen, Shulin

    2011-02-01

    The thermal decomposition of biopretreated corn stover during the low temperature has been studied by using the Py-GC/MS analysis and thermogravimetric analysis with the distributed activation energy model (DAEM). Results showed that biopretreatment with white-rot fungus Echinodontium taxodii 2538 can improve the low-temperature pyrolysis of biomass, by increasing the pyrolysis products of cellulose, hemicellulose (furfural and sucrose increased up to 4.68-fold and 2.94-fold respectively) and lignin (biophenyl and 3,7,11,15-tetramethyl-2-hexadecen-1-ol increased 2.45-fold and 4.22-fold, respectively). Calculated by DAEM method, it showed that biopretreatment can decrease the activation energy during the low temperature range, accelerate the reaction rate and start the thermal decomposition with lower temperature. ATR-FTIR results showed that the deconstruction of lignin and the decomposition of the main linkages between hemicellulose and lignin could contribute to the improvement of the pyrolysis at low temperature. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Bio-Oil Production from Fast Pyrolysis of Corn Wastes and Eucalyptus Wood in a Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    M.A Ebrahimi-Nik

    2014-09-01

    Full Text Available Fast pyrolysis is an attractive technology for biomass conversion, from which bio-oil is the preferred product with a great potential for use in industry and transport. Corn wastes (cob and stover and eucalyptus wood are widely being produced throughout the world. In this study, fast pyrolysis of these two materials were examined under the temperature of 500 °C; career gas flow rate of 660 l h-1; particle size of 1-2 mm; 80 and 110 g h-1 of feed rate. The experiments were carried out in a continuous fluidized bed reactor. Pyrolysis vapor was condensed in 3 cooling traps (15, 0 and -40 °C plus an electrostatic one. Eucalyptus wood was pyrolyised to 12.4, 61.4, and 26.2 percent of bio-char, bio-oil and gas, respectively while these figures were as 20.15, 49.9, and 29.95 for corn wastes. In all experiments, the bio-oil obtained from electrostatic trap was a dark brown and highly viscose liquid.

  3. Effect of hydrothermal pretreatment on product distribution and characteristics of oil produced by the pyrolysis of Huadian oil shale

    International Nuclear Information System (INIS)

    Jiang, Haifeng; Deng, Sunhua; Chen, Jie; Zhang, Mingyue; Li, Shu; Shao, Yifei; Yang, Jiaqi; Li, Junfeng

    2017-01-01

    Highlights: • The maximum yield of pyrolysis oil is obtained at the pretreatment time of 2.0 h. • The higher H/C ratio of oil is obtained after hydrothermal pretreatment. • Hydrothermal treatment promotes the formation of aliphatic hydrocarbons in the oil. • Long pretreatment time causes the increase of heavier oil fraction in the oil. - Abstract: In this work, Huadian oil shale from China was treated by hydrothermal pretreatment at 200 °C with 1.0–2.5 h in order to investigate the effect of hydrothermal pretreatment on pyrolysis product distribution and characteristics of oil. The differences in the elemental composition and thermal behavior between the untreated and treated oil shale were analyzed and compared. The hydrothermal treatment process could decompose oxygen functional groups and remove some water soluble inorganics in oil shale, which decreased the formation of gas and water during the pyrolysis. However, hydrothermal pretreatment was conducive to increasing shale oil yield. The maximum of oil yield was obtained at the pretreatment time of 2.0 h. The enhancement of the free-radical reactions during the pyrolysis and the reduction of the secondary cracking reactions of the generated oil vapors were considered as the main reasons. The oil obtained by the treated oil shale had a higher H/C ratio, indicating it had high energy content. The analysis results of chemical compositions in oils showed that the relative content of aliphatic hydrocarbons significantly increased after hydrothermal pretreatment. The further analysis demonstrated that the increase in the pretreatment time caused the generated long chain hydrocarbons tended to be directly released from oil shale particles, and were condensed into the oil.

  4. Catalytic pyrolysis of Tetraselmis and Isochrysis microalgae by nickel ceria based catalysts for hydrocarbon production

    International Nuclear Information System (INIS)

    Aysu, Tevfik; Abd Rahman, Nur Adilah; Sanna, Aimaro

    2016-01-01

    The catalytic pyrolysis of Tetraselmis sp. and Isochrysis sp. was carried out over ceria based catalysts in a fixed bed reactor. There was a clear effect of the catalysts on the product yields and quality, with the catalysts able to recover a large fraction of the starting microalgae energy (67–77%) in the bio-oils. Bio-oil yield was found to be higher in presence of Ni–Ce/Al_2O_3 and Ni–Ce/ZrO_2 (26 wt.%). The produced bio-oils had HHVs (higher heating values) of 34–35 MJ/kg and suffered strong deoxygenation, with O level decreased from 40–41% in the starting microalgae to 9–15%. Also, 15–20% N removal was obtained using the ceria based catalysts. The oxygen contents in the bio-oils were remarkably lower than those previously obtained using ZSM-5 (25%) and other species without catalyst (17–24%). "1H NMR and GC–MS analysis showed that the bio-oils were enriched in aliphatics and depleted in N-compounds and water using the ceria based catalysts. - Highlights: • Nickel-ceria based catalysts were evaluated for the in-situ conversion of Tetraselmis and Isochrysis microalgae. • Catalysts recovered 72–77% of the starting microalgae energy in bio-oils. • Bio-oils suffered strong deoxygenation, with O level decreased from 40–41% in the starting microalgae to 9–15%. • Bio-oils were enriched in aliphatics and depleted in N-compounds.

  5. Enhancement of biofuels production by means of co-pyrolysis of Posidonia oceanica (L.) and frying oil wastes: Experimental study and process modeling.

    Science.gov (United States)

    Zaafouri, Kaouther; Ben Hassen Trabelsi, Aida; Krichah, Samah; Ouerghi, Aymen; Aydi, Abdelkarim; Claumann, Carlos Alberto; André Wüst, Zibetti; Naoui, Silm; Bergaoui, Latifa; Hamdi, Moktar

    2016-05-01

    Energy recovery from lignocellulosic solid marine wastes, Posidonia oceanica wastes (POW) with slow pyrolysis responds to the growing trend of alternative energies as well as waste management. Physicochemical, thermogravimetric (TG/DTG) and spectroscopic (FTIR) characterizations of POW were performed. POW were first converted by pyrolysis at different temperatures (450°C, 500°C, 550°C and 600°C) using a fixed-bed reactor. The obtained products (bio-oil, syngas and bio char) were analyzed. Since the bio-oil yield obtained from POW pyrolysis is low (2wt.%), waste frying oil (WFO) was added as a co-substrate in order to improve of biofuels production. The co-pyrolysis gave a better yield of liquid organic fraction (37wt.%) as well as syngas (CH4,H2…) with a calorific value around 20MJ/kg. The stoichiometric models of both pyrolysis and co-pyrolysis reactions were performed according to the biomass formula: CαHβOγNδSε. The thermal kinetic decomposition of solids was validated through linearized Arrhenius model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Technical and economic analyses of hydrogen production via indirectly heated gasification and pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-09-01

    Technoeconomic analyses have been conducted on two processes to produce hydrogen from biomass: indirectly-heated gasification of biomass followed by steam reforming of the syngas, and biomass pyrolysis followed by steam reforming of the pyrolysis oil. The analysis of the gasification-based process was highly detailed, including a process flowsheet, material and energy balances calculated with a process simulation program, equipment cost estimation, and the determination of the necessary selling price of hydrogen. The pyrolysis-based process analysis was of a less detailed nature, as all necessary experimental data have not been obtained; this analysis is a follow-up to the preliminary economic analysis presented at the 1994 Hydrogen Program Review. A coproduct option in which pyrolysis oil is used to produce hydrogen and a commercial adhesive was also studied for economic viability. Based on feedstock availability estimates, three plant sizes were studied: 907 T/day, 272 T/day, and 27 T/day. The necessary selling price of hydrogen produced by steam reforming syngas from the Battelle Columbus Laboratories indirectly heated biomass gasifier falls within current market values for the large and medium size plants within a wide range of feedstock costs. Results show that the small scale plant does not produce hydrogen at economically competitive prices, indicating that if gasification is used as the upstream process to produce hydrogen, local refueling stations similar to current gasoline stations, would probably not be feasible.

  7. Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags

    Science.gov (United States)

    Pyrolysis of HDPE waste grocery bags followed by distillation resulted in a liquid hydrocarbon mixture that consisted of saturated aliphatic paraffins (96.8%), aliphatic olefins (2.6%), and aromatics (0.6%) that corresponded to the boiling range of conventional petroleum diesel fuel (#1 diesel 182–2...

  8. The use of plant-specific pyrolysis products as biomarkers in peat deposits

    NARCIS (Netherlands)

    Schellekens, J.; Bradley, J.A.; Kuyper, T.W.; Fraga, I.; Pontevedra Pombal, X.; Buurman, P.

    2015-01-01

    Peatlands are archives of environmental change that can be driven by climate and human activity. Proxies for peatland vegetation composition provide records of (local) environmental conditions that can be linked to both autogenic and allogenic factors. Analytical pyrolysis offers a molecular

  9. Utilization of eucalyptus for bioelectricity production in brazil via fast pyrolysis: a techno-economic analysis

    Science.gov (United States)

    In this study, a process model of a 2000 metric ton per day (MTPD) eucalyptus Tail Gas Reactive Pyrolysis (TGRP) and electricity generation plant was developed and simulated in SimSci Pro/II software for the purpose of evaluating its techno-economic viability in Brazil. Two scenarios were compared b...

  10. Formation of nitrogen-containing compounds during microwave pyrolysis of microalgae: Product distribution and reaction pathways.

    Science.gov (United States)

    Huang, Feng; Tahmasebi, Arash; Maliutina, Kristina; Yu, Jianglong

    2017-12-01

    The formation of nitrogen-containing compounds in bio-oil during microwave pyrolysis of Chlorella and Spirulina microalgae has been investigated in this study. Activated carbon (AC) and magnetite (Fe 3 O 4 ) were used as microwave receptors during microwave pyrolysis experiments. It has been found that the use of Fe 3 O 4 increased the total yield of bio-oil. The use of different microwave receptors did not seem to have affected the total yield of nitrogen-containing compounds in the bio-oil. However, Fe 3 O 4 promoted the formation of nitrogen-containing aliphatics, thereby reducing the formation of nitrogen-containing aromatics. The use of AC promoted the dehydration reactions during amino acid decomposition, thereby enhancing the formation of nitrogen-containing aromatics during pyrolysis. From the gas chromatography-mass spectrometry (GC-MS) analysis results, the major high-value nitrogen-containing compounds in the pyrolysis bio-oil of Chlorella and Spirulina were identified as indole and dodecamide. The formation mechanisms of nitrogen-containing compounds were proposed and discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Characterization of fast pyrolysis products generated from several western USA woody species

    Science.gov (United States)

    Jacqueline M. Jarvis; Deborah S. Page-Dumroese; Nathaniel M. Anderson; Yuri Corilo; Ryan P. Rodgers

    2014-01-01

    Woody biomass has the potential to be utilized at an alternative fuel source through its pyrolytic conversion. Here, fast pyrolysis bio-oils derived from several western USA woody species are characterized by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to determine molecular-level composition. The...

  12. Effluent Gas Flux Characterization During Pyrolysis of Chicken Manure

    Science.gov (United States)

    Clark, S. C.; Ryals, R.; Miller, D. J.; Mullen, C. A.; Pan, D.; Zondlo, M. A.; Boateng, A. A.; Hastings, M. G.

    2017-12-01

    Pyrolysis is a viable option for the production of agricultural resources from diverted organic waste streams and renewable bioenergy. This high temperature thermochemical process yields material with beneficial reuses, including bio-oil and biochar. Gaseous forms of carbon (C) and nitrogen (N) are also emitted during pyrolysis. The effluent mass emission rates from pyrolysis are not well characterized, thus limiting proper evaluation of the environmental benefits or costs of pyrolysis products. We present the first comprehensive suite of C and N mass emission rate measurements of a biomass pyrolysis process using chicken manure as feedstock to produce biochar and bio-oil. Two chicken manure fast pyrolysis experiments were conducted at controlled temperature ranges of 450 - 485 °C and 550 - 585 °C. Mass emission rates of N2O, NO, CO, CO2, CH4 and NH3 were measured using trace gas analyzers. Based on the system mass balance, 23-25% of the total mass of the manure feedstock was emitted as gas, while 52-55% and 23% were converted to bio-oil and biochar, respectively. CO2 and NH3 were the dominant gaseous species by mass, accounting for 58 - 65% of total C mass emitted and 99% of total reactive N mass emitted, respectively. Our gas flux measurements suggest that 1.4 to 2.7 g NH3 -N would be produced from the pyrolysis of one kg of manure. Conservatively scaling up these NH3 pyrolysis emissions in the Chesapeake Bay Watershed, where an estimated 8.64 billion kg of poultry manure is applied to agricultural soils every year, as much as 1.2 x 107 kg of NH3 could be emitted into the atmosphere annually, increasing the potential impact of atmospheric N deposition without a mechanism to capture the gas exhaust during pyrolysis. However, this is considerably less than the potential emissions from NH3 volatilization of raw chicken manure applications, which can be 20-60% of total N applied, and amount to 3.4 x 107 - 1.0 x 108 kg NH3-N yr-1. Pyrolysis has the potential to

  13. Properties and Beneficial Uses of (BioChars, with Special Attention to Products from Sewage Sludge Pyrolysis

    Directory of Open Access Journals (Sweden)

    Arianna Callegari

    2018-03-01

    Full Text Available Residual sludge disposal costs may constitute up to, and sometimes above, 50% of the total cost of operation of a Wastewater Treatment Plant (WWTP and contribute approximately 40% of the total greenhouse gas (GHG emissions associated with its operation. Traditionally, wastewater sludges are processed for: (a reduction of total weight and volume to facilitate their transfer and subsequent treatments; (b stabilization of contained organic material and destruction of pathogenic microorganisms, elimination of noxious odors, and reduction of putrefaction potential and, at an increasing degree; (c value addition by developing economically viable recovery of energy and residual constituents. Among several other processes, pyrolysis of sludge biomass is being experimented with by some researchers. From the process, oil with composition not dissimilar to that of biodiesels, syngas, and a solid residue can be obtained. While the advantage of obtaining sludge-derived liquid and gaseous fuels is obvious to most, the solid residue from the process, or char (also indicated as biochar by many, may also have several useful, initially unexpected applications. Recently, the char fraction is getting attention from the scientific community due to its potential to improve agricultural soils’ productivity, remediate contaminated soils, and supposed, possible mitigation effects on climate change. This paper first discusses sludge-pyrolysis-derived char production fundamentals (including relationships between char, bio-oil, and syngas fractions in different process operating conditions, general char properties, and possible beneficial uses. Then, based on current authors’ experiments with microwave-assisted sludge pyrolysis aimed at maximization of liquid fuel extraction, evaluate specific produced char characteristics and production to define its properties and most appropriate beneficial use applications in this type of setting.

  14. The study of catalytic properties and phase composition of pyrolysis products of molybdophosphoric heteropolyacid. Communication 3. Environmental effect on the HPA pyrolysis

    International Nuclear Information System (INIS)

    Bondareva, V.M.; Andrushkevich, T.V.; Maksimovskaya, R.I.; Plyasova, L.M.; Litvak, G.S.; Burgina, E.B.

    1997-01-01

    Character of pyrolysis of molybdophosphonic heteropolyacid (HPA) (H 3 PMo 12 O 40 x13H 2 O) in different media (air, hydrogen, oxygen, helium, water vapour, as well reactive mixture containing acrolein) is studied within the temperature range of 200-700 deg C. With application of methods of X-ray analysis in situ, NMR 31 R and IR-spectroscopy it is shown that phase formation by HPA pyrolysis depends on the media, oxidation-reduction properties and availability of water vapour therein. 27 refs.; 5 figs

  15. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains

    OpenAIRE

    Samantha Fairbairn; Alexander McKinnon; Hannibal T. Musarurwa; António C. Ferreira; António C. Ferreira; Florian F. Bauer

    2017-01-01

    Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth p...

  16. Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main components: Cellulose, xylan and lignin. TG-FTIR analysis of volatile products

    Energy Technology Data Exchange (ETDEWEB)

    Benítez-Guerrero, Mónica, E-mail: monica_benitez_guerrero@yahoo.es [Departamento de Ingeniería Civil, Materiales y Fabricación, Universidad de Málaga, Escuela de Ingenierías, C/ Dr. Ortiz Ramos s/n, Campus Teatinos, 29071 Málaga (Spain); López-Beceiro, Jorge [Departamento de Ingeniería Industrial II, Escola Politécnica Superior, Universidade da Coruña, Avda. Mendizábal, 15403 Ferrol (Spain); Sánchez-Jiménez, Pedro E. [Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla, C/ Américo Vespucio 49, 41092 Sevilla (Spain); Pascual-Cosp, José [Departamento de Ingeniería Civil, Materiales y Fabricación, Universidad de Málaga, Escuela de Ingenierías, C/ Dr. Ortiz Ramos s/n, Campus Teatinos, 29071 Málaga (Spain)

    2014-04-01

    Highlights: • Thermal decomposition of sisal fibers has been discussed. • Decompositions of lignocellulosic components and sisal are compared by TXRD and TG-FTIR. • Hot washing reduces the temperature range in which sisal decomposition occurs. • Sisal cellulose decomposition goes by an alternative route to levoglucosan generation. - Abstract: This paper presents in a comprehensive way the thermal behavior of natural and hot-washed sisal fibers, based on the fundamental components of lignocellulosic materials: cellulose, xylan and lignin. The research highlights the influence exerted on the thermal stability of sisal fibers by other constituents such as non-cellulosic polysaccharides (NCP) and mineral matter. Thermal changes were investigated by thermal X-ray diffraction (TXRD), analyzing the crystallinity index (%Ic) of cellulosic samples, and by simultaneous thermogravimetric and differential thermal analysis coupled with Fourier-transformed infrared spectrometry (TG/DTA-FTIR), which allowed to examine the evolution of the main volatile compounds evolved during the degradation under inert and oxidizing atmospheres. The work demonstrates the potential of this technique to elucidate different steps during the thermal decomposition of sisal, providing extensible results to other lignocellulosic fibers, through the analysis of the evolution of CO{sub 2}, CO, H{sub 2}O, CH{sub 4}, acetic acid, formic acid, methanol, formaldehyde and 2-butanone, and comparing it with the volatile products from pyrolysis of the biomass components. The hydroxyacetaldehyde detected during pyrolysis of sisal is indicative of an alternative route to that of levoglucosan, generated during cellulose pyrolysis. Hot-washing at 75 °C mostly extracts non-cellulosic components of low decomposition temperature, and reduces the range of temperature in which sisal decomposition occurs, causing a retard in the pyrolysis stage and increasing Tb{sub NCP} and Tb{sub CEL}, temperatures at the

  17. The use of design of experiments for the evaluation of the production of surface rich activated carbon from sewage sludge via microwave and conventional pyrolysis

    International Nuclear Information System (INIS)

    Simões dos Reis, Glaydson; Wilhelm, Michaela; Silva, Thamires Canuto de Almeida; Rezwan, Kurosch; Sampaio, Carlos Hoffmann; Lima, Eder Claudio; Guelli Ulson de Souza, Selene M.A.

    2016-01-01

    Highlights: • Using of DOE for preparation of AC by conventional and microwave pyrolysis. • The significant parameters in producing activated carbon were investigated. • Conventional pyrolysis AC had better textural development than microwave AC. • Temperature and holding time had significant influence on the S_B_E_T. • Reduction of production cost of activated carbon. - Abstract: Experimental design and response surface methodology were used for the preparation and comparison of activated carbon produced from sewage sludge by two types of pyrolysis: conventional furnace and microwave. The preparation method was performed following a full fractional factorial design (2"3), including pyrolysis temperature or power radiation, holding time and chemical activation agent, and specific surface area (S_B_E_T) of prepared activated carbon. The influence of these factors on the S_B_E_T of obtained carbon was investigated using an analysis of variance. Samples made by conventional pyrolysis showed overall higher S_B_E_T values than samples synthesised by the microwave method. The optimum parameters for the preparation of activated carbon using the conventional pyrolysis have been identified as: pyrolysis temperature of 500 °C, holding time of 15 min, and a ratio of ZnCl_2:sludge of 0.5. Microwave pyrolysis is found to be optimal when operating at 980 W for 12 min. Under these conditions, S_B_E_T values of 679 and 501 m"2g"−"1, respectively, have been obtained. The analysis of nitrogen adsorption/desorption isotherms revealed the presence of micro and mesopores in the activated carbon. The most important significant factor, according statistical analysis, in the variance in S_B_E_T for the conventional pyrolysis samples were the pyrolysis temperature and interaction between pyrolysis temperature, holding time and ratio of ZnCl_2:sludge were the most important factors. The highest impact parameters for the microwave method were found for the interaction

  18. Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production.

    Science.gov (United States)

    Heitkötter, Julian; Marschner, Bernd

    2015-04-01

    Biochar is suggested for soil amelioration and carbon sequestration, based on its assumed role as the key factor for the long-term fertility of Terra preta soils. Several studies have shown that certain biochar properties can undergo changes through ageing processes, especially regarding charge characteristics. However, only a few studies determined the changes of different biochars under the same incubation conditions and in different soils. The objective of this study was to characterize the changes of pine chip (PC)- and corn digestate (CD)-derived biochars pyrolyzed at 400 or 600 °C during 100 days of laboratory incubation in a historical kiln soil and an adjacent control soil. Separation between soil and biochar was ensured by using mesh bags. Especially, changes in charge characteristics depended on initial biochar properties affected by feedstock and pyrolysis temperature and on soil properties affected by historic charcoal production. While the cation exchange capacity (CEC) markedly increased for both CD biochars during incubation, PC biochars showed no or only slight increases in CEC. Corresponding to the changes in CEC, ageing of biochars also increased the amount of acid functional groups with increases being in average about 2-fold higher in CD biochars than in PC biochars. Further and in contrast to other studies, the surface areas of biochars increased during ageing, likely due to ash leaching and degradation of tar residues. Changes in CEC and surface acidity of CD biochars were more pronounced after incubation in the control soil, while surface area increase was higher in the kiln soil. Since the two acidic forest soils used in this this study did not greatly differ in physical or chemical properties, the main process for inducing these differences in the buried biochar most likely is related to the differences in dissolved organic carbon (DOC). Although the kiln soil contained about 50% more soil organic carbon due to the presence of charcoal

  19. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization.

    Science.gov (United States)

    Torri, Isadora Dalla Vecchia; Paasikallio, Ville; Faccini, Candice Schmitt; Huff, Rafael; Caramão, Elina Bastos; Sacon, Vera; Oasmaa, Anja; Zini, Claudia Alcaraz

    2016-01-01

    Bio-oils were produced through intermediate (IP) and fast pyrolysis (FP), using Eucalyptus sp. (hardwood) and Picea abies (softwood), wood wastes produced in large scale in Pulp and Paper industries. Characterization of these bio-oils was made using GC/qMS and GC×GC/TOFMS. The use of GC×GC provided a broader characterization of bio-oils and it allowed tracing potential markers of hardwood bio-oil, such as dimethoxy-phenols, which might co-elute in 1D-GC. Catalytic FP increased the percentage of aromatic hydrocarbons in P. abies bio-oil, indicating its potential for fuel production. However, the presence of polyaromatic hydrocarbons (PAH) draws attention to the need of a proper management of pyrolysis process in order to avoid the production of toxic compounds and also to the importance of GC×GC/TOFMS use to avoid co-elutions and consequent inaccuracies related to identification and quantification associated with GC/qMS. Ketones and phenols were the major bio-oil compounds and they might be applied to polymer production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  1. Optimization of Charcoal Production Process from Woody Biomass Waste: Effect of Ni-Containing Catalysts on Pyrolysis Vapors

    Directory of Open Access Journals (Sweden)

    Jon Solar

    2018-05-01

    Full Text Available Woody biomass waste (Pinus radiata coming from forestry activities has been pyrolyzed with the aim of obtaining charcoal and, at the same time, a hydrogen-rich gas fraction. The pyrolysis has been carried out in a laboratory scale continuous screw reactor, where carbonization takes place, connected to a vapor treatment reactor, at which the carbonization vapors are thermo-catalytically treated. Different peak temperatures have been studied in the carbonization process (500–900 °C, while the presence of different Ni-containing catalysts in the vapor treatment has been analyzed. Low temperature pyrolysis produces high liquid and solid yields, however, increasing the temperature progressively up to 900 °C drastically increases gas yield. The amount of nickel affects the vapors treatment phase, enhancing even further the production of interesting products such as hydrogen and reducing the generated liquids to very low yields. The gases obtained at very high temperatures (700–900 °C in the presence of Ni-containing catalysts are rich in H2 and CO, which makes them valuable for energy production, as hydrogen source, producer gas or reducing agent.

  2. Direct Synthesis of Fe3C-Functionalized Graphene by High Temperature Autoclave Pyrolysis for Oxygen Reduction

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2014-01-01

    We present a novel approach to direct fabrication of few-layer graphene sheets with encapsulated Fe3C nanoparticles from pyrolysis of volatile non-graphitic precursors without any substrate. This one-step autoclave approach is facile and potentially scalable for production. Tested as an electroca...

  3. [Analysis of Volatile Oils from Different Processed Products of Zingiber officinale Rhizome by GC-MS].

    Science.gov (United States)

    Zhao, Hong-bing; Wang, Zhi-hui; He, Fang; Meng, Han; Peng, Jian-hua; Shi, Ji-lian

    2015-04-01

    To analyze the volatile components in different processed products of Zingiber officinale rhizome, and to make clear the effect of different heating degree on them. The volatile components were extracted from four kinds of processed products by applying steam distillation, and then were analyzed by GC-MS. There were totally 43 components of volatile oil identified from four kinds of processed products of Zingiber officinale rhizome. Fresh product, dried product, and charcoal product of Zingiber officinale rhizome each had 27 components of volatile oil, while sand fried product contained 24 components. Fresh Zingiber officinale rhizome contained 22. 59% of zingiberene, 20. 87% of a-citral and 11. 01% of β-phellandrene, respectively. After processing in different heating degree, the volatile components changed greatly in both of their quantity and quality, For instance, dried Zingiber officinale rhizome contained 40. 48% of α-citral and 8-phellandrene content was slightly lower at 10. 38%. 32.73% of 3,7,11-trimethyl-l, 6, 10-dodecatriene,16. 38% of murolan-3, 9 (11)-diene-10-peroxy and 3. 36% of cubebene newly emerged in the sand fried Zingiber officinale rhizome, and eudesm-4 (14) and β-bisabolol, etc. However, β-phellandrene content was only 1. 95%. The zingiberene and β-sesquiphellandrene were the highest in charcoal product, besides, new components such as α-cedrene, decanal and γ-elemene appeared. Volatile components in different processed products of Zingiber officinale rhizome were different in both of their kinds and contents. This method is suitable for the analysis of volatile components in Zingiber officinale rhizome, and this study can provide the experimental evidence for quality evaluation and clinical application for ginger processed products.

  4. Recycling phosphorus by fast pyrolysis of pig manure: concentration and extraction of phosphorus combined with formation of value-added pyrolysis products

    NARCIS (Netherlands)

    Azuara, M.; Kersten, Sascha R.A.; Kootstra, A.M.J.

    2013-01-01

    In order to recycle phosphorus from the livestock chain back to the land, fast pyrolysis of concentrated pig manure at different temperatures (400 °C, 500 °C, 600 °C), was undertaken to concentrate the phosphorus in the char fraction for recovery. Results show that 92%–97% of the phosphorus present

  5. Characterization of products from pyrolysis of coal with the addition of polyethylene terephthalate

    Czech Academy of Sciences Publication Activity Database

    Havelcová, Martina; Bičáková, Olga; Sýkorová, Ivana; Weishauptová, Zuzana; Melegy, A.

    2016-01-01

    Roč. 154, DEC 15 (2016), 123-131 ISSN 0378-3820 R&D Projects: GA ČR(CZ) GA13-18482S Grant - others:OPPK(XE) CZ.2.16/3.1.00/21538 Program:OPPK Institutional support: RVO:67985891 Keywords : pyrolysis * sub-bituminous coal * polyethylene terephthalate * coke Subject RIV: DD - Geochemistry Impact factor: 3.752, year: 2016

  6. Light Quality Dependent Changes in Morphology, Antioxidant Capacity, and Volatile Production in Sweet Basil (Ocimum basilicum).

    Science.gov (United States)

    Carvalho, Sofia D; Schwieterman, Michael L; Abrahan, Carolina E; Colquhoun, Thomas A; Folta, Kevin M

    2016-01-01

    Narrow-bandwidth light treatments may be used to manipulate plant growth, development and metabolism. In this report LED-based light treatments were used to affect yield and metabolic content of sweet basil (Ocimum basilicum L. cv "Ceasar") grown in controlled environments. This culinary herb produces an aroma highly appreciated by consumers, primarily composed of terpenes/terpenoids, phenylpropanoids, and fatty-acid- derived volatile molecules. Basil plants were grown under narrow-bandwidth light conditions, and leaf area, height, mass, antioxidant capacity and volatile emissions were measured at various time points. The results indicate reproducible significant differences in specific volatiles, and in biochemical classes of volatiles, compared to greenhouse grown plants. For example, basil plants grown under blue/red/yellow or blue/red/green wavelengths emit higher levels of a subset of monoterpenoid volatiles, while a blue/red/far-red treatment leads to higher levels of most sesquiterpenoid volatile molecules. Specific light treatments increase volatile content, mass, and antioxidant capacity. The results show that narrow-bandwidth illumination can induce discrete suites of volatile classes that affect sensory quality in commercial herbs, and may be a useful tool in improving commercial production.

  7. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oil

    Energy Technology Data Exchange (ETDEWEB)

    Czernik, S.; Wang, D.; Chornet, E. [National Renewable Energy Lab., Golden, CO (United States). Center for Renewable Chemical Technologies and Materials

    1998-08-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells and for transportation. The thermochemical conversion of biomass to hydrogen can be carried out through two distinct strategies: (a) gasification followed by water-gas shift conversion, and (b) catalytic steam reforming of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper presents the latter route that begins with fast pyrolysis of biomass to produce bio-oil. This oil (as a whole or its selected fractions) can be converted to hydrogen via catalytic steam reforming followed by a water-gas shift conversion step. Such a process has been demonstrated at the bench scale using model compounds, poplar oil aqueous fraction, and the whole pyrolysis oil with commercial Ni-based steam reforming catalysts. Hydrogen yields as high as 85% have been obtained. Catalyst initial activity can be recovered through regeneration cycles by steam or CO{sub 2} gasification of carbonaceous deposits.

  8. Exergy analysis of synthetic biofuel production via fast pyrolysis and hydroupgrading

    International Nuclear Information System (INIS)

    Peters, Jens F.; Petrakopoulou, Fontina; Dufour, Javier

    2015-01-01

    This paper presents the first assessment of the exergetic performance of a biorefinery process based on catalytic hydroupgrading of bio-oil from fast pyrolysis. Lignocellulosic biomass is converted into bio-oil through fast pyrolysis, which is then upgraded to synthetic fuels in a catalytic hydrotreating process. The biorefinery process is simulated numerically using commercial software and analyzed using exergetic analysis. Exergy balances are defined for each component of the plant and the exergetic efficiencies and exergy destruction rates are calculated at the component, section and plant level, identifying thermodynamic inefficiencies and revealing the potential for further improvement of the process. The overall biofuel process results in an exergetic efficiency of 60.1%, while the exergetic efficiency of the upgrading process in the biorefinery alone is 77.7%. Within the biorefinery, the steam reforming reactor is the main source of inefficiencies, followed by the two hydrotreating reactors. In spite of the high operating pressures in the hydrotreating section, the compressors have little impact on the total exergy destruction. Compared to competing lignocellulosic biofuel processes, like gasification with Fischer–Tropsch synthesis or lignocellulosic ethanol processes, the examined system achieves a significantly higher exergetic efficiency. - Highlights: • Exergetic analysis of a biorefinery for bio-oil hydroupgrading. • Detailed simulation model using 83 model compounds. • Exergy destruction quantified in each component of the plant. • Exergetic efficiency and potential for improvement determined on component level. • Highest exergy destruction in the pyrolysis plant and the steam reformer

  9. Determination of silicon in biomass and products of pyrolysis process via high-resolution continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Nakadi, Flávio V; Prodanov, Caroline; Boschetti, Wiliam; Vale, Maria Goreti R; Welz, Bernhard; de Andrade, Jailson B

    2018-03-01

    Thermochemical processes can convert the biomass into fuels, such as bio-oil. The biomass submitted to pyrolysis process, such as fibers, are generally rich in silicon, an element that can lead to damages in an engine when there is high concentration in a fuel. High-resolution continuum source atomic absorption spectrometry (HR-CS AAS) is an interesting alternative for Si determination in the products and byproducts of the pyrolysis process because, besides the flame (F) and graphite furnace (GF) atomizers, it has enhanced the application of direct analysis of solid samples (SS) within GF. This study aimed the development of methods to determine Si in biomass samples, their products and byproducts using HR-CS AAS. A high-resolution continuum source atomic absorption spectrometer contrAA 700 equipped with F and GF atomizers was used throughout the study. HR-CS F AAS (λ = 251.611nm, 1 detection pixel, N 2 O/C 2 H 2 flame) was used to evaluate Si content in biomass and ash, after a microwave-assisted acid digestion with HNO 3 and HF. HR-CS GF AAS (T pyr = 1400°C, T atom = 2650°C) has evaluated Si in pyrolysis water and bio-oil at 251.611nm, and in peach pit biomass and ash at 221.174nm using SS, both wavelengths with 1 detection pixel. Rhodium (300μg) was applied as permanent modifier and 10μgPd + 6μg Mg were pipetted onto the standards/samples at each analysis. Three different biomass samples were studied: palm tree fiber, coconut fiber and peach pit, and three certified reference materials (CRM) were used to verify the accuracy of the methods. The figures of merit were LOD 0.09-20mgkg -1 , and LOQ 0.3-20mgkg -1 , considering all the methods. There were no significant differences between the CRM certified values and the determined ones, using a Student t-test with a confidence interval of 95% (n = 5). Si concentration ranged from 0.11-0.92% mm -1 , 1.1-1.7mgkg -1 , 3.3-13mgkg -1 , and 0.41-1.4%mm -1 , in biomass, bio-oil, pyrolysis water and ash, respectively

  10. Thermo-Catalytic Pyrolysis of Waste Plastics from End of Life Vehicle

    Directory of Open Access Journals (Sweden)

    Miskolczi Norbert

    2016-01-01

    Full Text Available Pyrolysis of waste plastics is widely used recycling method. Owing to the end-of-life vehicles regulations, 95% of passenger cars and vehicles must reused/recovered after the dismantling. Pyrolysis of waste polyethylene and polypropylene obtained from end-of-life vehicles was investigated in a continuously stirred batch reactor using 500 and 600°C temperatures. To ensure the pyrolysis reactions the tested catalysts (5% of ZSM-5, HZSM-5, Ni-ZSM-5 and Fe-ZSM-5 were added directly to the mixtures of raw materials. Products of pyrolysis were separated into gases, pyrolysis oil and heavy oil, which was further analyzed by gas-chromatography, Fourier transformed infrared spectroscopy and other standardized methods. Based on the results it was concluded, that the catalysts significantly increase the yields of volatile products, and modify their composition. Especially the alkane/alkene ratio, the methane concentration and the concentration of branched hydrocarbon could be affected by the applied catalysts. Ni-ZSM-5 catalyst had the highest activity in methane production, while HZSM-5 catalyst proved effective in isomerization reactions. Using H-ZSM-5, Ni-ZSM-5, and Fe-ZSM-5 catalyst notably decreased average molecular weight of pyrolysis oils and significantly higher aromatic content was observed.

  11. Method for Hot Real-Time Sampling of Pyrolysis Vapors

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, Marc D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-29

    Biomass Pyrolysis has been an increasing topic of research, in particular as a replacement for crude oil. This process utilizes moderate temperatures to thermally deconstruct the biomass which is then condensed into a mixture of liquid oxygenates to be used as fuel precursors. Pyrolysis oils contain more than 400 compounds, up to 60 percent of which do not re-volatilize for subsequent chemical analysis. Vapor chemical composition is also complicated as additional condensation reactions occur during the condensation and collection of the product. Due to the complexity of the pyrolysis oil, and a desire to catalytically upgrade the vapor composition before condensation, online real-time analytical techniques such as Molecular Beam Mass Spectrometry (MBMS) are of great use. However, in order to properly sample hot pyrolysis vapors, many challenges must be overcome. Sampling must occur within a narrow range of temperatures to reduce product composition changes from overheating or partial condensation or plugging of lines from condensed products. Residence times must be kept at a minimum to reduce further reaction chemistries. Pyrolysis vapors also form aerosols that are carried far downstream and can pass through filters resulting in build-up in downstream locations. The co-produced bio-char and ash from the pyrolysis process can lead to plugging of the sample lines, and must be filtered out at temperature, even with the use of cyclonic separators. A practical approach for considerations and sampling system design, as well as lessons learned are integrated into the hot analytical sampling system of the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU) to provide industrially relevant demonstrations of thermochemical transformations of biomass feedstocks at the pilot scale.

  12. Hydrogen-rich gas production from waste plastics by pyrolysis and low-temperature steam reforming over a ruthenium catalyst

    International Nuclear Information System (INIS)

    Namioka, Tomoaki; Saito, Atsushi; Inoue, Yukiharu; Park, Yeongsu; Min, Tai-jin; Roh, Seon-ah; Yoshikawa, Kunio

    2011-01-01

    Operating conditions for low-temperature pyrolysis and steam reforming of plastics over a ruthenium catalyst were investigated. In the range studied, the highest gas and lowest coke fractions for polystyrene (PS) with a 60 g h -1 scale, continuous-feed, two-stage gasifier were obtained with a pyrolyzer temperature of 673 K, steam reforming temperature of 903 K, and weight hourly space velocity (WHSV) of 0.10 g-sample g-catalyst -1 h -1 . These operating conditions are consistent with optimum conditions reported previously for polypropylene. Our results indicate that at around 903 K, the activity of the ruthenium catalyst was high enough to minimize the difference between the rates of the steam reforming reactions of the pyrolysates from polystyrene and polypropylene. The proposed system thus has the flexibility to compensate for differences in chemical structures of municipal waste plastics. In addition, the steam reforming temperature was about 200 K lower than the temperature used in a conventional Ni-catalyzed process for the production of hydrogen. Low-temperature steam reforming allows for lower thermal input to the steam reformer, which results in an increase in thermal efficiency in the proposed process employing a Ru catalyst. Because low-temperature steam reforming can be also expected to reduce thermal degradation rates of the catalyst, the pyrolysis-steam reforming process with a Ru catalyst has the potential for use in small-scale production of hydrogen-rich gas from waste plastics that can be used for power generation.

  13. Energy-efficient routes for the production of gasoline from biogas and pyrolysis oil—process design and life-cycle assessment

    NARCIS (Netherlands)

    Sundaram, S.; Kolb, G.A.; Hessel, V.; Wang, Q.

    2017-01-01

    Two novel routes for the production of gasoline from pyrolysis oil (from timber pine) and biogas (from ley grass) are simulated, followed by a cradle-to-gate life-cycle assessment of the two production routes. The main aim of this work is to conduct a holistic evaluation of the proposed routes and

  14. The release of nitrogen in coal combustion and pyrolysis

    International Nuclear Information System (INIS)

    Varey, J.E.; Hindmarsh, C.J.; Thomas, K.M.

    1994-01-01

    Environmental aspects of coal utilization are a major concern. Recent advances in the development of low NO x burners and the emerging technologies of fluidized bed combustion have led to the identification of coal char nitrogen as the major contributor to the nitrogen oxides released during combustion. The temperature programmed combustion and pyrolysis of a series of coals covering a wide range of rank have been investigated. In addition, maceral concentrates have been investigated to assess the variation in the combustion behavior and the release of nitrogen in the pyrolysis and combustion of macerals. This investigation has involved the use of thermogravimetric analysis - mass spectrometry (TG-MS) with two sampling options: (1) ∼1cm from the sample and (2) at the exit of the TG. The former allows reactive species to be identified in the combustion of the coals. These temperature programmed combustion results have been compared with similar measurements carried out at the exit of the TG where the products are at equilibrium. In addition, pyrolysis studies have been carried out under similar conditions. The results show that reactive intermediate species such as HCN, (CN) 2 , COS etc. can be detected in the combustion products. The evolution of these species during combustion are compared with the pyrolysis products of the coal. The results are discussed in relation to the structure of the coals and the conversion of volatile species and char nitrogen to nitrogen oxides

  15. Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis

    International Nuclear Information System (INIS)

    Chattopadhyay, Jayeeta; Pathak, T.S.; Srivastava, R.; Singh, A.C.

    2016-01-01

    Catalytic co-pyrolysis of biomass and plastics (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) has been performed in a fixed-bed reactor in presence of cobalt based alumina, ceria and ceria-alumina catalysts to analyze the product distribution and selectivity. Catalysts are synthesized using co-precipitation method and characterized by BET (Brunauer–Emmett–Teller) surface area and XRD analysis. The effect of catalytic co-pyrolysis at different temperature with product distribution has been evaluated. The results have clearly shown the synergistic effect between biomass and plastics, the liquid products gradually increases forming with rise in the plastic content in the blend. Gaseous products have yielded most during pyrolysis of blend having biomass/plastics ratio of 5:1 with the presence of 40% Co/30% CeO_2/30% Al_2O_3 catalyst with hydrogen gas production touched its peak of 47 vol%. Catalytic performance enhanced with increase with the cobalt loading, with best performance attributing to 40% Co/30% CeO_2/30% Al_2O_3 catalyst. - Highlights: • Catalytic co-pyrolysis of biomass and plastics (HDPE, PP & PET) blends in fixed-bed reactor. • Strong synergistic effect evident between biomass and plastics. • Solid residue diminished with application of catalysts. • Aromatics and olefins production increases with higher plastic content. • More hydrogen production with application of catalysts with higher cobalt content.

  16. An approach for upgrading biomass and pyrolysis product quality using a combination of aqueous phase bio-oil washing and torrefaction pretreatment.

    Science.gov (United States)

    Chen, Dengyu; Cen, Kehui; Jing, Xichun; Gao, Jinghui; Li, Chen; Ma, Zhongqing

    2017-06-01

    Bio-oil undergoes phase separation because of poor stability. Practical application of aqueous phase bio-oil is challenging. In this study, a novel approach that combines aqueous phase bio-oil washing and torrefaction pretreatment was used to upgrade the biomass and pyrolysis product quality. The effects of individual and combined pretreatments on cotton stalk pyrolysis were studied using TG-FTIR and a fixed bed reactor. The results showed that the aqueous phase bio-oil washing pretreatment removed metals and resolved the two pyrolysis peaks in the DTG curve. Importantly, it increased the bio-oil yield and improved the pyrolysis product quality. For example, the water and acid content of bio-oil decreased significantly along with an increase in phenol formation, and the heating value of non-condensable gases improved, and these were more pronounced when combined with torrefaction pretreatment. Therefore, the combined pretreatment is a promising method, which would contribute to the development of polygeneration pyrolysis technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Production of bio-oil with low contents of copper and chlorine by fast pyrolysis of alkaline copper quaternary-treated wood in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Koo, Won-Mo; Jung, Su-Hwa; Kim, Joo-Sik

    2014-01-01

    Fast pyrolysis of ACQ (alkaline copper quaternary)-treated wood was carried out in a bench-scale pyrolysis plant equipped with a fluidized bed reactor and char separation system. This study focused on the production of a bio-oil with low copper and chlorine contents, especially by adopting the fractional condensation of bio-oil using water condensers, an impact separator and an electrostatic precipitator. In addition, various analytical tools were applied to investigate the physicochemical properties of the pyrolysis products and the behavior of the preservative during pyrolysis. The bio-oil yield was maximized at 63.7 wt% at a pyrolysis temperature of 411 °C. Highly water-soluble holocellulose-derived components such as acetic acid and hydroxyacetone were mainly collected by the condensers, while lignin-derived components and levoglucosan were mainly observed in the oils collected by the impact separator and electrostatic precipitator. All the bio-oils produced in the experiments were almost free of copper and chlorine. Most copper in ACQ was transferred into the char. - Highlights: • ACQ(alkaline copper quaternary)-treated wood was successfully pyrolyzed in a bench-scale fluidized bed. • Bio-oils separately collected were different in their characteristics. • Bio-oils were free of didecyldimethylammonium chloride. • Bio oils were almost free of copper and chlorine. • The concentration of levoglucosan in a bio-oil was 24–31 wt%

  18. Investigation of a process for the pyrolysis of plutonium contaminated combustible solid waste

    International Nuclear Information System (INIS)

    Longstaff, B.; Cains, P.W.; Elliot, M.N.; Taylor, R.F.

    1981-01-01

    Pyrolysis offers an attractive first-stage alternative to incineration as a means of weight and volume reduction of solide combustible waste P.C.M, if it is required to recover plutonium from the final product. The avoidance of turbulent conditions associated with incineration should lead to less carry-over of particulates, and the lower operating temperature approximately 700 0 C should be most advantageous to the choice of constructional materials and to plant life. The char product from pyrolysis may be oxidised to a final ash at similarly acceptable low temperatures by passing air over a stirred bed of materials. The recently received draft designs for a cyclone after-burner (plus associated scrubbers and filters etc) offer an attractive method of dispensing of the volatile products of pyrolysis

  19. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis

    International Nuclear Information System (INIS)

    Kılıç, Murat; Kırbıyık, Çisem; Çepelioğullar, Özge; Pütün, Ayşe E.

    2013-01-01

    Bio-char, a by-product of almond shell pyrolysis, was used as an alternative adsorbent precursor for the removal of heavy metal ions from aqueous solutions. The adsorption potential of almond shell bio-char for Ni(II) and Co(II) removal was investigated. Adsorption experiments were carried out by varying pH, adsorbent dosage, initial metal ion concentrations, contact time and temperature to determine the optimum conditions. To describe the equilibrium isotherms the experimental data were analyzed by the Langmuir, Freundlich, Dubinin–Radushkevich (D–R) and Temkin isotherm models. Pseudo-first order, pseudo-second order, and intraparticle diffusion kinetic models were used to find out the kinetic parameters and mechanism of adsorption process. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated for predicting the nature of adsorption. The results showed that bio-char derived from pyrolysis of biomass can be used as a low-cost and effective adsorbent for removal of heavy metal ions from aqueous solutions.

  20. Fungal volatiles: Semiochemicals for stored-product beetles (Coleoptera: Cucujidae).

    Science.gov (United States)

    Pierce, A M; Pierce, H D; Borden, J H; Oehlschlager, A C

    1991-03-01

    Responses by five species of cucujid grain beetles (mixed-sex adults) to various volatiles were assessed by means of a two-choice, pitfall olfactometer. The test volatiles were short-chain alcohols and ketones known to be produced by fungi. Both racemic and chiral 1-octen-3-ols were strong attractants forCryptolestes ferrugineus (Stephens), as had been found previously forOryzaephilus surinamensis (L.),O. mercator (Fauvel), andAhasverus advena (Waltl). 3-Methylbutanol was another good attractant for these four cucujids, and it was the only test compound to whichCathartus quadricollis (Guér.) responded positively. 1-Octen-3-one, racemic 3-octanol, and 3-octanone showed various degrees of attractiveness for the former four species of cucujids.O. surinamensis was the only species of test beetle to show much positive response to 2-phenylethanol and ethanol. ForO. mercator andO. surinamensis, 3-methylbutanol enhanced positive response to their respective cucujolide aggregation pheromones.

  1. Yields from pyrolysis of refinery residue using a batch process

    Directory of Open Access Journals (Sweden)

    S. Prithiraj

    2017-12-01

    Full Text Available Batch pyrolysis was a valuable process of assessing the potential of recovering and characterising products from hazardous waste materials. This research explored the pyrolysis of hydrocarbon-rich refinery residue, from crude oil processes, in a 1200 L electrically-heated batch retort. Furthermore, the off-gases produced were easily processed in compliance with existing regulatory emission standards. The methodology offers a novel, cost-effective and environmentally compliant method of assessing recovery potential of valuable products. The pyrolysis experiments yielded significant oil (70% with high calorific value (40 MJ/kg, char (14% with carbon content over 80% and non-condensable gas (6% with significant calorific value (240 kJ/mol. The final gas stream was subjected to an oxidative clean-up process with continuous on-line monitoring demonstrating compliance with South African emission standards. The gas treatment was overall economically optimal as only a smaller portion of the original residue was subjected to emission-controlling steps. Keywords: Batch pyrolysis, Volatiles, Oil yields, Char, Emissions, Oil recovery

  2. PERVAPORATION MEMBRANE SYSTEMS FOR VOLATILE FERMENTATION PRODUCT RECOVERY AND DEHYDRATION

    Science.gov (United States)

    The economics of fermentative production of fuels and commodity chemicals can be a strong function of the efficiency with which the fermentation products are removed from the biological media. Due to growth inhibition by some fermentation products, including ethanol, concentrati...

  3. Study of bio-oil and bio-char production from algae by slow pyrolysis

    International Nuclear Information System (INIS)

    Chaiwong, K.; Kiatsiriroat, T.; Vorayos, N.; Thararax, C.

    2013-01-01

    This study examined bio-oil and bio-char fuel produced from Spirulina Sp. by slow pyrolysis. A thermogravimetric analyser (TGA) was used to investigate the pyrolytic characteristics and essential components of algae. It was found that the temperature for the maximum degradation, 322 °C, is lower than that of other biomass. With our fixed-bed reactor, 125 g of dried Spirulina Sp. algae was fed under a nitrogen atmosphere until the temperature reached a set temperature between 450 and 600 °C. It was found that the suitable temperature to obtain bio-char and bio-oil were at approximately 500 and 550 °C respectively. The bio-oil components were identified by a gas chromatography/mass spectrometry (GC–MS). The saturated functional carbon of the bio-oil was in a range of heavy naphtha, kerosene and diesel oil. The energy consumption ratio (ECR) of bio-oil and bio-char was calculated, and the net energy output was positive. The ECR had an average value of 0.49. -- Highlights: •Bio-oil and bio-char fuel produced from Spirulina Sp. by slow pyrolysis. •Suitable temperature to obtained bio-oil and bio-char were at about 550 and 500 °C. •Saturated functional carbon of bio-oil was heavy naphtha, kerosene, diesel oil. •ECR had an average value of 0.49

  4. Volatile components of the enzyme-ripened sufu, a Chinese traditional fermented product of soy bean.

    Science.gov (United States)

    Moy, Yin-Soon; Lu, Ting-Jang; Chou, Cheng-Chun

    2012-02-01

    In the present study, sufu, a soft cheese-like oriental fermented food, was prepared by ripening the salted-tofu cubes in Aspergillus oryzae-fermented soybean-rice koji at 37°C for 16 days (16-day sufu). Sufu was further held at room temperature for another 30 days (46-day sufu). The volatile components of the non-fermented tofu cubes and the sufu products were identified and quantified by GC and GC-MS. A total of 70 volatile compounds including 20 aldehydes, 18 alcohols, 16 esters, 5 ketones, 5 acids and 6 other compounds were identified. Sufu products contained more volatile compounds than non-fermented tofu cubes qualitatively and quantitatively. After 16-days of ripening, fatty acid, aldehyde and ester were noted to be the dominant volatile fractions. In contrast, the 46-day sufu contained ester, and alcohol as the major volatile fractions. They comprise approximately 63.9% of the total volatile components. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. The effects of feedstock pre-treatment and pyrolysis temperature on the production of biochar from the green seaweed Ulva.

    Science.gov (United States)

    Roberts, David A; de Nys, Rocky

    2016-03-15

    Green seaweeds from the genus Ulva are a promising feedstock for the production of biochar for carbon (C) sequestration and soil amelioration. Ulva can be cultivated in waste water from land-based aquaculture and Ulva blooms ("green tides") strand millions of tons of biomass on coastal areas of Europe and China each year. The conversion of Ulva into biochar could recycle C and nutrients from eutrophic water into agricultural production. We produce biochar from Ulva ohnoi, cultivated in waste water from an aquaculture facility, and characterize its suitability for C sequestration and soil amelioration through bio-chemical analyses and plant growth experiments. Two biomass pre-treatments (fresh water rinsing to reduce salt, and pelletisation to increase density) were crossed with four pyrolysis temperatures (300-750 °C). Biomass rinsing decreased the ash and increased the C content of the resulting biochar. However, biochar produced from un-rinsed biomass had a higher proportion of fixed C and a higher yield. C sequestration decreased with increasing pyrolysis temperatures due to the combination of lower yield and lower total C content of biochar produced at high temperatures. Biochar produced from un-rinsed biomass at 300 °C had the greatest gravimetric C sequestration (110-120 g stable C kg(-1) seaweed). Biochar produced from un-pelletised Ulva enhanced plant growth three-fold in low fertility soils when the temperature of pyrolysis was less than 450 °C. The reduced effectiveness of the high-temperature biochars (>450 °C) was due to a lower N and higher salt content. Soil ameliorated with biochar produced from pelletised biomass had suppressed plant germination and growth. The most effective biochar for C sequestration and soil amelioration was produced from un-rinsed and un-pelletised Ulva at 300 °C. The green tide that occurs annually along the Shandong coastline in China generates sufficient biomass (200,000 tons dry weight) to ameliorate 12,500

  6. Vaporization of low-volatile fission products under severe CANDU reactor accident conditions

    International Nuclear Information System (INIS)

    Lewis, B.J.; Corse, B.J.; Thompson, W.T.; Kaye, M.H.; Iglesias, F.C.; Elder, P.; Dickson, R.; Liu, Z.

    1997-01-01

    An analytical model has been developed to describe the release behaviour of low-volatile fission products from uranium dioxide fuel under severe reactor accident conditions. The effect of the oxygen potential on the chemical form and volatility of fission products is determined by Gibbs-energy minimization. The release kinetics are calculated according to the rate-controlling step of diffusional transport in the fuel matrix or fission product vaporization from the fuel surface. The effect of fuel volatilization (i.e., matrix stripping) on the release behaviour is also considered. The model has been compared to data from an out-of-pile annealing experiment performed in steam at the Chalk River Laboratories. (author)

  7. Production of bio-oils from wood by flash pyrolysis; Herstellung von Bio-Oelen aus Holz in einer Flash-Pyrolyseanlage

    Energy Technology Data Exchange (ETDEWEB)

    Meier, D; Ollesch, T [Bundesforschungsanstalt fuer Forst- und Holzwirtschaft, Hamburg (Germany). Inst. fuer Holzchemie und Chemische Technologie des Holzes; Gerdes, C; Kaminsky, W [Hamburg Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMCh)

    1998-09-01

    Flash pyrolysis is a medium-temperature process (around 475 C) in which biomass is heated up rapidly in the absence of oxygen. The pyrolysis products are cooled down rapidly, condensing into a reddish-brown liquid with around half the calorific value of a conventional heating oil. In contrast to conventional charcoal production, flash pyrolysis is a modern process whose process parameters enure high liquid yields. Modern fluidized-bed reactors for flash pyrolysis of biomass tend to have high heating rates and short times of residue. In the `Hamburg process`, fluidized-bed reactors are used successfully for pyrolysis of plastics. A flash pyrolysis plant for biomass treatment was constructed in cooperation with Hamburg University with funds provided by the `Bundesstiftung Umwelt`. This contribution describes the first series of experiments, mass balances and oil analyses using beech wood as material to be pyrolyzed. (orig./SR) [Deutsch] Flash-Pyrolyse ist ein Mitteltemperatur-Prozess (ca. 475 C), in dem Biomasse unter Sauerstoffausschluss sehr schnell erhitzt wird. Die entstehenden Pyrolyseprodukte werden schnell abgekuehlt und kondensieren zu einer roetlich-braunen Fluessigkeit, die etwa die Haelfte des Heizwertes eines konventionellen Heizoeles besitzt. Flash-Pyrolyse ist, im Gegensatz zur konventionellen Holzverkohlung, ein modernes Verfahren, dessen spezielle Verfahrensparameter hohe Fluessigausbeuten ermoeglichen. Hohe Aufheizraten, verbunden mit kurzen Verweilzeiten, werden mit stationaeren Wirbelbettreaktoren erzielt die gegenwaertig vorwiegend fuer die Flash-Pyrolyse von Biomasse eingesetzt werden. Im `Hamburger Verfahren` haben sich Wirbelbettreaktoren im Bereich der Kunststoffpyrolyse bewaehrt. Daher wurde in Zusammenarbeit mit der Universitaet Hamburg und finanzieller Foerderung der Bundesstiftung Umwelt eine Flash-Pyrolyseanlage fuer Biomasse gebaut: In dieser Arbeit werden erste Versuchsreihen, Massenbilanzen und Oelanalysen aus der Pyrolyse von

  8. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods

    International Nuclear Information System (INIS)

    Ma, Zhongqing; Chen, Dengyu; Gu, Jie; Bao, Binfu; Zhang, Qisheng

    2015-01-01

    Highlights: • Model-free integral kinetics method and analytical TGA–FTIR were conducted on pyrolysis process of PKS. • The pyrolysis mechanism of PKS was elaborated. • Thermal stability was established: lignin > cellulose > xylan. • Detailed compositions in the volatiles of PKS pyrolysis were determinated. • The interaction of biomass three components led to the fluctuation of activation energy in PKS pyrolysis. - Abstract: Palm kernel shell (PKS) from palm oil production is a potential biomass source for bio-energy production. A fundamental understanding of PKS pyrolysis behavior and kinetics is essential to its efficient thermochemical conversion. The thermal degradation profile in derivative thermogravimetry (DTG) analysis shown two significant mass-loss peaks mainly related to the decomposition of hemicellulose and cellulose respectively. This characteristic differentiated with other biomass (e.g. wheat straw and corn stover) presented just one peak or accompanied with an extra “shoulder” peak (e.g. wheat straw). According to the Fourier transform infrared spectrometry (FTIR) analysis, the prominent volatile components generated by the pyrolysis of PKS were CO 2 (2400–2250 cm −1 and 586–726 cm −1 ), aldehydes, ketones, organic acids (1900–1650 cm −1 ), and alkanes, phenols (1475–1000 cm −1 ). The activation energy dependent on the conversion rate was estimated by two model-free integral methods: Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) method at different heating rates. The fluctuation of activation energy can be interpreted as a result of interactive reactions related to cellulose, hemicellulose and lignin degradation, occurred in the pyrolysis process. Based on TGA–FTIR analysis and model free integral kinetics method, the pyrolysis mechanism of PKS was elaborated in this paper

  9. Pyrolysis of Coconut Shell: An Experimental Investigation

    Directory of Open Access Journals (Sweden)

    E. Ganapathy Sundaram

    2009-12-01

    Full Text Available Fixed-bed slow pyrolysis experiments of coconut shell have been conducted to determine the effect of pyrolysis temperature, heating rate and particle size on the pyrolysis product yields. The effect of vapour residence time on the pyrolysis yield was also investigated by varying the reactor length. Pyrolysis experiments were performed at pyrolysis temperature between 400 and 600°C with a constant heating rate of 60°C/min and particle sizes of 1.18-1.80 mm. The optimum process conditions for maximizing the liquid yield from the coconut shell pyrolysis in a fixed bed reactor were also identified. The highest liquid yield was obtained at a pyrolysis temperature of 550 °C, particle size of 1.18-1.80 mm, with a heating rate of 60 °C/min in a 200 mm length reactor. The yield of obtained char, liquid and gas was 22-31 wt%, 38-44 wt% and 30-33 wt% respectively at different pyrolysis conditions. The results indicate that the effects of pyrolysis temperature and particle size on the pyrolysis yield are more significant than that of heating rate and residence time. The various characteristics of pyrolysis oil obtained under the optimum conditions for maximum liquid yield were identified on the basis of standard test methods.

  10. Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: A review

    Science.gov (United States)

    Residual pollutants including polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and carbon(aceous) nanoparticles are inevitably generated during the pyrolysis of waste biomass, and remain on the solid co-product called biochar. Such pollutants could have adverse effects on ...

  11. Recovery of value-added products from the catalytic pyrolysis of waste tyre

    Energy Technology Data Exchange (ETDEWEB)

    Shah, J.; Jan, M.R.; Mabood, F. [Institute of Chemical Sciences, University of Peshawar, N.W.F.P., Peshawar 25120 (Pakistan)

    2009-04-15

    The influence of an acidic (SiO{sub 2}), basic (Al{sub 2}O{sub 3}) and mixture of acidic and basic (Al{sub 2}O{sub 3}: SiO{sub 2}) catalyst on the pyrolysis of used tyre rubber has been investigated. The yield of the derived gas, liquid and solid has been studied in term of the temperature, time and amount of catalyst. Oil fractions were analyzed by FTIR spectroscopy and gas chromatography with FID. Oil derived with Al{sub 2}O{sub 3} containing higher concentration of polar hydrocarbons (40%) and lower concentration of aliphatic hydrocarbons while 40% aliphatic hydrocarbons and 30% polar hydrocarbons were found in oil derived with SiO{sub 2}. A mixture of catalyst (Al{sub 2}O{sub 3}: SiO{sub 2}) gave equal concentration of aliphatic (35%) and polar (35%) hydrocarbons in oil. (author)

  12. Thermal recycling of plastic waste using pyrolysis-gasification process for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Forbit, George Teke

    2012-04-04

    The disposal of mixed waste in landfills, dump sites and open burning without material and energy recovery leads to resource loss, causes health problems, pollution and littering. Increasing energy demand for industrial and domestic application with rising costs due to scarcity motivates a constant search for alternative clean energy sources. Recovering energy from waste presents various incentives e.g. creating jobs, alleviating poverty, combating and mitigating climate change, protecting the environment and reducing dependence on traditional fuels sources. Hence, plastics end up in landfills, surface waters and ocean bed with serious negative impact on terrestrial and aquatic biodiversity. Plastic waste with high calorific value (36-46MJ/kg) occupies the greatest portion of landfill space. Hence, using an appropriate technology to transform waste plastic to a hot gaseous mixture which is burned in-situ produces enormous amount of energy without pollution. Based on this hypothesis, the study objectives accomplished were to: 1. Characterise, quantify and classify waste fractions and plastic components common in MSW by manual sorting 2. Evaluate options for sustainable plastic waste management especially for developing countries 3. Design, construct, test and optimize an appropriate technology that applies pyrolysis and gasification processes to convert non-PVC plastic waste to energy 4. Assess the efficiency of the technology based on the functioning, the engineering, mass and energy analysis including socioeconomic and environmental impacts An integrated methodology involving review of current literature, field and laboratory experiments on mixed waste and plastic waste analysis was used. In addition, the pyrolysis-gasification technology (PGT) was conceptualised, designed, constructed, tested and optimised at BTU Cottbus, Germany; Lagos, Nigeria and Dschang, Cameroon. Field studies involving natural observation, interviews, personal discussions and visits to

  13. Chemistry of decomposition of freshwater wetland sedimentary organic material during ramped pyrolysis

    Science.gov (United States)

    Williams, E. K.; Rosenheim, B. E.

    2011-12-01

    Ramped pyrolysis methodology, such as that used in the programmed-temperature pyrolysis/combustion system (PTP/CS), improves radiocarbon analysis of geologic materials devoid of authigenic carbonate compounds and with low concentrations of extractable authochthonous organic molecules. The approach has improved sediment chronology in organic-rich sediments proximal to Antarctic ice shelves (Rosenheim et al., 2008) and constrained the carbon sequestration potential of suspended sediments in the lower Mississippi River (Roe et al., in review). Although ramped pyrolysis allows for separation of sedimentary organic material based upon relative reactivity, chemical information (i.e. chemical composition of pyrolysis products) is lost during the in-line combustion of pyrolysis products. A first order approximation of ramped pyrolysis/combustion system CO2 evolution, employing a simple Gaussian decomposition routine, has been useful (Rosenheim et al., 2008), but improvements may be possible. First, without prior compound-specific extractions, the molecular composition of sedimentary organic matter is unknown and/or unidentifiable. Second, even if determined as constituents of sedimentary organic material, many organic compounds have unknown or variable decomposition temperatures. Third, mixtures of organic compounds may result in significant chemistry within the pyrolysis reactor, prior to introduction of oxygen along the flow path. Gaussian decomposition of the reaction rate may be too simple to fully explain the combination of these factors. To relate both the radiocarbon age over different temperature intervals and the pyrolysis reaction thermograph (temperature (°C) vs. CO2 evolved (μmol)) obtained from PTP/CS to chemical composition of sedimentary organic material, we present a modeling framework developed based upon the ramped pyrolysis decomposition of simple mixtures of organic compounds (i.e. cellulose, lignin, plant fatty acids, etc.) often found in sedimentary

  14. Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived bio-char

    International Nuclear Information System (INIS)

    Dong, Tao; Gao, Difeng; Miao, Chao; Yu, Xiaochen; Degan, Charles; Garcia-Pérez, Manuel; Rasco, Barbara; Sablani, Shyam S.; Chen, Shulin

    2015-01-01

    Highlights: • Highly active catalyst was prepared using bio-char co-produced in Auger pyrolysis. • Catalyst inhibitors in crude oil were effectively removed by a practical refinery process. • Free fatty acids (FFA) content in refined microalgal oil was reduced to less than 0.5%. • A total fatty acid methyl ester (FAME) yield of 99% was obtained via a two-step process. • The inexpensive bio-char catalyst is superior to Amberlyst-15 in pre-esterification. - Abstract: An efficient process for biodiesel production from fast-refined microalgal oil was demonstrated. A low cost catalyst prepared from pyrolysis-derived bio-char, was applied in pre-esterification to reduce free fatty acid (FFA) content. Results showed that the bio-char catalyst was highly active in esterification; however, the performance of the catalyst significantly reduced when crude microalgal oil was used as feedstock. To solve the problem caused by catalyst-fouling, a fast and scalable crude oil refinery procedure was carried out to remove chlorophyll and phospholipids that might degrade the catalyst and the quality of biodiesel. The activity and reusability of bio-char catalyst were remarkably improved in the fast-refined oil. FFA content in the refined microalgal oil was reduced to less than 0.5% after pre-esterification. The bio-char catalyst could be reused for 10 cycles without dramatic loss in activity. The pre-esterification fits the first-order kinetic reaction with activation energy of 42.16 kJ/mol. The activity of bio-char catalyst was superior to commercial Amberlyst-15 under the same reaction condition. A total fatty acid methyl ester (FAME, namely biodiesel) yield of 99% was obtained following the second-step CaO-catalyzed transesterification. The cost-effective bio-char catalyst has great potential for biodiesel production using feedstocks having high FFA content.

  15. Co-gasification of black liquor and pyrolysis oil: Evaluation of blend ratios and methanol production capacities

    International Nuclear Information System (INIS)

    Andersson, Jim; Furusjö, Erik; Wetterlund, Elisabeth; Lundgren, Joakim; Landälv, Ingvar

    2016-01-01

    Highlights: • Biomethanol from co-gasified black liquor and pyrolysis oil at different capacities. • Enables higher biofuel production for given available amount of black liquor. • Opportunity for cost efficient black liquor gasification also in small pulp mills. • The methanol can be cost competitive to 2nd generation ethanol and fossil fuels. • Fewer pulp mills would need to be converted to meet given biofuel demand. - Abstract: The main aim of this study is to investigate integrated methanol production via co-gasification of black liquor (BL) and pyrolysis oil (PO), at Swedish pulp mills. The objectives are to evaluate techno-economically different blends ratios for different pulp mill capacities. Furthermore, the future methanol production potential in Sweden and overall system consequences of large-scale implementation of PO/BL co-gasification are also assessed. It is concluded that gasification of pure BL and PO/BL blends up to 50% results in significantly lower production costs than what can be achieved by gasification of unblended PO. Co-gasification with 20–50% oil addition would be the most advantageous solution based on IRR for integrated biofuel plants in small pulp mills (200 kADt/y), whilst pure black liquor gasification (BLG) will be the most advantageous alternative for larger pulp mills. For pulp mill sizes between 300 and 600 kADt/y, it is also concluded that a feasible methanol production can be achieved at a methanol market price below 100 €/MW h, for production capacities ranging between 0.9 and 1.6 TW h/y for pure BLG, and between 1.2 and 6.5 TW h/y for PO/BL co-gasification. This study also shows that by introducing PO/BL co-gasification, fewer pulp mills would need to be converted to biofuel plants than with pure BLG, to meet a certain biofuel demand for a region. Due to the technical as well as organizational complexity of the integration this may prove beneficial, and could also potentially lower the total investment

  16. Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication

    International Nuclear Information System (INIS)

    Lee, Jechan; Yang, Xiao; Cho, Seong-Heon; Kim, Jae-Kon; Lee, Sang Soo; Tsang, Daniel C.W.; Ok, Yong Sik; Kwon, Eilhann E.

    2017-01-01

    Highlights: • CO 2 reacts with VOCs enhancing syngas generation from pyrolysis of biomass. • CO 2 reduces tar formation by expediting thermal cracking of VOCs. • Properties of biochar can be easily modified using CO 2 as a pyrolysis agent. • A detailed mass balance for pyrolysis of red pepper stalk was provided. • Energy saving can be expected in pyrolysis of biomass using CO 2 . - Abstract: This study focused on the mechanistic understanding of CO 2 in pyrolysis process of agricultural waste to achieve waste management, energy recovery, and biochar fabrication. In order to scrutinize the genuine role of CO 2 in the biomass pyrolysis, all pyrogenic products such as syngas, pyrolytic oil (i.e., tar), and biochar generated from pyrolysis of red pepper stalk in N 2 and CO 2 were characterized. Thermo-gravimetric analysis confirmed that during the thermolysis of red pepper stalk, the magnitude of exothermic reaction in CO 2 from 220 to 400 °C was substantially different from that in N 2 , resulting in the different extents of carbonization. The physico-chemical properties of biochar produced in CO 2 were varied compared to biochar produced in N 2 . For example, the surface area of biochar produced in CO 2 was increased from 32.46 to 109.15 m 2 g −1 . This study validates the role of CO 2 not only as expediting agent for the thermal cracking of volatile organic carbons (VOCs) but also as reacting agent with VOCs. This genuine influence of CO 2 in pyrolysis of red pepper stalk led to enhanced generation of syngas, which consequently reduced tar production because VOCs evolving from devolatilization of biomass served as substrates for syngas via reaction between CO 2 and VOCs. The enhanced generation of CO reached up to 3000 and 6000% at 600 and 690 °C, respectively, whereas 33.8% tar reduction in CO 2 was identified at 600 °C.

  17. Impact of production location, production system, and variety on the volatile organic compounds fingerprints and sensory characteristics of tomatoes

    NARCIS (Netherlands)

    Muilwijk, Mirthe; Heenan, Samuel; Koot, Alex; Ruth, Van Saskia M.

    2015-01-01

    Consumers have more and more interest in where and how their foods are produced. However, it is often challenging to discriminate products from different production locations and systems. The objective of this study was to examine fingerprinting of volatile organic compounds (VOCs) as an approach

  18. Comparative evaluation of GHG emissions from the use of Miscanthus for bio-hydrocarbon production via fast pyrolysis and bio-oil upgrading

    International Nuclear Information System (INIS)

    Shemfe, Mobolaji B.; Whittaker, Carly; Gu, Sai; Fidalgo, Beatriz

    2016-01-01

    Highlights: • GHG emissions from the upgrading of pyrolysis-derived bio-oil is quantified.. • Soil organic carbon sequestration rate had a significant effect on GHG emission. • Increasing plant scale could improve the environmental performance of the system. • Nitrogen to the pyrolysis reactor had significant impact on GHG emissions. - Abstract: This study examines the GHG emissions associated with producing bio-hydrocarbons via fast pyrolysis of Miscanthus. The feedstock is then upgraded to bio-oil products via hydroprocessing and zeolite cracking. Inventory data for this study were obtained from current commercial cultivation practices of Miscanthus in the UK and state-of-the-art process models developed in Aspen Plus®. The system boundary considered spans from the cultivation of Miscanthus to conversion of the pyrolysis-derived bio-oil into bio-hydrocarbons up to the refinery gate. The Miscanthus cultivation subsystem considers three scenarios for soil organic carbon (SOC) sequestration rates. These were assumed as follows: (i) excluding (SOC), (ii) low SOC and (iii) high (SOC) for best and worst cases. Overall, Miscanthus cultivation contributed moderate to negative values to GHG emissions, from analysis of excluding SOC to high SOC scenarios. Furthermore, the rate of SOC in the Miscanthus cultivation subsystem has significant effects on total GHG emissions. Where SOC is excluded, the fast pyrolysis subsystem shows the highest positive contribution to GHG emissions, while the credit for exported electricity was the main ‘negative’ GHG emission contributor for both upgrading pathways. Comparison between the bio-hydrocarbons produced from the two upgrading routes and fossil fuels indicates GHG emission savings between 68% and 87%. Sensitivity analysis reveals that bio-hydrocarbon yield and nitrogen gas feed to the fast pyrolysis reactor are the main parameters that influence the total GHG emissions for both pathways.

  19. Duff reaction on phenols: Characterization of non steam volatile products

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.; Bhattacharya, J.

    New products having structures 1 and 2 have been characterized in the Duff reaction thymol arid carvacrol. These products have been identified as 2.6'-dithymylmethane 1 and 5.5' -dicarvacryl methane 2 respectively on the basis of spectral data...

  20. Thermal and catalytic pyrolysis of plastic waste

    Directory of Open Access Journals (Sweden)

    Débora Almeida

    2016-02-01

    Full Text Available Abstract The amount of plastic waste is growing every year and with that comes an environmental concern regarding this problem. Pyrolysis as a tertiary recycling process is presented as a solution. Pyrolysis can be thermal or catalytical and can be performed under different experimental conditions. These conditions affect the type and amount of product obtained. With the pyrolysis process, products can be obtained with high added value, such as fuel oils and feedstock for new products. Zeolites can be used as catalysts in catalytic pyrolysis and influence the final products obtained.

  1. Biomass pyrolysis for chemicals

    Energy Technology Data Exchange (ETDEWEB)

    De Wild, P.

    2011-07-15

    The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for materials and energy where biomass provides the only renewable source for chemicals. In a biorefinery, biomass is converted via different technologies into heat, power and various products. Here, pyrolysis (thermal degradation without added oxygen) of lignocellulosic biomass can play an important role, because it leads to an array of useful chemicals. Examples are furfural and acetic acid from hemicellulose, levoglucosan from cellulose and phenols and biochar from lignin. Since the three major biomass polymers hemicellulose, cellulose and lignin possess dissimilar thermal stabilities and reactivities, type and amount of degradation products are tunable by proper selection of the pyrolysis conditions. To determine if step-wise pyrolysis would be suitable for the production of chemicals, staged degasification of lignocellulosic biomass was studied. Due to limited yields, a hot pressurized water pre-treatment (aquathermolysis) followed by pyrolysis was subsequently developed as an improved version of a staged approach to produce furfural and levoglucosan from the carbohydrate fraction of the biomass. Lignin is the only renewable source for aromatic chemicals. Lignocellulosic biorefineries for bio-ethanol produce lignin as major by-product. The pyrolysis of side-streams into valuable chemicals is of prime importance for a profitable biorefinery. To determine the added-value of lignin side-streams other than their use as fuel for power, application research including techno-economic analysis is required. In this thesis, the pyrolytic valorisation of lignin into phenols and biochar was investigated and proven possible.

  2. Co-production of furfural and acetic acid from corncob using ZnCl2 through fast pyrolysis in a fluidized bed reactor.

    Science.gov (United States)

    Oh, Seung-Jin; Jung, Su-Hwa; Kim, Joo-Sik

    2013-09-01

    Corncob was pyrolyzed using ZnCl2 in a pyrolysis plant equipped with a fluidized bed reactor to co-produce furfural and acetic acid. The effects of reaction conditions, the ZnCl2 content and contacting method of ZnCl2 with corncob on the yields of furfural and acetic acid were investigated. The pyrolysis was performed within the temperature range between 310 and 410°C, and the bio-oil yield were 30-60 wt% of the product. The furfural yield increased up to 8.2 wt%. The acetic acid yield was maximized with a value of 13.1 wt%. A lower feed rate in the presence of ZnCl2 was advantageous for the production of acetic acid. The fast pyrolysis of a smaller corncob sample mechanically mixed with 20 wt% of ZnCl2 gave rise to a distinct increase in furfural. A high selectivity for furfural and acetic acid in bio-oil would make the pyrolysis of corncob with ZnCl2 very economically attractive. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Catalytic Fast Pyrolysis of Cellulose Using Nano Zeolite and Zeolite/Matrix Catalysts in a GC/Micro-Pyrolyzer.

    Science.gov (United States)

    Lee, Kyong-Hwan

    2016-05-01

    Cellulose, as a model compound of biomass, was catalyzed over zeolite (HY,.HZSM-5) and zeolite/matrix (HY/Clay, HM/Clay) in a GC/micro-pyrolyzer at 500 degrees C, to produce the valuable products. The catalysts used were pure zeolite and zeolite/matrix including 20 wt% matrix content, which were prepared into different particle sizes (average size; 0.1 mm, 1.6 mm) to study the effect of the particle size of the catalyst for the distribution of product yields. Catalytic pyrolysis had much more volatile products as light components and less content of sugars than pyrolysis only. This phenomenon was strongly influenced by the particle size of the catalyst in catalytic fast pyrolysis. Also, in zeolite and zeolite/matrix catalysts the zeolite type gave the dominant impact on the distribution of product yields.

  4. Lab-scale pyrolysis of the Automotive Shredder Residue light fraction and characterization of tar and solid products.

    Science.gov (United States)

    Anzano, Manuela; Collina, Elena; Piccinelli, Elsa; Lasagni, Marina

    2017-06-01

    The general aim of this study is the recovery of Automotive Shredder Residue (ASR). The ASR light fraction, or car fluff, that was collected at an Italian shredding plant was pyrolysed at various temperatures (500-800°C) in a lab-scale reactor. The condensable gases (tar) and solid residue yields increased with decreasing temperature, and these products were characterized to suggest a potential use to reclaim them. The higher heating value (HHV) of tar was 34-37MJ/kg, which is comparable with those of fossil fuels. Furthermore, the ash content was low (0.06-4.98%). Thus, tar can be used as an alternative fuel. With this prospect, the concentrations of polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in tar were determined. The toxicity of tar changes with temperature (1-5ng I-TEQ/g), and the PCDFs significantly contribute to tar toxicity, which was 75-100% with a maximum of 99.6% at 700°C. Regarding the characterization of the solid residue, the low HHV (2.4-3.3MJ/kg) does not make it suitable for energy recovery. Regarding material recovery, we considered its use as a filler in construction materials or a secondary source for metals. It shows a high metal concentration (280,000-395,000mg/kg), which is similar at different pyrolysis temperatures. At 500°C, polycyclic aromatic hydrocarbons (PAHs) were not detected in the solid residue, whereas the maximum total PAH concentration (19.41ng/g, 700°C) was lower than that in fly ash from MSWI. In conclusion, 500°C is a suitable pyrolysis temperature to obtain valuable tar and solid residue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Secondary organic aerosol production from pinanediol, a semi-volatile surrogate for first-generation oxidation products of monoterpenes

    Science.gov (United States)

    Ye, Penglin; Zhao, Yunliang; Chuang, Wayne K.; Robinson, Allen L.; Donahue, Neil M.

    2018-05-01

    We have investigated the production of secondary organic aerosol (SOA) from pinanediol (PD), a precursor chosen as a semi-volatile surrogate for first-generation oxidation products of monoterpenes. Observations at the CLOUD facility at CERN have shown that oxidation of organic compounds such as PD can be an important contributor to new-particle formation. Here we focus on SOA mass yields and chemical composition from PD photo-oxidation in the CMU smog chamber. To determine the SOA mass yields from this semi-volatile precursor, we had to address partitioning of both the PD and its oxidation products to the chamber walls. After correcting for these losses, we found OA loading dependent SOA mass yields from PD oxidation that ranged between 0.1 and 0.9 for SOA concentrations between 0.02 and 20 µg m-3, these mass yields are 2-3 times larger than typical of much more volatile monoterpenes. The average carbon oxidation state measured with an aerosol mass spectrometer was around -0.7. We modeled the chamber data using a dynamical two-dimensional volatility basis set and found that a significant fraction of the SOA comprises low-volatility organic compounds that could drive new-particle formation and growth, which is consistent with the CLOUD observations.

  6. Analysis of diacetylmorphine, caffeine, and degradation products after volatilization of pharmaceutical heroin for inhalation

    NARCIS (Netherlands)

    Klous, Marjolein G.; Lee, WeiChing; Hillebrand, Michel J. X.; van den Brink, Wim; van Ree, Jan M.; Beijnen, Jos H.

    2006-01-01

    Pharmaceutical smokable heroin was developed for a clinical trial on medical co-prescription of heroin and methadone. This product, consisting of 75% w/w diacetylmorphine base and 25% w/w caffeine anhydrate, was intended for use via "chasing the dragon", that is, inhalation after volatilization.

  7. THE KINETICS OF METHYL METHACRYLATE POLYMERIZATION INITIATED BY THE VOLATILE PRODUCTS OF A METHYL METHACRYLATE PLASMA

    Institute of Scientific and Technical Information of China (English)

    杨梅林; 马於光; 郑莹光; 沈家骢

    1990-01-01

    It is found that the volatile products of methyl methacrylate plasma can very actively initiate the polymerization of the monomer to produce ultrahigh molecular weight polymers. This polymerization of MMA occurs by a livlng free radical mechanism with instantaneous initiation and monomer transfer.

  8. Autothermal catalytic pyrolysis of methane as a new route to hydrogen production with reduced CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Smith, Franklyn; Huang, Cunping; T-Raissi, Ali [Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922 (United States)

    2006-08-15

    Hydrogen production plants are among major sources of CO{sub 2} emissions into the atmosphere. The objective of this paper is to explore new routes to hydrogen production from natural gas (or methane) with drastically reduced CO{sub 2} emissions. One approach analyzed in this paper is based on thermocatalytic decomposition (or pyrolysis) of methane into hydrogen gas and elemental carbon over carbon-based catalysts. Several heat input options to the endothermic process are discussed in the paper. The authors conduct thermodynamic analysis of methane decomposition in the presence of small amounts of oxygen in an autothermal (or thermo-neutral) regime using AspenPlus(TM) chemical process simulator. Methane conversion, products yield, effluent gas composition, process enthalpy flows as a function of temperature, pressure and O{sub 2}/CH{sub 4} ratio has been determined. CO{sub 2} emissions (per m{sup 3} of H{sub 2} produced) from the process could potentially be a factor of 3-5 less than from conventional hydrogen production processes. Oxygen-assisted decomposition of methane over activated carbon (AC) and AC-supported iron catalysts over wide range of temperatures and O{sub 2}/CH{sub 4} ratios was experimentally verified. Problems associated with the catalyst deactivation and the effect of iron doping on the catalyst stability are discussed. (author)

  9. Effect of blending ratio to the liquid product on co-pyrolysis of low rank coal and oil palm empty fruit bunch

    Directory of Open Access Journals (Sweden)

    Zullaikah Siti

    2018-01-01

    Full Text Available The utilization of Indonesia low rank coal should be maximized, since the source of Indonesia law rank coals were abundant. Pyrolysis of this coal can produce liquid product which can be utilized as fuel and chemical feedstocks. The yield of liquid product is still low due to lower of comparison H/C. Since coal is non-renewable source, an effort of coal saving and to mitigate the production of greenhouse gases, biomass such as oil palm empty fruit bunch (EFB would added as co-feeding. EFB could act as hydrogen donor in co-pyrolysis to increase liquid product. Co-pyrolysis of Indonesia low rank coal and EFB were studied in a drop tube reactor under the certain temperature (t= 500 °C and time (t= 1 h used N2 as purge gas. The effect of blending ratios of coal/EFB (100/0, 75/25, 50/50, 25/75 and 0/100%, w/w % on the yield and composition of liquid product were studied systematically. The results showed that the higher blending ratio, the yield of liquid product and gas obtained increased, while the char decreased. The highest yield of liquid product (28,62 % was obtained used blending ratio of coal/EFB = 25/75, w/w%. Tar composition obtained in this ratio is phenol, polycyclic aromatic hydrocarbons, alkanes, acids, esters.

  10. Pyrolysis studies of PP/PE/PS/PVC/HIPS-Br plastics mixed with PET and dehalogenation (Br, Cl) of the liquid products

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar, Thallada; Kaneko, Jun; Muto, Akinori; Sakata, Yusaku [Department of Applied Chemistry, Faculty of Engineering, Okayama University, 3-1-1 Tsushima Naka, 700-8530 Okayama (Japan); Jakab, Emma [Research Laboratory of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, P.O. Box 17, H-1525 Budapest (Hungary); Matsui, Toshiki [Toda Kogyo Co. Ltd., Hiroshima 739-0652 (Japan); Uddin, Md. Azhar [Process Safety and Environment Protection Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2004-08-01

    Pyrolysis of polypropylene (PP)/polyethylene (PE)/polystyrene (PS)/poly(vinyl chloride) (PVC)/high impact polystyrene with brominated flame retardant (HIPS-Br) plastics mixed with poly(ethylene terephthalate) (PET) was performed at 430C under atmospheric pressure using a semi-batch operation. The presence of PET in the pyrolysis mixture of PP/PE/PS/PVC/HIPS-Br affected significantly the formation of decomposition products and the decomposition behavior of the plastic mixture. We observed the following effects of PET on the pyrolysis of PP/PE/PS/PVC/HIPS-Br mixed plastics: (1) the yield of liquid product decreased and the formation of gaseous products increased; (2) a waxy residue was formed in addition to the solid carbon residue; (3) the formation of SbBr{sub 3} was not detected in liquid products; (4) the yield of chlorinated branched alkanes increased as well as vinyl bromide and ethyl bromide were formed. The use of calcium carbonate carbon composite (Ca-C) completely removed the chlorine and bromine content from the liquid products during PP/PE/PS/PVC/HIPS-Br pyrolysis, however in the presence of PET, the catalytic experiment (Ca-C, 8g) yielded liquid products containing 310ppm of Br and 20ppm of Cl. In addition, the Ca-C increased the yield of liquid products about 3-6wt.%, as well as enhanced the gaseous product evolution and decreased the yield of residue. The halogen free liquid hydrocarbons can be used as a feedstock in a refinery or as a fuel.

  11. Experimental investigation of hydrous pyrolysis of diesel fuel and the effect of pyrolysis products on performance of the candidate nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Jackson, K.J.; Carroll, S.A.

    1994-01-01

    It is thought that a significant amount of diesel fuel and other hydrocarbon-rich phases may remain inside the candidate nuclear waste repository at Yucca Mountain after construction and subsequent emplacement of radioactive waste. Although the proposed repository horizon is above the water table, the remnant hydrocarbon phases may react with hydrothermal solutions generated by high temperature conditions that will prevail for a period of time in the repository. The preliminary experimental results of this study show that diesel fuel hydrous pyrolysis is minimal at 200 degrees C and 70 bars. The composition of the diesel fuel remained constant throughout the experiment and the concentration of carboxylic acids in the aqueous phases was only slightly above the detection limit (1-2 ppm) of the analytical technique

  12. Thermal recycling of plastic waste using pyrolysis-gasification process for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Forbit, George Teke

    2012-04-04

    The disposal of mixed waste in landfills, dump sites and open burning without material and energy recovery leads to resource loss, causes health problems, pollution and littering. Increasing energy demand for industrial and domestic application with rising costs due to scarcity motivates a constant search for alternative clean energy sources. Recovering energy from waste presents various incentives e.g. creating jobs, alleviating poverty, combating and mitigating climate change, protecting the environment and reducing dependence on traditional fuels sources. Hence, plastics end up in landfills, surface waters and ocean bed with serious negative impact on terrestrial and aquatic biodiversity. Plastic waste with high calorific value (36-46MJ/kg) occupies the greatest portion of landfill space. Hence, using an appropriate technology to transform waste plastic to a hot gaseous mixture which is burned in-situ produces enormous amount of energy without pollution. Based on this hypothesis, the study objectives accomplished were to: 1. Characterise, quantify and classify waste fractions and plastic components common in MSW by manual sorting 2. Evaluate options for sustainable plastic waste management especially for developing countries 3. Design, construct, test and optimize an appropriate technology that applies pyrolysis and gasification processes to convert non-PVC plastic waste to energy 4. Assess the efficiency of the technology based on the functioning, the engineering, mass and energy analysis including socioeconomic and environmental impacts An integrated methodology involving review of current literature, field and laboratory experiments on mixed waste and plastic waste analysis was used. In addition, the pyrolysis-gasification technology (PGT) was conceptualised, designed, constructed, tested and optimised at BTU Cottbus, Germany; Lagos, Nigeria and Dschang, Cameroon. Field studies involving natural observation, interviews, personal discussions and visits to

  13. Controlled release of volatiles under mild reaction conditions: from nature to everyday products.

    Science.gov (United States)

    Herrmann, Andreas

    2007-01-01

    Volatile organic compounds serve in nature as semiochemicals for communication between species, and are often used as flavors and fragrances in our everyday life. The quite limited longevity of olfactive perception has led to the development of pro-perfumes or pro-fragrances--ideally nonvolatile and odorless fragrance precursors which release the active volatiles by bond cleavage. Only a limited amount of reaction conditions, such as hydrolysis, temperature changes, as well as the action of light, oxygen, enzymes, or microorganisms, can be used to liberate the many different chemical functionalities. This Review describes the controlled chemical release of fragrances and discusses additional challenges such as precursor stability during product storage as well as some aspects concerning toxicity and biodegradability. As the same systems can be applied in different areas of research, the scope of this Review covers fragrance delivery as well as the controlled release of volatiles in general.

  14. Volatile fatty acids production in ruminants and the role of ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... Essential to these roles is their rapid transport across the plasma membrane, which is catalyzed ... The aim of this review is to critically discuss short-chain fatty acids production and the functional ... Two major functions of monocarboxylate transporter proteins, namely the facilitation of the ...

  15. A model for the release of low-volatility fission products in oxidizing conditions

    International Nuclear Information System (INIS)

    Cox, D.S.; Hunt, C.E.L.; Liu, Z.; Keller, N.A.; Barrand, R.D.; O'Connor, R.F.

    1991-07-01

    A thermodynamic and kinetic model has been developed for calculating low-volatility fission-product releases from UO 2 at high temperatures in oxidizing conditions. Volatilization of the UO 2 matrix is assumed to be the rate controlling process. Oxidation kinetics of the UO 2 are modelled by either interfacial rate control, gas phase oxidant transport control, or solid-state diffusion of oxygen. The vapour pressure of UO 3 in equilibrium with the oxidizing fuel is calculated from thermodynamic data, and volatilization rates are determined using a model for forced convective mass transport. Low-volatility fission-product releases are calculated from the volume of vapourized fuel. Model calculations are conservative compared to experimental data for Zr, La, Ce and Nb fission-product releases from irradiated UO 2 exposed to air at 1973-2350 K. The implications of this conservatism are discussed in terms of possible rate control by processes other than convective mass transport of UO 3 . Coefficients for effective surface area (based on experimental data) and for heterogeneous rate controlling reaction kinetics are introduced to facilitate agreement between calculations and the experimental data.

  16. Characterization of volatile production during storage of lettuce (Lactuca sativa) seed.

    Science.gov (United States)

    Mira, Sara; González-Benito, M Elena; Hill, Lisa M; Walters, Christina

    2010-09-01

    The duration that seeds stay vigorous during storage is difficult to predict but critical to seed industry and conservation communities. Production of volatile compounds from lettuce seeds during storage was investigated as a non-invasive and early detection method of seed ageing rates. Over 30 volatile compounds were detected from lettuce seeds during storage at 35 degrees C at water contents ranging from 0.03 to 0.09 g H(2)O g(-1) dw. Both qualitative and quantitative differences in volatile composition were noted as a function of water content, and these differences were apparent before signs of deterioration were visible. Seeds stored at high water content (L >or=0.06 g H(2)O g(-1) dw) emitted molecular species indicative of glycolysis (methanol+ethanol), and evidence of peroxidation was apparent subsequent to viability loss. Seeds containing less water (0.03-0.05 g H(2)O g(-1) dw) produced volatiles indicative of peroxidation and survived longer compared with seeds stored under more humid conditions. Production of glycolysis-related by-products correlated strongly with deterioration rate when measured as a function of water content. This correlation may provide a valuable non-invasive means to predict the duration of the early, asymptomatic stage of seed deterioration.

  17. Fluidized bed pyrolysis of HDPE: A study of the influence of operating variables and the main fluid dynamic parameters on the composition and production of gases

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Lidia; Aguado, Alicia; Moral, Alberto [CARTOF Centro Tecnologico, Valladolid (Spain). Environmental Div.; Irusta, Ruben [CARTOF Centro Tecnologico, Valladolid (Spain). Environmental Div.; Valladolid Univ. (Spain). Dept. of Chemical Engineering and Environmental Technology

    2011-02-15

    In the present work, a preliminary study of the pyrolysis process of high density polyethylene (HDPE) in a fluidized bed is investigated in order to determine the influence between the fluid dynamic properties of the bed reactor and the amount and composition of the gases produced. As is known, fluidized bed technology is a very interesting option to apply in the pyrolysis field due to i) the lack of moving parts in the hot region that facilitates the maintenance of equipment, ii) the high surface area to volume ratio available in the bed, and iii) the high heat transfer coefficient reached which governs the reaction products. But, heat and mass transfer coefficients are strongly affected by the fluid dynamic properties of the bed. During the pyrolysis of HDPE, a fluid dynamic characterization of the bed particles that consist of char-coated sand of HDPE has been carried out. Parameters such as the minimum fluidizing velocity (u{sub mf}), terminal velocity (u{sub t}), bed height (h{sub f}), bed voidage ({epsilon}{sub f}), fraction of the bed occupied by bubbles ({delta}), bubble diameter (d{sub b}), bubble velocity (u{sub b}), the mass transfer coefficients between the bubble and the cloud (K{sub bc}) and between the cloud and the emulsion (K{sub ce}) were determined. Subsequently, the influence of major operating variables and the fluid dynamic parameters on the composition and the gas yield of the pyrolysis of HDPE were studied. (author)

  18. Symptoms of mothers and infants related to total volatile organic compounds in household products

    OpenAIRE

    Farrow, A; Taylor, H; Northstone, K; Golding, J

    2003-01-01

    The authors sought to determine whether reported symptoms of mothers and infants were associated significantly with the use of household products that raised indoor levels of total volatile organic compounds (TVOCs). Data collected from 170 homes within the Avon Longitudinal Study of Parents and Children (ALSPAC: a large birth cohort of more than 10,000) had determined which household products were associated with the highest levels of TVOCs. The latter data were collected over a period that ...

  19. Catalytic pyrolysis of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Vail' eva, N A; Buyanov, R A

    1979-01-01

    Catalytic pyrolysis of petroleum fractions (undecane) was performed with the object of clarifying such questions as the mechanism of action of the catalyst, the concepts of activity and selectivity of the catalyst, the role of transport processes, the temperature ranges and limitations of the catalytic process, the effect of the catalyst on secondary processes, and others. Catalysts such as quartz, MgO, Al/sub 2/O/sub 3/, were used. Analysis of the experimental findings and the fact that the distribution of products is independent of the nature of the surface, demonstrate that the pyrolysis of hydrocarbons in the presence of catalysts is based on the heterogeneous-homogeneous radical-chain mechanism of action, and that the role of the catalysts reduces to increasing the concentration of free radicals. The concept of selectivity cannot be applied to catalysts here, since they do not affect the mechanism of the unfolding of the process of pyrolysis and their role consists solely in initiating the process. In catalytic pyrolysis the concepts of kinetic and diffusive domains of unfolding of the catalytic reaction do not apply, and only the outer surface of the catalyst is engaged, whereas the inner surface merely promotes deletorious secondary processes reducing the selectivity of the process and the activity of the catalyst. 6 references, 2 figures.

  20. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.

    Science.gov (United States)

    Silva, I; Campos, F M; Hogg, T; Couto, J A

    2011-08-01

    To evaluate the effect of wine phenolic compounds on the production of volatile phenols (4-vinylphenol [4VP] and 4-ethylphenol [4EP]) from the metabolism of p-coumaric acid by lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus collinoides and Pediococcus pentosaceus were grown in MRS medium supplemented with p-coumaric acid, in the presence of different phenolic compounds: nonflavonoids (hydroxycinnamic and benzoic acids) and flavonoids (flavonols and flavanols). The inducibility of the enzymes involved in the p-coumaric acid metabolism was studied in resting cells. The hydroxycinnamic acids tested stimulated the capacity of LAB to synthesize volatile phenols. Growth in the presence of hydroxycinnamic acids, especially caffeic acid, induced the production of 4VP by resting cells. The hydroxybenzoic acids did not significantly affect the behaviour of the studied strains. Some of the flavonoids showed an effect on the production of volatile phenols, although strongly dependent on the bacterial species. Relatively high concentrations (1 g l(-1) ) of tannins inhibited the synthesis of 4VP by Lact. plantarum. Hydroxycinnamic acids were the main compounds stimulating the production of volatile phenols by LAB. The results suggest that caffeic and ferulic acids induce the synthesis of the cinnamate decarboxylase involved in the metabolism of p-coumaric acid. On the other hand, tannins exert an inhibitory effect. This study highlights the capacity of LAB to produce volatile phenols and that this activity is markedly influenced by the phenolic composition of the medium. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  1. Pyrolysis of Spent Ion Exchange Resins

    International Nuclear Information System (INIS)

    Braehler, Georg; Slametschka, Rainer

    2012-09-01

    and is disposed of as medium level waste. The organic components pass into the pyrolysis gas which is burnt. The flue gas is further cleaned. TBP pyrolysis facilities have been built in France (La Hague), Belgium (Mol) and in Japan (Rokkashomura). The Belgian plant has recently ceased operating as all the TBP arising from Eurochemic operations had been successfully processed. The facility in Japan is in the commissioning stage. Many experiments have been carried out at the existing facilities, and also in corresponding pilot plants including NUKEM's own, to extend the range of waste that can be processed. Initial tests have shown that IEX can be decomposed by pyrolysis with very good results, yielding an inert and chemically resistant product. No additives are necessary. The main constituent of the product, the pyrolysate or ash, is carbon. It has been discovered that the entire radioactive inventory remains in the pyrolysate during pyrolysis of the IEX. This is achieved by relatively low process temperatures that prevent highly volatile nuclides such as the cesium nuclides from passing into the gaseous phase. Sintered metal filters in pyrolysis plant ensure that even the radioactivity bonded to the dust remains in the pyrolysate. In addition to the radionuclides, the main constituents of the residue are carbon from the original polystyrene matrix and sulphur from the functional groups. The pyrolysate occurs as a flowable solid material and not as a melt. It is thus easy to handle and can be compressed or cemented, depending on the requirements for interim and permanent storage. Any further constituents such as inorganic filter materials or even other organic materials do not interfere with the process, they are dried, calcined or also pyrolyzed. Hydrocarbons such as methane or propene, steam and low volumes of ammonia are the products in gaseous form. The pyrolysis gas generated must be burnt in a burner and then passed to the emission control system and the

  2. Selective Trapping of Volatile Fission Products with an Off-Gas Treatment System

    Energy Technology Data Exchange (ETDEWEB)

    B.R. Westphal; J.J. Park; J.M. Shin; G.I. Park; K.J. Bateman; D.L. Wahlquist

    2008-07-01

    A head-end processing step, termed DEOX for its emphasis on decladding via oxidation, is being developed for the treatment of spent oxide fuel by pyroprocessing techniques. The head-end step employs high temperatures to oxidize UO2 to U3O8 resulting in the separation of fuel from cladding and the removal of volatile fission products. Development of the head-end step is being performed in collaboration with the Korean Atomic Energy Research Institute (KAERI) through an International Nuclear Energy Research Initiative. Following the initial experimentation for the removal of volatile fission products, an off-gas treatment system was designed in conjunction with KAERI to collect specific fission gases. The primary volatile species targeted for trapping were iodine, technetium, and cesium. Each species is intended to be collected in distinct zones of the off-gas system and within those zones, on individual filters. Separation of the volatile off-gases is achieved thermally as well as chemically given the composition of the filter media. A description of the filter media and a basis for its selection will be given along with the collection mechanisms and design considerations. In addition, results from testing with the off-gas treatment system will be presented.

  3. Pyrolysis-catalysis of waste plastic using a nickel-stainless-steel mesh catalyst for high-value carbon products.

    Science.gov (United States)

    Zhang, Yeshui; Nahil, Mohamad A; Wu, Chunfei; Williams, Paul T

    2017-11-01

    A stainless-steel mesh loaded with nickel catalyst was produced and used for the pyrolysis-catalysis of waste high-density polyethylene with the aim of producing high-value carbon products, including carbon nanotubes (CNTs). The catalysis temperature and plastic-to-catalyst ratio were investigated to determine the influence on the formation of different types of carbon deposited on the nickel-stainless-steel mesh catalyst. Increasing temperature from 700 to 900°C resulted in an increase in the carbon deposited on the nickel-loaded stainless-steel mesh catalyst from 32.5 to 38.0 wt%. The increase in sample-to-catalyst ratio reduced the amount of carbon deposited on the mesh catalyst in terms of g carbon g -1 plastic. The carbons were found to be largely composed of filamentous carbons, with negligible disordered (amorphous) carbons. Transmission electron microscopy analysis of the filamentous carbons revealed them to be composed of a large proportion (estimated at ∼40%) multi-walled carbon nanotubes (MWCNTs). The optimum process conditions for CNT production, in terms of yield and graphitic nature, determined by Raman spectroscopy, was catalysis temperature of 800°C and plastic-to-catalyst ratio of 1:2, where a mass of 334 mg of filamentous/MWCNTs g -1 plastic was produced.

  4. Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis

    International Nuclear Information System (INIS)

    Zhang Yanan; Brown, Robert C; Hu Guiping

    2013-01-01

    This life cycle assessment evaluates and quantifies the environmental impacts of the production of hydrogen and transportation fuels from the fast pyrolysis and upgrading of corn stover. Input data for this analysis come from Aspen Plus modeling, a GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model database and a US Life Cycle Inventory Database. SimaPro 7.3 software is employed to estimate the environmental impacts. The results indicate that the net fossil energy input is 0.25 MJ and 0.23 MJ per km traveled for a light-duty vehicle fueled by gasoline and diesel fuel, respectively. Bio-oil production requires the largest fossil energy input. The net global warming potential (GWP) is 0.037 kg CO 2 eq and 0.015 kg CO 2 eq per km traveled for a vehicle fueled by gasoline and diesel fuel, respectively. Vehicle operations contribute up to 33% of the total positive GWP, which is the largest greenhouse gas footprint of all the unit processes. The net GWPs in this study are 88% and 94% lower than for petroleum-based gasoline and diesel fuel (2005 baseline), respectively. Biomass transportation has the largest impact on ozone depletion among all of the unit processes. Sensitivity analysis shows that fuel economy, transportation fuel yield, bio-oil yield, and electricity consumption are the key factors that influence greenhouse gas emissions. (letter)

  5. Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis

    Science.gov (United States)

    Zhang, Yanan; Hu, Guiping; Brown, Robert C.

    2013-06-01

    This life cycle assessment evaluates and quantifies the environmental impacts of the production of hydrogen and transportation fuels from the fast pyrolysis and upgrading of corn stover. Input data for this analysis come from Aspen Plus modeling, a GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model database and a US Life Cycle Inventory Database. SimaPro 7.3 software is employed to estimate the environmental impacts. The results indicate that the net fossil energy input is 0.25 MJ and 0.23 MJ per km traveled for a light-duty vehicle fueled by gasoline and diesel fuel, respectively. Bio-oil production requires the largest fossil energy input. The net global warming potential (GWP) is 0.037 kg CO2eq and 0.015 kg CO2eq per km traveled for a vehicle fueled by gasoline and diesel fuel, respectively. Vehicle operations contribute up to 33% of the total positive GWP, which is the largest greenhouse gas footprint of all the unit processes. The net GWPs in this study are 88% and 94% lower than for petroleum-based gasoline and diesel fuel (2005 baseline), respectively. Biomass transportation has the largest impact on ozone depletion among all of the unit processes. Sensitivity analysis shows that fuel economy, transportation fuel yield, bio-oil yield, and electricity consumption are the key factors that influence greenhouse gas emissions.

  6. Pyrolysis as a way to close a CFRC life cycle: Carbon fibers recovery and their use as feedstock for a new composite production

    Science.gov (United States)

    Giorgini, Loris; Benelli, Tiziana; Mazzocchetti, Laura; Leonardi, Chiara; Zattini, Giorgio; Minak, Giangiacomo; Dolcini, Enrico; Tosi, Cristian; Montanari, Ivan

    2014-05-01

    Pyrolysis is shown to be an efficient method for recycling carbon fiber composites in the form of both uncured prepregs scraps or as cured end-of-life objects. The pyrolytic process leads to different products in three physical states of matter. The gaseous fraction, called syngas, can be used as energy feedstock in the process itself. The oil fraction can be used as fuel or chemical feedstock. The solid residue contains substantially unharmed carbon fibers that can be isolated and recovered for the production of new composite materials, thus closing the life cycle of the composite in a "cradle to cradle" approach. All the pyrolysis outputs were thoroughly analyzed and characterized in terms of composition for oil and gas fraction and surface characteristics of the fibers. In particular, it is of paramount importance to correlate the aspect and properties of the fibers obtained with different composite feedstock and operational conditions, that can be significantly different, with the reinforcing performance in the newly produced Recycled Carbon Fibers Reinforced Polymers. Present results have been obtained on a pyrolysis pilot plant that offers the possibility of treating up to 70kg of materials, thus leading to a significant amount of products to be tested in the further composites production, focused mainly on chopped carbon fiber reinforcement.

  7. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    Energy Technology Data Exchange (ETDEWEB)

    Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Kraiem, T. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia); Naoui, S. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Belayouni, H. [Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia)

    2014-01-15

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  8. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    International Nuclear Information System (INIS)

    Ben Hassen-Trabelsi, A.; Kraiem, T.; Naoui, S.; Belayouni, H.

    2014-01-01

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy

  9. Gas chromatography-mass spectrometric analysis of products from on-line pyrolysis/silylation of plant gums used as binding media

    Science.gov (United States)

    Chiantore, Oscar; Riedo, Chiara; Scalarone, Dominique

    2009-07-01

    Plant gums are complex polysaccharides used in the field of cultural heritage especially as binding media. Classification of polysaccharides may be achieved on the basis of monosaccharides composition after cleavage of glycosidic bond. Characterization of plant gums in works of art is complicated by the necessity of to use a method minimally invasive and requiring a small mount of sample. Pyrolisys is an useful method to obtain polysaccharides decomposition and generally pyrolysis products can be identified by the use of gas chromatography-mass spectrometry. This paper describes a method where two plant gums, arabic and tragacanth, were pyrolized in presence of silylating agents (HMDS e BSTFA alone and with TMCS as catalyst) using an on-line Py-GC/MS apparatus. Some characteristic trimethylsilyl derivatives of monosaccharides were identified on the basis of mass spectra. The presence of characteristic pyrolysis products of sugars allows to distinguish the two gums.

  10. Slow and pressurized co-pyrolysis of coal and agricultural residues

    International Nuclear Information System (INIS)

    Aboyade, Akinwale O.; Carrier, Marion; Meyer, Edson L.; Knoetze, Hansie; Görgens, Johann F.

    2013-01-01

    Highlights: ► Evaluation of co-pyrolysis of coal and biomass in pressurized packed bed reactor. ► Relative influence of coal–biomass mix ratio, temperature and pressure also investigated. ► Results show significant synergy or chemical interactions in the vapor phase. ► Synergistic interactions did not influence distribution of lumped solid liquid and gas products. - Abstract: The distribution of products from the slow heating rate pyrolysis of coal, corn residues (cobs and stover), sugarcane bagasse and their blends were investigated by slow pressurized pyrolysis in a packed bed reactor. A factorial experimental design was implemented to establish the relative significance of coal–biomass mix ratio, temperature and pressure on product distribution. Results showed that the yield and composition of tar and other volatile products were mostly influenced by mix ratio, while temperature and pressure had a low to negligible significance under the range of conditions investigated. Analysis of the composition of condensates and gas products obtained showed that there was significant synergy or chemical interactions in the vapor phase during co-pyrolysis of coal and biomass. However, the interactions did not significantly affect the relative distribution of the lumped solid, liquid and gas products obtained from the blends, beyond what would be expected assuming additive behavior from the contributing fuels.

  11. Conventional and microwave pyrolysis of a macroalgae waste from the Agar-Agar industry. Prospects for bio-fuel production.

    Science.gov (United States)

    Ferrera-Lorenzo, N; Fuente, E; Bermúdez, J M; Suárez-Ruiz, I; Ruiz, B

    2014-01-01

    A comparative study of the pyrolysis of a macroalgae industrial solid waste (algae meal) in an electrical conventional furnace and in a microwave furnace has been carried out. It was found that the chars obtained from both pyrolyses are similar and show good properties for performing as a solid bio-fuel and as a precursor of activated carbon. Bio-oils from conventional pyrolysis have a greater number of phenolic, pyrrole and alkane compounds whereas benzene and pyridine compounds are more predominant in microwave pyrolysis with a major presence of light compounds. The bio-gas fraction from microwave pyrolysis presents a much higher syngas content (H2+CO), and a lower CO2 and CH4 proportion than that obtained by conventional pyrolysis. Yields are similar for both treatments with a slightly higher gas yield in the case of microwave pyrolysis due to the fact that microwave heating favors heterogeneous reactions between the gases and the char. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Pyrolysis of fibre residues with plastic contamination from a paper recycling mill: Energy recoveries

    International Nuclear Information System (INIS)

    Brown, Logan Jeremy; Collard, François-Xavier; Görgens, Johann

    2017-01-01

    Highlights: • Pyrolysis of fibre-plastics residues from paper recycling mill into fuel products. • Product with remarkable energy content up to 42.8 MJ/kg. • Influence of temperature on the product yields and fuel properties. • Effect of plastic composition on product properties. - Abstract: Pyrolysis is a promising technology for the production of marketable energy products from waste mixtures, as it decomposes heterogeneous material into homogenous fuel products. This research assessed the ability of slow pyrolysis to convert three waste streams, composed of fibre residues contaminated with different plastic mixtures, into char and tarry phase products at three different temperatures (300, 425 and 550 °C). The products were characterised in terms of mass yield, higher heating value (HHV) and gross energy conversion (EC). Significant amounts of hydrocarbon plastics in the feed materials increased the calorific values of the char (up to 32.9 MJ/kg) and tarry phase (up to 42.8 MJ/kg) products, comparable to high volatile bituminous A coal and diesel respectively. For all three waste streams converted at 300 °C, the majority of the energy in the feedstock was recovered in the char product (>80%), while deoxygenation of fibre component resulted in char with increased calorific value (up to 31.6 MJ/kg) being produced. Pyrolysis at 425 °C for two of the waste streams containing significant amounts of plastic produced both a valuable char and tarry phase, which resulted in an EC greater than 74%. Full conversion of plastic at 550 °C increased the tarry phase yield but dramatically decreased the char HHV. The influence of temperature on product yield and HHV was discussed based on the pyrolysis mechanisms and in relation to the plastic composition of the waste streams.

  13. Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    C. Lievens; J. Yperman; J. Vangronsveld; R. Carleer [Hasselt University, Diepenbeek (Belgium). Laboratory of Applied Chemistry

    2008-08-15

    Presently, little or no information of implementing fast pyrolysis for looking into the potential valorisation of heavy metal contaminated biomass is available. Fast pyrolysis of heavy metal contaminated biomass (birch and sunflower), containing high amounts of Cd, Cu, Pb and Zn, resulting from phytoremediation, is investigated. The effect of the pyrolysis temperature (623, 673, 773 and 873 K) and the type of solid heat carrier (sand and fumed silica) on the distribution of the heavy metals in birch and sunflower pyrolysis fractions are studied. The goal of the set-up is 'concentrating' heavy metals in the ash/char fraction after thermal treatment, preventing them to be released in the condensable and/or volatile fractions. The knowledge of the behaviour of heavy metals affects directly future applications and valorisation of the pyrolysis products and thus contaminated biomass. They are indispensable for making and selecting the proper thermal conditions for their maximum recovery. In view of the future valorisation of these biomasses, the amounts of the pyrolysis fractions and the calorific values of the obtained liquid pyrolysis products, as a function of the pyrolysis temperature, are determined. 46 refs., 8 figs., 4 tabs.

  14. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst.

    Science.gov (United States)

    Liu, Shiyu; Xie, Qinglong; Zhang, Bo; Cheng, Yanling; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2016-03-01

    This study investigated fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Effects of reaction temperature, CaO/HZSM-5 ratio, and corn stover/scum ratio on co-pyrolysis product fractional yields and selectivity were investigated. Results showed that co-pyrolysis temperature was selected as 550°C, which provides the maximum bio-oil and aromatic yields. Mixed CaO and HZSM-5 catalyst with the weight ratio of 1:4 increased the aromatic yield to 35.77 wt.% of feedstock, which was 17% higher than that with HZSM-5 alone. Scum as the hydrogen donor, had a significant synergistic effect with corn stover to promote the production of bio-oil and aromatic hydrocarbons when the H/C(eff) value exceeded 1. The maximum yield of aromatic hydrocarbons (29.3 wt.%) were obtained when the optimal corn stover to scum ratio was 1:2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The transitory and permanent volatility of oil prices: What implications are there for the US industrial production?

    International Nuclear Information System (INIS)

    Ali Ahmed, Huson Joher; Bashar, Omar H.M.N.; Wadud, I.K.M. Mokhtarul

    2012-01-01

    Highlights: ► This study examines the impact of oil price uncertainty on the US industrial production (IPI). ► The transitory component of the oil price volatility has an adverse impact on the US IPI. ► The transitory oil price volatility induces higher volatility in CPI, commodity prices and IPI. -- Abstract: This study examines the impact of oil price uncertainty on the US industrial production by decomposing oil price volatility into permanent and transitory components. The decompositions provide important evidence on sources and asymmetric effects of oil price volatility. To estimate the component structure of volatility and to analyse the dynamic impacts of the volatility components, the study uses a threshold based CGARCH and VAR modelling over a period from 1980 to 2010 for the US economy. The CGARCH model estimates show significant asymmetric effect of oil price shock on the transitory oil price volatility. Dynamic impulse response functions obtained from the estimated VAR models reveal that there is a significant and prolonged dampening impact of increased transitory oil price volatility on industrial production. The results also suggest that shocks to transitory component induce increased volatility in the general price level and non-fuel commodity prices in the US. Variance decomposition analysis reconfirms that the transitory volatility is the second most important factor to explain the variance of industrial production. These results provide additional insights on the sources of oil price uncertainty and point to the need to direct US energy policies towards stabilising short-term uncertainties in oil prices.

  16. Lipid and cholesterol oxidation, color changes, and volatile compounds production in irradiated raw pork batters with different fat content

    International Nuclear Information System (INIS)

    Jo, Cheo Run; Byun, Myung Woo

    2000-01-01

    An emulsion-type product was prepared to determine the effect of irradiation on lipid and cholesterol oxidation, color change, and volatile production in raw pork with different fat content. Lipid oxidation increased with an increase in fat content or irradiation dose. Irradiated batters had higher cholesterol oxides than did non-irradiated batters, and the major cholesterol oxides formed in irradiated pork batters were 7α- and 7β- hydroxycholesterol. Hunter color a- and b-values of raw pork batters were decreased by irradiation regardless of fat content. Irradiation significantly increased the amount of volatile compounds. Although lipid oxidation of high fat products (10 and 15% fat) was higher than that of low fat products (4%), high fat products did not always produce greater amount of volatile compounds in raw pork batters. In summary, irradiation increased lipid and cholesterol oxidation, and volatile compounds production, and had detrimental effects on the color of raw pork batter under aerobic conditions

  17. Iodine volatility

    International Nuclear Information System (INIS)

    Beahm, E.C.; Shockley, W.E.

    1984-01-01

    The ultimate aim of this program is to couple experimental aqueous iodine volatilities to a fission product release model. Iodine partition coefficients, for inorganic iodine, have been measured during hydrolysis and radiolysis. The hydrolysis experiments have illustrated the importance of reaction time on iodine volatility. However, radiolysis effects can override hydrolysis in determining iodine volatility. In addition, silver metal in radiolysis samples can react to form silver iodide accompanied by a decrease in iodine volatility. Experimental data are now being coupled to an iodine transport and release model that was developed in the Federal Republic of Germany

  18. Lipid oxidation in baked products: impact of formula and process on the generation of volatile compounds.

    Science.gov (United States)

    Maire, Murielle; Rega, Barbara; Cuvelier, Marie-Elisabeth; Soto, Paola; Giampaoli, Pierre

    2013-12-15

    This paper investigates the effect of ingredients on the reactions occurring during the making of sponge cake and leading to the generation of volatile compounds related to flavour quality. To obtain systems sensitive to lipid oxidation (LO), a formulation design was applied varying the composition of fatty matter and eggs. Oxidation of polyunsaturated fatty acids (PUFA) and formation of related volatile compounds were followed at the different steps of cake-making. Optimised dynamic Solid Phase Micro Extraction was applied to selectively extract either volatile or semi-volatile compounds directly from the baking vapours. We show for the first time that in the case of alveolar baked products, lipid oxidation occurs very early during the step of dough preparation and to a minor extent during the baking process. The generation of lipid oxidation compounds depends on PUFA content and on the presence of endogenous antioxidants in the raw matter. Egg yolk seemed to play a double role on reactivity: protecting unsaturated lipids from oxidation and being necessary to generate a broad class of compounds of the Maillard reaction during baking and linked to the typical flavour of sponge cake. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Biotic and abiotic factors affect green ash volatile production and emerald ash borer adult feeding preference.

    Science.gov (United States)

    Chen, Yigen; Poland, Therese M

    2009-12-01

    The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an exotic woodborer first detected in 2002 in Michigan and Ontario and is threatening the ash resource in North America. We examined the effects of light exposure and girdling on green ash (Fraxinus pennsylvanica Marsh) volatile production, and effects of light exposure, girdling, and leaf age on emerald ash borer adult feeding preferences and phototaxis. Green ash seedlings grown under higher light exposure had lower amounts of three individual volatile compounds, (Z)-3-hexenol, (E)-beta-ocimene, and (Z,E)-alpha-farnesene, as well as the total amount of six detected volatile compounds. Girdling did not affect the levels of these volatiles. Emerald ash borer females preferred mature leaves, leaves from girdled trees, and leaves grown in the sun over young leaves, leaves from nongirdled trees, and leaves grown in the shade, respectively. These emerald ash borer preferences were most likely because of physical, nutritional, or biochemical changes in leaves in response to the different treatments. Emerald ash borer females and males showed positive phototaxis in laboratory arenas, a response consistent with emerald ash borer preference for host trees growing in sunlight.

  20. Optimization and characterization studies on bio-oil production from palm shell by pyrolysis using response surface methodology

    International Nuclear Information System (INIS)

    Abnisa, Faisal; Wan Daud, W.M.A.; Sahu, J.N.

    2011-01-01

    In this work palm shell waste was pyrolyzed to produces bio-oil. The effects of several parameters on the pyrolysis efficiency were tested to identify the optimal bio-oil production conditions. The tested parameters include temperature, N 2 flow rate, feed-stock particle size, and reaction time. The experiments were conducted using a fix-bed reactor. The efficient response surface methodology (RSM), with a central composite design (CCD), were used for modeling and optimization the process parameters. The results showed that the second-order polynomial equation explains adequately the non-linear nature of the modeled response. An R 2 value of 0.9337 indicates a sufficient adjustment of the model with the experimental data. The optimal conditions found to be at the temperature of 500 o C, N 2 flow rate of 2 L/min, particle size of 2 mm and reaction time of 60 min and yield of bio-oil was approximately obtained 46.4 wt %. In addition, Fourier Transform infra-red (FT-IR) spectroscopy and gas chromatography/mass spectrometry (GC-MS) were used to characterize the gained bio-oil under the optimum condition. -- Highlights: → The RSM, with a CCD, was used for modeling and optimization for bio-oil synthesis. → The obtained model explains adequately the non-linear nature. → An R 2 value of 0.9337 ensures a sufficient adjustment of the model. → It explains the importance of the experimental factors, their interactions.

  1. Understanding the fast pyrolysis of lignin.

    Science.gov (United States)

    Patwardhan, Pushkaraj R; Brown, Robert C; Shanks, Brent H

    2011-11-18

    In the present study, pyrolysis of corn stover lignin was investigated by using a micro-pyrolyzer coupled with a GC-MS/FID (FID=flame ionization detector). The system has pyrolysis-vapor residence times of 15-20 ms, thus providing a regime of minimal secondary reactions. The primary pyrolysis product distribution obtained from lignin is reported. Over 84 % mass balance and almost complete closure on carbon balance is achieved. In another set of experiments, the pyrolysis vapors emerging from the micro-pyrolyzer are condensed to obtain lignin-derived bio-oil. The chemical composition of the bio-oil is analyzed by using GC-MS and gel permeation chromatography techniques. The comparison between results of two sets of experiments indicates that monomeric compounds are the primary pyrolysis products of lignin, which recombine after primary pyrolysis to produce oligomeric compounds. Further, the effect of minerals (NaCl, KCl, MgCl(2), and CaCl(2)) and temperature on the primary pyrolysis product distribution is investigated. The study provides insights into the fundamental mechanisms of lignin pyrolysis and a basis for developing more descriptive models of biomass pyrolysis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Hydrocarbon pyrolysis reactor experimentation and modeling for the production of solar absorbing carbon nanoparticles

    Science.gov (United States)

    Frederickson, Lee Thomas

    Much of combustion research focuses on reducing soot particulates in emissions. However, current research at San Diego State University (SDSU) Combustion and Solar Energy Laboratory (CSEL) is underway to develop a high temperature solar receiver which will utilize carbon nanoparticles as a solar absorption medium. To produce carbon nanoparticles for the small particle heat exchange receiver (SPHER), a lab-scale carbon particle generator (CPG) has been built and tested. The CPG is a heated ceramic tube reactor with a set point wall temperature of 1100-1300°C operating at 5-6 bar pressure. Natural gas and nitrogen are fed to the CPG where natural gas undergoes pyrolysis resulting in carbon particles. The gas-particle mixture is met downstream with dilution air and sent to the lab scale solar receiver. To predict soot yield and general trends in CPG performance, a model has been setup in Reaction Design CHEMKIN-PRO software. One of the primary goals of this research is to accurately measure particle properties. Mean particle diameter, size distribution, and index of refraction are calculated using Scanning Electron Microscopy (SEM) and a Diesel Particulate Scatterometer (DPS). Filter samples taken during experimentation are analyzed to obtain a particle size distribution with SEM images processed in ImageJ software. These results are compared with the DPS, which calculates the particle size distribution and the index of refraction from light scattering using Mie theory. For testing with the lab scale receiver, a particle diameter range of 200-500 nm is desired. Test conditions are varied to understand effects of operating parameters on particle size and the ability to obtain the size range. Analysis of particle loading is the other important metric for this research. Particle loading is measured downstream of the CPG outlet and dilution air mixing point. The air-particle mixture flows through an extinction tube where opacity of the mixture is measured with a 532 nm

  3. Data on volatile compounds in fermented materials used for salmon fish sauce production.

    Science.gov (United States)

    Nakano, Mitsutoshi; Sagane, Yoshimasa; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Watanabe, Toshihiro; Takano, Katsumi; Sato, Hiroaki

    2018-02-01

    This article describes the analysis of volatile compounds in fermented materials used for salmon fish sauce production via gas chromatography/mass spectrometry (GC/MS). Ten types of fish sauces were produced from raw salmon materials, including various proportions of flesh, viscera, inedible portion (heads, fins, and backbones), and soft roe, by mixing them with salt and allowing them to ferment for up to three months. The volatile compounds were captured by a solid-phase microextraction method and then applied to GC/MS for separation and identification of the compounds in the fish sauce products. The number of volatile compounds identified in the starting materials varied from 15 to 29 depending on the ingredients. The number of compounds in the final fish sauce products was reduced by 3.4-94.7% of that in the original material. The retention times and names of the identified compounds, as well as their relative peak areas, are provided in a Microsoft Excel Worksheet.

  4. Flash pyrolysis at high temperature of ligno-cellulosic biomass and its components - production of synthesis gas; Pyrolyse flash a haute temperature de la biomasse ligno-cellulosique et de ses composes - production de gaz de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Couhert, C

    2007-11-15

    Pyrolysis is the first stage of any thermal treatment of biomass and governs the formation of synthesis gas for the production of electricity, hydrogen or liquid fuels. The objective of this work is to establish a link between the composition of a biomass and its pyrolysis gas. We study experimental flash pyrolysis and fix the conditions in which quantities of gas are maximal, while aiming at a regime without heat and mass transfer limitations (particles about 100 {mu}m): temperature of 950 C and residence time of about 2 s. Then we try to predict gas yields of any biomass according to its composition, applicable in this situation where thermodynamic equilibrium is not reached. We show that an additivity law does not allow correlating gas yields of a biomass with fractions of cellulose, hemi-cellulose and lignin contained in this biomass. Several explanations are suggested and examined: difference of pyrolytic behaviour of the same compound according to the biomass from which it is extracted, interactions between compounds and influence of mineral matter. With the aim of industrial application, we study pyrolysis of millimetric and centimetric size particles, and make a numerical simulation of the reactions of pyrolysis gases reforming. This simulation shows that the choice of biomass affects the quantities of synthesis gas obtained. (author)

  5. Co-pyrolysis of waste tire/coal mixtures for smokeless fuel, maltenes and hydrogen-rich gas production

    International Nuclear Information System (INIS)

    Bičáková, Olga; Straka, Pavel

    2016-01-01

    Highlights: • Co-pyrolysis of waste tires/coal mixtures yields mainly smokeless fuel (55–74 wt%). • Alternatively, the smokeless fuel can serve as carbonaceous sorbent. • The obtained tar contained maltenes (80–85 wt%) and asphaltenes (6–8 wt%). • Tar from co-pyrolysis can serve as heating oil or a source of maltenes for repairing of asphalt surfaces. • The hydrogen-rich gas was obtained (61–65 vol% H_2, 24–25 vol% CH_4, 1.4–2 vol% CO_2). - Abstract: The processing of waste tires with two different types of bituminous coal was studied through the slow co-pyrolysis of 1 kg of waste tire/coal mixtures with 15, 30 and 60 wt% waste tires on a laboratory scale. The waste tire/coal mixtures were pyrolysed using a quartz reactor in a stationary bed. The mixtures were heated at a rate 5 °C/min up to the final temperature of 900 °C with a soaking time of 30 min at the required temperature. The mass balance of the process and the properties of the coke and tar obtained were evaluated, further, the influence of the admixture in the charge on the amount and composition of the obtained coke and tar was determined. It was found that the smokeless fuel/carbonaceous sorbent and a high yield of tar for further use can be obtained through the slow co-pyrolysis. The obtained tars contained mostly maltenes (80–85 wt%). FTIR analysis showed that the maltenes from the co-pyrolysis of coal/waste tires exhibited significantly lower aromaticity as compared with that from coal alone. The gas obtained from pyrolysis or co-pyrolysis of waste tire/coal mixtures contained a high amount of hydrogen (above 60 vol%) and methane (above 20 vol%).

  6. Biofuel Production from Jatropha Bio-Oil Derived Fast Pyrolysis: Effect and Mechanism of CoMoS Supported on Al2O3

    Science.gov (United States)

    Rodseanglung, T.; Ratana, T.; Phongaksorn, M.; Tungkamani, S.

    2018-03-01

    The aims of this research was to understand the CoMo/Al2O3 sulfide catalyst effect to remove oxygen-containing and nitrogen-containing molecules from Jatropha bio-oil derived fast pyrolysis converted to biofuels via hydrotreating process. The activity and selectivity of CoMo/γ-Al2O3 sulfided catalysts in hydrodeoxygenation (HDO) of Jatropha bio-oil derived fast pyrolysis was evaluated in a Parr batch reactor under 50 bar of H2 atmosphere for 2 h at 300 320 and 340 °C. It appeared that the CoMo/Al2O3 sulfide catalyst have high performance in activity for promoting the fatty acid, fatty ester, fatty amide and fatty nitrile compounds were converted to paraffin/olefin (Diesel range), this could be the CUS site on supported Al2O3 catalyst. The difference in selectivity products allowed us to propose a reaction scheme.

  7. Pyrolysis of wastes generated through saccharification of oak tree by using CO2 as reaction medium

    International Nuclear Information System (INIS)

    Kim, Jieun; Lee, Jechan; Kim, Ki-Hyun; Ok, Yong Sik; Jeon, Young Jae; Kwon, Eilhann E.

    2017-01-01

    Highlights: • Potential utilization of biomass waste generated from bioethanol production. • Enhanced generation of syngas from pyrolysis of oak tree waste by using CO 2 . • Reduction of tar formation in pyrolysis of oak tree waste. • Modification of morphology of oak tree waste biochar by using CO 2 in pyrolysis. - Abstract: In this study, the production of bioethanol was evaluated through a series of saccharification and fermentation of lignocellulosic biomass (e.g., oak tree) pre-treated with H 2 SO 4 , NH 3 , or NaOH using a yeast (Pichia stipitis). In addition, it was investigated the effects of CO 2 on pyrolysis of the biomass wastes remaining after saccharification of the three pre-treated oak tree (BWs: BW-H 2 SO 4 , BW-NH 3 , and BW-NaOH). Thus, this work emphasizes the mechanistic understanding of CO 2 in pyrolysis of BWs. The effect of CO 2 was most noticeable in syngas, as the ratio of CO and H 2 exhibited a 20 to 30-fold increase at >550 °C. The CO/H 2 ratio of pyrolysis of the waste in CO 2 is ∼1100% of that of pyrolysis of the waste in N 2 at 720 °C. Such proliferation of syngas led to the subsequent reduction of tar since the substantial amount of tar was consumed as a precursor of syngas: CO 2 not only expedited the thermal cracking of volatile organic compounds (VOCs), but also reacted with those VOCs. The morphologic modification of biochars also occurred in the presence of CO 2 via heterogeneous reaction between CO 2 and surface of BWs. In summary, this study shows a utilization of an oak tree waste generated from saccharification for bioethanol production as a pyrolysis feedstock to recover energy (i.e., syngas production). The use of CO 2 as pyrolysis medium not only enhanced syngas production from oak tree waste but also reduced tar formation by thermal decomposition of VOCs and reaction between VOCs and CO 2 . The process shown in this study can be used as a potential high energy recovery from a biomass waste by utilizing potent

  8. Hydrogen sulfide production and volatilization in a polymictic eutrophic saline lake, Salton Sea, California.

    Science.gov (United States)

    Reese, Brandi Kiel; Anderson, Michael A; Amrhein, Christopher

    2008-11-15

    The Salton Sea is a large shallow saline lake located in southern California that is noted for high sulfate concentrations, substantial algal productivity, and very warm water column temperatures. These conditions are well-suited for sulfide production, and sulfide has been implicated in summer fish kills, although no studies have been conducted to specifically understand hydrogen sulfide production and volatilization there. Despite polymictic mixing patterns and relatively short accumulation periods, the amount of sulfide produced is comparable to meromictic lakes. Sulfide levels in the Salton Sea reached concentrations of 1.2 mmol L(-1) of total free sulfide in the hypolimnion and 5.6 mmol L(-1) in the sediment pore water. Strong winds in late July mixed H2S into the surface water, where it depleted the entire water column of dissolved oxygen and reached a concentration of 0.1 mmol L(-1). Sulfide concentrations exceeded the toxicity threshold of tilapia (Oreochromis mossambicus) and combined with strong anoxia throughout the water column, resulted in a massive fish kill. The mixing of sulfide into the surface waters also increased atmospheric H2S concentrations, reaching 1.0 micromol m(-3). The flux of sulfide from the sediment into the water column was estimated to range from 2-3 mmol m(-2) day(-1) during the winter and up to 8 mmol m(-2) day(-1) during the summer. Application of the two-layer model for volatilization indicates that up to 19 mmol m(-2) day(-1) volatilized from the surface during the mixing event. We estimate that as much as 3400 Mg year(-1) or approximately 26% of sulfide that diffused into the water column from the deepest sediments may have been volatilized to the atmosphere.

  9. Comparison of ethanol production from corn cobs and switchgrass following a pyrolysis-based biorefinery approach

    NARCIS (Netherlands)

    Luque, Luis; Oudenhoven, Stijn; Westerhof, Roel Johannes Maria; van Rossum, G.; Berruti, Franco; Kersten, Sascha R.A.; Rehmann, Lars

    2016-01-01

    Background One of the main obstacles in lignocellulosic ethanol production is the necessity of pretreatment and fractionation of the biomass feedstocks to produce sufficiently pure fermentable carbohydrates. In addition, the by-products (hemicellulose and lignin fraction) are of low value, when

  10. Pyrolysis and Gasification

    DEFF Research Database (Denmark)

    Astrup, Thomas; Bilitewski, B.

    2011-01-01

    a waste management perspective, pyrolysis and gasification are of relatively little importance as an overall management option. Today, gasification is primarily used on specific waste fractions as opposed to mixed household wastes. The main commercial activity so far has been in Japan, with only limited....... Today gasification is used within a range of applications, the most important of which are conversion of coal into syngas for use as chemical feedstock or energy production; but also gasification of biomass and waste is gaining significant interest as emerging technologies for sustainable energy. From...... success in Europe and North America (Klein et al., 2004). However, pyrolysis and gasification of waste are generally expected to become more widely used in the future. A main reason for this is that public perceptions of waste incineration in some countries is a major obstacle for installing new...

  11. Investigation the Impact of Exchange Rate Volatility on the Export of Agricultural Products

    Directory of Open Access Journals (Sweden)

    M. Jamalipour

    2016-10-01

    coefficients. Results and Discussion: Main results showed that real exchange rate volatility and export value of selected commodities are Co-integrated. The coefficient estimation of FMOLS and DOLS methods are equal and statically significant; so, these methods aren’t statically different and they showed that real exchange rate volatility has a negative impact on exported value for whole panel. However, the specific coefficient for each commodity showed contradictory behavior in short run and long run; for example real exchange rate fluctuation has a negative and significant impact on all the commodities; but, in short run this variable has a positive and significant impact on exported value. Moreover, based on estimated results it seems that fluctuation in exchange market has a greater impact on more valuable commodities like date. Conclusion: Considering the importance of agricultural product trade and in order to overcome mono-product economy, this study investigated long term and short term relation between export of grape, orange, date and exchange rate volatilities. To this aim, first the index of exchange volatility using generated autoregressive conditional heteroscedasticity (GARCH was calculated. In order to investigate the relation between exchange rate volatilities and export value of agricultural product, unit root test and cointegration test related to panel data were used during years 1971-2013. The results of model estimation showed that exchange rate volatilities in short term and long term have respectively positive and negative effects on the export value of orange, grape and date. In long term, the negative effects of Exchange rate volatilities on high-export-value products are more than its effects on low-export-value products. Based on the estimation results we can conclude that, in short run, exporters are willing to increase their interchange and gain profits of the volatility in exchange market; however, in long run exchange rate fluctuation has

  12. Bitumen pyrolysis

    International Nuclear Information System (INIS)

    Braehler, G.; Noll, T.

    2014-01-01

    In the past bitumen was a preferred matrix for the embedding of low and intermediate level radioactive waste: its geological history promised long term stability in final repositories. A great variety of waste has been embedded: technological waste, spent ion exchange resins, concrete, rubble, etc. Liquid waste like evaporator concentrates can be dried and embedded simultaneously in extruders, allowing simple processes and equipment. Unfortunately, during long term intermediate storage the bituminized waste drums proved out being not as stable as expected: a significant number turned out to be no longer acceptable for final disposal, and some of them even needed repacking to enable further intermediate storage. A method to rework such drums with bituminized radioactive waste seems to be urgently needed. Pyrolysis and pyro-hydrolysis (= pyrolysis with water steam added) have a long history for the treatment of organic waste: spent solvent (TBP), spent ion exchange resins, alpha waste (predominantly PVC), etc. Due to its low process temperature and the endothermic character, such processes offer significant safety advantages, as compared to incineration or dissolving in organic solvents. Results of lab-scale investigations and concepts for facilities are presented. (authors)

  13. Verification of“Trend-Volatility Model”in Short-Term Forecast of Grain Production Potential

    Directory of Open Access Journals (Sweden)

    MI Chang-hong

    2016-02-01

    Full Text Available The "trend-volatility model" in short-term forecasting of grain production potential was verified and discussed systematically by using the grain production data from 1949 to 2014, in 16 typical counties and 6 typical districts, and 31 provinces, of China. The results showed as follows:(1 Size of forecast error reflected the precision of short-term production potential, the main reason of large prediction error was a great amount of high yield farmlands were occupied in developed areas and a great increase of vegetable and fruit planted that made grain yield decreased in a short time;(2 The micro-trend amendment method was a necessary part of "trend-volatility model", which could involve the short-term factors such as meteorological factors, science and technology input, social factors and other effects, while macro-trend prediction could not. Therefore, The micro-trend amendment method could improve the forecast precision.(3 In terms of actual situation in recent years in China, the more developed the areas was, the bigger the volatility of short-term production potential was; For the short-term production potential, the stage of increasing-decreasing-recovering also existed in developed areas;(4 In the terms of forecast precision of short-terms production potential, the scale of national was higher than the scale of province, the scale of province was higher than the scale of district, the scale of district was higher than the scale of county. And it was large differences in precision between different provinces, different districts and different counties respectively, which was concerned to the complementarity of domestic climate and the ability of the farmland resistance to natural disasters.

  14. Identification and Quantification of Volatile Compounds Found in Vinasses from Two Different Processes of Tequila Production

    Directory of Open Access Journals (Sweden)

    Elizabeth Rodríguez-Félix

    2018-02-01

    Full Text Available Vinasses are the main byproducts of ethanol distillation and distilled beverages worldwide and are generated in substantial volumes. Tequila vinasses (TVs could be used as a feedstock for biohydrogen production through a dark fermentative (DF process due to their high content of organic matter. However, TV components have not been previously assayed in order to evaluate if they may dark ferment. This work aimed to identify and quantify volatile compounds (VC in TV and determine if the VC profile depends upon the type of production process (whether the stems were initially cooked or not. TVs were sampled from 3 agave stems with a not-cooking (NC process, and 3 agave stems with a cooking (C process, and volatile compounds were determined by gas chromatography coupled with mass spectrometry (GC–MS. A total of 111 volatile compounds were identified, the TV from the cooking process (C showed the higher presence of furanic compounds (furfural and 5-(hydroxymethyl furfural and organic acids (acetic acid and butyric acid, which have been reported as potential inhibitors for DF. To our knowledge, this is the first description of the VC composition from TVs. This study could serve as a base for further investigations related to vinasses from diverse sources.

  15. Volatile production during preignition heating. Final technical report, 15 September 1980-30 September 1982

    Energy Technology Data Exchange (ETDEWEB)

    Ballantyne, A.; Chou, H.; Flusberg, A.; Neoh, K.; Orozco, N.; Stickler, D.

    1983-10-01

    Pulverized coal particles, in a flowing inert nitrogen stream, have been heated by high power Carbon Dioxide Laser. The consequence of such an irradiation have proved to be both novel and surprising as a result of the rapid quenching of primary coal products. It ahs been found that the gas phase yield from such heating (typically, temperatures in excess of 1400 K at rates approx. 2 x 10/sup 5/ K/s) is very small (< 0.2 percent of coal carbon and hydrogen). Analysis of the solid residue has shown the presence of fine lacy particulate chains of material of 0.1 ..mu..m diameter, which appears to be soluble in tetrahydrofuran. The yields of solute were significantly much higher than for raw coals. Molecular weight of the solute material was high, being in the range of 600 to 3000. The above and substantiating evidence point to a new mechanism of high heating rate pyrolysis in which only tar-like materials are produced as primary products from the coal. It is hypothesized that gas phase products are primarily the result of secondary reactions of these primary products in the hot gas environments usually employed by other heating techniques.

  16. The loss of Na and Cl during the pyrolysis of a NaCl-loaded brown coal sample

    Energy Technology Data Exchange (ETDEWEB)

    Mody, D.; Li, C.Z.

    1999-07-01

    A Victorian brown coal was physically loaded with NaCl and pyrolyzed in a quartz fluidized-bed reactor. The fluidized-bed reactor was equipped with a quartz frit in the freeboard zone to enable the total devolatilization of the coal particles. The introduction of NaCl into the coal has caused only minor reductions in the weight loss. A significant amount of chlorine was volatilized during pyrolysis at temperatures as low as 200 C. At temperatures around 400--500 C where the loss of sodium was not very significant, about 70% of chlorine was volatilized from the coal particles. With the volatilization of chlorine at this temperature level, sodium must have been bonded to the char matrix. With increasing temperature, the volatilization of chlorine decreased and then increased again, whereas the volatilization of sodium increased monotonically with increasing temperature. Almost all the Na in coal could be volatilized at temperatures higher than about 800 C. These experimental results clearly indicate that chlorine and Na interacted strongly with coal/char at high temperatures. Na and Cl in the coal did not volatilize as NaCl molecules. Significant amounts of species containing a COO-group such as acetate, formate and oxalate were observed in the pyrolysis products although the exact forms of these species (i.e., as acids, salts or esters) in the pyrolysis product remain unknown. The yields of the species containing a COO-group decreased with increasing temperature, possibly due to the intensified thermal cracking reactions at high temperatures.

  17. Volatile chemical products emerging as largest petrochemical source of urban organic emissions

    Science.gov (United States)

    McDonald, Brian C.; de Gouw, Joost A.; Gilman, Jessica B.; Jathar, Shantanu H.; Akherati, Ali; Cappa, Christopher D.; Jimenez, Jose L.; Lee-Taylor, Julia; Hayes, Patrick L.; McKeen, Stuart A.; Cui, Yu Yan; Kim, Si-Wan; Gentner, Drew R.; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Harley, Robert A.; Frost, Gregory J.; Roberts, James M.; Ryerson, Thomas B.; Trainer, Michael

    2018-02-01

    A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)—including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products—now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols.

  18. Production of volatile and sulfur compounds by ten Saccharomyces cerevisiae strains inoculated in Trebbiano must

    Directory of Open Access Journals (Sweden)

    Francesca ePatrignani

    2016-03-01

    Full Text Available In wines, the presence of sulphur compounds is the resulting of several contributions among which yeast metabolism. The characterization of the starter Saccharomyces cerevisiae needs to be performed also taking into account this ability even if evaluated together with the overall metabolic profile. In this perspective, principal aim of this experimental research was the evaluation of the volatile profiles, throughout GC/MS technique coupled with solid phase micro extraction, of wines obtained throughout the fermentation of 10 strains of Saccharomyces cerevisiae. In addition, the production of sulphur compounds was further evaluated by using a gas-chromatograph coupled with a Flame Photometric Detector. Specifically, the ten strains were inoculated in Trebbiano musts and the fermentations were monitored for 19 days. In the produced wines, volatile and sulphur compounds as well as amino acid concentrations were investigated. Also the physico-chemical characteristics of the wines and their electronic nose profiles were evaluated.

  19. Dietary exposure to volatile and non-volatile N-nitrosamines from processed meat products in Denmark

    DEFF Research Database (Denmark)

    Herrmann, Susan Strange; Duedahl-Olesen, Lene; Christensen, Tue

    2015-01-01

    the carcinogenicity for the majority of the non-volatile NA (NVNA) remains to be elucidated. Danish adults (15–75 years) and children (4–6 years) consume 20 g and 16 g of processed meat per day (95th percentile), respectively. The consumption is primarily accounted for by sausages, salami, pork flank (spiced...

  20. Production of graphene by exfoliation of graphite in a volatile organic solvent

    International Nuclear Information System (INIS)

    Choi, Eun-Young; Choi, Won San; Lee, Young Boo; Noh, Yong-Young

    2011-01-01

    The production of unfunctionalized and nonoxidized graphene by exfoliation of graphite in a volatile solvent, 1-propanol, is reported. A stable homogeneous dispersion of graphene was obtained by mild sonication of graphite powder and subsequent centrifugation. The presence of a graphene monolayer was observed by atomic force microscopy and transmission electron microscopy. The solvent, 1-propanol, from the deposited dispersion was simply and quickly removed by air drying at room temperature, without the help of high temperature annealing or vacuum drying, which shortens production time and does not leave any residue of the solvent in the graphene sheets.

  1. Use of a free-jet expansion, molecular beam mass spectrometer to understand processes involving volatile corrosion products

    International Nuclear Information System (INIS)

    Jacobson, N.S.

    1997-01-01

    Many high-temperature corrosion processes generate volatile products in addition to condensed phase products. Examples of these volatile products are chlorides, oxychlorides, and certain oxides and hydroxyl species. One of the best techniques to identify high temperature vapor molecules is mass spectrometry. Most mass spectrometers operate in high vacuum and are generally used to examine processes ocurring at greatly reduced pressures. However, a free-jet expansion, molecular beam mass spectrometer system allows direct sampling of volatile corrosion products. This instrument is described. Several examples from our studies on chlorination/oxidation of metals and ceramics are discussed. In addition, reactions of Cr 2 O 3 , SiO 2 , and Al 2 O 3 with water vapor, which produce volatile hydroxyl species are discussed. (orig.)

  2. Influence of physiological state of inoculum on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation

    Directory of Open Access Journals (Sweden)

    Marina Bely

    2005-12-01

    Full Text Available An approach consisting of controlling yeast inoculum to minimize volatile acidity production by Saccharomyces cerevisiae during the alcoholic fermentation of botrytized must was investigated. Direct inoculation of rehydrated active dry yeasts produced the most volatile acidity, while a yeast preparation pre-cultured for 24 hours reduced the final production by up to 23 %. Using yeasts collected from a fermenting wine as a starter must also reduced volatile acidity production. The conditions for preparing the inoculum affected the fermentation capacity of the first generation yeasts: fermentation duration, sugar to ethanol ratio, and wine composition. A pre-culture medium with a low sugar concentration (< 220 g/L is essential to limit volatile acidity production in high sugar fermentations.

  3. Experimental study of rapid brown coal pyrolysis at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Lin; Sun, Shaozeng; Meng, Shun; Meng, Xianyu; Guo, Yangzhou [Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.

    2013-07-01

    Rapid coal pyrolysis is a very important step in the early stage of combustion. Rapid pyrolysis experiments of a brown coal at high temperature have been studied on a laminar drop tube furnace. The volatile mass release measured in this study is high for low rank coal. The activation energy and pre-exponential factor of pyrolysis are 19901.22 kJ/mol and 102.71, respectively. The nitrogen distribution between volatile and char is 0.54. With the increase of temperature, the yields of NH{sub 3} decreases, while those of HCN increases, leading the value of HCN/NH{sub 3} to become larger. At high temperature, the main nitrogen- containing species of pyrolysis in volatile is HCN.

  4. Agricultural management, season and trace elements effects on volatile oil production from Melissa officinalis L. (Lemon balm)

    International Nuclear Information System (INIS)

    Sussa, Fabio Vitorio; Duarte, Celina Lopes; Silva, Paulo Sergio Cardoso da; Furlan, Marcos Roberto

    2016-01-01

    The objective of this study was to provide information about organic and mineral fertilization, season and trace elements effects on volatile oil production by the species Melissa officinalis. Elemental concentration was determined by instrumental neutron activation analysis and atomic absorption spectrometry. The volatile oil was extracted by hydrodistillation and analyzed by gas chromatography coupled to a mass spectrometer. The elemental content and the main compounds vary according to agricultural management and season. The results indicate that the production of volatile oil main compounds from M. officinalis is correlated with the concentrations of Na, Co, Rb, Cd, Cs, La, Sm and Hf. (author)

  5. Highly time-resolved imaging of combustion and pyrolysis product concentrations in solid fuel combustion: NO formation in a burning cigarette.

    Science.gov (United States)

    Zimmermann, Ralf; Hertz-Schünemann, Romy; Ehlert, Sven; Liu, Chuan; McAdam, Kevin; Baker, Richard; Streibel, Thorsten

    2015-02-03

    The highly dynamic, heterogeneous combustion process within a burning cigarette was investigated by a miniaturized extractive sampling probe (microprobe) coupled to photoionization mass spectrometry using soft laser single photon ionization (SPI) for online real-time detection of molecular ions of combustion and pyrolysis products. Research cigarettes smoked by a smoking machine are used as a reproducible model system for solid-state biomass combustion, which up to now is not addressable by current combustion-diagnostic tools. By combining repetitively recorded online measurement sequences from different sampling locations in an imaging approach, highly time- and space-resolved quantitative distribution maps of, e.g., nitrogen monoxide, benzene, and oxygen concentrations were obtained at a near microscopic level. The obtained quantitative distribution maps represent a time-resolved, movie-like imaging of the respective compound's formation and destruction zones in the various combustion and pyrolysis regions of a cigarette during puffing. Furthermore, spatially resolved kinetic data were ascertainable. The here demonstrated methodology can also be applied to various heterogenic combustion/pyrolysis or reaction model systems, such as fossil- or biomass-fuel pellet combustion or to a positional resolved analysis of heterogenic catalytic reactions.

  6. Effect of operating parameters on production of bio-oil from fast pyrolysis of maize stalk in bubbling fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    Ali Najaf

    2016-09-01

    Full Text Available The yield and composition of pyrolysis products depend on the characteristics of feed stock and process operating parameters. Effect of particle size, reaction temperature and carrier gas flow rate on the yield of bio-oil from fast pyrolysis of Pakistani maize stalk was investigated. Pyrolysis experiments were performed at temperature range of 360-540°C, feed particle size of 1-2 mm and carrier gas fl ow rate of 7.0-13.0 m3/h (0.61.1 m/s superficial velocity. Bio-oil yield increased with the increase of temperature followed by a decreasing trend. The maximum yield of bio-oil obtained was 42 wt% at a temperature of 490°C with the particle size of around 1.0 mm and carrier gas flow rate of 11.0 m3/h (0.9 m/s superficial velocity. High temperatures resulted in the higher ratios of char and non-condensable gas.

  7. Nitrogen conversion during rapid pyrolysis of coal and petroleum coke in a high-frequency furnace

    International Nuclear Information System (INIS)

    Yuan, Shuai; Zhou, Zhi-jie; Li, Jun; Wang, Fu-chen

    2012-01-01

    Highlights: ► Use a high-frequency furnace to study N-conversion during rapid pyrolysis of coal. ► Scarcely reported N-conversion during rapid pyrolysis of petroleum coke was studied. ► Both of NH 3 and HCN can be formed directly from coal during rapid pyrolysis. ► NH 3 –N yields are higher than HCN–N yields in most conditions. ► NH 3 –N yields of petroleum coke increase with temperature and no HCN detected. -- Abstract: Rapid pyrolysis of three typical Chinese coals, lignite from Inner Mongolia, bituminous from Shenfu coalfield, and anthracite from Guizhou, as well as a petroleum coke were carried out in a drop-style high-frequency furnace. The reactor was induction coil heated and had a very small high-temperature zone, which could restrain secondary conversions of nitrogen products. The effects of temperature and coal rank on conversions of fuel-N to primary nitrogen products (char-N, HCN–N, NH 3 –N and (tar + N 2 )–N) have been investigated. The results showed that, the increasing temperature reduced the yields of char-N and promoted the conversion of fuel-N to N 2 . Char-N yields increased, while volatile-N yields decreased as the coal rank increased. In most of the conditions, NH 3 –N yields were higher than HCN–N yields during rapid pyrolysis of coal. In the case of petroleum coke, NH 3 –N yields increased gradually with the increasing temperature, but no HCN was detected. We argue that NH 3 –N can be formed directly through the primary pyrolysis without secondary reactions. Although volatile-N yields of lignite were higher than those of bituminous, yields of (HCN + NH 3 )–N in volatile-N of lignite were lower than those of bituminous. While the (HCN + NH 3 )–N yields of anthracite were the lowest of the three coals. Both of the (HCN + NH 3 )–N yields and (HCN + NH 3 )–N proportions in volatile-N of petroleum coke were lower than the three coals.

  8. Productivity and cost analysis of a mobile pyrolysis system deployed to convert mill residues into biochar

    Science.gov (United States)

    Woodam Chung; Dongyeob Kim; Nathaniel Anderson

    2012-01-01

    Forest and mill residues are a promising source of biomass feedstock for the production of bioenergy, biofuels and bioproducts. However, high costs of transportation and handling of feedstock often make utilization of forest residues, such as logging slash, financially unviable. As a result, these materials are often considered waste and left on site to decompose or...

  9. Jatropha waste meal as an alternative energy source via pressurized pyrolysis: A study on temperature effects

    International Nuclear Information System (INIS)

    Kongkasawan, Jinjuta; Nam, Hyungseok; Capareda, Sergio C.

    2016-01-01

    As an alternative energy source, Jatropha is a promising biomass resource due to its high content of oil contained in the seed. However, after the oil extraction process, more than 50% of initial weight remained as residue. This Jatropha de-oiled cake was considered a valuable feedstock for thermochemical conversion process due to its high volatile matter (73%) and energy content (20.5 MJ/kg). Pyrolysis turned biomass into solid product of biochar, liquid product (bio-oil and aqueous phase), and pyrolysis gas. The effects of pyrolysis temperature under the pressure of 0.69 MPa on the product yields and characteristics were investigated using a bench-scale batch reactor. The gross calorific value of pyrolytic oil was measured to be 35 MJ/kg with high carbon content (71%) and low oxygen content (10%). Phenols and hydrocarbons were the main compounds present in the pyrolytic oil. The heating value of the biochar was also high (28 MJ/kg), which was comparable to the fuel coke. More combustible gases were released at high pyrolysis temperature with methane as a main constituent. Pyrolysis temperature of 500 °C, was determined to be an optimum condition for the mass and energy conversions with 89% of the mass and 77% of the energy recovered. - Highlights: • Pressurized pyrolysis of Jatropha wastes at different temperatures was studied. • Full analysis of biochar, bio-oil and pyro gas at different temperatures were done. • Highest aromatics (32%) and HHV (35 MJ/kg) found in bio-oil at 500 °C. • Large amount of paraffins (C 13 –C 16 range) was found in bio-oil.

  10. Catalytic pyrolysis of wheat bran for hydrocarbons production in the presence of zeolites and noble-metals by using TGA-FTIR method.

    Science.gov (United States)

    Lazdovica, K; Liepina, L; Kampars, V

    2016-05-01

    Pyrolysis of wheat bran with or without catalysts was investigated using TGA-FTIR method in order to determine the influence of zeolite and noble metal catalysts on the evolution profile and relative yield of the volatile compounds. The addition of all catalysts decreased the volatile matter of wheat bran from 76.3% to 75.9%, 73.9%, 73.5%, 69.7% and increased the solid residue from 18.0% to 18.4%, 20.4%, 20.8%, 24.6% under the catalyst of ZSM-5, 5% Pd/C, MCM-41, and 5% Pt/C. Noble-metal catalysts had higher activity for deoxygenation of compounds containing carbonyl, carboxyl, and hydroxyl groups than zeolites. Degradation of nitrogen containing compounds atom proceeded better in presence of zeolites. Noble-metal catalysts promoted formation of aromatics and changed the profiles of evolved compounds whereas zeolites advanced formation of aliphatics and olefins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Production of bio-oil with flash pyrolysis and the combustion of it; Biooeljyn tuotanto flashpyrolyysillae ja sen poltto

    Energy Technology Data Exchange (ETDEWEB)

    Nyroenen, T [Vapo Oy, Jyvaeskylae (Finland)

    1996-12-31

    The target of the research is to study the production of bio-oils using flash-pyrolysis and utilization of the bio-oil in oil-fueled boilers. The PDU-device was ordered in December 1994. The device was tested in Canada in the beginning of March 1996. The device will be mounted in Otaniemi in the research unit of VTT Energy. The device will by equipped, if possible, with a hot-filtering device in order to improve the purity and the quality of the oil. The capacity of the PDU-device is 20 kg/h of dry biomass of about 10 wt-% DS-content, with particle size less than 6 mm. The actual tests will be made in autumn 1996. The investment costs of the PDU are about 2.5 million FIM. The Canadian funding of the project is about 50 %. It has been planned that within the research project of Vapo oy, about 50 - 100 tons of bio-oil will be acquired from Canada for the engine tests carried out by Wartsilae Diesel, and the project will be responsible for planning and operation of the PDU and the demonstration plants. About 50 tons of wood-oil was received from Canada in January 1996 for the engine tests, the results of which will be reported separately by Wartsilae Diesel. The present costs of the tasks are about 1.2 million FIM, but the main part of the costs will be formed in 1996-1997

  12. Production of bio-oil with flash pyrolysis and the combustion of it; Biooeljyn tuotanto flashpyrolyysillae ja sen poltto

    Energy Technology Data Exchange (ETDEWEB)

    Nyroenen, T. [Vapo Oy, Jyvaeskylae (Finland)

    1995-12-31

    The target of the research is to study the production of bio-oils using flash-pyrolysis and utilization of the bio-oil in oil-fueled boilers. The PDU-device was ordered in December 1994. The device was tested in Canada in the beginning of March 1996. The device will be mounted in Otaniemi in the research unit of VTT Energy. The device will by equipped, if possible, with a hot-filtering device in order to improve the purity and the quality of the oil. The capacity of the PDU-device is 20 kg/h of dry biomass of about 10 wt-% DS-content, with particle size less than 6 mm. The actual tests will be made in autumn 1996. The investment costs of the PDU are about 2.5 million FIM. The Canadian funding of the project is about 50 %. It has been planned that within the research project of Vapo oy, about 50 - 100 tons of bio-oil will be acquired from Canada for the engine tests carried out by Wartsilae Diesel, and the project will be responsible for planning and operation of the PDU and the demonstration plants. About 50 tons of wood-oil was received from Canada in January 1996 for the engine tests, the results of which will be reported separately by Wartsilae Diesel. The present costs of the tasks are about 1.2 million FIM, but the main part of the costs will be formed in 1996-1997

  13. The effects of catalysts on the conversion of organic matter and bio-fuel production in the microwave pyrolysis of sludge at different temperatures.

    Science.gov (United States)

    Ma, Rui; Huang, Xiaofei; Zhou, Yang; Fang, Lin; Sun, Shichang; Zhang, Peixin; Zhang, Xianghua; Zhao, Xuxin

    2017-08-01

    Adding catalyst could improve the yields and qualities of bio-gas and bio-oil, and realize the oriented production. Results showed that the catalytic gas-production capacities of CaO were higher than those of Fe 2 O 3 , and the bio-gas yield at 800°C reached a maximum of 35.1%. Because the polar cracking active sites of CaO reduced the activation energy of the pyrolysis reaction and resulted in high catalytic cracking efficiencies. In addition, the quality of bio-oil produced by CaO was superior to that by Fe 2 O 3 , although the bio-oil yield of CaO was relatively weak. The light bio-fuel oriented catalytic pyrolysis could be realized when adding different catalysts. At 800°C, CaO was 45% higher than Fe 2 O 3 in aspect of H 2 production while Fe 2 O 3 was 103% higher than CaO in aspect of CH 4 production. Therefore, CaO was more suitable for H 2 production and Fe 2 O 3 was more suitable for CH 4 production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Pyrolysis - gas chromatography - mass spectrometry of lignins

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F; Saiz-Jimenez, C; Gonzalez-Vila, F J

    1979-01-01

    Milled wood lignins from spruce, beech and bamboo were pyrolysed. The high-boiling products of pyrolysis were studied by GLC and mass spectrometry. The forty-three products identified provide information on the structural units of lignin.

  15. Effects of biopretreatment on pyrolysis behaviors of corn stalk by methanogen.

    Science.gov (United States)

    Wang, Tipeng; Ye, Xiaoning; Yin, Jun; Lu, Qiang; Zheng, Zongming; Dong, Changqing

    2014-07-01

    The study investigated the effects of methanogen pretreatment on pyrolysis behaviors of corn stalk (CS) by using Py-GC/MS analysis and thermogravimetric analysis. Results indicated that biopretreatment changed considerably the pyrolysis behaviors of CS from four weight loss stages to two weight loss stages. Increasing biopretreatment time from 5 days to 25 days enhanced the kinds and contents of chemicals in volatile products. In pyrolysis products, the contents of sugars, linear ketones and furans decreased from 1.43%, 12.60% and 7.38% to 1.25%, 10.22% and 3.25%, respectively, and the contents of phenols increased from 15.08% to 27.84%. The most content change from 6.83% to 13.63% indicated that methanogen pretreatment improved the pyrolysis selectivity of CS to product the 4-VP, but it was disadvantageous to 5-hydroxymethyl furfural, levoglucose and furfural. The changes of chemical compositions and structure of CS after biopretreatment were the main reason of the differences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Pyrolysis of rice husk and corn stalk in auger reactor:Part 1. Characterization of char and gas at various temperatures

    OpenAIRE

    Yu, Yang; Yang, Yang; Cheng, Zhicai; Blanco, Paula H.; Liu, Ronghou; Bridgwater, A.V.; Cai, Junmeng

    2016-01-01

    In this study, rice husk and corn stalk have been pyrolyzed in an auger pyrolysis reactor at pyrolysis temperatures of 350, 400, 450, 500, 550, and 600 °C in order to investigate the effect of the pyrolysis temperature on the pyrolysis performance of the reactor and physicochemical properties of pyrolysis products (this paper focuses on char and gas). The results have shown that the pyrolysis temperature significantly affects the mass yields and properties of the pyrolysis products. The mass ...

  17. Characteristics of liquid product from the pyrolysis of waste plastic mixture at low and high temperatures: influence of lapse time of reaction.

    Science.gov (United States)

    Lee, Kyong-Hwan; Shin, Dae-Hyun

    2007-01-01

    Pyrolysis of a waste plastic mixture (high-density polyethylene: low-density polyethylene: polypropylene: polystyrene = 3:2:3:1) into a liquid product was carried out in a stirred semi-batch reactor at low (350 degrees C) and high (400 degrees C) temperatures. The effect of lapse time of reaction in the reactor and also degradation temperature on the characteristics of the liquid product from pyrolysis of the mixture was investigated. Liquid products were described by cumulative amount distribution, paraffin, olefin, naphthene and aromatic (PONA) distribution and molecular weight distribution. Their characteristic was quite differed with a lapse time of reaction and also at a low and high degradation temperatures, because of the different physicochemical properties of the plastic types in the mixture. With increase of lapse time of reaction, the order for the main products in PONA components obtained at 350 degrees C was firstly aromatic products and then olefin products, while at 400 degrees C the order was firstly aromatic products, then olefin products and finally paraffin products. The experiments also showed from the molecular weight distribution of liquid PONA components that the paraffin and olefin products had a wide distribution by mainly random scission of polymer, but in the case of olefin products were produced by an end-chain scission mechanism as well as random scission mechanism, as evidenced by much more light olefin products. This phenomenon was evident at a higher degradation temperature. Also, both the light olefin and naphthene products with a molecular weight of around 120, as a main product, showed a similar trend as a function of lapse time, which had a maximum fraction at 343 min (at 350 degrees C) and 83 min (at 400 degrees C). Among PONA components, the highest concentrations of aromatic products were obtained with a molecular weight of around 100 at the fastest lapse time of reaction, regardless of degradation temperature. It was

  18. Characteristics of liquid product from the pyrolysis of waste plastic mixture at low and high temperatures: Influence of lapse time of reaction

    International Nuclear Information System (INIS)

    Lee, Kyong-Hwan; Shin, Dae-Hyun

    2007-01-01

    Pyrolysis of a waste plastic mixture (high-density polyethylene: low-density polyethylene: polypropylene: polystyrene = 3:2:3:1) into a liquid product was carried out in a stirred semi-batch reactor at low (350 deg. C) and high (400 deg. C) temperatures. The effect of lapse time of reaction in the reactor and also degradation temperature on the characteristics of the liquid product from pyrolysis of the mixture was investigated. Liquid products were described by cumulative amount distribution, paraffin, olefin, naphthene and aromatic (PONA) distribution and molecular weight distribution. Their characteristic was quite differed with a lapse time of reaction and also at a low and high degradation temperatures, because of the different physicochemical properties of the plastic types in the mixture. With increase of lapse time of reaction, the order for the main products in PONA components obtained at 350 deg. C was firstly aromatic products and then olefin products, while at 400 deg. C the order was firstly aromatic products, then olefin products and finally paraffin products. The experiments also showed from the molecular weight distribution of liquid PONA components that the paraffin and olefin products had a wide distribution by mainly random scission of polymer, but in the case of olefin products were produced by an end-chain scission mechanism as well as random scission mechanism, as evidenced by much more light olefin products. This phenomenon was evident at a higher degradation temperature. Also, both the light olefin and naphthene products with a molecular weight of around 120, as a main product, showed a similar trend as a function of lapse time, which had a maximum fraction at 343 min (at 350 deg. C) and 83 min (at 400 deg. C). Among PONA components, the highest concentrations of aromatic products were obtained with a molecular weight of around 100 at the fastest lapse time of reaction, regardless of degradation temperature. It was concluded that the

  19. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains

    Directory of Open Access Journals (Sweden)

    Samantha Fairbairn

    2017-12-01

    Full Text Available Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways.

  20. Identification and quantification of selected chemicals in laser pyrolysis products of mammalian tissues

    Science.gov (United States)

    Spleiss, Martin; Weber, Lothar W.; Meier, Thomas H.; Treffler, Bernd

    1995-01-01

    Liver and muscle tissue have been irradiated with a surgical CO2-laser. The prefiltered fumes were adsorbed on different sorbents (activated charcoal type NIOSH and Carbotrap) and desorbed with different solvents (carbondisulphide and acetone). Analysis was done by gas chromatography/mass spectrometry. An updated list of identified substances is shown. Typical Maillard reaction products as found in warmed over flavour as aldehydes, aromatics, heterocyclic and sulphur compounds were detected. Quantification of some toxicological relevant substances is presented. The amounts of these substances are given in relation to the laser parameters and different tissues for further toxicological assessment.

  1. Pyrolysis/gasification of biomass for synthetic fuel production using a hybrid gas- water stabilized plasma torch

    Czech Academy of Sciences Publication Activity Database

    Van Oost, G.; Hrabovský, Milan; Kopecký, Vladimír; Konrád, Miloš; Hlína, Michal; Kavka, Tetyana

    2008-01-01

    Roč. 83, č. 1 (2008), s. 209-212 ISSN 0042-207X R&D Projects: GA ČR GA202/08/1084 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * pyrolysis * biomass gasification Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.114, year: 2008

  2. Pyrolysis/gasification of biomass for synthetic fuel production using a hybrid gas- water stabilized plasma torch

    Czech Academy of Sciences Publication Activity Database

    Van Oost, G.; Hrabovský, Milan; Kopecký, Vladimír; Konrád, Miloš; Hlína, Michal; Kavka, Tetyana; Beeckman, E.; Verstraeten, J.

    2007-01-01

    Roč. 6, č. 1 (2007), s. 9-12. ISBN 978-4-9900642-5-9 R&D Projects: GA ČR GA202/05/0669 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * pyrolysis * biomass gasification Subject RIV: BL - Plasma and Gas Discharge Physics

  3. Resole resin products derived from fractionated organic and aqueous condensates made by fast-pyrolysis of biomass materials

    Science.gov (United States)

    Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.

    1993-08-10

    A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.

  4. Influence of silica-alumina support ratio on H2 production and catalyst carbon deposition from the Ni-catalytic pyrolysis/reforming of waste tyres.

    Science.gov (United States)

    Zhang, Yeshui; Tao, Yongwen; Huang, Jun; Williams, Paul

    2017-10-01

    The influence of catalyst support alumina-silica in terms of different Al 2 O 3 to SiO 2 mole ratios containing 20 wt.% Ni on the production of hydrogen and catalyst coke formation from the pyrolysis-catalysis of waste tyres is reported. A two-stage reactor system was used with pyrolysis of the tyres followed by catalytic reaction. There was only a small difference in the total gas yield and hydrogen yield by changing the Al 2 O 3 to SiO 2 mole ratios in the Ni-Al 2 O 3 /SiO 2 catalyst. The 1:1 ratio of Al 2 O 3 :SiO 2 ratio produced the highest gas yield of 27.3 wt.% and a hydrogen production of 14.0 mmol g -1 tyre . Catalyst coke formation decreased from 19.0 to 13.0 wt.% as the Al 2 O 3 :SiO 2 ratio was changed from 1:1 to 2:1, with more than 95% of the coke being filamentous-type carbon, a large proportion of which was multi-walled carbon nanotubes. Further experiments introduced steam to the second-stage reactor to investigate hydrogen production for the pyrolysis-catalytic steam reforming of the waste tyres using the 1:1 Al 2 O 3 /SiO 2 nickel catalyst. The introduction of steam produced a marked increase in total gas yield from ~27 wt. % to ~58 wt.%; in addition, hydrogen production was increased to 34.5 mmol g -1 and there was a reduction in catalyst coke formation to 4.6 wt.%.

  5. Influence of silica–alumina support ratio on H2 production and catalyst carbon deposition from the Ni-catalytic pyrolysis/reforming of waste tyres

    Science.gov (United States)

    Zhang, Yeshui; Tao, Yongwen; Huang, Jun; Williams, Paul

    2017-01-01

    The influence of catalyst support alumina–silica in terms of different Al2O3 to SiO2 mole ratios containing 20 wt.% Ni on the production of hydrogen and catalyst coke formation from the pyrolysis-catalysis of waste tyres is reported. A two-stage reactor system was used with pyrolysis of the tyres followed by catalytic reaction. There was only a small difference in the total gas yield and hydrogen yield by changing the Al2O3 to SiO2 mole ratios in the Ni-Al2O3/SiO2 catalyst. The 1:1 ratio of Al2O3:SiO2 ratio produced the highest gas yield of 27.3 wt.% and a hydrogen production of 14.0 mmol g-1tyre. Catalyst coke formation decreased from 19.0 to 13.0 wt.% as the Al2O3:SiO2 ratio was changed from 1:1 to 2:1, with more than 95% of the coke being filamentous-type carbon, a large proportion of which was multi-walled carbon nanotubes. Further experiments introduced steam to the second-stage reactor to investigate hydrogen production for the pyrolysis-catalytic steam reforming of the waste tyres using the 1:1 Al2O3/SiO2 nickel catalyst. The introduction of steam produced a marked increase in total gas yield from ~27 wt. % to ~58 wt.%; in addition, hydrogen production was increased to 34.5 mmol g-1 and there was a reduction in catalyst coke formation to 4.6 wt.%. PMID:28789599

  6. Understanding the Behavior of the Oligomeric Fractions During Pyrolysis Oils Upgrading

    Science.gov (United States)

    Stankovikj, Filip

    Fast pyrolysis oils represent most viable renewable sources for production of fuels and chemicals, and they could supplement significant portion of the depleting fossil fuels in near future. Progress on their utilization is impeded by their thermal and storage instability, lack of understanding of their complex composition and behavior during upgrading, including the poorly described water soluble fraction (WS). This work offers two new methodologies for simplified, and sensible description of the pyrolysis oils in terms of functional groups and chemical macro-families, augments our understanding of the composition of the WS, and the behavior of the heavy non-volatile fraction during pyrolysis oils stabilization. The concept of analyzing the volatile and non-volatile fraction in terms of functional groups has been introduced, and the quantification power of spectroscopic techniques (FTIR, 1H-NMR, UV fluorescence) for phenols, carbonyl and carboxyl groups was shown. The FT-ICR-MS van Krevelen diagram revealed the importance of dehydration reactions in pyrolysis oils and the presence of "pyrolytic humins" was hypothesized. For the first time the WS was analyzed with plethora of analytical techniques. This lead to proposition of a new characterization scheme based on functional groups, describing 90-100 wt.% of the bio-oils. The structure of idealized "pyrolytic humin" was further described as a random combination of 3-8 units of dehydrated sugars, coniferyl-type phenols, furans, and carboxylic acids attached on a 2,5-dioxo-6-hydroxyhexanal (DHH) backbone rich in carbonyl groups. TG-FTIR studies resulted in defining rules for fitting pyrolysis oils' DTG curves and assignment of TG residue. This second method is reliable for estimation of water content, light volatiles, WS and WIS. Finally, stabilization of two oils was analyzed through the prism of functional groups. Carbonyl and hydroxyl groups interconverted. The first attempt to follow silent 31P-NMR oxygen was

  7. Process engineering versus product engineering - A case study on volatile organic compounds removal

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Vilela, T.; Pereira, P.

    2005-01-01

    Three solutions for removing the dangerous volatile organic compound (VOC) xylene from an industrial coating process are presented and compared. Two of them are based on classical process engineering principles, i.e., development of separation-cleaning methods such as incineration and adsorption...... to the problem-need specified in the beginning of the project, but producing a novel formulation (chemical product design) represents a method that results to a completely xylene-free process which is environmentally and economically more interesting than those generated via the more traditional process...

  8. The lipoxygenase metabolic pathway in plants: potential for industrial production of natural green leaf volatiles

    Directory of Open Access Journals (Sweden)

    Gigot, C.

    2010-01-01

    Full Text Available Lipoxygenase enzymatic pathway is a widely studied mechanism in the plant kingdom. Combined actions of three enzymes: lipase, lipoxygenase (LOX and hydroperoxide lyase (HPL convert lipidic substrates such as C18:2 and C18:3 fatty acids into short chain volatiles. These reactions, triggered by cell membrane disruptions, produce compounds known as Green Leaf Volatiles (GLVs which are C6 or C9-aldehydes and alcohols. These GLVs are commonly used as flavors to confer a fresh green odor of vegetable to food products. Therefore, competitive biocatalytic productions have been developed to meet the high demand in these natural flavors. Vegetable oils, chosen for their lipidic acid profile, are converted by soybean LOX and plant HPL into natural GLVs. However this second step of the bioconversion presents low yield due to the HPL instability and the inhibition by its substrate. This paper will shortly describe the different enzymes involved in this bioconversion with regards to their chemical and enzymatic properties. Biotechnological techniques to enhance their production potentialities will be discussed along with their implication in a complete bioprocess, from the lipid substrate to the corresponding aldehydic or alcoholic flavors.

  9. Pyrolysis of Pinus pinaster in a two-stage gasifier: Influence of processing parameters and thermal cracking of tar

    Energy Technology Data Exchange (ETDEWEB)

    Fassinou, Wanignon Ferdinand; Toure, Siaka [Laboratoire d' Energie Solaire-UFR-S.S.M.T. Universite de Cocody, 22BP582 Abidjan 22 (Ivory Coast); Van de Steene, Laurent; Volle, Ghislaine; Girard, Philippe [CIRAD-Foret, TA 10/16, 73, avenue J.-F. Breton, 34398 Montpellier, Cedex 5 (France)

    2009-01-15

    A new two-stage gasifier with fixed-bed has recently been installed on CIRAD facilities in Montpellier. The pyrolysis and the gasifier units are removable. In order to characterise the pyrolysis products before their gasification, experiments were carried out, for the first time only with the pyrolysis unit and this paper deals with the results obtained. The biomass used is Pinus pinaster. The parameters investigated are: temperature, residence time and biomass flow rate. It has been found that increasing temperature and residence time improve the cracking of tars, gas production and char quality (fixed carbon rate more than 90%, volatile matter rate less than 4%). The increase of biomass flow rate leads to a bad char quality. The efficiency of tar cracking, the quality and the heating value of the charcoal and the gases, indicate that: temperature between 650 C and 750 C, residence time of 30 min, biomass flow rate between 10 and 15 kg/h should be the most convenient experimental conditions to get better results from the experimental device and from the biomass pyrolysis process. The kinetic study of charcoal generation shows that the pyrolysis process, in experimental conditions, is a first-order reaction. The kinetic parameters calculated are comparable with those found by other researchers. (author)

  10. Pyrolysis of automotive shredder residue for the production of fuel-grade gas

    International Nuclear Information System (INIS)

    Sharp, L.L.; Ness, R.O. Jr.

    1993-01-01

    Every year eight to ten million cars and trucks are disposed of by shredding at one of the 200 auto shredders located in the United States. Automotive shredder residue (ASR) is a by-product created in the dismantling of automobiles. Figure 1 illustrates the process by which ASR is generated. An automobile is stripped of useful and/or hazardous items, such as the gas tank, battery, tires, and radiator. Although it is beneficial to have these items removed for safety and environmental concerns, this is not always accomplished. After removal of some or all of these items, the automobile is shredded to provide a material less than 4 inches in size and composed of approximately 50% organic and 50% inorganic fractions. Ferrous scrap is then separated out magnetically. This ferrous scrap supplies the steel industry with 12 to 14 million tons per year for electric arc furnace feedstock. Air cyclone separators isolate a low density open-quotes fluffclose quotes from the nonferrous fraction (aluminum, copper, etc.). This fluff (shredder residue) is composed of a variety of plastics, fabrics, foams, glass, rubber, and an assortment of contaminants. Fluff bulk density is approximately 20 lb/ft

  11. Volatile profile, lipid oxidation and protein oxidation of irradiated ready-to-eat cured turkey meat products

    International Nuclear Information System (INIS)

    Feng, Xi; Ahn, Dong Uk

    2016-01-01

    Irradiation had little effects on the thiobarbituric acid reactive substances (TBARS) values in ready-to-eat (RTE) turkey meat products, while it increased protein oxidation at 4.5 kGy. The volatile profile analyses indicated that the amount of sulfur compounds increased linearly as doses increased in RTE turkey meat products. By correlation analysis, a positive correlation was found between benzene/ benzene derivatives and alcohols with lipid oxidation, while aldehydes, ketones and alkane, alkenes and alkynes were positively correlated with protein oxidation. Principle component analysis showed that irradiated meat samples can be discriminated by two categories of volatile compounds: Strecker degradation products and radiolytic degradation products. The cluster analysis of volatile data demonstrated that low-dose irradiation had minor effects on the volatile profile of turkey sausages (<1.5 kGy). However, as the doses increased, the differences between the irradiated and non-irradiated cured turkey products became significant. - Highlights: • Irradiation had little effects on lipid oxidation of ready-to-eat cured turkey. • 4.5 kGy irradiation increased protein oxidation. • Irradiated samples were isolated due to Strecker/radiolytic degradation products. • 1.5 kGy irradiation had limited effects on the volatile profile of turkey sausages. • Dimethyl disulfide can be used as a potential marker for irradiated meat products.

  12. Effects of Pyrolysis Temperature on Product Yields and Energy Recovery from Co-Feeding of Cotton Gin Trash, Cow Manure, and Microalgae: A Simulation Study

    Science.gov (United States)

    Hanif, Muhammad Usman; Capareda, Sergio C.; Iqbal, Hamid; Arazo, Renato Ortiz; Baig, Muhammad Anwar

    2016-01-01

    The intensive search of new and cleaner energy catches interest in recent years due to huge consumption of fossil fuels coupled with the challenge of energy and environmental sustainability. Production of renewable and environmentally benign energy from locally available raw materials is coming in the frontline. In this work, conversion of the combined biomass (cotton gin trash, cow manure, and Microalgae [Nannochloropsis oculata]) through batch pyrolysis has been investigated. The effect of temperature to the production of energy fuels such as bio-oil, char, and biogas have been simulated considering the yield and energy content as responses. Result of the investigation generally revealed that the proportions of the different biomass did not significantly affect the product yield and energy recovery. Significant effect of temperature is evident in the simulation result of energy recovery whereby maximum conversion was achieved at 400°C for char (91 wt%), 600°C for syngas (22 wt%), and 551°C for bio-oil (48 wt%). Overall energy conversion efficiency of 75.5% was obtained at 589°C in which 15.6 MJ/kg of mixed biomass will be elevated to pyrolysis products. PMID:27043929

  13. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char.

    Science.gov (United States)

    Norouzi, Omid; Jafarian, Sajedeh; Safari, Farid; Tavasoli, Ahmad; Nejati, Behnam

    2016-11-01

    Conversion of Cladophora glomerata (C. glomerata) as a Caspian Sea's green macroalgae into gaseous, liquid and solid products was carried out via pyrolysis at different temperatures to determine its potential for bio-oil and hydrogen-rich gas production for further industrial utilization. Non-catalytic tests were performed to determine the optimum condition for bio-oil production. The highest portion of bio-oil was retrieved at 500°C. The catalytic test was performed using the bio-char derived at 500°C as a catalyst. Effect of the addition of the algal bio-char on the composition of the bio-oil and also gaseous products was investigated. Pyrolysis derived bio-char was characterized by BET, FESEM and ICP method to show its surface area, porosity, and presence of inorganic metals on its surface, respectively. Phenols were increased from 8.5 to 20.76area% by the addition of bio-char. Moreover, the hydrogen concentration and hydrogen selectivity were also enhanced by the factors of 1.37, 1.59 respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Chemical diversity of microbial volatiles and their potential for plant growth and productivity

    Directory of Open Access Journals (Sweden)

    CHIDANANDA NAGAMANGALA KANCHISWAMY

    2015-03-01

    Full Text Available Microbial volatile organic compounds (MVOCs are produced by a wide array of microorganisms ranging from bacteria to fungi. A growing body of evidence indicates that MVOCs are ecofriendly and can be exploited as a cost-effective sustainable strategy for use in agricultural practice as agents that enhance plant growth, productivity and disease resistance. As naturally occurring chemicals, MVOCs have potential as possible alternatives to harmful pesticides, fungicides and bactericides as well as genetic modification. Recent studies performed under open field conditions demonstrate that efficiently adopting MVOCs may contribute to sustainable crop protection and production. We review here the chemical diversity of MVOCs and their potential physiological effects on crops and analyze potential and actual limitations for MVOC use as a sustainable strategy for improving productivity and reducing pesticide use.

  15. Space-weathering processes and products on volatile-rich asteroids

    Science.gov (United States)

    Britt, D.; Schelling, P.; Consolmagno, G.; Bradley, T.

    2014-07-01

    Space weathering is a generic term for the effects on atmosphereless solid bodies in the solar system from a range of processes associated with direct exposure to the space environment. These include impact processes (shock, vaporization, fragmentation, heating, melting, and ejecta formation), radiation damage (from galactic and solar cosmic rays), solar-wind effects (irradiation, ion implantation, and sputtering), and the chemical reactions driven by these processes. The classic example of space weathering is the formation of the lunar spectral red slope associated with the production of nanophase Fe (npFe0) in the dusty lunar regolith (C.R. Chapman, 2004, Annual Review of Earth & Planet. Sci. 32, C.M. Pieters, 2000, MAPS 35). Similar npFe0 has been recovered from asteroid (25143) Itokawa and some asteroid classes do exhibit modest spectral red slopes (T. Noguchi, 2011, Science 333). Space weathering can be thought of as driven by a combination of the chemical environment of space (hard vacuum, low oxygen fugacity, solar-wind implantation of hydrogen) along with thermal energy supplied by micrometeorite impacts. The forward modeling of space weathering as thermodynamically-driven decomposition of common rock-forming minerals suggests the production of a range of daughter products: (1) The silicate products typically lose oxygen, other volatile elements (i.e., sulfur and sodium), and metallic cations, producing minerals that are typically more disordered and less optically active than the original parent materials. (2) The decomposed metallic cations form in nano-sized blebs including npFe0, on the surfaces or in condensing rims of mineral grains. This creates a powerful optical component as seen in the lunar red slope. Surfaces with exposed npFe0 are an ideal environment for catalyzing further reactions. (3) The liberated volatile elements and gases (O, S, Na) may form an observable exosphere (e.g., Moon and Mercury) and can either escape from the body or

  16. Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils.

    Science.gov (United States)

    Breyer, Sacha; Mekhitarian, Loucine; Rimez, Bart; Haut, B

    2017-02-01

    This work is a preliminary study for the development of a co-pyrolysis process of plastic wastes excavated from a landfill and used lubrication oils, with the aim to produce an alternative liquid fuel for industrial use. First, thermogravimetric experiments were carried out with pure plastics (HDPE, LDPE, PP and PS) and oils (a motor oil and a mixture of used lubrication oils) in order to highlight the interactions occurring between a plastic and an oil during their co-pyrolysis. It appears that the main decomposition event of each component takes place at higher temperatures when the components are mixed than when they are alone, possibly because the two components stabilize each other during their co-pyrolysis. These interactions depend on the nature of the plastic and the oil. In addition, co-pyrolysis experiments were led in a lab-scale reactor using a mixture of excavated plastic wastes and used lubrication oils. On the one hand, the influence of some key operating parameters on the outcome of the process was analyzed. It was possible to produce an alternative fuel for industrial use whose viscosity is lower than 1Pas at 90°C, from a plastic/oil mixture with an initial plastic mass fraction between 40% and 60%, by proceeding at a maximum temperature included in the range 350-400°C. On the other hand, the amount of energy required to successfully co-pyrolyze, in lab conditions, 1kg of plastic/oil mixture with an initial plastic mass fraction of 60% was estimated at about 8MJ. That amount of energy is largely used for the thermal cracking of the molecules. It is also shown that, per kg of mixture introduced in the lab reactor, 29MJ can be recovered from the combustion of the liquid resulting from the co-pyrolysis. Hence, this co-pyrolysis process could be economically viable, provided heat losses are addressed carefully when designing an industrial reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Cleavage and crosslinking of polymeric coal structures during pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    McMillen, D.F.; Malhotra, R.

    1992-02-01

    The ultimate objective of this project was to develop a better understanding of volatiles production to help optimize the yield and character of condensable coproducts during coal pyrolysis or mild gasification. The specific objectives were to (1) Develop pyrolysis procedures that minimize secondary reactions; and (2) Develop coal pretreatments that current knowledge suggests will prorate bond scission or prevent retrograde reactions. Our approach was to study the pyrolysis of coals and tar-loaded coals by using several techniques that span a range of heating rates and pressures. Slow-heating pyrolyses were performed at low pressures in the inlet of a field ionization mass spectrometer and at atmospheric pressures in a thermogravimetric analyzer. Moderately rapid-heating pyrolyses were performed in a vacuum TGA apparatus and in sealed silica ampules heated in a molten-salt bath. The fastest heating rates were achieved with laser pyrolysis at about 30,000 X/s. The high tar yield seen in this work where the entire volume of the coal particle becomes hot and fluid at very nearly the same time, taken together with the evident non-vapor transport of the tar under these conditions, emphasizes the importance of better understanding the development of fluidity during coal heating. This specifically includes the profound effects--long-recognized but poorly understood that mild oxidation has in suppressing coal fluidity. It also includes the more recently recognized fact that heating in the presence of an inert gas produced substantially greater fluidity than does heating in the presence of combustion gases, even if the conditions are very fuel rich and all the oxygen itself has already been consumed when the coal particles are encountered.

  18. Microbial production of volatile sulphur compounds in the large intestine of pigs fed two different diets.

    Science.gov (United States)

    Poulsen, H V; Jensen, B B; Finster, K; Spence, C; Whitehead, T R; Cotta, M A; Canibe, N

    2012-07-01

      To investigate the production of volatile sulphur compounds (VSC) in the segments of the large intestine of pigs and to assess the impact of diet on this production.   Pigs were fed two diets based on either wheat and barley (STD) or wheat and dried distillers grains with solubles (DDGS). Net production of VSC and potential sulphate reduction rate (SRR) (sulphate saturated) along the large intestine were determined by means of in vitro incubations. The net production rate of hydrogen sulphide and potential SRR increased from caecum towards distal colon and were significantly higher in the STD group. Conversely, the net methanethiol production rate was significantly higher in the DDGS group, while no difference was observed for dimethyl sulphide. The number of sulphate-reducing bacteria and total bacteria were determined by quantitative PCR and showed a significant increase along the large intestine, whereas no diet-related differences were observed.   VSC net production varies widely throughout the large intestine of pigs and the microbial processes involved in this production can be affected by diet.   This first report on intestinal production of all VSC shows both spatial and dietary effects, which are relevant to both bowel disease- and odour mitigation research. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  19. Renewable hydrocarbons for jet fuels from biomass and plastics via microwave-induced pyrolysis and hydrogenation processes

    Science.gov (United States)

    Zhang, Xuesong

    This dissertation aims to enhance the production of aromatic hydrocarbons in the catalytic microwave-induced pyrolysis, and maximize the production of renewable cycloalkanes for jet fuels in the hydrogenation process. In the process, ZSM-5 catalyst as the highly efficient catalyst was employed for catalyzing the pyrolytic volatiles from thermal decomposition of cellulose (a model compound of lignocellulosic biomass). A central composite experiment design (CCD) was used to optimize the product yields as a function of independent factors (e.g. catalytic temperature and catalyst to feed mass ratio). The low-density polyethylene (a mode compound of waste plastics) was then carried out in the catalytic microwave-induced pyrolysis in the presence of ZSM-5 catalyst. Thereafter, the catalytic microwave-induced co-pyrolysis of cellulose with low-density polyethylene (LDPE) was conducted over ZSM-5 catalyst. The results showed that the production of aromatic hydrocarbons was significantly enhanced and the coke formation was also considerably reduced comparing with the catalytic microwave pyrolysis of cellulose or LDPE alone. Moreover, practical lignocellulosic biomass (Douglas fir sawdust pellets) was converted into aromatics-enriched bio-oil by catalytic microwave pyrolysis. The bio-oil was subsequently hydrogenated by using the Raney Ni catalyst. A liquid-liquid extraction step was implemented to recover the liquid organics and remove the water content. Over 20% carbon yield of liquid product regarding lignocellulosic biomass was obtained. Up to 90% selectivity in the liquid product belongs to jet fuel range cycloalkanes. As the integrated processes was developed, catalytic microwave pyrolysis of cellulose with LDPE was conducted to improve aromatic production. After the liquid-liquid extraction by the optimal solvent (n-heptane), over 40% carbon yield of hydrogenated organics based on cellulose and LDPE were achieved in the hydrogenation process. As such, real

  20. Enhancing sludge biodegradability and volatile fatty acid production by tetrakis hydroxymethyl phosphonium sulfate pretreatment.

    Science.gov (United States)

    Wu, Qing-Lian; Guo, Wan-Qian; Bao, Xian; Yin, Ren-Li; Feng, Xiao-Chi; Zheng, He-Shan; Luo, Hai-Chao; Ren, Nan-Qi

    2017-09-01

    A new pretreatment method based on tetrakis hydroxymethyl phosphonium sulfate (THPS) biocide was tried to enhance sludge disintegration, and improved sludge biodegradability and subsequent volatile fatty acid (VFA) production. Sludge activity decreased to less than 10% after 2 days pretreatment using 20mg/g-TSS THPS, which also obviously destroyed EPS and cell membrane, and dissolved more biodegradable substances (48.8%) than raw sludge (19.7%). Moreover, 20mg/g-TSS THPS pretreatment shortened fermentation time to 4days and improved VFA production to 2778mg COD/L (4.35 times than that in control). Therein, the sum of n-butyric, n-valeric and iso-valeric acids unexpectedly accounted for 60.5% of total VFA (only 20.1% of that in control). The more high molecular weight VFAs (C4-C5) than low molecular VFAs (C2-C3) resulted from THPS pretreatment benefited to subsequent medium-chain volatile acids (C6-C12) generation to realize the separation and recovery of organic carbon more efficiently. Copyright © 2017. Published by Elsevier Ltd.

  1. Pyrolysis of tyres. Influence of the final temperature of the process on emissions and the calorific value of the products recovered

    International Nuclear Information System (INIS)

    Diez, C.; Martinez, O.; Calvo, L.F.; Cara, J.; Moran, A.

    2004-01-01

    A study was made of the pyrolysis of tyre particles, with the aim of determining the possibilities of using the products resulting from the process as fuel. Three final temperatures were used, determined from thermogravimetric data. The design of the experiment was a horizontal oven containing a reactor into which particles of the original tyre were placed. After the process, a solid fraction (char) remained in the reactor, while the gases generated went through a set of scrubbers where most of the condensable fraction (oils) was retained. Finally, once free of this fraction, the gases were collected in glass ampoules. Solid and liquids fractions were subjected to thermogravimetric analyses in order to study their combustibility. The gas fraction was analysed by means of gas chromatography to establish the content of CO, CO 2 , H 2 and hydrocarbons present in the samples (mainly components of gases produced in the pyrolysis process). A special study was made of the sulphur and chlorine content of all the fractions, as the presence of these elements could be problematic if the products are used as fuel. Tyre pyrolysis engenders a solid carbon residue that concentrates sulphur and chorine, with a relatively high calorific value, although not so high as that of the original tyre. The liquid fraction produced by the process has a high calorific value, which rises with the final temperature, up to 40 MJ/kg. The chlorine content of this fraction is negligible. Over 95% of the gas fraction, regardless of the final temperature, is composed of hydrocarbons of a low molecular weight and hydrogen, this fraction also appearing to be free of chlorine

  2. Hydrogen-rich gas production by continuous pyrolysis and in-line catalytic reforming of pine wood waste and HDPE mixtures

    International Nuclear Information System (INIS)

    Arregi, Aitor; Amutio, Maider; Lopez, Gartzen; Artetxe, Maite; Alvarez, Jon; Bilbao, Javier; Olazar, Martin

    2017-01-01

    Highlights: • Plastic co-feeding improves the flexibility of biomass pyrolysis-reforming strategy. • Hydrogen production is enhanced by increasing plastic content in the feed. • The joint valorization of biomass and plastics attenuates catalyst deactivation. • The amorphous coke derived from biomass is the main responsible for deactivation. - Abstract: The continuous pyrolysis-reforming of pine sawdust and high density polyethylene mixtures (25, 50 and 75 wt% HDPE) has been performed in a two-stage reaction system provided with a conical spouted bed reactor (CSBR) and a fluidized bed reactor. The influence HDPE co-feeding has on the conversion, yields and composition of the reforming outlet stream and catalyst deactivation has been studied at a reforming temperature of 700 °C, with a space time of 16.7 g_c_a_t min g_f_e_e_d_i_n_g"−"1 and a steam/(biomass + HDPE) mass ratio of 4, and a comparison has been made between these results and those recorded by feeding pine sawdust and HDPE separately. Co-feeding plastics enhances the hydrogen production, which increases from 10.9 g of H_2 per 100 g of feed (only pine sawdust in the feed) to 37.3 g of H_2 per 100 g of feed (only HDPE in the feed). Catalyst deactivation by coke is attenuated when HDPE is co-fed due to the lower content of oxygenated compounds in the reaction environment. The higher yield of hydrogen achieved with this two-step (pyrolysis-reforming) strategy, its ability to jointly valorise biomass and plastic mixtures and the lower temperatures required compared to gasification make this promising process for producing H_2 from renewable raw materials and wastes.

  3. An evaluation of nodalization/decay heat/ volatile fission product release models in ISAAC code

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong Mann; Park, Soo Yong; Kim, Dong Ha

    2003-03-01

    An ISAAC computer code, which was developed for a Level-2 PSA during 1995, has developed mainly with fundamental models for CANDU-specific severe accident progression and also the accident-analyzing experiences are limited to Level-2 PSA purposes. Hence the system nodalization model, decay model and volatile fission product release model, which are known to affect fission product behavior directly or indirectly, are evaluated to both enhance understanding for basic models and accumulate accident-analyzing experiences. As a research strategy, sensitivity studies of model parameters and sensitivity coefficients are performed. According to the results from core nodalization sensitivity study, an original 3x3 nodalization (per loop) method which groups horizontal fuel channels into 12 representative channels, is evaluated to be sufficient for an optimal scheme because detailed nodalization methods have no large effect on fuel thermal-hydraulic behavior, total accident progression and fission product behavior. As ANSI/ANS standard model for decay heat prediction after reactor trip has no needs for further model evaluation due to both wide application on accident analysis codes and good comparison results with the ORIGEN code, ISAAC calculational results of decay heat are used as they are. In addition, fission product revaporization in a containment which is caused by the embedded decay heat, is demonstrated. The results for the volatile fission product release model are analyzed. In case of early release, the IDCOR model with an in-vessel Te release option shows the most conservative results and for the late release case, NUREG-0772 model shows the most conservative results. Considering both early and late release, the IDCOR model with an in-vessel Te bound option shows mitigated conservative results.

  4. Study of higher hydrocarbon production during ethylacetylene pyrolysis using laser-generated vacuum-ultraviolet photoionization detection

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, J.; Pfefferle, L. (Yale Univ., New Haven, CT (USA))

    1990-04-19

    Higher hydrocarbon formation during the pyrolysis of ethylacetylene in a microjet reactor was studied by vacuum-ultraviolet photoionization time-of-flight mass spectrometry. At the wavelength employed, this ionization technique allows for the simultaneous detection of both stable and intermediate polyatomic species with ionization potentials below 10.49 eV, including most hydrocarbons with two or more carbon atoms. Minimal fragmentation simplifies the determination of parent species and allows identification of probable reaction pathways involving hydrocarbon radicals as well as stable species. The pyrolysis of ethylacetylene was carried out in the fast-flow microjet reactor (residence times 1-2 ms) at temperatures from 300 to 1,600 K.

  5. Mixed-waste pyrolysis of biomass and plastics waste – A modelling approach to reduce energy usage

    International Nuclear Information System (INIS)

    Oyedun, Adetoyese Olajire; Gebreegziabher, Tesfaldet; Ng, Denny K.S.; Hui, Chi Wai

    2014-01-01

    Thermal co-processing of waste mixtures had gained a lot of attention in the last decade. This is largely due to certain synergistic effects such as higher quantity and better quality of oil, limited supply of certain feedstock and improving the overall pyrolysis process. Many experiments have been conducted via TGA analysis and different reactors to achieve the stated synergistic effects in co-pyrolysis of biomass and plastic wastes. The thermal behaviour of plastics during pyrolysis is different from that of biomass because its decomposition happens at a high temperature range with sudden release of volatile compared to biomass which have a wide range of thermal decomposition. A properly designed recipe and operational strategy of mixing feedstock can ease the operational difficulties and at the same time decrease energy consumption and/or improve the product yield. Therefore it is worthwhile to study the possible synergistic effects on the overall energy used during co-pyrolysis process. In this work, two different modelling approaches were used to study the energy related synergistic effect between polystyrene (PS) and bamboo waste. The mass loss and volatile generation profiles show that significant interactions between the two feedstocks exist. The results also show that both modelling approaches give an appreciable synergy effect of reduction in overall energy when PS and bamboo are co-pyrolysed together. However, the second approach which allows interaction between the two feedstocks gives a more reduction in overall energy usage up to 6.2% depending on the ratio of PS in the mixed blend. - Highlights: • Proposed the mixed-waste pyrolysis modelling via two modelling approaches. • Study the energy related synergistic effects when plastics and biomass are pyrolysed together. • Mass loss and volatile generation profiles show the existence of significant interactions. • Energy usage can be reduced by up to 6.2% depending on the percentage of the plastic

  6. Co-pyrolysis of waste tire/coal mixtures for smokeless fuel, maltenes and hydrogen-rich gas production

    Czech Academy of Sciences Publication Activity Database

    Bičáková, Olga; Straka, Pavel

    2016-01-01

    Roč. 116, MAY 15 (2016), s. 203-213 ISSN 0196-8904 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21538 Program:OPPK Institutional support: RVO:67985891 Keywords : waste tires * coal * co-pyrolysis * smokeless fuel * tar * hydrogen -rich gas Subject RIV: DM - Solid Waste and Recycling Impact factor: 5.589, year: 2016 http://www.sciencedirect.com/science/article/pii/S0196890416300991

  7. Thermophysical modeling of volatile fission product release from a debris pool

    International Nuclear Information System (INIS)

    Yun, J. I.; Suh, K. Y.; Kang, C. S.

    1999-01-01

    A model is described for fission product release from the debris pool in the lower plenum of the reactor pressure vessel. In the pool, turbulent natural convection flow is formed due to homogeneous internal heat generation. Using the best-known correlations, heat transfer at the curved bottom and the top of the pool may be calculated. Volatile fission product gases in the pool nucleate and diffuse to bubbles. Both the homogeneous nucleation and heterogeneous nucleation are considered. The bubble nucleation, growth, coalescence and loss due to rise is modeled pursuant to bubble dynamics. If the pressure and temperature of the pool are very high, homogeneous nucleation that accounts for effect of decrease in the pool pressure can occur. The effect of the bubble-to-pool interfacial tension and the pool pressure on the nucleation rate is investigated in this work

  8. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    Volatile fatty acids (VFA) are organic compounds of great importance for various industries and environmental processes. Fermentation and anaerobic digestion of organic wastes are promising alternative technologies for VFA production. However, one of the major challenges is development...... of sustainable downstream technologies for VFA recovery. In this study, an innovative microbial bipolar electrodialysis cell (MBEDC) was developed to meet the challenge of waste-derived VFA recovery, produce hydrogen and alkali, and potentially treat wastewater. The MBEDC was operated in fed-batch mode....... At an applied voltage of 1.2 V, a VFA recovery efficiency of 98.3%, H2 of 18.4 mL and alkali production presented as pH of 12.64 were obtained using synthetic fermentation broth. The applied voltage, initial VFA concentrations and composition were affecting the VFA recovery. The energy balance revealed that net...

  9. Reprint of: Pyrolysis technologies for municipal solid waste: A review

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); Yin, Lijie; Wang, Huan [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); He, Pinjing [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2015-03-15

    Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO{sub 2} and NH{sub 3}, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.

  10. Pyrolysis technologies for municipal solid waste: A review

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn [Thermal and Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); Yin, Lijie; Wang, Huan [Thermal and Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); He, Pinjing [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2014-12-15

    Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO{sub 2} and NH{sub 3}, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.

  11. Laser induced pyrolysis techniques

    International Nuclear Information System (INIS)

    Vanderborgh, N.E.

    1976-01-01

    The application of laser pyrolysis techniques to the problems of chemical analysis is discussed. The processes occurring during laser pyrolysis are first briefly reviewed. The problems encountered in laser pyrolysis gas chromatography are discussed using the analysis of phenanthrene and binary hydrocarbons. The application of this technique to the characterization of naturally occurring carbonaceous material such as oil shales and coal is illustrated

  12. Utilization of Volatile Fatty Acids from Microalgae for the Production of High Added Value Compounds

    Directory of Open Access Journals (Sweden)

    Angelina Chalima

    2017-10-01

    Full Text Available Volatile Fatty Acids (VFA are small organic compounds that have attracted much attention lately, due to their use as a carbon source for microorganisms involved in the production of bioactive compounds, biodegradable materials and energy. Low cost production of VFA from different types of waste streams can occur via dark fermentation, offering a promising approach for the production of biofuels and biochemicals with simultaneous reduction of waste volume. VFA can be subsequently utilized in fermentation processes and efficiently transformed into bioactive compounds that can be used in the food and nutraceutical industry for the development of functional foods with scientifically sustained claims. Microalgae are oleaginous microorganisms that are able to grow in heterotrophic cultures supported by VFA as a carbon source and accumulate high amounts of valuable products, such as omega-3 fatty acids and exopolysaccharides. This article reviews the different types of waste streams in concert with their potential to produce VFA, the possible factors that affect the VFA production process and the utilization of the resulting VFA in microalgae fermentation processes. The biology of VFA utilization, the potential products and the downstream processes are discussed in detail.

  13. Valorization of algal waste via pyrolysis in a fixed-bed reactor: Production and characterization of bio-oil and bio-char.

    Science.gov (United States)

    Aboulkas, A; Hammani, H; El Achaby, M; Bilal, E; Barakat, A; El Harfi, K

    2017-11-01

    The aim of the present work is to develop processes for the production of bio-oil and bio-char from algae waste using the pyrolysis at controlled conditions. The pyrolysis was carried out at different temperatures 400-600°C and different heating rates 5-50°C/min. The algal waste, bio-oil and bio-char were successfully characterized using Elemental analysis, Chemical composition, TGA, FTIR, 1 H NMR, GC-MS and SEM. At a temperature of 500°C and a heating rate of 10°C/min, the maximum yield of bio-oil and bio-char was found to be 24.10 and 44.01wt%, respectively, which was found to be strongly influenced by the temperature variation, and weakly affected by the heating rate variation. Results show that the bio-oil cannot be used as bio-fuel, but can be used as a source of value-added chemicals. On the other hand, the bio-char is a promising candidate for solid fuel applications and for the production of carbon materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Volatile and non-volatile radiolysis products in irradiated multilayer coextruded food-packaging films containing a buried layer of recycled low-density polyethylene.

    Science.gov (United States)

    Chytiri, S; Goulas, A E; Badeka, A; Riganakos, K A; Kontominas, M G

    2005-12-01

    The effects of gamma-irradiation (5-60 kGy) on radiolysis products and sensory changes of experimental five-layer food-packaging films were determined. Films contained a middle buried layer of recycled low-density polyethylene (LDPE) comprising 25-50% by weight (bw) of the multilayer structure. Respective films containing 100% virgin LDPE as the buried layer were used as controls. Under realistic polymer/food simulant contact conditions during irradiation, a large number of primary and secondary radiolysis products (hydrocarbons, aldehydes, ketones, alcohols, carboxylic acids) were produced. These compounds were detected in the food simulant after contact with all films tested, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food preservation). The type and concentration of radiolysis products increased progressively with increasing dose. Generally, there were no significant differences in radiolysis products between samples containing a buried layer of recycled LDPE and those containing virgin LDPE (all absorbed doses), indicating the good barrier properties of external virgin polymer layers. Volatile and non-volatile compounds produced during irradiation affected the sensory properties of potable water after contact with packaging films. Taste transfer to water was observed mainly at higher doses and was more noticeable for multilayer structures containing recycled LDPE, even though differences were slight.

  15. Caracterização dos produtos líquidos e do carvão da pirólise de serragem de eucalipto Characterization of liquid products and char from the pyrolysis of eucalyptus sawdust

    Directory of Open Access Journals (Sweden)

    Ayrton F. Martins

    2007-08-01

    Full Text Available This study proposes the low temperature pyrolysis as an alternative conversion process for residual biomass and for obtaining gaseous, liquid and solid chemical feedstocks. Using a bench electrical pyrolysis oven, four product fractions from eucalyptus sawdust were obtained: a gaseous one, two liquid (aqueous and oily, and a solid residue (char. These products were characterized by different analytical methods. The liquid fractions showed themselves as potential sources for input chemicals. The residual char revealed appreciable adsorption capability. The process demonstrated good efficiency, generating at least two fractions of great industrial interest: bio oil and char.

  16. Estimation of risks by chemicals produced during laser pyrolysis of tissues

    Science.gov (United States)

    Weber, Lothar W.; Spleiss, Martin

    1995-01-01

    Use of laser systems in minimal invasive surgery results in formation of laser aerosol with volatile organic compounds of possible health risk. By use of currently identified chemical substances an overview on possibly associated risks to human health is given. The class of the different identified alkylnitriles seem to be a laser specific toxicological problem. Other groups of chemicals belong to the Maillard reaction type, the fatty acid pyrolysis type, or even the thermally activated chemolysis. In relation to the available different threshold limit values the possible exposure ranges of identified substances are discussed. A rough estimation results in an exposure range of less than 1/100 for almost all substances with given human threshold limit values without regard of possible interactions. For most identified alkylnitriles, alkenes, and heterocycles no threshold limit values are given for lack of, until now, practical purposes. Pyrolysis of anaesthetized organs with isoflurane gave no hints for additional pyrolysis products by fragment interactions with resulting VOCs. Measurements of pyrolysis gases resulted in detection of small amounts of NO additionally with NO2 formation at plasma status.

  17. Incineration and pyrolysis vs. steam gasification of electronic waste.

    Science.gov (United States)

    Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika

    2018-05-15

    Constructional complexity of items and their integration are the most distinctive features of electronic wastes. These wastes consist of mineral and polymeric materials and have high content of valuable metals that could be recovered. Elimination of polymeric components (especially epoxy resins) while leaving non-volatile mineral and metallic phases is the purpose of thermal treatment of electronic wastes. In the case of gasification, gaseous product of the process may be, after cleaning, used for energy recovery or chemical synthesis. If not melted, metals from solid products of thermal treatment of electronic waste could be recovered by hydrometallurgical processing. Three basic, high temperature ways of electronic waste processing, i.e. smelting/incineration, pyrolysis and steam gasification were shortly discussed in the paper, giving a special attention to gasification under steam, illustrated by laboratory experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Slow pyrolysis of pistachio shell

    Energy Technology Data Exchange (ETDEWEB)

    Apaydin-Varol, Esin; Putun, Ersan; Putun, Ayse E [Anadolu University, Eskisehir (Turkey). Department of Chemical Engineering

    2007-08-15

    In this study, pistachio shell is taken as the biomass sample to investigate the effects of pyrolysis temperature on the product yields and composition when slow pyrolysis is applied in a fixed-bed reactor at atmospheric pressure to the temperatures of 300, 400, 500, 550, 700{sup o}C. The maximum liquid yield was attained at about 500-550{sup o}C with a yield of 20.5%. The liquid product obtained under this optimum temperature and solid products obtained at all temperatures were characterized. As well as proximate and elemental analysis for the products were the basic steps for characterization, column chromatography, FT-IR, GC/MS and SEM were used for further characterization. The results showed that liquid and solid products from pistachio shells show similarities with high value conventional fuels. 31 refs., 9 figs., 1 tab.

  19. Lipid oxidation and volatile production in irradiated raw pork batters prepared with commercial soybean oil containing vitamin E

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Cheorun; Ahn, D.U.; Byun, M.W. E-mail: mwbyun@kaeri.re.kr

    2001-04-01

    An emulsion-type raw pork batter was prepared using 10% (meat weight) of backfat or commercial soybean oil enriched with vitamin E to determine the effect of irradiation on lipid oxidation and volatile production during storage. Batters (approximately 100 g) were vacuum- or aerobically packaged and irradiated at 0, 2.5 or 4.5 kGy. Irradiation increased lipid oxidation of aerobically packaged raw pork batters prepared with both backfat and soybean oil. Lipid oxidation of vacuum-packaged pork batters was not influenced by irradiation except for the batter prepared with backfat at day 0. Aerobically packaged batters prepared with soybean oil had lower (P<0.05) TBARS than that with backfat, but vacuum-packaged ones were not different. The sum of volatile compounds with short retention time (<1.80) increased by irradiation, and with storage time except for aerobic packaging at day 7. The amount of total volatile compounds had an increasing trend until day 3, but not at day 7. Irradiation increased the production of total volatile compounds in the batters prepared with soybean oil and vacuum packaged, but irradiation effect on volatile production was not consistent with other treatments.

  20. Lipid oxidation and volatile production in irradiated raw pork batters prepared with commercial soybean oil containing vitamin E

    International Nuclear Information System (INIS)

    Jo, Cheorun; Ahn, D.U.; Byun, M.W.

    2001-01-01

    An emulsion-type raw pork batter was prepared using 10% (meat weight) of backfat or commercial soybean oil enriched with vitamin E to determine the effect of irradiation on lipid oxidation and volatile production during storage. Batters (approximately 100 g) were vacuum- or aerobically packaged and irradiated at 0, 2.5 or 4.5 kGy. Irradiation increased lipid oxidation of aerobically packaged raw pork batters prepared with both backfat and soybean oil. Lipid oxidation of vacuum-packaged pork batters was not influenced by irradiation except for the batter prepared with backfat at day 0. Aerobically packaged batters prepared with soybean oil had lower (P<0.05) TBARS than that with backfat, but vacuum-packaged ones were not different. The sum of volatile compounds with short retention time (<1.80) increased by irradiation, and with storage time except for aerobic packaging at day 7. The amount of total volatile compounds had an increasing trend until day 3, but not at day 7. Irradiation increased the production of total volatile compounds in the batters prepared with soybean oil and vacuum packaged, but irradiation effect on volatile production was not consistent with other treatments

  1. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms.

    Science.gov (United States)

    Tian, Yuting; Zhao, Yingting; Huang, Jijun; Zeng, Hongliang; Zheng, Baodong

    2016-04-15

    Various drying methods play important roles in the preservation of foods. However, how the different drying methods affect the quality of some foods is not clear. This paper evaluates the effects of hot air, vacuum, microwave, and microwave vacuum drying techniques on important qualities and volatile compounds of whole shiitake (Lentinus edodes) mushrooms. These four drying methods resulted in a significantly (pdried products. Microwave vacuum drying helped to maintain larger amounts of taste-active amino acids, and improved nutrient retention and color attributes. Furthermore, the uniform honeycomb network created by microwave vacuum drying along with a less collapsed structure of dried samples can be used to explain the observed high rehydration ratio. Therefore, microwave vacuum drying should be a potential method for obtaining high-quality dried mushrooms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Rapid pyrolysis of wheat straw in a Bench-Scale circulating Fluidized-Bed downer reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ding, T. [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China); Graduate School of Chinese Academy of Sciences, Beijing (China); Li, S.; Xie, J.; Song, W.; Yao, J.; Lin, W. [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China)

    2012-12-15

    The effects of acid washing treatment on the pyrolysis product distribution and product properties were investigated in a bench-scale circulating fluidized-bed (CFB) downer reactor with wheat straw as feedstock. The acid treatment not only removes most of the inorganic species present in the biomass but also alters the distribution of the remaining organic constituents. It was found that the removal of the inorganic species increases the yield of liquid product and reduces char formation and gas yield. CO and CO{sub 2} are the dominant components in the gaseous product, accounting for over 90 %. The concentration of CO in the gaseous product increases after acid treatment, while the CO{sub 2} concentration decreases. The oxygen and water contents in the liquid product are decreased on acid treatment, leading to a relatively high heating value and viscosity. More volatiles can be found in the char derived from the acid-treated wheat straw than from the raw wheat straw. This may suggest that a longer residence time is needed for pyrolysis of the acid-treated wheat straw in order to obtain the maximal yield of volatile matter. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Preparation of NaTaO3 by Spray Pyrolysis and Evaluation of Apparent Photocatalytic Activity for Hydrogen Production from Water

    Directory of Open Access Journals (Sweden)

    Hyun Woo Kang

    2008-01-01

    Full Text Available NaTaO3 photocatalyst was prepared by spray pyrolysis process and tested as photocatalyst for water splitting under UV light. Precursor solution was prepared from NaNO3 and Ta(OC2H55 in nitric acid solution and spray-pyrolyzed in air at between 973 and 1273 K. Considerable enhancement of photocatalytic activity was achieved by loading 0.05∼0.2 wt% of NiO on the surface of NaTaO3. The NiO loading was more effective on the NaTaO3 synthesized by spray pyrolysis in comparison with that synthesized by solid-state reaction. The quantum yield (QY of NiO/NaTaO3 photocatalyst was measured by chemical actinometry using potassium ferrioxalate and compared with the apparent photocatalytic activities (APA which would be more useful for the purpose of photocatalytic reactor design than the quantum yield. The apparent photocatalytic activity (APA was defined by the rate of hydrogen production divided by weight of catalyst, volume of reactant mixture, duration of irradiation, and power of UV lamp. The validity of the apparent photocatalytic activity (APA was discussed based on our results and reported activities of NaTaO3 photocatalyst loaded with or without NiO.

  4. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst.

    Science.gov (United States)

    Zhang, Bo; Zhong, Zhaoping; Xie, Qinglong; Liu, Shiyu; Ruan, Roger

    2016-07-01

    A novel technology of two-step fast microwave-assisted pyrolysis (fMAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent (SiC) and HZSM-5 catalyst. Effects of fMAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The fMAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step fMAP process, two-step fMAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio. Copyright © 2016. Published by Elsevier B.V.

  5. Symptoms of mothers and infants related to total volatile organic compounds in household products.

    Science.gov (United States)

    Farrow, Alexandra; Taylor, Hazel; Northstone, Kate; Golding, Jean

    2003-10-01

    The authors sought to determine whether reported symptoms of mothers and infants were associated significantly with the use of household products that raised indoor levels of total volatile organic compounds (TVOCs). Data collected from 170 homes within the Avon Longitudinal Study of Parents and Children (ALSPAC: a large birth cohort of more than 10,000) had determined which household products were associated with the highest levels of TVOCs. The latter data were collected over a period that approximated 6 mo of pregnancy and the infants' first 6 mo of life. This paper presents (a) the mothers' self-reports of the use of these products in their homes and (b) self-reported medical symptoms of mothers and infants postnatally. Higher TVOC levels were associated with air freshener and aerosol use. Infant diarrhea and earache were statistically significantly associated with air freshener use, and diarrhea and vomiting were significantly associated with aerosol use. Headache experienced by mothers 8 mo after birth was significantly associated with the use of air fresheners and aerosols; maternal depression was significantly associated with the use of air fresheners. The results of the study suggest a link between the use of products that raise indoor levels of TVOCs and an increased risk of certain symptoms among infants and their mothers.

  6. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications.

    Science.gov (United States)

    Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto; Kerminen, Veli-Matti; Junninen, Heikki; Paasonen, Pauli; Stratmann, Frank; Herrmann, Hartmut; Guenther, Alex B; Worsnop, Douglas R; Kulmala, Markku; Ehn, Mikael; Sipilä, Mikko

    2015-06-09

    Oxidation products of monoterpenes and isoprene have a major influence on the global secondary organic aerosol (SOA) burden and the production of atmospheric nanoparticles and cloud condensation nuclei (CCN). Here, we investigate the formation of extremely low volatility organic compounds (ELVOC) from O3 and OH radical oxidation of several monoterpenes and isoprene in a series of laboratory experiments. We show that ELVOC from all precursors are formed within the first minute after the initial attack of an oxidant. We demonstrate that under atmospherically relevant concentrations, species with an endocyclic double bond efficiently produce ELVOC from ozonolysis, whereas the yields from OH radical-initiated reactions are smaller. If the double bond is exocyclic or the compound itself is acyclic, ozonolysis produces less ELVOC and the role of the OH radical-initiated ELVOC formation is increased. Isoprene oxidation produces marginal quantities of ELVOC regardless of the oxidant. Implementing our laboratory findings into a global modeling framework shows that biogenic SOA formation in general, and ELVOC in particular, play crucial roles in atmospheric CCN production. Monoterpene oxidation products enhance atmospheric new particle formation and growth in most continental regions, thereby increasing CCN concentrations, especially at high values of cloud supersaturation. Isoprene-derived SOA tends to suppress atmospheric new particle formation, yet it assists the growth of sub-CCN-size primary particles to CCN. Taking into account compound specific monoterpene emissions has a moderate effect on the modeled global CCN budget.

  7. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2015-09-15

    Volatile fatty acids (VFA) are organic compounds of great importance for various industries and environmental processes. Fermentation and anaerobic digestion of organic wastes are promising alternative technologies for VFA production. However, one of the major challenges is development of sustainable downstream technologies for VFA recovery. In this study, an innovative microbial bipolar electrodialysis cell (MBEDC) was developed to meet the challenge of waste-derived VFA recovery, produce hydrogen and alkali, and potentially treat wastewater. The MBEDC was operated in fed-batch mode. At an applied voltage of 1.2 V, a VFA recovery efficiency of 98.3%, H2 of 18.4 mL and alkali production presented as pH of 12.64 were obtained using synthetic fermentation broth. The applied voltage, initial VFA concentrations and composition were affecting the VFA recovery. The energy balance revealed that net energy (5.20-6.86 kWh/kg-VFA recovered) was produced at all the applied voltages (0.8-1.4 V). The coexistence of other anionic species had no negative effect on VFA transportation. The VFA concentration was increased 2.96 times after three consecutive batches. Furthermore, the applicability of MBEDC was successfully verified with digestate. These results demonstrate for the first time the possibility of a new method for waste-derived VFA recovery and valuable products production that uses wastewater as fuel and bacteria as catalyst. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Studies on liquefaction and pyrolysis of peat and biomass at KTH

    International Nuclear Information System (INIS)

    Bjoernbom, E.; Sjoestrom, K.; Hoernel, C.; Zanzi, R.; Bjoernbom, P.

    1996-01-01

    A brief review of the study on thermochemical conversion of solid fuels is done. The study have been performed in the Royal Institute of Technology, Stockholm, since the outbreak of energy crisis in the seventies. The main problems connected with utilisation of peat for energy are: 90% moisture content in the deposits and 35-40% oxygen content in the dry substance. Simultaneous dewatering and liquefaction of peat have been achieved by the Bjoerbom method. The wet peat has been treated with CO and H 2 O without preliminary drying, using water as a medium agent. After treatment water has been phase-separated from the heavy oil product. Another approach is de-oxygenation of peat prior to liquefaction. A significant part of oxygen in peat and biomass can be removed by thermal decomposition of the fuels prior to liquefaction and removal of carbon dioxide and water from the organic matter in them. The products obtained after de-oxygenation demand low consumption of external hydrogenation agent because they are rich in hydrogen. Some criteria for selection of peat as a raw material for liquefaction are given. The equipment and experimental procedure for pyrolysis of peat and biomass are described. A free fall tubular reactor with max operating pressure of 5 MPa and temperature of 1100 o C has been used. The effect of treatment conditions under the rapid pyrolysis in the free fall reactor on the yield and the reactivity of char obtained after the final pyrolysis is shown. Peat and wood are transformed into pyrolysis products for less than 1 second; 35-50% of the moisture- and ash-free peat and 70% of the wood have been converted into gaseous products.The char obtained in the rapid pyrolysis contains a fraction which can be further de-volatilized by slow pyrolysis for a few minutes - time much longer than the time for formation of primary products. High reactivity of char is favoured by lower pyrolysis temperature, shorter residence time and larger particle size of the fuel

  9. IVO, a device for In situ Volatilization and On-line detection of products from heavy ion reactions

    CERN Document Server

    Duellmann, C E; Eichler, R; Gäggeler, H W; Jost, D T; Piguet, D; Türler, A

    2002-01-01

    A new gaschromatographic separation system to rapidly isolate heavy ion reaction products in the form of highly volatile species is described. Reaction products recoiling from the target are stopped in a gas volume and converted in situ to volatile species, which are swept by the carrier gas to a chromatography column. Species that are volatile under the given conditions pass through the column. In a cluster chamber, which is directly attached to the exit of the column, the isolated volatile species are chemically adsorbed to the surface of aerosol particles and transported to an on-line detection system. The whole set-up was tested using short-lived osmium (Os) and mercury (Hg) nuclides produced in heavy ion reactions to model future chemical studies with hassium (Hs, Z=108) and element 112. By varying the temperature of the isothermal section of the chromatography column between room temperature and -80 deg. C, yield measurements of given species can be conducted, yielding information about the volatility o...

  10. 'Scarlett Spur Red Delicious' apple volatile production accompanying physiological disorder development during low pO2 controlled atmosphere storage.

    Science.gov (United States)

    Lumpkin, Christie; Fellman, John K; Rudell, David R; Mattheis, James

    2014-02-19

    Apple (Malus domestica Borkh.) fruit volatile production is regulated by a variety of factors including low oxygen storage conditions. This study examined the impact of low pO2 controlled atmospheres on 'Scarlett Spur Red Delicious' apple volatile production and disorder development. Accumulation of apple volatile compounds was characterized during long-term cold storage at 0.5 °C in air or low pO2 (0.3, 0.8, or 1.5 kPa) with 1 kPa CO2. Volatile accumulation differed quantitatively with pO2 as acetaldehyde, ethanol, and ethyl ester accumulation increased with decreased pO2 during the first weeks in storage. Differences in volatile accumulation among atmospheres were evident through 6 months. The rate of ethanol accumulation increased with decreased pO2 and could potentially be used to monitor low O2 stress. Incidence of low oxygen disorders after 9 months was highest in fruit held at the lowest pO2. The sesquiterpene α-farnesene was not detected throughout the storage period.

  11. Anaerobic digestion of tuna waste for the production of volatile fatty acids.

    Science.gov (United States)

    Bermúdez-Penabad, Noela; Kennes, Christian; Veiga, Maria C

    2017-10-01

    Fish canning industries generate a significant amount of solid waste that can be digested anaerobically into volatile fatty acids (VFA). The aim of this research was to study the effect of various pHs, ranging from 5.0 to 10.0, and percentage of total solids on the anaerobic digestion of tuna waste into VFA, both in batch assays and continuous reactor. The production of VFA was affected by pH and was significantly higher under alkaline conditions. At pH 8.0, the VFA production reached 30,611mgCOD/L. The VFA mainly consisted of acetic, propionic, n-butyric and i-valeric acids. Acetic acid was the main product at all the pHs tested. In terms of total solids (TS) the best results were obtained with 2.5% total solids, reaching 0.73gCOD VFA /gCOD waste . At higher TS concentrations (5 and 8% TS) lower yields were reached probably due to inhibition at high VFA concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Influence of gender and stress on the volatile sulfur compounds and stress biomarkers production.

    Science.gov (United States)

    Lima, P O; Calil, C M; Marcondes, F K

    2013-05-01

    Stress and menstrual cycle have been described as factors influencing bad breath, as they can alter oral homeostasis and contribute to the production of volatile sulfur compounds (VSC). Considering that the experimenter's and volunteer's gender may influence the volunteer's responses to stress, the aim of this work was to evaluate the influence of stress and gender on the production of VSC and salivary biomarkers. The experimental acute stress was induced by the Video-Recorded Stroop Color-Word Test (VRSCWT). The VSC, salivary proteins, and cardiovascular parameters were measured before and after VRSCWT. The VRSCWT induced significant increase in total VSC, hydrogen sulfide, and blood pressure values in men and women. Women presented higher values of both these compounds than men. The increase in systolic blood pressure was more pronounced when subjects were evaluated by an experimenter of the opposite gender. When women were evaluated by a member of the opposite gender, they showed significant increases in salivary alpha-amylase and cortisol compared with baseline values. Thus, the results showed that VRSCWT induced acute stress, which increased VSC production, and these effects were shown to be influenced by the gender. © 2012 John Wiley & Sons A/S.

  13. Plant volatile aldehydes as natural insecticides against stored-product beetles.

    Science.gov (United States)

    Hubert, Jan; Münzbergová, Zuzana; Santino, Angelo

    2008-01-01

    Infestation by stored-product pests causes serious losses in food and feed commodities. Among possible strategies against these pests, which aim to reduce the use of synthetic insecticides, including fumigants, natural insecticides produced by plants represent one of the most promising approaches for their ecochemical control. Three six-carbon and nine-carbon aldehydes, natural plant volatiles produced by the plant lipoxygenase pathway, were tested for their insecticidal activity against five species of stored-product beetles in feeding, fumigation and combined bioassays. The compounds (2E,6Z)-nonadienal, (2E)-nonenal and (2E)-hexenal were incorporated into feeding discs in feeding bioassays or evaporated from filter paper in closed glass chambers in fumigation tests. Beetle sensitivity to aldehydes differed according to the different treatments. The highest activity was obtained by (2E)-hexenal in fumigation tests, with the LC(50) ranging from 4 to 26 mg L(-1), while (2E, 6Z)-nonadienal was the most effective in feeding tests, giving LD(50)s ranging from 0.44 to 2.76 mg g(-1) when applied to feeding discs. Fumigation tests in the presence of wheat grains confirmed that (2E)-hexenal was the most effective compound, with a calculated LC(99) ranging from 33 to 166 mg L(-1). The results of both feeding and fumigation tests indicated that natural plant aldehydes are potential candidates to control stored-product beetles.

  14. Heterogeneous processing of biomass burning aerosol proxies by OH radicals for a wide range of OH concentrations and detection of volatilization products

    Science.gov (United States)

    Slade, J. H.; Knopf, D. A.

    2012-12-01

    Biomass burning aerosol (BBA) constitutes the majority of primary organic aerosol found in the atmosphere, with emission rates comparable to fossil-fuel burning. BBA affects earth's radiative budget directly through absorption and scattering of radiation or indirectly by modifying cloud radiative properties, and impacts air quality. Quantifying BBA source strength and thus its effects on air quality, human health, and climate can be difficult since these organic particles can chemically transform during atmospheric transport, a process also termed aging, due to heterogeneous reactions with oxidants and radicals such as OH. In this work we investigate the reactive uptake of OH radicals by typical BBA compounds that also serve as molecular markers for source apportionment studies. Organic substrates of cellulose pyrolysis products such as levoglucosan (1,6-anhydro-β-glucopyranose, C6H10O5), resin acids such as abietic acid (1-phenanthrenecarboxylic acid, C20H30O2), and lignin decomposition products such as 5-nitroguaiacol (2-methoxy-5-nitrophenol, C7H7NO4) have been exposed to a wide range of OH concentrations (~107-1011 cm-3), in presence of O2 in a rotating wall flow reactor operated at 2-6 mbar coupled to a custom built chemical ionization mass spectrometer (CIMS). OH radicals were generated through H2 dissociation in an Evenson microwave resonant cavity operated at 2.45 GHz followed by reaction with O2 or NO2. In addition, potential volatilization of organic material due to heterogeneous oxidation by OH has been determined in-situ by monitoring the volatile organic compounds using a high resolution-proton transfer reaction-time of flight-mass spectrometer (HR-PTR-ToF-MS). The volatilization studies are conducted at 1 atm and OH is generated by O3 photolysis in the presence of H2O vapor and quantified using a photochemical box model as well as through reaction with a known concentration of isoprene (2-methyl-1,3-butadiene, C5H8). Reactive uptake validation

  15. Pyrolysis Recovery of Waste Shipping Oil Using Microwave Heating

    Directory of Open Access Journals (Sweden)

    Wan Adibah Wan Mahari

    2016-09-01

    Full Text Available This study investigated the use of microwave pyrolysis as a recovery method for waste shipping oil. The influence of different process temperatures on the yield and composition of the pyrolysis products was investigated. The use of microwave heating provided a fast heating rate (40 °C/min to heat the waste oil at 600 °C. The waste oil was pyrolyzed and decomposed to form products dominated by pyrolysis oil (up to 66 wt. % and smaller amounts of pyrolysis gases (24 wt. % and char residue (10 wt. %. The pyrolysis oil contained light C9–C30 hydrocarbons and was detected to have a calorific value of 47–48 MJ/kg which is close to those traditional liquid fuels derived from fossil fuel. The results show that microwave pyrolysis of waste shipping oil generated an oil product that could be used as a potential fuel.

  16. Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles

    NARCIS (Netherlands)

    Os, van G.J.; Agtmaal, van M.; Hol, G.; Hundscheid, M.P.J.; Runia, W.T.; Hordijk, C.; Boer, de W.

    2015-01-01

    There is increasing evidence that microbial volatiles (VOCs) play an important role in natural suppression of soil-borne diseases, but little is known on the factors that influence production of suppressing VOCs. In the current study we examined whether a stress-induced change in soil microbial

  17. Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles

    NARCIS (Netherlands)

    van Agtmaal, Maaike; van Os, Gera; Hol, Gera; Hundscheid, M.P.J.; Runia, Willemien; Hordijk, Cees; De Boer, Wietse

    2015-01-01

    BACKGROUND: There is increasing evidence that microbial volatiles (VOCs) play an important role in natural suppression of soil-borne diseases, but little is known on the factors that influence production of suppressing VOCs. In the current study we examined whether a stress-induced change in soil

  18. Herbivory induces systemic production of plant volatiles that attract predators of the herbivore: extraction of endogenous elicitor.

    NARCIS (Netherlands)

    Dicke, M.; Baarlen, van P.; Wessels, R.; Dijkman, H.

    1993-01-01

    It was previously shown that in response to infestation by spider mites (Tetranychus urticae), lima bean plants produce a volatile herbivoreinduced synomone that attracts phytoseiid mites (Phytoseiulus persimilis) that are predators of the spider mites. The production of predator-attracting

  19. Identification of pyrolysis products of the new psychoactive substance 2-amino-1-(4-bromo-2,5-dimethoxyphenyl)ethanone hydrochloride (bk-2C-B) and its iodo analogue bk-2C-I.

    Science.gov (United States)

    Texter, Kelly B; Waymach, Rachel; Kavanagh, Pierce V; O'Brien, John E; Talbot, Brian; Brandt, Simon D; Gardner, Elizabeth A

    2018-01-01

    2-Amino-1-(4-bromo-2,5-dimethoxyphenyl)ethanone hydrochloride (bk-2C-B) has recently emerged as a new psychoactive substance (NPS). It is most commonly consumed orally, although there are indications that it might also be ingested by inhalation or 'smoking'. Information about the stability of bk-2C-B when exposed to heat is unavailable and the potential for pyrolytic degradation and formation of unknown substances available for inhalation prompted an investigation using a simulated 'meth pipe' scenario. Twelve products following pyrolysis of bk-2C-B were detected and verified by organic synthesis of the corresponding standards. In addition, 2-amino-1-(4-iodo-2,5-dimethoxyphenyl)ethanone hydrochloride (bk-2C-I) was characterized for the first time and subjected to pyrolysis as well. Similar products were formed, which indicated that the replacement of the bromo with the iodo substituent did not affect the pyrolysis pattern under the conditions used. Two additional products were detected in the bk-2C-I pyrolates, namely 1-(2,5-dimethoxyphenyl)-ethanone and 1-iodo-4-ethenyl-5-methoxyphenol. The potential ingestion of pyrolysis products with unknown toxicity adds an element of concern. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Energy-Efficient Routes for the Production of Gasoline from Biogas and Pyrolysis Oil-Process Design and Life-Cycle Assessment.

    Science.gov (United States)

    Sundaram, Smitha; Kolb, Gunther; Hessel, Volker; Wang, Qi

    2017-03-29

    Two novel routes for the production of gasoline from pyrolysis oil (from timber pine) and biogas (from ley grass) are simulated, followed by a cradle-to-gate life-cycle assessment of the two production routes. The main aim of this work is to conduct a holistic evaluation of the proposed routes and benchmark them against the conventional route of producing gasoline from natural gas. A previously commercialized method of synthesizing gasoline involves conversion of natural gas to syngas, which is further converted to methanol, and then as a last step, the methanol is converted to gasoline. In the new proposed routes, the syngas production step is different; syngas is produced from a mixture of pyrolysis oil and biogas in the following two ways: (i) autothermal reforming of pyrolysis oil and biogas, in which there are two reactions in one reactor (ATR) and (ii) steam reforming of pyrolysis oil and catalytic partial oxidation of biogas, in which there are separated but thermally coupled reactions and reactors (CR). The other two steps to produce methanol from syngas, and gasoline from methanol, remain the same. The purpose of this simulation is to have an ex-ante comparison of the performance of the new routes against a reference, in terms of energy and sustainability. Thus, at this stage of simulations, nonrigorous, equilibrium-based models have been used for reactors, which will give the best case conversions for each step. For the conventional production route, conversion and yield data available in the literature have been used, wherever available.The results of the process design showed that the second method (separate, but thermally coupled reforming) has a carbon efficiency of 0.53, compared to the conventional route (0.48), as well as the first route (0.40). The life-cycle assessment results revealed that the newly proposed processes have a clear advantage over the conventional process in some categories, particularly the global warming potential and primary

  1. Quantitative and qualitative sensing techniques for biogenic volatile organic compounds and their oxidation products.

    Science.gov (United States)

    Kim, Saewung; Guenther, Alex; Apel, Eric

    2013-07-01

    The physiological production mechanisms of some of the organics in plants, commonly known as biogenic volatile organic compounds (BVOCs), have been known for more than a century. Some BVOCs are emitted to the atmosphere and play a significant role in tropospheric photochemistry especially in ozone and secondary organic aerosol (SOA) productions as a result of interplays between BVOCs and atmospheric radicals such as hydroxyl radical (OH), ozone (O3) and NOX (NO + NO2). These findings have been drawn from comprehensive analysis of numerous field and laboratory studies that have characterized the ambient distribution of BVOCs and their oxidation products, and reaction kinetics between BVOCs and atmospheric oxidants. These investigations are limited by the capacity for identifying and quantifying these compounds. This review highlights the major analytical techniques that have been used to observe BVOCs and their oxidation products such as gas chromatography, mass spectrometry with hard and soft ionization methods, and optical techniques from laser induced fluorescence (LIF) to remote sensing. In addition, we discuss how new analytical techniques can advance our understanding of BVOC photochemical processes. The principles, advantages, and drawbacks of the analytical techniques are discussed along with specific examples of how the techniques were applied in field and laboratory measurements. Since a number of thorough review papers for each specific analytical technique are available, readers are referred to these publications rather than providing thorough descriptions of each technique. Therefore, the aim of this review is for readers to grasp the advantages and disadvantages of various sensing techniques for BVOCs and their oxidation products and to provide guidance for choosing the optimal technique for a specific research task.

  2. Occurrence of volatile and non-volatile N-nitrosamines in processed meat products and the role of heat treatment

    DEFF Research Database (Denmark)

    Herrmann, Susan Strange; Duedahl-Olesen, Lene; Granby, Kit

    2015-01-01

    -nitrosoproline (NPRO), N-nitrosodimethylamine (NDMA), N-nitrosopyrrolidine (NPYR), N-nitrosodiethylamine (NDEA) and N-nitrosomethylaniline (NMA) depending on the type of product and/or the heat treatment. The levels of the NVNA, NTCA and N-nitroso-2-methyl-thiazolidine 4-carboxylic acid (NMTCA) decreased after frying...

  3. Pyrolysis of rice husk over Zeolite based catalysts

    International Nuclear Information System (INIS)

    Bae, Yoon Ju; Kim, Jung Hwan; Cho, Hye Jung; Ko, Jeong Huy; Heo, Hyeon Su; Park, Hye Jin; Park, Young Kwon

    2010-01-01

    Full text: The utilization of biomass and other alternative fuel sources, rather than existing fossil fuels, would offer more environmentally acceptable processes for energy production and will aid in conserving the limited supplies of fossil fuels. Pyrolysis of biomass is one of the most promising tools to provide alternative energy sources. However, pyrolytic oils are not always completely volatile and contain high levels of oxygen, this being the major factor responsible for the high viscosity and corrosiveness. The upgrading of pyrolytic oils is a necessary process and involves the removal of oxygen by catalyst. In this study, various type of zeolites such as HZSM-5, HY, USY, Al-MCM-41; Al-SBA-15 etc. were applied. The upgraded oil was analyzed by GC-MS, GC, and elemental analysis etc. The results indicated that more stable oil was produced by transforming oxygen over various zeolite into H 2 O, CO and CO 2 . (author)

  4. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment.

    Science.gov (United States)

    Yin, Jun; Wang, Kun; Yang, Yuqiang; Shen, Dongsheng; Wang, Meizhen; Mo, Han

    2014-11-01

    Food waste (FW) was pretreated by a hydrothermal method and then fermented for volatile fatty acid (VFAs) production. The soluble substance in FW increased after hydrothermal pretreatment (⩽200 °C). Higher hydrothermal temperature would lead to mineralization of the organic compounds. The optimal temperature for organic dissolution was 180 °C, at which FW dissolved 42.5% more soluble chemical oxygen demand than the control. VFA production from pretreated FW fermentation was significantly enhanced compared with the control. The optimal hydrothermal temperature was 160 °C with a VFA yield of 0.908 g/g VSremoval. Butyrate and acetate were the prevalent VFAs followed by propionate and valerate. FW fermentation was inhibited after 200 °C pretreatment. The VFAs were extracted from the fermentation broth by liquid-liquid extraction. The VFA recovery was 50-70%. Thus, 0.294-0.411 g VFAs could be obtained per gram of hydrothermally pretreated FW (in dry weight) by this method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effects of stress hormones on the production of volatile sulfur compounds by periodontopathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Caroline Morini Calil

    2014-06-01

    Full Text Available Little is known about the effects of stress hormones on the etiologic agents of halitosis. Thus, the aim of this study was to evaluate in vitro the effects of adrenaline (ADR, noradrenaline (NA and cortisol (CORT on bacteria that produce volatile sulfur compounds (VSC, the major gases responsible for bad breath. Cultures of Fusobacterium nucleatum (Fn, Porphyromonas endodontalis (Pe, Prevotella intermedia (Pi and Porphyromonas gingivalis (Pg were exposed to 50 µM ADR, NA and CORT or equivalent volumes of sterile water as controls for 12 and 24 h. Growth was evaluated based on absorbance at 660 nm. Portable gas chromatography was used to measure VSC concentrations. Kruskal-Wallis and the Dunn post-hoc test were used to compare the groups. For Fn, ADR, NA and CORT significantly reduced bacterial growth after 12 h and 24 h (p 0.05. In the Pi cultures, ADR, NA and CORT increased H2S (p < 0.05. Catecholamines and cortisol can interfere with growth and H2S production of sub-gingival species in vitro. This process appears to be complex and supports the association between stress and the production of VSC.

  6. Influence of commercial (Fluka) naphthenic acids on acid volatile sulfide (AVS) production and divalent metal precipitation.

    Science.gov (United States)

    McQueen, Andrew D; Kinley, Ciera M; Rodgers, John H; Friesen, Vanessa; Bergsveinson, Jordyn; Haakensen, Monique C

    2016-12-01

    Energy-derived waters containing naphthenic acids (NAs) are complex mixtures often comprising a suite of potentially problematic constituents (e.g. organics, metals, and metalloids) that need treatment prior to beneficial use, including release to receiving aquatic systems. It has previously been suggested that NAs can have biostatic or biocidal properties that could inhibit microbially driven processes (e.g. dissimilatory sulfate reduction) used to transfer or transform metals in passive treatment systems (i.e. constructed wetlands). The overall objective of this study was to measure the effects of a commercially available (Fluka) NA on sulfate-reducing bacteria (SRB), production of sulfides (as acid-volatile sulfides [AVS]), and precipitation of divalent metals (i.e. Cu, Ni, Zn). These endpoints were assessed following 21-d aqueous exposures of NAs using bench-scale reactors. After 21-days, AVS molar concentrations were not statistically different (pAVS production was sufficient in all NA treatments to achieve ∑SEM:AVS AVS) could be used to treat metals occurring in NAs affected waters. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Pyrolysis of high-ash sewage sludge in a circulating fluidized bed reactor for production of liquids rich in heterocyclic nitrogenated compounds.

    Science.gov (United States)

    Zuo, Wu; Jin, Baosheng; Huang, Yaji; Sun, Yu; Li, Rui; Jia, Jiqiang

    2013-01-01

    A circulating fluidized bed reactor was used for pyrolyzing sewage sludge with a high ash content to produce liquids rich in heterocyclic nitrogenated compounds. GC/MS and FTIR analyses showed that heterocyclic nitrogenated compounds and hydrocarbons made up 38.5-61.21% and 2.24-17.48% of the pyrolysis liquids, respectively. A fluidized gas velocity of 1.13 m/s, a sludge feed rate of 10.78 kg/h and a particle size of 1-2mm promoted heterocyclic nitrogenated compound production. Utilizing heterocyclic nitrogenated compounds as chemical feedstock could be a way for offsetting the cost of sewage sludge treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    Science.gov (United States)

    Maddi, Balakrishna

    protein degradation). Algal bio-char also had a significantly higher N-content. Overall, our results suggest that it is feasible to convert algal cultures deficient in lipids, such as nuisance algae obtained from natural blooms, into liquid fuels by thermochemical methods. Next, pyrolysis characteristics of each of the major components present in lignocellulosic as well as algal biomass were studied independently in a thermo-gravimetric analyzer, using model compounds. From those studies, we have established that, with algae and oil seed feed stocks, triglycerides degrade at distinctly higher temperatures (T>350 C) compared to both protein and carbohydrate fractions (T ~ 250-350 C). Similar trend was not seen for lignocellulosic biomass, where degradation temperature interval of lignin overlapped with that of carbohydrates. This unique trend observed for algal biomass (and oil seeds) can be exploited in multiple ways. First, it permits to separately collect high value triglyceride degradation products not contaminated with N-compounds from protein and oxygenates from carbohydrates; this observation formed the basis of a novel "pyrolytic fractionation technique" developed in this thesis. Second, it led to the development of a new and simple analytical method for rapid estimation of the triglyceride content of oleaginous feed stocks. Pyrolytic fractionation is a two-step pyrolysis approach that can be implemented for oleaginous feed stocks (algae and oil-seeds) to separately recover triglyceride degradation products as a "high-quality" bio-oil fraction. The first step is a low-temperature pyrolysis (T ~ 300-320 C) to produce bio-oils from degradation of protein and carbohydrate fractions. Solid residues left behind can subsequently be subjected to a second higher temperature pyrolysis (T ~ 420-430 C) to volatilize and/or degrade triglycerides to produce fatty acids and their derivatives (such as mono-, di- and tri-glycerides) and long chain hydrocarbons. Proof

  9. Effects of exchange rate volatility on export volume and prices of forest products

    Science.gov (United States)

    Sijia Zhang; Joseph Buongiorno

    2010-01-01

    The relative value of currencies varies considerably over time. These fluctuations bring uncertainty to international traders. As a result, the volatility in exchange rate movements may influence the volume and the price of traded commodities. The volatility of exchange rates was measured by the variance of residuals in a GARCH(1,1) model of the exchange rate. We...

  10. Herbivory by a Phloem-feeding insect inhibits floral volatile production.

    Directory of Open Access Journals (Sweden)

    Martin Pareja

    Full Text Available There is extensive knowledge on the effects of insect herbivory on volatile emission from vegetative tissue, but little is known about its impact on floral volatiles. We show that herbivory by phloem-feeding aphids inhibits floral volatile emission in white mustard Sinapis alba measured by gas chromatographic analysis of headspace volatiles. The effect of the Brassica specialist aphid Lipaphis erysimi was stronger than the generalist aphid Myzus persicae and feeding by chewing larvae of the moth Plutella xylostella caused no reduction in floral volatile emission. Field observations showed no effect of L. erysimi-mediated floral volatile emission on the total number of flower visits by pollinators. Olfactory bioassays suggested that although two aphid natural enemies could detect aphid inhibition of floral volatiles, their olfactory orientation to infested plants was not disrupted. This is the first demonstration that phloem-feeding herbivory can affect floral volatile emission, and that the outcome of interaction between herbivory and floral chemistry may differ depending on the herbivore's feeding mode and degree of specialisation. The findings provide new insights into interactions between insect herbivores and plant chemistry.

  11. Herbivory by a Phloem-feeding insect inhibits floral volatile production.

    Science.gov (United States)

    Pareja, Martin; Qvarfordt, Erika; Webster, Ben; Mayon, Patrick; Pickett, John; Birkett, Michael; Glinwood, Robert

    2012-01-01

    There is extensive knowledge on the effects of insect herbivory on volatile emission from vegetative tissue, but little is known about its impact on floral volatiles. We show that herbivory by phloem-feeding aphids inhibits floral volatile emission in white mustard Sinapis alba measured by gas chromatographic analysis of headspace volatiles. The effect of the Brassica specialist aphid Lipaphis erysimi was stronger than the generalist aphid Myzus persicae and feeding by chewing larvae of the moth Plutella xylostella caused no reduction in floral volatile emission. Field observations showed no effect of L. erysimi-mediated floral volatile emission on the total number of flower visits by pollinators. Olfactory bioassays suggested that although two aphid natural enemies could detect aphid inhibition of floral volatiles, their olfactory orientation to infested plants was not disrupted. This is the first demonstration that phloem-feeding herbivory can affect floral volatile emission, and that the outcome of interaction between herbivory and floral chemistry may differ depending on the herbivore's feeding mode and degree of specialisation. The findings provide new insights into interactions between insect herbivores and plant chemistry.

  12. Optimization of process parameters for microwave pyrolysis of oil palm fiber (OPF) for hydrogen and biochar production

    International Nuclear Information System (INIS)

    Arafat Hossain, Md; Ganesan, P.; Jewaratnam, J.; Chinna, K.

    2017-01-01

    Highlights: • Microwave pyrolysis process parameters are optimized by response surface methodology. • Experimental values are well in agreement with the predicted values from model. • Correction coefficients (R 2 ) which had been found near to the 1, satisfied the model. • Errors are less than 10% between the optimized conditions and experimental values. • Higher carbon (%) and porosity have been found in the biochar. - Abstract: Response surface methodology (RSM) based on central composite design (CCD) is used to investigate the optimized experimental conditions for maximum H 2 and biochar yields from microwave pyrolysis of OPF. Input parameters (temperature, microwave power and N 2 flow rate) have been coded which suggest a complete summary of experimental design with a set of experiment for the two responses of H 2 and biochar. Quadratic model has been found fit for the optimization. This method significantly reduces the number of the experiments (Full factorial experiments). Actual vs. predicted plots clearly imply that experimental values are well in agreement with the predicted values for both H 2 and biochar yield. The perturbation plots indicate that H 2 and biochar yields are more sensitive for N 2 flow rate and temperature respectively. The software suggested three optimized experimental conditions for maximum H 2 yield, maximum biochar yield and for both maximum H 2 and biochar yields together. The software results were further validated by conducting relevant experiments. The error was less than 10%, suggesting that the software predictions are quite reliable. Proximate and ultimate analysis of the optimized biochars have showed a big percentage of carbon contents (More than 60 wt.%) and high heating value. SEM and BET analysis show some pores in the biochars which are effective for soil improvements.

  13. Monitoring Volatile Organic Compounds (VOCs) in real-time on oil and natural gas production sites

    Science.gov (United States)

    Lupardus, R.; Franklin, S. B.

    2017-12-01

    Oil and Natural Gas (O&NG) development, production, infrastructure, and associated processing activities can be a substantial source of air pollution, yet relevant data and real-time quantification methods are lacking. In the current study, O&NG fugitive emissions of Volatile Organic Compounds (VOCs) were quantified in real-time and used to determine the spatial and temporal windows of exposure for proximate flora and fauna. Eleven O&NG sites on the Pawnee National Grassland in Northeastern Colorado were randomly selected and grouped according to production along with 13 control sites from three geographical locations. At each site, samples were collected 25 m from the wellhead in NE, SE, and W directions. In each direction, two samples were collected with a Gasmet DX4040 gas analyzer every hour from 8:00 am to 2:00 pm (6 hours total), July to October, 2016 (N=864). VOC concentrations generally increased during the 6 hr. day with the exception of N2O and were predominately the result of O&NG production and not vehicle exhaust. Thirteen of 24 VOCs had significantly different levels between production groups, frequently above reference standards and at biologically relevant levels for flora and fauna. The most biologically relevant VOCs, found at concentrations exceeding time weighted average permissible exposure limits (TWA PELs), were benzene and acrolein. Generalized Estimating Equations (GEEs) measured the relative quality of statistical models predicting benzene concentrations on sites. The data not only confirms that O&NG emissions are impacting the region, but also that this influence is present at all sites, including controls. Increased real-time VOC monitoring on O&NG sites is required to identify and contain fugitive emissions and to protect human and environmental health.

  14. Sewage sludge pyrolysis for thermal utilisation in furnaces; Pyrolyse von Klaerschlamm als Aufbereitungsverfahren zur thermischen Nutzung in Feuerungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Storm, C; Spliethoff, H; Hein, K R.G. [Stuttgart Univ. (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen

    1998-09-01

    The degassing rate of sewage sludges increases with the pyrolysis temperature. Already at 900 degrees centigrade, the glow loss wil be less than 5 percent. The gas composition changes with increasing temperatures, and there are larger fractions of light gases like hydrogen and carbon monoxide. Non-volatile inorganic compounds are not released during pyrolysis. Volatile inorganic components behave differently: Eluation experiments with sewage sludge pyrolysis residues showed that all components under investigation are immobilized in the residue matrix and there is now washout. When the product gases were used as reduction fuels in coal furnaces, nitric oxide emissions will be reduced to less than 200 mg per cubic metre. The pyrolysis temperature was found to have an effect only at low fuel/air ratios, when gases produced at high pyrolysis temperatures resulted in lower emissions. (orig./SR) [Deutsch] Mit steigender Pyrolysetemperatur steigt die Entgasungsrate der Klaerschlaemme. Bei der Klaerschlammpyrolyse wird schon bei Temperaturen ab 900 C ein Gluehverlust von unter 5% erreicht. Die Pyrolysegaszusammensetzung aendert sich mit steigender Temperatur zugunsten von leichten Gasen wie Wasserstoff und Kohlenmonoxid. Schwerfluechtige anorganische Verbindungen werden waehrend der Pyrolyse nicht freigesetzt. Leichtfluechtige anorganische Bestandteile zeigen ein unterschiedliches Verhalten. Bei Eluierungsversuchen von Klaerschlammpyrolyseresten wurde festgestellt, dass alle untersuchten Komponenten fest in die Reststoffmatrix eingebunden werden und keine Auswaschung erfolgte. Bei der thermischen Nutzung von Gasen aus der Klaerschlammpyrolyse als Reduktionsbrennstoff in Kohlefeuerungen koennen NO{sub x} Emissionen von unter 200 mg/m{sup 3} erreicht werden. Ein Einfluss der Pyrolysetemperatur auf die NO{sub x} Emissionen konnte nur bei niedrigen Luftzahlen festgestellt werden. Hier wiesen Gase, die bei hohen Pyrolysetemperaturen entstanden, geringere Emissionen auf. (orig./SR)

  15. Catalytic partial oxidation of pyrolysis oils

    Science.gov (United States)

    Rennard, David Carl

    2009-12-01

    details the catalytic partial oxidation of glycerol without preheat: droplets of glycerol are sprayed directly onto the top of the catalyst bed, where they react autothermally with contact times on the order of tau ≈ 30 ms. The reactive flash volatilization of glycerol results in equilibrium syngas production over Rh-Ce catalysts. In addition, water can be added to the liquid glycerol, resulting in true autothermal reforming. This highly efficient process can increase H2 yields and alter the H2 to CO ratio, allowing for flexibility in syngas quality depending on the purpose. Chapter 5 details the results of a time on stream experiment, in which optimal syngas conditions are chosen. Although conversion is 100% for 450 hours, these experiments demonstrate the deactivation of the catalyst over time. Deactivation is exhibited by decreases in H2 and CO 2 production accompanied by a steady increase in CO and temperature. These results are explained as a loss of water-gas shift equilibration. SEM images suggest catalyst sintering may play a role; EDS indicates the presence of impurities on the catalyst. In addition, the instability of quartz in the reactor is demonstrated by etching, resulting in a hole in the reactor tube at the end of the experiment. These results suggest prevaporization may be desirable in this application, and that quartz is not a suitable material for the reactive flash volatilization of oxygenated fuels. In Chapter 6, pyrolysis oil samples from three sources - poplar, pine, and hardwoods - are explored in the context of catalytic partial oxidation. Lessons derived from the tests with model compounds are applied to reactor design, resulting in the reactive flash vaporization of bio oils. Syngas is successfully produced, though deactivation due to coke and ash deposition keeps H2 below equlibrium. Coke formation is observed on the reactor walls, but is avoided between the fuel injection site and catalyst by increasing the proximity of these in the reactor

  16. Assessment of ecotoxicity and total volatile organic compound (TVOC) emissions from food and children's toy products.

    Science.gov (United States)

    Szczepańska, Natalia; Marć, Mariusz; Kudłak, Błażej; Simeonov, Vasil; Tsakovski, Stefan; Namieśnik, Jacek

    2018-09-30

    The development of new methods for identifying a broad spectrum of analytes, as well as highly selective tools to provide the most accurate information regarding the processes and relationships in the world, has been an area of interest for researchers for many years. The information obtained with these tools provides valuable data to complement existing knowledge but, above all, to identify and determine previously unknown hazards. Recently, attention has been paid to the migration of xenobiotics from the surfaces of various everyday objects and the resulting impacts on human health. Since children are among those most vulnerable to health consequences, one of the main subjects of interest is the migration of low-molecular-weight compounds from toys and products intended for children. This migration has become a stimulus for research aimed at determining the degree of release of compounds from popular commercially available chocolate/toy sets. One of main objectives of this research was to determine the impact of time on the ecotoxicity (with Vibrio fischeri bioluminescent bacteria) of extracts of products intended for children and to assess the correlation with total volatile organic compound emissions using basic chemometric methods. The studies on endocrine potential (with XenoScreen YES/YAS) of the extracts and showed that compounds released from the studied objects (including packaging foils, plastic capsules storing toys, most of toys studied and all chocolate samples) exhibit mostly androgenic antagonistic behavior while using artificial saliva as extraction medium increased the impact observed. The impact of time in most cases was positive one and increased with prolonging extraction time. The small-scale stationary environmental test chambers - μ-CTE™ 250 system was employed to perform the studies aimed at determining the profile of total volatile organic compounds (TVOCs) emissions. Due to this it was possible to state that objects from which the

  17. Catalytic Fast Pyrolysis: A Review

    Directory of Open Access Journals (Sweden)

    Theodore Dickerson

    2013-01-01

    Full Text Available Catalytic pyrolysis is a promising thermochemical conversion route for lignocellulosic biomass that produces chemicals and fuels compatible with current, petrochemical infrastructure. Catalytic modifications to pyrolysis bio-oils are geared towards the elimination and substitution of oxygen and oxygen-containing functionalities in addition to increasing the hydrogen to carbon ratio of the final products. Recent progress has focused on both hydrodeoxygenation and hydrogenation of bio-oil using a variety of metal catalysts and the production of aromatics from bio-oil using cracking zeolites. Research is currently focused on developing multi-functional catalysts used in situ that benefit from the advantages of both hydrodeoxygenation and zeolite cracking. Development of robust, highly selective catalysts will help achieve the goal of producing drop-in fuels and petrochemical commodities from wood and other lignocellulosic biomass streams. The current paper will examine these developments by means of a review of existing literature.

  18. Influence of carbon and nitrogen source on production of volatile fragrance and flavour metabolites by the yeast Kluyveromyces marxianus.

    Science.gov (United States)

    Gethins, Loughlin; Guneser, Onur; Demirkol, Aslı; Rea, Mary C; Stanton, Catherine; Ross, R Paul; Yuceer, Yonca; Morrissey, John P

    2015-01-01

    The yeast Kluyveromyces marxianus produces a range of volatile molecules with applications as fragrances or flavours. The purpose of this study was to establish how nutritional conditions influence the production of these metabolites. Four strains were grown on synthetic media, using a variety of carbon and nitrogen sources and volatile metabolites analysed using gas chromatography-mass spectrometry (GC-MS). The nitrogen source had pronounced effects on metabolite production: levels of the fusel alcohols 2-phenylethanol and isoamyl alcohol were highest when yeast extract was the nitrogen source, and ammonium had a strong repressing effect on production of 2-phenylethyl acetate. In contrast, the nitrogen source did not affect production of isoamyl acetate or ethyl acetate, indicating that more than one alcohol acetyl transferase activity is present in K. marxianus. Production of all acetate esters was low when cells were growing on lactose (as opposed to glucose or fructose), with a lower intracellular pool of acetyl CoA being one explanation for this observation. Bioinformatic and phylogenetic analysis of the known yeast alcohol acetyl transferases ATF1 and ATF2 suggests that the ancestral protein Atf2p may not be involved in synthesis of volatile acetate esters in K. marxianus, and raises interesting questions as to what other genes encode this activity in non-Saccharomyces yeasts. Identification of all the genes involved in ester synthesis will be important for development of the K. marxianus platform for flavour and fragrance production. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Organic Analysis of Catalytic Fischer-Tropsch Synthesis Products and Ordinary Chondrite Meteorites by Stepwise Pyrolysis-GCMS: Organics in the Early Solar Nebula

    Science.gov (United States)

    Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.

    2014-01-01

    Abiotic generation of complex organic compounds, in the early solar nebula that formed our solar system, is hypothesized by some to occur via Fischer-Tropsch (FT) synthesis. In its simplest form, FT synthesis involves the low temperature (300degC) produces FT products that include lesser amounts of n-alkanes and greater alkene, alcohol, and polycyclic aromatic hydrocarbon (PAH) compounds. We have begun to experimentally investigate FT synthesis in the context of abiotic generation of organic compounds in the early solar nebula. It is generally thought that the early solar nebula included abundant hydrogen and carbon monoxide gases and nano-particulate matter such as iron and metal silicates that could have catalyzed the FT reaction. The effect of FT reaction temperature, catalyst type, and experiment duration on the resulting products is being investigated. These solid organic products are analyzed by thermal-stepwise pyrolysis-GCMS and yield the types and distribution of hydrocarbon compounds released as a function of temperature. We show how the FT products vary by reaction temperature, catalyst type, and experimental duration and compare these products to organic compounds found to be indigenous to ordinary chondrite meteorites. We hypothesize that the origin of organics in some chondritic meteorites, that represent an aggregation of materials from the early solar system, may at least in part be from FT synthesis that occurred in the early solar nebula.

  20. Thermal behaviour during the pyrolysis of low rank perhydrous coals

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Rubiera, F.; Pis, J.J.; Cuesta, M.J.; Suarez-Ruiz, I. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain); Iglesias, M.J. [Area de Quimica Organica, Universidad de Almeria, Carretera de Sacramento, 04120 Almeria (Spain); Jimenez, A. [Area de Cristalografia y Mineralogia, Departamento de Geologia, Campus de Llamaquique, 33005 Oviedo (Spain)

    2003-08-01

    Perhydrous coals are characterised by high H/C atomic ratios and so their chemical structure is substantially modified with respect to that of conventional coals. As a result, perhydrous coals show different physico-chemical properties to common coals (i.e. higher volatile matter content, enhancement of oil/tar potential, relatively lower porosity and higher fluidity during carbonisation). However, there is little information about thermal behaviour during the pyrolysis of this type of coal. In this work, six perhydrous coals (H/C ratio between 0.83 and 1.07) were pyrolysed and analysed by simultaneous thermogravimetry/mass spectrometry. The results of this work have revealed the influence of high H/C values on the thermal behaviour of the coals studied. During pyrolysis the perhydrous coals exhibit very well defined, symmetrical peaks in the mass loss rate profiles, while normal coals usually show a broader peak. The shape of such curves suggests that in perhydrous coals fragmentation processes prevailed over condensation reactions. The high hydrogen content of perhydrous coals may stabilise the free radicals formed during heat treatment, increasing the production of light components.

  1. Reaction mechanisms in cellulose pyrolysis: a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Molton, P.M.; Demmitt, T.F.

    1977-08-01

    A bibliographic review of 195 references is presented outlining the history of the research into the mechanisms of cellulose pyrolysis. Topics discussed are: initial product identification, mechanism of initial formation of levoglucosan, from cellulose and from related compounds, decomposition of cellulose to other compounds, formation of aromatics, pyrolysis of levoglucosan, crosslinking of cellulose, pyrolytic reactions of cellulose derivatives, and the effects of inorganic salts on the pyrolysis mechanism. (JSR)

  2. Phenolic carbonyls undergo rapid aqueous photodegradation to form low-volatility, light-absorbing products

    Science.gov (United States)

    Smith, Jeremy D.; Kinney, Haley; Anastasio, Cort

    2016-02-01

    We investigated the aqueous photochemistry of six phenolic carbonyls - vanillin, acetovanillone, guaiacyl acetone, syringaldehyde, acetosyringone, and coniferyl aldehyde - that are emitted from wood combustion. The phenolic carbonyls absorb significant amounts of solar radiation and decay rapidly via direct photodegradation, with lifetimes (τ) of 13-140 min under Davis, CA winter solstice sunlight at midday (solar zenith angle = 62°). The one exception is guaiacyl acetone, where the carbonyl group is not directly connected to the aromatic ring: This species absorbs very little sunlight and undergoes direct photodegradation very slowly (τ > 103 min). We also found that the triplet excited states (3C*) of the phenolic carbonyls rapidly oxidize syringol (a methoxyphenol without a carbonyl group), on timescales of 1-5 h for solutions containing 5 μM phenolic carbonyl. The direct photodegradation of the phenolic carbonyls, and the oxidation of syringol by 3C*, both efficiently produce low volatility products, with SOA mass yields ranging from 80 to 140%. Contrary to most aliphatic carbonyls, under typical fog conditions we find that the primary sink for the aromatic phenolic carbonyls is direct photodegradation in the aqueous phase. In areas of significant wood combustion, phenolic carbonyls appear to be small but significant sources of aqueous SOA: over the course of a few hours, nearly all of the phenolic carbonyls will be converted to SOA via direct photodegradation, enhancing the POA mass from wood combustion by approximately 3-5%.

  3. Evaporation release behavior of volatile fission products from liquid sodium pool to the inert cover gas

    Energy Technology Data Exchange (ETDEWEB)

    Nakagiri, T; Miyahara, S [Oarai Engineering Center, Power Reactor and Nuclear Fuel Development Corp., Oaraimachi, Ibaraki (Japan)

    1996-12-01

    In fuel failure of sodium cooled fast breeder reactors, released volatile fission products (VFPs) such as iodine and cesium from the fuel will be dissolved into the liquid sodium coolant and transferred to the cover vaporization. In the cover gas system of the reactor, natural convection occurs due to temperature differences between the sodium pool and the gas phase. The release rates of VFPs together with sodium vaporization are considered to be controlled by the convection. In this study, three analytical models are developed and examined to calculate the transient release rates using the equilibrium partition coefficients of VFPs. The calculated release rates are compared with experimental results for sodium and sodium iodide. The release rate of sodium is closest to the calculation by the heterogeneous nucleation theory. The release rate of sodium iodide obtained from the experiment is between the release rates calculated by the model based on heat-and-mass transfer analogy and the Hill`s theory. From this study, it is confirmed that the realistic release rate of sodium is able to be calculated by the model based on the heterogeneous nucleation theory. The conservative release rate of sodium iodide is able to be calculated by the model based on the Hill`s theory using the equilibrium partition coefficient of sodium iodide. (author) 7 figs., 1 tab., 3 refs.

  4. Measurement of Gas and Volatile Elements Production Cross Section in a Molten Lead-Bismuth Target

    CERN Multimedia

    2002-01-01

    MEGAPIE is a project for a 1 MW liquid PbBi spallation source, to be built at the SINQ facility at the Paul Scherrer Institut, which will be an important step in the roadmap towards the demonstration of the ADS concept and high power molten metal targets in general. In the design and construction of such a challenging project it is extremely important to evaluate the amount and type of gas and volatile elements which will be produced, for a reliable and safe operation of the experiment. Both stable (H, $^{4}$He and other noble gases) and radioactive isotopes are of interest. Currently, different design options are under consideration to deal with the gas produced during operation. \\\\ For a correct estimation of the production cross sections, a measurement with a liquid PbBi target and a proton beam of energy close to the one of MEGAPIE (575 MeV) is necessary. We would like to use the ISOLDE facility, which offers the unique opportunity via its mass spectrometric analysis of the elements present in the gas pha...

  5. Lipid oxidation, color changes and volatiles production in irradiated pork sausage with different fat content and packaging during storage

    International Nuclear Information System (INIS)

    Jo, C.; Lee, J.I.; Ahn, D.U.

    1999-01-01

    Effects of irradiation on lipid oxidation, color and volatiles production in pork sausages with different fat content and packaging were determined. Sausages (with 4.7, 10.5 and 15.8% fat content) were sliced and vacuum-packaged either in oxygen-permeable or impermeable bags, irradiated (0 or 4.5 kGy) and stored at 4°C for 7 days. Lipid oxidation, color and volatiles productions were analyzed at 0, 3 and 7 days of storage. TBARS (2-thiobarbituric acid reactive substances) values of cooked pork sausages increased with the increase of fat content regardless of storage, irradiation or packaging types. Irradiated samples had higher TBARS than nonirradiated at 0 day but the difference disappeared during storage in both packaging types. Lightness of sausages (Hunter L-value) increased with the increase of fat content and storage time but was not affected by irradiation. In aerobic packaging, irradiation reduced Hunter a-values of pork sausages at 0 day but irradiation effect on a-value disappeared during storage. In vacuum packaging, however, irradiated samples had higher Hunter a-values than nonirradiated samples. Irradiation increased 1-heptene and total volatiles, but the amount of 1-heptene was not associated well with TBARS values of pork sausages. In both irradiated and nonirradiated pork sausages, aerobic packaging produced more volatiles than vacuum packaging during storage. It was concluded that irradiation and fat content had significant effects on lipid oxidation, color and volatiles production of cooked pork sausages during storage but that oxygen availability had a stronger effect than irradiation and fat content

  6. Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles

    Directory of Open Access Journals (Sweden)

    J. F. Hamilton

    2009-06-01

    Full Text Available Green leaf volatiles (GLVs are an important group of chemicals released by vegetation which have emission fluxes that can be significantly increased when plants are damaged or stressed. A series of simulation chamber experiments has been conducted at the European Photoreactor in Valencia, Spain, to investigate secondary organic aerosol (SOA formation from the atmospheric oxidation of the major GLVs cis-3-hexenylacetate and cis-3-hexen-1-ol. Liquid chromatography-ion trap mass spectrometry was used to identify chemical species present in the SOA. Cis-3-hexen-1-ol proved to be a more efficient SOA precursor due to the high reactivity of its first generation oxidation product, 3-hydroxypropanal, which can hydrate and undergo further reactions with other aldehydes resulting in SOA dominated by higher molecular weight oligomers. The lower SOA yields produced from cis-3-hexenylacetate are attributed to the acetate functionality, which inhibits oligomer formation in the particle phase. Based on observed SOA yields and best estimates of global emissions, these compounds may be calculated to be a substantial unidentified global source of SOA, contributing 1–5 TgC yr−1, equivalent to around a third of that predicted from isoprene. Molecular characterization of the SOA, combined with organic mechanistic information, has provided evidence that the formation of organic aerosols from GLVs is closely related to the reactivity of their first generation atmospheric oxidation products, and indicates that this may be a simple parameter that could be used in assessing the aerosol formation potential for other unstudied organic compounds in the atmosphere.

  7. Pyrolysis of waste tyres: a review.

    Science.gov (United States)

    Williams, Paul T

    2013-08-01

    Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H(2), C(1)-C(4) hydrocarbons, CO(2), CO and H(2)S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Safety aspects of targets for ADTT: Activity, volatile products, residual heat release

    International Nuclear Information System (INIS)

    Gai, E.V.; Ignatyuk, A.V.; Lunev, V.P.; Shubin, Yu.N.

    1999-01-01

    Safety aspects of heavy metal liquid targets for the accelerator driven systems connected with the activity accumulation and residual energy release due to the irradiation with high energy proton beam are discussed. The results obtained for the lead-bismuth target that are under construction in IPPE now in the frame of ISTC Project No. 559 are briefly presented. The calculations and the analysis of the accumulation of the spallation reaction products, activity and energy release at various moments after the accelerator shutdown are presented. The concentrations of the reaction products, the total and partial activities, the activities of volatile products are determined. The contributions of the short-lived nuclides important for the prediction of the facility behaviour in regimes with the accelerator beam trips. The calculations and analysis of the residual energy release due to different decay type have been performed. The conclusions are as follows. The obtained results showed that long lived radioactivity accumulates mainly due to primary nuclear reactions. Secondary reactions are responsible for the production of small number of long-lived isotopes Bi-207, Po-210 and some others, being generated by radiative capture of low energy neutrons. It is possible to make a conclusion that neutrons in the energy range 20 - 800 MeV and protons with energy above 100 MeV give main contribution to the total activity generation although these parts of spectra inside the target give comparatively small contribution to the total flux. The correct consideration of short-lived nuclides contribution is the main problem in the analysis of the target behaviour in the case of short accelerator shutdowns. They make the determining contribution to the both activity and the heat release at the first moments after the accelerator shutdown, creating the intermediate links and additional channels for the long-lived nuclides accumulation chains. The strong dependence of calculated

  9. Is Solid Phase Microextraction (SPME) an appropriate method for extraction of volatile oxidation products from complex food systems

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Horn, Anna Frisenfeldt; Lu, Henna Fung Sieng

    Volatile secondary lipid oxidation products can be identified and quantified by GC-FID or GC-MS. An extraction step is, however, needed before GC analysis. A range of different extraction methods are available such as static headspace, dynamic headspace and SPME. Each of these methods has its...... advantages and drawbacks. Among the advantages of the SPME method are its high sensitivity compared to static headspace and that it is less laborious than the dynamic headspace method. For these reasons, the use of SPME has increased in both academia and industry during the last decade. The extraction...... for analysis of lipid oxidation during storage of complex food matrices. Examples on how uncontrollable factors have affected results obtained with the SPME method in the authors’ lab will be given and the appropriateness of the SPME method for the analysis of volatile oxidation products in selected food...

  10. Solid phase microextraction (SPME) for extraction of volatile oxidation products from complex food systems – Pros and cons

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Horn, Anna Frisenfeldt; Lu, Henna Fung Sieng

    Volatile secondary lipid oxidation products can be identified and quantified by GC-FID or GC-MS. An extraction step is, however, needed before GC analysis. A range of different extraction methods are available such as static headspace, dynamic headspace and SPME. Each of these methods has its...... advantages and drawbacks. Among the advantages of the SPME method are its high sensitivity compared to static headspace and that it is less laborious than the dynamic headspace method. For these reasons, the use of SPME has increased in both academia and industry during the last decade. The extraction...... for analysis of lipid oxidation during storage of complex food matrices. Examples on how uncontrollable factors have affected results obtained with the SPME method in the authors’ lab will be given and the appropriateness of the SPME method for the analysis of volatile oxidation products in selected food...

  11. Analysis of volatile combustion products and a study of their toxicological effects.

    Science.gov (United States)

    Seader, J. D.; Einhorn, I. N.; Drake, W. O.; Mihlfeith, C. M.

    1972-01-01

    An experimental program was conducted to study the thermochemical, flammability and toxicological characteristics of uncoated and coated polyisocyanurate foams. The coatings used were fluorinated copolymer and an intumescent material. Combustion and pyrolysis gases were analyzed by gas chromatography and mass spectrometry. The LD-50 and LD-100 tests were performed on Sprague-Dawley rats housed in an environmental chamber. The isocyanurate foam, fluorinated-copolymer-coated foam, and the intumescent-coated foam were found to have excellent flammability and insulation characteristics, although smoke development was substantial.

  12. GC-FTIR-MS analysis of volatile products in the radiolysis of nitrobenzene-carbon tetrachloride solution

    International Nuclear Information System (INIS)

    Kuruc, J.; Sahoo, M.K.; Kuran, P.

    1993-01-01

    A number of volatile products formed in the gamma-radiolysis of nitrobenzene-carbon tetrachlorine solution have been identified using a GC-FTIR-MS technique. The conditions for separation of the products have been described. HCL, COCl 2 chlorobenzene, chloro- and dichloronitrobenzene, isomeric di-, tri- and tetrachlorobenzene, hexachloroethane, tetrachloroethylene, α,α,α-trichloromethylbenzene, chloro-and dichloroisocyanatobenzene, and other chloroderivatives are among the important products formed. Ipso-substituion of the nitro group as well as hydrogen atom by chlorine atom and Cl 3 free radical is noticed. It is proposed that chloroisocyanatobenzene is formed as the result of interaction of dichlorocarbene and nitrobenzene. (orig.)

  13. Pyrolysis of rubber gloves in integral pyrolysis test plant

    International Nuclear Information System (INIS)

    Norasalwa Zakaria; Mohd Noor Muhd Yunus; Mohd Annuar Assadat Husain; Farid Nasir Ani

    2010-01-01

    Previously, pyrolysis of rubber gloves in laboratory study was described. In order to visualize the practical application of rubber gloves pyrolysis in terms of treating rubber gloves in medical waste, a new test plant was designed and constructed. The semi-continuous test plant was designed to accommodate rubber gloves that were not cut or shredded. The test plant has a capacity of 2kg/ hr and employed auxiliary fuel instead of the conventional electrical power for heating. The concept was based on moving bed reactor, but additional feature of sand jacket feature was also introduced in the design. Pyrolysis of the gloves was conducted at three temperatures, namely 350 degree Celsius, 400 degree Celsius and 450 degree Celsius. Oxygen presents inside of the reactor due to the combined effect of imperfect sealing and suction effect. This study addresses the performance of this test plant covering the time temperature profile, gas evolution profile and product yield. Comparison between the yield of the liquid, gas and char pyrolyzate was made against the laboratory study. It was found that the oil yield was less than the one obtained from bench scale study. Water formation was more pronounced. The presence of the oxygen also altered the tail gas composition but eliminate the sticky nature of solid residue, making it easier to handle. The chemical composition of the oil was determined and the main compounds in the oil were esters and phtalic acid. (author)

  14. Production of hydrogen and volatile fatty acid by Enterobacter sp. T4384 using organic waste materials.

    Science.gov (United States)

    Kim, Byung-Chun; Deshpande, Tushar R; Chun, Jongsik; Yi, Sung Chul; Kim, Hyunook; Um, Youngsoon; Sang, Byoung-In

    2013-02-01

    In a study of hydrogen-producing bacteria, strain T4384 was isolated from rice field samples in the Republic of Korea. The isolate was identified as Enterobacter sp. T4384 by phylogenetic analysis of 16S rRNA and rpoB gene sequences. Enterobacter sp. T4384 grew at a temperature range of 10-45 degrees C and at an initial pH range of 4.5-9.5. Strain T4384 produced hydrogen at 0-6% NaCl by using glucose, fructose, and mannose. In serum bottle cultures using a complete medium, Enterobacter sp. T4384 produced 1,098 ml/l H2, 4.0 g/l ethanol, and 1.0 g/l acetic acid. In a pH-regulated jar fermenter culture with the biogas removed, 2,202 ml/l H2, 6.2 g/l ethanol, and 1.0 g/l acetic acid were produced, and the lag-phase time was 4.8 h. Strain T4384 metabolized the hydrolysate of organic waste for the production of hydrogen and volatile fatty acid. The strain T4384 produced 947 ml/l H2, 3.2 g/l ethanol, and 0.2 g/l acetic acid from 6% (w/v) food waste hydrolysate; 738 ml/l H2, 4.2 g/l ethanol, and 0.8 g/l acetic acid from Miscanthus sinensis hydrolysate; and 805 ml/l H2, 5.0 g/l ethanol, and 0.7 g/l acetic acid from Sorghum bicolor hydrolysate.

  15. Productions of Volatile Organic Compounds (VOCs) in Surface Waters from Reactions with Atmospheric Ozone

    Science.gov (United States)

    Hopkins, Frances; Bell, Thomas; Yang, Mingxi

    2017-04-01

    Ozone (O3) is a key atmospheric oxidant, greenhouse gas and air pollutant. In marine environments, some atmospheric ozone is lost by reactions with aqueous compounds (e.g. dissolved organic material, DOM, dimethyl sulfide, DMS, and iodide) near the sea surface. These reactions also lead to formations of volatile organic compounds (VOCs). Removal of O3 by the ocean remains a large uncertainty in global and regional chemical transport models, hampering coastal air quality forecasts. To better understand the role of the ocean in controlling O3 concentrations in the coastal marine atmosphere, we designed and implemented a series of laboratory experiments whereby ambient surface seawater was bubbled with O3-enriched, VOC-free air in a custom-made glass bubble equilibration system. Gas phase concentrations of a range of VOCs were monitored continuously over the mass range m/z 33 - 137 at the outflow of the bubble equilibrator by a proton transfer reaction - mass spectrometer (PTR-MS). Gas phase O3 was also measured at the input and output of the equilibrator to monitor the uptake due to reactions with dissolved compounds in seawater. We observed consistent productions of a variety of VOCs upon reaction with O3, notably isoprene, aldehydes, and ketones. Aqueous DMS is rapidly removed from the reactions with O3. To test the importance of dissolved organic matter precursors, we added increasing (milliliter) volumes of Emiliania huxleyi culture to the equilibrator filled with aged seawater, and observed significant linear increases in gas phase concentrations of a number of VOCs. Reactions between DOM and O3 at the sea-air interface represent a potentially significant source of VOCs in marine air and a sink of atmospheric O3.

  16. Microbial Community Pathways for the Production of Volatile Fatty Acids From CO2 and Electricity

    Directory of Open Access Journals (Sweden)

    Jorge Wenzel

    2018-04-01

    Full Text Available This study aims at elucidating the metabolic pathways involved in the production of volatile fatty acids from CO2 and electricity. Two bioelectrochemical systems (BES were fed with pure CO2 (cells A and B. The cathode potential was first poised at −574 mV vs. standard hydrogen electrode (SHE and then at −756 mV vs. SHE in order to ensure the required reducing power. Despite applying similar operation conditions to both BES, they responded differently. A mixture of organic compounds (1.87 mM acetic acid, 2.30 mM formic acid, 0.43 mM propionic acid, 0.15 mM butyric acid, 0.55 mM valeric acid, and 0.62 mM ethanol was produced in cell A while mainly 1.82 mM acetic acid and 0.23 mM propionic acid were produced in cell B. The microbial community analysis performed by 16S rRNA gene pyrosequencing showed a predominance of Clostridium sp. and Serratia sp. in cell A whereas Burkholderia sp. and Xanthobacter sp. predominated in cell B. The coexistence of three metabolic pathways involved in carbon fixation was predicted. Calvin cycle was predicted in both cells during the whole experiment while Wood-Ljungdahl and Arnon-Buchanan pathways predominated in the period with higher coulombic efficiency. Metabolic pathways which transform organic acids into anabolic intermediaries were also predicted, indicating the occurrence of complex trophic interactions. These results further complicate the understanding of these mixed culture microbial processes but also expand the expectation of compounds that could potentially be produced with this technology.

  17. Improving the conversion of biomass in catalytic fast pyrolysis via white-rot fungal pretreatment.

    Science.gov (United States)

    Yu, Yanqing; Zeng, Yelin; Zuo, Jiane; Ma, Fuying; Yang, Xuewei; Zhang, Xiaoyu; Wang, Yujue

    2013-04-01

    This study investigated the effect of white-rot fungal pretreatment on corn stover conversion in catalytic fast pyrolysis (CFP). Corn stover pretreated by white-rot fungus Irpex lacteus CD2 was fast pyrolyzed alone (non-CFP) and with ZSM-5 zeolite (CFP) in a semi-batch pyroprobe reactor. The fungal pretreatment considerably increased the volatile product yields (predominantly oxygenated compounds) in non-CFP, indicating that fungal pretreatment enhances the corn stover conversion in fast pyrolysis. In the presence of ZSM-5 zeolite, these oxygenated volatiles were further catalytically converted to aromatic hydrocarbons, whose yield increased from 10.03 wt.% for the untreated corn stover to 11.49 wt.% for the pretreated sample. In contrast, the coke yield decreased from 14.29 to 11.93 wt.% in CFP following the fungal pretreatment. These results indicate that fungal pretreatment can enhance the production of valuable aromatics and decrease the amount of undesired coke, and thus has a beneficial effect on biomass conversion in CFP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Characterization of pyrolysis products derived from three biological wastes and their effect on plant growth and soil water retention

    Science.gov (United States)

    B