WorldWideScience

Sample records for volatile organics semivolatile

  1. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    Science.gov (United States)

    George, Ingrid J.; Black, Robert R.; Geron, Chris D.; Aurell, Johanna; Hays, Michael D.; Preston, William T.; Gullett, Brian K.

    2016-05-01

    In this study, volatile and semi-volatile organic compound (VOCs and SVOCs) mass emission factors were determined from laboratory peat fire experiments. The peat samples originated from two National Wildlife Refuges on the coastal plain of North Carolina, U.S.A. Gas- and particle-phase organic compounds were quantified by gas chromatography-mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (∼60%) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. In the fine particle mass (PM2.5), the following organic compound classes were dominant: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for the organic acids in PM2.5 including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12%) of all speciated compound classes measured in this work. Levoglucosan contributed to 2-3% of the OC mass, while methoxyphenols represented 0.2-0.3% of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon (PAH). Total HAP VOC and particulate PAH emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions.

  2. Size-dependence of volatile and semi-volatile organic carbon content in phytoplankton cells

    Directory of Open Access Journals (Sweden)

    Sergio eRuiz-Halpern

    2014-07-01

    Full Text Available The content of volatile and semivolatile organic compounds (VOC and SOC, measured as exchangeable dissolved organic carbon (EDOC, was quantified in 9 phytoplanktonic species that spanned 4 orders of magnitude in cell volume, by disrupting the cells and quantifying the gaseous organic carbon released. EDOC content varied 4 orders of magnitude, from 0.0015 to 14.12 pg C cell-1 in the species studied and increased linearly with increasing phytoplankton cell volume following the equation EDOC (pg C cell-1 = -2.35 x cellular volume (CV, µm3 cell-1 0.90 (± 0.3, with a slope (0.90 not different from 1 indicating a constant increase in volatile carbon as the cell size of phytoplankton increased. The percentage of EDOC relative to total cellular carbon was small but varied 20 fold from 0.28 % to 5.17 %, and no obvious taxonomic pattern in the content of EDOC was appreciable for the species tested. The cell release rate of EDOC is small compared to the amount of carbon in the cell and difficult to capture. Nonetheless, the results point to a potential flux of volatile and semivolatile phytoplankton-derived organic carbon to the atmosphere that has been largely underestimated and deserves further attention in the future.

  3. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    Data.gov (United States)

    U.S. Environmental Protection Agency — Supporting information Tables S3 and S4 list emission factors in g/kg of speciated volatile and particulate organic compounds emitted from peat burning. Peat samples...

  4. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particula...

  5. SUPERCRITICAL FLUID EXTRACTION OF SEMI-VOLATILE ORGANIC COMPOUNDS FROM PARTICLES

    Science.gov (United States)

    A nitrogen oxide flux chamber was modified to measure the flux of semi-volatile organic compounds (SVOCs). Part of the modification involved the development of methods to extract SVOCs from polyurethane foam (PUF), sand, and soil. Breakthroughs and extraction efficiencies were ...

  6. Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions

    Science.gov (United States)

    Vellingiri, Kowsalya; Szulejko, Jan E.; Kumar, Pawan; Kwon, Eilhann E.; Kim, Ki-Hyun; Deep, Akash; Boukhvalov, Danil W.; Brown, Richard J. C.

    2016-06-01

    In this research, we investigated the sorptive behavior of a mixture of 14 volatile and semi-volatile organic compounds (four aromatic hydrocarbons (benzene, toluene, p-xylene, and styrene), six C2-C5 volatile fatty acids (VFAs), two phenols, and two indoles) against three metal-organic frameworks (MOFs), i.e., MOF-5, Eu-MOF, and MOF-199 at 5 to 10 mPa VOC partial pressures (25 °C). The selected MOFs exhibited the strongest affinity for semi-volatile (polar) VOC molecules (skatole), whereas the weakest affinity toward was volatile (non-polar) VOC molecules (i.e., benzene). Our experimental results were also supported through simulation analysis in which polar molecules were bound most strongly to MOF-199, reflecting the presence of strong interactions of Cu2+ with polar VOCs. In addition, the performance of selected MOFs was compared to three well-known commercial sorbents (Tenax TA, Carbopack X, and Carboxen 1000) under the same conditions. The estimated equilibrium adsorption capacity (mg.g‑1) for the all target VOCs was in the order of; MOF-199 (71.7) >Carboxen-1000 (68.4) >Eu-MOF (27.9) >Carbopack X (24.3) >MOF-5 (12.7) >Tenax TA (10.6). Hopefully, outcome of this study are expected to open a new corridor to expand the practical application of MOFs for the treatment diverse VOC mixtures.

  7. Validation of thermodesorption method for analysis of semi-volatile organic compounds adsorbed on wafer surface.

    Science.gov (United States)

    Hayeck, Nathalie; Gligorovski, Sasho; Poulet, Irène; Wortham, Henri

    2014-05-01

    To prevent the degradation of the device characteristics it is important to detect the organic contaminants adsorbed on the wafers. In this respect, a reliable qualitative and quantitative analytical method for analysis of semi-volatile organic compounds which can adsorb on wafer surfaces is of paramount importance. Here, we present a new analytical method based on Wafer Outgassing System (WOS) coupled to Automated Thermal Desorber-Gas chromatography-Mass spectrometry (ATD-GC-MS) to identify and quantify volatile and semi-volatile organic compounds from 6", 8" and 12" wafers. WOS technique allows the desorption of organic compounds from one side of the wafers. This method was tested on three important airborne contaminants in cleanroom i.e. tris-(2-chloroethyl) phosphate (TCEP), tris-(2-chloroisopropyl) phosphate (TCPP) and diethyl phthalate (DEP). In addition, we validated this method for the analysis and quantification of DEP, TCEP and TCPP and we estimated the backside organic contamination which may contribute to the front side of the contaminated wafers. We are demonstrating that WOS/ATD-GC-MS is a suitable and highly efficient technique for desorption and quantitative analysis of organophosphorous compounds and phthalate ester which could be found on the wafer surface.

  8. Determination of fine particulate semi-volatile organic material at three eastern U.S. sampling sites.

    Science.gov (United States)

    Warner, K S; Eatough, D J; Stockburger, L

    2001-09-01

    Correct assessment of fine particulate carbonaceous material as a function of particle size is, in part, dependent on the determination of semi-volatile compounds, which can be lost from particles during sampling. This study gives results obtained for the collection of fine particulate carbonaceous material at three eastern U.S. sampling sites [Philadelphia, PA; Shenandoah National Park, VA; and Research Triangle Park (RTP), NC] using diffusion denuder technology. The diffusion denuder samplers allow for the determination of fine particulate organic material with no artifacts, due to the loss of semi-volatile organic particulate compounds, or collection of gas-phase organic compounds by the quartz filter during sampling. The results show that an average of 41, 43, and 59% of fine particulate organic material was lost as volatilized semi-volatile organic material during collection of particles on a filter at Philadelphia, RTP, and Shenandoah, respectively. The particle size distribution of carbonaceous material retained by a filter and lost from a filter during sampling was obtained for the samples collected at Philadelphia and Shenandoah. The carbonaceous material retained by the particles during sampling was found predominantly in particles smaller than 0.4 microm in aerodynamic diameter. In contrast, the semi-volatile organic material lost from the particles during sampling had a mass median diameter of approximately 0.5 microm.

  9. Characterizing the Chemical Complexity of Semi-Volatile Organic Compounds from Biomass Burning in Amazonia

    Science.gov (United States)

    Wernis, R. A.; Yee, L.; Isaacman-VanWertz, G. A.; Kreisberg, N. M.; de Sá, S. S.; Liu, Y.; Martin, S. T.; Alexander, L.; Palm, B. B.; Hu, W.; Campuzano Jost, P.; Day, D. A.; Jimenez, J. L.; Artaxo, P.; Viegas, J.; Manzi, A. O.; Souza, R. A. F. D.; Hering, S. V.; Goldstein, A. H.

    2015-12-01

    Aerosols are a source of great uncertainty in radiative forcing predictions and have poorly understood impacts on human health. In many environments, biomass burning contributes a significant source of primary aerosol as well as reactive gas-phase precursors that can form secondary organic aerosol (SOA). One class of these precursors, semi-volatile organic compounds (SVOCs), has been shown to have a large contribution to the amount of SOA formed from fire emissions. At present, SVOC emissions from biomass burning are poorly constrained and understanding their contributions to SOA formation is an important research challenge. In the Amazonian dry season, biomass burning is a major source of gases and aerosols reducing regional air quality. As part of the GoAmazon 2014/5 field campaign, we deployed the Semi-Volatile Thermal desorption Aerosol Gas Chromatograph (SV-TAG) instrument at the rural T3 site, 60 km to the west of Manaus, Brazil to measure hourly concentrations of SVOCs in the gas and particle phases. This comprehensive technique detects thousands of compounds, enabling the discovery of previously unidentified compounds. In this work we explore compounds for which a correlation with well-known biomass burning tracers is observed to discover the identities of new tracers. We discuss contributions to the total organic aerosol from well-known, rarely reported and newly-identified biomass burning tracers. We find that levoglucosan, perhaps the most commonly used particle phase biomass burning tracer, contributed 0.6% and 0.3% of total organic aerosol in the dry and wet seasons, respectively.

  10. Semi-volatile organic compounds and trace elements in the Yangtze River source of drinking water.

    Science.gov (United States)

    Wu, Bing; Zhang, Xuxiang; Zhang, Xiaolin; Yasun, Aishangjiang; Zhang, Yan; Zhao, Dayong; Ford, Tim; Cheng, Shupei

    2009-08-01

    Determination of 24 semi-volatile organic compounds (SVOCs) and 24 trace elements in water samples was conducted in order to investigate the quality of the Nanjing source of drinking water taken from Yangtze River. The total concentrations of SVOCs and trace elements were in the range of 1,951-11,098 ng/l and 51,274-72,384 microg/l, respectively. No significant seasonal changes were found for the pollutants' concentrations. A primary health risk assessment was carried out to evaluate potential health effects. Risk quotients involving carcinogenic effects for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, bis(2-ethylhexyl)phthalate and arsenic were >1 under the worst-case scenario. The results of this study demonstrate the importance of further studies on the environmental health effects of exposure to the source water.

  11. Comparative Toxicity of Combined Particle and Semi-Volatile Organic Fractions of Gasoline and Diesel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Mauderly, Joe; Seagrave, JeanClare; McDonald, Jacob; Gigliotti,Andrew; Nikula, Kristen; Seilkop, Steven; Gurevich, Michael

    2002-08-25

    Little is known about the relative health hazards presented by emissions from in-use gasoline and diesel engines. Adverse health effects have been ascribed to engine emissions on the basis of: (1) the presence of known toxic agents in emissions; (2) high-dose animal and bacterial mutagenicity tests; and (3) studies indicating gradients of health effects with proximity to roadways. Most attention has been given to the particulate fraction of emissions; little attention has been given to the semi-volatile organic fraction. However, the semi-volatile fraction overlaps the particulate fraction in composition and is always present in the vicinity of fresh emissions. Although the potential health effects of diesel emissions have been frequently studied and debated during the past 20 years (EPA, 2002), relatively little attention has been given to the toxicity of emissions from gasoline engines. In view of the considerable progress in cleaning up diesel emissions, it would be useful to compare the toxicity of emissions from contemporary on-road diesel technology with that of emissions from the in-use gasoline fleet that is well-accepted by the public. It would also be useful to have a set of validated tests for rapid, cost-effective comparisons of the toxicity of emission samples, both for comparisons among competing technologies (e.g., diesel, gasoline, natural gas) and for determining the impacts of new fuel, engine, and after-treatment strategies on toxicity. The Office of Heavy Vehicle Technologies has sponsored research aimed at developing and applying rapid-response toxicity tests for collected emission samples (Seagrave et al., 2000). This report presents selected results from that work, which is being published in much greater detail in the peer-reviewed literature (Seagrave et al., 2002).

  12. Sorbent-coated diffusion denuders for direct measurement of gas/particle partitioning by semi-volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gundel, L.A. [Lawrence Berkeley National Lab., CA (United States); Lane, D.A. [Atmospheric Environment Service, North York, Ontario (Canada)

    1998-01-01

    Sorbent-coated annular denuder-based samplers have been developed for direct determination of both gaseous and particulate semi-volatile organic species. The first such sampler, the Integrated Organic Vapor/Particle Sampler, has been validated for sampling semi-volatile PAH in ambient air and environmental tobacco smoke. Multi-channel versions of the IOVPS have been used successfully for investigation of gas/particle partitioning of a variety of semi-volatile organic species in combustion source-enriched environmental chambers. Subsequent improvements have resulted in two new higher-capacity samplers, the IOGAPS and the jumbo-IOGAPS, that use the same sorbent for sampling trace organics in the ambient atmosphere for 24--48 hr periods over a wide temperature range. Construction of these new samplers began by incorporating the IOVPS coating technology onto the gas collection surfaces of the higher capacity GAP sampler. Substantial design effort aims to ensure that vapor phase components as volatile as naphthalene can be trapped efficiently and retained by the sorbent-coated surface while the particles pass through to the filter.

  13. Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft

    Directory of Open Access Journals (Sweden)

    E. S. Cross

    2013-08-01

    Full Text Available A detailed understanding of the climate and air quality impacts of aviation requires measurements of the emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs from aircraft. Currently both the amount and chemical composition of aircraft I/SVOC emissions remain poorly characterized. Here we characterize I/SVOC emissions from aircraft, using a novel instrument for the online, quantitative measurement of the mass loading and composition of low-volatility organic vapors. Emissions from the NASA DC8 aircraft were sampled on the ground 143 m downwind of the engines and characterized as a function of engine power from idle (4% maximum rated thrust through 85% power. Results show that I/SVOC emissions are highest during engine idle operating conditions, with decreasing but non-zero I/SVOC emissions at higher engine powers. Comparison of I/SVOC emissions with total hydrocarbon (THC measurements, VOC measurements, and an established emissions profile indicates that I/SVOCs comprise 10–20% of the total organic gas-phase emissions at idle, and an increasing fraction of the total gas-phase organic emissions at higher powers. Positive matrix factorization of online mass spectra is used to identify three distinct types of I/SVOC emissions: aliphatic, aromatic and oxygenated. The volatility and chemical composition of the emissions suggest that unburned fuel is the dominant source of I/SVOCs at idle, while pyrolysis products make up an increasing fraction of the I/SVOCs at higher powers. Oxygenated I/SVOC emissions were detected at lower engine powers (≤30% and may be linked to cracked, partially oxidized or unburned fuel components.

  14. Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft

    Directory of Open Access Journals (Sweden)

    E. S. Cross

    2013-03-01

    Full Text Available A detailed understanding of the climate and air quality impacts of aviation requires detailed measurements of the emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs from aircraft. Currently both the amount and chemical composition of aircraft I/SVOC emissions remain poorly characterized. Here we characterize I/SVOC emissions from aircraft, using a novel instrument for the online, quantitative measurement of the mass loading and composition of low-volatility organic vapors. Emissions from the NASA DC8 aircraft were sampled on the ground, 143 m downwind of the engines and characterized as a function of engine power from ground idle (~4% maximum rated thrust through 85% power. Results show that I/SVOC emissions are highest during engine-idle operating conditions, with decreasing but non-zero I/SVOC emissions at higher engine powers. Comparison of I/SVOC emissions with total hydrocarbon (THC measurements, VOC measurements, and an established emissions profile indicates that I/SVOCs comprise 10–20% of the total organic gas phase emissions at idle, and an increasing fraction of the total gas phase organic emissions at higher powers. Positive matrix factorization of online mass spectra is used to identify three distinct types of I/SVOC emissions: aliphatic, aromatic and oxygenated. The volatility and chemical composition of the emissions suggest that unburned fuel is the dominant source of I/SVOCs at idle, while pyrolysis products make up an increasing fraction of the I/SVOCs at higher powers. Oxygenated I/SVOC emissions were detected at lower engine powers (≤30% and may be linked to cracked, partially oxidized or unburned fuel components.

  15. Semi-volatile organic compounds in the particulate phase in dwellings: A nationwide survey in France

    Science.gov (United States)

    Mandin, Corinne; Mercier, Fabien; Ramalho, Olivier; Lucas, Jean-Paul; Gilles, Erwann; Blanchard, Olivier; Bonvallot, Nathalie; Glorennec, Philippe; Le Bot, Barbara

    2016-07-01

    Sixty-six semi-volatile organic compounds (SVOCs)-phthalates, polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), one pyrethroid, organochlorine and organophosphorous pesticides, alkylphenols, synthetic musks, tri-n-butylphosphate and triclosan-were measured on PM10 filters collected over 7 days during a nationwide survey of 285 French dwellings, representative of nearly 25 million housing units. Thirty-five compounds were detected in more than half of the dwellings. PAHs, phthalates and triclosan were the major particle-bound SVOCs, with a median concentration greater than 1 ng m-3 for butylbenzyl phthalate (BBP) (median: 1.6 ng m-3), di(2-ethylhexyl) phthalate (DEHP) (46 ng m-3) and di-iso-nonyl phthalate (DiNP) (7.9 ng m-3), and greater than 0.1 ng m-3 for triclosan (114 pg m-3), benzo(a)pyrene (138 pg m-3), benzo(b)fluoranthene (306 pg m-3), benzo(g,h,i)perylene (229 pg m-3), and indeno(1,2,3-c,d)pyrene (178 pg m-3). For most of the SVOCs, higher concentrations were found in the dwellings of smokers and during the heating season. The concentrations of banned SVOCs-namely, PCBs and organochlorine pesticides-were correlated. Permethrin, 4-tert-butylphenol and bisphenol-A showed no correlation with the other SVOCs and seemed to have their own specific sources. Most SVOCs were positively associated with PM10 concentration, suggesting that any factor that raises the mass of indoor airborne particles also increases the exposure to SVOCs through inhalation.

  16. Inter-laboratory comparison study on measuring semi-volatile organic chemicals in standards and air samples.

    Science.gov (United States)

    Su, Yushan; Hung, Hayley

    2010-11-01

    Measurements of semi-volatile organic chemicals (SVOCs) were compared among 21 laboratories from 7 countries through the analysis of standards, a blind sample, an air extract, and an atmospheric dust sample. Measurement accuracy strongly depended on analytes, laboratories, and types of standards and samples. Intra-laboratory precision was generally good with relative standard deviations (RSDs) of triplicate injections laboratory variability, measured by RSDs of all measurements, was in the range of 2.8-58% in analyzing standards, and 6.9-190% in analyzing blind sample and air extract. Inter-laboratory precision was poorer when samples were subject to cleanup processes, or when SVOCs were quantified at low concentrations. In general, inter-laboratory differences up to a factor of 2 can be expected to analyze atmospheric SVOCs. When comparing air measurements from different laboratories, caution should be exercised if the data variability is less than the inter-laboratory differences.

  17. ScienceHub data set for "Detection of semi-volatile organic compounds in permeable pavement infiltrate"

    Data.gov (United States)

    U.S. Environmental Protection Agency — Observed permeable pavement infiltrate concentrations by EPA (1996) method 8270C Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) with...

  18. Modeling long-term uptake and re-volatilization of semi-volatile organic compounds (SVOCs) across the soil-atmosphere interface.

    Science.gov (United States)

    Bao, Zhongwen; Haberer, Christina; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter

    2015-12-15

    Soil-atmosphere exchange is important for the environmental fate and atmospheric transport of many semi-volatile organic compounds (SVOCs). This study focuses on modeling the vapor phase exchange of semi-volatile hydrophobic organic pollutants between soil and the atmosphere using the multicomponent reactive transport code MIN3P. MIN3P is typically applied to simulate aqueous and vapor phase transport and reaction processes in the subsurface. We extended the code to also include an atmospheric boundary layer where eddy diffusion takes place. The relevant processes and parameters affecting soil-atmosphere exchange were investigated in several 1-D model scenarios and at various time scales (from years to centuries). Phenanthrene was chosen as a model compound, but results apply for other hydrophobic organic compounds as well. Gaseous phenanthrene was assumed to be constantly supplied to the system during a pollution period and a subsequent regulation period (with a 50% decline in the emission rate). Our results indicate that long-term soil-atmosphere exchange of phenanthrene is controlled by the soil compartment - re-volatilization thus depends on soil properties. A sensitivity analysis showed that accumulation and transport in soils in the short term is dominated by diffusion, whereas in the long term groundwater recharge and biodegradation become relevant. As expected, sorption causes retardation and slows down transport and biodegradation. If atmospheric concentration is reduced (e.g. after environmental regulations), re-volatilization from soil to the atmosphere occurs only for a relatively short time period. Therefore, the model results demonstrate that soils generally are sinks for atmospheric pollutants. The atmospheric boundary layer is only relevant for time scales of less than one month. The extended MIN3P code can also be applied to simulate fluctuating concentrations in the atmosphere, for instance due to temperature changes in the topsoil.

  19. Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2010-06-01

    Full Text Available It has been established that observed local and regional levels of secondary organic aerosols (SOA in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to estimate the potential contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic precursors (S/IVOC in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA, their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007 ("ROB" and Grieshop et al. (2009 ("GRI" are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (2–4 times with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009, both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The predicted production from anthropogenic and biomass burning S/IVOC represents 40–60% of the total measured SOA at the surface during the day and is somewhat larger than that from commonly measured aromatic VOCs, especially at the T1 site at the edge of the city. The SOA production from the continued multi-generation S/IVOC oxidation products continues actively

  20. Methodology for the detection of contamination by hydrocarbons and further soil sampling for volatile and semi-volatile organic enrichment in former petrol stations, SE Spain

    Directory of Open Access Journals (Sweden)

    Rosa María Rosales Aranda

    2012-01-01

    Full Text Available The optimal detection and quantification of contamination plumes in soil and groundwater by petroleum organic compounds, gasoline and diesel, is critical for the reclamation of hydrocarbons contaminated soil at petrol stations. Through this study it has been achieved a sampling stage optimization in these scenarios by means of the location of potential contamination areas before sampling with the application of the 2D electrical resistivity tomography method, a geophysical non destructive technique based on resistivity measurements in soils. After the detection of hydrocarbons contaminated areas, boreholes with continuous coring were performed in a petrol station located in Murcia Region (Spain. The drillholes reached depths down to 10 m and soil samples were taken from each meter of the drilling. The optimization in the soil samples handling and storage, for both volatile and semi-volatile organic compounds determinations, was achieved by designing a soil sampler to minimize volatilization losses and in order to avoid the manual contact with the environmental samples during the sampling. The preservation of soil samples was performed according to Europe regulations and US Environmental Protection Agency recommendations into two kinds of glass vials. Moreover, it has been taken into account the determination techniques to quantify the hydrocarbon pollution based on Gas Chromatography with different detectors and headspace technique to reach a liquid-gas equilibrium for volatile analyses.

  1. Measurement of fine particulate matter nonvolatile and semi-volatile organic material with the Sunset Laboratory Carbon Aerosol Monitor.

    Science.gov (United States)

    Grover, Brett D; Kleinman, Michael; Eatough, Norman L; Eatough, Delbert J; Cary, Robert A; Hopke, Philip K; Wilson, William E

    2008-01-01

    Semi-volatile organic material (SVOM) in fine particles is not reliably measured with conventional semicontinuous carbon monitors because SVOM is lost from the collection media during sample collection. We have modified a Sunset Laboratory Carbon Aerosol Monitor to allow for the determination of SVOM. In a conventional Sunset monitor, gas-phase organic compounds are removed in the sampled airstream by a diffusion denuder employing charcoal-impregnated cellulose filter (CIF) surfaces. Subsequently, particles are collected on a quartz filter and the instrument then determines both the organic carbon and elemental carbon fractions of the aerosol using a thermal/optical method. However, some of the SVOM is lost from the filter during collection, and therefore is not determined. Because the interfering gas-phase organic compounds are removed before aerosol collection, the SVOM can be determined by filtering the particles at the instrument inlet and then replacing the quartz filter in the monitor with a charcoal-impregnated glass fiber filter (CIG), which retains the SVOM lost from particles collected on the inlet filter. The resulting collected SVOM is then determined in the analysis step by measurement of the carbonaceous material thermally evolved from the CIG filter. This concept was tested during field studies in February 2003 in Lindon, UT, and in July 2003 in Rubidoux, CA. The results obtained were validated by comparison with Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) results. The sum of nonvolatile organic material determined with a conventional Sunset monitor and SVOM determined with the modified Sunset monitor agree with the PC-BOSS results. Linear regression analysis of total carbon concentrations determined by the PC-BOSS and the Sunset resulted in a zero-intercept slope of 0.99 +/- 0.02 (R2 = 0.92) and a precision of sigma = +/- 1.5 microg C/m3 (8%).

  2. Seasonal fate and gas/particle partitioning of semi-volatile organic compounds in indoor and outdoor air

    Science.gov (United States)

    Moreau-Guigon, Elodie; Alliot, Fabrice; Gaspéri, Johnny; Blanchard, Martine; Teil, Marie-Jeanne; Mandin, Corinne; Chevreuil, Marc

    2016-12-01

    Fifty-eight semi-volatile organic compounds (SVOCs) were investigated simultaneously in three indoor (apartment, nursery and office building) and one outdoor environment in the centre of Paris (France). All of these compounds except tetrabromobisphenol A were quantified in the gaseous and particulate phases in all three environments, and at a frequency of 100% for the predominant compounds of each SVOC class. Phthalic acid esters (PAEs) were the most abundant group (di-iso-butyl phthalate: 29-661 ng m-3, diethyl phthalate: 15-542 ng m-3), followed by 4-nonylphenol (1.4-81 ng m-3), parabens (methylparaben: 0.03-2.5 ng m-3), hexachlorobenzene (HCB) (0.002-0.26 ng m-3) and pentachlorobenzene (PeCB) (0.001-0.23 ng m-3). Polycyclic aromatic hydrocarbons (as ∑8PAHs) ranged from 0.17 to 5.40 ng m-3, polychlorinated biphenyls (as ∑7PCBi) from 0.06 to 4.70 ng.m3 and polybromodiphenyl ethers (as ∑8PBDEs) from 0.002 to 0.40 ng m-3. For most pollutants, significantly higher concentrations were observed in the nursery compared to the apartment and office. Overall, the indoor air concentrations were up to ten times higher than outdoor air concentrations. Seasonal variations were observed for PAEs, PCBs and PAHs. SVOCs were predominantly identified in the gaseous phase (>90%), except for some high-molecular-weight PAEs, PAHs and PCBs.

  3. Semi-volatile organic compounds in heating, ventilation, and air-conditioning filter dust in retail stores.

    Science.gov (United States)

    Xu, Y; Liang, Y; Urquidi, J R; Siegel, J A

    2015-02-01

    Retail stores contain a wide range of products that can emit a variety of indoor pollutants. Among these chemicals, phthalate esters and polybrominated diphenyl ethers (PBDEs) are two important categories of semi-volatile organic compounds (SVOCs). Filters in heating, ventilation, and air-conditioning (HVAC) system collect particles from large volumes of air and thus potentially provide spatially and temporally integrated SVOC concentrations. This study measured six phthalate and 14 PBDE compounds in HVAC filter dust in 14 retail stores in Texas and Pennsylvania, United States. Phthalates and PBDEs were widely found in the HVAC filter dust in retail environment, indicating that they are ubiquitous indoor pollutants. The potential co-occurrence of phthalates and PBDEs was not strong, suggesting that their indoor sources are diverse. The levels of phthalates and PBDEs measured in HVAC filter dust are comparable to concentrations found in previous investigations of settled dust in residential buildings. Significant correlations between indoor air and filter dust concentrations were found for diethyl phthalate, di-n-butyl phthalate, and benzyl butyl phthalate. Reasonable agreement between measurements and an equilibrium model to describe SVOC partitioning between dust and gas-phase is achieved. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol in the Mexico City region

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2010-01-01

    Full Text Available It has been established that observed local and regional levels of secondary organic aerosols (SOA in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to quantify the contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic vapors (S/IVOC in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA, their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007 ("ROB" and Grieshop et al. (2009 ("GRI" are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements.

    The results show a substantial enhancement in predicted SOA concentrations (3–6 times with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009, both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. The predicted anthropogenic POA levels are found to agree within 20% with the observed HOA concentrations for both the ROB and GRI simulations, consistent with the interpretation of the emissions inventory by previous studies. The impact of biomass burning POA within the city is underestimated in comparison to the AMS BBOA, presumably due to insufficient nighttime smoldering emissions. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal

  5. Radiocarbon content of synthetic and natural semi-volatile halogenated organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, C.M.; Xu Li; Eglinton, T.I.; Boon, J.P.; Faulkner, D.J

    2002-12-01

    New developments in molecular-level {sup 14}C analysis techniques enable clues about natural versus commercial synthesis of trace organic contaminants. - Some halogenated organic compounds, such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and polybrominated diphenyl ethers (PBDEs), have been suggested to have natural sources but separating these compounds from their commercially synthesized counterparts is difficult. Molecular-level {sup 14}C analysis may be beneficial since most synthetic compounds are manufactured from petrochemicals ({sup 14}C-free) and natural compounds should have 'modern' or 'contemporary' {sup 14}C levels. As a baseline study, we measured, for the first time, the {sup 14}C abundance in commercial PCB and PBDE mixtures, a number of organochlorine pesticides, as well as one natural product 2-(3', 5'-dibromo-2'-methoxyphenoxy)-3,5-dibromoanisole. The latter compound was isolated from a marine sponge and is similar in structure to a PBDE. All of the synthetic compounds were {sup 14}C-free except for the pesticide toxaphene, which had a modern {sup 14}C abundance, as did the brominated natural compound. The result for toxaphene was not surprising since it was commercially synthesized by the chlorination of camphene derived from pine trees. These results suggest that measuring the {sup 14}C content of halogenated organic compounds may be quite useful in establishing whether organic compounds encountered in the environment have natural or synthetic origins (or both) provided that any synthetic counterparts derive from petrochemical feedstock.

  6. Air-sea interactions of semi-volatile organic compounds in the tropical environment of Southeast Asia

    Directory of Open Access Journals (Sweden)

    Balasubramanian R.

    2010-12-01

    Full Text Available Major urban and industrial centers increase loadings of semi-volatile organic compounds (SVOCs to proximate sea waters through riverine transport, atmospheric deposition via dry particle deposition, wet deposition, and air-sea gas exchange. In addition to acting as sinks for SVOCs, oceans can act as sources of SVOCs to coastal atmospheres and play important roles in the global biogeochemistry of SVOCs. Particle-sorbed SVOCs can settle to the ocean surface by dry particle deposition, a uni-directional advective transport process from the atmosphere to the water, the removal rate by which is a function of the physical and chemical properties of the aerosols and bound pollutants, meteorological conditions and surface characteristics. In addition, SVOCs are removed from the atmosphere and transported to the waters by precipitation scavenging of atmospheric vapors and particles, which are incorporated into the rain within or below the clouds. After SVOCs are deposited into the bulk seawater, water-column partitioning can affect the distribution of pollutants between the dissolved aqueous and the solid phases and eventually impact the fate of these compounds in oceans. Other than the abovementioned processes, air-sea exchange can make SVOCs diffuse across the air-sea interface; however, the sea surface microlayer (SML, a unique compartment at the air-sea boundary defined operationally as the upper millimeter (1 ∼ 1000 μm of the sea surface, has large storage capacity to delay the transport of SVOCs across the interface. This article reports the dry particle deposition and wet deposition of selected SVOCs based on an extensive set of yearly data collected in Singapore. Singapore, a representative country of Southeast Asia (SEA, is a small but highly developed island with dense industrial parks in the Southwestern part, where the terrestrial sources affect the surrounding coasts. In this study, Singapore’s Southern coastline was chosen during

  7. On-line derivatization for hourly measurements of gas- and particle-phase Semi-Volatile oxygenated organic compounds by Thermal desorption Aerosol Gas chromatography (SV-TAG

    Directory of Open Access Journals (Sweden)

    G. Isaacman

    2014-07-01

    Full Text Available Laboratory oxidation studies have identified a large number of oxygenated organic compounds that can be used as tracers to understand sources and oxidation chemistry of atmospheric particulate matter. Quantification of these compounds in ambient environments has traditionally relied on low time-resolution collection of filter samples followed by offline sample treatment with a derivatizing agent to allow analysis by gas chromatography of otherwise non-elutable organic chemicals with hydroxyl groups. We present here an automated in situ instrument for the measurement of highly polar organic semi-volatile and low-volatility compounds in both the gas- and particle-phase with hourly time-resolution. The dual-cell Semi-Volatile Thermal desorption Aerosol Gas chromatograph (SV-TAG with derivatization collects particle-only and combined particle-plus-vapor samples on two parallel sampling cells that are analyzed in series by thermal desorption into helium saturated with derivatizing agent. Introduction of MSTFA, a silylating agent, yields complete derivatization of all tested compounds, including alkanoic acids, polyols, diacids, sugars, and multifunctional compounds. In laboratory tests, derivatization is found to be highly reproducible (< 3% variability. During field deployment, a regularly injected internal standard is used to correct for variability in detector response, derivatization efficiency, desorption efficiency, and transfer efficiency. Error in quantification from instrument fluctuations is found to be less than 10% for hydrocarbons and less than 15% for all oxygenates for which a functionally similar internal standard is available. After internal standard corrections, calibration curves are found to be linear for all compounds over the span of one month with comparable response on both of the parallel sampling cells.

  8. Online derivatization for hourly measurements of gas- and particle-phase semi-volatile oxygenated organic compounds by thermal desorption aerosol gas chromatography (SV-TAG)

    Science.gov (United States)

    Isaacman, G.; Kreisberg, N. M.; Yee, L. D.; Worton, D. R.; Chan, A. W. H.; Moss, J. A.; Hering, S. V.; Goldstein, A. H.

    2014-12-01

    Laboratory oxidation studies have identified a large number of oxygenated organic compounds that can be used as tracers to understand sources and oxidation chemistry of atmospheric particulate matter. Quantification of these compounds in ambient environments has traditionally relied on low-time-resolution collection of filter samples followed by offline sample treatment with a derivatizing agent to allow analysis by gas chromatography of otherwise non-elutable organic chemicals with hydroxyl groups. We present here an automated in situ instrument for the measurement of highly polar organic semi-volatile and low-volatility compounds in both the gas- and particle-phase with hourly quantification of mass concentrations and gas-particle partitioning. The dual-cell semi-volatile thermal desorption aerosol gas chromatograph (SV-TAG) with derivatization collects particle-only and combined particle-plus-vapor samples on two parallel sampling cells that are analyzed in series by thermal desorption into helium saturated with derivatizing agent. Introduction of MSTFA (N-methyl-N-(trimethylsilyl)trifluoroacetamide), a silylating agent, yields complete derivatization of all tested compounds, including alkanoic acids, polyols, diacids, sugars, and multifunctional compounds. In laboratory tests, derivatization is found to be highly reproducible (regularly injected internal standard is used to correct for variability in detector response, consumption of the derivatization agent, desorption efficiency, and transfer losses. Error in quantification from instrument fluctuations is found to be less than 10% for hydrocarbons and less than 15% for all oxygenates for which a functionally similar internal standard is available, with an uncertainty of 20-25% in measurements of particle fraction. After internal standard corrections, calibration curves are found to be linear for all compounds over the span of 1 month, with comparable response on both of the parallel sampling cells.

  9. On-line derivatization for hourly measurements of gas- and particle-phase Semi-Volatile oxygenated organic compounds by Thermal desorption Aerosol Gas chromatography (SV-TAG)

    Science.gov (United States)

    Isaacman, G.; Kreisberg, N. M.; Yee, L. D.; Worton, D. R.; Chan, A. W. H.; Moss, J. A.; Hering, S. V.; Goldstein, A. H.

    2014-07-01

    Laboratory oxidation studies have identified a large number of oxygenated organic compounds that can be used as tracers to understand sources and oxidation chemistry of atmospheric particulate matter. Quantification of these compounds in ambient environments has traditionally relied on low time-resolution collection of filter samples followed by offline sample treatment with a derivatizing agent to allow analysis by gas chromatography of otherwise non-elutable organic chemicals with hydroxyl groups. We present here an automated in situ instrument for the measurement of highly polar organic semi-volatile and low-volatility compounds in both the gas- and particle-phase with hourly time-resolution. The dual-cell Semi-Volatile Thermal desorption Aerosol Gas chromatograph (SV-TAG) with derivatization collects particle-only and combined particle-plus-vapor samples on two parallel sampling cells that are analyzed in series by thermal desorption into helium saturated with derivatizing agent. Introduction of MSTFA, a silylating agent, yields complete derivatization of all tested compounds, including alkanoic acids, polyols, diacids, sugars, and multifunctional compounds. In laboratory tests, derivatization is found to be highly reproducible (regularly injected internal standard is used to correct for variability in detector response, derivatization efficiency, desorption efficiency, and transfer efficiency. Error in quantification from instrument fluctuations is found to be less than 10% for hydrocarbons and less than 15% for all oxygenates for which a functionally similar internal standard is available. After internal standard corrections, calibration curves are found to be linear for all compounds over the span of one month with comparable response on both of the parallel sampling cells.

  10. The development of a rugged, field portable membrane introduction tandem mass spectrometer and its use as an on-line monitor for volatile and semi-volatile organic compounds in the Alberta Oil Sands

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Davey [Applied Environmental Research Laboratories (Canada)

    2011-07-01

    In Alberta, steam assisted gravity drainage is a process often used to enhance oil recovery from open pit mining or heavy oil reservoirs. This process releases volatile and semi-volatile organic compounds (VOC/SVOC) into the atmosphere or process waters. Thus a field portable analytical instrument is needed to monitor VOC/SVOC. The aim of this paper is to present the development of such a tool and its results. A field portable membrane introduction tandem mass spectrometer was developed through a multiyear collaboration between Statoil, NTNU and Griffin. This technology can analyze both atmospheric and aqueous environmental samples. Calibrations of the system were carried out in a laboratory and the system was then tested in two field trials in the Alberta oil sands. This work gives results of these different tests and explores the use of thermally assisted membrane interfaces and in-membrane trap and release strategies.

  11. A Survey of 42 Semi-Volatile Organic Contaminants in Groundwater along the Grand Canal from Hangzhou to Beijing, East China

    Directory of Open Access Journals (Sweden)

    Xiaojie Li

    2015-12-01

    Full Text Available The status of organic pollution in groundwater in eastern China along the Grand Canal from Hangzhou to Beijing was evaluated. Forty-two semi-volatile organic contaminants were analyzed, including 16 polycyclic aromatic hydrocarbons (PAHs, seven polychlorinated biphenyls (PCBs, 12 organochlorine pesticides (OCPs and seven organophosphorus pesticides (OPPs. Among the detected contaminants, PAHs were the most widespread compounds. One PCB and six OCPs were detected in the groundwater samples, but none of the target OPPs was detected. The total concentration of the 16 PAHs ranged from 0.21 to 1006 ng/L, among which phenanthrene (271 ng/L and fluoranthene (233 ng/L were present at very high concentrations and naphthalene (32 positive detections in 50 samples and fluorene (28 detections in 50 samples were the most frequently detected. Benzo[a]pyrene equivalents indicated a high environmental risk related to PAHs in a few groundwater samples. To identify the possible sources of PAHs, three concentration ratios, low molecular weight PAHs/high molecular weight PAHs, anthracene/(anthracene + phenanthrene and fluoranthene/(fluoranthene + pyrene, were determined, that indicated that the PAHs mainly originated from mixed sources: pyrolytic and petrogenic sources with different ratios at different sites.

  12. GEM/POPs: a global 3-D dynamic model for semi-volatile persistent organic pollutants – Part 2: Global transports and budgets of PCBs

    Directory of Open Access Journals (Sweden)

    L. A. Barrie

    2007-03-01

    Full Text Available Global transports and budgets of three PCBs were investigated with a 3-D dynamic model for semi-volatile persistent organic pollutants – GEM/POPs. Dominant pathways were identified for PCB transports in the atmosphere with a peak transport flux below 8 km and 14 km for gaseous and particulate PCB28, 4 km and 6 km for gaseous and particulate PCB180. The inter-continental transports of PCBs in the Northern Hemisphere (NH are dominated in the zonal direction with their route changes seasonally regulated by the variation of westerly jet. The transport pathways from Europe and North Atlantic to the Arctic contributed the most PCBs over there. Inter-hemispheric transports of PCBs originated from the regions of Europe, Asia and North America in three different flow-paths, accompanying with easterly jet, Asian monsoon winds and trade winds. PCBs from the Southern Hemisphere (SH could export into the NH. According to the PCB emissions of year 2000, Europe, North America and Asia are the three largest sources of the three PCBs, contributing to the global background concentrations in the atmosphere and soil and water. Globally, PCB28 in soil and water has become a comparable source to the anthropogenic emissions while heavier PCBs such as PCB153 and 180 are still transporting into soil and water. It is found that lighter PCBs have more long range transport potentials than their heavier counter-parts in the atmosphere.

  13. Temperature dependence of the particle/gas partition coefficient: An application to predict indoor gas-phase concentrations of semi-volatile organic compounds.

    Science.gov (United States)

    Wei, Wenjuan; Mandin, Corinne; Blanchard, Olivier; Mercier, Fabien; Pelletier, Maud; Le Bot, Barbara; Glorennec, Philippe; Ramalho, Olivier

    2016-09-01

    The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25°C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R>0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6°C, while it increased by up to 750% when the indoor temperature increased from 15°C to 30°C.

  14. Distributions of the particle/gas and dust/gas partition coefficients for seventy-two semi-volatile organic compounds in indoor environment.

    Science.gov (United States)

    Wei, Wenjuan; Mandin, Corinne; Blanchard, Olivier; Mercier, Fabien; Pelletier, Maud; Le Bot, Barbara; Glorennec, Philippe; Ramalho, Olivier

    2016-06-01

    Particle/gas and dust/gas partition coefficients (Kp and Kd) are two key parameters that address the partitioning of semi-volatile organic compounds (SVOCs) between gas-phase, airborne particles, and settled dust in indoor environment. A number of empirical equations to calculate the values of Kp and Kd have been reported in the literature. Therefore, the difficulty lies in the selection of a specific empirical equation in a given situation. In this study, we retrieved from the literature 38 empirical equations for calculating Kp and Kd values from the SVOC saturation vapor pressure and octanol/air partition coefficient. These values were calculated for 72 SVOCs: 9 phthalates, 9 polybrominated diphenyl ethers (PBDEs), 11 polychlorinated biphenyls (PCBs), 22 biocides, 14 polycyclic aromatic hydrocarbons (PAHs), 3 alkylphenols, 2 synthetic musks, tributylphosphate, and bisphenol A. The mean and median values of log10Kp or log10Kd for most SVOCs were of the same order of magnitude. The distribution of log10Kp values was fitted to either a normal distribution (for 27 SVOCs) or a log-normal distribution (for 45 SVOCs). This work provides a reference distribution of the log10Kp for 72 SVOCs, and its use may reduce the bias associated with the selection of a specific value or equation.

  15. Temperature dependence of the particle/gas partition coefficient: An application to predict indoor gas-phase concentrations of semi-volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wenjuan, E-mail: Wenjuan.Wei@cstb.fr [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); Mandin, Corinne [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); Blanchard, Olivier [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Mercier, Fabien [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Pelletier, Maud [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Le Bot, Barbara [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); and others

    2016-09-01

    The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25 °C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R > 0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6 °C, while it increased by up to 750% when the indoor temperature increased from 15 °C to 30 °C. - Highlights: • A theoretical relationship between K{sub p} and temperature was developed. • The relationship was based on the SVOC absorptive mechanism. • The temperature impact was quantified by a dimensionless analysis.

  16. Development of a parallel sampling and analysis method for the elucidation of gas/particle partitioning of oxygenated semi-volatile organics: a limonene ozonolysis study

    Directory of Open Access Journals (Sweden)

    S. Rossignol

    2012-06-01

    Full Text Available The gas/particle partitioning behaviour of the semi-volatile fraction of secondary organic matter and the associated multiphase chemistry are key features to accurately evaluate climate and health impacts of secondary organic aerosol (SOA. However, today, the partitioning of oxygenated secondary species is rarely assessed in experimental SOA studies and SOA modelling is still largely based on estimated partitioning data. This paper describes a new analytical approach, solvent-free and easy to use, to explore the chemical composition of the secondary organic matter at a molecular scale in both gas and particulate phases. The method is based on thermal desorption (TD of gas and particulate samples, coupled with gas chromatography (GC and mass spectrometry (MS, with derivatisation on sampling supports. Gaseous compounds were trapped on Tenax TA adsorbent tubes pre-coated with pentafluorobenzylhydroxylamine (PFBHA or N-Methyl-N-(t-butyldimethylsilyltrifluoroacetamide (MTBSTFA. Particulate samples were collected onto quartz or Teflon-quartz filters and subsequently subjected to derivatisation with PFBHA or MTBSTFA before TD-GC/MS analysis. Method development and validation are presented for an atmospherically relevant range of organic acids and carbonyl and hydroxyl compounds. Application of the method to a limonene ozonolysis experiment conducted in the EUPHORE simulation chamber under simulated atmospheric conditions of low concentrations of limonene precursor and relative humidity, provides an overview of the method capabilities. Twenty-five compounds were positively or tentatively identified, nine being in both gaseous and particulate phases; and twelve, among them tricarboxylic acids, hydroxyl dicarboxylic acids and oxodicarboxylic acids, being detected for the first time.

  17. High Throughput Exposure Modeling of Semi-Volatile Chemicals in Articles of Commerce (SOT)

    Science.gov (United States)

    Chemical components of consumer products and articles of commerce such as carpet and clothing are key drivers of exposure in the near-field environment. These chemicals include semi-volatile organic compounds (SVOCs), some of which have been shown to alter endocrine functionality...

  18. Composition of semi-volatile organic compounds in the urban atmosphere of Singapore: influence of biomass burning

    Directory of Open Access Journals (Sweden)

    J. He

    2010-04-01

    Full Text Available An intensive field study was conducted in the urban atmosphere of Singapore to investigate the composition of organic compounds in both gaseous and particulate phases during the period of August to early November 2006. 17 atmospheric samples were collected. These samples were subjected to accelerated solvent extraction with a mixture of dichloromethane and acetone and separated into functional group fractions for analyses by GC/MS. Over 180 organic compounds belonging to three major fractions (n-alkanes, polycyclic aromatic hydrocarbons (PAHs, and polar organic compounds (POCs were identified and quantified. The characteristics and abundance of the n-alkanes, PAHs, mono and dicarboxylic acids, methoxylated phenols and other POCs were determined. The composition of these organic compounds fluctuated temporally with most of them being relatively higher in October than those in other months of the sampling period. 3-D backward air mass trajectory analyses together with the carbon preference index (CPI, molecular diagnostic ratios and molecular markers were used to investigate the origin of organic species measured in this study. Based on these diagnostic tools, the increased abundance of atmospheric organic species during October could be attributed to the occurrence of regional smoke haze episodes due to biomass burning in Indonesia. Among the POCs investigated, phthalic acid and cis-pinonic acid showed a strong linear relationship with maximum daily ozone concentration, indicating secondary organic aerosols (SOA to be an important contributor to ambient atmospheric organics over Singapore.

  19. Composition of semi-volatile organic compounds in the urban atmosphere of Singapore: influence of biomass burning

    Science.gov (United States)

    He, J.; Zielinska, B.; Balasubramanian, R.

    2010-12-01

    An intensive field study was conducted in the urban atmosphere of Singapore to investigate the composition of organic compounds in both gaseous and particulate phases during the period of August to early November 2006. 17 atmospheric samples were collected. These samples were subjected to accelerated solvent extraction with a mixture of dichloromethane and acetone and separated into functional group fractions for analyses by GC/MS. Over 180 organic compounds belonging to three major fractions (n-alkanes, polycyclic aromatic hydrocarbons - PAHs, and polar organic compounds - POCs) were identified and quantified. The characteristics and abundance of the n-alkanes, PAHs, mono and dicarboxylic acids, methoxylated phenols and other POCs were determined. The composition of these organic compounds fluctuated temporally with most of them being relatively higher in October than those in other months of the sampling period. 3-D backward air mass trajectory analyses together with the carbon preference index (CPI), molecular diagnostic ratios and molecular markers were used to investigate the origin of organic species measured in this study. Based on these diagnostic tools, the increased abundance of atmospheric organic species during October could be attributed to the occurrence of regional smoke haze episodes due to biomass burning in Indonesia. Among the POCs investigated, phthalic acid and cis-pinonic acid were abundant during October 2006. These two acids showed strong linear relationships with maximum daily ozone concentrations throughout the entire sampling period. This correlation with ozone suggested that the secondary aerosol constituents such as phthalic and cis-pinonic acids were probably formed through O3-induced photochemical transformation.

  20. Characterization of Semi-volatility of Atmospheric Submicron Particles at a Regional Background Site in North China

    Science.gov (United States)

    He, L. Y.

    2015-12-01

    HE Lingyan1, HUANG Congni1, HUANG Xiaofeng11. Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China Abstract:The coupling of a Thermal Denuder (TD) with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was used in Xianghe, which is a regional background site in North China, during June - July, 2013 to on-line measure the mass concentrations and semi-volatilities of atmospheric submicron particles, including organic matter (OM), SO42- , NO3-, NH4+, and Cl-. The total PM1 mass concentration measured was averagely (47.9±47.3) mg/m3 during the campaign, with OM accounting for 38.2% of the total PM1 mass, followed by SO42- (33.7%), NH4+ (13.8%), NO3- (12.3%), and Cl- (2.0%). It was found that NO3- and Cl- had the highest semi-volatility, with about 60% of them evaporating into the gas phase by increasing the temperature to 50 °C, while SO42- showed the lowest semi-volatility, with almost 90% of its mass remaining in the particle phase at 50 °C. The semi-volatility of OM and NH4+ was at the middle level. The semi-volatility of NO3- was affected by the pollution level of the atmospheric submicron particles since it showed an increasing trend with the increasing of PM1 at 50 °C. The oxygen-to-carbon ration of organic aerosol was 0.47 to 0.60 by increasing the temperature from 50 ℃ to 200 °C. In addition, the semi-volatility of the PM1 species with vacuum aerodynamic diameters of 60-2000 nm was little size dependent. The calculation based on the high-resolution mass spectra of OM showed that CO2+-containing organic species had lower semi-volatility, while C4H9+-containing organic species had higher semi-volatility. The semi-volatility of OM was found to be negatively related to its oxidation state. The quantitative result of atmospheric submicron particles' semi-volatility is essential to the research of the physicochemical

  1. Removal of volatile to semi-volatile organic contaminants from water using hollow fiber membrane contactors and catalytic destruction of the contaminants in the gas phase

    OpenAIRE

    Tarafder, Shamsul Abedin

    2007-01-01

    Abstract Chlorinated organic compounds and ether compounds are frequently found in groundwater and efficient treatment options are needed. In this study, the efficient transferal of the compounds from the water phase to the gas phase was studied followed by the catalytic treatment of the gas phase. For the removal of the organic contaminants from water, a microporous polypropylene hollow fiber membrane (HFM) module was operated under low strip gas flow to water flow ratios (_< 5:1). Rem...

  2. Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer

    Science.gov (United States)

    Quirico, E.; Moroz, L. V.; Schmitt, B.; Arnold, G.; Faure, M.; Beck, P.; Bonal, L.; Ciarniello, M.; Capaccioni, F.; Filacchione, G.; Erard, S.; Leyrat, C.; Bockelée-Morvan, D.; Zinzi, A.; Palomba, E.; Drossart, P.; Tosi, F.; Capria, M. T.; De Sanctis, M. C.; Raponi, A.; Fonti, S.; Mancarella, F.; Orofino, V.; Barucci, A.; Blecka, M. I.; Carlson, R.; Despan, D.; Faure, A.; Fornasier, S.; Gudipati, M. S.; Longobardo, A.; Markus, K.; Mennella, V.; Merlin, F.; Piccioni, G.; Rousseau, B.; Taylor, F.

    2016-07-01

    The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument aboard the Rosetta spacecraft has performed extensive spectral mapping of the surface of comet 67P/Churyumov-Gerasimenko in the range 0.3-5 μm. The reflectance spectra collected across the surface display a low reflectance factor over the whole spectral range, two spectral slopes in the visible and near-infrared ranges and a broad absorption band centered at 3.2 μm. The first two of these characteristics are typical of dark small bodies of the Solar System and are difficult to interpret in terms of composition. Moreover, solar wind irradiation may modify the structure and composition of surface materials and there is no unequivocal interpretation of these spectra devoid of vibrational bands. To circumvent these problems, we consider the composition of cometary grains analyzed in the laboratory to constrain the nature of the cometary materials and consider results on surface rejuvenation and solar wind processing provided by the OSIRIS and ROSINA instruments, respectively. Our results lead to five main conclusions: (i) The low albedo of comet 67P/CG is accounted for by a dark refractory polyaromatic carbonaceous component mixed with opaque minerals. VIRTIS data do not provide direct insights into the nature of these opaque minerals. However, according to the composition of cometary grains analyzed in the laboratory, we infer that they consist of Fe-Ni alloys and FeS sulfides. (ii) A semi-volatile component, consisting of a complex mix of low weight molecular species not volatilized at T∼220 K, is likely a major carrier of the 3.2 μm band. Water ice contributes significantly to this feature in the neck region but not in other regions of the comet. COOH in carboxylic acids is the only chemical group that encompasses the broad width of this feature. It appears as a highly plausible candidate along with the NH4+ ion. (iii) Photolytic/thermal residues, produced in the laboratory from

  3. Release of volatile and semi-volatile toxicants during house fires.

    Science.gov (United States)

    Hewitt, Fiona; Christou, Antonis; Dickens, Kathryn; Walker, Richard; Stec, Anna A

    2017-04-01

    Qualitative results are presented from analysis of volatile and semi-volatile organic compounds (VOCs/SVOCs) obtained through sampling of gaseous effluent and condensed particulates during a series of experimental house fires conducted in a real house. Particular emphasis is given to the 16 polycyclic aromatic hydrocarbons (PAHs) listed by the Environmental Protection Agency due to their potentially carcinogenic effects. The initial fuel packages were either cooking oil or a single sofa; these were burned both alone, and in furnished surroundings. Experiments were performed at different ventilation conditions. Qualitative Gas Chromatography-Mass Spectrometry (GC-MS) analysis found VOC/SVOC releases in the developing stages of the fires, and benzo(a)pyrene - the most carcinogenic PAH - was found in at least one sampling interval in the majority of fires. A number of phosphorus fire retardants were detected, in both the gaseous effluent and particulates, from fires where the initial fuel source was a sofa. Their release during the fire is significant as they pose toxicological concerns separate from those presented by the PAHs. Copyright © 2016. Published by Elsevier Ltd.

  4. Influence of semi-volatile aerosol on physical and optical properties of aerosol in Kathmandu valley

    Science.gov (United States)

    Shrestha, Sujan; Praveen, Ps; Adhikary, Bhupesh; Shrestha, Kundan; Panday, Arnico

    2016-04-01

    A field study was conducted in the urban atmosphere of Kathmandu valley to study the influence of the semi-volatile aerosol fraction on physical and optical properties of aerosols. The study was carried out during the 2015 pre-monsoon period. Experimental setup consisted of air from an ambient air inlet being split to two sets of identical sampling instruments. The first instrument received the ambient sample directly, while the second instrument received the air sample through a thermodenuder (TDD). Four sets of experiments were conducted to understand aerosol number, size distribution, scattering and absorption properties using Condensation Particle Counter (CPC), Scanning Mobility Particle Sizer (SMPS), Aethalometer (AE33) and Nephelometer. The influence of semi-volatile aerosols was calculated from the fraction of particles evaporated in the TDD at set temparetures: room temperature, 50°C, 100°C, 150°C, 200°C, 250°C and 300°C. Results show that, with increasing temperature, the evaporated fraction of semi-volatile aerosol also increased. At room temperature the fraction of semi-volatile aerosols was 12% while at 300°C it was as high as to 49%. Aerosol size distribution analysis shows that with an increase in TDD temperature from 50°C to 300°C, peak mobility diameter of particles shifted from around 60nm to 40nm. However we found little change in effective diameter of aerosol size distribution with increase in set TDD temperature. The change in size of aerosols due to loss of semi-volatile component has a stronger influence (~70%) in higher size bins when compared to at lower size bins (~20%). Studies using the AE33 showed that absorption by black carbon (BC) is amplified due to influence of semi-volatile aerosols by upto 37% at 880nm wavelength. Similarly nephelometer measurements showed that upto 71% of total scattering was found to be contributed by semi-volatile aerosol fraction. The scattering Angstrom Exponent (SAE) of semi-volatile aerosol

  5. Atmospheric transport of persistent semi-volatile organic chemicals to the Arctic and cold condensation in the mid-troposphere – Part 1: 2-D modeling in mean atmosphere

    Directory of Open Access Journals (Sweden)

    J. Ma

    2010-08-01

    Full Text Available In the first part of this study for revisiting the cold condensation effect on global distribution of semi-volatile organic chemicals (SVOCs, the atmospheric transport of SVOCs to the Arctic in the mid-troposphere in a mean meridional atmospheric circulation over the Northern Hemisphere was simulated by a two-dimensional (2-D atmospheric transport model. Results show that under the mean meridional atmospheric circulation the long-range atmospheric transport of SVOCs from warm latitudes to the Arctic occurs primarily in the mid-troposphere. Although major sources are in low and mid-latitude soils, the modeled air concentration of SVOCs in the mid-troposphere is of the same order as or higher than that near the surface, demonstrating that the mid-troposphere is an important pathway and reservoir of SVOCs. The cold condensation of the chemicals is also likely to take place in the mid-troposphere over a source region of SVOCs in warm low latitudes through interacting with clouds. We demonstrate that the temperature dependent vapour pressure and atmospheric degradation rate of SVOCs exhibit similarities between lower atmosphere over the Arctic and the mid-troposphere over a tropical region. Frequent occurrence of atmospheric ascending motion and convection over warm latitudes carry the chemicals to a higher altitude where some of these chemicals may partition onto solid or aqueous phase through interaction with atmospheric aerosols, cloud water droplets and ice particles, and become more persistent at lower temperatures. Stronger winds in the mid-troposphere then convey solid and aqueous phase chemicals to the Arctic where they sink by large-scale descending motion and wet deposition. Using calculated water droplet-air partitioning coefficient of several persistent organic semi-volatile chemicals under a mean air temperature profile from the equator to the North Pole we propose that clouds are likely important sorbing media for SVOCs and pathway of

  6. Contamination des logements français en composés organiques semi-volatils en phase particulaire

    OpenAIRE

    Sawka, Corinne

    2015-01-01

    Semi-volatile organic compounds (SVOCs) refer to a broad spectrum of molecules from different chemical families that have numerous properties. They can be used as pesticides, plasticizers, flame retardants, surfactants, lubricants, etc. Consequently, they are introduced in numerous applications in buildings or used daily by the entire population. Once emitted through evaporation or abrasion in the indoor environment or introduced from the outdoors, their chemical or biological degradation is ...

  7. The role of semi-volatile organic compounds in the mesoscale evolution of biomass burning aerosol: a modeling case study of the 2010 mega-fire event in Russia

    Directory of Open Access Journals (Sweden)

    I. B. Konovalov

    2015-12-01

    Full Text Available Chemistry transport models (CTMs are an indispensable tool for studying and predicting atmospheric and climate effects associated with carbonaceous aerosol from open biomass burning (BB; this type of aerosol is known to contribute significantly to both global radiative forcing and to episodes of air pollution in regions affected by wildfires. Improving model performance requires systematic comparison of simulation results with measurements of BB aerosol and elucidation of possible reasons for discrepancies between them, which, by default, are frequently attributed in the literature to uncertainties in emission data. Based on published laboratory data on the atmospheric evolution of BB aerosol and using the volatility basis set (VBS framework for organic aerosol modeling, we examined the importance of taking gas-particle partitioning and oxidation of semi-volatile organic compounds (SVOCs into account in simulations of the mesoscale evolution of smoke plumes from intense wildfires that occurred in western Russia in 2010. Biomass burning emissions of primary aerosol components were constrained with PM10 and CO data from the air pollution monitoring network in the Moscow region. The results of the simulations performed with the CHIMERE CTM were evaluated by considering, in particular, the ratio of smoke-related enhancements in PM10 and CO concentrations (ΔPM10 and ΔCO measured in Finland (in the city of Kuopio, nearly 1000 km downstream of the fire emission sources. It is found that while the simulations based on a "conventional" approach to BB aerosol modeling (disregarding oxidation of SVOCs and assuming organic aerosol material to be non-volatile strongly underestimated values of ΔPM10/ΔCO observed in Kuopio (by a factor of 2, employing the "advanced" representation of atmospheric processing of organic aerosol material resulted in bringing the simulations to a much closer agreement with the ground measurements. Furthermore, taking gas

  8. The role of semi-volatile organic compounds in the mesoscale evolution of biomass burning aerosol: a modelling case study of the 2010 mega-fire event in Russia

    Directory of Open Access Journals (Sweden)

    I. B. Konovalov

    2015-03-01

    Full Text Available Chemistry transport models (CTMs are an indispensable tool for studying and predicting atmospheric and climate effects associated with carbonaceous aerosol from open biomass burning (BB; this type of aerosol is known to contribute significantly to both global radiative forcing and to episodes of air pollution in regions affected by wildfires. Improving model performance requires systematic comparison of simulation results with measurements of BB aerosol and elucidating possible reasons for discrepancies between them, which, "by default", are frequently attributed in the literature to uncertainties in emission data. Based on published laboratory data regarding atmospheric evolution of BB aerosol and by using the volatility basis set (VBS approach to organic aerosol modeling along with a "conventional" approach, we examined the importance of taking gas-particle partitioning and oxidation of semi-volatile organic compounds (SVOCs into account in simulations of the mesoscale evolution of smoke plumes from intense wildfires that occurred in western Russia in 2010. BB emissions of primary aerosol components were constrained with the PM10 and CO data from the air pollution monitoring network in the Moscow region. The results of the simulations performed with the CHIMERE CTM were evaluated by considering, in particular, the ratio of smoke-related enhancements in PM10 and CO concentrations (ΔPM10 and ΔCO measured in Finland (in the city of Kuopio, nearly 1000 km downstream of the fire emission sources. It is found that while the conventional approach (disregarding oxidation of SVOCs and assuming organic aerosol material to be non-volatile strongly underestimates values of ΔPM10/ΔCO observed in Kuopio (by almost a factor of two, the VBS approach is capable to bring the simulations to a reasonable agreement with the ground measurements both in Moscow and in Kuopio. Using the VBS instead of the conventional approach is also found to result in a major

  9. Potential Signatures of Semi-volatile Compounds Associated With Nuclear Processing

    Energy Technology Data Exchange (ETDEWEB)

    Probasco, Kathleen M.; Birnbaum, Jerome C.; Maughan, A. D.

    2002-06-01

    Semi-volatile chemicals associated with nuclear processes (e.g., the reprocessing of uranium to produce plutonium for nuclear weapons, or the separation of actinides from processing waste streams), can provide sticky residues or signatures that will attach to piping, ducting, soil, water, or other surface media. Volatile compounds, that are more suitable for electro-optical sensing, have been well studied. However, the semi-volatile compounds have not been well documented or studied. A majority of these semi-volatile chemicals are more robust than typical gaseous or liquid chemicals and can have lifetimes of several weeks, months, or years in the environment. However, large data gaps exist concerning these potential signature compounds and more research is needed to fill these data gaps so that important signature information is not overlooked or discarded. This report investigates key semi-volatile compounds associated with nuclear separations, identifies available chemical and physical properties, and discusses the degradation products that would result from hydrolysis, radiolysis and oxidation reactions on these compounds.

  10. EPA Method 525.3 - Determination of Semivolatile Organic Chemicals in Drinking Water by Solid Phase Extraction and Capillary Column Gas Chromatography/Mass Spectrometry (GC/MS)

    Science.gov (United States)

    Method 525.3 is an analytical method that uses solid phase extraction (SPE) and gas chromatography/mass spectrometry (GC/MS) for the identification and quantitation of 125 selected semi-volatile organic chemicals in drinking water.

  11. Solid phase extraction in tandem with GC/MS for the determination of semi-volatile organic substances extracted from pharmaceutical packaging/delivery systems via aqueous solvent systems.

    Science.gov (United States)

    Zdravkovic, Steven A

    2015-08-10

    An extractable survey is one of several studies performed on a pharmaceutical storage/delivery system as part of the process of demonstrating that the system is suitable for its intended use. In this paper, a solid phase extraction method for the preparation of aqueous extracts generated during an extractable survey is presented. The method offers a convenient means to isolate semi-volatile organic extractable compounds from aqueous extraction solvents for analysis by gas chromatography/mass spectrometry. Following the solid phase extraction procedure, derivatization is performed to convert problematic functionalities (such as amines and acids) into appropriate chromatographically friendly derivatives. Demonstration of method performance is achieved in three ways using a set of 31 commonly observed extractable substances as model compounds. First, a breakthrough experiment was performed with a 2 solvent system consisting of water and 10/90 isopropanol/water over a range of 6 mL to 100 mL. Results from this experiment show only caprolactam possessed a significant level of breakthrough in either solvent over the range of volumes evaluated. Second, a formal accuracy/precision study was conducted using a three solvent system consisting of water, 10/90 isopropanol/water and 1% polysorbate 80. This experiment demonstrates the quantitative ability of the method at levels ranging from 20 ng/mL to 50 μg/mL. Recovery values of 70% to 130% of the theoretical concentration, with relative standard deviation values of less than 15% for replicate preparations, are obtained for a majority of the compounds evaluated. Finally, a case study involving the extraction of an intravenous drug delivery bag with multiple aqueous solvent systems further demonstrates the viability of solid phase extraction for use in an extractables survey. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Evaluation and guidelines for using polyurethane foam (PUF) passive air samplers in double-dome chambers to assess semi-volatile organic compounds (SVOCs) in non-industrial indoor environments.

    Science.gov (United States)

    Bohlin, Pernilla; Audy, Ondřej; Škrdlíková, Lenka; Kukučka, Petr; Vojta, Šimon; Přibylová, Petra; Prokeš, Roman; Čupr, Pavel; Klánová, Jana

    2014-11-01

    Indoor air pollution has been recognized as an important risk factor for human health, especially in areas where people tend to spend most of their time indoors. Many semi-volatile organic compounds (SVOCs) have primarily indoor sources and are present in orders of magnitude higher concentrations indoors than outdoors. Despite this, awareness of SVOCs in indoor air and assessment of the link between indoor concentrations and human health have lagged behind those of outdoor air. This is partially related to challenges associated with indoor sampling of SVOCs. Passive air samplers (PASs), which are widely accepted in established outdoor air monitoring networks, have been used to fill the knowledge gaps on indoor SVOCs distribution. However, their applicability for indoor environments and the assessment of human health risks lack sufficient experimental data. To address this issue, we performed an indoor calibration study of polyurethane foam (PUF) PAS deployed in a double-dome chamber, covering both legacy and new SVOC classes. PUF-PAS and a continuous low-volume active air sampler (AAS) were co-deployed for a calibration period of twelve weeks. Based on the results from this evaluation, PUF-PAS in a double-bowl chamber is recommended for indoor sampling and health risk assessment of gas phase SVOCs, including novel brominated flame retardants (nBFR) providing sufficient exposure time is applied. Data for particle associated SVOCs suffered from significant uncertainties caused by low level of detection and low precision in this study. A more open chamber design for indoor studies may allow for higher sampling rates (RS) and better performance for the particle associated SVOCs.

  13. Atmospheric deposition of semivolatile organic compounds to plants

    NARCIS (Netherlands)

    Bakker, Martine Inez

    2000-01-01

    This thesis describes how the deposition of semivolatile organic compounds (SOCs) to plant surfaces is affected by the characteristics of the plant. From a literature review, it was concluded that differences between SOC concentrations in different plant species are often very small (< a factor

  14. HS-SPME-GC-MS ANALYSIS OF VOLATILE AND SEMI-VOLATILE COMPOUNDS FROM DRIED LEAVES OF Mikania glomerata Sprengel

    Directory of Open Access Journals (Sweden)

    Esmeraldo A. Cappelaro

    2015-03-01

    Full Text Available This paper reports on the identification of volatile and semi-volatile compounds and a comparison of the chromatographic profiles obtained by Headspace Solid-Phase Microextraction/Gas Chromatography with Mass Spectrometry detection (HS-SPME-GC-MS of dried leaves of Mikania glomerata Sprengel (Asteraceae, also known as 'guaco.' Three different types of commercial SPME fibers were tested: polydimethylsiloxane (PDMS, polydimethylsiloxane/divinylbenzene (PDMS/DVB and polyacrylate (PA. Fifty-nine compounds were fully identified by HS-SPME-HRGC-MS, including coumarin, a marker for the quality control of guaco-based phytomedicines; most of the other identified compounds were mono- and sesquiterpenes. PA fibers performed better in the analysis of coumarin, while PDMS-DVB proved to be the best choice for a general and non-selective analysis of volatile and semi-volatile guaco-based compounds. The SPME method is faster and requires a smaller sample than conventional hydrodistillation of essential oils, providing a general overview of the volatile and semi-volatile compounds of M. glomerata.

  15. Sampling the Body Odor of Primates: Cotton Swabs Sample Semivolatiles Rather Than Volatiles.

    Science.gov (United States)

    Birkemeyer, Claudia S; Thomsen, Ruth; Jänig, Susann; Kücklich, Marlen; Slama, Anna; Weiß, Brigitte M; Widdig, Anja

    2016-07-01

    We assessed the suitability of a frequently used sampling method employing cotton swabs for collecting animal body odor for gas chromatography-mass spectrometry (GC-MS) analysis of volatile organic compounds (VOCs). Our method validation showed that both sampling material and sampling protocols affect the outcome of the analyses. Thus, among the tested protocols swabs of pure viscose baked before use and extracted with hexane had the least blank interferences in GC-MS analysis. Most critical for the recovery of VOCs was the handling time: the significant recovery losses of volatiles experienced with this sampling procedure suggest that a rapid processing of such samples is required. In a second part, we used swab sampling to sample the body odor of rhesus macaques (Macaca mulatta), which lack scent glands. First results after GC-MS analysis of the samples collected from these nonhuman primates emphasize that proper analytical performance is an indispensable prerequisite for successful automated data evaluation of the complex GC-MS profiles. Moreover, the retention times and the nature of the identified chemical compounds in our samples suggest that the use of swabs is generally more appropriate for collecting semivolatile rather than VOCs.

  16. Headspace solid phase microextraction (HSSPME) for the determination of volatile and semivolatile pollutants in soils

    Energy Technology Data Exchange (ETDEWEB)

    Llompart, Maria [Departamento de Quimica Analitica Nutricion y Bromatologia, Facultad de Quimica, Universidad de Santiago de Compostela, E-15706 Santiago de Compostela (Spain); Li, Ken; Fingas, Merv [Emergencies Science Division, Environment Canada, Environmental Technology Centre, 3439 River Road, Ottawa, ON (Canada)

    1999-02-08

    We have investigated the use of headspace solid phase microextraction (HSSPME) as a sample concentration and preparation technique for the analysis of volatile and semivolatile pollutants in soil samples. Soil samples were suspended in solvent and the SPME fibre suspended in the headspace above the slurry. Finally, the fibre was desorbed in the Gas Chromatograph (GC) injection port and the analysis of the samples was carried out. Since the transfer of contaminants from the soil to the SPME fibre involves four separate phases (soil-solvent-headspace and fibre coating), parameters affecting the distribution of the analytes were investigated. Using a well-aged artificially spiked garden soil, different solvents (both organic and aqueous) were used to enhance the release of the contaminants from the solid matrix to the headspace. It was found that simple addition of water is adequate for the purpose of analysing the target volatile organic chemicals (VOCs) in soil. The addition of 1 ml of water to 1 g of soil yielded maximum response. Without water addition, the target VOCs were almost not released from the matrix and a poor response was observed. The effect of headspace volume on response as well as the addition of salt were also investigated. Comparison studies between conventional static headspace (HS) at high temperature (95C) and the new technology HSSPME at room temperature (=20C) were performed. The results obtained with both techniques were in good agreement. HSSPME precision and linearity were found to be better than automated headspace method and HSSPME also produced a significant enhancement in response. The detection and quantification limits for the target VOCs in soils were in the sub-ng g{sup -1} level. Finally, we tried to extend the applicability of the method to the analysis of semivolatiles. For these studies, two natural soils contaminated with diesel fuel and wood preservative, as well as a standard urban dust contaminated with polyaromatic

  17. Semivolatile Particulate Organic Material Southern Africa during SAFARI 2000

    Science.gov (United States)

    Eatough, D. J.; Eatough, N. L.; Pang, Y.; Sizemore, S.; Kirchstetter, T. W.; Novakov, T.

    2005-01-01

    During August and September 2000, the University of Washington's Cloud and Aerosol Research Group (CARG) with its Convair-580 research aircraft participated in the Southern African Fire-Atmosphere Research Initiative (SAFARI) 2000 field study in southern Africa. Aboard this aircraft was a Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS), which was used to determine semivolatile particulate material with a diffusion denuder sampler. Denuded quartz filters and sorbent beds in series were used to measure nonvolatile and semivolatile materials, respectively. Results obtained with the PC-BOSS are compared to those obtained with conventional quartz-quartz and Teflon-quartz filter pack samplers. Various 10-120 min integrated samples were collected during flights through the h e troposphere, in the atmospheric boundary layer, and in plumes from savanna fires. Significant fine particulate semivolatile organic compounds (SVOC) were found in all samples. The SVOC was not collected by conventional filter pack samplers and therefore would not have been determined in previous studies that used only filter pack samplers. The SVOC averaged 24% of the fine particulate mass in emissions from the fires and 36% of the fine particulate mass in boundary layer samples heavily impacted by aged emissions from savanna fires. Concentrations of fine particulate material in the atmospheric mixed layer heavily impacted by aged savanna frre emissions averaged 130 micrograms per cubic meter. This aerosol was 85% carbonaceous mated.

  18. Variabilidade química de compostos orgânicos voláteis e semivoláteis de populações nativas de Maytenus ilicifolia Chemical variability of volatile and semi-volatile organic compounds in native populations of Maytenus ilicifolia

    Directory of Open Access Journals (Sweden)

    Altemir José Mossi

    2010-01-01

    Full Text Available This work is focused on the chemical distribution of volatile and semi-volatile compounds of 18 native populations of Maytenus ilicifolia collected all over Brazil. The extracts of bulk samples (30 plants of each population were obtained by supercritical CO2 extraction technique, and analyzed by GC/MS. The quantification of compounds (phytol, squalene, vitamin E, limonene, stigmasterol, friedelan-3-ol, friedelin, fridelan-3-one, palmitic acid and geranyl acetate showed significant variations within the different populations, which could be related tom microclimate characteristics.

  19. MATRIX-VBS: implementing an evolving organic aerosol volatility in an aerosol microphysics model

    OpenAIRE

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2016-01-01

    We have implemented an existing aerosol microphysics scheme into a box model framework and extended it to represent gas-particle partitioning and chemical ageing of semi-volatile organic aerosols. We then applied this new research tool to investigate the effects of semi-volatile organic species on the growth, composition and mixing state of aerosol particles in case studies representing several different environments. The volatility-basis set (VBS) framework is implemented into the aerosol mi...

  20. Gas purge microsyringe extraction for quantitative direct gas chromatographic-mass spectrometric analysis of volatile and semivolatile chemicals.

    Science.gov (United States)

    Yang, Cui; Piao, Xiangfan; Qiu, Jinxue; Wang, Xiaoping; Ren, Chunyan; Li, Donghao

    2011-03-25

    Sample pretreatment before chromatographic analysis is the most time consuming and error prone part of analytical procedures, yet it is a key factor in the final success of the analysis. A quantitative and fast liquid phase microextraction technique termed as gas purge microsyringe extraction (GP-MSE) has been developed for simultaneous direct gas chromatography-mass spectrometry (GC-MS) analysis of volatile and semivolatile chemicals without cleanup process. Use of a gas flowing system, temperature control and a conventional microsyringe greatly increased the surface area of the liquid phase micro solvent, and led to quantitative recoveries of both volatile and semivolatile chemicals within short extraction time of only 2 min. Recoveries of polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and alkylphenols (APs) determined were 85-107%, and reproducibility was between 2.8% and 8.5%. In particular, the technique shows high sensitivity for semivolatile chemicals which is difficult to achieve in other sample pretreatment techniques such as headspace-liquid phase microextraction. The variables affecting extraction efficiency such as gas flow rate, extraction time, extracting solvent type, temperature of sample and extracting solvent were investigated. Finally, the technique was evaluated to determine PAHs, APs and OCPs from plant and soil samples. The experimental results demonstrated that the technique is economic, sensitive to both volatile and semivolatile chemicals, is fast, simple to operate, and allows quantitative extraction. On-site monitoring of volatile and semivolatile chemicals is now possible using this technique due to the simplification and speed of sample treatment.

  1. Volatile Organic Compounds (VOCs)

    Science.gov (United States)

    ... Contact Us Share Volatile Organic Compounds' Impact on Indoor Air Quality On this page: Introduction Sources Health Effects Levels in Homes Steps to Reduce Exposure Standards or Guidelines Additional Resources Introduction Volatile organic compounds ( ...

  2. A novel inlet system for on-line chemical analysis of semi-volatile submicron particulate matter

    Directory of Open Access Journals (Sweden)

    P. Eichler

    2014-09-01

    Full Text Available We herein present the concept of a novel modular inlet system that allows using gas-phase analyzers for on-line chemical characterization of semi-volatile submicron particles. The "chemical analysis of aerosol on-line" (CHARON inlet consists of a gas-phase denuder for stripping off gas-phase analytes, an aerodynamic lens for particle enrichment in the sampling flow and a thermo-desorption unit for particle volatilization prior to chemical analysis. We coupled the CHARON inlet to a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS which quantitatively detects most organic analytes and ammonia. The combined set-up measures submicron organic and ammonium nitrate/sulfate particles online. Two proof-of-principle studies were carried out for demonstrating the analytical power of the new set-up in analyzing primarily emitted and secondarily generated particles. Oxygenated organics and their partitioning between the gas and the particulate phase were observed from the reaction of limonene with ozone. Abundant quasi-molecular ions of organic particulate constituents were observed when submicron particles were sampled from diluted mainstream cigarette smoke.

  3. Use of sonication for in-well softening of semivolatile organic compounds. 1997 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Manning, J. [Argonne National Lab., IL (US); Hoffman, M.R. [California Inst. of Tech., Pasadena, CA (US); Gorelick, S. [Stanford Univ., CA (US)

    1997-01-01

    'This project investigates the in-situ degradation of semivolatile organic compounds (SVOCs) and volatile organic compounds (VOCs) using in-well sonication, in-well vapor stripping, and bioremediation. Pretreating groundwaters with sonication techniques in-situ would form VOCs that can be effectively removed by in-well vapor stripping and bioremediation. The mechanistic studies focus on the coupling of megasonics and ultrasonics to soften (i.e., partially degrade) the SVOCs; oxidative reaction mechanism studies; surface corrosion studies (on the reactor walls/well); enhancement due to addition of oxidants, quantification of the hydroxyl radical formation; identification/quantification of degradation products; volatility/degradability of the treated waters; development of a computer simulation model to describe combined in-well sonication/in-well vapor stripping/bioremediation; systems analysis/economic analysis; large laboratory-scale experiment verification; and field demonstration of the integrated technology. Benefits of this approach include: (1) Remediation is performed in-situ; (2) The treatment systems complement each other; their combination can drastically reduce or remove SVOCs and VOCs; (3) Ability to convert hard-to-degrade organics into more volatile organic compounds; (4) Ability to remove residual VOCs and softened SVOCs through the combined action of in-well vapor stripping and biodegradation; (5) Does not require handling or disposing of water at the ground surface; and (6) Cost-effective and improved efficiency, resulting in shortened clean-up times to remediate a site.'

  4. Chemical composition of the semi-volatile grains of comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Wurz, Peter; Altwegg, Kathrin; Balsiger, Hans; Berthelier, Jean-Jacques; Bieler, André; Calmonte, Ursina; De Keyser, Johan; Fiethe, Björn; Fuselier, Stefan; Gasc, Sébastien; Gombosi, Tamas; Jäckel, Annette; Korth, Axel; Le Roy, Lena; Mall, Urs; Rème, Henri; Rubin, Martin; Tzou, Chia-Yu

    2017-04-01

    The European Space Agency's Rosetta spacecraft (Glassmeier et al., 2007) has been in orbit of the comet 67P/Churyumov-Gerasimenko (67P/C-G) since August 2014. On board is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument suite (Balsiger et al., 2007). ROSINA consists of two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron-type Time-Of-Flight (RTOF) (Scherer et al., 2006), as well as the COmet Pressure Sensor (COPS). ROSINA is designed to detect and monitor the neutral gas and thermal plasma environment in the comet's coma by in situ investigation. The two mass spectrometers have high dynamic ranges and complement each other with high mass resolution (DFMS) and high time resolution and large mass range (RTOF). Especially the unprecedented sensitivity and mass resolution of DFMS together with the large mass range of RTOF allow determining precisely light species (e.g. isotopologues) as well as detecting heavy organic species. The pressure sensor COPS measures total gas densities, bulk velocities, and gas temperatures. ROSINA has been collecting data on the composition of the coma and activity of the comet from 3.5 AU to pericentre and out again to 3.5 AU. The Rosetta mission presents a unique opportunity to directly sample the parent species in the thin cometary atmosphere of a Kuiper-belt object at distances in excess of 2.5 AU from the Sun all the way to the pericentre of the cometary orbit at 1.24 AU. The ROSINA experiment continuously measured the chemical composition of the gases in the cometary coma. Occasionally, a dust grain of cometary origin enters the ion source of a ROSINA instrument where the volatile part evaporates since these ion sources are hot. We will report on the first measurements of the volatile inventory of such dust grains. Volatile release from cometary dust grains was observed with all three ROSINA instruments on several occasions. Because the volatile content of such a dust

  5. Dynamic behavior of semivolatile organic compounds in indoor air

    Energy Technology Data Exchange (ETDEWEB)

    Loy, Michael David Van [Univ. of California, Berkeley, CA (United States)

    1998-12-09

    Exposures to a wide range of air pollutants are often dominated by those occurring in buildings because of three factors: 1) most people spend a large fraction of their time indoors, 2) many pollutants have strong indoor sources, and 3) the dilution volume in buildings is generally several orders of magnitude smaller than that of an urban airshed. Semivolatile organic compounds (SVOCS) are emitted by numerous indoor sources, including tobacco combustion, cooking, carpets, paints, resins, and glues, so indoor gasphase concentrations of these compounds are likely to be elevated relative to ambient levels. The rates of uptake and release of reversibly sorbing SVOCS by indoor materials directly affect both peak concentrations and persistence of the pollutants indoors after source elimination. Thus, accurate predictions of SVOC dynamics in indoor air require an understanding of contaminant sorption on surface materials such as carpet and wallboard. The dynamic behaviors of gas-phase nicotine and phenanthrene were investigated in a 20 ms stainless steel chamber containing carpet and painted wallboard. Each compound was studied independently, first in the empty chamber, then with each sorbent individually, and finally with both sorbents in the chamber.

  6. Impact of alternative fuels on emissions characteristics of a gas turbine engine - part 2: volatile and semivolatile particulate matter emissions.

    Science.gov (United States)

    Williams, Paul I; Allan, James D; Lobo, Prem; Coe, Hugh; Christie, Simon; Wilson, Christopher; Hagen, Donald; Whitefield, Philip; Raper, David; Rye, Lucas

    2012-10-02

    The work characterizes the changes in volatile and semivolatile PM emissions from a gas turbine engine resulting from burning alternative fuels, specifically gas-to-liquid (GTL), coal-to-liquid (CTL), a blend of Jet A-1 and GTL, biodiesel, and diesel, to the standard Jet A-1. The data presented here, compares the mass spectral fingerprints of the different fuels as measured by the Aerodyne high resolution time-of-flight aerosol mass spectrometer. There were three sample points, two at the exhaust exit plane with dilution added at different locations and another probe located 10 m downstream. For emissions measured at the downstream probe when the engine was operating at high power, all fuels produced chemically similar organic PM, dominated by C(x)H(y) fragments, suggesting the presence of long chain alkanes. The second largest contribution came from C(x)H(y)O(z) fragments, possibly from carbonyls or alcohols. For the nondiesel fuels, the highest loadings of organic PM were from the downstream probe at high power. Conversely, the diesel based fuels produced more organic material at low power from one of the exit plane probes. Differences in the composition of the PM for certain fuels were observed as the engine power decreased to idle and the measurements were made closer to the exit plane.

  7. Semi-volatile compounds variation among Brazilian populations of Ilex paraguariensis St. Hil.

    Directory of Open Access Journals (Sweden)

    Rogério Luis Cansian

    2008-02-01

    Full Text Available The use of compressed carbon towards extracting semi-volatile compounds present in maté leaves (Ilex paraguariensis St. Hil. is due to the growing interest in mate constituents to develop new products in the cosmetic, pharmaceutical and food industries. The objective of this work was to assess the chemical distribution of semi-volatile compounds in 20 native populations of maté collected all over Brazil. The extracts of bulk samples (30 plants of each population were obtained by the high-pressure carbon dioxide extraction technique, and analyzed by GC/MSD. The quantification of compounds (caffeine, theobromine, phytol, squalene, vitamin E, eicosane, pentatriacontane, and stigmasterol showed significant variations within the different populations and compounds analyzed, which are not related to geographical origin or macroclimate characteristics. The results pointed out to the importance of genetic and local environmental factors on the chemical composition of this species.A extração empregando dióxido de carbono a altas pressões em erva-mate (Ilex paraguariensis St. Hil., tem sido justificada pelo crescente interesse desta matriz vegetal ou de parte de seus constituintes na formulação de novos produtos, tais como cosméticos e medicamentos, entre outros. Neste contexto, o objetivo do presente trabalho é avaliar a distribuição química de compostos semi-voláteis em 20 populações de erva-mate coletadas em toda área de distribuição desta espécie no Brasil. 30 plantas foram selecionadas para produzir a amostra de cada população. Os extratos de cada amostra foram obtidos por extração com dióxido de carbono a alta pressão e, posteriormente, foram analisados por CG/EM. A quantificação de alguns compostos semi-voláteis presentes nos extratos (cafeína, teobromina, fitol, esqualeno, vitamina E, eicosano, pentatriacontano e stigmasterol, apresentaram variações significativas entre as concentrações dos diferentes compostos

  8. Green Ocean Amazon (GoAmazon) 2014/15. Semi-Volatile Thermal Desorption Aerosol Gas Chromatograph (SVTAG) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, A. H. [Univ. of California, Berkeley, CA (United States); Yee, L. D. [Univ. of California, Berkeley, CA (United States); Issacman-VanWertz, G. [Univ. of California, Berkeley, CA (United States); Wernis, R. A. [Univ. of California, Berkeley, CA (United States)

    2016-03-01

    In areas where biogenic emissions are oxidized in the presence of anthropogenic pollutants such as SO2, NOx, and black carbon, it has become increasingly apparent that secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (VOCs) is substantially enhanced. Research is urgently needed to elucidate fundamental processes of natural and anthropogenically influenced VOC oxidation and the contribution of these processes to SOA formation. GoAmazon 2014/15 afforded study of the chemical transformations in the region downwind of Manaus, Brazil, where local biogenic VOC emissions are high, and their chemical oxidation can be studied both inside and outside of the urban plume to differentiate the role of anthropogenic influence on secondary aerosol formation during oxidation of these natural VOC emissions. To understand the connection between primary biogenic VOC emissions and their secondary products that form aerosols, we made time-resolved molecular level measurements by deploying a Semi-Volatile Thermal Desorption Aerosol Gas Chromatograph (SV-TAG) and a sequential filter sampler during two intensive operational periods (IOPs) of the GoAmazon 2014/15 field campaign. The SV-TAG measured semi-volatile organic compounds in both the gas and particle phases and the sequential filter sampler collected aerosols on quartz fiber filters in four-hour increments used for offline analysis. SV-TAG employed novel online derivatization that provided chemical speciation of highly oxygenated or functionalized compounds that comprise a substantial fraction of secondary organic aerosols, yet are poorly characterized. It also provided partitioning of these compounds between the vapor and particle phases at sufficient time resolution to define the importance of competing atmospheric processes. These measurements were supported by offline analysis of the filters using two-dimensional gas chromatography (GC x GC) with high-resolution time-of-flight mass spectrometry

  9. Detection and monitoring of volatile and semivolatile pollutants in soil through different sensing strategies

    Science.gov (United States)

    De Cesare, Fabrizio; Macagnano, Antonella

    2013-04-01

    Pollutants in environments are more and more threatening the maintenance of health of habitats and their inhabitants. A proper evaluation of the impact of contaminants from several different potential sources on soil quality and health and then on organisms living therein, and the possible and sometime probable related risk of transfer of pollutants, with their toxic effects, to organisms living in different environmental compartments, through the trophic chain up to humans is strongly required by decision makers, in order to promptly take adequate actions to prevent environmental and health damages and monitor the exposure rate of individuals to toxicants. Then, a reliable detection of pollutants in environments and the monitoring of dynamics and fate of contaminants therein are of utmost importance to achieve this goal. In soil, chemical and physical techniques to detect pollutants have been well known for decades, but can often drive to both over- and underestimations of the actual bioavailable (and then toxic) fraction of contaminants, and then of the real risk for organisms, deriving from their presence therein. The use of bioindicators (both living organisms and enzyme activities somehow derived from them) can supply more reliable information about the quantification of the bioavailable fraction of soil pollutants. In the last decades, a physicochemical technique, such as SPME (solid phase microextraction) followed by GC-MS analysis, has been demonstrated to provide similar results to those obtained from some pedofaunal populations, used as bioindicators, as concerns the bioavailable pollutant quantification in soil. More recently, we have applied a sensing technology, namely electronic nose (EN), which comprises several unspecific sensors arranged in an array and that is capable of providing more qualitative than quantitative information about complex air samples, to the study of soils contaminated with semivolatile (SVOCs) pollutants, such as polycyclic

  10. MSI.R scripts reveal volatile and semi-volatile features in low-temperature plasma mass spectrometry imaging (LTP-MSI) of chilli (Capsicum annuum).

    Science.gov (United States)

    Gamboa-Becerra, Roberto; Ramírez-Chávez, Enrique; Molina-Torres, Jorge; Winkler, Robert

    2015-07-01

    In cartography, the combination of colour and contour lines is used to express a three-dimensional landscape on a two-dimensional map. We transferred this concept to the analysis of mass spectrometry imaging (MSI) data and developed a collection of R scripts for the efficient evaluation of .imzML archives in a four-step strategy: (1) calculation of the density distribution of mass-to-charge ratio (m/z) signals in the .imzML file and assembling of a pseudo-master spectrum with peak list, (2) automated generation of mass images for a defined scan range and subsequent visual inspection, (3) visualisation of individual ion distributions and export of relevant .mzML spectra and (4) creation of overlay graphics of ion images and photographies. The use of a Hue-Chroma-Luminance (HCL) colour model in MSI graphics takes into account the human perception for colours and supports the correct evaluation of signal intensities. Further, readers with colour blindness are supported. Contour maps promote the visual recognition of patterns in MSI data, which is particularly useful for noisy data sets. We demonstrate the scalability of MSI.R scripts by running them on different systems: on a personal computer, on Amazon Web Services (AWS) instances and on an institutional cluster. By implementing a parallel computing strategy, the execution speed for .imzML data scanning with image generation could be improved by more than an order of magnitude. Applying our MSI.R scripts ( http://www.bioprocess.org/MSI.R ) to low-temperature plasma (LTP)-MSI data shows the localisation of volatile and semi-volatile compounds in the cross-cut of a chilli (Capsicum annuum) fruit. The subsequent identification of compounds by gas and liquid chromatography coupled to mass spectrometry (GC-MS, LC-MS) proves that LTP-MSI enables the direct measurement of volatile organic compound (VOC) distributions from biological tissues.

  11. Comparison of volatile and semivolatile compounds from commercial cigarette by supercritical fluid extraction and simultaneous distillation extraction

    Institute of Scientific and Technical Information of China (English)

    徐子刚; 郑琳

    2004-01-01

    Supercritical carbon dioxide fluid extraction (SFE) was studied as a rapid method for extraction of volatile and semivolatile compounds of Chinese commercial cigarettes. The method was compared with simultaneous distillation and extraction (SDE). Temperature and pressure for the SFE were optimized. The extracts obtained by the two methods showed different characters in composition and represented differently the flavor characteristics of tobacco; compared to SDE, SFE can extract compounds within a shorter time and avoid the thermal degradation and solvent contamination of samples. The extracts by the two extraction methods are complementary for investigating the flavor characteristic of tobacco products.

  12. Comparison of volatile and semivolatile compounds from commercial cigarette by supercritical fluid extraction and simultaneous distillation extraction

    Institute of Scientific and Technical Information of China (English)

    徐子刚; 郑琳

    2004-01-01

    Supercritical carbon dioxide fluid extraction (SFE) was studied as a rapid method for extraction of volatile and semivolatile compounds of Chinese commercial cigarettes. The method was compared with simultaneous distillation and extraction (SDE). Temperature and pressure for the SFE were optimized. The extracts obtained by the two methods showed different characters in composition and represented differently the flavor characteristics of tobacco; compared to SDE, SFE can extract compounds within a shorter time and avoid the thermal degradation and solvent contamination of samples. The extracts by the two extraction methods are complementary for investigating the flavor characteristic of tobacco products.

  13. Hydrogen safety project chemical analysis support task: Window ``C`` semivolatile organic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, B.M.; Stromatt, R.W.; Hoppe, E.W.

    1992-03-01

    Analysis of four samples for semivolatile organic compounds by gas chromatography/mass spectrometry is the subject of this report. Two of the samples contained a significant amount of liquid. These two samples were partitioned into the solid and liquid phases. The solid and liquid phases were analyzed separately.

  14. Hydrogen safety project chemical analysis support task: Window C'' semivolatile organic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, B.M.; Stromatt, R.W.; Hoppe, E.W.

    1992-03-01

    Analysis of four samples for semivolatile organic compounds by gas chromatography/mass spectrometry is the subject of this report. Two of the samples contained a significant amount of liquid. These two samples were partitioned into the solid and liquid phases. The solid and liquid phases were analyzed separately.

  15. Rapid Methods to Estimate Potential Exposure to Semivolatile Organic Compounds in the Indoor Environment

    DEFF Research Database (Denmark)

    Little, John C.; Weschler, Charles J.; Nazaroff, William W;

    2012-01-01

    to evaluate exposures that occur indoors. For semivolatile organic compounds (SVOCs), exposure is strongly influenced by the types of products in which these SVOCs occur. We propose methods for obtaining screening-level estimates for two primary SVOC source classes: additives in products used indoors...

  16. Internal mixing of the organic aerosol by gas phase diffusion of semivolatile organic compounds

    Directory of Open Access Journals (Sweden)

    C. Marcolli

    2004-01-01

    Full Text Available This paper shows that most of the so far identified constituents of the tropospheric organic particulate matter belong to a semivolatile fraction for which gas phase diffusion in the lower troposphere is sufficiently fast to establish thermodynamic equilibrium between aerosol particles. For the first time analytical expressions for this process are derived. Inspection of vapor pressure data of a series of organic substances allows a rough estimate for which substances this mixing process must be considered. As general benchmarks we conclude that for typical aerosol radii between 0.1 and 1 µm this mixing process is efficient at 25°C for polar species with molecular weights up to 200 and for non-polar species up to 320. At −10°C, these values are shifted to 150 for polar and to 270 for non-polar substances. The extent of mixing of this semivolatile fraction is governed by equilibrium thermodynamics, leading to a selectively, though not completely, internally mixed aerosol. The internal mixing leads to a systematic depression of melting and deliquescence points of organic and mixed organic/inorganic aerosols, thus leading to an aerosol population in the lower troposphere which is predominantly liquid.

  17. Oxidative potential of semi-volatile and non volatile particulate matter (PM) from heavy-duty vehicles retrofitted with emission control technologies.

    Science.gov (United States)

    Biswas, Subhasis; Verma, Vishal; Schauer, James J; Cassee, Flemming R; Cho, Arthur K; Sioutas, Constantinos

    2009-05-15

    Advanced exhaust after-treatment devices for diesel vehicles are less effective in controlling semivolatile species than the refractory PM fractions. This study investigated the oxidative potential (OP) of PM from vehicles with six retrofitted technologies (vanadium and zeolite based selective catalytic reduction (V-SCRT, Z-SCRT), Continuously regenerating technology (CRT), catalyzed DPX filter, catalyzed continuously regenerating trap (CCRT), and uncatalyzed Horizon filter) in comparison to a "baseline" vehicle (without any control device). Vehicles were tested on a chassis dynamometer atthree driving conditions, i.e., cruise, transient urban dynamometer driving schedule (UDDS), and idle. The consumption rate of dithiothreitol (DTT), one of the surrogate measures of OP, was determined for PM samples collected at ambient and elevated temperatures (thermally denuded of semivolatile species). Control devices reduced the OP expressed per vehicle distance traveled by 60-98%. The oxidative potential per unit mass of PM however, was highest for the Horizon followed by CRT, DPX -Idle, SCRTs, and baseline vehicles. Significant reduction in OP (by 50-100%) was observed forthermally denuded PM from vehicles with retrofitted technologies (PM with significant semivolatile fraction), whereas particles emitted bythe baseline vehicle (with insignificant semivolatile fraction) did not demonstrate any measurable changes in oxidative activity. This suggests that the semivolatile fraction of particles are far more oxidative in nature than refractory particles-a conclusion further supported by previous tunnel and ambient studies, demonstrating a decline in PM oxidative activity with increasing atmospheric dilution. Correlation analysis performed between all the species, showed that OP is moderately associated (R = 0.76) with organic carbon (OC) and strongly associated (R = 0.94) with the water-soluble organic carbon (WSOC).

  18. Measuring the atmospheric organic aerosol volatility distribution: a theoretical analysis

    Directory of Open Access Journals (Sweden)

    E. Karnezi

    2014-01-01

    Full Text Available Organic compounds represent a significant fraction of submicrometer atmospheric aerosol mass. Even if most of these compounds are semi-volatile in atmospheric concentrations, the ambient organic aerosol volatility is quite uncertain. The most common volatility measurement method relies on the use of a thermodenuder (TD. The aerosol passes through a heated tube where its more volatile components evaporate leaving the less volatile behind in the particulate phase. The typical result of a~thermodenuder measurement is the mass fraction remaining (MFR, which depends among other factors on the organic aerosol (OA vaporization enthalpy and the accommodation coefficient. We use a new method combining forward modeling, introduction of "experimental" error and inverse modeling with error minimization for the interpretation of TD measurements. The OA volatility distribution, its effective vaporization enthalpy, the mass accommodation coefficient and the corresponding uncertainty ranges are calculated. Our results indicate that existing TD-based approaches quite often cannot estimate reliably the OA volatility distribution, leading to large uncertainties, since there are many different combinations of the three properties that can lead to similar thermograms. We propose an improved experimental approach combining TD and isothermal dilution measurements. We evaluate this experimental approach using the same model and show that it is suitable for studies of OA volatility in the lab and the field.

  19. Analytical modeling of the subsurface volatile organic vapor concentration in vapor intrusion

    OpenAIRE

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    The inhalation of volatile and semi-volatile organic compounds that intrude from a subsurface contaminant source into indoor air has become the subject of health and safety concerns over the last twenty years. Building subslab and soil gas contaminant vapor concentration sampling have become integral parts of vapor intrusion field investigations. While numerical models can be of use in analyzing field data and in helping understand the subslab and soil gas vapor concentrations, they are not w...

  20. 烟草中挥发性、半挥发性酸性成分的分析%Study on the analysis of the volatile and semi-volatile acidic components in tobacco

    Institute of Scientific and Technical Information of China (English)

    贾春晓; 曲志刚; 毛多斌; 王志韬; 张文叶

    2003-01-01

    A new method was developed for the analysis of the volatile and semi-volatile acidic components in tobacco by gas chromatography-mass spectrometry selected ion monitoring (GC-MS, SIM)method. The acidic components in tobacco samples were extracted by methylene chloride using simultaneous distillation and extraction equipment, and they were analyzed by HP-INNOWAX column (30m × 250μm × 0.25μm ). Thirteen acidic components were quantitatively determined by internal standard curve method. The experiment results showed that the added standard recoveries of the acidic components were in the range from 80.6% to 98.8%, the relative standard deviations(RSD)were less than 2.0% and the correlation coeflqcients were more than 0.99. The method is simple, rapid and accurate for the determination of the volatile and semi-volatile acidic components in tobacco.

  1. Multiclass semi-volatile compounds determination in wine by gas chromatography accurate time-of-flight mass spectrometry.

    Science.gov (United States)

    Rodríguez-Cabo, T; Rodríguez, I; Ramil, M; Silva, A; Cela, R

    2016-04-15

    The performance of gas chromatography (GC) with accurate, high resolution mass spectrometry (HRMS) for the determination of a group of 39 semi-volatile compounds related to wine quality (pesticide residues, phenolic off-flavours, phenolic pollutants and bioactive stilbenes) is investigated. Solid-phase extraction (SPE) was used as extraction technique, previously to acetylation (phenolic compounds) and dispersive liquid-liquid microextraction (DLLME) concentration. Compounds were determined by GC coupled to a quadrupole time-of-flight (QTOF) MS system through an electron ionization (EI) source. The final method attained limits of quantification (LOQs) at the very low ng mL(-1) level, covering the range of expected concentrations for target compounds in red and white wines. For 38 out of 39 compounds, performance of sample preparation and determination steps were hardly affected by the wine matrix; thus, accurate recoveries were achieved by using pseudo-external calibration. Levels of target compounds in a set of 25 wine samples are reported. The capabilities of the described approach for the post-run identification of species not considered during method development, without retention time information, are illustrated and discussed with selected examples of compounds from different classes.

  2. Quantitative estimates of the volatility of ambient organic aerosol

    Directory of Open Access Journals (Sweden)

    C. D. Cappa

    2010-01-01

    results also show that the amount of semivolatile gas-phase organics in equilibrium with the OA could range from ~20% to 400% of the OA mass, with smaller values generally corresponding to the higher ΔHvap assumptions. The volatility of various OA components determined from factor analysis of AMS spectra has also been assessed. In general, it is found that the fraction of non-volatile material follows the pattern: biomass burning OA < hydrocarbon-like OA < semivolatile oxygenated OA < low-volatility oxygenated OA. Correspondingly, the sensitivity to dilution and the estimated amount of semivolatile gas-phase material for the OA factors follows the reverse order. Primary OA has a substantial semivolatile fraction, in agreement with previous results, while the non-volatile fraction appears to be dominated by oxygenated OA produced by atmospheric aging. The overall OA volatility is thus controlled by the relative contribution of each aerosol type to the total OA burden. Finally, the model/measurement comparison appears to require OA having an evaporation coefficient (γe substantially greater than 10−2; at this point it is not possible to place firmer constraints on γe based on the observations.

  3. Kinetic modeling of Secondary Organic Aerosol formation: effects of particle- and gas-phase reactions of semivolatile products

    Directory of Open Access Journals (Sweden)

    A. W. H. Chan

    2007-05-01

    Full Text Available The distinguishing mechanism of formation of secondary organic aerosol (SOA is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics, of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms.

  4. Kinetic modeling of secondary organic aerosol formation: effects of particle- and gas-phase reactions of semivolatile products

    Directory of Open Access Journals (Sweden)

    A. W. H. Chan

    2007-08-01

    Full Text Available The distinguishing mechanism of formation of secondary organic aerosol (SOA is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics, of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms.

  5. Breaching the parts per quadrillion wall in analysis of semivolatile organics

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.P.S.; Bouis, P.A. [J.T. Baker Inc., Phillipsburg, NJ (United States)

    1995-12-01

    Analyte enrichments in US Environmental Protection Agency (EPA) methods for environmental pollutants are generally performed using sample preparation techniques such as liquid-liquid extraction, liquid-solid extraction and purge & trap dynamic headspace concentration. The recent development of Solid Phase Microextraction (SPME) has provided another alternative which efficiently extracts organic analytes present in air or aqueous samples. We have successfully developed a unique sample preparation method which combines the power/advantages of Solid Phase Microextraction and standard EPA methodology. Subsequent analysis results in successful detection of ultratrace organic compounds with excellent sensitivity. EPA 525, 625, 8270 semivolatile organic compound have been successfully determined using Gas Chromatography/ Mass Spectrometry (GC/MC) at sub-parts per billion (ppb) levels. EPA 608, 8080 halogenated pesticides have also been readily detected with Electron Capture Detector (ECD) at parts per quadrillion (ppq) levels.

  6. Extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters by supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, J.B.

    1997-09-01

    Supercritical fluid extraction (SFE) using unmodified carbon dioxide has been explored as an alternative method for the extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters. HEPA filters provide the final stage of containment on many exhaust systems in US Department of Energy (DOE) facilities by preventing the escape of chemical and radioactive materials entrained in the exhausted air. The efficiency of the filters is tested by the manufacturer and DOE using dioctylphthalate (DOP), a substance regulated by the US Environmental Protection Agency under the Resource Conservation and Recovery Act. Therefore, the filters must be analyzed for semivolatile organics before disposal. Ninety-eight acid, base, and neutral semivolatile organics were spiked onto blank HEPA material and extracted using SFE, Soxhlet, automated Soxhlet, and sonication techniques. The SFE conditions were optimized using a Dionex SFE-703 instrument. Average recoveries for the 98 semivolatile compounds are 82.7% for Soxhlet, 74.0% for sonication, 70.2% for SFE, and 62.9% for Soxtec. Supercritical fluid extraction reduces the extraction solvent volume to 10--15 mL, a factor of 20--30 less than Soxhlet and more than 5 times less than Soxtec and sonication. Extraction times of 30--45 min are used compared to 16--18 h for Soxhlet extraction.

  7. MATRIX-VBS (v1.0): implementing an evolving organic aerosol volatility in an aerosol microphysics model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-02-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  8. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  9. An evaluation of the "GGP" personal samplers under semi-volatile aerosols: sampling losses and their implication on occupational risk assessment.

    Science.gov (United States)

    Dragan, George C; Breuer, Dietmar; Blaskowitz, Morten; Karg, Erwin; Schnelle-Kreis, Jürgen; Arteaga-Salas, Jose M; Nordsieck, Hermann; Zimmermann, Ralf

    2015-02-01

    Semi-volatile (SV) aerosols still represent an important challenge to occupational hygienists due to toxicological and sampling issues. Particularly problematic is the sampling of hazardous SV that are present in both particulate and vapour phases at a workplace. In this study we investigate the potential evaporation losses of SV aerosols when using off-line filter-adsorber personal samplers. Furthermore, we provide experimental data showing the extent of the evaporation loss that can bias the workplace risk assessment. An experimental apparatus consisting of an aerosol generator, a flow tube and an aerosol monitoring and sampling system was set up inside a temperature controlled chamber. Aerosols from three n-alkanes were generated, diluted with nitrogen and sampled using on-line and off-line filter-adsorber methods. Parallel measurements using the on-line and off-line methods were conducted to quantify the bias induced by filter sampling. Additionally, two mineral oils of different volatility were spiked on filters and monitored for evaporation depending on the samplers flow rate. No significant differences between the on-line and off-line methods were detected for the sum of particles and vapour. The filter-adsorber method however tended to underestimate up to 100% of the particle mass, especially for the more volatile compounds and lower concentrations. The off-line sampling method systematically returned lower particle and higher vapour values, an indication for particle evaporation losses. We conclude that using only filter sampling for the assessment of semi-volatiles may considerably underestimate the presence of the particulate phase due to evaporation. Thus, this underestimation can have a negative impact on the occupational risk assessment if the evaporated particle mass is no longer quantified.

  10. Semivolatile organic compounds, organochlorine pesticides and heavy metals in sediments and risk assessment in Huaihe River of China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The concentrations of semivolatile organic compounds, organochlorine pesticides and heavy metals in sediments from Jiangsu reach of Huaihe River, China, were presented. The organic compounds were extracted by acetone: n-hexane using a Soxhlet apparatus and concentrations were performed using HP6890 gas chromatography coupled by FID and ECD detector. The total contents of 8 heavy metals by inductively coupled plasma atomic emission spectrometry or cold-vapor/atomic absorption spectrometry were developed. 30 semivolatile organic compounds were detected, including substituted benzenes, phenols, phthalates and polycyclic aromatic hydrocarbons, from 0.01 to 3.01 mg/kg. 16 organochlorine pesticides were almost detected and from 0.010 to 2.339 μg/kg.Concentrations of major metals were 50 mg/kg or less, mean level of mercury was only 0.055 mg/kg. Compared to sediment quality guidelines (SQGs), concentrations of some semivolatile organic compounds were high enough to cause possible toxic effects to living resources. The organochlorine pesticides presented relatively low, lower than threshold effect concentrations (TECs), harmful effects on sediment-dwelling organisms were not expected. Chromium posed probable toxic effects to the living resources, other heavy metals had no threat temporarily according to SQGs.

  11. atmospheric volatile organic compounds

    Directory of Open Access Journals (Sweden)

    A. R. Koss

    2016-07-01

    organic compounds (VOCs that cannot be ionized with H3O+ ions (e.g., in a PTR-MS or H3O+ CIMS instrument. Here we describe the adaptation of a high-resolution time-of-flight H3O+ CIMS instrument to use NO+ primary ion chemistry. We evaluate the NO+ technique with respect to compound specificity, sensitivity, and VOC species measured compared to H3O+. The evaluation is established by a series of experiments including laboratory investigation using a gas-chromatography (GC interface, in situ measurement of urban air using a GC interface, and direct in situ measurement of urban air. The main findings are that (1 NO+ is useful for isomerically resolved measurements of carbonyl species; (2 NO+ can achieve sensitive detection of small (C4–C8 branched alkanes but is not unambiguous for most; and (3 compound-specific measurement of some alkanes, especially isopentane, methylpentane, and high-mass (C12–C15 n-alkanes, is possible with NO+. We also demonstrate fast in situ chemically specific measurements of C12 to C15 alkanes in ambient air.

  12. Distribution of legacy and emerging semivolatile organic compounds in five indoor matrices in a residential environment.

    Science.gov (United States)

    Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Vojta, Šimon; Krátká, Martina; Kukučka, Petr; Audy, Ondřej; Přibylová, Petra; Klánová, Jana

    2016-06-01

    Seven types of indoor samples, covering five indoor matrices, were collected in a residential room, and analyzed for five classes of semivolatile organic compounds (SVOCs). The goal was to improve the understanding of the relationship between indoor air, surface films and dust, based on differences in sources, physicochemical properties, and indoor environmental characteristics. Comparisons of the five matrices (gas- and particle-phase air, floor dust, surface dust/films and window films) demonstrated that within our test room a semi-quantitative measurement of the SVOC distributions and concentrations could be obtained by air, and composite dust or furniture surface wipes. Dust concentrations varied within the room, and spot samples were not necessarily representative of the average room conditions. Polyurethane foam passive air samplers (PUF-PAS) successfully quantified the total air concentrations of the studied SVOC compound groups, as indoor air concentrations were dominated by gas-phase compounds, however air concentrations of individual particle-bound compounds had higher uncertainty. Measured concentrations of dust/surfaces could be used to estimate air concentrations of legacy SVOCs, demonstrating equilibrium in the room. However, air concentrations of current-use compounds (flame retardants, polycyclic aromatic hydrocarbons (PAHs)) could not be estimated from dust/surface concentrations, demonstrating the influence of ongoing primary emissions and non-equilibrium status in the room.

  13. Monitoring and analytics of semivolatile organic compounds (SVOCs) in indoor air.

    Science.gov (United States)

    Król, Sylwia; Zabiegała, Bożena; Namieśnik, Jacek

    2011-06-01

    This paper reviews literature information on the behaviour of semivolatile organic compounds (SVOCs) in the indoor environment, as well as the most likely emission sources. The consecutive stages of analytical procedures used for monitoring SVOCs in indoor environments are described. The most common approaches used for collecting samples from the gas and particulate phases are mentioned. The paper discusses and compares various types of sorbents and filters applied in dynamic, passive and denudational techniques, as well as the techniques used to liberate the SVOCs, including Soxhlet, sonication and microwave extraction. The main advantages and disadvantages of each technique are discussed, together with possible future trends. The approaches commonly used during the final determination step, such as gas chromatography and liquid chromatography, are presented together with their possible drawbacks, and ways of eliminating them are suggested. The review makes brief reference to the effects of human exposure to SVOCs in house dust and discusses the main aspects of the analytical procedures used to monitor the presence of SVOCs in this medium.

  14. Emissions of Selected Semivolatile Organic Chemicals from Forest and Savannah Fires.

    Science.gov (United States)

    Wang, Xianyu; Thai, Phong K; Mallet, Marc; Desservettaz, Maximilien; Hawker, Darryl W; Keywood, Melita; Miljevic, Branka; Paton-Walsh, Clare; Gallen, Michael; Mueller, Jochen F

    2017-02-07

    The emission factors (EFs) for a broad range of semivolatile organic chemicals (SVOCs) from subtropical eucalypt forest and tropical savannah fires were determined for the first time from in situ investigations. Significantly higher (t test, P < 0.01) EFs (μg kg(-1) dry fuel, gas + particle-associated) for polycyclic aromatic hydrocarbons (∑13 PAHs) were determined from the subtropical forest fire (7,000 ± 170) compared to the tropical savannah fires (1,600 ± 110), due to the approximately 60-fold higher EFs for 3-ring PAHs from the former. EF data for many PAHs from the eucalypt forest fire were comparable with those previously reported from pine and fir forest combustion events. EFs for other SVOCs including polychlorinated biphenyl (PCB), polychlorinated naphthalene (PCN), and polybrominated diphenyl ether (PBDE) congeners as well as some pesticides (e.g., permethrin) were determined from the subtropical eucalypt forest fire. The highest concentrations of total suspended particles, PAHs, PCBs, PCNs, and PBDEs, were typically observed in the flaming phase of combustion. However, concentrations of levoglucosan and some pesticides such as permethrin peaked during the smoldering phase. Along a transect (10-150-350 m) from the forest fire, concentration decrease for PCBs during flaming was faster compared to PAHs, while levoglucosan concentrations increased.

  15. Atmospheric outflow of anthropogenic semivolatile organic compounds from East Asia in spring 2004.

    Science.gov (United States)

    Primbs, Toby; Simonich, Staci; Schmedding, David; Wilson, Glenn; Jaffe, Dan; Takami, Akinori; Kato, Shungo; Hatakeyama, Shiro; Kajii, Yoshizumi

    2007-05-15

    To estimate the emissions of anthropogenic semivolatile organic compounds (SOCs) from East Asia and to identify unique SOC molecular markers in Asian air masses, high-volume air samples were collected on the island of Okinawa, Japan between 22 March and 2 May 2004. Contributions from different source regions (China, Japan, the Koreas, Russia, and ocean/local) were estimated by use of source region impact factors (SRIFs). Elevated concentrations of hexachlorobenzene (HCB), hexachlorcyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), and particulate-phase polycyclic aromatic hydrocarbons (PAHs) were attributed to air masses from China. A large proportion of the variation in the current-use pesticides, gas-phase PAHs, and polychlorinated biphenyl (PCB) concentrations was explained by meteorology. Chlordanes showed a technical mixture profile and similar concentrations regardless of source region. alpha/gamma HCH and trans/cis chlordane ratios did not vary significantly with different source regions and had regional averages of 2.5 +/- 1.0 and 1.2 +/- 0.3, respectively. Particulate-phase PAH concentrations were significantly correlated (p value black carbon, submicrometer aerosols, and SO2. By use of measured PAH, CO, and black carbon concentrations and estimated CO and black carbon emission inventories, the emission of six carcinogenic particulate-phase PAHs was estimated to be 1518-4179 metric tons/year for Asia and 778-1728 metric tons/year for China, respectively. These results confirm that East Asian outflow contains significant emissions of carcinogenic particulate-phase PAHs.

  16. Regional-scale simulation of transport and transformations of semi-volatile polycyclic aromatic hydrocarbons (PAHs) in East Asia: diurnal variations investigation

    Science.gov (United States)

    Mu, Qing; Lammel, Gerhard; Cheng, Yafang

    2015-04-01

    Semi-volatile PAHs are major pollutants of urban air, mostly regionally transported and reaching remote environments[1]. Some semi-volatile PAHs are carcinogenic. About 22% of global PAHs emissions are in China. The transport and sinks (atmospheric reactions, deposition) of semi-volatile PAHs in East Asia are studied using a modified version of the Weather Research and Forecasting model coupled with chemistry (WRF/Chem [2]). For this purpose, PAHs' gas and particulate phase chemical reactions and dry and wet deposition processes are included. We use emissions of 2008 [3] which include technical combustion processes (coal, oil, gas, waste and biomass) and open fires and apply diurnal time functions as those of black carbon. The model was run for phenanthrene (3-ring PAH, p = 1.5×10-2 Pa at 298 K) and benzo(a)pyrene (5-ring PAH, p = 7×10-7 Pa) for July 2013 with hourly output and 27 km horizontal grid spacing. The comparison of model predicted phenanthrene concentrations with measurements at a rural site near Beijing (own data, unpublished) validates the model's ability to simulate diurnal variations of gaseous PAHs. The model's performance is better in simulating day time than night time gaseous PAHs. The concentrations of PAHs had experienced significant diurnal variations in rural and remote areas of China. Elevated concentration levels of 40-60 ng m-3 for phenanthrene and 1-10 ng m-3 for benzo(a)pyrene are predicted in Shanxi, Guizhou, the North China Plain, the Sichuan Basin and Chongqing metropolitan areas due to the high emission densities at those locations. References [1] Keyte, I.J., Harrison, R.M., and Lammel, G., 2013: Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons - a review, Chem. Soc. Rev., 42, 9333-9391. [2] Grell, G.A, Peckham, S.E, Schmitz, R, McKeen, S.A, Frost, G, Skamarock, W.C, and Eder, B., 2005: Fully coupled online chemistry within the WRF model, Atmos. Environ., 39, 6957-6975. [3] Shen, H. Z

  17. Improved exposure estimation in soil screening and clean-up criteria for volatile organic chemicals.

    Science.gov (United States)

    DeVaull, George E

    2017-02-18

    Soil clean-up criteria define acceptable concentrations of organic chemical constituents for exposed humans. These criteria sum the estimated soil exposure over multiple pathways. Assumptions for ingestion, dermal contact, and dust exposure generally presume a chemical persists in surface soils at a constant concentration level for the entire exposure duration. For volatile chemicals this is an unrealistic assumption. A calculation method is presented for surficial soil criteria which include volatile depletion of chemical for these uptake pathways. The depletion estimates compare favorably with measured concentration profiles and with field measurements of soil concentration. Corresponding volatilization estimates compare favorably with measured data for a wide range of volatile and semi-volatile chemicals, including instances with and without the presence of a mixed-chemical residual phase. Selected examples show application of the revised factors in estimating screening levels for benzene in surficial soils. This article is protected by copyright. All rights reserved.

  18. Modeling short-term variability of semivolatile organic chemicals in air at a local scale: an integrated modeling approach.

    Science.gov (United States)

    Morselli, Melissa; Ghirardello, Davide; Semplice, Matteo; Di Guardo, Antonio

    2011-05-01

    Monitoring campaigns from different locations have recently shown how air concentrations of persistent semivolatile contaminants such as polychlorinated biphenyls (PCBs) often exhibit short-term (less than 24 h) variations. The observed patterns have been ascribed to different factors, such as temperature-mediated air-surface exchange and variability of planetary boundary layer (PBL) height and dynamics. Here, we present a new modeling approach developed in order to investigate the short-term variability in air concentrations of organic pollutants at a local scale. A new dynamic multimedia box model is supplied by a meteorological preprocessor (AERMET) with hourly values of air compartment height and wind speed. The resulting model is tested against an existing dataset of PCB air concentrations measured in Zurich, Switzerland. Results show the importance of such modeling approach in elucidating the short- and long-term behavior of semivolatile contaminants in the air/soil system.

  19. Urban and rural transport of semivolatile organic compounds at regional scale: A multimedia model approach.

    Science.gov (United States)

    Song, Shuai; Su, Chao; Lu, Yonglong; Wang, Tieyu; Zhang, Yueqing; Liu, Shijie

    2016-01-01

    Urban areas are generally regarded as major sources of some semivolatile organic compounds and other persistent organic pollutants (POPs) to the surrounding regions. Huge differences in contaminant emissions between urban and rural areas directly affect their fate in environmental media. Little is known about POPs behavior between urban and rural areas at a regional scale. A spatially resolved Berkeley-Trent-Urban-Rural Fate Model (BETR-UR) was designed by coupling land cover information to simulate the transport of POPs between urban and rural areas, and the Bohai Rim was used as a case study to estimate Polycyclic Aromatic Hydrocarbon (PAH) fate. The processes of contaminant fate including emission, inter-compartmental transfer, advection and degradation in urban and rural areas were simulated in the model. Simulated PAH concentrations in environmental media of urban and rural areas were very close to measured values. The model accuracy was highly improved, with the average absolute relative error for PAH concentrations reduced from 37% to 3% compared with unimproved model results. PAH concentrations in urban soil and air were considerably higher than those in rural areas. Sensitivity analysis showed temperature was the most influential parameter for Phen rather than for Bap, whose fate was more influenced by emission rate, compartment dimension, transport velocity and chemical persistence. Uncertainty analysis indicated modeled results in urban media had higher uncertainty than those in rural areas due to larger variations of emissions in urban areas. The differences in urban and rural areas provided us with valuable guidance on policy setting for urban-rural POP control.

  20. Identification of volatile and semivolatile compounds in chemical ionization GC-MS using a mass-to-structure (MTS) Search Engine with integral isotope pattern ranking.

    Science.gov (United States)

    Liao, Wenta; Draper, William M

    2013-02-21

    The mass-to-structure or MTS Search Engine is an Access 2010 database containing theoretical molecular mass information for 19,438 compounds assembled from common sources such as the Merck Index, pesticide and pharmaceutical compilations, and chemical catalogues. This database, which contains no experimental mass spectral data, was developed as an aid to identification of compounds in atmospheric pressure ionization (API)-LC-MS. This paper describes a powerful upgrade to this database, a fully integrated utility for filtering or ranking candidates based on isotope ratios and patterns. The new MTS Search Engine is applied here to the identification of volatile and semivolatile compounds including pesticides, nitrosoamines and other pollutants. Methane and isobutane chemical ionization (CI) GC-MS spectra were obtained from unit mass resolution mass spectrometers to determine MH(+) masses and isotope ratios. Isotopes were measured accurately with errors of Search Engine and details performance testing with over 50 model compounds.

  1. Volatility of organic aerosol and its components in the megacity of Paris

    Science.gov (United States)

    Paciga, Andrea; Karnezi, Eleni; Kostenidou, Evangelia; Hildebrandt, Lea; Psichoudaki, Magda; Engelhart, Gabriella J.; Lee, Byong-Hyoek; Crippa, Monica; Prévôt, André S. H.; Baltensperger, Urs; Pandis, Spyros N.

    2016-02-01

    Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 µg m-3 and another 35-40 % consisting of low and extremely low volatility organic compounds (LVOCs with effective saturation concentrations C* of 10-3-0.1 µg m-3 and ELVOCs C* less or equal than 10-4 µg m-3, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low-volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs with C* in the 1-100 µg m-3 range) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the bulk average O : C ratios and volatility distributions of the various factors, our results are placed into the two-dimensional volatility basis set (2D-VBS) framework. The OA factors cover a broad spectrum of volatilities with no direct link between the average volatility and

  2. Characterisation of volatile organic compounds in stemwood using solid-phase microextraction.

    Science.gov (United States)

    Wajs, A; Pranovich, A; Reunanen, M; Willför, S; Holmbom, B

    2006-01-01

    Solid-phase microextraction (SPME), hydrodistillation and dynamic headspace combined with GC and GC-MS were applied and compared for the analysis of volatile organic compounds (VOCs) from coniferous wood. The SPME conditions (type of fibre, size of wood sample, temperature and exposure time) were optimised, and more than 100 VOCs and semi-volatile compounds extracted and identified from the sapwood and heartwood of Norway spruce (Picea abies). The total number of mono- and sesquiterpenes eluted and identified was similar for the SPME and hydrodistillation methods, but more semi-volatile compounds were released by hydrodistillation. By applying dynamic headspace at room temperature, it was possible to analyse only the most volatile compounds. The qualitative composition of VOCs was similar in spruce sapwood and heartwood, although Z-beta-ocimene occurred only in sapwood while fenchol was present only in heartwood. SPME sampling coupled with GC, applied here to the analysis of VOCs released from stemwood of firs for the first time, is a convenient, sensitive, fast, solvent-free and simple method for the determination of wood volatiles. The technique requires much smaller sample amounts compared with hydrodistillation, and the total amount of VOCs extracted and identified is higher than that obtained by hydrodistillation or dynamic headspace. The relative ratios of the main mono- and sesquiterpenes and -terpenoids were similar using the SPME-GC and hydrodistillation methods.

  3. Semivolatile behaviour of dicarboxylic acids and other polar organic species at a rural background site (Nylsvley, RSA)

    CSIR Research Space (South Africa)

    Limbeck, A

    2001-01-01

    Full Text Available esters and monocarboxylic acids is available (Cautreels and Van Cauwenberghe, 1978). Here we report about the observa- tion of a semivolatile behavior of oxalic acid and related polar organic compounds. Sample collection was per- formed at a biogenically...}propanol complex to obtain the propyl-esters. After the addition of a saturated aqueous NaCl solution the dicarboxylic acid esters were extracted with cyclohexane and analyzed by GC/MS. The adsor- bed compounds like monocarboxylic acids, aromatic compounds...

  4. Changes in surface area and concentrations of semivolatile organic contaminants in aging snow.

    Science.gov (United States)

    Burniston, Debbie A; Strachan, William J M; Hoff, John T; Wania, Frank

    2007-07-15

    contribute to the loss of semivolatile organic compounds from metamorphosing snowpacks, other confounding factors play a role in determining concentration changes, in particular in wet snow.

  5. Semivolatile organic compounds monitored using a proton transfer reaction mass spectrometer at 200m above ground in rural Netherlands

    Science.gov (United States)

    Strickland, Jessica; Klinger, Andreas; Herbig, Jens; Holzinger, Rupert

    2017-04-01

    Semi-volatile organic compounds (SVOCs) are anthropogenically and naturally occurring chemical compounds that have vapor pressures such that they exist in both the gas and condensed phase at room temperature. Due to the fact SVOCs condense easily, they are interesting in the context of organic aerosol formation and these compounds impact atmospheric properties and human health. Proton Transfer Reaction Mass Spectrometry (PTR-MS, resolution 1200 FWHM) is a method that facilitates deeper analysis of SVOCs. Our setup, consisting of a PTR-MS with a time of flight mass spectrometer coupled to a denuder sampler (DS) was stationed as part of the European ACTRIS-2 program at 200m atop the Cabauw tower in the Netherlands as of September, 2016. The DS consists of three denuders in series. The first two denuders are coated with dimethylpolysiloxane (DB1, OD 4mm, 3cm long) and consists of an assemblage of micro-channels (ID 80 micrometer). The third denuder is an activated charcoal monolith of the same dimensions but with larger (thus fewer) channels (ID 800 micrometer). The air sampled at 800mL/min is pulled through these denuders as laminar flow and the SVOCs will collide and condense on the wall. Undesirable wall losses are minimized by using a short and high flow inlet lines. The collected SVOCs are thermally desorbed under a Nitrogen (N2) gas flow and transferred to the PTR-MS through heated lines to avoid re-condensation. Evaluation of the full mass spectra revealed over 200 different compounds in the range 15-500 Da. The majority of the mass of SVOCs was contained in m/z > 100 and typical mixing ratios of the detected SVOCs were a few pmol/mol in ambient air. Discernible contamination from the DB1 coating was detected and therefore, different blank methods have been tested and evaluated using a student T-test. Proper blank correction is an important issue of this method and will be discussed in detail. Data from October 19th, 2016, are used as case studies for analyzing

  6. Ultrasonic nebulization extraction coupled with headspace single-drop microextraction of volatile and semivolatile compounds from the seed of Cuminum cyminum L.

    Science.gov (United States)

    Zhang, Huihui; Shi, Yuhua; Wei, Shigang; Wang, Yinghua; Zhang, Hanqi

    2011-08-15

    Ultrasonic nebulization extraction (UNE) coupled with headspace single-drop microextraction (HS-SDME) was developed. In the UNE process, the analytes were transferred from the aqueous phase to the gas phase. Then the analytes were transferred from the gas phase to the solvent phase by the carrier gas and extracted and enriched with suspended microdrop solvent. Finally, the microdrop solvent injected into GC-MS system. The parameters affecting extraction performance, such as type of suspended solvent, microdrop volume, flow rate of carrier gas, temperature of extraction vessel and extraction time were investigated and optimized. The proposed method can be applied for the extraction and enrichment of the volatile and semivolatile compounds simultaneously. The extraction efficiency of the proposed method was compared with that of ultrasonic extraction (UE) and UE-HS-SDME. Compared with UE-HS-SDME, the contents of constituents in the extract obtained by the proposed method were closer to those obtained by hydrodistillation (HD), which is a standard extraction method.

  7. Organic Aerosol Volatility Parameterizations and Their Impact on Atmospheric Composition and Climate

    Science.gov (United States)

    Tsigaridis, Konsta; Bauer, Susanne E.

    2015-01-01

    Despite their importance and ubiquity in the atmosphere, organic aerosols are still very poorly parameterized in global models. This can be explained by two reasons: first, a very large number of unconstrained parameters are involved in accurate parameterizations, and second, a detailed description of semi-volatile organics is computationally very expensive. Even organic aerosol properties that are known to play a major role in the atmosphere, namely volatility and aging, are poorly resolved in global models, if at all. Studies with different models and different parameterizations have not been conclusive on whether the additional complexity improves model simulations, but the added diversity of the different host models used adds an unnecessary degree of variability in the evaluation of results that obscures solid conclusions.

  8. Characterisation of selected volatile organic compounds in ...

    African Journals Online (AJOL)

    kshale

    2013-05-15

    May 15, 2013 ... spectrometry. K. Shale1*, J. Mukamugema2, R. J. Lues1, P. Venter3 and K. K. Mokoena1 ..... Cajka T, Riddellova K, Tomaniova M, Hajslova J (2010). Recognition of ... volatile organic compounds of coniferous needle litter.

  9. Sampling artifacts in active air sampling of semivolatile organic contaminants: Comparing theoretical and measured artifacts and evaluating implications for monitoring networks.

    Science.gov (United States)

    Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Prokeš, Roman; Kukučka, Petr; Klánová, Jana

    2016-10-01

    The effects of sampling artifacts are often not fully considered in the design of air monitoring with active air samplers. Semivolatile organic contaminants (SVOCs) are particularly vulnerable to a range of sampling artifacts because of their wide range of gas-particle partitioning and degradation rates, and these can lead to erroneous measurements of air concentrations and a lack of comparability between sites with different environmental and sampling conditions. This study used specially adapted filter-sorbent sampling trains in three types of active air samplers to investigate breakthrough of SVOCs, and the possibility of other sampling artifacts. Breakthrough volumes were experimentally determined for a range of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs) in sampling volumes from 300 to 10,000 m(3), and sampling durations of 1-7 days. In parallel, breakthrough was estimated based on theoretical sorbent-vapor pressure relationships. The comparison of measured and theoretical determinations of breakthrough demonstrated good agreement between experimental and estimated breakthrough volumes, and showed that theoretical breakthrough estimates should be used when developing air monitoring protocols. Significant breakthrough in active air samplers occurred for compounds with vapor pressure >0.5 Pa at volumes Sample volumes between 700 and 10,000 m(3) may lead to breakthrough for compounds with vapor pressures between 0.005 and 0.5 Pa. Breakthrough is largely driven by sample volume and compound volatility (therefore indirectly by temperature) and is independent of sampler type. The presence of significant breakthrough at "typical" sampling conditions is relevant for air monitoring networks, and may lead to under-reporting of more volatile SVOCs.

  10. Mutagenicity and in vivo toxicity of combined particulate and semivolatile organic fractions of gasoline and diesel engine emissions.

    Science.gov (United States)

    Seagrave, JeanClare; McDonald, Jacob D; Gigliotti, Andrew P; Nikula, Kristen J; Seilkop, Steven K; Gurevich, Michael; Mauderly, Joe L

    2002-12-01

    Exposure to engine emissions is associated with adverse health effects. However, little is known about the relative effects of emissions produced by different operating conditions, fuels, or technologies. Rapid screening techniques are needed to compare the biological effects of emissions with different characteristics. Here, we examined a set of engine emission samples using conventional bioassays. The samples included combined particulate material and semivolatile organic compound fractions of emissions collected from normal- and high-emitter gasoline and diesel vehicles collected at 72 degrees F, and from normal-emitter groups collected at 30 degrees F. The relative potency of the samples was determined by statistical analysis of the dose-response curves. All samples induced bacterial mutagenicity, with a 10-fold range of potency among the samples. Responses to intratracheal instillation in rats indicated generally parallel rankings of the samples by multiple endpoints reflecting cytotoxic, inflammatory, and lung parenchymal changes, allowing selection of a more limited set of parameters for future studies. The parameters selected to assess oxidative stress and macrophage function yielded little useful information. Responses to instillation indicated little difference in potency per unit of combined particulate material and semivolatile organic compound mass between normal-emitter gasoline and diesel vehicles, or between emissions collected at different temperatures. However, equivalent masses of emissions from high-emitter vehicles of both types were more potent than those from normal-emitters. While preliminary in terms of assessing contributions of different emissions to health hazards, the results indicate that a subset of this panel of assays will be useful in providing rapid, cost-effective feedback on the biological impact of modified technology.

  11. Factors affecting the volatilization of volatile organic compounds from wastewater

    Directory of Open Access Journals (Sweden)

    Junya Intamanee

    2006-09-01

    Full Text Available This study aimed to understand the influence of the wind speed (U10cm, water depth (h and suspended solids (SS on mass transfer coefficient (KOLa of volatile organic compounds (VOCs volatilized from wastewater. The novelty of this work is not the method used to determine KOLa but rather the use of actual wastewater instead of pure water as previously reported. The influence of U10cm, h, and SS on KOLa was performed using a volatilization tank with the volume of 100-350 L. Methyl Ethyl Ketone (MEK was selected as a representative of VOCs investigated here in. The results revealed that the relationship between KOLa and the wind speeds falls into two regimes with a break at the wind speed of 2.4 m/s. At U10cm 2.4 m/s, KOLa increased more rapidly. The relationship between KOLa and U10cm was also linear but has a distinctly higher slope. For the KOLa dependency on water depth, the KOLa decreased significantly with increasing water depth up to a certain water depth after that the increase in water depth had small effect on KOLa. The suspended solids in wastewater also played an important role on KOLa. Increased SS resulted in a significant reduction of KOLa over the investigated range of SS. Finally, the comparison between KOLa obtained from wastewater and that of pure water revealed that KOLa from wastewater were much lower than that of pure water which was pronounced at high wind speed and at small water depth. This was due the presence of organic mass in wastewater which provided a barrier to mass transfer and reduced the degree of turbulence in the water body resulting in low volatilization rate and thus KOLa. From these results, the mass transfer model for predicting VOCs emission from wastewater should be developed based on the volatilization of VOCs from wastewater rather than that from pure water.

  12. Chemically-resolved volatility measurements of organic aerosol fom different sources.

    Science.gov (United States)

    Huffman, J A; Docherty, K S; Mohr, C; Cubison, M J; Ulbrich, I M; Ziemann, P J; Onasch, T B; Jimenez, J L

    2009-07-15

    A newly modified fast temperature-stepping thermodenuder (TD) was coupled to a High Resolution Time-of-Flight Aerosol Mass Spectrometer for rapid determination of chemically resolved volatility of organic aerosols (OA) emitted from individual sources. The TD-AMS system was used to characterize primary OA (POA) from biomass burning, trash burning surrogates (paper and plastic), and meat cooking as well as chamber-generated secondary OA (SOA) from alpha-pinene and gasoline vapor. Almost all atmospheric models represent POA as nonvolatile, with no allowance for evaporation upon heating or dilution, or condensation upon cooling. Our results indicate that all OAs observed show semivolatile behavior and that most POAs characterized here were at least as volatile as SOA measured in urban environments. Biomass-burning OA (BBOA) exhibited a wide range of volatilities, but more often showed volatility similar to urban OA. Paper-burning resembles some types of BBOA because of its relatively high volatility and intermediate atomic oxygen-to-carbon (O/C) ratio, while meat-cooking OAs (MCOA) have consistently lower volatility than ambient OA. Chamber-generated SOA under the relatively high concentrations used intraditional experiments was significantly more volatile than urban SOA, challenging extrapolation of traditional laboratory volatility measurements to the atmosphere. Most OAs sampled show increasing O/C ratio and decreasing H/C (hydrogen-to-carbon) ratio with temperature, further indicating that more oxygenated OA components are typically less volatile. Future experiments should systematically explore a wider range of mass concentrations to more fully characterize the volatility distributions of these OAs.

  13. Analytical modeling of the subsurface volatile organic vapor concentration in vapor intrusion.

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2014-01-01

    The inhalation of volatile and semi-volatile organic compounds that intrude from a subsurface contaminant source into indoor air has become the subject of health and safety concerns over the last twenty years. Building subslab and soil gas contaminant vapor concentration sampling have become integral parts of vapor intrusion field investigations. While numerical models can be of use in analyzing field data and in helping understand the subslab and soil gas vapor concentrations, they are not widely used due to the perceived effort in setting them up. In this manuscript, we present a new closed-form analytical expression describing subsurface contaminant vapor concentrations, including subslab vapor concentrations. The expression was derived using Schwarz-Christoffel mapping. Results from this analytical model match well the numerical modeling results. This manuscript also explores the relationship between subslab and exterior soil gas vapor concentrations, and offers insights on what parameters need to receive greater focus in field studies.

  14. Trans-Pacific and regional atmospheric transport of anthropogenic semivolatile organic compounds in the Western United States

    Science.gov (United States)

    Primbs, Toby

    The atmospheric transport of anthropogenic semivolatile organic compounds (SOCs) from Asian sources to the Western U.S. was investigated. In addition, the SOC extraction method was optimized. Hansen solubility parameter plots were used to aid in the pressurized liquid extraction (PLE) solvent selection of air sampling media in order to minimize polymeric matrix interferences. To estimate the emissions of anthropogenic semivolatile organic compounds (SOCs) from East Asia and to identify unique SOC molecular markers in Asian air masses, air samples were collected on the island of Okinawa, Japan in Spring 2004. Elevated concentrations of hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), and particulate-phase polycyclic aromatic hydrocarbons (PAHs) were attributed to air masses from China. A large proportion of the variation in the current use pesticides, gas-phase PAHs, and polychlorinated biphenyl (PCB) concentrations was explained by meteorology. Using measured PAH, carbon monoxide (CO), and black carbon concentrations and estimated CO and black carbon emission inventories, the emission of 6 carcinogenic particulate-phase PAHs were estimated to be 1518-4179 metric tons/year for all of Asia and 778-1728 metric tons/year for only China. Atmospheric measurements of anthropogenic SOCs were made at Mt. Bachelor Observatory (MBO), located in Oregon's Cascade Range. PAH concentrations at MBO increased with the percentage of air mass time in Asia and, in conjunction with other data, provided strong evidence that particulate-phase PAHs are emitted from Asia and undergo trans-Pacific atmospheric transport to North America. Enhanced HCB, alpha-HCH, and gamma-HCH concentrations also occurred during trans-Pacific atmospheric transport, compared with regional (Western U.S.) air masses during similar time periods. Gas-phase PAH and fluorotelomer alcohol (FTOH) concentrations significantly increased with the percentage of air mass time

  15. Comparisons of urban and rural PM10−2.5 and PM2.5 mass concentrations and semi-volatile fractions in Northeastern Colorado

    Directory of Open Access Journals (Sweden)

    N. Clements

    2015-09-01

    Full Text Available Coarse (PM10−2.5 and fine (PM2.5 particulate matter in the atmosphere adversely affect human health and influence climate. While PM2.5 is relatively well studied, less is known about the sources and fate of PM10−2.5. The Colorado Coarse Rural-Urban Sources and Health (CCRUSH study measured PM10−2.5 and PM2.5 mass concentrations, as well as the fraction of semi-volatile material (SVM in each size regime (SVM2.5, SVM10−2.5, for three years in Denver and comparatively rural Greeley, Colorado. Agricultural operations east of Greeley appear to have contributed to the peak PM10−2.5 concentrations there, but concentrations were generally lower in Greeley than in Denver. Traffic-influenced sites in Denver had PM10−2.5 concentrations that averaged from 14.6 to 19.7 μg m−3 and mean PM10−2.5/PM10 ratios of 0.56 to 0.70, higher than at residential sites in Denver or Greeley. PM10−2.5 concentrations were more temporally variable than PM2.5 concentrations. Concentrations of the two pollutants were not correlated. Spatial correlations of daily averaged PM10−2.5 concentrations ranged from 0.59 to 0.62 for pairs of sites in Denver and from 0.47 to 0.70 between Denver and Greeley. Compared to PM10−2.5, concentrations of PM2.5 were more correlated across sites within Denver and less correlated between Denver and Greeley. PM10−2.5 concentrations were highest during the summer and early fall, while PM2.5 and SVM2.5 concentrations peaked in winter during periodic multi-day inversions. SVM10−2.5 concentrations were low at all sites. Diurnal peaks in PM10−2.5 and PM2.5 concentrations corresponded to morning and afternoon peaks of traffic activity, and were enhanced by boundary layer dynamics. SVM2.5 concentrations peaked around noon on both weekdays and weekends. PM10−2.5 concentrations at sites located near highways generally increased with wind speeds above about 3 m s−1. Little wind speed dependence was observed for the residential

  16. Comparisons of urban and rural PM10-2.5 and PM2.5 mass concentrations and semi-volatile fractions in northeastern Colorado

    Science.gov (United States)

    Clements, Nicholas; Hannigan, Michael P.; Miller, Shelly L.; Peel, Jennifer L.; Milford, Jana B.

    2016-06-01

    Coarse (PM10-2.5) and fine (PM2.5) particulate matter in the atmosphere adversely affect human health and influence climate. While PM2.5 is relatively well studied, less is known about the sources and fate of PM10-2.5. The Colorado Coarse Rural-Urban Sources and Health (CCRUSH) study measured PM10-2.5 and PM2.5 mass concentrations, as well as the fraction of semi-volatile material (SVM) in each size regime (SVM2.5, SVM10-2.5), from 2009 to early 2012 in Denver and comparatively rural Greeley, Colorado. Agricultural operations east of Greeley appear to have contributed to the peak PM10-2.5 concentrations there, but concentrations were generally lower in Greeley than in Denver. Traffic-influenced sites in Denver had PM10-2.5 concentrations that averaged from 14.6 to 19.7 µg m-3 and mean PM10-2.5 / PM10 ratios of 0.56 to 0.70, higher than at residential sites in Denver or Greeley. PM10-2.5 concentrations were more temporally variable than PM2.5 concentrations. Concentrations of the two pollutants were not correlated. Spatial correlations of daily averaged PM10-2.5 concentrations ranged from 0.59 to 0.62 for pairs of sites in Denver and from 0.47 to 0.70 between Denver and Greeley. Compared to PM10-2.5, concentrations of PM2.5 were more correlated across sites within Denver and less correlated between Denver and Greeley. PM10-2.5 concentrations were highest during the summer and early fall, while PM2.5 and SVM2.5 concentrations peaked in winter during periodic multi-day inversions. SVM10-2.5 concentrations were low at all sites. Diurnal peaks in PM10-2.5 and PM2.5 concentrations corresponded to morning and afternoon peaks of traffic activity, and were enhanced by boundary layer dynamics. SVM2.5 concentrations peaked around noon on both weekdays and weekends. PM10-2.5 concentrations at sites located near highways generally increased with wind speeds above about 3 m s-1. Little wind speed dependence was observed for the residential sites in Denver and Greeley. The mass

  17. Data on occurrence of selected trace metals, organochlorines, and semivolatile organic compounds in edible fish tissues from Lake Worth, Fort Worth, Texas, 1999

    Science.gov (United States)

    Moring, J. Bruce

    2002-01-01

    A public-health assessment conducted for the Texas Department of Health and the Agency for Toxic Substances and Disease Registry concluded that exposure to contaminants through the aquatic food chain is an indeterminate human-health hazard in Lake Worth, Fort Worth, Texas. In 1999, the U.S. Geological Survey, in cooperation with the U.S. Air Force and in collaboration with the Texas Department of Health, collected samples of edible fish tissues from Lake Worth for analysis of selected trace metals, organochlorines, and semivolatile organic compounds to support a human-health risk assessment. Left-side, skin-off fillet samples were collected from 10 individuals each of channel catfish, common carp, freshwater drum (gaspergou), largemouth bass, and white crappie but only from five smallmouth buffalo. The U.S. Geological Survey National Water Quality Laboratory analyzed the samples for 22 trace metals, 40 organochlorine pesticides and polychlorinated biphenyls, and 75 semivolatile organic compounds.

  18. Volatile organic compound emissions from silage systems

    Science.gov (United States)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols with other impor...

  19. Partitioning of semi-volatile organic compounds to the air/water interface

    Science.gov (United States)

    Pankow, James F.

    Partition coefficients ( Kia, m 3m -2) for sorption of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes at the air/water interface were estimated by extrapolating quartz/gas sorption data to relative humidity (RH) values of 100%. For each compound class, the log Kia values were found to be well correlated with log pLo where pLo (Torr) is the vapor pressure of the pure subcooled liquid. For the PAHs, correlation equation is log Kia = -1.20 log pLo - 5.82 ( R2 = 0.98). For the n-alkanes, the correlation equation is log Kia = -0.93 log pLo - 4.42 ( R2 = 0.95).

  20. Model studies of volatile diesel exhaust particle formation: organic vapours involved in nucleation and growth?

    Science.gov (United States)

    Pirjola, L.; Karl, M.; Rönkkö, T.; Arnold, F.

    2015-02-01

    High concentration of volatile nucleation mode particles (NUP) formed in the atmosphere during exhaust cools and dilutes have hazardous health effects and impair visibility in urban areas. Nucleation mechanisms in diesel exhaust are only poorly understood. We performed model studies using two sectional aerosol dynamics process models AEROFOR and MAFOR on the formation of particles in the exhaust of a diesel engine, equipped with an oxidative after-treatment system and running with low fuel sulphur content (FSC), under laboratory sampling conditions where the dilution system mimics real-world conditions. Different nucleation mechanisms were tested; based on the measured gaseous sulphuric acid (GSA) and non-volatile core and soot particle number concentrations of the raw exhaust, the model simulations showed that the best agreement between model predictions and measurements in terms of particle number size distribution was obtained by barrierless heteromolecular homogeneous nucleation between GSA and semi-volatile organic vapour (for example adipic acid) combined with the homogeneous nucleation of GSA alone. Major growth of the particles was predicted to occur by the same organic vapour at concentrations of (1-2) ×1012cm-3. The pre-existing core and soot mode concentrations had opposite trend on the NUP formation, and maximum NUP formation was predicted if a diesel particle filter (DPF) was used. On the other hand, NUP formation was ceased if the GSA concentration was less than 1010cm-3 which suggests, based on the measurements, the usage of biofuel to prevent volatile particles in diesel exhaust.

  1. Volatile Organic Compounds are Ghosts for Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Prakash R. Somani

    2014-11-01

    Full Text Available All our efforts to demonstrate a multifunctional device – photovoltaic gas sensor (i.e. solar cell which show photovoltaic action depending on the gas / volatile organic compounds (VOC in the surrounding atmosphere yielded negative results. Photovoltaic performance of the organic solar cells under study degraded – almost permanently by exposing them to volatile organic compounds (VOCs. Although, the proposed multifunctional device could not be demonstrated; Present investigations yielded very important result that organic solar cells have problems not only with oxygen and humidity (known facts but also with many VOCs and hazardous gases – making lamination / encapsulation step mandatory for their practical utilization.

  2. Constraining the Volatility Distributions and Possible Diffusion Limitations of Secondary Organic Aerosols Using Laboratory Dilution Experiments

    Science.gov (United States)

    Ye, Q.; Robinson, E. S.; Mahfouz, N.; Sullivan, R. C.; Donahue, N. M.

    2016-12-01

    Secondary organic aerosols (SOA) dominate the mass of fine particles in the atmosphere. Their formation involves both oxidation of volatile organics from various sources that produce products with uncertain volatilities, and diffusion of these products into the condensed phase. Therefore, constraining volatility distribution and diffusion timescales of the constituents in SOA are important in predicting size, concentration and composition of SOA, as well as how these properties of SOA evolve in the atmosphere. In this work, we demonstrate how carefully designed laboratory isothermal dilution experiments in smog chambers can shed light into the volatility distribution and any diffusion barriers of common types of SOA over time scales relevant to atmospheric transport and diurnal cycling. We choose SOA made from mono-terpenes (alpha-pinene and limonene) and toluene to represent biogenic and anthropogenic SOA. We look into how moisture content can alter any evaporation behaviors of SOA by varying relative humidity during SOA generation and during dilution process. This provides insight into whether diffusion in the condensed phase is rate limiting in reaching gas/particle equilibrium of semi-volatile organic compounds. Our preliminary results show that SOA from alpha-pinene evaporates continuously over several hours of experiments, and there is no substantial discernible differences over wide ranges of the chamber humidity. SOA from toluene oxidation shows slower evaporation. We fit these experimental data using absorptive partitioning theory and a particle dynamic model to obtain volatility distributions and to predict particle size evolution. This in the end will help us to improve representation of SOA in large scale chemical transport models.

  3. Estimating the influence of forests on the overall fate of semivolatile organic compounds using a multimedia fate model.

    Science.gov (United States)

    Wania, F; Mclachlan, M S

    2001-02-01

    On the basis of recently reported measurements of semivolatile organic compound (SOC) uptake in forest canopies, simple expressions are derived that allow the inclusion of a canopy compartment into existing non-steady-state multimedia fate models based on the fugacity approach. One such model is used to assess how the inclusion of the canopy compartment in the model affects the calculated overall behavior of SOCs with specific physical--chemical properties. The primary effect of the forest is an increase in the net atmospheric deposition to the terrestrial environment, reducing atmospheric concentrations and accordingly the extent of deposition to the agricultural and aquatic environments. This effect was most pronounced for chemicals with log KOA around 9-10 and log KAW -2 to -3; their average air concentrations during the growing season decreased by a factor of 5 when the canopy compartment was included. Concentration levels in virtually all compartments are decreased at the expense of increased concentrations in the forest soil. The effect of the forest lies not in a large capacity for these chemicals but in the efficiency of pumping the chemicals from the atmosphere to the forest soil, a storage reservoir with high capacity from which the chemicals can return to the atmosphere only with difficulty. Because of seasonal variability of canopy size and atmospheric stability, uptake into forests is higher during spring and summer than in winter. The model suggests that this may dampen temperature-driven seasonal fluctuations of air concentrations and in regions with large deciduous forests may lead to a temporary, yet notable dip in air concentrations during leaf development in spring. A sensitivity analysis revealed a strong effect of forest cover, forest composition, and degradation half-lives. A high degradation loss on the plant surface has the effect of preventing the saturation of the small plant reservoir and can cause very significant reductions in

  4. Direct thermal desorption of semivolatile organic compounds from diffusion denuders and gas chromatographic analysis for trace concentration measurement.

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, D. E.; Perlinger, J. A.; Morrow, P. S.; Doskey, P. V.; Perram, D.L.; Environmental Science Division; Michigan Technological Univ.

    2007-01-01

    A novel method for collection and analysis of vapor-phase semivolatile organic compounds (SOCs) in ambient air is presented. The method utilizes thermal desorption of SOCs trapped in diffusion denuders coupled with cryogenic preconcentration on Tenax-TA and analysis by high resolution gas chromatography (GC)-electron-capture detection (ECD). The sampling and analysis methods employ custom-fabricated multicapillary diffusion denuders, a hot gas spike (HGS) apparatus to load known quantities of thermally stable standards into diffusion denuders prior to sample collection, a custom-fabricated oven to thermally desorb SOCs from the diffusion denuder, and a programmable temperature vaporization (PTV) inlet containing a liner packed with Tenax-TA for effective preconcentration of the analytes and water management. High flow rates into the PTV inlet of 750 mL min-1during thermal desorption are ca. a factor of ten greater than typically used. To improve resolution and retention time stability, the thermal desorption and PTV inlet programming procedure includes three steps to prevent water from entering the analytic column while effectively transferring the analytes into the GC system. The instrumentation and procedures provide virtually complete and consistent transfer of analytes collected from ambient air into the GC evidenced by recovery of seven replicates of four internal standards of 90.7 {+-} 4.0-120 {+-} 23% (mean {+-} 95% confidence interval, CI). Retention time based compound identification is facilitated by low retention time variability with an average 95% CI of 0.024 min for sixteen replicates of eight standards. Procedure details and performance metrics as well as ambient sampling results are presented.

  5. Direct thermal desorption of semivolatile organic compounds from diffusion denuders and gas chromatographic analysis for trace concentration measurement.

    Science.gov (United States)

    Tobias, David E; Perlinger, Judith A; Morrow, Patrick S; Doskey, Paul V; Perram, David L

    2007-01-26

    A novel method for collection and analysis of vapor-phase semivolatile organic compounds (SOCs) in ambient air is presented. The method utilizes thermal desorption of SOCs trapped in diffusion denuders coupled with cryogenic preconcentration on Tenax-TA and analysis by high resolution gas chromatography (GC)-electron-capture detection (ECD). The sampling and analysis methods employ custom-fabricated multicapillary diffusion denuders, a hot gas spike (HGS) apparatus to load known quantities of thermally stable standards into diffusion denuders prior to sample collection, a custom-fabricated oven to thermally desorb SOCs from the diffusion denuder, and a programmable temperature vaporization (PTV) inlet containing a liner packed with Tenax-TA for effective preconcentration of the analytes and water management. High flow rates into the PTV inlet of 750mLmin(-1)during thermal desorption are ca. a factor of ten greater than typically used. To improve resolution and retention time stability, the thermal desorption and PTV inlet programming procedure includes three steps to prevent water from entering the analytic column while effectively transferring the analytes into the GC system. The instrumentation and procedures provide virtually complete and consistent transfer of analytes collected from ambient air into the GC evidenced by recovery of seven replicates of four internal standards of 90.7+/-4.0-120+/-23% (mean+/-95% confidence interval, CI). Retention time based compound identification is facilitated by low retention time variability with an average 95% CI of 0.024min for sixteen replicates of eight standards. Procedure details and performance metrics as well as ambient sampling results are presented.

  6. Prediction of gas collection efficiency and particle collection artifact for atmospheric semivolatile organic compounds in multicapillary denuders.

    Science.gov (United States)

    Rowe, Mark D; Perlinger, Judith A

    2010-01-15

    A modeling approach is presented to predict the sorptive sampling collection efficiency of gaseous semivolatile organic compounds (SOCs) and the artifact caused by collection of particle-associated SOCs in multicapillary diffusion denuders containing polydimethylsiloxane (PDMS) stationary phase. Approaches are presented to estimate the equilibrium PDMS-gas partition coefficient (K(pdms)) from a solvation parameter model for any compound, and, for nonpolar compounds, from the octanol-air partition coefficient (K(oa)) if measured K(pdms) values are not available. These estimated K(pdms) values are compared with K(pdms) measured by gas chromatography. Breakthrough fraction was measured for SOCs collected from ambient air using high-flow (300 L min(-1)) and low-flow (13 L min(-1)) denuders under a range of sampling conditions (-10 to 25 degrees C; 11-100% relative humidity). Measured breakthrough fraction agreed with predictions based on frontal chromatography theory using K(pdms) and equations of Golay, Lövkvist and Jönsson within measurement precision. Analytes included hexachlorobenzene, 144 polychlorinated biphenyl congeners, and polybrominated diphenyl ethers 47 and 99. Atmospheric particle transmission efficiency was measured for the high-flow denuder (0.037-6.3 microm diameter), and low-flow denuder (0.015-3.1 microm diameter). Particle transmission predicted using equations of Gormley and Kennedy, Pich, and a modified filter model, agreed within measurement precision (high-flow denuder) or were slightly greater than (low-flow denuder) measured particle transmission. As an example application of the model, breakthrough volume and particle collection artifact for the two denuder designs were predicted as a function of K(oa) for nonpolar SOCs. The modeling approach is a necessary tool for the design and use of denuders for sorptive sampling with PDMS stationary phase.

  7. Positive matrix factorization of PM2.5 – eliminating the effects of gas/particle partitioning of semivolatile organic compounds

    Directory of Open Access Journals (Sweden)

    S. Vedal

    2013-02-01

    Full Text Available Gas-phase concentrations of semi-volatile organic compounds (SVOCs were calculated from gas/particle (G/P partitioning theory using their measured particle-phase concentrations. The particle-phase data were obtained from an existing filter measurement campaign (27 January 2003–2 October 2005 as a part of the Denver Aerosol Sources and Health (DASH study, including 970 observations of 71 SVOCs (Xie et al., 2013. In each compound class of SVOCs, the lighter species (e.g. docosane in n-alkanes, fluoranthene in PAHs had higher total concentrations (gas + particle phase and lower particle-phase fractions. The total SVOC concentrations were analyzed using positive matrix factorization (PMF. Then the results were compared with source apportionment results where only particle-phase SVOC concentrations were used (filter-based study; Xie et al., 2013. For the filter-based PMF analysis, the factors primarily associated with primary or secondary sources (n-alkane, EC/sterane and inorganic ion factors exhibit similar contribution time series (r = 0.92–0.98 with their corresponding factors (n-alkane, sterane and nitrate + sulfate factors in the current work. Three other factors (light n-alkane/PAH, PAH and summer/odd n-alkane factors are linked with pollution sources influenced by atmospheric processes (e.g. G/P partitioning, photochemical reaction, and were less correlated (r = 0.69–0.84 with their corresponding factors (light SVOC, PAH and bulk carbon factors in the current work, suggesting that the source apportionment results derived from filter-based SVOC data could be affected by atmospheric processes. PMF analysis was also performed on three temperature-stratified subsets of the total SVOC data, representing ambient sampling during cold (daily average temperature 20°C periods. Unlike the filter-based study, in this work the factor characterized by the low molecular weight (MW compounds (light SVOC factor exhibited strong correlations (r = 0.82

  8. TMVOC, simulator for multiple volatile organic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, Karsten; Battistelli, Alfredo

    2003-03-25

    TMVOC is a numerical simulator for three-phase non-isothermal flow of water, soil gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. It is an extension of the TOUGH2 general-purpose simulation program developed at the Lawrence Berkeley National Laboratory. TMVOC is designed for applications to contamination problems that involve hydrocarbon fuel or organic solvent spills in saturated and unsaturated zones. It can model contaminant behavior under ''natural'' environmental conditions, as well as for engineered systems, such as soil vapor extraction, groundwater pumping, or steam-assisted source remediation. TMVOC is upwards compatible with T2VOC (Falta et al., 1995) and can be initialized from T2VOC-style initial conditions. The main enhancements in TMVOC relative to T2VOC are as follows: a multicomponent mixture of volatile organic chemicals can be modeled; any and all combinations of the three phases water-oil-gas are treated; several non-condensible gases may be present; diffusion is treated in all phases in a manner that is fully coupled with phase partitioning. This paper gives a brief summary of the methodology used in TMVOC as well as highlighting some implementation issues. Simulation of a NAPL spill and subsequent remediation is discussed for a 2-D vertical section of a saturated-unsaturated flow problem.

  9. Micrometeorological Measurement of Fetch- and Atmospheric Stability-Dependent Air- Water Exchange of Legacy Semivolatile Organic Contaminants in Lake Superior

    Science.gov (United States)

    Perlinger, J. A.; Tobias, D. E.; Rowe, M. D.

    2008-12-01

    Coastal waters including the Laurentian Great Lakes are particularly susceptible to local, regional, and long- range transport and deposition of semivolatile organic contaminants (SOCs) as gases and/or associated with particles. Recently-marketed SOCs can be expected to undergo net deposition in surface waters, whereas legacy SOCs such as polychlorinated biphenyls (PCBs) are likely to be at equilibrium with respect to air-water exchange, or, if atmospheric concentrations decrease through, e.g., policy implementation, to undergo net gas emission. SOC air-water exchange flux is usually estimated using the two-film model. This model describes molecular diffusion through the air and water films adjacent to the air-water interface. Air-water exchange flux is estimated as the product of SOC fugacity, typically based on on-shore gaseous concentration measurements, and a transfer coefficient, the latter which is estimated from SOC properties and environmental conditions. The transfer coefficient formulation commonly applied neglects resistance to exchange in the internal boundary layer under atmospherically stable conditions, and the use of on-shore gaseous concentration neglects fetch-dependent equilibration, both of which will tend to cause overestimation of flux magnitude. Thus, for legacy chemicals or in any highly contaminated surface water, the rate at which the water is cleansed through gas emission tends to be over-predicted using this approach. Micrometeorological measurement of air-water exchange rates of legacy SOCs was carried out on ships during four transect experiments during off-shore flow in Lake Superior using novel multicapillary collection devices and thermal extraction technology to measure parts-per-quadrillion SOC levels. Employing sensible heat in the modified Bowen ratio, fluxes at three over-water stations along the transects were measured, along with up-wind, onshore gaseous concentration and aqueous concentration. The atmosphere was unstable for

  10. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani Jr.; Theresa M. Bomstad

    2002-06-01

    Western Research Institute (WRI) initiated exploratory work towards the development of new field screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of carbon-halogen bonds. Commercially available heated diode and corona discharge leak detectors were procured and evaluated for halogenated VOC response. The units were modified to provide a digital readout of signal related to VOC concentration. Sensor response was evaluated with carbon tetrachloride and tetrachloroethylene (perchloroethylene, PCE), which represent halogenated VOCs with and without double bonds. The response characteristics were determined for the VOCs directly in headspace in Tedlar bag containers. Quantitation limits in air were estimated. Potential interferences from volatile hydrocarbons, such as toluene and heptane, were evaluated. The effect of humidity was studied also. The performance of the new devices was evaluated in the laboratory by spiking soil samples and monitoring headspace for halogenated VOCs. A draft concept of the steps for a new analytical method was outlined. The results of the first year effort show that both devices show potential utility for future analytical method development work towards the goal of developing a portable test kit for screening halogenated VOCs in the field.

  11. Volatile organic compound detection using nanostructured copolymers.

    Science.gov (United States)

    Li, Bo; Sauvé, Genevieve; Iovu, Mihaela C; Jeffries-El, Malika; Zhang, Rui; Cooper, Jessica; Santhanam, Suresh; Schultz, Lawrence; Revelli, Joseph C; Kusne, Aaron G; Kowalewski, Tomasz; Snyder, Jay L; Weiss, Lee E; Fedder, Gary K; McCullough, Richard D; Lambeth, David N

    2006-08-01

    Regioregular polythiophene-based conductive copolymers with highly crystalline nanostructures are shown to hold considerable promise as the active layer in volatile organic compound (VOC) chemresistor sensors. While the regioregular polythiophene polymer chain provides a charge conduction path, its chemical sensing selectivity and sensitivity can be altered either by incorporating a second polymer to form a block copolymer or by making a random copolymer of polythiophene with different alkyl side chains. The copolymers were exposed to a variety of VOC vapors, and the electrical conductivity of these copolymers increased or decreased depending upon the polymer composition and the specific analytes. Measurements were made at room temperature, and the responses were found to be fast and appeared to be completely reversible. Using various copolymers of polythiophene in a sensor array can provide much better discrimination to various analytes than existing solid state sensors. Our data strongly indicate that several sensing mechanisms are at play simultaneously, and we briefly discuss some of them.

  12. 40 CFR 60.462 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date on... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  13. 40 CFR 60.542 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.542 Section 60.542 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  14. 40 CFR 60.442 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds... Pressure Sensitive Tape and Label Surface Coating Operations § 60.442 Standard for volatile organic compounds. (a) On and after the date on which the performance test required by § 60.8 has been...

  15. 40 CFR 60.622 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected petroleum... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  16. 40 CFR 60.582 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  17. 40 CFR 60.712 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or operator... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  18. 40 CFR 60.432 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  19. 40 CFR 60.492 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after the... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  20. 40 CFR 60.392 - Standards for volatile organic compounds

    Science.gov (United States)

    2010-07-01

    ... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic compounds... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  1. 40 CFR 60.722 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to the... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  2. 40 CFR 60.452 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  3. 40 CFR 60.602 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  4. 40 CFR 60.742 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds. (a... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  5. BIOCONCENTRATION FACTORS FOR VOLATILE ORGANIC COMPOUNDS IN VEGETATION

    Science.gov (United States)

    Samples of air and leaves were taken at the University of Nevada-Las Vegas campus and analyzed for volatile organic compounds using vacuum distillation coupled with gas chromatography/mass spectrometry. The data were used to estimate the bioconcentration of volatile organic compo...

  6. Secondary organic aerosols formed from oxidation of biogenic volatile organic compounds in the Sierra Nevada Mountains of California

    Science.gov (United States)

    Cahill, Thomas M.; Seaman, Vincent Y.; Charles, M. Judith; Holzinger, Rupert; Goldstein, Allen H.

    2006-08-01

    Biogenic volatile organic compound (BVOC) emissions, such as isoprene and terpenes, can be oxidized to form less volatile carbonyls, acids, and multifunctional oxygenated products that may condense to form secondary organic aerosols (SOA). This research was designed to assess the contribution of oxidized BVOC emissions to SOA in coniferous forests by collecting high-volume particulate samples for 6 days and 5 nights in the summer of 2003. The samples were analyzed for acids, carbonyls, polyols and alkanes to quantify oxidized BVOCs. Terpene and isoprene oxidation products were among the most abundant chemical species detected with the exception of hexadecanoic acid, octadecanoic acid and two butyl esters of unknown origin. The terpene oxidation products of pinonic acid, pinic acid, nopinone and pinonaldehyde showed clear diurnal cycles with concentrations two- to eight-fold higher at night. These cycles resulted from the diurnal cycles in gaseous terpene concentrations and lower temperatures that enhanced condensation of semivolatile chemicals onto aerosols. The terpene-derived compounds averaged 157 ± 118 ng/m3 of particulate organic matter while the isoprene oxidation compounds, namely the 2-methyltetrols and 2-methylglyceric acid, accounted for 53 ± 19 ng/m3. Together, the terpene and isoprene oxidation products represented 36.9% of the identified organic mass of 490 ± 95 ng/m3. PM10 organic matter loadings in the region were approximately 2.1 ± 1.2 μg/m3, so about 23% of the organic matter was identified and at least 8.6% was oxidized BVOCs. The BVOC oxidation products we measured were significant, but not dominant, contributors to the regional SOA only 75 km downwind of the Sacramento urban area.

  7. Sample preparation for semivolatile organics analysis of Hanford single-shell tank waste with high nitrate/nitrite and water content

    Energy Technology Data Exchange (ETDEWEB)

    Stromatt, R.W.; Hoppe, E.W.; Steele, M.J.

    1993-11-01

    This report describes research work carried out to solve sample preparation problems associated with applying gas chromatography with mass spectrometric detection (GC/MS) to the analysis of single shell tank (SST) samples from Hanford for semivolatile organic compounds. Poor performance was found when applying the procedures based on the U.S. Environmental Protection Agency (EPA), Contract Laboratory Program, Statement of Work (CLP SOW). Analysis work was carried out on simulated drainable liquid modeled after the SST core samples which had evidenced analysis problems. Some work was also conducted on true SST samples. It was found that the pH range was too broad in the original procedure. It was also found that by decreasing the amount of methanol used in the extraction process, problems associated with the formation of an azeotrope phase could be avoided. The authors suggest a new procedure, whose eventual application to a wide array of SST samples will lend itself to better quality control limits.

  8. Volatile organic compound remedial action project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-01

    This Environmental Assessment (EA) reviews a proposed project that is planned to reduce the levels of volatile organic compound (VOC) contaminants present in the Mound domestic water supply. The potable and industrial process water supply for Mound is presently obtained from a shallow aquifer via on-site production wells. The present levels of VOCs in the water supply drawn from the on-site wells are below the maximum contaminant levels (MCLs) permissible for drinking water under Safe Drinking Water Act (SDWA; 40 CFR 141); however, Mound has determined that remedial measures should be taken to further reduce the VOC levels. The proposed project action is the reduction of the VOC levels in the water supply using packed tower aeration (PTA). This document is intended to satisfy the requirements of the National Environmental Policy Act (NEPA) of 1969 and associated Council on Environmental Quality regulations (40 CFR parts 1500 through 1508) as implemented through U.S. Department of Energy (DOE) Order 5440.1D and supporting DOE NEPA Guidelines (52 FR 47662), as amended (54 FR 12474; 55 FR 37174), and as modified by the Secretary of Energy Notice (SEN) 15-90 and associated guidance. As required, this EA provides sufficient information on the probable environmental impacts of the proposed action and alternatives to support a DOE decision either to prepare an Environmental Impact Statement (EIS) or issue a Finding of No Significant Impact (FONSI).

  9. Relating CCN activity, volatility, and droplet growth kinetics of β-caryophyllene secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    A. Asa-Awuku

    2009-02-01

    Full Text Available This study investigates the droplet formation characteristics of secondary organic aerosol (SOA formed during the ozonolysis of sesquiterpene β-caryophyllene (with and without hydroxyl radicals present. Emphasis is placed on understanding the role of semi-volatile material on Cloud Condensation Nucleus (CCN activity and droplet growth kinetics. Aging of β-caryophyllene SOA significantly affects all CCN-relevant properties measured throughout the experiments. Using a thermodenuder and two CCN instruments, we find that CCN activity is a strong function of temperature (activation diameter at ~0.6% supersaturation: 100±10 nm at 20°C and 130±10 nm at 35°C, suggesting that the hygroscopic fraction of the SOA is volatile. The water-soluble organic carbon (WSOC is extracted from the SOA and characterized with Köhler Theory Analysis (KTA; the results suggest that the WSOC is composed of low molecular weight (<200 g mol−1 slightly surface-active material that constitute 5–15% of the SOA mass. These properties are similar to the water-soluble fraction of monoterpene SOA, suggesting that predictive understanding of SOA CCN activity requires knowledge of the WSOC fraction but not its exact speciation. Droplet growth kinetics of the CCN are found to be strongly anticorrelated with WSOC fraction, suggesting that the insoluble material in the SOA forms a kinetic barrier that delays droplet growth. Overall, volatilization effects can increase activation diameters by 30%, and depress droplet growth rate by a factor of two; these results may have important implications for the droplet formation characteristics of SOA, and the atmospheric relevance of CCN measurements carried out at temperatures different from ambient.

  10. Model studies of volatile diesel exhaust particle formation: are organic vapours involved in nucleation and growth?

    Science.gov (United States)

    Pirjola, L.; Karl, M.; Rönkkö, T.; Arnold, F.

    2015-09-01

    A high concentration of volatile nucleation mode particles (NUP) formed in the atmosphere when the exhaust cools and dilutes has hazardous health effects and it impairs the visibility in urban areas. Nucleation mechanisms in diesel exhaust are only poorly understood. We performed model studies using two sectional aerosol dynamics process models AEROFOR and MAFOR on the formation of particles in the exhaust of a diesel engine, equipped with an oxidative after-treatment system and running with low fuel sulfur content (FSC) fuel, under laboratory sampling conditions where the dilution system mimics real-world conditions. Different nucleation mechanisms were tested. Based on the measured gaseous sulfuric acid (GSA) and non-volatile core and soot particle number concentrations of the raw exhaust, the model simulations showed that the best agreement between model predictions and measurements in terms of particle number size distribution was obtained by barrier-free heteromolecular homogeneous nucleation between the GSA and a semi-volatile organic vapour combined with the homogeneous nucleation of GSA alone. Major growth of the particles was predicted to occur due to the similar organic vapour at concentrations of (1-2) × 1012 cm-3. The pre-existing core and soot mode concentrations had an opposite trend on the NUP formation, and the maximum NUP formation was predicted if a diesel particle filter (DPF) was used. On the other hand, the model predicted that the NUP formation ceased if the GSA concentration in the raw exhaust was less than 1010 cm-3, which was the case when biofuel was used.

  11. Volatile Organic Compound Analysis in Istanbul

    Science.gov (United States)

    Ćapraz, Ö.; Deniz, A.; Öztürk, A.; Incecik, S.; Toros, H.; Coşkun, M.

    2012-04-01

    Volatile Organic Compound Analysis in Istanbul Ö. Çapraz1, A. Deniz1,3, A. Ozturk2, S. Incecik1, H. Toros1 and, M. Coskun1 (1) Istanbul Technical University, Faculty of Aeronautics and Astronautics, Department of Meteorology, 34469, Maslak, Istanbul, Turkey. (2) Istanbul Technical University, Faculty of Chemical and Metallurgical, Chemical Engineering, 34469, Maslak, Istanbul, Turkey. (3) Marmara Clean Air Center, Ministry of Environment and Urbanization, Nişantaşı, 34365, İstanbul, Turkey. One of the major problems of megacities is air pollution. Therefore, investigations of air quality are increasing and supported by many institutions in recent years. Air pollution in Istanbul contains many components that originate from a wide range of industrial, heating, motor vehicle, and natural emissions sources. VOC, originating mainly from automobile exhaust, secondhand smoke and building materials, are one of these compounds containing some thousands of chemicals. In spite of the risks to human health, relatively little is known about the levels of VOC in Istanbul. In this study, ambient air quality measurements of 32 VOCs including hydrocarbons, halogenated hydrocarbons and carbonyls were conducted in Kağıthane (Golden Horn) region in Istanbul during the winter season of 2011 in order to develop the necessary scientific framework for the subsequent developments. Kağıthane creek valley is the source part of the Golden Horn and one of the most polluted locations in Istanbul due to its topographical form and pollutant sources in the region. In this valley, horizontal and vertical atmospheric motions are very weak. The target compounds most commonly found were benzene, toluene, xylene and ethyl benzene. Concentrations of total hydrocarbons ranged between 1.0 and 10.0 parts per billion, by volume (ppbv). Ambient air levels of halogenated hydrocarbons appeared to exhibit unique spatial variations and no single factor seemed to explain trends for this group of

  12. Measurement of volatile organic compounds inside automobiles.

    Science.gov (United States)

    Fedoruk, Marion J; Kerger, Brent D

    2003-01-01

    The objective of the current study was to evaluate the types and concentrations of volatile organic compounds (VOCs) in the passenger cabin of selected sedan automobiles under static (parked, unventilated) and specified conditions of operation (i.e., driving the vehicle using air conditioning alone, vent mode alone, or driver's window half open). Data were collected on five different passenger sedan vehicles from three major automobile manufacturers. Airborne concentrations were assessed using 90-min time-weighted average (TWA) samples under U.S. Environmental Protection Agency (USEPA) Method IP-1B to assess individual VOC compounds and total VOCs (TVOCs) calibrated to toluene. Static vehicle testing demonstrated TVOC levels of approximately 400-800 microg/m(3) at warm interior vehicle temperatures (approximately 80 degrees F), whereas TVOCs at least fivefold higher were observed under extreme heat conditions (e.g., up to 145 degrees F). The profile of most prevalent individual VOC compounds varied considerably according to vehicle brand, age, and interior temperature tested, with predominant compounds including styrene, toluene, and 8- to 12-carbon VOCs. TVOC levels under varied operating conditions (and ventilation) were generally four- to eightfold lower (at approximately 50-160 microg/m(3)) than the static vehicle measurements under warm conditions, with the lowest measured levels generally observed in the trials with the driver's window half open. These data indicate that while relatively high concentrations of certain VOCs can be measured inside static vehicles under extreme heat conditions, normal modes of operation rapidly reduce the inside-vehicle VOC concentrations even when the air conditioning is set on recirculation mode.

  13. CCN activity and volatility of β-caryophyllene secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    M. Frosch

    2013-02-01

    Full Text Available In a series of smog chamber experiments, the cloud condensation nuclei (CCN activity of secondary organic aerosol (SOA generated from ozonolysis of β-caryophyllene was characterized by determining the CCN derived hygroscopicity parameter, κCCN, from experimental data. Two types of CCN counters, operating at different temperatures, were used. The effect of semi-volatile organic compounds on the CCN activity of SOA was studied using a thermodenuder.

    Overall, SOA was only slightly CCN active (with κCCN in the range 0.001–0.16, and in dark experiments with no OH scavenger present, κCCN decreased when particles were sent through the thermodenuder (with a temperature up to 50 °C.

    SOA was generated under different experimental conditions: In some experiments, an OH scavenger (2-butanol was added. SOA from these experiments was less CCN active than SOA produced in experiments without an OH scavenger (i.e. where OH was produced during ozonolysis. In other experiments, lights were turned on, either without or with the addition of HONO (OH source. This led to the formation of more CCN active SOA.

    SOA was aged up to 30 h through exposure to ozone and (in experiments with no OH scavenger present to OH. In all experiments, the derived κCCN consistently increased with time after initial injection of β-caryophyllene, showing that chemical ageing increases the CCN activity of β-caryophyllene SOA. κCCN was also observed to depend on supersaturation, which was explained either as an evaporation artifact from semi-volatile SOA (only observed in experiments lacking light exposure or, alternatively, by effects related to chemical composition depending on dry particle size.

    Using the method of Threshold Droplet Growth Analysis it was also concluded that the activation kinetics of the SOA do not differ significantly from calibration ammonium sulphate aerosol for

  14. Sitewide railroad ties volatile organic package

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, R.E.

    1994-08-31

    The initial GC/MS calibration and continuing calibration met all protocols. The calibration working standard is made from 9 separate mixes. One of the mixes (Restek semivolatile mix 3) was doubled, increasing the calibration concentration curve by a factor of two. None of the compounds of interest were affected, and all of the forms have been adjusted. All mass spectral tuning requirements were met for all standards and samples. Internal standard criteria were met for field blank R5306. Perylene-d12 was out on the low side. This sample was reanalyzed and all internal standard criteria were met. The R5302rerr was reported instead of R5302re (the original run of the re-extract) because R5302re failed its internal standard criteria. RSBLK03rr was reported instead of RSBLK03 (the original run of the method blank) because RSBLK03 failed its internal standard criteria. Internal standard criteria for all other samples in this package were met.

  15. Biogenic volatile organic compounds - small is beautiful

    Science.gov (United States)

    Owen, S. M.; Asensio, D.; Li, Q.; Penuelas, J.

    2012-12-01

    While canopy and regional scale flux measurements of biogenic volatile organic compounds (bVOCs) are essential to obtain an integrated picture of total compound reaching the atmosphere, many fascinating and important emission details are waiting to be discovered at smaller scales, in different ecological and functional compartments. We concentrate on bVOCs below ground to allelopathy. A gradient of monoterpene concentration was found in soil around Pinus sylvestris and Pinus halepensis, decreasing with distance from the tree. Some compounds (α-pinene, sabinene, humulene and caryophyllene) in mineral soil were linearly correlated with the total amount of each compound in the overlying litter, indicating that litter might be the dominant source of these compounds. However, α-pinene did not fall within the correlation, indicating a source other than litter, probably root exudates. We also show that rhizosphere bVOCs can be a carbon source for soil microbes. In a horizontal gradient from Populus tremula trees, microbes closest to the tree trunk were better enzymatically equipped to metabolise labeled monoterpene substrate. Monoterpenes can also increase the degradation rate in soil of the persistant organic pollutants, likely acting as analogues for the cometabo-lism of polychlorinated biphenyls (PCBs) Flowers of a ginger species (Alpinia kwangsiensis) and a fig species (Ficus hispida) showed different bVOC signals pre- and post pollination. For Ficus hispida, there are three floral stages of a fig-wasp dependency mechanism: receptive, post pollinator and interfloral. Of 28 compounds detected, transcaryophyllene with trans-β-farnesene were the most important at the receptor stage, trans-caryophyllene was the most abundant at the post-pollinator stage, and isoprene was the most abundant in the interfloral stage. Alpinia kwangsiensis presents two morphologies for the reproductive parts of the flower. The "anaflexistyle" morphology has the flower style lowered in the

  16. Total volatile organic compounds (TVOC) in indoor air quality investigations

    DEFF Research Database (Denmark)

    Mølhave, L.; Clausen, Geo; Berglund, B.

    1997-01-01

    The amount of volatile organic compounds (VOCs) in indoor air, usually called TVOC (total volatile organic compounds), has been measured using different definitions and techniques which yield different results. This report recommends a definition of TVOC referring to a specified range of VOCs...... for characterizing indoor pollution and for improving source control as required from the points of view of health, comfort, energy efficiency and sustainability. (C) Indoor Air (1997)....

  17. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

    2003-07-01

    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward

  18. Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands

    Science.gov (United States)

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.

    2004-01-01

    The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.

  19. Dermal absorption of semivolatile organic compounds from the gas phase: Sensitivity of exposure assessment by steady state modeling to key parameters.

    Science.gov (United States)

    Pelletier, Maud; Bonvallot, Nathalie; Ramalho, Olivier; Blanchard, Olivier; Mercier, Fabien; Mandin, Corinne; Le Bot, Barbara; Glorennec, Philippe

    2017-02-26

    Recent research has demonstrated the importance of dermal exposure for some semivolatile organic compounds (SVOCs) present in the gas phase of indoor air. Though models for estimating dermal intake from gaseous SVOCs exist, their predictions can be subject to variations in input parameters, which can lead to large variation in exposure estimations. In this sensitivity analysis for a steady state model, we aimed to assess these variations and their determinants using probabilistic Monte Carlo sampling for 8 SVOCs from different chemical families: phthalates, bisphenols, polycyclic aromatic hydrocarbons (PAHs), organophosphorus (OPs), organochlorines (OCs), synthetic musks, polychlorinated biphenyls (PCBs) and polybromodiphenylethers (PBDEs). Indoor SVOC concentrations were found to be the most influential parameters. Both Henry's law constant (H) and octanol/water partition coefficient (Kow) uncertainty also had significant influence. While exposure media properties such as volume fraction of organic matter in the particle phase (fom-part), particle density (ρpart), concentration ([TSP]) and transport coefficient (ɣd) had a slight influence for some compounds, human parameters such as body weight (W), body surface area (A) and daily exposure (t) make a marginal or null contribution to the variance of dermal intake for a given age group. Inclusion of a parameter sensitivity analysis appears essential to reporting uncertainties in dermal exposure assessment.

  20. Speciation of volatile organic compound emissions for regional air quality modeling of particulate matter and ozone

    Science.gov (United States)

    Makar, P. A.; Moran, M. D.; Scholtz, M. T.; Taylor, A.

    2003-01-01

    A new classification scheme for the speciation of organic compound emissions for use in air quality models is described. The scheme uses 81 organic compound classes to preserve both net gas-phase reactivity and particulate matter (PM) formation potential. Chemical structure, vapor pressure, hydroxyl radical (OH) reactivity, freezing point/boiling point, and solubility data were used to create the 81 compound classes. Volatile, semivolatile, and nonvolatile organic compounds are included. The new classification scheme has been used in conjunction with the Canadian Emissions Processing System (CEPS) to process 1990 gas-phase and particle-phase organic compound emissions data for summer and winter conditions for a domain covering much of eastern North America. A simple postprocessing model was used to analyze the speciated organic emissions in terms of both gas-phase reactivity and potential to form organic PM. Previously unresolved compound classes that may have a significant impact on ozone formation include biogenic high-reactivity esters and internal C6-8 alkene-alcohols and anthropogenic ethanol and propanol. Organic radical production associated with anthropogenic organic compound emissions may be 1 or more orders of magnitude more important than biogenic-associated production in northern United States and Canadian cities, and a factor of 3 more important in southern U.S. cities. Previously unresolved organic compound classes such as low vapour pressure PAHs, anthropogenic diacids, dialkyl phthalates, and high carbon number alkanes may have a significant impact on organic particle formation. Primary organic particles (poorly characterized in national emissions databases) dominate total organic particle concentrations, followed by secondary formation and primary gas-particle partitioning. The influence of the assumed initial aerosol water concentration on subsequent thermodynamic calculations suggests that hydrophobic and hydrophilic compounds may form external

  1. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?

    OpenAIRE

    Bennett, Joan W.; Arati A. Inamdar

    2015-01-01

    Volatile organic compounds (VOCs) are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpe...

  2. Measurement of volatile organic compounds in human blood.

    OpenAIRE

    Ashley, D L; Bonin, M A; Cardinali, F L; McCraw, J. M.; Wooten, J V

    1996-01-01

    Volatile organic compounds (VOCs) are an important public health problem throughout the developed world. Many important questions remain to be addressed in assessing exposure to these compounds. Because they are ubiquitous and highly volatile, special techniques must be applied in the analytical determination of VOCs. The analytical methodology chosen to measure toxicants in biological materials must be well validated and carefully carried out; poor quality assurance can lead to invalid resul...

  3. Determination of non-volatile and volatile organic acids in Korean traditional fermented soybean paste (Doenjang).

    Science.gov (United States)

    Shukla, Shruti; Choi, Tae Bong; Park, Hae-Kyong; Kim, Myunghee; Lee, In Koo; Kim, Jong-Kyu

    2010-01-01

    Organic acids are formed in food as a result of metabolism of large molecular mass compounds. These organic acids play an important role in the taste and aroma of fermented food products. Doenjang is a traditional Korean fermented soybean paste product that provides a major source of protein. The quantitative data for volatile and non-volatile organic acid contents of 18 samples of Doenjang were determined by comparing the abundances of each peak by gas (GC) and high performance liquid chromatography (HPLC). The mean values of volatile organic acids (acetic acid, butyric acid, propionic acid and 3-methyl butanoic acid), determined in 18 Doenjang samples, were found to be 91.73, 29.54, 70.07 and 19.80 mg%, respectively, whereas the mean values of non-volatile organic acids, such as oxalic acid, citric acid, lactic acid and succinic acid, were noted to be 14.69, 5.56, 9.95 and 0.21 mg%, respectively. Malonic and glutaric acids were absent in all the tested samples of Doenjang. The findings of this study suggest that determination of organic acid contents by GC and HPLC can be considered as an affective approach to evaluate the quality characteristics of fermented food products.

  4. Organic and volatile elements in the solar system

    Directory of Open Access Journals (Sweden)

    Remusat L.

    2012-01-01

    Full Text Available Chondrites and comets have accreted primitive materials from the early solar system. Those materials include organics, water and other volatile components. The most primitive chondrites and comets have undergone few modifications on their respective parent bodies and can deliver to laboratories components that were present at the origin of the protosolar nebula. Here I present a review of the organic material and volatile components that have been studied in the most primitive chondrites, and the last data from the stardust mission about the cometary record. This paper focuses on materials that can be studied in laboratories, by mass spectrometry, ion probes or organic chemistry techniques.

  5. Detection of volatile organic peroxides in indoor air.

    Science.gov (United States)

    Hong, J; Maguhn, J; Freitag, D; Kettrup, A

    2001-12-01

    A supercritical fluid extraction cell filled with adsorbent (Carbotrap and Carbotrap C) was used directly as a sampling tube to enrich volatile organic compounds in air. After sampling, the analytes were extracted by supercritical fluid CO2 with methanol as modifier. Collected organic peroxides were then determined by a RP-HPLC method developed and validated previously using post-column derivatization and fluorescence detection. Some volatile organic peroxides were found in indoor air in a new car and a newly decorated kitchen in the lower microg m(-3) range. tert-Butyl perbenzoate, di-tert-butyl peroxide, and tert-butylcumyl peroxide could be identified.

  6. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H. [comp.

    1996-12-31

    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  7. Polycyclic aromatic hydrocarbons and other semivolatile organic compounds collected in New York City in response to the events of 9/11.

    Science.gov (United States)

    Swartz, Erick; Stockburger, Leonard; Vallero, Daniel A

    2003-08-15

    Concentrations of over 60 nonpolar semivolatile and nonvolatile organic compounds were measured in Lower Manhattan, NY, using a high-capacity integrated organic gas and particle sampler after the initial destruction of the World Trade Center (WTC). The results indicate that the remaining air plumes from the disaster site were comprised of many pollutants and classes and represent a complex mixture of biogenic (wood-smoke) and anthropogenic sources. This mixture includes compounds that are typically associated with fossil fuel emissions and their combustion products. The molecular markers for these emissions include the high molecular weight PAHs, the n-alkanes, a Carbon Preference Index approximately 1 (odd carbon:even carbon approximately 1), as well as pristane and phytane as specific markers for fuel oil degradation. These results are not unexpected considering the large number of diesel generators and outsized vehicles used in the removal phases. The resulting air plume would also include emissions of burning and remnant materials from the WTC site. Only a small number of molecular markers for these emissions have been identified such as retene and 1,4a-dimethyl-7-(methylethyl)-1,2,3,4,9,10,10a,4a-octahydrophenanthrene that are typically biogenic in origin. In addition, the compound 1,3-diphenylpropane[1',1'-(1,3-propanediyl)bis-benzene] was observed, and to our knowledge, this species has not previously been reported from ambient sampling. It has been associated with polystyrene and other plastics, which are in abundance at the WTC site. These emissions lasted for at least 3 weeks (September 26-October 21, 2001) after the initial destruction of the WTC.

  8. Role of organic volatile profiles in clinical diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Zlatkis, A. (Univ. of Houston, TX); Brazell, R.S.; Poole, C.F.

    1981-06-01

    The organic volatile constituents of biological fluids contain clinically useful diagnostic information for the recognition of metabolic disorders in man. To gain access to this information, it was necessary to develop the methodology for reproducibly stripping the trace concentrations of volatiles from biological fluids (dynamic headspace, gas phase-stripping, solvent extraction, and the transevaporator technique), to separate the complex extracts by high-resolution capillary column gas chromatography, and to develop computer-aided data-handling and pattern-recognition techniques for analyzing the immense amount of information generated. The normal and pathological organic volatiles identified by gas chromatography-mass spectrometry in urine, serum, and breast milk are tabulated. Clinical applications of the above techniques to the study and diagnosis of diabetes mellitus, respiratory virus infection, renal insufficiency, and cancer are described.

  9. 76 FR 18893 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound...

    Science.gov (United States)

    2011-04-06

    ... Organic Compound Emission Control Measures for Lithographic and Letterpress Printing in Cleveland AGENCY... volatile organic compound (VOC) rule. These rule revisions specify compliance dates for subject facilities... approved offset lithographic and letterpress printing volatile organic compound (VOC) rule for...

  10. 76 FR 4835 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound...

    Science.gov (United States)

    2011-01-27

    ... Organic Compound Reinforced Plastics Composites Production Operations Rule AGENCY: Environmental... control of volatile organic compound (VOC) emissions from reinforced plastic composites production..., Volatile organic compounds. Dated: January 14, 2011. Susan Hedman, Regional Administrator, Region...

  11. 76 FR 41086 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound...

    Science.gov (United States)

    2011-07-13

    ... Organic Compound Reinforced Plastic Composites Production Operations Rule AGENCY: Environmental Protection...) a new rule for the control of volatile organic compound (VOC) emissions from reinforced plastic..., Reporting and recordkeeping requirements, Volatile organic compounds. Dated: June 24, 2011. Susan...

  12. Influence of volatile organic compounds on Fusarium graminearum mycotoxin production

    Science.gov (United States)

    Volatile organic compounds (VOCs) are involved in a diverse range of ecological interactions. Due to their low molecular weight, lipophilic nature, and high vapor pressure at ambient temperatures, they can serve as airborne signaling molecules that are capable of mediating inter and intraspecies com...

  13. Predicting the emission of volatile organic compounds from silage systems

    Science.gov (United States)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major VOC emission source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols wit...

  14. Volatile organic compounds of whole grain soft winter wheat

    Science.gov (United States)

    The aroma from volatile organic compounds (VOCs) is an indicator of grain soundness and also an important quality attribute of grain foods. To identify the inherent VOCs of wheat grain unaffected by fungal infestation and other extrinsic factors, grains of nine soft wheat varieties were collected at...

  15. Modeling emissions of volatile organic compounds from silage

    Science.gov (United States)

    Photochemical smog is a major air pollution problem and a significant cause of premature death in the U.S. Smog forms in the presence of volatile organic compounds (VOCs), which are emitted primarily from industry and motor vehicles in the U.S. However, dairy farms may be an important source in so...

  16. Qualitative analysis of volatile organic compounds on biochar

    Science.gov (United States)

    Qualitative identification of sorbed volatile organic compounds (VOCs) on biochar was conducted by headspace thermal desorption coupled to capillary gas chromatographic-mass spectrometry. VOCs may have a mechanistic role influencing plant and microbial responses to biochar amendments, since VOCs ca...

  17. Quantifying the volatility of organic aerosol in the southeastern US

    Science.gov (United States)

    Saha, Provat K.; Khlystov, Andrey; Yahya, Khairunnisa; Zhang, Yang; Xu, Lu; Ng, Nga L.; Grieshop, Andrew P.

    2017-01-01

    The volatility of organic aerosols (OA) has emerged as a property of primary importance in understanding their atmospheric life cycle, and thus abundance and transport. However, quantitative estimates of the thermodynamic (volatility, water solubility) and kinetic parameters dictating ambient-OA gas-particle partitioning, such as saturation concentrations (C∗), enthalpy of evaporation (ΔHvap), and evaporation coefficient (γe), are highly uncertain. Here, we present measurements of ambient-OA volatility at two sites in the southeastern US, one at a rural setting in Alabama dominated by biogenic volatile organic compounds (BVOCs) as part of the Southern Oxidant and Aerosol Study (SOAS) in June-July 2013, and another at a more anthropogenically influenced urban location in North Carolina during October-November 2013. These measurements applied a dual-thermodenuder (TD) system, in which temperature and residence times are varied in parallel to constrain equilibrium and kinetic aerosol volatility properties. Gas-particle partitioning parameters were determined via evaporation kinetic model fits to the dual-TD observations. OA volatility parameter values derived from both datasets were similar despite the fact that measurements were collected in distinct settings and seasons. The OA volatility distributions also did not vary dramatically over the campaign period or strongly correlate with OA components identified via positive matrix factorization of aerosol mass spectrometer data. A large portion (40-70 %) of measured ambient OA at both sites was composed of very-low-volatility organics (C∗ ≤ 0.1 µg m-3). An effective ΔHvap of bulk OA of ˜ 80-100 kJ mol-1 and a γe value of ˜ 0.5 best describe the evaporation observed in the TDs. This range of ΔHvap values is substantially higher than that typically assumed for simulating OA in atmospheric models (30-40 kJ mol-1). TD data indicate that γe is on the order of 0.1 to 0.5, indicating that repartitioning

  18. Condensing Organic Aerosols in a Microphysical Model

    Science.gov (United States)

    Gao, Y.; Tsigaridis, K.; Bauer, S.

    2015-12-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  19. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors.

    Science.gov (United States)

    Šetka, Milena; Drbohlavová, Jana; Hubálek, Jaromír

    2017-03-10

    The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC) is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols.

  20. History of Martian volatiles - Implications for organic synthesis.

    Science.gov (United States)

    Fanale, F. P.

    1971-01-01

    A theoretical reconstruction of the history of Martian volatiles indicates that Mars probably possessed a substantial reducing atmosphere at the outset of its history, and that its present tenuous and more oxidized atmosphere is the result of extensive chemical evolution. As a consequence, it is probable that Martian atmospheric chemical conditions, now hostile with respect to abiotic organic synthesis in the gas phase, were initially favorable. Evidence indicating the chronology and degradational history of Martian surface features, surface mineralogy, bulk volatile content, internal mass distribution, and thermal history suggests that Mars catastrophically developed a substantial reducing atmosphere as the result of rapid accretion.

  1. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors

    Directory of Open Access Journals (Sweden)

    Milena Šetka

    2017-03-01

    Full Text Available The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols.

  2. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors

    Science.gov (United States)

    Šetka, Milena; Drbohlavová, Jana; Hubálek, Jaromír

    2017-01-01

    The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC) is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols. PMID:28287435

  3. History of Martian volatiles - Implications for organic synthesis.

    Science.gov (United States)

    Fanale, F. P.

    1971-01-01

    A theoretical reconstruction of the history of Martian volatiles indicates that Mars probably possessed a substantial reducing atmosphere at the outset of its history, and that its present tenuous and more oxidized atmosphere is the result of extensive chemical evolution. As a consequence, it is probable that Martian atmospheric chemical conditions, now hostile with respect to abiotic organic synthesis in the gas phase, were initially favorable. Evidence indicating the chronology and degradational history of Martian surface features, surface mineralogy, bulk volatile content, internal mass distribution, and thermal history suggests that Mars catastrophically developed a substantial reducing atmosphere as the result of rapid accretion.

  4. Modeling organic aerosols in a megacity: comparison of simple and complex representations of the volatility basis set approach

    Directory of Open Access Journals (Sweden)

    M. Shrivastava

    2011-07-01

    Full Text Available The Weather Research and Forecasting model coupled with chemistry (WRF-Chem is modified to include a volatility basis set (VBS treatment of secondary organic aerosol formation. The VBS approach, coupled with SAPRC-99 gas-phase chemistry mechanism, is used to model gas-particle partitioning and multiple generations of gas-phase oxidation of organic vapors. In addition to the detailed 9-species VBS, a simplified mechanism using 2 volatility species (2-species VBS is developed and tested for similarity to the 9-species VBS in terms of both mass and oxygen-to-carbon ratios of organic aerosols in the atmosphere. WRF-Chem results are evaluated against field measurements of organic aerosols collected during the MILAGRO 2006 campaign in the vicinity of Mexico City. The simplified 2-species mechanism reduces the computational cost by a factor of 2 as compared to 9-species VBS. Both ground site and aircraft measurements suggest that the 9-species and 2-species VBS predictions of total organic aerosol mass as well as individual organic aerosol components including primary, secondary, and biomass burning are comparable in magnitude. In addition, oxygen-to-carbon ratio predictions from both approaches agree within 25 %, providing evidence that the 2-species VBS is well suited to represent the complex evolution of organic aerosols. Model sensitivity to amount of anthropogenic semi-volatile and intermediate volatility (S/IVOC precursor emissions is also examined by doubling the default emissions. Both the emission cases significantly under-predict primary organic aerosols in the city center and along aircraft flight transects. Secondary organic aerosols are predicted reasonably well along flight tracks surrounding the city, but are consistently over-predicted downwind of the city. Also, oxygen-to-carbon ratio predictions are significantly improved compared to prior studies by adding 15 % oxygen mass per generation of oxidation; however, all modeling cases

  5. The influence of tree species composition on the storage and mobility of semivolatile organic compounds in forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Komprdová, Klára, E-mail: komprdova@recetox.muni.cz [RECETOX (Research Centre for Toxic Compounds in the Environment), Kamenice 753/5, CZ-625 00 Brno (Czech Republic); Komprda, Jiří [RECETOX (Research Centre for Toxic Compounds in the Environment), Kamenice 753/5, CZ-625 00 Brno (Czech Republic); Menšík, Ladislav [Mendel University in Brno, Faculty of Forestry and Wood Technology, Zemědělská 3, Brno 613 00 (Czech Republic); Vaňková, Lenka [RECETOX (Research Centre for Toxic Compounds in the Environment), Kamenice 753/5, CZ-625 00 Brno (Czech Republic); Kulhavý, Jiří [Mendel University in Brno, Faculty of Forestry and Wood Technology, Zemědělská 3, Brno 613 00 (Czech Republic); Nizzetto, Luca [RECETOX (Research Centre for Toxic Compounds in the Environment), Kamenice 753/5, CZ-625 00 Brno (Czech Republic); Norwegian Institute for Water Research, Gaustadalleen 21, NO-0349 Oslo (Norway)

    2016-05-15

    Soil contamination with PCBs and PAHs in adjacent forest plots, characterized by a distinct composition in tree species (spruce only, mixed and beech only), was analyzed to investigate the influence of ecosystem type on contaminant mobility in soil under very similar climate and exposure conditions. Physical-chemical properties and contaminant concentrations in litter (L), organic (F, H) and mineral (A, B) soil horizons were analyzed. Contaminant distribution in the soil core varied both in relation to forest type and contaminant group/properties. Contaminant mobility in soil was assessed by examining the ratios of total organic carbon (TOC)-standardized concentrations across soil horizons (Enrichment factors, EF{sub TOC}) and the relationship between EF{sub TOC} and the octanol-water equilibrium partitioning coefficient (K{sub OW}). Contaminant distribution appeared to be highly unsteady, with pedogenic/biogeochemical drivers controlling contaminant mobility in organic layers and leaching controlling accumulation in mineral layers. Lighter PCBs displayed higher mobility in all forest types primarily controlled by leaching and, to a minor extent, diffusion. Pedogenic processes controlling the formation of soil horizons were found to be crucial drivers of PAHs and heavier PCBs distribution. All contaminants appeared to be more mobile in the soil of the broadleaved plot, followed by mixed canopy and spruce forest. Increasing proportion of deciduous broadleaf species in the forest can thus lead to faster degradation or the faster leaching of PAHs and PCBs. The composition of humic substances was found to be a better descriptor of contaminant concentration than TOC. - Highlights: • Tree species composition influences vertical distribution of PCBs and PAHs in soils. • PCBs and PAHs were more mobile in the soil of the broadleaved plot. • Low molecular weight PCBs displayed higher mobility in all forest types. • Humic substances were important descriptors of

  6. Copper corrosion originated by volatile organic acid vapours; Corrosion del cobre por acidos organicos volatiles

    Energy Technology Data Exchange (ETDEWEB)

    Cano, E.; Polo, J. L.; Kong, D. Y.; Mora, E. M.; Lopez-Caballero, J. A.; Bastidas, J. M.

    2004-07-01

    The corrosion of copper in the presence of volatile organic acids is frequent. Thus, for example, it is known that failures by corrosion of the copper tubes take place in the air conditioning equipment, caused by volatile organic acids emitted by oils used in their manufacturing. Another frequent case is the corrosion of copper objects caused by the acids emitted by the materials used in packing, wood and resins, amongst others. This communication presents the corrosion results of copper exposed to 100% relative humidity and different concentrations (10-300ppm) of formic (HCOOH), acetic (CH{sub 3}COOH), propionic (CH{sub 3}CH{sub 2}COOH) and butyric (CH{sub 3}(CH{sub 2}){sub 2}COOH) acid vapours, for short exposure times. the techniques used were gravimetric analysis, scanning electron microscopy (SEM) and X-ray diffraction (XRD). (Author) 9 refs.

  7. Development and validation of a cleanup method for hydrocarbon containing samples for the analysis of semivolatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, E.W.; Stromatt, R.W.; Campbell, J.A.; Steele, M.J.; Jones, J.E.

    1992-04-01

    Samples obtained from the Hanford single shell tanks (SSTs) are contaminated with normal paraffin hydrocarbon (NPH) as hydrostatic fluid from the sampling process or can be native to the tank waste. The contamination is usually high enough that a dilution of up to several orders of magnitude may be required before the sample can be analyzed by the conventional gas chromatography/mass spectrometry methodology. This can prevent detection and measurement of organic constituents that are present at lower concentration levels. To eliminate or minimize the problem, a sample cleanup method has been developed and validated and is presented in this document.

  8. Can volatile organic compounds be markers of sea salt?

    Science.gov (United States)

    Silva, Isabel; Coimbra, Manuel A; Barros, António S; Marriott, Philip J; Rocha, Sílvia M

    2015-02-15

    Sea salt is a handmade food product that is obtained by evaporation of seawater in saltpans. During the crystallisation process, organic compounds from surroundings can be incorporated into sea salt crystals. The aim of this study is to search for potential volatile markers of sea salt. Thus, sea salts from seven north-east Atlantic Ocean locations (France, Portugal, Continental Spain, Canary Islands, and Cape Verde) were analysed by headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. A total of 165 compounds were detected, ranging from 32 to 71 compounds per salt. The volatile composition revealed the variability and individuality of each salt, and a set of ten compounds were detected in all samples. From these, seven are carotenoid-derived compounds that can be associated with the typical natural surroundings of ocean hypersaline environment. These ten compounds are proposed as potential volatile markers of sea salt.

  9. Isolation and preconcentration of volatile organic compounds from water; Review

    Energy Technology Data Exchange (ETDEWEB)

    Namiesnik, J.; Gorecki, T.; Biziuk, M.; Torres, L. (Technical Univ. of Gdansk (Poland) Ecole Nationale Superieure de Chimie, Toulouse (France))

    1990-10-01

    Methods for the isolation and/or concentration of volatile organic compounds from water samples for trace organic analysis by gas chromatography are reviewed. The following basic groups of methods are discussed: liquid-liquid extraction, adsorption on solid sorbents, extraction with gas (gas stripping and static and dynamic headspace techniques) and membrane processes. The theoretical bases of these methods are discussed. Experimental arrangements for the isolation and/or concentration of volatile compounds from water are presented and discussed with respect to their efficiency. The applicability of the described methods to the isolation and/or concentration of various organic compounds from waters of various origins is discussed. 26 figs., 7 tabs., 695 refs.

  10. A large source of low-volatility secondary organic aerosol.

    Science.gov (United States)

    Ehn, Mikael; Thornton, Joel A; Kleist, Einhard; Sipilä, Mikko; Junninen, Heikki; Pullinen, Iida; Springer, Monika; Rubach, Florian; Tillmann, Ralf; Lee, Ben; Lopez-Hilfiker, Felipe; Andres, Stefanie; Acir, Ismail-Hakki; Rissanen, Matti; Jokinen, Tuija; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Nieminen, Tuomo; Kurtén, Theo; Nielsen, Lasse B; Jørgensen, Solvejg; Kjaergaard, Henrik G; Canagaratna, Manjula; Maso, Miikka Dal; Berndt, Torsten; Petäjä, Tuukka; Wahner, Andreas; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R; Wildt, Jürgen; Mentel, Thomas F

    2014-02-27

    Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.

  11. 75 FR 2090 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound...

    Science.gov (United States)

    2010-01-14

    ... Organic Compound Automobile Refinishing Rules for Indiana AGENCY: Environmental Protection Agency (EPA... relations, Nitrogen dioxide, Ozone, Reporting and recordkeeping requirements, Volatile organic compounds... Plan (SIP). These rule revisions extend the applicability of Indiana's approved volatile...

  12. Origin and variability in volatile organic compounds observed at an Eastern Mediterranean background site (Cyprus)

    Science.gov (United States)

    Debevec, Cécile; Sauvage, Stéphane; Gros, Valérie; Sciare, Jean; Pikridas, Michael; Stavroulas, Iasonas; Salameh, Thérèse; Leonardis, Thierry; Gaudion, Vincent; Depelchin, Laurence; Fronval, Isabelle; Sarda-Esteve, Roland; Baisnée, Dominique; Bonsang, Bernard; Savvides, Chrysanthos; Vrekoussis, Mihalis; Locoge, Nadine

    2017-09-01

    or from more distant emission zones (i.e., the south coast of Turkey); and a last factor (36 %) associated with regional background pollution (air masses transported both from the Western and Eastern Mediterranean regions). One of the two biogenic and the regional background factors were found to be the largest contributors to the VOC concentrations observed at our sampling site. Finally, a combined analysis of VOC PMF factors with source-apportioned organic aerosols (OAs) helped to better distinguish between anthropogenic and biogenic influences on the aerosol and gas phase compositions. The highest OA concentrations were observed when the site was influenced by air masses rich in semi-volatile OA (less oxidized aerosols) originating from the southwest of Asia, in contrast with OA factor contributions associated with the remaining source regions. A reinforcement of secondary OA formation also occurred due to the intense oxidation of biogenic precursors.

  13. 78 FR 11119 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of trans

    Science.gov (United States)

    2013-02-15

    ... AGENCY 40 CFR Part 51 RIN 2060-AQ38 Air Quality: Revision to Definition of Volatile Organic Compounds...: Proposed rule. SUMMARY: The EPA is proposing to revise the definition of volatile organic compounds (VOCs..., Reporting and recordkeeping requirements, Volatile organic compounds. Dated: February 4, 2013. Lisa...

  14. Determination of organic chemicals in human whole blood: preliminary method development for volatile organics

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, P.H.; Boggess, K.E.; Hosenfeld, J.M.; Remmers, J.C.; Breen, J.J.; Robinson, P.E.; Stroup, C.

    1988-04-01

    This article introduces a method for the detection and confirmation of selected volatile organics at parts-per-trillion (ppt) levels in whole human blood. Intended for routine use, the method consists of a dynamic headspace purge of water-diluted blood where a carrier gas sweeps the surface of the sample and removes a quantifiable amount of the volatile organics from the blood and into an adsorbent trap. The organics are thermally desorbed form the adsorbent trap and onto the analytical column in a gas-chromatographic/mass-spectrometric (GC/MS) system where limited mass-scan data are taken for qualitative and quantitative identification. The method can be employed for compounds normally defined as volatile organics, such as those on the EPA priority-pollutant-volatiles list. Method validation results and limited population-survey results are also presented here.

  15. Methods in plant foliar volatile organic compounds research 1

    OpenAIRE

    Materić, Dušan; Bruhn, Dan; Turner, Claire; Morgan, Geraint; Mason, Nigel J.; Gauci, Vincent

    2015-01-01

    Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant–plant and plant–insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas...

  16. Marine Vibrio Species Produce the Volatile Organic Compound Acetone

    OpenAIRE

    Nemecek-Marshall, M; Wojciechowski, C; Kuzma, J.; Silver, G. M.; Fall, R.

    1995-01-01

    While screening aerobic, heterotrophic marine bacteria for production of volatile organic compounds, we found that a group of isolates produced substantial amounts of acetone. Acetone production was confirmed by gas chromatography, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The major acetone producers were identified as nonclinical Vibrio species. Acetone production was maximal in the stationary phase of growth and was stimulated by addition of l-leucine...

  17. Volatile organic compound optical fiber sensors: a review

    OpenAIRE

    Arregui, Francisco J.; Candido Bariain; Matias, Ignacio R; Cesar Elosua

    2006-01-01

    Volatile organic compound (VOC) detection is a topic of growing interest with applications in diverse fields, ranging from environmental uses to the food or chemical industries. Optical fiber VOC sensors offering new and interesting properties which overcame some of the inconveniences found on traditional gas sensors appeared over two decades ago. Thanks to its minimum invasive nature and the advantages that optical fiber offers such as light weight, passive nature, low attenuation and the...

  18. New graphene fiber coating for volatile organic compounds analysis.

    Science.gov (United States)

    Zhang, GuoJuan; Guo, XiaoXi; Wang, ShuLing; Wang, XueLan; Zhou, YanPing; Xu, Hui

    2014-10-15

    In the work, a novel graphene-based solid phase microextraction-gas chromatography/mass spectrometry method was developed for the analysis of trace amount of volatile organic compounds in human exhaled breath vapor. The graphene fiber coating was prepared by a one-step hydrothermal reduction reaction. The fiber with porous and wrinkled structure exhibited excellent extraction efficiency toward eight studied volatile organic compounds (two n-alkanes, five n-aldehydes and one aromatic compound). Meanwhile, remarkable thermal and mechanical stability, long lifespan and low cost were also obtained for the fiber. Under the optimal conditions, the developed method provided low limits of detection (1.0-4.5ngL(-1)), satisfactory reproducibility (3.8-13.8%) and acceptable recoveries (93-122%). The method was applied successfully to the analysis of breath samples of lung cancer patients and healthy individuals. The unique advantage of this approach includes simple setup, non-invasive analysis, cost-efficient and sufficient sensitivity. The proposed method supply us a new possibility to monitor volatile organic compounds in human exhaled breath samples.

  19. Radioactive Semivolatiles in Nuclear Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Strachan, D. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ilas, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Spencer, B. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Soelberg, N. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    In nuclear fuel reprocessing, various radioactive elements enter the gas phase from the unit operations found in the reprocessing facility. In previous reports, the pathways and required removal were discussed for four radionuclides known to be volatile, 14C, 3H, 129I, and 85Kr. Other, less volatile isotopes can also report to the off-gas streams in a reprocessing facility. These were reported to be isotopes of Cs, Cd, Ru, Sb, Tc, and Te. In this report, an effort is made to determine which, if any, of 24 semivolatile radionuclides could be released from a reprocessing plant and, if so, what would be the likely quantities released. As part of this study of semivolatile elements, the amount of each generated during fission is included as part of the assessment for the need to control their emission. Also included in this study is the assessment of the cooling time (time out of reactor) before the fuel is processed. This aspect is important for the short-lived isotopes shown in the list, especially for cooling times approaching 10 y. The approach taken in this study was to determine if semivolatile radionuclides need to be included in a list of gas-phase radionuclides that might need to be removed to meet Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations. A list of possible elements was developed through a literature search and through knowledge and literature on the chemical processes in typical aqueous processing of nuclear fuels. A long list of possible radionuclides present in irradiated fuel was generated and then trimmed by considering isotope half-life and calculating the dose from each to a maximum exposed individual with the US EPA airborne radiological dispersion and risk assessment code CAP88 (Rosnick 1992) to yield a short list of elements that actually need to be considered for control because they require high decontamination factors to meet a reasonable fraction of the regulated release. Each of these elements is

  20. A large source of low-volatility secondary organic aerosol

    DEFF Research Database (Denmark)

    Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard

    2014-01-01

    at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low......-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air...

  1. Determination of Volatile Organic Compounds in Selected Strains of Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Ivan Milovanović

    2015-01-01

    Full Text Available Microalgal biomass can be used in creating various functional food and feed products, but certain species of microalgae and cyanobacteria are known to produce various compounds causing off-flavour. In this work, we investigated selected cyanobacterial strains of Spirulina, Anabaena, and Nostoc genera originating from Serbia, with the aim of determining the chemical profile of volatile organic compounds produced by these organisms. Additionally, the influence of nitrogen level during growth on the production of volatile compounds was investigated for Nostoc and Anabaena strains. In addition, multivariate techniques, namely, principal component analysis (PCA and hierarchical cluster analysis (HCA, were used for making distinction among different microalgal strains. The results show that the main volatile compounds in these species are medium chain length alkanes, but other odorous compounds such as 2-methylisoborneol (0.51–4.48%, 2-pentylfuran (0.72–8.98%, β-cyclocitral (0.00–1.17%, and β-ionone (1.15–2.72% were also detected in the samples. Addition of nitrogen to growth medium was shown to negatively affect the production of 2-methylisoborneol, while geosmin was not detected in any of the analyzed samples, which indicates that the manipulation of growth conditions may be useful in reducing levels of some unwanted odor-causing components.

  2. [Generic method for determination of volatile organic solvents in cosmetics].

    Science.gov (United States)

    Da, Jing; Huang, Xianglu; Wang, Gangli; Cao, Jin; Zhang, Qingsheng

    2014-11-01

    A generic screening, confirmation and determination method was established based on 36 commonly used volatile organic solvents in cosmetics by headspace gas chromatography- mass spectrometry (GC-MS). This method included a database for pilot screening and identifi- cation of those solvents and their quantitative method. Pilot screening database was composed by two sections, one was household section built by two columns with opposite polarities (col- umn VF-1301 ms and DB-5 ms) using retention index in different column systems as qualitative parameter, and the other was NIST MS search version 2.0. Meanwhile, the determination method of the 36 volatile solvents was developed with GC-MS. Cosmetic samples were dissolved in water and transferred to a headspace vial. After 30 min equilibration at 60 °C, the samples were analyzed by GC-MS equipped with a capillary chromatographic column VF-1301 ms. The external calibration was used for quantification. The limits of detection were from 0.01 to 3.3 μg/g, and the recoveries were from 60.77% to 126.6%. This study provided a generic method for pilot screening, identification, and quantitation of volatile organic solvents in cosmetics, and may solve the problem that different analytical methods need to be developed for different targeted compounds and pilot screening for potential candidate solvent residues.

  3. Volatile Organic Compound Emissions from Dairy Facilities in Central California

    Science.gov (United States)

    Hasson, A. S.; Ogunjemiyo, S. O.; Trabue, S.; Middala, S. R.; Ashkan, S.; Scoggin, K.; Vu, K. K.; Addala, L.; Olea, C.; Nana, L.; Scruggs, A. K.; Steele, J.; Shelton, T. C.; Osborne, B.; McHenry, J. R.

    2011-12-01

    Emissions of volatile organic compounds (VOCs) from dairy facilities are thought to be an important contributor to high ozone levels in Central California, but emissions inventories from these sources contain significant uncertainties. In this work, VOC emissions were measured at two Central California dairies during 2010 and 2011. Isolation flux chambers were used to measure direct emissions from specific dairy sources, and upwind/downwind ambient profiles were measured from ground level up to heights of 60 m. Samples were collected using a combination of canisters and sorbent tubes, and were analyzed by GC-MS. Additional in-situ measurements were made using infra-red photoaccoustic detectors and Diode Laser Absorption Spectroscopy. Temperature and ozone profiles up to 250 m above ground level were also measured using a tethersonde. Substantial fluxes of a number of VOCs including alcohols, volatile fatty acids and esters were observed at both sites. Implications of these measurements for regional air quality will be discussed.

  4. Emission of Biogenic Volatile Organic Compounds in the Arctic

    DEFF Research Database (Denmark)

    Lindwall, Frida

    Emissions of biogenic volatile organic compounds (BVOCs) from arctic ecosystems are scarcely studied and the effect of climate change on BVOC emissions even less so. BVOCs are emitted from all living organisms and play a role for atmospheric chemistry. The major part of BVOCs derives from plants,......, arctic BVOC emissions will become more important for the global BVOC budget as well as for the regional climate due to the positive and negative climate warming feedbacks.......Emissions of biogenic volatile organic compounds (BVOCs) from arctic ecosystems are scarcely studied and the effect of climate change on BVOC emissions even less so. BVOCs are emitted from all living organisms and play a role for atmospheric chemistry. The major part of BVOCs derives from plants...... growing seasons, low temperatures and low statured plants, occurs at twice the speed of the global average. Changes in temperature and precipitation patterns have consequences for soil, plant species distribution, plant biomass and reproductive success. Emission and production of BVOCs are temperature...

  5. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?

    Science.gov (United States)

    Bennett, Joan W; Inamdar, Arati A

    2015-09-22

    Volatile organic compounds (VOCs) are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, are responsible for the characteristic moldy odors associated with damp indoor spaces. There is increasing experimental evidence that some of these VOCs have toxic properties. Laboratory tests in mammalian tissue culture and Drosophila melanogaster have shown that many single VOCs, as well as mixtures of VOCs emitted by growing fungi, have toxic effects. This paper describes the pros and cons of categorizing toxigenic fungal VOCs as mycotoxins, uses genomic data to expand on the definition of mycotoxin, and summarizes some of the linguistic and other conventions that can create barriers to communication between the scientists who study VOCs and those who study toxins. We propose that "volatoxin" might be a useful term to describe biogenic volatile compounds with toxigenic properties.

  6. Are Some Fungal Volatile Organic Compounds (VOCs Mycotoxins?

    Directory of Open Access Journals (Sweden)

    Joan W. Bennett

    2015-09-01

    Full Text Available Volatile organic compounds (VOCs are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, are responsible for the characteristic moldy odors associated with damp indoor spaces. There is increasing experimental evidence that some of these VOCs have toxic properties. Laboratory tests in mammalian tissue culture and Drosophila melanogaster have shown that many single VOCs, as well as mixtures of VOCs emitted by growing fungi, have toxic effects. This paper describes the pros and cons of categorizing toxigenic fungal VOCs as mycotoxins, uses genomic data to expand on the definition of mycotoxin, and summarizes some of the linguistic and other conventions that can create barriers to communication between the scientists who study VOCs and those who study toxins. We propose that “volatoxin” might be a useful term to describe biogenic volatile compounds with toxigenic properties.

  7. Molecular composition and volatility of isoprene photochemical oxidation secondary organic aerosol under low- and high-NOx conditions

    Science.gov (United States)

    D'Ambro, Emma L.; Lee, Ben H.; Liu, Jiumeng; Shilling, John E.; Gaston, Cassandra J.; Lopez-Hilfiker, Felipe D.; Schobesberger, Siegfried; Zaveri, Rahul A.; Mohr, Claudia; Lutz, Anna; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.; Rivera-Rios, Jean C.; Keutsch, Frank N.; Thornton, Joel A.

    2017-01-01

    We present measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation in an environmental simulation chamber at a variety of oxidant conditions and using dry neutral seed particles to suppress acid-catalyzed multiphase chemistry. A high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) utilizing iodide-adduct ionization coupled to the Filter Inlet for Gases and Aerosols (FIGAERO) allowed for simultaneous online sampling of the gas and particle composition. Under high-HO2 and low-NO conditions, highly oxygenated (O : C ≥ 1) C5 compounds were major components (˜ 50 %) of SOA. The SOA composition and effective volatility evolved both as a function of time and as a function of input NO concentrations. Organic nitrates increased in both the gas and particle phases as input NO increased, but the dominant non-nitrate particle-phase components monotonically decreased. We use comparisons of measured and predicted gas-particle partitioning of individual components to assess the validity of literature-based group-contribution methods for estimating saturation vapor concentrations. While there is evidence for equilibrium partitioning being achieved on the chamber residence timescale (5.2 h) for some individual components, significant errors in group-contribution methods are revealed. In addition, > 30 % of the SOA mass, detected as low-molecular-weight semivolatile compounds, cannot be reconciled with equilibrium partitioning. These compounds desorb from the FIGAERO at unexpectedly high temperatures given their molecular composition, which is indicative of thermal decomposition of effectively lower-volatility components such as larger molecular weight oligomers.

  8. Volatile organic compounds in the unsaturated zone from radioactive wastes

    Science.gov (United States)

    Baker, Ronald J.; Andraski, Brian J.; Stonestrom, David A.; Luo, Wentai

    2012-01-01

    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0–2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m-2 yr-1. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.

  9. Salt Lakes of Western Australia - Emissions of natural volatile organic compounds

    Science.gov (United States)

    Sattler, Tobias; Krause, Torsten; Schöler, Heinfried; Kamilli, Katharina; Held, Andreas; Zetzsch, Cornelius; Ofner, Johannes; Junkermann, Wolfgang; Atlas, Elliot

    2013-04-01

    Western Australia is a semi-/arid region that is heavily influenced by global climate change and agricultural land use. The area is known for its many saline lakes with a wide range of hydrogeochemical parameters. This area has been repeatedly investigated since 2006 and consists of ephemeral saline and saline groundwater sourced lakes with a pH reaching from 2.5 to 7.1. The semi-/arid region was originally covered by natural eucalyptus forests, but land-use has changed considerably after large scale deforestation from 1950 to 1970. Today the region is mostly used for growing wheat and live stock. The deforestation led to a rising groundwater table, bringing dissolved salts and minerals to the surface. In the last decades, a concurrent alteration of rain periods has been observed. A reason could be the regional formation of ultra-fine particles that were measured with car-based and airborne instruments around the salt lakes in several campaigns between 2006 and 2011. These ultra-fine particles emitted from the lakes and acting as cloud condensation nuclei can modify cloud microphysics and thus suppress rain events [1]. New data from a campaign in 2012 accentuates the importance of these hyper saline environments for the local climate. Ground-based particle measurements around the salt lakes in 2012 were accompanied by novel chamber experiments directly on the lakes. The 1.5 m³ cubic chamber was constructed from transparent PTFE foil permitting photochemistry within while preventing dilution of the air due to lateral wind transport. This experimental setup allows linking the measured data directly to the chemistry of and above the salt lakes. Another advantage of the PTFE chamber is the enrichment of volatile organic compounds (VOC) that are emitted from salt lakes as possible precursors for the ultra-fine particles. Chamber air was sampled using stainless steel canisters. Sediment, crust and water samples were taken for investigation of potential VOC emissions in

  10. Water-Air Volatilization Factors to Determine Volatile Organic Compound (VOC Reference Levels in Water

    Directory of Open Access Journals (Sweden)

    Vicenç Martí

    2014-06-01

    Full Text Available The goal of this work is the modeling and calculation of volatilization factors (VFs from water to air for volatile organic compounds (VOCs in order to perform human health risk-based reference levels (RLs for the safe use of water. The VF models have been developed starting from the overall mass-transfer coefficients (Koverall concept from air to water for two interaction geometries (flat surface and spherical droplets in indoor and outdoor scenarios. For a case study with five groups of risk scenarios and thirty VOCs, theoretical VFs have been calculated by using the developed models. Results showed that Koverall values for flat and spherical surface geometries were close to the mass transfer coefficient for water (KL when Henry’s law constant (KH was high. In the case of spherical drop geometry, the fraction of volatilization (fV was asymptotical when increasing KH with fV values also limited due to Koverall. VFs for flat surfaces were calculated from the emission flux of VOCs, and results showed values close to 1000KH for the most conservative indoor scenarios and almost constant values for outdoor scenarios. VFs for spherical geometry in indoor scenarios followed also constant VFs and were far from 1000KH. The highest calculated VF values corresponded to the E2A, E2B, E3A and E5A scenarios and were compared with experimental and real results in order to check the goodness of flat and sphere geometry models. Results showed an overestimation of calculated values for the E2A and E2B scenarios and an underestimation for the E3A and E5A scenarios. In both cases, most of the calculated VFs were from 0.1- to 10-times higher than experimental/real values.

  11. Stability of volatile organics in environmental soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Maskarinec, M.P.; Bayne, C.K.; Jenkins, R.A.; Johnson, L.H.; Holladay, S.K.

    1992-11-01

    This report focuses on data generated for the purpose of establishing the stability of 19 volatile organic compounds in environmental soil samples. The study was carried out over a 56 day (for two soils) and a 111 day (for one reference soil) time frame and took into account as many variables as possible within the constraints of budget and time. The objectives of the study were: 1) to provide a data base which could be used to provide guidance on pre-analytical holding times for regulatory purposes; and 2) to provide a basis for the evaluation of data which is generated outside of the currently allowable holding times.

  12. Stability of volatile organics in environmental soil samples. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Maskarinec, M.P.; Bayne, C.K.; Jenkins, R.A.; Johnson, L.H.; Holladay, S.K.

    1992-11-01

    This report focuses on data generated for the purpose of establishing the stability of 19 volatile organic compounds in environmental soil samples. The study was carried out over a 56 day (for two soils) and a 111 day (for one reference soil) time frame and took into account as many variables as possible within the constraints of budget and time. The objectives of the study were: 1) to provide a data base which could be used to provide guidance on pre-analytical holding times for regulatory purposes; and 2) to provide a basis for the evaluation of data which is generated outside of the currently allowable holding times.

  13. Volatile organic compound (VOC) emissions during malting and beer manufacture

    Science.gov (United States)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  14. Synthesis of Carbon Nanotubes and Volatile Organic Compounds Detection

    Directory of Open Access Journals (Sweden)

    Sobri S.

    2016-01-01

    Full Text Available In this work, the adsorption effect of volatile organic compounds (chloroacetophenone, acetonitrile and hexane towards the change of resistance of CNTs pellet as sensor signal was investigated. CNTs used in this research were synthesized using Floating Catalyst – Chemical Vapor Deposition (FC-CVD method in optimum condition. The synthesized CNTs were characterized using Scanning Electron Microscopy (SEM, Transmission Electron Microscopy (TEM and Raman Spectroscopy. The variation of resistance changes towards the tested gases were recorded using a multimeter. CNTs sensor pellet showed good responses towards the tested gases, however, the sensitivity, response time and recovery time of sensor pellet need to be optimized.

  15. Volatile organic compound emission profiles of four common arctic plants

    DEFF Research Database (Denmark)

    Vedel-Petersen, Ida; Schollert, Michelle; Nymand, Josephine;

    2015-01-01

    The biogenic volatile organic compound (BVOC) emissions from plants impact atmosphere and climate. The species-specific emissions, and thereby the atmospheric impact, of many plant species are still unknown. Knowledge of BVOC emission from arctic plants is particularly limited. The vast area...... and relatively high leaf temperature give the Arctic potential for emissions that cannot be neglected. This field study aimed to elucidate the BVOC emission profiles for four common arctic plant species in their natural environment during the growing season. BVOCs were sampled from aboveground parts of Empetrum...

  16. The sampling apparatus of volatile organic compounds for wood composites

    Institute of Scientific and Technical Information of China (English)

    SHENJun; ZHAOLin-bo; LIUYu

    2005-01-01

    Terpenes, aldehydes, ketones, benzene, and toluene are the important volatile organic compounds (VOCs) emitted from wood composites. A sampling apparatus of VOCs for wood composites was designed and manufactured by Northeast Forestry University in China.The concentration of VOCs derived from wood based materials, such as flooring, panel wall, finishing, and furniture can be sampled in a small stainless steel chambers. A protocol is also developed in this study to sample and measure the new and representative specimens. Preliminary research showed that the properties of the equipment have good stability. The sort and the amount of different components can be detected from it. The apparatus is practicable.

  17. Review on Volatile Organic Compounds Emission from Wood Composites

    Institute of Scientific and Technical Information of China (English)

    LIU Yu; YU Yaoming; SHEN Jun; LIU Ming

    2006-01-01

    The problem of indoor air quality (IAQ) is mainly caused by the volatile organic compounds (VOC) emission from the wood-based composites. As a material for decoration, furniture manufacturing or building, wood-based composite is one of the sources of VOC emissions. Most of them are formaldehyde, terpene, ketone and benzene. The paper reviews on VOC emission of wood-based composites at home and abroad, including the source of the VOC, its impacts on IAQ, its emission during processing and using, the usual sampling and analyse methods of VOC in different conditions. Meanwhile, main problems existed in the past researches are summarized and some suggestions are put forward.

  18. Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area

    Directory of Open Access Journals (Sweden)

    A. P. Tsimpidi

    2010-01-01

    Full Text Available New primary and secondary organic aerosol modules have been added to PMCAMx, a three dimensional chemical transport model (CTM, for use with the SAPRC99 chemistry mechanism based on recent smog chamber studies. The new modelling framework is based on the volatility basis-set approach: both primary and secondary organic components are assumed to be semivolatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. This new framework with the use of the new volatility basis parameters for low-NOx and high-NOx conditions tends to predict 4–6 times higher anthropogenic SOA concentrations than those predicted with the older generation of models. The resulting PMCAMx-2008 was applied in Mexico City Metropolitan Area (MCMA for approximately a week during April 2003 during a period of very low regional biomass burning impact. The emission inventory, which uses as a starting point the MCMA 2004 official inventory, is modified and the primary organic aerosol (POA emissions are distributed by volatility based on dilution experiments. The predicted organic aerosol (OA concentrations peak in the center of Mexico City, reaching values above 40 μg m−3. The model predictions are compared with the results of the Positive Matrix Factorization (PMF analysis of the Aerosol Mass Spectrometry (AMS observations. The model reproduces both Hydrocarbon-like Organic Aerosol (HOA and Oxygenated Organic Aerosol (OOA concentrations and diurnal profiles. The small OA underprediction during the rush-hour periods and overprediction in the afternoon suggest potential improvements to the description of fresh primary organic emissions and the formation of the oxygenated organic aerosols, respectively, although they may also be due to errors in the simulation of dispersion and vertical mixing. However, the AMS OOA data are not specific enough to prove that the model reproduces the organic aerosol

  19. Volatile organic compounds associated with Plasmodium falciparum infection in vitro.

    Science.gov (United States)

    Correa, Ricardo; Coronado, Lorena M; Garrido, Anette C; Durant-Archibold, Armando A; Spadafora, Carmenza

    2017-05-02

    In order to identify new ways to prevent transmission of vector-borne diseases such as malaria, efforts have been made to understand how insects are attracted to humans. Vector-host interaction studies have shown that several volatile compounds play an important role in attracting mosquitoes to human targets. A headspace solid-phase micro-extraction/gas chromatography-mass spectrometry (HSPME GC-MS) analysis of the volatile organic composition of extracellular vesicles (EVs) and supernatants of ultracentrifugation (SNUs) was carried out in Plasmodium falciparum-infected cultures with high and low parasitemias. A list of 18 volatile organic compounds (VOCs) was obtained from the EVs of both infected and uninfected RBCs with 1,2,3-Propanetriol, diacetate (diacetin) increased in the infected EVs, regardless of the parasitemia of the culture. The supernatant analysis, however, gave off 56 VOCs, with pentane 2,2,4-trimethyl being present in all the SNUs of uninfected erythrocytes but absent from the parasite-infected ones. Standing out in this study was hexanal, a reported insect attractant, which was the only VOC present in all samples from SNUs from infected erythrocytes and absent from uninfected ones, suggesting that it originates during parasite infection. The hexanal compound, reportedly a low-level component found in healthy human samples such as breath and plasma, had not been found in previous analyses of P. falciparum-infected patients or cultures. This compound has been reported as an Anopheles gambiae attractant in plants. While the compound could be produced during infection by the malaria parasite in human erythrocytes, the A. gambiae attraction could be used by the parasite as a strategy for transmission.

  20. Evaporation of volatile organic compounds from human skin in vitro.

    Science.gov (United States)

    Gajjar, Rachna M; Miller, Matthew A; Kasting, Gerald B

    2013-08-01

    The specific evaporation rates of 21 volatile organic compounds (VOCs) from either human skin or a glass substrate mounted in modified Franz diffusion cells were determined gravimetrically. The diffusion cells were positioned either on a laboratory bench top or in a controlled position in a fume hood, simulating indoor and outdoor environments, respectively. A data set of 54 observations (34 skin and 20 glass) was assembled and subjected to a correlation analysis employing 5 evaporative mass transfer relationships drawn from the literature. Models developed by Nielsen et al. (Prediction of isothermal evaporation rates of pure volatile organic compounds in occupational environments: a theoretical approach based on laminar boundary layer theory. Ann Occup Hyg 1995;39:497-511.) and the U.S. Environmental Protection Agency (Peress, Estimate evaporative losses from spills. Chem Eng Prog 2003; April: 32-34.) were found to be the most effective at correlating observed and calculated evaporation rates under the various conditions. The U.S. EPA model was selected for further use based on its simplicity. This is a turbulent flow model based only on vapor pressure and molecular weight of the VOC and the effective air flow rate u. Optimum values of u for the two laboratory environments studied were 0.23 m s(-1) (bench top) and 0.92 m s(-1) (fume hood).

  1. Transport, behavior, and fate of volatile organic compounds in streams

    Science.gov (United States)

    Rathbun, R.E.

    2000-01-01

    Volatile organic compounds (VOCs) are compounds with chemical and physical properties that allow the compounds to move freely between the water and air phases of the environment. VOCs are widespread in the environment because of this mobility. Many VOCs have properties that make them suspected or known hazards to the health of humans and aquatic organisms. Consequently, understanding the processes affecting the concentration and distribution of VOCs in the environment is necessary. The transport, behavior, and fate of VOCs in streams are determined by combinations of chemical, physical, and biological processes. These processes are volatilization, absorption, wet and dry deposition, microbial degradation, sorption, hydrolysis, aquatic photolysis, oxidation, chemical reaction, biocon-centration, advection, and dispersion. The relative importance of each of these processes depends on the characteristics of the VOC and the stream. The U.S. Geological Survey National Water-Quality Assessment Program selected 55 VOCs for study. This article reviews the characteristics of the various processes that could affect the transport, behavior, and fate of these VOCs in streams.

  2. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  3. Emission of Biogenic Volatile Organic Compounds in the Arctic

    DEFF Research Database (Denmark)

    Lindwall, Frida

    Emissions of biogenic volatile organic compounds (BVOCs) from arctic ecosystems are scarcely studied and the effect of climate change on BVOC emissions even less so. BVOCs are emitted from all living organisms and play a role for atmospheric chemistry. The major part of BVOCs derives from plants...... in the atmosphere. This may warm the climate due to a prolonged lifetime of the potent greenhouse gas methane in the atmosphere. However, oxidized BVOCs may participate in formation or growth of aerosols, which in turn may mitigate climate warming. Climate change in the Arctic, an area characterized by short...... dependent and the emissions will increase in a future warmer climate. The aims of this dissertation were to study BVOC emission rates and blends from arctic ecosystems and to reveal the effect of climate change on BVOC emissions from the Arctic. BVOC emissions were measured in ambient and modified...

  4. Cyclodextrin-based microsensors for volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, B.; Johnson, S.; Shi, J.; Yang, Xiaoguang

    1997-10-01

    Host-guest chemistry and self-assembly techniques are being explored to develop species selective thin-films for real-time sensing of volatile organic compounds (VOCs). Cyclodextrin (CD) and calixarene (CA) molecules are known to form guest-host inclusion complexes with a variety of organic molecules. Through the control of the cavity size and chemical functionality on the rims of these bucket-like molecules, the binding affinities for formation of inclusion complexes can be controlled and optimized for specific agents. Self-assembly techniques are used to covalently bond these reagent molecules to the surface of acoustic transducers to create dense, highly oriented, and stable thin films. Self-assembly techniques have also been used to fabricate multilayer thin film containing molecular recognition reagents through alternating adsorption of charged species in aqueous solutions. Self-assembly of polymeric molecules of the SAW device was also explored for fabricating species selective interfaces.

  5. Determination of organic chemicals in human whole blood: Preliminary method development for volatile organics

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, P.H.; Boggess, K.E.; Hosenfeld, J.M. (Midwest Research Institute, Kansas City, MO (USA)); Remmers, J.C.; Breen, J.J.; Robinson, P.E.; Stroup, C. (Environmental Protection Agency, Washington, DC (USA))

    1988-05-01

    Extensive commercial, industrial, and domestic use of volatile organic chemicals, virtually assures that the general population will be exposed to some level of this class of chemicals. Because blood interacts with the respiratory system and is a major component of the body, it is likely that the analysis of blood will show exposure to volatile organics. Monitoring of the blood in conjunction with monitoring of xenobiotic levels in urine and adipose tissue is an effective way to assess the total body burden resulting from exposure to a chemical. This article introduces a method for the detection and confirmation of selected volatile organics at parts-per-trillion (ppt) levels in whole human blood. Intended for routine use, the method consists of a dynamic headspace purge of water-diluted blood where a carrier gas sweeps the surface of the sample and removes a quantifiable amount of the volatile organics from the blood and into an adsorbent trap. The organics are thermally desorbed from the adsorbent trap and onto the analytical column in a gas-chromatographic/mass-spectrometric (GC/MS) system where limited mass-scan data are taken for qualitative and quantitative identification. Method validation results and limited population-survey results are also presented here.

  6. 40 CFR 60.112b - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds... organic compounds (VOC). (a) The owner or operator of each storage vessel either with a design capacity... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for...

  7. Development of novel biofilters for treatment of volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, D.F. [Environmental Protection Agency, Cincinnati, OH (United States). National Risk Management Research Lab.; Govind, R. [Univ. of Cincinnati, OH (United States). Dept. of Chemical Engineering

    1995-12-31

    Biofiltration involves contacting a contaminated gas stream with immobilized microorganisms in a contactor to biodegrade the contaminants. It is emerging as an attractive technology for removing low concentrations (i.e., less than 800 ppmv) of volatile organic chemicals (VOCs) from air. Compared with other technologies, biofiltration fully mineralizes the contaminants, is inexpensive and reliable, and requires no posttreatment. In the study described in this paper, four types of media consisting of porous ceramic monoliths with several straight passages were studied to determine the effects of adsorptive and nonadsorptive media on biofilter startup time, dynamic response to step changes in inlet substrate concentration, biofilm adherence, and overall VOC-removal efficiency. Volatile compounds studied were benzene, toluene, ethylbenzene, m-xylene, and o-xylene. Adsorbing media such as activated carbon, when compared with nonadsorbing media such as ceramic, exhibit faster biofilter startup, are more stable to dynamic changes in inlet concentration, and attain higher VOC-removal efficiencies due to better adherence of biofilm on media surfaces.

  8. Biogenic Emissions of Volatile Organic Compounds by Urban Forests

    Institute of Scientific and Technical Information of China (English)

    CENTRITTOMauro; LIUShirong; LORETOFrancesco

    2005-01-01

    All plants emit a wide range of volatile compounds, the so-called biogenic volatile organic compounds (BVOC). BVOC emissions have received increased scientific attention in the last two decades because they may profoundly influence the chemical and physical properties of the atmosphere, and may modulate plant tolerance to heat, pollutants, oxidative stress and abiotic stresses, and affect plant-plant and plant-insect interactions. Urban forestry may have a high impact on atmospheric composition, air quality, environment,and quality of life in urban areas. However, few studies have been carried out where the emission of BVOC could have important consequence for the quality of air and contribute to pollution episodes. A screening of BVOC emission by the mixed stand constituting urban forests is therefore required if emissions are to be reliably predicted. Monitoring the emission rates simultaneously with measurements of air quality, plant physiology and micrometeorology on selected urban forests, will allow detailed quantitative information on the inventory of BVOC emissions by urban vegetation to be compiled. This information will make it possible to propose an innovative management of urban vegetation in cities characterised by heavy emissions of anthropogenic pollutants, aiming at the abatement of BVOC emissions through the introduction or selection of non-BVOC emitting species in urban areas subjected to pollution episodes and in the new afforestation areas covering peri-urban parks, green belts and green corridors between peri-urban rural areas and the conurbations.

  9. First Characterisation of Volatile Organic Compounds Emitted by Banana Plants.

    Science.gov (United States)

    Berhal, Chadi; De Clerck, Caroline; Fauconnier, Marie-Laure; Levicek, Carolina; Boullis, Antoine; Kaddes, Amine; Jijakli, Haïssam M; Verheggen, François; Massart, Sébastien

    2017-05-16

    Banana (Musa sp.) ranks fourth in term of worldwide fruit production, and has economical and nutritional key values. The Cavendish cultivars correspond to more than 90% of the production of dessert banana while cooking cultivars are widely consumed locally around the banana belt production area. Many plants, if not all, produce Volatile Organic Compounds (VOCs) as a means of communication with their environment. Although flower and fruit VOCs have been studied for banana, the VOCs produced by the plant have never been identified despite their importance in plant health and development. A volatile collection methodology was optimized to improve the sensitivity and reproducibility of VOCs analysis from banana plants. We have identified 11 VOCs for the Cavendish, mainly (E,E)-α-farnesene (87.90 ± 11.28 ng/μl), methyl salicylate (33.82 ± 14.29) and 6-methyl-5-hepten-2-one (29.60 ± 11.66), and 14 VOCs for the Pacific Plantain cultivar, mainly (Z,E)-α-farnesene (799.64 ± 503.15), (E,E)-α-farnesene (571.24 ± 381.70) and (E) β ocimene (241.76 ± 158.49). This exploratory study paves the way for an in-depth characterisation of VOCs emitted by Musa plants.

  10. Wildlife ecological screening levels for inhalation of volatile organic chemicals.

    Science.gov (United States)

    Gallegos, Patricia; Lutz, Jill; Markwiese, James; Ryti, Randall; Mirenda, Rich

    2007-06-01

    For most chemicals, evaluation of ecological risk typically does not address inhalation because ingestion dominates exposure. However, burrowing ecological receptors have an increased exposure potential from inhalation at sites contaminated with volatile chemicals in the subsurface. Evaluation of ecological risk from contaminants like volatile organic chemicals (VOCs) is constrained by a lack of relevant ecological screening levels (ESLs). To address this need, inhalation ESLs were developed for 16 VOCs: Acetone, benzene, carbon tetrachloride, chloroform, chloromethane, dichlorodifluoromethane, 1,1-dichloroethane, 1,2-dichloroethane, 1,1-dichloroethene, methylene chloride, tetrachloroethene, toluene, 1,1,1-trichloroethane, trichloroethene, trichlorofluoromethane, and total xylene. These ESLs are based on Botta's pocket gopher (Thomomys bottae) as a representative fossorial receptor. The ESLs are presented with an emphasis on the process for developing inhalation toxicity reference values to illustrate the selection of suitable toxicity data and effect levels from the literature. The resulting ESLs provide a quantitative method for evaluating ecological risk of VOCs through comparison to relevant exposure data such as direct burrow-air measurements. The toxicity reference value development and ESL calculation processes and assumptions detailed here are provided as bases from which risk assessors can use or refine to suit site-specific needs with respect to toxicity and exposure inputs.

  11. Volatile organic compound emissions from Larrea tridentata (creosotebush)

    Science.gov (United States)

    Jardine, K.; Abrell, L.; Kurc, S. A.; Huxman, T.; Ortega, J.; Guenther, A.

    2010-12-01

    We present results from the CREosote ATmosphere Interactions through Volatile Emissions (CREATIVE 2009) field study in southern Arizona aimed at quantifying emission rates of VOCs from creosotebush (Larrea tridentata) during the summer 2009 monsoon season. This species was chosen because of its vast distribution in North and South American deserts and because its resins have been reported to contain a rich set of volatile organic compounds (VOC). While a variety of ecosystems have been investigated for VOC emissions, deserts remain essentially unstudied, partially because of their low biomass densities and water limitations. However, during the North American monsoon, a pronounced increase in rainfall from an extremely dry June (80 mm) occurs over large areas of the Sonoran desert in the southwestern United States and northwestern Mexico. We observed a strong diurnal pattern of branch emissions and ambient concentrations of an extensive suite of VOCs with maxima in early afternoon. These include VOCs typically observed in forest sites (oxygenated VOCs and volatile isoprenoids) as well as a large number of other compounds, some of which have not been previously described from any plant including 1-chloro-2-methoxy-benzene and isobutyronitrile. Although generally considered to be derived from anthropogenic sources, we observed emissions of aromatic compounds including benzene, and a broad range of phenolics. Dimethyl sulfide emissions from creosotebush were higher than reported from any previously studied plant suggesting that terrestrial ecosystems should be reconsidered as an important source of this climatically important gas. We also present direct, primary emission measurements of isoprene and its apparent oxidation products methyl vinyl ketone, methacrolein, and 3-methyl furan (the later three compounds are typically assumed to form from secondary reactions within the atmosphere), as well as a group of compounds considered to be fatty acid oxidation products

  12. Volatile organic compound emissions from Larrea tridentata (creosotebush

    Directory of Open Access Journals (Sweden)

    J. Ortega

    2010-07-01

    Full Text Available The emission of Volatile Organic Compounds (VOCs from plants impacts both climate and air quality by fueling atmospheric chemistry and by contributing to aerosol particles. While a variety of ecosystems have been investigated for VOC emissions, deserts remain essentially unstudied, partially because of their low biomass densities and water limitations. However, during the North American monsoon, a pronounced increase in rainfall from an extremely dry June (<5 mm precipitation to a rainy July (>80 mm occurs over large areas of the Sonoran desert in the Southwestern United States and Northwestern Mexico. We present results from the CREosote ATmosphere Interactions through Volatile Emissions (CREATIVE 2009 field study in Southern Arizona aimed at quantifying emission rates of VOCs from creosotebush (Larrea tridentata during the summer 2009 monsoon season. This species was chosen because of its vast distribution in North and South American deserts and because its resins have been reported to contain a rich set of VOCs. We observed a strong diurnal pattern with branch emissions and ambient concentrations of an extensive suite of VOCs with maxima in early afternoon. These include VOCs typically observed in forest sites (oxygenated VOCs and volatile isoprenoids as well as a large number of other compounds, some of which have not been previously described from any plant including 1-chloro-2-methoxy-benzene and isobutyronitrile. Although generally considered to be derived from anthropogenic sources, we observed emissions of aromatic compounds including benzene, and a broad range of phenolics. Dimethyl sulfide emissions from creosotebush were higher than reported from any previously studied plant suggesting that terrestrial ecosystems should be reconsidered as an important source of this climatically important gas. We also present direct, primary emission measurements of isoprene and its apparent oxidation products methyl vinyl ketone, methacrolein, and 3

  13. Volatile organic compound emissions from Larrea tridentata (creosotebush

    Directory of Open Access Journals (Sweden)

    A. Guenther

    2010-12-01

    Full Text Available We present results from the CREosote ATmosphere Interactions through Volatile Emissions (CREATIVE 2009 field study in southern Arizona aimed at quantifying emission rates of VOCs from creosotebush (Larrea tridentata during the summer 2009 monsoon season. This species was chosen because of its vast distribution in North and South American deserts and because its resins have been reported to contain a rich set of volatile organic compounds (VOC. While a variety of ecosystems have been investigated for VOC emissions, deserts remain essentially unstudied, partially because of their low biomass densities and water limitations. However, during the North American monsoon, a pronounced increase in rainfall from an extremely dry June (80 mm occurs over large areas of the Sonoran desert in the southwestern United States and northwestern Mexico. We observed a strong diurnal pattern of branch emissions and ambient concentrations of an extensive suite of VOCs with maxima in early afternoon. These include VOCs typically observed in forest sites (oxygenated VOCs and volatile isoprenoids as well as a large number of other compounds, some of which have not been previously described from any plant including 1-chloro-2-methoxy-benzene and isobutyronitrile. Although generally considered to be derived from anthropogenic sources, we observed emissions of aromatic compounds including benzene, and a broad range of phenolics. Dimethyl sulfide emissions from creosotebush were higher than reported from any previously studied plant suggesting that terrestrial ecosystems should be reconsidered as an important source of this climatically important gas. We also present direct, primary emission measurements of isoprene and its apparent oxidation products methyl vinyl ketone, methacrolein, and 3-methyl furan (the later three compounds are typically assumed to form from secondary reactions within the atmosphere, as well as a group of compounds considered to be fatty acid

  14. Development and mining of a volatile organic compound database.

    Science.gov (United States)

    Abdullah, Azian Azamimi; Altaf-Ul-Amin, Md; Ono, Naoaki; Sato, Tetsuo; Sugiura, Tadao; Morita, Aki Hirai; Katsuragi, Tetsuo; Muto, Ai; Nishioka, Takaaki; Kanaya, Shigehiko

    2015-01-01

    Volatile organic compounds (VOCs) are small molecules that exhibit high vapor pressure under ambient conditions and have low boiling points. Although VOCs contribute only a small proportion of the total metabolites produced by living organisms, they play an important role in chemical ecology specifically in the biological interactions between organisms and ecosystems. VOCs are also important in the health care field as they are presently used as a biomarker to detect various human diseases. Information on VOCs is scattered in the literature until now; however, there is still no available database describing VOCs and their biological activities. To attain this purpose, we have developed KNApSAcK Metabolite Ecology Database, which contains the information on the relationships between VOCs and their emitting organisms. The KNApSAcK Metabolite Ecology is also linked with the KNApSAcK Core and KNApSAcK Metabolite Activity Database to provide further information on the metabolites and their biological activities. The VOC database can be accessed online.

  15. Catabolism of volatile organic compounds influences plant survival.

    Science.gov (United States)

    Oikawa, Patricia Y; Lerdau, Manuel T

    2013-12-01

    Plants emit a diverse array of phytogenic volatile organic compounds (VOCs). The production and emission of VOCs has been an important area of research for decades. However, recent research has revealed the importance of VOC catabolism by plants and VOC degradation in the atmosphere for plant growth and survival. Specifically, VOC catabolism and degradation have implications for plant C balance, tolerance to environmental stress, plant signaling, and plant-atmosphere interactions. Here we review recent advances in our understanding of VOC catabolism and degradation, propose experiments for investigating VOC catabolism, and suggest ways to incorporate catabolism into VOC emission models. Improving our knowledge of VOC catabolism and degradation is crucial for understanding plant metabolism and predicting plant survival in polluted environments.

  16. [Binding of Volatile Organic Compounds to Edible Biopolymers].

    Science.gov (United States)

    Misharina, T A; Terenina, M B; Krikunova, N I; Medvedeva, I B

    2016-01-01

    Capillary gas chromatography was used to study the influence of the composition and structure of different edible polymers (polysaccharides, vegetable fibers, and animal protein gelatin) on the binding of essential oil components. The retention of volatile organic compounds on biopolymers was shown to depend on their molecule structure and the presence, type, and position of a functional group. The maximum extent of the binding was observed for nonpolar terpene and sesquiterpene hydrocarbons, and the minimum extent was observed for alcohols. The components of essential oils were adsorbed due mostly to hydrophobic interactions. It was shown that the composition and structure of a compound, its physico-chemical state, and the presence of functional groups influence the binding. Gum arabic and guar gum were found to bind nonpolar compounds to a maximum and minimum extent, respectively. It was demonstrated the minimum adsorption ability of locust bean gum with respect to all studied compounds.

  17. Study on Volatile Organic Components from Chinese Fir Wood

    Institute of Scientific and Technical Information of China (English)

    HUANG Luohua; QIN Tefu; OHIRA Tatsuro

    2006-01-01

    The volatile organic compounds(VOCs) are emitted by a wide array of products, which include a variety of chemicals, some of them may have short- and long-term adverse health effects. Several analytical instrument including gas chromatograph, high preferment liquid chromatograph, mass spectrometry and solid phase microextraction (SPME) technique were used in this study. The results showed the aldehyde and ketone components of Chinese fir wood were little composed of formaldehyde, syn-acetaldehyde, anti-acetadehyde and acrolein, VOCs obtained by Tenax GR absorber consisted of the major component cedrene (42.92%) and another 28 components, and the major components of the VOCs from the sample by using solid phase microextraction (SPME) technique were cedrene and cedrol.

  18. The sensitivity of Secondary Organic Aerosol component partitioning to the predictions of component properties – Part 2: Determination of particle hygroscopicity and its dependence on "apparent" volatility

    Directory of Open Access Journals (Sweden)

    D. O. Topping

    2011-08-01

    Full Text Available A large number of calculations of absorptive partitioning of organic compounds have been conducted, making use of several methods to estimate pure component vapour pressures and activity coefficients (p0 and γi. The sensitivities of the predicted particle properties (density, hygroscopicity, CCN activation potential to the choice of p0 and γi models and to the number of components used to represent the organic mixture have been systematically compared.

    The variability in theoretical hygroscopic growth factor attributable to the choice of estimation technique increases with decreasing mixture complexity. Generally there is low sensitivity to the choice of vapour pressure predictive technique. The inclusion of non-ideality is responsible for a larger difference in predicted growth factor, though still relatively minor.

    Assuming instantaneous equilibration of all semi-volatile on drying the aerosol to 0 % RH massively increases the sensitivity. Without such re-equilibration, the calculated growth factors are comparable to the low hygroscopicity of organic material widely measured in the laboratory and atmosphere. Allowing re-equilibration on drying produces a calculated hygroscopicity greater than measured for ambient organic material, and frequently close to those of common inorganic salts. Such a result has substantial implications on aerosol behaviour in instruments designed to measure hygroscopicity and on the degree of equilibration of semi-volatile components in the ambient atmosphere.

    The impacts of this variability on behaviour of particles as cloud condensation nuclei, on predicted cloud droplet number and uncertainty in radiative forcing are explored. When it is assumed only water evaporates on drying, the sensitivity in radiative forcing, "ΔF" to choice of p0 and γi estimation technique is low

  19. Emissions of biogenic volatile organic compounds & their photochemical transformation

    Science.gov (United States)

    Yu, Zhujun; Hohaus, Thorsten; Tillmann, Ralf; Andres, Stefanie; Kuhn, Uwe; Rohrer, Franz; Wahner, Andreas; Kiendler-Scharr, Astrid

    2015-04-01

    Natural and anthropogenic activities emit volatile organic compounds (VOC) into the atmosphere. While it is known that land vegetation accounts for 90% of the global VOC emissions, only a few molecules' emission factors are understood. Through VOCs atmospheric oxidation intermediate products are formed. The detailed chemical mechanisms involved are insufficiently known to date and need to be understood for air quality management and climate change predictions. In an experiment using a PTR-ToF-MS with the new-built plant chamber SAPHIR-PLUS in Forschungszentrum Juelich, biogenic emissions of volatile organic compounds (BVOC) from Quercus ilex trees were measured. The BVOC emissions were dominated by monoterpenes, minor emissions of isoprene and methanol were also observed with the overall emission pattern typical for Quercus ilex trees in the growing season. Monoterpenes and isoprene emissions showed to be triggered by light. Additionally, their emissions showed clear exponential temperature dependence under constant light condition as reported in literature. As a tracer for leaf growth, methanol emission showed an abrupt increase at the beginning of light exposure. This is explained as instantaneous release of methanol produced during the night once stomata of leaves open upon light exposure. Emission of methanol showed a near linear increase with temperature in the range of 10 to 35 °C. BVOC were transferred from the plant chamber PLUS to the atmospheric simulation chamber SAPHIR, where their oxidation products from O3 oxidation were measured with PTR-ToF-MS. Gas phase oxidation products such as acetone and acetaldehyde were detected. A quantitative analysis of the data will be presented, including comparison of observations to the Master Chemical Mechanism model.

  20. Crude glycerol combustion: Particulate, acrolein, and other volatile organic emissions

    KAUST Repository

    Steinmetz, Scott

    2013-01-01

    Crude glycerol is an abundant by-product of biodiesel production. As volumes of this potential waste grow, there is increasing interest in developing new value added uses. One possible use, as a boiler fuel for process heating, offers added advantages of energy integration and fossil fuel substitution. However, challenges to the use of crude glycerol as a boiler fuel include its low energy density, high viscosity, and high autoignition temperature. We have previously shown that a refractory-lined, high swirl burner can overcome challenges related to flame ignition and stability. However, critical issues related to ash behavior and the possible formation of acrolein remained. The work presented here indicates that the presence of dissolved catalysts used during the esterification and transesterification processes results in extremely large amounts of inorganic species in the crude glycerol. For the fuels examined here, the result is a submicron fly ash comprised primarily of sodium carbonates, phosphates, and sulfates. These particles report to a well-developed accumulation mode (0.3-0.7 μm diameter), indicating extensive ash vaporization and particle formation via nucleation, condensation, and coagulation. Particle mass emissions were between 2 and 4 g/m3. These results indicate that glycerol containing soluble catalyst is not suitable as a boiler fuel. Fortunately, process improvements are currently addressing this issue. Additionally, acrolein is of concern due to its toxicity, and is known to be formed from the low temperature thermal decomposition of glycerol. Currently, there is no known reliable method for measuring acrolein in sources. Acrolein and emissions of other volatile organic compounds were characterized through the use of a SUMMA canister-based sampling method followed by GC-MS analysis designed for ambient measurements. Results indicate crude glycerol combustion produces relatively small amounts of acrolein (∼15 ppbv) and other volatile organic

  1. Evaluation of the Volatility Basis-Set Approach for Modeling Primary and Secondary Organic Aerosol in the Mexico City Metropolitan Area

    Science.gov (United States)

    Tsimpidi, A. P.; Karydis, V. A.; Pandis, S. N.; Zavala, M.; Lei, W.; Molina, L. T.

    2007-12-01

    Anthropogenic air pollution is an increasingly serious problem for public health, agriculture, and global climate. Organic material (OM) contributes ~ 20-50% to the total fine aerosol mass at continental mid-latitudes. Although OM accounts for a large fraction of PM2.5 concentration worldwide, the contributions of primary and secondary organic aerosol have been difficult to quantify. In this study, new primary and secondary organic aerosol modules were added to PMCAMx, a three dimensional chemical transport model (Gaydos et al., 2007), for use with the SAPRC99 chemistry mechanism (Carter, 2000; ENVIRON, 2006) based on recent smog chamber studies (Robinson et al., 2007). The new modeling framework is based on the volatility basis-set approach (Lane et al., 2007): both primary and secondary organic components are assumed to be semivolatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The emission inventory, which uses as starting point the MCMA 2004 official inventory (CAM, 2006), is modified and the primary organic aerosol (POA) emissions are distributed by volatility based on dilution experiments (Robinson et al., 2007). Sensitivity tests where POA is considered as nonvolatile and POA and SOA as chemically reactive are also described. In all cases PMCAMx is applied in the Mexico City Metropolitan Area during March 2006. The modeling domain covers a 180x180x6 km region in the MCMA with 3x3 km grid resolution. The model predictions are compared with Aerodyne's Aerosol Mass Spectrometry (AMS) observations from the MILAGRO Campaign. References Robinson, A. L.; Donahue, N. M.; Shrivastava, M. K.; Weitkamp, E. A.; Sage, A. M.; Grieshop, A. P.; Lane, T. E.; Pandis, S. N.; Pierce, J. R., 2007. Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315, 1259-1262. Gaydos, T. M.; Pinder, R. W.; Koo, B.; Fahey, K. M.; Pandis, S. N., 2007. Development and application of a three- dimensional aerosol

  2. Influence of ventilation type in volatile organic compounds exposure: poultry case

    OpenAIRE

    Viegas, Susana; Monteiro, ANA; Manteigas, Vítor; Carolino, Elisabete; Viegas, Carla

    2012-01-01

    Agricultural workers especially poultry farmers are at increased risk of occupational respiratory diseases. Epidemiological studies showed increased prevalence of respiratory symptoms and adverse changes in pulmonary function parameters in poultry workers. In poultry production volatile organic compounds (VOCs) presence can be due to some compounds produced by molds that are volatile and are released directly into the air. These are known as microbial volatile organic compounds (MVOCs). Be...

  3. 40 CFR 60.112a - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.112a Section 60.112a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Commenced After May 18, 1978, and Prior to July 23, 1984 § 60.112a Standard for volatile organic...

  4. 40 CFR 60.542a - Alternate standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Rubber Tire Manufacturing Industry § 60.542a Alternate standard for volatile organic compounds. (a) On... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Alternate standard for volatile organic compounds. 60.542a Section 60.542a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  5. 40 CFR 60.312 - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.312 Section 60.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Surface Coating of Metal Furniture § 60.312 Standard for volatile organic compounds (VOC). (a) On...

  6. 40 CFR 60.112 - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.112 Section 60.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... After June 11, 1973, and Prior to May 19, 1978 § 60.112 Standard for volatile organic compounds...

  7. 75 FR 57412 - Approval and Promulgation of Implementation Plans Alabama: Volatile Organic Compounds

    Science.gov (United States)

    2010-09-21

    ... ``volatile organic compounds'' (VOCs) found at Alabama Administrative Code section 335-3-1-.02(gggg... AGENCY 40 CFR Part 52 Approval and Promulgation of Implementation Plans Alabama: Volatile Organic Compounds AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing...

  8. 75 FR 82363 - Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound Emission...

    Science.gov (United States)

    2010-12-30

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound... printing volatile organic compound (VOC) rule for approval into the Ohio State Implementation Plan (SIP... mercury at 20 degrees Celsius. This rule also contains the appropriate test methods ] for determining...

  9. 40 CFR Table 2 to Subpart II of... - Volatile Organic HAP (VOHAP) Limits for Marine Coatings

    Science.gov (United States)

    2010-07-01

    ... (Surface Coating) Pt. 63, Subpt. II, Table 2 Table 2 to Subpart II of Part 63—Volatile Organic HAP (VOHAP... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Volatile Organic HAP (VOHAP) Limits for Marine Coatings 2 Table 2 to Subpart II of Part 63 Protection of Environment...

  10. Catalytic oxidation of volatile organic compounds (VOCs) - A review

    Science.gov (United States)

    Kamal, Muhammad Shahzad; Razzak, Shaikh A.; Hossain, Mohammad M.

    2016-09-01

    Emission of volatile organic compounds (VOCs) is one of the major contributors to air pollution. The main sources of VOCs are petroleum refineries, fuel combustions, chemical industries, decomposition in the biosphere and biomass, pharmaceutical plants, automobile industries, textile manufacturers, solvents processes, cleaning products, printing presses, insulating materials, office supplies, printers etc. The most common VOCs are halogenated compounds, aldehydes, alcohols, ketones, aromatic compounds, and ethers. High concentrations of these VOCs can cause irritations, nausea, dizziness, and headaches. Some VOCs are also carcinogenic for both humans and animals. Therefore, it is crucial to minimize the emission of VOCs. Among the available technologies, the catalytic oxidation of VOCs is the most popular because of its versatility of handling a range of organic emissions under mild operating conditions. Due to that fact, there are numerous research initiatives focused on developing advanced technologies for the catalytic destruction of VOCs. This review discusses recent developments in catalytic systems for the destruction of VOCs. Review also describes various VOCs and their sources of emission, mechanisms of catalytic destruction, the causes of catalyst deactivation, and catalyst regeneration methods.

  11. A preliminary investigation of sorbent-impregnated filters (SIFs) as an alternative to polyurethane foam (PUF) for sampling gas-phase semivolatile organic compounds in air

    Science.gov (United States)

    Galarneau, Elisabeth; Harner, Tom; Shoeib, Mahiba; Kozma, Melissa; Lane, Douglas

    Filters impregnated with XAD-4™ resin were used in a small series of high-volume air samples to compare their collection of gas-phase semivolatile toxic substances (organochlorine pesticides, OCs, and polycyclic aromatic hydrocarbons, PAHs) with that achieved by polyurethane foam (PUF). The advantages of the use of such sorbent-impregnated filters (SIFs) include a reduction in size which leads to numerous benefits. The latter include simplified sample handling, shipping and storage, and the potential for a decrease in solvent requirements for pre-cleaning and extraction. Furthermore, such SIFs could be used to measure combined particle/gas concentrations of target compounds. Gas concentrations derived from the SIFs in a filter-SIF-SIF-PUF configuration agreed well with values derived from the PUF plugs in a comparison filter-PUF configuration. The collection efficiency of a single SIF was ˜80% on average. As such, these SIFs are viewed as a promising alternative to PUF and further, more extensive study of their performance characteristics appears to be warranted.

  12. 77 FR 38725 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic...

    Science.gov (United States)

    2012-06-29

    ... Organic Compounds; Consumer Products AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final... more stringent than, EPA's national consumer products rule, ``National Volatile Organic Compound... requirement for floor wax strippers that ensures that product packaging clearly indicates ``light/medium''...

  13. Datasets used in the manuscript titled "Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms and organic aerosol"

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset documents that all of the data used in the manuscript "Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic...

  14. Influence of volatile organic compounds of varnish-and-paint materials on the workers organism on the industrial enterprises

    Directory of Open Access Journals (Sweden)

    Г.І. Архіпова

    2010-02-01

    Full Text Available In article describes the reasons of air contamination in working area of endustrial enterprises, defines main ways of incoming and mechanism of action of volatile organic compounds of paintwork material on the organisms of workers.

  15. 40 CFR Appendix Viii to Part 266 - Organic Compounds for Which Residues Must Be Analyzed

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Organic Compounds for Which Residues...—Organic Compounds for Which Residues Must Be Analyzed Volatiles Semivolatiles Benzene Bis(2-ethylhexyl... those compounds that do not have an established F039 nonwastewater concentration limit....

  16. Biodegradation of volatile organic compounds by five fungal species

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B.; Moe, W.M. [Dept. of Civil and Environmental Engineering, Louisiana State Univ., Baton Rouge, LA (United States); Kinney, K.A. [Dept. of Civil Engineering, Univ. of Texas, Austin (United States)

    2002-07-01

    Five fungal species, Cladosporium resinae (ATCC 34066), Cladosporium sphaerospermum (ATCC 200384), Exophiala lecanii-corni (CBS 102400), Mucor rouxii (ATCC 44260), and Phanerochaete chrysosporium (ATCC 24725), were tested for their ability to degrade nine compounds commonly found in industrial off-gas emissions. Fungal cultures inoculated on ceramic support media were provided with volatile organic compounds (VOCs) via the vapor phase as their sole carbon and energy sources. Compounds tested included aromatic hydrocarbons (benzene, ethylbenzene, toluene, and styrene), ketones (methyl ethyl ketone, methyl isobutyl ketone, and methyl propyl ketone), and organic acids (n-butyl acetate, ethyl 3-ethoxypropionate). Experiments were conducted using three pH values ranging from 3.5 to 6.5. Fungal ability to degrade each VOC was determined by observing the presence or absence of visible growth on the ceramic support medium during a 30-day test period. Results indicate that E. lecanii-corni and C. sphaerospermum can readily utilize each of the nine VOCs as a sole carbon and energy source. P. chrysosporium was able to degrade all VOCs tested except for styrene under the conditions imposed. C. resinae was able to degrade both organic acids, all of the ketones, and some of the aromatic compounds (ethylbenzene and toluene); however, it was not able to grow utilizing benzene or styrene under the conditions tested. With the VOCs tested, M. rouxii produced visible growth only when supplied with n-butyl acetate or ethyl 3-ethoxypropionate. Maximum growth for most fungi was observed at a pH of approximately 5.0. The experimental protocol utilized in these studies is a useful tool for assessing the ability of different fungal species to degrade gas-phase VOCs under conditions expected in a biofilter application. (orig.)

  17. Emission and Chemical Transformation of Biogenic Volatile Organic Compounds (echo)

    Science.gov (United States)

    Koppmann, R.; Hoffmann, T.; Kesselmeier, J.; Schatzmann, M.

    Forests are complex sources of biogenic volatile organic compounds (VOC) in the planetary boundary layer. The impact of biogenic VOC on tropospheric photochem- istry, air quality, and the formation of secondary products affects our climate on a regional and global scale but is far from being understood. A considerable lack of knowledge exists concerning a forest stand as a net source of reactive trace com- pounds, which are transported directly into the planetary boundary layer (PBL). In particular, little is known about the amounts of VOC which are processed within the canopy. The goal of ECHO, which is presented in this poster, is to investigate these questions and to improve our understanding of biosphere-atmosphere interactions and their effects on the PBL. The investigation of emissions, chemical processing and vertical transport of biogenic VOC will be carried out in and above a mixed forest stand in Jülich, Germany. A large set of trace gases, free radicals and meteorologi- cal parameters will be measured at different heights in and above the canopy, covering concentrations of VOC, CO, O3, organic nitrates und NOx as well as organic aerosols. For the first time concentration profiles of OH, HO2, RO2 und NO3 radicals will be measured as well together with the actinic UV radiation field and photolysis frequen- cies of all relevant radical precursors (O3, NO2, peroxides, oxygenated VOC). The different tasks of the field experiments will be supported by simulation experiments investigating the primary emission and the uptake of VOC by the plants in stirred tank reactors, soil parameters and soil emissions in lysimeter experiments, and the chem- ical processing of the trace gases as observed in and above the forest stand in the atmosphere simulation chamber SAPHIR. The planning and interpretation of the field experiments is supported by simulations of the field site in a wind tunnel.

  18. Comparison of speciation sampler and PC-BOSS fine particulate matter organic material results obtained in Lindon, Utah, during winter 2001-2002.

    Science.gov (United States)

    Carter, Cory; Eatough, Norman L; Eatough, Delbert J; Olson, Neal; Long, Russell W

    2008-01-01

    The Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) has been previously verified as being capable of measuring total fine particulate matter (PM2.5), including semi-volatile species. The present study was conducted to determine if the simple modification of a commercial speciation sampler with a charcoal denuder followed by a filter pack containing a quartz filter and a charcoal-impregnated glass (CIG) fiber filter would allow for the measurement of total PM2.5, including semi-volatile organic material. Data were collected using an R&P (Rupprecht and Pastasnik Co., Inc.) Partisol Model 2300 speciation sampler; an R&P Partisol speciation sampler modified with a BOSS denuder, followed by a filter pack with a quartz and a CIG filter; a Met One spiral aerosol speciation sampler (SASS); and the PC-BOSS from November 2001 to March 2002 at a U.S. Environmental Protection Agency (EPA) Science to Achieve Results (STAR) sampling site in Lindon, UT. Total PM2.5 mass, ammonium nitrate (both nonvolatile and semi-volatile), ammonium sulfate, organic carbon (both non-volatile and semi-volatile), and elemental carbon were determined on a 24-hr basis. Results obtained with the individual samplers were compared to determine the capability of the modified R&P speciation sampler for measuring total PM2.5, including semi-volatile components. Data obtained with the modified speciation sampler agreed with the PC-BOSS results. Data obtained with the two unmodified speciation samplers were low by an average of 26% because of the loss of semi-volatile organic material from the quartz filter during sample collection.

  19. Biofiltration for control of volatile organic compounds (VOCS)

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, D.F. [Environmental Protection Agency, Cincinnati, OH (United States); Govind, R. [Univ. of Cincinnati, OH (United States)

    1995-10-01

    Air biofiltration is a promising technology for control of air emissions of biodegradable volatile organic compounds (VOCs). In conjunction with vacuum extraction of soils or air stripping of ground water, it can be used to mineralize VOCs removed from contaminated soil or groundwater. The literature describes three major biological systems for treating contaminated air bioscrubbers, biotrickling filters and biofilters. Filter media can be classified as: bioactive fine or irregular particulates, such as soil, peat, compost or mixtures of these materials; pelletized, which are randomly packed in a bed; and structured, such as monoliths with defined or variable passage size and geometry. The media can be made of sorbing and non-absorbing materials. Non-bioactive pelletized and structured media require recycled solutions of nutrients and buffer for efficient microbial activity and are thus called biotrickling filters. Extensive work has been conducted to improve biofiltration by EPA`s Risk Reduction Engineering Laboratory and the University of Cincinnati in biofilters using pelletized and structured media and improved operational approaches. Representative VOCs in these studies included compounds with a range of aqueous solubilities and octanol-water partition coefficients. The compounds include iso-pentane, toluene, methylene chloride, trichloroethylene (TCE), ethyl benzene, chlorobenzene and perchloroethylene (PCE) and alpha ({alpha}-) pinene. Comparative studies were conducted with peat/compost biofilters using isopentane and {alpha}-pinene. Control studies were also conducted to investigate adsorption/desorption of contaminants on various media using mercuric chloride solution to insure the absence of bioactivity.

  20. Methods in plant foliar volatile organic compounds research.

    Science.gov (United States)

    Materić, Dušan; Bruhn, Dan; Turner, Claire; Morgan, Geraint; Mason, Nigel; Gauci, Vincent

    2015-12-01

    Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant-plant and plant-insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas analysis, usually based on gas chromatography and soft chemical ionization mass spectrometry. Until now, these techniques (especially the latter one) have been developed and used primarily by physicists and analytical scientists, who have used them in a wide range of scientific research areas (e.g., aroma, disease biomarkers, hazardous compound detection, atmospheric chemistry). The interdisciplinary nature of plant foliar VOC research has recently attracted the attention of biologists, bringing them into the field of applied environmental analytical sciences. In this paper, we review the sampling methods and available analytical techniques used in plant foliar VOC research to provide a comprehensive resource that will allow biologists moving into the field to choose the most appropriate approach for their studies.

  1. Characterization of volatile organic compounds from different cooking emissions

    Science.gov (United States)

    Cheng, Shuiyuan; Wang, Gang; Lang, Jianlei; Wen, Wei; Wang, Xiaoqi; Yao, Sen

    2016-11-01

    Cooking fume is regarded as one of the main sources of urban atmospheric volatile organic compounds (VOCs) and its chemical characteristics would be different among various cooking styles. In this study, VOCs emitted from four different Chinese cooking styles were collected. VOCs concentrations and emission characteristics were analyzed. The results demonstrated that Barbecue gave the highest VOCs concentrations (3494 ± 1042 μg/m3), followed by Hunan cuisine (494.3 ± 288.8 μg/m3), Home cooking (487.2 ± 139.5 μg/m3), and Shandong cuisine (257.5 ± 98.0 μg/m3). The volume of air drawn through the collection hood over the stove would have a large impact on VOCs concentration in the exhaust. Therefore, VOCs emission rates (ER) and emission factors (EF) were also estimated. Home cooking had the highest ER levels (12.2 kg/a) and Barbecue had the highest EF levels (0.041 g/kg). The abundance of alkanes was higher in Home cooking, Shandong cuisine and Hunan cuisine with the value of 59.4%-63.8%, while Barbecue was mainly composed of alkanes (34.7%) and alkenes (39.9%). The sensitivity species of Home cooking and Hunan cuisine were alkanes, and that of Shandong cuisine and Barbecue were alkenes. The degree of stench pollution from cooking fume was lighter.

  2. [Ion mobility spectrometry for the isomeric volatile organic compounds].

    Science.gov (United States)

    Han, Hai-yan; Jia, Xian-de; Huang, Guo-dong; Wang, Hong-mei; Li, Jian-quan; Jin, Shun-ping; Jiang, Hai-he; Chu, Yan-nan; Zhou, Shi-kang

    2007-10-01

    Ion mobility spectrometry (IMS) is based on determining the drift velocities, which the ionized sample molecules attain in the weak electric field of a drift tube at atmospheric pressure. The drift behavior can be affected by structural differences of the analytes, so that ion mobility spectrometry has the ability to separated isomeric compounds. In the present article, an introduction to IMS is given, followed by a description of the instrument used for the experiments to differentiate isomeric compounds. Positive ion mobility spectras of three kinds of isomeric volatile organic compounds were studied in a homemade high-resolution IMS apparatus with a discharge ionization source. The study includes the differences in the structure of carbon chain, the style of function group, and the position of function group. The reduced mobility values were determined, which are in very good agreement with the previously reported theoretical values using neural network theory. The influence of the structural features of the substances and including the size and shape of the molecule has been investigated. The reduced mobility values increases in the order: alcohols ion mobility spectra of the constitutional isomers studied reflect the influence of structural features. In order to calibrate or determine the detection limits and the sensitivity of the ion mobility spectrometry, the exponential dilution flask (EDF) was used. Using this method, the detection limit of the analytes can reach the order of magnitude of ng x L(-1).

  3. Volatile organic silicon compounds: the most undesirable contaminants in biogases.

    Science.gov (United States)

    Ohannessian, Aurélie; Desjardin, Valérie; Chatain, Vincent; Germain, Patrick

    2008-01-01

    Recently a lot of attention has been focused on volatile organic silicon compounds (VOSiC) present in biogases. They induce costly problems due to silicate formation during biogas combustion in valorisation engine. The cost of converting landfill gas and digester gas into electricity is adversely affected by this undesirable presence. VOSiC in biogases spark off formation of silicate deposits in combustion chambers. They engender abrasion of the inner surfaces leading to serious damage, which causes frequent service interruptions, thus reducing the economic benefit of biogases. It is already known that these VOSiC originate from polydimethylsiloxanes (PDMS) hydrolysis. PDMS (silicones) are used in a wide range of consumer and industrial applications. PDMS are released into the environment through landfills and wastewater treatment plants. There is a lack of knowledge concerning PDMS biodegradation during waste storage. Consequently, understanding PDMS behaviour in landfill cells and in sludge digester is particularly important. In this article, we focused on microbial degradation of PDMS through laboratory experiments. Preliminary test concerning anaerobic biodegradation of various PDMS have been investigated. Results demonstrate that the biotic step has an obvious influence on PDMS biodegradation. IWA Publishing 2008.

  4. Volatile organic emissions from the distillation and pyrolysis of vegetation

    Directory of Open Access Journals (Sweden)

    J. P. Greenberg

    2006-01-01

    Full Text Available Leaf and woody plant tissue (Pinus ponderosa, Eucalyptus saligna, Quercus gambelli, Saccharum officinarum and Oriza sativa were heated from 30 to 300°C and volatile organic compound (VOC emissions were identified and quantified. Major VOC emissions were mostly oxygenated and included acetic acid, furylaldehyde, acetol, pyrazine, terpenes, 2,3-butadione, phenol and methanol, as well as smaller emissions of furan, acetone, acetaldehyde, acetonitrile and benzaldehyde. Total VOC emissions from distillation and pyrolysis were on the order of 10 gC/kgC dry weight of vegetation, as much as 33% and 44% of CO2 emissions (gC(VOC/gC(CO2 measured during the same experiments, in air and nitrogen atmospheres, respectively. The emissions are similar in identity and quantity to those from smoldering combustion of woody tissue and of different character than those evolved during flaming combustion. VOC emissions from the distillation of pools and endothermic pyrolysis under low turbulence conditions may produce flammable concentrations near leaves and may facilitate the propagation of wildfires. VOC emissions from charcoal production are also related to distillation and pyrolysis; the emissions of the highly reactive VOCs from production are as large as the carbon monoxide emissions.

  5. [Determination of volatile organic compounds in atmospheric environment].

    Science.gov (United States)

    Chen, H W; Li, G K; Li, H; Zhang, Z X; Wang, B G; Li, T; Luo, H K

    2001-11-01

    It is well known that volatile organic compounds (VOCs) are the main photochemical pollutants and ozone precursors of the photochemical smog. Investigation of photochemical pollution in the ambient air must focus on VOCs, but the concentration of VOCs in ambient air is in a very low level (10(-9)-10(-12), volume fraction), so there are difficulties in the determination of VOCs. In this work, based on the TO14A and TO15 methods recommended by the Environmental Protection Agency of United States, an improved method for the determination of fifty-six VOCs, mainly O3 precursors, in atmospheric environment was developed. Operating conditions of VOCs preconcentrator, gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were optimized. Air sample was first frozen by liquid nitrogen, and then H2O and CO2 were eliminated in the VOCs preconcentrator. The preconcentrated VOCs sample was injected to GC and detected by MS or hydrogen flame ionization detector (FID). The C2-C10 hydrocarbons were separated effectively in capillary columns under the high concentration of CO2. The detection limits were 0.1 microgram.m-3 and the relative standard deviations were in the range from 2.57% to 9.82%. This method has been used for the determination of VOCs in real samples. The results were satisfactory.

  6. Diurnal characteristics of volatile organic compounds in the Seoul atmosphere

    Science.gov (United States)

    Na, Kwangsam; Kim, Yong Pyo; Moon, Kil Choo

    Concentrations of volatile organic compounds (VOCs) were measured at a site in central Seoul from 8 to 13 September 1998. On each sampling day, three 2-h-integrated canister samples were collected in the morning, afternoon and evening, respectively, to observe diural variations of VOCs. Most of the VOCs species showed diurnal variations with higher concentrations during the morning and evening, and lower concentrations during the afternoon. However, in the afternoon, the concentrations of aromatic compounds, closely correlated with solvent usage such as toluene, ethylbenzene, m-/p-xylene, and o-xylene, were slightly higher than or comparable to those in the morning. This may be due to the increase of evaporative emissions derived from the rise in ambient temperature and additional sources such as the use of solvents in painting, printing and dry cleaning. To estimate the participation of individual VOCs in ozone formation, propylene equivalent concentrations were calculated. The results showed that toluene was the most dominant contributor to ozone formation as well as ambient VOC concentrations. Toluene/benzene and m-/ p-xylene/benzene ratios showed a high observed in the afternoon and a low observed in the morning and evening. This may be because the contribution of evaporative emissions by solvent usage on the ambient VOC concentrations is more dominant than those of vehicle-related emissions and photochemical loss.

  7. Emission characteristics of volatile organic compounds from semiconductor manufacturing.

    Science.gov (United States)

    Chein, HungMin; Chen, Tzu Ming

    2003-08-01

    A huge amount of volatile organic compounds (VOCs) is produced and emitted with waste gases from semiconductor manufacturing processes, such as cleaning, etching, and developing. VOC emissions from semiconductor factories located at Science-Based Industrial Park, Hsin-chu, Taiwan, were measured and characterized in this study. A total of nine typical semiconductor fabricators (fabs) were monitored over a 12-month period (October 2000-September 2001). A flame ionization analyzer was employed to measure the VOC emission rate continuously in a real-time fashion. The amount of chemical use was adopted from the data that were reported to the Environmental Protection Bureau in Hsin-chu County as per the regulation of the Taiwan Environmental Protection Administration. The VOC emission factor, defined as the emission rate (kg/month) divided by the amount of chemical use (L/month), was determined to be 0.038 +/- 0.016 kg/L. A linear regression equation is proposed to fit the data with the correlation coefficient (R2)=0.863. The emission profiles of VOCs, which were drawn using the gas chromatograph/mass spectrometer analysis method, show that isopropyl alcohol is the dominant compound in most of the fabs.

  8. Constituents of volatile organic compounds of evaporating essential oil

    Science.gov (United States)

    Chiu, Hua-Hsien; Chiang, Hsiu-Mei; Lo, Cho-Ching; Chen, Ching-Yen; Chiang, Hung-Lung

    2009-12-01

    Essential oils containing aromatic compounds can affect air quality when used indoors. Five typical and popular essential oils—rose, lemon, rosemary, tea tree and lavender—were investigated in terms of composition, thermal characteristics, volatile organic compound (VOC) constituents, and emission factors. The activation energy was 6.3-8.6 kcal mol -1, the reaction order was in the range of 0.6-0.8, and the frequency factor was 0.01-0.24 min -1. Toluene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, n-undecane, p-diethylbenzene and m-diethylbenzene were the predominant VOCs of evaporating gas of essential oils at 40 °C. In addition, n-undecane, p-diethylbenzene, 1,2,4-trimethylbenzene, m-diethylbenzene, and 1,2,3-trimethylbenzene revealed high emission factors during the thermogravimetric (TG) analysis procedures. The sequence of the emission factors of 52 VOCs (137-173 mg g -1) was rose ≈ rosemary > tea tree ≈ lemon ≈ lavender. The VOC group fraction of the emission factor of aromatics was 62-78%, paraffins were 21-37% and olefins were less than 1.5% during the TG process. Some unhealthy VOCs such as benzene and toluene were measured at low temperature; they reveal the potential effect on indoor air quality and human health.

  9. A biogenic volatile organic compounds emission inventory for Yunnan Province

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-hui; BAI Yu-hua; ZHANG Shu-yu

    2005-01-01

    The first detailed inventory for volatile organic compounds(VOC) emissions from vegetation over Yunnan Province, China was presented. The spatially and temporally resolved inventory was developed based on a geographic information system (GIS), remote sensing(RS) data and field measurement data, such as digitized land-use data, normalized difference vegetation index (NDVl) and temperature data from direct real-time measurement. The inventory has a spatial resolution of 5 km × 5 km and a time resolution of 1 h.Urban, agriculture, and natural land-use distributions in Yunnan Province were combined with biomass factors for each land-use category to produce a spatially resolved biomass inventory. A biogenic emission inventory was developed by combining the biomass inventory with hourly emission rates for tree, shrub and ground cover species of the study area. Correcting for environmental factors, including light intensity and temperature, a value of 1.1 × 1012 gC for total annual biogenic VOC emissions from Yunnan Province, including 6.1 × 1011 gCfor isoprene, 2.1 × 1011 gC for monoterpenes, and 2.6 × 1011 gC for OVOC was obtained. The highest VOC emissions occurred in the northwestern, southwestern and north region of Yunnan Province. Some uncertainties were also discussed in this study.

  10. Analysis of volatile organic compounds released during food decaying processes.

    Science.gov (United States)

    Phan, Nhu-Thuc; Kim, Ki-Hyun; Jeon, Eui-Chan; Kim, Uk-Hun; Sohn, Jong Ryeul; Pandey, Sudhir Kumar

    2012-03-01

    A number of volatile organic compounds (VOCs) including acetone, methyl ethyl ketone, toluene, ethylbenzene, m,p-xylene, styrene, and o- xylene released during food decaying processes were measured from three types of decaying food samples (Kimchi (KC), fresh fish (FF), and salted fish (SF)). To begin with, all the food samples were contained in a 100-mL throwaway syringe. These samples were then analyzed sequentially for up to a 14-day period. The patterns of VOC release contrasted sharply between two types of fish (FF and SF) and KC samples. A comparison of data in terms of total VOC showed that the mean values for the two fish types were in the similar magnitude with 280 ± 579 (FF) and 504 ± 1,089 ppmC (SF), while that for KC was much lower with 16.4 ± 7.6 ppmC. There were strong variations in VOC emission patterns during the food decaying processes between fishes and KC that are characterized most sensitively by such component as styrene. The overall results of this study indicate that concentration levels of the VOCs differed significantly between the food types and with the extent of decaying levels through time.

  11. Volatile organic compounds in fourteen U.S. retail stores.

    Science.gov (United States)

    Nirlo, E L; Crain, N; Corsi, R L; Siegel, J A

    2014-10-01

    Retail buildings have a potential for both short-term (customer) and long-term (occupational) exposure to indoor pollutants. However, little is known about volatile organic compound (VOC) concentrations in the retail sector and influencing factors, such as ventilation, in-store activities, and store type. We measured VOC concentrations and ventilation rates in 14 retail stores in Texas and Pennsylvania. With the exception of formaldehyde and acetaldehyde, VOCs were present in retail stores at concentrations well below health guidelines. Indoor formaldehyde concentrations ranged from 4.6 ppb to 67 ppb. The two mid-sized grocery stores in the sample had the highest levels of ethanol and acetaldehyde, with concentrations up to 2.6 ppm and 92 ppb, respectively, possibly due to the preparation of dough and baking activities. Indoor-to-outdoor concentration ratios indicated that indoor sources were the main contributors to indoor VOC concentrations for the majority of compounds. There was no strong correlation between ventilation and VOC concentrations across all stores. However, increasing the air exchange rates at two stores led to lower indoor VOC concentrations, suggesting that ventilation can be used to reduce concentrations for some specific stores.

  12. Volatile organic compounds emissions from gasoline and diesel powered vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mugica, V [Universidad Autonoma Metropolitana, Mexico, D.F. (Mexico); Vega, E; Sanchez, G; Reyes, E; Arriaga, J. L [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Chow, J; Watson, J; Egami, R [Desert Research Institute, Reno, NV (United States)

    2001-01-01

    In this research, volatile organic compound emissions were characterized from gasoline and diesel vehicles. Sampling campaigns in the Metropolitan Area of Mexico City were designed and carried out in tunnels, crossroads, and truck and bus terminals. The samples were analyzed with gas chromatography getting more than 250 different compounds, being more or less 60 of them the 80% of all the emissions. The most abundant are the two carbon compounds, as a result of the combustion, and compounds related to fuels compositions, like isopentane, xylenes, toluene among others. The profiles obtained in tunnels and crossroads were very similar with the exception of the 3 and 4 carbon compounds, which were found in bigger proportion in the profiles at crossroads. This may probably be due to the blend with the ambient air. The profiles corresponding to trucks and buses have a smaller content of two carbon compounds and a bigger content of xylenes, toluene and ethylbenzene. The variations in the proportions of the compounds allow differentiating the profiles of vehicles using gasoline and diesel. [Spanish] En este trabajo se caracterizaron las emisiones de compuestos organicos volatiles provenientes de vehiculos a gasolina y a diesel. Para ello, se disenaron diversas campanas de muestreo en la zona Metropolitana de la Ciudad de Mexico, en tuneles, cruceros y estaciones de camiones de carga y autobuses. Las muestras se analizaron con cromatografia, de gases obteniendose mas de 250 compuestos distintos, de los cuales aproximadamente 60 corresponden a mas del 80% de las emisiones. Los compuestos mas abundantes son los de dos carbonos, resultado de la combustion, y 4 carbonos que se encontraron en mayor proporcion en los perfiles de cruceros, lo cual se debe probablemente a la mezcla con el aire ambiente. Los perfiles correspondientes a camiones de carga y autobuses tienen un menor contenido de compuestos de dos carbonos y un mayor contenido de xilenos, tolueno y etilbenceno. Estas

  13. Assessing Emissions of Volatile Organic Componds from Landfills Gas

    Directory of Open Access Journals (Sweden)

    Fahime Khademi

    2016-01-01

    Full Text Available Background: Biogas is obtained by anaerobic decomposition of organic wastes buried materials used to produce electricity, heat and biofuels. Biogas is at the second place for power generation after hydropower and in 2000 about 6% of the world power generation was allocated to biogas. Biogas is composed of 40–45 vol% CO2, 55–65 vol% CH4, and about 1% non-methaneVOCs, and non-methane volatile organic compounds. Emission rates are used to evaluate the compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA. BTEX comounds affect the air quality and may be harmful to human health. Benzene, toluene, ethylbenzene and xylene isomers that are generally called BTEX compounds are the most abundant VOCs in biogas. Methods: Sampling of VOCs in biogas vents was operated passively or with Tedlar bags. 20 samples were collected from 40 wells of old and new biogas sites of Shiraz’ landfill. Immediately after sampling, the samples were transferred to the laboratory. Analysis of the samples was performed with GC-MS. Results: The results showed that in the collection of the old and new biogas sites, the highest concentration of VOCs was observed in toluene (0.85ppm followed by benzene (0.81ppm, ethylbenzene (0.13ppm and xylene (0.08ppm. Conclusion: The results of the study showed that in all samples, most available compounds in biogas vents were aromatic hydrocarbon compounds.These compounds’ constituents originate from household hazardous waste materials deposited in the landfill or from biological/chemical decomposition processes within the landfill.

  14. Thermal Desorption-Gas Chromatography or Gas Chromatograph-Mass Spectrometry for Analysis of Semi-Volatile Compounds on Atmospheric Particulate Matters%热解析-气相色谱或气相色谱-质谱法分析大气可吸入颗粒物中的半挥发性有机化合物

    Institute of Scientific and Technical Information of China (English)

    孟虎; 赵景红; 段春凤; 郝亮; 关亚风

    2014-01-01

    A thermal desorption ( TD) device was developed and coupled to gas chromatography ( GC) or gas chromatography-mass spectrometry ( GC-MS ) for the qualitative and quantitative analysis of semi-volatile organic compounds on atmospheric particulate matters ( PM ) . The TD was operated by direct heating and placed on the GC injector, leading to high heating rate and easy transfer of analytes to GC without focusing of analytes by cold trap. For establishing the TD-GC method, the materials used for supporting PM samples, temperature and time of thermal desorption, and types of sample injection were investigated for detection of sixteen polycyclic aromatic hydrocarbons ( PAHs) and nine n-alkanes. The limits of detection of the proposed TD-GC method were in the range of 0. 014-0. 093 ng for PAHs, and 0. 016-0. 026 ng for n-alkanes, respectively, with the correlation coefficients of correlation above 0. 9975. The TD-GC method was applied to the determination of trace PAHs and n-alkanes on PM10 samples from three cities. The recoveries were in the range of 95%-135% ( PAHs) and 95%-115% ( n-alkanes) , respectively. Finally, the TD was coupled to GC-MS for comparison of the contents of PAHs and n-alkanes on PMx with different particulate size ( x=10 , 5, 2, 1, 0. 5, 0. 25, 0. 1).%研制了一种热解析装置,并与气相色谱或气相色谱-质谱联用,定性定量分析了大气可吸入颗粒物中的半挥发性有机物。装置为直热式加热,升温速率快;直接安装在色谱进样器上方,无需冷阱聚焦。将热解析装置与气相色谱联用,优化了样品承载体材质、热解析条件和进样模式,并用于16种多环芳烃和9种正构烷烃的检测。结果表明,热解析-气相色谱方法对多环芳烃和正构烷烃的检出限分别为0.014~0.093 ng和0.016~0.026 ng,线性相关系数大于0.9975;用于3个城市PM10中的痕量多环芳烃和正构烷烃的定量测定,回收率分别在95%~135%(多环芳烃)和95%~115%(正构烷

  15. Microcantilever sensors coated with a sensitive polyaniline layer for detecting volatile organic compounds.

    Science.gov (United States)

    Steffens, C; Leite, F L; Manzoli, A; Sandovall, R D; Fatibello, O; Herrmann, P S P

    2014-09-01

    This paper describes a silicon cantilever sensor coated with a conducting polymer layer. The mechanical response (deflection) of the bimaterial (the coated microcantilever) was investigated under the influence of several volatile compounds-methanol, ethanol, acetone, propanol, dichloroethane, toluene and benzene. The variations in the deflection of the coated and uncoated microcantilevers when exposed to volatile organic compounds were evaluated, and the results indicated that the highest sensitivity was obtained with the coated microcantilever and methanol. The uncoated microcantilever was not sensitive to the volatile organic compounds. An increase in the concentration of the volatile organic compound resulted in higher deflections of the microcantilever sensor. The sensor responses were reversible, sensible, rapid and proportional to the volatile concentration.

  16. Bioactivity of volatile organic compounds produced by Pseudomonas tolaasii

    Directory of Open Access Journals (Sweden)

    Pietro eLo Cantore

    2015-10-01

    Full Text Available Pseudomonas tolaasii is the main bacterial pathogen of several mushroom species. In this paper we report that strains of P. tolaasii produce volatile substances inducing in vitro mycelia growth inhibition of Pleurotus ostreatus and P. eryngii, and Agaricus bisporus and P. ostreatus basidiome tissue blocks brown discoloration. P. tolaasii strains produced the volatile ammonia but not hydrogen cyanide. Among the volatiles detected by GC-MS, methanethiol, dimethyl disulfide, and 1-undecene were identified. The latter, when assayed individually as pure compounds, led to similar effects noticed when P. tolaasii volatiles natural blend was used on mushrooms mycelia and basidiome tissue blocks. Furthermore, the natural volatile mixture, resulted toxic toward lettuce and broccoli seedling growth. In contrast, pure volatiles showed different activity according to their nature and/or doses applied. Indeed, methanethiol resulted toxic at all the doses used, while dimethyl disulfide toxicity was assessed till a quantity of 1.25 µg, below which it caused, together with 1-undecene ( 10 µg, broccoli growth increase.

  17. Transport of volatile organic compounds across the capillary fringe

    Science.gov (United States)

    McCarthy, Kathleen A.; Johnson, Richard L.

    1993-01-01

    Physical experiments were conducted to investigate the transport of a dissolved volatile organic compound (trichloroethylene, TCE) from shallow groundwater to the unsaturated zone under a variety of conditions including changes in the soil moisture profile and water table position. Experimental data indicated that at moderate groundwater velocities (0.1 m/d), vertical mechanical dispersion was negligible and molecular diffusion was the dominant vertical transport mechanism. Under these conditions, TCE concentrations decreased nearly 3 orders of magnitude across the capillary fringe and soil gas concentrations remained low relative to those of underlying groundwater. Data collected during a water table drop showed a short-term increase in concentrations throughout most of the unsaturated zone, but these concentrations quickly declined and approached initial values after the water table was returned to its original level. In the deep part of the unsaturated zone, the water table drop resulted in a long-term decrease in concentrations, illustrating the effects of hysteresis in the soil moisture profile. A two-dimensional random walk advection-diffusion model was developed to simulate the experimental conditions, and numerical simulations agreed well with experimental data. A simpler, one-dimensional finite-difference diffusion-dispersion model was also developed. One-dimensional simulations based on molecular diffusion also agreed well with experimental data. Simulations which incorporated mechanical dispersion tended to overestimate flux across the capillary fringe. Good agreement between the one- and two-dimensional models suggested that a simple, one-dimensional approximation of vertical transport across the capillary fringe can be useful when conditions are appropriate.

  18. Urinary Volatile Organic Compounds for the Detection of Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Tanzeela Khalid

    Full Text Available The aim of this work was to investigate volatile organic compounds (VOCs emanating from urine samples to determine whether they can be used to classify samples into those from prostate cancer and non-cancer groups. Participants were men referred for a trans-rectal ultrasound-guided prostate biopsy because of an elevated prostate specific antigen (PSA level or abnormal findings on digital rectal examination. Urine samples were collected from patients with prostate cancer (n = 59 and cancer-free controls (n = 43, on the day of their biopsy, prior to their procedure. VOCs from the headspace of basified urine samples were extracted using solid-phase micro-extraction and analysed by gas chromatography/mass spectrometry. Classifiers were developed using Random Forest (RF and Linear Discriminant Analysis (LDA classification techniques. PSA alone had an accuracy of 62-64% in these samples. A model based on 4 VOCs, 2,6-dimethyl-7-octen-2-ol, pentanal, 3-octanone, and 2-octanone, was marginally more accurate 63-65%. When combined, PSA level and these four VOCs had mean accuracies of 74% and 65%, using RF and LDA, respectively. With repeated double cross-validation, the mean accuracies fell to 71% and 65%, using RF and LDA, respectively. Results from VOC profiling of urine headspace are encouraging and suggest that there are other metabolomic avenues worth exploring which could help improve the stratification of men at risk of prostate cancer. This study also adds to our knowledge on the profile of compounds found in basified urine, from controls and cancer patients, which is useful information for future studies comparing the urine from patients with other disease states.

  19. Diagnosing Tibetan pollutant sources via volatile organic compound observations

    Science.gov (United States)

    Li, Hongyan; He, Qiusheng; Song, Qi; Chen, Laiguo; Song, Yongjia; Wang, Yuhang; Lin, Kui; Xu, Zhencheng; Shao, Min

    2017-10-01

    Atmospheric transport of black carbon (BC) from surrounding areas has been shown to impact the Tibetan environment, and clarifying the geographical source and receptor regions is crucial for providing guidance for mitigation actions. In this study, 10 trace volatile organic compounds (VOCs) sampled across Tibet are chosen as proxies to diagnose source regions and related transport of pollutants to Tibet. The levels of these VOCs in Tibet are higher than those in the Arctic and Antarctic regions but much lower than those observed at many remote and background sites in Asia. The highest VOC level is observed in the eastern region, followed by the southern region and the northern region. A positive matrix factorization (PMF) model found that three factors-industry, biomass burning, and traffic-present different spatial distributions, which indicates that different zones of Tibet are influenced by different VOC sources. The average age of the air masses in the northern and eastern regions is estimated to be 3.5 and 2.8 days using the ratio of toluene to benzene, respectively, which indicates the foreign transport of VOC species to those regions. Back-trajectory analyses show that the Afghanistan-Pakistan-Tajikistan region, Indo-Gangetic Plain (IGP), and Meghalaya-Myanmar region could transport industrial VOCs to different zones of Tibet from west to east. The agricultural bases in northern India could transport biomass burning-related VOCs to the middle-northern and eastern zones of Tibet. High traffic along the unique national roads in Tibet is associated with emissions from local sources and neighboring areas. Our study proposes international joint-control efforts and targeted actions to mitigate the climatic changes and effects associated with VOCs in Tibet, which is a climate sensitive region and an important source of global water.

  20. Assessment of volatile organic compound emissions from ecosystems of China

    Science.gov (United States)

    Klinger, L. F.; Li, Q.-J.; Guenther, A. B.; Greenberg, J. P.; Baker, B.; Bai, J.-H.

    2002-11-01

    Isoprene, monoterpene, and other volatile organic compound (VOC) emissions from grasslands, shrublands, forests, and peatlands in China were characterized to estimate their regional magnitudes and to compare these emissions with those from landscapes of North America, Europe, and Africa. Ecological and VOC emission sampling was conducted at 52 sites centered in and around major research stations located in seven different regions of China: Inner Mongolia (temperate), Changbai Mountain (boreal-temperate), Beijing Mountain (temperate), Dinghu Mountain (subtropical), Ailao Mountain (subtropical), Kunming (subtropical), and Xishuangbanna (tropical). Transects were used to sample plant species and growth form composition, leafy (green) biomass, and leaf area in forests representing nearly all the major forest types of China. Leafy biomass was determined using generic algorithms based on tree diameter, canopy structure, and absolute cover. Measurements of VOC emissions were made on 386 of the 541 recorded species using a portable photo-ionization detector method. For 105 species, VOC emissions were also measured using a flow-through leaf cuvette sampling/gas chromatography analysis method. Results indicate that isoprene and monoterpene emissions, as well as leafy biomass, vary systematically along gradients of ecological succession in the same manner found in previous studies in the United States, Canada, and Africa. Applying these results to a regional VOC emissions model, we arrive at a value of 21 Tg C for total annual biogenic VOC emissions from China, compared to 5 Tg C of VOCs released annually from anthropogenic sources there. The isoprene and monoterpene emissions are nearly the same as those reported for Europe, which is comparable in size to China.

  1. Stable carbon isotope ratios of ambient aromatic volatile organic compounds

    Science.gov (United States)

    Kornilova, Anna; Huang, Lin; Saccon, Marina; Rudolph, Jochen

    2016-09-01

    Measurements of mixing ratios and stable carbon isotope ratios of aromatic volatile organic compounds (VOC) in the atmosphere were made in Toronto (Canada) in 2009 and 2010. Consistent with the kinetic isotope effect for reactions of aromatic VOC with the OH radical the observed stable carbon isotope ratios are on average significantly heavier than the isotope ratios of their emissions. The change of carbon isotope ratio between emission and observation is used to determine the extent of photochemical processing (photochemical age, ∫ [OH]dt) of the different VOC. It is found that ∫ [OH]dt of different VOC depends strongly on the VOC reactivity. This demonstrates that for this set of observations the assumption of a uniform ∫ [OH]dt for VOC with different reactivity is not justified and that the observed values for ∫ [OH]dt are the result of mixing of VOC from air masses with different values for ∫ [OH]dt. Based on comparison between carbon isotope ratios and VOC concentration ratios it is also found that the varying influence of sources with different VOC emission ratios has a larger impact on VOC concentration ratios than photochemical processing. It is concluded that for this data set the use of VOC concentration ratios to determine ∫ [OH]dt would result in values for ∫ [OH]dt inconsistent with carbon isotope ratios and that the concept of a uniform ∫ [OH]dt for an air mass has to be replaced by the concept of individual values of an average ∫ [OH]dt for VOC with different reactivity.

  2. Determination of the solubility of low volatility liquid organic compounds in water using volatile-tracer assisted headspace gas chromatography.

    Science.gov (United States)

    Zhang, Shu-Xin; Chai, Xin-Sheng; Barnes, Donald G

    2016-02-26

    This study reports a new headspace gas chromatographic method (HS-GC) for the determination of water solubility of low volatility liquid organic compounds (LVLOs). The HS-GC analysis was performed on a set of aqueous solutions containing a range of concentrations of toluene-spiked (as a tracer) LVLOs, from under-saturation to over-saturation. A plot of the toluene tracer GC signal vs. the concentration of the LVLO results in two lines of different slopes that intersect at the concentration corresponding to the compound's solubility in water. The results showed that the HS-GC method has good precision (RSD solubility of LVLOs at elevated temperatures. This approach should be of special interest to those concerned about the impact of the presence of low-volatility organic liquids in waters of environmental and biological systems.

  3. Magmatic MORB Volatiles, Seafloor Hydrothermal Systems and Abiotic Organic Synthesis

    Science.gov (United States)

    Holloway, J. R.

    2007-12-01

    A plausible model for the origin of the observed C-O-H volatiles observed in MORB glasses is that they were incorporated in primary melts of the upwelling mantle. Based on the observed ferric/ferrous ratios in MORB glass, it is probable that the MORB source mantle contained diamond or graphite, depending on pressure. If true, then during partial mantle melting the graphite/diamond would react with FeO1.5 in garnet/spinel and clinopyroxene to form CO2 which would dissolve in the melt as carbonate ion. Using equation of state models for CO2 activity and ferric/ferrous ratios in the magma it is possible to model the amount of carbonate dissolved in the basaltic magma as a function of the degree of melting (Holloway and O'Day, 2000). The results require that rising MORB magma will become saturated in CO2 at depths much greater than those proposed for MORB magma chambers. Conversely H2O values observed in MORB glasses are far below saturation. However as CO2 reaches saturation and exsolves from the melt the low fO2 imposed by the low ferric/ferrous ratio results in a high H2/H2O ratio in the exsolving supercritical fluid. We have shown that fluids with this composition produce methanol (CH3OH) in the presence of magnetite at seafloor hydrothermal P-T conditions in a flow-through system (Voglesonger, et al., 2001) and that aqueous methanol solutions react in montmorillonite clay interlayers to form a wide variety of complex hydrocarbon molecules, the most abundant being hexamethyl benzene (Williams, et al., 2005). Methyl stearate (C17H35COOCH3) was also observed in moderate amounts. Holloway, J. R. and P. A. O'Day (2000). "Production of CO2 and H2 by Diking-Eruptive Events at Mid-Ocean Ridges: Implications for Abiotic Organic Synthesis and Global Geochemical Cycling." International Geology Review 42: 673-683. Voglesonger, K. M., J. R. Holloway, E. E. Dunn, P. J. Dalla-Betta and P. A. O'Day (2001). "Experimental Abiotic Synthesis of Methanol in Seafloor Hydrothermal

  4. Exchange of volatile organic compounds in the boreal forest floor

    Science.gov (United States)

    Aaltonen, Hermanni; Bäck, Jaana; Pumpanen, Jukka; Pihlatie, Mari; Hakola, Hannele; Hellén, Heidi; Aalto, Juho; Heinonsalo, Jussi; Kajos, Maija K.; Kolari, Pasi; Taipale, Risto; Vesala, Timo

    2013-04-01

    Terrestrial ecosystems, mainly plants, emit large amounts of volatile organic compounds (VOCs) into the atmosphere. In addition to plants, VOCs also have less-known sources, such as soil. VOCs are a very diverse group of reactive compounds, including terpenoids, alcohols, aldehydes and ketones. Due to their high reactivity, VOCs take part in formation and growth of secondary organic aerosols in the atmosphere and thus affect also Earth's radiation balance (Kulmala et al. 2004). We have studied boreal soil and forest floor VOC fluxes with chamber and snow gradient techniques we were developed. Spatial and temporal variability in VOC fluxes was studied with year-round measurements in the field and the sources of boreal soil VOCs in the laboratory with fungal isolates. Determination of the compounds was performed mass spectrometrically. Our results reveal that VOCs from soil are mainly emitted by living roots, above- and belowground litter and microbes. The strongest source appears to be litter, in which both plant residuals and decomposers play a role in the emissions. Soil fungi showed high emissions of lighter VOCs, like acetone, acetaldehyde and methanol, from isolates. Temperature and moisture are the most critical physical factors driving VOC fluxes. Since the environment in boreal forests undergoes strong seasonal changes, the VOC flux strength of the forest floor varies markedly during the year, being highest in spring and autumn. The high spatial heterogeneity of the forest floor was also clearly visible in VOC fluxes. The fluxes of other trace gases (CO2, CH4 and N2O) from soil, which are also related to the soil biological activity and physical conditions, did not show correlations with the VOC fluxes. These results indicate that emissions of VOCs from the boreal forest floor account for as much as several tens of percent, depending on the season, of the total forest ecosystem VOC emissions. This emphasises that forest floor compartment should be taken into

  5. Volatile organic compound (VOC) determination in working atmospheres; Determinacion de compuestos organicos volatiles (VOC) en ambiente laboral

    Energy Technology Data Exchange (ETDEWEB)

    Blass A, Georgina; Panama T, Luz A; Corrales C, Deyanira [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The present work describes, in a synthesized way, the implementation and application of procedures based on the normativity related to the subject of the volatile organic compounds (Volatile Organic Compounds VOC), that allow to sample, quantify and evaluate the present contamination in the working atmosphere of a refinery due to the fugitive emissions of VOC and other substances. In accordance with the corresponding normativity, more than 189 organic compounds denominated dangerous air polluting agents (Hazardous Air Pollutants, HAP) can be found in a working atmosphere, but they are the 11 main HAP that can be found in a refinery. In the present article the work made for the sampling and quantification of 5 of the 11 dangerous polluting agents of the air: benzene, toluene, xylene, iso-octane and naphthalene. [Spanish] El presente trabajo describe, de manera sintetizada, la implementacion y aplicacion de procedimientos basados en la normatividad relacionada al tema de los compuestos organicos volatiles (Volatil Organic Compounds, VOC), que permiten muestrear, cuantificar y evaluar la contaminacion presente en el ambiente laboral de una refineria debido a las emisiones fugitivas de VOC y otras sustancias. De acuerdo con la normatividad correspondiente, mas de 189 compuestos organicos denominados contaminantes peligrosos del aire (Hazardous Air Pollutants, HAP), pueden ser encontrados en un ambiente laboral, pero son 11 los principales HAP que pueden ser hallados en una refineria. En el presente articulo se informa el trabajo realizado para el muestreo y cuantificacion de 5 de los 11 contaminantes peligrosos del aire: benceno, tolueno, xileno, iso-octano y naftaleno.

  6. Screening of natural organic volatiles from Prunus mahaleb L. honey: coumarin and vomifoliol as nonspecific biomarkers

    National Research Council Canada - National Science Library

    Jerković, Igor; Marijanović, Zvonimir; Staver, Mladenka Malenica

    2011-01-01

    ...) were used for the analysis of Prunus mahaleb L. honey samples. Screening was focused toward chemical composition of natural organic volatiles to determine if it is useful as a method of determining honey-sourcing...

  7. Analysis of breath volatile organic compounds as a screening tool for detection of Tuberculosis in cattle

    Science.gov (United States)

    • Keywords: bovine tuberculosis; Mycobacterium bovis; breath analysis; volatile organic compound; gas chromatography; mass spectrometry; NaNose • Introduction: This presentation describes two studies exploring the use of breath VOCs to identify Mycobacterium bovis infection in cattle. • Methods: ...

  8. 78 FR 55234 - Approval and Promulgation of Implementation Plans; Indiana; Volatile Organic Compound Emission...

    Science.gov (United States)

    2013-09-10

    ... Compound Emission Control Measures for Industrial Solvent Cleaning for Northwest Indiana AGENCY... of Environmental Management (IDEM) submitted revisions to its volatile organic compound (VOC... less than or equal to 8 millimeters of mercury; (2) several work practices must be...

  9. Predicting partitioning of volatile organic compounds from air into plant cuticular matrix by quantum chemical descriptors

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on theoretical linear solvation energy relationship and quantum chemical descriptors computed by AM1 Hamiltonian, a new model is developed to predict the partitioning of some volatile organic compounds between the plant cuticular matrix and air.

  10. Factors that influence the volatile organic compound content in human breath

    NARCIS (Netherlands)

    Blanchet, L.; Smolinska, Agnieszka; Baranska, Agnieszka; Tigchelaar-Feenstra, E.; Swertz, M.; Zhernakova, A.; Dallinga, J. W.; Wijmenga, C.; van Schooten, Frederik J.

    Background. Thousands of endogenous and exogenous volatile organic compounds (VOCs) are excreted in each breath. Inflammatory and deviant metabolic processes affect the level of endogeneous VOCs, which can serve as specific biomarkers for clinical diagnosis and disease monitoring. Important issues

  11. PERTURBATION OF VOLTAGE-SENSITIVE Ca2+ CHANNEL FUNCTION BY VOLATILE ORGANIC SOLVENTS.

    Science.gov (United States)

    The mechanisms underlying the acute neurophysiological and behavioral effects of volatile organic compounds (VOCs) remain to be elucidated. However, the function of neuronal ion channels is perturbed by VOCs. The present study examined effects of toluene (TOL), trichloroethylene ...

  12. APPLICATION OF MICROWAVE IRRADIATION FOR THE TREATMENT OF ADSORBED VOLATILE ORGANIC COMPOUNDS ON GRANULAR ACTIVATED CARBON

    National Research Council Canada - National Science Library

    A Dehdashti; A Khavanin; A Rezaee; H Assilian; M Motalebi

    2011-01-01

      The purpose of this laboratory scale experimental research was to investigate the application of integrated microwave irradiation and granular activated carbon adsorption for removing volatile organic compounds (VOCs...

  13. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds

    NARCIS (Netherlands)

    Park, Yong-Soon; Dutta, Swarnalee; Ann, Mina; Raaijmakers, Jos M.; Park, Kyungseok

    2015-01-01

    Abstract Volatile organic compounds (VOCs) from plant growth-promoting rhizobacteria (PGPR) play key roles in modulating plant growth and induced systemic resistance (ISR) to pathogens. Despite their significance, the physiological functions of the specific VOCs produced by Pseudomonas fluorescens

  14. PERTURBATION OF VOLTAGE-SENSITIVE Ca2+ CHANNEL FUNCTION BY VOLATILE ORGANIC SOLVENTS.

    Science.gov (United States)

    The mechanisms underlying the acute neurophysiological and behavioral effects of volatile organic compounds (VOCs) remain to be elucidated. However, the function of neuronal ion channels is perturbed by VOCs. The present study examined effects of toluene (TOL), trichloroethylene ...

  15. PERTURBATION OF VOLTAGE-SENSITIVE CALCIUM FUNCTION IN PHEOCHROMOCYTOMA CELLS BY VOLATILE ORGANIC SOLVENTS.

    Science.gov (United States)

    Volatile organic solvents such as toluene (TOL) and trichloroethylene perturb nervous system function and share characteristic effects with other central nervous system depressants such as anesthetic gasses, ethanol, benzodiazepines and barbiturates. Recently, mechanistic studies...

  16. VOLATILE ORGANIC COMPOUNDS INHIBIT HUMAN AND RAT NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS EXPRESSED IN XENOPUS OOCYTES.

    Science.gov (United States)

    This manuscript provides evidence to indicate that rats and humans are equally sensitive at the pharmacodynamic level to effects of volatile organic compounds.? This manuscript also presents novel data that provides a plausible mechanism, disruption of ion channel functi...

  17. VOLATILE ORGANIC COMPOUND EMISSION RATES FROM MIXED DECIDUOUS AND CONIFEROUS FORESTS IN NORTHERN WISCONSIN, USA

    Science.gov (United States)

    Biogenic emissions of volatile organic compounds (VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regio...

  18. Volatile Organic Compound Investigation Results, 300 Area, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Robert E.; Williams, Bruce A.; Smith, Ronald M.

    2008-07-07

    Unexpectedly high concentrations of volatile organic compounds (VOC) were discovered while drilling in the unconfined aquifer beneath the Hanford Site’s 300 Area during 2006. The discovery involved an interval of relatively finer-grained sediment within the unconfined aquifer, an interval that is not sampled by routine groundwater monitoring. Although VOC contamination in the unconfined aquifer has been identified and monitored, the concentrations of newly discovered contamination are much higher than encountered previously, with some new results significantly higher than the drinking water standards. The primary contaminant is trichloroethene, with lesser amounts of tetrachloroethene. Both chemicals were used extensively as degreasing agents during the fuels fabrication process. A biological degradation product of these chemicals, 1,2-dichloroethene, was also detected. To further define the nature and extent of this contamination, additional characterization drilling was undertaken during 2007. Four locations were drilled to supplement the information obtained at four locations drilled during the earlier investigation in 2006. The results of the combined drilling indicate that the newly discovered contamination is limited to a relatively finer-grained interval of Ringold Formation sediment within the unconfined aquifer. The extent of this contamination appears to be the area immediately east and south of the former South Process Pond. Samples collected from the finer-grained sediment at locations along the shoreline confirm the presence of the contamination near the groundwater/river interface. Contamination was not detected in river water that flows over the area where the river channel potentially incises the finer-grained interval of aquifer sediment. The source for this contamination is not readily apparent. A search of historical documents and the Hanford Waste Information Data System did not provide definitive clues as to waste disposal operations and

  19. Airborne flux measurements of biogenic volatile organic compounds over California

    Science.gov (United States)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  20. Effects of trace volatile organic compounds on methane oxidation

    Directory of Open Access Journals (Sweden)

    Wilai Chiemchaisri

    2001-06-01

    Full Text Available The effects of volatile organic compounds (VOCs on methane oxidation in landfill cover soils were examined. The batch experiments were conducted using single and mixed VOCs, such as, dichloromethane (DCM, trichloroethylene (TCE, tetrachloroethylene (PCE, and benzene. The results from all combinations showed a decrease in methane oxidation rate with increase in VOC concentrations. Moreover, inhibition effects of TCE and DCM were found higher than benzene and PCE. The reduction of methane oxidation by benzene and PCE could be attributed to the toxicity effect, whereas TCE and DCM were found to exhibit the competitive-inhibition effect. When the soil was mixed with DCM, no methane oxidation was found. Damage to the cell’s internal membrane was found in a methanotrophic culture exposed to VOC gases which is the attachment site of a key enzyme needed for methane oxidationOs efeitos dos compostos orgânicos voláteis (VOCs na oxidação do metano em camadas superficiais do solo. Os experimentos foram conduzidos usando somente VOCs ou mistura do mesmo, como, diclorometano (DCM, tricloroetileno (TCE, tetracloroetileno (PCE, e benzeno. Os resultados de todas as combinações mostraram uma diminuição na taxa da oxidação do metano com aumento nas concentrações de VOC. Além disso, os efeitos da inibição de TCE e de DCM foram mais elevados do que do benzeno e PCE. A redução da oxidação do metano pelo benzeno e PCE poderia ser atribuída ao efeito da toxicidade, visto que TCE e DCM exibiram o efeito de competição-inibição. Quando o solo foi misturado com o DCM, nenhuma oxidação do metano foi encontrada. Os danos à membrana interna celular foi observada em uma cultura metanotrófica exposta aos gases de VOC que é o local de ligação de uma enzima chave necessário para a oxidação do metano.

  1. Rapid changes of induced volatile organic compounds in Pinus massoniana

    Institute of Scientific and Technical Information of China (English)

    REN Qin; JIN Youju; HU Yongiian; CHEN Huajun; LI Zhenyu

    2007-01-01

    Using the thermal-desorption cold trap gas chromatography/mass spectrometer(TCT-GC-MS)technique,the composition and relative contents of volatile compounds were analyzed in undamaged(control),insect-damaged(ID)and artificially-damaged(AD)leaves ofPinus massoniana in field at different times and levels of damage.Results showed that although volatile substances were highly released earlier in AD leaves plants,they were significantly less abundant in AD than in ID leaves treatments.Also,the damage level considerably influenced the changes of induced volatile products from leaves.Compared with the control,the emission rate of camphene,β-pinene,phellandrene,caryophyllene and(E)farnesene was high after 1 h in 25%-40% ID-affected leaves,whereas that of tricyclene,myrcene,camphene,β-Pinene,phellandrene and caryophyllene reached its maximum after 24 h in 60%-75% D-affected leaves.In the same manner,some volatile compounds in the AD leaves treatment displayed their peaks just after 1 h,but others after 24 h.The AD and ID leaves at the damage level of 25%-40% did not exhibit an obvious regularity with time;however,in 60%- 75% AD leaves,peaks of volatile substances were attained after 1 or 2 h.Our results also showed that the relative content ofβ-pinene increased and was higher in damaged than control plants,β-pinene plays an important role in inducing the insect resistance of P.massoniana trees.

  2. Organic nitrate aerosol formation via NO3 + biogenic volatile organic compounds in the southeastern United States

    Science.gov (United States)

    Ayres, B. R.; Allen, H. M.; Draper, D. C.; Brown, S. S.; Wild, R. J.; Jimenez, J. L.; Day, D. A.; Campuzano-Jost, P.; Hu, W.; de Gouw, J.; Koss, A.; Cohen, R. C.; Duffey, K. C.; Romer, P.; Baumann, K.; Edgerton, E.; Takahama, S.; Thornton, J. A.; Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Wennberg, P. O.; Nguyen, T. B.; Teng, A.; Goldstein, A. H.; Olson, K.; Fry, J. L.

    2015-12-01

    Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOCs) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that a nitrate radical (NO3) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO3 to terpenes are correlated with increase in gas- and aerosol-organic nitrate concentrations made during the campaign. Correlation of NO3 radical consumption to organic nitrate aerosol formation as measured by aerosol mass spectrometry and thermal dissociation laser-induced fluorescence suggests a molar yield of aerosol-phase monoterpene nitrates of 23-44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to BVOCs and show C10H17NO5, likely a hydroperoxy nitrate, is a major nitrate-oxidized terpene product being incorporated into aerosols. The comparable isoprene product C5H9NO5 was observed to contribute less than 1 % of the total organic nitrate in the aerosol phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO3 uptake produced nitrate aerosol mass loading at a rate comparable to that of organic nitrate produced via NO3 + BVOCs.

  3. Contributions of individual reactive biogenic volatile organic compounds to organic nitrates above a mixed forest

    Directory of Open Access Journals (Sweden)

    K. A. Pratt

    2012-11-01

    Full Text Available Biogenic volatile organic compounds (BVOCs can react in the atmosphere to form organic nitrates, which serve as NOx (NO + NO2 reservoirs, impacting ozone and secondary organic aerosol production, the oxidative capacity of the atmosphere, and nitrogen availability to ecosystems. To examine the contributions of biogenic emissions and the formation and fate of organic nitrates in a forest environment, we simulated the oxidation of 57 individual BVOCs emitted from a rural mixed forest in northern Michigan. Key BVOC-oxidant reactions were identified for future laboratory and field investigations into reaction rate constants, yields, and speciation of oxidation products. Of the total simulated organic nitrates, monoterpenes contributed ~70% in the early morning at ~12 m above the forest canopy when isoprene emissions were low. In the afternoon, when vertical mixing and isoprene nitrate production were highest, the simulated contribution of isoprene-derived organic nitrates was greater than 90% at all altitudes, with the concentration of secondary isoprene nitrates increasing with altitude. Notably, reaction of isoprene with NO3 leading to isoprene nitrate formation was found to be significant (~8% of primary organic nitrate production during the daytime, and monoterpene reactions with NO3 were simulated to comprise up to ~83% of primary organic nitrate production at night. Lastly, forest succession, wherein aspen trees are being replaced by pine and maple trees, was predicted to lead to increased afternoon concentrations of monoterpene-derived organic nitrates. This further underscores the need to understand the formation and fate of these species, which have different chemical pathways and oxidation products compared to isoprene-derived organic nitrates and can lead to secondary organic aerosol formation.

  4. [Emission model of volatile organic compounds from materials used indoors].

    Science.gov (United States)

    Han, K

    1998-11-30

    Various materials, such as wall-paper, floor-wax, paint, multicolor wall-coat, air freshener and mothball were experimented in a simulated test chamber under constant selected temperature, humidity and air exchange rate. The relation between the total VOCs concentration and time was regressed by four emission models and the surface emission rate was calculated. The regressed results indicated the similarity among four emission models for the liquid materials with volatile-solvent such as paint and multicolor wall-coat. But for low volatile solid materials, such as wall-paper, floor-wax, mothball, the sink model and the empirical model were better than the dilution model and vapor pressure model. Only for air freshener, it was improper to the total VOCs concentration as a parameter.

  5. RT-MATRIX: Measuring Total Organic Carbon by Photocatalytic Oxidation of Volatile Organic Compounds

    Science.gov (United States)

    2008-01-01

    Volatile organic compounds (VOCs) inevitably accumulate in enclosed habitats such as the International Space Station and the Crew Exploration Vehicle (CEV) as a result of human metabolism, material off-gassing, and leaking equipment. Some VOCs can negatively affect the quality of the crew's life, health, and performance; and consequently, the success of the mission. Air quality must be closely monitored to ensure a safe living and working environment. Currently, there is no reliable air quality monitoring system that meets NASA's stringent requirements for power, mass, volume, or performance. The ultimate objective of the project -- the development of a Real-Time, Miniaturized, Autonomous Total Risk Indicator System (RT.MATRIX).is to provide a portable, dual-function sensing system that simultaneously determines total organic carbon (TOC) and individual contaminants in air streams.

  6. Adsorption of volatile organic compounds in porous metal-organic frameworks functionalized by polyoxometalates

    Science.gov (United States)

    Ma, Feng-Ji; Liu, Shu-Xia; Liang, Da-Dong; Ren, Guo-Jian; Wei, Feng; Chen, Ya-Guang; Su, Zhong-Min

    2011-11-01

    The functionalization of porous metal-organic frameworks (Cu 3( BTC) 2) was achieved by incorporating Keggin-type polyoxometalates (POMs), and further optimized via alkali metal ion-exchange. In addition to thermal gravimetric analysis, IR, single-crystal X-ray diffraction, and powder X-ray diffraction, the adsorption properties were characterized by N 2 and volatile organic compounds (VOCs) adsorption measurements, including short-chain alcohols ( C<4), cyclohexane, benzene, and toluene. The adsorption enthalpies estimated by the modified Clausius-Clapeyron equation provided insight into the impact of POMs and alkali metal cations on the adsorption of VOCs. The introduction of POMs not only improved the stability, but also brought the increase of adsorption capacity by strengthening the interaction with gas molecules. Furthermore, the exchanged alkali metal cations acted as active sites to interact with adsorbates and enhanced the adsorption of VOCs.

  7. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia.

    Science.gov (United States)

    Huang, R; Li, G Q; Zhang, J; Yang, L; Che, H J; Jiang, D H; Huang, H C

    2011-07-01

    A study was conducted to identify volatile organic compounds or volatiles produced by Candida intermedia strain C410 using gas chromatography-mass spectrometry, and to determine efficacy of the volatiles of C. intermedia in suppression of conidial germination and mycelial growth of Botrytis cinerea and control of Botrytis fruit rot of strawberry. Results showed that, among 49 volatiles (esters, alcohols, alkenes, alkanes, alkynes, organic acids, ketones, and aldehydes) identified from C. intermedia cultures on yeast extract peptone dextrose agar, two compounds, 1,3,5,7-cyclooctatetraene and 3-methyl-1-butanol, were the most abundant. Synthetic chemicals of 1,3,5,7-cyclooctatetraene; 3-methyl-1-butanol; 2-nonanone; pentanoic acid, 4-methyl-, ethyl ester; 3-methyl-1-butanol, acetate; acetic acid, pentyl ester; and hexanoic acid, ethyl ester were highly inhibitory to conidial germination and mycelial growth of B. cinerea. Inhibition of conidial germination and mycelial growth of B. cinerea by volatiles of C. intermedia was also observed. Meanwhile, results showed that incidence and severity of Botrytis fruit rot of strawberry was significantly (P fruit to the volatiles from C. intermedia cultures or C. intermedia-infested strawberry fruit. These results suggest that the volatiles of C. intermedia C410 are promising biofumigants for control of Botrytis fruit rot of strawberry.

  8. Effects of airborne volatile organic compounds on plants.

    Science.gov (United States)

    Cape, J N

    2003-01-01

    Routine measurements of volatile organic compounds (VOCs) in air have shown that average concentrations are very much smaller than those used in laboratory experiments designed to study the effects of VOCs on plants. However, maximum hourly concentrations of some VOCs can be 100 times larger than the average, even in rural air. Experimental studies have rarely extended for longer than a few days, so there is little information on potential long-term effects of exposure to small concentrations. This review considers the available evidence for long-term effects, based on laboratory and field data. Previous reviews of the literature from Germany and the USA are cited, prior to an assessment of the effects of individual VOCs. Although hydrocarbons from vehicle exhausts have been implicated in the observed effects on roadside vegetation, the evidence suggests that it is the nitrogen oxides in the exhaust gases that are mostly responsible. There is evidence that aromatic hydrocarbons can be metabolised in plants, although the fate of the metabolites is not known. There is a large literature on the effects of ethylene, because of its role as a plant hormone. Effects have been reported in the field, in response to industrial emissions, and dose-response experiments over several weeks in laboratory studies have clearly identified the potential for effects at ambient concentrations. The main responses are morphological (e.g. epinasty), which may be reversible, and on the development of flowers and fruit. Effects on seed production may be positive or negative, depending on the exposure concentration. Chlorinated hydrocarbons have been identified as potentially harmful to vegetation, but only one long-term experiment has studied dose-response relationships. As for ethylene, the most sensitive indication of effect was on seed production, although long-term accumulation of trichloroacetic acid in tissue may also be a problem. There is little evidence of the direct effects of

  9. Airborne flux measurements of biogenic volatile organic compounds over California

    Directory of Open Access Journals (Sweden)

    P. K. Misztal

    2014-03-01

    Full Text Available Biogenic Volatile Organic Compound (BVOC fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi. Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l. altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF landcover datasets used to drive biogenic VOC (BVOC emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m−2 h−1 above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions

  10. Comparison of lichen, conifer needles, passive air sampling devices, and snowpack as passive sampling media to measure semi-volatile organic compounds in remote atmospheres

    Science.gov (United States)

    The impact of extensively used arsenic-containing herbicides on groundwater beneath golf courses has become a topic of interest. Although currently used organoarsenicals are less toxic, their application into the environment may produce the more toxic inorganic arsenicals. The ob...

  11. A comparative evaluation of passive and active samplers for measurements of gaseous semi-volatile organic compounds in the tropical atmosphere

    Science.gov (United States)

    He, Jun; Balasubramanian, Rajasekhar

    2010-03-01

    The polyurethane foam (PUF) disk-based passive air samplers (PAS), mounted inside two aluminium bowls to buffer the air flow to the disk and to shield it from precipitation and sunlight, were used for the collection of atmospheric SVOCs in Singapore during April 2008-June 2008. Data obtained from PAS measurements are compared to those from active high-volume air sampling (AAS). Single factor ANOVA tests show that there were no significant differences in chemical distribution profiles between actively and passively collected samples (PAHs, F = 3.38 × 10 -8 0.05; OCPs, F = 2.71 × 10 -8 0.05). The average air-side mass transfer coefficient ( k A) for PAS, determined from the loss of depuration compounds such as 13C 6 - HCB (1000 ng), 13C 12 - 4,4' DDT (1000 ng) and 13C 12 - PCB 101 (1000 ng)spiked on the disks prior to deployment, was 0.12 ± 0.04 m s -1. These values are comparable to those reported previously in the literature. The average sampling rate was 3.78 ± 1.83 m 3 d -1 for the 365 cm 2 PUF disk. Throughout the entire sampling period (˜68 d), most of the PAHs and all OCPs exhibited a linear uptake trend on PAS, while naphthalene, acenaphthylene, acenaphthene and fluorene reached the curvilinear phase after the first ˜30 d exposure. Theoretically estimated times to equilibrium ( t eq) ranged from around one month for Acy to hundreds of years for DB(ah)A. Sampling rates, based on the time integrated active sampling-derived concentrations and masses collected by PUF disks during the linear uptake phase, were determined for all target compounds with the average values of 2.50 m 3 d -1 and 3.43 m 3 d -1 for PAHs and OCPs, respectively. More variations were observed as compared to those from the depuration study. These variation were most likely due to the difference of physicochemical properties of individual species. Lastly, multiple linear regression models were developed to estimate the log-transformed gaseous concentration of an individual compound in air based on the mass collection rate of the gaseous SVOCs measured using the PAS and the molecular weight (MW) of the particular compound for both PAHs and OCPs, respectively.

  12. Comparison of Methanol and Tetraglyme as Extraction Solvents for Determination of Volatile Organics in Soil

    Science.gov (United States)

    1987-11-01

    determining volatile organics in soil can be classified into thefollowing groups: 1. Static or dynamic headspace analysis 2. Solvent extraction-direct...methods based on the dynamic headspace method whereby the volatiles are stripped from a soil/water slurry using a conventional purge-and-trap instrument...651. Brazell, R.S. and MP. Maskarinec (1981) Dynamic headspace analysis of solid waste materials. Journal of High Resolution Chromatography and

  13. High atmosphere–ocean exchange of semivolatile aromatic hydrocarbons

    KAUST Repository

    González-Gaya, Belén

    2016-05-16

    Polycyclic aromatic hydrocarbons, and other semivolatile aromatic-like compounds, are an important and ubiquitous fraction of organic matter in the environment. The occurrence of semivolatile aromatic hydrocarbons is due to anthropogenic sources such as incomplete combustion of fossil fuels or oil spills, and other biogenic sources. However, their global transport, fate and relevance for the carbon cycle have been poorly assessed, especially in terms of fluxes. Here we report a global assessment of the occurrence and atmosphere-ocean fluxes of 64 polycyclic aromatic hydrocarbons analysed in paired atmospheric and seawater samples from the tropical and subtropical Atlantic, Pacific and Indian oceans. The global atmospheric input of polycyclic aromatic hydrocarbons to the global ocean is estimated at 0.09 Tg per month, four times greater than the input from the Deepwater Horizon spill. Moreover, the environmental concentrations of total semivolatile aromatic-like compounds were 10 2 -10 3 times higher than those of the targeted polycyclic aromatic hydrocarbons, with a relevant contribution of an aromatic unresolved complex mixture. These concentrations drive a large global deposition of carbon, estimated at 400 Tg C yr -1, around 15% of the oceanic CO2 uptake. © 2016 Macmillan Publishers Limited.

  14. High atmosphere-ocean exchange of semivolatile aromatic hydrocarbons

    Science.gov (United States)

    González-Gaya, Belén; Fernández-Pinos, María-Carmen; Morales, Laura; Méjanelle, Laurence; Abad, Esteban; Piña, Benjamin; Duarte, Carlos M.; Jiménez, Begoña; Dachs, Jordi

    2016-06-01

    Polycyclic aromatic hydrocarbons, and other semivolatile aromatic-like compounds, are an important and ubiquitous fraction of organic matter in the environment. The occurrence of semivolatile aromatic hydrocarbons is due to anthropogenic sources such as incomplete combustion of fossil fuels or oil spills, and other biogenic sources. However, their global transport, fate and relevance for the carbon cycle have been poorly assessed, especially in terms of fluxes. Here we report a global assessment of the occurrence and atmosphere-ocean fluxes of 64 polycyclic aromatic hydrocarbons analysed in paired atmospheric and seawater samples from the tropical and subtropical Atlantic, Pacific and Indian oceans. The global atmospheric input of polycyclic aromatic hydrocarbons to the global ocean is estimated at 0.09 Tg per month, four times greater than the input from the Deepwater Horizon spill. Moreover, the environmental concentrations of total semivolatile aromatic-like compounds were 102-103 times higher than those of the targeted polycyclic aromatic hydrocarbons, with a relevant contribution of an aromatic unresolved complex mixture. These concentrations drive a large global deposition of carbon, estimated at 400 Tg C yr-1, around 15% of the oceanic CO2 uptake.

  15. Environmental Aspects of Two Volatile Organic Compound Groundwater Treatment Designs at the Rocky Flats Site - 13135

    Energy Technology Data Exchange (ETDEWEB)

    Michalski, Casey C.; DiSalvo, Rick; Boylan, John [Stoller LMS Team, 11025 Dover Street, Suite 1000, Westminster, CO 80021 (United States)

    2013-07-01

    DOE's Rocky Flats Site in Colorado is a former nuclear weapons production facility that began operations in the early 1950's. Because of releases of hazardous substances to the environment, the federally owned property and adjacent offsite areas were placed on the CERCLA National Priorities List in 1989. The final remedy was selected in 2006. Engineered components of the remedy include four groundwater treatment systems that were installed before closure as CERCLA-accelerated actions. Two of the systems, the Mound Site Plume Treatment System and the East Trenches Plume Treatment System, remove low levels of volatile organic compounds using zero-valent iron media, thereby reducing the loading of volatile organic compounds in surface water resulting from the groundwater pathway. However, the zero-valent iron treatment does not reliably reduce all volatile organic compounds to consistently meet water quality goals. While adding additional zero-valent iron media capacity could improve volatile organic compound removal capability, installation of a solar powered air-stripper has proven an effective treatment optimization in further reducing volatile organic compound concentrations. A comparison of the air stripper to the alternative of adding additional zero-valent iron capacity to improve Mound Site Plume Treatment System and East Trenches Plume Treatment System treatment based on several key sustainable remediation aspects indicates the air stripper is also more 'environmentally friendly'. These key aspects include air pollutant emissions, water quality, waste management, transportation, and costs. (authors)

  16. Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

    Science.gov (United States)

    Kourtchev, Ivan; Giorio, Chiara; Manninen, Antti; Wilson, Eoin; Mahon, Brendan; Aalto, Juho; Kajos, Maija; Venables, Dean; Ruuskanen, Taina; Levula, Janne; Loponen, Matti; Connors, Sarah; Harris, Neil; Zhao, Defeng; Kiendler-Scharr, Astrid; Mentel, Thomas; Rudich, Yinon; Hallquist, Mattias; Doussin, Jean-Francois; Maenhaut, Willy; Bäck, Jaana; Petäjä, Tuukka; Wenger, John; Kulmala, Markku; Kalberer, Markus

    2016-10-01

    Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.

  17. Construction d'indicateurs de toxicites cumulees : cas des composes organiques semi volatils dans les environnements interieurs.

    OpenAIRE

    Fournier, Kevin

    2015-01-01

    Semi-volatile organic compounds (SVOCs) are widely present in indoor environments and are suspected to be repro- or neurotoxic but little is known on the health impact on SVOC mixtures. The objective of this work is to derive cumulative toxicity indicators for SVOCs detected in French dwellings in carrying forward a cumulative health risk assessment. SVOCs were grouped according to their repro- and neurotoxic common modes of action (i.e. decrease in serum testosterone concentrations, decrease...

  18. Determination of selected organics in treated sludges and associated leachates from coal conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Maskarinec, M.P.; Brazell, R.S.; Harvey, R.W.; Brown, D.K.

    1982-01-01

    Methods have been developed for the determination of organic compounds in solid wastes and sludges. The methods involve sequential extraction with acid, base, and organic solvent, as well as dynamic headspace stripping of the volatile components. Methods for assessing the mobility of organic compounds in the environment have been evaluated, including four batch extractions and an upward-flow column extraction. Batch extractions in closed vessels are most effective for the determination of volatile components. The upward-flow column arrangement is shown to be the most aggressive leaching procedure for semi-volatile organic compounds.

  19. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of semivolatile organic compounds in bottom sediment by solvent extraction, gel permeation chromatographic fractionation, and capillary-column gas chromatography/mass spectrometry

    Science.gov (United States)

    Furlong, E.T.; Vaught, D.G.; Merten, L.M.; Foreman, W.T.; Gates, Paul M.

    1996-01-01

    A method for the determination of 79 semivolatile organic compounds (SOCs) and 4 surrogate compounds in soils and bottom sediment is described. The SOCs are extracted from bottom sediment by solvent extraction, followed by partial isolation using high-performance gel permeation chromatography (GPC). The SOCs then are qualitatively identified and quantitative concentrations determined by capillary-column gas chromatography/mass spectrometry (GC/MS). This method also is designed for an optional simultaneous isolation of polychlorinated biphenyls (PCBs) and organochlorine (OC) insecticides, including toxaphene. When OCs and PCBs are determined, an additional alumina- over-silica column chromatography step follows GPC cleanup, and quantitation is by dual capillary- column gas chromatography with electron-capture detection (GC/ECD). Bottom-sediment samples are centrifuged to remove excess water and extracted overnight with dichloromethane. The extract is concentrated, centrifuged, and then filtered through a 0.2-micrometer polytetrafluoro-ethylene syringe filter. Two aliquots of the sample extract then are quantitatively injected onto two polystyrene- divinylbenzene GPC columns connected in series. The SOCs are eluted with dichloromethane, a fraction containing the SOCs is collected, and some coextracted interferences, including elemental sulfur, are separated and discarded. The SOC-containing GPC fraction then is analyzed by GC/MS. When desired, a second aliquot from GPC is further processed for OCs and PCBs by combined alumina-over-silica column chromatography. The two fractions produced in this cleanup then are analyzed by GC/ECD. This report fully describes and is limited to the determination of SOCs by GC/MS.

  20. Determination of heat purgeable and ambient purgeable volatile organic compounds in water by gas chromatography/mass spectrometry

    Science.gov (United States)

    Rose, Donna L.; Sandstrom, Mark W.; Murtagh, Lucinda K.

    2016-09-08

    Two new analytical methods have been developed by the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) that allow the determination of 37 heat purgeable volatile organic compounds (VOCs) (USGS Method O-4437-16 [NWQL Laboratory Schedule (LS) 4437]) and 49 ambient purgeable VOCs (USGS Method O-4436-16 [NWQL LS 4436]) in unfiltered water. This report documents the procedures and initial performance of both methods. The compounds chosen for inclusion in the methods were determined as having high priority by the USGS National Water-Quality Assessment (NAWQA) Program. Both methods use a purge-and-trap technique with gas chromatography/mass spectrometry. The compounds are extracted from the sample by bubbling helium through a 25-milliliter sample. For the polar and less volatile compounds, the sample is heated at 60 degrees Celsius, whereas the less polar and more volatile compounds are purged using a separate analytical procedure at ambient temperature. The compounds are trapped on a sorbent trap, desorbed into a gas chromatograph/mass spectrometer for separation, and then identified and quantified. Sample preservation is recommended for both methods by adding a 1:1 solution of hydrochloric acid (HCl [1:1]) to water samples to adjust the pH to 2. Analysis within 14 days from sampling is recommended.The heat purgeable method (USGS Method O-4437-16) operates with the mass spectrometer in the simultaneous full scan/selected ion monitoring mode. This method supersedes USGS Method O-4024-03 (NWQL LS 4024). Method detection limits (MDLs) for fumigant compounds 1,2-dibromoethane, 1,2-dichloropropane, 1,2,3-trichloropropane, chloropicrin, and 1,2-dibromo-3-chloropropane range from 0.002 to 0.010 microgram per liter (µg/L). The MDLs for all remaining heat purgeable VOCs range from 0.006 µg/L for tert-butyl methyl ether to 3 µg/L for alpha-terpineol. Calculated holding times indicate that 36 of the 37 heat purgeable VOCs are stable for a minimum of 14 days

  1. Volatile organic compounds released by blowfly larvae and pupae: new perspectives in forensic entomology.

    Science.gov (United States)

    Frederickx, C; Dekeirsschieter, J; Brostaux, Y; Wathelet, J-P; Verheggen, F J; Haubruge, E

    2012-06-10

    To evaluate postmortem intervals (PMIs), one should take into account the determined age of necrophagous flies present on the cadaver. However, PMI determination needs further improvement, and rapid and accurate approaches have therefore to be developed. While previous studies have focussed on insect cuticular hydrocarbons, here we explore the volatile profile released by larvae and pupae of Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae). We monitored changes in volatile compounds daily, by headspace solid-phase microextraction, followed by gas chromatography-mass spectrometry. Branched and unbranched hydrocarbons, alcohols, esters and acids were identified, and the volatile profile was shown to vary, in both composition and quantity, with the age of the larva/pupa under investigation. We concluded, based on the analysis of the released volatile organic compounds, that it is possible to increase the accuracy of the estimated PMI, through improved estimation of the age of blowflies present on the cadaver.

  2. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

    Science.gov (United States)

    Ng, Nga Lee; Brown, Steven S.; Archibald, Alexander T.; Atlas, Elliot; Cohen, Ronald C.; Crowley, John N.; Day, Douglas A.; Donahue, Neil M.; Fry, Juliane L.; Fuchs, Hendrik; Griffin, Robert J.; Guzman, Marcelo I.; Herrmann, Hartmut; Hodzic, Alma; Iinuma, Yoshiteru; Jimenez, José L.; Kiendler-Scharr, Astrid; Lee, Ben H.; Luecken, Deborah J.; Mao, Jingqiu; McLaren, Robert; Mutzel, Anke; Osthoff, Hans D.; Ouyang, Bin; Picquet-Varrault, Benedicte; Platt, Ulrich; Pye, Havala O. T.; Rudich, Yinon; Schwantes, Rebecca H.; Shiraiwa, Manabu; Stutz, Jochen; Thornton, Joel A.; Tilgner, Andreas; Williams, Brent J.; Zaveri, Rahul A.

    2017-02-01

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry-climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.

  3. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Nga Lee; Brown, Steven S.; Archibald, Alexander T.; Atlas, Elliot; Cohen, Ronald C.; Crowley, John N.; Day, Douglas A.; Donahue, Neil M.; Fry, Juliane L.; Fuchs, Hendrik; Griffin, Robert J.; Guzman, Marcelo I.; Herrmann, Hartmut; Hodzic, Alma; Iinuma, Yoshiteru; Jimenez, José L.; Kiendler-Scharr, Astrid; Lee, Ben H.; Luecken, Deborah J.; Mao, Jingqiu; McLaren, Robert; Mutzel, Anke; Osthoff, Hans D.; Ouyang, Bin; Picquet-Varrault, Benedicte; Platt, Ulrich; Pye, Havala O. T.; Rudich, Yinon; Schwantes, Rebecca H.; Shiraiwa, Manabu; Stutz, Jochen; Thornton, Joel A.; Tilgner, Andreas; Williams, Brent J.; Zaveri, Rahul A.

    2017-01-01

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models.

    This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.

  4. Volatile organic metabolites identify patients with breast cancer, cyclomastopathy, and mammary gland fibroma.

    Science.gov (United States)

    Wang, Changsong; Sun, Bo; Guo, Lei; Wang, Xiaoyang; Ke, Chaofu; Liu, Shanshan; Zhao, Wei; Luo, Suqi; Guo, Zhigang; Zhang, Yang; Xu, Guowang; Li, Enyou

    2014-06-20

    The association between cancer and volatile organic metabolites in exhaled breaths has attracted increasing attention from researchers. The present study reports on a systematic study of gas profiles of metabolites in human exhaled breath by pattern recognition methods. Exhaled breath was collected from 85 patients with histologically confirmed breast disease (including 39 individuals with infiltrating ductal carcinoma, 25 individuals with cyclomastopathy and from 21 individuals with mammary gland fibroma) and 45 healthy volunteers. Principal component analysis and partial least squares discriminant analysis were used to process the final data. The volatile organic metabolites exhibited significant differences between breast cancer and normal controls, breast cancer and cyclomastopathy, and breast cancer and mammary gland fibroma; 21, 6, and 8 characteristic metabolites played decisive roles in sample classification, respectively (P fibroma patients, and patients with cyclomastopathy (P < 0.05). The identified three volatile organic metabolites associated with breast cancer may serve as novel diagnostic biomarkers.

  5. Semivolatile organic (GC-MS) and inorganic analyses of groundwater samples during the hydrous pyrolysis/oxidation (HPO) field test in Visalia, CA, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Chiarappa, M; Knauss, K G; Kumamoto, G; Leif, R N; Newmark, R L

    1998-02-05

    Hydrous pyrolysis/oxidation (HPO) is a novel, in situ, thermal-remediation technology that uses hot, oxygenated groundwater to completely oxidize a wide range of organic pollutants. A field demonstration of HPO was performed during the summer of 1997 at the Southern California Edison Pole Yard in Visalia, California, a site contaminated with creosote. The goal of the field experiment was to confirm the success of HPO under field remediation conditions. The groundwater was heated by steam injections, and oxygen was added by co-injection of compressed air. The progress of the HPO remediation process was evaluated by monitoring groundwater from multiple wells for dissolved oxygen, dissolved inorganic carbon, and dissolved organic contaminant levels. Analyses of groundwater chemistry allowed us to measure the concentrations of creosote components and to identify oxygenated intermediates produced by the HPO treatment. Dissolved organic carbon levels increased in response to steam injections because of the enhanced dissolution and mobilization of the creosote into the heated groundwater. Elevated concentrations of phenols and benzoic acid were measured in wells affected by the steam injections. Concentrations of other oxygenated compounds (i.e., fluorenone, anthrone, and 9,10-anthracenedione) increased in response to the steam injections. The production of these partially oxidized compounds is consistent with the aqueous-phase HPO reactions of creosote. Additional changes in the groundwater in response to steam injection were also consistent with the groundwater HPO chemistry. A drop in dissolved oxygen was observed in the aquifer targeted for the steam injections, and isotope shifts in the dissolved inorganic pool reflected the input of oxidized carbon derived from the creosote carbon.

  6. 78 FR 62451 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of 2,3,3,3...

    Science.gov (United States)

    2013-10-22

    ... AGENCY 40 CFR Part 51 RIN 2060-AR70 Air Quality: Revision to Definition of Volatile Organic Compounds.... SUMMARY: The EPA is taking final action to revise the regulatory definition of volatile organic compounds... those organic compounds of carbon that form ozone through atmospheric photochemical reactions....

  7. Volatile organic compounds of polyethylene vinyl acetate plastic are toxic to living organisms.

    Science.gov (United States)

    Meng, Tingzhu Teresa

    2014-01-01

    Volatile organic compounds (VOCs) in polyvinyl chloride (PVC) plastic products readily evaporate; as a result, hazardous gases enter the ecosystem, and cause cancer in humans and other animals. Polyethylene vinyl acetate (PEVA) plastic has recently become a popular alternative to PVC since it is chlorine-free. In order to determine whether PEVA is harmful to humans, this research employed the freshwater oligochaete Lumbriculus variegatus as a model to compare their oxygen intakes while they were exposed to the original stock solutions of PEVA, PVC or distilled water at a different length of time for one day, four days or eight days. During the exposure periods, the oxygen intakes in both PEVA and PVC groups were much higher than in the distilled water group, indicating that VOCs in both PEVA and PVC were toxins that stressed L. variegatus. Furthermore, none of the worms fully recovered during the24-hr recovery period. Additionally, the L. variegatus did not clump together tightly after four or eight days' exposure to either of the two types of plastic solutions, which meant that both PEVA and PVC negatively affected the social behaviors of these blackworms. The LD50 tests also supported the observations above. For the first time, our results have shown that PEVA plastic has adverse effects on living organisms, and therefore it is not a safe alternative to PVC. Further studies should identify specific compounds causing the adverse effects, and determine whether toxic effect occurs in more complex organisms, especially humans.

  8. Semi volatile organic compounds and flame retardants. Occurrence in indoor environments and risk assessment for indoor exposure

    Energy Technology Data Exchange (ETDEWEB)

    Jaernstroem, H.; Vares, S.; Airaksinen, M.

    2009-05-15

    The first part of the project presented in this publication reviews the occurrence of semi-volatile organic compounds (SVOCs) and flame retardants in commonly used building and furnishing materials in Finland. SVOCs included in the review are plasticisers, like phthalates, flame retardants (FRs), like brominated organic compounds and organophosphate esters. In addition, polyaromatic hydrocarbons (PAHs), which are constituents in coal tar/ creosote and have been used for moisture proofing in structures, are also discussed. On the basis of present knowledge, risk assessment for exposure indoors is presented. In addition, sources of SVOCs and the waste potential in the old building stock are clarified. The knowledge for the review was gathered from housing statistics, building product statistics, the chemical registry at The National Product Control Agency's (STTV), The National Board of Antiquities and Historical Monuments in Finland, Finnish Environment Institute (SYKE), and from interviews with the construction product industry. In the second part of the project, SVOCs were measured from a total of 13 building materials including flooring materials, paints, insulations and a levelling agent (screed). Both short and long term (up to 60 days) emissions were measured by modifying the existing standard sampling method for the measurement of volatile organic compounds (VOCs). Emissions were measured at room temperature 23 deg C and at 40 deg C. The elevated temperature was considered to simulate real life situations, such as when a floor structure has heating or a surface gets warmed up by direct sunlight. The results showed that the initial specific emission rates (SER) of SVOCs are typically low, less than 5 mug/m2h. An exception was newly prepared foam type polyurethane insulations, which emitted SVOCs up to 65 mug/m2h. The SVOC SERs were higher at 40 deg C, up to 165 mug/m2h. No phthalates were detected from the air samples collected at room temperauture during

  9. Sensory and Physiological Effects on Humans of Combined Exposures to Air Temperatures and Volatile Organic Compounds

    DEFF Research Database (Denmark)

    Mølhave, Lars; Liu, Zunyong; Jørgensen, Anne Hempel

    1993-01-01

    Ten healthy humans were exposed to combinations of volatile organic compounds (VOCs) and air temperature (0 mg/m3 and 10 mg/m3 of a mixture of 22 volatile organic compounds and 18, 22 and 26° C). Previously demonstrated effects of VOCs and thermal exposures were replicated. For the first time nasal...... cross-sectional areas and nasal volumes, as measured by acoustic rhinometry, were shown to decrease with decreasing temperature and increasing VOC exposure. Temperature and pollutant exposures affected air quality, the need for more ventilation, skin humidity on the forehead, sweating, acute sensory...

  10. Composition of Sulla (Hedysarum coronarium L. Honey Solvent Extractives Determined by GC/MS: Norisoprenoids and Other Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Dragan Bubalo

    2010-09-01

    Full Text Available Samples of unifloral sulla (Hedysarum coronarum L. honey from Sardinia (Italy were analysed. To investigate the chemical composition of the honey volatiles two solvent systems were used for ultrasonic solvent extraction (USE: 1 a 1:2 (v/v pentane and diethyl ether mixture and 2 dichloromethane. All the extracts were analysed by GC and GC/MS. These procedures have permitted the identification of 56 compounds that include norisoprenoids, benzene derivatives, aliphatic compounds and Maillard reaction products. Norisoprenoids were the major compounds in both extracts, dominated by vomifoliol (5.3-11.2%; 9.6-14.0% followed by minor percentages of other norisoprenoids such as α-isophorone, 4-ketoisophorone, 3-oxo-α-ionol or 3-oxo-α-ionone. Other abundant single compounds in the extracts were 3-hydroxy-4-phenylbutan-2-one (0.8-5.4%; 0.6-5.7% and methyl syringate (3.0-5.7%; 2.2-4.1%. The composition of the volatiles and semi-volatiles in the obtained extracts suggests that sulla honey is quite distinctive relative to the other honeys that have been chemically studied by GC/MS, but no specific markers of the honey botanical origin were found.

  11. Composition of sulla (Hedysarum coronarium L.) honey solvent extractives determined by GC/MS: norisoprenoids and other volatile organic compounds.

    Science.gov (United States)

    Jerković, Igor; Tuberoso, Carlo I G; Tuberso, Carlo I G; Gugić, Mirko; Bubalo, Dragan

    2010-09-09

    Samples of unifloral sulla (Hedysarum coronarum L.) honey from Sardinia (Italy) were analysed. To investigate the chemical composition of the honey volatiles two solvent systems were used for ultrasonic solvent extraction (USE): 1) a 1:2 (v/v) pentane and diethyl ether mixture and 2) dichloromethane. All the extracts were analysed by GC and GC/MS. These procedures have permitted the identification of 56 compounds that include norisoprenoids, benzene derivatives, aliphatic compounds and Maillard reaction products. Norisoprenoids were the major compounds in both extracts, dominated by vomifoliol (5.3-11.2%; 9.6-14.0%) followed by minor percentages of other norisoprenoids such as α-isophorone, 4-ketoisophorone, 3-oxo-α-ionol or 3-oxo-α-ionone. Other abundant single compounds in the extracts were 3-hydroxy-4-phenylbutan-2-one (0.8-5.4%; 0.6-5.7%) and methyl syringate (3.0-5.7%; 2.2-4.1%). The composition of the volatiles and semi-volatiles in the obtained extracts suggests that sulla honey is quite distinctive relative to the other honeys that have been chemically studied by GC/MS, but no specific markers of the honey botanical origin were found.

  12. Development of an In-Fiber Nanocavity Towards Detection of Volatile Organic Gases

    OpenAIRE

    Arregui, Francisco J.; Candido Bariain; Matias, Ignacio R; Cesar Elosua

    2006-01-01

    A fiber optic sensor for Volatile Organic Compounds (VOCs) detection has been developed and characterized for some organic gasses. The sensor is based on a novel vapochromic material, which is able to change its optical properties in presence of organic vapors in a reversely way. A nano Fabry Perot is constructed onto a cleaved ended optical fiber pigtail by Electrostatic Self Assembly method (ESA), doping this structure with the vapochromic material. Employing a reflection scheme, a chang...

  13. Role of Aerosol Liquid Water in Secondary Organic Aerosol Formation from Volatile Organic Compounds.

    Science.gov (United States)

    Faust, Jennifer A; Wong, Jenny P S; Lee, Alex K Y; Abbatt, Jonathan P D

    2017-02-07

    A key mechanism for atmospheric secondary organic aerosol (SOA) formation occurs when oxidation products of volatile organic compounds condense onto pre-existing particles. Here, we examine effects of aerosol liquid water (ALW) on relative SOA yield and composition from α-pinene ozonolysis and the photooxidation of toluene and acetylene by OH. Reactions were conducted in a room-temperature flow tube under low-NOx conditions in the presence of equivalent loadings of deliquesced (∼20 μg m(-3) ALW) or effloresced (∼0.2 μg m(-3) ALW) ammonium sulfate seeds at exactly the same relative humidity (RH = 70%) and state of wall conditioning. We found 13% and 19% enhancements in relative SOA yield for the α-pinene and toluene systems, respectively, when seeds were deliquesced rather than effloresced. The relative yield doubled in the acetylene system, and this enhancement was partially reversible upon drying the prepared SOA, which reduced the yield by 40% within a time scale of seconds. We attribute the high relative yield of acetylene SOA on deliquesced seeds to aqueous partitioning and particle-phase reactions of the photooxidation product glyoxal. The observed range of relative yields for α-pinene, toluene, and acetylene SOA on deliquesced and effloresced seeds suggests that ALW plays a complicated, system-dependent role in SOA formation.

  14. Performance of rotating drum biofilter for volatile organic compound removal at high organic loading rates

    Institute of Scientific and Technical Information of China (English)

    YANG Chunping; CHEN Hong; ZENG Guangming; ZHU Xueqing; SUIDAN Makram T

    2008-01-01

    Uneven distribution of volatile organic compounds (VOCs) and biomass,and excess biomass accumulation in some biofilters hinder the application of biofiltration technology.An innovative multilayer rotating drum biofilter (RDB) was developed to correct these problems.The RDB was operated at an empty bed contact time (EBCT) of 30 s and a rotational rate of 1.0 r/rain.Diethyl ether was chosen as the model VOC.Performance of the RDB was evaluated at organic loading rates of 32.1,64.2,128,and 256 g ether/(m3·h) (16.06 g ether/(m3·h) ≈1.0 kg chemical oxygen demand (COD)/(m3·d)).The EBCT and organic loading rates were recorded on the basis of the medium volume.Results show that the ether removal efficiency decreased with an increased VOC loading rate.Ether removal efficiencies exceeding 99% were achieved without biomass control even at a high VOC loading rate of 128 g ether/(m3·h). However,when the VOC loading rate was increased to 256 g ether/(m3·h),the average removal efficiency dropped to 43%.Nutrient limitation possibly contributed to the drop in ether removal efficiency.High biomass accumulation rate was also observed in the medium at the two higher ether loading rates,and removal of the excess biomass in the media was necessary to maintain stable performance. This work showed that the RDB is effective in the removal of diethyl ether from waste gas streams even at high organic loading rates. The results might help establish criteria for designing and operating RDBs.

  15. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene.

    Science.gov (United States)

    Lumholdt, Ludmilla; Fourmentin, Sophie; Nielsen, Thorbjørn T; Larsen, Kim L

    2014-01-01

    Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest-host complexes with ratios of up to 16:1.

  16. Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids.

    Science.gov (United States)

    Layton, Donovan S; Trinh, Cong T

    2016-08-01

    Volatile organic acids are byproducts of fermentative metabolism, for example, anaerobic digestion of lignocellulosic biomass or organic wastes, and are often times undesired inhibiting cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic acids to acyl CoAs and alcohols to form a combinatorial library of esters. By assembling these modules with the engineered Escherichia coli modular chassis cell, we developed microbial manufacturing platforms to perform the following functions: (i) rapid in vivo screening of novel AATs for their catalytic activities; (ii) expanding combinatorial biosynthesis of unique fermentative esters; and (iii) upgrading volatile organic acids to esters using single or mixed cell cultures. To demonstrate this framework, we screened for a set of five unique and divergent AATs from multiple species, and were able to determine their novel activities as well as produce a library of 12 out of the 13 expected esters from co-fermentation of sugars and (C2-C6) volatile organic acids. We envision the developed framework to be valuable for in vivo characterization of a repertoire of not-well-characterized natural AATs, expanding the combinatorial biosynthesis of fermentative esters, and upgrading volatile organic acids to high-value esters. Biotechnol. Bioeng. 2016;113: 1764-1776. © 2016 Wiley Periodicals, Inc.

  17. Assessing the fate of biodegradable volatile organic contaminants in unsaturated soil filter systems

    Science.gov (United States)

    Thullner, Martin; de Biase, Cecilia; Hanzel, Joanna; Reger, Daniel; Wick, Lukas; Oswald, Sascha; van Afferden, Manfred; Schmidt, Axel; Reiche, Nils; Jechalke, Sven

    2010-05-01

    The assessment of contaminant biodegradation in the subsurface is challenged by various abiotic processes leading to a reduction of contaminant concentration without a destructive mass removal of the contaminant. In unsaturated porous media, this interplay of processes is further complicated by volatilization. Many organic contaminants are sufficiently volatile to allow for significant fluxes from the water phase into the soil air, which can eventually lead to an emission of contaminants into the atmosphere. Knowledge of the magnitude of these emissions is thus required to evaluate the efficiency of bioremediation in such porous media and to estimate potential risks due to these emissions. In the present study, vertical flow constructed wetlands were investigated at the pilot scale as part of the SAFIRA II project. The investigated wetland system is intermittently irrigated by contaminated groundwater containing the volatile compounds benzene and MTBE. Measured concentration at the in- and outflow of the system demonstrate a high mass removal rate, but the highly transient flow and transport processes in the system challenge the quantification of biodegradation and volatilization and their contribution to the observed mass removal. By a combination of conservative solute tracer tests, stable isotope fractionation and measurements of natural radon concentration is the treated groundwater is was possible to determine the contribution of biodegradation and volatilization to total mass removal. The results suggest that for the investigated volatile compounds biodegradation is the dominating mass removal process with volatilization contributing only to minor or negligible amounts. These results can be confirmed by reactive transport simulations and were further supported by laboratory studies showing that also gas phase gradients of volatile compounds can be affected by biodegradation suggesting the unsaturated zone to act as a biofilter for contaminants in the soil air.

  18. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Science.gov (United States)

    2010-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a...

  19. ECOS E-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database

    Energy Technology Data Exchange (ETDEWEB)

    Parisien, Lia [The Environmental Council Of The States, Washington, DC (United States)

    2016-01-31

    This final scientific/technical report on the ECOS e-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database provides a disclaimer and acknowledgement, table of contents, executive summary, description of project activities, and briefing/technical presentation link.

  20. Electrospun Polyurethane Fibers for Absorption of Volatile Organic Compounds from Air

    NARCIS (Netherlands)

    Scholten, E.; Bromberg, L.; Rutledge, G.C.; Hatton, T.A.

    2011-01-01

    Electrospun polyurethane fibers for removal of volatile organic compounds (VOC) from air with rapid VOC absorption and desorption have been developed. Polyurethanes based on 4,4-methylenebis(phenylisocyanate) (MDI) and aliphatic isophorone diisocyanate as the hard segments and butanediol and

  1. SCREENING PROCESSED MILK FOR VOLATILE ORGANIC COMPOUNDS USING VACUUM DISTILLATION/GAS CHROMATOGRAPHY/MASS SPECTROMETRY

    Science.gov (United States)

    An adaptation of Office of Solid Waste and Emergency Response' Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW-846) method 8261 to analyze milk for an expanded list of volatile organic compounds is presented. The milk matriz exhibits a strong affinity for o...

  2. Modeling emissions of volatile organic compounds from silage storages and feed lanes

    Science.gov (United States)

    An initial volatile organic compound (VOC) emission model for silage sources, developed using experimental data from previous studies, was incorporated into the Integrated Farm System Model (IFSM), a whole-farm simulation model used to assess the performance, environmental impacts, and economics of ...

  3. Emission of volatile organic compounds from silage: compounds, sources, and implications

    Science.gov (United States)

    Silage, fermented cattle feed, has recently been identified as a significant source of volatile organic compounds (VOCs) emitted to the atmosphere. A small number of studies have measured VOC emission from silage, but not enough is known about the processes involved to accurately quantify emission r...

  4. Emission of volatile organic compounds after land application of cattle manure

    Science.gov (United States)

    Beef cattle manure can serve as a valuable source of nutrients for crop production. However, emissions of volatile organic compounds (VOCs) following land application may pose an odor nuisance to downwind populations. This study was conducted to evaluate the effects of application method, diet, so...

  5. WORKSHOP REPORT - CONSIDERATIONS FOR DEVELOPING LEACHING TEST METHODS FOR SEMI- AND NON-VOLATILE ORGANIC COMPOUNDS

    Science.gov (United States)

    The report provides a summary of the information exchange at a workshop on the potential for release of semi- or non-volatile organic constituents at contaminated sites where sub-surface treatment has been used to control migration, and from waste that is disposed or re-used. The...

  6. Emission of volatile organic compounds as affected by rate of application of cattle manure

    Science.gov (United States)

    Beef cattle manure can serve as a valuable nutrient source for crop production. However, emissions of volatile organic compounds (VOCs) following land application may pose a potential off-site odor concern. This study was conducted to evaluate the effects of land application method, N- application...

  7. Can ornamental potted plants remove volatile organic compounds from indoor air? - a review

    DEFF Research Database (Denmark)

    Dela Cruz, Majbrit; Christensen, Jan H.; Thomsen, Jane Dyrhauge;

    2014-01-01

    Volatile organic compounds (VOCs) are found in indoor air, and many of these can affect human health (e.g. formaldehyde and benzene are carcinogenic). Plants affect the levels of VOCs in indoor environments, thus they represent a potential green solution for improving indoor air quality...

  8. MEASUREMENTS OF VOLATILE ORGANIC COMPOUNDS AND PARTICLES DURING APPLICATION OF LATEX PAINT WITH AN AIRLESS SPRAYER

    Science.gov (United States)

    The paper discusses experiments, conducted at EPA's Indoor Air Quality Research House, to measure airborne concentrations of volatile organic compounds (VOCs) and particles during and following the spray-application of latex wall paint. (NOTE: Paint may be applied indoors by a v...

  9. ISOTOPIC (14C) AND CHEMICAL COMPOSITION OF ATMOSPHERIC VOLATILE ORGANIC COMPOUND FRACTIONS - PRECURSORS TO OZONE FORMATION

    Science.gov (United States)

    Atmospheric volatile organic compounds (VOCs) are an important factor in the production of ozone near ground level [3]. Many hydrocarbons originate from auto exhaust. However, a number of VOCs, e.g., isoprene, are known to be natural in origin. To develop reliable models for un...

  10. Electrospun Polyurethane Fibers for Absorption of Volatile Organic Compounds from Air

    NARCIS (Netherlands)

    Scholten, E.; Bromberg, L.; Rutledge, G.C.; Hatton, T.A.

    2011-01-01

    Electrospun polyurethane fibers for removal of volatile organic compounds (VOC) from air with rapid VOC absorption and desorption have been developed. Polyurethanes based on 4,4-methylenebis(phenylisocyanate) (MDI) and aliphatic isophorone diisocyanate as the hard segments and butanediol and tetrame

  11. 77 FR 14324 - National Volatile Organic Compound Emission Standards for Aerosol Coatings-Addition of Dimethyl...

    Science.gov (United States)

    2012-03-09

    .... Email: a-and-r-docket@epa.gov . Fax: (202) 566-9744. Mail: U.S. Postal Service, send comments to: EPA... Factors AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: The EPA is proposing to amend the National Volatile Organic Compound Emission Standards for Aerosol Coatings final rule...

  12. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS FROM A LOWLAND TROPICAL WET FOREST IN COSTA RICA

    Science.gov (United States)

    Twenty common plant species were screened for emissions of biogenic volatile organic compounds (BVOCS) at a lowland tropical wet forest site in Costa Rica. Ten of the species. examined emitted substantial quantities of isoprene. These species accounted for 35-50% of the total bas...

  13. Removal of H2S and volatile organic sulfur compounds by silicone membrane extraction

    NARCIS (Netherlands)

    Manconi, I.; Lens, P.N.L.

    2009-01-01

    BACKGROUND: This study explores an alternative process for the abatement and/or desulfurization of H2S and volatile organic sulfur compounds (VOSC) containing waste streams, which employs a silicone-based membrane to simultaneously remove H2S and VOSC. An extractive membrane reactor allows the selec

  14. Cold Temperature and Biodiesel Fuel Effects on Speciated Emissions of Volatile Organic Compounds from Diesel Trucks

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) were measured in diesel exhaust from three medium heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a chassis dynamometer at two ambient temperatures (-6.7°C and 21.7°C) operating on ...

  15. Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget

    NARCIS (Netherlands)

    Kesselmeier, J.; Ciccioli, P.; Kuhn, U.; Stefani, P.; Biesenthal, T.; Rottenberger, S.; Wolf, A.; Vitullo, M.; Valentini, R.; Nobre, A.; Kabat, P.; Andreae, M.O.

    2002-01-01

    A substantial amount of carbon is emitted by terrestrial vegetation as biogenic volatile organic compounds (VOC), which contributes to the oxidative capacity of the atmosphere, to particle production and to the carbon cycle. With regard to the carbon budget of the terrestrial biosphere, a release of

  16. Removal of volatile organic compounds in vertical flow filters: predictions from Reactive Transport Modeling

    NARCIS (Netherlands)

    De Biase, C.; Maier, U.; Baeder-Bederski, O.; Bayer, P.; Oswald, S.E.; Thullner, M.

    2011-01-01

    Vertical flow filters are containers filled with porous medium that are recharged from top and drained at the bottom, and are operated at partly saturated conditions. They have recently been suggested as treatment technology for groundwater containing volatile organic compounds (VOCs). Numerical rea

  17. Removal of volatile organic compounds in vertical flow filters: predictions from Reactive Transport Modeling

    NARCIS (Netherlands)

    De Biase, C.; Maier, U.; Baeder-Bederski, O.; Bayer, P.; Oswald, S.E.; Thullner, M.

    2011-01-01

    Vertical flow filters are containers filled with porous medium that are recharged from top and drained at the bottom, and are operated at partly saturated conditions. They have recently been suggested as treatment technology for groundwater containing volatile organic compounds (VOCs). Numerical rea

  18. Volatile Organic Compound Emissions from USAF Wastewater Treatment Plants in Ozone Nonattainment Areas

    Science.gov (United States)

    1994-09-01

    Levels," in Toxicity Reduction in Industrial Effluents. Editors P.W. Lankford and W.W. Eckenfelder , Jr. New York NY: Van Nostrand Reinhold, 1990. 50...Argaman, Yerachmiel. "Stripping of Volatile Organics," in Toxicity Reduction in Industrial Effluents. Editors P.W. Lankford and W.W. Eckenfelder , Jr New

  19. Treatment of volatile organic contaminants in a vertical flow filter: Relevance of different removal processes

    NARCIS (Netherlands)

    De Biase, C.; Reger, D.; Schmidt, A.; Jechalke, S.; Reiche, N.; Martínez-Lavanchy, P.M.; Rosell, M.; Van Afferden, M.; Maier, U.; Oswald, S.E.; Thullner, M.

    2011-01-01

    Vertical flow filters and vertical flow constructed wetlands are established wastewater treatment systems and have also been proposed for the treatment of contaminated groundwater. This study investigates the removal processes of volatile organic compounds in a pilot-scale vertical flow filter. The

  20. Development of the colorimetric sensor array for detection of explosives and volatile organic compounds in air

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Alstrøm, Tommy Sonne; Johnsen, C

    2010-01-01

    In the framework of the research project 'Xsense' at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT and TNT, and identification of volatile organic compounds in the presence of water vapor in air...

  1. FINAL REPORT: MEMBRANE-MEDIATED EXTRACTION AND BIODEGRADATION OF VOLATILE ORGANIC COMPOUNDS FROM AIR

    Science.gov (United States)

    The report describes feasibility tests of a two-step strategy for air pollution control applicable to exhaust air contaminated with volatile organic compounds (VOCs) from painting aircraft. In the first step, the VOC-contaminated air passes over coated, polypropylene, hollow-fibe...

  2. Detection of diseased plants by analysis of volatile organic compound emission

    NARCIS (Netherlands)

    Jansen, R.M.C.; Wildt, J.; Kappers, I.F.; Bouwmeester, H.J.; Hofstee, J.W.; Henten, van E.

    2011-01-01

    This review focuses on the detection of diseased plants by analysis of volatile organic compound (VOC) emissions. It includes an overview of studies that report on the impact of infectious and noninfectious diseases on these emissions and discusses the specificity of disease-induced emissions. The

  3. A POLYMER-CERAMIC COMPOSITE MEMBRANE FOR RECOVERING VOLATILE ORGANIC COMPOUNDS FROM WASTEWATERS BY PERVAPORATION

    Science.gov (United States)

    A composite membrane was constructed on a porous ceramic support from a block copolymer of styrene and butadiene (SBS). It was tested in a laboratory pervaporation apparatus for recovering volatile organic compounds (VOCs) such a 1,1,1-trichloroethane (TCA) and trichloroethylene ...

  4. OPTIMIZATION OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER

    Science.gov (United States)

    Optimal operation of a hollow fiber membrane module for pervaporative removal of multicomponent volatile organic compounds (VOCs) from wastewater was studied. A shell-and-tube heat-exchange type of hollow fiber module was considered for treatment of a wastewater containing toluen...

  5. Removal of volatile organic compounds in vertical flow filters: predictions from Reactive Transport Modeling

    NARCIS (Netherlands)

    De Biase, C.; Maier, U.; Baeder-Bederski, O.; Bayer, P.; Oswald, S.E.; Thullner, M.

    2011-01-01

    Vertical flow filters are containers filled with porous medium that are recharged from top and drained at the bottom, and are operated at partly saturated conditions. They have recently been suggested as treatment technology for groundwater containing volatile organic compounds (VOCs). Numerical

  6. Design and Analysis of SAW Based MEMS Gas Sensor for the Detection of Volatile Organic Gases

    Directory of Open Access Journals (Sweden)

    Staline Johnson

    2014-03-01

    Full Text Available This paper portrays the design and analysis of SAW based MEMS gas sensor for the detection of volatile organic gases. The gas sensor consists of interdigitated transducers modeled on a piezoelectric substrate and covered by a thin film of polyisobutylene (PIB which acts as the sensing layer. The piezoelectric substrate material used is YZ cut Lithium Niobate (LiNbO3 and electrodes used are made of Aluminium (Al. Mass loading effect on the sensing layer is used for the detection of volatile organic gases. The design and simultions were carried out by using comsol multiphysics software based on Finite Element Method (FEM for analytical simulations. The resonant frequency of the SAW device was determined and simulations are carried out by exposing the sensor to 100 ppm of various volatile organic gases and corresponding shift in resonant frequency for various gases are determined. The reduction in the resonant frequency is used for the detection of volatile organic gases such as chloromethane, dichloromethane, trichloromethane, tetrachloroethene, carbon tetrachloride and trichloroethylene.

  7. Detection of diseased plants by analysis of volatile organic compound emission

    NARCIS (Netherlands)

    Jansen, R.M.C.; Wildt, J.; Kappers, I.F.; Bouwmeester, H.J.; Hofstee, J.W.; Henten, van E.

    2011-01-01

    This review focuses on the detection of diseased plants by analysis of volatile organic compound (VOC) emissions. It includes an overview of studies that report on the impact of infectious and noninfectious diseases on these emissions and discusses the specificity of disease-induced emissions. The r

  8. Structure of phase-separated ferroelectric/ semiconducting polymer blends for organic non-volatile memories

    NARCIS (Netherlands)

    Mcneill, C.R.; Asadi, K.; Watts, B.; Blom, P.W.M.; Leeuw, D.M. de

    2010-01-01

    The phase-separated structure of blends of the ferroelectric polymer P(VDF-TrFE) and the semiconducting polymer P3HT used in organic non-volatile memories is revealed with soft X-ray spectromicroscopy. These thin-film blends show a columnar morphology, with P3HT-rich columns enclosed in a continuous

  9. Treatment of volatile organic contaminants in a vertical flow filter: Relevance of different removal processes

    NARCIS (Netherlands)

    De Biase, C.; Reger, D.; Schmidt, A.; Jechalke, S.; Reiche, N.; Martínez-Lavanchy, P.M.; Rosell, M.; Van Afferden, M.; Maier, U.; Oswald, S.E.; Thullner, M.

    2011-01-01

    Vertical flow filters and vertical flow constructed wetlands are established wastewater treatment systems and have also been proposed for the treatment of contaminated groundwater. This study investigates the removal processes of volatile organic compounds in a pilot-scale vertical flow filter.

  10. Analysis of selected volatile organic compounds at background level in South Africa.

    Science.gov (United States)

    Ntsasa, Napo; Tshilongo, James; Lekoto, Goitsemang

    2017-04-01

    Volatile organic compounds (VOC) are measured globally at urban air pollution monitoring and background level at specific locations such as the Cape Point station. The urban pollution monitoring is legislated at government level; however, the background levels are scientific outputs of the World Meteorological Organisation Global Atmospheric Watch program (WMO/GAW). The Cape Point is a key station in the Southern Hemisphere which monitors greenhouse gases and halocarbons, with reported for over the past decade. The Cape Point station does not have the measurement capability VOC's currently. A joint research between the Cape Point station and the National Metrology Institute of South Africa (NMISA) objective is to perform qualitative and quantitative analysis of volatile organic compounds listed in the GAW program. NMISA is responsible for development, maintain and disseminate primary reference gas mixtures which are directly traceable to the International System of Units (SI) The results of some volatile organic compounds which where sampled in high pressure gas cylinders will be presented. The analysis of samples was performed on the gas chromatography with flame ionisation detector and mass selective detector (GC-FID/MSD) with a dedicate cryogenic pre-concentrator system. Keywords: volatile organic compounds, gas chromatography, pre-concentrator

  11. INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.

    Science.gov (United States)

    INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS. A.S. Bale*; P.J. Bushnell; C.A. Meacham; T.J. Shafer Neurotoxicology Division, NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, NC, USA Toluene (TOL...

  12. INHIBITION OF HUMAN A7 NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS BY THE VOLATILE ORGANIC SOLVENT TRICHLOROETHYLENE.

    Science.gov (United States)

    Volatile organic compounds such as toleune, trichloroethylene and perchloroethylene are potent and reversible blockers of voltage-gated calcium current in nerve growth factor (NGF)-differentiated pheochromocytoma (PC12) cells. It is hypothesized that effects of VOCs on ICa contri...

  13. Volatile organic compound emmission rates from mixed deciduous and coniferous foest in Northern Wisconsin, USA

    Science.gov (United States)

    J. G. Isebrands; A. B. Guenther; P. Harley; D. Helmig; L. Klinger; L. Vierling; P. Zimmerman; C. Geron

    1999-01-01

    Biogenic emissions of volatile organic compounds {VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regions of the world to understand regional and global impacts and to implement possible...

  14. Flexible non-volatile memory devices based on organic semiconductors

    Science.gov (United States)

    Cosseddu, Piero; Casula, Giulia; Lai, Stefano; Bonfiglio, Annalisa

    2015-09-01

    The possibility of developing fully organic electronic circuits is critically dependent on the ability to realize a full set of electronic functionalities based on organic devices. In order to complete the scene, a fundamental element is still missing, i.e. reliable data storage. Over the past few years, a considerable effort has been spent on the development and optimization of organic polymer based memory elements. Among several possible solutions, transistor-based memories and resistive switching-based memories are attracting a great interest in the scientific community. In this paper, a route for the fabrication of organic semiconductor-based memory devices with performances beyond the state of the art is reported. Both the families of organic memories will be considered. A flexible resistive memory based on a novel combination of materials is presented. In particular, high retention time in ambient conditions are reported. Complementary, a low voltage transistor-based memory is presented. Low voltage operation is allowed by an hybrid, nano-sized dielectric, which is also responsible for the memory effect in the device. Thanks to the possibility of reproducibly fabricating such device on ultra-thin substrates, high mechanical stability is reported.

  15. OCCURRENCE & CHEMISTRY OF ORGANIC COMPOUNDS IN HANFORD SITE WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    STOCK, L.M.; MEACHAM, J.E.

    2004-07-29

    Volatile and semivolatile organic compounds continuously evolve from the waste tanks at the Hanford Site. Some are identical to the compounds originally transferred to tanks and others are formed through interdependent chemical and radiolytic reactions. This document provides a technical basis for understanding the chemical consequences of long term storage, sluicing, the addition of chemicals, and the prediction of other organic compounds that may be present in the wastes.

  16. RECEPTOR MODEL COMPARISONS AND WIND DIRECTION ANALYSES OF VOLATILE ORGANIC COMPOUNDS AND SUBMICROMETER PARTICLES IN AN ARID, BINATIONAL, URBAN AIRSHED

    Science.gov (United States)

    The relationship between continuous measurements of volatile organic compounds sources and particle number was evaluated at a Photochemical Assessment Monitoring Station Network (PAMS) site located near the U.S.-Mexico Border in central El Paso, TX. Sources of volatile organic...

  17. Volatile Metabolites

    Directory of Open Access Journals (Sweden)

    Daryl D. Rowan

    2011-11-01

    Full Text Available Volatile organic compounds (volatiles comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites.

  18. Sensing of volatile organic compounds by copper phthalocyanine thin films

    Science.gov (United States)

    Ridhi, R.; Saini, G. S. S.; Tripathi, S. K.

    2017-02-01

    Thin films of copper phthalocyanine have been deposited by thermal evaporation technique. We have subsequently exposed these films to the vapours of methanol, ethanol and propanol. Optical absorption, infrared spectra and electrical conductivities of these films before and after exposure to chemical vapours have been recorded in order to study their sensing mechanisms towards organic vapours. These films exhibit maximum sensing response to methanol while low sensitivities of the films towards ethanol and propanol have been observed. The changes in sensitivities have been correlated with presence of carbon groups in the chemical vapours. The effect of different types of electrodes on response-recovery times of the thin film with organic vapours has been studied and compared. The electrodes gap distance affects the sensitivity as well as response-recovery time values of the thin films.

  19. ORGANIC VOLATILE IMPURITIES AND THEIR REGULATORY LIMITS: A PHARMACEUTICL PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    VIVEK CHAVDA

    2013-01-01

    Full Text Available Impurities in drug substances and drug products have been important regulatory issues in the Office of Generic Drugs by having significant impact on the approvability of Abbreviated New Drug Application (ANDAs. Organic solvents are commonly used in the pharmaceutical industry as reaction media, in separation and purification of synthesis products and also for cleaning of equipments. As residual solvents are not desirable substances in a final product, different methods for their removal may be used, provided they fulfill safety criteria. After the drying process, analysis need to be performed to check if amounts of solvents used at any step of the production do not exceed acceptable limits (taken from ICH Guideline or from pharmacopoeias. Also new solvents like supercritical fluids or ionic liquids are developed to replace traditional organic solvents in the pharmaceutical production processes. This review was grafted to provide information regarding OVI and/or residual solvent.

  20. A luminescent mixed-lanthanide-organic framework sensor for decoding different volatile organic molecules.

    Science.gov (United States)

    Zhan, Chao; Ou, Sha; Zou, Chao; Zhao, Min; Wu, Chuan-De

    2014-07-01

    A flexible tripodal polyaromatic acid (4,4',4″-(((2,4,6-trimethylbenzene-1,3,5-triyl)-tris(methylene))-tris(oxy))tribenzoic acid, H3TCM) was used to adapt the coordination sites of lanthanide ions for the construction of microporous lanthanide-organic frameworks (LOFs) [LnTCM(H2O)2]·3DMF·H2O (Ln-TCM; Ln = La, Eu, and/or Tb). In these LOFs, the emission band of TCM matches well with the excitation energy of lanthanide ions (Eu(3+) and Tb(3+)) which results in high-efficient resonance energy transfer from TCM to lanthanide ions. Moreover, the mixed EuxTb1-x-TCM has tunable pores to adapt different induced-fit-type host-guest interactions which can modulate both the energy transfer efficiency from TCM to Ln(3+) ions and the energy allocation between Eu(3+) and Tb(3+) ions in the luminescence spectra. We demonstrate that the Eu(x)Tb(1-x)-TCM sensor has the capability of decoding different volatile organic molecules (VOMs) with a clearly differentiable and unique emission intensity ratio of (5)D0 → (7)F2 (Eu(3+), 614 nm) to (5)D4 → (7)F5 (Tb(3+), 545 nm) transitions for every different VOM. Compared with the traditional absolute emission intensity method, such a self-referencing emission intensity strategy has generated self-calibrating, highly differentiable, and very stable luminescent signals for decoding different VOMs from the unique Eu(x)Tb(1-x)-TCM platform, which has great potential for practical applications.

  1. The prey's scent - Volatile organic compound mediated interactions between soil bacteria and their protist predators.

    Science.gov (United States)

    Schulz-Bohm, Kristin; Geisen, Stefan; Wubs, E R Jasper; Song, Chunxu; de Boer, Wietse; Garbeva, Paolina

    2017-03-01

    Protists are major predators of bacteria in soils. However, it remains unknown how protists sense their prey in this highly complex environment. Here, we investigated whether volatile organic compounds (VOCs) of six phylogenetic distinct soil bacteria affect the performance of three different soil protists and how that relates to direct feeding interactions. We observed that most bacteria affected protist activity by VOCs. However, the response of protists to the VOCs was strongly dependent on both the bacterial and protist interacting partner. Stimulation of protist activity by volatiles and in direct trophic interaction assays often coincided, suggesting that VOCs serve as signals for protists to sense suitable prey. Furthermore, bacterial terpene synthase mutants lost the ability to affect protists, indicating that terpenes represent key components of VOC-mediated communication. Overall, we demonstrate that volatiles are directly involved in protist-bacterial predator-prey interactions.

  2. Attraction of the gypsy moth to volatile organic compounds (VOCs) of damaged Dahurian larch.

    Science.gov (United States)

    Li, Jing; Valimaki, Sanna; Shi, Juan; Zong, Shixiang; Luo, Youqing; Heliovaara, Kari

    2012-01-01

    Olfactory responses of the gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae), a major defoliator of deciduous trees, were examined in Inner Mongolia, China. We studied whether the gypsy moth adults are attracted by the major volatile organic compounds (VOCs) of damaged Larix gmelinii (Dahurian larch) foliage and compared the attractiveness of the plant volatiles with that of the synthetic sex pheromone. Our results indicated that the VOCs of the Dahurian larch were effective in attracting gypsy moth males especially during the peak flight period. The VOCs also attracted moths significantly better than the sex pheromone of the moth. Our study is the first trial to show the responses of adult gypsy moths to volatile compounds emitted from a host plant. Electroantennogram responses of L. gmelinii volatiles on gypsy moths supported our field observations. A synergistic effect between host plant volatiles and sex pheromone was also obvious, and both can be jointly applied as a new attractant method or population management strategy of the gypsy moth.

  3. Emission of volatile organic compounds and production of secondary organic aerosol from stir-frying spices.

    Science.gov (United States)

    Liu, Tengyu; Liu, Qianyun; Li, Zijun; Huo, Lei; Chan, ManNin; Li, Xue; Zhou, Zhen; Chan, Chak K

    2017-12-01

    Cooking is an important source of volatile organic compounds (VOCs) and a potential source of secondary organic aerosol (SOA) both indoors and outdoors. In this study, VOC emissions from heating corn oil and stir-frying spices (i.e. garlic, ginger, myrcia and zanthoxylum piperitum (Sichuan pepper)) were characterized using an on-line membrane inlet vacuum ultraviolet single-photon ionization time-of-flight mass spectrometer (VUV-SPI-TOFMS). VOC emissions from heating corn oil were dominated by aldehydes, which were enhanced by factors of one order of magnitude when stir-frying spices. Stir-frying any of the spices studied generated large amounts of methylpyrrole (m/z 81). In addition, stir-frying garlic produced abundant dihydrohydroxymaltol (m/z 144) and diallyldisulfide (DADS) (m/z 146), while stir-frying ginger, myrcia and zanthoxylum piperitum produced abundant monoterpenes (m/z 136) and terpenoids (m/z 152, 154). SOA formed from emissions of stir-frying spices through reactions with excess ozone in a flow reactor as well as primary organic aerosol (POA) emissions were characterized using a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS). Stir-frying garlic and ginger generated similar POA concentrations to those from heating corn oil while stir-frying myrcia and zanthoxylum piperitum generated double the amount of emissions. No SOA was observed from stir-frying garlic and ginger. The rates of SOA production from stir-frying myrcia and zanthoxylum piperitum were 1.8μgmin(-1)gspice(-1) and 8.7μgmin(-1)gspice(-1), equivalent to 13.4% and 53.1% of their own POA emission rates, respectively. Therefore, the contribution of stir-frying spices to ambient organic aerosol levels is likely dominated by POA. The rates of total terpene emission from stir-frying myrcia and zanthoxylum piperitum were estimated to be 5.1μgmin(-1)gspice(-1) and 24.9μgmin(-1)gspice(-1), respectively. Our results suggest

  4. Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory

    Science.gov (United States)

    Ng, Tse Nga; Schwartz, David E.; Lavery, Leah L.; Whiting, Gregory L.; Russo, Beverly; Krusor, Brent; Veres, Janos; Bröms, Per; Herlogsson, Lars; Alam, Naveed; Hagel, Olle; Nilsson, Jakob; Karlsson, Christer

    2012-08-01

    Scalable circuits of organic logic and memory are realized using all-additive printing processes. A 3-bit organic complementary decoder is fabricated and used to read and write non-volatile, rewritable ferroelectric memory. The decoder-memory array is patterned by inkjet and gravure printing on flexible plastics. Simulation models for the organic transistors are developed, enabling circuit designs tolerant of the variations in printed devices. We explain the key design rules in fabrication of complex printed circuits and elucidate the performance requirements of materials and devices for reliable organic digital logic.

  5. Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory

    Science.gov (United States)

    Ng, Tse Nga; Schwartz, David E.; Lavery, Leah L.; Whiting, Gregory L.; Russo, Beverly; Krusor, Brent; Veres, Janos; Bröms, Per; Herlogsson, Lars; Alam, Naveed; Hagel, Olle; Nilsson, Jakob; Karlsson, Christer

    2012-01-01

    Scalable circuits of organic logic and memory are realized using all-additive printing processes. A 3-bit organic complementary decoder is fabricated and used to read and write non-volatile, rewritable ferroelectric memory. The decoder-memory array is patterned by inkjet and gravure printing on flexible plastics. Simulation models for the organic transistors are developed, enabling circuit designs tolerant of the variations in printed devices. We explain the key design rules in fabrication of complex printed circuits and elucidate the performance requirements of materials and devices for reliable organic digital logic. PMID:22900143

  6. Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory.

    Science.gov (United States)

    Ng, Tse Nga; Schwartz, David E; Lavery, Leah L; Whiting, Gregory L; Russo, Beverly; Krusor, Brent; Veres, Janos; Bröms, Per; Herlogsson, Lars; Alam, Naveed; Hagel, Olle; Nilsson, Jakob; Karlsson, Christer

    2012-01-01

    Scalable circuits of organic logic and memory are realized using all-additive printing processes. A 3-bit organic complementary decoder is fabricated and used to read and write non-volatile, rewritable ferroelectric memory. The decoder-memory array is patterned by inkjet and gravure printing on flexible plastics. Simulation models for the organic transistors are developed, enabling circuit designs tolerant of the variations in printed devices. We explain the key design rules in fabrication of complex printed circuits and elucidate the performance requirements of materials and devices for reliable organic digital logic.

  7. Remove volatile organic compounds (VOCs) with membrane separation techniques

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techniques are an efficient and energy-saving technology. Vapor permeation can be applied to recovery of organic solvents from exhaust streams. Membrane contactor could be used for removing or recovering VOCs from air or wastewater. Pervaporation and vapor permeation are viable methods for removing VOCs from wastewater to yield a VOC concentrate which could either be destroyed by conventional means, or be recycled for reuse.

  8. Overview of one transistor type of hybrid organic ferroelectric non-volatile memory

    Institute of Scientific and Technical Information of China (English)

    Young; Tea; Chun; Daping; Chu

    2015-01-01

    Organic ferroelectric memory devices based on field effect transistors that can be configured between two stable states of on and off have been widely researched as the next generation data storage media in recent years.This emerging type of memory devices can lead to a new instrument system as a potential alternative to previous non-volatile memory building blocks in future processing units because of their numerous merits such as cost-effective process,simple structure and freedom in substrate choices.This bi-stable non-volatile memory device of information storage has been investigated using several organic or inorganic semiconductors with organic ferroelectric polymer materials.Recent progresses in this ferroelectric memory field,hybrid system have attracted a lot of attention due to their excellent device performance in comparison with that of all organic systems.In this paper,a general review of this type of ferroelectric non-volatile memory is provided,which include the device structure,organic ferroelectric materials,electrical characteristics and working principles.We also present some snapshots of our previous study on hybrid ferroelectric memories including our recent work based on zinc oxide nanowire channels.

  9. Distribution of volatile organic compounds in Madrid (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Pastor, R.M.; Garcia-Alonso, S.; Quejido Cabezas, A.J. [CIEMAT, Madrid (Spain)

    1999-07-01

    From November 1995 to October 1996, airborne concentrations of VOCs were measured in the Madrid area to study the organic pollution in general, and the correlation between different pollutants in relation to such parameters as location and season. Mean concentrations for up to 90 compounds were measured at four test sites, including both urban and suburban areas. At the urban sites, maximum concentrations occurred in the autumn and winter, whereas minimum concentrations were reached in summer and spring. Similar changes were obtained for the less-contaminated site located in the SE of the city, whereas a different pattern was found at the site in the NW of the city due to meteorological aspects. Mean levels of hydrocarbons in Madrid were quite similar to those found in other European cities. Chemometrical techniques were applied to the set of data in order to assess the influence of such factors as traffic, temperature and seasonal variations on the VOC levels. (orig.)

  10. Analysis of organic volatile flavor compounds in fermented stinky tofu using SPME with different fiber coatings.

    Science.gov (United States)

    Liu, Yuping; Miao, Zhiwei; Guan, Wei; Sun, Baoguo

    2012-03-26

    The organic volatile flavor compounds in fermented stinky tofu (FST) were studied using SPME-GC/MS. A total of 39 volatile compounds were identified, including nine esters, seven alcohols, five alkenes, four sulfides, three heterocycles, three carboxylic acids, three ketones, two aldehydes, one phenol, one amine and one ether. These compounds were determined by MS, and conformed by comparison of the retention times of the separated constituents with those of authentic samples and by comparison of retention indexes (RIs) of separated constituents with the RIs reported in the literature. The predominant volatile compound in FST was indole, followed by dimethyl trisulfide, phenol, dimethyl disulfide and dimethyl tetrasulfide. In order to find a better extraction time, the extraction times was optimized for each type of SPME fiber; the results show that the best extraction time for Carboxen/PDMS is 60 min, for PDMS/DVB 30 min, for DVB/CAR/PDMS 60 min and for PDMS 75 min. Of the four fibers used in this work, Carboxen/PDMS is found to be the most suitable to extract the organic volatile flavor compounds in fermented stinky tofu.

  11. Analysis of Organic Volatile Flavor Compounds in Fermented Stinky Tofu Using SPME with Different Fiber Coatings

    Directory of Open Access Journals (Sweden)

    Wei Guan

    2012-03-01

    Full Text Available The organic volatile flavor compounds in fermented stinky tofu (FST were studied using SPME-GC/MS. A total of 39 volatile compounds were identified, including nine esters, seven alcohols, five alkenes, four sulfides, three heterocycles, three carboxylic acids, three ketones, two aldehydes, one phenol, one amine and one ether. These compounds were determined by MS, and conformed by comparison of the retention times of the separated constituents with those of authentic samples and by comparison of retention indexes (RIs of separated constituents with the RIs reported in the literature. The predominant volatile compound in FST was indole, followed by dimethyl trisulfide, phenol, dimethyl disulfide and dimethyl tetrasulfide. In order to find a better extraction time, the extraction times was optimized for each type of SPME fiber; the results show that the best extraction time for Carboxen/PDMS is 60 min, for PDMS/DVB 30 min, for DVB/CAR/PDMS 60 min and for PDMS 75 min. Of the four fibers used in this work, Carboxen/PDMS is found to be the most suitable to extract the organic volatile flavor compounds in fermented stinky tofu.

  12. Development of a direct exposure system for studying the mechanisms of central neurotoxicity caused by volatile organic compounds

    OpenAIRE

    2015-01-01

    Many volatile organic compounds (VOCs) used in work places are neurotoxic. However, it has been difficult to study the cellular mechanisms induced by a direct exposure to neurons because of their high volatility. The objective of this study was to establish a stable system for exposing brain slices to VOCs. With a conventional recording system for brain slices, it is not possible to keep a constant bath concentration of relatively highly volatile solvents, e.g. 1-bromopropane (1-BP). Here we ...

  13. Poly(L-aspartic acid) derivative soluble in a volatile organic solvent for biomedical application.

    Science.gov (United States)

    Oh, Nam Muk; Oh, Kyung Taek; Youn, Yu Seok; Lee, Eun Seong

    2012-09-01

    In order to develop a novel functional poly(L-amino acid) that can dissolve in volatile organic solvents, we prepared poly[L-aspartic acid-g-(3-diethylaminopropyl)]-b-poly(ethylene glycol) [poly(L-Asp-g-DEAP)-b-PEG] via the conjugation of 3-diethylaminopropyl (DEAP) to carboxylate groups of poly(L-Asp) (M(n) 4 K)-b-PEG (M(n) 2 K). This poly(L-aspartic acid) derivative evidenced a relatively high solubility in volatile organic solvents such as dichloromethane, chloroform, and acetone. We fabricated a model nanostructure (i.e., polymeric micelle) using poly(L-Asp-g-DEAP)-b-PEG by the film rehydration method, which involves the simple removal of the volatile organic solvent (dichloromethane) used to dissolve polymer, reducing concerns about organic solvents remaining in a nano-sized particle. Interestingly, this micelle showed the pH-stimulated release of encapsulated model drug [i.e., doxorubicin (DOX)] due to the protonation of DEAP according to the pH of the solution. We expect that this poly(L-aspartic acid) derivative promises to provide pharmaceutical potential for constituting a new stimuli-sensitive drug carrier for various drug molecules.

  14. Studies of volatiles and organic materials in early terrestrial and present-day outer solar system environments

    Science.gov (United States)

    Sagan, Carl; Thompson, W. Reid; Chyba, Christopher F.; Khare, B. N.

    1991-01-01

    A review and partial summary of projects within several areas of research generally involving the origin, distribution, chemistry, and spectral/dielectric properties of volatiles and organic materials in the outer solar system and early terrestrial environments are presented. The major topics covered include: (1) impact delivery of volatiles and organic compounds to the early terrestrial planets; (2) optical constants measurements; (3) spectral classification, chemical processes, and distribution of materials; and (4) radar properties of ice, hydrocarbons, and organic heteropolymers.

  15. Measurement of surface emission flux rates for volatile organic compounds at Technical Area 54

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo, V.; Morgenstern, M.; Krier, D. [Los Alamos National Lab., NM (United States); Gilkeson, R. [Weirich and Associates, Albuquerque, NM (United States)

    1998-06-01

    The survey described in this report was conducted to estimate the mass of volatile organic compounds venting to the atmosphere from active and inactive waste disposal sites at Technical Area 54. A large number of nonintrusive passive sample collection devices were placed on the ground surface for 72 hours to characterize an area of approximately 150 acres. Results provided an indication of the boundary location of the known volatile organic plume, plume constituents, and isolated high concentration areas. The data from this survey enhanced existing data from a limited number of monitor wells currently used for plume surveillance. Results indicate that the estimated mass emission to the atmosphere is orders of magnitude lower than what is considered a small flux rate at a spill site or a Resource Conservation and Recovery Act landfill and is far below the threshold limit established by the State of New Mexico as an air quality concern.

  16. Prediction of air to liver partition coefficient for volatile organic compounds using QSAR approaches.

    Science.gov (United States)

    Dashtbozorgi, Zahra; Golmohammadi, Hassan

    2010-06-01

    In this work a quantitative structure-activity relationship (QSAR) technique was developed to investigate the air to liver partition coefficient (log Kliver) for volatile organic compounds (VOCs). Suitable set of molecular descriptors was calculated and the important descriptors were selected by GA-PLS methods. These variables were served as inputs to generate neural networks. After optimization and training of the networks, they were used for the calculation of log Kliver for the validation set. The root mean square errors for the neural network calculated log Kliver of training, test, and validation sets are 0.100, 0.091, and 0.112, respectively. Results obtained reveal the reliability and good predictivity of neural network for the prediction of air to liver partition coefficient for volatile organic compounds.

  17. [Emission characteristics and hazard assessment analysis of volatile organic compounds from chemical synthesis pharmaceutical industry].

    Science.gov (United States)

    Li, Yan; Wang, Zhe-Ming; Song, Shuang; Xu, Zhi-Rong; Xu, Ming-Zhu; Xu, Wei-Li

    2014-10-01

    In this study, volatile organic compounds (VOCs) released from chemical synthesis pharmaceutical industry in Taizhou, Zhejiang province were analyzed quantitatively and qualitatively. The total volatile organic compounds (TVOCs) was in the range of 14.9-308.6 mg · m(-3). Evaluation models of ozone formation potentials (OFP) and health risk assessment were adopted to preliminarily assess the environmental impact and health risk of VOCs. The results showed that the values of OFP of VOCs were in the range of 3.1-315.1 mg · m(-3), based on the maximum incremental reactivity, the main principal contribution was toluene, tetrahydrofuran (THF), acetic ether etc. The non-carcinogenic risk and the carcinogen risk fell in the ranges of 9.48 x 10(-7)-4.98 x 10(-4) a(-1) and 3.17 x 10(-5)- 6.33 x 10(-3). The principal contribution of VOCs was benzene, formaldehyde and methylene chloride.

  18. A method for the combined measurement of volatile and condensable organic AMC in semiconductor applications

    Science.gov (United States)

    Miller, Charles M.; Zaloga, Emily C.; Lobert, Jürgen M.

    2014-04-01

    Monitoring airborne molecular contamination (AMC) at the parts per trillion (ppt) level in cleanroom environments, scanner applications and compressed gas lines is essential for processes, equipment and yield-control. For the operation of EUV tools, in particular, volatile organic contamination is known to have as much impact as condensable organic compounds, which requires a suitable sampling and measurement methodology. Some of the current industry standards use sample traps comprised of porous 2,6-diphenylene-oxide polymer resin, such as Tenax®, for measuring volatile organic (6 C atoms, about toluene and higher) AMC. Inherent problems associated with these traps are a number of artifacts and chemical reactions that reduce accuracy of reported organic AMC concentrations. The break-down of the polymeric material forms false positive artifacts when used in the presence of reactive gases, such as nitrous acid and ozone, which attack and degrade the polymer to form detectable AMC. Most importantly, these traps have poor capture efficiency for volatile organic compounds (VOC). To address the disadvantages of polymer-based sample traps, we developed a method based on carbonaceous, multi-layered adsorbent traps to replace the 2,6-diphenylene-oxide polymer resin sample trap type. Along with the new trap's ability to retain volatile organics, the trap was found to provide artifact-free results. With industry trends towards detecting more contaminants while continuously reducing required reporting limits for those compounds, artifact-free and accurate detection of AMC is needed at the parts per quadrillion (ppq) level. The proposed, multi-layered trap substantially increases laboratory productivity and reduces cost by eliminating the need to analyze condensable and volatile organic compounds in two separate methods. In our studies, even some organic compounds with six C-atoms, that are part of exposure tool OEM requirements, were not effectively retained by polymeric

  19. Performance specifications for technology development: Application for characterization of volatile organic compounds in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, S.E.; Doskey, P.V.; Erickson, M.D.; Lindahl, P.C.

    1994-07-01

    This report contains information about technology development for the monitoring and remediation of environmental pollution caused by the release of volatile organic compounds. Topics discussed include: performance specification processes, gas chromatography, mass spectrometer, fiber-optic chemical sensors, infrared spectroscopy, Raman spectroscopy, piezoelectric sensors and electrochemical sensors. These methods are analyzed for their cost efficiency, accuracy, and the ability to meet the needs of the customer.

  20. Non-methane volatile organic compound flux from a subarctic mire in Northern Sweden

    OpenAIRE

    Bäckstrand, Kristina; Crill, Patrick M.; Mastepanov, Mikhail; Christensen, Torben R.; Bastviken, David

    2011-01-01

    Biogenic NMVOCs are mainly formed by plants and microorganisms. They have strong impact on the local atmospheric chemistry when emitted to the atmosphere. The objective of this study was to determine if there are significant emissions of non-methane volatile organic compounds (NMVOCs) from a subarctic mire in northern Sweden. Subarctic peatlands in discontinuous permafrost regions are undergoing substantial environmental changes due to their high sensitivity to climate warming and there is ne...

  1. Sensory eye irritation in humans exposed to mixtures of volatile organic compounds

    DEFF Research Database (Denmark)

    Hempel-Jørgensen, Anne Hempel; Kjærgaard, Søren K.; Mølhave, Lars;

    1999-01-01

    Eight subjects participated in a controlled eyes-only exposure study of human sensory irritation in ocular mucosal tissue. The authors investigated dose-response properties and the additive effects of three mixtures of volatile organic compounds. The dose-response relationships for these mixtures...... to as simple agonism. Finally, the authors addressed the comparability of two methods to measure sensory irritation intensity (visual analogue scale and a comparative scale). The results indicated that the two rating methods produced highly comparable results....

  2. Bioactive and volatile organic compounds in Southern Brazilian blackberry (Rubus Fruticosus) fruit cv. Tupy

    OpenAIRE

    Andressa Carolina Jacques; Fábio Clasen Chaves; Rui Carlos Zambiazi; Márcia Campos Brasil; Elina Bastos Caramão

    2014-01-01

    Blackberry (Rubus fruticosus, cultivar Tupy), an expanding fruit crop in southern Brazil, is greatly appreciated for its flavor and bioactive potential with limited characterization of its metabolite content. The purpose of this study was to characterize the bioactive and volatile organic compound (VOC) content of mature blackberry fruit of cultivar Tupy. Gallic acid, (-)-epicatechin, ferulic acid, and quercetin were the main phenolic compounds found in mature fruit. Among the VOCs identified...

  3. Volatile Organic Compound (VOC) Testing at Building 348, Kelly AFB, Texas.

    Science.gov (United States)

    1987-11-01

    At the request of HQ AFLC/ SGB , the USAFOEHL conducted a stack sampling survey to determine total volatile organic compounds (VOC) being emitted from...Occupational and Environmental Health Laboratory (USAFOEHL/ECQ). The survey was requested by HQ AFLC/ SGB .to estimate VOC emissions through each of...stardards. 2. Range and Sensitivity 2.1 This method was validated over the range of 1417-5940 mg/M at an atmospheric temperature and pressure of 24 0C

  4. Emission rates of selected volatile organic compounds from skin of healthy volunteers.

    Science.gov (United States)

    Mochalski, Paweł; King, Julian; Unterkofler, Karl; Hinterhuber, Hartmann; Amann, Anton

    2014-05-15

    Gas chromatography with mass spectrometric detection (GC-MS) coupled with solid phase micro-extraction as pre-concentration method (SPME) was applied to identify and quantify volatile organic compounds (VOCs) emitted by human skin. A total of 64 C4-C10 compounds were quantified in skin emanation of 31 healthy volunteers. Amongst them aldehydes and hydrocarbons were the predominant chemical families with eighteen and seventeen species, respectively. Apart from these, there were eight ketones, six heterocyclic compounds, six terpenes, four esters, two alcohols, two volatile sulphur compounds, and one nitrile. The observed median emission rates ranged from 0.55 to 4,790 fmol cm(-2)min(-1). Within this set of analytes three volatiles; acetone, 6-methyl-5-hepten-2-one, and acetaldehyde exhibited especially high emission rates exceeding 100 fmol cm(-2)min(-1). Thirty-three volatiles were highly present in skin emanation with incidence rates over 80%. These species can be considered as potential markers of human presence, which could be used for early location of entrapped victims during Urban Search and Rescue Operations (USaR).

  5. Volatile organic compounds of Thai honeys produced from several floral sources by different honey bee species.

    Science.gov (United States)

    Pattamayutanon, Praetinee; Angeli, Sergio; Thakeow, Prodpran; Abraham, John; Disayathanoowat, Terd; Chantawannakul, Panuwan

    2017-01-01

    The volatile organic compounds (VOCs) of four monofloral and one multifloral of Thai honeys produced by Apis cerana, Apis dorsata and Apis mellifera were analyzed by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography and mass spectrometry (GC-MS). The floral sources were longan, sunflower, coffee, wild flowers (wild) and lychee. Honey originating from longan had more VOCs than all other floral sources. Sunflower honey had the least numbers of VOCs. cis-Linalool oxide, trans-linalool oxide, ho-trienol, and furan-2,5-dicarbaldehyde were present in all the honeys studied, independent of their floral origin. Interestingly, 2-phenylacetaldehyde was detected in all honey sample except longan honey produced by A. cerana. Thirty-two VOCs were identified as possible floral markers. After validating differences in honey volatiles from different floral sources and honeybee species, the results suggest that differences in quality and quantity of honey volatiles are influenced by both floral source and honeybee species. The group of honey volatiles detected from A. cerana was completely different from those of A. mellifera and A. dorsata. VOCs could therefore be applied as chemical markers of honeys and may reflect preferences of shared floral sources amongst different honeybee species.

  6. Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum

    Directory of Open Access Journals (Sweden)

    Annalisa eGiorgio

    2015-10-01

    Full Text Available Six rhizobacteria isolated from common bean and able to protect bean plants from the common bacterial blight causal agent, were in vitro evaluated for their potential antifungal effects toward different plant pathogenic fungi, mostly soil-borne. By dual culture assays, the above bacteria resulted producing diffusible and volatile metabolites which inhibited the growth of the majority of the pathogens under study. In particular, the latter substances highly affected the mycelium growth of Sclerotinia sclerotiorum strains, one of which was selected for further studies either on mycelium or sclerotia.Gas chromatographic analysis of the bacterial volatiles led to the identification of an array of volatile organic compounds (VOCs. Time course studies showed the modification of the VOCs profile along a period of 5 days. In order to evaluate the single detected VOC effects on fungal growth, some of the pure compounds were tested on S. sclerotiorum mycelium and their minimal inhibitory quantities were determined. Similarly, the minimal inhibitory quantities on sclerotia germination were also defined. Moreover, observations by light and transmission electron microscopes highlighted hyphae cytoplasm granulation and ultrastructural alterations at cell organelles, mostly membranes, mitochondria and endoplasmic reticulum. The membranes appeared one of the primary targets of bacterial volatiles, as confirmed by haemolytic activity observed for the majority of pure VOCs. However, of interest is the alteration observed on mitochondria as well.

  7. Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85-10

    Directory of Open Access Journals (Sweden)

    Teresa Weise

    2012-04-01

    Full Text Available Xanthomonas campestris is a phytopathogenic bacterium and causes many diseases of agricultural relevance. Volatiles were shown to be important in inter- and intraorganismic attraction and defense reactions. Recently it became apparent that also bacteria emit a plethora of volatiles, which influence other organisms such as invertebrates, plants and fungi. As a first step to study volatile-based bacterial–plant interactions, the emission profile of Xanthomonas c. pv. vesicatoria 85-10 was determined by using GC/MS and PTR–MS techniques. More than 50 compounds were emitted by this species, the majority comprising ketones and methylketones. The structure of the dominant compound, 10-methylundecan-2-one, was assigned on the basis of its analytical data, obtained by GC/MS and verified by comparison of these data with those of a synthetic reference sample. Application of commercially available decan-2-one, undecan-2-one, dodecan-2-one, and the newly synthesized 10-methylundecan-2-one in bi-partite Petri dish bioassays revealed growth promotions in low quantities (0.01 to 10 μmol, whereas decan-2-one at 100 μmol caused growth inhibitions of the fungus Rhizoctonia solani. Volatile emission profiles of the bacteria were different for growth on media (nutrient broth with or without glucose.

  8. Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85-10.

    Science.gov (United States)

    Weise, Teresa; Kai, Marco; Gummesson, Anja; Troeger, Armin; von Reuß, Stephan; Piepenborn, Silvia; Kosterka, Francine; Sklorz, Martin; Zimmermann, Ralf; Francke, Wittko; Piechulla, Birgit

    2012-01-01

    Xanthomonas campestris is a phytopathogenic bacterium and causes many diseases of agricultural relevance. Volatiles were shown to be important in inter- and intraorganismic attraction and defense reactions. Recently it became apparent that also bacteria emit a plethora of volatiles, which influence other organisms such as invertebrates, plants and fungi. As a first step to study volatile-based bacterial-plant interactions, the emission profile of Xanthomonas c. pv. vesicatoria 85-10 was determined by using GC/MS and PTR-MS techniques. More than 50 compounds were emitted by this species, the majority comprising ketones and methylketones. The structure of the dominant compound, 10-methylundecan-2-one, was assigned on the basis of its analytical data, obtained by GC/MS and verified by comparison of these data with those of a synthetic reference sample. Application of commercially available decan-2-one, undecan-2-one, dodecan-2-one, and the newly synthesized 10-methylundecan-2-one in bi-partite Petri dish bioassays revealed growth promotions in low quantities (0.01 to 10 μmol), whereas decan-2-one at 100 μmol caused growth inhibitions of the fungus Rhizoctonia solani. Volatile emission profiles of the bacteria were different for growth on media (nutrient broth) with or without glucose.

  9. Volatile organic compounds of Thai honeys produced from several floral sources by different honey bee species

    Science.gov (United States)

    Pattamayutanon, Praetinee; Angeli, Sergio; Thakeow, Prodpran; Abraham, John; Disayathanoowat, Terd; Chantawannakul, Panuwan

    2017-01-01

    The volatile organic compounds (VOCs) of four monofloral and one multifloral of Thai honeys produced by Apis cerana, Apis dorsata and Apis mellifera were analyzed by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography and mass spectrometry (GC-MS). The floral sources were longan, sunflower, coffee, wild flowers (wild) and lychee. Honey originating from longan had more VOCs than all other floral sources. Sunflower honey had the least numbers of VOCs. cis-Linalool oxide, trans-linalool oxide, ho-trienol, and furan-2,5-dicarbaldehyde were present in all the honeys studied, independent of their floral origin. Interestingly, 2-phenylacetaldehyde was detected in all honey sample except longan honey produced by A. cerana. Thirty-two VOCs were identified as possible floral markers. After validating differences in honey volatiles from different floral sources and honeybee species, the results suggest that differences in quality and quantity of honey volatiles are influenced by both floral source and honeybee species. The group of honey volatiles detected from A. cerana was completely different from those of A. mellifera and A. dorsata. VOCs could therefore be applied as chemical markers of honeys and may reflect preferences of shared floral sources amongst different honeybee species. PMID:28192487

  10. Analysis of volatile organic compound from Elaeis guineensis inflorescences planted on different soil types in Malaysia

    Science.gov (United States)

    Muhamad Fahmi, M. H.; Ahmad Bukhary, A. K.; Norma, H.; Idris, A. B.

    2016-11-01

    The main attractant compound for Eleidobius kamerunicus to male spikelet Elaeis guineensis (oil palm) were determined by analyzing volatile organic compound extracted from E. guineenses inflorescences planted on different soil types namely peat soil, clay soil and sandy soil. Anthesizing male oil palm inflorescences were randomly choosen from palm aged between 4-5 years old age. Extraction of the volatiles from the oil palm inflorescences were performed by Accelerated Solvent Extraction method (ASE). The extracted volatile compound were determined by using gas chromatography-mass spectrometry. Out of ten identified compound, estragole was found to be a major compound in sandy soil (37.49%), clay soil (30.71%) and peat soil (27.79%). Other compound such as 9,12-octadecadieonic acid and n-hexadecanoic acid were found as major compound in peat soil (27.18%) and (7.45%); sandy soil (14.15 %) and (9.31%); and clay soil (30.23%) and (4.99%). This study shows that estragole was the predominant volatile compound detected in oil palm inflorescences with highly concentrated in palm planted in sandy soil type.

  11. Biofiltration kinetics for volatile organic compounds (VOCs) and development of a structure-biodegradability relationship

    Energy Technology Data Exchange (ETDEWEB)

    Govind, R.; Wang, Z. [Univ. of Cincinnati, OH (United States). Dept. of Chemical Engineering; Bishop, D.F. [Environmental Protection Agency, Cincinnati, OH (United States). National Risk Management Research Lab.

    1997-12-31

    In recent years, regulation of hazardous air pollutants under the Clean Air Act and its amendments, has emerged as a major environmental issue. Major sources of volatile organic compounds (VOCs) in air are chemical production plants, manufacturing sites using common solvents, combustion sources, and waste treatment operations, such as waste water treatment plants, vacuum extraction of contaminated soils, and ground water stripping operations. Biofiltration is an emerging technology for treatment of biodegradable volatile organic compounds (VOCs) present in air. In biofiltration, the contaminants are contacted with active microorganisms present either in naturally bioactive materials, such as soil, peat, compost, etc., or immobilized on an inactive support media. Design of biofilters requires information on biodegradation kinetics which controls biofilter size. In this paper, an experimental microbiofilter system is presented which can be used to measure biofiltration kinetics for any volatile organic compound. A mathematical model is used to derive the Monod biokinetic parameters from the experimental data. Finally, a structure-bioactivity relationship is derived for estimating the biofiltration biokinetic parameters for a variety of VOCs.

  12. Highly sensitive electromembrane extraction for the determination of volatile organic compound metabolites in dried urine spot.

    Science.gov (United States)

    Suh, Joon Hyuk; Eom, Han Young; Kim, Unyong; Kim, Junghyun; Cho, Hyun-Deok; Kang, Wonjae; Kim, Da Som; Han, Sang Beom

    2015-10-16

    Electromembrane extraction coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for determination of ten volatile organic compound metabolites in dried urine spot samples. The dried urine spot approach is a convenient and economical sampling method, wherein urine is spotted onto a filter paper and dried. This method requires only a small amount of sample, but the analysis sometimes suffers from low sensitivity, which can lead to analytical problems in the detection of minor components in samples. The newly developed dried urine spot analysis using electromembrane extraction exhibited improved sensitivity and extraction, and enrichment of the sample was rapidly achieved in one step by applying an electric field. Aliquots of urine were spotted onto Bond Elut DMS cards and dried at room temperature. After drying, the punched out dried urine spot was eluted with water. Volatile organic compound metabolites were extracted from the sample through a supported liquid membrane into an alkaline acceptor solution inside the lumen of a hollow fiber with the help of an electric potential. The optimum extraction conditions were determined by using design of experiments (fractional factorial design and response surface methodology). Satisfactory sensitivity was achieved and the limits of quantification (LOQ) obtained were lower than the regulatory threshold limits. The method was validated by assessing the linearity, precision, accuracy, recovery, reproducibility, stability, and matrix effects. The results were acceptable, and the developed method was successfully applied to biological exposure monitoring of volatile organic compound metabolites in fifty human urine samples.

  13. Soil Samplers: New Techniques for Subsurface Sampling for Volatile Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Susan Sorini; John Schabron; Joseph Rovani; Mark Sanderson

    2009-03-31

    Soil sampling techniques for volatile organic analysis must be designed to minimize loss of volatile organic compounds (VOCs) from the soil that is being sampled. Preventing VOC loss from soil cores that are collected from the subsurface and brought to the surface for subsampling is often difficult. Subsurface bulk sample retrieval systems are designed to obtain intact cylindrical cores of soil ranging anywhere from one to four inches in diameter, and one to several feet in length. The current technique that is used to subsample these soil cores for VOC analysis is to expose a horizontal section of the soil core to the atmosphere; screen the exposed soil using a photoionization detector (PID) or other appropriate device to locate contamination in the soil core; and use a hand-operated coring tool to collect samples from the exposed soil for analysis. Because the soil core can be exposed to the atmosphere for a considerable length of time during screening and sample collection, the current sub-sampling technique provides opportunity for VOCs to be lost from the soil. This report describes three alternative techniques from the current technique for screening and collecting soil samples from subsurface soil cores for VOC analysis and field testing that has been done to evaluate the techniques. Based on the results of the field testing, ASTM D4547, Standard Guide for Sampling Waste and Soils for Volatile Organic Compounds, was revised to include information about the new techniques.

  14. Microorganisms Associated with Volatile Organic Compound Production in Spoilt Mango Fruits

    Directory of Open Access Journals (Sweden)

    Aliyu D. Ibrahim

    2015-11-01

    Full Text Available Microorganisms associated with the production of volatile compound in spoilt mango fruits sold in Sokoto town were isolated and identified. The organisms include seven species of bacteria and a species of yeast. These include Bacillus pumilus, Bacillus firmus, Brevibacillus laterosporus, Morganella morganii, Paenibacillus alvei, Staphylococcus saccharolyticus, Listeria monocytogenes and Candida krusei respectively. GC-MS analysis revealed the presence of eleven and sixteen volatile organic compound in the healthy and spoilt ripe mango fruits. Octadecanoic acid, oleic acid, 1 – Butanol, 3 – methyl-, carbonate (2:1 and 3,7 – Dimethyl nonane were common to both healthy and spoilt fruits with the first three having higher concentration in healthy fruits than spoilt while the later had higher concentration in the spoilt. One methyl group of 3,3- Dimethyl hexane in healthy fruit was shifted to position two to yield 2,3-Dimethyl hexane in the spoilt fruits. 2,2-Dimethylbutane, Methyl(methyl-4-deoxy-2,3-di-O-methyl.beta.1-threo-hex-4-enopyranosid urinate, 3-(4-amino-phenyl-2-(toluene-4-sulfonylamino-propionic acid, 2-Methyl-3-heptanone, 3,5-Nonadien-7-yn-2-ol, (E,E, Butanoic acid, 1,1-dimethylethyl ester, 1-methyl-3-beta.phenylethyl-2,4,5-trioxoimidazolidine, Pentanoic acid, 2,2-dimethyl, ethyl ester (Vinyl 2,2-dimethylpentanoate, 4-Methyurazole, 1-Tridecyn- 4 – 9 – ol, 1-Hexyl-1-nitrocyclohexane were unique to spoilt fruits. This study suggests that these unique volatile metabolites could be exploited as biomarkers to discriminate pathogens even when more than one disease is present thereby curbing post harvest loss during storage after further validation and the volatile organic compound could form the basis for constructing a metabolomics database for Nigeria.

  15. Development of an In-Fiber Nanocavity Towards Detection of Volatile Organic Gases

    Directory of Open Access Journals (Sweden)

    Francisco J. Arregui

    2006-06-01

    Full Text Available A fiber optic sensor for Volatile Organic Compounds (VOCs detection has beendeveloped and characterized for some organic gasses. The sensor is based on a novelvapochromic material, which is able to change its optical properties in presence of organicvapors in a reversely way. A nano Fabry Perot is constructed onto a cleaved ended opticalfiber pigtail by Electrostatic Self Assembly method (ESA, doping this structure with thevapochromic material. Employing a reflection scheme, a change in the intensity modulatedreflected signal at 850 nm have been registered. The response of the sensor has beenevaluated for five different VOCs, and a deeper study has been made for vapors of threedifferent alcohols.

  16. Integration of organic based Schottky junctions for crossbar non-volatile memory applications

    DEFF Research Database (Denmark)

    Katsia, E.; Tallarida, G.; Ferrari, S.

    2008-01-01

    Small size Schottky junctions using two different synthesized organic semiconductors (oligophenylene-vinylenes) were integrated by standard UV lithography into crossbar arrays. The proposed integration scheme can be applied to a wide class of organics without affecting material properties. Current......-voltage characteristics were studied in order to investigate which of the tested compounds could possibly reach the requirements for non-volatile memory applications. All the investigated devices displayed good rectifying properties, ranging from 10(2) to 10(4). On the other hand, one of the compounds reveals higher...

  17. The contribution of evaporative emissions from gasoline vehicles to the volatile organic compound inventory in Mexico City.

    Science.gov (United States)

    Schifter, I; Díaz, L; Rodríguez, R; González-Macías, C

    2014-06-01

    The strategy for decreasing volatile organic compound emissions in Mexico has been focused much more on tailpipe emissions than on evaporative emissions, so there is very little information on the contribution of evaporative emissions to the total volatile organic compound inventory. We examined the magnitudes of exhaust and evaporative volatile organic compound emissions, and the species emitted, in a representative fleet of light-duty gasoline vehicles in the Metropolitan Area of Mexico City. The US "FTP-75" test protocol was used to estimate volatile organic compound emissions associated with diurnal evaporative losses, and when the engine is started and a journey begins. The amount and nature of the volatile organic compounds emitted under these conditions have not previously been accounted in the official inventory of the area. Evaporative emissions from light-duty vehicles in the Metropolitan Area of Mexico City were estimated to be 39 % of the total annual amount of hydrocarbons emitted. Vehicles built before 1992 (16 % of the fleet) were found to be responsible for 43 % of the total hydrocarbon emissions from exhausts and 31 % of the evaporative emissions of organic compounds. The relatively high amounts of volatile organic compounds emitted from older vehicles found in this study show that strong emission controls need to be implemented in order to decrease the contribution of evaporative emissions of this fraction of the fleet.

  18. Analysis of build-up of heavy metals and volatile organics on urban roads in gold coast, Australia.

    Science.gov (United States)

    Mahbub, Parvez; Goonetilleke, Ashantha; Ayoko, Godwin A; Egodawatta, Prasanna; Yigitcanlar, Tan

    2011-01-01

    Urban water quality can be significantly impaired by the build-up of pollutants such as heavy metals and volatile organics on urban road surfaces due to vehicular traffic. Any control strategy for the mitigation of traffic related build-up of heavy metals and volatile organic pollutants should be based on the knowledge of their build-up processes. In the study discussed in this paper, the outcomes of a detailed experimental investigation into build-up processes of heavy metals and volatile organics are presented. It was found that traffic parameters such as average daily traffic, volume over capacity ratio and surface texture depth had similar strong correlations with the build-up of heavy metals and volatile organics. Multicriteria decision analyses revealed that that the 1-74 microm particulate fraction of total suspended solids (TSS) could be regarded as a surrogate indicator for particulate heavy metals in build-up and this same fraction of total organic carbon could be regarded as a surrogate indicator for particulate volatile organics build-up. In terms of pollutants affinity, TSS was found to be the predominant parameter for particulate heavy metals build-up and total dissolved solids was found to be the predominant parameter for the potential dissolved particulate fraction in heavy metals buildup. It was also found that land use did not play a significant role in the build-up of traffic generated heavy metals and volatile organics.

  19. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    Directory of Open Access Journals (Sweden)

    F. D. Lopez-Hilfiker

    2015-02-01

    Full Text Available We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer, but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS. Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products. Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing

  20. A mass transfer model for predicting emission of the volatile organic compounds in wet building materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tao; JIA Li

    2008-01-01

    A new mass transfer model is developped to predict the volatile organic compounds (VOCs) from fresh wet building materials. The dry section of wet materials during the process of VOC emission from wet building materials is considered in this new model, differing from the mass transfer-based models in other literatures. The mechanism of effect of saturated vapor pressure on the surface of wet building materials in the process of VOC emission is discussed. The concentration of total volatile organic compounds (TVOC) in the building materials gradually decreases as the emission of VOCs begins, and the vapor pressure of VOCs on the surface of wet building materials decreases in the case of newly wet building materials. To ensure the partial pressure of VOCs on the surface of wet building materials to be saturated vapor pressure, the interface of gas-wet layer is lowered, and a dry layer of no-volatile gases in the material is formed. Compared with the results obtained by VB model, CFD model and the ex-periment data, the results obtained by the present model agree well with the results obtained by CFD model and the experiment data. The present model is more accurate in predicting emission of VOC from wet building materials than VB model.

  1. Final report on CCQM-K47: Volatile organic compounds in methanol

    Science.gov (United States)

    Pérez Urquiza, Melina; Maldonado Torres, Mauricio; Mitani, Yoshito; Schantz, Michele M.; Duewer, David L.; May, Wille E.; Parris, Reenie M.; Wise, Stephen A.; Kaminski, Katja; Philipp, Rosemarie; Win, Tin; Rosso, Adriana; Kim, Dal Ho; Ishikawa, Keiichiro; Krylov, A. I.; Kustikov, Y. A.; Baldan, Annarita

    2013-01-01

    At the October 2005 CCQM Organic Analysis Working Group Meeting (IRMM, Belgium), the decision was made to proceed with a Key Comparison study (CCQM-K47) addressing the calibration function for the determination of volatile organic compounds (VOCs) used for water quality monitoring. This was coordinated by CENAM and NIST. Benzene, o-xylene, m-xylene and p-xylene were chosen as representative VOCs. The solvent of choice was methanol. Key Comparison CCQM-K47 demonstrated the capabilities of participating NMIs to identify and measure the four target VOCs in a calibration solution using GC-based methods. The measurement challenges in CCQM-K47, such as avoiding volatility loss, achieving adequate chromatographic resolution and isolating potential interferences, are typical of those required for value-assigning volatile reference materials. Participants achieving comparable measurements for all four VOCs in this Key Comparison should be capable of providing reference materials and measurements for VOCs in solutions when present at concentration levels greater than 10 µg/g. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  2. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene

    Directory of Open Access Journals (Sweden)

    Ludmilla Lumholdt

    2014-11-01

    Full Text Available Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest–host complexes with ratios of up to 16:1.

  3. Assessment of volatile organic compounds in surface water at Canal Creek, Aberdeen Proving Ground, Maryland, November 1999-September 2000

    Science.gov (United States)

    Phelan, Daniel J.; Olsen, Lisa D.; Senus, Michael P.; Spencer, Tracey A.

    2001-01-01

    The purpose of this report is to describe the occurrence and distribution of volatile organic compounds in surface-water samples collected by the U.S. Geological Survey in the Canal Creek area of Aberdeen Proving Ground, Maryland, from November 1999 through September 2000. The report describes the differences between years with below normal and normal precipitation, the effects of seasons, tide stages, and location on volatile organic compound concentrations in surface water, and provides estimates of volatile organic concentration loads to the tidal Gunpowder River. Eighty-four environmental samples from 20 surface-water sites were analyzed. As many as 13 different volatile organic compounds were detected in the samples. Concentrations of volatile organic compounds in surface-water samples ranged from below the reporting limit of 0.5 micrograms per liter to a maximum of 50.2 micrograms per liter for chloroform. Chloroform was detected most frequently, and was found in 55 percent of the environmental samples that were analyzed for volatile organic compounds (46 of 84 samples). Carbon tetrachloride was detected in 56 percent of the surface-water samples in the tidal part of the creek (34 of 61 samples), but was only detected in 3 of 23 samples in the nontidal part of the creek. 1,1,2,2-Tetrachloroethane was detected in 43 percent of the tidal samples (26 of 61 samples), but was detected at only two nontidal sites and only during November 1999. Three samples were collected from the tidal Gunpowder River about 300 feet from the mouth of Canal Creek in May 2000, and none of the samples contained volatile organic compound concentrations above detection levels. Volatile organic compound concentrations in surface water were highest in the reaches of the creek adjacent to the areas with the highest known levels of ground-water contamination. The load of total volatile organic compounds from Canal Creek to the Gunpowder River is approximately 1.85 pounds per day (0

  4. Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork

    DEFF Research Database (Denmark)

    Nieminen, Timo T.; Dalgaard, Paw; Björkroth, Johanna

    2016-01-01

    Accumulation of volatile organic compounds was monitored in association with sensory quality, bacterial concentrations and culture-independent microbial community analyses in raw pork loin and pork collar during storage under high-oxygen modified atmosphere at +4°C. Of the 48 volatile compounds....... According to the culture-dependent and culture-independent characterization of bacterial communities, Brochothrix thermosphacta, lactic acid bacteria (Carnobacterium, Lactobacillus, Lactococcus, Leuconostoc, Weissella) and Photobacterium spp. predominated in pork samples. Photobacterium spp., typically...... not associated with spoilage of meat, were detected also in 8 of the 11 retail packages of pork investigated subsequently. Eleven isolates from the pork samples were shown to belong to Photobacterium phosphoreum by phenotypic tests and sequencing of the 16S rRNA and gyrB gene fragments. Off-odors in pork samples...

  5. Volatile organic compounds in pharmacy – the range of the problem

    Directory of Open Access Journals (Sweden)

    Marzena Jamrógiewicz

    2013-09-01

    Full Text Available The sensitivity and chemical instability of the active pharmaceutical ingredients (API may result in the formation and emission of volatile substances which affect not only the stability of the medicinal product, but also leads to changes of physicochemical properties, causing negative pharmacologic effects sometimes toxic. For this reason, it is important to conduct routine stability tests, as well as, to determine gaseous degradation products using modern analytical methods, often unconventional. Knowledge of medicinal chemistry, physical chemistry, technology and toxicology is needed to provide a stable form of the drug and its utmost therapeutic effect. Available guidelines on determined volatile organic compounds (VOCs present in samples of drug substances have been verified , types of VOCs have been specified and classified. Current literature reviewed shows the results of determination of VOCs in active drug compounds and medicinal products, including discussion on various possibilities of their detection and identification. Currently used methods are based on gas chromatography and ion mobility spectrometry IMS.

  6. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 4, Organic methods

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics` CO{sub 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics` Model 5011 coulometer, and soxhlet extraction.

  7. Exposure to Volatile Organic Compounds and Possibility of Exposure to By-product Volatile Organic Compounds in Photolithography Processes in Semiconductor Manufacturing Factories.

    Science.gov (United States)

    Park, Seung-Hyun; Shin, Jung-Ah; Park, Hyun-Hee; Yi, Gwang Yong; Chung, Kwang-Jae; Park, Hae-Dong; Kim, Kab-Bae; Lee, In-Seop

    2011-09-01

    The purpose of this study was to measure the concentration of volatile organic compound (VOC)s originated from the chemicals used and/or derived from the original parental chemicals in the photolithography processes of semiconductor manufacturing factories. A total of four photolithography processes in 4 Fabs at three different semiconductor manufacturing factories in Korea were selected for this study. This study investigated the types of chemicals used and generated during the photolithography process of each Fab, and the concentration levels of VOCs for each Fab. A variety of organic compounds such as ketone, alcohol, and acetate compounds as well as aromatic compounds were used as solvents and developing agents in the processes. Also, the generation of by-products, such as toluene and phenol, was identified through a thermal decomposition experiment performed on a photoresist. The VOC concentration levels in the processes were lower than 5% of the threshold limit value (TLV)s. However, the air contaminated with chemical substances generated during the processes was re-circulated through the ventilation system, thereby affecting the airborne VOC concentrations in the photolithography processes. Tens of organic compounds were being used in the photolithography processes, though the types of chemical used varied with the factory. Also, by-products, such as aromatic compounds, could be generated during photoresist patterning by exposure to light. Although the airborne VOC concentrations resulting from the processes were lower than 5% of the TLVs, employees still could be exposed directly or indirectly to various types of VOCs.

  8. The Fate of Non-Volatile Organic Chemicals in The Agricultural Environment

    Directory of Open Access Journals (Sweden)

    Mohammad A. Batiha

    2007-01-01

    Full Text Available Multimedia dynamic model of the fate of non-volatile organic chemicals (NVOC in the agricultural environment is described. The modeled environment, consisting of up to three major surfaces environmental compartments, includes air, agricultural soil, and surface water. This model is based on the aquivalence approach suggested by Mackay and co-workers in 1989. As the movement of chemicals in the environment is closely associated with the movement of air, water and organic matter, the complete steady state mass budgets for air, water and particulate organic carbon (POC between the model compartments are described. All of the model equations, which are expressed in aquivalence notation, the mass balance for NVOC in the environmental surfaces compartments at dynamic state, and equations for the calculation of partitioning, overall persistence, total amount, total concentrations at dynamic state and intermedia fluxes of organic chemicals between air, water, and soil at steady-state are provided.

  9. Influence of pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt.

    Science.gov (United States)

    Akbaridoust, Ghazal; Plozza, Tim; Trenerry, V Craige; Wales, William J; Auldist, Martin J; Ajlouni, Said

    2015-08-01

    The influence of different pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt was studied. Pasture is the main source of nutrients for dairy cows in many parts of the world, including southeast Australia. Milk and milk products produced in these systems are known to contain a number of compounds with positive effects on human health. In the current study, 260 cows were fed supplementary grain and forage according to one of 3 different systems; Control (a traditional pasture based diet offered to the cows during milking and in paddock), PMR1 (a partial mixed ration which contained the same supplement as Control but was offered to the cows as a partial mixed ration on a feedpad), PMR 2 (a differently formulated partial mixed ration compared to Control and PMR1 which was offered to the cows on a feedpad). Most of the yoghurt fatty acids were influenced by feeding systems; however, those effects were minor on organic acids. The differences in feeding systems did not lead to the formation of different volatile organic flavour compounds in yoghurt. Yet, it did influence the relative abundance of these components.

  10. The characterization of organic contaminants during the development of the Space Station water reclamation and management system

    Science.gov (United States)

    Cole, H.; Habercom, M.; Crenshaw, M.; Johnson, S.; Manuel, S.; Martindale, W.; Whitman, G.; Traweek, M.

    1991-01-01

    Examples of the application of various methods for characterizing samples for alcohols, fatty acids, detergents, and volatile/semivolatile basic, neutral, and phenolic acid contaminants are presented. Data, applications, and interpretations are given for a variety of methods including sample preparation/cleanup procedures, ion chromatography, and gas chromatography with various detectors. Summaries of the major organic contaminants that contribute to the total organic carbon content are presented.

  11. The role of low-volatility organic compounds in initial particle growth in the atmosphere

    Science.gov (United States)

    Tröstl, Jasmin; Chuang, Wayne K.; Gordon, Hamish; Heinritzi, Martin; Yan, Chao; Molteni, Ugo; Ahlm, Lars; Frege, Carla; Bianchi, Federico; Wagner, Robert; Simon, Mario; Lehtipalo, Katrianne; Williamson, Christina; Craven, Jill S.; Duplissy, Jonathan; Adamov, Alexey; Almeida, Joao; Bernhammer, Anne-Kathrin; Breitenlechner, Martin; Brilke, Sophia; Dias, Antònio; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Gysel, Martin; Hansel, Armin; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lawler, Michael; Leiminger, Markus; Mathot, Serge; Möhler, Ottmar; Nieminen, Tuomo; Onnela, Antti; Petäjä, Tuukka; Piel, Felix M.; Miettinen, Pasi; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Sipilä, Mikko; Smith, James N.; Steiner, Gerhard; Tomè, Antònio; Virtanen, Annele; Wagner, Andrea C.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Carslaw, Kenneth S.; Curtius, Joachim; Dommen, Josef; Kirkby, Jasper; Kulmala, Markku; Riipinen, Ilona; Worsnop, Douglas R.; Donahue, Neil M.; Baltensperger, Urs

    2016-05-01

    About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10-4.5 micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10-4.5 to 10

  12. 77 FR 16981 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of a Group of Four...

    Science.gov (United States)

    2012-03-23

    ... AGENCY 40 CFR Part 51 RIN 2060-AO17 Air Quality: Revision to Definition of Volatile Organic Compounds... organic compounds (VOCs) for purposes of preparing State Implementation Plans (SIPs) to attain the... VOCs that can be released into the atmosphere. VOCs are those organic compounds of carbon which...

  13. Development and validation of a portable gas phase standard generation and calibration system for volatile organic compounds

    Science.gov (United States)

    P. Veres; J. B. Gilman; J. M. Roberts; W. C. Kuster; C. Warneke; I. R. Burling; J. de Gouw

    2010-01-01

    We report on the development of an accurate, portable, dynamic calibration system for volatile organic compounds (VOCs). The Mobile Organic Carbon Calibration System (MOCCS) combines the production of gas-phase VOC standards using permeation or diffusion sources with quantitative total organic carbon (TOC) conversion on a palladium surface to CO2 in the presence of...

  14. SELECTED ORGANIC POLLUTANT EMISSIONS FROM UNVENTED KEROSENE HEATERS

    Science.gov (United States)

    An exploratory study was performed to assess the semivolatile and nonvolatile organic pollutant emission rates from unvented kerosene space heaters. A well-tuned radiant heater and maltuned convective heater were tested for semivolatile and nonvolatile organic pollutant emiss...

  15. Detection of rare species of volatile organic selenium metabolites in male golden hamster urine.

    Science.gov (United States)

    Kwak, Jae; Ohrnberger, Sarah A; Valencak, Teresa G

    2016-07-01

    Selenium has been considered as an essential trace element in mammals and its intake comes mainly from food. Mammals can metabolize both inorganic and organic species, and urinary excretion is the primary elimination route of selenium. Selenosugars and trimethylselenonium ion have been identified as major urinary metabolites. Other metabolites have been reported, but they were detected in some studies and not in others. Still, a large portion of the ingested selenium eliminated from the body is unknown. Volatile selenium species may account for a certain portion of the unknown species since they can easily be lost during sample analyses. While we analyzed male golden hamster urine in search of potential volatile pheromone(s), four volatile selenium compounds were detected. They were dimethyl selenenylsulfide, dimethyl diselenide, dimethyl bis(thio)selenide, and dimethyl selenodisulfide. When the urine samples were aged and dried for 48 h, dimethyl selenodisulfide tended to increase, while others decreased. The increase might be due to the formation of dimethyl selenodisulfide via reaction of dimethyl diselenide and dimethyl trisulfide whose concentration increased as urine aged. To our knowledge, dimethyl bis(thio)selenide and dimethyl selenodisulfide have never been demonstrated in urine. It remains to be determined whether these species are common metabolites in other animals or hamster-specific.

  16. Analysis of volatile organic compounds in compost samples: A potential tool to determine appropriate composting time.

    Science.gov (United States)

    Zhu, Fengxiang; Pan, Zaifa; Hong, Chunlai; Wang, Weiping; Chen, Xiaoyang; Xue, Zhiyong; Yao, Yanlai

    2016-12-01

    Changes in volatile organic compound contents in compost samples during pig manure composting were studied using a headspace, solid-phase micro-extraction method (HS-SPME) followed by gas chromatography with mass spectrometric detection (GC/MS). Parameters affecting the SPME procedure were optimized as follows: the coating was carbon molecular sieve/polydimethylsiloxane (CAR/PDMS) fiber, the temperature was 60°C and the time was 30min. Under these conditions, 87 compounds were identified from 17 composting samples. Most of the volatile components could only be detected before day 22. However, benzenes, alkanes and alkenes increased and eventually stabilized after day 22. Phenol and acid substances, which are important factors for compost quality, were almost undetectable on day 39 in natural compost (NC) samples and on day 13 in maggot-treated compost (MC) samples. Our results indicate that the approach can be effectively used to determine the composting times by analysis of volatile substances in compost samples. An appropriate composting time not only ensures the quality of compost and reduces the loss of composting material but also reduces the generation of hazardous substances. The appropriate composting times for MC and NC were approximately 22days and 40days, respectively, during the summer in Zhejiang.

  17. Characteristics of volatile organic compounds emission profiles from hot road bitumens.

    Science.gov (United States)

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2014-07-01

    A procedure for the investigation and comparison of volatile organic compounds (VOCs) emission profiles to the atmosphere from road bitumens with various degrees of oxidation is proposed. The procedure makes use of headspace analysis and gas chromatography with universal as well as selective detection, including gas chromatography-mass spectrometry (GC-MS). The studies revealed that so-called vacuum residue, which is the main component of the charge, contains variable VOC concentrations, from trace to relatively high ones, depending on the extent of thermal cracking in the boiler of the vacuum distillation column. The VOC content in the oxidation product, so-called oxidized paving bitumen, is similarly varied. There are major differences in VOC emission profiles between vacuum residue and oxidized bitumens undergoing thermal cracking. The VOC content in oxidized bitumens, which did not undergo thermal cracking, increases with the degree of oxidation of bitumens. The studies revealed that the total VOC content increases from about 120 ppm for the raw vacuum residue to about 1900 ppm for so-called bitumen 35/50. The amount of volatile sulfur compounds (VSCs) in the volatile fraction of fumes of oxidized bitumens increases with the degree of oxidation of bitumen and constitutes from 0.34% to 3.66% (w/w). The contribution of volatile nitrogen compounds (VNCs) to total VOC content remains constant for the investigated types of bitumens (from 0.16 to 0.28% (w/w) of total VOCs). The results of these studies can also find use during the selection of appropriate bitumen additives to minimize their malodorousness. The obtained data append the existing knowledge on VOC emission from oxidized bitumens. They should be included in reports on the environmental impact of facilities in which hot bitumen binders are used.

  18. Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Mercury pollution is a major environmental problem accompanying industrial activities. Most of the mercury released ends up and retained in the soil as complexes of the toxic ionic mercury (Hg2+), which then can be converted by microbes into the even more toxic methylmercury which tends to bioaccumulate. Mercury detoxification of the soil can also occur by microbes converting the ionic mercury into the least toxic metallic mercury (Hg0) form, which then evaporates. The remediation potential of transgenic plants carrying the MerA gene from E. Coli encoding mercuric ion reductase could be evaluated. A modified version of the gene, optimized for plant codon preferences (merApe9, Rugh et al. 1996), was introduced into tobacco by Agrobacterium-mediated leaf disk transformation. Transgenic seeds were resistant to HgCl2 at 50 μM, and some of them (10-20%) could germinate on media containing as much as 350 μM HgCl2, while the control plants were fully inhibited or died on 50μM HgCl2. The rate of elemental mercury evolution from Hg2+ (added as HgCl2) was 5-8 times higher for transgenic plants than the control. Mercury volatilization by isolated organs standardized for fresh weight was higher (up to 5 times) in the roots than in shoots or the leaves. The data suggest that it is the root system of the transgenic plants that volatilizes most of the reduced mercury (Hg0). It also suggests that much of the mercury need not enter the vascular system to be transported to the leaves for volatilization. Transgenic plants with the merApe9 gene may be used to mercury detoxification for environmental improvement in mercury-contaminated regions more efficiently than it had been predicted based on data on volatilization of whole plants via the upper parts only (Rugh et al. 1996).

  19. Fabrication of spray-printed organic non-volatile memory devices for low cost electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Cha, An-Na [Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101 Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do (Korea, Republic of); Professional Graduate School of Flexible and Printable Electronics and Polymer Materials Fusion Research Center, Chonbuk National University, 664-14, Deokjin-dong, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-756 (Korea, Republic of); Ji, Yongsung [Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101 Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do (Korea, Republic of); Lee, Sang-A [Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101 Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do (Korea, Republic of); Department of Polymer-Nano Science and Technology, Chonbuk National University, 664-14 Duckjin-dong, Duckjin-gu, Jeonju 561-756 (Korea, Republic of); Noh, Yong-Young [Department of Energy and Materials Engineering, Dongguk University, 26 Pil-dong, 3-Ga, Jung-gu, Seoul 100-715 (Korea, Republic of); Na, Seok-In [Professional Graduate School of Flexible and Printable Electronics and Polymer Materials Fusion Research Center, Chonbuk National University, 664-14, Deokjin-dong, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-756 (Korea, Republic of); Bae, Sukang; Lee, Sanghyun [Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101 Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do (Korea, Republic of); Kim, Tae-Wook, E-mail: twkim@kist.re.kr [Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101 Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do (Korea, Republic of)

    2015-01-15

    Highlights: • PS:PCBM-based organic non-volatile memory devices was fabricated using spray printing. • The thickness of the film was controlled by adjusting the concentration of the PS:PCBM solutions. • The roughness of spray-printed films was poorer than that of the spin-coated film. • The minimum thickness of the printed film influenced the memory behavior more than the surface roughness. • The spray printed PS:PCBM showed excellent unipolar switching, reliability, retention, and endurance characteristics. - Abstract: We fabricated polystyrene (PS) and 6-phenyl-C61 butyric acid methyl ester (PCBM) based organic non-volatile memory devices using a spray printing technique. Due to the distinct operational properties of this technique, significant differences were observed in the macro- and microscopic features (e.g., the film quality and surface roughness) of the devices. The thickness of the film was successfully controlled by adjusting the concentration of the PS:PCBM solutions sprayed. Although the roughness of the spray-printed films was poorer than that of the spin-coated film, negligible differences were observed in the basic memory characteristics (e.g., the operation voltage range, turn on and off voltage, retention and endurance). In particular, the printing-based organic memory devices were successfully switched, as exhibited by the on/off ratio greater than two orders of magnitude at 0.3 V read voltage. The resistance state of all of the devices was maintained for more than 10{sup 4} s, indicating their non-volatile characteristics.

  20. Volatile organic compound emissions from arctic vegetation highly responsive to experimental warming

    Science.gov (United States)

    Rinnan, Riikka; Kramshøj, Magnus; Lindwall, Frida; Schollert, Michelle; Svendsen, Sarah H.; Valolahti, Hanna

    2017-04-01

    Arctic areas are experiencing amplified climate warming that proceeds twice as fast as the global temperature increase. The increasing temperature is already causing evident alterations, e.g. changes in the vegetation cover as well as thawing of permafrost. Climate warming and the concomitant biotic and abiotic changes are likely to have strong direct and indirect effects on emission of volatile organic compounds (VOCs) from arctic vegetation. We used long-term field manipulation experiments in the Subarctic, Low Arctic and High Arctic to assess effects of climate change on VOC emissions from vegetation communities. In these experiments, we applied passive warming with open-top chambers alone and in combination with other experimental treatments in well-replicated experimental designs. Volatile emissions were sampled in situ by drawing air from plant enclosures and custom-built chambers into adsorbent cartridges, which were analyzed by thermal desorption and gas chromatography-mass spectrometry in laboratory. Emission increases by a factor of 2-5 were observed under experimental warming by only a few degrees, and the strong response seems universal for dry, mesic and wet ecosystems. In some cases, these vegetation community level responses were partly due to warming-induced increases in the VOC-emitting plant biomass, changes in species composition and the following increase in the amount of leaf litter (Valolahti et al. 2015). In other cases, the responses appeared before any vegetation changes took place (Lindwall et al. 2016) or even despite a decrease in plant biomass (Kramshøj et al. 2016). VOC emissions from arctic ecosystems seem more responsive to experimental warming than other ecosystem processes. We can thus expect large increases in future VOC emissions from this area due to the direct effects of temperature increase, and due to increasing plant biomass and a longer growing season. References Kramshøj M., Vedel-Petersen I., Schollert M., Rinnan

  1. Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste

    DEFF Research Database (Denmark)

    Mustafa, Muhammad Farooq; Liu, Yanjun; Duan, Zhenhan

    2017-01-01

    Degradation of mechanically sorted organic fraction (MSOF) of municipal solid waste in composting facilities is among the major contributors of volatile compounds (VCs) generation and emission, causes nuisance problems and health risks on site as well as in the vicinages. The aim of current study...... was to determine the seasonal (summer and winter) variation and human health risk assessment of VCs in the ambient air of different processing units in MSOF at composting plant in China. Average concentration of VCs was 58.50 and 138.03 mg/m3 in summer and winter respectively. Oxygenated compounds were found...

  2. Extended Research on Detection of Deception Using Volatile Organic Compound (VOC) Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Center for Human Reliability Studies

    2006-06-01

    A system that captures and analyzes volatile organic compound (VOC) emissions from skin surfaces may offer a viable alternative method to the polygraph instrument currently in use for detecting deception in U.S. government settings. Like the involuntary autonomic central nervous system response data gathered during polygraph testing, VOC emissions from the skin may provide data that can be used to detect stress caused by deception. Detecting VOCs, then, may present a noninvasive, non-intrusive method for observing, recording, and quantifying evidence of stress or emotional change.

  3. Impact of air pressure on volatile organic compound emissions from a carpet

    Institute of Scientific and Technical Information of China (English)

    高鹏; 邓琴琴; LIN; Chao-hsin; 杨旭东

    2009-01-01

    The measurement of volatile organic compound (VOC) emissions from materials is normally conducted under standard environmental conditions, i.e., (23±1) ℃ temperature, (50±5)% relative humidity, and 0.1 MPa pressure. In order to define VOC emissions in non-standard environmental conditions, it is necessary to study the impact of key environmental parameters on emissions. This paper evaluates the impact of air pressure on VOC emissions from an aircraft carpet. The correlation between air pressure and VOC diffusion coefficient is derived, and the emission model is applied to studying the VOC emissions under pressure conditions of less than 0.1 MPa.

  4. Volatile tritiated organic acids in stack effluents and in air surrounding contaminated materials

    Energy Technology Data Exchange (ETDEWEB)

    Belot, Y.; Camus, H.; Marini, T.; Raviart, S. (Institut de Protection et de Surete Nucleaire (France))

    1993-06-01

    A small fraction of the tritium released into the atmosphere from tritium-handling or solid waste storage facilities was shown to be in the form of volatile organic acids. The same compounds were also found, but at a much higher proportion, in the tritium evolved at room temperature from highly contaminated materials placed under air atmospheres. This might be due to the oxidation and labeling of hydrocarbon(s) by mechanisms that are presumably of a radiolytic nature. The new forms could have an impact on operational requirements and waste management strategies within a tritium facility and a fusion reactor hall. Further data are needed to assess the related doses.

  5. Radon, volatile organic compounds and water chemistry in springs around Popocatepetl volcano, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, N.; Pena, P.; Lopez, M.B.E.; Cisniega, G. [Inst. Nacional de Investigaciones Nucleares, Mexico D.F. (Mexico); Valdes, C.; Armienta, M.A.; Mena, M. [Inst. de Geofisica, UNAM, Ciudad Univ., Mexico D.F. (Mexico)

    2003-07-01

    Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs is analysed as a function of the 2002-2003 volcanic activity. Soil radon indicated fluctuations related both to the meteorological and sporadic explosive events. Groundwater radon showed essentially differences in concentration due to the specific characteristics of the studied springs. Water chemistry showed also stability along the monitoring period indicating differences between springs. No anthropogenic pollution from volatile organic compounds was observed. (orig.)

  6. Bioactive and volatile organic compounds in Southern Brazilian blackberry (Rubus Fruticosus fruit cv. Tupy

    Directory of Open Access Journals (Sweden)

    Andressa Carolina Jacques

    2014-09-01

    Full Text Available Blackberry (Rubus fruticosus, cultivar Tupy, an expanding fruit crop in southern Brazil, is greatly appreciated for its flavor and bioactive potential with limited characterization of its metabolite content. The purpose of this study was to characterize the bioactive and volatile organic compound (VOC content of mature blackberry fruit of cultivar Tupy. Gallic acid, (--epicatechin, ferulic acid, and quercetin were the main phenolic compounds found in mature fruit. Among the VOCs identified in 'Tupy' blackberry were important flavor components characteristic of fruit berries, including hydrocarbons, alcohols, aldehydes, ketones, esters, and terpenoids. Some of the VOCs had not been previously found in blackberry, while others have been associated with typical blackberry flavor.

  7. Micro- and Nanostructured Metal Oxide Chemical Sensors for Volatile Organic Compounds

    Science.gov (United States)

    Alim, M. A.; Penn, B. G.; Currie, J. R., Jr.; Batra, A. K.; Aggarwal, M. D.

    2008-01-01

    Aeronautic and space applications warrant the development of chemical sensors which operate in a variety of environments. This technical memorandum incorporates various kinds of chemical sensors and ways to improve their performance. The results of exploratory investigation of the binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. A short review of the present status of the new types of nanostructured sensors such as nanobelts, nanorods, nanotube, etc. based on metal oxides is presented.

  8. Multiscale Modelling Approach for a Fungal Biofilter Unit for the Hydrophobic Abatement of Volatile Organic Compounds

    DEFF Research Database (Denmark)

    Vergara-Fernández, A.; Rebolledo-Castro, J.; Morales Rodriguez, Ricardo

    2011-01-01

    Currently, biofiltration has become a viable and potential alternative for the treatment of airstreams with low concentrations of hydrophobic volatile organic compounds (VOCs), which can employ to this end, diverse microorganisms (such as, bacteria, fungal or microbial consortia, etc.) growing...... a biofilm. Usually, the design, analysis and scale-up of this kind of units have been mainly done via experimental approach, which can be costly in terms of time and resources. Therefore, the objective of this work is to introduce mathematical model for the prediction and simulation of a fungal biofilter...

  9. Development of a Surface Acoustic Wave Sensor for In-Situ Monitoring of Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Jerome L. Wright

    2003-07-01

    Full Text Available This paper describes the development of a surface-acoustic-wave (SAW sensor that is designed to be operated continuously and in situ to detect volatile organic compounds. A ruggedized stainless-steel package that encases the SAW device and integrated circuit board allows the sensor to be deployed in a variety of media including air, soil, and even water. Polymers were optimized and chosen based on their response to chlorinated aliphatic hydrocarbons (e.g., trichloroethylene, which are common groundwater contaminants. Initial testing indicates that a running-average data-logging algorithm can reduce the noise and increase the sensitivity of the in-situ sensor.

  10. Strong Fluorescent Smart Organogel as a Dual Sensing Material for Volatile Acid and Organic Amine Vapors.

    Science.gov (United States)

    Xue, Pengchong; Yao, Boqi; Wang, Panpan; Gong, Peng; Zhang, Zhenqi; Lu, Ran

    2015-11-23

    An L-phenylalanine derivative (C12PhBPCP) consisting of a strong emission fluorophore with benzoxazole and cyano groups is designed and synthesized to realize dual responses to volatile acid and organic amine vapors. The photophysical properties and self-assembly of the said derivative in the gel phase are also studied. C12PhBPCP can gelate organic solvents and self-assemble into 1 D nanofibers in the gels. UV/Vis absorption spectral results show H-aggregate formation during gelation, which indicates strong exciton coupling between fluorophores. Both wet gel and xerogel emit strong green fluorescence because the cyano group suppresses fluorescence quenching in the self-assemblies. Moreover, the xerogel film with strong green fluorescence can be used as a dual chemosensor for quantitative detection of volatile acid and organic amine vapors with fast response times and low detection limits owing to its large surface area and amplified fluorescence quenching. The detection limits are 796 ppt and 25 ppb for gaseous aniline and trifluoroacetic acid (TFA), respectively.

  11. The role of low-volatility organic compounds in initial particle growth in the atmosphere

    CERN Document Server

    Tröstl, Jasmin; Gordon, Hamish; Heinritzi, Martin; Yan, Chao; Molteni, Ugo; Ahlm, Lars; Frege, Carla; Bianchi, Federico; Wagner, Robert; Simon, Mario; Lehtipalo, Katrianne; Williamson, Christina; Craven, Jill S; Duplissy, Jonathan; Adamov, Alexey; Almeida, Joao; Bernhammer, Anne-Kathrin; Breitenlechner, Martin; Brilke, Sophia; Dias, Antònio; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Gysel, Martin; Hansel, Armin; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lawler, Michael; Leiminger, Markus; Mathot, Serge; Möhler, Ottmar; Nieminen, Tuomo; Onnela, Antti; Petäjä, Tuukka; Piel, Felix M; Miettinen, Pasi; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Sipilä, Mikko; Smith, James; Steiner, Gerhard; Tomè, Antònio; Virtanen, Annele; Wagner, Andrea C; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Carslaw, Kenneth S; Curtius, Joachim; Dommen, Josef; Kirkby, Jasper; Kulmala, Markku; Riipinen, Ilona; Worsnop, Douglas R; Donahue, Neil M; Baltensperger, Urs

    2016-01-01

    About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelv...

  12. Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect

    Directory of Open Access Journals (Sweden)

    Yu Huang

    2016-01-01

    Full Text Available Volatile organic compounds (VOCs are ubiquitous in indoor environments. Inhalation of VOCs can cause irritation, difficulty breathing, and nausea, and damage the central nervous system as well as other organs. Formaldehyde is a particularly important VOC as it is even a carcinogen. Removal of VOCs is thus critical to control indoor air quality (IAQ. Photocatalytic oxidation has demonstrated feasibility to remove toxic VOCs and formaldehyde from indoor environments. The technique is highly-chemical stable, inexpensive, non-toxic, and capable of removing a wide variety of organics under light irradiation. In this paper, we review and summarize the traditional air cleaning methods and current photocatalytic oxidation approaches in both of VOCs and formaldehyde degradation in indoor environments. Influencing factors such as temperature, relative humidity, deactivation and reactivations of the photocatalyst are discussed. Aspects of the application of the photocatalytic technique to improve the IAQ are suggested.

  13. Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect.

    Science.gov (United States)

    Huang, Yu; Ho, Steven Sai Hang; Lu, Yanfeng; Niu, Ruiyuan; Xu, Lifeng; Cao, Junji; Lee, Shuncheng

    2016-01-04

    Volatile organic compounds (VOCs) are ubiquitous in indoor environments. Inhalation of VOCs can cause irritation, difficulty breathing, and nausea, and damage the central nervous system as well as other organs. Formaldehyde is a particularly important VOC as it is even a carcinogen. Removal of VOCs is thus critical to control indoor air quality (IAQ). Photocatalytic oxidation has demonstrated feasibility to remove toxic VOCs and formaldehyde from indoor environments. The technique is highly-chemical stable, inexpensive, non-toxic, and capable of removing a wide variety of organics under light irradiation. In this paper, we review and summarize the traditional air cleaning methods and current photocatalytic oxidation approaches in both of VOCs and formaldehyde degradation in indoor environments. Influencing factors such as temperature, relative humidity, deactivation and reactivations of the photocatalyst are discussed. Aspects of the application of the photocatalytic technique to improve the IAQ are suggested.

  14. Characteristics of volatile compounds removal in biogas slurry of pig manure by ozone oxidation and organic solvents extraction

    Institute of Scientific and Technical Information of China (English)

    Yujun Wang; Lianshuang Feng; Xiaosong Zhao; Xiulan Ma; Jingmin Yang; Huiqing Liu; Sen Dou

    2013-01-01

    Biogas slurry is not suitable for liquid fertilizer due to its high amounts of volatile materials being of complicated composition and peculiar smell.In order to remove volatiles from biogas slurry efficiently,the dynamic headspace and gas chromatography-mass spectrometry were used to clear the composition of volatiles.Nitrogen stripping and superfluous ozone were also used to remove volatiles from biogas slurry.The results showed that there were 21 kinds of volatile compounds in the biogas slurry,including sulfur compounds,organic amines,benzene,halogen generation of hydrocarbons and alkanes,some of which had strong peculiar smell.The volatile compounds in biogas slurry can be removed with the rate of 53.0% by nitrogen stripping and with rate of 81.7% by the oxidization and stripping of the superfluous ozone.On this basis,the removal rate of the volatile compounds reached 99.2%by chloroform and n-hexane extraction,and almost all of odor was eliminated.The contents of some dissolved organic compounds decreased obviously and however main plant nutrients had no significant change in the biogas slurry after being treated.

  15. Simultaneous Microwave Extraction and Separation of Volatile and Non-Volatile Organic Compounds of Boldo Leaves. From Lab to Industrial Scale

    Directory of Open Access Journals (Sweden)

    Loïc Petigny

    2014-04-01

    Full Text Available Microwave extraction and separation has been used to increase the concentration of the extract compared to the conventional method with the same solid/liquid ratio, reducing extraction time and separate at the same time Volatile Organic Compounds (VOC from non-Volatile Organic Compounds (NVOC of boldo leaves. As preliminary study, a response surface method has been used to optimize the extraction of soluble material and the separation of VOC from the plant in laboratory scale. The results from the statistical analysis revealed that the optimized conditions were: microwave power 200 W, extraction time 56 min and solid liquid ratio of 7.5% of plants in water. Lab scale optimized microwave method is compared to conventional distillation, and requires a power/mass ratio of 0.4 W/g of water engaged. This power/mass ratio is kept in order to upscale from lab to pilot plant.

  16. Development of a fast GC/MS-system for airborne measurements of Volatile Organic Compounds

    Science.gov (United States)

    Wenk, Ann-Kathrin; Wegener, Robert; Hofzumahaus, Andreas; Wahner, Andreas

    2010-05-01

    Volatile Organic Compounds (VOC) determine the radical chemistry of the atmosphere. They can serve both as sources, or sinks for radicals. Mass spectrometry linked to gas chromatography (GC/MS) is a widespread technique in environmental analysis since it can be used to separate and analyze any compound which can be evaporated and pass the analytical column with very high precision and a good sensitivity. The use of special chromatographic phases and long capillary columns enables the quantification of a wide range of compounds with little interference from other sample constituents. An in situ GC/MS consists in principle of three compartments, 1) a preconcentration unit where the sample is extracted from the air, focussed onto a small volume and volatilized, 2) a chromatographic system where the analytes are separated on the analytical column and 3) a mass spectrometer where the compounds are ionized and detected. VOC have to be preconcentrated due to their low concentration level and in order to get enough sensitivity for analysis. The aim of this project was to develop an in situ GC/MS system to analyze volatile Nonmethane Hydrocarbons (NMHC) and Oxygenated Volatile Organic Compounds (OVOC) for the High Altitude and LOng Range Research Aircraft (HALO). In contrast to other analytical instruments a GC/MS works discontinuously. The preconcentration unit is either heated up when the compounds are volatilized or cooled down when substances are adsorbed. The same is true for the GC oven. It is heated up when the compounds are separated or it is cooled down to be ready for the next injection. On a system with a single GC oven, these processes will inevitably lengthen the whole analytical procedure. To speed up the analytical process the GC/MS system described here was equipped with two GC ovens and two adsorption units. While the components are adsorbed in one adsorption unit, in the other unit the components are desorbed and transferred to the GC unit. The second GC

  17. Microbial communities related to volatile organic compound emission in automobile air conditioning units.

    Science.gov (United States)

    Diekmann, Nina; Burghartz, Melanie; Remus, Lars; Kaufholz, Anna-Lena; Nawrath, Thorben; Rohde, Manfred; Schulz, Stefan; Roselius, Louisa; Schaper, Jörg; Mamber, Oliver; Jahn, Dieter; Jahn, Martina

    2013-10-01

    During operation of mobile air conditioning (MAC) systems in automobiles, malodours can occur. We studied the microbial communities found on contaminated heat exchanger fins of 45 evaporators from car MAC systems which were operated in seven different regions of the world and identified corresponding volatile organic compounds. Collected biofilms were examined by scanning electron microscopy and fluorescent in situ hybridization. The detected bacteria were loosely attached to the metal surface. Further analyses of the bacteria using PCR-based single-strand conformation polymorphism and sequencing of isolated 16S rRNA gene fragments identified highly divergent microbial communities with multiple members of the Alphaproteobacteriales, Methylobacteria were the prevalent bacteria. In addition, Sphingomonadales, Burkholderiales, Bacillales, Alcanivorax spp. and Stenotrophomonas spp. were found among many others depending on the location the evaporators were operated. Interestingly, typical pathogenic bacteria related to air conditioning systems including Legionella spp. were not found. In order to determine the nature of the chemical compounds produced by the bacteria, the volatile organic compounds were examined by closed loop stripping analysis and identified by combined gas chromatography/mass spectrometry. Sulphur compounds, i.e. di-, tri- and multiple sulphides, acetylthiazole, aromatic compounds and diverse substituted pyrazines were detected. Mathematical clustering of the determined microbial community structures against their origin identified a European/American/Arabic cluster versus two mainly tropical Asian clusters. Interestingly, clustering of the determined volatiles against the origin of the corresponding MAC revealed a highly similar pattern. A close relationship of microbial community structure and resulting malodours to the climate and air quality at the location of MAC operation was concluded.

  18. Volatile organic compounds from native potato-associated Pseudomonas as potential anti-oomycete agents.

    Directory of Open Access Journals (Sweden)

    Mout eDeVrieze

    2015-11-01

    Full Text Available The plant kingdom represents a prominent biodiversity island for microbes that associate with the below- or aboveground organs of vegetal species. Both the root and the leaf represent interfaces where dynamic biological interactions influence plant life. Beside well-studied communication strategies based on soluble compounds and protein effectors, bacteria were recently shown to interact both with host plants and other microbial species through the emissions of volatile organic compounds (VOCs. Focusing on the potato late blight-causing agent Phytophthora infestans, this work addresses the potential role of the bacterial volatilome in suppressing plant diseases. In a previous study, we isolated and identified a large collection of strains with anti-Phytophthora potential from both the phyllosphere and the rhizosphere of potato. Here we report the characterization and quantification of their emissions of biogenic volatiles, comparing 16 Pseudomonas strains differing in i origin of isolation (phyllosphere vs. rhizosphere, ii in vitro inhibition of P. infestans growth and sporulation behavior, and iii protective effects against late blight on potato leaf discs. We systematically tested the pharmacological inhibitory activity of core and strain-specific single compounds against P. infestans mycelial growth and sporangial behavior in order to identify key effective candidate molecules present in the complex natural VOCs blends. We envisage the plant bacterial microbiome as a reservoir for functional VOCs and establish the basis for finding the primary enzymatic toolset that enables the production of active components of the volatile bouquet in plant-associated bacteria. Comprehension of these functional interspecies interactions will open perspectives for the sustainable control of plant diseases in forthcoming agriculture.

  19. Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: impacts on source strength and partitioning

    Science.gov (United States)

    Murphy, Benjamin N.; Woody, Matthew C.; Jimenez, Jose L.; Carlton, Ann Marie G.; Hayes, Patrick L.; Liu, Shang; Ng, Nga L.; Russell, Lynn M.; Setyan, Ari; Xu, Lu; Young, Jeff; Zaveri, Rahul A.; Zhang, Qi; Pye, Havala O. T.

    2017-09-01

    Mounting evidence from field and laboratory observations coupled with atmospheric model analyses shows that primary combustion emissions of organic compounds dynamically partition between the vapor and particulate phases, especially as near-source emissions dilute and cool to ambient conditions. The most recent version of the Community Multiscale Air Quality model version 5.2 (CMAQv5.2) accounts for the semivolatile partitioning and gas-phase aging of these primary organic aerosol (POA) compounds consistent with experimentally derived parameterizations. We also include a new surrogate species, potential secondary organic aerosol from combustion emissions (pcSOA), which provides a representation of the secondary organic aerosol (SOA) from anthropogenic combustion sources that could be missing from current chemical transport model predictions. The reasons for this missing mass likely include the following: (1) unspeciated semivolatile and intermediate volatility organic compound (SVOC and IVOC, respectively) emissions missing from current inventories, (2) multigenerational aging of organic vapor products from known SOA precursors (e.g., toluene, alkanes), (3) underestimation of SOA yields due to vapor wall losses in smog chamber experiments, and (4) reversible organic compounds-water interactions and/or aqueous-phase processing of known organic vapor emissions. CMAQ predicts the spatially averaged contribution of pcSOA to OA surface concentrations in the continental United States to be 38.6 and 23.6 % in the 2011 winter and summer, respectively. Whereas many past modeling studies focused on a particular measurement campaign, season, location, or model configuration, we endeavor to evaluate the model and important uncertain parameters with a comprehensive set of United States-based model runs using multiple horizontal scales (4 and 12 km), gas-phase chemical mechanisms, and seasons and years. The model with representation of semivolatile POA improves predictions of

  20. Car indoor air pollution by volatile organic compounds and aldehydes in Japan

    Directory of Open Access Journals (Sweden)

    Kouichi Tatsu

    2016-06-01

    Full Text Available Fifty-five organic substances including volatile organic compounds (VOCs and aldehydes present in indoor air were measured from 24 car cabins in Japan. A screening-level risk assessment was also performed. Acetaldehyde (3.81–36.0 μg/m3, formaldehyde (3.26–26.7 μg/m3, n-tetradecane (below the method quantification limit (organic compounds originated from the car interior materials. Total volatile organic compound (TVOC concentrations in 14 car cabins (58% of all car cabins exceeded the advisable values established by the Ministry of Health, Labour and Welfare of Japan (400 μg/m3. The highest TVOC concentration (1136 μg/m3 was found in a new car (only one month since its purchase date. Nevertheless, TVOC concentrations exceeded the advisable value even for cars purchased over 10 years ago. Hazard quotients (HQs for formaldehyde obtained using measured median and highest concentrations in both exposure scenarios for occupational use (residential time in a car cabin was assumed to be 8 h were higher than that expected, a threshold indicative of potential adverse effects. Under the same exposure scenarios, HQ values for all other organic compounds remained below this threshold.

  1. Air monitoring of volatile organic compounds at relevant receptors during hydraulic fracturing operations in Washington County, Pennsylvania.

    Science.gov (United States)

    Maskrey, Joshua R; Insley, Allison L; Hynds, Erin S; Panko, Julie M

    2016-07-01

    A 3-month air monitoring study was conducted in Washington County, Pennsylvania, at the request of local community members regarding the potential risks resulting from air emissions of pollutants related to hydraulic fracturing operations. Continuous air monitoring for total volatile organic compounds was performed at two sampling sites, including a school and a residence, located within 900 m of a hydraulic fracturing well pad that had been drilled prior to the study. Intermittent 24-hour air samples for 62 individual volatile organic compounds were also collected. The ambient air at both sites was monitored during four distinct periods of unconventional natural gas extraction activity: an inactive period prior to fracturing operations, during fracturing operations, during flaring operations, and during another inactive period after operations. The results of the continuous monitoring during fracturing and flaring sampling periods for total volatile organic compounds were similar to the results obtained during inactive periods. Total volatile organic compound 24-hour average concentrations ranged between 0.16 and 80 ppb during all sampling periods. Several individual volatile compounds were detected in the 24-hour samples, but they were consistent with background atmospheric levels measured previously at nearby sampling sites and in other areas in Washington County. Furthermore, a basic yet conservative screening level evaluation demonstrated that the detected volatile organic compounds were well below health-protective levels. The primary finding of this study was that the operation of a hydraulic fracturing well pad in Washington County did not substantially affect local air concentrations of total and individual volatile organic compounds.

  2. The Venus flytrap attracts insects by the release of volatile organic compounds.

    Science.gov (United States)

    Kreuzwieser, Jürgen; Scheerer, Ursel; Kruse, Jörg; Burzlaff, Tim; Honsel, Anne; Alfarraj, Saleh; Georgiev, Plamen; Schnitzler, Jörg-Peter; Ghirardo, Andrea; Kreuzer, Ines; Hedrich, Rainer; Rennenberg, Heinz

    2014-02-01

    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap.

  3. Distribution of Total Volatile Organic Compounds at taxi drivers in Tehran

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Javad Golhosseini

    2015-06-01

    Full Text Available Air pollution is currently the most serious environmental health threat worldwide. Volatile Organic Compounds (VOC are considered as the main effective factors in causing air pollution. Vehicles are among the major sources which emit these compounds, so it seems that automobiles’ microenvironment is one of the places where people are exposed to high concentration of VOC. Evaluating the exposure amount of Total Volatile Organic Compounds (TVOC can indeed be used as an indicator to estimate the amount of exposure to every individual VOC. This study was conducted on the concentration of TVOC inside Tehran taxies for a period of one year. For this purpose, a real time instrument equipped with photo-ionization detector (PID was used. Consequently, the highest and the lowest measured TVOC in taxies equaled 3.33 ppm and 0.72 ppm, respectively. In addition, the arithmetic mean of TVOC concentration was 1.77±0.53 ppm inside the examined taxies. In this study, the parameters like measurement time, climate and vehicle conditions were found to have significant effect on the amount of exposure to TVOC.

  4. The impact of plants on the reduction of volatile organic compounds in a small space.

    Science.gov (United States)

    Song, Jeong-Eun; Kim, Yong-Shik; Sohn, Jang-Yeul

    2007-11-01

    This study aims at examining the reduction of indoor air contaminants by plants placed in an indoor space. Field measurements were performed using Aglaonema brevispathum, Pachira aquatica, and Ficus benjamiana, which were verified as air-purifying plants by NASA. Three conditions for the amount of plants and positions were used in two separate rooms whose dimensions are identical. The concentration of Volatile Organic Compounds (VOCs) was monitored three hours after the plants were placed and three days after the plants were placed. The variations of concentration of Benzene, Toluene, Etylbenzene, and Xylene (BTEX), as well as Formaldehyde, which are all known as the major elements of Volatile Organic Compounds were monitored. The amount of reduction in concentration of Toluene and Formaldehyde was monitored 3 hours and 3 days after the plants were placed in the space. The reduction in the concentration of Benzene, Toluene, Etylbenzene, Xylene, and Formaldehyde was significantly greater when plants were present. When plants were placed near a window, the reduction of concentration was greater. The more plants were used, the more a reduction of indoor air contaminants occurred. The effect of reducing the concentration of air contaminants increased when the amount of plants increased, and when the plants were placed in sunny area. The concentration of Toluene was reduced by 45.6 microg/m(3) when 10% of the model space was occupied by Aglaonema brevispathum.

  5. Native Fluorescence Detection Methods and Detectors for Naphthalene and/or Other Volatile Organic Compound Vapors

    Science.gov (United States)

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor)

    2014-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds have been identified as serious health hazards. This is especially true for personnel working with JP8 jet fuel and other fuels containing naphthalene as well as other hazardous volatile organic compounds (VOCs). Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to naphthalene or other hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined. The badges employ a new native fluorescence based detection method to identify and differentiate VOCs. The particular focus of some embodiments are the detection and identification of naphthalene while other embodiments are directed to detection and identification of other VOCs like aromatic hydrocarbons such as benzene, toluene, and xylene.

  6. Levels and source apportionment of volatile organic compounds in southwestern area of Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Rodolfo Sosa, E. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico); Humberto Bravo, A. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico)], E-mail: hbravo@servidor.unam.mx; Violeta Mugica, A. [Universidad Autonoma Metropolitana, Azcapotzalco, D.F. (Mexico); Pablo Sanchez, A. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico); Emma Bueno, L. [Centro Nacional de Investigacion y Capacitacion Ambiental, Instituto Nacional de Ecologia (Mexico); Krupa, Sagar [Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108 (United States)

    2009-03-15

    Thirteen volatile organic compounds (VOCs) were quantified at three sites in southwestern Mexico City from July 2000 to February 2001. High concentrations of different VOCs were found at a Gasoline refueling station (GS), a Condominium area (CA), and at University Center for Atmospheric Sciences (CAS). The most abundant VOCs at CA and CAS were propane, n-butane, toluene, acetylene and pentane. In comparison, at GS the most abundant were toluene, pentane, propane, n-butane, and acetylene. Benzene, a known carcinogenic compound had average levels of 28, 35 and 250 ppbC at CAS, CA, and GS respectively. The main contributing sources of the measured VOCs at CA and CAS were the handling and management of LP (Liquid Propane) gas, vehicle exhaust, asphalt works, and use of solvents. At GS almost all of the VOCs came from vehicle exhaust and fuel evaporation, although components of LP gas were also present. Based on the overall results possible abatement strategies are discussed. - Volatile organic compounds were quantified in order to perform their source apportionment in southwestern area of Mexico City.

  7. Volatile Organic Analyzer (VOA) in 2006: Repair, Revalidation, and Restart of Elektron Event

    Science.gov (United States)

    Limero, Thomas

    2007-01-01

    The Volatile Organic Analyzer (VOA) was launched to the International Space Station (ISS) in August 2001 and was the first instrument to provide near real-time measurement of volatile organic compounds in a spacecraft atmosphere. The VOA performed an analysis of the ISS air approximately twice a month for most of its operation through May 2003. This intermittent operation, caused by a software interface issue with the ISS communication bus, slowed the validation of the VOA. However, operational validation was completed in 2003 when analysis of air samples collected in grab sample containers (GSCs) compared favorably with simultaneous VOA runs (1). The VOA has two channels that provide redundant function, albeit at slightly reduced performance, when only one channel is operating (2). Most target compounds can be detected on both channels. In January 2003, the VOA identified a malfunction in the channel 2 preconcentrator and it shut down that channel. The anomaly profile suggested that a fuse might have failed, but the root cause could not be determined. In May 2003, channel 1 was shut down when the detector s elevated temperature could not longer be maintained. Since both VOA channels were now deactivated, VOA operations ended until an in-flight repair could be planned and executed. This paper describes the process to repair the VOA and to revalidate it for operations, and then an account is given of the VOA s contribution following a contingency event on ISS.

  8. Metal-organic molecular device for non-volatile memory storage

    Energy Technology Data Exchange (ETDEWEB)

    Radha, B., E-mail: radha.boya@manchester.ac.uk, E-mail: kulkarni@jncasr.ac.in; Sagade, Abhay A.; Kulkarni, G. U., E-mail: radha.boya@manchester.ac.uk, E-mail: kulkarni@jncasr.ac.in [Chemistry and Physics of Materials Unit and DST Unit on Nanoscience, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India)

    2014-08-25

    Non-volatile memory devices have been of immense research interest for their use in active memory storage in powered off-state of electronic chips. In literature, various molecules and metal compounds have been investigated in this regard. Molecular memory devices are particularly attractive as they offer the ease of storing multiple memory states in a unique way and also represent ubiquitous choice for miniaturized devices. However, molecules are fragile and thus the device breakdown at nominal voltages during repeated cycles hinders their practical applicability. Here, in this report, a synergetic combination of an organic molecule and an inorganic metal, i.e., a metal-organic complex, namely, palladium hexadecylthiolate is investigated for memory device characteristics. Palladium hexadecylthiolate following partial thermolysis is converted to a molecular nanocomposite of Pd(II), Pd(0), and long chain hydrocarbons, which is shown to exhibit non-volatile memory characteristics with exceptional stability and retention. The devices are all solution-processed and the memory action stems from filament formation across the pre-formed cracks in the nanocomposite film.

  9. Measurements of Volatile Organic Compounds in a Newly Built Daycare Center.

    Science.gov (United States)

    Noguchi, Miyuki; Mizukoshi, Atsushi; Yanagisawa, Yukio; Yamasaki, Akihiro

    2016-07-21

    We measured temporal changes in concentrations of total volatile organic compounds (TVOCs) and individual volatile organic compounds in a newly built daycare center. The temporal changes of the TVOC concentrations were monitored with a photo ionization detector (PID), and indoor air was sampled and analyzed by Gas Chromatography/Mass Spectrometry (GC/MS) and high performance liquid chromatography (HPLC) to determine the concentrations of the constituent VOCs. The measurements were performed just after completion of the building and again 3 months after completion. The TVOC concentration exceeded 1000 µg·m(-3) for all the sampling locations just after completion of building, and decreased almost one tenth after 3 months, to below the guideline values of the TVOC in Japan at 400 µg·m(-3). The concentrations of the target VOCs of which the indoor concentrations are regulated in Japan were below the guideline values for all the cases. The air-exchange rates were determined based on the temporal changes of the TVOC concentrations, and it was found that the countermeasure to increase the air exchange rate successfully decrease the TVOC concentration level in the rooms.

  10. Measurements of Volatile Organic Compounds in a Newly Built Daycare Center

    Directory of Open Access Journals (Sweden)

    Miyuki Noguchi

    2016-07-01

    Full Text Available We measured temporal changes in concentrations of total volatile organic compounds (TVOCs and individual volatile organic compounds in a newly built daycare center. The temporal changes of the TVOC concentrations were monitored with a photo ionization detector (PID, and indoor air was sampled and analyzed by Gas Chromatography/Mass Spectrometry (GC/MS and high performance liquid chromatography (HPLC to determine the concentrations of the constituent VOCs. The measurements were performed just after completion of the building and again 3 months after completion. The TVOC concentration exceeded 1000 µg·m−3 for all the sampling locations just after completion of building, and decreased almost one tenth after 3 months, to below the guideline values of the TVOC in Japan at 400 µg·m−3. The concentrations of the target VOCs of which the indoor concentrations are regulated in Japan were below the guideline values for all the cases. The air-exchange rates were determined based on the temporal changes of the TVOC concentrations, and it was found that the countermeasure to increase the air exchange rate successfully decrease the TVOC concentration level in the rooms.

  11. Distribution of Total Volatile Organic Compounds at taxi drivers in Tehran

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Javad Golhosseini*

    2015-06-01

    Full Text Available Air pollution is currently the most serious environmental health threat worldwide. Volatile Organic Compounds (VOCs are considered as the main effective factors in causing air pollution. Vehicles are among the major sources which emit these compounds, so it seems that automobiles’ microenvironment is one of the places where people are exposed to high concentration of VOC. Evaluating the exposure amount of Total Volatile Organic Compounds (TVOC can indeed be used as an indicator to estimate the amount of exposure to every individual VOC. This study was conducted on the concentration of TVOC inside Tehran taxies for a period of one year. For this purpose, a real time instrument equipped with photo-ionization detector (PID was used. Consequently, the highest and the lowest measured TVOC in taxies equaled 3.33 ppm and 0.72 ppm, respectively. In addition, the arithmetic mean of TVOC concentration was 1.77±0.53 ppm inside the examined taxies. In this study, the parameters like measurement time, climate and vehicle conditions were found to have significant effect on the amount of exposure to TVOC.

  12. Photodecomposition of volatile organic compounds using TiO2 nanoparticles.

    Science.gov (United States)

    Jwo, Ching-Song; Chang, Ho; Kao, Mu-Jnug; Lin, Chi-Hsiang

    2007-06-01

    This study examined the photodecomposition of volatile organic compounds (VOCs) using TiO2 catalyst fabricated by the Submerged Arc Nanoparticle Synthesis System (SANSS). TiO2 catalyst was employed to decompose volatile organic compounds and compare with Degussa-P25 TiO2 in terms of decomposition efficiency. In the electric discharge manufacturing process, a Ti bar, applied as the electrode, was melted and vaporized under high temperature. The vaporized Ti powders were then rapidly quenched under low-temperature and low-pressure conditions in deionized water, thus nucleating and forming nanocrystalline powders uniformly dispersed in the base solvent. The average diameter of the TiO2 nanoparticles was 20 nm. X-ray diffraction analysis confirmed that the nanoparticles in the deionized water were Anatase type TiO2. It was found that gaseous toluene exposed to UV irradiation produced intermediates that were even harder to decompose. After 60-min photocomposition, Degussa-P25 TiO2 reduced the concentration of gaseous toluene to 8.18% while the concentration after decomposition by SANSS TiO2 catalyst dropped to 0.35%. Under UV irradiation at 253.7 +/- 184.9 nm, TiO2 prepared by SANSS can produce strong chemical debonding energy, thus showing great efficiency, superior to that of Degussa-P25 TiO2, in decomposing gaseous toluene and its intermediates.

  13. Quantifying Volatile Organic Compound Emissions from Solvents and their Impacts on Urban Air Quality

    Science.gov (United States)

    Mcdonald, B. C.; De Gouw, J. A.; Gilman, J.; Ahmadov, R.; Cappa, C. D.; Frost, G. J.; Goldstein, A. H.; Jathar, S.; Jimenez, J. L.; Kim, S. W.; McKeen, S. A.; Roberts, J. M.; Trainer, M.

    2016-12-01

    Solvents, which consist of personal care products, paints, degreasing agents, and other chemical products, are an important anthropogenic source of volatile organic compound (VOC) emissions. Yet there are many unresolved questions related to their emission rates, chemical composition, and relative importance on urban air quality problems. Using atmospheric measurements of speciated VOCs collected at a ground site located in the Los Angeles basin during the California Nexus (CalNex) Study in 2010, and utilizing data on the composition of solvent emissions from the California Air Resources Board (CARB), we are able to reconcile solvent emissions with ambient observations. Our analysis indicates that solvent emissions are underestimated by a factor of 2-3 in the CARB inventory. We then estimate the reactivity of solvent emissions with the hydroxyl (OH) radical, and also estimate the propensity of solvent emissions to form secondary organic aerosol (SOA). Solvents contain significant fractions of oxygenated compounds, including intermediate volatility compounds, which if released to the atmosphere are potentially reactive and can lead to the formation of SOA. Overall, our results suggest that in the Los Angeles basin, solvents are now the largest anthropogenic source of VOC emissions, OH reactivity, and SOA formation, and larger than the contribution from motor vehicles. This suggests that more research is needed in better constraining this potentially important source of urban VOC emissions.

  14. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto; Kerminen, Veli-Matti; Junninen, Heikki; Paasonen, Pauli; Stratmann, Frank; Herrmann, Hartmut; Guenther, Alex B.; Worsnop, Douglas R.; Kulmala, M.; Ehn, Mikael K.; Sipila, Mikko

    2015-06-09

    Extremely low volatility organic compounds (ELVOC) are suggested to promote aerosol particle formation and cloud condensation nuclei (CCN) production in the atmosphere. We show that the capability of biogenic VOC (BVOC) to produce ELVOC depends strongly on their chemical structure and relative oxidant levels. BVOC with an endocyclic double bond, representative emissions from, e.g., boreal forests, efficiently produce ELVOC from ozonolysis. Compounds with exocyclic double bonds or acyclic compounds including isoprene, emission representative of the tropics, produce minor quantities of ELVOC, and the role of OH radical oxidation is relatively larger. Implementing these findings into a global modeling framework shows that detailed assessment of ELVOC production pathways is crucial for understanding biogenic secondary organic aerosol and atmospheric CCN formation.

  15. Arctic Vegetation under Climate Change – Biogenic Volatile Organic Compound Emissions and Leaf Anatomy

    DEFF Research Database (Denmark)

    Schollert, Michelle

    Biogenic volatile organic compounds (BVOCs) emitted from terrestrial vegetation are highly reactive non-methane hydrocarbons which participate in oxidative reactions in the atmosphere prolonging the lifetime of methane and contribute to the formation of secondary organic aerosols. The BVOC...... measurements in this thesis were performed using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analyzed by gas chromatography-mass spectrometry following thermal desorption. Also modifications in leaf anatomy in response to the studied effects of climate change were assessed...... by the use of light microscopy and scanning electron microscopy. This thesis reports the first estimates of high arctic BVOC emissions, which suggest that arctic environments can be a considerable source of BVOCs to the atmosphere. The BVOC emissions differed qualitatively and quantitatively for the studied...

  16. The determination of botanical origin of honeys based on enantiomer distribution of chiral volatile organic compounds.

    Science.gov (United States)

    Špánik, Ivan; Pažitná, Alexandra; Šiška, Peter; Szolcsányi, Peter

    2014-09-01

    The enantiomer ratios of chiral volatile organic compounds in rapeseed, chestnut, orange, acacia, sunflower and linden honeys were determined by multi-dimensional gas chromatography using solid phase microextraction (SPME) as a sample pre-treatment procedure. Linalool oxides, linalool and hotrienol were present at the highest concentration levels, while significantly lower amounts of α-terpineol, 4-terpineol and all isomers of lilac aldehydes were found in all studied samples. On the other hand, enantiomer distribution of some chiral organic compounds in honey depends on their botanical origin. The significant differences in enantiomer ratio of linalool were observed for rapeseed honey that allows us to distinguish this type of honey from the other ones. The enantiomer ratios of lilac aldehydes were useful for distinguishing of orange and acacia honey from other studied monofloral honeys. Similarly, different enantiomer ratio of 4-terpineol was found for sunflower honeys.

  17. Self-assembled host monolayer based chemical microsensors for volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jing-Xuan; Moore, L.W.; Springer, K.N. [Los Alamos National Lab., NM (United States)] [and others

    1995-12-01

    The interaction of organic vapors with self-assembled host monolayers on the surface of 200 MHz surface acoustic wave (SAW) resonators is studied as a method of tracking toxins in the gas phase. Molecular self-assembly techniques were employed to achieve covalent surface-attachment of two families of {open_quotes}bucket{close_quotes} molecules - cyclodextrins and calix[n]arenes - to native oxides on Si<100> and single-crystal ST-cut quartz. The formation of the covalently-bound functionalized bucket monolayers on oxide surfaces was characterized by polarized, variable-angle, internal attenuated total reflection infrared spectroscopy and surface acoustic mass transduction. SAW based sensors were capable of detecting volatile organic compounds (VOCs) down to ppb levels. Pattern recognition with an array of complementary microsensors appears to be a viable approach for identifying and quantifying a particular VOC.

  18. Volatile organic compounds and trace metal level in some beers collected from Romanian market

    Science.gov (United States)

    Voica, Cezara; Kovacs, Melinda; Vadan, Marius

    2013-11-01

    Beer is one of the most popular beverages at worldwide level. Through this study fifteen different types of beer collected from Romanian market were analysed in order to evaluate their mineral, trace element as well the their organic content. Importance of such characterization of beer samples is supported by the fact that their chemical composition can affect both taste and stability of beer, as well the consumer health. Minerals and trace elements analysis were performed on ICP-MS while organic compounds analysis was done through GC-MS. Through ICP-MS analysis, elements as Ca, Na, K and Mg were evidenced at mgṡkg-1 order while elements as Cr, Ba, Co, Ni were detected at lower level. After GC-MS analysis the major volatile compounds that were detected belong to alcohols namely ethanol, propanol, isobutanol, isoamyl alcohol and linalool. Selected fatty acids and esters were evidenced also in the studied beer samples.

  19. [Preliminary study concerning emissions of the volatile organic compounds from cooking oils].

    Science.gov (United States)

    He, Wan-Qing; Tian, Gang; Nie, Lei; Qu, Song; Li, Jing; Wang, Min-Yan

    2012-09-01

    Cooking oil fume is one of the important sources of atmospheric volatile organic compounds (VOCs), which are the key precursors of ozone and secondary organic aerosols in air. In this study, the production of cooking oil fume was simulated by heating typical pure vegetable oils (peanut oil, sunflower oil, soybean oil, olive oil and blend oil) at different temperatures in beakers to investigate the VOCs emission characteristics. The emitted VOCs were sampled with a Tenax adsorption tube and analyzed using GC-MS after thermal desorption. The results showed that the emission of VOCs increased with the increase of the heating temperature for all the investigated cooking oils, and at a given temperature, the blend oil emitted the lowest amount of VOCs. The VOCs emission intensity at different heating temperatures fitted well with binomial equations and ranged from 1.6-11.1 mg x (kg x min)(-1).

  20. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer

    Science.gov (United States)

    Mungall, Emma L.; Abbatt, Jonathan P. D.; Wentzell, Jeremy J. B.; Lee, Alex K. Y.; Thomas, Jennie L.; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A.; Papakyriakou, Tim; Willis, Megan D.; Liggio, John

    2017-06-01

    Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.

  1. Reaction of ozone with c5 and c6 biogenic volatile organic compounds

    Science.gov (United States)

    O Connor, M.; O Dwyer, M.; Wenger, J.

    2003-04-01

    REACTION OF OZONE WITH C5 AND C6 BIOGENIC VOLATILE ORGANIC COMPOUNDS M. O'Connor, M. O'Dwyer, J. Wenger CRAC-Centre for Research into Atmospheric Chemistry, Department of Chemistry, University College Cork, Ireland. jwenger@chemistry.ucc.ie Biogenic volatile organic compounds (BVOCs) account for around 90% of hydrocarbon emissionsinto the Earth's atmosphere. During the last ten years an increasing number of oxygenated BVOCs have also been detected in field measurement campaigns and plant emission studies. In particular a range of C5 and C6 oxygenates have been identifiedincluding compounds such as 1-penten-3-ol, E-2-hexenal and E-2-hexenyl acetate. The atmospheric impact of many of these compounds is largely unknown. The major atmospheric degradation processes for biogenic VOCs are gas-phase reaction with hydroxyl (OH) radicals, nitrate (NO3) radicals and ozone (O3). These reactions produce oxidized hydrocarbons, ozone and secondary organic aerosol and, as a result, exert a strong influence on the chemical compositionof the atmosphere. Although a number of studies have been made on the kinetics of the degradation of BVOCs, very few details are available concerning the reaction products and chemical mechanisms. In this work we have studied the reaction of O3 with a series of C5 unsaturated alcohols and C6 unsaturated aldehydes. Rate coefficients for these reactions have been studied using the relative rate method and gas-phase oxidation products have been identified using FTIR spectroscopy and PFBHA derivatisation coupled with GC-MS analysis. In addition secondary organic aerosol (SOA) formation has been studied as a function of humidity. The data obtained in this work will be used to further our knowledge of the atmospheric degradation of these naturally occurring compounds.

  2. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species.

    Science.gov (United States)

    Fincheira, Paola; Venthur, Herbert; Mutis, Ana; Parada, Maribel; Quiroz, Andrés

    2016-12-01

    Agrochemicals are currently used in horticulture to increase crop production. Nevertheless, their indiscriminate use is a relevant issue for environmental and legal aspects. Alternative tools for reducing fertilizers and synthetic phytohormones are being investigated, such as the use of volatile organic compounds (VOCs) as growth inducers. Some soil bacteria, such as Pseudomonas and Bacillus, stimulate Arabidopsis and tobacco growth by releasing VOCs, but their effects on vegetables have not been investigated. Lactuca sativa was used as model vegetable to investigate bacterial VOCs as growth inducers. We selected 10 bacteria strains, belonging to Bacillus, Staphylococcus and Serratia genera that are able to produce 3-hydroxy-2-butanone (acetoin), a compound with proven growth promoting activity. Two-day old-seedlings of L. sativa were exposed to VOCs emitted by the selected bacteria grown in different media cultures for 7 days. The results showed that the VOCs released from the bacteria elicited an increase in the number of lateral roots, dry weight, root growth and shoot length, depending on the media used. Three Bacillus strains, BCT53, BCT9 and BCT4, were selected according to its their growth inducing capacity. The BCT9 strain elicited the greatest increases in dry weight and primary root length when L. sativa seedlings were subjected to a 10-day experiment. Finally, because acetoin only stimulated root growth, we suggest that other volatiles could be responsible for the growth promotion of L. sativa. In conclusion, our results strongly suggest that bacteria volatiles can be used as growth-inducers as alternative or complementary strategies for application in horticulture species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Volatilization of low vapor pressure--volatile organic compounds (LVP-VOCs) during three cleaning products-associated activities: Potential contributions to ozone formation.

    Science.gov (United States)

    Shin, Hyeong-Moo; McKone, Thomas E; Bennett, Deborah H

    2016-06-01

    There have been many studies to reduce ozone formation mostly from volatile organic compound (VOC) sources. However, the role of low vapor pressure (LVP)-VOCs from consumer products remains mostly unexplored and unaddressed. This study explores the impact of high production volume LVP-VOCs on ozone formation from three cleaning products-associated activities (dishwashing, clothes washing, and surface cleaning). We develop a model framework to account for the portion available for ozone formation during the use phase and from the down-the-drain disposal. We apply experimental studies that measured emission rates or models that were developed for estimating emission rates of organic compounds during the use phase. Then, the fraction volatilized (fvolatilized) and the fraction disposed down the drain (fdown-the-drain) are multiplied by the portion available for ozone formation for releases to the outdoor air (fO3|volatilized) and down-the-drain (fO3|down-the-drain), respectively. Overall, for chemicals used in three specific cleaning-product uses, fvolatilized is less than 0.6% for all studied LVP-VOCs. Because greater than 99.4% of compounds are disposed of down the drain during the use phase, when combined with fO3|volatilized and fO3|down-the-drain, the portion available for ozone formation from the direct releases to outdoor air and the down-the-drain disposal is less than 0.4% and 0.2%, respectively. The results from this study indicate that the impact of the studied LVP-VOCs on ozone formation is very sensitive to what occurs during the use phase and suggest the need for future research on experimental work at the point of use.

  4. 76 FR 64059 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of trans-1,3,3,3...

    Science.gov (United States)

    2011-10-17

    ... AGENCY 40 CFR Part 51 RIN 2060-AQ38 Air Quality: Revision to Definition of Volatile Organic Compounds... definition of volatile organic compounds (VOCs) for purposes of preparing state implementation plans (SIPs... atmosphere. The VOCs are those organic compounds of carbon which form ozone through atmospheric...

  5. SOME NEEDLE CONTENTS AND VOLATILE ORGANIC COMPOUNDS EMITTED BY PINUS BRUTIA IN RELATION TO HERBIVORE ATTACK

    Directory of Open Access Journals (Sweden)

    G. SEMİZ

    2014-06-01

    Full Text Available Herbivores can cause many types of damage to plants. Caterpillars ingest small sections of the leaves, while others feed on specific parts of the leaf material. In this point, essential oils from coniferous trees contain secondary metabolites that act as feeding deterrent for a great number of herbivore insect species. Attacks by herbivores elicit changes in the bouquet of volatiles released by plants. Terpenoid chemicals exist both as constitutive and massively induced defenses in conifers. Hereby we studied the factors contributing to the specificity of induced defensive responses in economically important pine species of Turkey, Pinus brutia Ten., against most famous pest, pine processionary moth (Thaumetopoea wilkinsoni Tams. We quantified volatile organic compounds (VOCs emissions of needle and some other needle contents. Needle feeding by the caterpillar increased emissions of VOCs. We discuss the possible mechanisms responsible for reducing the tree's signalling capacity triggered by Th. wilkinsoni oviposition and how enhancement/suppression of VOCs can influence the interaction between the tree, the pest and other biotic/abiotic factors in environment.

  6. Screening of Natural Organic Volatiles from Prunus mahaleb L. Honey: Coumarin and Vomifoliol as Nonspecific Biomarkers

    Directory of Open Access Journals (Sweden)

    Mladenka Malenica Staver

    2011-03-01

    Full Text Available Headspace solid-phase microextraction (HS-SPME; PDMS/DVB fibre and ultrasonic solvent extraction (USE; solvent A: pentane and diethyl ether (1:2 v/v, solvent B: dichloromethane followed by gas chromatography and mass spectrometry (GC, GC-MS were used for the analysis of Prunus mahaleb L. honey samples. Screening was focused toward chemical composition of natural organic volatiles to determine if it is useful as a method of determining honey-sourcing. A total of 34 compounds were identified in the headspace and 49 in the extracts that included terpenes, norisoprenoids and benzene derivatives, followed by minor percentages of aliphatic compounds and furan derivatives. High vomifoliol percentages (10.7%–24.2% in both extracts (dominant in solvent B and coumarin (0.3%–2.4% from the extracts (more abundant in solvent A and headspace (0.9%–1.8% were considered characteristic for P. mahaleb honey and highlighted as potential nonspecific biomarkers of the honey’s botanical origin. In addition, comparison with P. mahaleb flowers, leaves, bark and wood volatiles from our previous research revealed common compounds among norisoprenoids and benzene derivatives.

  7. Emissions of volatile organic compounds from heated needles and twigs of Pinus pumila

    Institute of Scientific and Technical Information of China (English)

    ZHAO Feng-jun; SHU Li-fu; WANG Qiu-hua; WANG Ming-yu; TIAN Xiao-rui

    2011-01-01

    A study was conducted to explore the mechanism that emissions of volatile organic compounds (VOC) from heated needles and twigs (200℃, within 15 min) of Pinus purnila affect fire behaviours using the technology of Thermal Desorption - Gas Chromatography-Mass Spectrometry (TD-GC-MS). The results indicated that the main components of VOC from heated needles and twigs are terpenoids. Most of these terpenoids are monoterpenes. Terpenoids account for 72.93% for the needles and 92.40% for the twigs of the total VOC, and their emis sion ratios are 61.200 μg·g-1 and 217.060 μtg·g-1 respectively. Heated twigs can emit more terpenoids than heated needles because twigs had more volatile oils than needles. In actual fires, these large amounts of terpenoid emissions, especially the monoterpene emissions, have strong effects on fire behaviors that are not only in the initial stage but also in the fast propagation stage of fires. These flammable gases are capable of causing violent combustion and creating crown fires. In addition, if these gases accumulate in an uneven geographical area, there will be a possible for eruptive fires and/or fires fiashover to occur.

  8. Release of volatile organic compounds (VOCs from the lung cancer cell line CALU-1 in vitro

    Directory of Open Access Journals (Sweden)

    Schubert Jochen

    2008-11-01

    Full Text Available Abstract Background The aim of this work was to confirm the existence of volatile organic compounds (VOCs specifically released or consumed by lung cancer cells. Methods 50 million cells of the human non-small cell lung cancer (NSCLC cell line CALU-1 were incubated in a sealed fermenter for 4 h or over night (18 hours. Then air samples from the headspace of the culture vessel were collected and preconcentrated by adsorption on solid sorbents with subsequent thermodesorption and analysis by means of gas chromatography mass spectrometry (GC-MS. Identification of altogether 60 compounds in GCMS measurement was done not only by spectral library match, but also by determination of retention times established with calibration mixtures of the respective pure compounds. Results The results showed a significant increase in the concentrations of 2,3,3-trimethylpentane, 2,3,5-trimethylhexane, 2,4-dimethylheptane and 4-methyloctane in the headspace of CALU-1 cell culture as compared to medium controls after 18 h. Decreased concentrations after 18 h of incubation were found for acetaldehyde, 3-methylbutanal, butyl acetate, acetonitrile, acrolein, methacrolein, 2-methylpropanal, 2-butanone, 2-methoxy-2-methylpropane, 2-ethoxy-2-methylpropane, and hexanal. Conclusion Our findings demonstrate that certain volatile compounds can be cancer-cell derived and thus indicative of the presence of a tumor, whereas other compounds are not released but seem to be consumed by CALU-1 cells.

  9. Cryogen free automated gas chromatography for the measurement of ambient volatile organic compounds.

    Science.gov (United States)

    Wang, J L; Chen, W L; Lin, Y H; Tsai, C H

    2000-10-27

    An automated gas chromatographic system was constructed for measuring ambient volatile organic compounds (VOCs). Preconcentration of the VOCs was performed by using two separated sorbent traps of different combinations with each designated for either low or high boiling VOCs. Both traps and their associated valve systems were integrated as a complete system sharing a common sample inlet. Precise temperature controls for desorption relied on the use of a process controller with proportional-integral-derivative algorithm to throttle the current supply. No additional cryo-focusing stage prior to the column was needed owing to the flash heating capability for desorption. Other than the cryogen free preconcentration and focusing, the separation of VOCs of large volatility difference was also performed without cryogen. The system employed an Al2O3/KCl porous-layer open tubular column for separating C3-C7 compounds; and a DB-1 column for C6-C12. This automated GC system has been deployed in a Taiwan Environmental Protection Agency urban air quality monitoring station of Taiwan for continuous measuring C3-C7 ozone precursors. Excellent correlation between the car exhaust type of compounds measured by our GC system and carbon monoxide measured by a non-dispersive infrared spectrometer was observed, suggesting the automated GC system was robust and reliable.

  10. Determination of volatile organic compounds responsible for flavour in cooked river buffalo meat

    Directory of Open Access Journals (Sweden)

    A. Di Luccia

    2010-02-01

    Full Text Available Flavour is an important consumer attractive that directly influences the success of food products on the market. The determination of odorous molecules and their identification allows to useful knowledge for producers to valorise their own products. Buffalo meat has a different chemical composition from pork and beef and requires some cautions in cooking and processing. This work aims at the identification of volatile molecules responsible for flavours in river buffalo meat. The determination was carried out by solid phase micro-extraction (SPME technique and analysed by gas chromatography coupled to mass spectrometry (GC-MS. The most relevant results were the higher odorous impact of buffalo meat and the higher content of sulphide compounds responsible for wild aroma respect to pork and beef. These results were obtained comparing the total area of peaks detected in every chromatogram. We have also found significant differences concerning the contents of pentadecane, 1-hexanol-2 ethyl, butanoic acid, furano-2-penthyl. The origin of volatile organic compounds and their influence on the river buffalo aromas were discussed.

  11. Influence of volatile organic compounds emitted by Pseudomonas and Serratia strains on Agrobacterium tumefaciens biofilms.

    Science.gov (United States)

    Plyuta, Vladimir; Lipasova, Valentina; Popova, Alexandra; Koksharova, Olga; Kuznetsov, Alexander; Szegedi, Erno; Chernin, Leonid; Khmel, Inessa

    2016-07-01

    The ability to form biofilms plays an important role in bacteria-host interactions, including plant pathogenicity. In this work, we investigated the action of volatile organic compounds (VOCs) produced by rhizospheric strains of Pseudomonas chlororaphis 449, Pseudomonas fluorescens B-4117, Serratia plymuthica IC1270, as well as Serratia proteamaculans strain 94, isolated from spoiled meat, on biofilms formation by three strains of Agrobacterium tumefaciens which are causative agents of crown-gall disease in a wide range of plants. In dual culture assays, the pool of volatiles emitted by the tested Pseudomonas and Serratia strains suppressed the formation of biofilms of A. tumefaciens strains grown on polycarbonate membrane filters and killed Agrobacterium cells in mature biofilms. The individual VOCs produced by the tested Pseudomonas strains, that is, ketones (2-nonanone, 2-heptanone, 2-undecanone), and dimethyl disulfide (DMDS) produced by Serratia strains, were shown to kill A. tumefaciens cells in mature biofilms and suppress their formation. The data obtained in this study suggest an additional potential of some ketones and DMDS as protectors of plants against A. tumefaciens strains, whose virulence is associated with the formation of biofilms on the infected plants.

  12. Plant Growth Promotion by Volatile Organic Compounds Produced by Bacillus subtilis SYST2

    Science.gov (United States)

    Tahir, Hafiz A. S.; Gu, Qin; Wu, Huijun; Raza, Waseem; Hanif, Alwina; Wu, Liming; Colman, Massawe V.; Gao, Xuewen

    2017-01-01

    Bacterial volatiles play a significant role in promoting plant growth by regulating the synthesis or metabolism of phytohormones. In vitro and growth chamber experiments were conducted to investigate the effect of volatile organic compounds (VOCs) produced by the plant growth promoting rhizobacterium Bacillus subtilis strain SYST2 on hormone regulation and growth promotion in tomato plants. We observed a significant increase in plant biomass under both experimental conditions; we observed an increase in photosynthesis and in the endogenous contents of gibberellin, auxin, and cytokinin, while a decrease in ethylene levels was noted. VOCs emitted by SYST2 were identified through gas chromatography-mass spectrometry analysis. Of 11 VOCs tested in glass jars containing plants in test tubes, only two, albuterol and 1,3-propanediole, were found to promote plant growth. Furthermore, tomato plants showed differential expression of genes involved in auxin (SlIAA1. SlIAA3), gibberellin (GA20ox-1), cytokinin (SlCKX1), expansin (Exp2, Exp9. Exp 18), and ethylene (ACO1) biosynthesis or metabolism in roots and leaves in response to B. subtilis SYST2 VOCs. Our findings suggest that SYST2-derived VOCs promote plant growth by triggering growth hormone activity, and provide new insights into the mechanism of plant growth promotion by bacterial VOCs. PMID:28223976

  13. Current Challenges in Volatile Organic Compounds Analysis as Potential Biomarkers of Cancer

    Directory of Open Access Journals (Sweden)

    Kamila Schmidt

    2015-01-01

    Full Text Available An early diagnosis and appropriate treatment are crucial in reducing mortality among people suffering from cancer. There is a lack of characteristic early clinical symptoms in most forms of cancer, which highlights the importance of investigating new methods for its early detection. One of the most promising methods is the analysis of volatile organic compounds (VOCs. VOCs are a diverse group of carbon-based chemicals that are present in exhaled breath and biofluids and may be collected from the headspace of these matrices. Different patterns of VOCs have been correlated with various diseases, cancer among them. Studies have also shown that cancer cells in vitro produce or consume specific VOCs that can serve as potential biomarkers that differentiate them from noncancerous cells. This review identifies the current challenges in the investigation of VOCs as potential cancer biomarkers, by the critical evaluation of available matrices for the in vivo and in vitro approaches in this field and by comparison of the main extraction and detection techniques that have been applied to date in this area of study. It also summarises complementary in vivo, ex vivo, and in vitro studies conducted to date in order to try to identify volatile biomarkers of cancer.

  14. [Study of volatile organic compounds of fresh allium species using headspace combined with surface-enhanced Raman scattering].

    Science.gov (United States)

    Si, Min-Zhen; Zhang, De-Qing; Liu, Ren-Ming

    2014-09-01

    In order to identify volatile organic compounds of fresh plants at room temperature and avoid sample pretreatment and extractions which can be labor intensive, garlic, Chinese chives and scallion were chopped into pieces. Then some of them were placed in the headspace vial and sealed. The gases were drawn from the vial with a syringe and were injected very slowly into Ag colloids for test using R-3000 portable Raman spectrometer. The spectra of volatile organic compounds of allium species, fresh garlic, Chinese chive and shallot plants were successfully.recorded for the first time. For garlic high intensity bands are present at 307, 399, 569, 711, 1,182, 1,287, 1,397 and 1,622 cm(-1). For Chinese chives the high intensity band is present at 672 cm(-1). Low intensity bands are present at 274, 412, 575, 1,185, 1,289, 1,396, 1,618 cm(-1). For shallot high intensity bands are present at 693 cm(-1). Lower intensity bands are present at 372, 888, 1,023 cm(-1). Low intensity bands are present at 1,088, 1,211 and 1,322 cm(-1). The SERS of diallyl disulfide, allyl methyl sulfide and 1-propanethiol in liquid state and gas state were also obtained. The main volatile organic compound of fresh garlic, Chinese chive and shallot are diallyl disulfide, allyl methyl sulfide and 1-propanethiol respectively, and the volatile organic compound of fresh onion, scallion, shallot and chive are all 1-propanethiol. The presented results illustrate that combining headspace and SERS is a powerful tool for volatile organic compound analysis in fresh plants. The volatile organic compound can be detected in fresh plant samples directly and quickly without extraction.

  15. Chemically-resolved aerosol volatility measurements from two megacity field studies

    Directory of Open Access Journals (Sweden)

    J. A. Huffman

    2009-09-01

    Full Text Available The volatilities of different chemical species in ambient aerosols are important but remain poorly characterized. The coupling of a recently developed rapid temperature-stepping thermodenuder (TD, operated in the range 54–230°C with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS during field studies in two polluted megacities has enabled the first direct characterization of chemically-resolved urban particle volatility. Measurements in Riverside, CA and Mexico City are generally consistent and show ambient nitrate as having the highest volatility of any AMS standard aerosol species while sulfate showed the lowest volatility. Total organic aerosol (OA showed volatility intermediate between nitrate and sulfate, with an evaporation rate of 0.6%·K−1 near ambient temperature, although OA dominates the residual species at the highest temperatures. Different types of OA were characterized with marker ions, diurnal cycles, and positive matrix factorization (PMF and show significant differences in volatility. Reduced hydrocarbon-like OA (HOA, a surrogate for primary OA, POA, oxygenated OA (OOA, a surrogate for secondary OA, SOA, and biomass-burning OA (BBOA separated with PMF were all determined to be semi-volatile. The most aged OOA-1 and its dominant ion, CO2+, consistently exhibited the lowest volatility, with HOA, BBOA, and associated ions for each among the highest. The similar or higher volatility of HOA/POA compared to OOA/SOA contradicts the current representations of OA volatility in most atmospheric models and has important implications for aerosol growth and lifetime. A new technique using the AMS background signal was demonstrated to quantify the fraction of species up to four orders-of-magnitude less volatile than those detectable in the MS mode, which for OA represent ~5% of the non-refractory (NR OA signal. Our results strongly imply that all OA types should be considered

  16. Predicting the lifetime of organic vapor cartridges exposed to volatile organic compound mixtures using a partial differential equations model.