WorldWideScience

Sample records for volatile organic contaminants

  1. Methodology for the detection of contamination by hydrocarbons and further soil sampling for volatile and semi-volatile organic enrichment in former petrol stations, SE Spain

    Directory of Open Access Journals (Sweden)

    Rosa María Rosales Aranda

    2012-01-01

    Full Text Available The optimal detection and quantification of contamination plumes in soil and groundwater by petroleum organic compounds, gasoline and diesel, is critical for the reclamation of hydrocarbons contaminated soil at petrol stations. Through this study it has been achieved a sampling stage optimization in these scenarios by means of the location of potential contamination areas before sampling with the application of the 2D electrical resistivity tomography method, a geophysical non destructive technique based on resistivity measurements in soils. After the detection of hydrocarbons contaminated areas, boreholes with continuous coring were performed in a petrol station located in Murcia Region (Spain. The drillholes reached depths down to 10 m and soil samples were taken from each meter of the drilling. The optimization in the soil samples handling and storage, for both volatile and semi-volatile organic compounds determinations, was achieved by designing a soil sampler to minimize volatilization losses and in order to avoid the manual contact with the environmental samples during the sampling. The preservation of soil samples was performed according to Europe regulations and US Environmental Protection Agency recommendations into two kinds of glass vials. Moreover, it has been taken into account the determination techniques to quantify the hydrocarbon pollution based on Gas Chromatography with different detectors and headspace technique to reach a liquid-gas equilibrium for volatile analyses.

  2. Biogenic volatile organic compounds as a potential stimulator for organic contaminant degradation by soil microorganisms

    International Nuclear Information System (INIS)

    McLoughlin, Emma; Rhodes, Angela H.; Owen, Susan M.; Semple, Kirk T.

    2009-01-01

    The effects of monoterpenes on the degradation of 14 C-2,4-dichlorophenol (DCP) were investigated in soils collected from areas surrounding monoterpene and non-monoterpene-emitting vegetation. Indigenous microorganisms degraded 14 C-2,4-DCP to 14 CO 2 , after 1 d contact time. Degradation was enhanced by prior exposure of the soils to 2,4-DCP for 32 d, increasing extents of mineralisation up to 60%. Monoterpene amendments further enhanced 2,4-DCP degradation, but only following pre-exposure to both 2,4-DCP and monoterpene, with total 2,4-DCP mineralisation extents of up to 71%. Degradation was greatest at the higher monoterpene concentrations (≥1 μg kg -1 ). Total mineralisation extents were similar between concentrations, but higher than the control and the 0.1 μg kg -1 amendment, indicating that increases in monoterpene concentration has a diminishing enhancing effect. We suggest that monoterpenes can stimulate the biodegradation of 2,4-DCP by indigenous soil microorganisms and that monoterpene amendment in soils is an effective strategy for removing organic contaminants. - A amendment of soils with monoterpenes may induce organic contaminant degradation by indigenous soil microorganisms

  3. Carbon tetrachloride contamination, 200 West Area, Hanford Site: Arid Site Integrated Demonstration for remediation of volatile organic compounds

    International Nuclear Information System (INIS)

    Last, G.V.; Rohay, V.J.

    1991-01-01

    The Arid State Integrated Demonstration is a US Department of Energy (DOE) program targeted at the acquisition, development, demonstration, and deployment of technologies for evaluation and cleanup of volatile organic and associated contaminants in soils and ground waters. Several DOE laboratories, universities, and industry will participate in the program. Candidate technologies will be demonstrated in the areas of site characterization; performance prediction, monitoring, and evaluations; contaminant extraction and ex situ treatment; in situ remediations; and site closure and monitoring. The performance of these demonstrated technologies will be compared to baseline technologies and documented to promote the transfer of new technologies to industry for use at DOE facilities. The initial host site is the Hanford Site's 200 West Area. The location of the demonstration contains primarily carbon tetrachloride (CCl 4 ), chloroform, and a variety of associated mixed waste contaminants. Chemical processes used to recover and purify plutonium at Hanford's plutonium finishing plant (Z Plant) resulted in the production of actinide-bearing waste liquid. Both aqueous and organic liquid wastes were generated, and were routinely discharged to subsurface disposal facilities. The primary radionuclide in the waste streams was plutonium, and the primary organic was CCl 4 . This paper contains brief descriptions of the principal CCl 4 waste disposal facilities in Hanford's 200 West Area, associated hydrogeology, existing information on the extent of soil and ground-water contamination, and a conceptual outline of suspected subsurface CCl 4 distributions

  4. The effect of vadose zone heterogeneities on vapor phase migration and aquifer contamination by volatile organics

    Energy Technology Data Exchange (ETDEWEB)

    Seneviratne, A.; Findikakis, A.N. [Bechtel Corporation, San Francisco, CA (United States)

    1995-03-01

    Organic vapors migrating through the vadose zone and inter-phase transfer can contribute to the contamination of larger portions of aquifers than estimated by accounting only for dissolved phase transport through the saturated zone. Proper understanding of vapor phase migration pathways is important for the characterization of the extent of both vadose zone and the saturated zone contamination. The multiphase simulation code T2VOC is used to numerically investigate the effect of heterogeneties on the vapor phase migration of chlorobenzene at a hypothetical site where a vapor extraction system is used to remove contaminants. Different stratigraphies consisting of alternate layers of high and low permeability materials with soil properties representative of gravel, sandy silt and clays are evaluated. The effect of the extent and continuity of low permeability zones on vapor migration is evaluated. Numerical simulations are carried out for different soil properties and different boundary conditions. T2VOC simulations with zones of higher permeability were made to assess the role of how such zones in providing enhanced migration pathways for organic vapors. Similarly, the effect of the degree of saturation of the porous medium on vapor migration was for a range of saturation values. Increased saturation reduces the pore volume of the medium available for vapor diffusion. Stratigraphic units with higher aqueous saturation can retard the vapor phase migration significantly.

  5. Selective Detection of Target Volatile Organic Compounds in Contaminated Humid Air Using a Sensor Array with Principal Component Analysis

    Science.gov (United States)

    Itoh, Toshio; Akamatsu, Takafumi; Tsuruta, Akihiro; Shin, Woosuck

    2017-01-01

    We investigated selective detection of the target volatile organic compounds (VOCs) nonanal, n-decane, and acetoin for lung cancer-related VOCs, and acetone and methyl i-butyl ketone for diabetes-related VOCs, in humid air with simulated VOC contamination (total concentration: 300 μg/m3). We used six “grain boundary-response type” sensors, including four commercially available sensors (TGS 2600, 2610, 2610, and 2620) and two Pt, Pd, and Au-loaded SnO2 sensors (Pt, Pd, Au/SnO2), and two “bulk-response type” sensors, including Zr-doped CeO2 (CeZr10), i.e., eight sensors in total. We then analyzed their sensor signals using principal component analysis (PCA). Although the six “grain boundary-response type” sensors were found to be insufficient for selective detection of the target gases in humid air, the addition of two “bulk-response type” sensors improved the selectivity, even with simulated VOC contamination. To further improve the discrimination, we selected appropriate sensors from the eight sensors based on the PCA results. The selectivity to each target gas was maintained and was not affected by contamination. PMID:28753948

  6. Phytovolatilization of Organic Contaminants.

    Science.gov (United States)

    Limmer, Matt; Burken, Joel

    2016-07-05

    Plants can interact with a variety of organic compounds, and thereby affect the fate and transport of many environmental contaminants. Volatile organic compounds may be volatilized from stems or leaves (direct phytovolatilization) or from soil due to plant root activities (indirect phytovolatilization). Fluxes of contaminants volatilizing from plants are important across scales ranging from local contaminant spills to global fluxes of methane emanating from ecosystems biochemically reducing organic carbon. In this article past studies are reviewed to clearly differentiate between direct- and indirect-phytovolatilization and we discuss the plant physiology driving phytovolatilization in different ecosystems. Current measurement techniques are also described, including common difficulties in experimental design. We also discuss reports of phytovolatilization in the literature, finding that compounds with low octanol-air partitioning coefficients are more likely to be phytovolatilized (log KOA < 5). Reports of direct phytovolatilization at field sites compare favorably to model predictions. Finally, future research needs are presented that could better quantify phytovolatilization fluxes at field scale.

  7. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.

    Science.gov (United States)

    Chong, Andrea D; Mayer, K Ulrich

    2017-09-01

    Historical heavy use of chlorinated solvents in conjunction with improper disposal practices and accidental releases has resulted in widespread contamination of soils and groundwater in North America and worldwide. As a result, remediation of chlorinated solvents is required at many sites. For source zone treatment, common remediation strategies include in-situ chemical oxidation (ISCO) using potassium or sodium permanganate, and the enhancement of biodegradation by primary substrate addition. It is well known that these remediation methods tend to generate gas (carbon dioxide (CO 2 ) in the case of ISCO using permanganate, CO 2 and methane (CH 4 ) in the case of bioremediation). Vigorous gas generation in the presence of chlorinated solvents, which are categorized as volatile organic contaminants (VOCs), may cause gas exsolution, ebullition and stripping of the contaminants from the treatment zone. This process may lead to unintentional 'compartment transfer', whereby VOCs are transported away from the contaminated zone into overlying clean sediments and into the vadose zone. To this extent, benchtop column experiments were conducted to quantify the effect of gas generation during remediation of the common chlorinated solvent trichloroethylene (TCE/C 2 Cl 3 H). Both ISCO and enhanced bioremediation were considered as treatment methods. Results show that gas exsolution and ebullition occurs for both remediation technologies. Facilitated by ebullition, TCE was transported from the source zone into overlying clean groundwater and was subsequently released into the column headspace. For the case of enhanced bioremediation, the intermediate degradation product vinyl chloride (VC) was also stripped from the treatment zone. The concentrations measured in the headspace of the columns (TCE ∼300ppm in the ISCO column, TCE ∼500ppm and VC ∼1380ppm in the bioremediation column) indicate that substantial transfer of VOCs to the vadose zone is possible. These findings

  8. Operation of a catalytic reverse flow reactor for the purification of air contamined with volatile organic compounds

    NARCIS (Netherlands)

    van de Beld, L.; van de Beld, L.; Westerterp, K.R.

    1997-01-01

    Catalytic oxidation in a reverse flow reactor is an attractive process for the decontamination of air polluted with volatile organic compounds (VOCs). In this paper several aspects of operating this type of reactor for air purification under strongly varying conditions will be discussed. For a

  9. Can volatile organic metabolites be used to simultaneously assess microbial and mite contamination level in cereal grains and coffee beans?

    Science.gov (United States)

    Salvador, Angelo C; Baptista, Inês; Barros, António S; Gomes, Newton C M; Cunha, Angela; Almeida, Adelaide; Rocha, Silvia M

    2013-01-01

    A novel approach based on headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-ToFMS) was developed for the simultaneous screening of microbial and mite contamination level in cereals and coffee beans. The proposed approach emerges as a powerful tool for the rapid assessment of the microbial contamination level (ca. 70 min versus ca. 72 to 120 h for bacteria and fungi, respectively, using conventional plate counts), and mite contamination (ca. 70 min versus ca. 24 h). A full-factorial design was performed for optimization of the SPME experimental parameters. The methodology was applied to three types of rice (rough, brown, and white rice), oat, wheat, and green and roasted coffee beans. Simultaneously, microbiological analysis of the samples (total aerobic microorganisms, moulds, and yeasts) was performed by conventional plate counts. A set of 54 volatile markers was selected among all the compounds detected by GC×GC-ToFMS. Principal Component Analysis (PCA) was applied in order to establish a relationship between potential volatile markers and the level of microbial contamination. Methylbenzene, 3-octanone, 2-nonanone, 2-methyl-3-pentanol, 1-octen-3-ol, and 2-hexanone were associated to samples with higher microbial contamination level, especially in rough rice. Moreover, oat exhibited a high GC peak area of 2-hydroxy-6-methylbenzaldehyde, a sexual and alarm pheromone for adult mites, which in the other matrices appeared as a trace component. The number of mites detected in oat grains was correlated to the GC peak area of the pheromone. The HS-SPME/GC×GC-ToFMS methodology can be regarded as the basis for the development of a rapid and versatile method that can be applied in industry to the simultaneous assessment the level of microbiological contamination and for detection of mites in cereals grains and coffee beans.

  10. Volatile organic compounds

    International Nuclear Information System (INIS)

    Silseth, May Liss

    1998-01-01

    The goal is: Not more emission of volatile organic compounds (VOCs) than necessary. The items discussed in this presentation are the VOCs, how to calculate emission of VOCs, how to reduce or avoid them, and different recovery processes. The largest source of Norwegian emissions of non methane VOCs (NMVOCs) is offshore loading of raw petroleum. Emissions of VOCs should be reduced mainly for two reasons: (1) on sunny days NMVOCs may react with NOx to form ozon and smog close to the surface, (2) ozone and smog close to the surface may be harmful to plants and animals, and they are hazardous to human health. As for the calculation of VOC emissions, the VOCON project will release the calculation program HCGASS in 1999. This project is a cooperative project headed by SINTEF/Marintek

  11. Nonvolatile, semivolatile, or volatile: redefining volatile for volatile organic compounds.

    Science.gov (United States)

    Võ, Uyên-Uyén T; Morris, Michael P

    2014-06-01

    Although widely used in air quality regulatory frameworks, the term "volatile organic compound" (VOC) is poorly defined. Numerous standardized tests are currently used in regulations to determine VOC content (and thus volatility), but in many cases the tests do not agree with each other, nor do they always accurately represent actual evaporation rates under ambient conditions. The parameters (time, temperature, reference material, column polarity, etc.) used in the definitions and the associated test methods were created without a significant evaluation of volatilization characteristics in real world settings. Not only do these differences lead to varying VOC content results, but occasionally they conflict with one another. An ambient evaporation study of selected compounds and a few formulated products was conducted and the results were compared to several current VOC test methodologies: SCAQMD Method 313 (M313), ASTM Standard Test Method E 1868-10 (E1868), and US. EPA Reference Method 24 (M24). The ambient evaporation study showed a definite distinction between nonvolatile, semivolatile, and volatile compounds. Some low vapor pressure (LVP) solvents, currently considered exempt as VOCs by some methods, volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents they are meant to replace. Conversely, bio-based and heavy hydrocarbons did not readily volatilize, though they often are calculated as VOCs in some traditional test methods. The study suggests that regulatory standards should be reevaluated to more accurately reflect real-world emission from the use of VOC containing products. The definition of VOC in current test methods may lead to regulations that exclude otherwise viable alternatives or allow substitutions of chemicals that may limit the environmental benefits sought in the regulation. A study was conducted to examine volatility of several compounds and a few formulated products under several current VOC test

  12. Mass transfer study between soil, atmosphere, groundwater and building in a contaminated area; volatile organic compounds (VOC)

    International Nuclear Information System (INIS)

    Cotel, S.

    2008-10-01

    A bibliography review led to detail the mechanisms of exchange between phases and transport of volatile organic compounds in the vadose zone, to put in equations their transfer, to set experimental devices and to define relevant tests. The pollutant in question is trichloroethylene, the porous media is a medium sand and the experiments were implemented in column. Once, an analytical method was available to quantify aqueous, gaseous and sorb TCE, predominant transfers mechanisms were quantified separately especially with diffusion experiments through a sand at three different water contents (dry, residual saturation and saturated). Then, these mechanisms have been coupled in a TCE transfer experiment in sand with a hydrostatic water content profile. Each type of test was dimensioned, if it's possible duplicated and interpreted with the multiphasic software Comsol whose flow equation was changed to consider the gravity driven convection. By strictly controlling external factors and boundary conditions, it was possible to carry out transfer experiments reproducible and interpretable with a volatile and reactive compound in a very permeable porous medium. A good reproducibility of experimental results by simulation was achieved with minor changes in basic parameters: report permeability on viscosity, tortuosity (Millington, 1959) and aerodynamics conductivity curve setting parameter (Thomson et al., 1997). This work has resulted in a fine understanding of gas transfers in the vadose zone, especially in the capillarity fringe. (author)

  13. A Survey of 42 Semi-Volatile Organic Contaminants in Groundwater along the Grand Canal from Hangzhou to Beijing, East China

    Directory of Open Access Journals (Sweden)

    Xiaojie Li

    2015-12-01

    Full Text Available The status of organic pollution in groundwater in eastern China along the Grand Canal from Hangzhou to Beijing was evaluated. Forty-two semi-volatile organic contaminants were analyzed, including 16 polycyclic aromatic hydrocarbons (PAHs, seven polychlorinated biphenyls (PCBs, 12 organochlorine pesticides (OCPs and seven organophosphorus pesticides (OPPs. Among the detected contaminants, PAHs were the most widespread compounds. One PCB and six OCPs were detected in the groundwater samples, but none of the target OPPs was detected. The total concentration of the 16 PAHs ranged from 0.21 to 1006 ng/L, among which phenanthrene (271 ng/L and fluoranthene (233 ng/L were present at very high concentrations and naphthalene (32 positive detections in 50 samples and fluorene (28 detections in 50 samples were the most frequently detected. Benzo[a]pyrene equivalents indicated a high environmental risk related to PAHs in a few groundwater samples. To identify the possible sources of PAHs, three concentration ratios, low molecular weight PAHs/high molecular weight PAHs, anthracene/(anthracene + phenanthrene and fluoranthene/(fluoranthene + pyrene, were determined, that indicated that the PAHs mainly originated from mixed sources: pyrolytic and petrogenic sources with different ratios at different sites.

  14. TMVOC, simulator for multiple volatile organic chemicals

    International Nuclear Information System (INIS)

    Pruess, Karsten; Battistelli, Alfredo

    2003-01-01

    TMVOC is a numerical simulator for three-phase non-isothermal flow of water, soil gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. It is an extension of the TOUGH2 general-purpose simulation program developed at the Lawrence Berkeley National Laboratory. TMVOC is designed for applications to contamination problems that involve hydrocarbon fuel or organic solvent spills in saturated and unsaturated zones. It can model contaminant behavior under ''natural'' environmental conditions, as well as for engineered systems, such as soil vapor extraction, groundwater pumping, or steam-assisted source remediation. TMVOC is upwards compatible with T2VOC (Falta et al., 1995) and can be initialized from T2VOC-style initial conditions. The main enhancements in TMVOC relative to T2VOC are as follows: a multicomponent mixture of volatile organic chemicals can be modeled; any and all combinations of the three phases water-oil-gas are treated; several non-condensible gases may be present; diffusion is treated in all phases in a manner that is fully coupled with phase partitioning. This paper gives a brief summary of the methodology used in TMVOC as well as highlighting some implementation issues. Simulation of a NAPL spill and subsequent remediation is discussed for a 2-D vertical section of a saturated-unsaturated flow problem

  15. Removal of Volatile Organic Contaminants (VOCs) from the Groundwater Sources of Drinking Water via Granular Activated Carbon Treatment (WaterRF Report 4440)

    Science.gov (United States)

    The overall goal of this project was to assess the feasibility of granular activated carbon (GAC) for the treatment of selected carcinogenic volatile organic compounds (cVOC) to sub-μg/L levels. The project consisted of three tasks. The task objectives are: Task I - determine c...

  16. The use of radon (Rn-222) and volatile organic compounds in monitoring soil gas to localize NAPL contamination at a gas station in Rio Claro, São Paulo State, Brazil

    International Nuclear Information System (INIS)

    Barbosa, E.Q.; Galhardi, J.A.; Bonotto, D.M.

    2014-01-01

    This study focuses on the presence of radon ( 222 Rn) and volatile organic compounds (VOCs) in soil gases at a gas station located in the city of Rio Claro, São Paulo, Brazil, where a fossil fuel leak occurred. The spatial distribution results show a correlation between 222 Rn and VOCs, consistent with the fact that radon gas has a greater chemical affinity with organic phases than with water. This finding demonstrates that the presence of a residual hydrocarbon phase in an aquifer can retain radon, leading to a reduced radon content in the soil gas. The data in this study confirm the results of previous investigations, in which the method used in this study provided a preliminary fingerprint of a contaminated area. Furthermore, the data analysis time is brief, and only simple equipment is required. - Highlights: • 222 Rn in soil gases. • Correlation between 222 Rn and VOCs. • Useful method as a preliminary fingerprint of a contaminated area

  17. Simple plant-based design strategies for volatile organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, M.; Erickson, L.E.; Davis, L.C.

    1999-12-31

    Vegetation which enhances in-situ biodegradation of organic compounds can play a key role in the bioremediation of such contaminants in polluted soils and groundwater. Plants may act directly on some contaminants by degrading them, but their main effect is to enhance microbial populations in the thizosphere. Microbially mediated transformations are thus indirectly facilitated by root exudates which nourish the indigenous microorganisms. Plants may also be viewed as a solar driven pump-and-treat system which can contain a plume and reduce the spread of contaminated water. Laboratory investigations carried out in a growth chamber with alfalfa plants provide evidence for the (microbially mediated) biodegradation of organic compounds such as toluene, phenol and TCE. Alfalfa plants tolerate concentrations of these organics in contaminated water up to 100 mg/L. They facilitate transfer of the contaminants from the saturated to the vadose zone. For volatile organic compounds such as TCE, vegetation provides a controlled release of compounds and hence assures dilution of the TCE evapotranspired into the atmosphere from contaminated soils. Using a range of calculated plausible scenarios, it is shown that intermedia transfer caused by volatilization associated with plants is most unlikely to lead to exceedance of standards for gas phase contamination, for most volatile contaminants. Possible action level exceedances might occur with highly toxic substances including vinyl chloride and carbon tetrachloride, if they re present in ground water at levels above kilogram amounts in a single plume of a few hectares, and released by vigorously growing plants under hot dry conditions. Information needed for the calculation and design of plant-based bioremediation systems for typical sites is discussed in this paper.

  18. Characteristics of the volatile organic compounds -- Arid Integrated Demonstration Site

    International Nuclear Information System (INIS)

    Last, G.V.; Lenhard, R.J.; Bjornstad, B.N.; Evans, J.C.; Roberson, K.R.; Spane, F.A.; Amonette, J.E.; Rockhold, M.L.

    1991-10-01

    The Volatile Organic Compounds -- Arid Integrated Demonstration Program (VOC-Arid ID) is targeted at demonstration and testing of technologies for the evaluation and cleanup of volatile organic compounds and associated contaminants at arid DOE sites. The initial demonstration site is an area of carbon tetrachloride (CCl 4 ) contamination located near the center of the Hanford Site. The movement of CCl 4 and other volatile organic contaminants in the subsurface is very complex. The problem at the Hanford Site is further complicated by the concurrent discharge of other waste constituents including acids, lard oil, organic phosphates, and transuranic radionuclides. In addition, the subsurface environment is very complex, with large spatial variabilities in hydraulic properties. A thorough understanding of the problem is essential to the selection of appropriate containment, retrieval, and/or in situ remedial technologies. The effectiveness of remedial technologies depends on knowing where the contaminants are, how they are held up in a given physical and chemical subsurface environment; and knowing the physical, chemical, and microbiological changes that are induced by the various remedial technologies

  19. Dilution and volatilization of groundwater contaminant discharges in streams

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Bjerg, Poul Løgstrup; Sonne, Anne Thobo

    2015-01-01

    measurement. The solution was successfully applied to published field data obtained in a large and a small Danish stream and provided valuable information on the risk posed by the groundwater contaminant plumes. The results provided by the dilution and volatilization model are very different to those obtained......An analytical solution to describe dilution and volatilization of a continuous groundwater contaminant plume into streams is developed for risk assessment. The location of groundwater plume discharge into the stream (discharge through the side versus bottom of the stream) and different...

  20. Contamination of Optical Surfaces Under Irradiation by Outgassed Volatile Products

    International Nuclear Information System (INIS)

    Khasanshin, R. H.; Grigorevskiy, A. V.; Galygin, A. N.; Alexandrov, N. G.

    2009-01-01

    Deposition of outgassed products of a polymeric composite on model material surfaces being irradiated by electrons and protons with initial energies of E e = 40 keV and E p = 30 keV respectively was studied. It was shown that deposition of volatile products on model material surfaces being under ionizing radiations results in increase of organic film growth rate.

  1. Purification by bioremediation of soil and underground water contaminated by volatile organic chloride. Bioremediation gijutsu wo mochiiru kihatsusei yuki enso kagobutsu osen dojo chikasui no joka

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, O; Uchiyama, H [National Institute for Environmental Studies, Tsukuba (Japan)

    1993-08-01

    Taking up a case with trichloroethylene as an example, research is introduced on the purification which is made by utilizing bioremediation technology for the contaminated soil and underground water. That technology can be said to be a method in which the contaminated environment is remedied by utilizing the biological function. First, it is necessary to separate the microorganisms which decompose the trichloroethylene. Decomposing bacteria being searched in different places, discovered was a mixed cultivation system which decomposed the trichloroethylene, if aerobic and co-existent with methane. Upon repeating the separation, a new stock was found and named Methylocystis sp. M stock. That stock proliferates by taking methane and methanol which are the sole carbon source at temperatures below 37 centigrade. That stock decomposes 1, 1-dichloroethylene and chloroform as well as the trichloroethylene, but does not tetrachloroethylene and carbon tetrachloride. That stock was studied to be fixed and used as a bioreactor. Among different fixing bacteria, alginic acid gel gave a high efficiency in decomposing the trichloroethylene. 9 refs., 5 figs., 1 tab.

  2. The fight against Volatile Organic Compounds (VOC)

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This paper strikes the balance of the fight against organic volatile compounds emissions in France and in Europe. The first part describes the influence of VOC on production of Ozone in troposphere and gives numerical data on permissive emission values in atmosphere. The second part describes french and european policy and regulations. The third part gives the principle methods and devices for COV measurement in the atmosphere. In the last part, effluents treatment is given: thermal incineration, catalytic incineration, adsorption on active carbon, biologic purification, condensation and separative processes on membrane

  3. Emerging site characterization technologies for volatile organic compounds

    International Nuclear Information System (INIS)

    Rohay, V.J.; Last, G.V.

    1992-05-01

    A Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) expedited response action (ERA) has been initiated at Hanford Site's 200 West Area for the removal of carbon tetrachloride from the unsaturated soils. In coordination with the ERA, innovative technology demonstrations are being conducted as part of DOE's Volatile Organic Compounds -- Arid Integrated Demonstration in an effort to improve upon baseline technologies. Improved methods for accessing, sampling, and analyzing soil and soil-vapor contaminants is a high priority. Sonic drilling is being evaluated as an alternative to cable-tool drilling, while still providing the advantages of reliability, containment, and waste minimization. Applied Research Associates, Inc. used their cone penetrometer in the 200 West Area to install a permanent soil-gas monitoring probe and to collect soil-gas profile data. However, successful application of this technology will require the development of an improved ability to penetrate coarse gravel units. A Science and Engineering Associates Membrane Instrumentation and Sampling Technique (SEAMIST) system designed for collecting in situ soil samples and air permeability data in between drilling runs at variable depths is being tested in 200 West Area boreholes. Analytical technologies scheduled for testing include supercritical fluid extraction and analysis for non- and semi-volatile organic co-contaminants and an unsaturated flow apparatus developed by Washington State University for the measurement of transport parameters

  4. Transplantation of contaminated organs

    NARCIS (Netherlands)

    van der Vliet, J. A.; Tidow, G.; van Saene, H. F. K.; Krom, R. A. F.; Slooff, M. J. H.; Weening, J. J.; Tegzess, A. M.; Meijer, S.; van Boven, W. P. L.

    In cadaveric organ transplantation there is a risk of transfer of infectious agents from donor to recipient. The consequences can be fatal for immuosuppressed recipients. This is illustrated by a case history in which an infection with the fungus Monosporium apiospermum was transferred from a donor

  5. Volatile organic carbon/air separation test using gas membranes

    International Nuclear Information System (INIS)

    King, C.V.; Kaschemekat, J.

    1993-08-01

    An estimated 900 metric tons of carbon tetrachloride were discharged to soil columns during the Plutonium Finishing Plant Operations at the Hanford Site. The largest percentage of this volatile organic compound was found in the vadose region of the 200 West Area. Using a Vacuum Extraction System, the volatile organic compound was drawn from the soil in an air mixture at a concentration of about 1,000 parts per million. The volatile organic compounds were absorbed from the air stream using granulated activated carbon canisters. A gas membrane separation system, developed by Membrane Technology and Research, Inc., was tested at the Vacuum Extraction System site to determine if the volatile organic compound load on the granulated activated carbon could be reduced. The Vacuum Extraction System condensed most of the volatile organic compound into liquid carbon tetrachloride and vented the residual gas stream into the granulated activated carbon. This system reduced the cost of operation about $5/kilogram of volatile organic compound removed

  6. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani Jr.; Theresa M. Bomstad

    2002-06-01

    Western Research Institute (WRI) initiated exploratory work towards the development of new field screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of carbon-halogen bonds. Commercially available heated diode and corona discharge leak detectors were procured and evaluated for halogenated VOC response. The units were modified to provide a digital readout of signal related to VOC concentration. Sensor response was evaluated with carbon tetrachloride and tetrachloroethylene (perchloroethylene, PCE), which represent halogenated VOCs with and without double bonds. The response characteristics were determined for the VOCs directly in headspace in Tedlar bag containers. Quantitation limits in air were estimated. Potential interferences from volatile hydrocarbons, such as toluene and heptane, were evaluated. The effect of humidity was studied also. The performance of the new devices was evaluated in the laboratory by spiking soil samples and monitoring headspace for halogenated VOCs. A draft concept of the steps for a new analytical method was outlined. The results of the first year effort show that both devices show potential utility for future analytical method development work towards the goal of developing a portable test kit for screening halogenated VOCs in the field.

  7. Characterisation of selected volatile organic compounds in ...

    African Journals Online (AJOL)

    GCMS), was used to identify volatile compounds at three different temperatures. Fifty volatile compounds, inclusive of 14 acids, 14 alcohols, and 22 esters were identified and quantified in the two brands of indigenous banana beer samples. Only 12 ...

  8. Advances in Biodegradation of Multiple Volatile Organic Compounds

    Science.gov (United States)

    Zhang, M.; Yoshikawa, M.

    2017-12-01

    Bioremediation of soil and groundwater containing multiple contaminants remains a challenge in environmental science and engineering because complete biodegradation of all components is necessary but very difficult to accomplish in practice. This presentation provides a brief overview on advances in biodegradation of multiple volatile organic compounds (VOCs) including chlorinated ethylenes, benzene, toluene and dichloromethane (DCM). Case studies on aerobic biodegradation of benzene, toluene and DCM, and integrated anaerobic-aerobic biodegradation of 7 contaminants, specifically, tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), vinyl chloride (VC), DCM, benzene and toluene will be provided. Recent findings based on systematic laboratory experiments indicated that aerobic toluene degradation can be enhanced by co-existence of benzene. Propioniferax, not a known benzene, toluene and DCM degrader can be a key microorganism that involves in biodegradation when the three contaminants co-exist. Integrated anaerobic-aerobic biodegradation is capable of completely degrading the seven VOCs with initial concentrations less than 30 mg/L. Dehalococcoides sp., generally considered sensitive to oxygen, can survive aerobic conditions for at least 28 days, and can be activated during the subsequent anaerobic biodegradation. This presentation may provide a systematic information about biodegradation of multiple VOCs, and a scientific basis for the complete bioremediation of multiple contaminants in situ.

  9. Volatile Organic Compound Investigation Results, 300 Area, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Robert E.; Williams, Bruce A.; Smith, Ronald M.

    2008-07-07

    Unexpectedly high concentrations of volatile organic compounds (VOC) were discovered while drilling in the unconfined aquifer beneath the Hanford Site’s 300 Area during 2006. The discovery involved an interval of relatively finer-grained sediment within the unconfined aquifer, an interval that is not sampled by routine groundwater monitoring. Although VOC contamination in the unconfined aquifer has been identified and monitored, the concentrations of newly discovered contamination are much higher than encountered previously, with some new results significantly higher than the drinking water standards. The primary contaminant is trichloroethene, with lesser amounts of tetrachloroethene. Both chemicals were used extensively as degreasing agents during the fuels fabrication process. A biological degradation product of these chemicals, 1,2-dichloroethene, was also detected. To further define the nature and extent of this contamination, additional characterization drilling was undertaken during 2007. Four locations were drilled to supplement the information obtained at four locations drilled during the earlier investigation in 2006. The results of the combined drilling indicate that the newly discovered contamination is limited to a relatively finer-grained interval of Ringold Formation sediment within the unconfined aquifer. The extent of this contamination appears to be the area immediately east and south of the former South Process Pond. Samples collected from the finer-grained sediment at locations along the shoreline confirm the presence of the contamination near the groundwater/river interface. Contamination was not detected in river water that flows over the area where the river channel potentially incises the finer-grained interval of aquifer sediment. The source for this contamination is not readily apparent. A search of historical documents and the Hanford Waste Information Data System did not provide definitive clues as to waste disposal operations and

  10. Nitrate radicals and biogenic volatile organic compounds ...

    Science.gov (United States)

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in

  11. Volatile organic monitor for industrial effluents

    International Nuclear Information System (INIS)

    Laguna, G.R.; Peter, F.J.; Stuart, A.D.; Loyola, V.M.

    1993-07-01

    1990 amendments to the Clean Air Act have created the need for instruments capable of monitoring volatile organic compounds (VOCS) in public air space in an unattended and low cost manner. The purpose of the study was to develop and demonstrate the capability to do long term automatic and unattended ambient air monitoring using an inexpensive portable analytic system at a commercial manufacturing plant site. A gas chromatograph system personal computer hardware, meteorology tower ampersand instruments, and custom designed hardware and software were developed. Comparison with an EPA approved method was performed. The system was sited at an aircraft engines manufacturing site and operated in a completely unattended mode for 60 days. Two VOCs were monitored every 30 minutes during the 24hr day. Large variation in the concentration from 800ppb to the limits of detection of about 10ppb were observed. Work to increase the capabilities of the system is ongoing

  12. Removal of gasoline volatile organic compounds via air biofiltration

    International Nuclear Information System (INIS)

    Miller, R.S.; Saberiyan, A.G.; Esler, C.T.; DeSantis, P.; Andrilenas, J.S.

    1995-01-01

    Volatile organic compounds (VOCs) generated by vapor extraction and air-stripping systems can be biologically treated in an air biofiltration unit. An air biofilter consists of one or more beds of packing material inoculated with heterotrophic microorganisms capable of degrading the organic contaminant of concern. Waste gases and oxygen are passed through the inoculated packing material, where the microorganisms will degrade the contaminant and release CO 2 + H 2 O. Based on data obtained from a treatability study, a full-scale unit was designed and constructed to be used for treating gasoline vapors generated by a vapor-extraction and groundwater-treatment system at a site in California. The unit is composed of two cylindrical reactors with a total packing volume of 3 m 3 . Both reactors are packed with sphagnum moss and inoculated with hydrocarbon-degrading microorganisms of Pseudomonas and Arthrobacter spp. The two reactors are connected in series for air-flow passage. Parallel lines are used for injection of water, nutrients, and buffer to each reactor. Data collected during the startup program have demonstrated an air biofiltration unit with high organic-vapor-removal efficiency

  13. WORKSHOP REPORT - CONSIDERATIONS FOR DEVELOPING LEACHING TEST METHODS FOR SEMI- AND NON-VOLATILE ORGANIC COMPOUNDS

    Science.gov (United States)

    The report provides a summary of the information exchange at a workshop on the potential for release of semi- or non-volatile organic constituents at contaminated sites where sub-surface treatment has been used to control migration, and from waste that is disposed or re-used. The...

  14. Oxidation of volatile organic vapours in air by solid potassium permanganate

    NARCIS (Netherlands)

    Mahmoodlu, M.G.; Hartog, N.; Hassanizadeh, S.M.; Raoof, A.

    2013-01-01

    Volatile organic compounds (VOCs) may frequently contaminate groundwater and pose threat to human health when migrating into the unsaturated soil zone and upward to the indoor air. The kinetic of chemical oxidation has been investigated widely for dissolved VOCs in the saturated zone. But, so far

  15. International protocol on volatile organic compounds

    International Nuclear Information System (INIS)

    Gauthier, J.-P.

    1992-01-01

    In August 1991, negotiations between Canada, the USA, and 33 European countries led to an international protocol on reducing the emissions of volatile organic compounds (VOC), which are responsible for serious ozone pollution problems. This was the third transborder pollution agreement developed under the auspices of the United Nations Economic Commission for Europe. Certain aspects of negotiations related to an earlier protocol developed for SO 2 and nitrogen oxide emissions had reappeared during the VOC negotiations, and these aspects are discussed. The VOC protocol proposes three approaches to satisfy basic obligations: reducing VOC emissions of a country by 30%, reducing VOC emissions by 30% in certain regions, and ensuring a freeze in VOC emissions in a country starting on a specified date. The protocol also introduces a new concept, that of zones of tropospheric ozone management. In Canada, plans for management of nitrogen oxides and VOC have been adapted to the ozone problem, and the management plan has been developed by a consultation process involving all sectors of society including industry, environmental groups, and governments. In Canada, it will be sufficient to reduce total VOC emissions by 16% during a first phase and to increase these reductions slightly in the second phase. Special ozone management zones in the Quebec City/Windsor corridor and the Fraser River valley have been established

  16. Emerging organic contaminants in groundwater

    OpenAIRE

    Stuart, Marianne; Lapworth, Dan

    2013-01-01

    Emerging organic contaminants (ECs) are compounds now being found in groundwater from agricultural, urban sources that were previously not detectable, or thought to be significant. ECs include pesticides and degradates, pharmaceuticals, industrial compounds, personal care products, fragrances, water treatment by-products, flame retardants and surfactants, as well as ‘life-style’ compounds such as caffeine and nicotine. ECs may have adverse effects on aquatic ecosystems and human health. Freq...

  17. Characterisation of selected volatile organic compounds in ...

    African Journals Online (AJOL)

    kshale

    2013-05-15

    May 15, 2013 ... have entered the commercial market, both in rural areas ... nation of volatile compounds include: gas chromate- graphy (GC) ... prior to the actual analysis, various extraction methods ..... traditional and industrial 'orujo' spirits.

  18. Volatile Organic Compunds (Environmental Health Student Portal)

    Science.gov (United States)

    ... Weather Health Effects Take Action Water Pollution Water Pollution Home Chemicals and Pollutants Natural Disasters Drinking Water Waterborne Diseases & Illnesses Water Cycle Water Treatment Videos Games Experiments For Teachers Home Chemicals Volatile ...

  19. Case studies in organic contaminant hydrogeology

    International Nuclear Information System (INIS)

    Baker, J.A.

    1989-01-01

    The effective management of domestic solid waste and hazardous, toxic, and radioactive waste is a major problem in the area of environmental geology and water sciences throughout the world. A series of case studies is presented of organic contaminants from both solid and hazardous waste disposal facilities to provide examples of these problems. The facilities were investigated to determine risks and liabilities before acquisition, to determine the site hydrogeologic conditions for design of appropriate groundwater monitoring plans, and/or to determine the potential for groundwater contamination. The case studies are of disposal facilities located in glacial tills, carbonaceous weathered clay soils, weathered shale, limestone bedrock, dolomite bedrock, and alluvial and sedimentary deposits. The results of these studies and investigations show certain relationships in the distribution of organic pollutants to the different geologic and hydrogeologic characteristics of each facility. In each of the four case studies, all 129 priority pollutants were analyzed in private wells and/or monitoring wells. The 31 volatile organic compounds (VOCs) of the priority pollutant list were the majority of organic compounds detected. When VOCs are found in groundwater impacted by disposal facilities, they are present in groups and tend to be distributed in patterns based on their relative concentrations. It is rare to find only one or two VOCs from facilities where leakage has been detected. The ethylenes and ethanes appear to be more prevalent and mobile than aromatic VOCs. The aromatics are restricted primarily to leachates and wastes and in monitoring wells located adjacent to facilities. 2 refs., 15 figs

  20. Biogenic volatile organic compounds - small is beautiful

    Science.gov (United States)

    Owen, S. M.; Asensio, D.; Li, Q.; Penuelas, J.

    2012-12-01

    While canopy and regional scale flux measurements of biogenic volatile organic compounds (bVOCs) are essential to obtain an integrated picture of total compound reaching the atmosphere, many fascinating and important emission details are waiting to be discovered at smaller scales, in different ecological and functional compartments. We concentrate on bVOCs below ground to plant species, and can be extracted from decaying litter. Naturally occurring monoterpenes in the rhizosphere provide a specialised carbon source for micro-organisms, helping to define the micro-organism community structure, and impacting on nutrient cycles which are partly controlled by microorganisms. Naturally occurring monoterpenes in the soil system could also affect the aboveground structure of ecosystems because of their role in plant defence strategies and as mediating chemicals in allelopathy. A gradient of monoterpene concentration was found in soil around Pinus sylvestris and Pinus halepensis, decreasing with distance from the tree. Some compounds (α-pinene, sabinene, humulene and caryophyllene) in mineral soil were linearly correlated with the total amount of each compound in the overlying litter, indicating that litter might be the dominant source of these compounds. However, α-pinene did not fall within the correlation, indicating a source other than litter, probably root exudates. We also show that rhizosphere bVOCs can be a carbon source for soil microbes. In a horizontal gradient from Populus tremula trees, microbes closest to the tree trunk were better enzymatically equipped to metabolise labeled monoterpene substrate. Monoterpenes can also increase the degradation rate in soil of the persistant organic pollutants, likely acting as analogues for the cometabo-lism of polychlorinated biphenyls (PCBs) Flowers of a ginger species (Alpinia kwangsiensis) and a fig species (Ficus hispida) showed different bVOC signals pre- and post pollination. For Ficus hispida, there are three

  1. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    Data.gov (United States)

    U.S. Environmental Protection Agency — Supporting information Tables S3 and S4 list emission factors in g/kg of speciated volatile and particulate organic compounds emitted from peat burning. Peat samples...

  2. Crude glycerol combustion: Particulate, acrolein, and other volatile organic emissions

    KAUST Repository

    Steinmetz, Scott; Herrington, Jason S.; Winterrowd, Chris K.; Roberts, William L.; Wendt, Jost O L; Linak, William P.

    2013-01-01

    to be formed from the low temperature thermal decomposition of glycerol. Currently, there is no known reliable method for measuring acrolein in sources. Acrolein and emissions of other volatile organic compounds were characterized through the use of a SUMMA

  3. Leaching of organic contaminants from storage of reclaimed asphalt pavement.

    Science.gov (United States)

    Norin, Malin; Strömvall, A M

    2004-03-01

    Recycling of asphalt has been promoted by rapid increases in both the use and price of petroleum-based bitumen. Semi-volatile organic compounds in leachates from reclaimed asphalt pavement, measured in field samples and in laboratory column test, were analysed through a GC/MS screen-test methodology. Sixteen PAH (polyaromatic hydrocarbons) were also analysed in leachates from the column study. The highest concentrations of semi-volatile compounds, approximately 400 microg l(-1), were measured in field samples from the scarified stockpile. Naphthalene, butylated hydroxytoluene (BHT) and dibutyl phthalate (DBP) were the most dominant of the identified semi-volatiles. The occurrence of these compounds in urban groundwater, also indicate high emission rates and persistent structures of the compounds, making them potentially hazardous. Car exhausts, rubber tires and the asphalt material itself are all probable emission sources, determined from the organic contaminants released from the stockpiles. The major leaching mechanism indicated was dissolution of organic contaminants from the surface of the asphalt gravels. In the laboratory column test, the release of high-molecular weight and more toxic PAH was higher in the leachates after two years than at the commencement of storage. The concentrations of semi-volatiles in leachates, were also several times lower than those from the field stockpile. These results demonstrate the need to follow up laboratory column test with real field measurements.

  4. Total volatile organic compounds (TVOC) in indoor air quality investigations

    DEFF Research Database (Denmark)

    Mølhave, L.; Clausen, Geo; Berglund, B.

    1997-01-01

    The amount of volatile organic compounds (VOCs) in indoor air, usually called TVOC (total volatile organic compounds), has been measured using different definitions and techniques which yield different results. This report recommends a definition of TVOC referring to a specified range of VOCs...... for characterizing indoor pollution and for improving source control as required from the points of view of health, comfort, energy efficiency and sustainability. (C) Indoor Air (1997)....

  5. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

    2003-07-01

    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward

  6. Passive remediation of chlorinated volatile organic compounds using barometric pumping

    International Nuclear Information System (INIS)

    Rossabi, J.; Looney, B.B.; Dilek, C.A.E.; Riha, B.; Rohay, V.J.

    1993-01-01

    The purpose of the Savannah River Integrated Demonstration Program, sponsored by the Department of Energy, is to demonstrate new subsurface characterization, monitoring, and remediation technologies. The interbedded clay and sand layers at the Integrated Demonstration Site (IDS) are contaminated with chlorinated volatile organic compounds (CVOCs). Characterization studies show that the bulk of the contamination is located in the approximately 40 m thick vadose zone. The most successful strategy for removing contaminants of this type from this environment is vapor extraction alone or in combination with other methods such as air sparging or enhanced bioremediation. Preliminary work at the IDS has indicated that natural pressure differences between surface and subsurface air caused by surface barometric fluctuations can produce enough gas flow to make barometric pumping a viable method for subsurface remediation. Air flow and pressure were measured in wells that are across three stratigraphic intervals in the vadose zone' The subsurface pressures were correlated to surface pressure fluctuations but were damped and lagging in phase corresponding to depth and stratum permeability. Piezometer wells screened at lower elevations exhibited a greater phase lag and damping than wells screened at higher elevations where the pressure wave from barometric fluctuations passes through a smaller number of low permeable layers. The phase lag between surface and subsurface pressures results in significant fluxes through these wells. The resultant air flows through the subsurface impacts CVOC fate and transport. With the appropriate controls (e.g. solenoid valves) a naturally driven vapor extraction system can be implemented requiring negligible operating costs yet capable of a large CVOC removal rate (as much as 1--2 kg/day in each well at the IDS)

  7. Adsorption of Volatile Organic Compounds from Aqueous Solution by Granular Activated Carbon in Batch System

    International Nuclear Information System (INIS)

    Zeinali, F.; Ghoreyshi, A. A.; Najafpour, G.

    2011-01-01

    Chlorinated hydrocarbons and aromatics are the major volatile organic compounds that contaminate the ground water and industrial waste waters. The best way to overcome this problem is to recover the dissolved compounds in water. In order to evaluate the potential ability of granular activated carbon for recovery of volatile organic compounds from water, the equilibrium adsorption was investigated. This study deals with the adsorption of dichloromethane as a typical chlorinated volatile organic compound and toluene as the representative of aromatic volatile organic compounds on a commercial granular activated carbon. The adsorption isotherms of these two volatile organic compounds on granular activated carbon were measured at three different temperatures, toluene at 293, 303 and 313 K and dichloromethane at 298, 303 and 313 K within their solubility concentration range in water. The maximum adsorption capacity of dichloromethane and toluene adsorption by granular activated carbon was 4 and 0.2 mol/Kg-1, respectively. The experimental data obtained were correlated with different adsorption isotherm models. The Langmuir model was well adapted to the description of dichloromethane adsorption on granular activated carbon at all three temperatures, while the adsorption of toluene on granular activated carbon was found to be well described by the Langmuir-BET hybrid model at all three temperatures. The heat of adsorption was also calculated based on the thermodynamic equation of Clausius Clapeyron, which indicates the adsorption process is endothermic for both compounds.

  8. Volatile organic compound (VOC) determination in working atmospheres; Determinacion de compuestos organicos volatiles (VOC) en ambiente laboral

    Energy Technology Data Exchange (ETDEWEB)

    Blass A, Georgina; Panama T, Luz A; Corrales C, Deyanira [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The present work describes, in a synthesized way, the implementation and application of procedures based on the normativity related to the subject of the volatile organic compounds (Volatile Organic Compounds VOC), that allow to sample, quantify and evaluate the present contamination in the working atmosphere of a refinery due to the fugitive emissions of VOC and other substances. In accordance with the corresponding normativity, more than 189 organic compounds denominated dangerous air polluting agents (Hazardous Air Pollutants, HAP) can be found in a working atmosphere, but they are the 11 main HAP that can be found in a refinery. In the present article the work made for the sampling and quantification of 5 of the 11 dangerous polluting agents of the air: benzene, toluene, xylene, iso-octane and naphthalene. [Spanish] El presente trabajo describe, de manera sintetizada, la implementacion y aplicacion de procedimientos basados en la normatividad relacionada al tema de los compuestos organicos volatiles (Volatil Organic Compounds, VOC), que permiten muestrear, cuantificar y evaluar la contaminacion presente en el ambiente laboral de una refineria debido a las emisiones fugitivas de VOC y otras sustancias. De acuerdo con la normatividad correspondiente, mas de 189 compuestos organicos denominados contaminantes peligrosos del aire (Hazardous Air Pollutants, HAP), pueden ser encontrados en un ambiente laboral, pero son 11 los principales HAP que pueden ser hallados en una refineria. En el presente articulo se informa el trabajo realizado para el muestreo y cuantificacion de 5 de los 11 contaminantes peligrosos del aire: benceno, tolueno, xileno, iso-octano y naftaleno.

  9. Organic and volatile elements in the solar system

    Directory of Open Access Journals (Sweden)

    Remusat L.

    2012-01-01

    Full Text Available Chondrites and comets have accreted primitive materials from the early solar system. Those materials include organics, water and other volatile components. The most primitive chondrites and comets have undergone few modifications on their respective parent bodies and can deliver to laboratories components that were present at the origin of the protosolar nebula. Here I present a review of the organic material and volatile components that have been studied in the most primitive chondrites, and the last data from the stardust mission about the cometary record. This paper focuses on materials that can be studied in laboratories, by mass spectrometry, ion probes or organic chemistry techniques.

  10. Quantifying commuter exposures to volatile organic compounds

    Science.gov (United States)

    Kayne, Ashleigh

    Motor-vehicles can be a predominant source of air pollution in cities. Traffic-related air pollution is often unavoidable for people who live in populous areas. Commuters may have high exposures to traffic-related air pollution as they are close to vehicle tailpipes. Volatile organic compounds (VOCs) are one class of air pollutants of concern because exposure to VOCs carries risk for adverse health effects. Specific VOCs of interest for this work include benzene, toluene, ethylbenzene, and xylenes (BTEX), which are often found in gasoline and combustion products. Although methods exist to measure time-integrated personal exposures to BTEX, there are few practical methods to measure a commuter's time-resolved BTEX exposure which could identify peak exposures that could be concealed with a time-integrated measurement. This study evaluated the ability of a photoionization detector (PID) to measure commuters' exposure to BTEX using Tenax TA samples as a reference and quantified the difference in BTEX exposure between cyclists and drivers with windows open and closed. To determine the suitability of two measurement methods (PID and Tenax TA) for use in this study, the precision, linearity, and limits of detection (LODs) for both the PID and Tenax TA measurement methods were determined in the laboratory with standard BTEX calibration gases. Volunteers commuted from their homes to their work places by cycling or driving while wearing a personal exposure backpack containing a collocated PID and Tenax TA sampler. Volunteers completed a survey and indicated if the windows in their vehicle were open or closed. Comparing pairs of exposure data from the Tenax TA and PID sampling methods determined the suitability of the PID to measure the BTEX exposures of commuters. The difference between BTEX exposures of cyclists and drivers with windows open and closed in Fort Collins was determined. Both the PID and Tenax TA measurement methods were precise and linear when evaluated in the

  11. Contaminants in Liquid Organic Fertilizers Used for Agriculture in Japan.

    Science.gov (United States)

    Hai, Dao M; Qiu, Xuchun; Xu, Hai; Honda, Masato; Yabe, Mitsuyasu; Kadokami, Kiwao; Shimasaki, Yohei; Oshima, Yuji

    2017-07-01

    To provide an overview of anthropogenic contaminants in liquid organic fertilizers (LOFs), products from four biogas plants in Kyushu, Japan, were analyzed for a wide range of contaminants, including copper, cadmium, tributyltin (TBT), dibutyltin (DBT), perfluorooctane sulfonate, 952 semi-volatile organic compounds, and 89 antibiotics. The highest concentrations of copper (31.1 mg/L) and cadmium (0.08 mg/L) were found in LOFs from the Hita biogas plant. Only ofloxacin and sulfapyridine were detected in total 89 antibiotics screened. TBT, DBT, and perfluorooctane sulfonate were present at low concentrations in the LOFs from all four locations. Among the 952 semi-volatile organic compounds, 78 compounds were detected in at least one sample and were present at concentrations between 1.2 and 139.6 mg/L. On the basis of comparisons with previous studies and quality standards for the use of organic fertilizers, the concentrations of contaminants in the studied LOFs indicate that they might be safe for agricultural purposes.

  12. Surface microlayer enrichment of volatile organic compounds and semi-volatile organic compounds in drinking water source.

    Science.gov (United States)

    Huang, Zhi; Zhou, Wen; Yu, Ya-juan; Zhang, Ai-qian; Han, Shuo-kui; Wang, Lian-sheng

    2004-01-01

    Enrichment of volatile organic compounds(VOC) and semi-volatility organic compounds(SVOC) in surface microlayer(SM) of three drinking water sources were studied. The enrichment factor(EFs) were 0.67 to 13.37 and 0.16 to 136, respectively. The results showed some VOC and most SVOC could enrich in SM. Some EFs of SVOC was quite high. Suspension and temperature could affect EFs of SVOC, slim wind and water movement do not destroy enrichment of organic in SM.

  13. Inventory of volatile organic compound emissions in Finland, 1985

    International Nuclear Information System (INIS)

    Mroueh, U.M.

    1988-01-01

    The aim of the study was to compile an inventory of the emissions of volatile organic compounds in Finland for the year 1985. The report was prepared for the ECE Task Force on Emissions of Volatile Organic Compounds from Stationary Sources according to the classification given by the Task Force. It considers anthropogenic as well as natural sources. Mobile sources are excluded. The quantities as well as the main components are listed, as far as possible. The values given exclude methane which according to the present understanding is regarded as unreactive

  14. Production of fungal volatile organic compounds in bedding materials

    OpenAIRE

    S. LAPPALAINEN; A. PASANEN; P. PASANEN

    2008-01-01

    The high relative humidity of the air and many potential growth media, such as bedding materials, hay and grains in the horse stable, for example, provide suitable conditions for fungal growth. Metabolic activity of four common agricultural fungi incubated in peat and wood shavings at 25°C and 4°C was characterized in this study using previously specified volatile metabolites of micro-organisms and CO 2 production as indicators. The volatile organic compounds were collected into Tenax resin a...

  15. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H [comp.

    1997-12-31

    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  16. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H. [comp.

    1996-12-31

    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  17. Effect of inorganic salts on the volatility of organic acids.

    Science.gov (United States)

    Häkkinen, Silja A K; McNeill, V Faye; Riipinen, Ilona

    2014-12-02

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance.

  18. Novel collection method for volatile organic compounds (VOCs) from dogs

    Science.gov (United States)

    Host derived chemical cues are an important aspect of arthropod attraction to potential hosts. Host cues that act over longer distances include CO2, heat, and water vapor, while cues such as volatile organic compounds (VOCs) act over closer distances. Domestic dogs are important hosts for disease cy...

  19. 40 CFR 60.542 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for the Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after the date on which the initial performance test, required by § 60.8, is completed, but no later than...

  20. ambient volatile organic compounds pollution and ozone formation

    African Journals Online (AJOL)

    OLUMAYEDE

    2013-08-01

    Aug 1, 2013 ... Volatile organic compound (VOC) species react at different rate and exhibit differences in reactivity with respect to ozone formation in polluted urban atmosphere. To assess this, the variations pattern, reactivity relative to OH radical and ozone creation potential of ambient VOCs were investigated in field.

  1. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors

    Directory of Open Access Journals (Sweden)

    Milena Šetka

    2017-03-01

    Full Text Available The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols.

  2. The Effect of Golden Pothos in Reducing the Level of Volatile Organic Compounds in a Simulated Spacecraft Cabin

    Science.gov (United States)

    Ursprung, Matthew; Amiri, Azita; Kayatin, Matthew; Perry, Jay

    2016-01-01

    The impact of Golden Pothos on indoor air quality was studied against a simulated spacecraft trace contaminant load model, consistent with the International Space Station (ISS), containing volatile organic compounds (VOCs) and formaldehyde. Previous research provides inconclusive results on the efficacy of plant VOC removal which this projects seeks to rectify through a better experimental design. This work develops a passive system for removing common VOC's from spacecraft and household indoor air and decreasing the necessity for active cabin trace contaminant removal systems.

  3. Quantitative estimates of the volatility of ambient organic aerosol

    Directory of Open Access Journals (Sweden)

    C. D. Cappa

    2010-06-01

    Full Text Available Measurements of the sensitivity of organic aerosol (OA, and its components mass to changes in temperature were recently reported by Huffman et al.~(2009 using a tandem thermodenuder-aerosol mass spectrometer (TD-AMS system in Mexico City and the Los Angeles area. Here, we use these measurements to derive quantitative estimates of aerosol volatility within the framework of absorptive partitioning theory using a kinetic model of aerosol evaporation in the TD. OA volatility distributions (or "basis-sets" are determined using several assumptions as to the enthalpy of vaporization (ΔHvap. We present two definitions of "non-volatile OA," one being a global and one a local definition. Based on these definitions, our analysis indicates that a substantial fraction of the organic aerosol is comprised of non-volatile components that will not evaporate under any atmospheric conditions; on the order of 50–80% when the most realistic ΔHvap assumptions are considered. The sensitivity of the total OA mass to dilution and ambient changes in temperature has been assessed for the various ΔHvap assumptions. The temperature sensitivity is relatively independent of the particular ΔHvap assumptions whereas dilution sensitivity is found to be greatest for the low (ΔHvap = 50 kJ/mol and lowest for the high (ΔHvap = 150 kJ/mol assumptions. This difference arises from the high ΔHvap assumptions yielding volatility distributions with a greater fraction of non-volatile material than the low ΔHvap assumptions. If the observations are fit using a 1 or 2-component model the sensitivity of the OA to dilution is unrealistically high. An empirical method introduced by Faulhaber et al. (2009 has also been used to independently estimate a volatility distribution for the ambient OA and is found to give results consistent with the

  4. Quantitative estimates of the volatility of ambient organic aerosol

    Science.gov (United States)

    Cappa, C. D.; Jimenez, J. L.

    2010-06-01

    Measurements of the sensitivity of organic aerosol (OA, and its components) mass to changes in temperature were recently reported by Huffman et al.~(2009) using a tandem thermodenuder-aerosol mass spectrometer (TD-AMS) system in Mexico City and the Los Angeles area. Here, we use these measurements to derive quantitative estimates of aerosol volatility within the framework of absorptive partitioning theory using a kinetic model of aerosol evaporation in the TD. OA volatility distributions (or "basis-sets") are determined using several assumptions as to the enthalpy of vaporization (ΔHvap). We present two definitions of "non-volatile OA," one being a global and one a local definition. Based on these definitions, our analysis indicates that a substantial fraction of the organic aerosol is comprised of non-volatile components that will not evaporate under any atmospheric conditions; on the order of 50-80% when the most realistic ΔHvap assumptions are considered. The sensitivity of the total OA mass to dilution and ambient changes in temperature has been assessed for the various ΔHvap assumptions. The temperature sensitivity is relatively independent of the particular ΔHvap assumptions whereas dilution sensitivity is found to be greatest for the low (ΔHvap = 50 kJ/mol) and lowest for the high (ΔHvap = 150 kJ/mol) assumptions. This difference arises from the high ΔHvap assumptions yielding volatility distributions with a greater fraction of non-volatile material than the low ΔHvap assumptions. If the observations are fit using a 1 or 2-component model the sensitivity of the OA to dilution is unrealistically high. An empirical method introduced by Faulhaber et al. (2009) has also been used to independently estimate a volatility distribution for the ambient OA and is found to give results consistent with the high and variable ΔHvap assumptions. Our results also show that the amount of semivolatile gas-phase organics in equilibrium with the OA could range from ~20

  5. Diffusivity measurements of volatile organics in levitated viscous aerosol particles

    Directory of Open Access Journals (Sweden)

    S. Bastelberger

    2017-07-01

    Full Text Available Field measurements indicating that atmospheric secondary organic aerosol (SOA particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas–particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4 is investigated in an electrodynamic balance at controlled relative humidity (RH and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes–Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities < 10−14 cm2 s−1 at temperatures < 15 °C. The temperature dependence is strong, suggesting a diffusion activation energy of about 300 kJ mol−1. We conclude that atmospheric volatile organic compounds can be subject to severe diffusion limitations in viscous organic aerosol particles. This may enable an important long-range transport mechanism for organic material, including pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs.

  6. Organization of internal contamination monitoring

    International Nuclear Information System (INIS)

    Badreddine, A.

    1986-07-01

    The nuclear energy takes a big part in the world's energy production. The nuclear techniques are used in most fields of life. Nevertheless the use of radioactive materials may cause prejudice to human beings by radiation contamination. The International Commission on Radiological Protection gives the general rules and regulations to avoid this danger. In the publication No. 30, the ICRP gives a metabolic model for the respiratory system and values of Annual Limit of Intake. The ALI for inhalation supposes a standard AMAD (Activity Median Aerodynamic Diameter) of 1 um. We have measured the AMAD in a laboratory under different conditions of functioning in order to show its variation. Then we have analysed the effect of this variation on the internal contamination monitoring. Thus we have calculated the Effective Committed Dose (ECD), the ALI, then the Derived Investigation Level (DIL) for different values of AMAD for Whole-Body Counting (WBC)

  7. Hydrothermal processing of actinide contaminated organic wastes

    International Nuclear Information System (INIS)

    Worl, A.; Buelow, S.J.; Le, L.A.; Padilla, D.D.; Roberts, J.H.

    1997-01-01

    Hydrothermal oxidation is an innovative process for the destruction of organic wastes, that occurs above the critical temperature and pressure of water. The process provides high destruction and removal efficiencies for a wide variety of organic and hazardous substances. For aqueous/organic mixtures, organic materials, and pure organic liquids hydrothermal processing removes most of the organic and nitrate components (>99.999%) and facilitates the collection and separation of the actinides. We have designed, built and tested a hydrothermal processing unit for the removal of the organic and hazardous substances from actinide contaminated liquids and solids. Here we present results for the organic generated at the Los Alamos National Laboratory Plutonium Facility

  8. SITE TECHNOLOGY CAPSULE: SUBSURFACE VOLATILIZATION AND VENTILATION SYSTEM (SVVS)

    Science.gov (United States)

    The Subsurface Volatilization and Ventilation System is an integrated technology used for attacking all phases of volatile organic compound (VOC) contamination in soil and groundwater. The SVVS technology promotes insitu remediation of soil and groundwater contaminated with or-ga...

  9. Adsorption of volatile organic compounds by polytetra-fluor ethylene

    International Nuclear Information System (INIS)

    Martinet, J.M.

    1958-01-01

    The sorption of organic vapours by microporous polytetra-fluor ethylene has been studied gravimetrically using a Mc Bain-Baker type sorption balance. The amount of sorption, the peculiarities observed on the isotherm curves, the small influence of temperature, and smallness of hysteresis suggests that mainly physical adsorption occurs when the temperature is around 25 deg. C. The values of the surface areas obtained from the adsorption isotherms using organic vapours differ greatly from those derived from N 2 adsorption measurements. This discrepancy cannot be completely attributed to differences in the structure and chemical function of the adsorbate molecules, or to the porous structure of the adsorbent. On the contrary, the surface area values obtained by sorbing high volatile freons conform with those measured by nitrogen adsorption, which seems to imply a connection between the area of sorbed monolayers and volatility of the adsorbate. (author) [fr

  10. A large source of low-volatility secondary organic aerosol

    DEFF Research Database (Denmark)

    Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard

    2014-01-01

    radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed...... particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate...... the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form...

  11. Biogenic volatile organic compounds in the Earth system.

    Science.gov (United States)

    Laothawornkitkul, Jullada; Taylor, Jane E; Paul, Nigel D; Hewitt, C Nicholas

    2009-01-01

    Biogenic volatile organic compounds produced by plants are involved in plant growth, development, reproduction and defence. They also function as communication media within plant communities, between plants and between plants and insects. Because of the high chemical reactivity of many of these compounds, coupled with their large mass emission rates from vegetation into the atmosphere, they have significant effects on the chemical composition and physical characteristics of the atmosphere. Hence, biogenic volatile organic compounds mediate the relationship between the biosphere and the atmosphere. Alteration of this relationship by anthropogenically driven changes to the environment, including global climate change, may perturb these interactions and may lead to adverse and hard-to-predict consequences for the Earth system.

  12. Transport and Fate of Volatile Organic Chemical in Soils

    DEFF Research Database (Denmark)

    Petersen, Lis Wollesen

    Recently much attention has been paid to the behavior of volatile organic chemicals (VOCs) in the environment. This is due to the fact that the environmental pollution with these hazardous chemicals has drastically increased during the last decades. The present study is limited to consider...... the transport and fate of VOCs in the gaseous phase, thus contributing to the overall understanding of VOCs behavior in soil, which eventually will facilitate future cleanup....

  13. Marine Vibrio Species Produce the Volatile Organic Compound Acetone

    OpenAIRE

    Nemecek-Marshall, M.; Wojciechowski, C.; Kuzma, J.; Silver, G. M.; Fall, R.

    1995-01-01

    While screening aerobic, heterotrophic marine bacteria for production of volatile organic compounds, we found that a group of isolates produced substantial amounts of acetone. Acetone production was confirmed by gas chromatography, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The major acetone producers were identified as nonclinical Vibrio species. Acetone production was maximal in the stationary phase of growth and was stimulated by addition of l-leucine...

  14. Beyond the network of plants volatile organic compounds

    OpenAIRE

    Vivaldo, Gianna; Masi, Elisa; Taiti, Cosimo; Caldarelli, Guido; Mancuso, Stefano

    2017-01-01

    Plants emission of volatile organic compounds (VOCs) is involved in a wide class of ecological functions, as VOCs play a crucial role in plants interactions with biotic and abiotic factors. Accordingly, they vary widely across species and underpin differences in ecological strategy. In this paper, VOCs spontaneously emitted by 109 plant species (belonging to 56 different families) have been qualitatively and quantitatively analysed in order to classify plants species. By using bipartite netwo...

  15. Production of fungal volatile organic compounds in bedding materials

    Directory of Open Access Journals (Sweden)

    S. LAPPALAINEN

    2008-12-01

    Full Text Available The high relative humidity of the air and many potential growth media, such as bedding materials, hay and grains in the horse stable, for example, provide suitable conditions for fungal growth. Metabolic activity of four common agricultural fungi incubated in peat and wood shavings at 25°C and 4°C was characterized in this study using previously specified volatile metabolites of micro-organisms and CO 2 production as indicators. The volatile organic compounds were collected into Tenax resin and analysed by gas chromatography. Several microbial volatile organic compounds (MVOCs, e.g. 1-butanol, 2-hexanone, 2-heptanone, 3-octanone, 1-octen-3-ol and 1-octanol were detected in laboratory experiments; however, these accounted for only 0.08-1.5% of total volatile organic com-pounds (TVOCs. Emission rates of MVOCs were 0.001-0.176 mg/kg of bedding materials per hour. Despite some limitations of the analytical method, certain individual MVOCs, 2-hexanone, 2-hep-tanone and 3-octanone, were also detected in concentrations of less than 4.6 mg/m 3 (0.07-0.31% of TVOC in a horse stable where peat and shavings were used as bedding materials. MVOC emission rate was estimated to be 0.2-2.0 mg/kg ´ h -1 from bedding materials in the stable, being about ten times higher than the rates found in the laboratory experiments. Some compounds, e.g. 3-octanone and 1-octen-3-ol, can be assumed to originate mainly from microbial metabolisms.;

  16. Volatile organic pollutants in iron and steel industry

    International Nuclear Information System (INIS)

    Manea, D.; Dorina, S.; Popescu, L.; Stoian, P.

    2009-01-01

    It is a well known fact that iron and steel units generate about 25% from total gaseous emissions, and a significant part of these are diffuse emissions, which appear during technological stages. so that, apart from other types of pollutants, appear volatile organic compounds (VOCs) that contain a considerable number of diverse and complex substances that, even in small amounts, affect all environmental factors: air, water, soil. (Author)

  17. A method for the combined measurement of volatile and condensable organic AMC in semiconductor applications

    Science.gov (United States)

    Miller, Charles M.; Zaloga, Emily C.; Lobert, Jürgen M.

    2014-04-01

    Monitoring airborne molecular contamination (AMC) at the parts per trillion (ppt) level in cleanroom environments, scanner applications and compressed gas lines is essential for processes, equipment and yield-control. For the operation of EUV tools, in particular, volatile organic contamination is known to have as much impact as condensable organic compounds, which requires a suitable sampling and measurement methodology. Some of the current industry standards use sample traps comprised of porous 2,6-diphenylene-oxide polymer resin, such as Tenax®, for measuring volatile organic (6 C atoms, about toluene and higher) AMC. Inherent problems associated with these traps are a number of artifacts and chemical reactions that reduce accuracy of reported organic AMC concentrations. The break-down of the polymeric material forms false positive artifacts when used in the presence of reactive gases, such as nitrous acid and ozone, which attack and degrade the polymer to form detectable AMC. Most importantly, these traps have poor capture efficiency for volatile organic compounds (VOC). To address the disadvantages of polymer-based sample traps, we developed a method based on carbonaceous, multi-layered adsorbent traps to replace the 2,6-diphenylene-oxide polymer resin sample trap type. Along with the new trap's ability to retain volatile organics, the trap was found to provide artifact-free results. With industry trends towards detecting more contaminants while continuously reducing required reporting limits for those compounds, artifact-free and accurate detection of AMC is needed at the parts per quadrillion (ppq) level. The proposed, multi-layered trap substantially increases laboratory productivity and reduces cost by eliminating the need to analyze condensable and volatile organic compounds in two separate methods. In our studies, even some organic compounds with six C-atoms, that are part of exposure tool OEM requirements, were not effectively retained by polymeric

  18. Diffusivity measurements of volatile organics in levitated viscous aerosol particles

    Science.gov (United States)

    Bastelberger, Sandra; Krieger, Ulrich K.; Luo, Beiping; Peter, Thomas

    2017-07-01

    Field measurements indicating that atmospheric secondary organic aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas-particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes-Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs).

  19. Effect of gamma irradiation on microbial contamination and volatile oils of spices

    International Nuclear Information System (INIS)

    Singh, Rita; Tak, B.B.

    1997-01-01

    The effect of different doses of gamma irradiation, viz., 6, 10 and 14 kGy on the microbial contamination and the volatile oil content of coriander whole, coriander ground and cumin was studied. Exposure to 10 kGy was effective in the decontamination of spices. Fungi and coliforms in spices were inactivated on irradiation to a dose of 6 kGy. No significant change in the GC volatile profile of the irradiated spices was observed. (author). 3 refs., 1 fig., 1 tab

  20. Development of a Surface Acoustic Wave Sensor for In-Situ Monitoring of Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Jerome L. Wright

    2003-07-01

    Full Text Available This paper describes the development of a surface-acoustic-wave (SAW sensor that is designed to be operated continuously and in situ to detect volatile organic compounds. A ruggedized stainless-steel package that encases the SAW device and integrated circuit board allows the sensor to be deployed in a variety of media including air, soil, and even water. Polymers were optimized and chosen based on their response to chlorinated aliphatic hydrocarbons (e.g., trichloroethylene, which are common groundwater contaminants. Initial testing indicates that a running-average data-logging algorithm can reduce the noise and increase the sensitivity of the in-situ sensor.

  1. Distribution of nonionic organic compounds (highly volatile chlorinated hydrocarbons) in the unsaturated zone

    Energy Technology Data Exchange (ETDEWEB)

    Grathwohl, P.

    1988-01-01

    Nonpolar pollutants, e.g. highly volatile chlorinated hydrocarbons (HVCH) are more or less equally distributed among all three soil phases (solids, water, air) in the unsaturated zone. The sorption of HVCH on soil solids depends on the amount and type of organic matter in the soil. For wet material an additional sorption on mineral surfaces can be neglected, since all possible sites for sorption are occupied by water. Provided the partition-coefficients or sorption-constants are known the contamination of the whole system can be evaluated from the pollutant concentration in the soil air; in addition it is possible to estimate a groundwater risk.

  2. Role of volatilization in changing TBA and MTBE concentrations at MTBE-contaminated sites.

    Science.gov (United States)

    Eweis, Juana B; Labolle, Eric M; Benson, David A; Fogg, Graham E

    2007-10-01

    Tertiary butyl alcohol (TBA) is commonly found as an impurity in methyl tertiary butyl ether (MTBE) added to gasoline. Frequent observations of high TBA, and especially rising TBA/MTBE concentration ratios, in groundwater at gasoline spill sites are generally attributed to microbial conversion of MTBE to TBA. Typically overlooked is the role of volatilization in the attenuation of these chemicals especially in the vadose zone, which is a source of contamination to groundwater. Here we show that volatilization, particularly through remediation by vapor extraction, can substantially affect the trends in TBA and MTBE concentrations and the respective mass available to impact groundwater aquifers, through the preferential removal of more volatile compounds, including MTBE, and the apparent enrichment of less volatile compounds like TBA. We demonstrate this phenomenon through numerical simulations of remedial-enhanced volatilization. Results show increases in TBA/MTBE concentration ratios consistent with ratios observed in groundwater at gasoline spill sites. Volatilization is an important, and potentially dominant, process that can result in concentration trends similar to those typically attributed to biodegradation.

  3. Determination of Volatile Organic Compounds in Selected Strains of Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Ivan Milovanović

    2015-01-01

    Full Text Available Microalgal biomass can be used in creating various functional food and feed products, but certain species of microalgae and cyanobacteria are known to produce various compounds causing off-flavour. In this work, we investigated selected cyanobacterial strains of Spirulina, Anabaena, and Nostoc genera originating from Serbia, with the aim of determining the chemical profile of volatile organic compounds produced by these organisms. Additionally, the influence of nitrogen level during growth on the production of volatile compounds was investigated for Nostoc and Anabaena strains. In addition, multivariate techniques, namely, principal component analysis (PCA and hierarchical cluster analysis (HCA, were used for making distinction among different microalgal strains. The results show that the main volatile compounds in these species are medium chain length alkanes, but other odorous compounds such as 2-methylisoborneol (0.51–4.48%, 2-pentylfuran (0.72–8.98%, β-cyclocitral (0.00–1.17%, and β-ionone (1.15–2.72% were also detected in the samples. Addition of nitrogen to growth medium was shown to negatively affect the production of 2-methylisoborneol, while geosmin was not detected in any of the analyzed samples, which indicates that the manipulation of growth conditions may be useful in reducing levels of some unwanted odor-causing components.

  4. Holographic detection of hydrocarbon gases and other volatile organic compounds.

    Science.gov (United States)

    Martínez-Hurtado, J L; Davidson, C A B; Blyth, J; Lowe, C R

    2010-10-05

    There is a need to develop sensors for real-time monitoring of volatile organic compounds (VOCs) and hydrocarbon gases in both external and indoor environments, since these compounds are of growing concern in human health and welfare. Current measurement technology for VOCs requires sophisticated equipment and lacks the prospect for rapid real-time monitoring. Holographic sensors can give a direct reading of the analyte concentration as a color change. We report a technique for recording holographic sensors by laser ablation of silver particles formed in situ by diffusion. This technique allows a readily available hydrophobic silicone elastomer to be transformed into an effective sensor for hydrocarbon gases and other volatile compounds. The intermolecular interactions present between the polymer and molecules are used to predict the sensor performance. The hydrophobicity of this material allows the sensor to operate without interference from water and other atmospheric gases and thus makes the sensor suitable for biomedical, industrial, or environmental analysis.

  5. Contaminated environments in the subsurface and bioremediation: organic contaminants

    OpenAIRE

    Holliger, Christof; Gaspard, Sarra; Glod, Guy; Heijman, Cornelis; Schumacher, Wolfram; Schwarzenbach, René P.; Vazquez, Francisco

    2017-01-01

    Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low ...

  6. Uptake of toluene and ethylbenzene by plants: removal of volatile indoor air contaminants.

    Science.gov (United States)

    Sriprapat, Wararat; Suksabye, Parinda; Areephak, Sirintip; Klantup, Polawat; Waraha, Atcharaphan; Sawattan, Anuchit; Thiravetyan, Paitip

    2014-04-01

    Air borne uptake of toluene and ethylbenzene by twelve plant species was examined. Of the twelve plant species examined, the highest toluene removal was found in Sansevieria trifasciata, while the ethylbenzene removal from air was with Chlorophytum comosum. Toluene and ethylbenzene can penetrate the plant׳s cuticle. However, the removal rates do not appear to be correlated with numbers of stomata per plant. It was found that wax of S. trifasciata and Sansevieria hyacinthoides had greater absorption of toluene and ethylbenzene, and it contained high hexadecanoic acid. Hexadecanoic acid might be involved in toluene and ethylbenzene adsorption by cuticles wax of plants. Chlorophyll fluorescence analysis or the potential quantum yield of PSII (Fv/Fm) in toluene exposed plants showed no significant differences between the control and the treated plants, whereas plants exposed to ethylbenzene showed significant differences or those parameters, specifically in Dracaena deremensis (Lemon lime), Dracaena sanderiana, Kalanchoe blossfeldiana, and Cordyline fruticosa. The Fv/Fm ratio can give insight into the ability of plants to tolerate (indoor) air pollution by volatile organic chemicals (VOC). This index can be used for identification of suitable plants for treating/sequestering VOCs in contaminated air. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Organic contaminants in onsite wastewater treatment systems

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  8. Radioactive contamination of aquatic media and organisms

    International Nuclear Information System (INIS)

    Fontaine, Y.

    1960-01-01

    After a brief account of the radioactive wastes produced by peaceful or military uses of Atomic Industry, the author first describes a series of observations carried out 'in the field' on the extent of contamination in aquatic organisms with respect to that of the medium. The experimental studies are then analysed, with reference both to the radioisotope metabolism and to the factors and types of contamination of aquatic organisms by wastes from atomic industry. A precise experimental project is presented at the end of the paper, including almost 300 references. (author) [fr

  9. Volatile and intermediate volatility organic compounds in suburban Paris: variability, origin and importance for SOA formation

    International Nuclear Information System (INIS)

    Ait-Helal, W.; Borbon, A.; Beekmann, M.; Doussin, J.F.; Durand-Jolibois, R.; Grand, N.; Michoud, V.; Miet, K.; Perrier, S.; Siour, G.; Zapf, P.; Sauvage, S.; Fronval, I.; Leonardis, T.; Locoge, N.; Gouw, J.A. de; Colomb, A.; Gros, V.; Lopez, M.

    2014-01-01

    Measurements of gaseous and particulate organic carbon were performed during the MEGAPOLI experiments, in July 2009 and January-February 2010, at the SIRTA observatory in suburban Paris. Measurements comprise primary and secondary volatile organic compounds (VOCs), of both anthropogenic and biogenic origins, including C12-C16 n-alkanes of intermediate volatility (IVOCs), suspected to be efficient precursors of secondary organic aerosol (SOA). The time series of gaseous carbon are generally consistent with times series of particulate organic carbon at regional scale, and are clearly affected by meteorology and air mass origin. Concentration levels of anthropogenic VOCs in urban and suburban Paris were surprisingly low (2-963 ppt) compared to other mega-cities worldwide and to rural continental sites. Urban enhancement ratios of anthropogenic VOC pairs agree well between the urban and suburban Paris sites, showing the regional extent of anthropogenic sources of similar composition. Contrary to other primary anthropogenic VOCs (aromatics and alkanes), IVOCs showed lower concentrations in winter (≤ 5 ppt) compared to summer (13-27 ppt), which cannot be explained by the gas-particle partitioning theory. Higher concentrations of most oxygenated VOCs in winter (18-5984 ppt) suggest their dominant primary anthropogenic origin. The respective role of primary anthropogenic gaseous compounds in regional SOA formation was investigated by estimating the SOA mass concentration expected from the anthropogenic VOCs and IVOCs (I/VOCs) measured at SIRTA. From an integrated approach based on emission ratios and SOA yields, 38% of the SOA measured at SIRTA is explained by the measured concentrations of I/VOCs, with a 2% contribution by C12-C16 n-alkane IVOCs. From the results of an alternative time-resolved approach, the average IVOC contribution to SOA formation is estimated to be 7 %, which is half of the average contribution of the traditional aromatic compounds (15 %). Both

  10. Contaminated environments in the subsurface and bioremediation: organic contaminants.

    Science.gov (United States)

    Holliger, C; Gaspard, S; Glod, G; Heijman, C; Schumacher, W; Schwarzenbach, R P; Vazquez, F

    1997-07-01

    Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low biomass production and good electron acceptor availability, and they are sometimes the only possible solution. This review will focus on three important groups of environmental organic contaminants: hydrocarbons, chlorinated and nitroaromatic compounds. Whereas hydrocarbons are oxidized and completely mineralized under anaerobic conditions in the presence of electron acceptors such as nitrate, iron, sulfate and carbon dioxide, chlorinated and nitroaromatic compounds are reductively transformed. For the aerobic often persistent polychlorinated compounds, reductive dechlorination leads to harmless products or to compounds that are aerobically degradable. The nitroaromatic compounds are first reductively transformed to the corresponding amines and can subsequently be bound to the humic fraction in an aerobic process. Such new findings and developments give hope that in the near future contaminated aquifers can efficiently be remediated, a prerequisite for a sustainable use of the precious-subsurface drinking water resources.

  11. Volatile organic compounds in the unsaturated zone from radioactive wastes

    Science.gov (United States)

    Baker, Ronald J.; Andraski, Brian J.; Stonestrom, David A.; Luo, Wentai

    2012-01-01

    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0–2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m-2 yr-1. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.

  12. Electron beam treatment of toxic volatile organic compounds and dioxins

    International Nuclear Information System (INIS)

    Kojima, Takuji

    2006-01-01

    Considerations of wastes based on the reduction, reuse and recycle in daily life are primary measures to conserve our environment, but the control technology is necessary to support these measures. The electron beam (EB) process is promising as an advanced purification process having advantages such as a quick treatment of big volume gas, applicability even for very low concentration pollutants as the further purification at the downstream of existing process, and decomposition of pollutants into non-toxic substances by one process. The EB technology has been developed for treatment of toxic volatile organic compounds (VOCs) in ventilation gas and dioxins in solid waste incineration flue gas. (author)

  13. Volatile organic compound (VOC) emissions during malting and beer manufacture

    Science.gov (United States)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  14. Stability of volatile organics in environmental soil samples. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Maskarinec, M.P.; Bayne, C.K.; Jenkins, R.A.; Johnson, L.H.; Holladay, S.K.

    1992-11-01

    This report focuses on data generated for the purpose of establishing the stability of 19 volatile organic compounds in environmental soil samples. The study was carried out over a 56 day (for two soils) and a 111 day (for one reference soil) time frame and took into account as many variables as possible within the constraints of budget and time. The objectives of the study were: 1) to provide a data base which could be used to provide guidance on pre-analytical holding times for regulatory purposes; and 2) to provide a basis for the evaluation of data which is generated outside of the currently allowable holding times.

  15. Stability of volatile organics in environmental soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Maskarinec, M.P.; Bayne, C.K.; Jenkins, R.A.; Johnson, L.H.; Holladay, S.K.

    1992-11-01

    This report focuses on data generated for the purpose of establishing the stability of 19 volatile organic compounds in environmental soil samples. The study was carried out over a 56 day (for two soils) and a 111 day (for one reference soil) time frame and took into account as many variables as possible within the constraints of budget and time. The objectives of the study were: 1) to provide a data base which could be used to provide guidance on pre-analytical holding times for regulatory purposes; and 2) to provide a basis for the evaluation of data which is generated outside of the currently allowable holding times.

  16. Volatile emerging contaminants in melon fruits, analysed by HS-SPME-GC-MS.

    Science.gov (United States)

    Cincotta, Fabrizio; Verzera, Antonella; Tripodi, Gianluca; Condurso, Concetta

    2018-03-01

    The aim of this research was to develop and validate a headspace-solid phase micro-extraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) method for the determination of volatile emerging contaminants in fruit. The method showed good precision (RSD ≤ 14%) and satisfactory recoveries (99.1-101.7%) and LOD and LOQ values ranging between 0.011-0.033 μg kg -1 and 0.037-0.098 μg kg -1 , respectively. The method was applied to investigate the content of volatile emerging contaminants in two varieties of melon fruit (Cucumis melo L.) cultivated adjoining high-risk areas. Glycol ethers, BHT, BHA and BTEX (benzene, toluene, ethylbenzene and xylene) were determined in melon fruit pulps for the first time, with different sensitivities depending on sample and variety. Although the amount of the volatile contaminants in the melon samples were in the order of µg kg -1 , the safety of vegetable crops cultivated near risk areas should be more widely considered. The results showed that this accurate and reproducible method can be useful for routine safety control of fruits and vegetables.

  17. Development of a novel biofilter for aerobic biodegradation of volatile organic compounds (VOCs)

    International Nuclear Information System (INIS)

    Govind, R.; Utgikar, V.; Shan, Y.; Zhao, Wang; Sayles, G.D.; Bishop, D.F.; Safferman, S.I.

    1992-01-01

    In recent years, the emission into the atmosphere of volatile organic compounds (VOCs) has undergone increased regulation by EPA, OSHA and other government agencies due to potential human health hazards. The sources of these VOCs include releases during industrial production and use, from contaminated wastewaters in collection systems and treatment plants, and from hazardous wastes in landfills and contaminated ground water. Conventional methods for treating VOC emissions include adsorption on solids, absorption in solvents, incineration and catalytic oxidation. One alternative to these conventional treatment methods is the biological destruction of the VOCs in gas phase biofilters. This method has the advantage of pollution destruction (as compared to transfer to another medium) at lower operation and maintenance costs. The biofilter method also can be combined with various stripping or vapor extraction separation processes which effectively transfer VOCs from liquid or solid matrices into the gas phase entering biofilters

  18. Organic contaminants in environmental atmospheres and waters

    OpenAIRE

    Ramírez González, Noelia

    2011-01-01

    This Doctoral Thesis focuses on the development of efficient and highly sensitive analytical methods for determining organic contaminants in atmospheric, aquatic and house dust samples. The proposed analytical methods are based on single and comprehensive gas chromatography followed by different detectors (including mass spectrometry and nitrogen chemiluminiscence detection) and different sample preparation methods that have the aim of minimising the consumption of organic solvents in the who...

  19. Quicklime-induced changes of soil properties: Implications for enhanced remediation of volatile chlorinated hydrocarbon contaminated soils via mechanical soil aeration.

    Science.gov (United States)

    Ma, Yan; Dong, Binbin; He, Xiaosong; Shi, Yi; Xu, Mingyue; He, Xuwen; Du, Xiaoming; Li, Fasheng

    2017-04-01

    Mechanical soil aeration is used for soil remediation at sites contaminated by volatile organic compounds. However, the effectiveness of the method is limited by low soil temperature, high soil moisture, and high soil viscosity. Combined with mechanical soil aeration, quicklime has a practical application value related to reinforcement remediation and to its action in the remediation of soil contaminated with volatile organic compounds. In this study, the target pollutant was trichloroethylene, which is a volatile chlorinated hydrocarbon pollutant commonly found in contaminated soils. A restoration experiment was carried out, using a set of mechanical soil-aeration simulation tests, by adding quicklime (mass ratios of 3, 10, and 20%) to the contaminated soil. The results clearly indicate that quicklime changed the physical properties of the soil, which affected the environmental behaviour of trichloroethylene in the soil. The addition of CaO increased soil temperature and reduced soil moisture to improve the mass transfer of trichloroethylene. In addition, it improved the macroporous cumulative pore volume and average pore size, which increased soil permeability. As soil pH increased, the clay mineral content in the soils decreased, the cation exchange capacity and the redox potential decreased, and the removal of trichloroethylene from the soil was enhanced to a certain extent. After the addition of quicklime, the functional group COO of soil organic matter could interact with calcium ions, which increased soil polarity and promoted the removal of trichloroethylene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Emission of Biogenic Volatile Organic Compounds in the Arctic

    DEFF Research Database (Denmark)

    Lindwall, Frida

    , emitted in order to communicate within and between trophic levels and as protection against biotic and abiotic stresses, or as byproducts. Some BVOCs are very reactive, and when entering the atmosphere they rapidly react with for example hydroxyl radicals and ozone, affecting the oxidative capacity......Emissions of biogenic volatile organic compounds (BVOCs) from arctic ecosystems are scarcely studied and the effect of climate change on BVOC emissions even less so. BVOCs are emitted from all living organisms and play a role for atmospheric chemistry. The major part of BVOCs derives from plants...... in the atmosphere. This may warm the climate due to a prolonged lifetime of the potent greenhouse gas methane in the atmosphere. However, oxidized BVOCs may participate in formation or growth of aerosols, which in turn may mitigate climate warming. Climate change in the Arctic, an area characterized by short...

  1. Oceanic Emissions and Atmospheric Depositions of Volatile Organic Compounds

    Science.gov (United States)

    Yang, M.; Blomquist, B.; Beale, R.; Nightingale, P. D.; Liss, P. S.

    2015-12-01

    Atmospheric volatile organic compounds (VOCs) affect the tropospheric oxidative capacity due to their ubiquitous abundance and relatively high reactivity towards the hydroxyal radical. Over the ocean and away from terrestrial emission sources, oxygenated volatile organic compounds (OVOCs) make up a large fraction of VOCs as airmasses age and become more oxidized. In addition to being produced or destroyed in the marine atmosphere, OVOCs can also be emitted from or deposited to the surface ocean. Here we first present direct air-sea flux measurements of three of the most abundant OVOCs - methanol, acetone, and acetaldehyde, by the eddy covariance technique from two cruises in the Atlantic: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The OVOC mixing ratios were quantified by a high resolution proton-reaction-transfer mass spectrometer with isotopically labeled standards and their air-sea (net) fluxes were derived from the eddy covariance technique. Net methanol flux was consistently from the atmosphere to the surface ocean, while acetone varied from supersaturation (emission) in the subtropics to undersaturation (deposition) in the higher latitudes of the North Atlantic. The net air-sea flux of acetaldehyde is near zero through out the Atlantic despite the apparent supersaturation of this compound in the surface ocean. Knowing the dissolved concentrations and in situ production rates of these compounds in seawater, we then estimate their bulk atmospheric depositions and oceanic emissions. Lastly, we summarize the state of knowledge on the air-sea transport of a number of organic gasses, and postulate the magnitude and environmental impact of total organic carbon transfer between the ocean and the atmosphere.

  2. Low-concentration tailing and subsequent quicklime-enhanced remediation of volatile chlorinated hydrocarbon-contaminated soils by mechanical soil aeration.

    Science.gov (United States)

    Ma, Yan; Du, Xiaoming; Shi, Yi; Xu, Zhu; Fang, Jidun; Li, Zheng; Li, Fasheng

    2015-02-01

    Mechanical soil aeration has long been regarded as an effective ex-situ remediation technique and as suitable for remediation of large-scale sites contaminated by volatile organic compounds (VOCs) at low cost. However, it has been reported that the removal efficiency of VOCs from soil is relatively low in the late stages of remediation, in association with tailing. Tailing may extend the remediation time required; moreover, it typically results in the presence of contaminants residues at levels far exceeding regulations. In this context, the present study aimed to discuss the tailing that occurs during the process of remediation of soils contaminated artificially with volatile chlorinated hydrocarbons (VCHs) and to assess possible quicklime-enhanced removal mechanisms. The results revealed the following conclusions. First, temperature and aeration rate can be important controls on both the timing of appearance of tailing and the levels of residual contaminants. Furthermore, the addition of quicklime to soil during tailing can reduce the residual concentrations rapidly to below the remedial target values required for site remediation. Finally, mechanical soil aeration can be enhanced using quicklime, which can improve the volatilization of VCHs via increasing soil temperature, reducing soil moisture, and enhancing soil permeability. Our findings give a basic understanding to the elimination of the tailing in the application of mechanical soil aeration, particularly for VOCs-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Site-specific probabilistic ecological risk assessment of a volatile chlorinated hydrocarbon-contaminated tidal estuary.

    Science.gov (United States)

    Hunt, James; Birch, Gavin; Warne, Michael St J

    2010-05-01

    Groundwater contaminated with volatile chlorinated hydrocarbons (VCHs) was identified as discharging to Penrhyn Estuary, an intertidal embayment of Botany Bay, New South Wales, Australia. A screening-level hazard assessment of surface water in Penrhyn Estuary identified an unacceptable hazard to marine organisms posed by VCHs. Given the limitations of hazard assessments, the present study conducted a higher-tier, quantitative probabilistic risk assessment using the joint probability curve (JPC) method that accounted for variability in exposure and toxicity profiles to quantify risk (delta). Risk was assessed for 24 scenarios, including four areas of the estuary based on three exposure scenarios (low tide, high tide, and both low and high tides) and two toxicity scenarios (chronic no-observed-effect concentrations [NOEC] and 50% effect concentrations [EC50]). Risk (delta) was greater at low tide than at high tide and varied throughout the tidal cycle. Spatial distributions of risk in the estuary were similar using both NOEC and EC50 data. The exposure scenario including data combined from both tides was considered the most accurate representation of the ecological risk in the estuary. When assessing risk using data across both tides, the greatest risk was identified in the Springvale tributary (delta=25%)-closest to the source area-followed by the inner estuary (delta=4%) and the Floodvale tributary (delta=2%), with the lowest risk in the outer estuary (delta=0.1%), farthest from the source area. Going from the screening level ecological risk assessment (ERA) to the probabilistic ERA changed the risk from unacceptable to acceptable in 50% of exposure scenarios in two of the four areas within the estuary. The probabilistic ERA provided a more realistic assessment of risk than the screening-level hazard assessment. Copyright (c) 2010 SETAC.

  4. Volatility of organic aerosol and its components in the Megacity of Paris

    Science.gov (United States)

    Paciga, A.; Karnezi, E.; Kostenidou, E.; Hildebrandt, L.; Psichoudaki, M.; Engelhart, G. J.; Lee, B.-H.; Crippa, M.; Prévôt, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2015-08-01

    Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 μg m-3 and another 35-40 % consisting of low and extremely low volatility organic compounds (LVOCs and ELVOCs, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the O : C ratio and volatility distributions of the various factors, we incorporated our results into the two-dimensional volatility basis set (2D-VBS). Our results show that the factors cover a broad spectrum of volatilities with no direct link between the average volatility and average O : C of the OA components. Agreement between our findings and previous publications is encouraging for our understanding of the

  5. Ionic liquid technology to recover volatile organic compounds (VOCs).

    Science.gov (United States)

    Salar-García, M J; Ortiz-Martínez, V M; Hernández-Fernández, F J; de Los Ríos, A P; Quesada-Medina, J

    2017-01-05

    Volatile organic compounds (VOCs) comprise a wide variety of carbon-based materials which are volatile at relatively low temperatures. Most of VOCs pose a hazard to both human health and the environment. For this reason, in the last years, big efforts have been made to develop efficient techniques for the recovery of VOCs produced from industry. The use of ionic liquids (ILs) is among the most promising separation technologies in this field. This article offers a critical overview on the use of ionic liquids for the separation of VOCs both in bulk and in immobilized form. It covers the most relevant works within this field and provides a global outlook on the limitations and future prospects of this technology. The extraction processes of VOCs by using different IL-based assemblies are described in detail and compared with conventional methods This review also underlines the advantages and limitations posed by ionic liquids according to the nature of the cation and the anions present in their structure and the stability of the membrane configurations in which ILs are used as liquid phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Volatile organic compound emissions from Larrea tridentata (creosotebush

    Directory of Open Access Journals (Sweden)

    A. Guenther

    2010-12-01

    Full Text Available We present results from the CREosote ATmosphere Interactions through Volatile Emissions (CREATIVE 2009 field study in southern Arizona aimed at quantifying emission rates of VOCs from creosotebush (Larrea tridentata during the summer 2009 monsoon season. This species was chosen because of its vast distribution in North and South American deserts and because its resins have been reported to contain a rich set of volatile organic compounds (VOC. While a variety of ecosystems have been investigated for VOC emissions, deserts remain essentially unstudied, partially because of their low biomass densities and water limitations. However, during the North American monsoon, a pronounced increase in rainfall from an extremely dry June (80 mm occurs over large areas of the Sonoran desert in the southwestern United States and northwestern Mexico. We observed a strong diurnal pattern of branch emissions and ambient concentrations of an extensive suite of VOCs with maxima in early afternoon. These include VOCs typically observed in forest sites (oxygenated VOCs and volatile isoprenoids as well as a large number of other compounds, some of which have not been previously described from any plant including 1-chloro-2-methoxy-benzene and isobutyronitrile. Although generally considered to be derived from anthropogenic sources, we observed emissions of aromatic compounds including benzene, and a broad range of phenolics. Dimethyl sulfide emissions from creosotebush were higher than reported from any previously studied plant suggesting that terrestrial ecosystems should be reconsidered as an important source of this climatically important gas. We also present direct, primary emission measurements of isoprene and its apparent oxidation products methyl vinyl ketone, methacrolein, and 3-methyl furan (the later three compounds are typically assumed to form from secondary reactions within the atmosphere, as well as a group of compounds considered to be fatty acid

  7. Method development for the determination of volatile organic compounds in mixed waste

    International Nuclear Information System (INIS)

    Sandoval, W.F.; Rogers, Y.C.; Schappert, M.F.; Boland, K.S.; Spall, W.D.; Wilkerson, C.W. Jr.

    1993-01-01

    While analytical methods exist for the determination of Resource Conservation and Recovery Act (RCRA) listed organic and inorganic compounds in hazardous materials, equivalent methods suitable for the characterization of radioactively contaminated samples are not at the same level of maturity. The Mixed Waste Methods Development Lab. has been established at Los Alamos National Lab. to address the need for such procedures. This presentation will focus on the efforts that have been directed toward the determination of volatile organic compounds (VOCs) in mixed waste matrices. The capabilities of the Mixed Waste Methods Development Lab. will be outlined. Modifications to the containment boxes and analytical instrumentation required for the analyses will be described, as will experimental procedures and system performance benchmarks. Preliminary results from surrogate and real mixed waste matrices will be presented, and future directions for our method development effort will be discussed

  8. Measurement and estimated health risks of volatile organic compounds and polychlorinated biphenyls in air at the Hanford Site

    International Nuclear Information System (INIS)

    Patton, G.W.; Cooper, A.T.; Blanton, M.L.

    1994-10-01

    A variety of radioactive and nonradioactive chemicals have been released in effluent streams and discharged to waste disposal facilities during the nuclear materials production period at the Hanford Site. Extensive environmental surveillance for radioactive materials has occurred at Hanford; however, only limited information is available on the types and concentrations of organic pollutants potentially present. This report describes work performed to provide the Hanford Site Surface Environmental Surveillance Project with representative air concentration data for volatile organic compounds and polychlorinated biphenyls (PCBs). US Environmental Protection Agency (USEPA) volatile organic compound sampling methods evaluated for Hanford Site use were carbon-based adsorbent traps (TO-2) and Summa air canisters (TO-14). Polychlorinated biphenyls were sampled using USEPA method (TO-4), which uses glass fiber filters and polyurethane foam adsorbent beds to collect the PCBS. This report also presents results for environmental surveillance samples collected for volatile organic compound and PCB analyses from 1990 to 1993. All measured air concentrations of volatile organic compounds and PCBs were well below applicable maximum allowable concentration standards for air contaminants. Because of the lack of ambient air concentration standards, a conservative estimate is provided of the potential human health impacts from exposure to the ambient air concentrations measured on the Hanford Site

  9. Volatile organic components in the Skylab 4 spacecraft atmosphere

    Science.gov (United States)

    Liebich, H. M.; Bertsch, W.; Zlatkis, A.; Schneider, H. J.

    1975-01-01

    The volatile organic components in the spacecraft cabin atmosphere of Skylab 4 were trapped on a solid adsorbent at various times during the mission. In post-flight analyses, more than 300 compounds in concentrations from less than 1 ppb up to 8000 ppb could be detected by high-resolution gas chromatography. In the samples of the 11th, 47th, and 77th day of the mission, approximately 100 components in the molecular weight range from 58 to 592 were identified by mass spectrometry. Besides components known from other environments, such as alkanes, alkenes, and alkylated aromatic hydrocarbons, components typical of the human metabolism, such as ketones and alcohols, were found. Other typical components in the spacecraft atmosphere included fluorocarbons and various silicone compounds, mostly normal and cyclic methylsiloxanes.

  10. Control of volatile organic compound emissions: the issues

    Energy Technology Data Exchange (ETDEWEB)

    Woodfield, M.; Marlowe, I.

    1989-11-01

    This review paper outlines the problems caused by the emissions of volatile organic compounds (VOC) which are causing increasing concern because of their part in the formation of photochemical oxidation that causes damage to crops and vegetation and because of the toxic and climatic effects. It briefly summarises current knowledge of VOC emissions and their effects and then suggests options for abatement of VOC emissions in the UK and the EEC. A comparison of anthropogenic VOC emission in the UK and the EEC from various sources is given. Further information is needed on current emissions, on the costs and efficiencies of control technologies and on the effects of control on industry before decisions can be made on the suitability, extent and strategy to control VOC emissions in the UK. The report was prepared for the UK Department of Trade and Industry (Headquarters).

  11. Effects of trace volatile organic compounds on methane oxidation

    Directory of Open Access Journals (Sweden)

    Chiemchaisri Wilai

    2001-01-01

    Full Text Available The effects of volatile organic compounds (VOCs on methane oxidation in landfill cover soils were examined. The batch experiments were conducted using single and mixed VOCs, such as, dichloromethane (DCM, trichloroethylene (TCE, tetrachloroethylene (PCE, and benzene. The results from all combinations showed a decrease in methane oxidation rate with increase in VOC concentrations. Moreover, inhibition effects of TCE and DCM were found higher than benzene and PCE. The reduction of methane oxidation by benzene and PCE could be attributed to the toxicity effect, whereas TCE and DCM were found to exhibit the competitive-inhibition effect. When the soil was mixed with DCM, no methane oxidation was found. Damage to the cell's internal membrane was found in a methanotrophic culture exposed to VOC gases which is the attachment site of a key enzyme needed for methane oxidation

  12. Imaging subsurface geology and volatile organic compound plumes

    International Nuclear Information System (INIS)

    Qualheim, B.J.; Daley, P.F.; Johnson, V.; McPherrin, R.V.; Laguna, G.

    1992-03-01

    Lawrence Livermore National Laboratory (LLNL) (Fig. 1) is in the final stages of the Superfund decisionmaking process for site remediation and restoration. In the process of characterizing the subsurface of the LLNL site, we have developed unique methods of collecting, storing, retrieving, and imaging geologic and chemical data from more than 350 drill holes. The lateral and vertical continuity of subsurface paleostream channels were mapped for the entire LLNL site using geologic descriptions from core samples, cuttings, and interpretations from geophysical logs. A computer-aided design and drafting program, SLICE, written at LLNL, was used to create two-dimensional maps of subsurface sediments, and state-of-the-art software produced three-dimensional images of the volatile organic compound (VOC) plumes using data from water and core fluid analyses

  13. Investigation of michelson interferometer for volatile organic compound sensor

    International Nuclear Information System (INIS)

    Marzuarman; Rivai, Muhammad; Sardjono, Tri Arief; Purwanto, Djoko

    2017-01-01

    The sensor device is required to monitor harmful gases in the environments and industries. Many volatile organic compounds adsorbed on the sensor material will result in changes of the optical properties including the refractive index and the film thickness. This study designed and realized a vapor detection device using the principle of Michelson Interferometer. The laser light beamed with a wavelength of 620 nm was divided by using a beam splitter. Interference occurredwhen the two separated lights were recombined. The phase difference between the two beams determined whether the interference would destruct or construct each other to produce the curved fringes. The vapor samples used in these experiments were ethanol and benzene. The results showed that the ethanol concentration of 1611-32210 ppm produced a fringe shift of 197 pixels, while the concentration of benzene of 964-19290 ppm produced a fringe shift of 273 pixels. (paper)

  14. Emission of the main biogenic volatile organic compounds in France

    International Nuclear Information System (INIS)

    Luchetta, L.; Simon, V.; Torres, L.

    2000-01-01

    An estimation of biogenic emissions of the main non-methanic Volatile Organic Compounds (VOCs) due to the forest cover in France has been realized. 32 species representing 98% of French forest have been considered for the estimation. The latter dealt on a net made of 93 irregular spatial grids (Departments) with an average size of 75 km x 75 km. We assigned emission rates and foliar biomass densities specific to each of the 32 species. The environmental variables (temperature, light intensity) have been collected for the whole of French Departments. A special effort was extended so as to use ''Guenther's'' calculation algorithms, and specific emitting factors to species growing in France or in bordering countries. Along the way of the five years (1994-1998) of the study we have calculated the yearly mean of isoprene, mono-terpenes and Other Volatile Organic Compounds (OVOCs) emissions on the scale of the French Departments. At the national level isoprene emission is reckoned at 457 kt yr -1 and represents nearly 49% of the total emission, whereas mono-terpenes with 350 kt yr -1 and OVOCs with 129 kt yr -1 represent respectively 37% and 14% of the total. The yearly biogenic emission of VOCs in France represents virtually half the anthropic source. However in some regions (Mediterranean area) natural emissions can widely exceed anthropic emissions during certain periods. Let's note the whole of our results remains tinged with a great uncertainty because the estimations carried out are presented with correction factors that can reach values comprised between 4 and 7. (author)

  15. Crude glycerol combustion: Particulate, acrolein, and other volatile organic emissions

    KAUST Repository

    Steinmetz, Scott

    2013-01-01

    Crude glycerol is an abundant by-product of biodiesel production. As volumes of this potential waste grow, there is increasing interest in developing new value added uses. One possible use, as a boiler fuel for process heating, offers added advantages of energy integration and fossil fuel substitution. However, challenges to the use of crude glycerol as a boiler fuel include its low energy density, high viscosity, and high autoignition temperature. We have previously shown that a refractory-lined, high swirl burner can overcome challenges related to flame ignition and stability. However, critical issues related to ash behavior and the possible formation of acrolein remained. The work presented here indicates that the presence of dissolved catalysts used during the esterification and transesterification processes results in extremely large amounts of inorganic species in the crude glycerol. For the fuels examined here, the result is a submicron fly ash comprised primarily of sodium carbonates, phosphates, and sulfates. These particles report to a well-developed accumulation mode (0.3-0.7 μm diameter), indicating extensive ash vaporization and particle formation via nucleation, condensation, and coagulation. Particle mass emissions were between 2 and 4 g/m3. These results indicate that glycerol containing soluble catalyst is not suitable as a boiler fuel. Fortunately, process improvements are currently addressing this issue. Additionally, acrolein is of concern due to its toxicity, and is known to be formed from the low temperature thermal decomposition of glycerol. Currently, there is no known reliable method for measuring acrolein in sources. Acrolein and emissions of other volatile organic compounds were characterized through the use of a SUMMA canister-based sampling method followed by GC-MS analysis designed for ambient measurements. Results indicate crude glycerol combustion produces relatively small amounts of acrolein (∼15 ppbv) and other volatile organic

  16. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

    Science.gov (United States)

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 d...

  17. Volatilized tritiated water vapor in the vicinity of exposed tritium contaminated groundwater

    International Nuclear Information System (INIS)

    Dunn, D.L.; Carlton, B.; Hunter, C.; McAdams, T.

    1994-01-01

    Water vapor tritium concentrations in air above a known source of tritiated water can be estimated. Estimates should account for the mechanisms of evaporation and condensation at the water surface and water species exchange, and are typically applicable under a broad range of wind, temperature and humidity conditions. An estimate of volatilized tritium water vapor was made for a known outcropping of tritium contaminated groundwater at the Savannah River Site (SRS) old F-Area effluent stream. In order to validate this estimate and the associated dose calculation, sampling equipment was fabricated, tested, and installed at the effluent stream. The estimate and the dose calculation were confirmed using data from samples collected

  18. Treatability of volatile chlorinated hydrocarbon-contaminated soils of different textures along a vertical profile by mechanical soil aeration: A laboratory test.

    Science.gov (United States)

    Ma, Yan; Shi, Yi; Hou, Deyi; Zhang, Xi; Chen, Jiaqi; Wang, Zhifen; Xu, Zhu; Li, Fasheng; Du, Xiaoming

    2017-04-01

    Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons (VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures (silty, clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform (TCM) and trichloroethylene (TCE). Mechanical soil aeration was effective for remediating VCHs (removal efficiency >98%). The volatilization process was described by an exponential kinetic function. In the early stage of treatment (0-7hr), rapid contaminant volatilization followed a pseudo-first order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner. Copyright © 2016. Published by Elsevier B.V.

  19. The characterization of organic contaminants during the development of the Space Station water reclamation and management system

    Science.gov (United States)

    Cole, H.; Habercom, M.; Crenshaw, M.; Johnson, S.; Manuel, S.; Martindale, W.; Whitman, G.; Traweek, M.

    1991-01-01

    Examples of the application of various methods for characterizing samples for alcohols, fatty acids, detergents, and volatile/semivolatile basic, neutral, and phenolic acid contaminants are presented. Data, applications, and interpretations are given for a variety of methods including sample preparation/cleanup procedures, ion chromatography, and gas chromatography with various detectors. Summaries of the major organic contaminants that contribute to the total organic carbon content are presented.

  20. Neurotoxicity of fungal volatile organic compounds in Drosophila melanogaster.

    Science.gov (United States)

    Inamdar, Arati A; Masurekar, Prakash; Bennett, Joan Wennstrom

    2010-10-01

    Many volatile organic compounds (VOCs) are found in indoor environment as products of microbial metabolism. In damp indoor environments, fungi are associated with poor air quality. Some epidemiological studies have suggested that microbial VOCs have a negative impact on human health. Our study was designed to provide a reductionist approach toward studying fungal VOC-mediated toxicity using the inexpensive model organism, Drosophila melanogaster, and pure chemical standards of several important fungal VOCs. Low concentrations of the following known fungal VOCs, 0.1% of 1-octen-3-ol and 0.5% of 2-octanone; 2,5 dimethylfuran; 3-octanol; and trans-2-octenal, caused locomotory defects and changes in green fluorescent protein (GFP)- and antigen-labeled dopaminergic neurons in adult D. melanogaster. Locomotory defects could be partially rescued with L-DOPA. Ingestion of the antioxidant, vitamin E, improved the survival span and delayed the VOC-mediated changes in dopaminergic neurons, indicating that the VOC-mediated toxicity was due, in part, to generation of reactive oxygen species.

  1. Volatile Organic Compounds: Characteristics, distribution and sources in urban schools

    Science.gov (United States)

    Mishra, Nitika; Bartsch, Jennifer; Ayoko, Godwin A.; Salthammer, Tunga; Morawska, Lidia

    2015-04-01

    Long term exposure to organic pollutants, both inside and outside school buildings may affect children's health and influence their learning performance. Since children spend significant amount of time in school, air quality, especially in classrooms plays a key role in determining the health risks associated with exposure at schools. Within this context, the present study investigated the ambient concentrations of Volatile Organic Compounds (VOCs) in 25 primary schools in Brisbane with the aim to quantify the indoor and outdoor VOCs concentrations, identify VOCs sources and their contribution, and based on these; propose mitigation measures to reduce VOCs exposure in schools. One of the most important findings is the occurrence of indoor sources, indicated by the I/O ratio >1 in 19 schools. Principal Component Analysis with Varimax rotation was used to identify common sources of VOCs and source contribution was calculated using an Absolute Principal Component Scores technique. The result showed that outdoor 47% of VOCs were contributed by petrol vehicle exhaust but the overall cleaning products had the highest contribution of 41% indoors followed by air fresheners and art and craft activities. These findings point to the need for a range of basic precautions during the selection, use and storage of cleaning products and materials to reduce the risk from these sources.

  2. Influence of Sensory Stimulation on Exhaled Volatile Organic Compounds.

    Science.gov (United States)

    Mazzatenta, A; Pokorski, M; Di Tano, A; Cacchio, M; Di Giulio, C

    2016-01-01

    The real-time exhaled volatile organic compounds (VOCs) have been suggested as a new biomarker to detect and monitor physiological processes in the respiratory system. The VOCs profile in exhaled breath reflects the biochemical alterations related to metabolic changes, organ failure, and neuronal activity, which are, at least in part, transmitted via the lungs to the alveolar exhaled breath. Breath analysis has been applied to investigate cancer, lung failure, and neurodegenerative diseases. There are by far no studies on the real-time monitoring of VOCs in sensory stimulation in healthy subjects. Therefore, in this study we investigated the breath parameters and exhaled VOCs in humans during sensory stimulation: smell, hearing, sight, and touch. Responses sensory stimulations were recorded in 12 volunteers using an iAQ-2000 sensor. We found significant effects of sensory stimulation. In particular, olfactory stimulation was the most effective stimulus that elicited the greatest VOCs variations in the exhaled breath. Since the olfactory pathway is distinctly driven by the hypothalamic and limbic circuitry, while other senses project first to the thalamic area and then re-project to other brain areas, the findings suggest the importance of olfaction and chemoreception in the regulation lung gas exchange. VOCs variations during sensory activation may become putative indicators of neural activity.

  3. Biogenic volatile organic compound emissions from vegetation fires.

    Science.gov (United States)

    Ciccioli, Paolo; Centritto, Mauro; Loreto, Francesco

    2014-08-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  4. 40 CFR Table 2 to Subpart II of... - Volatile Organic HAP (VOHAP) Limits for Marine Coatings

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Volatile Organic HAP (VOHAP) Limits... (Surface Coating) Pt. 63, Subpt. II, Table 2 Table 2 to Subpart II of Part 63—Volatile Organic HAP (VOHAP...) through (4). b VOC (including exempt compounds listed as HAP) shall be used as a surrogate for VOHAP for...

  5. 78 FR 29032 - Approval and Promulgation of Implementation Plans Tennessee: Revisions to Volatile Organic...

    Science.gov (United States)

    2013-05-17

    ... of the term ``particulate matter emissions'' at 1200-03-09-.01(4)(b)47 (vi) as part of the definition... Promulgation of Implementation Plans Tennessee: Revisions to Volatile Organic Compound Definition AGENCY..., 1999, SIP adds 17 compounds to the list of compounds excluded from the definition of ``Volatile Organic...

  6. Microbial communities related to volatile organic compound emission in automobile air conditioning units.

    Science.gov (United States)

    Diekmann, Nina; Burghartz, Melanie; Remus, Lars; Kaufholz, Anna-Lena; Nawrath, Thorben; Rohde, Manfred; Schulz, Stefan; Roselius, Louisa; Schaper, Jörg; Mamber, Oliver; Jahn, Dieter; Jahn, Martina

    2013-10-01

    During operation of mobile air conditioning (MAC) systems in automobiles, malodours can occur. We studied the microbial communities found on contaminated heat exchanger fins of 45 evaporators from car MAC systems which were operated in seven different regions of the world and identified corresponding volatile organic compounds. Collected biofilms were examined by scanning electron microscopy and fluorescent in situ hybridization. The detected bacteria were loosely attached to the metal surface. Further analyses of the bacteria using PCR-based single-strand conformation polymorphism and sequencing of isolated 16S rRNA gene fragments identified highly divergent microbial communities with multiple members of the Alphaproteobacteriales, Methylobacteria were the prevalent bacteria. In addition, Sphingomonadales, Burkholderiales, Bacillales, Alcanivorax spp. and Stenotrophomonas spp. were found among many others depending on the location the evaporators were operated. Interestingly, typical pathogenic bacteria related to air conditioning systems including Legionella spp. were not found. In order to determine the nature of the chemical compounds produced by the bacteria, the volatile organic compounds were examined by closed loop stripping analysis and identified by combined gas chromatography/mass spectrometry. Sulphur compounds, i.e. di-, tri- and multiple sulphides, acetylthiazole, aromatic compounds and diverse substituted pyrazines were detected. Mathematical clustering of the determined microbial community structures against their origin identified a European/American/Arabic cluster versus two mainly tropical Asian clusters. Interestingly, clustering of the determined volatiles against the origin of the corresponding MAC revealed a highly similar pattern. A close relationship of microbial community structure and resulting malodours to the climate and air quality at the location of MAC operation was concluded.

  7. Volatile organic compounds in indoor air: A review ofconcentrations measured in North America since 1990

    Energy Technology Data Exchange (ETDEWEB)

    ATHodgson@lbl.gov

    2003-04-01

    Central tendency and upper limit concentrations of volatile organic compounds (VOCs) measured in indoor air are summarized and reviewed. Data were obtained from published cross-sectional studies of residential and office buildings conducted in North America from 1990through the present. VOC concentrations in existing residences reported in 12 studies comprise the majority of the data set. Central tendency and maximum concentrations are compared between new and existing residences and between existing residences and office buildings. Historical changes in indoor VOC concentrations since the Clean Air Act Amendments of 1990 are explored by comparing the current data set with two published reviews of previous data obtained primarily in the 1980s. These historical comparisons suggest average indoor concentrations of some toxic air contaminants, such as 1,1,1-trichloroethane have decreased.

  8. Volatility

    Directory of Open Access Journals (Sweden)

    María Sánchez

    2016-11-01

    Full Text Available The action consists of moving with small kicks a tin of cola refresh -without Brand-from a point of the city up to other one. During the path I avoid bollards, the slope differences between sidewalks, pedestrians, parked motorcycles, etc. Volatility wants to say exactly that the money is getting lost. That the money is losing by gentlemen and by ladies who are neither financial sharks, nor big businessmen… or similarly, but ingenuous people, as you or as me, who walk down the street.

  9. Biodegradation of volatile organic compounds by five fungal species

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B.; Moe, W.M. [Dept. of Civil and Environmental Engineering, Louisiana State Univ., Baton Rouge, LA (United States); Kinney, K.A. [Dept. of Civil Engineering, Univ. of Texas, Austin (United States)

    2002-07-01

    Five fungal species, Cladosporium resinae (ATCC 34066), Cladosporium sphaerospermum (ATCC 200384), Exophiala lecanii-corni (CBS 102400), Mucor rouxii (ATCC 44260), and Phanerochaete chrysosporium (ATCC 24725), were tested for their ability to degrade nine compounds commonly found in industrial off-gas emissions. Fungal cultures inoculated on ceramic support media were provided with volatile organic compounds (VOCs) via the vapor phase as their sole carbon and energy sources. Compounds tested included aromatic hydrocarbons (benzene, ethylbenzene, toluene, and styrene), ketones (methyl ethyl ketone, methyl isobutyl ketone, and methyl propyl ketone), and organic acids (n-butyl acetate, ethyl 3-ethoxypropionate). Experiments were conducted using three pH values ranging from 3.5 to 6.5. Fungal ability to degrade each VOC was determined by observing the presence or absence of visible growth on the ceramic support medium during a 30-day test period. Results indicate that E. lecanii-corni and C. sphaerospermum can readily utilize each of the nine VOCs as a sole carbon and energy source. P. chrysosporium was able to degrade all VOCs tested except for styrene under the conditions imposed. C. resinae was able to degrade both organic acids, all of the ketones, and some of the aromatic compounds (ethylbenzene and toluene); however, it was not able to grow utilizing benzene or styrene under the conditions tested. With the VOCs tested, M. rouxii produced visible growth only when supplied with n-butyl acetate or ethyl 3-ethoxypropionate. Maximum growth for most fungi was observed at a pH of approximately 5.0. The experimental protocol utilized in these studies is a useful tool for assessing the ability of different fungal species to degrade gas-phase VOCs under conditions expected in a biofilter application. (orig.)

  10. In situ extraction and analysis of volatiles and simple molecules in interplanetary dust particles, contaminants, and silica aerogel

    Science.gov (United States)

    Hartmetz, C. P.; Gibson, E. K., Jr.; Blanford, G. E.

    1990-01-01

    Results are presented for the analyses of eight interplanetary dust particles (IDPs) for the volatile elements H, C, N, O, and S and their molecular species, as well as of the volatiles associated with contaminants (i.e., the compounds used during the collection and curation of IDPs), which were carried out using a laser microprobe interfaced with a quadrupole mass spectrometer. It was found that the volatile species from contaminants were always present in the spectra of IDPs. Despite the contamination problems, several indigenous molecular species could be identified, including OH, CO2 or C2H4, C and CS2, CO2 along with CO (possibly indicating the presence of carbonate), H2S, SO, COS, SO2, and CS2. In some cases, the sulfur components can be attributed to aerosols; however, in one of the IDPs, the presence of H2S, SO, COS, and SO2 indicates the possible presence of elemental sulfur.

  11. 40 CFR 141.61 - Maximum contaminant levels for organic contaminants.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant levels for organic contaminants. 141.61 Section 141.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.61 Maximum contaminant...

  12. Datasets used in the manuscript titled "Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms and organic aerosol"

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset documents that all of the data used in the manuscript "Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic...

  13. Organic contaminants in soil : desorption kinetics and microbial degradation

    NARCIS (Netherlands)

    Schlebaum, W.

    1999-01-01

    The availability of organic contaminants in soils or sediments for microbial degradation or removal by physical means (e.g.) soil washing or soil venting) depends on the desorption kinetics of these contaminants from the soil matrix. When the organic contaminants desorb very slow from the

  14. Biogenic volatile organic compound (VOC) emissions from forests in Finland

    International Nuclear Information System (INIS)

    Lindfors, V.; Laurila, T.

    2000-01-01

    We present model estimates of biogenic volatile organic compound (VOC) emissions from the forests in Finland. The emissions were calculated for the years 1995-1997 using the measured isoprene and monoterpene emission factors of boreal tree species together with detailed satellite land cover information and meteorological data. The three-year average emission is 319 kilotonnes per annum, which is significantly higher than the estimated annual anthropogenic VOC emissions of 193 kilotonnes. The biogenic emissions of the Finnish forests are dominated by monoterpenes, which contribute approximately 45% of the annual total. The main isoprene emitter is the Norway spruce (Picea abies) due to its high foliar biomass density. Compared to the monoterpenes, however, the total isoprene emissions are very low, contributing only about 7% of the annual forest VOC emissions. The isoprene emissions are more sensitive to the meteorological conditions than the monoterpene emissions, but the progress of the thermal growing season is clearly reflected in all biogenic emission fluxes. The biogenic emission densities in northern Finland are approximately half of the emissions in the southern parts of the country. (orig.)

  15. [Indoor volatile organic compounds: concentrations, sources, variation factors].

    Science.gov (United States)

    Palot, A; Charpin-Kadouch, C; Ercoli, J; Charpin, D

    2008-06-01

    Volatile organic compounds (V.O.C.) are part of urban air pollution and are also generated indoors from cleaning and maintenance products. VOC measurements are, on average, 10 times higher within homes than outside. Results of the national survey led by the Observatoire National de la Qualité de l'Air Intérieur demonstrated that up to 25% of French homes have very high or high concentrations of VOC. Indoor levels depend mainly on indoor sources. Aldehydes are included in many everyday life products. VOC originate from various household decorating and cleaning products. Some products are less detrimental to the environment and health and have special labelling. Indoor VOC levels also depend on the rate of air exchange and on household characteristics such as indoor temperature and humidity, age of the building, presence of smokers, and communication with a garage. The public may participate in maintaining good indoor air quality and the authorities should also improve regulations. VOC are part of everyday air pollution. Their sources and concentrations should be better monitored.

  16. Volatile organic compounds adsorption using different types of adsorbent

    Directory of Open Access Journals (Sweden)

    Pimanmes Chanayotha

    2014-09-01

    Full Text Available Adsorbents were synthesized from coconut shell, coal and coke by pyrolysis followed by chemical activation process. These synthesized materials were used as adsorbents in adsorption test to determine the amount of volatile organic compounds (VOCs namely, 2-Hydroxyethyl methacrylate (HEMA, Octamethylcyclotetrasiloxane and Alkanes standard solution (C8-C20. The adsorption capacities of both synthesized adsorbents and commercial grade adsorbents (Carbotrap™ B and Carbotrap™ C were also compared. It was found that adsorbent A402, which was produced from coconut shell, activated with 40% (wt. potassium hydroxide and at activating temperature of 800°C for 1 hr, could adsorb higher amount of both HEMA and Octamethylcyclotetrasiloxane than other synthesized adsorbents. The maximum adsorption capacity of adsorbent A402 in adsorbing HEMA and Octamethylcyclotetrasiloxane were 77.87% and 50.82% respectively. These adsorption capabilities were 79.73% and 70.07% of the adsorption capacity of the commercial adsorbent Carbotrap™ B respectively. All three types of the synthesized adsorbent (A402, C302, C402 showed the capability to adsorb alkanes standard solution through the range of C8-C20 . However, their adsorption capacities were high in a specific range of C10-C11. The result from the isotherm plot was indicated that surface adsorption of synthesized adsorbent was isotherm type I while the surface adsorption of commercial adsorbent was isotherm type III.

  17. Resonance Raman spectroscopy of volatile organics -- Carbon tetrachloride

    International Nuclear Information System (INIS)

    Barletta, R.E.; Veligdan, J.T.

    1994-09-01

    Volatile organic chemicals are a class of pollutants which are regulated at very low levels by the EPA. Consequently a need exists as a part of site remediation efforts within DOE to develop technologies which will allow for the in situ monitoring of these chemicals. Resonance Raman spectroscopy is a potential technique to accomplish this if the resonance enhancement is sufficiently high. Carbon tetrachloride was selected as a test case. Measurements under resonance conditions at 248 nm showed an enhancement factor of 2 x 10 4 . Using this value an estimate of the sensitivity for both in situ and remote monitoring of CCl 4 was made. It was concluded that resonance Raman could be used to detect these chemicals at levels of regulatory interest. Future effort directed towards the development of a suitable probe as well as a field-portable system would be desirable. Such effort could be directed towards the solution of a particular monitoring problem within a DOE waste remediation project. Once developed, however, it should be easily generalized to the analysis of other VOC's in other environments

  18. Volatile organic compounds in the atmosphere of Mexico City

    Science.gov (United States)

    Garzón, Jessica P.; Huertas, José I.; Magaña, Miguel; Huertas, María E.; Cárdenas, Beatriz; Watanabe, Takuro; Maeda, Tsuneaki; Wakamatsu, Shinji; Blanco, Salvador

    2015-10-01

    The Mexico City Metropolitan Area (MCMA) is one of the most polluted megacities in North America. Therefore, it is an excellent benchmark city to understand atmospheric chemistry and to implement pilot countermeasures. Air quality in the MCMA is not within acceptable levels, mainly due to high ground levels of ozone (O3). Tropospheric O3 is a secondary pollutant formed from the oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides and sunlight. To gain a better understanding of O3 formation in megacities, evaluate the effectiveness of already-implemented countermeasures, and identify new cost-effective alternatives to reduce tropospheric O3 concentrations, researchers and environmental authorities require updated concentrations for a broader range of VOCs. Moreover, in an effort to protect human health and the environment, it is important to understand which VOCs exceed reference safe values or most contribute to O3 formation, as well as to identify the most probable emission sources of those VOCs. In this work, 64 VOCs, including 36 toxic VOCs, were measured at four sites in the MCMA during 2011-2012. VOCs related to liquefied petroleum gas leakages exhibited the highest concentrations. Toxic VOCs with the highest average concentrations were acetone and ethanol. The toxic VOC benzene represented the highest risk to Mexican citizens, and toluene contributed the most to O3 formation. Correlation analysis indicated that the measured VOCs come from vehicular emissions and solvent-related industrial sources.

  19. Processing of volatile organic compounds by microwave plasmas

    International Nuclear Information System (INIS)

    Mizeraczyk, J.; Jasinski, M.; Dors, M.; Zakrzewski, Z.

    2011-01-01

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the nonthermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguidebased surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguidebased nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzletype MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented. (author)

  20. Production of volatile organic compounds by cyanobacteria Synechococcus sp.

    Science.gov (United States)

    Hiraiwa, M.; Abe, M.; Hashimoto, S.

    2014-12-01

    Phytoplankton are known to produce volatile organic compounds (VOCs), which contribute to environmental problems such as global warming and decomposition of stratospheric ozone. For example, picophytoplankton, such as Prochlorococcus and Synechococcus, are distributed in freshwater and oceans worldwide, accounting for a large proportion of biomass and primary production in the open ocean. However, to date, little is known about the production of VOCs by picophytoplankton. In this study, VOCs production by cyanobacteria Synechococcus sp. (NIES-981) was investigated. Synechococcus sp. was obtained from the National Institute for Environmental Studies (NIES), Japan, and cultured at 24°C in autoclaved f/2-Si medium under 54 ± 3 µE m-2 s-1 (1 E = 1 mol of photons) with a 12-h light and 12-h dark cycle. VOCs concentrations were determined using a purge-and-trap gas chromatograph-mass spectrometer (Agilent 5973). The concentrations of chlorophyll a (Chl a) were also determined using a fluorometer (Turner TD-700). Bromomethane (CH3Br) and isoprene were produced by Synechococcus sp. Isoprene production was similar to those of other phytoplankton species reported earlier. Isoprene was produced when Chl a was increasing in the early stage of the incubation period (5-15 days of incubation time, exponential phase), but CH3Br was produced when Chl a was reduced in the late stage of the incubation period (30-40 days of incubation time, death phase).

  1. Emission and role of biogenic volatile organic compounds in biosphere

    International Nuclear Information System (INIS)

    Saleem, A.R.

    2013-01-01

    Plants are an essential part of the biosphere. Under the influence of climate change, plants respond in multiple ways within the ecosystem. One such way is the release of assimilated carbon back to the atmosphere in form of biogenic volatile organic compounds (BVOCs), which are produced by plants and are involved in plant growth, reproduction, defense and other . These compounds are emitted from vegetation into the atmosphere under different environmental situations. Plants produce an extensive range of BVOCs, including isoprenoids, sequisterpenes, aldehydes, alcohols and terpenes in different tissues above and below the ground. The emission rates vary with various environmental conditions and the plant growth stage in its life span.BVOCs are released under biotic and abiotic stress changes, like heat, drought, land-use changes, higher atmospheric CO concentrations, increased UV radiation and insect or disease attack. Plants emit BVOCs in atmosphere in order to avoid stress, and adapt to harsh circumstances. These compounds also have a significant role in plant-plant interaction, communication and competition. BVOCs have the ability to alter atmospheric chemistry; they readily react with atmospheric pollutant gases under high temperature and form tropospheric ozone, which is a potent air pollutant for global warming and disease occurrence. BVOCs may be a cause of photochemical smog and increase the stay of other GHGs in the atmosphere. Therefore, further study is required to assess the behavior of BVOCs in the biosphere as well as the atmosphere. (author)

  2. Advanced heat pump for the recovery of volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total US VOC emissions. The Toxic-Release Inventory'' of The US Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing,refrigerant production, and wood products production. The US Department of Energy's (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase I report documents 3M's work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient and economically priced.

  3. Volatile organic compound monitoring by photo acoustic radiometry

    International Nuclear Information System (INIS)

    Sollid, J.E.; Trujillo, V.L.; Limback, S.P.; Woloshun, K.A.

    1995-01-01

    Two methods for sampling and analyzing volatile organics in subsurface pore gas were developed for use at the Hazardous Waste Disposal Site at Los Alamos National Laboratory. One is Thermal Desorption Gas Chromatography Mass Spectrometry (TDGCMS), the other is Photoacoustic Radiometry (PAR). Presented here are two years worth of experience and lessons learned as both techniques matured. The sampling technique is equally as important as the analysis method. PAR is a nondispersive infrared technique utilizing band pass filters in the region from 1 to 15 μm. A commercial instrument, the Model 1302 Multigas Analyzer, made by Bruel and Kjaer, was adapted for field use. To use the PAR there must be some a priori knowledge of the constellation of analytes to be measured. The TDGCMS method is sensitive to 50 analytes. Hence TDGCMS is used in an initial survey of the site to determine what compounds are present and at what concentration. Once the major constituents of the soil-gas vapor plume are known the PAR can be configured to monitor for the five analytes of most interest. The PAR can analyse a sample in minutes, while in the field. The PAR is also quite precise in controlled situations

  4. Volatile organic emissions from the distillation and pyrolysis of vegetation

    Directory of Open Access Journals (Sweden)

    J. P. Greenberg

    2006-01-01

    Full Text Available Leaf and woody plant tissue (Pinus ponderosa, Eucalyptus saligna, Quercus gambelli, Saccharum officinarum and Oriza sativa were heated from 30 to 300°C and volatile organic compound (VOC emissions were identified and quantified. Major VOC emissions were mostly oxygenated and included acetic acid, furylaldehyde, acetol, pyrazine, terpenes, 2,3-butadione, phenol and methanol, as well as smaller emissions of furan, acetone, acetaldehyde, acetonitrile and benzaldehyde. Total VOC emissions from distillation and pyrolysis were on the order of 10 gC/kgC dry weight of vegetation, as much as 33% and 44% of CO2 emissions (gC(VOC/gC(CO2 measured during the same experiments, in air and nitrogen atmospheres, respectively. The emissions are similar in identity and quantity to those from smoldering combustion of woody tissue and of different character than those evolved during flaming combustion. VOC emissions from the distillation of pools and endothermic pyrolysis under low turbulence conditions may produce flammable concentrations near leaves and may facilitate the propagation of wildfires. VOC emissions from charcoal production are also related to distillation and pyrolysis; the emissions of the highly reactive VOCs from production are as large as the carbon monoxide emissions.

  5. Processing of volatile organic compounds by microwave plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mizeraczyk, J. [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk (Poland); Department of Marine Electronics, Gdynia Martime University, Gdynia (Poland); Jasinski, M.; Dors, M.; Zakrzewski, Z. [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk (Poland)

    2011-07-01

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the nonthermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguidebased surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguidebased nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzletype MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented. (author)

  6. Personal exposure to volatile organic compounds in the Czech Republic.

    Science.gov (United States)

    Svecova, Vlasta; Topinka, Jan; Solansky, Ivo; Sram, Radim J

    2012-09-01

    Personal exposures to volatile organic compounds (VOCs) were measured in the three industrial cities in the Czech Republic, Ostrava, Karvina and Havirov, while the city of Prague served as a control in a large-scale molecular epidemiological study identifying the impacts of air pollution on human health. Office workers from Ostrava and city policemen from Karvina, Havirov and Prague were monitored in the winter and summer of 2009. Only adult non-smokers participated in the study (N=160). Radiello-diffusive passive samplers were used to measure the exposure to benzene, toluene, ethylbenzene, meta- plus para-xylene and ortho-xylene (BTEX). All participants completed a personal questionnaire and a time-location-activity diary (TLAD). The average personal BTEX exposure levels in both seasons were 7.2/34.3/4.4/16.1 μg/m(3), respectively. The benzene levels were highest in winter in Karvina, Ostrava and Prague: 8.5, 7.2 and 5.3 μg/m(3), respectively. The personal exposures to BTEX were higher than the corresponding stationary monitoring levels detected in the individual localities (Pfireplace or gas stove, automobile use and being in a restaurant were important predictors for benzene personal exposure. Ostrava's outdoor benzene pollution was a significant factor increasing the exposure of the Ostrava study participants in winter (P<0.05).

  7. Volatile organic compounds discrimination based on dual mode detection

    Science.gov (United States)

    Yu, Yuanyuan; Wu, Enxiu; Chen, Yan; Feng, Zhihong; Zheng, Shijun; Zhang, Hao; Pang, Wei; Liu, Jing; Zhang, Daihua

    2018-06-01

    We report on a volatile organic compound (VOC) sensor that can provide concentration-independent signals toward target gases. The device is based on a dual-mode detection mechanism that can simultaneously record the mechanical (resonant frequency, f r) and electrical (current, I) responses of the same gas adsorption event. The two independent signals form a unique I–f r trace for each target VOC as the concentration varies. The mechanical response (frequency shift, Δf r) resulting from mass load on the device is directly related to the amount of surface adsorptions, while the electrical response (current variation, ΔI) is associated with charge transfer across the sensing interface and changes in carrier mobility. The two responses resulting from independent physical processes reflect intrinsic physical properties of each target gas. The ΔI–Δf r trace combined with the concentration dependent frequency (or current) signals can therefore be used to achieve target both recognition and quantification. The dual-mode device is designed and fabricated using standard complementary metal oxide semiconductor (CMOS) compatible processes. It exhibits consistent and stable performance in our tests with six different VOCs including ethanol, methanol, acetone, formaldehyde, benzene and hexane.

  8. Characterization of volatile organic compounds from different cooking emissions

    Science.gov (United States)

    Cheng, Shuiyuan; Wang, Gang; Lang, Jianlei; Wen, Wei; Wang, Xiaoqi; Yao, Sen

    2016-11-01

    Cooking fume is regarded as one of the main sources of urban atmospheric volatile organic compounds (VOCs) and its chemical characteristics would be different among various cooking styles. In this study, VOCs emitted from four different Chinese cooking styles were collected. VOCs concentrations and emission characteristics were analyzed. The results demonstrated that Barbecue gave the highest VOCs concentrations (3494 ± 1042 μg/m3), followed by Hunan cuisine (494.3 ± 288.8 μg/m3), Home cooking (487.2 ± 139.5 μg/m3), and Shandong cuisine (257.5 ± 98.0 μg/m3). The volume of air drawn through the collection hood over the stove would have a large impact on VOCs concentration in the exhaust. Therefore, VOCs emission rates (ER) and emission factors (EF) were also estimated. Home cooking had the highest ER levels (12.2 kg/a) and Barbecue had the highest EF levels (0.041 g/kg). The abundance of alkanes was higher in Home cooking, Shandong cuisine and Hunan cuisine with the value of 59.4%-63.8%, while Barbecue was mainly composed of alkanes (34.7%) and alkenes (39.9%). The sensitivity species of Home cooking and Hunan cuisine were alkanes, and that of Shandong cuisine and Barbecue were alkenes. The degree of stench pollution from cooking fume was lighter.

  9. Remediation of ground water containing volatile organic compounds and tritium

    International Nuclear Information System (INIS)

    Shukla, S.N.; Folsom, E.N.

    1994-03-01

    The Trailer 5475 (T-5475) East Taxi Strip Area at Lawrence Livermore National Laboratory (LLNL), Livermore, California was used as a taxi strip by the US Navy to taxi airplanes to the runway from 1942 to 1947. Solvents were used in some unpaved areas adjacent to the East Taxi Strip for cleaning airplanes. From 1953 through 1976, the area was used to store and treat liquid waste. From 1962 to 1976 ponds were constructed and used for evaporation of liquid waste. As a result, the ground water in this area contains volatile organic compounds (VOCs) and tritium. The ground water in this area is also known to contain hexavalent chromium that is probably naturally occurring. Therefore, LLNL has proposed ''pump-and-treat'' technology above grade in a completely closed loop system. The facility will be designed to remove the VOCs and hexavalent chromium, if any, from the ground water, and the treated ground water containing tritium will be reinjected where it will decay naturally in the subsurface. Ground water containing tritium will be reinjected into areas with equal or higher tritium concentrations to comply with California regulations

  10. Volatile organic compounds emissions from gasoline and diesel powered vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mugica, V [Universidad Autonoma Metropolitana, Mexico, D.F. (Mexico); Vega, E; Sanchez, G; Reyes, E; Arriaga, J. L [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Chow, J; Watson, J; Egami, R [Desert Research Institute, Reno, NV (United States)

    2001-01-01

    In this research, volatile organic compound emissions were characterized from gasoline and diesel vehicles. Sampling campaigns in the Metropolitan Area of Mexico City were designed and carried out in tunnels, crossroads, and truck and bus terminals. The samples were analyzed with gas chromatography getting more than 250 different compounds, being more or less 60 of them the 80% of all the emissions. The most abundant are the two carbon compounds, as a result of the combustion, and compounds related to fuels compositions, like isopentane, xylenes, toluene among others. The profiles obtained in tunnels and crossroads were very similar with the exception of the 3 and 4 carbon compounds, which were found in bigger proportion in the profiles at crossroads. This may probably be due to the blend with the ambient air. The profiles corresponding to trucks and buses have a smaller content of two carbon compounds and a bigger content of xylenes, toluene and ethylbenzene. The variations in the proportions of the compounds allow differentiating the profiles of vehicles using gasoline and diesel. [Spanish] En este trabajo se caracterizaron las emisiones de compuestos organicos volatiles provenientes de vehiculos a gasolina y a diesel. Para ello, se disenaron diversas campanas de muestreo en la zona Metropolitana de la Ciudad de Mexico, en tuneles, cruceros y estaciones de camiones de carga y autobuses. Las muestras se analizaron con cromatografia, de gases obteniendose mas de 250 compuestos distintos, de los cuales aproximadamente 60 corresponden a mas del 80% de las emisiones. Los compuestos mas abundantes son los de dos carbonos, resultado de la combustion, y 4 carbonos que se encontraron en mayor proporcion en los perfiles de cruceros, lo cual se debe probablemente a la mezcla con el aire ambiente. Los perfiles correspondientes a camiones de carga y autobuses tienen un menor contenido de compuestos de dos carbonos y un mayor contenido de xilenos, tolueno y etilbenceno. Estas

  11. Determination of solute organic concentration in contaminated soils using a chemical-equilibrium soil column system

    DEFF Research Database (Denmark)

    Gamst, Jesper; Kjeldsen, Peter; Christensen, Thomas Højlund

    2007-01-01

    using two soils with different content of organic carbon (f(oc) of 1.5 and 6.5%, respectively). A quadruple blind test of the ER-V system using glass beads in stead of soil showed an acceptable recovery (65-85%) of all of the 11 VOCs tested. Only for the most volatile compound (heptane, K-H similar...... to 80) an unacceptable recovery was found (9%). The contact time needed for obtaining chemical equilibrium was tested in the ER-H system by performing five test with different duration (1, 2, 4, 7 and 19 days) using the low organic carbon soil. Seven days of contact time appeared sufficient...... for determination of solute concentration in a contaminated soil were developed; (1) a chemical Equilibrium and Recirculation column test for Volatile organic chemicals (ER-V) and (2) a chemical Equilibrium and Recirculation column test for Hydrophobic organic chemicals (ER-H). The two test systems were evaluated...

  12. Assessing Emissions of Volatile Organic Componds from Landfills Gas

    Directory of Open Access Journals (Sweden)

    Fahime Khademi

    2016-01-01

    Full Text Available Background: Biogas is obtained by anaerobic decomposition of organic wastes buried materials used to produce electricity, heat and biofuels. Biogas is at the second place for power generation after hydropower and in 2000 about 6% of the world power generation was allocated to biogas. Biogas is composed of 40–45 vol% CO2, 55–65 vol% CH4, and about 1% non-methaneVOCs, and non-methane volatile organic compounds. Emission rates are used to evaluate the compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA. BTEX comounds affect the air quality and may be harmful to human health. Benzene, toluene, ethylbenzene and xylene isomers that are generally called BTEX compounds are the most abundant VOCs in biogas. Methods: Sampling of VOCs in biogas vents was operated passively or with Tedlar bags. 20 samples were collected from 40 wells of old and new biogas sites of Shiraz’ landfill. Immediately after sampling, the samples were transferred to the laboratory. Analysis of the samples was performed with GC-MS. Results: The results showed that in the collection of the old and new biogas sites, the highest concentration of VOCs was observed in toluene (0.85ppm followed by benzene (0.81ppm, ethylbenzene (0.13ppm and xylene (0.08ppm. Conclusion: The results of the study showed that in all samples, most available compounds in biogas vents were aromatic hydrocarbon compounds.These compounds’ constituents originate from household hazardous waste materials deposited in the landfill or from biological/chemical decomposition processes within the landfill.

  13. Calixarene Langmuir-Blodgett Thin Films For Volatile Organic Compounds

    International Nuclear Information System (INIS)

    Capan, R.

    2010-01-01

    Volatile Organic Compounds (VOC's) such as benzene, toluene, chloroform are chemicals that evaporate easily at room temperature and create many health effects on young children, elderly and a person with heightened sensitivity to chemicals. Concentrations of many VOC's are consistently higher indoors (up to ten times higher) than outdoors because many household products (for example paints, varnishes, many cleaning, disinfecting, cosmetic, degreasing, hobby products etc.) contains VOC's. Some effects of VOC's for human beings can be followed as the eye, nose, and throat irritations; headaches, loss of coordination, nausea; damage to liver, kidneys, and central nervous system. These are big incentives for the development of portable, user-friendly VOC's sensors and for the investigation of the sensing properties of new materials to be prepared as a thin film sensing element. Langmuir-Blodgett (LB) ultra-thin film technique allows us to produce monolayer or multilayer organic thin films that can be used as chemical sensing elements.In this work, materials known as the calix[n]arene are investigated for the production of sensing material against several VOC's such as the chloroform, benzene, ethylbenzene and toluene by using LB thin film techniques. UV-visible, Quartz Crystal Microbalance (QCM) system and Surface Plasmon Resonance (SPR) measurement techniques are used to check the quality of the deposition process onto a solid substrate. Surface morphology and sensing properties of the final sensing layers are then studied by Atomic Force Microscopy (AFM) and SPR techniques. Our results indicated that selected calixarene materials are sensitive enough and quite suitable to fabricate a highly ordered, reproducible and uniform LB film that can be used as a very thin sensing layer against VOC's.

  14. A dynamic two-dimensional system for measuring volatile organic compound volatilization and movement in soils.

    Science.gov (United States)

    Allaire, S E; Yates, S R; Ernst, F F; Gan, J

    2002-01-01

    There is an important need to develop instrumentation that allows better understanding of atmospheric emission of toxic volatile compounds associated with soil management. For this purpose, chemical movement and distribution in the soil profile should be simultaneously monitored with its volatilization. A two-dimensional rectangular soil column was constructed and a dynamic sequential volatilization flux chamber was attached to the top of the column. The flux chamber was connected through a manifold valve to a gas chromatograph (GC) for real-time concentration measurement. Gas distribution in the soil profile was sampled with gas-tight syringes at selected times and analyzed with a GC. A pressure transducer was connected to a scanivalve to automatically measure the pressure distribution in the gas phase of the soil profile. The system application was demonstrated by packing the column with a sandy loam in a symmetrical bed-furrow system. A 5-h furrow irrigation was started 24 h after the injection of a soil fumigant, propargyl bromide (3-bromo-1-propyne; 3BP). The experience showed the importance of measuring lateral volatilization variability, pressure distribution in the gas phase, chemical distribution between the different phases (liquid, gas, and sorbed), and the effect of irrigation on the volatilization. Gas movement, volatilization, water infiltration, and distribution of degradation product (Br-) were symmetric around the bed within 10%. The system saves labor cost and time. This versatile system can be modified and used to compare management practices, estimate concentration-time indexes for pest control, study chemical movement, degradation, and emissions, and test mathematical models.

  15. Contaminant risks from biosolids land application Contemporary organic contaminant levels in digested sewage sludge from five treatment plants in Greater Vancouver, British Columbia

    International Nuclear Information System (INIS)

    Bright, D.A.; Healey, N.

    2003-01-01

    The risks of organic contaminants in sewage sludges are evaluated. - This study examines the potential for environmental risks due to organic contaminants at sewage sludge application sites, and documents metals and various potential organic contaminants (volatile organics, chlorinated pesticides, PCBs, dioxins/furans, extractable petroleum hydrocarbons, PAHs, phenols, and others) in current production biosolids from five wastewater treatment plants (WWTPs) within the Greater Vancouver Regional District (GVRD). There has been greater focus in Europe, North America and elsewhere on metals accumulation in biosolids-amended soil than on organic substances, with the exception of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Another objective, therefore, was to evaluate the extent to which management of biosolids re-use based on metal/metalloid levels coincidentally minimizes environmental risks from organic contaminants. Historical-use contaminants such as chlorophenols, PCBs, and chlorinated pesticides were not detected at environmentally relevant concentrations in any of the 36 fresh biosolids samples, and appear to have virtually eliminated from sanitary collection system inputs. The few organic contaminants found in freshly produced biosolids samples that exhibited high concentrations relative to British Columbia and Canadian soil quality benchmarks included p-cresol, phenol, phenanthrene, pyrene, naphthalene, and heavy extractable petroleum hydrocarbons (HEPHs-nCl9-C34 effective carbon chain length). It was concluded that, with the exception of these petroleum hydrocarbon constituents or their microbial metabolites, the mixing of biosolids with uncontaminated soils during land application and based on the known metal concentrations in biosolids from the Greater Vancouver WWTPs investigated provides adequate protection against the environmental risks associated with organic substances such as dioxins and furans, phthalate esters, or volatile

  16. Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding

    Science.gov (United States)

    Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.

    2015-01-01

    Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.

  17. Organics in water contamination analyzer, phase 1

    Science.gov (United States)

    1986-01-01

    The requirements which would result in identifying the components of an automatic analytical system for the analysis of specific organic compounds in the space station potable water supply are defined. The gas chromatographic system for such an analysis is limited to commercially available off-the-shelf hardware and includes the sample inlet, an ionization detector, capillary columns as well as computerized compound identification. The sampling system will be a special variation of the purge and trap Tenax mode using six-port valves and a 500 microliter water sample. Capillary columns used for the separating of contaminants will be bonded phase fused silica with a silicone stationary phase. Two detectors can be used: photoionization and far ultraviolet, since they are sensitive and compatible with capillary columns. A computer system evaluation and program with the principle of compound identification based on the retention index is presented.

  18. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer

    OpenAIRE

    Mungall, Emma L.; Abbatt, Jonathan P. D.; Wentzell, Jeremy J. B.; Lee, Alex K. Y.; Thomas, Jennie L.; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A.; Papakyriakou, Tim; Willis, Megan D.; Liggio, John

    2017-01-01

    A biogeochemical connection between the atmosphere and the ocean is demonstrated whereby a marine source of oxygenated volatile organic compounds is identified. Compounds of this type are involved in the formation of secondary organic aerosol, which remains one of the most poorly understood components of Earth’s climate system due in part to the diverse sources of its volatile organic compound precursors. This is especially the case for marine environments, where there are more oxygenated vol...

  19. Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork

    DEFF Research Database (Denmark)

    Nieminen, Timo T.; Dalgaard, Paw; Björkroth, Johanna

    2016-01-01

    Accumulation of volatile organic compounds was monitored in association with sensory quality, bacterial concentrations and culture-independent microbial community analyses in raw pork loin and pork collar during storage under high-oxygen modified atmosphere at +4°C. Of the 48 volatile compounds...

  20. Non-microbial sources of microbial volatile organic compounds.

    Science.gov (United States)

    Choi, Hyunok; Schmidbauer, Norbert; Bornehag, Carl-Gustaf

    2016-07-01

    The question regarding the true sources of the purported microbial volatile organic compounds (MVOCs) remains unanswered. To identify microbial, as well as non-microbial sources of 28 compounds, which are commonly accepted as microbial VOCs (i.e. primary outcome of interest is Σ 28 VOCs). In a cross-sectional investigation of 390 homes, six building inspectors assessed water/mold damage, took air and dust samples, and measured environmental conditions (i.e., absolute humidity (AH, g/m(3)), temperature (°C), ventilation rate (ACH)). The air sample was analyzed for volatile organic compounds (μg/m(3)) and; dust samples were analyzed for total viable fungal concentration (CFU/g) and six phthalates (mg/g dust). Four benchmark variables of the underlying sources were defined as highest quartile categories of: 1) the total concentration of 17 propylene glycol and propylene glycol ethers (Σ17 PGEs) in the air sample; 2) 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (TMPD-MIB) in the air sample; 3) semi-quantitative mold index; and 4) total fungal load (CFU/g). Within severely damp homes, co-occurrence of the highest quartile concentration of either Σ17 PGEs or TMPD-MIB were respectively associated with a significantly higher median concentration of Σ 28 VOCs (8.05 and 13.38μg/m(3), respectively) compared to the reference homes (4.30 and 4.86μg/m(3), respectively, both Ps ≤0.002). Furthermore, the homes within the highest quartile range for Σ fungal load as well as AH were associated with a significantly increased median Σ 28 VOCs compared to the reference group (8.74 vs. 4.32μg/m(3), P=0.001). Within the final model of multiple indoor sources on Σ 28 VOCs, one natural log-unit increase in summed concentration of Σ17 PGEs, plus TMPD-MIB (Σ 17 PGEs + TMPD-MIB) was associated with 1.8-times (95% CI, 1.3-2.5), greater likelihood of having a highest quartile of Σ 28 VOCs, after adjusting for absolute humidity, history of repainting at least one room

  1. Diagnosing Tibetan pollutant sources via volatile organic compound observations

    Science.gov (United States)

    Li, Hongyan; He, Qiusheng; Song, Qi; Chen, Laiguo; Song, Yongjia; Wang, Yuhang; Lin, Kui; Xu, Zhencheng; Shao, Min

    2017-10-01

    Atmospheric transport of black carbon (BC) from surrounding areas has been shown to impact the Tibetan environment, and clarifying the geographical source and receptor regions is crucial for providing guidance for mitigation actions. In this study, 10 trace volatile organic compounds (VOCs) sampled across Tibet are chosen as proxies to diagnose source regions and related transport of pollutants to Tibet. The levels of these VOCs in Tibet are higher than those in the Arctic and Antarctic regions but much lower than those observed at many remote and background sites in Asia. The highest VOC level is observed in the eastern region, followed by the southern region and the northern region. A positive matrix factorization (PMF) model found that three factors-industry, biomass burning, and traffic-present different spatial distributions, which indicates that different zones of Tibet are influenced by different VOC sources. The average age of the air masses in the northern and eastern regions is estimated to be 3.5 and 2.8 days using the ratio of toluene to benzene, respectively, which indicates the foreign transport of VOC species to those regions. Back-trajectory analyses show that the Afghanistan-Pakistan-Tajikistan region, Indo-Gangetic Plain (IGP), and Meghalaya-Myanmar region could transport industrial VOCs to different zones of Tibet from west to east. The agricultural bases in northern India could transport biomass burning-related VOCs to the middle-northern and eastern zones of Tibet. High traffic along the unique national roads in Tibet is associated with emissions from local sources and neighboring areas. Our study proposes international joint-control efforts and targeted actions to mitigate the climatic changes and effects associated with VOCs in Tibet, which is a climate sensitive region and an important source of global water.

  2. Transport of volatile organic compounds across the capillary fringe

    Science.gov (United States)

    McCarthy, Kathleen A.; Johnson, Richard L.

    1993-01-01

    Physical experiments were conducted to investigate the transport of a dissolved volatile organic compound (trichloroethylene, TCE) from shallow groundwater to the unsaturated zone under a variety of conditions including changes in the soil moisture profile and water table position. Experimental data indicated that at moderate groundwater velocities (0.1 m/d), vertical mechanical dispersion was negligible and molecular diffusion was the dominant vertical transport mechanism. Under these conditions, TCE concentrations decreased nearly 3 orders of magnitude across the capillary fringe and soil gas concentrations remained low relative to those of underlying groundwater. Data collected during a water table drop showed a short-term increase in concentrations throughout most of the unsaturated zone, but these concentrations quickly declined and approached initial values after the water table was returned to its original level. In the deep part of the unsaturated zone, the water table drop resulted in a long-term decrease in concentrations, illustrating the effects of hysteresis in the soil moisture profile. A two-dimensional random walk advection-diffusion model was developed to simulate the experimental conditions, and numerical simulations agreed well with experimental data. A simpler, one-dimensional finite-difference diffusion-dispersion model was also developed. One-dimensional simulations based on molecular diffusion also agreed well with experimental data. Simulations which incorporated mechanical dispersion tended to overestimate flux across the capillary fringe. Good agreement between the one- and two-dimensional models suggested that a simple, one-dimensional approximation of vertical transport across the capillary fringe can be useful when conditions are appropriate.

  3. Urinary Volatile Organic Compounds for the Detection of Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Tanzeela Khalid

    Full Text Available The aim of this work was to investigate volatile organic compounds (VOCs emanating from urine samples to determine whether they can be used to classify samples into those from prostate cancer and non-cancer groups. Participants were men referred for a trans-rectal ultrasound-guided prostate biopsy because of an elevated prostate specific antigen (PSA level or abnormal findings on digital rectal examination. Urine samples were collected from patients with prostate cancer (n = 59 and cancer-free controls (n = 43, on the day of their biopsy, prior to their procedure. VOCs from the headspace of basified urine samples were extracted using solid-phase micro-extraction and analysed by gas chromatography/mass spectrometry. Classifiers were developed using Random Forest (RF and Linear Discriminant Analysis (LDA classification techniques. PSA alone had an accuracy of 62-64% in these samples. A model based on 4 VOCs, 2,6-dimethyl-7-octen-2-ol, pentanal, 3-octanone, and 2-octanone, was marginally more accurate 63-65%. When combined, PSA level and these four VOCs had mean accuracies of 74% and 65%, using RF and LDA, respectively. With repeated double cross-validation, the mean accuracies fell to 71% and 65%, using RF and LDA, respectively. Results from VOC profiling of urine headspace are encouraging and suggest that there are other metabolomic avenues worth exploring which could help improve the stratification of men at risk of prostate cancer. This study also adds to our knowledge on the profile of compounds found in basified urine, from controls and cancer patients, which is useful information for future studies comparing the urine from patients with other disease states.

  4. Assessment of volatile organic emissions from a petroleum refinery land treatment site

    International Nuclear Information System (INIS)

    Wetherold, R.G.; Eklund, B.M.; Blaney, B.J.; Throneloe, S.A.

    1990-01-01

    This paper reports on a field assessment performed to measure the emissions of volatile organics from a petroleum refinery land treatment site. As part of this study, the emissions of total volatile organics from surface-applied and subsurface-injected oily sludge were measured over a 5-week period. The effect of soil tilling on the emissions also was monitored. Volatile organics emission rates were measured using the emission isolation flex chamber method. Soil samples were collected during the test periods to determine soil properties, oil levels and microbe count. Soil surface and ambient temperatures, both inside and outside the flux chambers, were measured throughout the test periods

  5. Development of the colorimetric sensor array for detection of explosives and volatile organic compounds in air

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Alstrøm, Tommy Sonne; Johnsen, C

    2010-01-01

    a color difference map which gives a unique fingerprint for each explosive and volatile organic compound. Such sensing technology can be used to screen for relevant explosives in a complex background as well as to distinguish mixtures of volatile organic compounds distributed in gas phase. This sensor......In the framework of the research project 'Xsense' at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT and TNT, and identification of volatile organic compounds in the presence of water vapor in air...

  6. Organic contamination of ground water at Gas Works Park, Seattle, Washington

    International Nuclear Information System (INIS)

    Turney, G.L.; Goerlitz, D.F.

    1990-01-01

    Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large

  7. Organic contamination of ground water at Gas Works Park, Seattle, Washington

    Science.gov (United States)

    Turney, G.L.; Goerlitz, D.F.

    1990-01-01

    Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large.

  8. Oxidation of volatile organic vapours in air by solid potassium permanganate.

    Science.gov (United States)

    Mahmoodlu, Mojtaba Ghareh; Hartog, Niels; Majid Hassanizadeh, S; Raoof, Amir

    2013-06-01

    Volatile organic compounds (VOCs) may frequently contaminate groundwater and pose threat to human health when migrating into the unsaturated soil zone and upward to the indoor air. The kinetic of chemical oxidation has been investigated widely for dissolved VOCs in the saturated zone. But, so far there have been few studies on the use of in situ chemical oxidation (ISCO) of vapour phase contaminants. In this study, batch experiments were carried out to evaluate the oxidation of trichloroethylene (TCE), ethanol, and toluene vapours by solid potassium permanganate. Results revealed that solid potassium permanganate is able to transform the vapour of these compounds into harmless oxidation products. The degradation rates for TCE and ethanol were higher than for toluene. The degradation process was modelled using a kinetic model, linear in the gas concentration of VOC [ML(-3)] and relative surface area of potassium permanganate grains (surface area of potassium permanganate divided by gas volume) [L(-1)]. The second-order reaction rate constants for TCE, ethanol, and toluene were found to be equal to 2.0×10(-6) cm s(-1), 1.7×10(-7) cm s(-1), and 7.0×10(-8) cm s(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions.

    Science.gov (United States)

    Yoshikawa, Miho; Zhang, Ming; Toyota, Koki

    2017-09-27

    Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degrading enzymes is available. However, the biodegradation of multiple VOCs remains a challenging issue. Practical sites, such as chemical factories, research facilities, and illegal dumping sites, are often contaminated with multiple VOCs. In order to investigate the potential of biodegrading multiple VOCs, we initially reviewed the biodegradation of individual VOCs. VOCs include chlorinated ethenes (tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride), BTEX (benzene, toluene, ethylbenzene, and xylene), and chlorinated methanes (carbon tetrachloride, chloroform, and dichloromethane). We also summarized essential information on the biodegradation of each kind of VOC under aerobic and anaerobic conditions, together with the microorganisms that are involved in VOC-degrading pathways. Interactions among multiple VOCs were then discussed based on concrete examples. Under conditions in which multiple VOCs co-exist, the biodegradation of a VOC may be constrained, enhanced, and/or unaffected by other compounds. Co-metabolism may enhance the degradation of other VOCs. In contrast, constraints are imposed by the toxicity of co-existing VOCs and their by-products, catabolite repression, or competition between VOC-degrading enzymes. This review provides fundamental, but systematic information for designing strategies for the bioremediation of multiple VOCs, as well as information on the role of key microorganisms that degrade VOCs.

  10. Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions

    Science.gov (United States)

    Yoshikawa, Miho; Zhang, Ming; Toyota, Koki

    2017-01-01

    Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degrading enzymes is available. However, the biodegradation of multiple VOCs remains a challenging issue. Practical sites, such as chemical factories, research facilities, and illegal dumping sites, are often contaminated with multiple VOCs. In order to investigate the potential of biodegrading multiple VOCs, we initially reviewed the biodegradation of individual VOCs. VOCs include chlorinated ethenes (tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride), BTEX (benzene, toluene, ethylbenzene, and xylene), and chlorinated methanes (carbon tetrachloride, chloroform, and dichloromethane). We also summarized essential information on the biodegradation of each kind of VOC under aerobic and anaerobic conditions, together with the microorganisms that are involved in VOC-degrading pathways. Interactions among multiple VOCs were then discussed based on concrete examples. Under conditions in which multiple VOCs co-exist, the biodegradation of a VOC may be constrained, enhanced, and/or unaffected by other compounds. Co-metabolism may enhance the degradation of other VOCs. In contrast, constraints are imposed by the toxicity of co-existing VOCs and their by-products, catabolite repression, or competition between VOC-degrading enzymes. This review provides fundamental, but systematic information for designing strategies for the bioremediation of multiple VOCs, as well as information on the role of key microorganisms that degrade VOCs. PMID:28904262

  11. Global simulation of aromatic volatile organic compounds in the atmosphere

    Science.gov (United States)

    Cabrera Perez, David; Taraborrelli, Domenico; Pozzer, Andrea

    2015-04-01

    Among the large number of chemical compounds in the atmosphere, the organic group plays a key role in the tropospheric chemistry. Specifically the subgroup called aromatics is of great interest. Aromatics are the predominant trace gases in urban areas due to high emissions, primarily by vehicle exhausts and fuel evaporation. They are also present in areas where biofuel is used (i.e residential wood burning). Emissions of aromatic compounds are a substantial fraction of the total emissions of the volatile organic compounds (VOC). Impact of aromatics on human health is very important, as they do not only contribute to the ozone formation in the urban environment, but they are also highly toxic themselves, especially in the case of benzene which is able to trigger a range of illness under long exposure, and of nitro-phenols which cause detrimental for humans and vegetation even at very low concentrations. The aim of this work is to assess the atmospheric impacts of aromatic compounds on the global scale. The main goals are: lifetime and budget estimation, mixing ratios distribution, net effect on ozone production and OH loss for the most emitted aromatic compounds (benzene, toluene, xylenes, ethylbenzene, styrene and trimethylbenzenes). For this purpose, we use the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model to build the global atmospheric budget for the most emitted and predominant aromatic compounds in the atmosphere. A set of emissions was prepared in order to include biomass burning, vegetation and anthropogenic sources of aromatics into the model. A chemical mechanism based on the Master Chemical Mechanism (MCM) was developed to describe the chemical oxidation in the gas phase of these aromatic compounds. MCM have been reduced in terms of number of chemical equation and species in order to make it affordable in a 3D model. Additionally other features have been added, for instance the production of HONO via ortho

  12. [Removal of volatile organic compounds in soils by soil vapor extraction (SVE)].

    Science.gov (United States)

    Yin, Fu-xiang; Zhang, Sheng-tian; Zhao, Xin; Feng, Ke; Lin, Yu-suo

    2011-05-01

    An experiment study has been carried out to investigate effects of the diameter of soil columns, the size of soil particulate and different contaminants on efficiency of simulated soil vapor extraction (SVE). Experiments with benzene, toluene, ethylbenzene and n-propylbenzene contaminated soils showed that larger bottom area/soil height (S/H) of the columns led to higher efficiency on removal of contaminants. Experiments with contaminated soils of different particulate size showed that the efficiency of SVE decreased with increases in soil particulate size, from 10 mesh to between 20 mesh and 40 mesh and removal of contaminants in soils became more difficult. Experiments with contaminated soils under different ventilation rates suggested that soil vapor extraction at a ventilation rate of 0.10 L x min(-1) can roughly remove most contaminants from the soils. Decreasing of contaminants in soils entered tailing stages after 12 h, 18 h and 48 h for benzene, toluene and ethylbenzene, respectively. Removal rate of TVOCs (Total VOCs) reached a level as high as 99.52%. The results of the experiment have indicated that molecule structure and properties of the VOCs are also important factors which have effects on removal rates of the contaminants. Increases in carbon number on the benzene ring, decreases in vapor pressure and volatile capability resulted in higher difficulties in soil decontamination. n-propylbenzene has a lower vapor pressure than toluene and ethylbenzene which led to a significant retard effect on desorption and volatilization of benzene and ethylbenzene.

  13. Real-time and online screening method for materials emitting volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Changhyuk [University of Minnesota, Department of Mechanical Engineering (United States); Sul, Yong Tae [Hoseo University (Korea, Republic of); Pui, David Y. H., E-mail: dyhpui@umn.edu [University of Minnesota, Department of Mechanical Engineering (United States)

    2016-09-15

    In the semiconductor industry, volatile organic compounds (VOCs) in the cleanroom air work as airborne molecular contamination, which reduce the production yield of semiconductor chips by forming nanoparticles and haze on silicon wafers and photomasks under ultraviolet irradiation during photolithography processes. Even though VOCs in outdoor air are removed by gas filters, VOCs can be emitted from many kinds of materials used in cleanrooms, such as organic solvents and construction materials (e.g., adhesives, flame retardants and sealants), threatening the production of semiconductors. Therefore, finding new replacements that emit lower VOCs is now essential in the semiconductor industry. In this study, we developed a real-time and online method to screen materials for developing the replacements by converting VOCs into nanoparticles under soft X-ray irradiation. This screening method was applied to measure VOCs emitted from different kinds of organic solvents and adhesives. Our results showed good repeatability and high sensitivity for VOCs, which come from aromatic compounds, some alcohols and all tested adhesives (Super glue and cleanroom-use adhesives). In addition, the overall trend of measured VOCs from cleanroom-use adhesives was well matched with those measured by a commercial thermal desorption–gas chromatography–mass spectrometry, which is a widely used off-line method for analyzing VOCs. Based on the results, this screening method can help accelerate the developing process for reducing VOCs in cleanrooms.

  14. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds

    NARCIS (Netherlands)

    Park, Yong-Soon; Dutta, Swarnalee; Ann, Mina; Raaijmakers, Jos M.; Park, Kyungseok

    2015-01-01

    Abstract Volatile organic compounds (VOCs) from plant growth-promoting rhizobacteria (PGPR) play key roles in modulating plant growth and induced systemic resistance (ISR) to pathogens. Despite their significance, the physiological functions of the specific VOCs produced by Pseudomonas fluorescens

  15. Factors that influence the volatile organic compound content in human breath

    NARCIS (Netherlands)

    Blanchet, L.; Smolinska, Agnieszka; Baranska, Agnieszka; Tigchelaar-Feenstra, E.; Swertz, M.; Zhernakova, A.; Dallinga, J. W.; Wijmenga, C.; van Schooten, Frederik J.

    Background. Thousands of endogenous and exogenous volatile organic compounds (VOCs) are excreted in each breath. Inflammatory and deviant metabolic processes affect the level of endogeneous VOCs, which can serve as specific biomarkers for clinical diagnosis and disease monitoring. Important issues

  16. PERTURBATION OF VOLTAGE-SENSITIVE Ca2+ CHANNEL FUNCTION BY VOLATILE ORGANIC SOLVENTS.

    Science.gov (United States)

    The mechanisms underlying the acute neurophysiological and behavioral effects of volatile organic compounds (VOCs) remain to be elucidated. However, the function of neuronal ion channels is perturbed by VOCs. The present study examined effects of toluene (TOL), trichloroethylene ...

  17. Development of technology performance specifications for volatile organic compounds

    International Nuclear Information System (INIS)

    Purdy, C.; Schutte, W.E.

    1993-01-01

    The Office of Technology Development (OTD) within the Office of Environmental Restoration and Waste Management of the Department of Energy has a mission to deliver needed and usable technologies to its customers. The primary customers are individuals and organizations performing environmental characterization and remediation, waste cleanup, and pollution prevention at DOE sites. DOE faces a monumental task in cleaning up the dozen or so major sites and hundreds of smaller sites that were or are used to produce the US nuclear weapons arsenal and to develop nuclear technologies for national defense and for peaceful purposes. Contaminants and waste materials include the radionuclides associated with nuclear weapons, such as plutonium and tritium, and more common pollutants and wastes of industrial activity such as chromium, chlorinated solvents, and polychlorinated biphenyls (PCBs). Quite frequently hazardous wastes regulated by the Environmental Protection Agency are co-mingled with radioactive wastes regulated by the Nuclear Regulatory Commission to yield a open-quotes mixed waste,close quotes which increases the cleanup challenges from several perspectives. To help OTD and its investigators meet DOE's cleanup goal, technology performance specifications are being implemented for research and development and DT ampersand E projects. Technology performance specifications or open-quotes performance goalsclose quotes describe, quantitatively where possible, the technology development needs being addressed. These specifications are used to establish milestones, evaluate the status of ongoing projects, and determine the success of completed projects

  18. 40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant level goals for organic contaminants. 141.50 Section 141.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level...

  19. Removal of volatile organic compounds by a high pressure microwave plasma torch

    International Nuclear Information System (INIS)

    Rubio, S.J.; Quintero, M.C.; Rodero, A.; Alvarez, R.

    2004-01-01

    A helium microwave plasma torch was studied and optimised as a destruction system of volatile organic compounds. Attention was focused on trichloroethylene as a prototypical volatile organic compound, which is used technologically and which poses known health risks. The dependence of the destruction efficiency on the plasma conditions was obtained for different values of trichloroethylene concentrations. The results show a destruction and removal efficiency greater than 99.999% (Authors)

  20. Volatile organic compounds in emissions from brown-coal-fired residential stoves

    International Nuclear Information System (INIS)

    Engewald, W.; Knobloch, T.; Efer, J.

    1993-01-01

    Volatile organic compounds were determined in stack-gas emissions from the residential burning of brown-coal briquets using adsorptive enrichment on hydrophobic adsorbents, thermal desorption and capillary-gas chromatographic analysis. 152 compounds were identified and quantified. Quantitative emission factors of the identified individual compounds were determined in relation to the amount of the fuel used. These factors permit assessment of the pollution of the city of Leipzig with volatile organic compounds resulting from the burning of indigenous lignite. (orig.) [de

  1. Exposure to volatile organic compounds: Comparison among different transportation modes

    Science.gov (United States)

    Do, Duc Hoai; Van Langenhove, Herman; Chigbo, Stephen Izuchukwu; Amare, Abebech Nuguse; Demeestere, Kristof; Walgraeve, Christophe

    2014-09-01

    The increasing trend of promoting public transportation (bus tram, metro, train) and more environmental friendly and sustainable non fossil-fuel alternatives (walking, cycling etc) as substitutes for auto vehicles brings forward new questions with regard to pollutant levels to which commuters are exposed. In this study, three transportation modes (tram, auto vehicle and bicycle) are studied and concentration levels of 84 volatile organic compounds (VOCs) (hydrocarbons, aromatic hydrocarbons, oxygen containing hydrocarbons, terpenes and halogenated compounds) are measured along a route in the city of Ghent, Belgium. The concentration levels are obtained by active sampling on Tenax TA sorbent tubes followed by thermal desorption gas chromatography mass spectrometry (TD-GC-MS) using deuterated toluene as an internal standard. The median total VOC concentrations for the tram mode (33 μg/m³) is 1.7 times higher than that of the bicycle mode (20 μg/m³) and 1.5 times higher than for the car mode (22 μg/m³). It is found that aromatic hydrocarbons account for a significant proportion in the total VOCs concentration (TVOCs) being as high as 41-57%, 59-72% and 58-72% for the tram, car and bicycle respectively. In all transportation modes, there was a high (r > 0.6) degree of correlation between BTEX compounds, isopropylbenzene, n-propylbenzene, 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene. When comparing time weighed average concentrations along a fixed route in Ghent, it is found that commuters using the tram mode experience the highest TVOCs concentration levels. However, next to the concentration level to which commuters are exposed, the physical activity level involving the mode of transportation is important to assess the exposure to toxic VOCs. It is proven that the commuter using a bicycle (4.3 ± 1.5 μg) inhales seven and nine times more benzene compared to the commuter using the car and tram respectively, when the same route is followed.

  2. Organic non-volatile memories from ferroelectric phase separated blends

    Science.gov (United States)

    Asadi, Kamal; de Leeuw, Dago; de Boer, Bert; Blom, Paul

    2009-03-01

    Ferroelectric polarisation is an attractive physical property for non-volatile binary switching. The functionality of the targeted memory should be based on resistive switching. Conductivity and ferroelectricity however cannot be tuned independently. The challenge is to develop a storage medium in which the favourable properties of ferroelectrics such as bistability and non-volatility can be combined with the beneficial properties provided by semiconductors such as conductivity and rectification. In this contribution we present an integrated solution by blending semiconducting and ferroelectric polymers into phase separated networks. The polarisation field of the ferroelectric modulates the injection barrier at the semiconductor--metal contact. This combination allows for solution-processed non-volatile memory arrays with a simple cross-bar architecture that can be read-out non-destructively. Based on this general concept a non-volatile, reversible switchable Schottky diode with relatively fast programming time of shorter than 100 microseconds, long information retention time of longer than 10^ days, and high programming cycle endurance with non-destructive read-out is demonstrated.

  3. Characterisation of the semi-volatile component of Dissolved Organic Matter by Thermal Desorption - Proton Transfer Reaction - Mass Spectrometry

    NARCIS (Netherlands)

    Materić, Dušan; Peacock, Mike; Kent, Matthew; Cook, Sarah; Gauci, Vincent; Röckmann, Thomas; Holzinger, Rupert

    2017-01-01

    Proton Transfer Reaction - Mass Spectrometry (PTR-MS) is a sensitive, soft ionisation method suitable for qualitative and quantitative analysis of volatile and semi-volatile organic vapours. PTR-MS is used for various environmental applications including monitoring of volatile organic compounds

  4. Global contamination trends of persistent organic chemicals

    National Research Council Canada - National Science Library

    Loganathan, Bommanna G; Lam, Paul K. S

    2012-01-01

    "Composed by a diverse group of experts, this reference covers the history, present status, and projected future trends of environmental contamination from highly toxic synthetic chemical pollutants...

  5. Volatility of source apportioned wintertime organic aerosol in the city of Athens

    Science.gov (United States)

    Louvaris, Evangelos E.; Florou, Kalliopi; Karnezi, Eleni; Papanastasiou, Dimitrios K.; Gkatzelis, Georgios I.; Pandis, Spyros N.

    2017-06-01

    The volatility distribution of ambient organic aerosol (OA) and its components was measured during the winter of 2013 in the city of Athens combining a thermodenuder (TD) and a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Positive Matrix Factorization (PMF) analysis of both the ambient and the thermodenuder AMS-spectra resulted in a four-factor solution for the OA, namely: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking OA (COA), and oxygenated OA (OOA). The thermograms of the four factors were analyzed and the corresponding volatility distributions were estimated using the volatility basis set (VBS). All four factors included compounds with a wide range of effective volatilities from 10 to less than 10-4 μg m-3 at 298 K. Almost 40% of the HOA consisted of low-volatility organic compounds (LVOCs) with the semi-volatile compounds (SVOCs) representing roughly 30%, while the remaining 30% consisted of extremely low volatility organic compounds (ELVOCs). BBOA was more volatile than the HOA factor on average, with 10% ELVOCs, 40% LVOCs, and 50% SVOCs. 10% of the COA consisted of ELVOCs, another 65% LVOCs, and 50% SVOCs. Finally, the OOA was the least volatile factor and included 40% ELVOCs, 25% LVOCs, and 35% SVOCs. Combining the volatility distributions and the O:C ratios of the various factors, we placed our results in the 2D-VBS analysis framework of Donahue et al. (2012). HOA and BBOA are in the expected region but also include an ELVOC component. COA is in similar range as HOA, but on average is half an order of magnitude more volatile. The OOA in these wintertime conditions had a moderate O:C ratio and included both semi-volatile and extremely low volatility components. The above results are sensitive to the assumed values of the effective vaporization enthalpy and the accommodation coefficient. A reduction of the accommodation coefficient by an order of magnitude or the reduction of the vaporization enthalpy by 20 kJ mol-1

  6. Monitoring Volatile Organic Tank Waste Using Cermet Microsensors

    Energy Technology Data Exchange (ETDEWEB)

    Edward G. Gatliff, Ph.D.; Laura R. Skubal, Ph.D.; Michael C. Vogt, Ph.D.

    2006-03-13

    Presently, very few inexpensive technologies exist in the marketplace that can determine the contents of tank waste or monitor the chemistry of tank constituents in near-real time. The research addressed this problem by developing and assessing ceramic-metallic based microsensors for determining the constituents of a liquid organic storage tank by examining the gases in the headspace of the tank. Overall, the WBO and YSZ sensors responded well to the chemicals in this study. Responses to various concentrations were distinguishable visually. This is a clear indication that pattern recognition tools will be effective in resolving the constituents and concentrations. In tests, such as the test with acetophenone, one sensor, the WBO sensor is not extremely effective. However, the other sensor, the YSZ sensor, is effective in resolving the concentrations. This supports the need to use an array of sensors, as one sensor may be reactive to a compound while another may not. In the course of this research, several interesting phenomena surfaced. New sensors, that were fabricated but not used in a contaminant gas, seemed to function more effectively and predictably if a ?conditioning? step was imposed upon them prior to use in square wave voltammetry. A conditioning step consists of running cyclic voltammetry prior to running square wave voltammetry. This step tends to ?cleanse? the sensor surface by providing a full -1.0 V to +1.0V sweep and both oxidizing and reducing compounds on the sensor surface. [Note: squarewave voltammetry will simply oxidize or reduce compounds ? it will not induce both reactions.] This sweep is essential for recovery between samples.

  7. Determination of volatile organic hydrocarbons in water samples by solid-phase dynamic extraction.

    Science.gov (United States)

    Jochmann, Maik A; Yuan, Xue; Schmidt, Torsten C

    2007-03-01

    In the present study a headspace solid-phase dynamic extraction method coupled to gas chromatography-mass spectrometry (HS-SPDE-GC/MS) for the trace determination of volatile halogenated hydrocarbons and benzene from groundwater samples was developed and evaluated. As target compounds, benzene as well as 11 chlorinated and brominated hydrocarbons (vinyl chloride, dichloromethane, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, carbon tetrachloride, chloroform, trichloroethylene, tetrachloroethylene, bromoform) of environmental and toxicological concern were included in this study. The analytes were extracted using a SPDE needle device, coated with a poly(dimethylsiloxane) with 10% embedded activated carbon phase (50-microm film thickness and 56-mm film length) and were analyzed by GC/MS in full-scan mode. Parameters that affect the extraction yield such as extraction and desorption temperature, salting-out, extraction and desorption flow rate, extraction volume and desorption volume, the number of extraction cycles, and the pre-desorption time have been evaluated and optimized. The linearity of the HS-SPDE-GC/MS method was established over several orders of magnitude. Method detection limits (MDLs) for the compounds investigated ranged between 12 ng/L for cis-dichloroethylene and trans-dichloroethylene and 870 ng/L for vinyl chloride. The method was thoroughly validated, and the precision at two concentration levels (0.1 mg/L and a concentration 5 times above the MDL) was between 3.1 and 16% for the analytes investigated. SPDE provides high sensitivity, short sample preparation and extraction times and a high sample throughput because of full automation. Finally, the applicability to real environmental samples is shown exemplarily for various groundwater samples from a former waste-oil recycling facility. Groundwater from the site showed a complex contamination with chlorinated volatile organic compounds and aromatic hydrocarbons.

  8. Determination of volatile organic hydrocarbons in water samples by solid-phase dynamic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Jochmann, Maik A.; Schmidt, Torsten C. [Eberhard-Karls-Universitaet Tuebingen, Center for Applied Geoscience (ZAG), Tuebingen (Germany); Chair of Instrumental Analysis, University Duisburg-Essen, Duisburg (Germany); Yuan, Xue [Eberhard-Karls-Universitaet Tuebingen, Center for Applied Geoscience (ZAG), Tuebingen (Germany)

    2007-03-15

    In the present study a headspace solid-phase dynamic extraction method coupled to gas chromatography-mass spectrometry (HS-SPDE-GC/MS) for the trace determination of volatile halogenated hydrocarbons and benzene from groundwater samples was developed and evaluated. As target compounds, benzene as well as 11 chlorinated and brominated hydrocarbons (vinyl chloride, dichloromethane, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, carbon tetrachloride, chloroform, trichloroethylene, tetrachloroethylene, bromoform) of environmental and toxicological concern were included in this study. The analytes were extracted using a SPDE needle device, coated with a poly(dimethylsiloxane) with 10% embedded activated carbon phase (50-{mu}m film thickness and 56-mm film length) and were analyzed by GC/MS in full-scan mode. Parameters that affect the extraction yield such as extraction and desorption temperature, salting-out, extraction and desorption flow rate, extraction volume and desorption volume, the number of extraction cycles, and the pre-desorption time have been evaluated and optimized. The linearity of the HS-SPDE-GC/MS method was established over several orders of magnitude. Method detection limits (MDLs) for the compounds investigated ranged between 12 ng/L for cis-dichloroethylene and trans-dichloroethylene and 870 ng/L for vinyl chloride. The method was thoroughly validated, and the precision at two concentration levels (0.1 mg/L and a concentration 5 times above the MDL) was between 3.1 and 16% for the analytes investigated. SPDE provides high sensitivity, short sample preparation and extraction times and a high sample throughput because of full automation. Finally, the applicability to real environmental samples is shown exemplarily for various groundwater samples from a former waste-oil recycling facility. Groundwater from the site showed a complex contamination with chlorinated volatile organic compounds and aromatic hydrocarbons. (orig.)

  9. Volatile organic matter emission trade. Pitfalls and chances. Final report

    International Nuclear Information System (INIS)

    Wind, M.H.A.

    2001-01-01

    The aim of this report is to provide policy makers non-specialist information on a system for tradeable emission rights (VER, abbreviated in Dutch) for volatile matter in the Netherlands in order to be able to choose the best trading system. The information is based on an environmental-economical theory of VER and the results of practical experiments, mainly from the USA. 18 refs [nl

  10. EVALUATION OF BIOAEROSOL COMPONENTS, GENERATION FACTORS, AND AIRBORNE TRANSPORT ASSOCIATED WITH LIME TREATMENT OF CONTAMINATED SEDIMENT

    Science.gov (United States)

    Lime treatment has been used in contaminated sediment management activities for many purposes such as dewatering, improvement of physical properties, and reducing contaminant mobility. Exothermic volatilization of volatile organic compounds from lime-treated sediment is well kno...

  11. Volatile organic compounds at swine facilities: a critical review.

    Science.gov (United States)

    Ni, Ji-Qin; Robarge, Wayne P; Xiao, Changhe; Heber, Albert J

    2012-10-01

    Volatile organic compounds (VOCs) are regulated aerial pollutants that have environmental and health concerns. Swine operations produce and emit a complex mixture of VOCs with a wide range of molecular weights and a variety of physicochemical properties. Significant progress has been made in this area since the first experiment on VOCs at a swine facility in the early 1960s. A total of 47 research institutions in 15 North American, European, and Asian countries contributed to an increasing number of scientific publications. Nearly half of the research papers were published by U.S. institutions. Investigated major VOC sources included air inside swine barns, in headspaces of manure storages and composts, in open atmosphere above swine wastewater, and surrounding swine farms. They also included liquid swine manure and wastewater, and dusts inside and outside swine barns. Most of the sample analyses have been focusing on identification of VOC compounds and their relationship with odors. More than 500 VOCs have been identified. About 60% and 10% of the studies contributed to the quantification of VOC concentrations and emissions, respectively. The largest numbers of VOC compounds with reported concentrations in a single experimental study were 82 in air, 36 in manure, and 34 in dust samples. The relatively abundant VOC compounds that were quantified in at least two independent studies included acetic acid, butanoic acid (butyric acid), dimethyl disulfide, dimethyl sulfide, iso-valeric, p-cresol, propionic acid, skatole, trimethyl amine, and valeric acid in air. They included acetic acid, p-cresol, iso-butyric acid, butyric acid, indole, phenol, propionic acid, iso-valeric acid, and skatole in manure. In dust samples, they were acetic acid, propionic acid, butyric acid, valeric acid, p-cresol, hexanal, and decanal. Swine facility VOCs were preferentially bound to smaller-size dusts. Identification and quantification of VOCs were restricted by using instruments based on

  12. Effects of airborne volatile organic compounds on plants

    International Nuclear Information System (INIS)

    Cape, J.N.

    2003-01-01

    Possible adverse effects of VOCs on vegetation in urban areas cannot be rejected. - Routine measurements of volatile organic compounds (VOCs) in air have shown that average concentrations are very much smaller than those used in laboratory experiments designed to study the effects of VOCs on plants. However, maximum hourly concentrations of some VOCs can be 100 times larger than the average, even in rural air. Experimental studies have rarely extended for longer than a few days, so there is little information on potential long-term effects of exposure to small concentrations. This review considers the available evidence for long-term effects, based on laboratory and field data. Previous reviews of the literature from Germany and the USA are cited, prior to an assessment of the effects of individual VOCs. Although hydrocarbons from vehicle exhausts have been implicated in the observed effects on roadside vegetation, the evidence suggests that it is the nitrogen oxides in the exhaust gases that are mostly responsible. There is evidence that aromatic hydrocarbons can be metabolised in plants, although the fate of the metabolites is not known. There is a large literature on the effects of ethylene, because of its role as a plant hormone. Effects have been reported in the field, in response to industrial emissions, and dose-response experiments over several weeks in laboratory studies have clearly identified the potential for effects at ambient concentrations. The main responses are morphological (e.g. epinasty), which may be reversible, and on the development of flowers and fruit. Effects on seed production may be positive or negative, depending on the exposure concentration. Chlorinated hydrocarbons have been identified as potentially harmful to vegetation, but only one long-term experiment has studied dose-response relationships. As for ethylene, the most sensitive indication of effect was on seed production, although long-term accumulation of trichloroacetic acid in

  13. The development of a volatile organics concentrator for use in monitoring Space Station water quality

    Science.gov (United States)

    Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Valentine, James R.; Trabanino, Rudy; Webb, Johanna V.; Sauer, Richard L.

    1991-01-01

    A breadboard concept of a volatile organics concentrator (VOC) is manufactured and tested for optimized water-quality analysis in a space environment. The VOC system is attached to a gas chromatograph/mass spectrometer to analyze the volatile chemicals relevant to the operation of Space Station Freedom. The preliminary tests include: (1) comparisons with analyses based on direct on-column injections of standards; (2) analyses of iodinated volatile organics; (3) comparisons of nitrogen vs helium as the chromatography carrier gas; and (4) measurements of collection efficiency. The VOC can analyze EPA method-624 analytes at comparable detection using flame-ionization detection and can analyze volatile iodinated compounds. The breadboard has good reproducibility and can use nitrogen as a carrier gas; good results are noted for the collection and concentration levels and for water removal.

  14. A volatile organics concentrator for use in monitoring Space Station water quality

    Science.gov (United States)

    Ehntholt, Daniel J.; Bodek, Itamar; Valentine, James R.; Trabanino, Rudy; Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    The process used to identify, select, and design an approach to the isolation and concentration of volatile organic compounds from a water sample prior to chemical analysis in a microgravity environment is discerned. The trade analysis leading to the recommended volatile organics concentrator (VOC) concept to be tested in a breadboard device is presented. The system covers the areas of gases, volatile separation from water, and water removal/gas chromatograph/mass spectrometer interface. Five options for potential use in the VOC and GC/MS system are identified and ranked, and also nine options are presented for separation of volatiles from the water phase. Seven options for use in the water removal/GC column and MS interface are also identified and included in the overall considerations. A final overall recommendation for breadboard VOC testing is given.

  15. Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2010-06-01

    Full Text Available It has been established that observed local and regional levels of secondary organic aerosols (SOA in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to estimate the potential contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic precursors (S/IVOC in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA, their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007 ("ROB" and Grieshop et al. (2009 ("GRI" are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (2–4 times with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009, both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The predicted production from anthropogenic and biomass burning S/IVOC represents 40–60% of the total measured SOA at the surface during the day and is somewhat larger than that from commonly measured aromatic VOCs, especially at the T1 site at the edge of the city. The SOA production from the continued multi-generation S/IVOC oxidation products continues actively

  16. Chemically-resolved volatility measurements of organic aerosol fom different sources.

    Science.gov (United States)

    Huffman, J A; Docherty, K S; Mohr, C; Cubison, M J; Ulbrich, I M; Ziemann, P J; Onasch, T B; Jimenez, J L

    2009-07-15

    A newly modified fast temperature-stepping thermodenuder (TD) was coupled to a High Resolution Time-of-Flight Aerosol Mass Spectrometer for rapid determination of chemically resolved volatility of organic aerosols (OA) emitted from individual sources. The TD-AMS system was used to characterize primary OA (POA) from biomass burning, trash burning surrogates (paper and plastic), and meat cooking as well as chamber-generated secondary OA (SOA) from alpha-pinene and gasoline vapor. Almost all atmospheric models represent POA as nonvolatile, with no allowance for evaporation upon heating or dilution, or condensation upon cooling. Our results indicate that all OAs observed show semivolatile behavior and that most POAs characterized here were at least as volatile as SOA measured in urban environments. Biomass-burning OA (BBOA) exhibited a wide range of volatilities, but more often showed volatility similar to urban OA. Paper-burning resembles some types of BBOA because of its relatively high volatility and intermediate atomic oxygen-to-carbon (O/C) ratio, while meat-cooking OAs (MCOA) have consistently lower volatility than ambient OA. Chamber-generated SOA under the relatively high concentrations used intraditional experiments was significantly more volatile than urban SOA, challenging extrapolation of traditional laboratory volatility measurements to the atmosphere. Most OAs sampled show increasing O/C ratio and decreasing H/C (hydrogen-to-carbon) ratio with temperature, further indicating that more oxygenated OA components are typically less volatile. Future experiments should systematically explore a wider range of mass concentrations to more fully characterize the volatility distributions of these OAs.

  17. UNMIX Methods Applied to Characterize Sources of Volatile Organic Compounds in Toronto, Ontario

    Directory of Open Access Journals (Sweden)

    Eugeniusz Porada

    2016-06-01

    Full Text Available UNMIX, a sensor modeling routine from the U.S. Environmental Protection Agency (EPA, was used to model volatile organic compound (VOC receptors in four urban sites in Toronto, Ontario. VOC ambient concentration data acquired in 2000–2009 for 175 VOC species in four air quality monitoring stations were analyzed. UNMIX, by performing multiple modeling attempts upon varying VOC menus—while rejecting the results that were not reliable—allowed for discriminating sources by their most consistent chemical characteristics. The method assessed occurrences of VOCs in sources typical of the urban environment (traffic, evaporative emissions of fuels, banks of fugitive inert gases, industrial point sources (plastic-, polymer-, and metalworking manufactures, and in secondary sources (releases from water, sediments, and contaminated urban soil. The remote sensing and robust modeling used here produces chemical profiles of putative VOC sources that, if combined with known environmental fates of VOCs, can be used to assign physical sources’ shares of VOCs emissions into the atmosphere. This in turn provides a means of assessing the impact of environmental policies on one hand, and industrial activities on the other hand, on VOC air pollution.

  18. Volatile organic compounds in the nation's ground water and drinking-water supply wells

    Science.gov (United States)

    Zogorski, John S.; Carter, Janet M.; Ivahnenko, Tamara; Lapham, Wayne W.; Moran, Michael J.; Rowe, Barbara L.; Squillace, Paul J.; Toccalino, Patricia L.

    2006-01-01

    This national assessment of 55 volatile organic compounds (VOCs) in ground water gives emphasis to the occurrence of VOCs in aquifers that are used as an important supply of drinking water. In contrast to the monitoring of VOC contamination of ground water at point-source release sites, such as landfills and leaking underground storage tanks (LUSTs), our investigations of aquifers are designed as large-scale resource assessments that provide a general characterization of water-quality conditions. Nearly all of the aquifers included in this assessment have been identified as regionally extensive aquifers or aquifer systems. The assessment of ground water (Chapter 3) included analyses of about 3,500 water samples collected during 1985-2001 from various types of wells, representing almost 100 different aquifer studies. This is the first national assessment of the occurrence of a large number of VOCs with different uses, and the assessment addresses key questions about VOCs in aquifers. The assessment also provides a foundation for subsequent decadal assessments of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program to ascertain long-term trends of VOC occurrence in these aquifers.

  19. Compositions of volatile organic compounds emitted from melted virgin and waste plastic pellets.

    Science.gov (United States)

    Yamashita, Kyoko; Yamamoto, Naomichi; Mizukoshi, Atsushi; Noguchi, Miyuki; Ni, Yueyong; Yanagisawa, Yukio

    2009-03-01

    To characterize potential air pollution issues related to recycling facilities of waste plastics, volatile organic compounds (VOCs) emitted from melted virgin and waste plastics pellets were analyzed. In this study, laboratory experiments were performed to melt virgin and waste plastic pellets under various temperatures (150, 200, and 250 degrees C) and atmospheres (air and nitrogen [N2]). In the study presented here, low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS) and the recycled waste plastic pellets were used. The VOCs generated from each plastic pellets were collected by Tenax/Carboxen adsorbent tubes and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). The result showed the higher temperatures generated larger amounts of total VOCs (TVOCs). The VOCs emitted from the virgin plastic pellets likely originated from polymer degradation. Smaller TVOC emissions were observed in N2 atmosphere than in air atmosphere. In particular, larger amounts of the oxygenated compounds, which are generally hazardous and malodorous, were detected in air than in N2. In addition to the compounds originating from polymer degradation, the compounds originating from the plastic additives were also detected from LDPE and PS. Furthermore, various species of VOCs likely originating from contaminant inseparate polyvinyl chloride (PVC), food residues, cleaning agents, degreasers, and so on were detected from the waste plastic. Thus, melting waste plastics, as is conducted in recycling facilities, might generate larger amounts of potentially toxic compounds than producing virgin plastics.

  20. Risk assessment of exposure to volatile organic compounds in groundwater in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Fan Chihhao [Department of Safety, Health, and Environmental Engineering, Mingchi University of Technology, Taipei County, Taiwan (China); Wang, G.-S. [Department of Public Health, National Taiwan University, Taipei, Taiwan (China); Chen, Y.-C. [Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu County, Taiwan (China); Ko, C.-H. [School of Forest and Resources Conservation, National Taiwan University, Taipei, Taiwan (China)], E-mail: chunhank@ntu.edu.tw

    2009-03-15

    The purpose of this study is to assess the risks from exposure to 14 volatile organic compounds (VOCs) in selected groundwater sites in Taiwan. The study employs the multimedia environment pollutant assessment system (MEPAS) model to calculate the specific non-cancer and cancer risks at an exposure level of 1 {mu}g/L of each VOC for a variety of exposure pathways. The results show that the highest specific non-cancer risk is associated with water ingestion of vinyl chloride (VC) and that the highest specific cancer risk is associated with indoor breathing of VC. The three most important exposure pathways for risk assessment for both non-cancer and cancer risks are identified as water ingestion, dermal absorption when showering, and indoor breathing. Excess tetrachloroethylene (PCE), trichloroethylene (TCE), dichloroethylene (DCE), and VC are detected in the groundwater aquifers of one dump site and one factory. However, the study suggests that the pollutants in the contaminated groundwater aquifers do not travel extensively with groundwater flow and that the resulting VOC concentrations are below detectable levels for most of the sampled drinking-water treatment plants. Nevertheless, the non-cancer and cancer risks resulting from use of the contaminated groundwater are found to be hundred times higher than the general risk guidance values. To ensure safe groundwater utilisation, remediation initiatives for soil and groundwater are required. Finally, the study suggests that the current criteria for VOCs in drinking water might not be capable of ensuring public safety when groundwater is used as the primary water supply; more stringent quality criteria for drinking water are proposed for selected VOCs.

  1. Adsorption of volatile organic compounds by polytetra-fluor ethylene; Adsorption de composes organiques volatils par le polytetrafluor ethylene

    Energy Technology Data Exchange (ETDEWEB)

    Martinet, J M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The sorption of organic vapours by microporous polytetra-fluor ethylene has been studied gravimetrically using a Mc Bain-Baker type sorption balance. The amount of sorption, the peculiarities observed on the isotherm curves, the small influence of temperature, and smallness of hysteresis suggests that mainly physical adsorption occurs when the temperature is around 25 deg. C. The values of the surface areas obtained from the adsorption isotherms using organic vapours differ greatly from those derived from N{sub 2} adsorption measurements. This discrepancy cannot be completely attributed to differences in the structure and chemical function of the adsorbate molecules, or to the porous structure of the adsorbent. On the contrary, the surface area values obtained by sorbing high volatile freons conform with those measured by nitrogen adsorption, which seems to imply a connection between the area of sorbed monolayers and volatility of the adsorbate. (author) [French] La sorption de vapeurs organiques par du polytetrafluor ethylene microporeux a ete etudiee gravimetriquement a l'aide d'un appareillage du type balance de Mac Bain. La valeur de la masse adsorbee, les particularites observees dans la forme des isothermes, le peu d'influence de la temperature, la faiblesse de l'hysteresis suggerent l'intervention d'une adsorption physique, du moins au voisinage de 25 deg. C. Les isothermes relatives a l'absorption de vapeurs organiques conduisent a des valeurs de la surface specifique tres differentes de celles obtenues par adsorption d'azote. Ces divergences ne peuvent s'expliquer par la seule intervention de la structure moleculaire et de la fonction chimique de l'adsorbat, ni par la structure poreuse de l'adsorbant. Par contre, l'adsorption de freons tres volatils conduit a des valeurs de la surface specifique analogues a celles obtenues par adsorption d'azote ce qui semble etablir un lien entre la volatilite de l'adsorbat et l'etendue des couches monomoleculaires

  2. ENVIROMETAL TECHNOLOGIES, INC., METAL-ENHANCED DECHLORINATION OF VOLATILE ORGANIC COMPOUNDS USING AN IN-SITU REACTIVE IRON WALL

    Science.gov (United States)

    This report summarizes the results of a field demonstration conducted under the SITE program. The technology that was demonstrated was a metal-enhanced dechlorination process developed by EnviroMetal Technologies, Inc. to treat groundwater contaminated with chlorinated volatile ...

  3. Vapor Extraction/Bioventing Sequential Treatment of Soil Contaminated with Volatile and SemiVolatile Hydrocarbon Mixtures

    NARCIS (Netherlands)

    Malina, G.; Grotenhuis, J.T.C.; Rulkens, W.H.

    2002-01-01

    A cost-effective removal strategy was studied in bench-scale columns that involved vapor extraction and bioventing sequential treatment of toluene- and decane-contaminated soil. The effect of operating mode on treatment performance was examined at a continuous air flow and consecutively at two

  4. Organic Contamination Baseline Study on NASA JSC Astromaterial Curation Gloveboxes

    Science.gov (United States)

    Calaway, Michael J.; Allton, J. H.; Allen, C. C.; Burkett, P. J.

    2013-01-01

    Future planned sample return missions to carbon-rich asteroids and Mars in the next two decades will require strict handling and curation protocols as well as new procedures for reducing organic contamination. After the Apollo program, astromaterial collections have mainly been concerned with inorganic contamination [1-4]. However, future isolation containment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study was orchestrated to establish the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs.

  5. Inorganic and organic contaminants in Alaskan shorebird eggs.

    Science.gov (United States)

    Saalfeld, David T; Matz, Angela C; McCaffery, Brian J; Johnson, Oscar W; Bruner, Phil; Lanctot, Richard B

    2016-05-01

    Many shorebird populations throughout North America are thought to be declining, with potential causes attributed to habitat loss and fragmentation, reduced prey availability, increased predation, human disturbance, and increased exposure to environmental pollutants. Shorebirds may be particularly vulnerable to contaminant exposure throughout their life cycle, as they forage primarily on invertebrates in wetlands, where many contaminants accumulate disproportionately in the sediments. Therefore, it is important to document and monitor shorebird populations thought to be at risk and assess the role that environmental contaminants may have on population declines. To investigate potential threats and provide baseline data on shorebird contaminant levels in Alaskan shorebirds, contaminant concentrations were evaluated in shorebird eggs from 16 species residing in seven geographic distinct regions of Alaska. Similar to previous studies, low levels of most inorganic and organic contaminants were found, although concentrations of several inorganic and organic contaminants were higher than those of previous studies. For example, elevated strontium levels were observed in several species, especially black oystercatcher (Haematopus bachmani) sampled in Prince William Sound, Alaska. Additionally, contaminant concentrations varied among species, with significantly higher concentrations of inorganic contaminants found in eggs of pectoral sandpiper (Calidris melanotos), semipalmated sandpiper (Calidris pusilla), black oystercatcher, and bar-tailed godwit (Limosa lapponica). Similarly, significantly higher concentrations of some organic contaminants were found in the eggs of American golden plover (Pluvialis dominica), black-bellied plover (Pluvialis squatarola), pacific golden plover (Pluvialis fulva), bar-tailed godwit, and semipalmated sandpiper. Despite these elevated levels, current concentrations of contaminants in shorebird eggs suggest that breeding environments are

  6. REDUCTIVE DEHALOGENATION OF ORGANIC CONTAMINANTS IN SOILS AND GROUND WATER

    Science.gov (United States)

    Introduction and large scale production of synthetic halogenated organic chemicals over the last 50 years has resulted in a group of contaminants which tend to persist in the environment and resist both biotic and abiotic degradation. The low solubility of these types of contamin...

  7. Contamination of living environment and human organism with plutonium

    International Nuclear Information System (INIS)

    Benes, J.

    1981-01-01

    The applicability of 239 Pu in nuclear power is discussed. The radiotoxic properties of plutonium, its tissue distribution and the effects of internal and external contamination are described. The contamination of the atmosphere, water, and soil with plutonium isotopes is discussed. Dosimetry is described of plutonium in the living and working environments as is plutonium determination in the human organism. (H.S.)

  8. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia.

    Science.gov (United States)

    Huang, R; Li, G Q; Zhang, J; Yang, L; Che, H J; Jiang, D H; Huang, H C

    2011-07-01

    A study was conducted to identify volatile organic compounds or volatiles produced by Candida intermedia strain C410 using gas chromatography-mass spectrometry, and to determine efficacy of the volatiles of C. intermedia in suppression of conidial germination and mycelial growth of Botrytis cinerea and control of Botrytis fruit rot of strawberry. Results showed that, among 49 volatiles (esters, alcohols, alkenes, alkanes, alkynes, organic acids, ketones, and aldehydes) identified from C. intermedia cultures on yeast extract peptone dextrose agar, two compounds, 1,3,5,7-cyclooctatetraene and 3-methyl-1-butanol, were the most abundant. Synthetic chemicals of 1,3,5,7-cyclooctatetraene; 3-methyl-1-butanol; 2-nonanone; pentanoic acid, 4-methyl-, ethyl ester; 3-methyl-1-butanol, acetate; acetic acid, pentyl ester; and hexanoic acid, ethyl ester were highly inhibitory to conidial germination and mycelial growth of B. cinerea. Inhibition of conidial germination and mycelial growth of B. cinerea by volatiles of C. intermedia was also observed. Meanwhile, results showed that incidence and severity of Botrytis fruit rot of strawberry was significantly (P intermedia cultures or C. intermedia-infested strawberry fruit. These results suggest that the volatiles of C. intermedia C410 are promising biofumigants for control of Botrytis fruit rot of strawberry.

  9. Analytical strategies for organic food packaging contaminants.

    Science.gov (United States)

    Sanchis, Yovana; Yusà, Vicent; Coscollà, Clara

    2017-03-24

    In this review, we present current approaches in the analysis of food-packaging contaminants. Gas and liquid chromatography coupled to mass spectrometry detection have been widely used in the analysis of some relevant families of these compounds such as primary aromatic amines, bisphenol A, bisphenol A diglycidyl ether and related compounds, UV-ink photoinitiators, perfluorinated compounds, phthalates and non-intentionally added substances. Main applications for sample treatment and different types of food-contact material migration studies have been also discussed. Pressurized Liquid Extraction, Solid-Phase Microextraction, Focused Ultrasound Solid-Liquid Extraction and Quechers have been mainly used in the extraction of food contact material (FCM) contaminants, due to the trend of minimising solvent consumption, automatization of sample preparation and integration of extraction and clean-up steps. Recent advances in analytical methodologies have allowed unequivocal identification and confirmation of these contaminants using Liquid Chromatography coupled to High Resolution Mass Spectrometry (LC-HRMS) through mass accuracy and isotopic pattern applying. LC-HRMS has been used in the target analysis of primary aromatic amines in different plastic materials, but few studies have been carried out applying this technique in post-target and non-target analysis of FCM contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Volatile organic compounds released by blowfly larvae and pupae: new perspectives in forensic entomology.

    Science.gov (United States)

    Frederickx, C; Dekeirsschieter, J; Brostaux, Y; Wathelet, J-P; Verheggen, F J; Haubruge, E

    2012-06-10

    To evaluate postmortem intervals (PMIs), one should take into account the determined age of necrophagous flies present on the cadaver. However, PMI determination needs further improvement, and rapid and accurate approaches have therefore to be developed. While previous studies have focussed on insect cuticular hydrocarbons, here we explore the volatile profile released by larvae and pupae of Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae). We monitored changes in volatile compounds daily, by headspace solid-phase microextraction, followed by gas chromatography-mass spectrometry. Branched and unbranched hydrocarbons, alcohols, esters and acids were identified, and the volatile profile was shown to vary, in both composition and quantity, with the age of the larva/pupa under investigation. We concluded, based on the analysis of the released volatile organic compounds, that it is possible to increase the accuracy of the estimated PMI, through improved estimation of the age of blowflies present on the cadaver. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Nga Lee; Brown, Steven S.; Archibald, Alexander T.; Atlas, Elliot; Cohen, Ronald C.; Crowley, John N.; Day, Douglas A.; Donahue, Neil M.; Fry, Juliane L.; Fuchs, Hendrik; Griffin, Robert J.; Guzman, Marcelo I.; Herrmann, Hartmut; Hodzic, Alma; Iinuma, Yoshiteru; Jimenez, José L.; Kiendler-Scharr, Astrid; Lee, Ben H.; Luecken, Deborah J.; Mao, Jingqiu; McLaren, Robert; Mutzel, Anke; Osthoff, Hans D.; Ouyang, Bin; Picquet-Varrault, Benedicte; Platt, Ulrich; Pye, Havala O. T.; Rudich, Yinon; Schwantes, Rebecca H.; Shiraiwa, Manabu; Stutz, Jochen; Thornton, Joel A.; Tilgner, Andreas; Williams, Brent J.; Zaveri, Rahul A.

    2017-01-01

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models.

    This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.

  12. Retardation of volatile organic compounds in ground water in low organic carbon sediments

    International Nuclear Information System (INIS)

    Hoffman, F.

    1995-04-01

    It is postulated that adsorption onto aquifer matrix surfaces is only one of the processes that retard contaminants in ground water in unconsolidated sediments; others include hydrodynamic dispersion, abiotic/biotic degradation, matrix diffusion, partitioning to organic carbon, diffusion into and retention in dead-end pores, etc. This work aims at these processes in defining the K d of VOCs in sediments with low organic carbon content. Experiments performed include an initial column experiment for VOC (TCE and perchloroethylene(PCE)) retardation tests on geological materials, PCE and TCE data from LLNL sediments, and a preliminary multilayer sampler experiment. The VOC K d s in low organic carbon permeable aquifer materials are dependent on the VOC composition and independent of aquifer grain size, indicating that sorption was not operative and that the primary retarding factors are diffusion controlled. The program of future experiments is described

  13. Microbial Fuel Cells for Organic-Contaminated Soil Remedial Applications

    NARCIS (Netherlands)

    Li, Xiaojing; Wang, Xin; Weng, Liping; Zhou, Qixing; Li, Yongtao

    2017-01-01

    Efficient noninvasive techniques are desired for repairing organic-contaminated soils. Bioelectrochemical technology, especially microbial fuel cells (MFCs), has been widely used to promote a polluted environmental remediation approach, and applications include wastewater, sludge, sediment, and

  14. Assessment of ecotoxicity and total volatile organic compound (TVOC) emissions from food and children's toy products.

    Science.gov (United States)

    Szczepańska, Natalia; Marć, Mariusz; Kudłak, Błażej; Simeonov, Vasil; Tsakovski, Stefan; Namieśnik, Jacek

    2018-09-30

    The development of new methods for identifying a broad spectrum of analytes, as well as highly selective tools to provide the most accurate information regarding the processes and relationships in the world, has been an area of interest for researchers for many years. The information obtained with these tools provides valuable data to complement existing knowledge but, above all, to identify and determine previously unknown hazards. Recently, attention has been paid to the migration of xenobiotics from the surfaces of various everyday objects and the resulting impacts on human health. Since children are among those most vulnerable to health consequences, one of the main subjects of interest is the migration of low-molecular-weight compounds from toys and products intended for children. This migration has become a stimulus for research aimed at determining the degree of release of compounds from popular commercially available chocolate/toy sets. One of main objectives of this research was to determine the impact of time on the ecotoxicity (with Vibrio fischeri bioluminescent bacteria) of extracts of products intended for children and to assess the correlation with total volatile organic compound emissions using basic chemometric methods. The studies on endocrine potential (with XenoScreen YES/YAS) of the extracts and showed that compounds released from the studied objects (including packaging foils, plastic capsules storing toys, most of toys studied and all chocolate samples) exhibit mostly androgenic antagonistic behavior while using artificial saliva as extraction medium increased the impact observed. The impact of time in most cases was positive one and increased with prolonging extraction time. The small-scale stationary environmental test chambers - μ-CTE™ 250 system was employed to perform the studies aimed at determining the profile of total volatile organic compounds (TVOCs) emissions. Due to this it was possible to state that objects from which the

  15. Sensory irritating potency of some microbial volatile organic compounds (MVOCs) and a mixture of five MVOCs.

    Science.gov (United States)

    Korpi, A; Kasanen, J P; Alarie, Y; Kosma, V M; Pasanen, A L

    1999-01-01

    The authors investigated the ability/potencies of 3 microbial volatile organic compounds and a mixture of 5 microbial volatile organic compounds to cause eye and upper respiratory tract irritation (i.e., sensory irritation), with an animal bioassay. The authors estimated potencies by determining the concentration capable of decreasing the respiratory frequency of mice by 50% (i.e., the RD50 value). The RD50 values for 1-octen-3-ol, 3-octanol, and 3-octanone were 182 mg/m3 (35 ppm), 1359 mg/m3 (256 ppm), and 17586 mg/m3 (3360 ppm), respectively. Recommended indoor air levels calculated from the individual RD50 values for 1-octen-3-ol, 3-octanol, and 3-octanone were 100, 1000, and 13000 microg/m3, respectively-values considerably higher than the reported measured indoor air levels for these compounds. The RD50 value for a mixture of 5 microbial volatile organic compounds was also determined and found to be 3.6 times lower than estimated from the fractional concentrations and the respective RD50s of the individual components. The data support the conclusion that a variety of microbial volatile organic compounds may have some synergistic effects for the sensory irritation response, which constrains the interpretation and application of recommended indoor air levels of individual microbial volatile organic compounds. The results also showed that if a particular component of a mixture was much more potent than the other components, it may dominate the sensory irritation effect. With respect to irritation symptoms reported in moldy houses, the results of this study indicate that the contribution of microbial volatile organic compounds to these symptoms seems less than previously supposed.

  16. Removal of trace organic chemical contaminants by a membrane bioreactor.

    Science.gov (United States)

    Trinh, T; van den Akker, B; Stuetz, R M; Coleman, H M; Le-Clech, P; Khan, S J

    2012-01-01

    Emerging wastewater treatment processes such as membrane bioreactors (MBRs) have attracted a significant amount of interest internationally due to their ability to produce high quality effluent suitable for water recycling. It is therefore important that their efficiency in removing hazardous trace organic contaminants be assessed. Accordingly, this study investigated the removal of trace organic chemical contaminants through a full-scale, package MBR in New South Wales, Australia. This study was unique in the context of MBR research because it characterised the removal of 48 trace organic chemical contaminants, which included steroidal hormones, xenoestrogens, pesticides, caffeine, pharmaceuticals and personal care products (PPCPs). Results showed that the removal of most trace organic chemical contaminants through the MBR was high (above 90%). However, amitriptyline, carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, omeprazole, sulphamethoxazole and trimethoprim were only partially removed through the MBR with the removal efficiencies of 24-68%. These are potential indicators for assessing MBR performance as these chemicals are usually sensitive to changes in the treatment systems. The trace organic chemical contaminants detected in the MBR permeate were 1 to 6 orders of magnitude lower than guideline values reported in the Australian Guidelines for Water Recycling. The outcomes of this study enhanced our understanding of the levels and removal of trace organic contaminants by MBRs.

  17. Exhaled human breath measurement method for assessing exposure to halogenated volatile organic compounds.

    Science.gov (United States)

    Pleil, J D; Lindstrom, A B

    1997-05-01

    The organic constituents of exhaled human breath are representative of blood-borne concentrations through gas exchange in the blood/breath interface in the lungs. The presence of specific compounds can be an indicator of recent exposure or represent a biological response of the subject. For volatile organic compounds (VOCs), sampling and analysis of breath is preferred to direct measurement from blood samples because breath collection is noninvasive, potentially infectious waste is avoided, and the measurement of gas-phase analytes is much simpler in a gas matrix rather than in a complex biological tissue such as blood. To exploit these advantages, we have developed the "single breath canister" (SBC) technique, a simple direct collection method for individual alveolar breath samples, and adapted conventional gas chromatography-mass spectrometry analytical methods for trace-concentration VOC analysis. The focus of this paper is to describe briefly the techniques for making VOC measurements in breath, to present some specific applications for which these methods are relevant, and to demonstrate how to estimate exposure to example VOCs on the basis of breath elimination. We present data from three different exposure scenarios: (a) vinyl chloride and cis-1,2-dichloroethene from showering with contaminated water from a private well, (b) chloroform and bromodichloromethane from high-intensity swimming in chlorinated pool water, and (c) trichloroethene from a controlled exposure chamber experiment. In all cases, for all subjects, the experiment is the same: preexposure breath measurement, exposure to halogenated VOC, and a postexposure time-dependent series of breath measurements. Data are presented only to demonstrate the use of the method and how to interpret the analytical results.

  18. Uptake of Organic Contaminants from Soil into Vegetables and Fruits

    DEFF Research Database (Denmark)

    Trapp, Stefan; Legind, Charlotte Nielsen

    2011-01-01

    Contaminants may enter vegetables and fruits by several pathways: by uptake with soil pore water, by diffusion from soil or air, by deposition of soil or airborne particles, or by direct application. The contaminant-specific and plantspecific properties that determine the importance of these path......Contaminants may enter vegetables and fruits by several pathways: by uptake with soil pore water, by diffusion from soil or air, by deposition of soil or airborne particles, or by direct application. The contaminant-specific and plantspecific properties that determine the importance...... of these pathways are described in this chapter. A variety of models have been developed, specific for crop types and with steady-state or dynamic solutions. Model simulations can identify sensitive properties and relevant processes. Persistent, polar (log KOW ... particles, or from air. Volatile contaminants have a low potential for accumulation because they quickly escape to air. Experimental data are listed that support these model predictions, but underline also the high variability of accumulation under field conditions. Plant uptake predictions are uncertain...

  19. Soil contamination with cadmium, consequences and remediation using organic amendments.

    Science.gov (United States)

    Khan, Muhammad Amjad; Khan, Sardar; Khan, Anwarzeb; Alam, Mehboob

    2017-12-01

    Cadmium (Cd) contamination of soil and food crops is a ubiquitous environmental problem that has resulted from uncontrolled industrialization, unsustainable urbanization and intensive agricultural practices. Being a toxic element, Cd poses high threats to soil quality, food safety, and human health. Land is the ultimate source of waste disposal and utilization therefore, Cd released from different sources (natural and anthropogenic), eventually reaches soil, and then subsequently bio-accumulates in food crops. The stabilization of Cd in contaminated soil using organic amendments is an environmentally friendly and cost effective technique used for remediation of moderate to high contaminated soil. Globally, substantial amounts of organic waste are generated every day that can be used as a source of nutrients, and also as conditioners to improve soil quality. This review paper focuses on the sources, generation, and use of different organic amendments to remediate Cd contaminated soil, discusses their effects on soil physical and chemical properties, Cd bioavailability, plant uptake, and human health risk. Moreover, it also provides an update of the most relevant findings about the application of organic amendments to remediate Cd contaminated soil and associated mechanisms. Finally, future research needs and directions for the remediation of Cd contaminated soil using organic amendments are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Biochar: a green sorbent to sequester acidic organic contaminants

    Science.gov (United States)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2015-04-01

    Biochar is a carbon rich product of biomass pyrolysis that exhibits a high sorption potential towards a wide variety of inorganic and organic contaminants. Because it is a valuable soil additive and a potential carbon sink that can be produced from renewable resources, biochar has gained growing attention for the development of more sustainable remediation strategies. A lot of research efforts have been dedicated to the sorption of hydrophobic contaminants and metals to biochar. Conversely, the understanding of the sorption of acidic organic contaminants remains limited, and questions remain on the influence of biochar characteristics (e.g. ash content) on the sorption behaviour of acidic organic contaminants. To address this knowledge gap, sorption batch experiments were conducted with a series of structurally similar acidic organic contaminants covering a range of dissociation constant (2,4-D, MCPA, 2,4-DB and triclosan). The sorbents selected for experimentation included a series of 10 biochars covering a range of characteristics, multiwalled carbon nanotubes as model for pure carbonaceous phases, and an activated carbon as benchmark. Overall, sorption coefficient [L/kg] covered six orders of magnitude and generally followed the order 2,4-D pH dependent lipophilicity ratio (i.e. D instead of Kow), ash content and ionic strength are key factors influencing the sorption of acidic organic contaminants to biochars. Overall, the identified factors, as well as the environmental matrix, should be carefully considered when selecting the type of biochar for sequestration purposes.

  1. Determination of the solubility of low volatility liquid organic compounds in water using volatile-tracer assisted headspace gas chromatography.

    Science.gov (United States)

    Zhang, Shu-Xin; Chai, Xin-Sheng; Barnes, Donald G

    2016-02-26

    This study reports a new headspace gas chromatographic method (HS-GC) for the determination of water solubility of low volatility liquid organic compounds (LVLOs). The HS-GC analysis was performed on a set of aqueous solutions containing a range of concentrations of toluene-spiked (as a tracer) LVLOs, from under-saturation to over-saturation. A plot of the toluene tracer GC signal vs. the concentration of the LVLO results in two lines of different slopes that intersect at the concentration corresponding to the compound's solubility in water. The results showed that the HS-GC method has good precision (RSD waters of environmental and biological systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Analysis of volatile organic compounds of ‘Fuji’ apples following electron beam irradiation and storage

    International Nuclear Information System (INIS)

    Song, Hyun-Pa; Shim, Sung-Lye; Lee, Sun-Im; Kim, Dong-Ho; Kwon, Joong-Ho; Kim, Kyong-Su

    2012-01-01

    The volatile organic compounds of non-irradiated and electron-beam irradiated ‘Fuji’ apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph–mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated ‘Fuji’ apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of ‘Fuji’ apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds. - Highlights: ► We analyzed the volatile organic compounds of electron beam irradiated Fuji apples. ► The major compounds of samples were butanol, hexanal, [E]-2-hexenal, and hexanol. ► The contents of major flavor compounds of non-irradiated and irradiated samples were similar.

  3. Maximizing Information from Residential Measurements of Volatile Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Randy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Li, Na [Berkeley Analytical Associates, Richmond, CA (United States); Hodgson, Alfred [Berkeley Analytical Associates, Richmond, CA (United States); Offermann, Francis [Indoor Environmental Engineering, San Francisco, CA (United States); Singer, Brett [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-02-01

    Continually changing materials used in home construction and finishing can introduce new chemicals or changes in the VOC profile in residential air and the trend towards tighter homes can lead to higher exposure concentrations for many indoor sources. However, the complex mixture of VOCs in residential air makes it difficult to discover emerging contaminants and/or trends in pollutant profiles. The purpose of this study is to prepare a comprehensive library of chemicals found in homes, along with a semi-quantitative approach to maximize the information gained from VOC measurements. We carefully reviewed data from 108 new California homes and identified 238 individual compounds. The majority of the identified VOCs originated indoors. Only 31% were found to have relevant health based exposure guidelines and less than 10% had a chronic reference exposure level (CREL). The finding highlights the importance of extending IAQ studies to include a wider range of VOCs

  4. Adsorption of volatile organic compounds by polytetra-fluor ethylene; Adsorption de composes organiques volatils par le polytetrafluor ethylene

    Energy Technology Data Exchange (ETDEWEB)

    Martinet, J.M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The sorption of organic vapours by microporous polytetra-fluor ethylene has been studied gravimetrically using a Mc Bain-Baker type sorption balance. The amount of sorption, the peculiarities observed on the isotherm curves, the small influence of temperature, and smallness of hysteresis suggests that mainly physical adsorption occurs when the temperature is around 25 deg. C. The values of the surface areas obtained from the adsorption isotherms using organic vapours differ greatly from those derived from N{sub 2} adsorption measurements. This discrepancy cannot be completely attributed to differences in the structure and chemical function of the adsorbate molecules, or to the porous structure of the adsorbent. On the contrary, the surface area values obtained by sorbing high volatile freons conform with those measured by nitrogen adsorption, which seems to imply a connection between the area of sorbed monolayers and volatility of the adsorbate. (author) [French] La sorption de vapeurs organiques par du polytetrafluor ethylene microporeux a ete etudiee gravimetriquement a l'aide d'un appareillage du type balance de Mac Bain. La valeur de la masse adsorbee, les particularites observees dans la forme des isothermes, le peu d'influence de la temperature, la faiblesse de l'hysteresis suggerent l'intervention d'une adsorption physique, du moins au voisinage de 25 deg. C. Les isothermes relatives a l'absorption de vapeurs organiques conduisent a des valeurs de la surface specifique tres differentes de celles obtenues par adsorption d'azote. Ces divergences ne peuvent s'expliquer par la seule intervention de la structure moleculaire et de la fonction chimique de l'adsorbat, ni par la structure poreuse de l'adsorbant. Par contre, l'adsorption de freons tres volatils conduit a des valeurs de la surface specifique analogues a celles obtenues par adsorption d'azote ce qui semble etablir un lien entre la

  5. Treating contaminated organics using the DETOX process

    International Nuclear Information System (INIS)

    Elsberry, K.D.; Dhooge, P.M.

    1993-01-01

    Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. This paper describes the results of bench-scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for designing a prototype waste treatment unit. Apparent organic reaction rate orders and the dependence of apparent reaction rate on solution composition and the contact area were measured for vacuum pump oil scintillation fluids, and trichloroethylene. Reaction rate was superior in chloride-based solutions and was proportional to the contact area above about 2% w/w loading of organic. Oxidations in a 4-liter volume, mixed bench-top reactor have given destruction efficiencies of 99.9999 + % for common organics. Reaction rates achieved in the mixed bench-top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10 to 100 + grams of organic per liter-hour. Results are also presented on the solvation efficiency of DETOX for mercury, cerium, and neodymium, and for removal/destruction of organics sorbed on vermiculite. The next stage of development will be converting the bench-top unit to continuous processing

  6. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils.

    Science.gov (United States)

    Park, Jin Hee; Lamb, Dane; Paneerselvam, Periyasamy; Choppala, Girish; Bolan, Nanthi; Chung, Jae-Woo

    2011-01-30

    As land application becomes one of the important waste utilization and disposal practices, soil is increasingly being seen as a major source of metal(loid)s reaching food chain, mainly through plant uptake and animal transfer. With greater public awareness of the implications of contaminated soils on human and animal health there has been increasing interest in developing technologies to remediate contaminated sites. Bioremediation is a natural process which relies on soil microorganisms and higher plants to alter metal(loid) bioavailability and can be enhanced by addition of organic amendments to soils. Large quantities of organic amendments, such as manure compost, biosolid and municipal solid wastes are used as a source of nutrients and also as a conditioner to improve the physical properties and fertility of soils. These organic amendments that are low in metal(loid)s can be used as a sink for reducing the bioavailability of metal(loid)s in contaminated soils and sediments through their effect on the adsorption, complexation, reduction and volatilization of metal(loid)s. This review examines the mechanisms for the enhanced bioremediation of metal(loid)s by organic amendments and discusses the practical implications in relation to sequestration and bioavailability of metal(loid)s in soils. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Volatile organic compound emmission rates from mixed deciduous and coniferous foest in Northern Wisconsin, USA

    Science.gov (United States)

    J. G. Isebrands; A. B. Guenther; P. Harley; D. Helmig; L. Klinger; L. Vierling; P. Zimmerman; C. Geron

    1999-01-01

    Biogenic emissions of volatile organic compounds {VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regions of the world to understand regional and global impacts and to implement possible...

  8. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Science.gov (United States)

    2010-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a...

  9. The scent of colorectal cancer: detection by volatile organic compound analysis

    NARCIS (Netherlands)

    de Boer, Nanne K. H.; de Meij, Tim G. J.; Oort, Frank A.; Ben Larbi, Ilhame; Mulder, Chris J. J.; van Bodegraven, Adriaan A.; van der Schee, Marc P.

    2014-01-01

    The overall metabolic state of an individual is reflected by emitted volatile organic compounds (VOCs), which are gaseous carbon-based chemicals. In this review, we will describe the potential of VOCs as fully noninvasive markers for the detection of neoplastic lesions of the colon. VOCs are

  10. Distribution of volatile organic compounds over a semiconductor Industrial Park in Taiwan.

    Science.gov (United States)

    Chiu, Kong-Hwa; Wu, Ben-Zen; Chang, Chih-Chung; Sree, Usha; Lo, Jiunn-Guang

    2005-02-15

    This study examined volatile organic compounds (VOC) concentration in ambient air collected during the years 2000--2003 at several different locations of Hsinchu Science-based Industrial Park (HSIP) in Taiwan. A canister automated GC-MS system analyzed the volatile organics in ambient air grasp samples according to T0-15 method. Oxygenated volatiles were the most abundant VOC detected in HSIP followed by aromatics that are commonly used as solvents in the semiconductor industries. The major components measured in the ambient air are 2-propanol (29-135 ppbv), acetone (12-164 ppbv), benzene (0.7-1.7 ppbv), and toluene (13-20 ppbv). At some of the sampling locations, odorous compounds such as carbon disulfide and dimethyl sulfide levels exceed threshold values. The estimated toluene/benzene ratio is very high at most of the sites. However, the total amount of VOC is reduced over the years from 2000 to 2003 due to strict implementation on use and discharge of solvents in industries. There exists no definite seasonal pattern for sporadic occurrence of high levels of some of the volatile organics. Stagnant weather conditions with low wind speeds aid accumulation of toxic species at ground level. The results entail that hi-tech semiconductor industries are still a potential source for harmful organic substances to surrounding microenvironment.

  11. Electrospun Polyurethane Fibers for Absorption of Volatile Organic Compounds from Air

    NARCIS (Netherlands)

    Scholten, E.; Bromberg, L.; Rutledge, G.C.; Hatton, T.A.

    2011-01-01

    Electrospun polyurethane fibers for removal of volatile organic compounds (VOC) from air with rapid VOC absorption and desorption have been developed. Polyurethanes based on 4,4-methylenebis(phenylisocyanate) (MDI) and aliphatic isophorone diisocyanate as the hard segments and butanediol and

  12. 40 CFR 60.542a - Alternate standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for the Rubber Tire Manufacturing Industry § 60.542a Alternate standard for volatile organic compounds. (a) On and after the date on which the initial performance test, required by § 60.8, is completed, but no...

  13. ECOS E-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database

    Energy Technology Data Exchange (ETDEWEB)

    Parisien, Lia [The Environmental Council Of The States, Washington, DC (United States)

    2016-01-31

    This final scientific/technical report on the ECOS e-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database provides a disclaimer and acknowledgement, table of contents, executive summary, description of project activities, and briefing/technical presentation link.

  14. Profiling of volatile organic compounds produced by clinical Aspergillus isolates using gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Gerritsen, M G; Brinkman, P; Escobar Salazar, Natalia; Bos, L D; de Heer, K; Meijer, M; Janssen, H-G; de Cock, H; Wösten, H A B; Visser, C.E.; van Oers, M H J; Sterk, P J

    Volatile organic compounds (VOCs) in exhaled breath may identify the presence of invasive pulmonary aspergillosis. We aimed to detect VOC profiles emitted by in vitro cultured, clinical Aspergillus isolates using gas chromatography-mass spectrometry (GC-MS). Three clinical Aspergillus isolates and a

  15. Removal of H2S and volatile organic sulfur compounds by silicone membrane extraction

    NARCIS (Netherlands)

    Manconi, I.; Lens, P.N.L.

    2009-01-01

    BACKGROUND: This study explores an alternative process for the abatement and/or desulfurization of H2S and volatile organic sulfur compounds (VOSC) containing waste streams, which employs a silicone-based membrane to simultaneously remove H2S and VOSC. An extractive membrane reactor allows the

  16. Microbial Volatile Organic Compound Emissions from Stachybotrys chartarum growing on Gypsum Wallboard and Ceiling tile

    Science.gov (United States)

    This study compared seven toxigenic strains of S. chartarum found in water-damaged buildings to characterize the microbial volatile organic compound (MVOC) emissions profile while growing on gypsum wallboard (W) and ceiling tile (C) coupons. The inoculated coupons with their sub...

  17. Profiling of volatile organic compounds produced by clinical Aspergillus isolates using gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Gerritsen, M. G.; Brinkman, P.; Escobar, N.; Bos, L. D.; de Heer, K.; Meijer, M.; Janssen, H.-G.; de Cock, H.; Wösten, H. A. B.; Visser, C. E.; van Oers, M. H. J.; Sterk, P. J.

    2018-01-01

    Volatile organic compounds (VOCs) in exhaled breath may identify the presence of invasive pulmonary aspergillosis. We aimed to detect VOC profiles emitted by in vitro cultured, clinical Aspergillus isolates using gas chromatography-mass spectrometry (GC-MS). Three clinical Aspergillus isolates and a

  18. 75 FR 57390 - Approval and Promulgation of Implementation Plans; Alabama: Volatile Organic Compounds

    Science.gov (United States)

    2010-09-21

    ... Environmental Management (ADEM) on March 3, 2010. The revision modifies the definition of ``volatile organic... the VOC definition on the basis that these compounds make a negligible contribution to tropospheric..., 2009, which excludes these compounds from the regulatory VOC definition. This action is being taken...

  19. Volatile fatty acids production from sewage organic matter by combined bioflocculation and anaerobic fermentation

    NARCIS (Netherlands)

    Khiewwijit, R.; Keesman, K.J.; Rijnaarts, H.H.M.; Temmink, B.G.

    2014-01-01

    This work aims at exploring the feasibility of a combined process bioflocculation to concentrate sewage organic matter and anaerobic fermentation to produce volatile fatty acids (VFA). Bioflocculation, using a high-loaded aerobic membrane bioreactor (HL-MBR), was operated at an HRT of 1 h and an SRT

  20. Signals of speciation: Volatile organic compounds resolve closely related sagebrush taxa, suggesting their importance in evolution

    Science.gov (United States)

    Deidre M. Jaeger; Justin B. Runyon; Bryce A. Richardson

    2016-01-01

    Volatile organic compounds (VOCs) play important roles in the environmental adaptation and fitness of plants. Comparison of the qualitative and quantitative differences in VOCs among closely related taxa and assessing the effects of environment on their emissions are important steps to deducing VOC function and evolutionary importance.

  1. Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste

    DEFF Research Database (Denmark)

    Mustafa, Muhammad Farooq; Liu, Yanjun; Duan, Zhenhan

    2017-01-01

    Degradation of mechanically sorted organic fraction (MSOF) of municipal solid waste in composting facilities is among the major contributors of volatile compounds (VCs) generation and emission, causes nuisance problems and health risks on site as well as in the vicinages. The aim of current study...

  2. Atomic and molecular physics of plasma-based environmental technologies for abatement of volatile organic compounds

    International Nuclear Information System (INIS)

    Penetrante, B. M.; Hsiao, M. C.; Bardsley, J. N.; Merritt, B. T.; Vogtin, G. E.; Kuthi, A.; Burkhart, C. P.; Bayless, J. R.

    1997-01-01

    Non-thermal plasma techniques represent a new generation of air emission control technology that potentially could treat large-volume emissions containing dilute concentrations of volatile organic compounds. In order to apply non-thermal plasmas in an industrial scale, it is important to establish the electrical power requirements and byproducts of the process.There is a need for reliable data concerning the primary decomposition mechanisms and subsequent chemical kinetics associated with non- thermal plasma processing of volatile organic compounds. There are many basic atomic and molecular physics issues that are essential in evaluating the economic performance of non-thermal plasma reactors. These studies are important in understanding how the input electrical power is dissipated in the plasma and how efficiently it is converted to the production of the plasma species (radicals, ions or electrons) responsible for the decomposition of the volatile organic compounds. This paper will present results from basic experimental and theoretical studies aimed at identifying the reaction mechanisms responsible for the primary decomposition of various types of volatile organic compounds. (authors)

  3. Emission index for evaluation of volatile organic compounds emitted from tomato plants in greenhouses

    NARCIS (Netherlands)

    Takayama, K.; Jansen, R.M.C.; Henten, van E.J.; Verstappen, F.W.A.; Bouwmeester, H.J.; Nishina, H.

    2012-01-01

    Measurement of volatile organic compounds (VOCs) emitted by plants allows us to monitor plant health status without touching the plant. To bring this technique a step further towards a practical plant diagnosis technique for greenhouse crop production, we have defined a numerical index named

  4. ISOTOPIC (14C) AND CHEMICAL COMPOSITION OF ATMOSPHERIC VOLATILE ORGANIC COMPOUND FRACTIONS - PRECURSORS TO OZONE FORMATION

    Science.gov (United States)

    Atmospheric volatile organic compounds (VOCs) are an important factor in the production of ozone near ground level [3]. Many hydrocarbons originate from auto exhaust. However, a number of VOCs, e.g., isoprene, are known to be natural in origin. To develop reliable models for un...

  5. Volatile Organic Sulfur Compounds of Environmental Interest: Dimethyl Sulfide and Methanethiol

    Science.gov (United States)

    Chasteen, Thomas G.; Bentley, Ronald

    2004-01-01

    Volatile organic sulfur compounds (VOSCs) have been assigned environmental roles in global warming, acid precipitation, and cloud formation where two important members dimethyl sulfide (CH3)2 S, DMS, and methanethiol, CH3SH, MT, of VOSC group are involved.

  6. Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: A review

    Science.gov (United States)

    Residual pollutants including polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and carbon(aceous) nanoparticles are inevitably generated during the pyrolysis of waste biomass, and remain on the solid co-product called biochar. Such pollutants could have adverse effects on ...

  7. Total Oxidation of Model Volatile Organic Compounds over Some Commercial Catalysts

    Czech Academy of Sciences Publication Activity Database

    Matějová, Lenka; Topka, Pavel; Jirátová, Květa; Šolcová, Olga

    2012-01-01

    Roč. 443, NOV 7 (2012), s. 40-49 ISSN 0926-860X R&D Projects: GA MPO FR-TI1/059 Institutional support: RVO:67985858 Keywords : volatile organic compounds * oxidation * ethanol Subject RIV: DM - Solid Waste and Recycling Impact factor: 3.410, year: 2012

  8. A POLYMER-CERAMIC COMPOSITE MEMBRANE FOR RECOVERING VOLATILE ORGANIC COMPOUNDS FROM WASTEWATERS BY PERVAPORATION

    Science.gov (United States)

    A composite membrane was constructed on a porous ceramic support from a block copolymer of styrene and butadiene (SBS). It was tested in a laboratory pervaporation apparatus for recovering volatile organic compounds (VOCs) such a 1,1,1-trichloroethane (TCA) and trichloroethylene ...

  9. Aqueous adsorption and removal of organic contaminants by carbon nanotubes

    International Nuclear Information System (INIS)

    Yu, Jin-Gang; Zhao, Xiu-Hui; Yang, Hua; Chen, Xiao-Hong; Yang, Qiaoqin; Yu, Lin-Yan; Jiang, Jian-Hui; Chen, Xiao-Qing

    2014-01-01

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future. - Highlights: • We summarize the most recent research progress of CNTs for removal of organics. • Adsorption mechanisms between CNTs and organics were elucidated in detail. • The developing trends and prospects of CNTs for removal of organics were discussed

  10. Aqueous adsorption and removal of organic contaminants by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jin-Gang, E-mail: yujg@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Zhao, Xiu-Hui; Yang, Hua [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Chen, Xiao-Hong [Collaborative Innovation Center of Resource-conserving and Environment-friendly Society and Ecological Civilization, Changsha, Hunan 410083 (China); Yang, Qiaoqin [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada); Yu, Lin-Yan [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Jiang, Jian-Hui [College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (China); Chen, Xiao-Qing, E-mail: xqchen@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China)

    2014-06-01

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future. - Highlights: • We summarize the most recent research progress of CNTs for removal of organics. • Adsorption mechanisms between CNTs and organics were elucidated in detail. • The developing trends and prospects of CNTs for removal of organics were discussed.

  11. Fate of selected pesticides, estrogens, progestogens and volatile organic compounds during artificial aquifer recharge using surface waters.

    Science.gov (United States)

    Kuster, Marina; Díaz-Cruz, Silvia; Rosell, Mònica; López de Alda, Miren; Barceló, Damià

    2010-05-01

    The artificial recharge of aquifers has become a valuable tool to increase water resources for drinking water production in many countries. In this work a total of 41 organic pollutants belonging to the classes of pesticides, estrogens, progestogens and volatile organic compounds (VOCs) have been monitored in the water from two artificial recharge plants located in Sweden and Denmark. The results from two sampling campaigns performed in each plant indicate good chemical status of the source water, as the contaminants detected were present at very low levels, far from those established in the legislation as maximum admissible concentrations (when existing) and far from those considered as a risk. Thus, of the 17 pesticides investigated, BAM (2,6-dichlorobenzamide), desethylatrazine, simazine, atrazine, terbuthylazine, diuron, metolachlor, and diazinon were the only compounds detected, and total pesticides levels were below 25ng L(-1), respectively. Estrone-3-sulfate was the only estrogen detected, at concentrations lower than 0.5ng L(-1). Progestogens were not found in any sample. Detected VOCs (benzene, toluene, ethylbenzene, and trichloroethylene) were below 0.04microg L(-1). The efficiency of elimination of these organic contaminants was poor as no significant decrease in their concentrations was observed through the recharge process.

  12. Development of HUMASORB trademark, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    International Nuclear Information System (INIS)

    Sanjay, H.G.; Srivastave, K.C.; Walia, D.S.

    1995-01-01

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project.The objective of this project is to develop a lignite-derived adsorbent, Humasorb TM to remove heavy metals and organics from ground water and surface water streams

  13. Simultaneous biodegradation of volatile and toxic contaminant mixtures by solid–liquid two-phase partitioning bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Poleo, Eduardo E.; Daugulis, Andrew J., E-mail: andrew.daugulis@chee.queensu.ca

    2013-06-15

    Highlights: • We investigate the simultaneous biodegradation of phenol and butyl acetate. • We identify an effective polymer mixture to selectively absorb each of the substrates and decrease their initial concentration. •The polymer mixture is used to overcome the high phenol cytotoxicity and reduce the abiotic losses of butyl acetate associated with volatility. • The solid–liquid Two Phase Partitioning Bioreactor (TPPB) outperforms the liquid–liquid TPPB and the single phase systems. -- Abstract: Microbial inhibition and stripping of volatile compounds are two common problems encountered in the biotreatment of contaminated wastewaters. Both can be addressed by the addition of a hydrophobic auxiliary phase that can absorb and subsequently re-release the substrates, lowering their initial aqueous concentrations. Such systems have been described as Two Phase Partitioning Bioreactors (TPPBs). In the current work the performances of a solid–liquid TPPB, a liquid–liquid TPPB and a single phase reactor for the simultaneous degradation of butyl acetate (the volatile component) and phenol (the toxic component) have been compared. The auxiliary phase used in the solid–liquid TPPB was a 50:50 polymer mixture of styrene–butadiene rubber and Hytrel{sup ®} 8206, with high affinities for butyl acetate and phenol, respectively. The liquid–liquid TPPB employed silicone oil which has fixed physical properties, and had no capacity to absorb the toxic contaminant (phenol). Butyl acetate degradation was enhanced in both TPPBs relative to the single phase, arising from its sequestration into the auxiliary phase, thereby reducing volatilization losses. The solid–liquid TPPB additionally showed a substantial increase in the phenol degradation rate, relative to the silicone oil system, demonstrating the superiority and versatility of polymer based systems.

  14. Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols

    Directory of Open Access Journals (Sweden)

    Y. Li

    2016-03-01

    Full Text Available The formation and aging of organic aerosols (OA proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of OA evolution in atmospheric aerosol models. Based on data from over 30 000 compounds, we show that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. We developed parameterizations to predict the saturation mass concentration of organic compounds containing oxygen, nitrogen, and sulfur from the elemental composition that can be measured by soft-ionization high-resolution mass spectrometry. Field measurement data from new particle formation events, biomass burning, cloud/fog processing, and indoor environments were mapped into molecular corridors to characterize the chemical nature of the observed OA components. We found that less-oxidized indoor OA are constrained to a corridor of low molar mass and high volatility, whereas highly oxygenated compounds in atmospheric water extend to high molar mass and low volatility. Among the nitrogen- and sulfur-containing compounds identified in atmospheric aerosols, amines tend to exhibit low molar mass and high volatility, whereas organonitrates and organosulfates follow high O : C corridors extending to high molar mass and low volatility. We suggest that the consideration of molar mass and molecular corridors can help to constrain volatility and particle-phase state in the modeling of OA particularly for nitrogen- and sulfur-containing compounds.

  15. Evaluation of photoionization detector performance in photocatalytic studies for removing volatile organic compounds

    Directory of Open Access Journals (Sweden)

    Masoud Rismanchian

    2012-01-01

    Full Text Available Aims: The aim of this study was to evaluate the performance of photoionization detector (PID system as a substitution for gas chromatography in the measurement of a 3 xylene isomer mixtures as a representative of the volatile organic compounds in photocatalytic studies. Materials and Methods: This study has been carried out by using test setup for generating known concentrations from equal ratio of 3 xylene isomers. The concentration values to be evaluated were classified into 4 concentration ranges from 0.1 of threshold limit values (TLV to 2 of TLV to evaluate the PID system appliance compared with that in the reference method. The test was done 4 times for each evaluation concentration in 3 relative humidity levels (0%, 20%, and 80%. Results: The correlation between the PID results and the National Institue of Occupational Safety and Health (NIOSH reference method results in an atmosphere with relative humidity of 0%, 20%, and 80% were good and, respectively, were 0.993, 0.992, and 0.991 and total correlation was 0.989. The paired t test indicates a significant difference between actual concentrations in reference method and the extracted concentration from PID. Conclusions: Although the results presented by PID in the present study are different from those extracted from the reference method (from 10 to 260 ppm, the equipment response is linear. So, the results are acceptable in photocatalytic studies in case the contaminant concentration is measured by the same equipment either before or after the reactor for calculation of the removal efficiency. PID calibration with the test material(s is recommended.

  16. Organic contaminants in thermal plume resident brown trout

    International Nuclear Information System (INIS)

    Romberg, G.P.; Bourne, S.

    1978-01-01

    A pilot study was conducted to identify possible contaminants accumulated by thermal plume-resident fish in Lake Michigan. Brown trout were maintained in tanks receiving intake and discharge (less than or equal to 21 0 C) water from a power plant and were fed a diet of frozen alewife. Fish were sampled over a period of 127 days in order to estimate uptake rates and equilibrium levels for toxic organic and inorganic materials occurring in Lake Michigan fish and water. Experimental fish and natural samples were analyzed to determine the distribution of contaminants in various tissues and the corresponding pollutant levels in similar size brown trout from Lake Michigan. The quantitative analyses for the major organic contaminants are summarized. Without exception, the pyloric caecum of brown trout contained the highest concentration of lipids, PCB's, and chlorinated pesticides. Gill and kidney samples contained lower concentrations of contaminants than the caecum, while liver and muscle values were lowest

  17. Sensing of volatile organic compounds by copper phthalocyanine thin films

    Science.gov (United States)

    Ridhi, R.; Saini, G. S. S.; Tripathi, S. K.

    2017-02-01

    Thin films of copper phthalocyanine have been deposited by thermal evaporation technique. We have subsequently exposed these films to the vapours of methanol, ethanol and propanol. Optical absorption, infrared spectra and electrical conductivities of these films before and after exposure to chemical vapours have been recorded in order to study their sensing mechanisms towards organic vapours. These films exhibit maximum sensing response to methanol while low sensitivities of the films towards ethanol and propanol have been observed. The changes in sensitivities have been correlated with presence of carbon groups in the chemical vapours. The effect of different types of electrodes on response-recovery times of the thin film with organic vapours has been studied and compared. The electrodes gap distance affects the sensitivity as well as response-recovery time values of the thin films.

  18. Estimation of the volatility distribution of organic aerosol combining thermodenuder and isothermal dilution measurements

    Science.gov (United States)

    Louvaris, Evangelos E.; Karnezi, Eleni; Kostenidou, Evangelia; Kaltsonoudis, Christos; Pandis, Spyros N.

    2017-10-01

    A method is developed following the work of Grieshop et al. (2009) for the determination of the organic aerosol (OA) volatility distribution combining thermodenuder (TD) and isothermal dilution measurements. The approach was tested in experiments that were conducted in a smog chamber using organic aerosol (OA) produced during meat charbroiling. A TD was operated at temperatures ranging from 25 to 250 °C with a 14 s centerline residence time coupled to a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a scanning mobility particle sizer (SMPS). In parallel, a dilution chamber filled with clean air was used to dilute isothermally the aerosol of the larger chamber by approximately a factor of 10. The OA mass fraction remaining was measured as a function of temperature in the TD and as a function of time in the isothermal dilution chamber. These two sets of measurements were used together to estimate the volatility distribution of the OA and its effective vaporization enthalpy and accommodation coefficient. In the isothermal dilution experiments approximately 20 % of the OA evaporated within 15 min. Almost all the OA evaporated in the TD at approximately 200 °C. The resulting volatility distributions suggested that around 60-75 % of the cooking OA (COA) at concentrations around 500 µg m-3 consisted of low-volatility organic compounds (LVOCs), 20-30 % of semivolatile organic compounds (SVOCs), and around 10 % of intermediate-volatility organic compounds (IVOCs). The estimated effective vaporization enthalpy of COA was 100 ± 20 kJ mol-1 and the effective accommodation coefficient was 0.06-0.07. Addition of the dilution measurements to the TD data results in a lower uncertainty of the estimated vaporization enthalpy as well as the SVOC content of the OA.

  19. Estimation of the volatility distribution of organic aerosol combining thermodenuder and isothermal dilution measurements

    Directory of Open Access Journals (Sweden)

    E. E. Louvaris

    2017-10-01

    Full Text Available A method is developed following the work of Grieshop et al. (2009 for the determination of the organic aerosol (OA volatility distribution combining thermodenuder (TD and isothermal dilution measurements. The approach was tested in experiments that were conducted in a smog chamber using organic aerosol (OA produced during meat charbroiling. A TD was operated at temperatures ranging from 25 to 250 °C with a 14 s centerline residence time coupled to a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS and a scanning mobility particle sizer (SMPS. In parallel, a dilution chamber filled with clean air was used to dilute isothermally the aerosol of the larger chamber by approximately a factor of 10. The OA mass fraction remaining was measured as a function of temperature in the TD and as a function of time in the isothermal dilution chamber. These two sets of measurements were used together to estimate the volatility distribution of the OA and its effective vaporization enthalpy and accommodation coefficient. In the isothermal dilution experiments approximately 20 % of the OA evaporated within 15 min. Almost all the OA evaporated in the TD at approximately 200 °C. The resulting volatility distributions suggested that around 60–75 % of the cooking OA (COA at concentrations around 500 µg m−3 consisted of low-volatility organic compounds (LVOCs, 20–30 % of semivolatile organic compounds (SVOCs, and around 10 % of intermediate-volatility organic compounds (IVOCs. The estimated effective vaporization enthalpy of COA was 100 ± 20 kJ mol−1 and the effective accommodation coefficient was 0.06–0.07. Addition of the dilution measurements to the TD data results in a lower uncertainty of the estimated vaporization enthalpy as well as the SVOC content of the OA.

  20. The Photocatalytic Destruction of Volatile Organic Compounds in Water

    Science.gov (United States)

    1991-12-10

    some common oxidants. It can be seen that the hydroxyl radical is only second to the fluorine ion in oxidation potential. 5 Table 2.1 Dissociation...Potential of Oxidants (Bernardin, 1991) Relative Oxidation Oxidative Power, Chlorine = 1 Species Potential (volts) 2.23 Fluorine 3.03 2.06 Hydroxyl... varnishes . It is used as a universal degreaser, in drycleaning, and in the manufacture of organic chemicals. On military bases it is used as a universal

  1. Bioavailability of sediment-bound contaminants to marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B. [Battelle/Marine Sciences Lab., Sequim, WA (United States)]|[Colby Coll., Waterville, ME (United States); Neff, J. [Battelle/Marine Sciences Lab., Sequim, WA (United States)]|[Battelle Ocean Sciences, Duxbury, MA (United States)

    1993-09-01

    The bioavailability of sediment-bound contaminants to marine organisms indicates that there exists a potential for transfer of these contaminants through marine food webs to commercial fisheries products consumed by humans. However, there has been relatively little effort to combine and synthesize data on chemical/biological interactions between benthic animals and seagrasses and the sediments in which they reside on the one hand, and on the chemistry of bioaccumulation on the other. This report provides a conceptual basis for an approach to bioavailability and biomagnification of sediment-bound contaminants that reviews biological and chemical approaches.

  2. Evaluation of the kinetic oxidation of aqueous volatile organic compounds by permanganate.

    Science.gov (United States)

    Mahmoodlu, Mojtaba G; Hassanizadeh, S Majid; Hartog, Niels

    2014-07-01

    The use of permanganate solutions for in-situ chemical oxidation (ISCO) is a well-established groundwater remediation technology, particularly for targeting chlorinated ethenes. The kinetics of oxidation reactions is an important ISCO remediation design aspect that affects the efficiency and oxidant persistence. The overall rate of the ISCO reaction between oxidant and contaminant is typically described using a second-order kinetic model while the second-order rate constant is determined experimentally by means of a pseudo first order approach. However, earlier studies of chlorinated hydrocarbons have yielded a wide range of values for the second-order rate constants. Also, there is limited insight in the kinetics of permanganate reactions with fuel-derived groundwater contaminants such as toluene and ethanol. In this study, batch experiments were carried out to investigate and compare the oxidation kinetics of aqueous trichloroethylene (TCE), ethanol, and toluene in an aqueous potassium permanganate solution. The overall second-order rate constants were determined directly by fitting a second-order model to the data, instead of typically using the pseudo-first-order approach. The second-order reaction rate constants (M(-1) s(-1)) for TCE, toluene, and ethanol were 8.0×10(-1), 2.5×10(-4), and 6.5×10(-4), respectively. Results showed that the inappropriate use of the pseudo-first-order approach in several previous studies produced biased estimates of the second-order rate constants. In our study, this error was expressed as a function of the extent (P/N) in which the reactant concentrations deviated from the stoichiometric ratio of each oxidation reaction. The error associated with the inappropriate use of the pseudo-first-order approach is negatively correlated with the P/N ratio and reached up to 25% of the estimated second-order rate constant in some previous studies of TCE oxidation. Based on our results, a similar relation is valid for the other volatile

  3. Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory

    Science.gov (United States)

    Ng, Tse Nga; Schwartz, David E.; Lavery, Leah L.; Whiting, Gregory L.; Russo, Beverly; Krusor, Brent; Veres, Janos; Bröms, Per; Herlogsson, Lars; Alam, Naveed; Hagel, Olle; Nilsson, Jakob; Karlsson, Christer

    2012-01-01

    Scalable circuits of organic logic and memory are realized using all-additive printing processes. A 3-bit organic complementary decoder is fabricated and used to read and write non-volatile, rewritable ferroelectric memory. The decoder-memory array is patterned by inkjet and gravure printing on flexible plastics. Simulation models for the organic transistors are developed, enabling circuit designs tolerant of the variations in printed devices. We explain the key design rules in fabrication of complex printed circuits and elucidate the performance requirements of materials and devices for reliable organic digital logic. PMID:22900143

  4. Development of HUMASORB trademark, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    International Nuclear Information System (INIS)

    Sanjay, H.G.; Srivastava, K.C.; Walia, D.S.

    1995-01-01

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project

  5. Stress corrosion cracking susceptibility of steam generator tube materials in AVT (all volatile treatment) chemistry contaminated with lead

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Castano, M.L.; Garcia, M.S.

    1996-01-01

    Alloy 600 steam generator tubing has shown a high susceptibility to stress corrosion degradation at the operation conditions of pressurized water reactors. Several contaminants, such as lead, have been postulated as being responsible for producing the secondary side stress corrosion cracking that has occurred mainly at the location where these contaminants can concentrate. An extensive experimental work has been carried out in order to better understand the effects of lead on the stress corrosion cracking susceptibility of steam generator tube materials, namely Alloys 600, 690 and 800. This paper presents the experimental work conducted with a view to determining the influence of lead oxide concentration in AVT (all volatile treatment) conditions on the stress corrosion resistance of nickel alloys used in the fabrication of steam generator tubing. (orig.)

  6. HS-SPME analysis of volatile organic compounds of coniferous needle litter

    Science.gov (United States)

    Isidorov, V. A.; Vinogorova, V. T.; Rafałowski, K.

    The composition of volatile emission of Scots pine ( Pinus sylvestris) and spruce ( Picea exelsa) litter was studied by gas chromatography-mass spectrometry (GC-MS) and samples were collected by solid-phase microextraction (SPME) method. The list of identified compounds includes over 60 organic substances of different classes. It was established that volatile emission contain not only components of essential oils of pine and spruce needles but also a large number of organic compounds which are probably secondary metabolites of litter-decomposing fungi. They include lower carbonyl compounds and alcohols as well as products of terpene dehydration and oxidation. These data show that the processes of litter decomposition are an important source of reactive organic compounds under canopy of coniferous forests.

  7. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  8. Overview of one transistor type of hybrid organic ferroelectric non-volatile memory

    Institute of Scientific and Technical Information of China (English)

    Young; Tea; Chun; Daping; Chu

    2015-01-01

    Organic ferroelectric memory devices based on field effect transistors that can be configured between two stable states of on and off have been widely researched as the next generation data storage media in recent years.This emerging type of memory devices can lead to a new instrument system as a potential alternative to previous non-volatile memory building blocks in future processing units because of their numerous merits such as cost-effective process,simple structure and freedom in substrate choices.This bi-stable non-volatile memory device of information storage has been investigated using several organic or inorganic semiconductors with organic ferroelectric polymer materials.Recent progresses in this ferroelectric memory field,hybrid system have attracted a lot of attention due to their excellent device performance in comparison with that of all organic systems.In this paper,a general review of this type of ferroelectric non-volatile memory is provided,which include the device structure,organic ferroelectric materials,electrical characteristics and working principles.We also present some snapshots of our previous study on hybrid ferroelectric memories including our recent work based on zinc oxide nanowire channels.

  9. Assessment of Surface Water Contamination from Coalbed Methane Fracturing-Derived Volatile Contaminants in Sullivan County, Indiana, USA.

    Science.gov (United States)

    Meszaros, Nicholas; Subedi, Bikram; Stamets, Tristan; Shifa, Naima

    2017-09-01

    There is a growing concern over the contamination of surface water and the associated environmental and public health consequences from the recent proliferation of hydraulic fracturing in the USA. Petroleum hydrocarbon-derived contaminants of concern [benzene, toluene, ethylbenzene, and xylenes (BTEX)] and various dissolved cations and anions were spatially determined in surface waters around 15 coalbed methane fracking wells in Sullivan County, IN, USA. At least one BTEX compound was detected in 69% of sampling sites (n = 13) and 23% of sampling sites were found to be contaminated with all of the BTEX compounds. Toluene was the most common BTEX compound detected across all sampling sites, both upstream and downstream from coalbed methane fracking wells. The average concentration of toluene at a reservoir and its outlet nearby the fracking wells was ~2× higher than other downstream sites. However, one of the upstream sites was found to be contaminated with BTEX at similar concentrations as in a reservoir site nearby the fracking well. Calcium (~60 ppm) and sulfates (~175 ppm) were the dominant cations and anions, respectively, in surface water around the fracking sites. This study represents the first report of BTEX contamination in surface water from coalbed methane hydraulic fracturing wells.

  10. Detection of semi-volatile organic compounds in permeable ...

    Science.gov (United States)

    Abstract The Edison Environmental Center (EEC) has a research and demonstration permeable parking lot comprised of three different permeable systems: permeable asphalt, porous concrete and interlocking concrete permeable pavers. Water quality and quantity analysis has been ongoing since January, 2010. This paper describes a subset of the water quality analysis, analysis of semivolatile organic compounds (SVOCs) to determine if hydrocarbons were in water infiltrated through the permeable surfaces. SVOCs were analyzed in samples collected from 11 dates over a 3 year period, from 2/8/2010 to 4/1/2013.Results are broadly divided into three categories: 42 chemicals were never detected; 12 chemicals (11 chemical test) were detected at a rate of less than 10% or less; and 22 chemicals were detected at a frequency of 10% or greater (ranging from 10% to 66.5% detections). Fundamental and exploratory statistical analyses were performed on these latter analyses results by grouping results by surface type. The statistical analyses were limited due to low frequency of detections and dilutions of samples which impacted detection limits. The infiltrate data through three permeable surfaces were analyzed as non-parametric data by the Kaplan-Meier estimation method for fundamental statistics; there were some statistically observable difference in concentration between pavement types when using Tarone-Ware Comparison Hypothesis Test. Additionally Spearman Rank order non-parame

  11. Potential for ion-induced nucleation of volatile organic compounds by radon decay in indoor environments

    International Nuclear Information System (INIS)

    Daisey, J.M.

    1991-11-01

    There is considerable interest in the ''unattached'' fraction of radon progeny in indoor air because of its significance to the estimation of the risks of radon exposure. Because of its high mobility in air, the unattached fraction is more efficiently deposited in the respiratory tract. Variation in the diameter of the ''unattached'' fraction and in its diffusion coefficient can be due to clustering of other atmospheric species around the 218 PoO 2 + ion. The purpose of this study was to investigate the potential for the formation of clusters of vapor phase organic compounds, found in indoor air, around the 218 PoO 2 + ion and to determine which were most likely to form clusters. A secondary purpose was to provide a compilation of measurements of indoor organic compounds for future experiments and theoretical calculations by the radon research community. The classical charged liquid droplet theory (Thomson equation) was used to estimate the Gibbs free energy of ion-induced nucleation and to provide an indication of the indoor organic compounds most likely to undergo ion-induced nucleation. Forty-four volatile and semi-volatile organic compounds out of the more than 300 which have been reported in indoor air were investigated. Water vapor was included for comparison. The results indicate that there is a potential for the formation of clusters of organic compounds around the 218 PoO 2 + ion. The compounds with the greatest potential for cluster formation are the volatile oxidized hydrocarbons (e.g., n-butanol, phenol, hexanal, nonanal, benzaldehyde, the ketones and the acetates) and the semi-volatile organic compounds (pentachlorophenol, nicotine, chlordane, chlorpyrifos)

  12. Analysis of Organic Volatile Flavor Compounds in Fermented Stinky Tofu Using SPME with Different Fiber Coatings

    Directory of Open Access Journals (Sweden)

    Wei Guan

    2012-03-01

    Full Text Available The organic volatile flavor compounds in fermented stinky tofu (FST were studied using SPME-GC/MS. A total of 39 volatile compounds were identified, including nine esters, seven alcohols, five alkenes, four sulfides, three heterocycles, three carboxylic acids, three ketones, two aldehydes, one phenol, one amine and one ether. These compounds were determined by MS, and conformed by comparison of the retention times of the separated constituents with those of authentic samples and by comparison of retention indexes (RIs of separated constituents with the RIs reported in the literature. The predominant volatile compound in FST was indole, followed by dimethyl trisulfide, phenol, dimethyl disulfide and dimethyl tetrasulfide. In order to find a better extraction time, the extraction times was optimized for each type of SPME fiber; the results show that the best extraction time for Carboxen/PDMS is 60 min, for PDMS/DVB 30 min, for DVB/CAR/PDMS 60 min and for PDMS 75 min. Of the four fibers used in this work, Carboxen/PDMS is found to be the most suitable to extract the organic volatile flavor compounds in fermented stinky tofu.

  13. Increase in volatilization of organic compounds using air sparging through addition in alcohol in a soil-water system.

    Science.gov (United States)

    Chao, Huan-Ping; Hsieh, Lin-Han Chiang; Tran, Hai Nguyen

    2018-02-15

    This study developed a novel method to promote the remediation efficiency of air sparging. According to the enhanced-volatilization theory presented in this study, selected alcohols added to groundwater can highly enhance the volatilization amounts of organic compounds with high Henry's law constants. In this study, the target organic compounds consisted of n-hexane, n-heptane, benzene, toluene, 1,1,2-trichloroethane, and tetrachloroethene. n-pentanol, n-hexanol, and n-heptanol were used to examine the changes in the volatilization amounts of organic compounds in the given period. Two types of soils with high and low organic matter were applied to evaluate the transport of organic compounds in the soil-water system. The volatilization amounts of the organic compounds increased with increasing alcohol concentrations. The volatilization amounts of the test organic compounds exhibited a decreasing order: n-heptanol>n-hexanol>n-pentanol. When 10mg/L n-heptanol was added to the system, the maximum volatilization enhancement rate was 18-fold higher than that in distilled water. Samples of soil with high organic matter might reduce the volatilization amounts by a factor of 5-10. In the present study, the optimal removal efficiency for aromatic compounds was approximately 98%. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. MEMBRANE SYSTEM FOR RECOVERY OF VOLATILE ORGANIC COMPOUNDS FROM REMEDIATION OFF-GASES

    International Nuclear Information System (INIS)

    Wijmans, J.G.

    2003-01-01

    In situ vacuum extraction, air or steam sparging, and vitrification are widely used to remediate soil contaminated with volatile organic compounds (VOCs). All of these processes produce a VOC-laden air stream from which the VOC must be removed before the air can be discharged or recycled to the generating process. Treatment of these off-gases is often a major portion of the cost of the remediation project. Currently, carbon adsorption and catalytic incineration are the most common methods of treating these gas streams. Membrane Technology and Research, Inc. (MTR) proposed an alternative treatment technology based on selective membranes that separate the organic components from the gas stream, producing a VOC-free air stream. This technology can be applied to off-gases produced by various remediation activities and the systems can be skid-mounted and automated for easy transportation and unattended operation. The target performance for the membrane systems is to produce clean air (less than 10 ppmv VOC) for discharge or recycle, dischargeable water (less than 1 ppmw VOC), and a concentrated liquid VOC phase. This report contains the results obtained during Phase II of a two-phase project. In Phase I, laboratory experiments were carried out to demonstrate the feasibility of the proposed approach. In the subsequent Phase II project, a demonstration system was built and operated at the McClellan Air Force Base near Sacramento, California. The membrane system was fed with off-gas from a Soil Vacuum Extraction (SVE) system. The work performed in Phase II demonstrated that the membrane system can reduce the VOC concentration in remediation off-gas to 10 ppmv, while producing a concentrated VOC phase and dischargeable water containing less than 1 ppmw VOC. However, the tests showed that the presence of 1 to 3% carbon dioxide in the SVE off-gas reduced the treatment capacity of the system by a factor of three to four. In an economic analysis, treatment costs of the membrane

  15. A global perspective on aerosol from low-volatility organic compounds

    Directory of Open Access Journals (Sweden)

    H. O. T. Pye

    2010-05-01

    Full Text Available Global production of organic aerosol from primary emissions of semivolatile (SVOCs and intermediate (IVOCs volatility organic compounds is estimated using the global chemical transport model, GEOS-Chem. SVOC oxidation is predicted to be a larger global source of net aerosol production than oxidation of traditional parent hydrocarbons (terpenes, isoprene, and aromatics. Using a prescribed rate constant and reduction in volatility for atmospheric oxidation, the yield of aerosol from SVOCs is predicted to be about 75% on a global, annually-averaged basis. For IVOCs, the use of a naphthalene-like surrogate with different high-NOx and low-NOx parameterizations produces a global aerosol yield of about 30%, or roughly 5 Tg/yr of aerosol. Estimates of the total global organic aerosol source presented here range between 60 and 100 Tg/yr. This range reflects uncertainty in the parameters for SVOC volatility, SVOC oxidation, SVOC emissions, and IVOC emissions, as well as wet deposition. The highest estimates result if SVOC emissions are significantly underestimated (by more than a factor of 2 or if wet deposition of the gas-phase semivolatile species is less effective than previous estimates. A significant increase in SVOC emissions, a reduction of the volatility of the SVOC emissions, or an increase in the enthalpy of vaporization of the organic aerosol all lead to an appreciable reduction of prediction/measurement discrepancy. In addition, if current primary organic aerosol (POA inventories capture only about one-half of the SVOC emission and the Henrys Law coefficient for oxidized semivolatiles is on the order of 103 M/atm, a global estimate of OA production is not inconsistent with the top-down estimate of 140 Tg/yr by (Goldstein and Galbally, 2007. Additional information is needed to constrain the emissions and treatment of SVOCs and IVOCs, which have traditionally not been included in models.

  16. A microfluidic device for open loop stripping of volatile organic compounds.

    Science.gov (United States)

    Cvetković, Benjamin Z; Dittrich, Petra S

    2013-03-01

    The detection of volatile organic compounds is of great importance for assessing the quality of water. In this contribution, we describe a miniaturized stripping device that allows fast online detection of organic solvents in water. The core component is a glass microfluidic chip that facilitates the creation of an annular-flowing stream of water and nitrogen gas. Volatile compounds are transferred efficiently from the water into the gas phase along the microfluidic pathway at room temperature within less than 5 s. Before exiting the microchip, the liquid phase is separated from the enriched gas phase by incorporating side capillaries through which the hydrophilic water phase is withdrawn. The gas phase is conveniently collected at the outlet reservoir by tubing. Finally, a semiconductor gas sensor analyzes the concentration of (volatile) organic compounds in the nitrogen gas. The operation and use of the stripping device is demonstrated for the organic solvents THF, 1-propanol, toluene, ethylbenzene, benzaldehyde, and methanol. The mobile, inexpensive, and continuously operating system with liquid flow rates in the low range of microliters per minute can be connected to other detectors or implemented in chemical production line for process control.

  17. Modelling the fate of oxidisable organic contaminants in groundwater

    DEFF Research Database (Denmark)

    Barry, D.A.; Prommer, H.; Miller, C.T.

    2002-01-01

    modelling framework is illustrated by pertinent examples, showing the degradation of dissolved organics by microbial activity limited by the availability of nutrients or electron acceptors (i.e., changing redox states), as well as concomitant secondary reactions. Two field-scale modelling examples......Subsurface contamination by organic chemicals is a pervasive environmental problem, susceptible to remediation by natural or enhanced attenuation approaches or more highly engineered methods such as pump-and-treat, amongst others. Such remediation approaches, along with risk assessment...... are discussed, the Vejen landfill (Denmark) and an example where metal contamination is remediated by redox changes wrought by injection of a dissolved organic compound. A summary is provided of current and likely future challenges to modelling of oxidisable organics in the subsurface. (C) 2002 Elsevier Science...

  18. Method of processing radiation-contaminated organic polymer materials

    International Nuclear Information System (INIS)

    Kobayashi, Yoshii.

    1980-01-01

    Purpose: To process radiation contaminated organic high polymer materials with no evolution of toxic gases, at low temperature and with safety by hot-acid immersion process using sulfuric acid-hydrogen peroxide. Method: Less flammable or easily flammable organic polymers contaminated with radioactive substances, particularly with long life actinoid are heated and carbonized in concentrated sulfuric acid. Then, aqueous 30% H 2 O 2 solution is continuously added dropwise as an oxidizing agent till the solution turns colourless. If the carbonization was insufficient, addition of H 2 O 2 solution is stopped temporarily and the carbonization is conducted again. Thus, the organic polymers are completely decomposed by the wet oxidization. Then, the volume of the organic materials to be discharged is decreased and the radioactive substances contained are simultaneously concentrated and collected. (Seki, T.)

  19. [Microscopic soil fungi - bioindicators organisms contaminated soil].

    Science.gov (United States)

    Donerian, L G; Vodianova, M A; Tarasova, Zh E

    In the paper there are considered methodological issues for the evaluation of soil biota in terms of oil pollution. Experimental studies have shown that under the exposure of a various levels of oil pollution meeting certain gradations of the state and optimal alteration in microbocenosis in sod-podzolic soils, there is occurred a transformation of structure of the complex of micromycetes and the accumulation of toxic species, hardly typical for podzolic soils - primarily represantatives of the genus Aspergillus (A.niger and A. versicolor), Paecilomyces (P.variotii Bainer), Trichoderma (T.hamatum), the genus of phytopathogens Fusarium (F.oxysporum), dermatophytes of genus Sporothrix (S. schenckii) and dark-colored melanin containing fungi of Dematiaceae family. Besides that there are presented data on the study of microbiocenosis of the urban soil, the urban soil differed from the zone soil, but shaped in similar landscape and climatic conditions, and therefore having a tendency to a similar response from the side of microorganisms inhabiting the soil. Isolated complex of soil microscopic fungi is described by many authors as a complex, characteristic for soils of megalopolises. This allowed authors of this work to suggest that in urban soils the gain in the occurrence of pathogenic species micromycetes also increases against a background of chronic, continuously renewed inflow of petroleum hydrocarbons from various sources of pollution. Because changes in the species composition of micromycetes occurred in accordance with the increasing load of oil, so far as microscopic soil fungi can be recommended as a bioindicator organisms for oil. In the article there is also provided information about the distinctive features of modern DNA identification method of soil microscopic fungi and accepted in our country methodology of isolation of micromycetes with the use of a nutrient Czapek medium.

  20. A Review of Semivolatile and Volatile Organic Compounds in Highway Runoff and Urban Stormwater

    Science.gov (United States)

    Lopes, Thomas J.; Dionne, Shannon G.

    1998-01-01

    Many studies have been conducted since 1970 to characterize concentrations of semivolatile organic compounds (SVOCs) in highway runoff and urban stormwater. To a lesser extent, studies also have characterized concentrations of volatile organic compounds (VOCs), estimated loads of SVOCs, and assessed potential impacts of these contaminants on receiving streams. This review evaluates the quality of existing data on SVOCs and VOCs in highway runoff and urban storm- water and summarizes significant findings. Studies related to highways are emphasized when possible. The review included 44 articles and reports that focused primarily on SVOCs and VOCs. Only 17 of these publications are related to highways, and 5 of these 17 are themselves review papers. SVOCs in urban stormwater and sediments during the late 1970's to mid-1980's were the subject of most studies. Criteria used to evaluate data quality included documentation of sampling protocols, analytical methods, minimum reporting limit (MRL) or method detection limit (MDL), qualityassurance protocols, and quality-control samples. The largest deficiency in documenting data quality was that only 10 percent of the studies described where water samples were collected in the stream cross section. About 80 percent of SVOCs in runoff are in the suspended solids. Because suspended solids can vary significantly even in narrow channels, concentrations from discrete point samples and contaminant loads estimated from those samples are questionable without information on sample location or how well streamflow was mixed. Thirty percent or fewer of the studies documented the MRL, MDL, cleaning of samplers, or use of field quality-control samples. Comparing results of different studies and evaluating the quality of environmental data, especially for samples with low concentrations, is difficult without this information. The most significant factor affecting SVOC concentrations in water is suspended solids concentration. In sediment

  1. Sensory and Physiological Effects on Humans of Combined Exposures to Air Temperatures and Volatile Organic Compounds

    DEFF Research Database (Denmark)

    Mølhave, Lars; Liu, Zunyong; Jørgensen, Anne Hempel

    1993-01-01

    Ten healthy humans were exposed to combinations of volatile organic compounds (VOCs) and air temperature (0 mg/m3 and 10 mg/m3 of a mixture of 22 volatile organic compounds and 18, 22 and 26° C). Previously demonstrated effects of VOCs and thermal exposures were replicated. For the first time nasal...... cross-sectional areas and nasal volumes, as measured by acoustic rhinometry, were shown to decrease with decreasing temperature and increasing VOC exposure. Temperature and pollutant exposures affected air quality, the need for more ventilation, skin humidity on the forehead, sweating, acute sensory...... irritation and possibly watering eyes in an additive way. Interactions were found for odor intensity (p = 0.1), perceived facial skin temperature and dryness, general well-being, tear film stability, and nasal cavity dimension. The presence of interactions implies that in the future guidelines for acceptable...

  2. Development of sampling method and chromatographic analysis of volatile organic compounds emitted from human skin.

    Science.gov (United States)

    Grabowska-Polanowska, Beata; Miarka, Przemysław; Skowron, Monika; Sułowicz, Joanna; Wojtyna, Katarzyna; Moskal, Karolina; Śliwka, Ireneusz

    2017-10-01

    The studies on volatile organic compounds emitted from skin are an interest for chemists, biologists and physicians due to their role in development of different scientific areas, including medical diagnostics, forensic medicine and the perfume design. This paper presents a proposal of two sampling methods applied to skin odor collection: the first one uses a bag of cellulose film, the second one, using cellulose sachets filled with active carbon. Volatile organic compounds were adsorbed on carbon sorbent, removed via thermal desorption and analyzed using gas chromatograph with mass spectrometer. The first sampling method allowed identification of more compounds (52) comparing to the second one (30). Quantitative analyses for acetone, butanal, pentanal and hexanal were done. The skin odor sampling method using a bag of cellulose film, allowed the identification of many more compounds when compared with the method using a sachet filled with active carbon.

  3. Volatile chemical products emerging as largest petrochemical source of urban organic emissions

    Science.gov (United States)

    McDonald, Brian C.; de Gouw, Joost A.; Gilman, Jessica B.; Jathar, Shantanu H.; Akherati, Ali; Cappa, Christopher D.; Jimenez, Jose L.; Lee-Taylor, Julia; Hayes, Patrick L.; McKeen, Stuart A.; Cui, Yu Yan; Kim, Si-Wan; Gentner, Drew R.; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Harley, Robert A.; Frost, Gregory J.; Roberts, James M.; Ryerson, Thomas B.; Trainer, Michael

    2018-02-01

    A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)—including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products—now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols.

  4. Studies of volatiles and organic materials in early terrestrial and present-day outer solar system environments

    Science.gov (United States)

    Sagan, Carl; Thompson, W. Reid; Chyba, Christopher F.; Khare, B. N.

    1991-01-01

    A review and partial summary of projects within several areas of research generally involving the origin, distribution, chemistry, and spectral/dielectric properties of volatiles and organic materials in the outer solar system and early terrestrial environments are presented. The major topics covered include: (1) impact delivery of volatiles and organic compounds to the early terrestrial planets; (2) optical constants measurements; (3) spectral classification, chemical processes, and distribution of materials; and (4) radar properties of ice, hydrocarbons, and organic heteropolymers.

  5. Reducing Organic Contamination in NASA JSC Astromaterial Curation Facility

    Science.gov (United States)

    Calaway, M. J.; Allen, C. C.; Allton, J. H.

    2013-01-01

    Future robotic and human spaceflight missions to the Moon, Mars, asteroids and comets will require handling and storing astromaterial samples with minimal inorganic and organic contamination to preserve the scientific integrity of each sample. Much was learned from the rigorous attempts to minimize and monitor organic contamination during Apollo, but it was not adequate for current analytical requirements; thus [1]. OSIRIS-REx, Hayabusa-2, and future Mars sample return will require better protocols for reducing organic contamination. Future isolation con-tainment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study established the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs [2, 3]. After standard ultra-pure water (UPW) cleaning, the majority of organic contaminates found were hydrocarbons, plasticizers, silicones, and solvents. Hydro-carbons loads (> C7) ranged from 1.9 to 11.8 ng/cm2 for TD-GC-MS wafer exposure analyses and 5.0 to 19.5 ng/L for TD-GC-MS adsorbent tube exposure. Plasticizers included peracetic acid sterilization were used in the atmospheric de-contamination (R) cabinets. Later, Lunar curation gloveboxes were degreased with a pressurized Freon 113 wash. Today, UPW has replaced Freon as the standard cleaning procedure, but does not have the degreasing solvency power of Freon. Future Cleaning Studies: Cleaning experiments are cur-rently being orchestrated to study how to degrease and reduce organics in a JSC curation glovebox lower than the established baseline. Several new chemicals in the industry have replaced traditional degreasing solvents such as Freon and others that are now federally restricted. However, these new suites of chemicals remain untested for lowering organics in curation gloveboxes. 3M's HFE-7100DL and Du

  6. New device for time-averaged measurement of volatile organic compounds (VOCs).

    Science.gov (United States)

    Santiago Sánchez, Noemí; Tejada Alarcón, Sergio; Tortajada Santonja, Rafael; Llorca-Pórcel, Julio

    2014-07-01

    Contamination by volatile organic compounds (VOCs) in the environment is an increasing concern since these compounds are harmful to ecosystems and even to human health. Actually, many of them are considered toxic and/or carcinogenic. The main sources of pollution come from very diffuse focal points such as industrial discharges, urban water and accidental spills as these compounds may be present in many products and processes (i.e., paints, fuels, petroleum products, raw materials, solvents, etc.) making their control difficult. The presence of these compounds in groundwater, influenced by discharges, leachate or effluents of WWTPs is especially problematic. In recent years, law has been increasingly restrictive with the emissions of these compounds. From an environmental point of view, the European Water Framework Directive (2000/60/EC) sets out some VOCs as priority substances. This binding directive sets guidelines to control compounds such as benzene, chloroform, and carbon tetrachloride to be at a very low level of concentration and with a very high frequency of analysis. The presence of VOCs in the various effluents is often highly variable and discontinuous since it depends on the variability of the sources of contamination. Therefore, in order to have complete information of the presence of these contaminants and to effectively take preventive measures, it is important to continuously control, requiring the development of new devices which obtain average concentrations over time. As of today, due to technical limitations, there are no devices on the market that allow continuous sampling of these compounds in an efficient way and to facilitate sufficient detection limits to meet the legal requirements which are capable of detecting very sporadic and of short duration discharges. LABAQUA has developed a device which consists of a small peristaltic pump controlled by an electronic board that governs its operation by pre-programming. A constant flow passes

  7. New device for time-averaged measurement of volatile organic compounds (VOCs)

    Energy Technology Data Exchange (ETDEWEB)

    Santiago Sánchez, Noemí; Tejada Alarcón, Sergio; Tortajada Santonja, Rafael; Llorca-Pórcel, Julio, E-mail: julio.llorca@aqualogy.net

    2014-07-01

    Contamination by volatile organic compounds (VOCs) in the environment is an increasing concern since these compounds are harmful to ecosystems and even to human health. Actually, many of them are considered toxic and/or carcinogenic. The main sources of pollution come from very diffuse focal points such as industrial discharges, urban water and accidental spills as these compounds may be present in many products and processes (i.e., paints, fuels, petroleum products, raw materials, solvents, etc.) making their control difficult. The presence of these compounds in groundwater, influenced by discharges, leachate or effluents of WWTPs is especially problematic. In recent years, law has been increasingly restrictive with the emissions of these compounds. From an environmental point of view, the European Water Framework Directive (2000/60/EC) sets out some VOCs as priority substances. This binding directive sets guidelines to control compounds such as benzene, chloroform, and carbon tetrachloride to be at a very low level of concentration and with a very high frequency of analysis. The presence of VOCs in the various effluents is often highly variable and discontinuous since it depends on the variability of the sources of contamination. Therefore, in order to have complete information of the presence of these contaminants and to effectively take preventive measures, it is important to continuously control, requiring the development of new devices which obtain average concentrations over time. As of today, due to technical limitations, there are no devices on the market that allow continuous sampling of these compounds in an efficient way and to facilitate sufficient detection limits to meet the legal requirements which are capable of detecting very sporadic and of short duration discharges. LABAQUA has developed a device which consists of a small peristaltic pump controlled by an electronic board that governs its operation by pre-programming. A constant flow passes

  8. Proficiency Test SYKE 8/2012. Volatile organic compounds in water and soil

    OpenAIRE

    Korhonen-Ylönen, Kaija; Nuutinen, Jari; Leivuori, Mirja; Ilmakunnas, Markku

    2013-01-01

    Proftest SYKE carried out the proficiency test for analysis of volatile organic compounds from water and soil in October 2012. One artificial sample and one river water sample and one soil sample were distributed. In total, 15 laboratories participated in the proficiency test. Either the calculated concentration or the robust mean value was chosen to be the assigned value for the measurement. The performance of the participants was evaluated by using z scores. In this proficiency test 72 % of...

  9. Symptoms of mothers and infants related to total volatile organic compounds in household products

    OpenAIRE

    Farrow, A; Taylor, H; Northstone, K; Golding, J

    2003-01-01

    The authors sought to determine whether reported symptoms of mothers and infants were associated significantly with the use of household products that raised indoor levels of total volatile organic compounds (TVOCs). Data collected from 170 homes within the Avon Longitudinal Study of Parents and Children (ALSPAC: a large birth cohort of more than 10,000) had determined which household products were associated with the highest levels of TVOCs. The latter data were collected over a period that ...

  10. Performance specifications for technology development: Application for characterization of volatile organic compounds in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, S.E.; Doskey, P.V.; Erickson, M.D.; Lindahl, P.C.

    1994-07-01

    This report contains information about technology development for the monitoring and remediation of environmental pollution caused by the release of volatile organic compounds. Topics discussed include: performance specification processes, gas chromatography, mass spectrometer, fiber-optic chemical sensors, infrared spectroscopy, Raman spectroscopy, piezoelectric sensors and electrochemical sensors. These methods are analyzed for their cost efficiency, accuracy, and the ability to meet the needs of the customer.

  11. SOLUTION THERMODYNAMICS OF TRICLOSAN AND TRICLOCARBAN IN SOME VOLATILE ORGANIC SOLVENTS

    OpenAIRE

    DELGADO, Daniel R.; R. HOLGUIN, Andres; MARTÍNEZ, Fleming

    2012-01-01

    Thermodynamic functions of Gibbs energy, enthalpy, and entropy for the solution processes of the antimicrobial drugs Triclosan and Triclocarban in five volatile organic solvents were calculated from solubility values at temperatures from 293.15 to 313.15 K. Triclosan and Triclocarban solubility was determined in acetone, acetonitrile (AcCN), ethyl acetate (AcOEt), methanol (MetOH), and cyclohexane (CH). The excess of Gibbs energy and the activity coefficients of the solutes were also calculat...

  12. [Photoionization ion mobility spectrometry (UV-IMS) for the isomeric volatile organic compounds].

    Science.gov (United States)

    Li, Hu; Niu, Wen-qi; Wang, Hong-mei; Huang, Chao-qun; Jiang, Hai-he; Chu, Yan-nan

    2012-01-01

    The construction and performance study is reported for a newly developed ultraviolet photoionization ion mobility spectrometry (UV-IMS). In the present paper, an UV-IMS technique was firstly developed to detect eleven isomeric volatile organic compounds including the differences in the structure of carbon chain, the style of function group and the position of function group. Their reduced mobility values were determined and increased in this order: linears alcohols homemade UV-IMS was around ppb-ppm.

  13. Wet effluent diffusion denuder technique and the determination of volatile organic compounds in air. II. Monoterpenes

    Czech Academy of Sciences Publication Activity Database

    Sklenská, Jana; Broškovičová, Anna; Večeřa, Zbyněk

    2002-01-01

    Roč. 973, 1-2 (2002), s. 211-216 ISSN 0021-9673 R&D Projects: GA ČR GA203/98/0943 Grant - others:SPSDII(XE) EV/02/11 Institutional research plan: CEZ:AV0Z4031919 Keywords : wet effluent denuder technique * volatile organic compounds * monoterpenes Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.098, year: 2002

  14. Very volatile organic compounds: An understudied class of indoor air pollutants: Keynote: Indoor Air 2014

    OpenAIRE

    Salthammer, T.

    2016-01-01

    Very volatile organic compounds (VVOCs), as categorized by the WHO, are an important subgroup of indoor pollutants and cover a wide spectrum of chemical substances. Some VVOCs are components of products commonly used indoors, some result from chemical reactions and some are reactive precursors of secondary products. Nevertheless, there is still no clear and internationally accepted definition of VVOCs. Current approaches are based on the boiling point, and the saturation vapor pressure or ref...

  15. Modeling Human Exposure Levels to Airborne Volatile Organic Compounds by the Hebei Spirit Oil Spill

    OpenAIRE

    Kim, Jong Ho; Kwak, Byoung Kyu; Ha, Mina; Cheong, Hae-Kwan; Yi, Jongheop

    2012-01-01

    Objectives The goal was to model and quantify the atmospheric concentrations of volatile organic compounds (VOCs) as the result of the Hebei Spirit oil spill, and to predict whether the exposure levels were abnormally high or not. Methods We developed a model for calculating the airborne concentration of VOCs that are produced in an oil spill accident. The model was applied to a practical situation, namely the Hebei Spirit oil spill. The accuracy of the model was verified by comparing the res...

  16. Pricing Volatility Referenced Assets

    Directory of Open Access Journals (Sweden)

    Alan De Genaro Dario

    2006-12-01

    Full Text Available Volatility swaps are contingent claims on future realized volatility. Variance swaps are similar instruments on future realized variance, the square of future realized volatility. Unlike a plain vanilla option, whose volatility exposure is contaminated by its asset price dependence, volatility and variance swaps provide a pure exposure to volatility alone. This article discusses the risk-neutral valuation of volatility and variance swaps based on the framework outlined in the Heston (1993 stochastic volatility model. Additionally, the Heston (1993 model is calibrated for foreign currency options traded at BMF and its parameters are used to price swaps on volatility and variance of the BRL / USD exchange rate.

  17. Evaluation of emplacement sensors for detecting radiation and volatile organic compounds and for long-term monitoring access tubes for the BWCS

    International Nuclear Information System (INIS)

    Lord, D.L.; Averill, R.H.

    1997-10-01

    This document evaluates sensors for detecting contaminants in the excavated waste generated by the Buried Waste Containment System (BWCS). The Barrier Placement Machine (BPM) removes spoils from under a landfill or plume and places it on a conveyor belt on the left and right sides of the BPM. The spoils will travel down the conveyor belts past assay monitors and be deposited on top of the site being worked. The belts are 5 ft wide and transport approximately 15 ft3 /minute of spoils. This corresponds to a 10 ft per hour BPM advance rate. With a 2 in. spoils height the belt speed would be 3.6 in. per second. The spoils being removed are expected to be open-quotes cleanclose quotes (no radiation or volatile organics above background levels). To ensure that the equipment is not digging through a contaminated area, assay equipment will monitor the spoils for mg radiation and volatile organic compounds (VOCs). The radiation monitors will check for gross radiation indication. Upon detection of radiation levels above a predetermined setpoint, further evaluation will be performed to determine the isotopes present and their quantity. This will require hand held monitors and a remote monitoring station. Simultaneously, VOC monitors will monitor for predetermined volatile/semi-volatile organic compounds. A Fourier-Transform Infrared Spectrometer (FTIR) monitor is recommended for this operation. Specific site requirements and regulations will determine setpoints and operation scenarios. If VOCs are detected, the data will be collected and recorded. A flat panel display will be mounted in the BPM operator''s cab showing the radio nuclide and VOC monitoring data. As the BPM advances, a 3-in. diameter PVC tube will be placed on the bottom of the barrier slot in front of the 12 to 16-in. containment barrier being emplaced

  18. Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment.

    Science.gov (United States)

    Ghattas, Ann-Kathrin; Fischer, Ferdinand; Wick, Arne; Ternes, Thomas A

    2017-06-01

    Although strictly anaerobic conditions prevail in several environmental compartments, up to now, biodegradation studies with emerging organic contaminants (EOCs), such as pharmaceuticals and personal care products, have mainly focused on aerobic conditions. One of the reasons probably is the assumption that the aerobic degradation is more energetically favorable than degradation under strictly anaerobic conditions. Certain aerobically recalcitrant contaminants, however, are biodegraded under strictly anaerobic conditions and little is known about the organisms and enzymatic processes involved in their degradation. This review provides a comprehensive survey of characteristic anaerobic biotransformation reactions for a variety of well-studied, structurally rather simple contaminants (SMOCs) bearing one or a few different functional groups/structural moieties. Furthermore it summarizes anaerobic degradation studies of more complex contaminants with several functional groups (CMCs), in soil, sediment and wastewater treatment. While strictly anaerobic conditions are able to promote the transformation of several aerobically persistent contaminants, the variety of observed reactions is limited, with reductive dehalogenations and the cleavage of ether bonds being the most prevalent. Thus, it becomes clear that the transferability of degradation mechanisms deduced from culture studies of SMOCs to predict the degradation of CMCs, such as EOCs, in environmental matrices is hampered due the more complex chemical structure bearing different functional groups, different environmental conditions (e.g. matrix, redox, pH), the microbial community (e.g. adaptation, competition) and the low concentrations typical for EOCs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Analysis of volatile organic compound from Elaeis guineensis inflorescences planted on different soil types in Malaysia

    Science.gov (United States)

    Muhamad Fahmi, M. H.; Ahmad Bukhary, A. K.; Norma, H.; Idris, A. B.

    2016-11-01

    The main attractant compound for Eleidobius kamerunicus to male spikelet Elaeis guineensis (oil palm) were determined by analyzing volatile organic compound extracted from E. guineenses inflorescences planted on different soil types namely peat soil, clay soil and sandy soil. Anthesizing male oil palm inflorescences were randomly choosen from palm aged between 4-5 years old age. Extraction of the volatiles from the oil palm inflorescences were performed by Accelerated Solvent Extraction method (ASE). The extracted volatile compound were determined by using gas chromatography-mass spectrometry. Out of ten identified compound, estragole was found to be a major compound in sandy soil (37.49%), clay soil (30.71%) and peat soil (27.79%). Other compound such as 9,12-octadecadieonic acid and n-hexadecanoic acid were found as major compound in peat soil (27.18%) and (7.45%); sandy soil (14.15 %) and (9.31%); and clay soil (30.23%) and (4.99%). This study shows that estragole was the predominant volatile compound detected in oil palm inflorescences with highly concentrated in palm planted in sandy soil type.

  20. Organic non-volatile memories from ferroelectric phase-separated blends

    Science.gov (United States)

    Asadi, Kamal; de Leeuw, Dago M.; de Boer, Bert; Blom, Paul W. M.

    2008-07-01

    New non-volatile memories are being investigated to keep up with the organic-electronics road map. Ferroelectric polarization is an attractive physical property as the mechanism for non-volatile switching, because the two polarizations can be used as two binary levels. However, in ferroelectric capacitors the read-out of the polarization charge is destructive. The functionality of the targeted memory should be based on resistive switching. In inorganic ferroelectrics conductivity and ferroelectricity cannot be tuned independently. The challenge is to develop a storage medium in which the favourable properties of ferroelectrics such as bistability and non-volatility can be combined with the beneficial properties provided by semiconductors such as conductivity and rectification. Here we present an integrated solution by blending semiconducting and ferroelectric polymers into phase-separated networks. The polarization field of the ferroelectric modulates the injection barrier at the semiconductor-metal contact. The combination of ferroelectric bistability with (semi)conductivity and rectification allows for solution-processed non-volatile memory arrays with a simple cross-bar architecture that can be read out non-destructively. The concept of an electrically tunable injection barrier as presented here is general and can be applied to other electronic devices such as light-emitting diodes with an integrated on/off switch.

  1. Improved exposure estimation in soil screening and cleanup criteria for volatile organic chemicals.

    Science.gov (United States)

    DeVaull, George E

    2017-09-01

    Soil cleanup criteria define acceptable concentrations of organic chemical constituents for exposed humans. These criteria sum the estimated soil exposure over multiple pathways. Assumptions for ingestion, dermal contact, and dust exposure generally presume a chemical persists in surface soils at a constant concentration level for the entire exposure duration. For volatile chemicals, this is an unrealistic assumption. A calculation method is presented for surficial soil criteria that include volatile depletion of chemical for these uptake pathways. The depletion estimates compare favorably with measured concentration profiles and with field measurements of soil concentration. Corresponding volatilization estimates compare favorably with measured data for a wide range of volatile and semivolatile chemicals, including instances with and without the presence of a mixed-chemical residual phase. Selected examples show application of the revised factors in estimating screening levels for benzene in surficial soils. Integr Environ Assess Manag 2017;13:861-869. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  2. Factors Effecting the Total Volatile Organic Compound (TVOC Concentrations in Slovak Households

    Directory of Open Access Journals (Sweden)

    Ľudmila Mečiarová

    2017-11-01

    Full Text Available Thirty five Slovak households were selected for an investigation of indoor environmental quality. Measuring of indoor air physical and chemical factors and a questionnaire survey was performed during May 2017. The range of permissible operative temperature was not met in 11% of objects. Relative humidity met the legislative requirements in all monitored homes. Concentrations of total volatile organic compounds (TVOCs were significantly higher in the apartments than in the family houses. The average TVOC levels in the apartments and family houses were 519.7 µg/m3 and 330.2 µg/m3, respectively. Statistical analysis confirmed the effect of indoor air temperature, relative humidity and particulate matter (PM0.5 and PM1 on the levels of TVOCs. Higher TVOC levels were observed also in homes where it is not a common practice to open windows during cleaning activities. Other factors that had a statistically significant effect on concentrations of volatile organic compounds were heating type, attached garage, location of the apartment within residential building (the floor, as well as number of occupants. Higher TVOC concentrations were observed in indoor than outdoor environment, while further analysis showed the significant impact of indoor emission sources on the level of these compounds in buildings. The questionnaire study showed a discrepancy between objective measurement and subjective assessment in the household environment, and pointed to insufficient public awareness about volatile organic compounds (VOCs.

  3. Biogenic volatile organic compounds from the urban forest of the Metropolitan Region, Chile

    International Nuclear Information System (INIS)

    Préndez, Margarita; Carvajal, Virginia; Corada, Karina; Morales, Johanna; Alarcón, Francis; Peralta, Hugo

    2013-01-01

    Tropospheric ozone is a secondary pollutant whose primary sources are volatile organic compounds and nitrogen oxides. The national standard is exceeded on a third of summer days in some areas of the Chilean Metropolitan Region (MR). This study reports normalized springtime experimental emissions factors (EF) for biogenic volatile organic compounds from tree species corresponding to approximately 31% of urban trees in the MR. A Photochemical Ozone Creation Index (POCI) was calculated using Photochemical Ozone Creation Potential of quantified terpenes. Ten species, natives and exotics, were analysed using static enclosure technique. Terpene quantification was performed using GC-FID, thermal desorption, cryogenic concentration and automatic injection. Observed EF and POCI values for terpenes from exotic species were 78 times greater than native values; within the same family, exotic EF and POCI values were 28 and 26 times greater than natives. These results support reforestation with native species for improved urban pollution management. -- First experimental determination of the emission factors of biogenic volatile organic compounds in the urban forest of the Metropolitan Region, Chile

  4. Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds

    International Nuclear Information System (INIS)

    Jarosch, T.R.; Haselow, J.S.; Rossabi, J.; Burdick, S.A.; Raymond, R.; Young, J.E.; Lombard, K.H.

    1995-01-01

    The purpose of this report is to summarize the results of the program for off-gas treatment of atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program was funded through the Department of Energy Office of Technology Development's VOC's in Non-Arid Soils Integrated Demonstration (VNID). The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed (Looney et al., 1991). That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the United States to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate cost effective evaluation of the emerging technologies. Another motivation for the program is that many CVOCs will be regulated under the Clean Air Act Amendments of 1990 and are already regulated by many state regulatory programs. Additionally, compounds such as TCE and PCE are pervasive subsurface environmental contaminants, and, as a result, a small improvement in terms of abatement efficiency or cost will significantly reduce CVOC discharges to the environment as well as costs to United States government and industry

  5. Health risk assessment of volatile organic compounds exposure near Daegu dyeing industrial complex in South Korea.

    Science.gov (United States)

    Shuai, Jianfei; Kim, Sunshin; Ryu, Hyeonsu; Park, Jinhyeon; Lee, Chae Kwan; Kim, Geun-Bae; Ultra, Venecio U; Yang, Wonho

    2018-04-20

    Studying human health in areas with industrial contamination is a serious and complex issue. In recent years, attention has increasingly focused on the health implications of large industrial complexes. A variety of potential toxic chemicals have been produced during manufacturing processes and activities in industrial complexes in South Korea. A large number of dyeing industries gathered together in Daegu dyeing industrial complex. The residents near the industrial complex could be often exposed to volatile organic compounds. This study aimed to evaluate VOCs levels in the ambient air of DDIC, to assess the impact on human health risks, and to find more convincing evidences to prove these VOCs emitted from DDIC. According to deterministic risk assessment, inhalation was the most important route. Residential indoor, outdoor and personal exposure air VOCs were measured by passive samplers in exposed area and controlled area in different seasons. Satisfaction with ambient environments and self-reported diseases were also obtained by questionnaire survey. The VOCs concentrations in exposed area and controlled area was compared by t-test. The relationships among every VOC were tested by correlation. The values of hazard quotient (HQ) and life cancer risk were estimated. The concentrations of measured VOCs were presented, moreover, the variety of concentrations according the distances from the residential settings to the industrial complex site in exposed area. The residential indoor, outdoor, and personal exposure concentrations of toluene, DMF and chloroform in exposed area were significantly higher than the corresponding concentrations in controlled area both in summer and autumn. Toluene, DMF, chloroform and MEK had significantly positive correlations with each other in indoor and outdoor, and even in personal exposure. The HQ for DMF exceeded 1, and the life cancer risk of chloroform was greater than 10 - 4 in exposed area. The prevalence of respiratory diseases

  6. Degradation of organic contaminants found in organic waste

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Mogensen, Anders Skibsted; Ahring, Birgitte Kiær

    2000-01-01

    In recent years, great interest has arisen in recycling of the waste created by modern society. A common way of recycling the organic fraction is amendment on farmland. However, these wastes may contain possible hazardous components in small amounts, which may prevent their use in farming. The ob...... phenol ethoxylates. The results are promising as they indicate that a great potential for biological degradation is present, though the inoculum containing the microorganisms capable of transforming the recalcitrant xenobiotics has to be chosen carefully....

  7. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva.

    Science.gov (United States)

    Amann, Anton; Costello, Ben de Lacy; Miekisch, Wolfram; Schubert, Jochen; Buszewski, Bogusław; Pleil, Joachim; Ratcliffe, Norman; Risby, Terence

    2014-09-01

    Breath analysis is a young field of research with its roots in antiquity. Antoine Lavoisier discovered carbon dioxide in exhaled breath during the period 1777-1783, Wilhelm (Vilém) Petters discovered acetone in breath in 1857 and Johannes Müller reported the first quantitative measurements of acetone in 1898. A recent review reported 1765 volatile compounds appearing in exhaled breath, skin emanations, urine, saliva, human breast milk, blood and feces. For a large number of compounds, real-time analysis of exhaled breath or skin emanations has been performed, e.g., during exertion of effort on a stationary bicycle or during sleep. Volatile compounds in exhaled breath, which record historical exposure, are called the 'exposome'. Changes in biogenic volatile organic compound concentrations can be used to mirror metabolic or (patho)physiological processes in the whole body or blood concentrations of drugs (e.g. propofol) in clinical settings-even during artificial ventilation or during surgery. Also compounds released by bacterial strains like Pseudomonas aeruginosa or Streptococcus pneumonia could be very interesting. Methyl methacrylate (CAS 80-62-6), for example, was observed in the headspace of Streptococcus pneumonia in concentrations up to 1420 ppb. Fecal volatiles have been implicated in differentiating certain infectious bowel diseases such as Clostridium difficile, Campylobacter, Salmonella and Cholera. They have also been used to differentiate other non-infectious conditions such as irritable bowel syndrome and inflammatory bowel disease. In addition, alterations in urine volatiles have been used to detect urinary tract infections, bladder, prostate and other cancers. Peroxidation of lipids and other biomolecules by reactive oxygen species produce volatile compounds like ethane and 1-pentane. Noninvasive detection and therapeutic monitoring of oxidative stress would be highly desirable in autoimmunological, neurological, inflammatory diseases and cancer

  8. Comparison of PCE and TCE disappearance in heated volatile organic analysis vials and flame-sealed ampules.

    Science.gov (United States)

    Costanza, Jed; Pennell, Kurt D

    2008-02-01

    The rates of hydrolysis reported for tetrachloroethylene (PCE) and trichloroethylene (TCE) at elevated temperatures range over two orders-of-magnitude, where some of the variability may be due to the presence of a gas phase. Recent studies suggest that volatile organic analysis (VOA) vials provide a low-cost and readily available zero headspace system for measuring aqueous-phase hydrolysis rates. This work involved measuring rates of PCE and TCE disappearance and the corresponding appearance of dechlorination products in water-filled VOA vials and flame-sealed ampules incubated at 21 and 55 degrees C for up to 95.5 days. While PCE and TCE concentrations readily decreased in the VOA vials to yield first-order half lives of 11.2 days for PCE and 21.1 days for TCE at 55 degrees C, concentrations of anticipated dechlorination products, including chloride, remained constant or were not detected. The rate of PCE disappearance was 34 times faster in VOA vials at 55 degrees C compared to values obtained with flame-sealed ampules containing PCE-contaminated water. In addition, the concentration of TCE increased slightly in flame-sealed ampules incubated at 55 degrees C, while a decrease in TCE levels was observed in the VOA vials. The observed losses of PCE and TCE in the VOA vials were attributed to diffusion and sorption in the septa, rather than to dechlorination. These findings demonstrate that VOA vials are not suitable for measuring rates of volatile organic compound hydrolysis at elevated temperatures.

  9. Determination of Partition coefficients for a Mixture of Volatile Organic Compounds in Rats and Humans at Different Life Stages

    National Research Council Canada - National Science Library

    Mahle, Deidre A; Gearhart, Jeffrey M; Godfrey, Richard J; Mattie, David R; Cook, Robert S; Grisby, Claude C

    2004-01-01

    .... Partition coefficients (PCs) are an integral component of pharmacokinetic models and determining differences in tissue partitioning of volatile organic chemicals across life stages can help reduce the uncertainty in risk assessment...

  10. Mesoporous thin films of ``molecular squares'' as sensors for volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, M.H.; Slone, R.V.; Hupp, J.T.; Czaplewski, K.F.; Snurr, R.Q.; Stern, C.L.

    2000-04-18

    Mesoporous thin films of rhenium-based molecular squares, [Re(CO){sub 3}Cl(L)]{sub 4} (L = pyrazine, 4,4{prime}-bipyridine), have been utilized as sensors for volatile organic compounds (VOCs). The sensing was conducted using a quartz crystal microbalance with the target compounds present in the gas phase at concentrations ranging from 0.05 to 1 mM. Quartz crystal microbalance studies with these materials allowed for distinction between the following VOCs: (1) small aromatic versus aliphatic molecules of almost identical size and volatility and (2) an array of benzene molecules derivatized with electron donating/withdrawing substituents. The experiments suggest that the mesoporous host materials interact with VOC guest molecules through both van der Waals and weak charge-transfer interactions. In addition, size selectivity is shown by exposure of the molecular squares to cyclic ethers of differing size.

  11. Phytoremediation of small organic contaminants using transgenic plants

    Science.gov (United States)

    James, C Andrew; Strand, Stuart E

    2010-01-01

    The efficacy of transgenic plants in the phytoremediation of small organic contaminants has been investigated. Two principal strategies have been pursued (1) the manipulation of phase I metabolic activity to enhance in planta degradation rates, or to impart novel metabolic activity, and (2) the enhanced secretion of reactive enzymes from roots leading to accelerated ex planta degradation of organic contaminants. A pair of dehalogenase genes from Xanthobacter autotrophicus was expressed in tobacco resulting in the dehalogenation of 1,2-dichloroethane, which was otherwise recalcitrant. A laccase gene from cotton was overexpressed in Arabidopsis thaliana resulting in increased secretory laccase activity and the enhanced resistance to trichlorophenol in soils. Although the results to date are promising, much of the work has been limited to laboratory settings; field demonstrations are needed. PMID:19342219

  12. Radioactive contamination of aquatic media and organisms; La contamination radioactive des milieux et des organismes aquatiques

    Energy Technology Data Exchange (ETDEWEB)

    Fontaine, Y [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    After a brief account of the radioactive wastes produced by peaceful or military uses of Atomic Industry, the author first describes a series of observations carried out 'in the field' on the extent of contamination in aquatic organisms with respect to that of the medium. The experimental studies are then analysed, with reference both to the radioisotope metabolism and to the factors and types of contamination of aquatic organisms by wastes from atomic industry. A precise experimental project is presented at the end of the paper, including almost 300 references. (author) [French] Apres une courte etude des dechets radioactifs produits par les utilisations pacifiques ou militaires de l'Industrie Atomique, l'auteur fait etat d'abord des observations effectuees 'sur le terrain' concernant l'extension de la contamination des organismes aquatiques en rapport avec celle du milieu. L'auteur analyse ensuite les etudes experimentales se rapportant aussi bien au metabolisme des radioisotopes qu'aux facteurs et aux modalites de la contamination des organismes aquatiques par les dechets de l'industrie atomique. Un projet de travail experimental precis est presente a la fin de cette revue qui comporte pres de 300 references bibliographiques. (auteur)

  13. Radioactive contamination of aquatic media and organisms; La contamination radioactive des milieux et des organismes aquatiques

    Energy Technology Data Exchange (ETDEWEB)

    Fontaine, Y. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    After a brief account of the radioactive wastes produced by peaceful or military uses of Atomic Industry, the author first describes a series of observations carried out 'in the field' on the extent of contamination in aquatic organisms with respect to that of the medium. The experimental studies are then analysed, with reference both to the radioisotope metabolism and to the factors and types of contamination of aquatic organisms by wastes from atomic industry. A precise experimental project is presented at the end of the paper, including almost 300 references. (author) [French] Apres une courte etude des dechets radioactifs produits par les utilisations pacifiques ou militaires de l'Industrie Atomique, l'auteur fait etat d'abord des observations effectuees 'sur le terrain' concernant l'extension de la contamination des organismes aquatiques en rapport avec celle du milieu. L'auteur analyse ensuite les etudes experimentales se rapportant aussi bien au metabolisme des radioisotopes qu'aux facteurs et aux modalites de la contamination des organismes aquatiques par les dechets de l'industrie atomique. Un projet de travail experimental precis est presente a la fin de cette revue qui comporte pres de 300 references bibliographiques. (auteur)

  14. Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies.

    Science.gov (United States)

    Huang, Binbin; Lei, Chao; Wei, Chaohai; Zeng, Guangming

    2014-10-01

    Chlorinated volatile organic compounds (Cl-VOCs), including polychloromethanes, polychloroethanes and polychloroethylenes, are widely used as solvents, degreasing agents and a variety of commercial products. These compounds belong to a group of ubiquitous contaminants that can be found in contaminated soil, air and any kind of fluvial mediums such as groundwater, rivers and lakes. This review presents a summary of the research concerning the production levels and sources of Cl-VOCs, their potential impacts on human health as well as state-of-the-art remediation technologies. Important sources of Cl-VOCs principally include the emissions from industrial processes, the consumption of Cl-VOC-containing products, the disinfection process, as well as improper storage and disposal methods. Human exposure to Cl-VOCs can occur through different routes, including ingestion, inhalation and dermal contact. The toxicological impacts of these compounds have been carefully assessed, and the results demonstrate the potential associations of cancer incidence with exposure to Cl-VOCs. Most Cl-VOCs thus have been listed as priority pollutants by the Ministry of Environmental Protection (MEP) of China, Environmental Protection Agency of the U.S. (U.S. EPA) and European Commission (EC), and are under close monitor and strict control. Yet, more efforts will be put into the epidemiological studies for the risk of human exposure to Cl-VOCs and the exposure level measurements in contaminated sites in the future. State-of-the-art remediation technologies for Cl-VOCs employ non-destructive methods and destructive methods (e.g. thermal incineration, phytoremediation, biodegradation, advanced oxidation processes (AOPs) and reductive dechlorination), whose advantages, drawbacks and future developments are thoroughly discussed in the later sections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Review: Micro-organic contaminants in groundwater in China

    Science.gov (United States)

    Dong, Weihong; Xie, Wei; Su, Xiaosi; Wen, Chuanlei; Cao, Zhipeng; Wan, Yuyu

    2018-03-01

    Micro-organic contaminants (MOs) in groundwater, which may have adverse effects on human health and ecosystems worldwide, are gaining increased attention in China. A great deal of research has been conducted to investigate their sources, occurrences and behavior in aquifers. This paper reviews the main sources, distribution, concentrations and behavior of a wide range of MOs in groundwater in China. These MOs include well-established persistent organic pollutants—polycyclic aromatic hydrocarbons (PAHs), hexachlorocyclohexanes (HCHs), polychlorinated biphenyls (PCBs), endocrine disrupting chemicals (poly brominated diphenyl ethers (PBDEs), phthalic acid esters (PAEs), bisphenol A (BPA)—and some contaminants of emerging concern such as pharmaceutical and personal care products (antibiotics, caffeine, shampoos) and perfluorinated compounds (PFCs). The results reveal that the main MOs in groundwater are PAHs, organochlorine pesticides (OCPs), PBDEs, PAEs, and antibiotics. Moreover, some PFCs such as perfluorobutane sulfonic acid (PFBS), perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) have only recently been observed in groundwater as emerging organic contaminants. Additionally, most MOs are distributed in populated and industrialized areas such as the southeast coast of China. Finally, industrial emissions, wastewater treatment plant effluents and agricultural wastewater are found to be dominant sources of MOs in groundwater. Based on the existing pollution levels, regulation and amelioration of MOs are warranted.

  16. (Semi)volatile organic compounds and microbiological entities in snow during OASIS Barrow 2009

    Science.gov (United States)

    Ariya, P.; Kos, G.

    2009-12-01

    Gregor Kos (1), Nafissa Adechina (2), Dwayne Lutchmann (2) , Roya Mortazavi, and Parisa Ariya* (1), (2) (1) McGill University, Department of Atmospheric and Oceanic Sciences, 805 Sherbrooke Street West, Montreal, Quebec, H3A 2K6, Canada (2) McGill University, Department of Chemistry, 801 Sherbrooke Street West, Montreal, Quebec, H3A 2K6, Canada an active medium for the deposition of (semi-)volatile (bio)organic compounds. We collected surface snow samples during the OASIS Barrow campaign in March 2009 for analysis of semi-volatile organic compounds using solid phase microextraction and gas chromatography with mass spectrometric detection (SPME-GC/MS). Additioal gab samples were taken for analysis of non-methane hydrocarbons in air. More over, we analyzed for microbial species in air and snow. Identifed organic compounds covered a wide range of functionalities andmolecular weigts, including oxygenated reactive speces such as aldehydes (e.g., hexanal to decanal), alcohols (e.g., hexanol, octanol) and aromatic species (e.g., methyl- and ethylbenzenes). Quantification data for selected aromatic species are presented with concentrations in the upper ng/L range. We will present our preliminary data on microbiological species, and will discuss the potential mplications of the results for organic snow chemistry.

  17. Visualising the equilibrium distribution and mobility of organic contaminants in soil using the chemical partitioning space.

    Science.gov (United States)

    Wong, Fiona; Wania, Frank

    2011-06-01

    Assessing the behaviour of organic chemicals in soil is a complex task as it is governed by the physical chemical properties of the chemicals, the characteristics of the soil as well as the ambient conditions of the environment. The chemical partitioning space, defined by the air-water partition coefficient (K(AW)) and the soil organic carbon-water partition coefficient (K(OC)), was employed to visualize the equilibrium distribution of organic contaminants between the air-filled pores, the pore water and the solid phases of the bulk soil and the relative importance of the three transport processes removing contaminants from soil (evaporation, leaching and particle erosion). The partitioning properties of twenty neutral organic chemicals (i.e. herbicides, pharmaceuticals, polychlorinated biphenyls and volatile chemicals) were estimated using poly-parameter linear free energy relationships and superimposed onto these maps. This allows instantaneous estimation of the equilibrium phase distribution and mobility of neutral organic chemicals in soil. Although there is a link between the major phase and the dominant transport process, such that chemicals found in air-filled pore space are subject to evaporation, those in water-filled pore space undergo leaching and those in the sorbed phase are associated with particle erosion, the partitioning coefficient thresholds for distribution and mobility can often deviate by many orders of magnitude. In particular, even a small fraction of chemical in pore water or pore air allows for evaporation and leaching to dominate over solid phase transport. Multiple maps that represent soils that differ in the amount and type of soil organic matter, water saturation, temperature, depth of surface soil horizon, and mineral matters were evaluated.

  18. Interim report on testing of off-gas treatment technologies for abatement of atmospheric emissions of chlorinated volatile organic compounds

    International Nuclear Information System (INIS)

    Haselow, J.S.; Jarosch, T.R.; Rossabi, J.; Burdick, S.; Lombard, K.

    1993-12-01

    The purpose of this report is to briefly summarize the results to date of the off-gas treatment program for atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program is part of the Department of Energy's Office of Technology Development's Integrated Demonstration for Treatment of Organics in Soil and Water at a Non-Arid Site. The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed. That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment program would complement the Integrated Demonstration not only because off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the US to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate systematic and unbiased evaluation of the emerging technologies

  19. Development of Solid Ceramic Dosimeters for the Time-Integrative Passive Sampling of Volatile Organic Compounds in Waters.

    Science.gov (United States)

    Bonifacio, Riza Gabriela; Nam, Go-Un; Eom, In-Yong; Hong, Yong-Seok

    2017-11-07

    Time-integrative passive sampling of volatile organic compounds (VOCs) in water can now be accomplished using a solid ceramic dosimeter. A nonporous ceramic, which excludes the permeation of water, allowing only gas-phase diffusion of VOCs into the resin inside the dosimeter, effectively captured the VOCs. The mass accumulation of 11 VOCs linearly increased with time over a wide range of aqueous-phase concentrations (16.9 to 1100 μg L -1 ), and the linearity was dependent upon the Henry's constant (H). The average diffusivity of the VOCs in the solid ceramic was 1.46 × 10 -10 m 2 s -1 at 25 °C, which was 4 orders of magnitude lower than that in air (8.09 × 10 -6 m 2 s -1 ). This value was 60% greater than that in the water-permeable porous ceramic (0.92 × 10 -10 m 2 s -1 ), suggesting that its mass accumulation could be more effective than that of porous ceramic dosimeters. The mass accumulation of the VOCs in the solid ceramic dosimeter increased in the presence of salt (≥0.1 M) and with increasing temperature (4 to 40 °C) but varied only slightly with dissolved organic matter concentration. The solid ceramic dosimeter was suitable for the field testing and measurement of time-weighted average concentrations of VOC-contaminated waters.

  20. Vitrification of cesium-contaminated organic ion exchange resin

    International Nuclear Information System (INIS)

    Sargent, T.N. Jr.

    1994-08-01

    Vitrification has been declared by the Environmental Protection Agency (USEPA) as the Best Demonstrated Available Technology (BDAT) for the permanent disposal of high-level radioactive waste. Savannah River Site currently uses a sodium tetraphenylborate (NaTPB) precipitation process to remove Cs-137 from a wastewater solution created from the processing of nuclear fuel. This process has several disadvantages such as the formation of a benzene waste stream. It has been proposed to replace the precipitation process with an ion exchange process using a new resorcinol-formaldehyde resin developed by Savannah River Technical Center (SRTC). Preliminary tests, however, showed that problems such as crust formation and a reduced final glass wasteform exist when the resin is placed in the melter environment. The newly developed stirred melter could be capable of overcoming these problems. This research explored the operational feasibility of using the stirred tank melter to vitrify an organic ion exchange resin. Preliminary tests included crucible studies to determine the reducing potential of the resin and the extent of oxygen consuming reactions and oxygen transfer tests to approximate the extent of oxygen transfer into the molten glass using an impeller and a combination of the impeller and an external oxygen transfer system. These preliminary studies were used as a basis for the final test which was using the stirred tank melter to vitrify nonradioactive cesium loaded organic ion exchange resin. Results from this test included a cesium mass balance, a characterization of the semi-volatile organic compounds present in the off gas as products of incomplete combustion (PIC), a qualitative analysis of other volatile metals, and observations relating to the effect the resin had on the final redox state of the glass

  1. Analysis of volatile organic compounds in compost samples: A potential tool to determine appropriate composting time.

    Science.gov (United States)

    Zhu, Fengxiang; Pan, Zaifa; Hong, Chunlai; Wang, Weiping; Chen, Xiaoyang; Xue, Zhiyong; Yao, Yanlai

    2016-12-01

    Changes in volatile organic compound contents in compost samples during pig manure composting were studied using a headspace, solid-phase micro-extraction method (HS-SPME) followed by gas chromatography with mass spectrometric detection (GC/MS). Parameters affecting the SPME procedure were optimized as follows: the coating was carbon molecular sieve/polydimethylsiloxane (CAR/PDMS) fiber, the temperature was 60°C and the time was 30min. Under these conditions, 87 compounds were identified from 17 composting samples. Most of the volatile components could only be detected before day 22. However, benzenes, alkanes and alkenes increased and eventually stabilized after day 22. Phenol and acid substances, which are important factors for compost quality, were almost undetectable on day 39 in natural compost (NC) samples and on day 13 in maggot-treated compost (MC) samples. Our results indicate that the approach can be effectively used to determine the composting times by analysis of volatile substances in compost samples. An appropriate composting time not only ensures the quality of compost and reduces the loss of composting material but also reduces the generation of hazardous substances. The appropriate composting times for MC and NC were approximately 22days and 40days, respectively, during the summer in Zhejiang. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Semi volatile organic compounds in the snow of Russian Arctic islands: Archipelago Novaya Zemlya.

    Science.gov (United States)

    Lebedev, A T; Mazur, D M; Polyakova, O V; Kosyakov, D S; Kozhevnikov, A Yu; Latkin, T B; Andreeva Yu, I; Artaev, V B

    2018-04-18

    Environmental contamination of the Arctic has widely been used as a worldwide pollution marker. Various classes of organic pollutants such as pesticides, personal care products, PAHs, flame retardants, biomass burning markers, and many others emerging contaminants have been regularly detected in Arctic samples. Although numerous papers have been published reporting data from the Canadian, Danish, and Norwegian Arctic regions, the environmental situation in Russian Arctic remains mostly underreported. Snow analysis is known to be used for monitoring air pollution in the regions with cold climate in both short-term and long-term studies. This paper presents the results of a nontargeted study on the semivolatile organic compounds detected and identified in snow samples collected at the Russian Artic Archipelago Novaya Zemlya in June 2016. Gas chromatography coupled to a high-resolution time-of-flight mass spectrometer enabled the simultaneous detection and quantification of a variety of pollutants including those from the US Environmental Protection Agency (EPA) priority pollutants list, emerging contaminants (plasticizers, flame retardants-only detection), as well as the identification of novel Arctic organic pollutants, (e.g., fatty acid amides and polyoxyalkanes). The possible sources of these novel pollutants are also discussed. GC-HRMS enabled the detection and identification of emerging contaminants and novel organic pollutants in the Arctic, e.g., fatty amides and polyoxyalkanes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Volatile organic compounds and particulate matter in child care facilities in the District of Columbia: Results from a pilot study.

    Science.gov (United States)

    Quirós-Alcalá, L; Wilson, S; Witherspoon, N; Murray, R; Perodin, J; Trousdale, K; Raspanti, G; Sapkota, A

    2016-04-01

    Many young children in the U.S. spend a significant portion of their day in child care facilities where they may be exposed to contaminants linked to adverse health effects. Exposure data on volatile organic compounds (VOCs) and particulate matter (PM) in these settings is scarce. To guide the design of a larger exposure assessment study in urban child care facilities, we conducted a pilot study in which we characterized indoor concentrations of select VOCs and PM. We recruited 14 child care facilities in the District of Columbia (Washington, DC) and measured indoor concentrations of seven VOCs (n=35 total samples; 2-5 samples per facility): benzene, carbon tetrachloride, chloroform, ethylbenzene, o-xylene, p-xylene, and toluene in all facilities; and collected real-time PM measurements in seven facilities. We calculated descriptive statistics for contaminant concentrations and computed intraclass correlation coefficients (ICC) to evaluate the variability of VOC levels indoors. We also administered a survey to collect general health information on the children attending these facilities, and information on general housekeeping practices and proximity of facilities to potential sources of target contaminants. We detected six of the seven VOCs in the majority of child care facilities with detection frequencies ranging from 71% to 100%. Chloroform and toluene were detected in all samples. Median (range) concentrations for toluene, chloroform, benzene, o-xylene, ethylbenzene, and carbon tetrachloride were: 5.6µg/m(3) (0.6-16.5µg/m(3)), 2.8µg/m(3) (0.4-53.0µg/m(3)), 1.4µg/m(3) (below the limit of detection or air fresheners and/or scented candles were used in half of the facilities, and at least one child in each facility had physician-diagnosed asthma (median asthma prevalence rate=10.2%). We found quantifiable levels of VOCs and PM in the child care facilities sampled. Given that exposures to environmental contaminants during critical developmental stages may

  4. Development and validation of a portable gas phase standard generation and calibration system for volatile organic compounds

    Science.gov (United States)

    P. Veres; J. B. Gilman; J. M. Roberts; W. C. Kuster; C. Warneke; I. R. Burling; J. de Gouw

    2010-01-01

    We report on the development of an accurate, portable, dynamic calibration system for volatile organic compounds (VOCs). The Mobile Organic Carbon Calibration System (MOCCS) combines the production of gas-phase VOC standards using permeation or diffusion sources with quantitative total organic carbon (TOC) conversion on a palladium surface to CO2 in the presence of...

  5. Aqueous Oxidation of Green Leaf Volatiles as a Source of Secondary Organic Aerosol

    Science.gov (United States)

    Richards-Henderson, N. K.; Hansel, A.; Pham, A. T.; Vempati, H. S.; Valsaraj, K. T.; Anastasio, C.

    2013-12-01

    Vegetation emits volatile oxygenated hydrocarbons - the green leaf volatiles (GLVs) - which are formed from the biochemical conversion of linoleic and linolenic acids within plant cells. Stress or damage to vegetation can significantly elevate emission fluxes of these compounds, some of which are fairly water soluble. Aqueous-phase reactions of the GLVs with photochemically generated oxidants - such as hydroxyl radical (OH), singlet oxygen (1O2) and excited triplet states of organic compounds (3C*) _ might then form low-volatility products that can act as secondary organic aerosol (SOA). In order to determine if GLVs can be a significant source of secondary organic carbon in fogwater, studies of GLVs in laboratory solutions are needed to elucidate the oxidation kinetics and the corresponding SOA mass yields. In this study we are determining the second-order rate constants, and SOA mass yields, for five GLVs (cis-3-hexen-1-ol, cis-3-hexenylacetate, methyl salicylate, methyl jasmonate, and 2-methyl-3-butene-2-ol) reacting with OH,1O2 and 3C*. Experiments are performed at relevant fog water pHs, temperatures, and oxidant concentrations. Rate constants are determined using a relative rate approach in which the decay of GLVs and reference compounds are monitored as function of time by HPLC. The capacity of GLVs to form aqueous SOA was determined by following the formation of their decomposition products with HPLC-UV/DAD and HPLC-ESI/MS. SOA mass yields are measured gravimetrically from laboratory solutions containing atmospherically relevant concentrations of photooxidants and GLVs, and irradiated with simulated sunlight. We will use our results to assess the potential contribution of aqueous GLV reactions as a source of SOA in cloudy or foggy atmospheres.

  6. Identification of Systemic Acquired Resistance–Related Volatile Organic Compounds and their Role in Plant Immunity

    OpenAIRE

    Bichlmeier, Marlies

    2017-01-01

    Systemic acquired resistance (SAR) is an inducible immune response that depends on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), which is essential for SAR signalling. In contrast to SAR, local resistance remains intact in Arabidopsis (Arabidopsis thaliana) eds1-2 mutant plants in response to Pseudomonas syringae delivering the effector protein AvrRpm1. I utilized the SAR-specific phenotype of the eds1-2 mutant to identify volatile organic compounds (VOCs) related to SAR. To this end, SAR was indu...

  7. Literature review of stabilization/solidification of volatile organic compounds and the implications for Hanford grouts

    International Nuclear Information System (INIS)

    Spence, R.D.; Osborne, S.C.

    1993-09-01

    A literature review was conducted on the stabilization/solidification of volatile organic compounds (VOCs). Based on this literature, it is likely that the limestone-containing grout will not permanently immobilize VOCs and that no presently available additives can guarantee permanent immobilization. The Westinghouse hanford company grout may be fairly effective at retarding aqueous leaching of VOCs, and commercial additives can improve this performance. Significant VOC losses do occur during stabilization/solidification, and the high temperatures of the Westinghouse Hanford Company waste and grout should exacerbate this problem. In fact, these high temperatures raise doubts about the presence of VOCs in the double-shell tanks supernates

  8. Micro- and Nanostructured Metal Oxide Chemical Sensors for Volatile Organic Compounds

    Science.gov (United States)

    Alim, M. A.; Penn, B. G.; Currie, J. R., Jr.; Batra, A. K.; Aggarwal, M. D.

    2008-01-01

    Aeronautic and space applications warrant the development of chemical sensors which operate in a variety of environments. This technical memorandum incorporates various kinds of chemical sensors and ways to improve their performance. The results of exploratory investigation of the binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. A short review of the present status of the new types of nanostructured sensors such as nanobelts, nanorods, nanotube, etc. based on metal oxides is presented.

  9. Analysis of volatile organic compounds and sensory characteristics of pork loin samples irradiated to high doses

    International Nuclear Information System (INIS)

    Hou Zhengchi; Sun Dakuan; Qin Zongying; Jin Jiang; Zhu Liandi; Yao Side; Sheng Kanglong

    2005-01-01

    Fresh pork loin samples, protein enzyme inactivated at (72 ± 3) degree C and vacuum packaged, were irradiated to up to 45 kGy at -20 degree C by 60 Co γ-rays. The irradiated samples were examined by various kinds of method to study high dose irradiation effects of sensory changes (meat color and off-odor), transverse shearing strength, weight loss in steam cooking, volatile organic compounds, and lipid oxidation. The results showed that the high dose irradiation produced no serious effects to the pork loin samples, and volunteer responses showed fine acceptability to the irradiated meat. (authors)

  10. Extended Research on Detection of Deception Using Volatile Organic Compound (VOC) Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Center for Human Reliability Studies

    2006-06-01

    A system that captures and analyzes volatile organic compound (VOC) emissions from skin surfaces may offer a viable alternative method to the polygraph instrument currently in use for detecting deception in U.S. government settings. Like the involuntary autonomic central nervous system response data gathered during polygraph testing, VOC emissions from the skin may provide data that can be used to detect stress caused by deception. Detecting VOCs, then, may present a noninvasive, non-intrusive method for observing, recording, and quantifying evidence of stress or emotional change.

  11. Process engineering versus product engineering - A case study on volatile organic compounds removal

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Vilela, T.; Pereira, P.

    2005-01-01

    Three solutions for removing the dangerous volatile organic compound (VOC) xylene from an industrial coating process are presented and compared. Two of them are based on classical process engineering principles, i.e., development of separation-cleaning methods such as incineration and adsorption...... to the problem-need specified in the beginning of the project, but producing a novel formulation (chemical product design) represents a method that results to a completely xylene-free process which is environmentally and economically more interesting than those generated via the more traditional process...

  12. Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia

    OpenAIRE

    P. K. Misztal; E. Nemitz; B. Langford; C. F. Di Marco; G. J. Phillips; C. N. Hewitt; A. R. MacKenzie; S. M. Owen; D. Fowler; M. R. Heal; J. N. Cape

    2011-01-01

    This paper reports the first direct eddy covariance fluxes of reactive biogenic volatile organic compounds (BVOCs) from oil palms to the atmosphere using proton-transfer-reaction mass spectrometry (PTR-MS), measured at a plantation in Malaysian Borneo. At midday, net isoprene flux constituted the largest fraction (84 %) of all emitted BVOCs measured, at up to 30 mg m−2 h−1 over 12 days. By contrast, the sum of its oxidation products methyl vinyl k...

  13. A Prototype Sensor for In Situ Sensing of Fine Particulate Matter and Volatile Organic Compounds.

    Science.gov (United States)

    Ng, Chee-Loon; Kai, Fuu-Ming; Tee, Ming-Hui; Tan, Nicholas; Hemond, Harold F

    2018-01-18

    Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic) capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5) and volatile organic compounds (VOCs). For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds.

  14. Solid phase microextraction: measurement of volatile organic compounds (VOCs) in Dhaka City air pollution.

    Science.gov (United States)

    Hussam, A; Alauddin, M; Khan, A H; Chowdhury, D; Bibi, H; Bhattacharjee, M; Sultana, S

    2002-08-01

    A solid phase microextraction (SPME) technique was applied for the sampling of volatile organic compounds (VOCs) in ambient air polluted by two stroke autorickshaw engines and automobile exhausts in Dhaka city, Bangladesh. Analysis was carried out by capillary gas chromatography (GC) and GC-mass spectrometry (MS). The methodology was tested by insitu sampling of an aromatic hydrocarbon mixture gas standard with a precision of +/-5% and an average accuracy of 1-20%. The accuracy for total VOCs concentration measurement was about 7%. VOC's in ambient air were collected by exposing the SPME fiber at four locations in Dhaka city. The chromatograms showed signature similar to that of unburned gasoline (petrol) and weathered diesel containing more than 200 organic compounds; some of these compounds were positively identified. These are normal hydrocarbons pentane (n-C5H2) through nonacosane (n-C29H60), aromatic hydrocarbons: benzene, toluene, ethylbenzene, n-propylbenzene, n-butylbenzene, 1,3,5-trimethylbenzene, xylenes, and 1-isocyanato-3-methoxybenzene. Two samples collected near an autorickshaw station contained 783000 and 1479000 microg/m3 of VOCs. In particular, the concentration of toluene was 50-100 times higher than the threshold limiting value of 2000 microg/m3. Two other samples collected on street median showed 135000 microg/m3 and 180000 microg/m3 of total VOCs. The method detection limit of the technique for most semi-volatile organic compounds was 1 microg/m3.

  15. A Prototype Sensor for In Situ Sensing of Fine Particulate Matter and Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Chee-Loon Ng

    2018-01-01

    Full Text Available Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5 and volatile organic compounds (VOCs. For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds.

  16. Sub-chronic toxicity of low concentrations of industrial volatile organic pollutants in vitro

    International Nuclear Information System (INIS)

    McDermott, Catherine; Allshire, Ashley; Pelt, Frank N.A.M. van; Heffron, James J.A.

    2007-01-01

    Organic solvents form an important class of pollutants in the ambient air and have been associated with neurotoxicity and immunotoxicity in humans. Here we investigated the biological effects of sub-chronic exposure to industrially important volatile organic solvents in vitro. Jurkat T cells were exposed to toluene, n-hexane and methyl ethyl ketone (MEK) individually for 5 days and solvent exposure levels were confirmed by headspace gas chromatography. A neuroblastoma cell line (SH-SY5Y) was exposed to toluene for the same period. Following exposure, cells were harvested and toxicity measured in terms of the following endpoints: membrane damage (LDH leakage), perturbations in intracellular free Ca 2+ , changes in glutathione redox status and dual-phosphorylation of MAP kinases ERK1/2, JNK and p38. The results show that sub-chronic exposure to the volatile organic solvents causes membrane damage, increased intracellular free calcium and altered glutathione redox status in both cell lines. However, acute and sub-chronic solvent exposure did not result in MAP kinase phosphorylation. Toxicity of the solvents tested increased with hydrophobicity. The lowest-observed-adverse-effect-levels (LOAELs) measured in vitro were close to blood solvent concentrations reported for individuals exposed to the agents at levels at or below their individual threshold limit values (TLVs)

  17. The role of low-volatility organic compounds in initial particle growth in the atmosphere

    CERN Document Server

    Tröstl, Jasmin; Gordon, Hamish; Heinritzi, Martin; Yan, Chao; Molteni, Ugo; Ahlm, Lars; Frege, Carla; Bianchi, Federico; Wagner, Robert; Simon, Mario; Lehtipalo, Katrianne; Williamson, Christina; Craven, Jill S; Duplissy, Jonathan; Adamov, Alexey; Almeida, Joao; Bernhammer, Anne-Kathrin; Breitenlechner, Martin; Brilke, Sophia; Dias, Antònio; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Gysel, Martin; Hansel, Armin; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lawler, Michael; Leiminger, Markus; Mathot, Serge; Möhler, Ottmar; Nieminen, Tuomo; Onnela, Antti; Petäjä, Tuukka; Piel, Felix M; Miettinen, Pasi; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Sipilä, Mikko; Smith, James; Steiner, Gerhard; Tomè, Antònio; Virtanen, Annele; Wagner, Andrea C; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Carslaw, Kenneth S; Curtius, Joachim; Dommen, Josef; Kirkby, Jasper; Kulmala, Markku; Riipinen, Ilona; Worsnop, Douglas R; Donahue, Neil M; Baltensperger, Urs

    2016-01-01

    About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelv...

  18. Simultaneous Microwave Extraction and Separation of Volatile and Non-Volatile Organic Compounds of Boldo Leaves. From Lab to Industrial Scale

    Directory of Open Access Journals (Sweden)

    Loïc Petigny

    2014-04-01

    Full Text Available Microwave extraction and separation has been used to increase the concentration of the extract compared to the conventional method with the same solid/liquid ratio, reducing extraction time and separate at the same time Volatile Organic Compounds (VOC from non-Volatile Organic Compounds (NVOC of boldo leaves. As preliminary study, a response surface method has been used to optimize the extraction of soluble material and the separation of VOC from the plant in laboratory scale. The results from the statistical analysis revealed that the optimized conditions were: microwave power 200 W, extraction time 56 min and solid liquid ratio of 7.5% of plants in water. Lab scale optimized microwave method is compared to conventional distillation, and requires a power/mass ratio of 0.4 W/g of water engaged. This power/mass ratio is kept in order to upscale from lab to pilot plant.

  19. Hayabusa2 Sample Catcher and Container: Metal-Seal System for Vacuum Encapsulation of Returned Samples with Volatiles and Organic Compounds Recovered from C-Type Asteroid Ryugu

    Science.gov (United States)

    Okazaki, Ryuji; Sawada, Hirotaka; Yamanouchi, Shinji; Tachibana, Shogo; Miura, Yayoi N.; Sakamoto, Kanako; Takano, Yoshinori; Abe, Masanao; Itoh, Shoichi; Yamada, Keita; Yabuta, Hikaru; Okamoto, Chisato; Yano, Hajime; Noguchi, Takaaki; Nakamura, Tomoki; Nagao, Keisuke

    2017-07-01

    The spacecraft Hayabusa2 was launched on December 3, 2014, to collect and return samples from a C-type asteroid, 162173 Ryugu (provisional designation, 1999 JU3). It is expected that the samples collected contain organic matter and water-bearing minerals and have key information to elucidate the origin and history of the Solar System and the evolution of bio-related organics prior to delivery to the early Earth. In order to obtain samples with volatile species without terrestrial contamination, based on lessons learned from the Hayabusa mission, the sample catcher and container of Hayabusa2 were refined from those used in Hayabusa. The improvements include (1) a mirror finish of the inner wall surface of the sample catcher and the container, (2) adoption of an aluminum metal sealing system, and (3) addition of a gas-sampling interface for gas collection and evacuation. The former two improvements were made to limit contamination of the samples by terrestrial atmosphere below 1 Pa after the container is sealed. The gas-sampling interface will be used to promptly collect volatile species released from the samples in the sample container after sealing of the container. These improvements maintain the value of the returned samples.

  20. Priority volatile organic compounds in surface waters of the southern North Sea

    International Nuclear Information System (INIS)

    Huybrechts, Tom; Dewulf, Jo; Langenhove, Herman van

    2005-01-01

    The occurrence of 25 volatile organic compounds (VOCs) was studied from April 1998 to October 2000 in the southern North Sea. Target VOCs were selected from lists of priority pollutants for the marine environment and included, e.g., chlorinated short-chain hydrocarbons (CHCs), monocyclic aromatic hydrocarbons (MAHs), and chlorinated monocyclic aromatic hydrocarbons (CMAHs). Water samples were taken from the Channel, the Belgian Continental Shelf, the mouth of the Scheldt estuary and the Southern Bight, and were analysed by purge-and-trap and high-resolution gas chromatography-mass spectrometry. All data were produced by analyses deemed 'in control' by a rigorous quality assurance/quality control program provided by QUASIMEME (Quality Assurance of Information for Marine Environmental Monitoring in Europe). Chloroform and trichloroethene were commonly detected at concentrations up to 1900 and 270 ng l -1 , respectively. The other CHCs were generally found below 5 ng l -1 , and rarely exceeded 10 ng l -1 . Concentrations of MAHs were at least one order of magnitude higher than those of the CHCs. The higher levels were attributed to anthropogenic emissions from oil-related activities in coastal areas. CMAHs, except chlorobenzene and 1,4-dichlorobenzene, were hardly detected in North Sea waters. The levels of several CHCs and MAHs were shown to decrease compared to previous investigations in 1994-1995, probably as a result of on-going emission reduction efforts. The occurrence of 1,1,1-trichloroethane, for instance, was substantially reduced since the Montreal Protocol was implemented in 1995. - Volatile aromatics are a major group of volatile organic compounds in the North Sea, and are attributed to discharges from shipping and oil related activities

  1. Car indoor air pollution by volatile organic compounds and aldehydes in Japan

    Directory of Open Access Journals (Sweden)

    Kouichi Tatsu

    2016-06-01

    Full Text Available Fifty-five organic substances including volatile organic compounds (VOCs and aldehydes present in indoor air were measured from 24 car cabins in Japan. A screening-level risk assessment was also performed. Acetaldehyde (3.81–36.0 μg/m3, formaldehyde (3.26–26.7 μg/m3, n-tetradecane (below the method quantification limit (organic compounds originated from the car interior materials. Total volatile organic compound (TVOC concentrations in 14 car cabins (58% of all car cabins exceeded the advisable values established by the Ministry of Health, Labour and Welfare of Japan (400 μg/m3. The highest TVOC concentration (1136 μg/m3 was found in a new car (only one month since its purchase date. Nevertheless, TVOC concentrations exceeded the advisable value even for cars purchased over 10 years ago. Hazard quotients (HQs for formaldehyde obtained using measured median and highest concentrations in both exposure scenarios for occupational use (residential time in a car cabin was assumed to be 8 h were higher than that expected, a threshold indicative of potential adverse effects. Under the same exposure scenarios, HQ values for all other organic compounds remained below this threshold.

  2. Research on release rate of volatile organic compounds in typical vessel cabin

    Directory of Open Access Journals (Sweden)

    ZHANG Jinlan

    2018-02-01

    Full Text Available [Objectives] Volatile Organic Compounds (VOC should be efficiently controlled in vessel cabins to ensure the crew's health and navigation safety. As an important parameter, research on release rate of VOCs in cabins is required. [Methods] This paper develops a method to investigate this parameter of a ship's cabin based on methods used in other closed indoor environments. A typical vessel cabin is sampled with Tenax TA tubes and analyzed by Automated Thermal Desorption-Gas Chromatography-Mass Spectrometry (ATD-GC/MS. The lumped mode is used and the release rate of Benzene, Toluene, Ethylbenzene and Xylene (BTEX, the typical representatives of VOCs, is obtained both in closed and ventilated conditions. [Results] The results show that the content of xylene and Total Volatile Organic Compounds (TVOC exceed the indoor environment standards in ventilated conditions. The BTEX release rate is similar in both conditions except for the benzene. [Conclusions] This research builds a method to measure the release rate of VOCs, providing references for pollution character evaluation and ventilation and purification system design.

  3. Adsorptive performance of chromium-containing ordered mesoporous silica on volatile organic compounds (VOCs

    Directory of Open Access Journals (Sweden)

    Jianwei Fan

    2017-09-01

    Full Text Available Volatile organic compounds (VOCs are the primary poisonous emissions into the atmosphere in natural gas exploitation and disposing process. The adsorption method has been widely applied in actual production because of its good features such as low cost, low energy consumption, flexible devices needed, etc. The commonly used adsorbents like activated carbon, silicon molecular sieves and so on are not only susceptible to plugging or spontaneous combustion but difficult to be recycled. In view of this, a new adsorbent (CrSBA15 was made by the co-assembly method to synthesize the ordered mesoporous silica materials with different amounts of chromium to eliminate VOCs. This new adsorbent was characterized by small-angle-X-ray scattering (SAXS, nitrogen adsorption/desorption, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. Its adsorption performance to eliminate VOCs (toluene, benzene, cyclohexane and ethyl acetate used as typical pollutants was also tested systematically. Research results indicate that this new adsorbent of CrSBA-15(30, with the silicon/chromium ration being 30, owns the maximum micropore volume, and shows a higher adsorption performance in eliminating toluene, benzene, cyclohexane and ethyl acetate. Besides, it is cost-effective and much easier to be recycled than the activated carbon. In conclusion, CrSBA-15(30 is a good adsorbent to eliminate VOCs with broad application prospects. Keywords: Mesoporous materials, Silicon dioxide, Synthesis, Adsorption, Volatile organic compounds (VOCs, Recyclability, Energy saving

  4. Investigations concerning the exchange of iodine from non-volatile organic iodine compounds

    International Nuclear Information System (INIS)

    Psarros, N.; Duschner, H.; Molzahn, D.; Schmidt, L.; Heise, S.; Jungclas, H.; Brandt, R.; Patzelt, P.

    1990-10-01

    The iodine produced by nuclear fission is removed during the reprocessing of exhausted nuclear fuel elements by desorption achieving good decontamination factors. Nevertheless the further optimization of the process requires detailed information about the iodine speciation during fuel reprocessing, and about possible reactions. For the study of decomposition reactions of iodo-alcanes, which are built up during the fuel recycling process, we developed a method for the synthesis of labelled iodo-dodecane, which was used as tracer. In order to identify the iodo species in the organic phase of the reprocessing cycle we applied plasma desorption time-of-flight mass spectroscopy. The problem of the volatility of the iodo-compounds in the ultra vacuum of the mass spectrometer was overcome by derivatization of the iodo-alcanes with dithizon, which yielded non-volatile ionic alcyltetrazolium iodides. Beta-spectrometric analysis of the exhaust condensates collected from the organic phase of the WAK reprocessing cycle revealed beside iodine-129 the existence of a low-energetic beta emitter, which has yet to be identified. A literature survey on the topic was also performed. (orig.) With 42 refs., 9 figs [de

  5. Distribution of Total Volatile Organic Compounds at taxi drivers in Tehran

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Javad Golhosseini

    2015-06-01

    Full Text Available Air pollution is currently the most serious environmental health threat worldwide. Volatile Organic Compounds (VOC are considered as the main effective factors in causing air pollution. Vehicles are among the major sources which emit these compounds, so it seems that automobiles’ microenvironment is one of the places where people are exposed to high concentration of VOC. Evaluating the exposure amount of Total Volatile Organic Compounds (TVOC can indeed be used as an indicator to estimate the amount of exposure to every individual VOC. This study was conducted on the concentration of TVOC inside Tehran taxies for a period of one year. For this purpose, a real time instrument equipped with photo-ionization detector (PID was used. Consequently, the highest and the lowest measured TVOC in taxies equaled 3.33 ppm and 0.72 ppm, respectively. In addition, the arithmetic mean of TVOC concentration was 1.77±0.53 ppm inside the examined taxies. In this study, the parameters like measurement time, climate and vehicle conditions were found to have significant effect on the amount of exposure to TVOC.

  6. The Venus flytrap attracts insects by the release of volatile organic compounds.

    Science.gov (United States)

    Kreuzwieser, Jürgen; Scheerer, Ursel; Kruse, Jörg; Burzlaff, Tim; Honsel, Anne; Alfarraj, Saleh; Georgiev, Plamen; Schnitzler, Jörg-Peter; Ghirardo, Andrea; Kreuzer, Ines; Hedrich, Rainer; Rennenberg, Heinz

    2014-02-01

    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap.

  7. Levels and source apportionment of volatile organic compounds in southwestern area of Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Rodolfo Sosa, E. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico); Humberto Bravo, A. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico)], E-mail: hbravo@servidor.unam.mx; Violeta Mugica, A. [Universidad Autonoma Metropolitana, Azcapotzalco, D.F. (Mexico); Pablo Sanchez, A. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico); Emma Bueno, L. [Centro Nacional de Investigacion y Capacitacion Ambiental, Instituto Nacional de Ecologia (Mexico); Krupa, Sagar [Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108 (United States)

    2009-03-15

    Thirteen volatile organic compounds (VOCs) were quantified at three sites in southwestern Mexico City from July 2000 to February 2001. High concentrations of different VOCs were found at a Gasoline refueling station (GS), a Condominium area (CA), and at University Center for Atmospheric Sciences (CAS). The most abundant VOCs at CA and CAS were propane, n-butane, toluene, acetylene and pentane. In comparison, at GS the most abundant were toluene, pentane, propane, n-butane, and acetylene. Benzene, a known carcinogenic compound had average levels of 28, 35 and 250 ppbC at CAS, CA, and GS respectively. The main contributing sources of the measured VOCs at CA and CAS were the handling and management of LP (Liquid Propane) gas, vehicle exhaust, asphalt works, and use of solvents. At GS almost all of the VOCs came from vehicle exhaust and fuel evaporation, although components of LP gas were also present. Based on the overall results possible abatement strategies are discussed. - Volatile organic compounds were quantified in order to perform their source apportionment in southwestern area of Mexico City.

  8. Levels and source apportionment of volatile organic compounds in southwestern area of Mexico City

    International Nuclear Information System (INIS)

    Rodolfo Sosa, E.; Humberto Bravo, A.; Violeta Mugica, A.; Pablo Sanchez, A.; Emma Bueno, L.; Krupa, Sagar

    2009-01-01

    Thirteen volatile organic compounds (VOCs) were quantified at three sites in southwestern Mexico City from July 2000 to February 2001. High concentrations of different VOCs were found at a Gasoline refueling station (GS), a Condominium area (CA), and at University Center for Atmospheric Sciences (CAS). The most abundant VOCs at CA and CAS were propane, n-butane, toluene, acetylene and pentane. In comparison, at GS the most abundant were toluene, pentane, propane, n-butane, and acetylene. Benzene, a known carcinogenic compound had average levels of 28, 35 and 250 ppbC at CAS, CA, and GS respectively. The main contributing sources of the measured VOCs at CA and CAS were the handling and management of LP (Liquid Propane) gas, vehicle exhaust, asphalt works, and use of solvents. At GS almost all of the VOCs came from vehicle exhaust and fuel evaporation, although components of LP gas were also present. Based on the overall results possible abatement strategies are discussed. - Volatile organic compounds were quantified in order to perform their source apportionment in southwestern area of Mexico City

  9. Volatile organic chemicals of a shore-dwelling cyanobacterial mat community.

    Science.gov (United States)

    Evans, W G

    1994-02-01

    The main components of a cyanobacterial mat community of a hypersaline lake shore consist of edaphic, mat-forming strains (ecophenes), and littoral strains ofOscillatoria animalis Agardh andO. subbrevis Schmidle, other microorganisms associated with these cyanobacteria, several species ofBembidion (Carabidae: Coleoptera), and two halophytic flowering plants:Puccinellia nuttalliana (salt meadow grass) andSalicornia europaea rubra (samphire). The volatile organic compounds of this community are a blend of those emitted by each of these components such as the C17 alka(e)nes, geosmin, 2-methylisoborneol,β-cyclocitral,β-ionone, dimethyl sulfide, and dimethyl trisulfide of cyanobacteria and associated microorganisms; alcohols, esters, and aldehydes usually associated with flowering plants; and possibly some insect-derived esters, particularly isopropyl tetradecanoate. The dominant compounds were: C11, C13, C15, and C17 alka(e)nes, methyl esters of C16 and C18:2 acids, isopropyl tetradecanoate, heptanal, 3-octanone and 2-nonanone, the acyclic terpene linalool, and the alcohols 1-heptanol, 1-hexanol, 1-octanol, 3-hexen-1-ol, and 2-octen-1-ol. It is concluded that this community may be distinguished from related communities by its repertoire of volatile organic compounds.

  10. Rapid recognition of volatile organic compounds with colorimetric sensor arrays for lung cancer screening.

    Science.gov (United States)

    Zhong, Xianhua; Li, Dan; Du, Wei; Yan, Mengqiu; Wang, You; Huo, Danqun; Hou, Changjun

    2018-06-01

    Volatile organic compounds (VOCs) in breath can be used as biomarkers to identify early stages of lung cancer. Herein, we report a disposable colorimetric array that has been constructed from diverse chemo-responsive colorants. Distinguishable difference maps were plotted within 4 min for specifically targeted VOCs. Through the consideration of various chemical interactions with VOCs, the arrays successfully discriminate between 20 different volatile organic compounds in breath that are related to lung cancer. VOCs were identified either with the visualized difference maps or through pattern recognition with an accuracy of at least 90%. No uncertainties or errors were observed in the hierarchical cluster analysis (HCA). Finally, good reproducibility and stability of the array was achieved against changes in humidity. Generally, this work provides fundamental support for construction of simple and rapid VOC sensors. More importantly, this approach provides a hypothesis-free array method for breath testing via VOC profiling. Therefore, this small, rapid, non-invasive, inexpensive, and visualized sensor array is a powerful and promising tool for early screening of lung cancer. Graphical abstract A disposable colorimetric array has been developed with broadly chemo-responsive dyes to incorporate various chemical interactions, through which the arrays successfully discriminate 20 VOCs that are related to lung cancer via difference maps alone or chemometrics within 4 min. The hydrophobic porous matrix provides good stability against changes in humidity.

  11. Native Fluorescence Detection Methods and Detectors for Naphthalene and/or Other Volatile Organic Compound Vapors

    Science.gov (United States)

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor)

    2014-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds have been identified as serious health hazards. This is especially true for personnel working with JP8 jet fuel and other fuels containing naphthalene as well as other hazardous volatile organic compounds (VOCs). Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to naphthalene or other hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined. The badges employ a new native fluorescence based detection method to identify and differentiate VOCs. The particular focus of some embodiments are the detection and identification of naphthalene while other embodiments are directed to detection and identification of other VOCs like aromatic hydrocarbons such as benzene, toluene, and xylene.

  12. A portable and inexpensive method for quantifying ambient intermediate volatility organic compounds

    Science.gov (United States)

    Bouvier-Brown, Nicole C.; Carrasco, Erica; Karz, James; Chang, Kylee; Nguyen, Theodore; Ruiz, Daniel; Okonta, Vivian; Gilman, Jessica B.; Kuster, William C.; de Gouw, Joost A.

    2014-09-01

    Volatile organic compounds (VOCs) and intermediate volatility VOCs (IVOCs) are gas-phase organic compounds which may participate in chemical reactions affecting air quality and climate. The development of an inexpensive, field-portable quantification method for higher molecular weight VOCs and IVOCs utilizing commercially available components could be used as a tool to survey aerosol precursors or identify and monitor air quality in various communities. We characterized the performance characteristics for the HayeSep-Q adsorbent with a representative selection of anthropogenic and biogenic VOC standards and optimized experimental conditions and procedures for field collections followed by laboratory analysis. All VOCs were analyzed using gas chromatography coupled with mass spectrometry. Precision (average 22%) and accuracy were reasonable and the limit of detection ranged from 10 to 80 pmol/mol (ppt) for the studied compounds. The method was employed at the Los Angeles site during the CalNex campaign in summer 2010 and ambient mixing ratios agreed well (slope 0.69-1.06, R2 0.67-0.71) with measurements made using an in-situ GC-MS - a distinctly different sampling and quantification method. This new technique can be applied to quantify ambient biogenic and anthropogenic C8-C15 VOCs and IVOCs.

  13. Environment and Pollution Management of Pollution Volatile Organic Compounds in Cluj-Napoca

    Directory of Open Access Journals (Sweden)

    Carmen Florean

    2016-10-01

    Full Text Available Pollution negative influences the environmental, human health, buildings and increase the production of waste. We are currently witnessing pollution and degradation in some cases irreversible, of the environment. Environmental issues are extremely complex and cover all sectors. Worldwide, industrial pollution strategies necessary to reduce emissions to the atmosphere hydrocarbons, volatile organic compounds (VOCs and other polluants in urban areas. The highest concentrations of volatile organic compounds of more than 80 mg/m3 occur in densely populated areas. The latest data reported in the residential area of Cluj-Napoca values did not exceed 20 m /m3. However peaks reported VOC concentrations, depending on the season, exceeding the upper limit that according to Law. 104/2011 is 75 μ/m3. It was identified due to increase annual mean concentration of VOCs as, in particular, road traffic exceeding sanitary standards on the main traffic routes within the city. In this paper the results obtained after carrying out an analysis of the average VOC concentration recorded in the city Cluj-Napoca as a result of car traffic. They were pursued average concentrations of VOCs resulting from the combustion of liquid fuels, petrol and diesel type. Analyzing the results obtained are proposed solutions for reducing VOC emissions. The rule under which these solutions have been proposed to reduce the concentration of VOCs took into account the possibility implementation and maintenance costs thereof.

  14. Metal-organic molecular device for non-volatile memory storage

    International Nuclear Information System (INIS)

    Radha, B.; Sagade, Abhay A.; Kulkarni, G. U.

    2014-01-01

    Non-volatile memory devices have been of immense research interest for their use in active memory storage in powered off-state of electronic chips. In literature, various molecules and metal compounds have been investigated in this regard. Molecular memory devices are particularly attractive as they offer the ease of storing multiple memory states in a unique way and also represent ubiquitous choice for miniaturized devices. However, molecules are fragile and thus the device breakdown at nominal voltages during repeated cycles hinders their practical applicability. Here, in this report, a synergetic combination of an organic molecule and an inorganic metal, i.e., a metal-organic complex, namely, palladium hexadecylthiolate is investigated for memory device characteristics. Palladium hexadecylthiolate following partial thermolysis is converted to a molecular nanocomposite of Pd(II), Pd(0), and long chain hydrocarbons, which is shown to exhibit non-volatile memory characteristics with exceptional stability and retention. The devices are all solution-processed and the memory action stems from filament formation across the pre-formed cracks in the nanocomposite film.

  15. Measurement of in-vehicle volatile organic compounds under static conditions.

    Science.gov (United States)

    You, Ke-wei; Ge, Yun-shan; Hu, Bin; Ning, Zhan-wu; Zhao, Shou-tang; Zhang, Yan-ni; Xie, Peng

    2007-01-01

    The types and quantities of volatile organic compounds (VOCs) inside vehicles have been determined in one new vehicle and two old vehicles under static conditions using the Thermodesorber-Gas Chromatograph/Mass Spectrometer (TD-GC/MS). Air sampling and analysis was conducted under the requirement of USEPA Method TO-17. A room-size, environment test chamber was utilized to provide stable and accurate control of the required environmental conditions (temperature, humidity, horizontal and vertical airflow velocity, and background VOCs concentration). Static vehicle testing demonstrated that although the amount of total volatile organic compounds (TVOC) detected within each vehicle was relatively distinct (4940 microg/m3 in the new vehicle A, 1240 microg/m3 in used vehicle B, and 132 microg/m3 in used vehicle C), toluene, xylene, some aromatic compounds, and various C7-C12 alkanes were among the predominant VOC species in all three vehicles tested. In addition, tetramethyl succinonitrile, possibly derived from foam cushions was detected in vehicle B. The types and quantities of VOCs varied considerably according to various kinds of factors, such as, vehicle age, vehicle model, temperature, air exchange rate, and environment airflow velocity. For example, if the airflow velocity increases from 0.1 m/s to 0.7 m/s, the vehicle's air exchange rate increases from 0.15 h(-1) to 0.67 h(-1), and in-vehicle TVOC concentration decreases from 1780 to 1201 microg/m3.

  16. Photodecomposition of volatile organic compounds using TiO2 nanoparticles.

    Science.gov (United States)

    Jwo, Ching-Song; Chang, Ho; Kao, Mu-Jnug; Lin, Chi-Hsiang

    2007-06-01

    This study examined the photodecomposition of volatile organic compounds (VOCs) using TiO2 catalyst fabricated by the Submerged Arc Nanoparticle Synthesis System (SANSS). TiO2 catalyst was employed to decompose volatile organic compounds and compare with Degussa-P25 TiO2 in terms of decomposition efficiency. In the electric discharge manufacturing process, a Ti bar, applied as the electrode, was melted and vaporized under high temperature. The vaporized Ti powders were then rapidly quenched under low-temperature and low-pressure conditions in deionized water, thus nucleating and forming nanocrystalline powders uniformly dispersed in the base solvent. The average diameter of the TiO2 nanoparticles was 20 nm. X-ray diffraction analysis confirmed that the nanoparticles in the deionized water were Anatase type TiO2. It was found that gaseous toluene exposed to UV irradiation produced intermediates that were even harder to decompose. After 60-min photocomposition, Degussa-P25 TiO2 reduced the concentration of gaseous toluene to 8.18% while the concentration after decomposition by SANSS TiO2 catalyst dropped to 0.35%. Under UV irradiation at 253.7 +/- 184.9 nm, TiO2 prepared by SANSS can produce strong chemical debonding energy, thus showing great efficiency, superior to that of Degussa-P25 TiO2, in decomposing gaseous toluene and its intermediates.

  17. Salt lakes of Western Australia - Natural abiotic formation of volatile organic compounds

    Science.gov (United States)

    Krause, T.; Studenroth, S.; Mulder, I.; Tubbesing, C.; Kotte, K.; Ofner, J.; Junkermann, W.; Schöler, H. F.

    2012-04-01

    Western Australia is a semi-/arid region that is heavily influenced by global climate change and agricultural land use. The area is known for its many ephemeral saline and hypersaline lakes with a wide range of hydrogeochemical parameters that have gradually changed over the last fifty years. Historically, the region was covered by eucalyptus trees and shrubs, but was cleared mainly within 10 years after WWII to make room for wheat and live stock. After the clearance of the deep rooted native plants the groundwater started to rise, bringing increased amounts of dissolved salts and minerals to the surface and discharging them into streams and lakes. Thus most of Western Australia is influenced by secondary salinisation (soil salting) [1]. Another problem is that the discharged minerals affect the pH of ground and surface water, which ranges from acidic to slightly basic. During the 2011 campaign surface water was measured with a pH between 2.5 and 7.1. Another phenomenon in Western Australia is the decrease of rainfall over the last decades assumed to be linked to the secondary salinisation. The rising saline and mineral rich groundwater increases the biotical and abiotical activity of the salt lakes. Halogenated and non-halogenated volatile organic compounds emitted from those lakes undergo fast oxidation and chemical reactions to form small particles modifying cloud microphysics and thus suppressing rain events [2]. Our objective is to gain a better understanding of this extreme environment with its hypersaline acidic lakes with regard to the potential abiotic formation of volatile organic compounds and its impact on the local climate. In spring 2011 fifty-three sediment samples from ten salt lakes in the Lake King region where taken, freeze-dried and ground. In order to simulate the abiotic formation of volatile organic compounds the soil samples were resuspended with water in gas-tight headspace vials. The headspace was measured using a purge and trap GC

  18. Study of the removal difference in indoor particulate matter and volatile organic compounds through the application of plants

    Directory of Open Access Journals (Sweden)

    Seung-Han Hong

    2017-02-01

    Full Text Available This study was conducted to evaluate the ability of plants to purify indoor air by observing the effective reduction rate among pollutant types of particulate matter (PM and volatile organic compounds (VOCs. PM and four types of VOCs were measured in a new building that is less than three years old and under three different conditions: before applying the plant, after applying the plant, and a room without a plant. The removal rate of each pollutant type due to the plant was also compared and analyzed. In the case of indoor PM, the removal effect was negligible because of outdoor influence. However, 9% of benzene, 75% of ethylbenzene, 72% of xylene, 75% of styrene, 50% of formaldehyde, 36% of acetaldehyde, 35% of acrolein with acetone, and 85% of toluene were reduced. The purification of indoor air by natural ventilation is meaningless because the ambient PM concentration has recently been high. However, contamination by gaseous materials such as VOCs can effectively be removed through the application of plants.

  19. Emissions of volatile organic compounds during the ship-loading of petroleum products: Dispersion modelling and environmental concerns.

    Science.gov (United States)

    Milazzo, Maria Francesca; Ancione, Giuseppa; Lisi, Roberto

    2017-12-15

    Emissions due to ship-loading of hydrocarbons are currently not addressed neither by the Directive on the integrated pollution prevention or by other environmental regulations. The scope of this study is to point towards the environmental and safety concerns associated with such emissions, even if proper attention has not been given to this issue until now. In order to achieve this goal, the modelling of the emission volatile organic compounds (VOC), due to ship-load operations at refineries has been made by means of the definition of a simulation procedure which includes a proper treatment of the hours of calm. Afterwards, a quantitative analysis of VOC dispersion for an Italian case-study is presented with the primary aims: (i) to develop and verify the validity of the approach for the modelling of the emission sources and of the diffusion of these contaminants into the atmosphere by a proper treatment of the hours of calm and (ii) to identify their contribution to the total VOC emitted in a typical refinery. The calculated iso-concentration contours have also been drawn on a map and allowed the identification of critical areas for people protecting by the adoption of abatement solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Determination of tetrachloroethylene and other volatile halogenated organic compounds in oil wastes by headspace SPME GC-MS

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, D.; Bezzi, R.; Torri, C.; Galletti, P.; Tagliavini, E. [Bologna Univ., Ravenna (Italy). Lab. of Chemistry, C.I.R.S.A

    2007-09-15

    Oil wastes and slops are complex mixtures of hydrocarbons, which may contain a variety of contaminants including tetrachloroethylene (perchloroethylene, PCE) and other volatile halogenated organic compounds (VHOCs). The analytical determination of PCE at trace levels in petroleum-derived matrices is difficult to carry out in the presence of large amounts of hydrocarbon matrix components. In the following study, we demonstrate that headspace solid-phase microextraction (HS-SPME) combined with GC-MS analysis can be applied for the rapid measurement of PCE concentration in oil samples. The HS-SPME method was developed using liquid paraffin as matrix matching reference material for external and internal calibration and optimisation of experimental parameters. The limit of quantitation was 0.05 mg kg{sup -1}, and linearity was established up to 25 mg kg{sup -1}. The HS-SPME method was extended to several VHOCs, including trichloroethylene (TCE) in different matrices and was applied to the quantitative analysis of PCE and TCE in real samples.

  1. Description, Properties, and Degradation of Selected Volatile Organic Compounds Detected in Ground Water--A Review of Selected Literature

    Science.gov (United States)

    Lawrence, Stephen J.

    2006-01-01

    This report provides abridged information describing the most salient properties and biodegradation of 27 chlorinated volatile organic compounds detected during ground-water studies in the United States. This information is condensed from an extensive list of reports, papers, and literature published by the U.S. Government, various State governments, and peer-reviewed journals. The list includes literature reviews, compilations, and summaries describing volatile organic compounds in ground water. This report cross-references common names and synonyms associated with volatile organic compounds with the naming conventions supported by the International Union of Pure and Applied Chemistry. In addition, the report describes basic physical characteristics of those compounds such as Henry's Law constant, water solubility, density, octanol-water partition (log Kow), and organic carbon partition (log Koc) coefficients. Descriptions and illustrations are provided for natural and laboratory biodegradation rates, chemical by-products, and degradation pathways.

  2. The development and testing of a volatile organics concentrator for use in monitoring Space Station water quality

    Science.gov (United States)

    Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Trabanino, Rudy; Hinsdale, Lloyd; Webb, Johanna; Sauer, Richard L.

    1992-01-01

    The Volatile Organics Concentrator (VOC) system, designed to attach to a gas chromatograph/mass spectrometer (GC/MS) for the analyses of volatile organic compounds in water on Space Station Freedom, is described. Organic volatiles are collected and concentrated in the VOC by means of two primary solid sorbent tubes and desorbed into the GC/MS system. The paper describes the results of testing the VOC breadboard using a GC/MS system. Evaluations performed on 39 organic compounds recovered from water samples were compared with data for these compounds using direct injection/GC/MS and purge and trap/GC/MS procedures. The results demonstrate that the VOC/GC/MS system's detection limits for the 39 compounds analyzed are comparable to those of the EPA Method 524.2, and for many compounds reaching a factor of 5 lower.

  3. The Atmospheric Oxidation of Volatile Organic Compounds Through Hydrogen Shift Reactions

    DEFF Research Database (Denmark)

    Knap, Hasse Christian

    a radical is denoted as a H-shift reaction. Quantum chemical calculations were carried out to investigate the potential energy surface of the H-shift reactions and the subsequent decomposition pathways. The transition state theory including the Eckart quantum tunneling correction have been used to calculate...... the reaction rate constants of the H-shift reactions. The autoxidation of volatile organic compounds is an important oxidation mechanism that produces secondary organic aerosols (SOA) and recycles hydroxyl (OH) radicals. The autoxidation cycle produces a second generation peroxy radical (OOQOOH) through...... a series of H-shift reactions and O2 attachments. I have investigated the H-shift reactions in two OOQOOH radicals (hydroperoxy peroxy radicals and hydroperoxy acyl peroxy radicals). The H-shift reaction rate constants have been compared with the bimolecular reaction rate constants of the peroxy radicals...

  4. Air ionization as a control technology for off-gas emissions of volatile organic compounds.

    Science.gov (United States)

    Kim, Ki-Hyun; Szulejko, Jan E; Kumar, Pawan; Kwon, Eilhann E; Adelodun, Adedeji A; Reddy, Police Anil Kumar

    2017-06-01

    High energy electron-impact ionizers have found applications mainly in industry to reduce off-gas emissions from waste gas streams at low cost and high efficiency because of their ability to oxidize many airborne organic pollutants (e.g., volatile organic compounds (VOCs)) to CO 2 and H 2 O. Applications of air ionizers in indoor air quality management are limited due to poor removal efficiency and production of noxious side products, e.g., ozone (O 3 ). In this paper, we provide a critical evaluation of the pollutant removal performance of air ionizing system through comprehensive review of the literature. In particular, we focus on removal of VOCs and odorants. We also discuss the generation of unwanted air ionization byproducts such as O 3 , NOx, and VOC oxidation intermediates that limit the use of air-ionizers in indoor air quality management. Copyright © 2017. Published by Elsevier Ltd.

  5. Volatile organic compounds and trace metal level in some beers collected from Romanian market

    Science.gov (United States)

    Voica, Cezara; Kovacs, Melinda; Vadan, Marius

    2013-11-01

    Beer is one of the most popular beverages at worldwide level. Through this study fifteen different types of beer collected from Romanian market were analysed in order to evaluate their mineral, trace element as well the their organic content. Importance of such characterization of beer samples is supported by the fact that their chemical composition can affect both taste and stability of beer, as well the consumer health. Minerals and trace elements analysis were performed on ICP-MS while organic compounds analysis was done through GC-MS. Through ICP-MS analysis, elements as Ca, Na, K and Mg were evidenced at mgṡkg-1 order while elements as Cr, Ba, Co, Ni were detected at lower level. After GC-MS analysis the major volatile compounds that were detected belong to alcohols namely ethanol, propanol, isobutanol, isoamyl alcohol and linalool. Selected fatty acids and esters were evidenced also in the studied beer samples.

  6. Distribution of enantiomers of volatile organic compounds in selected fruit distillates.

    Science.gov (United States)

    Vyviurska, Olga; Zvrškovcová, Helena; Špánik, Ivan

    2017-01-01

    The enantiomer ratios of chiral volatile organic compounds in fruit distillates were determined by multidimensional gas chromatography using solid-phase microextraction (SPME) as a sample treatment procedure. Linalool and its oxides, limonene, α-terpineol, and nerolidol, were present at the highest concentration levels, while significantly lower amounts of β-citronellol and lactones were found in the studied samples. However, almost all terpenoids mainly occur as a racemic or near-racemic mixture; enantiomer distribution of some chiral organic compounds in fruit distillates correlated to a botanical origin. In particular, a significant enantiomeric excess of (R)-linalool and (S)-α-terpineol was found only for pear brandy, and likewise the dominance (R)-limonene and the second eluted enantiomer of nerolidol for Sorbus domestica and strawberry, respectively. The distribution of γ-lactones stereoisomers was more nonspecific, with a general excess of the R-enantiomer. © 2016 Wiley Periodicals, Inc.

  7. Detection of Volatile Organic Compound Gas Using Localized Surface Plasmon Resonance of Gold Nanoparticles

    International Nuclear Information System (INIS)

    Sri Nengsih; Akrajas Ali Umar; Muhamad Mat Salleh; Muhammad Yahaya

    2011-01-01

    This paper reports on the detection of several organic vapors using the unique characteristic of localized surface plasmon resonance (LSPR) gold nanoparticles. Gold nanoparticles on quartz substrate were prepared using seed mediated growth method. In a typical process, gold nanoparticles with average size ca. 36 nm were obtained to densely grown on the substrate. Detection of gas was based on the change in the LSPR of the gold nanoparticles film upon the exposure to the gas sample. It was found that gold nanoparticles were sensitive to the presence of volatile organic compound (VOC) gas from the change in the surface plasmon resonance (SPR) intensity. The mechanism for the detection of VOCs gas will be discussed. (author)

  8. Modeling long-term uptake and re-volatilization of semi-volatile organic compounds (SVOCs) across the soil-atmosphere interface.

    Science.gov (United States)

    Bao, Zhongwen; Haberer, Christina; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter

    2015-12-15

    Soil-atmosphere exchange is important for the environmental fate and atmospheric transport of many semi-volatile organic compounds (SVOCs). This study focuses on modeling the vapor phase exchange of semi-volatile hydrophobic organic pollutants between soil and the atmosphere using the multicomponent reactive transport code MIN3P. MIN3P is typically applied to simulate aqueous and vapor phase transport and reaction processes in the subsurface. We extended the code to also include an atmospheric boundary layer where eddy diffusion takes place. The relevant processes and parameters affecting soil-atmosphere exchange were investigated in several 1-D model scenarios and at various time scales (from years to centuries). Phenanthrene was chosen as a model compound, but results apply for other hydrophobic organic compounds as well. Gaseous phenanthrene was assumed to be constantly supplied to the system during a pollution period and a subsequent regulation period (with a 50% decline in the emission rate). Our results indicate that long-term soil-atmosphere exchange of phenanthrene is controlled by the soil compartment - re-volatilization thus depends on soil properties. A sensitivity analysis showed that accumulation and transport in soils in the short term is dominated by diffusion, whereas in the long term groundwater recharge and biodegradation become relevant. As expected, sorption causes retardation and slows down transport and biodegradation. If atmospheric concentration is reduced (e.g. after environmental regulations), re-volatilization from soil to the atmosphere occurs only for a relatively short time period. Therefore, the model results demonstrate that soils generally are sinks for atmospheric pollutants. The atmospheric boundary layer is only relevant for time scales of less than one month. The extended MIN3P code can also be applied to simulate fluctuating concentrations in the atmosphere, for instance due to temperature changes in the topsoil. Copyright

  9. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer

    Science.gov (United States)

    Mungall, Emma L.; Abbatt, Jonathan P. D.; Wentzell, Jeremy J. B.; Lee, Alex K. Y.; Thomas, Jennie L.; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A.; Papakyriakou, Tim; Willis, Megan D.; Liggio, John

    2017-06-01

    Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.

  10. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer.

    Science.gov (United States)

    Mungall, Emma L; Abbatt, Jonathan P D; Wentzell, Jeremy J B; Lee, Alex K Y; Thomas, Jennie L; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A; Papakyriakou, Tim; Willis, Megan D; Liggio, John

    2017-06-13

    Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.

  11. Gas-shell-encapsulation of activated carbon to reduce fouling and increase the efficacy of volatile organic compound removal

    NARCIS (Netherlands)

    Poortinga, A.T.; van Rijn, C.J.M.

    2017-01-01

    A method to encapsulate activated carbon particles is presented that reduces fouling of these particles with Natural Organic Matter (NOM) to preserve their adsorption capacity for Volatile Organic Compounds (VOCs) from water in the presence of NOM. The encapsulation method uses an oil-in-water

  12. Gas-shell-encapsulation of Activated Carbon to Reduce Fouling and Increase the Efficacy of Volatile Organic Compound Removal

    NARCIS (Netherlands)

    Poortinga, Albert T.; Rijn, van Cees J.M.

    2017-01-01

    A method to encapsulate activated carbon particles is presented that reduces fouling of these particles with Natural Organic Matter (NOM) to preserve their adsorption capacity for Volatile Organic Compounds (VOCs) from water in the presence of NOM. The encapsulation method uses an oil-in-water

  13. Characterisation of organic contaminants in the CLOUD chamber at CERN

    CERN Document Server

    Schnitzhofer, R; Breitenlechner, M; Jud, W; Heinritzi, M; Menezes, L-P; Duplissy, J; Guida, R; Haider, S; Kikby, J; Mathot, S; Minginette, P; Onnela, A; Walther, H; Wasem, A; Hansel, A; CLOUD Team

    2014-01-01

    The CLOUD experiment (Cosmics Leaving OUtdoor Droplets) investigates the nucleation of new particles and how this process is influenced by galactic cosmic rays in an electropolished, stainless-steel environmental chamber at CERN (European Organization for Nuclear Research). Since volatile organic compounds (VOCs) can act as precursor gases for nucleation and growth of particles, great efforts have been made to keep their unwanted background levels as low as possible and to quantify them. In order to be able to measure a great set of VOCs simultaneously in the low parts per trillion (pptv) range, proton-transfer-reaction mass spectrometry (PTR-MS) was used. Initially the total VOC background concentration strongly correlated with ozone in the chamber and ranged from 0.1 to 7 parts per billion (ppbv). Plastic used as sealing material in the ozone generator was found to be a major VOC source. Especially oxygen-containing VOCs were generated together with ozone. These parts were replaced by stainless steel after ...

  14. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species.

    Science.gov (United States)

    Fincheira, Paola; Venthur, Herbert; Mutis, Ana; Parada, Maribel; Quiroz, Andrés

    2016-12-01

    Agrochemicals are currently used in horticulture to increase crop production. Nevertheless, their indiscriminate use is a relevant issue for environmental and legal aspects. Alternative tools for reducing fertilizers and synthetic phytohormones are being investigated, such as the use of volatile organic compounds (VOCs) as growth inducers. Some soil bacteria, such as Pseudomonas and Bacillus, stimulate Arabidopsis and tobacco growth by releasing VOCs, but their effects on vegetables have not been investigated. Lactuca sativa was used as model vegetable to investigate bacterial VOCs as growth inducers. We selected 10 bacteria strains, belonging to Bacillus, Staphylococcus and Serratia genera that are able to produce 3-hydroxy-2-butanone (acetoin), a compound with proven growth promoting activity. Two-day old-seedlings of L. sativa were exposed to VOCs emitted by the selected bacteria grown in different media cultures for 7 days. The results showed that the VOCs released from the bacteria elicited an increase in the number of lateral roots, dry weight, root growth and shoot length, depending on the media used. Three Bacillus strains, BCT53, BCT9 and BCT4, were selected according to its their growth inducing capacity. The BCT9 strain elicited the greatest increases in dry weight and primary root length when L. sativa seedlings were subjected to a 10-day experiment. Finally, because acetoin only stimulated root growth, we suggest that other volatiles could be responsible for the growth promotion of L. sativa. In conclusion, our results strongly suggest that bacteria volatiles can be used as growth-inducers as alternative or complementary strategies for application in horticulture species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Volatile organic compounds in pesticide formulations: Methods to estimate ozone formation potential

    Science.gov (United States)

    Zeinali, Mazyar; McConnell, Laura L.; Hapeman, Cathleen J.; Nguyen, Anh; Schmidt, Walter F.; Howard, Cody J.

    2011-05-01

    The environmental fate and toxicity of active ingredients in pesticide formulations has been investigated for many decades, but relatively little research has been conducted on the fate of pesticide co-formulants or inerts. Some co-formulants are volatile organic compounds (VOCs) and can contribute to ground-level ozone pollution. Effective product assessment methods are required to reduce emissions of the most reactive VOCs. Six emulsifiable concentrate pesticide products were characterized for percent VOC by thermogravimetric analysis (TGA) and gas chromatography-mass spectrometry (GC-MS). TGA estimates exceeded GC-MS by 10-50% in all but one product, indicating that for some products a fraction of active ingredient is released during TGA or that VOC contribution was underestimated by GC-MS. VOC profiles were examined using TGA-Fourier transform infrared (FTIR) evolved gas analysis and were compared to GC-MS results. The TGA-FTIR method worked best for products with the simplest and most volatile formulations, but could be developed into an effective product screening tool. An ozone formation potential ( OFP) for each product was calculated using the chemical composition from GC-MS and published maximum incremental reactivity ( MIR) values. OFP values ranged from 0.1 to 3.1 g ozone g -1 product. A 24-h VOC emission simulation was developed for each product assuming a constant emission rate calculated from an equation relating maximum flux rate to vapor pressure. Results indicate 100% VOC loss for some products within a few hours, while other products containing less volatile components will remain in the field for several days after application. An alternate method to calculate a product OFP was investigated utilizing the fraction of the total mass of each chemical emitted at the end of the 24-h simulation. The ideal assessment approach will include: 1) unambiguous chemical composition information; 2) flexible simulation models to estimate emissions under

  16. A numerical solution to three-dimensional multiphase transport of volatile organic compounds in unsaturated soils -- with an application to the remedial method of in-situ volatilization

    International Nuclear Information System (INIS)

    Filley, T.; Tomasko, D.

    1992-04-01

    Part I of this paper presents the development and application of a numerical model for determining the fate and transport of volatile organic compounds (VOCS) in the unsaturated zone resulting from forced volatilization and gaseous advection-dispersion of organic vapor in a multipartitioned three-dimensional environment. The model allows for single-component transport in the gas and water phases. The hydrocarbon is assumed to be in specific retention and, therefore, immobile. Partitioning of the hydrocarbon between the oil, water, gas, and soil is developed as rate-limited functions that are incorporated into sink/source terms in the transport equations. The code for the model was developed specifically to investigate in-situ volatilization (ISV) remedial strategies, predict the extent of cleanup from information obtained at a limited number of measurement locations, and to help design ISV remedial systems. Application of the model is demonstrated for a hypothetical one-dimensional ISV system. Part II of this paper will present the analysis of an existing ISV system using the full three-dimensional capability of the model

  17. Passive sampling methods for contaminated sediments: State of the science for organic contaminants

    Science.gov (United States)

    Lydy, Michael J; Landrum, Peter F; Oen, Amy MP; Allinson, Mayumi; Smedes, Foppe; Harwood, Amanda D; Li, Huizhen; Maruya, Keith A; Liu, Jingfu

    2014-01-01

    This manuscript surveys the literature on passive sampler methods (PSMs) used in contaminated sediments to assess the chemical activity of organic contaminants. The chemical activity in turn dictates the reactivity and bioavailability of contaminants in sediment. Approaches to measure specific binding of compounds to sediment components, for example, amorphous carbon or specific types of reduced carbon, and the associated partition coefficients are difficult to determine, particularly for native sediment. Thus, the development of PSMs that represent the chemical activity of complex compound–sediment interactions, expressed as the freely dissolved contaminant concentration in porewater (Cfree), offer a better proxy for endpoints of concern, such as reactivity, bioaccumulation, and toxicity. Passive sampling methods have estimated Cfree using both kinetic and equilibrium operating modes and used various polymers as the sorbing phase, for example, polydimethylsiloxane, polyethylene, and polyoxymethylene in various configurations, such as sheets, coated fibers, or vials containing thin films. These PSMs have been applied in laboratory exposures and field deployments covering a variety of spatial and temporal scales. A wide range of calibration conditions exist in the literature to estimate Cfree, but consensus values have not been established. The most critical criteria are the partition coefficient between water and the polymer phase and the equilibrium status of the sampler. In addition, the PSM must not appreciably deplete Cfree in the porewater. Some of the future challenges include establishing a standard approach for PSM measurements, correcting for nonequilibrium conditions, establishing guidance for selection and implementation of PSMs, and translating and applying data collected by PSMs. Integr Environ Assess Manag 2014;10:167–178. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of

  18. Bioremediation of soil and ground water impacted with organic contaminants

    International Nuclear Information System (INIS)

    Woods, W.B.

    1991-01-01

    Two case studies demonstrate the controlled use of micro-organisms to degrade organic contaminants under aerobic and anaerobic conditions. The aerobic study illustrates the degradation of hydrocarbons in a soil matrix. Data are presented that show a two-phase degradation of total petroleum hydrocarbons (TPH) from about 1,300 ppm TPH to cleanup levels of 100 ppm or less in two months. Total aerobic microorganism and substate-specific degrader counts were tracked throughout the study. Typical total aerobic counts of 10 6 colony forming units (CFU)/g and hydrocarbon degrader counts of 10 4 CFU/g were observed. Hydrocarbon degraders were enumerated on minimal salts media incubated in the presence of hydrocarbon vapors. The anaerobic study documents the successful use of a supplemental carbon source and fertilizers to stimulate indigenous microbe to degrade ketones. A nutrient mix of s polysaccharide, a nitrate electron acceptor and an inorganic orthophosphate was used to augment 100,000 yd 3 of soil contaminated with ketones at about 1,000 ppm. The key elements of a biotreatment project are discussed (i.e., site characterization, treatability studies, biotreatment design, site construction, system maintenance, final disposal and site closure). Lastly, the benefits of bioremediation vs. other remediation alternatives such as landfill disposal, incineration, and stabilization/fixation are discussed in terms of cost and liability

  19. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  20. Development of multicomponent parts-per-billion-level gas standards of volatile toxic organic compounds

    International Nuclear Information System (INIS)

    Rhoderick, G.C.; Zielinski, W.L. Jr.

    1990-01-01

    This paper reports that the demand for stable, low-concentration multicomponent standards of volatile toxic organic compounds for quantifying national and state measurement of ambient air quality and hazardous waste incineration emissions has markedly increased in recent years. In response to this demand, a microgravimetric technique was developed and validated for preparing such standards; these standards ranged in concentration from several parts per million (ppm) down to one part per billion (ppb) and in complexity from one organic up to 17. Studies using the gravimetric procedure to prepare mixtures of different groups of organics. including multi-components mixtures in the 5 to 20 ppb range, revealed a very low imprecision. This procedure is based on the separate gravimetric introduction of individual organics into an evacuated gas cylinder, followed by the pressurized addition of a precalculated amount of pure nitrogen. Additional studies confirmed the long-term stability of these mixtures. The uncertainty of the concentrations of the individual organics at the 95% confidence level ranged from less than 1% relative at 1 ppm to less than 10% relative at 1 ppb. Over 100 primary gravimetric standards have been developed, validated, and used for certifying the concentrations of a variety of mixtures for monitoring studies

  1. Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants

    Science.gov (United States)

    Bracho-Nunez, A.; Knothe, , N. M.; Welter, S.; Staudt, M.; Costa, W. R.; Liberato, M. A. R.; Piedade, M. T. F.; Kesselmeier, J.

    2013-09-01

    Emission inventories defining regional and global biogenic volatile organic compounds (VOC) emission strengths are needed to determine the impact of VOC on atmospheric chemistry (oxidative capacity) and physics (secondary organic aerosol formation and effects). The aim of this work was to contribute with measurements of tree species from the poorly described tropical vegetation in direct comparison with the quite well-investigated, highly heterogeneous emissions from Mediterranean vegetation. VOC emission from sixteen plant species from the Mediterranean area were compared with twelve plant species from different environments of the Amazon basin by an emission screening at leaf level using branch enclosures. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS) and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was the most dominant compound emitted followed by monoterpenes, methanol and acetone. The average loss rates of VOC carbon in relation to the net CO2 assimilation were found below 4% and indicating normal unstressed plant behavior. Most of the Mediterranean species emitted a large variety of monoterpenes, whereas only five tropical species were identified as monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene plants showed additional emissions of sesquiterpenes. In the case of Amazonian plants no sesquiterpenes were detected. However, missing of sesquiterpenes may also be due to a lack of sensitivity of the measuring systems. Furthermore, our screening activities cover only 1% of tree species of such tropical areas as estimated based on recent biodiversity reports. Methanol emissions, an indicator of growth, were found to be common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed heterogeneous emissions, including reactive VOC species which are not

  2. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids

    Directory of Open Access Journals (Sweden)

    Hongbin Lin

    2018-05-01

    Full Text Available Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC. Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln, glutamic acid (Glu, aspartic acid (Asp and asparagines (Asn were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  3. Measurements of oxygenated volatile organic compounds in the oil sands region of Alberta

    Science.gov (United States)

    Moussa, S. G.; Leithead, A.; Li, S. M.; Gordon, M.; Hayden, K. L.; Wang, D. K.; Staebler, R. M.; Liu, P.; O'Brien, J.; Mittermeier, R.; Liggio, J.

    2014-12-01

    Oxygenated volatile organic compounds (OVOCs) are ubiquitous in the atmosphere, and represent an important fraction of volatile organic compounds. Additionally some OVOC species may pose health risks. OVOCs can affect the oxidative and radiative budget of the atmosphere since they are precursors to ground level ozone, hydroxyl radicals and secondary organic aerosols (SOA). OVOCs such as methanol, formaldehyde, acetaldehyde, acetone, crotonaldehyde, methylvinylketone (MVK), methylethylketone (MEK) and acrolein can be emitted from anthropogenic and biogenic sources. Additionally, they are the secondary products of the photo-oxidation of hydrocarbons (biogenic and anthropogenic). Understanding the magnitude of these sources is a prerequisite for accurate representations of radical cycling, ozone production and SOA formation in air quality models. The sources of OVOCs in the Alberta Oil Sands (OS) region have not previously been well characterized. In the summer of 2013, airborne measurements of various OVOCs were made in the Athabasca oil sands region between August 13 and September 7, 2013. Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) was used to measure methanol, formaldehyde, acetaldehyde, acetone, crotonaldehyde, MVK, MEK, acrolein as well as other hydrocarbons. Emission ratios (ER) for several OVOCs (relative to carbon monoxide; CO) were used to estimate direct anthropogenic emissions from OS industrial sources, while the calculated OH radical exposures were used to estimate the production and removal of secondary anthropogenic OVOCs. The results indicate that OVOCs such as acetaldehyde, crotonaldehyde and MVK have both primary and secondary anthropogenic and biogenic sources. However, species such as methanol and acrolein are from biogenic and anthropogenic sources, respectively. The results of this work will help to characterize sources of OVOCs and the factors influencing their atmospheric fate in the Oil Sands region.

  4. Leaf level emissions of volatile organic compounds (VOC from some Amazonian and Mediterranean plants

    Directory of Open Access Journals (Sweden)

    A. Bracho-Nunez

    2013-09-01

    Full Text Available Emission inventories defining regional and global biogenic volatile organic compounds (VOC emission strengths are needed to determine the impact of VOC on atmospheric chemistry (oxidative capacity and physics (secondary organic aerosol formation and effects. The aim of this work was to contribute with measurements of tree species from the poorly described tropical vegetation in direct comparison with the quite well-investigated, highly heterogeneous emissions from Mediterranean vegetation. VOC emission from sixteen plant species from the Mediterranean area were compared with twelve plant species from different environments of the Amazon basin by an emission screening at leaf level using branch enclosures. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was the most dominant compound emitted followed by monoterpenes, methanol and acetone. The average loss rates of VOC carbon in relation to the net CO2 assimilation were found below 4% and indicating normal unstressed plant behavior. Most of the Mediterranean species emitted a large variety of monoterpenes, whereas only five tropical species were identified as monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene < limonene < sabinene < ß-pinene. Mediterranean plants showed additional emissions of sesquiterpenes. In the case of Amazonian plants no sesquiterpenes were detected. However, missing of sesquiterpenes may also be due to a lack of sensitivity of the measuring systems. Furthermore, our screening activities cover only 1% of tree species of such tropical areas as estimated based on recent biodiversity reports. Methanol emissions, an indicator of growth, were found to be common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed

  5. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids.

    Science.gov (United States)

    Lin, Hongbin; Yu, Xiaoyu; Fang, Jiaxing; Lu, Yunhao; Liu, Ping; Xing, Yage; Wang, Qin; Che, Zhenming; He, Qiang

    2018-05-29

    Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC). Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln), glutamic acid (Glu), aspartic acid (Asp) and asparagines (Asn) were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  6. Volatile organic compounds and secondary organic aerosol in the Earth's atmosphere

    International Nuclear Information System (INIS)

    Galbally, Ian

    2007-01-01

    Full text: Recent research, when considered as a whole, suggests that a substantial fraction of both gas-phase and aerosol atmospheric organics have not been, or have very rarely been, directly measured. A review of the global budget for organic gases shows that we cannot account for the loss of approximately half the non-methane organic carbon entering the atmosphere. We suggest that this unaccounted-for loss most likely occurs through formation of secondary organic aerosols (SOAs), indicating that the source for these aerosols is an order of magnitude larger than current estimates. There is evidence that aged secondary organic aerosol can participate in both direct and indirect (cloud modifying) radiative forcing and that this influence may change with other global climate change. Even though our knowledge of the organic composition of the atmosphere is limited, these compounds clearly influence the reactive chemistry of the atmosphere and the formation, composition, and climate impact of aerosols A major challenge in the coming decade of atmospheric chemistry research will be to elucidate the sources, structure, chemistry, fate and influences of these clearly ubiquitous yet poorly constrained organic atmospheric constituents

  7. Urinary volatile organic compounds as potential biomarkers for renal cell carcinoma

    Science.gov (United States)

    WANG, DONGCHUN; WANG, CHANGSONG; PI, XIN; GUO, LEI; WANG, YUE; LI, MINGJUAN; FENG, YUE; LIN, ZIWEI; HOU, WEI; LI, ENYOU

    2016-01-01

    Currently, there is no adequate, sensitive, reproducible, specific and noninvasive biomarker that can reliably be used to detect renal cell carcinoma (RCC). Previous studies have elucidated the urinary non-volatile metabolic profile of RCC. However, whether urinary volatile organic compound (VOC) profiles are able to identify RCC remains to be elucidated. In the present study, urine was collected from 22 patients with RCC and 25 healthy subjects. Principal component analysis and orthogonal partial least square discriminant analysis were used to compare the data of patients and healthy subjects, and preoperative and postoperative patients undergoing radical nephrectomy. In total, 11 VOC biomarkers were elevated in the RCC patients compared to the healthy subjects, which were phenol; decanal; 1,6-dioxacyclododecane-7,12-dione; 1-bromo-1-(3-methyl-1-pentenylidene)-2,2,3,3-tetramethyl-cyclopropane; nonanal; 3-ethyl-3-methylheptane; isolongifolene-5-ol; 2,5-cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethylethyl); tetradecane; aniline; and 2,6,10,14-tetramethyl-pentadecane. Three biomarkers were decreased in RCC patients: styrene, 4-heptanone and dimethylsilanediol. In preoperative patients, 2-ethyl-1-hexanol and cyclohexanone were elevated, while 6-t-butyl-2,2,9,9-tetramethyl-3,5-decadien-7-yne were decreased when compared to postoperative patients. Compared with the healthy subjects, RCC has a unique VOC profile, suggesting that VOC profiles may be a useful diagnostic assay for RCC. PMID:27347408

  8. Release of volatile organic compounds (VOCs from the lung cancer cell line CALU-1 in vitro

    Directory of Open Access Journals (Sweden)

    Schubert Jochen

    2008-11-01

    Full Text Available Abstract Background The aim of this work was to confirm the existence of volatile organic compounds (VOCs specifically released or consumed by lung cancer cells. Methods 50 million cells of the human non-small cell lung cancer (NSCLC cell line CALU-1 were incubated in a sealed fermenter for 4 h or over night (18 hours. Then air samples from the headspace of the culture vessel were collected and preconcentrated by adsorption on solid sorbents with subsequent thermodesorption and analysis by means of gas chromatography mass spectrometry (GC-MS. Identification of altogether 60 compounds in GCMS measurement was done not only by spectral library match, but also by determination of retention times established with calibration mixtures of the respective pure compounds. Results The results showed a significant increase in the concentrations of 2,3,3-trimethylpentane, 2,3,5-trimethylhexane, 2,4-dimethylheptane and 4-methyloctane in the headspace of CALU-1 cell culture as compared to medium controls after 18 h. Decreased concentrations after 18 h of incubation were found for acetaldehyde, 3-methylbutanal, butyl acetate, acetonitrile, acrolein, methacrolein, 2-methylpropanal, 2-butanone, 2-methoxy-2-methylpropane, 2-ethoxy-2-methylpropane, and hexanal. Conclusion Our findings demonstrate that certain volatile compounds can be cancer-cell derived and thus indicative of the presence of a tumor, whereas other compounds are not released but seem to be consumed by CALU-1 cells.

  9. Gas-liquid partitioning of halogenated volatile organic compounds in aqueous cyclodextrin solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ondo, Daniel; Barankova, Eva [Department of Physical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Dohnal, Vladimir, E-mail: dohnalv@vscht.cz [Department of Physical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2011-08-15

    Highlights: > Binding of halogenated VOCs with cyclodextrins examined through g-l partitioning. > Complex stabilities reflect host-guest size matching and hydrophobic interaction. > Presence of halogens in the guest molecule stabilizes the binding. > Thermodynamic origin of the binding varies greatly among the systems studied. > Results obey the guest-CD global enthalpy-entropy compensation relationship. - Abstract: Gas-liquid partitioning coefficients (K{sub GL}) were measured for halogenated volatile organic compounds (VOCs), namely 1-chlorobutane, methoxyflurane, pentafluoropropan-1-ol, heptafluorobutan-1-ol, {alpha},{alpha},{alpha}-trifluorotoluene, and toluene in aqueous solutions of natural {alpha}-, {beta}-, and {gamma}-cyclodextrins (CDs) at temperatures from (273.35 to 326.35) K employing the techniques of headspace gas chromatography and inert gas stripping. The binding constants of the 1:1 inclusion complex formation between the VOCs and CDs were evaluated from the depression of the VOCs volatility as a function of CD concentration. The host-guest size matching and the hydrophobic interaction concept were used to rationalize the observed widely different affinity of the VOC-CD pairs to form the inclusion complex. The enthalpic and entropic component of the standard Gibbs free energy of complex formation as derived from the temperature dependence of the binding constant indicate the thermodynamic origin of the binding to vary greatly among the systems studied, but follow the global enthalpy-entropy compensation relationships reported previously in the literature.

  10. Volatile organic compound measurements in the California/Mexico border region during SCOS97

    International Nuclear Information System (INIS)

    Zielinska, B.; Sagebiel, J.; Harshfield, G.; Pasek, R.

    2001-01-01

    Measurements of volatile organic compounds (VOC) were carried out in the California/Mexico border region during the Southern California Ozone Study in the summer of 1997 (SCOS97). Integrated 3-h samples were collected in Rosarito (south of Tijuana, Mexico) and in Mexicali during intensive operational periods (IOP), twice per IOP day. VOC were collected using stainless-steel 6-l canisters; carbonyl compounds were collected using 2,4-dinitrophenylhydrazine (DNPH) impregnated C18 SepPak cartridges. The canister samples were analyzed for speciated volatile hydrocarbons (C 2 -C 12 ), CO, CO 2 , CH 4 , methyl t-butyl ether (MTBE), and halogenated hydrocarbons. DNPH-impregnated cartridges were analyzed for 14 C 1 -C 7 carbonyl compounds. The concentrations of all species were higher at Mexicali than in Rosarito. A good correlation between total non-methane hydrocarbons (TNMHC), CO, and other pollutants associated with motor vehicle emissions observed for Mexicali indicates that the main source of TNMHC at this site is vehicular traffic

  11. Determination of volatile organic compounds responsible for flavour in cooked river buffalo meat

    Directory of Open Access Journals (Sweden)

    A. Di Luccia

    2010-02-01

    Full Text Available Flavour is an important consumer attractive that directly influences the success of food products on the market. The determination of odorous molecules and their identification allows to useful knowledge for producers to valorise their own products. Buffalo meat has a different chemical composition from pork and beef and requires some cautions in cooking and processing. This work aims at the identification of volatile molecules responsible for flavours in river buffalo meat. The determination was carried out by solid phase micro-extraction (SPME technique and analysed by gas chromatography coupled to mass spectrometry (GC-MS. The most relevant results were the higher odorous impact of buffalo meat and the higher content of sulphide compounds responsible for wild aroma respect to pork and beef. These results were obtained comparing the total area of peaks detected in every chromatogram. We have also found significant differences concerning the contents of pentadecane, 1-hexanol-2 ethyl, butanoic acid, furano-2-penthyl. The origin of volatile organic compounds and their influence on the river buffalo aromas were discussed.

  12. Volatile organic compounds as biomarkers of bladder cancer: Sensitivity and specificity using trained sniffer dogs.

    Science.gov (United States)

    Willis, Carolyn M; Britton, Lezlie E; Harris, Rob; Wallace, Joshua; Guest, Claire M

    In a previous canine study, we demonstrated that volatile organic compounds specific to bladder cancer are present in urine headspace, subsequently showing that up to 70% of tumours can be correctly classified using an electronic nose. This study aimed to evaluate the sensitivity and specificity which can be achieved by a group of four trained dogs. In a series of 30 double-blind test runs, each consisting of one bladder cancer urine sample placed alongside six controls, the highest sensitivity achieved by the best performing dog was 73% (95% CI 55-86%), with the group as a whole correctly identifying the cancer samples 64% (95% CI 55-73%) of the time. Specificity of the dogs individually ranged from 92% (95% CI 82-97%) for urine samples obtained from healthy, young volunteers down to 56% (95% CI 42-68%) for those taken from older patients with non-cancerous urological disease. Odds ratio comparisons confirmed a significant decrease in performance as the extent of urine dipstick abnormality and/or pathology amongst the control population increased. Importantly, however, statistical analysis indicated that covariates such as smoking, gender and age, as well as blood, protein and /or leucocytes in the urine did not significantly alter the odds of response to the cancer samples. Our results provide further evidence that volatile biomarkers for bladder cancer exist in urine headspace, and that these have the potential to be exploited for diagnosis.

  13. Volatile organic components migrating from plastic pipes (HDPE, PEX and PVC) into drinking water.

    Science.gov (United States)

    Skjevrak, Ingun; Due, Anne; Gjerstad, Karl Olav; Herikstad, Hallgeir

    2003-04-01

    High-density polyethylene pipes (HDPE), crossbonded polyethylene pipes (PEX) and polyvinyl chloride (PVC) pipes for drinking water were tested with respect to migration of volatile organic components (VOC) to water. The odour of water in contact with plastic pipes was assessed according to the quantitative threshold odour number (TON) concept. A major migrating component from HDPE pipes was 2,4-di-tert-butyl-phenol (2,4-DTBP) which is a known degradation product from antioxidants such as Irgafos 168(R). In addition, a range of esters, aldehydes, ketones, aromatic hydrocarbons and terpenoids were identified as migration products from HDPE pipes. Water in contact with HDPE pipes was assessed with respect to TON, and values > or =4 were determined for five out of seven brands of HDPE pipes. The total amount of VOC released to water during three successive test periods were fairly constant for the HDPE pipes. Corresponding migration tests carried out for PEX pipes showed that VOC migrated in significant amounts into the test water, and TON >/=5 of the test water were observed in all tests. Several of the migrated VOC were not identified. Oxygenates predominated the identified VOC in the test water from PEX pipes. Migration tests of PVC pipes revealed few volatile migrants in the test samples and no significant odour of the test water.

  14. The organic contamination level based on the total soil mass is not a proper index of the soil contamination intensity

    Science.gov (United States)

    Hung, H.-W.; Daniel, Sheng G.; Lin, T.-F.; Su, Y.; Chiou, C.T.

    2009-01-01

    Concentrations of organic contaminants in common productive soils based on the total soil mass give a misleading account of actual contamination effects. This is attributed to the fact that productive soils are essentially water-saturated, with the result that the soil uptake of organic compounds occurs principally by partition into the soil organic matter (SOM). This report illustrates that the soil contamination intensity of a compound is governed by the concentration in the SOM (Com) rather than by the concentration in whole soil (Cs). Supporting data consist of the measured levels and toxicities of many pesticides in soils of widely differing SOM contents and the related levels in in-situ crops that defy explanation by the Cs values. This SOM-based index is timely needed for evaluating the contamination effects of food crops grown in different soils and for establishing a dependable priority ranking for intended remediation of numerous contamination sites.

  15. Impact of elevated CO2 and O3 concentrations on biogenic volatile organic compounds emissions from Ginkgo biloba.

    Science.gov (United States)

    Li, Dewen; Chen, Ying; Shi, Yi; He, Xingyuan; Chen, Xin

    2009-04-01

    In natural environment with ambient air, ginkgo trees emitted volatile organic compounds 0.18 microg g(-1) h(-1) in July, and 0.92 microg g(-1) h(-1) in September. Isoprene and limonene were the most abundant detected compounds. In September, alpha-pinene accounted for 22.5% of the total. Elevated CO(2) concentration in OTCs increased isoprene emission significantly in July (pemission was enhanced in July and decreased in September by elevated CO(2). Exposed to elevated O(3) increased the isoprene and monoterpenes emissions in July and September, and the total volatile organic compounds emission rates were 0.48 microg g(-1) h(-1) (in July) and 2.24 microg g(-1) h(-1) (in September), respectively. The combination of elevated CO(2) and O(3) did not have any effect on biogenic volatile organic compounds emissions, except increases of isoprene and Delta3-carene in September.

  16. Sorption of polar and nonpolar organic contaminants by oil-contaminated soil.

    Science.gov (United States)

    Chen, Hong; Chen, Shuo; Quan, Xie; Zhao, Huimin; Zhang, Yaobin

    2008-12-01

    Sorption of nonpolar (phenanthrene and butylate) and polar (atrazine and diuron) organic chemicals to oil-contaminated soil was examined to investigate oil effects on sorption of organic chemicals and to derive oil-water distribution coefficients (K(oil)). The resulting oil-contaminated soil-water distribution coefficients (K(d)) for phenanthrene demonstrated sorption-enhancing effects at both lower and higher oil concentrations (C(oil)) but sorption-reducing (competitive) effects at intermediate C(oil) (approximately 1 g kg(-1)). Rationalization of the different dominant effects was attempted in terms of the relative aliphatic carbon content which determines the accessibility of the aromatic cores to phenanthrene. Little or no competitive effect occurred for butylate because its sorption was dominated by partitioning. For atrazine and diuron, the changes in K(d) at C(oil) above approximately 1 g kg(-1) were negligible, indicating that the presently investigated oil has little or no effect on the two tested compounds even though the polarity of the oil is much less than soil organic matter (SOM). Therefore, specific interactions with the active groups (aromatic and polar domains) are dominantly responsible for the sorption of polar sorbates, and thus their sorption is controlled by available sorption sites. This study showed that the oil has the potential to be a dominant sorptive phase for nonpolar pollutants when compared to SOM, but hardly so for polar compounds. The results may aid in a better understanding of the role of the aliphatic and aromatic domains in sorption of nonpolar and polar organic pollutants.

  17. Mobile organic compounds in biochar - a potential source of contamination - phytotoxic effects on cress seed (Lepidium sativum) germination.

    Science.gov (United States)

    Buss, Wolfram; Mašek, Ondřej

    2014-05-01

    Biochar can be contaminated during pyrolysis by re-condensation of pyrolysis vapours. In this study two biochar samples contaminated by pyrolysis liquids and gases to a high degree, resulting in high volatile organic compound (high-VOC) content, were investigated and compared to a biochar with low volatile organic compound (low-VOC) content. All biochar samples were produced from the same feedstock (softwood pellets) under the same conditions (550 °C, 20 min mean residence time). In experiments where only gaseous compounds could access germinating cress seeds (Lepidium sativum), application amounts ranging from 1 to 30 g of high-VOC biochar led to total inhibition of cress seed germination, while exposure to less than 1 g resulted in only partial reduction. Furthermore, leachates from biochar/sand mixtures (1, 2, 5 wt.% of biochar) induced heavy toxicity to germination and showed that percolating water could dissolve toxic compounds easily. Low-VOC biochar didn't exhibit any toxic effects in either germination test. Toxicity mitigation via blending of a high-VOC biochar with a low-VOC biochar increased germination rate significantly. These results indicate re-condensation of VOCs during pyrolysis can result in biochar containing highly mobile, phytotoxic compounds. However, it remains unclear, which specific compounds are responsible for this toxicity and how significant re-condensation in different pyrolysis units might be. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Sorption of Emerging Organic Wastewater Contaminants to Four Soils

    Directory of Open Access Journals (Sweden)

    Sarah Roberts

    2014-04-01

    Full Text Available Conventional onsite wastewater treatment system design relies on a septic tank and soil treatment unit (STU for treatment of wastewater and integration of the final effluent into the environment. Organic water contaminants (OWCs, chemicals found in pharmaceutical drugs, detergents, surfactants, and other personal care and cleaning products, have been observed in septic tank effluent and the environment. Sorption of OWC mass to soil is a key mechanism in the removal and retardation of many of these chemicals in effluent as it travels through an STU. The primary purpose of this study was to investigate the relationship between the fraction of organic carbon of soil and the equilibrium sorption partitioning coefficient of a selected group of relevant and diverse OWCs. A secondary goal is to evaluate current methods of modeling the sorption of selected OWCs in soil. Five point Freundlich isotherms were constructed from equilibrium sorption batch tests for target OWCs with four different soils. For soils with organic carbon fraction between 0.021 and 0.054, Kd values were calculated between 60 and 185 for 4-nonylphenol, 75 to 260 for triclosan, 115 to 270 for bisphenol-A, 3 to 255 for 17β-estradiol, 40 to 55 for 17α-ethynylestradiol, and 28 to 70 for estrone. An empirically derived, direct relationship between foc and Kd may be a useful approach to estimating sorption for a soil based on organic carbon content.

  19. User's guide for polyethylene-based passive diffusion bag samplers to obtain volatile organic compound concentrations in wells. Part 2, Field tests

    Science.gov (United States)

    Vroblesky, Don A.

    2001-01-01

    Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.

  20. Five Years of Analyses of Volatiles, Isotopes and Organics in Gale Crater Materials

    Science.gov (United States)

    McAdam, A.; Mahaffy, P. R.; Andrejkovicova, S. C.; Archer, P. D., Jr.; Atreya, S. K.; Buch, A.; Coll, P. J.; Conrad, P. G.; Eigenbrode, J. L.; Farley, K. A.; Flesch, G.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; Hogancamp, J. V.; House, C. H.; Knudson, C. A.; Lewis, J. M.; Malespin, C.; Martin, P. M.; Millan, M.; Ming, D. W.; Morris, R. V.; Navarro-Gonzalez, R.; Steele, A.; Stern, J. C.; Summons, R. E.; Sutter, B.; Szopa, C.; Teinturier, S.; Trainer, M. G.; Webster, C. R.; Wong, G. M.

    2017-12-01

    Over the last five years, the Curiosity rover has explored a variety of fluvial, lacustrine and aeolian sedimentary rocks, and soils. The Sample Analysis at Mars (SAM) instrument has analysed 3 soil and 12 rock samples, which exhibit significant chemical and mineralogical diversity in over 200 meters of vertical section. Here we will highlight several key insights enabled by recent measurements of the chemical and isotopic composition of inorganic volatiles and organic compounds detected in Gale Crater materials. Until recently samples have evolved O2 during SAM evolved gas analyses (EGA), attributed to the thermal decomposition of oxychlorine phases. A lack of O2 evolution from recent mudstone samples may indicate a difference in the composition of depositional or diagenetic fluids, and can also have implications for the detection of organic compounds since O2 can combust organics to CO2 in the SAM ovens. Recent mudstone samples have also shown little or no evolution of NO attributable to nitrate salts, possibly also as a result of changes in the chemical composition of fluids [1]. Measurements of the isotopic composition of sulfur, hydrogen, nitrogen, chlorine, and carbon in methane evolved during SAM pyrolysis are providing constraints on the conditions of possible paleoenvironments [e.g., 2, 3]. There is evidence of organic C from both EGA and GCMS measurements of Gale samples [e.g., 4, 5]. Organic sulfur volatiles have been detected in several samples, and the first opportunistic derivatization experiment produced a rich dataset indicating the presence of several organic compounds [6, 7]. A K-Ar age has been obtained from the Mojave mudstone, and the age of secondary materials formed by aqueous alteration is likely history and habitability. [1] Sutter et al. (2017) LPSC 3009. [2] Franz et al., this mtg. [3] Stern et al., this mtg. [4] Ming et al. (2014) Science 343. [5] Freissinet et al. (2015) JGR 120. [6] Eigenbrode et al. (2016) AGU P21D-08. [7] Freissinet

  1. Concentrations and flux measurements of volatile organic compounds (VOC) in boreal forest soil

    Science.gov (United States)

    Mäki, Mari; Aaltonen, Hermanni; Heinonsalo, Jussi; Hellén, Heidi; Pumpanen, Jukka; Bäck, Jaana

    2017-04-01

    Volatile organic compounds (VOC) impact soil processes as VOCs transmit signals between roots and rhizosphere (Ditengou et al., 2015), VOCs can regulate microbial activity (Asensio et al., 2012), and VOCs can also promote root growth (Hung et al., 2012). Belowground concentrations of VOCs have not been measured in situ and for this reason, knowledge of how different soil organisms such as roots, rhizosphere and decomposers contribute to VOC production is limited. The aim of this study was to determine and quantify VOC fluxes and concentrations of different horizons from boreal forest soil. The VOC concentrations and fluxes were measured from Scots pine (Pinus sylvestris) forest soil at the SMEAR II station in southern Finland from 21th of April to 2nd of December in 2016. VOC fluxes were measured using dynamic (flow-through) chambers from five soil collars placed on five different locations. VOC concentrations were also measured in each location from four different soil horizons with the measurement depth 1-107 cm. VOCs were collected from underground gas collectors into the Tenax-Carbopack-B adsorbent tubes using portable pumps ( 100 ml min-1). The VOC concentrations and fluxes of isoprene, 11 monoterpenes, 13 sesquiterpenes and different oxygenated VOCs were measured. Sample tubes were analyzed using thermal desorption-gas chromatograph-mass spectrometry (TD-GC-MS). Soil temperature and soil water content were continuously monitored for each soil horizon. Our preliminary results show that the primary source of VOCs is organic soil layer and the contribution of mineral soil to the VOC formation is minor. VOC fluxes and concentrations were dominated by monoterpenes such as α-pinene, camphene, β-pinene, and Δ3-carene. Monoterpene concentration is almost 10-fold in organic soil compared to the deeper soil layers. However, the highest VOC fluxes on the soil surface were measured in October, whereas the monoterpene concentrations in organic soil were highest in July

  2. Quantitative analysis of different volatile organic compounds using an improved electronic nose

    International Nuclear Information System (INIS)

    Gao, Daqi; Ji, Jiuming; Gong, Jiayu; Cai, Chaoqian

    2012-01-01

    This paper sets up an improved electronic nose with an automatic sampling mode, large volumetric vapors and constant temperature for headspace vapors and gas sensor array. In order to facilitate the fast recovery and good repeatability of gas sensors, the steps taken include (A) short-time contact with odors measured; (B) long-time purification using environmental air; (C) exact calibration using clean air before sampling. We employ multiple single-output perceptrons to discriminate and quantify multiple kinds of odors. This task is first regarded as multiple two-class discrimination problems and then multiple quantification problems, and accomplished by multiple single-output perceptrons followed by multiple single-output perceptrons. The experimental results for measuring and quantifying 12 kinds of volatile organic compounds with changing concentrations show that the type of electronic nose with a hierarchical perceptron model has a simple structure, easy operation, good repeatability and good discrimination and quantification performance. (paper)

  3. Leaf, branch, stand and landscape scale measurements of volatile organic compound fluxes from U. S. woodlands

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, A.; Greenberg, J.; Harley, P.; Helmig, D.; Klinger, L.; Vierling, L.; Zimmerman, P. [National Center for Atmospheric Research, Boulder, CO (United States). Atmospheric Chemistry Div.; Geron, C. [Environmental Protection Agency, Research Triangle Park, NC (United States)

    1996-01-01

    Natural volatile organic compound (VOC) fluxes were measured in three U.S. woodlands. Fluxes from individual leaves and branches were estimated with enclosure techniques and used to initialize and evaluate VOC emission model estimates. Ambient measurements were used to estimate above canopy fluxes for entire stands. A total of 78 VOCs were identified, with hexenol derivatives being the most commonly observed oxygenated compounds. There was also evidence of high rates of isoprene emission and high rates of monoterpenes in some genera of trees. Model predictions of diurnal variations were within + or - 35 per cent of observed flux variations. Fluxes predicted by a recent version of a biogenic emission model were within 10 per cent to 50 per cent of observed fluxes, leading to the conclusion that existing databases can provide isoprene and monoterpene emission rate potentials within acceptable limits for the dominant plant species at these three woodland sites. 21 refs., 5 tabs., 2 figs.

  4. Plasma–catalyst coupling for volatile organic compound removal and indoor air treatment: a review

    International Nuclear Information System (INIS)

    Thevenet, F; Sivachandiran, L; Guaitella, O; Barakat, C; Rousseau, A

    2014-01-01

    The first part of the review summarizes the problem of air pollution and related air-cleaning technologies. Volatile organic compounds in particular have various effects on health and their abatement is a key issue. Different ways to couple non-thermal plasmas with catalytic or adsorbing materials are listed. In particular, a comparison between in-plasma and post-plasma coupling is made. Studies dealing with plasma-induced heterogeneous reactivity are analysed, as well as the possible modifications of the catalyst surface under plasma exposure. As an alternative to the conventional and widely studied plasma–catalyst coupling, a sequential approach has been recently proposed whereby pollutants are first adsorbed onto the material, then oxidized by switching on the plasma. Such a sequential approach is reviewed in detail. (paper)

  5. Technology projects for characterization--monitoring of volatile organic compounds (VOCs)

    Energy Technology Data Exchange (ETDEWEB)

    Junk, G.A.; Haas, W.J. Jr.

    1992-07-01

    One hundred thirty technology project titles related to the characterization of volatile organic compounds (VOCs) at an arid site are listed alphabetically by first contact person in a master compilation that includes phone numbers, addresses, keywords, and short descriptions. Separate tables are presented for 62 field-demonstrated, 36 laboratory-demonstrated, and 35 developing technology projects. The technology projects in each of these three categories are also prioritized in separate summary tables. Additional tables are presented for a number of other categorizations of the technology projects: In Situ; Fiberoptic; Mass Spectrometer; Optical Spectroscopy; Raman or SERS; Ion Mobility or Acoustic; Associated; and Commercial. Four lists of contact person names are provided so details concerning the projects that deal with sampling, and VOCs in gases, waters, and soils (sediments) can be obtained. Finally, seven wide-ranging conclusions based on observations and experiences during this work are presented.

  6. A Novel Wireless Wearable Volatile Organic Compound (VOC Monitoring Device with Disposable Sensors

    Directory of Open Access Journals (Sweden)

    Yue Deng

    2016-12-01

    Full Text Available A novel portable wireless volatile organic compound (VOC monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the device and its sensors. The device was compared to a commercial photo-ionization detector, gas chromatography-mass spectrometry, and carbon monoxide detector. In addition, environmental operational conditions, such as barometric change, temperature change and wind conditions were also tested to evaluate the device performance. The multiple comparisons and tests indicate that the proposed VOC device is adequate to characterize personal exposure in many real-world scenarios and is applicable for personal daily use.

  7. Volatile Organic Compound (VOC) Air Monitoring Program design for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Frank, L.

    1991-01-01

    The Waste Isolation Pilot Plant (WIPP) Volatile Organic Compound (VOC) Monitoring Program has been developed as part of the Department of Energy's (DOE's) No-Migration Variance petition submitted to the Environmental Protection Agency (EPA). The program is designed to demonstrate that there will be no migration of hazardous chemicals past the unit boundary in concentrations which exceed any health-based standards. The monitoring program will use EPA compendium Method TO-14. Both air and carbon sorption media samples will be collected as part of the program. Eleven separate monitoring sites have been selected where both 24-hour integrated and 1-hour grab samples will be collected and analyzed for five target compounds. The bin-scale experimental test rooms will be configured with a gas collection manifold and an activated carbon sorption bed to remove VOCs before they can be emitted into the WIPP underground atmosphere. 10 refs., 4 figs., 7 tabs

  8. Exposure to carbon monoxide, respirable suspended particulates, and volatile organic compounds while commuting by bicycle

    International Nuclear Information System (INIS)

    Bevan, M.A.J.; Proctor, C.J.; Baker-Rogers, J.; Warren, N.D.

    1991-01-01

    A portable air sampling system has been used to assess exposures to various substances while commuting by bicycle in an urban area. The major source of pollutants in this situation is motor vehicle exhaust emissions. Carbon monoxide, measured by electrochemical detection, was found at peak concentrations in excess of 62 ppm, with mean values over 16 individual 35-mm journeys being 10.5 ppm. Respirable suspended particulates, averaged over each journey period, were found at higher concentrations (mean 130 μg m -3 ) than would be expected in indoor situations. Mean exposure to benzene (at 56 μg m -3 ) and other aromatic volatile organic compounds was also relatively high. The influence of wind conditions on exposure was found to be significant. Commuting exposures to carbon monoxide, respirable suspended particulates, and aromatic VOCs were found to be higher than exposures in a busy high street and on common parkland

  9. Quantitative analysis of different volatile organic compounds using an improved electronic nose

    Science.gov (United States)

    Gao, Daqi; Ji, Jiuming; Gong, Jiayu; Cai, Chaoqian

    2012-10-01

    This paper sets up an improved electronic nose with an automatic sampling mode, large volumetric vapors and constant temperature for headspace vapors and gas sensor array. In order to facilitate the fast recovery and good repeatability of gas sensors, the steps taken include (A) short-time contact with odors measured; (B) long-time purification using environmental air; (C) exact calibration using clean air before sampling. We employ multiple single-output perceptrons to discriminate and quantify multiple kinds of odors. This task is first regarded as multiple two-class discrimination problems and then multiple quantification problems, and accomplished by multiple single-output perceptrons followed by multiple single-output perceptrons. The experimental results for measuring and quantifying 12 kinds of volatile organic compounds with changing concentrations show that the type of electronic nose with a hierarchical perceptron model has a simple structure, easy operation, good repeatability and good discrimination and quantification performance.

  10. Identification of volatile organic compounds in suburban Bangkok, Thailand and their potential for ozone formation

    Science.gov (United States)

    Suthawaree, Jeeranut; Tajima, Yosuke; Khunchornyakong, Alisa; Kato, Shungo; Sharp, Alice; Kajii, Yoshizumi

    2012-02-01

    Measurement of Volatile Organic Compound (VOC) was carried out in suburban Bangkok during July 2-8, 2008. Analysis was performed using GC-FID and GC-MS. High mixing ratios of VOCs detected during the morning and evening are most likely due to vehicular emissions. Averaged VOC mixing ratios revealed distinct difference between mixing ratios of weekdays and weekend, which the latter were found to be lower. The most abundance species were propane and toluene. Ratios of benzene over toluene suggested that additional toluene mixing ratios was owing to industrial emission, which was particularly larger during weekdays. Comparison between C2Cl4 and CH3Cl mixing ratios obtained for suburban Tokyo reveal a relatively lower influence of biomass burning than suburban Bangkok. Elucidating by Ozone Formation Potential, toluene was found to contribute the most to O3 production followed by ethylene, m-,p-xylene, and propylene.

  11. Technology projects for characterization--monitoring of volatile organic compounds (VOCs)

    International Nuclear Information System (INIS)

    Junk, G.A.; Haas, W.J. Jr.

    1992-07-01

    One hundred thirty technology project titles related to the characterization of volatile organic compounds (VOCs) at an arid site are listed alphabetically by first contact person in a master compilation that includes phone numbers, addresses, keywords, and short descriptions. Separate tables are presented for 62 field-demonstrated, 36 laboratory-demonstrated, and 35 developing technology projects. The technology projects in each of these three categories are also prioritized in separate summary tables. Additional tables are presented for a number of other categorizations of the technology projects: In Situ; Fiberoptic; Mass Spectrometer; Optical Spectroscopy; Raman or SERS; Ion Mobility or Acoustic; Associated; and Commercial. Four lists of contact person names are provided so details concerning the projects that deal with sampling, and VOCs in gases, waters, and soils (sediments) can be obtained. Finally, seven wide-ranging conclusions based on observations and experiences during this work are presented

  12. Non-Calorimetric Determination of the Adsorption Heat of Volatile Organic Compounds under Dynamic Conditions

    Directory of Open Access Journals (Sweden)

    Abdelhamid Korrir

    2015-04-01

    Full Text Available Avoiding strong chemical bonding, as indicated by lower heat of adsorption value, is among the selection criteria for Volatile Organic Compounds adsorbents. In this work, we highlight a non-calorimetric approach to estimating the energy of adsorption and desorption based on measurement of involved amounts, under dynamic conditions, with gaseous Fourier Transform Infrared spectroscopy. The collected data were used for obtaining adsorption heat values through the application of three different methods, namely, isosteric, temperature programmed desorption (TPD, and temperature-programmed adsorption equilibrium (TPAE. The resulting values were compared and discussed with the scope of turning determination of the heat of adsorption with non-calorimetric methods into a relevant decision making tool for designing cost-effective and safe operating of adsorption facilities.

  13. Nematicidal effect of volatile organic compounds (VOCs on the plant-parasitic nematode Meloidogyne javanica

    Directory of Open Access Journals (Sweden)

    Mauricio Batista Fialho

    2012-06-01

    Full Text Available Previous studies have demonstrated that volatile organic compounds (VOCs, produced by the yeast Saccharomyces cerevisiae, were able to inhibit the development of phytopathogenic fungi. In this context, the nematicidal potential of the synthetic mixture of VOCs, constituted of alcohols and esters, was evaluated for the control of the root-knot nematode Meloidogyne javanica, which causes losses to crops of high economic value. The fumigation of substrate containing second-stage juveniles with VOCs exhibited nematicidal effect higher than 30% for the lowest concentration tested (33.3 µL g-1 substrate, whereas at 66.6 and 133.3 µL g-1 substrate, the nematode mortality was 100%. The present results stimulate other studies on VOCs for nematode management.

  14. Photonic-Crystal-Based Thin Film Sensor for Detecting Volatile Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyung Kwan; Park, Jung Yul [Sogang Univ., Seoul (Korea, Republic of)

    2016-03-15

    Early detection of toxic gases, such as volatile organic compounds (VOCs), is important for safety and environmental protection. However, the conventional detection methods require long-term measurement times and expensive equipment. In this study, we propose a thin-film-type chemical sensor for VOCs, which consists of self assembled monosize nanoparticles for 3-D photonic crystal structures and polydimthylsiloxane (PDMS) film. It is operated without any external power source, is truly portable, and has a fast response time. The structure color of the sensor changes when it is exposed to VOCs, because VOCs induce a swelling of the PDMS. Therefore, using this principle of color change, we can create a thin-film sensor for immediate detection of various types of VOCs. The proposed device evidences that a fast response time of just seconds, along with a clear color change, are successfully observed when the sensor is exposed to gas-phase VOCs.

  15. Utilization of Volatile Organic Compounds as an Alternative for Destructive Abatement

    Directory of Open Access Journals (Sweden)

    Satu Ojala

    2015-07-01

    Full Text Available The treatment of volatile organic compounds (VOC emissions is a necessity of today. The catalytic treatment has already proven to be environmentally and economically sound technology for the total oxidation of the VOCs. However, in certain cases, it may also become economical to utilize these emissions in some profitable way. Currently, the most common way to utilize the VOC emissions is their use in energy production. However, interesting possibilities are arising from the usage of VOCs in hydrogen and syngas production. Production of chemicals from VOC emissions is still mainly at the research stage. However, few commercial examples exist. This review will summarize the commercially existing VOC utilization possibilities, present the utilization applications that are in the research stage and introduce some novel ideas related to the catalytic utilization possibilities of the VOC emissions. In general, there exist a vast number of possibilities for VOC utilization via different catalytic processes, which creates also a good research potential for the future.

  16. A process-based emission model of volatile organic compounds from silage sources on farms

    DEFF Research Database (Denmark)

    Bonifacio, H. F.; Rotz, C. A.; Hafner, S. D.

    2017-01-01

    Silage on dairy farms can emit large amounts of volatile organic compounds (VOCs), a precursor in the formation of tropospheric ozone. Because of the challenges associated with direct measurements, process-based modeling is another approach for estimating emissions of air pollutants from sources...... was evaluated using ethanol and methanol emissions measured from conventional silage piles (CSP), silage bags (SB), total mixed rations (TMR), and loose corn silage (LCS) at a commercial dairy farm in central California. With transport coefficients for ethanol refined using experimental data from our previous......% if feeds were delivered as four feedings per day rather than as one. Reducing the exposed face of storage can also be useful. Simulated use of silage bags resulted in 90% and 18% reductions in emissions from the storage face and whole farm, respectively....

  17. Radon, water chemistry and pollution check by volatile organic compounds in springs around Popocatepetl volcano, Mexico

    Directory of Open Access Journals (Sweden)

    M. Mena

    2005-06-01

    Full Text Available Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs were analysed as a function of the 2002-2003 volcanic activity. The measurements of soil radon indicated fluctuations related to both the meteorological and sporadic explosive events. Groundwater radon showed essential differences in concentration due to the specific characteristics of the studied springs. Water chemistry showed also stability along the monitoring period. No anthropogenic pollution from Volatile Organic Compounds (VOCs was observed. An overview of the soil radon behaviour as a function of the volcanic activity in the period 1994-2002 is also discussed.

  18. Major reactive species of ambient volatile organic compounds (VOCs) and their sources in Beijing

    Institute of Scientific and Technical Information of China (English)

    SHAO; Min; FU; Linlin; LIU; Ying; LU; Sihua; ZHANG; Yuanhan

    2005-01-01

    Volatile organic compounds (VOCs) are important precursors of atmospheric chemical processes. As a whole mixture, the ambient VOCs show very strong chemical reactivity. Based on OH radical loss rates in the air, the chemical reactivity of VOCs in Beijing was calculated. The results revealed that alkenes, accounting for only about 15% in the mixing ratio of VOCs, provide nearly 75% of the reactivity of ambient VOCs and the C4 to C5 alkenes were the major reactive species among the alkenes. The study of emission characteristics of various VOCs sources indicated that these alkenes are mainly from vehicle exhaust and gasoline evaporation. The reduction of alkene species in these two sources will be effective in photochemical pollution control in Beijing.

  19. Field screening procedures for determining the presence of volatile organic compounds in soil

    International Nuclear Information System (INIS)

    Crockett, A.B.; DeHaan, M.S.

    1991-01-01

    Many field screening procedures have been used to detect the presence of volatile organic compounds (VOC) in soils but almost none have been documented and verified. Users of these procedures have not really known whether their objectives in screening were met. A reliable VOC screening procedure could significantly reduce the number of samples currently being submitted to laboratories, thereby reducing costs and improving site characterization. The Environmental Protection Agency's Environmental Monitoring Systems Laboratory in Las Vegas (EMSL-LV) has therefore sponsored a research effort to evaluate and improve headspace methods for screening soils for VOC in the field. The research involved comparing several extraction procedures using soils from actual waste sites, and determining the agitation and mixing necessary to achieve equilibrium. Headspace was analyzed using a relatively simple portable gas chromatograph with a short column. The results were variable and show that several procedures should be attempted and the results evaluated before selecting a screening procedure. 10 refs., 6 tabs

  20. Chemical intermediate detection following corona discharge on volatile organic compounds: general method using molecular beam techniques

    International Nuclear Information System (INIS)

    He Luning; Sulkes, Mark

    2011-01-01

    Nonthermal plasma (NTP)-based treatments of volatile organic compounds (VOCs) have potential for effective environmental remediation. Theory and experiment that consider the basic science pertaining to discharge events have helped improve NTP remediation outcomes. If direct information on early post-discharge chemical intermediates were also available, it would likely lead to additional improvement in NTP remediation outcomes. To this point, however, experiments yielding direct information on post-NTP VOC intermediates have been limited. An approach using supersonic expansion molecular beam methods offers general promise for detection of post-discharge VOC intermediates. To illustrate the potential utility of these methods, we present mass spectra showing the growth of early products formed when pulsed corona discharges were carried out on toluene in He and then in He with added O 2 . Good general detection of neutral post-discharge species was obtained using 800 nm 150 fs photoionization pulses.

  1. Enantiomeric distribution of major chiral volatile organic compounds in juniper-flavored distillates.

    Science.gov (United States)

    Pažitná, Alexandra; Spánik, Ivan

    2014-02-01

    The enantiomeric ratios of chiral volatile organic compounds in juniper-flavored spirits produced by various processing technologies in different EU countries were determined by multidimensional GC using solid-phase microextraction and liquid-liquid extraction as a sample pretreatment procedure. In total, more than 260 compounds were detected in studied spirits from which linalool, α-terpineol, 4-terpineol, linalool oxides, α-pinene, and verbenone were selected for enantiomeric separation. The significant differences in enantiomeric ratio of linalool and cis-linalool oxide allowed us to distinguish between samples produced in Slovakia and the United Kingdom from those produced in Germany, Czech Republic, and Belgium. The pure enantiomer of trans-linalool oxide was found only in samples from Germany. It was shown that the enantiomeric ratio is independent of the sample treatment procedure, and only small differences up to 1% were observed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Very volatile organic compounds: an understudied class of indoor air pollutants.

    Science.gov (United States)

    Salthammer, T

    2016-02-01

    Very volatile organic compounds (VVOCs), as categorized by the WHO, are an important subgroup of indoor pollutants and cover a wide spectrum of chemical substances. Some VVOCs are components of products commonly used indoors, some result from chemical reactions and some are reactive precursors of secondary products. Nevertheless, there is still no clear and internationally accepted definition of VVOCs. Current approaches are based on the boiling point, and the saturation vapor pressure or refer to analytical procedures. A significant problem is that many airborne VVOCs cannot be routinely analyzed by the usually applied technique of sampling on Tenax TA® followed by thermal desorption GC/MS or by DNPH-sampling/HPLC/UV. Some VVOCs are therefore often neglected in indoor-related studies. However, VVOCs are of high significance for indoor air quality assessment and there is need for their broader consideration in measurement campaigns and material emission testing. © 2014 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  3. Non-thermal plasma at atmospheric pressure for ozone generation and volatile organic compounds decomposition

    International Nuclear Information System (INIS)

    Pekarek, S.; Khun, J.

    2006-01-01

    The non-thermal plasma technologies based on electrical discharges play an important role in ecological applications. The classical corona discharge is however relatively low power discharge. With the aim to extend its current-voltage range we studied hollow needle-to-plate DC corona discharge enhanced by the flow of a gas through the needle electrode. With this type of the discharge we performed an extensive study of ozone generation and volatile organic compounds decomposition. We found that supply of air through the needle substantially increases current-voltage range of the discharge in comparison with classical pin-to-plate corona discharge. Consequently the ozone generation as well as toluene decomposition efficiency was increased (Authors)

  4. Can ornamental potted plants remove volatile organic compounds from indoor air? - a review

    DEFF Research Database (Denmark)

    Dela Cruz, Majbrit; Christensen, Jan H.; Thomsen, Jane Dyrhauge

    2014-01-01

    Volatile organic compounds (VOCs) are found in indoor air, and many of these can affect human health (e.g. formaldehyde and benzene are carcinogenic). Plants affect the levels of VOCs in indoor environments, thus they represent a potential green solution for improving indoor air quality that at t...... concentration. For instance, an increase in light intensity has in some studies been shown to lead to an increase in removal of a pollutant. Studies conducted in real-life settings such as offices and homes are few and show mixed results....... that plant induced removal of VOCs is a combination of direct (e.g. absorption) and indirect (e.g. biotransformation by microorganisms) mechanisms. They also demonstrate that plants' rate of reducing the level of VOCs is influenced by a number of factors such as plant species, light intensity and VOC...

  5. Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: Consequences on biodegradation

    International Nuclear Information System (INIS)

    Cébron, Aurélie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Leyval, Corinne

    2013-01-01

    Although high PAH content and detection of PAH-degraders, the PAH biodegradation is limited in aged-contaminated soils due to low PAH availability (i.e., 1%). Here, we tried to experimentally increase the soil PAH availability by keeping both soil properties and contamination composition. Organic extract was first removed and then re-incorporated in the raw soil as fresh contaminants. Though drastic, this procedure only allowed a 6-time increase in the PAH availability suggesting that the organic constituents more than ageing were responsible for low availability. In the re-contaminated soil, the mineralization rate was twice more important, the proportion of 5–6 cycles PAH was higher indicating a preferential degradation of lower molecular weight PAH. The extraction treatment induced bacterial and fungal community structures modifications, Pseudomonas and Fusarium solani species were favoured, and the relative quantity of fungi increased. In re-contaminated soil the percentage of PAH-dioxygenase gene increased, with 10 times more Gram negative representatives. -- Highlights: ► Re-incorporation of soil organic extract increased 6-times the PAH availability. ► Complexity of organic contamination is the main driver of PAH availability. ► Biodegradation of PAH with less than 5-cycles increased with increasing PAH availability. ► Pseudomonas and Fusarium species are favoured when PAH availability increased. -- More than ageing, the complexity of organic contamination is the main driver of PAH availability

  6. Secondary organic aerosol production from pinanediol, a semi-volatile surrogate for first-generation oxidation products of monoterpenes

    Science.gov (United States)

    Ye, Penglin; Zhao, Yunliang; Chuang, Wayne K.; Robinson, Allen L.; Donahue, Neil M.

    2018-05-01

    We have investigated the production of secondary organic aerosol (SOA) from pinanediol (PD), a precursor chosen as a semi-volatile surrogate for first-generation oxidation products of monoterpenes. Observations at the CLOUD facility at CERN have shown that oxidation of organic compounds such as PD can be an important contributor to new-particle formation. Here we focus on SOA mass yields and chemical composition from PD photo-oxidation in the CMU smog chamber. To determine the SOA mass yields from this semi-volatile precursor, we had to address partitioning of both the PD and its oxidation products to the chamber walls. After correcting for these losses, we found OA loading dependent SOA mass yields from PD oxidation that ranged between 0.1 and 0.9 for SOA concentrations between 0.02 and 20 µg m-3, these mass yields are 2-3 times larger than typical of much more volatile monoterpenes. The average carbon oxidation state measured with an aerosol mass spectrometer was around -0.7. We modeled the chamber data using a dynamical two-dimensional volatility basis set and found that a significant fraction of the SOA comprises low-volatility organic compounds that could drive new-particle formation and growth, which is consistent with the CLOUD observations.

  7. Hexamethyldisiloxane thin films as sensitive coating for quartz crystal microbalance based volatile organic compounds sensors

    International Nuclear Information System (INIS)

    Boutamine, M.; Bellel, A.; Sahli, S.; Segui, Y.; Raynaud, P.

    2014-01-01

    Hexamethyldisiloxane (HMDSO) thin films coated quartz crystal microbalance (QCM) electrodes have been characterized for the detection of volatile organic compounds (VOCs). The sensitive coatings were plasma polymerized in pure vapor of HMDSO and HMDSO/O 2 mixture. The sensor sensitivity was evaluated by monitoring the frequency shift (∆f) of the coated QCM electrode exposed to different concentrations of VOC vapors, such as ethanol, methanol, benzene and chloroform. The isotherm response characteristics showed good reproducibility and reversibility. For all types of analyte, ∆f were found to be linearly correlated with the concentration of VOC vapor. It was shown that it is possible to tune the chemical affinity of the sensor by changing the oxygen ratio in the deposition gas mixture. Contact angle measurements (CA), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to study surface wettability, chemical composition and surface morphology of the coated QCM electrodes. ATR-FTIR analysis showed the presence of methyl groups around 840 cm −1 due to Si-(CH 3 ) 3 rocking vibration making the elaborated sensor surface hydrophobic. When the coating is performed in HMDSO/O 2 mixture, AFM and SEM images showed an increase in the effective specific surface area of the sensor due to the increase in surface roughness. Surface morphology combined with chemical composition significantly affects the sensitivity of the QCM-based sensor. - Highlights: • Hexamethyldisiloxane layers were evaluated for volatile organic compounds detection. • The kinetic response of the sensor showed good reproducibility and reversibility. • Hydrophobic coating and high specific surface area increase the sensor sensitivity. • Sensor affinity can be controlled by controlling oxygen proportion in the mixture

  8. A Novel Method for Analyzing Microbially Affiliated Volatile Organic Compounds in Soil Environments

    Science.gov (United States)

    Ruhs, C. V.; McNeal, K. S.

    2010-12-01

    A concerted, international effort by citizens, governments, industries and educational systems is necessary to address the myriad environmental issues that face us today. The authors of this paper concentrate on soil environments and, specifically, the methods currently used to characterize them. The ability to efficiently and effectively monitor and characterize various soils is desired, allows for the study, supervision, and protection of natural and cultivated ecosystems, and may assist stakeholders in meeting governmentally-imposed environmental standards. This research addresses soil characterization by a comparison of four methods that emphasize a combination of microbial community and metabolic measures: BIOLOG, fatty acid methyl-ester analysis (FAME), descriptive physical and chemical analysis (moisture content, pH, carbon content, nutrient content, and grain size), and the novel soil-microbe volatile organic compound analysis (SMVOC) presented in this work. In order to achieve the method comparison, soils were collected from three climatic regions (Bahamas, Michigan, and Mississippi), with three samples taken from niche ecosystems found at each climatic region (a total of nine sites). Of interest to the authors is whether or not an investigation of microbial communities and the volatile organic compounds (VOCs) produced by microbial communities from nine separate soil ecosystems provides useful information about soil dynamics. In essence, is analysis of soil-derived VOCs using gas chromatography-mass spectrometry (GC-MS) an effective method for characterizing microbial communities and their metabolic activity of soils rapidly and accurately compared with the other three traditional characterization methods? Preliminary results suggest that VOCs in each of these locales differ with changes in soil types, soil moisture, and bacterial community. Each niche site shows distinct patterns in both VOCs and BIOLOG readings. Results will be presented to show the

  9. A cohort study of intra-urban variations in volatile organic compounds and mortality, Toronto, Canada

    International Nuclear Information System (INIS)

    Villeneuve, Paul J.; Jerrett, Michael; Su, Jason; Burnett, Richard T.; Chen, Hong; Brook, Jeffrey; Wheeler, Amanda J.; Cakmak, Sabit; Goldberg, Mark S.

    2013-01-01

    This study investigated associations between long-term exposure to ambient volatile organic compounds (VOCs) and mortality. 58,760 Toronto residents (≥35 years of age) were selected from tax filings and followed from 1982 to 2004. Death information was extracted using record linkage to national mortality data. Land-use regression surfaces for benzene, n-hexane, and total hydrocarbons were generated from sampling campaigns in 2002 and 2004 and assigned to residential addresses in 1982. Cox regression was used to estimate relationships between each VOC and non-accidental, cardiovascular, and cancer mortality. Positive associations were observed for each VOC. In multi-pollutant models the benzene and total hydrocarbon signals were strongest for cancer. The hazard ratio for cancer that corresponded to an increase in the interquartile range of benzene (0.13 μg/m 3 ) was 1.06 (95% CI = 1.02–1.11). Our findings suggest ambient concentrations of VOCs were associated with cancer mortality, and that these exposures did not confound our previously reported associations between NO 2 and cardiovascular mortality. -- Highlights: ► We studied associations between long-term exposure to volatile organic compounds and mortality. ► The study was a population-based cohort of Toronto adults followed for up to 22 years. ► We used land-use regression estimates of benzene, total hydrocarbons and n-hexane. ► Benzene and total hydrocarbons were positively associated with cancer mortality. ► VOCs did not confound associations between NO 2 and cardiovascular mortality. -- Long-term exposure to ambient benzene was associated with non-accidental and cancer causes of death, and did not attenuate associations between NO 2 and cardiovascular mortality

  10. Exhaled volatile organic compounds for phenotyping chronic obstructive pulmonary disease: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Basanta Maria

    2012-08-01

    Full Text Available Abstract Background Non-invasive phenotyping of chronic respiratory diseases would be highly beneficial in the personalised medicine of the future. Volatile organic compounds can be measured in the exhaled breath and may be produced or altered by disease processes. We investigated whether distinct patterns of these compounds were present in chronic obstructive pulmonary disease (COPD and clinically relevant disease phenotypes. Methods Breath samples from 39 COPD subjects and 32 healthy controls were collected and analysed using gas chromatography time-of-flight mass spectrometry. Subjects with COPD also underwent sputum induction. Discriminatory compounds were identified by univariate logistic regression followed by multivariate analysis: 1. principal component analysis; 2. multivariate logistic regression; 3. receiver operating characteristic (ROC analysis. Results Comparing COPD versus healthy controls, principal component analysis clustered the 20 best-discriminating compounds into four components explaining 71% of the variance. Multivariate logistic regression constructed an optimised model using two components with an accuracy of 69%. The model had 85% sensitivity, 50% specificity and ROC area under the curve of 0.74. Analysis of COPD subgroups showed the method could classify COPD subjects with far greater accuracy. Models were constructed which classified subjects with ≥2% sputum eosinophilia with ROC area under the curve of 0.94 and those having frequent exacerbations 0.95. Potential biomarkers correlated to clinical variables were identified in each subgroup. Conclusion The exhaled breath volatile organic compound profile discriminated between COPD and healthy controls and identified clinically relevant COPD subgroups. If these findings are validated in prospective cohorts, they may have diagnostic and management value in this disease.

  11. Adolescent Exposure to Toxic Volatile Organic Chemicals From E-Cigarettes.

    Science.gov (United States)

    Rubinstein, Mark L; Delucchi, Kevin; Benowitz, Neal L; Ramo, Danielle E

    2018-04-01

    There is an urgent need to understand the safety of e-cigarettes with adolescents. We sought to identify the presence of chemical toxicants associated with e-cigarette use among adolescents. Adolescent e-cigarette users (≥1 use within the past 30 days, ≥10 lifetime e-cigarette use episodes) were divided into e-cigarette-only users (no cigarettes in the past 30 days, urine 4-[methylnitrosamino]-1-[3-pyridyl]-1-butanol [NNAL] level 30 pg/mL; n = 16), and never-using controls ( N = 20). Saliva was collected within 24 hours of the last e-cigarette use for analysis of cotinine and urine for analysis of NNAL and levels of 8 volatile organic chemical compounds. Bivariate analyses compared e-cigarette-only users with dual users, and regression analyses compared e-cigarette-only users with dual users and controls on levels of toxicants. The participants were 16.4 years old on average. Urine excretion of metabolites of benzene, ethylene oxide, acrylonitrile, acrolein, and acrylamide was significantly higher in dual users versus e-cigarette-only users (all P < .05). Excretion of metabolites of acrylonitrile, acrolein, propylene oxide, acrylamide, and crotonaldehyde were significantly higher in e-cigarette-only users compared with controls (all P < .05). Although e-cigarette vapor may be less hazardous than tobacco smoke, our findings can be used to challenge the idea that e-cigarette vapor is safe, because many of the volatile organic compounds we identified are carcinogenic. Messaging to teenagers should include warnings about the potential risk from toxic exposure to carcinogenic compounds generated by these products. Copyright © 2018 by the American Academy of Pediatrics.

  12. Fluxes of biogenic volatile organic compounds measured and modelled above a Norway spruce forest

    Science.gov (United States)

    Juráň, Stanislav; Fares, Silvano; Pallozzi, Emanuele; Guidolotti, Gabriele; Savi, Flavia; Alivernini, Alessandro; Calfapietra, Carlo; Večeřová, Kristýna; Křůmal, Kamil; Večeřa, Zbyněk; Cudlín, Pavel; Urban, Otmar

    2016-04-01

    Fluxes of biogenic volatile organic compounds (BVOCs) were investigated at Norway spruce forest at Bílý Kříž in Beskydy Mountains of the Czech Republic during the summer 2014. A proton-transfer-reaction-time-of-flight mass spectrometer (PTR-TOF-MS, Ionicon Analytik, Austria) has been coupled with eddy-covariance system. Additionally, Inverse Lagrangian Transport Model has been used to derive fluxes from concentration gradient of various monoterpenes previously absorbed into n-heptane by wet effluent diffusion denuder with consequent quantification by gas chromatography with mass spectrometry detection. Modelled data cover each one day of three years with different climatic conditions and previous precipitation patterns. Model MEGAN was run to cover all dataset with monoterpene fluxes and measured basal emission factor. Highest fluxes measured by eddy-covariance were recorded during the noon hours, represented particularly by monoterpenes and isoprene. Inverse Lagrangian Transport Model suggests most abundant monoterpene fluxes being α- and β-pinene. Principal component analysis revealed dependencies of individual monoterpene fluxes on air temperature and particularly global radiation; however, these dependencies were monoterpene specific. Relationships of monoterpene fluxes with CO2 flux and relative air humidity were found to be negative. MEGAN model correlated to eddy-covariance PTR-TOF-MS measurement evince particular differences, which will be shown and discussed. Bi-directional fluxes of oxygenated short-chain volatiles (methanol, formaldehyde, acetone, acetaldehyde, formic acid, acetic acid, methyl vinyl ketone, methacrolein, and methyl ethyl ketone) were recorded by PTR-TOF-MS. Volatiles of anthropogenic origin as benzene and toluene were likely transported from the most benzene polluted region in Europe - Ostrava city and adjacent part of Poland around Katowice, where metallurgical and coal mining industries are located. Those were accumulated during

  13. Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system

    OpenAIRE

    Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M.

    2016-01-01

    Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected wi...

  14. Incineration method for plutonium recovery from alpha contaminated organic compounds

    International Nuclear Information System (INIS)

    Yahata, Taneaki; Abe, Jiro; Kato, Michiharu; Kurihara, Masayoshi

    1985-01-01

    An incineration method for plutonium recovery from α contaminated organic compounds in a flow of controlled oxygen gas is stated. The species of such thermal decomposition products as hydrocarbons, free carbon, carbon monoxide and hydrogen were determined by mass spectrography. The mixture of the products which are the source of tar or soot was converted to CO 2 and H 2 O in contact with copper oxide catalyst without flaming. This incineration method is composed of two stages. The first stage is the decomposition of organic compounds in the streams of gas mixtures containing oxygen in low ratios. The second stage is the incineration of the decomposition products by catalytic reaction in the streams of gas with higher oxygen ratios. Plutonium was recovered as the form of plutonium dioxide from the incineration residues of the first stage. The behavior of oil was examined as a representative of liquid organic compounds. It was found to evaporate below ca. 500 0 C, but was completely incinerated by the catalytic reaction with copper oxide catalyst in the flow of gas with controlled oxygen amount and was changed to CO 2 and H 2 O. (author)

  15. Secondary environmental impacts of remedial alternatives for sediment contaminated with hydrophobic organic contaminants.

    Science.gov (United States)

    Choi, Yongju; Thompson, Jay M; Lin, Diana; Cho, Yeo-Myoung; Ismail, Niveen S; Hsieh, Ching-Hong; Luthy, Richard G

    2016-03-05

    This study evaluates secondary environmental impacts of various remedial alternatives for sediment contaminated with hydrophobic organic contaminants using life cycle assessment (LCA). Three alternatives including two conventional methods, dredge-and-fill and capping, and an innovative sediment treatment technique, in-situ activated carbon (AC) amendment, are compared for secondary environmental impacts by a case study for a site at Hunters Point Shipyard, San Francisco, CA. The LCA results show that capping generates substantially smaller impacts than dredge-and-fill and in-situ amendment using coal-based virgin AC. The secondary impacts from in-situ AC amendment can be reduced effectively by using recycled or wood-based virgin AC as production of these materials causes much smaller impacts than coal-based virgin AC. The secondary environmental impacts are highly sensitive to the dredged amount and the distance to a disposal site for dredging, the capping thickness and the distance to the cap materials for capping, and the AC dose for in-situ AC amendment. Based on the analysis, this study identifies strategies to minimize secondary impacts caused by different remediation activities: optimize the dredged amount, the capping thickness, or the AC dose by extensive site assessments, obtain source materials from local sites, and use recycled or bio-based AC. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Quasi-unipolar pentacene films embedded with fullerene for non-volatile organic transistor memories

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juhee; Lee, Sungpyo; Lee, Moo Hyung; Kang, Moon Sung, E-mail: mskang@ssu.ac.kr [Department of Chemical Engineering, Soongsil University, Seoul 156-743 (Korea, Republic of)

    2015-02-09

    Quasi-unipolar non-volatile organic transistor memory (NOTM) can combine the best characteristics of conventional unipolar and ambipolar NOTMs and, as a result, exhibit improved device performance. Unipolar NOTMs typically exhibit a large signal ratio between the programmed and erased current signals but also require a large voltage to program and erase the memory cells. Meanwhile, an ambipolar NOTM can be programmed and erased at lower voltages, but the resulting signal ratio is small. By embedding a discontinuous n-type fullerene layer within a p-type pentacene film, quasi-unipolar NOTMs are fabricated, of which the signal storage utilizes both electrons and holes while the electrical signal relies on only hole conduction. These devices exhibit superior memory performance relative to both pristine unipolar pentacene devices and ambipolar fullerene/pentacene bilayer devices. The quasi-unipolar NOTM exhibited a larger signal ratio between the programmed and erased states while also reducing the voltage required to program and erase a memory cell. This simple approach should be readily applicable for various combinations of advanced organic semiconductors that have been recently developed and thereby should make a significant impact on organic memory research.

  17. Inkjet-printing of non-volatile organic resistive devices and crossbar array structures

    Science.gov (United States)

    Sax, Stefan; Nau, Sebastian; Popovic, Karl; Bluemel, Alexander; Klug, Andreas; List-Kratochvil, Emil J. W.

    2015-09-01

    Due to the increasing demand for storage capacity in various electronic gadgets like mobile phones or tablets, new types of non-volatile memory devices have gained a lot of attention over the last few years. Especially multilevel conductance switching elements based on organic semiconductors are of great interest due to their relatively simple device architecture and their small feature size. Since organic semiconductors combine the electronic properties of inorganic materials with the mechanical characteristics of polymers, this class of materials is suitable for solution based large area device preparation techniques. Consequently, inkjet based deposition techniques are highly capable of facing preparation related challenges. By gradually replacing the evaporated electrodes with inkjet printed silver, the preparation related influence onto device performance parameters such as the ON/OFF ratio was investigated with IV measurements and high resolution transmission electron microscopy. Due to the electrode surface roughness the solvent load during the printing of the top electrode as well as organic layer inhomogeneity's the utilization in array applications is hampered. As a prototypical example a 1diode-1resistor element and a 2×2 subarray from 5×5 array matrix were fully characterized demonstrating the versatility of inkjet printing for device preparation.

  18. Studying volatility from composition, dilution, and heating measurements of secondary organic aerosols formed during α-pinene ozonolysis

    Science.gov (United States)

    Sato, Kei; Fujitani, Yuji; Inomata, Satoshi; Morino, Yu; Tanabe, Kiyoshi; Ramasamy, Sathiyamurthi; Hikida, Toshihide; Shimono, Akio; Takami, Akinori; Fushimi, Akihiro; Kondo, Yoshinori; Imamura, Takashi; Tanimoto, Hiroshi; Sugata, Seiji

    2018-04-01

    Traditional yield curve analysis shows that semi-volatile organic compounds are a major component of secondary organic aerosols (SOAs). We investigated the volatility distribution of SOAs from α-pinene ozonolysis using positive electrospray ionization mass analysis and dilution- and heat-induced evaporation measurements. Laboratory chamber experiments were conducted on α-pinene ozonolysis, in the presence and absence of OH scavengers. Among these, we identified not only semi-volatile products, but also less volatile highly oxygenated molecules (HOMs) and dimers. Ozonolysis products were further exposed to OH radicals to check the effects of photochemical aging. HOMs were also formed during OH-initiated photochemical aging. Most HOMs that formed from ozonolysis and photochemical aging had 10 or fewer carbons. SOA particle evaporation after instantaneous dilution was measured at fraction remaining of SOAs decreased with time and the equilibration timescale was determined to be 24-46 min for SOA evaporation. The experimental results of the equilibration timescale can be explained when the mass accommodation coefficient is assumed to be 0.1, suggesting that the existence of low-volatility materials in SOAs, kinetic inhibition, or some combined effect may affect the equilibration timescale measured in this study.

  19. In cleanroom, sub-ppb real-time monitoring of volatile organic compounds using proton-transfer reaction/time of flight/mass spectrometry

    Science.gov (United States)

    Hayeck, Nathalie; Maillot, Philippe; Vitrani, Thomas; Pic, Nicolas; Wortham, Henri; Gligorovski, Sasho; Temime-Roussel, Brice; Mizzi, Aurélie; Poulet, Irène

    2014-04-01

    Refractory compounds such as Trimethylsilanol (TMS) and other organic compounds such as propylene glycol methyl ether acetate (PGMEA) used in the photolithography area of microelectronic cleanrooms have irreversible dramatic impact on optical lenses used on photolithography tools. There is a need for real-time, continuous measurements of organic contaminants in representative cleanroom environment especially in lithography zone. Such information is essential to properly evaluate the impact of organic contamination on optical lenses. In this study, a Proton-Transfer Reaction-Time-of-Flight Mass spectrometer (PTR-TOF-MS) was applied for real-time and continuous monitoring of fugitive organic contamination induced by the fabrication process. Three types of measurements were carried out using the PTR-TOF-MS in order to detect the volatile organic compounds (VOCs) next to the tools in the photolithography area and at the upstream and downstream of chemical filters used to purge the air in the cleanroom environment. A validation and verification of the results obtained with PTR-TOF-MS was performed by comparing these results with those obtained with an off-line technique that is Automated Thermal Desorber - Gas Chromatography - Mass Spectrometry (ATD-GC-MS) used as a reference analytical method. The emerged results from the PTR-TOF-MS analysis exhibited the temporal variation of the VOCs levels in the cleanroom environment during the fabrication process. While comparing the results emerging from the two techniques, a good agreement was found between the results obtained with PTR-TOF-MS and those obtained with ATD-GC-MS for the PGMEA, toluene and xylene. Regarding TMS, a significant difference was observed ascribed to the technical performance of both instruments.

  20. The Amazonian Floodplains, an ecotype with challenging questions on volatile organic compound (VOC) emissions

    Science.gov (United States)

    Kesselmeier, J.

    2012-12-01

    Volatile organic compound (VOC) emissions are affected by a variety of biotic and abiotic factors such as light intensity, temperature, CO2 and drought. Another factor usually overlooked but very important for the tropical rainforest in Amazonia is regular flooding. According to recent estimates, the total Amazonian floodplain area easily ranges up to 700,000 km^2, including whitewater river floodplains (várzea) blackwater regions (igapó) and further clearwater regions. Regarding the total Amazonian wetlands the area sums up to more than 2.000.000 km^2, i.e. 30% of Amazonia. To survive the flooding periods causing anoxic conditions for the root system of up to several months, vegetation has developed several morphological, anatomical and physiological strategies. One is to switch over the root metabolism to fermentation, thus producing ethanol as one of the main products. Ethanol is a toxic metabolite which is transported into the leaves by the transpiration stream. From there it can either be directly emitted into the atmosphere, or can be re-metabolized to acetaldehyde and/or acetate. All of these compounds are volatile enough to be partly released into the atmosphere. We observed emissions of ethanol, acetaldehyde and acetic acid under root anoxia. Furthermore, plant stress induced by flooding also affected leaf primary physiological processes as well as other VOC emissions such as the release of isoprenoids and other volatiles. For example, Hevea spruceana could be identified as a monoterpene emitting tree species behaving differently upon anoxia depending on the origin, with increasing emissions of the species from igapó and decreasing with the corresponding species from várzea. Contrasting such short term inundations, studies of VOC emissions under long term conditions (2-3 months) did not confirm the ethanol/acetaldehyde emissions, whereas emissions of other VOC species decreased considerably. These results demonstrate that the transfer of our knowledge

  1. Insect herbivore feeding and their excretion contribute to volatile organic compounds emission to the atmosphere

    Science.gov (United States)

    Zebelo, S.; Gnavi, G.; Bertea, C.; Bossi, S.; Andrea, O.; Cordero, C.; Rubiolo, P.; Bicchi, C.; Maffei, M.

    2011-12-01

    Secondary plant metabolites play an important role in insect plant interactions. The Lamiaceae family, especially Mentha species, accumulate secondary plant metabolites in their glandular trichomes, mainly mono and sesquiterpenes. Here we show that mint plants respond to herbivory by changing the quality and quantity of leaf secondary plant metabolite components. The volatiles from herbivore damaged, mechanical damage and healthy plant were collected by HS-SPME and analyzed by GC-MS. Plants with the same treatment were kept for genomic analysis. Total RNA was extracted from the above specified treatments. The terpenoid quantitative gene expressions (qPCR) were then assayed. Upon herbivory, M. aquatica synthesizes and emits (+)-menthofuran and the other major monoterpene (+)-pulegone emitted by healthy and mechanically damaged plants. Herbivory was found to up-regulate the expression of genes involved in terpenoid biosynthesis. The increased emission of (+)-menthofuran was correlated with the upregulation of (+)-menthofuran synthase. In addition we analysed the VOC composition of C. herbacea frass from insects feeding on Mentha aquatica. VOCs were sampled by HS-SPME and analyzed by GCxGC-qMS, and the results compared through quantitative comparative analysis of 2D chromatographic data. Most terpenoids from M. aquatica were completely catabolized by C. herbacea and were absent in the frass volatile fraction. On the other hand, the monoterpene 1,8-cineole was oxidized and frass yielded several new hydroxy-1,8-cineoles, among which 2α-OH-, 3α-OH-, 3β-OH- and 9-OH-1,8-cineole. The role of VOC emitted during herbivory and frass excretion on secondary organic aerosol formation is discussed.

  2. Investigation of volatile organic biomarkers derived from Plasmodium falciparum in vitro

    Directory of Open Access Journals (Sweden)

    Wong Rina PM

    2012-09-01

    Full Text Available Abstract Background There remains a need for techniques that improve the sensitive detection of viable Plasmodium falciparum as part of diagnosis and therapeutic monitoring in clinical studies and usual-care management of malaria infections. A non-invasive breath test based on P. falciparum-associated specific volatile organic compounds (VOCs could fill this gap and provide insights into parasite metabolism and pathogenicity. The aim of this study was to determine whether VOCs are present in the headspace above in vitro P. falciparum cultures. Methods A novel, custom-designed apparatus was developed to enable efficient headspace sampling of infected and non-infected cultures. Conditions were optimized to support cultures of high parasitaemia (>20% to improve the potential detection of parasite-specific VOCs. A number of techniques for VOC analysis were investigated including solid phase micro-extraction using two different polarity fibres, and purge and trap/thermal desorption, each coupled to gas chromatography–mass spectrometry. Each experiment and analysis method was performed at least on two occasions. VOCs were identified by comparing their mass spectra against commercial mass spectral libraries. Results No unique malarial-specific VOCs could be detected relative to those in the control red blood cell cultures. This could reflect sequestration of VOCs into cell membranes and/or culture media but solvent extractions of supernatants and cell lysates using hexane, dichloromethane and ethyl acetate also showed no obvious difference compared to control non-parasitized cultures. Conclusions Future in vivo studies analysing the breath of patients with severe malaria who are harbouring a parasite biomass that is significantly greater than achievable in vitro may yet reveal specific clinically-useful volatile chemical biomarkers.

  3. IN SITU MEASUREMENTS OF C2-C10 VOLATILE ORGANIC COMPOUNDS ABOVE A SIERRA NEVADA PONDEROSA PINE PLANTATION

    Science.gov (United States)

    A fully automated GC-FID system was designed and built to measure ambient concentrations of C2-C10 volatile organic compounds, including many oxygenated compounds, without using liquid cryogen. It was deployed at Blodgett Forest Research Station in Georgetown, CA USA, 38 deg 53' ...

  4. The influence of temperature on the emission of volatile organic compounds from PVC flooring, carpet, and paint

    NARCIS (Netherlands)

    Wal, J.F. van der; Hoogeveen, A.W.; Wouda, P.

    1997-01-01

    The influence of temperature on the emission rate of volatile organic compounds (VOC) from four indoor materials was investigated in a small dynamic test chamber. The materials investigated were two carpets, a PVC flooring and a paint; the temperature range investigated was 23-50°C. The general

  5. Volatile Organic Compounds (VOCs) in the Ambient Air Of Concentration Unit of Sar-Cheshmeh Copper Complex

    International Nuclear Information System (INIS)

    Faghihi-Zrandi, A.; Akhgar, M. R.

    2016-01-01

    Air pollutants including gases, vapors and particles, are emitted from different sources. Volatile organic compounds are the most important pollutants in the ambient air of industries. The present study was carried out to identify and measurement of volatile organic compounds in concentration unit of Sar-Cheshmeh Copper Complex. In this study, sampling of the volatile organic compounds was done by using activated charcoal tube. To identify and measure these compounds gas chromatography/mass spectroscopy were used. Thirteen volatile organic compounds were identified in the ambient air of concentration unit. Among these compounds, the mean value and maximum concentration of isopropyl alcohol and nonane were 255, 640 μg/m3 and 1577, 14400 μg/m3, respectively. By using SPSS software and independent sample t- test, showed that there were no significant difference between mean value concentration of isopropyl alcohol and nonane in the ambient air and TLV values of these compounds (isopropyl alcohol; 200 ppm and nonane; 200 ppm) (P >0.05).

  6. Surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection using plasmonic bimetallic nanogap substrate

    DEFF Research Database (Denmark)

    Wong, Chi Lok; Dinish, U. S.; Buddharaju, Kavitha Devi

    2014-01-01

    In this paper, we present surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection with bimetallic nanogap structure substrate. Deep UV photolithography at the wavelength of 250 nm is used to pattern circular shape nanostructures. The nanogap between adjacent cir......-based VOCs detection platform for point-of-care breath analysis, homeland security, chemical sensing and environmental monitoring....

  7. Impact of production location, production system, and variety on the volatile organic compounds fingerprints and sensory characteristics of tomatoes

    NARCIS (Netherlands)

    Muilwijk, Mirthe; Heenan, Samuel; Koot, Alex; Ruth, Van Saskia M.

    2015-01-01

    Consumers have more and more interest in where and how their foods are produced. However, it is often challenging to discriminate products from different production locations and systems. The objective of this study was to examine fingerprinting of volatile organic compounds (VOCs) as an approach

  8. Profile of volatile organic compounds in exhaled breath changes as a result of gluten-free diet

    NARCIS (Netherlands)

    Baranska, Agnieszka; Tigchelaar, Ettje; Smolinska, Agnieszka; Dallinga, Jan W.; Moonen, Edwin J. C.; Dekens, Jackie A. M.; Wijmenga, Cisca; Zhernakova, Alexandra; van Schooten, Frederik J.

    In the present longitudinal study, we followed volatile organic compounds (VOCs) excreted in exhaled breath of 20 healthy individuals over time, while adhering to a gluten-free diet for 4 weeks prior to adherence to a normal diet. We used gas chromatography coupled with mass spectrometry

  9. Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Oulema spp.), or fungal infection (Fusarium spp.)

    Science.gov (United States)

    Herbivory, mechanical injury or pathogen infestation to vegetative tissues can induce volatile organic compounds (VOCs) production, which can provide defensive functions to injured and uninjured plants. In our studies with ‘McNeal’ wheat, ‘Otana’ oat, and ‘Harrington’ barley, plants that were mechan...

  10. Proton transfer reaction-mass spectrometry volatile organic compound fingerprinting for monovarietal extra virgin olive oil identification

    NARCIS (Netherlands)

    Ruiz-Samblas, C.; Tres, A.; Koot, A.H.; Ruth, van S.M.; Gonzalez-Casado, A.; Cuadros-Rodriguez, L.

    2012-01-01

    Proton transfer reaction-mass spectrometry (PTR-MS) is a relatively new technique that allows the fast and accurate qualification of the volatile organic compound (VOC) fingerprint. This paper describes the analysis of thirty samples of extra virgin olive oil, of five different varieties of olive

  11. Emissions control of volatile organic compounds in petroleum industry; Controle de emissoes de compostos organicos volateis na industria do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Gutierres, Ricardo; Moreira, Andrea Cristina de Castro Araujo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). P e D de Energia e Desenvolvimento Sustentavel (PDEDS)

    2004-07-01

    Volatile organic compounds are among the most common pollutants emitted by refining processes. The sources of these emissions should be controlled for preserving the ambient air quality. This article outlines the main factors to be considered for defining an effective emissions control strategy and compares the major characteristics of the available control technologies. (author)

  12. The prey’s scent – Volatile organic compound mediated interactions between soil bacteria and their protist predators

    NARCIS (Netherlands)

    Schulz, K.B.; Geisen, Stefan; Wubs, E.R.J.; Song, C.; Boer, de W.; Garbeva, Paolina

    2017-01-01

    Protists are major predators of bacteria in soils. However, it remains unknown how protists sense their prey in this highly complex environment. Here, we investigated whether volatile organic compounds (VOCs) of six phylogenetic distinct soil bacteria affect the performance of three different soil

  13. Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter.

    Science.gov (United States)

    Adebesin, Funmilayo; Widhalm, Joshua R; Boachon, Benoît; Lefèvre, François; Pierman, Baptiste; Lynch, Joseph H; Alam, Iftekhar; Junqueira, Bruna; Benke, Ryan; Ray, Shaunak; Porter, Justin A; Yanagisawa, Makoto; Wetzstein, Hazel Y; Morgan, John A; Boutry, Marc; Schuurink, Robert C; Dudareva, Natalia

    2017-06-30

    Plants synthesize a diversity of volatile molecules that are important for reproduction and defense, serve as practical products for humans, and influence atmospheric chemistry and climate. Despite progress in deciphering plant volatile biosynthesis, their release from the cell has been poorly understood. The default assumption has been that volatiles passively diffuse out of cells. By characterization of a Petunia hybrida adenosine triphosphate-binding cassette (ABC) transporter, PhABCG1, we demonstrate that passage of volatiles across the plasma membrane relies on active transport. PhABCG1 down-regulation by RNA interference results in decreased emission of volatiles, which accumulate to toxic levels in the plasma membrane. This study provides direct proof of a biologically mediated mechanism of volatile emission. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Nanotechnology in environmental remediation: degradation of volatile organic compounds (VOCs) over visible-light-active nanostructured materials.

    Science.gov (United States)

    Selvaraj, Rengaraj; Al-Kindy, Salma M Z; Silanpaa, Mika; Kim, Younghun

    2014-01-01

    Volatile organic compounds (VOCs) are major pollutants and are considered to be one of the most important contaminants generated by human beings living in urban and industrial areas. Methyl tert-butyl ether (MTBE) is a VOC that has been widely used as a gasoline additive to reduce VOC emissions from motor vehicles. However, new gasoline additives like MTBE are having negative environmental impacts. Recent survey reports clearly show that groundwater is often polluted owing to leakage of petroleum products from underground storage tanks. MTBE is highly soluble in water (e.g., 0.35-0.71 M) and has been detected at high concentrations in groundwater. The presence of MTBE in groundwater poses a potential health problem. The documented effects of MTBE exposure are headaches, vomiting, diarrhea, fever, cough, muscle aches, sleepiness, disorientation, dizziness, and skin and eye irritation. To address these problems, photocatalytic treatment is the preferred treatment for polluted water. In the present work, a simple and template-free solution phase synthesis method has been developed for the preparation of novel cadmium sulfide (CdS) hollow microspheres using cadmium nitrate and thioacetamide precursors. The synthesized products have been characterized by a variety of methods, including X-ray powder diffraction, high-resolution scanning electron microscopy (HR-SEM), X-ray photoelectron spectroscopy, and UV-visible diffused reflectance spectroscopy. The HR-SEM measurements revealed the spherical morphology of the CdS microspheres, which evolved by the oriented aggregation of the primary CdS nanocrystals. Furthermore, studies of photocatalytic activity revealed that the synthesized CdS hollow microspheres exhibit an excellent photocatalytic performance in rapidly degrading MTBE in aqueous solution under visible light illumination. These results suggest that CdS microspheres will be an interesting candidate for photocatalytic detoxification studies under visible light

  15. Multi-component determination of atmospheric semi-volatile organic compounds in soils and vegetation from Tarragona County, Catalonia, Spain.

    Science.gov (United States)

    Domínguez-Morueco, Noelia; Carvalho, Mariana; Sierra, Jordi; Schuhmacher, Marta; Domingo, José Luis; Ratola, Nuno; Nadal, Martí

    2018-08-01

    Tarragona County (Spain) is home to the most important chemical/petrochemical industrial complex in Southern Europe, which raises concerns about the presence and effects of the numerous environmental contaminants. In order to assess the levels and patterns of five classes of semi-volatile organic compounds (SVOCs) - polycyclic aromatic hydrocarbons (PAHs), synthetic musks (SMs), polychlorinated biphenyls (PCBs), brominated flame retardants (BFRs) and one organochlorine pesticide, hexachlorobenzene (HCB), 27 samples of soil and vegetation (Piptatherum L.) from different areas (petrochemical, chemical, urban/residential, and background) of Tarragona County were analysed. The results show that PAHs levels in soils ranged from 45.12 to 158.00ng/g and the urban areas presented the highest concentrations, mainly associated with the presence of a nearby highway and several roads with heavy traffic. PAHs levels in vegetation samples ranged from 42.13 to 80.08ng/g, where the greatest influence came from the urban and petrochemical areas. In the case of SMs, levels in soils and vegetation samples ranged from 5.42 to 10.04ng/g and from 4.08 to 17.94ng/g, respectively, and in both cases, background areas (at least 30km away from the main SVOCs emission sources) showed the highest levels, suggesting an influence of the personal care products derived from beach-related tourism in the coast. PCBs (from 6.62 to 14.07ng/g in soils; from 0.52 to 4.41ng/g in vegetation) prevailed in the chemical area in both matrices, probably associated with the presence of two sub-electrical stations located in the vicinities. In general terms, BFRs and HCB values recorded in soil and vegetation samples were quite similar between matrices and sampling areas. Copyright © 2018. Published by Elsevier B.V.

  16. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient.

    Science.gov (United States)

    Svendsen, Sarah Hagel; Lindwall, Frida; Michelsen, Anders; Rinnan, Riikka

    2016-12-15

    Emissions of biogenic volatile organic compounds (BVOCs) from terrestrial ecosystems are important for the atmospheric chemistry and the formation of secondary organic aerosols, and may therefore influence the climate. Global warming is predicted to change patterns in precipitation and plant species compositions, especially in arctic regions where the temperature increase will be most pronounced. These changes are potentially highly important for the BVOC emissions but studies investigating the effects are lacking. The aim of this study was to investigate the quality and quantity of BVOC emissions from a high arctic soil moisture gradient extending from dry tundra to a wet fen. Ecosystem BVOC emissions were sampled five times in the July-August period using a push-pull enclosure technique, and BVOCs trapped in absorbent cartridges were analyzed using gas chromatography-mass spectrometry. Plant species compositions were estimated using the point intercept method. In order to take into account important underlying ecosystem processes, gross ecosystem production, ecosystem respiration and net ecosystem production were measured in connection with chamber-based BVOC measurements. Highest emissions of BVOCs were found from vegetation communities dominated by Salix arctica and Cassiope tetragona, which had emission profiles dominated by isoprene and monoterpenes, respectively. These results show that emissions of BVOCs are highly dependent on the plant cover supported by the varying soil moisture, suggesting that high arctic BVOC emissions may affect the climate differently if soil water content and plant cover change. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications.

    Science.gov (United States)

    Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto; Kerminen, Veli-Matti; Junninen, Heikki; Paasonen, Pauli; Stratmann, Frank; Herrmann, Hartmut; Guenther, Alex B; Worsnop, Douglas R; Kulmala, Markku; Ehn, Mikael; Sipilä, Mikko

    2015-06-09

    Oxidation products of monoterpenes and isoprene have a major influence on the global secondary organic aerosol (SOA) burden and the production of atmospheric nanoparticles and cloud condensation nuclei (CCN). Here, we investigate the formation of extremely low volatility organic compounds (ELVOC) from O3 and OH radical oxidation of several monoterpenes and isoprene in a series of laboratory experiments. We show that ELVOC from all precursors are formed within the first minute after the initial attack of an oxidant. We demonstrate that under atmospherically relevant concentrations, species with an endocyclic double bond efficiently produce ELVOC from ozonolysis, whereas the yields from OH radical-initiated reactions are smaller. If the double bond is exocyclic or the compound itself is acyclic, ozonolysis produces less ELVOC and the role of the OH radical-initiated ELVOC formation is increased. Isoprene oxidation produces marginal quantities of ELVOC regardless of the oxidant. Implementing our laboratory findings into a global modeling framework shows that biogenic SOA formation in general, and ELVOC in particular, play crucial roles in atmospheric CCN production. Monoterpene oxidation products enhance atmospheric new particle formation and growth in most continental regions, thereby increasing CCN concentrations, especially at high values of cloud supersaturation. Isoprene-derived SOA tends to suppress atmospheric new particle formation, yet it assists the growth of sub-CCN-size primary particles to CCN. Taking into account compound specific monoterpene emissions has a moderate effect on the modeled global CCN budget.

  18. Malodorous volatile organic sulfur compounds: Sources, sinks and significance in inland waters.

    Science.gov (United States)

    Watson, Susan B; Jüttner, Friedrich

    2017-03-01

    Volatile Organic Sulfur Compounds (VOSCs) are instrumental in global S-cycling and greenhouse gas production. VOSCs occur across a diversity of inland waters, and with widespread eutrophication and climate change, are increasingly linked with malodours in organic-rich waterbodies and drinking-water supplies. Compared with marine systems, the role of VOSCs in biogeochemical processes is far less well characterized for inland waters, and often involves different physicochemical and biological processes. This review provides an updated synthesis of VOSCs in inland waters, focusing on compounds known to cause malodours. We examine the major limnological and biochemical processes involved in the formation and degradation of alkylthiols, dialkylsulfides, dialkylpolysulfides, and other organosulfur compounds under different oxygen, salinity and mixing regimes, and key phototropic and heterotrophic microbial producers and degraders (bacteria, cyanobacteria, and algae) in these environs. The data show VOSC levels which vary significantly, sometimes far exceeding human odor thresholds, generated by a diversity of biota, biochemical pathways, enzymes and precursors. We also draw attention to major issues in sampling and analytical artifacts which bias and preclude comparisons among studies, and highlight significant knowledge gaps that need addressing with careful, appropriate methods to provide a more robust understanding of the potential effects of continued global development.

  19. Effects of climate change on the wash-off of volatile organic compounds from urban roads.

    Science.gov (United States)

    Mahbub, Parvez; Goonetilleke, Ashantha; Ayoko, Godwin A; Egodawatta, Prasanna

    2011-09-01

    The predicted changes in rainfall characteristics due to climate change could adversely affect stormwater quality in highly urbanised coastal areas throughout the world. This in turn will exert a significant influence on the discharge of pollutants to estuarine and marine waters. Hence, an in-depth analysis of the effects of such changes on the wash-off of volatile organic compounds (VOCs) from urban roads in the Gold Coast region in Australia was undertaken. The rainfall characteristics were simulated using a rainfall simulator. Principal Component Analysis (PCA) and Multicriteria Decision tools such as PROMETHEE and GAIA were employed to understand the VOC wash-off under climate change. It was found that low, low to moderate and high rain events due to climate change will affect the wash-off of toluene, ethylbenzene, meta-xylene, para-xylene and ortho-xylene from urban roads in Gold Coast. Total organic carbon (TOC) was identified as predominant carrier of toluene, meta-xylene and para-xylene in 300 μm fractions under such dominant rain events due to climate change. However, ortho-xylene did not show such affinity towards either TOC or TSS (total suspended solids) under the simulated climatic conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Volatile Organic Compounds Sensing Using Optical Fibre Long Period Grating with Mesoporous Nano-Scale Coating

    Directory of Open Access Journals (Sweden)

    Jiri Hromadka

    2017-02-01

    Full Text Available A long period grating (LPG modified with a mesoporous film infused with a calixarene as a functional compound was employed for the detection of individual volatile organic compounds (VOCs and their mixtures. The mesoporous film consisted of an inorganic part, SiO2 nanoparticles (NPs, along with an organic moiety of poly(allylamine hydrochloride polycation PAH, which was finally infused with the functional compound, p-sulphanato calix[4]arene (CA[4] or p-sulphanato calix[8]arene (CA[8]. The LPG sensor was designed to operate at the phase matching turning point to provide the highest sensitivity. The sensing mechanism is based on the measurement of the refractive index (RI change induced by a complex of the VOCs with calixarene. The LPG, modified with a coating of 5 cycles of (SiO2 NPs/PAH and infused with CA[4] or CA[8], was exposed to chloroform, benzene, toluene and acetone vapours. The British Standards test of the VOCs emissions from material (BS EN ISO 16000-9:2006 was used to test the LPG sensor performance.

  1. Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China

    International Nuclear Information System (INIS)

    Song Yu; Dai Wei; Shao Min; Liu Ying; Lu Sihua; Kuster, William; Goldan, Paul

    2008-01-01

    Identifying the sources of volatile organic compounds (VOCs) is key to reducing ground-level ozone and secondary organic aerosols (SOAs). Several receptor models have been developed to apportion sources, but an intercomparison of these models had not been performed for VOCs in China. In the present study, we compared VOC sources based on chemical mass balance (CMB), UNMIX, and positive matrix factorization (PMF) models. Gasoline-related sources, petrochemical production, and liquefied petroleum gas (LPG) were identified by all three models as the major contributors, with UNMIX and PMF producing quite similar results. The contributions of gasoline-related sources and LPG estimated by the CMB model were higher, and petrochemical emissions were lower than in the UNMIX and PMF results, possibly because the VOC profiles used in the CMB model were for fresh emissions and the profiles extracted from ambient measurements by the two-factor analysis models were 'aged'. - VOCs sources were similar for three models with CMB showing a higher estimate for vehicles

  2. Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Song Yu; Dai Wei [Department of Environmental Sciences, Peking University, Beijing 100871 (China); Shao Min [State Joint Key Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing 100871 (China)], E-mail: mshao@pku.edu.cn; Liu Ying; Lu Sihua [State Joint Key Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing 100871 (China); Kuster, William; Goldan, Paul [Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO 80305 (United States)

    2008-11-15

    Identifying the sources of volatile organic compounds (VOCs) is key to reducing ground-level ozone and secondary organic aerosols (SOAs). Several receptor models have been developed to apportion sources, but an intercomparison of these models had not been performed for VOCs in China. In the present study, we compared VOC sources based on chemical mass balance (CMB), UNMIX, and positive matrix factorization (PMF) models. Gasoline-related sources, petrochemical production, and liquefied petroleum gas (LPG) were identified by all three models as the major contributors, with UNMIX and PMF producing quite similar results. The contributions of gasoline-related sources and LPG estimated by the CMB model were higher, and petrochemical emissions were lower than in the UNMIX and PMF results, possibly because the VOC profiles used in the CMB model were for fresh emissions and the profiles extracted from ambient measurements by the two-factor analysis models were 'aged'. - VOCs sources were similar for three models with CMB showing a higher estimate for vehicles.

  3. Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles

    Directory of Open Access Journals (Sweden)

    J. F. Hamilton

    2009-06-01

    Full Text Available Green leaf volatiles (GLVs are an important group of chemicals released by vegetation which have emission fluxes that can be significantly increased when plants are damaged or stressed. A series of simulation chamber experiments has been conducted at the European Photoreactor in Valencia, Spain, to investigate secondary organic aerosol (SOA formation from the atmospheric oxidation of the major GLVs cis-3-hexenylacetate and cis-3-hexen-1-ol. Liquid chromatography-ion trap mass spectrometry was used to identify chemical species present in the SOA. Cis-3-hexen-1-ol proved to be a more efficient SOA precursor due to the high reactivity of its first generation oxidation product, 3-hydroxypropanal, which can hydrate and undergo further reactions with other aldehydes resulting in SOA dominated by higher molecular weight oligomers. The lower SOA yields produced from cis-3-hexenylacetate are attributed to the acetate functionality, which inhibits oligomer formation in the particle phase. Based on observed SOA yields and best estimates of global emissions, these compounds may be calculated to be a substantial unidentified global source of SOA, contributing 1–5 TgC yr−1, equivalent to around a third of that predicted from isoprene. Molecular characterization of the SOA, combined with organic mechanistic information, has provided evidence that the formation of organic aerosols from GLVs is closely related to the reactivity of their first generation atmospheric oxidation products, and indicates that this may be a simple parameter that could be used in assessing the aerosol formation potential for other unstudied organic compounds in the atmosphere.

  4. Use of liquid scintillation counting for quantitative analysis of volatile organic compounds in batch isotherm analysis

    International Nuclear Information System (INIS)

    Wickman, D.C.

    1987-01-01

    An estimate of how rapidly hazardous wastes move through subsurface soils via ground water is important to predict the location and concentration of the contaminant plume vs. time. The contaminated ground water system may be viewed as an HPLC column with the organic components of the waste in adsorption/desorption equilibrium with the subsurface soil. The batch isotherm method was chosen to determine the equilibrium constant between trichloroethylene, o-dichlorobenzene, 1-methyl naphthalene and aquifer materials obtained from various locations around the country. Liquid Scintillation counting has been found to be an excellent technique for batch isotherm analysis; using 14C labeled compounds, it affords unattended analysis, accuracy at very low concentrations and rapid data reduction. Ten ml serum containing about 5 ml water and a known weight of soil (approximately 2 grams) were spiked with the labeled solution to yield organic solute concentrations in the range of 0.02-1.0 mg/1. Six different concentrations were used. After spiking, the bottles were filled to the top with water and crimp sealed with teflon coated septa. All soil containing bottles were then rotated at 50 rpm and 22 degrees Celsius. Twenty-four hours later the bottles were uncapped and a 1.4 ml aliquot was removed and placed in scintillation cocktail and counted

  5. 9 CFR 310.18 - Contamination of carcasses, organs, or other parts.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Contamination of carcasses, organs, or... AND VOLUNTARY INSPECTION AND CERTIFICATION POST-MORTEM INSPECTION § 310.18 Contamination of carcasses... prevent contamination with fecal material, urine, bile, hair, dirt, or foreign matter; however, if...

  6. An Analysis of Descriptors of Volatile Organic Compounds and Their Impact on Rate Constant for Reaction with Hydroxyl Radicals

    Science.gov (United States)

    2018-05-01

    5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Excet, Inc.; 2108 Emmorton Park Road , Suite 201...SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Defense Threat Reduction Agency, 8725 John J. Kingman Road , MSC 6201, Fort Belvoir, VA 22060...bond descriptors may be useful for the construction of predictive modeling. 15. SUBJECT TERMS Volatile organic compound (VOC) Chemical descriptors

  7. Validation of exhaled volatile organic compounds analysis using electronic nose as index of COPD severity

    Directory of Open Access Journals (Sweden)

    Finamore P

    2018-05-01

    Full Text Available Panaiotis Finamore,1 Claudio Pedone,1 Simone Scarlata,1 Alessandra Di Paolo,1 Simone Grasso,2 Marco Santonico,2 Giorgio Pennazza,2 Raffaele Antonelli Incalzi1 1Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy; 2Unit of Electronics for Sensor Systems, Campus Bio-Medico di Roma University, Rome, Italy Aim: Six-minute walking test distance (6MWD and body mass index, obstruction, dyspnea and exercise (BODE index are measures of functional status in COPD patients, but require space, time and patient’s compliance. Exhaled volatile organic compounds (VOCs analysis via electronic nose is a quick and easy method that has already been used to discriminate COPD phenotypes. The aim of this study is to evaluate whether VOCs analysis can predict functional status and its variation over time in COPD patients.Methods: A monocentric prospective study with 1 year of follow-up was carried out. All patients underwent pulmonary function tests, arterial gas analysis, bioimpedance analysis, 6-minute walking test, and VOCs collection. Exhaled breath was collected with Pneumopipe® and analyzed using BIONOTE electronic nose. Outcomes prediction was performed by k-fold cross-validated partial least square discriminant analysis: accuracy, sensitivity and specificity as well as Cohen’s kappa for agreement were calculated.Results: We enrolled 63 patients, 60.3% men, with a mean age of 71 (SD: 8 years, median BODE index of 1 (interquartile range: 0–3 and mean 6MWD normalized by squared height (n6MWD of 133.5 (SD: 42 m/m2. The BIONOTE predicted baseline BODE score (dichotomized as BODE score <3 or ≥3 with an accuracy of 86% and quartiles of n6MWD with an accuracy of 79%. n6MWD decline more than the median value after 1 year was predicted with an accuracy of 86% by BIONOTE, 52% by Global Initiative for Chronic Obstructive Lung Disease (GOLD class and 78% by combined BIONOTE and GOLD class.Conclusion: Exhaled VOCs analysis identifies classes of BODE

  8. [Composition characteristics of atmospheric volatile organic compounds in the urban area of Beibei District, Chongqing].

    Science.gov (United States)

    Qi, Xin; Hao, Qing-ju; Ji, Dong-sheng; Zhang, Jun-ke; Liu, Zi-rui; Hu, Bo; Wang, Yue-si; Jiang, Chang-sheng

    2014-09-01

    In order to study the composition and distribution of VOCs (Volatile Organic Compounds) in the atmosphere in the urban area of Beibei district, Chongqing, atmospheric samples were collected from March 2012 to February 2013 with special stainless steel cylinders, and analyzed with a three-stage preconcentration method coupled with GC-MS. 78 species of VOCs were detected in this study, of which there were 25 species of alkanes, 15 species of olefins, 28 species of aromatic hydrocarbons and 10 species of halogenated hydrocarbons. The results showed that the top seven species of VOCs according to the order of annual average concentration in the atmosphere of Beibei were: Dichloromethane (3. 08 x 10(-9) ) , Benzene (2. 09 x 10-9) , Isopentane (1. 85 x 10 -9) , Toluene (1. 51 x 10(-9)) , Propane (1. 51 x 10(-9)), m/p-xylene (1.43 x 10(-9)) and Styrene (1. 39 x 10-9). The concentration of TVOCs (Total Volatile Organic Compounds) in the atmosphere of Beibei was 33. 89 x 10 -9 during the measuring period, and the seasonal variation was obvious with the order of spring (42. 57 x 10 -9) > autumn (33.89 x 10-9) > winter (31.91 x 10 -9) > summer (27.04 x 10(-9)). In the composition of TVOCs, alkanes and aromatic hydrocarbons provided the largest contribution to TVOCs (31.5% and 30.7% ) , followed by halogenated hydrocarbon, accounting for 27.4% , and the last one was olefins, with only 10.4%. By means of ozone formation potential, the analysis results showed that olefins and aromatic hydrocarbon compounds were the two important materials which made the biggest contribution to the formation of ozone in the atmosphere of Beibei. We further analyzed the sources of VOCs in atmosphere of Beibei by the method of Principal Component Analysis (PCA). Vehicle exhaust was the biggest source and its contribution to VOCs was 50. 41%. The calculated results with T/B value also confirmed that traffic was the biggest source contributing to the VOCs in atmosphere of Beibei.

  9. Origin and variability in volatile organic compounds observed at an Eastern Mediterranean background site (Cyprus)

    Science.gov (United States)

    Debevec, Cécile; Sauvage, Stéphane; Gros, Valérie; Sciare, Jean; Pikridas, Michael; Stavroulas, Iasonas; Salameh, Thérèse; Leonardis, Thierry; Gaudion, Vincent; Depelchin, Laurence; Fronval, Isabelle; Sarda-Esteve, Roland; Baisnée, Dominique; Bonsang, Bernard; Savvides, Chrysanthos; Vrekoussis, Mihalis; Locoge, Nadine

    2017-09-01

    More than 7000 atmospheric measurements of over 60 C2 - C16 volatile organic compounds (VOCs) were conducted at a background site in Cyprus during a 1-month intensive field campaign held in March 2015. This exhaustive dataset consisted of primary anthropogenic and biogenic VOCs, including a wide range of source-specific tracers, and oxygenated VOCs (with various origins) that were measured online by flame ionization detection-gas chromatography and proton transfer mass spectrometry. Online submicron aerosol chemical composition was performed in parallel using an aerosol mass spectrometer. This study presents the high temporal variability in VOCs and their associated sources. A preliminary analysis of their time series was performed on the basis of independent tracers (NO, CO, black carbon), meteorological data and the clustering of air mass trajectories. Biogenic compounds were mainly attributed to a local origin and showed compound-specific diurnal cycles such as a daily maximum for isoprene and a nighttime maximum for monoterpenes. Anthropogenic VOCs as well as oxygenated VOCs displayed higher mixing ratios under the influence of continental air masses (i.e., western Asia), indicating that long-range transport significantly contributed to the VOC levels in the area. Source apportionment was then conducted on a database of 20 VOCs (or grouped VOCs) using a source receptor model. The positive matrix factorization and concentration field analyses were hence conducted to identify and characterize covariation factors of VOCs that were representative of primary emissions as well as chemical transformation processes. A six-factor PMF solution was selected, namely two primary biogenic factors (relative contribution of 43 % to the total mass of VOCs) for different types of emitting vegetation; three anthropogenic factors (short-lived combustion source, evaporative sources, industrial and evaporative sources; 21 % all together), identified as being either of local origin

  10. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Apel, Eric; Emmons, L.; Karl, Thomas G.; Flocke, Frank M.; Hills, A. J.; Madronich, Sasha; Lee-Taylor, J.; Fried, Alan; Weibring, P.; Walega, J.; Richter, Dirk; Tie, X.; Mauldin, L.; Campos, Teresa; Weinheimer, Andrew J.; Knapp, David; Sive, B.; Kleinman, Lawrence I.; Springston, S.; Zaveri, Rahul A.; Ortega, John V.; Voss, Paul B.; Blake, D. R.; Baker, Angela K.; Warneke, Carsten; Welsh-Bon, Daniel; de Gouw, Joost A.; Zheng, J.; Zhang, Renyi; Rudolph, Jochen; Junkermann, W.; Riemer, D.

    2010-01-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on March 18 and the NCAR C130 one day later on March 19. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the March 19 plume and to help interpret the OH

  11. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Apel, E.; Springston, S.; Karl, T.; Emmons, L.; Flocke, F.; Hills, A. J.; Madronich, S.; Lee-Taylor, J.; Fried, A.; Weibring, P.; Walega, J.; Richter, D., Tie, X.; Mauldin, L.; Campos, T.; Sive, B.; Kleinman, L.; Springston, S., Zaveri, R.; deGouw, J.; Zheng, J.; Zhang, R.; Rudolph, J.; Junkermann, W.; Riemer, D. D.

    2009-11-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on 18 March and the NCAR C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the 19 March plume and to help interpret the OH

  12. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Directory of Open Access Journals (Sweden)

    E. C. Apel

    2010-03-01

    Full Text Available The volatile organic compound (VOC distribution in the Mexico City Metropolitan Area (MCMA and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs but with a substantial contribution from oxygenated volatile organic compounds (OVOCs, predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry model and MOZART (Model for Ozone and Related chemical Tracers were able to approximate the observed MCMA daytime patterns and absolute values of the VOC OH reactivity. The MOZART model is also in agreement with observations showing that NMHCs dominate the reactivity distribution except in the afternoon hours. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height.

    A northeast transport event was studied in which air originating in the MCMA was intercepted aloft with the Department of Energy (DOE G1 on 18 March and downwind with the National Center for Atmospheric Research (NCAR C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind; ozone was shown to be photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial extent and temporal evolution of the plume

  13. Organic Contaminants Library for the Sample Analysis at Mars

    Science.gov (United States)

    Misra, P.; Garcia-Sanchez, R.; Canham, J.; Mahaffy, P. R.

    2012-12-01

    A library containing mass spectra for Sample Analysis at Mars (SAM) materials has been developed with the purpose of contamination identification and control. Based on analysis of the Gas Chromatography-Mass Spectrometric (GCMS) data through thermal desorption, organic compounds were successfully identified from material samples, such as polymers, paints and adhesives. The library contains the spectra for all the compounds found in each of these analyzed files and is supplemented by a file information spreadsheet, a spreadsheet-formatted library for easy searching, and a Perfluorotributylamine (PFTBA) based normalization protocol to make corrections to SAM data in order to meet the standard set by commercial libraries. An example of the library in use can be seen in Figure 1, where the abundances match closely, the spectral shape is retained, and the library picks up on it with an 88% identification probability. Of course, there are also compounds that have not been identified and are retained as unknowns. The library we have developed, along with its supplemental materials, is useful from both organizational and practical viewpoints. Through them we are able to organize large volumes of GCMS data, while at the same time breaking down the components that each material sample is made of. This approach in turn allows us straightforward and fast access to information that will be critical while performing analysis on the data recorded by the SAM instrumentation. In addition, the normalization protocol dramatically increased the identification probability. In SAM GCMS, PFTBA signals were obfuscated, resulting in library matches far away from PFTBA; by using the normalization protocol we were able to transform it into a 92% probable spectral match for PFTBA. The project has demonstrated conclusively that the library is successful in identifying unknown compounds utilizing both the Automated Mass Spectral Deconvolution & Identification System (AMDIS) and the Ion

  14. Productions of Volatile Organic Compounds (VOCs) in Surface Waters from Reactions with Atmospheric Ozone

    Science.gov (United States)

    Hopkins, Frances; Bell, Thomas; Yang, Mingxi

    2017-04-01

    Ozone (O3) is a key atmospheric oxidant, greenhouse gas and air pollutant. In marine environments, some atmospheric ozone is lost by reactions with aqueous compounds (e.g. dissolved organic material, DOM, dimethyl sulfide, DMS, and iodide) near the sea surface. These reactions also lead to formations of volatile organic compounds (VOCs). Removal of O3 by the ocean remains a large uncertainty in global and regional chemical transport models, hampering coastal air quality forecasts. To better understand the role of the ocean in controlling O3 concentrations in the coastal marine atmosphere, we designed and implemented a series of laboratory experiments whereby ambient surface seawater was bubbled with O3-enriched, VOC-free air in a custom-made glass bubble equilibration system. Gas phase concentrations of a range of VOCs were monitored continuously over the mass range m/z 33 - 137 at the outflow of the bubble equilibrator by a proton transfer reaction - mass spectrometer (PTR-MS). Gas phase O3 was also measured at the input and output of the equilibrator to monitor the uptake due to reactions with dissolved compounds in seawater. We observed consistent productions of a variety of VOCs upon reaction with O3, notably isoprene, aldehydes, and ketones. Aqueous DMS is rapidly removed from the reactions with O3. To test the importance of dissolved organic matter precursors, we added increasing (milliliter) volumes of Emiliania huxleyi culture to the equilibrator filled with aged seawater, and observed significant linear increases in gas phase concentrations of a number of VOCs. Reactions between DOM and O3 at the sea-air interface represent a potentially significant source of VOCs in marine air and a sink of atmospheric O3.

  15. Quantitative and qualitative sensing techniques for biogenic volatile organic compounds and their oxidation products.

    Science.gov (United States)

    Kim, Saewung; Guenther, Alex; Apel, Eric

    2013-07-01

    The physiological production mechanisms of some of the organics in plants, commonly known as biogenic volatile organic compounds (BVOCs), have been known for more than a century. Some BVOCs are emitted to the atmosphere and play a significant role in tropospheric photochemistry especially in ozone and secondary organic aerosol (SOA) productions as a result of interplays between BVOCs and atmospheric radicals such as hydroxyl radical (OH), ozone (O3) and NOX (NO + NO2). These findings have been drawn from comprehensive analysis of numerous field and laboratory studies that have characterized the ambient distribution of BVOCs and their oxidation products, and reaction kinetics between BVOCs and atmospheric oxidants. These investigations are limited by the capacity for identifying and quantifying these compounds. This review highlights the major analytical techniques that have been used to observe BVOCs and their oxidation products such as gas chromatography, mass spectrometry with hard and soft ionization methods, and optical techniques from laser induced fluorescence (LIF) to remote sensing. In addition, we discuss how new analytical techniques can advance our understanding of BVOC photochemical processes. The principles, advantages, and drawbacks of the analytical techniques are discussed along with specific examples of how the techniques were applied in field and laboratory measurements. Since a number of thorough review papers for each specific analytical technique are available, readers are referred to these publications rather than providing thorough descriptions of each technique. Therefore, the aim of this review is for readers to grasp the advantages and disadvantages of various sensing techniques for BVOCs and their oxidation products and to provide guidance for choosing the optimal technique for a specific research task.

  16. Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set

    Directory of Open Access Journals (Sweden)

    B. N. Murphy

    2011-08-01

    Full Text Available A module predicting the oxidation state of organic aerosol (OA has been developed using the two-dimensional volatility basis set (2D-VBS framework. This model is an extension of the 1D-VBS framework and tracks saturation concentration and oxygen content of organic species during their atmospheric lifetime. The host model, a one-dimensional Lagrangian transport model, is used to simulate air parcels arriving at Finokalia, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-08. Extensive observations were collected during this campaign using an aerosol mass spectrometer (AMS and a thermodenuder to determine the chemical composition and volatility, respectively, of the ambient OA. Although there are several uncertain model parameters, the consistently high oxygen content of OA measured during FAME-08 (O:C = 0.8 can help constrain these parameters and elucidate OA formation and aging processes that are necessary for achieving the high degree of oxygenation observed. The base-case model reproduces observed OA mass concentrations (measured mean = 3.1 μg m−3, predicted mean = 3.3 μg m−3 and O:C (predicted O:C = 0.78 accurately. A suite of sensitivity studies explore uncertainties due to (1 the anthropogenic secondary OA (SOA aging rate constant, (2 assumed enthalpies of vaporization, (3 the volatility change and number of oxygen atoms added for each generation of aging, (4 heterogeneous chemistry, (5 the oxidation state of the first generation of compounds formed from SOA precursor oxidation, and (6 biogenic SOA aging. Perturbations in most of these parameters do impact the ability of the model to predict O:C well throughout the simulation period. By comparing measurements of the O:C from FAME-08, several sensitivity cases including a high oxygenation case, a low oxygenation case, and biogenic SOA aging case are found to unreasonably depict OA aging, keeping in mind that this study does not consider

  17. Radiocarbon content of synthetic and natural semi-volatile halogenated organic compounds

    International Nuclear Information System (INIS)

    Reddy, C.M.; Xu Li; Eglinton, T.I.; Boon, J.P.; Faulkner, D.J.

    2002-01-01

    New developments in molecular-level 14 C analysis techniques enable clues about natural versus commercial synthesis of trace organic contaminants. - Some halogenated organic compounds, such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and polybrominated diphenyl ethers (PBDEs), have been suggested to have natural sources but separating these compounds from their commercially synthesized counterparts is difficult. Molecular-level 14 C analysis may be beneficial since most synthetic compounds are manufactured from petrochemicals ( 14 C-free) and natural compounds should have 'modern' or 'contemporary' 14 C levels. As a baseline study, we measured, for the first time, the 14 C abundance in commercial PCB and PBDE mixtures, a number of organochlorine pesticides, as well as one natural product 2-(3', 5'-dibromo-2'-methoxyphenoxy)-3,5-dibromoanisole. The latter compound was isolated from a marine sponge and is similar in structure to a PBDE. All of the synthetic compounds were 14 C-free except for the pesticide toxaphene, which had a modern 14 C abundance, as did the brominated natural compound. The result for toxaphene was not surprising since it was commercially synthesized by the chlorination of camphene derived from pine trees. These results suggest that measuring the 14 C content of halogenated organic compounds may be quite useful in establishing whether organic compounds encountered in the environment have natural or synthetic origins (or both) provided that any synthetic counterparts derive from petrochemical feedstock

  18. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.

    Science.gov (United States)

    Zhang, Xiaokai; Wang, Hailong; He, Lizhi; Lu, Kouping; Sarmah, Ajit; Li, Jianwu; Bolan, Nanthi S; Pei, Jianchuan; Huang, Huagang

    2013-12-01

    Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.

  19. Analyses of organic and inorganic contaminants in Salton Sea fish.

    Science.gov (United States)

    Riedel, Ralf; Schlenk, Daniel; Frank, Donnell; Costa-Pierce, Barry

    2002-05-01

    Chemical contamination of fish from the Salton Sea, a quasi-marine lake in Southern California, could adversely impact millions of birds using the Pacific Flyway and thousands of humans using the lake for recreation. Bairdiella icistia (bairdiella), Cynoscion xanthulus (orangemouth corvina), and Oreochromis spp. (tilapia) were sampled from two river mouths and two nearshore areas of the Salton Sea. Muscle tissues were analyzed for a complete suite of 14 trace metals and 53 pesticides. Fish muscle tissues had concentrations of selenium ranging between 1.89 and 2.73 microg/g wet weight. 4,4'-DDE accounted for 94% of the total DDT metabolites. Total DDTs ranged between 17.1 and 239.0 and total PCBs between 2.5 and 18.6 ng/g wet weight. PCB congeners 132, 138, 153, 168, and 180 comprised over 50% of the total PCBs. Given the potential implementation of a commercial fishing at the Salton Sea in the future, the presence of persistent organic pollutants and selenium warrants further research into the effects of these mixtures on fish populations, and on wildlife and humans consuming fish.

  20. Volatile organic compounds in urban rivers and their estuaries in Osaka, Japan.

    Science.gov (United States)

    Yamamoto, K; Fukushima, M; Kakutani, N; Kuroda, K

    1997-01-01

    The levels and distribution of 55 volatile organic compounds (VOCs) were determined by purge and trap GC-MS on water samples from 30 sites within the urban rivers and estuaries of Osaka, a populated industrialized city of Japan. Forty of 55 target VOCs listed in the US EPA Method 524.2 were detected. Dichloromethane (DCM) was found at higher levels at all of the sampling sites. The distribution of dominant VOCs followed four different patterns. First, the most common VOCs (DCM, toluene, trichloroethene and tetrachloroethene) showed concentration maxima in the river segments, and the sites of maximum concentration fluctuated due to irregular large spills and/or loadings. Second, one VOC (cis-1,2-dichloroethene) was evenly distributed in particular rivers due to fixed loadings. Both of these patterns were found in the upper and middle reaches. Third, some of VOCs (1,2,3-trichloropropane and benzene) were specific to a single industrial site and truceable to those sources. Finally, some VOCs showed no concentration maxima along the rivers and entered from multiple sources (chloroform and bromodichloromethane). Diurnal variations of VOCs at the border of the city area, receiving domestic and industrial discharges, provided information to interpret their observed downstream distribution and possible sources.

  1. Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation

    Science.gov (United States)

    Bracho-Nunez, Araceli; Welter, Saskia; Staudt, Michael; Kesselmeier, Jürgen

    2011-08-01

    The seasonality of vegetation, i.e., developmental stages and phenological processes, affects the emission of volatile organic compounds (VOCs). Despite the potential significance, the contributions of seasonality to VOC emission quality and quantity are not well understood and are therefore often ignored in emission simulations. We investigated the VOC emission patterns of young and mature leaves of several Mediterranean plant species in relation to their physiological and developmental changes during the growing period and estimated Es. Foliar emissions of isoprenoids and oxygenated VOCs like methanol and acetone were measured online by means of a proton transfer reaction mass spectrometer (PTR-MS) and offline with gas chromatography coupled with a mass spectrometer and flame ionization detector. The results suggest that VOC emission is a developmentally regulated process and that quantitative and qualitative variability is plant species specific. Leaf ontogeny clearly influenced both the VOC Es and the relative importance of different VOCs. Methanol was the major compound contributing to the sum of target VOC emissions in young leaves (11.8 ± 10.4 μg g-1 h-1), while its contribution was minor in mature leaves (4.1 ± 4.1 μg g-1 h-1). Several plant species showed a decrease or complete subsidence of monoterpene, sesquiterpene, and acetone emissions upon maturity, perhaps indicating a potential response to the higher defense demands of young emerging leaves.

  2. Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China: Part II

    Science.gov (United States)

    Liu, Ying; Shao, Min; Lu, Sihua; Chang, Chih-Chung; Wang, Jia-Lin; Fu, Linlin

    The chemical mass balance receptor model was applied to the source apportionment of 58 hydrocarbons measured at seven sites in a field campaign that examined regional air quality in the Pearl River Delta (PRD) region in the fall of 2004. A total of 12 volatile organic compound (VOC) emission sources were considered, including gasoline- and diesel-powered vehicle exhausts, headspace vapors of gasoline and diesel fuel, vehicle evaporative emissions, liquid petroleum gas (LPG) leakage, paint vapors, asphalt emissions from paved roads, biomass combustion, coal combustion, the chemical industry, and petroleum refineries. Vehicle exhaust was the largest source of VOCs, contributing to >50% of ambient VOCs at the three urban sites (Guangzhou, Foshan, and Zhongshan). LPG leakage played an important role, representing 8-16% of emissions at most sites in the PRD. Solvent usage was the biggest emitter of VOCs at Dongguan, an industrial site, contributing 33% of ambient VOCs. Similarly, at Xinken, a non-urban site, the evaporation of solvents and coatings was the largest emission source, accounting for 31% of emissions, probably because it was downwind of Dongguan. Local biomass combustion was a noticeable source of VOCs at Xinken; although its contribution was estimated at 14.3%, biomass combustion was the third largest VOC source at this site.

  3. Volatile organic compounds in exhaled breath in a healthy population: effect of tobacco smoking.

    Science.gov (United States)

    Jareño-Esteban, José Javier; Muñoz-Lucas, M Ángeles; Carrillo-Aranda, Belén; Maldonado-Sanz, José Ángel; de Granda-Orive, Ignacio; Aguilar-Ros, Antonio; Civera-Tejuca, Concepción; Gutiérrez-Ortega, Carlos; Callol-Sánchez, Luis Miguel

    2013-11-01

    Tobacco smoke is a source of free radicals and reactive oxygen and nitrogen species, which are the main causes of oxidative stress. The analysis of volatile organic compounds (VOC) in exhaled breath is an indirect method of measuring the level of oxidative stress that occurs in the airways caused by tobacco consumption. The aim of this study was to determine whether smoking influences the production of VOC, in a clinically healthy population. Exhaled breath from 89 healthy volunteers, divided into three groups (non-smokers, ex-smokers and smokers) was analysed. Samples were collected using Bio-VOC® devices and transferred to universal desorption tubes. Chemical compounds were analysed by thermal desorption, gas chromatography and mass spectrometry. We analysed hexanal, heptanal, octanal, nonanal, nonanoic acid and propanoic acid, all identified by retention time and mass spectra referenced in the NIST 08 mass spectral library; confirmation was carried out using reference standards of the pure chemical compound. These VOC were found in very low concentrations. Only nonanal showed significant quantitative and qualitative statistical differences among the study groups. Nonanal concentration is dependent on smoking, but is independent of the amount of tobacco consumed, age and gender. Nonanal in exhaled breath is associated with tobacco consumption, current or previous. Nonanal is a sub-product of the destruction of the cell membrane, and its finding may be indicative of cell damage in smokers. This result appears in many farmers who smoke. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  4. Toxicity assessment of volatile organic compounds and polycyclic aromatic hydrocarbons in motorcycle exhaust

    International Nuclear Information System (INIS)

    Chang, C.-T.; Chen, B.-Y.

    2008-01-01

    This study investigates the toxicity of various pollutant species from motorcycle exhaust via dose-response analysis and margin of safety using Escherichia coli DH5α. The toxicity evaluation of the major components of motorcycle exhaust volatile organic compounds (VOCs), collected with impinger, and polycyclic aromatic hydrocarbons (PAHs), collected with filter and XAD-2, is essential to determine emission standards for motorcycles. The toxicity of benzene (B), toluene (T), ethyl benzene (E) and xylene (X) was selected for comparison as standard VOCs emitted from motorcycles. In addition, three types of reformulated gasoline (high oxygenate and high benzene content (No. 1), low oxygen and high benzene (No. 2), and low oxygen and low benzene (No. 3) were prepared to reveal combined toxicity of individual compositions. Motorcycle exhaust is significantly more toxic than BTEX due to the highly toxic VOCs generated from incomplete combustion. Overall toxicity evaluation showed that the toxicity, indicated as EC 50 , was approximately as follows: PAHs > two-stroke engines > four-stroke engines > BTEX

  5. Snowpack concentrations and estimated fluxes of volatile organic compounds in a boreal forest

    Directory of Open Access Journals (Sweden)

    H. Aaltonen

    2012-06-01

    Full Text Available Soil provides an important source of volatile organic compounds (VOCs to atmosphere, but in boreal forests these fluxes and their seasonal variations have not been characterized in detail. Especially wintertime fluxes are almost completely unstudied. In this study, we measured the VOC concentrations inside the snowpack in a boreal Scots pine (Pinus sylvestris L. forest in southern Finland, using adsorbent tubes and air samplers installed permanently in the snow profile. Based on the VOC concentrations at three heights inside the snowpack, we estimated the fluxes of these gases. We measured 20 VOCs from the snowpack, monoterpenes being the most abundant group with concentrations varying from 0.11 to 16 μg m−3. Sesquiterpenes and oxygen-containing monoterpenes were also detected. Inside the pristine snowpack, the concentrations of terpenoids decreased from soil surface towards the surface of the snow, suggesting soil as the source for terpenoids. Forest damages (i.e. broken treetops and branches, fallen trees resulting from heavy snow loading during the measurement period increased the terpenoid concentrations dramatically, especially in the upper part of the snowpack. The results show that soil processes are active and efficient VOC sources also during winter, and that natural or human disturbance can increase forest floor VOC concentrations substantially. Our results stress the importance of soil as a source of VOCs during the season when other biological sources, such as plants, have lower activity.

  6. Volatile Organic Compound (VOC) measurements in the Pearl River Delta (PRD) region, China

    Science.gov (United States)

    Liu, Ying; Shao, Min; Lu, Sihua; Chang, Chih-Chung; Wang, Jia-Lin; Chen, Gao

    2008-03-01

    We measured levels of ambient volatile organic compounds (VOCs) at seven sites in the Pearl River Delta (PRD) region of China during the Air Quality Monitoring Campaign spanning 4 October to 3 November 2004. Two of the sites, Guangzhou (GZ) and Xinken (XK), were intensive sites at which we collected multiple daily canister samples. The observations reported here provide a look at the VOC distribution, speciation, and photochemical implications in the PRD region. Alkanes constituted the largest percentage (>40%) in mixing ratios of the quantified VOCs at six sites; the exception was one major industrial site that was dominated by aromatics (about 52%). Highly elevated VOC levels occurred at GZ during two pollution episodes; however, the chemical composition of VOCs did not exhibit noticeable changes during these episodes. We calculated the OH loss rate to estimate the chemical reactivity of all VOCs. Of the anthropogenic VOCs, alkenes played a predominant role in VOC reactivity at GZ, whereas the contributions of reactive aromatics were more important at XK. Our preliminary analysis of the VOC correlations suggests that the ambient VOCs at GZ came directly from local sources (i.e., automobiles); those at XK were influenced by both local emissions and transportation of air mass from upwind areas.

  7. Aromatic volatile organic compounds and their role in ground-level ozone formation in Russia

    Science.gov (United States)

    Berezina, E. V.; Moiseenko, K. B.; Skorokhod, A. I.; Elansky, N. F.; Belikov, I. B.

    2017-05-01

    This paper reports proton mass spectrometry data on aromatic volatile organic compounds (VOCs) (benzene, toluene, phenol, styrene, xylene, and propylbenzene) obtained in different Russian regions along the Trans-Siberian Railway from Moscow to Vladivostok, based on expedition data retrieved using the TRO-ICA-12 mobile laboratory in the summer of 2008. The contribution of aromatic VOCs to ozone formation in the cities and regions along the measurement route has been estimated quantitatively. The greatest contribution of aromatic VOCs to ozone formation is characteristic of large cities along the Trans-Siberian Railway (up to 7.5 ppbv O3) specified by the highest concentrations of aromatic VOCs (1-1.7 ppbv) and nitrogen oxides (>20 ppbv). The results obtained are indicative of a considerable contribution (30-50%) of anthropogenic emissions of VOCs to photochemical ozone generation in the large cities along the Trans-Siberian Railway in hot and dry weather against the background of a powerful natural factor such as isoprene emissions controlling the regional balance of ground-level ozone in warm seasons.

  8. Symptoms of mothers and infants related to total volatile organic compounds in household products.

    Science.gov (United States)

    Farrow, Alexandra; Taylor, Hazel; Northstone, Kate; Golding, Jean

    2003-10-01

    The authors sought to determine whether reported symptoms of mothers and infants were associated significantly with the use of household products that raised indoor levels of total volatile organic compounds (TVOCs). Data collected from 170 homes within the Avon Longitudinal Study of Parents and Children (ALSPAC: a large birth cohort of more than 10,000) had determined which household products were associated with the highest levels of TVOCs. The latter data were collected over a period that approximated 6 mo of pregnancy and the infants' first 6 mo of life. This paper presents (a) the mothers' self-reports of the use of these products in their homes and (b) self-reported medical symptoms of mothers and infants postnatally. Higher TVOC levels were associated with air freshener and aerosol use. Infant diarrhea and earache were statistically significantly associated with air freshener use, and diarrhea and vomiting were significantly associated with aerosol use. Headache experienced by mothers 8 mo after birth was significantly associated with the use of air fresheners and aerosols; maternal depression was significantly associated with the use of air fresheners. The results of the study suggest a link between the use of products that raise indoor levels of TVOCs and an increased risk of certain symptoms among infants and their mothers.

  9. Impact