WorldWideScience

Sample records for volatile halogenated compounds

  1. The Brenner Moor - A saline bog as a source for halogenated and non-halogenated volatile compounds

    Science.gov (United States)

    Krause, T.; Studenroth, S.; Furchner, M.; Hoffman, A.; Lippe, S.; Kotte, K.; Schöler, H. F.

    2012-04-01

    The Brenner Moor is a small bog in the catchment area of the river Trave located in Schleswig-Holstein, North Germany, between Baltic and North Sea. The bog is fed by several saline springs with chloride concentrations up to 15 g/L. The high chloride concentrations and the high organic content of the peat make the Brenner Moor an ideal source for the abiotic formation of volatile organic halogenated compounds (VOX). VOX play an important role in the photochemical processes of the lower atmosphere and information on the atmospheric input from saline soils like the Brenner Moor will help to understand the global fluxes of VOX. Soil samples were taken in spring 2011 from several locations and depths in the vicinity of the Brenner Moor. The samples were freeze-dried, ground and incubated in water emphasising an abiotic character for the formation of volatile organic compounds. 1,2-dichloroethane and trichloromethane are the main halogenated compounds emitted from soils of the Brenner Moor. The abiotic formation of trichloromethane as well as other trihalomethanes has been part of intensive studies. A well known source is the decarboxylation of trichloroacetic acid and trichloroacetyl-containing compounds to trichloromethane [1]. Huber et al. discovered another pathway in which catechol, as a model compound for organic substances, is oxidised under Fenton-like conditions with iron(III), hydrogen peroxide and halides to form trihalomethanes [2]. Besides the halogenated compounds, the formation of sulphur compounds such as dimethyl sulfide and dimethyl disulfide and several furan derivatives could be detected which also have an impact on atmospheric chemistry, especially particle formation of clouds. Furan, methylfuran and dimethylfuran are compounds that can be obtained under Fenton-like oxidation from catechol, methyl- and dimethylcatechol and are known to be produced in natural soils [3]. A novel class of furan derivatives that are formed under abiotic conditions from

  2. Gas-liquid partitioning of halogenated volatile organic compounds in aqueous cyclodextrin solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ondo, Daniel; Barankova, Eva [Department of Physical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Dohnal, Vladimir, E-mail: dohnalv@vscht.cz [Department of Physical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2011-08-15

    Highlights: > Binding of halogenated VOCs with cyclodextrins examined through g-l partitioning. > Complex stabilities reflect host-guest size matching and hydrophobic interaction. > Presence of halogens in the guest molecule stabilizes the binding. > Thermodynamic origin of the binding varies greatly among the systems studied. > Results obey the guest-CD global enthalpy-entropy compensation relationship. - Abstract: Gas-liquid partitioning coefficients (K{sub GL}) were measured for halogenated volatile organic compounds (VOCs), namely 1-chlorobutane, methoxyflurane, pentafluoropropan-1-ol, heptafluorobutan-1-ol, {alpha},{alpha},{alpha}-trifluorotoluene, and toluene in aqueous solutions of natural {alpha}-, {beta}-, and {gamma}-cyclodextrins (CDs) at temperatures from (273.35 to 326.35) K employing the techniques of headspace gas chromatography and inert gas stripping. The binding constants of the 1:1 inclusion complex formation between the VOCs and CDs were evaluated from the depression of the VOCs volatility as a function of CD concentration. The host-guest size matching and the hydrophobic interaction concept were used to rationalize the observed widely different affinity of the VOC-CD pairs to form the inclusion complex. The enthalpic and entropic component of the standard Gibbs free energy of complex formation as derived from the temperature dependence of the binding constant indicate the thermodynamic origin of the binding to vary greatly among the systems studied, but follow the global enthalpy-entropy compensation relationships reported previously in the literature.

  3. Headspace GC-MS Analysis of Halogenated Volatile Organic Compounds in Aqueous Samples: An Experiment for General Chemistry Laboratory

    Science.gov (United States)

    Keller, John W.; Fabbri, Cindy E.

    2012-01-01

    Analysis of halogenated volatile organic compounds (HVOCs) by GC-MS demonstrates the use of instrumentation in the environmental analysis of pollutant molecules and enhances student understanding of stable isotopes in nature. In this experiment, students separated and identified several HVOCs that have been implicated as industrial groundwater…

  4. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS: THE NEW X-WAND HVOC SCREENING DEVICE

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Susan S. Sorini; Joseph F. Rovani Jr

    2006-03-01

    Western Research Institute (WRI) has developed new methodology and a test kit to screen soil or water samples for halogenated volatile organic compounds (HVOCs) in the field. The technology has been designated the X-Wand{trademark} screening tool. The new device uses a heated diode sensor that is commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. This sensor is selective to halogens. It does not respond to volatile aromatic hydrocarbons, such as those in gasoline, and it is not affected by high humidity. In the current work, the heated diode leak detectors were modified further to provide units with rapid response and enhanced sensitivity. The limit of detection for trichloroethylene TCE in air is 0.1 mg/m{sup 3} (S/N = 2). The response to other HVOCS relative to TCE is similar. Variability between sensors and changes in a particular sensor over time can be compensated for by normalizing sensor readings to a maximum sensor reading at 1,000 mg/m{sup 3} TCE. The soil TCE screening method was expanded to include application to water samples. Assuming complete vaporization, the detection limit for TCE in soil is about 1 ug/kg (ppb) for a 25-g sample in an 8-oz jar. The detection limit for TCE in water is about 1 ug/L (ppb) for a 25-mL sample in an 8-oz jar. This is comparable to quantitation limits of EPA GC/MS laboratory methods. A draft ASTM method for screening TCE contaminated soils using a heated diode sensor was successfully submitted for concurrent main committee and subcommittee balloting in ASTM Committee D 34 on Waste Management. The method was approved as ASTM D 7203-05, Standard Test Method for Screening Trichloroethylene (TCE)-Contaminated Soil Using a Heated Diode Sensor.

  5. Assessing California groundwater susceptibility using trace concentrations of halogenated volatile organic compounds

    Science.gov (United States)

    Deeds, Daniel A.; Kulongoski, Justin T.; Belitz, Kenneth

    2012-01-01

    Twenty-four halogenated volatile organic compounds (hVOCs) and SF6 were measured in groundwater samples collected from 312 wells across California at concentrations as low as 10–12 grams per kilogram groundwater. The hVOCs detected are predominately anthropogenic (i.e., “ahVOCs”) and as such their distribution delineates where groundwaters are impacted and susceptible to human activity. ahVOC detections were broadly consistent with air-saturated water concentrations in equilibrium with a combination of industrial-era global and regional hVOC atmospheric abundances. However, detection of ahVOCs in nearly all of the samples collected, including ancient groundwaters, suggests the presence of a sampling or analytical artifact that confounds interpretation of the very-low concentration ahVOC data. To increase our confidence in ahVOC detections we establish screening levels based on ahVOC concentrations in deep wells drawing ancient groundwater in Owens Valley. Concentrations of ahVOCs below the Owens Valley screening levels account for a large number of the detections in prenuclear groundwater across California without significant loss of ahVOC detections in shallow, recently recharged groundwaters. Over 80% of the groundwaters in this study contain at least one ahVOC after screening, indicating that the footprint of human industry is nearly ubiquitous and that most California groundwaters are vulnerable to contamination from land-surface activities.

  6. Determination of volatile halogenated organic compounds in the tropical terrestrial ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Quintana, A.; Lopez-Garriga, J. [Univ. of Puerto Rico, Mayaguez (Puerto Rico)

    1995-12-01

    Volatile Halogenated Organic Compounds are discharged into our biosphere by plants, marine organisms, fungi and by other natural processes. Due to the high rate of evaporation of the tropical terrestrial ecosystem, the production of VHOC by fungi, higher plants and other organisms may be one of the most important sources of the total amount of VHOC released to the atmosphere from biogenic origin. The main goal of this research was to determine the VHOC`s released to the surroundings from biogenic origin in the tropical terrestrial ecosystem. Using vacuum distillation with cryogenic trapping and a thermal desorption unit coupled to a GC-ECD, we found that samples of air, water and soil contains 36.418 ng/L, 0.222 ng/mL and 9.156 ng/g (wet) of chloroform. Microorganisms such as the Actinomycetes and Halobacterium salinarium were also analyzed for VHOC`S contents. Carbontetrachloride, 1,1-dichloroethene, dichlorodifluoromethane, trichlorofluoromethane and other VHOC`S of environmental importance were determined. This is the first time that the presence of VHOC`S is reported in pure cultured bacteria.

  7. Interactions between volatile organic compounds and reactive halogen in the tropical marine atmosphere using WRF-Chem

    Science.gov (United States)

    Badia, Alba; Reeves, Claire E.; Baker, Alex; Volkamer, Rainer; von Glasow, Roland

    2016-04-01

    Halogen species (chlorine, bromine and iodine) are known to play an important role in the chemistry and oxidizing capacity of the troposphere, particularly in the marine boundary layer (MBL). Reactive halogens cause ozone (O3) destruction, change the HOx and NOX partitioning, affect the oxidation of volatile organic compounds (VOCs) and mercury, reduce the lifetime of methane, and take part in new particle formation. Numerical models predicted that reactive halogen compounds account for 30% of O3 destruction in the MBL and 5-20% globally. There are indications that the chemistry of reactive halogens and oxygenated VOCs (OVOCs) in the tropics are inter-related. Moreover, the presence of aldehydes, such as glyoxal (CHOCHO), has a potential impact on radical cycling and secondary organic aerosol (SOA) formation in the MBL and free troposphere (FT). Model calculations suggest aldehydes to be an important sink for bromine atoms and hence competition for their reaction with O3 forming BrO and so illustrating a link between the cycles of halogens and OVOCs in the marine atmosphere. The main objective of this contribution is to investigate the atmospheric chemistry in the tropical East Pacific with a focus on reactive halogens and OVOCs and their links using the latest version of the Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-Chem) and field data from the TORERO campaign. WRF-Chem is a highly flexible community model for atmospheric research where aerosol-radiation-cloud feedback processes are taken into account. Our current reaction mechanism in WRF-Chem is based on the MOZART mechanism and has been extended to include bromine, chlorine and iodine chemistry. The MOZART mechanism includes detailed gas-phase chemistry of CHOCHO formation as well as state-of-the-science pathways to form SOA. Oceanic emissions of aldehydes, including CHOCHO, and of organic halogens based on measurements from the TORERO campaign have been added into the model. Sea

  8. Volatile organic compound sensor system

    Science.gov (United States)

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.; Wong, Gregory K.

    2011-03-01

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  9. Volatile organic compound sensor system

    Science.gov (United States)

    Schabron, John F [Laramie, WY; Rovani, Jr., Joseph F.; Bomstad, Theresa M [Laramie, WY; Sorini-Wong, Susan S [Laramie, WY

    2009-02-10

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  10. Determination of benzenic and halogenated volatile organic compounds in animal-derived food products by one-dimensional and comprehensive two-dimensional gas chromatography-mass spectrometry.

    Science.gov (United States)

    Ratel, Jérémy; Engel, Erwan

    2009-11-06

    Animal-derived products are particularly vulnerable to contamination by volatile organic compounds (VOCs). These lipophilic substances, which are generated by an increasing number of sources, are easily transferred to the atmosphere, water, soil, and plants. They are ingested by livestock and become trapped in the fat fraction of edible animal tissues. The aim of this work was to determine the occurrence, risk for human health and entryways of benzenic and halogenated VOCs (BHVOCs) in meat products, milks and sea foods using gas chromatography- mass spectrometry (GC-MS) techniques. In the first part, the occurrence and levels of the BHVOCs in animal products were studied. One muscle and three fat tissues were analysed by GC-Quad/MS in 16 lambs. Of 52 BHVOCs identified, 46 were found in the three fat tissues and 29 in all four tissues, confirming that VOCs are widely disseminated in the body. Twenty-six BHVOCs were quantified in fat tissues, and risk for consumer health was assessed for six of these compounds regulated by the US Environmental Protection Agency (EPA). The BHVOC content was found to be consistent with previous reports and was below the maximum contaminant levels set by the EPA. In the second part, the performance of GCxGC-TOF/MS for comprehensively detecting BHVOCs and showing their entryways in animal-derived food chains was assessed. Meat, milk and oysters were analysed by GC-Quad/MS and GCxGC-TOF/MS. For all these products, at least a 7-fold increase in the contaminants detected was achieved with the GCxGC-TOF/MS technique. The results showed that the production surroundings, through animal feeding or geographical location, were key determinants of BHVOC composition in the animal products.

  11. PATTERN RECOGNITION STUDIES OF HALOGENATED ORGANIC COMPOUNDS USING CONDUCTING POLYMER SENSOR ARRAYS. (R825323)

    Science.gov (United States)

    Direct measurement of volatile and semivolatile halogenated organic compounds of environmental interest was carried out using arrays of conducting polymer sensors. Mathematical expressions of the sensor arrays using microscopic polymer network model is described. A classical, non...

  12. Treatment System for Removing Halogenated Compounds from Contaminated Sources

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Yestrebsky, Cherie L. (Inventor)

    2015-01-01

    A treatment system and a method for removal of at least one halogenated compound, such as PCBs, found in contaminated systems are provided. The treatment system includes a polymer blanket for receiving at least one non-polar solvent. The halogenated compound permeates into or through a wall of the polymer blanket where it is solubilized with at least one non-polar solvent received by said polymer blanket forming a halogenated solvent mixture. This treatment system and method provides for the in situ removal of halogenated compounds from the contaminated system. In one embodiment, the halogenated solvent mixture is subjected to subsequent processes which destroy and/or degrade the halogenated compound.

  13. Halogenation of aromatic compounds: thermodynamic, mechanistic and ecological aspects

    NARCIS (Netherlands)

    Dolfing, J.

    1998-01-01

    Biological halogenation of aromatic compounds implies the generation of reducing equivalents in the form of e.g. NADH. Thermodynamic calculations show that coupling the halogenation step to a step in which the reducing equivalents are oxidized with a potent oxidant such as O2 or N2O makes the

  14. Biodegradation of Trihalomethanes and Other Halogenated Aliphatic Compounds

    Science.gov (United States)

    Smith, G. B.

    1996-01-01

    The biological dehalogenation of common water pollutants such as trichloromethane (chloroform) and other halogenated aliphatic compounds was the subject of this project. Samples from diverse water environments such as from groundwater contaminated with halogenated compounds and wastewaters from regional treatment plants were studied to identify conditions that favor certain dehalogenation reactions over others. Gene probe analyses of DNA extracted from the dichlormethane-degrading wastewater indicated the presence of the gene coding for dichloromethane dehalogenase, indicating the genetic basis for the dechlorination activity observed. These studies indicate that methanogenic bacteria are the organisms responsible for the chloroform dechlorination. Dechlorination of a common chlorofluorocarbon (CFC-11) was identified in samples taken from a regional aquifer contaminated with halogenated aliphatic compounds.

  15. Rotational Spectra of Halogenated Ethers Used as Volatile Anaesthetics

    Science.gov (United States)

    Vega-Toribio, Alicia; Lesarri, Alberto; Suenram, Richard D.; Grabow, Jens-Uwe

    2009-06-01

    Following previous microwave investigations by Suenram et al., we will report on the rotational spectrum of several halogenated ethers used as volatile anaesthetics, including sevoflurane ((CF_3)_2CH-O-CH_2F), isoflurane (CF_3CHCl-O-CHF_2), enflurane (CHFClCF_2-O-CHF_2) and methoxyflurane (CHCl_2CF_2-O-CH_3). This study has been conducted in the 6-18 GHz centimetre-wave region using Balle-Flygare-type FT-microwave spectroscopy. The results will include the analysis of the rotational spectra of minor species in natural abundance (^{13}C and ^{18}O in some cases), structural calculations and auxiliary ab initio modelling. The conformational and structural conclusions will be compared with previous gas-phase electron diffraction and solid-state X-ray diffraction analysis. R. D. Suenram, D. J. Brugh, F. J. Lovas and C. Chu, 51st OSU Int. Symp. On Mol. Spectrosc., Columbus, OH, 1999, RB07

  16. atmospheric volatile organic compounds

    Directory of Open Access Journals (Sweden)

    A. R. Koss

    2016-07-01

    organic compounds (VOCs that cannot be ionized with H3O+ ions (e.g., in a PTR-MS or H3O+ CIMS instrument. Here we describe the adaptation of a high-resolution time-of-flight H3O+ CIMS instrument to use NO+ primary ion chemistry. We evaluate the NO+ technique with respect to compound specificity, sensitivity, and VOC species measured compared to H3O+. The evaluation is established by a series of experiments including laboratory investigation using a gas-chromatography (GC interface, in situ measurement of urban air using a GC interface, and direct in situ measurement of urban air. The main findings are that (1 NO+ is useful for isomerically resolved measurements of carbonyl species; (2 NO+ can achieve sensitive detection of small (C4–C8 branched alkanes but is not unambiguous for most; and (3 compound-specific measurement of some alkanes, especially isopentane, methylpentane, and high-mass (C12–C15 n-alkanes, is possible with NO+. We also demonstrate fast in situ chemically specific measurements of C12 to C15 alkanes in ambient air.

  17. Characterisation of selected volatile organic compounds in ...

    African Journals Online (AJOL)

    GCMS), was used to identify volatile compounds at three different temperatures. Fifty volatile compounds, inclusive of 14 acids, 14 alcohols, and 22 esters were identified and quantified in the two brands of indigenous banana beer samples. Only 12 ...

  18. Emission of Volatile OrganoHalogens by Southern African Solar Salt Works

    Science.gov (United States)

    Kotte, Karsten; Weissflog, Ludwig; Lange, Christian Albert; Huber, Stefan; Pienaar, Jacobus J.

    2010-05-01

    Volatile organic compounds containing halogens - especially chlorine - have been considered for a long time of industrial origin only, and it was assumed that the production and emission of these compounds can easily be controlled by humans in case they will cause a threat for life on Earth. Since the middle of the 80ies of the last century it became clear that the biologically active organohalogens isolated by chemists are purposefully produced by nature as antibiotics or as antifeedant etc. To date more than 3800 organohalogens are known to be naturally produced by bio-geochemical processes. The global budgets of many such species are poorly understood and only now with the emergence of better analytical techniques being discovered. For example the compound chloromethane nature's production (5 GT) outdates the anthropogenic production (50 KT) by a factor of 100. Thus organohalogens are an interesting recent case in point since they can influence the ozone budget of the boundary layer, play a role in the production of aerosols and the climate change discussion. An intriguing observation is that most of the atmospheric CH3Cl and CH3Br are of terrestrial rather than of marine origin and that a number of halogenated small organic molecules are produced in soils. The high concentrations of halides in salt soils point to a possibly higher importance of natural halogenation processes as a source of volatile organohalogens. Terrestrial biota, such as fungi, plants, animals and insects, as well as marine algea, bacteria and archaea are known or suspected to be de-novo producers of volatile organohalogens. In recent years we revealed the possibility for VOX to form actively in water and bottom sediments of hyper-saline environments in the course of studying aridization processes during climatic warming. Due to the nature of their production process solar salt works, as to be found along-side the Southern African coast line but also upcountry, combine a variety of semi- and

  19. Volatile Organic Compound Analysis in Istanbul

    Science.gov (United States)

    Ćapraz, Ö.; Deniz, A.; Öztürk, A.; Incecik, S.; Toros, H.; Coşkun, M.

    2012-04-01

    Volatile Organic Compound Analysis in Istanbul Ö. Çapraz1, A. Deniz1,3, A. Ozturk2, S. Incecik1, H. Toros1 and, M. Coskun1 (1) Istanbul Technical University, Faculty of Aeronautics and Astronautics, Department of Meteorology, 34469, Maslak, Istanbul, Turkey. (2) Istanbul Technical University, Faculty of Chemical and Metallurgical, Chemical Engineering, 34469, Maslak, Istanbul, Turkey. (3) Marmara Clean Air Center, Ministry of Environment and Urbanization, Nişantaşı, 34365, İstanbul, Turkey. One of the major problems of megacities is air pollution. Therefore, investigations of air quality are increasing and supported by many institutions in recent years. Air pollution in Istanbul contains many components that originate from a wide range of industrial, heating, motor vehicle, and natural emissions sources. VOC, originating mainly from automobile exhaust, secondhand smoke and building materials, are one of these compounds containing some thousands of chemicals. In spite of the risks to human health, relatively little is known about the levels of VOC in Istanbul. In this study, ambient air quality measurements of 32 VOCs including hydrocarbons, halogenated hydrocarbons and carbonyls were conducted in Kağıthane (Golden Horn) region in Istanbul during the winter season of 2011 in order to develop the necessary scientific framework for the subsequent developments. Kağıthane creek valley is the source part of the Golden Horn and one of the most polluted locations in Istanbul due to its topographical form and pollutant sources in the region. In this valley, horizontal and vertical atmospheric motions are very weak. The target compounds most commonly found were benzene, toluene, xylene and ethyl benzene. Concentrations of total hydrocarbons ranged between 1.0 and 10.0 parts per billion, by volume (ppbv). Ambient air levels of halogenated hydrocarbons appeared to exhibit unique spatial variations and no single factor seemed to explain trends for this group of

  20. Volatile compounds profile of Bromeliaceae flowers

    OpenAIRE

    SOUZA, Everton Hilo de; Massarioli, Adna P; Moreno, Ivani A. M.; Souza, Fernanda V. D.; Ledo, Carlos A.S.; Severino M de Alencar; Martinelli,Adriana P.

    2016-01-01

    Volatile compounds play a vital role in the life cycle of plants, possessing antimicrobial and anti-herbivore activities, and with a significant importance in the food, cosmetic, chemical, and pharmaceutical industry. This study aimed to identify the volatile compounds emitted by flowers of thirteen species belonging to four genera of Bromeliaceae, using headspace solid-phase micro-extraction and detection by gas chromatography-mass spectrometry. A total of 71 volatile compounds belonging to ...

  1. Measurements of chlorinated volatile organic compounds emitted from office printers and photocopiers.

    Science.gov (United States)

    Kowalska, Joanna; Szewczyńska, Małgorzata; Pośniak, Małgorzata

    2015-04-01

    Office devices can release volatile organic compounds (VOCs) partly generated by toners and inks, as well as particles of paper. The aim of the presented study is to identify indoor emissions of volatile halogenated organic compounds into the office workspace environment. Mixtures of organic pollutants emitted by seven office devices, i.e. printers and copiers, were analyzed by taking samples in laboratory conditions during the operation of these appliances. Tests of volatile organic compound emissions from selected office devices were conducted in a simulated environment (test chamber). Samples of VOCs were collected using three-layered thermal desorption tubes. Separation and identification of organic pollutant emissions were made using thermal desorption combined with gas chromatography coupled to mass spectrometry. Test chamber studies indicated that operation of the office printer and copier would contribute to the significant concentration level of VOCs in typical office indoor air. Among the determined volatile halogenated compounds, only chlorinated organic compounds were identified, inter alia: trichloroethylene - carcinogenic - and tetrachloroethylene - possibly carcinogenic to human. The results show that daily exposure of an office worker to chemical factors released by the tested printing and copying units can be variable in terms of concentrations of VOCs. The highest emissions in the test chamber during printing were measured for ethylbenzene up to 41.3 μg m(-3), xylenes up to 40.5 μg m(-3) and in case of halogenated compounds the highest concentration for chlorobenzene was 6.48 μg m(-3). The study included the comparison of chamber concentrations and unit-specific emission rates of selected VOCs and the identified halogenated compounds. The highest amount of total VOCs was emitted while copying with device D and was rated above 1235 μg m(-3) and 8400 μg unit(-1) h(-1) on average.

  2. Volatile compounds in meat and meat products

    Directory of Open Access Journals (Sweden)

    Monika KOSOWSKA

    Full Text Available Abstract Meaty flavor is composed of a few hundreds of volatile compounds, only minor part of which are responsible for the characteristic odor. It is developed as a result of multi-directional reactions proceeding between non-volatile precursors contained in raw meat under the influence of temperature. The volatile compounds are generated upon: Maillard reactions, lipid oxidation, interactions between Maillard reaction products and lipid oxidation products as well as upon thiamine degradation. The developed flavor is determined by many factors associated with: raw material (breed, sex, diet and age of animal, conditions and process of slaughter, duration and conditions of meat storage, type of muscle, additives applied and the course of the technological process. The objective of this review article is to draw attention to the issue of volatile compounds characteristic for meat products and factors that affect their synthesis.

  3. Volatile organic compound emissions from silage systems

    Science.gov (United States)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols with other impor...

  4. Changes in patterns of persistent halogenated compounds through a pelagic food web in the Baltic Sea

    DEFF Research Database (Denmark)

    Stephansen, Diana Agnete; Svendsen, Tore Christian; Vorkamp, Katrin

    2012-01-01

    The concentrations and patterns of persistent halogenated compounds (PHCs), including polychlorinated biphenyls (PCBs), DDT, hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB) and polybrominated diphenyl ethers (PBDEs) were examined in a pelagic food web from the southern Baltic Sea consisting...

  5. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    Science.gov (United States)

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  6. Isolation of volatile compounds of Aloe excelsa (Berger ...

    African Journals Online (AJOL)

    Industrial and pharmacological applications of volatile and non-volatile compounds isolated from plants have been dominating the commercial sector over the recent two decades. Attempts in isolation of volatile compounds of aloes have impact on the medicinal as well as the cosmetic industries. Volatile compound isolation ...

  7. Formation Of Volatile And Non-Volatile Compounds In Cheese

    Directory of Open Access Journals (Sweden)

    Caglar Mert Aydin

    2017-09-01

    Full Text Available Flavour development in cheese is a complex process in which major catabolic pathways involved. Initially the curds of different cheese varieties have almost the same flavours however the curd produce flavour compounds which lead to discrimination among cheese verities in terms of flavour throughout ripening. The major biochemical pathways involved throughout ripening of cheese are the followings liberation of FFA free fatty acid associated catabolic reactions the degradation of the casein matrix to peptides and FAA free amino acids the reactions for catabolism of FAA and the metabolism of lactate and citrate. In this review the general pathway for formation of volatile and non-volatile flavour compounds are stated and detailed knowledge as to products of amino acid catabolism proteolysis lipolysis lactate and citrate metabolism well discussed.

  8. Application of ion-selective electrodes for the microdetermination of chlorine and bromine in volatile organic compounds

    NARCIS (Netherlands)

    Potman, W.; Dahmen, E.A.M.F.

    1972-01-01

    A method is described for the determination of chlorine and bromine in mg samples of highly halogenated volatile organic compounds. The samples are introduced into the combustion system by injection and burnt in a stream of oxygen at 1000° over platinum and quartz. The combustion gases are absorbed

  9. Volatile sulphur compounds in UHT milk.

    Science.gov (United States)

    Al-Attabi, Z; D'Arcy, B R; Deeth, H C

    2009-01-01

    Several volatile sulphur compounds have been detected in raw and processed milk. These are hydrogen sulphide, methanethiol, carbonyl sulphide, dimethyl sulphide, carbon disulphide, dimethyl disulphide, dimethyl trisulphide, dimethyl sulphoxide, and dimethyl sulphone. Many of these increase in milk during heat processing and are associated with the cooked flavor of heat-treated milks, particularly UHT and sterilized milk. Several researchers have attempted to explain the origin of these volatiles in both raw and processed milk, and how to reduce the associated cooked flavor that has a negative impact on consumer acceptability of processed milk. These compounds are difficult to detect and analyze due to their high volatility, sensitivity to oxidation and heat, and in some cases, their very low concentrations. However, methods of detection and quantification have improved in recent years. Pre-concentration methods such as solid phase microextraction (SPME) together with gas chromatography equipped with sulphur-selective detectors now enable low concentrations of these compounds to be analyzed. In this review, methods of extraction and analyzes of these volatile sulphur compounds are compared, and their occurrence in milk is reviewed.

  10. Characterisation of selected volatile organic compounds in ...

    African Journals Online (AJOL)

    kshale

    2013-05-15

    May 15, 2013 ... Isidorov VA, Vinogorova VT, Rafalowski K (2003). HS-SPME analysis of volatile organic compounds of coniferous needle litter. Atm. Environ. 37:4645-4650. Jespersen L (2003). Occurrence and taxonomic characteristics of strains of Saccharomyces cerevisiae predominant in African indigenous fermented ...

  11. Factors affecting the volatilization of volatile organic compounds from wastewater

    Directory of Open Access Journals (Sweden)

    Junya Intamanee

    2006-09-01

    Full Text Available This study aimed to understand the influence of the wind speed (U10cm, water depth (h and suspended solids (SS on mass transfer coefficient (KOLa of volatile organic compounds (VOCs volatilized from wastewater. The novelty of this work is not the method used to determine KOLa but rather the use of actual wastewater instead of pure water as previously reported. The influence of U10cm, h, and SS on KOLa was performed using a volatilization tank with the volume of 100-350 L. Methyl Ethyl Ketone (MEK was selected as a representative of VOCs investigated here in. The results revealed that the relationship between KOLa and the wind speeds falls into two regimes with a break at the wind speed of 2.4 m/s. At U10cm 2.4 m/s, KOLa increased more rapidly. The relationship between KOLa and U10cm was also linear but has a distinctly higher slope. For the KOLa dependency on water depth, the KOLa decreased significantly with increasing water depth up to a certain water depth after that the increase in water depth had small effect on KOLa. The suspended solids in wastewater also played an important role on KOLa. Increased SS resulted in a significant reduction of KOLa over the investigated range of SS. Finally, the comparison between KOLa obtained from wastewater and that of pure water revealed that KOLa from wastewater were much lower than that of pure water which was pronounced at high wind speed and at small water depth. This was due the presence of organic mass in wastewater which provided a barrier to mass transfer and reduced the degree of turbulence in the water body resulting in low volatilization rate and thus KOLa. From these results, the mass transfer model for predicting VOCs emission from wastewater should be developed based on the volatilization of VOCs from wastewater rather than that from pure water.

  12. Catalytic oxidation of volatile organic compounds (VOCs) - A review

    Science.gov (United States)

    Kamal, Muhammad Shahzad; Razzak, Shaikh A.; Hossain, Mohammad M.

    2016-09-01

    Emission of volatile organic compounds (VOCs) is one of the major contributors to air pollution. The main sources of VOCs are petroleum refineries, fuel combustions, chemical industries, decomposition in the biosphere and biomass, pharmaceutical plants, automobile industries, textile manufacturers, solvents processes, cleaning products, printing presses, insulating materials, office supplies, printers etc. The most common VOCs are halogenated compounds, aldehydes, alcohols, ketones, aromatic compounds, and ethers. High concentrations of these VOCs can cause irritations, nausea, dizziness, and headaches. Some VOCs are also carcinogenic for both humans and animals. Therefore, it is crucial to minimize the emission of VOCs. Among the available technologies, the catalytic oxidation of VOCs is the most popular because of its versatility of handling a range of organic emissions under mild operating conditions. Due to that fact, there are numerous research initiatives focused on developing advanced technologies for the catalytic destruction of VOCs. This review discusses recent developments in catalytic systems for the destruction of VOCs. Review also describes various VOCs and their sources of emission, mechanisms of catalytic destruction, the causes of catalyst deactivation, and catalyst regeneration methods.

  13. Performance and limits of liquid chromatography isotope ratio mass spectrometry system for halogenated compounds

    Science.gov (United States)

    Gilevska, Tetyana; Gehre, Matthias; Richnow, Hans

    2014-05-01

    Compound Specific Isotope Analysis (CSIA) has been an important step for the assessment of the origin and fate of compounds in environmental science.[1] Biologically or pharmaceutically important compounds often are not amenable for gas chromatographic separation because of high polarity and lacking volatility, thermostability. In 2004 liquid chromatography isotope ratio mass spectrometry (LC-IRMS) became commercially available. LC-IRMS system intent a quantitative conversion of analytes separation into CO2 via wet oxidation with sodium persulfate in the presence of phosphoric acid while analytes are still dissolved in the aqueous liquid phase.[2] The aim of this study is to analyze the oxidation capacity of the interface of the LC-IRMS system and determine which parameters could improve oxidation of compounds which are resistant to persulfate oxidation. Oxidation capacity of the liquid chromatography isotope ratio mass spectrometry system was tested with halogenated acetic acid and a set of aromatic compounds with different substitutes. Acetic acid (AA) was taken as a model compound for complete oxidation and compared to the oxidation of other analytes on a molar basis. Correct values were obtained for di- and mono chlorinated and fluorinated and also for tribrominated acetic acid and for all studied aromatic compounds. Incomplete oxidation for trichloroacetic (TCAA) and trifluoroacetic (TFAA) acid was revealed with lower recovery compared to acetic acid and isotope fractionation leading to depleted carbon isotope composition compared to values obtained with an elementary analyzer connected to an isotope mass spectrometer Several optimization steps were tried in order to improve the oxidation of TCAA and TFAA: (i) increasing the concentration of the oxidizing agent, (ii) variation of flow rate of the oxidizing and acid solution, (iii) variation of flow rate of liquid chromatography pump (iv) addition of a catalyzer. These modifications lead to longer reaction time

  14. Plant volatile compounds: sensory cues for health and nutritional value?

    Science.gov (United States)

    Goff, Stephen A; Klee, Harry J

    2006-02-10

    Plants produce many volatile metabolites. A small subset of these compounds is sensed by animals and humans, and the volatile profiles are defining elements of the distinct flavors of individual foods. Flavor volatiles are derived from an array of nutrients, including amino acids, fatty acids, and carotenoids. In tomato, almost all of the important flavor-related volatiles are derived from essential nutrients. The predominance of volatiles derived from essential nutrients and health-promoting compounds suggests that these volatiles provide important information about the nutritional makeup of foods. Evidence supporting a relation between volatile perception and nutrient or health value will be reviewed.

  15. Volatile Sulfur Compounds from Livestock Production

    DEFF Research Database (Denmark)

    Kasper, Pernille

    and, thus, odor removal in these systems. In this context, two processes based on the absorptive oxidation of sulfur compounds in trickling filters containing metal catalysts were examined. One process with iron chelated by ethylenediaminetetraacetic acid (EDTA) was shown to remove hydrogen sulfide...... that the original sample composition was significantly impaired due to adsorption and diffusion at the walls of the measuring equipment. Generally, sulfur compounds were best preserved in both olfactometers and sample bags, while carboxylic acids, 4-methylphenol and trimethylamine were found to undergo substantial......Volatile sulfur compounds, i.e. hydrogen sulfide, methanethiol and dimethyl sulfide have been identified as key odorants in livestock production due to their high concentration levels and low odor threshold values. At the same time their removal with abatement technologies based on mass transfer...

  16. The network of plants volatile organic compounds.

    Science.gov (United States)

    Vivaldo, Gianna; Masi, Elisa; Taiti, Cosimo; Caldarelli, Guido; Mancuso, Stefano

    2017-09-08

    Plants emission of Volatile Organic Compounds (VOCs) is involved in a wide class of ecological functions, as VOCs play a crucial role in plants interactions with biotic and abiotic factors. Accordingly, they vary widely across species and underpin differences in ecological strategy. In this paper, VOCs spontaneously emitted by 109 plant species (belonging to 56 different families) have been qualitatively and quantitatively analysed in order to provide an alternative classification of plants species. In particular, by using bipartite networks methodology from Complex Network Theory, and through the application of community detection algorithms, we show that is possible to classify species according to chemical classes such as terpenes and sulfur compounds. Such complex network analysis allows to uncover hidden plants relationships related to their evolutionary and adaptation to the environment story.

  17. Determination of Volatile Compounds of Illicium verum Hook. f ...

    African Journals Online (AJOL)

    Illicium verum Hook. f.) and identify its main aroma compounds for sensory evaluation. Methods: The volatile compounds of star anise were prepared by simultaneous distillation-extraction (SDE) and the compounds were identified by gas ...

  18. Analysis of volatile compounds of Malaysian Tualang ( Koompassia ...

    African Journals Online (AJOL)

    Analysis of volatile compounds of Malaysian Tualang ( Koompassia excelsa ) honey using gas chromatography mass spectrometry. ... Methanol yielded the highest number of extracted compounds such as acids and 5-(Hydroxymethyl) furfural (HMF). This is the first study to describe the volatile compounds in Tualang honey ...

  19. Sedimentary halogens and noble gases within Western Antarctic xenoliths: Implications of extensive volatile recycling to the sub continental lithospheric mantle

    Science.gov (United States)

    Broadley, Michael W.; Ballentine, Chris J.; Chavrit, Déborah; Dallai, Luigi; Burgess, Ray

    2016-03-01

    Recycling of marine volatiles back into the mantle at subduction zones has a profound, yet poorly constrained impact on the geochemical evolution of the Earth's mantle. Here we present a combined noble gas and halogen study on mantle xenoliths from the Western Antarctic Rift System (WARS) to better understand the flux of subducted volatiles to the sub continental lithospheric mantle (SCLM) and assess the impact this has on mantle chemistry. The xenoliths are extremely enriched in the heavy halogens (Br and I), with I concentrations up to 1 ppm and maximum measured I/Cl ratios (85.2 × 10-3) being ∼2000 times greater than mid ocean ridge basalts (MORB). The Br/Cl and I/Cl ratios of the xenoliths span a range from MORB-like ratios to values similar to marine pore fluids and serpentinites, whilst the 84Kr/36Ar and 130Xe/36Ar ratios range from modern atmosphere to oceanic sediments. This indicates that marine derived volatiles have been incorporated into the SCLM during an episode of subduction related metasomatism. Helium isotopic analysis of the xenoliths show average 3He/4He ratios of 7.5 ± 0.5 RA (where RA is the 3He/4He ratio of air = 1.39 × 10-6), similar to that of MORB. The 3He/4He ratios within the xenoliths are higher than expected for the xenoliths originating from the SCLM which has been extensively modified by the addition of subducted volatiles, indicating that the SCLM beneath the WARS must have seen a secondary alteration from the infiltration and rise of asthenospheric fluids/melts as a consequence of rifting and lithospheric thinning. Noble gases and halogens within these xenoliths have recorded past episodes of volatile interaction within the SCLM and can be used to reconstruct a tectonic history of the WARS. Marine halogen and noble gas signatures within the SCLM xenoliths provide evidence for the introduction and retention of recycled volatiles within the SCLM by subduction related metasomatism, signifying that not all volatiles that survive

  20. Volatile and semivolatile organic compounds in laboratory ...

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particulate organics were quantified by gas chromatography/mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (~60 %) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. Speciated organic PM2.5 mass was dominated by the following compound classes: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for PM2.5 organic acids including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12 %) of all speciated compound classes measured in this work. Levoglucosan contributed 2-3 % of the OC mass, while methoxyphenols represented 0.2-0.3 % of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon. Total HAP VOC and particulate polycyclic aromatic hydrocarbon emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions. This p

  1. Biogenic volatile organic compounds and plant competition.

    Science.gov (United States)

    Kegge, Wouter; Pierik, Ronald

    2010-03-01

    One of the most important factors to shape plant communities is competition between plants, which impacts on the availability of environmental factors such as light, nutrients and water. In response to these environmental parameters, plants adjust the emission of many different biogenic volatile organic compounds (BVOCs). BVOCs can also elicit responses in neighbouring plants, thus constituting a platform for plant-plant interactions. Here, we review the relationship between BVOC emissions and competition among neighbouring plants. Recent progress indicates that BVOCs can act both as allelochemicals and as neighbour detection signals. It is suggested that BVOCs provide information about neighbouring competitors, such as their identity or growth rate, that classic neighbour detection signals cannot provide. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Biogenic volatile organic compounds - small is beautiful

    Science.gov (United States)

    Owen, S. M.; Asensio, D.; Li, Q.; Penuelas, J.

    2012-12-01

    While canopy and regional scale flux measurements of biogenic volatile organic compounds (bVOCs) are essential to obtain an integrated picture of total compound reaching the atmosphere, many fascinating and important emission details are waiting to be discovered at smaller scales, in different ecological and functional compartments. We concentrate on bVOCs below ground to allelopathy. A gradient of monoterpene concentration was found in soil around Pinus sylvestris and Pinus halepensis, decreasing with distance from the tree. Some compounds (α-pinene, sabinene, humulene and caryophyllene) in mineral soil were linearly correlated with the total amount of each compound in the overlying litter, indicating that litter might be the dominant source of these compounds. However, α-pinene did not fall within the correlation, indicating a source other than litter, probably root exudates. We also show that rhizosphere bVOCs can be a carbon source for soil microbes. In a horizontal gradient from Populus tremula trees, microbes closest to the tree trunk were better enzymatically equipped to metabolise labeled monoterpene substrate. Monoterpenes can also increase the degradation rate in soil of the persistant organic pollutants, likely acting as analogues for the cometabo-lism of polychlorinated biphenyls (PCBs) Flowers of a ginger species (Alpinia kwangsiensis) and a fig species (Ficus hispida) showed different bVOC signals pre- and post pollination. For Ficus hispida, there are three floral stages of a fig-wasp dependency mechanism: receptive, post pollinator and interfloral. Of 28 compounds detected, transcaryophyllene with trans-β-farnesene were the most important at the receptor stage, trans-caryophyllene was the most abundant at the post-pollinator stage, and isoprene was the most abundant in the interfloral stage. Alpinia kwangsiensis presents two morphologies for the reproductive parts of the flower. The "anaflexistyle" morphology has the flower style lowered in the

  3. Assessment of spatial variation of ambient volatile organic compound levels at a power station in Kuwait.

    Science.gov (United States)

    Ramadan, Ashraf

    2017-11-01

    Twenty-four-hour integrated ambient air samples were collected in canisters at 10 locations within Kuwait's major power station: Doha West Power Station to assess the spatial distribution of volatile organic compounds (VOCs) within the perimeter of the station. A total of 30 samples, i.e., three samples per location, were collected during February and March. The samples were analyzed using a gas chromatography with flame ionization detection (GC-FID) system and following the U.S. EPA Method TO-14A with modification. The results reflected the emission activities on the site and the meteorological conditions during sampling. Generally speaking, there was a negative correlation between the ambient temperature and the VOC concentrations, which indicates the sources were local. The halogenated compounds formed the highest proportion (i.e. 50-75 %) of the total VOC concentrations at the ten locations. 1,2,4-Trichlorobenzene and Vinyl Chloride concentrations were the highest amongst the other halogenated compounds. The aromatic compounds formed the least proportion (i.e. 1-4%) of the total VOC levels at all locations with Toluene having the highest concentrations amongst the aromatic compounds at seven locations. Propene, which is a major constituent of the fuel used, was the highest amongst the aliphatic compounds. The findings of this study and other relevant work suggests the measured VOC levels were the highest over the year, nevertheless, further work is required to assess the precisely temporal variation of VOC due to change in meteorological conditions and the emission rates. Assessment of VOC concentrations around a power plant in Kuwait during the peak season showed halogenated compounds to be the dominant group. The calculated indoor concentrations were lower than those reported in a residential area about 12 km away.

  4. Chemical composition and volatile compounds in the artisanal ...

    African Journals Online (AJOL)

    Chemical composition and volatile compounds in the artisanal fermentation of mezcal in Oaxaca, Mexico. ... ethyl acetate, and acetic acid production, and this practice is more convenient in fall than in spring. Key words: Fermentation, ammonium sulfate, volatile compounds, higher alcohol, gas chromatography, mezcal.

  5. Determination of Volatile Compounds of Illicium verum Hook. f ...

    African Journals Online (AJOL)

    Methods: The volatile compounds of star anise were prepared by simultaneous distillation-extraction. (SDE) and the compounds were ... distillation-extraction, Sensory evaluation, Star anise, Illicium verum, Trans-anethole, Linaloo, Limonene. Tropical Journal of ... contains 5 - 8 % volatile essential oil, and is widely used in ...

  6. 40 CFR 60.452 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or after...

  7. 40 CFR 60.492 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after the... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  8. 40 CFR 60.722 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to the... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  9. 40 CFR 60.602 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after the...

  10. 40 CFR 60.392 - Standards for volatile organic compounds

    Science.gov (United States)

    2010-07-01

    ... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic compounds... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  11. 40 CFR 60.432 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic compounds...

  12. 40 CFR 60.542 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.542 Section 60.542 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  13. 40 CFR 60.582 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a) On...

  14. 40 CFR 60.712 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or operator... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  15. 40 CFR 60.622 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected petroleum... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  16. 40 CFR 60.442 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds... Pressure Sensitive Tape and Label Surface Coating Operations § 60.442 Standard for volatile organic compounds. (a) On and after the date on which the performance test required by § 60.8 has been completed...

  17. 40 CFR 60.462 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date on... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  18. 40 CFR 60.742 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds. (a... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  19. Spatial variation of volatile organic compounds and carbon ...

    African Journals Online (AJOL)

    This study assessed variations of ambient volatile organic compounds and carbon monoxide (CO) levels in Blantyre City, Malawi. Volatile organic compounds and carbon monoxide measurement was done using the Multi-Gas Monitor between August and December, 2010. Rapid urbanization and lack of standard ...

  20. EMISSION OF VOLATILE COMPOUNDS BY SEEDS UNDER DIFFERENT ENVIRONMENTAL CONDITIONS

    Science.gov (United States)

    Small mammals locate buried wet seeds more efficiently than buried dry seeds. This may be attributable to emission of volatile compounds by the seeds. To test this hypothesis I measured emission of volatile compounds from seeds of three plant species (Pinus contorta, Purshia tr...

  1. Effect of different drying techniques on the volatile compounds ...

    African Journals Online (AJOL)

    Analysis of volatile compounds. Gas chromatography-mass spectrometry (GC-. MS) was performed using a spectral analysis manager to separate volatile compounds with a. CP-Sil-8CB (Varian, Walnut Creek, CA, USA) fused silica capillary column (length: 30 m; inner diameter: 0.25 mm; film thickness: 0.25 µm) in a.

  2. Effect of different drying techniques on the volatile compounds ...

    African Journals Online (AJOL)

    Purpose: To examine the volatile compounds, thermal stability and morphological characteristics of stevia (Stevia rebaudiana Bertoni) leaves after sun, oven and microwave drying. Methods: Gas chromatography-mass spectrometry with a spectral analysis manager was used to separate the volatile compounds. Dried stevia ...

  3. Identifying bioaccumulative halogenated organic compounds using a nontargeted analytical approach: seabirds as sentinels.

    Directory of Open Access Journals (Sweden)

    Christopher J Millow

    Full Text Available Persistent organic pollutants (POPs are typically monitored via targeted mass spectrometry, which potentially identifies only a fraction of the contaminants actually present in environmental samples. With new anthropogenic compounds continuously introduced to the environment, novel and proactive approaches that provide a comprehensive alternative to targeted methods are needed in order to more completely characterize the diversity of known and unknown compounds likely to cause adverse effects. Nontargeted mass spectrometry attempts to extensively screen for compounds, providing a feasible approach for identifying contaminants that warrant future monitoring. We employed a nontargeted analytical method using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS to characterize halogenated organic compounds (HOCs in California Black skimmer (Rynchops niger eggs. Our study identified 111 HOCs; 84 of these compounds were regularly detected via targeted approaches, while 27 were classified as typically unmonitored or unknown. Typically unmonitored compounds of note in bird eggs included tris(4-chlorophenylmethane (TCPM, tris(4-chlorophenylmethanol (TCPMOH, triclosan, permethrin, heptachloro-1'-methyl-1,2'-bipyrrole (MBP, as well as four halogenated unknown compounds that could not be identified through database searching or the literature. The presence of these compounds in Black skimmer eggs suggests they are persistent, bioaccumulative, potentially biomagnifying, and maternally transferring. Our results highlight the utility and importance of employing nontargeted analytical tools to assess true contaminant burdens in organisms, as well as to demonstrate the value in using environmental sentinels to proactively identify novel contaminants.

  4. Halogenated Organic Compounds Identified in Hydraulic Fracturing Wastewaters Using Ultrahigh Resolution Mass Spectrometry.

    Science.gov (United States)

    Luek, Jenna L; Schmitt-Kopplin, Philippe; Mouser, Paula J; Petty, William Tyler; Richardson, Susan D; Gonsior, Michael

    2017-05-16

    Large volumes of water return to the surface following hydraulic fracturing of deep shale formations to retrieve oil and natural gas. Current understanding of the specific organic constituents in these hydraulic fracturing wastewaters is limited to hydrocarbons and a fraction of known chemical additives. In this study, we analyzed hydraulic fracturing wastewater samples using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) as a nontargeted technique to assign unambiguous molecular formulas to singly charged molecular ions. Halogenated molecular formulas were identified and confirmed using isotopic simulation and MS-MS fragmentation spectra. The abundance of halogenated organic compounds in flowback fluids rather than older wastewaters suggested that the observed molecular ions might have been related to hydraulic fracturing additives and related subsurface reactions, such as through the reaction of shale-extracted chloride, bromide, and iodide with strong oxidant additives (e.g., hypochlorite, persulfate, hydrogen peroxide) and subsequently with diverse dissolved organic matter. Some molecular ions matched the exact masses of known disinfection byproducts including diiodoacetic acid, dibromobenzoic acid, and diiodobenzoic acid. The identified halogenated organic compounds, particularly iodinated organic molecules, are absent from inland natural systems and these compounds could therefore play an important role as environmental tracers.

  5. Substitution of carcinogenic solvent dichloromethane for the extraction of volatile compounds in a fat-free model food system.

    Science.gov (United States)

    Cayot, Nathalie; Lafarge, Céline; Bou-Maroun, Elias; Cayot, Philippe

    2016-07-22

    Dichloromethane is known as a very efficient solvent, but, as other halogenated solvents, is recognized as a hazardous product (CMR substance). The objective of the present work is to propose substitution solvent for the extraction of volatile compounds. The most important physico-chemical parameters in the choice of an appropriate extraction solvent of volatile compounds are reviewed. Various solvents are selected on this basis and on their hazard characteristics. The selected solvents, safer than dichloromethane, are compared using the extraction efficiency of volatile compounds from a model food product able to interact with volatile compounds. Volatile compounds with different hydrophobicity are used. High extraction yields were positively correlated with high boiling points and high Log Kow values of volatile compounds. Mixtures of solvents such as azeotrope propan-2-one/cyclopentane, azeotrope ethyl acetate/ethanol, and mixture ethyl acetate/ethanol (3:1, v/v) gave higher extraction yields than those obtained with dichloromethane. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Nitrate radicals and biogenic volatile organic compounds ...

    Science.gov (United States)

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in

  7. NanoSIMS50 - a powerful tool to elucidate cellular localization of halogenated organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gutleb, Arno C.; Hoffmann, Lucien [Centre de Recherche Public - Gabriel Lippmann, Department Environment and Agro-biotechnologies (EVA), Belvaux (Luxembourg); Freitas, Jaime [Wageningen University, Toxicology Section, Wageningen (Netherlands); Murk, Albertinka J. [Wageningen University, Toxicology Section, Wageningen (Netherlands); Wageningen IMARES, P.O. Box 68, IJmuiden (Netherlands); Verhaegen, Steven; Ropstad, Erik [Norwegian School of Veterinary Science, Oslo (Norway); Udelhoven, Thomas [Centre de Recherche Public - Gabriel Lippmann, Department Environment and Agro-biotechnologies (EVA), Belvaux (Luxembourg); Trier University, Remote Sensing and Geoinformatics Department, Trier (Germany); Audinot, Jean-Nicolas [Centre de Recherche Public - Gabriel Lippmann, Departement Science et Analyse des Materiaux (SAM), Belvaux (Luxembourg)

    2012-11-15

    Persistent organic pollutants are widely distributed in the environment and lots of toxicological data are available. However, little is known on the intracellular fate of such compounds. Here a method applying secondary ion mass spectrometry is described that can be used to visualize cellular localization of halogenated compounds and to semi-quantitatively calculate concentrations of such compounds. Of the model compounds tested, TBBPA was homogenously distributed in the cell membrane of the H295R cells while PFOS accumulated in very distinct locations in the cell membrane. Relative intracellular concentrations of 4-OH-BDE69 and 4-OH-BDE121 in GH3.TRE were 61 % and 18 %, respectively, compared to the parent compounds. These differences may partly explain that observed effect concentrations for 4-OH-BDEs in in vitro experiments are usually lower than what would be expected based on receptor binding studies. NanoSIMS50 proved to be a powerful tool to describe the cellular distribution of halogenated compounds. The semi-quantitative data that can be obtained may help to further explain results from in vitro or in vivo experiments. (orig.)

  8. Chlorine and Bromine Isotope Fractionation of Halogenated Organic Compounds in Electron Ionization Mass Spectrometry

    OpenAIRE

    Tang, Caiming; Tan, Jianhua; Shi, Zhiqiang; Tang, Caixing; Xiong, Songsong; Liu, Jun; Fan, Yujuan; Peng, Xianzhi

    2017-01-01

    Revelation of chlorine and bromine isotope fractionation of halogenated organic compounds (HOCs) in electron ionization mass spectrometry (EI-MS) is crucial for compound-specific chlorine/bromine isotope analysis (CSIA-Cl/Br) using gas chromatography EI-MS (GC-EI-MS). This study systematically investigated chlorine/bromine isotope fractionation in EI-MS of HOCs including 12 organochlorines and 5 organobromines using GC-double focus magnetic-sector high resolution MS (GC-DFS-HRMS). Chlorine/br...

  9. Modulation of volatile sulfur compounds by wine yeast.

    Science.gov (United States)

    Swiegers, J H; Pretorius, I S

    2007-04-01

    Sulfur compounds in wine can be a 'double-edged sword'. On the one hand, certain sulfur-containing volatile compounds such as hydrogen sulfide, imparting a rotten egg-like aroma, can have a negative impact on the perceived quality of the wine, and on the other hand, some sulfur compounds such as 3-mercaptohexanol, imparting fruitiness, can have a positive impact on wine flavor and aroma. Furthermore, these compounds can become less or more attractive or repulsive depending on their absolute and relative concentrations. This presents an interesting challenge to the winemaker to modulate the concentrations of these quality-determining compounds in wine in accordance with consumer preferences. The wine yeast Saccharomyces cerevisiae plays a central role in the production of volatile sulfur compounds. Through the sulfate reduction sequence pathway, the HS(-) is formed, which can lead to the formation of hydrogen sulfide and various mercaptan compounds. Therefore, limiting the formation of the HS(-) ion is an important target in metabolic engineering of wine yeast. The wine yeast is also responsible for the transformation of non-volatile sulfur precursors, present in the grape, to volatile, flavor-active thiol compounds. In particular, 4-mercapto-4-methylpentan-2-one, 3-mercaptohexanol, and 3-mercaptohexyl acetate are the most important volatile thiols adding fruitiness to wine. This paper briefly reviews the metabolic processes involved in the production of important volatile sulfur compounds and the latest strategies in the pursuit of developing wine yeast strains as tools to adjust wine aroma to market specifications.

  10. Reducing ammonia volatilization from compound fertilizers ...

    African Journals Online (AJOL)

    Ammonia volatilization is a direct loss of available nitrogen in agriculture. The objective of this study was to determine the effect of amending NPK fertilizer with different rates of clinoptilolite zeolite on ammonia volatilization, soil exchangeable ammonium, and available nitrate. Seven treatments evaluated were: 250 g soil ...

  11. Biodiversity of volatile organic compounds from five French ferns.

    Science.gov (United States)

    Fons, Françoise; Froissard, Didier; Bessière, Jean-Marie; Buatois, Bruno; Rapior, Sylvie

    2010-10-01

    Five French ferns belonging to different families were investigated for volatile organic compounds (VOC) by GC-MS using organic solvent extraction. Fifty-five VOC biosynthesized from the shikimic, lipidic and terpenic pathways including monoterpenes, sesquiterpenes and carotenoid-type compounds were identified. The main volatile compound of Adiantum capillus-veneris L. (Pteridaceae) was (E)-2-decenal with a plastic or "stink bug" odor. The volatile profiles of Athyrium filix-femina (L.) Roth (Woodsiaceae) and Blechnum spicant (L.) Roth (Blechnaceae) showed similarities, with small amounts of isoprenoids and the same main volatile compounds, i.e., 2-phenylethanal (odor of lilac and hyacinth) and 1-octen-3-ol (mushroom-like odor). The main volatile compound of Dryopteris filix-mas (L.) Schott (Dryopteridaceae) was (E)-nerolidol with a woody or fresh bark note. Polyketides, as acylfilicinic acids, were mainly identified in this fern. Oreopteris limbosperma (Bellardi ex. All.) J. Holub (Thelypteridaceae), well-known for its lemon smell, contained the highest biodiversity of VOC. Eighty percent of the volatiles was issued from the terpenic pathway. The main volatiles were (E)-nerolidol, alpha-terpineol, beta-caryophyllene and other minor monoterpenes (for example, linalool, pinenes, limonene, and gamma-terpinen-7-al). It was also the fern with the highest number of carotenoid-type derivatives, which were identified in large amounts. Our results were of great interest underlying new industrial valorisation for ferns based on their broad spectrum of volatiles.

  12. 76 FR 18893 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound...

    Science.gov (United States)

    2011-04-06

    ... volatile organic compound (VOC) rule. These rule revisions specify compliance dates for subject facilities... approved offset lithographic and letterpress printing volatile organic compound (VOC) rule for approval... ``Control of volatile organic compound emissions from offset lithographic printing and letterpress printing...

  13. Evolution of Volatile Compounds during the Distillation of Cognac Spirit.

    Science.gov (United States)

    Awad, Pierre; Athès, Violaine; Decloux, Martine Esteban; Ferrari, Gérald; Snakkers, Guillaume; Raguenaud, Patrick; Giampaoli, Pierre

    2017-09-06

    Cognac wine spirit has a complex composition in volatile compounds which contributes to its organoleptic profile. This work focused on the batch distillation process and, in particular, on volatile compounds specifically produced by chemical reactions during the distillation of Cognac wine spirit, traditionally conducted in two steps with charentais pot stills. The aim of this study was to characterize these volatile compounds formed during distillation. Sampling has been performed on the distillates and inside the boiler during a typical Cognac distillation. The analysis of these samples allowed us to perform a mass balance and to point out several types of volatile compounds whose quantities strongly increased during the distillation process. These compounds were distinguished by their chemical family. It has been found that the first distillation step was decisive for the formation of volatile compounds. Moreover, 2 esters, 3 aldehydes, 12 norisoprenoids, and 3 terpenes were shown to be generated during the process. These results suggest that some volatile compounds found in Cognac spirit are formed during distillation due to chemical reactions induced by high temperature. These findings give important indications to professional distillers in order to enhance the product's quality.

  14. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    Data.gov (United States)

    U.S. Environmental Protection Agency — Supporting information Tables S3 and S4 list emission factors in g/kg of speciated volatile and particulate organic compounds emitted from peat burning. Peat samples...

  15. Total volatile organic compounds (TVOC) in indoor air quality investigations

    DEFF Research Database (Denmark)

    Mølhave, L.; Clausen, Geo; Berglund, B.

    1997-01-01

    The amount of volatile organic compounds (VOCs) in indoor air, usually called TVOC (total volatile organic compounds), has been measured using different definitions and techniques which yield different results. This report recommends a definition of TVOC referring to a specified range of VOCs...... for characterizing indoor pollution and for improving source control as required from the points of view of health, comfort, energy efficiency and sustainability. (C) Indoor Air (1997)....

  16. Characterization of volatile and non-volatile compounds of fresh pepper (Capsicum annuum)

    NARCIS (Netherlands)

    Eggink, P.M.; Haanstra, J.P.W.; Tikunov, Y.M.; Bovy, A.G.; Visser, R.G.F.

    2010-01-01

    In this study volatile and non-volatile compounds and several agronomical important parameters were measured in mature fruits of elite sweet pepper breeding lines and hybrids and several genebank accessions from different Capsicum species. The sweet pepper breeding lines and hybrids were chosen to

  17. Volatile compounds of some popular Mediterranean seafood species

    Directory of Open Access Journals (Sweden)

    I. GIOGIOS

    2013-06-01

    Full Text Available The volatile compounds of highly commercialised fresh Mediterranean seafood species, including seven fish (sand-smelt Atherina boyeri, picarel Spicara smaris, hake Merluccius merluccius, pilchard Sardina pilchardus, bogue Boobps boops, anchovy Engraulis encrasicolus and striped-mullet Mullus barbatus, squid (Loligo vulgaris, shrimp (Parapenaeus longirostris and mussel (Mytilus galloprovincialis, were evaluated by simultaneous steam distillation-extraction and subsequent GC-MS analysis. A total of 298 volatile compounds were detected. The mussels contained the highest total concentration of volatile compounds, while pilchard among fish species contained the highest number and concentrations of volatile compounds. Individual patterns of volatile compounds have been distinguished. The fish species when compared to the shellfish species studied, contained 6 to 30 times more 1-penten-3-ol, higher quantities of 2-ethylfuran, and 2,3-pentanedione, which was absent from the shellfish species. Pilchard is characterized by a high concentration of alcohols, shrimps by the high presence of amines and S-compounds, while mussels by high amounts of aldehydes, furans, and N-containing compounds (pyridine, pyrazines and pyrrols. The fatty acid-originating carbonyl compounds in fish seem to be related to the species’ fat content.

  18. The effect of mineral fillers on the rheological, mechanical and thermal properties of halogen-free flame-retardant polypropylene/expandable graphite compounds

    Science.gov (United States)

    Mattausch, Hannelore; Laske, Stephan; Hohenwarter, Dieter; Holzer, Clemens

    2015-05-01

    In many polyolefin applications, such as electrical cables or automotive applications, the fire protection is a very important task. Unfortunately flame-retardant polymeric materials are often halogenated and form toxic substances in case of fire, which explains the general requirement to reduce the halogen content to zero. Non-halogenated, state-of-the-art flame retardants must be incorporated into the polymer in very high grades (> 40 wt%) leading to massive decrease in mechanical properties and/or processability. In this research work halogen-free flame-retardant polypropylene (PP) /expandable graphite (EG) were filled with minerals fillers such as layered silicates (MMT), magnesium hydroxide (MgOH), zeolite (Z) and expanded perlite (EP) in order to enhance the flame-retardant effect. The rheological, mechanical and thermal properties of these materials were investigated to gain more fundamental knowledge about synergistic combinations of flame-retardants and other additives. The rheological properties were characterized with a rotational rheometer with plate-plate setup. The EG/EP/PP compound exhibited the highest increase in viscosity (˜ 37 %). As representative value for the mechanical properties the Young's modulus was chosen. The final Young's modulus values of the twofold systems gained higher values than the single ones. Thermo gravimetric analysis (TGA) was utilized to investigate the material with respect to volatile substances and combustion behavior. All materials decomposed in one-step degradation. The EG filled compounds showed a significant increase in sample weight due to the expansion of EG. The combustion behavior of these materials was characterized by cone calorimeter tests. Especially combinations of expandable graphite with mineral fillers exhibit a reduction of the peak heat release rate during cone calorimeter measurements of up to 87% compared to pure PP.

  19. Nontargeted Screening of Halogenated Organic Compounds in Bottlenose Dolphins (Tursiops truncatus) from Rio de Janeiro, Brazil.

    Science.gov (United States)

    Alonso, Mariana B; Maruya, Keith A; Dodder, Nathan G; Lailson-Brito, José; Azevedo, Alexandre; Santos-Neto, Elitieri; Torres, Joao P M; Malm, Olaf; Hoh, Eunha

    2017-02-07

    To catalog the diversity and abundance of halogenated organic compounds (HOCs) accumulating in high trophic marine species from the southwestern Atlantic Ocean, tissue from bottlenose dolphins (Tursiops truncatus) stranded or incidentally captured along the coast of Rio de Janeiro, Brazil, were analyzed by a nontargeted approach based on GC×GC/TOF-MS. A total of 158 individual HOCs from 32 different structural classes were detected in the blubber of 4 adult male T. truncatus. Nearly 90% of the detected compounds are not routinely monitored in the environment. DDT-related and mirex/dechlorane-related compounds were the most abundant classes of anthropogenic origin. Methoxy-brominated diphenyl ethers (MeO-BDEs) and chlorinated methyl- and dimethyl bipyrroles (MBPs and DMBPs) were the most abundant natural products. Reported for the first time in southwestern Atlantic cetaceans and in contrast to North American marine mammals, chlorinated MBPs and DMBPs were more abundant than their brominated and/or mixed halogenated counterparts. HOC profiles in coastal T. truncatus from Brazil and California revealed a distinct difference, with a higher abundance of MeO-BDEs, mirex/dechloranes and chlorinated bipyrroles in the Brazilian dolphins. Thirty-six percent of the detected HOCs had an unknown structure. These results suggest broad geographical differences in the patterns of bioaccumulative chemicals found in the marine environment and indicate the need to develop more complete catalogs of HOCs from various marine environments.

  20. The role of vanadium haloperoxidases in the formation of volatile brominated compounds and their impact on the environment.

    Science.gov (United States)

    Wever, Ron; van der Horst, Michael A

    2013-09-07

    Vanadium haloperoxidases differ strongly from heme peroxidases in substrate specificity and stability and in contrast to a heme group they contain the bare metal oxide vanadate as a prosthetic group. These enzymes specifically oxidize halides in the presence of hydrogen peroxide into hypohalous acids. These reactive halogen intermediates will react rapidly and aspecifically with many organic molecules. Marine algae and diatoms containing these iodo- and bromoperoxidases produce short-lived brominated methanes (bromoform, CHBr3 and dibromomethane CH2Br2) or iodinated compounds. Some seas and oceans are supersaturated with these compounds and they form an important source of bromine to the troposphere and lower stratosphere and contribute significantly to the global budget of halogenated hydrocarbons. This perspective focuses, in particular, on the biosynthesis of these volatile compounds and the direct or indirect involvement of vanadium haloperoxidases in the production of huge amounts of bromoform and dibromomethane. Some of the global sources are discussed and from the literature a picture emerges in which oxidized brominated species generated by phytoplankton, seaweeds and cyanobacteria react with dissolved organic matter in seawater, resulting in the formation of intermediate brominated compounds. These compounds are unstable and decay via a haloform reaction to form an array of volatile brominated compounds of which bromoform is the major component followed by dibromomethane.

  1. Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands

    Science.gov (United States)

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.

    2004-01-01

    The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.

  2. The volatile compound BinBase mass spectral database

    Directory of Open Access Journals (Sweden)

    Barupal Dinesh K

    2011-08-01

    Full Text Available Abstract Background Volatile compounds comprise diverse chemical groups with wide-ranging sources and functions. These compounds originate from major pathways of secondary metabolism in many organisms and play essential roles in chemical ecology in both plant and animal kingdoms. In past decades, sampling methods and instrumentation for the analysis of complex volatile mixtures have improved; however, design and implementation of database tools to process and store the complex datasets have lagged behind. Description The volatile compound BinBase (vocBinBase is an automated peak annotation and database system developed for the analysis of GC-TOF-MS data derived from complex volatile mixtures. The vocBinBase DB is an extension of the previously reported metabolite BinBase software developed to track and identify derivatized metabolites. The BinBase algorithm uses deconvoluted spectra and peak metadata (retention index, unique ion, spectral similarity, peak signal-to-noise ratio, and peak purity from the Leco ChromaTOF software, and annotates peaks using a multi-tiered filtering system with stringent thresholds. The vocBinBase algorithm assigns the identity of compounds existing in the database. Volatile compound assignments are supported by the Adams mass spectral-retention index library, which contains over 2,000 plant-derived volatile compounds. Novel molecules that are not found within vocBinBase are automatically added using strict mass spectral and experimental criteria. Users obtain fully annotated data sheets with quantitative information for all volatile compounds for studies that may consist of thousands of chromatograms. The vocBinBase database may also be queried across different studies, comprising currently 1,537 unique mass spectra generated from 1.7 million deconvoluted mass spectra of 3,435 samples (18 species. Mass spectra with retention indices and volatile profiles are available as free download under the CC-BY agreement (http

  3. Quantifying commuter exposures to volatile organic compounds

    Science.gov (United States)

    Kayne, Ashleigh

    Motor-vehicles can be a predominant source of air pollution in cities. Traffic-related air pollution is often unavoidable for people who live in populous areas. Commuters may have high exposures to traffic-related air pollution as they are close to vehicle tailpipes. Volatile organic compounds (VOCs) are one class of air pollutants of concern because exposure to VOCs carries risk for adverse health effects. Specific VOCs of interest for this work include benzene, toluene, ethylbenzene, and xylenes (BTEX), which are often found in gasoline and combustion products. Although methods exist to measure time-integrated personal exposures to BTEX, there are few practical methods to measure a commuter's time-resolved BTEX exposure which could identify peak exposures that could be concealed with a time-integrated measurement. This study evaluated the ability of a photoionization detector (PID) to measure commuters' exposure to BTEX using Tenax TA samples as a reference and quantified the difference in BTEX exposure between cyclists and drivers with windows open and closed. To determine the suitability of two measurement methods (PID and Tenax TA) for use in this study, the precision, linearity, and limits of detection (LODs) for both the PID and Tenax TA measurement methods were determined in the laboratory with standard BTEX calibration gases. Volunteers commuted from their homes to their work places by cycling or driving while wearing a personal exposure backpack containing a collocated PID and Tenax TA sampler. Volunteers completed a survey and indicated if the windows in their vehicle were open or closed. Comparing pairs of exposure data from the Tenax TA and PID sampling methods determined the suitability of the PID to measure the BTEX exposures of commuters. The difference between BTEX exposures of cyclists and drivers with windows open and closed in Fort Collins was determined. Both the PID and Tenax TA measurement methods were precise and linear when evaluated in the

  4. Volatile compounds of dry hams from Iberian pigs.

    Science.gov (United States)

    López, M O; de la Hoz, L; Cambero, M I; Gallardo, E; Reglero, G; Ordóñez, J A

    1992-01-01

    A study on volatile compounds from three batches of dry hams from Iberian pigs ('montanera', fed on acorns and pasture; 'recebo', fed on acorns, pasture and a commercial diet; and 'pienso', fed on a commercial diet) has been made. Over 64 compounds were identified in the headspace volatiles from all three batches, including aldehydes, alcohols, short-chain fatty acids, furan derivatives, lactones and other miscellaneous compounds. Significant differences were found between batches at several levels (Ppienso' batches. Overall quantitative differences, but not qualitative ones, were observed between batches. Copyright © 1992. Published by Elsevier Ltd.

  5. Guaianolides and volatile compounds in chamomile tea.

    Science.gov (United States)

    Tschiggerl, Christine; Bucar, Franz

    2012-06-01

    Chamomile (German Chamomile, Matricaria recutita L., Asteraceae) is one of the most popular medicinal plants in use as an herbal tea for food purposes and in folk medicine. Qualitative and semi-quantitative analyses of the volatile fraction of chamomile herbal tea were performed. Volatile constituents of the infusion were isolated by two different methods, namely hydrodistillation and solid phase extraction (SPE), and analysed by GC-MS. The relative proportions of particular chemical classes, present in the essential oil and volatile fractions of the infusion showed remarkable differences. The proportion of mono- and sesquiterpene hydrocarbons in the infusion, as compared to the essential oil, was significantly lower. Strikingly, the dichloromethane extract of the infusion contained a lower amount of bisabolol oxides and chamazulene, but higher amounts of spiroethers, sesquiterpene lactones and coumarins, as compared to the hydrodistillates of the herbal drug and the infusion. In addition to the previously known guaianolides matricarin and achillin, acetoxyachillin and leucodin (= desacetoxymatricarin), corresponding C-11 stereoisomers with various biological activities typically occurring in Achillea species, were identified in the dichloromethane extract of chamomile tea for the first time.

  6. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound

    DEFF Research Database (Denmark)

    Hentzer, Morten; Riedel, K.; Rasmussen, Thomas Bovbjerg

    2002-01-01

    Novel molecular tools have been constructed which allow for in situ detection of N-acyl homoserine lactone (AHL)-mediated quorum sensing in Pseudomonas aeruginosa biofilms. The reporter responds to AHL activation of LasR lay expression of an unstable version of the green-fluorescent protein (Gfp......). Gfp-based reporter technology has been applied for non-destructive, single-cell-level detection of quorum sensing in laboratory-based P. aeruginosa biofilms. It is reported that a synthetic halogenated furanone compound, which is a derivative of the secondary metabolites produced by the Australian...... macroalga Delisea pulchra, is capable of interfering with AHL-mediated quorum sensing in P. aeruginosa. It is demonstrated that the furanone compound specifically represses expression of a PlasB-gfp reporter fusion without affecting growth or protein synthesis. In addition, it reduces the production...

  7. Biosynthesis, function and metabolic engineering of plant volatile organic compounds.

    Science.gov (United States)

    Dudareva, Natalia; Klempien, Antje; Muhlemann, Joëlle K; Kaplan, Ian

    2013-04-01

    Plants synthesize an amazing diversity of volatile organic compounds (VOCs) that facilitate interactions with their environment, from attracting pollinators and seed dispersers to protecting themselves from pathogens, parasites and herbivores. Recent progress in -omics technologies resulted in the isolation of genes encoding enzymes responsible for the biosynthesis of many volatiles and contributed to our understanding of regulatory mechanisms involved in VOC formation. In this review, we largely focus on the biosynthesis and regulation of plant volatiles, the involvement of floral volatiles in plant reproduction as well as their contribution to plant biodiversity and applications in agriculture via crop-pollinator interactions. In addition, metabolic engineering approaches for both the improvement of plant defense and pollinator attraction are discussed in light of methodological constraints and ecological complications that limit the transition of crops with modified volatile profiles from research laboratories to real-world implementation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. Brønsted Acidic Ionic Liquid Accelerated Halogenation of Organic Compounds with N-Halosuccinimides (NXS

    Directory of Open Access Journals (Sweden)

    Stojan Stavber

    2012-12-01

    Full Text Available The Brønsted-acidic ionic liquid 1-methyl-3-(4-sulfobutylimidazolium triflate [BMIM(SO3H][OTf] was demonstrated to act efficiently as solvent and catalyst for the halogenation of activated organic compounds with N-halosuccinimides (NXS under mild conditions with short reaction times. Methyl aryl ketones were converted into α-halo and α,α-dihaloketones, depending on the quantity of NXS used. Ketones with activated aromatic rings were selectively halogenated, however in some cases mixtures of α-halogenated ketone and ring-halogenated ketones were obtained. Activated aromatics were regioselectively ring halogenated to give mono- and dihalo-substituted products. The [BMIM(SO3H][OTf] ionic liquid (IL-A was successfully reused eight times in a representative monohalogenation reaction with no noticeable decrease in efficiency. An effective halogenation scale-up in this IL is also presented. The reactivity trend and the observed chemo- and regioselectiivities point to an ET process in these IL-promoted halofunctionalization reactions.

  9. Volatile compounds in the thermoplastic extrusion of bovine rumen

    Directory of Open Access Journals (Sweden)

    Ana Carolina Conti e Silva

    2008-01-01

    Full Text Available The volatile compounds of raw and extruded bovine rumen, extracted by dynamic headspace, were separated by gas chromatography and analyzed by GC-MS. Raw and extruded materials presented thirty-two volatile compounds. The following compounds were identified in raw bovine rumen: heptane, 1-heptene, 4-methyl-2-pentanone, toluene, hexanal, ethyl butyrate, o-xylene, m-xylene, p-xylene, heptanal, limonene, nonanal, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane and octadecane. The following compounds were identified in the extruded material: 1-heptene, 2,4-dimethylhexane, toluene, limonene, undecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane and nonadecane. Mass spectra of some unidentified compounds indicated the presence of hydrocarbons with branched chains or cyclic structure.

  10. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H. [comp.

    1996-12-31

    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  11. 76 FR 41086 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound...

    Science.gov (United States)

    2011-07-13

    ...) a new rule for the control of volatile organic compound (VOC) emissions from reinforced plastic..., Reporting and recordkeeping requirements, Volatile organic compounds. Dated: June 24, 2011. Susan Hedman... Organic Compound Reinforced Plastic Composites Production Operations Rule AGENCY: Environmental Protection...

  12. Analysis of volatile compounds from Iberian hams: a review

    Directory of Open Access Journals (Sweden)

    Narváez-Rivas, M.

    2012-10-01

    Full Text Available This article provides information on the study of the volatile compounds in raw and dry-cured Iberian hams. Different volatile compounds are identified and studies carried out by different authors are presented. This article reviews the analytical methods that have been used to determine the different volatiles of these samples. Furthermore, all volatile compounds identified (a total of 411 volatiles have been collected in several tables according to different series of compounds: hydrocarbons, aldehydes, ketones, alcohols, esters and ethers, lactones, terpenes and chloride compounds, nitrogenous compounds, sulfur compounds and carboxylic acids. This review can be useful in subsequent research due to the complexity of the study.

    En este artículo se proporciona información sobre el estudio de los compuestos volátiles del jamón ibérico tanto fresco como curado. Se presentan los diferentes compuestos volátiles identificados por distintos autores. Además, se evalúan los métodos analíticos que han sido utilizados para determinar dichos compuestos volátiles en este tipo de muestras. Todos los compuestos identificados y descritos en esta revisión (un total de 411 compuestos volátiles han sido agrupados en diversas tablas de acuerdo a las diferentes familias a que pertenecen: hidrocarburos, aldehídos, cetonas, alcoholes, ésteres y éteres, lactonas, terpenos, compuestos halogenados, compuestos nitrogenados, compuestos de azufre y ácidos carboxílicos. Debido a la complejidad de este estudio, la presente revisión puede ser muy útil en investigaciones posteriores.

  13. Volatile compounds in blood headspace and nasal breath.

    Science.gov (United States)

    Ross, Brian M; Babgi, Randa

    2017-09-13

    Breath analysis is a form of metabolomics that utilises the identification and quantification of volatile chemicals to provide information about physiological or pathological processes occurring within the body. An inherent assumption of such analyses is that the concentration of the exhaled gases correlates with the concentration of the same gas in the tissue of interest. In this study we have investigated this assumption by quantifying some volatile compounds in peripheral venous blood headspace, and in nasal breath collected in Tedlar bags obtained at the same time from 30 healthy volunteers, prior to analysis by selected ion flow tube mass spectrometry. Some endogenous compounds were significantly correlated between blood headspace and nasal breath, such as isoprene (r p = 0.63) and acetone (r p = 0.68), however many, such as propanol (r p = -0.26) and methanol (r p = 0.23), were not. Furthermore, the relative concentrations of volatiles in blood and breath varied markedly between compounds, with some, such as isoprene and acetone, having similar concentrations in each, while others, such as acetic acid, ammonia and methanol, being significantly more abundant in breath, and others, such as methanal, being detectable only in breath. We also observed that breath propanol and acetic acid concentrations were higher in male compared to female participants, and that the blood headspace methanol concentration was negatively correlated to body mass index. No relationship between volatile concentrations and age was observed. Our data suggest that breath concentrations of volatiles do not necessarily give information about the same compound in the blood stream. This is likely due to the upper airway contributing compounds over and above that originating in the circulation. An investigation of the relationship between breath volatile concentrations and that in the tissue(s) of interest should therefore become a routine part of the development process of breath

  14. Reducing ammonia volatilization from compound fertilizers ...

    African Journals Online (AJOL)

    Paul

    2012-09-13

    Sep 13, 2012 ... flow system method. Soil pH, exchangeable ammonium and available nitrate at ... rock phosphate (ERP), muriate of potash (MOP), and zeolite. This kind of compound fertilizer with clinoptilotilite ... to NPK fertilizer from AN, ERP and MOP on ammonia loss. MATERIALS AND METHODS. The soil used in this ...

  15. Impact of high hydrostatic pressure on non-volatile and volatile compounds of squid muscles.

    Science.gov (United States)

    Yue, Jin; Zhang, Yifeng; Jin, Yafang; Deng, Yun; Zhao, Yanyun

    2016-03-01

    The effects of high hydrostatic pressure processing (HHP at 200, 400 or 600MPa) on non-volatile and volatile compounds of squid muscles during 10-day storage at 4°C were investigated. HHP increased the concentrations of Cl(-) and volatile compounds, reduced the level of PO4(3-), but did not affect the contents of 5'-uridine monophosphate (UMP), 5'-guanosine monophosphate (GMP), 5'-inosine monophosphate (IMP), Na(+) and Ca(2+) in squids on Day 0. At 600MPa, squids had the highest levels of 5'-adenosine monophosphate, Cl(-) and lactic acid, but the lowest contents of CMP and volatile compounds on Day 10. Essential free amino acids and succinic acids were lower on Day 0 than on Day 10. HHP at 200MPa caused higher equivalent umami concentration (EUC) on Day 0, and the EUC decreased with increasing pressure on Day 10. Generally, HHP at 200MPa was beneficial for improving EUC and volatile compounds of squids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Supercritical fluid extraction of volatile and non-volatile compounds from Schinus molle L.

    Directory of Open Access Journals (Sweden)

    M. S. T. Barroso

    2011-06-01

    Full Text Available Schinus molle L., also known as pepper tree, has been reported to have antimicrobial, antifungal, anti-inflammatory, antispasmodic, antipyretic, antitumoural and cicatrizing properties. This work studies supercritical fluid extraction (SFE to obtain volatile and non-volatile compounds from the aerial parts of Schinus molle L. and the influence of the process on the composition of the extracts. Experiments were performed in a pilot-scale extractor with a capacity of 1 L at pressures of 9, 10, 12, 15 and 20 MPa at 323.15 K. The volatile compounds were obtained by CO2 supercritical extraction with moderate pressure (9 MPa, whereas the non-volatile compounds were extracted at higher pressure (12 to 20 MPa. The analysis of the essential oil was carried out by GC-MS and the main compounds identified were sabinene, limonene, D-germacrene, bicyclogermacrene, and spathulenol. For the non-volatile extracts, the total phenolic content was determined by the Folin-Ciocalteau method. Moreover, one of the goals of this study was to compare the experimental data with the simulated yields predicted by a mathematical model based on mass transfer. The model used requires three adjustable parameters to predict the experimental extraction yield curves.

  17. Aroma Volatile Compounds from Two Fresh Pineapple Varieties in China

    Directory of Open Access Journals (Sweden)

    Chang-Bin Wei

    2012-06-01

    Full Text Available Volatile compounds from two pineapples varieties (Tainong No.4 and No.6 were isolated by headspace solid phase microextraction (HS-SPME and identified and quantified by gas chromatography-mass spectrometry (GC/MS. In the Tainong No. 4 and No. 6 pineapples, a total of 11 and 28 volatile compounds were identified according to their retention time on capillary columns and their mass spectra, and quantified with total concentrations of 1080.44 µg·kg−1 and 380.66 µg·kg−1 in the Tainong No.4 and No. 6 pineapples, respectively. The odor active values (OAVs of volatile compounds from pineapples were also calculated. According to the OAVs, four compounds were defined as the characteristic aroma compounds for the Tainong No. 4 pineapple, including furaneol, 3-(methylthiopropanoic acid methyl ester, 3-(methylthiopropanoic acid ethyl ester and δ-octalactone. The OAVs of five compounds including ethyl-2-methylbutyrate, methyl-2-methylbutyrate, 3-(methylthiopropanoic acid ethyl ester, ethyl hexanoate and decanal were considered to be the characteristic aroma compounds for the Tainong No. 6 pineapple.

  18. Methods in Plant Foliar Volatile Organic Compounds Research

    OpenAIRE

    Materić, Dušan; Bruhn, Dan; Turner, Claire; Morgan, Geraint; Mason, N.; Gauci, Vincent

    2015-01-01

    Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant?plant and plant?insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas...

  19. Volatile compounds of maari, a fermented product from baobab ...

    African Journals Online (AJOL)

    The volatile compounds associated with baobab seeds fermentation for Maari production were extracted and analysed by Likens-Nickerson simultaneous steam distillation-extraction method and gas chromatography-mass spectrometry (GC-MS), respectively. Furthermore, the titratable acidity, tannin content and proximate ...

  20. Novel collection method for volatile organic compounds (VOCs) from dogs

    Science.gov (United States)

    Host derived chemical cues are an important aspect of arthropod attraction to potential hosts. Host cues that act over longer distances include CO2, heat, and water vapor, while cues such as volatile organic compounds (VOCs) act over closer distances. Domestic dogs are important hosts for disease cy...

  1. The emission of volatile compounds from leaf litter

    NARCIS (Netherlands)

    Derendorp, L.

    2012-01-01

    Leaf litter is available at the Earth’s surface in large quantities. During the decomposition of leaf litter, volatile compounds can be released into the atmosphere, where they potentially influence local air quality, atmospheric chemistry or the global climate. In this thesis the focus was on the

  2. Screening for emphysema via exhaled volatile organic compounds.

    NARCIS (Netherlands)

    Cristescu, S.M.; Gietema, H.A.; Blanchet, L.M.; Kruitwagen, C.L.J.J.; Munnik, P.; Klaveren, R.J.J. van; Lammers, J.W.; Buydens, L.; Harren, F.J.M.; Zanen, P.

    2011-01-01

    Chronic obstructive pulmonary disease (COPD)/emphysema risk groups are well defined and screening allows for early identification of disease. The capability of exhaled volatile organic compounds (VOCs) to detect emphysema, as found by computed tomography (CT) in current and former heavy smokers

  3. Screening for emphysema via exhaled volatile organic compounds

    NARCIS (Netherlands)

    S.M. Cristescu (S.); H.A. Gietema (Hester); L. Blanchet (Lionel); C.L.J.J. Kruitwagen (Cas); P. Munnik (P.); R.J. van Klaveren (Rob); J.-W.J. Lammers (Jan-Willem); L.M.C. Buydens (Lutgarde); F.J.M. Harren (F. J M); P. Zanen (Pieter)

    2011-01-01

    textabstractChronic obstructive pulmonary disease (COPD)/emphysema risk groups are well defined and screening allows for early identification of disease. The capability of exhaled volatile organic compounds (VOCs) to detect emphysema, as found by computed tomography (CT) in current and former heavy

  4. Volatile organic compounds of whole grain soft winter wheat

    Science.gov (United States)

    The aroma from volatile organic compounds (VOCs) is an indicator of grain soundness and also an important quality attribute of grain foods. To identify the inherent VOCs of wheat grain unaffected by fungal infestation and other extrinsic factors, grains of nine soft wheat varieties were collected at...

  5. Influence of volatile organic compounds on Fusarium graminearum mycotoxin production

    Science.gov (United States)

    Volatile organic compounds (VOCs) are involved in a diverse range of ecological interactions. Due to their low molecular weight, lipophilic nature, and high vapor pressure at ambient temperatures, they can serve as airborne signaling molecules that are capable of mediating inter and intraspecies com...

  6. Air quality status of volatile organic compounds in health and ...

    African Journals Online (AJOL)

    Volatile organic compounds are considered to be air toxins that affect human health. They have great influence on the troposphere because they affect the formation of ozone. Ambient air samples were collected from indoor and outdoor of five health and financial institution microenvironments. Passive sampling method with ...

  7. Determination of volatile aroma compounds of Ganoderma lucidum ...

    African Journals Online (AJOL)

    This study was conducted at Horticulture Department of Cukurova University, Adana, Turkey during 2010-2011. Fresh sample of Ganoderma lucidum collected from Mersin province of Turkey was used as material. Volatile aroma compounds were performed by Headspace Gas Chromatography (HS-GC/MS). Alcohols ...

  8. Analysis of Volatile Compounds in Khadi (an Unrecorded Alcohol ...

    African Journals Online (AJOL)

    Chemical analysis of volatile compounds fromkhadi, an unrecorded alcoholic beverage fromBotswana, was carried out using gas chromatography-flame ionization detection (GC–FID). Ten samples of khadi from two different locations were analyzed. All samples had pH values in the range of 2.87–3.16. Overall the samples ...

  9. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particula...

  10. Characterization of volatile compounds of Albertisia papuana Becc ...

    African Journals Online (AJOL)

    Doxorubicin was used as reference drug in the cytotoxicity test while Probit analysis was used to calculate the Median Growth Inhibitory. Concentration IC50 of the extracts. The volatile compounds in the chloroform and water root extracts were analyzed using Gas Chromatography-Mass Spectrophotometry GC-MS. Results: ...

  11. Comparative efficacy of diffusible and volatile compounds of tea ...

    African Journals Online (AJOL)

    Selected strains were checked for their biocontrol potential against two phytopathogenic fungi Fusarium udum and Alternaria solani and the antagonists were found to cause inhibition in radial growth of the fungi. This diffusible effect was attributed to the production of diffusible and volatile compounds which were found to ...

  12. Development of volatile compounds in processed cheese during storage

    DEFF Research Database (Denmark)

    Sunesen, Lars Oddershede; Lund, Pia; Sørensen, J.

    2002-01-01

    The purpose of this work teas to study tire impact of storage conditions, such as light and temperature, on the development of volatile compounds to processed cheese. Cheese in glass containers was stored at 5, 20 or 37 degreesC in light or darkness for up to 1 yr. Dynamic headspace and gas...

  13. Isolation of volatile compounds of Aloe excelsa (Berger)

    African Journals Online (AJOL)

    hope&shola

    2010-10-25

    Oct 25, 2010 ... carried out on Aloe ferox, Aloe vera as well as A. excelsa. (Speranza et al., 1986, 1990; Koyama et al., 1994; Eloff,. 1998; Amabeoku et al., 1998; Dagne, 2000; Coopoosamy and Magwa 2007). This investigation deals with the isola- tion of volatile compounds present in the leaf exudates of. A. excelsa.

  14. Spatial variation of volatile organic compounds and carbon ...

    African Journals Online (AJOL)

    GREG

    2013-05-12

    May 12, 2013 ... Rapid urbanization in developing countries has led to increased air pollution due to increased vehicular and industrial emissions (Fenger, 1999; Akimoto, 2003). Examples of atmospheric pollutants include volatile orga- nic compounds (VOCs) and carbon monoxide (CO). The use of fossil fuels (for example ...

  15. Can volatile organic compounds be markers of sea salt?

    Science.gov (United States)

    Silva, Isabel; Coimbra, Manuel A; Barros, António S; Marriott, Philip J; Rocha, Sílvia M

    2015-02-15

    Sea salt is a handmade food product that is obtained by evaporation of seawater in saltpans. During the crystallisation process, organic compounds from surroundings can be incorporated into sea salt crystals. The aim of this study is to search for potential volatile markers of sea salt. Thus, sea salts from seven north-east Atlantic Ocean locations (France, Portugal, Continental Spain, Canary Islands, and Cape Verde) were analysed by headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. A total of 165 compounds were detected, ranging from 32 to 71 compounds per salt. The volatile composition revealed the variability and individuality of each salt, and a set of ten compounds were detected in all samples. From these, seven are carotenoid-derived compounds that can be associated with the typical natural surroundings of ocean hypersaline environment. These ten compounds are proposed as potential volatile markers of sea salt. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Determination of Volatile Organic Compounds in Selected Strains of Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Ivan Milovanović

    2015-01-01

    Full Text Available Microalgal biomass can be used in creating various functional food and feed products, but certain species of microalgae and cyanobacteria are known to produce various compounds causing off-flavour. In this work, we investigated selected cyanobacterial strains of Spirulina, Anabaena, and Nostoc genera originating from Serbia, with the aim of determining the chemical profile of volatile organic compounds produced by these organisms. Additionally, the influence of nitrogen level during growth on the production of volatile compounds was investigated for Nostoc and Anabaena strains. In addition, multivariate techniques, namely, principal component analysis (PCA and hierarchical cluster analysis (HCA, were used for making distinction among different microalgal strains. The results show that the main volatile compounds in these species are medium chain length alkanes, but other odorous compounds such as 2-methylisoborneol (0.51–4.48%, 2-pentylfuran (0.72–8.98%, β-cyclocitral (0.00–1.17%, and β-ionone (1.15–2.72% were also detected in the samples. Addition of nitrogen to growth medium was shown to negatively affect the production of 2-methylisoborneol, while geosmin was not detected in any of the analyzed samples, which indicates that the manipulation of growth conditions may be useful in reducing levels of some unwanted odor-causing components.

  17. Volatile organic compound emission profiles of four common arctic plants

    DEFF Research Database (Denmark)

    Vedel-Petersen, Ida; Schollert, Michelle; Nymand, Josephine

    2015-01-01

    The biogenic volatile organic compound (BVOC) emissions from plants impact atmosphere and climate. The species-specific emissions, and thereby the atmospheric impact, of many plant species are still unknown. Knowledge of BVOC emission from arctic plants is particularly limited. The vast area...... hermaphroditum, Salix glauca, Salix arctophila and Betula nana using the dynamic enclosure technique and collection of volatiles in adsorbent cartridges, analyzed by gas chromatography-mass spectrometry. Sampling occurred three times: in late June/early July, in mid-July and in early August. E. hermaphroditum...

  18. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors

    Directory of Open Access Journals (Sweden)

    Milena Šetka

    2017-03-01

    Full Text Available The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols.

  19. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors

    Science.gov (United States)

    Šetka, Milena; Drbohlavová, Jana; Hubálek, Jaromír

    2017-01-01

    The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC) is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols. PMID:28287435

  20. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors.

    Science.gov (United States)

    Šetka, Milena; Drbohlavová, Jana; Hubálek, Jaromír

    2017-03-10

    The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC) is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols.

  1. Volatile carbonylic compounds in downtown Santiago, Chile.

    Science.gov (United States)

    Rubio, María A; Zamorano, Natalia; Lissi, Eduardo; Rojas, Alicia; Gutiérrez, Luis; von Baer, Dietrich

    2006-02-01

    Formaldehyde, acetaldehyde, acetone, propanal, butanal, 2-butenal, 3-methylbutanal, hexanal, benzaldehyde, 2-methylbenzaldehyde, and 2,5-dimethylbenzaldehyde were measured during six spring days at downtown Santiago de Chile. Measurements were performed 24h/day and averaged over three hour periods. The averages of the maxima (ppbv) were, formaldehyde: 3.9+/-1.4; butanal: 3.3+/-3.4; acetaldehyde: 3.0+/-0.9; acetone: 2.4+/-1.0; 2-butenal: 0.56+/-0.52; propanal: 0.46+/-0.21; benzaldehyde: 0.34+/-0.3; 3-butanal: 0.11+/-0.05; hexanal: 0.11+/-0.08; 2-methylbenzaldehyde: 0.08+/-0.05; 2,5-dimethylbenzaldehyde: 0.05+/-0.03. Aliphatic aldehydes (C1-C3) are strongly correlated among them and weakly with primary (toluene) and secondary (ozone plus nitrogen dioxide or PAN) pollutants. In particular, the correlation between acetaldehyde and propanal values remains even if diurnal and nocturnal data are considered separately, indicating similar sources. All these aldehydes present maxima values in the morning (9-12h) and minima at night (0-3h). The best correlation is observed when butanal and 2-butenal data are considered (r=0.99, butanal/2-butenal=6.2). These compounds present maxima values during the 3-6h period, with minima values in the 0-3h period. These data imply a strong pre-dawn emission. Other aldehydes show different daily profiles, suggesting unrelated origins. Formaldehyde is the aldehyde whose concentration values best correlate with the levels of oxidants. The contribution of primary emissions and photochemical processes to formaldehyde concentrations were estimated by using a multiple regression. This treatment indicates that (32+/-16)% of measured values arise from direct emissions, while (79+/-23)% is attributable to secondary formation.

  2. Treatment of halogenated phenolic compounds by sequential tri-metal reduction and laccase-catalytic oxidation.

    Science.gov (United States)

    Dai, Yunrong; Song, Yonghui; Wang, Siyu; Yuan, Yu

    2015-03-15

    Halogenated phenolic compounds (HPCs) are exerting negative effects on human beings and ecological health. Zero-valence metal reduction can dehalogenate HPCs rapidly but cannot mineralize them. Enzymatic catalysis can oxidize phenolic compounds but fails to dehalogenate efficiently, and sometimes even produces more toxic products. In this study, [Fe|Ni|Cu] tri-metallic reduction (TMR) and laccase-catalytic oxidation (LCO) processes were combined to sequentially remove HPCs, including triclosan, tetrabromobisphenol A, and 2-bromo-4-fluorophenol in water. The kinetics, pH and temperature dependences of TMR and LCO were obtained. The detailed TMR, LCO, and TMR-LCO transformation pathways of three HPCs were well described based on the identification of intermediate products and frontier molecular orbitals (FMOs) theory. The results showed that the two-stage process worked synergically: TMR that reductively dehalogenated HPCs followed by LCO that completely removed dehalogenated products. TMR was proven to not only improve biodegradability of HPCs but also reduce the yield of potential carcinogenic by-products. Furthermore, a TMR-LCO flow reactor was assembled and launched for 256 h, during which >95% HPCs and >75% TOC were removed. Meanwhile, monitored by microorganism indicators, 83.2%-92.7% acute toxicity of HPCs was eliminated, and the genotoxicity, produced by LCO, was also avoided by using TMR as pretreatment process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Halogenated phenolic compounds in wild fish from Canadian Areas of Concern.

    Science.gov (United States)

    Gilroy, Ève A M; Muir, Derek C G; McMaster, Mark E; Darling, Colin; Campbell, Linda M; Alaee, Mehran; Brown, Scott B; Sherry, James P

    2017-09-01

    Concentrations of halogenated phenolic compounds were measured in the plasma of brown bullhead (Ameiurus nebulosus) from 4 Canadian Areas of Concern (AOCs), to assess exposure to suspected thyroid-disrupting chemicals. Hydroxylated polychlorinated biphenyls (OH-PCBs) were detected in every sample collected in 3 of the AOCs; the detection frequency was lower in samples from the Detroit River AOC. The OH-PCBs most frequently detected were pentachloro, hexachloro, and heptachloro congeners, which are structurally similar to thyroid hormones. Pentachlorophenol (PCP) was detected at highest concentrations (1.8 ng/g) in fish from Prince Edward Bay, the Bay of Quinte Lake reference site, and Hillman Marsh (the Wheatley Harbour reference site), suggesting local sources of contamination. Elevated PCP concentrations were also detected in the plasma of brown bullhead from exposed sites in the Toronto and Region AOC (0.4-0.6 ng/g). Triclosan was consistently detected in the Toronto and Region AOC (0.05-0.9 ng/g), consistent with wastewater emission. Greater concentrations were occasionally detected in the plasma of brown bullhead from the Bay of Quinte AOC. Concentrations of polybrominated diphenyl ethers were highest in the Toronto and Region AOC, and at 2 of the Bay of Quinte AOC exposed sites near Trenton and Belleville. Distribution patterns reflected the properties and usage of the compounds under investigation and the characteristics of each AOC. Environ Toxicol Chem 2017;36:2266-2273. © 2017 SETAC. © 2017 SETAC.

  4. DONKEY MILK SHELF LIFE: MICROBIOLOGY AND VOLATILE COMPOUNDS

    Directory of Open Access Journals (Sweden)

    F. Conte

    2010-03-01

    Full Text Available Organoleptics properties are important to evaluate the shelf life of food products. Sensory analysis is generally used for this purpose. In this study psychrotrophic, mesophilic bacteria, and pH values were correlated to volatile compounds. The quality of raw donkey milk stored for 3, 7, 10, 14 and 28 days at two different temperatures (3°C and 7°C was tested. Donkey milk volatiles for the first time in this study were identified. Different volatiles distribution were detected by Smart Nose and GCO during the trials and a correlation with bacteriological and pH data were shown. On the basis of the results the acceptability of 10 days storing at +3°C, and of 3-4 days at +7°C, for milk samples, was pointed out.

  5. New graphene fiber coating for volatile organic compounds analysis.

    Science.gov (United States)

    Zhang, GuoJuan; Guo, XiaoXi; Wang, ShuLing; Wang, XueLan; Zhou, YanPing; Xu, Hui

    2014-10-15

    In the work, a novel graphene-based solid phase microextraction-gas chromatography/mass spectrometry method was developed for the analysis of trace amount of volatile organic compounds in human exhaled breath vapor. The graphene fiber coating was prepared by a one-step hydrothermal reduction reaction. The fiber with porous and wrinkled structure exhibited excellent extraction efficiency toward eight studied volatile organic compounds (two n-alkanes, five n-aldehydes and one aromatic compound). Meanwhile, remarkable thermal and mechanical stability, long lifespan and low cost were also obtained for the fiber. Under the optimal conditions, the developed method provided low limits of detection (1.0-4.5ngL(-1)), satisfactory reproducibility (3.8-13.8%) and acceptable recoveries (93-122%). The method was applied successfully to the analysis of breath samples of lung cancer patients and healthy individuals. The unique advantage of this approach includes simple setup, non-invasive analysis, cost-efficient and sufficient sensitivity. The proposed method supply us a new possibility to monitor volatile organic compounds in human exhaled breath samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Catalytic combustion of volatile organic compounds.

    Science.gov (United States)

    Everaert, K; Baeyens, J

    2004-06-18

    Despite the success of adsorption and thermal incineration of (C)VOC emissions, there is still a need for research on techniques which are both economically more favorable and actually destroy the pollutants rather than merely remove them for recycling elsewhere in the biosphere. The catalytic destruction of (C)VOC to CO2, H2O and HCl/Cl2 appears very promising in this context and is the subject of the present paper. The experiments mainly investigate the catalytic combustion of eight target compounds, all of which are commonly encountered in (C)VOC emissions and/or act as precursors for the formation of PCDD/F. Available literature on the different catalysts active in the oxidation of (C)VOC is reviewed and the transition metal oxide complex V2O5-WO3/TiO2 appears most suitable for the current application. Different reactor geometries (e.g. fixed pellet beds, honeycombs, etc.) are also described. In this research a novel catalyst type is introduced, consisting of a V2O5-WO3/TiO2 coated metal fiber fleece. The conversion of (C)VOC by thermo-catalytic reactions is governed by both reaction kinetics and reaction equilibrium. Full conversion of all investigated VOC to CO2, Cl2, HCl and H2O is thermodynamically feasible within the range of experimental conditions used in this work (260-340 degrees C, feed concentrations 30-60 ppm). A first-order rate equation is proposed for the (C)VOC oxidation reactions. The apparent rate constant is a combination of reaction kinetics and mass transfer effects. The oxidation efficiencies were measured with various (C)VOC in the temperature range of 260-340 degrees C. Literature data for oxidation reactions in fixed beds and honeycomb reactors are included in the assessment. Mass transfer resistances are calculated and are generally negligible for fleece reactors and fixed pellet beds, but can be of importance for honeycomb monoliths. The experimental investigations demonstrate: (i) that the conversion of the hydrocarbons is

  7. Scalping of light volatile sulfur compounds by wine closures.

    Science.gov (United States)

    Silva, Maria A; Jourdes, Michaël; Darriet, Philippe; Teissedre, Pierre-Louis

    2012-11-07

    Closures have an important influence on wine quality during aging in a bottle. Closures have a direct impact on oxygen exposure and on volatiles scavenging in wine. Model wine solution soaking assays of several types of closures (i.e., natural and technical cork stoppers, synthetic closures, screw caps) with two important wine volatile sulfur compounds led to a considerable reduction in their levels. After 25 days, cork closures and synthetic closures, to a lesser extent, have significantly scavenged hydrogen sulfide and dimethyl sulfide. These compounds have a determinant impact on wine aging bouquet, being largely responsible for "reduced off-flavors". Hydrogen sulfide levels are often not well correlated with the exposure of wine to oxygen or with the permeability of the closure. Its preferential sorption by some types of closures may explain that behavior. Scalping phenomenon should be taken into account when studying wine post-bottling development.

  8. Marine Vibrio Species Produce the Volatile Organic Compound Acetone

    OpenAIRE

    Nemecek-Marshall, M.; Wojciechowski, C.; Kuzma, J.; Silver, G. M.; Fall, R.

    1995-01-01

    While screening aerobic, heterotrophic marine bacteria for production of volatile organic compounds, we found that a group of isolates produced substantial amounts of acetone. Acetone production was confirmed by gas chromatography, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The major acetone producers were identified as nonclinical Vibrio species. Acetone production was maximal in the stationary phase of growth and was stimulated by addition of l-leucine...

  9. 75 FR 82363 - Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound Emission...

    Science.gov (United States)

    2010-12-30

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound... printing volatile organic compound (VOC) rule for approval into the Ohio State Implementation Plan (SIP..., Volatile organic compounds. Dated: December 17, 2010. Bharat Mathur, Acting Regional Administrator, Region...

  10. 75 FR 24404 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound...

    Science.gov (United States)

    2010-05-05

    ... approved volatile organic compound (VOC) automobile refinishing rules to all persons in Indiana who sell or..., Volatile organic compounds. Dated: March 31, 2010. Walter W. Kovalick Jr., Acting Regional Administrator... revisions extend the applicability of Indiana's approved volatile organic compound (VOC) automobile...

  11. 75 FR 8246 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound...

    Science.gov (United States)

    2010-02-24

    ... Plan (SIP) several volatile organic compound (VOC) control rules. The purpose of these rules is to... requirements, Volatile organic compounds. Dated: January 14, 2010. Walter W. Kovalick Jr., Acting Regional... several volatile organic compound rules for approval into the Indiana State Implementation Plan for the...

  12. Volatile organic compounds emitted byTrichodermaspecies mediate plant growth.

    Science.gov (United States)

    Lee, Samantha; Yap, Melanie; Behringer, Gregory; Hung, Richard; Bennett, Joan W

    2016-01-01

    Many Trichoderma species are applied as biofungicides and biofertilizers to agricultural soils to enhance crop growth. These filamentous fungi have the ability to reduce plant diseases and promote plant growth and productivity through overlapping modes of action including induced systemic resistance, antibiosis, enhanced nutrient efficiency, and myco-parasitism. Trichoderma species are prolific producers of many small metabolites with antifungal, antibacterial, and anticancer properties. Volatile metabolites of Trichoderma also have the ability to induce resistance to plant pathogens leading to improved plant health. In this study, Arabidopsis plants were exposed to mixtures of volatile organic compounds (VOCs) emitted by growing cultures of Trichoderma from 20 strains, representing 11 different Trichoderma species. We identified nine Trichoderma strains that produced plant growth promoting VOCs. Exposure to mixtures of VOCs emitted by these strains increased plant biomass (37.1-41.6 %) and chlorophyll content (82.5-89.3 %). Trichoderma volatile-mediated changes in plant growth were strain- and species-specific. VOCs emitted by T . pseudokoningii (CBS 130756) were associated with the greatest Arabidopsis growth promotion. One strain, T. atroviride (CBS 01-209), in our screen decreased growth (50.5 %) and chlorophyll production (13.1 %). Similarly, tomatoes exposed to VOCs from T. viride (BBA 70239) showed a significant increase in plant biomass (>99 %), larger plant size, and significant development of lateral roots. We also observed that the tomato plant growths were dependent on the duration of the volatile exposure. A GC-MS analysis of VOCs from Trichoderma strains identified more than 141 unique compounds including several unknown sesquiterpenes, diterpenes, and tetraterpenes. Plants grown in the presence of fungal VOCs emitted by different species and strains of Trichoderma exhibited a range of effects. This study demonstrates that the blend of volatiles

  13. Are Some Fungal Volatile Organic Compounds (VOCs Mycotoxins?

    Directory of Open Access Journals (Sweden)

    Joan W. Bennett

    2015-09-01

    Full Text Available Volatile organic compounds (VOCs are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, are responsible for the characteristic moldy odors associated with damp indoor spaces. There is increasing experimental evidence that some of these VOCs have toxic properties. Laboratory tests in mammalian tissue culture and Drosophila melanogaster have shown that many single VOCs, as well as mixtures of VOCs emitted by growing fungi, have toxic effects. This paper describes the pros and cons of categorizing toxigenic fungal VOCs as mycotoxins, uses genomic data to expand on the definition of mycotoxin, and summarizes some of the linguistic and other conventions that can create barriers to communication between the scientists who study VOCs and those who study toxins. We propose that “volatoxin” might be a useful term to describe biogenic volatile compounds with toxigenic properties.

  14. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?

    Science.gov (United States)

    Bennett, Joan W; Inamdar, Arati A

    2015-09-22

    Volatile organic compounds (VOCs) are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, are responsible for the characteristic moldy odors associated with damp indoor spaces. There is increasing experimental evidence that some of these VOCs have toxic properties. Laboratory tests in mammalian tissue culture and Drosophila melanogaster have shown that many single VOCs, as well as mixtures of VOCs emitted by growing fungi, have toxic effects. This paper describes the pros and cons of categorizing toxigenic fungal VOCs as mycotoxins, uses genomic data to expand on the definition of mycotoxin, and summarizes some of the linguistic and other conventions that can create barriers to communication between the scientists who study VOCs and those who study toxins. We propose that "volatoxin" might be a useful term to describe biogenic volatile compounds with toxigenic properties.

  15. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?

    Science.gov (United States)

    Bennett, Joan W.; Inamdar, Arati A.

    2015-01-01

    Volatile organic compounds (VOCs) are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, are responsible for the characteristic moldy odors associated with damp indoor spaces. There is increasing experimental evidence that some of these VOCs have toxic properties. Laboratory tests in mammalian tissue culture and Drosophila melanogaster have shown that many single VOCs, as well as mixtures of VOCs emitted by growing fungi, have toxic effects. This paper describes the pros and cons of categorizing toxigenic fungal VOCs as mycotoxins, uses genomic data to expand on the definition of mycotoxin, and summarizes some of the linguistic and other conventions that can create barriers to communication between the scientists who study VOCs and those who study toxins. We propose that “volatoxin” might be a useful term to describe biogenic volatile compounds with toxigenic properties. PMID:26402705

  16. Halogenated hydrocarbon pesticides and other volatile organic contaminants provide analytical challenges in global trading.

    Science.gov (United States)

    Budnik, Lygia T; Fahrenholtz, Svea; Kloth, Stefan; Baur, Xaver

    2010-04-01

    Protection against infestation of a container cargo by alien species is achieved by mandatory fumigation with pesticides. Most of the effective fumigants are methyl and ethyl halide gases that are highly toxic and are a risk to both human health and the environment. There is a worldwide need for a reliable and robust analytical screening procedure for these volatile chemicals in a multitude of health and environmental scenarios. We have established a highly sensitive broad spectrum mass spectrometry method combined with thermal desorption gas chromatography to detect, identify and quantify volatile pesticide residues. Using this method, 1201 random ambient air samples taken from freight containers arriving at the biggest European ports of Hamburg and Rotterdam were analyzed over a period of two and a half years. This analytical procedure is a valuable strategy to measure air pollution from these hazardous chemicals, to help in the identification of pesticides in the new mixtures/formulations that are being adopted globally and to analyze expired breath samples after suspected intoxication in biomonitoring.

  17. Volatile organic compound (VOC) emissions during malting and beer manufacture

    Science.gov (United States)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  18. Contamination of estuarine water, biota, and sediment by halogenated organic compounds: A field study

    Science.gov (United States)

    Pereira, W.E.; Rostad, C.E.; Chiou, C.T.; Brinton, T.I.; Barber, L.B.; Demcheck, D.K.; Demas, C.R.

    1988-01-01

    Studies conducted in the vicinity of an industrial outfall in the Calcasieu River estuary, Louisiana, have shown that water, bottom and suspended sediment, and four different species of biota are contaminated with halogenated organic compounds (HOC) including haloarenes. A "salting-out" effect in the estuary moderately enhanced the partitioning tendency of the contaminants into biota and sediments. Contaminant concentrations in water, suspended sediments, and biota were found to be far below the values predicted on the basis of the assumption of phase equilibria with respect to concentrations in bottom sediment. Relative concentration factors of HOC between biota (catfish) and bottom sediment increased with increasing octanol/estuarine water partition coefficients (Kow*), maximizing at log Kow* of about 5, although these ratios were considerably less than equilibrium values. In contrast, contaminant concentrations in water, biota, and suspended sediments were much closer to equilibrium values. Bioconcentration factors of HOC determined on the basis of lipid content for four different biotic species correlated reasonably well with equilibrium triolein/water partition coefficients (Ktw).

  19. [Binding of Volatile Organic Compounds to Edible Biopolymers].

    Science.gov (United States)

    Misharina, T A; Terenina, M B; Krikunova, N I; Medvedeva, I B

    2016-01-01

    Capillary gas chromatography was used to study the influence of the composition and structure of different edible polymers (polysaccharides, vegetable fibers, and animal protein gelatin) on the binding of essential oil components. The retention of volatile organic compounds on biopolymers was shown to depend on their molecule structure and the presence, type, and position of a functional group. The maximum extent of the binding was observed for nonpolar terpene and sesquiterpene hydrocarbons, and the minimum extent was observed for alcohols. The components of essential oils were adsorbed due mostly to hydrophobic interactions. It was shown that the composition and structure of a compound, its physico-chemical state, and the presence of functional groups influence the binding. Gum arabic and guar gum were found to bind nonpolar compounds to a maximum and minimum extent, respectively. It was demonstrated the minimum adsorption ability of locust bean gum with respect to all studied compounds.

  20. Metabolism of halogenated compounds in the white rot fungus Bjerkandera adusta studied by membrane inlet mass spectrometry and tandem mass spectrometry

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Lauritsen, F.R.; Patrick, J.S.

    1996-01-01

    Membrane inlet mass spectrometry has been used for the characterization of halogenated organic compounds produced by the fungus Bjerkandera adusta. Using this technique, electron impact-, chemical ionization-, electron capture negative chemical ionization-mass spectra and tandem mass spectra were...

  1. Volatile organic compounds associated with Plasmodium falciparum infection in vitro.

    Science.gov (United States)

    Correa, Ricardo; Coronado, Lorena M; Garrido, Anette C; Durant-Archibold, Armando A; Spadafora, Carmenza

    2017-05-02

    In order to identify new ways to prevent transmission of vector-borne diseases such as malaria, efforts have been made to understand how insects are attracted to humans. Vector-host interaction studies have shown that several volatile compounds play an important role in attracting mosquitoes to human targets. A headspace solid-phase micro-extraction/gas chromatography-mass spectrometry (HSPME GC-MS) analysis of the volatile organic composition of extracellular vesicles (EVs) and supernatants of ultracentrifugation (SNUs) was carried out in Plasmodium falciparum-infected cultures with high and low parasitemias. A list of 18 volatile organic compounds (VOCs) was obtained from the EVs of both infected and uninfected RBCs with 1,2,3-Propanetriol, diacetate (diacetin) increased in the infected EVs, regardless of the parasitemia of the culture. The supernatant analysis, however, gave off 56 VOCs, with pentane 2,2,4-trimethyl being present in all the SNUs of uninfected erythrocytes but absent from the parasite-infected ones. Standing out in this study was hexanal, a reported insect attractant, which was the only VOC present in all samples from SNUs from infected erythrocytes and absent from uninfected ones, suggesting that it originates during parasite infection. The hexanal compound, reportedly a low-level component found in healthy human samples such as breath and plasma, had not been found in previous analyses of P. falciparum-infected patients or cultures. This compound has been reported as an Anopheles gambiae attractant in plants. While the compound could be produced during infection by the malaria parasite in human erythrocytes, the A. gambiae attraction could be used by the parasite as a strategy for transmission.

  2. Environmental and human exposure to persistent halogenated compounds derived from e-waste in China.

    Science.gov (United States)

    Ni, Hong-Gang; Zeng, Hui; Tao, Shu; Zeng, Eddy Y

    2010-06-01

    Various classes of persistent halogenated compounds (PHCs) can be released into the environment due to improper handling and disposal of electronic waste (e-waste), which creates severe environmental problems and poses hazards to human health as well. In this review, polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs), tetrabromobisphenol A (TBBPA), polybrominated phenols (PBPs), polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs), and chlorinated polycyclic aromatic hydrocarbons (ClPAHs) are the main target contaminants for examination. As the world's largest importer and recycler of e-waste, China has been under tremendous pressure to deal with this huge e-waste situation. This review assesses the magnitude of the e-waste problems in China based on data obtained from the last several years, during which many significant investigations have been conducted. Comparative analyses of the concentrations of several classes of toxic compounds, in which e-waste recycling sites are compared with reference sites in China, have indicated that improper e-waste handling affects the environment of dismantling sites more than that of control sites. An assessment of the annual mass loadings of PBDEs, PBBs, TBBPA, PBPs, PCDD/Fs, and ClPAHs from e-waste in China has shown that PBDEs are the dominant components of PHCs in e-waste, followed by ClPAHs and PCDD/Fs. The annual loadings of PBDEs, ClPAHs, and PCDD/Fs emission were estimated to range from 76,200 to 182,000, 900 to 2,000 and 3 to 8 kg/year, respectively. However, PCDD/Fs and ClPAHs should not be neglected because they are also primarily released from e-waste recycling processes. Overall, the magnitude of human exposure to these toxics in e-waste sites in China is at the high end of the global range. Copyright 2010 SETAC.

  3. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    Science.gov (United States)

    George, Ingrid J.; Black, Robert R.; Geron, Chris D.; Aurell, Johanna; Hays, Michael D.; Preston, William T.; Gullett, Brian K.

    2016-05-01

    In this study, volatile and semi-volatile organic compound (VOCs and SVOCs) mass emission factors were determined from laboratory peat fire experiments. The peat samples originated from two National Wildlife Refuges on the coastal plain of North Carolina, U.S.A. Gas- and particle-phase organic compounds were quantified by gas chromatography-mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (∼60%) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. In the fine particle mass (PM2.5), the following organic compound classes were dominant: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for the organic acids in PM2.5 including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12%) of all speciated compound classes measured in this work. Levoglucosan contributed to 2-3% of the OC mass, while methoxyphenols represented 0.2-0.3% of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon (PAH). Total HAP VOC and particulate PAH emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions.

  4. Volatile Compounds Produced by Lactobacillus paracasei During Oat Fermentation.

    Science.gov (United States)

    Lee, Sang Mi; Oh, Jieun; Hurh, Byung-Serk; Jeong, Gwi-Hwa; Shin, Young-Keum; Kim, Young-Suk

    2016-12-01

    This study investigated the profiles of volatile compounds produced by Lactobacillus paracasei during oat fermentation using gas chromatography-mass spectrometry coupled with headspace solid-phase microextraction method. A total of 60 compounds, including acids, alcohols, aldehydes, esters, furan derivatives, hydrocarbons, ketones, sulfur-containing compounds, terpenes, and other compounds, were identified in fermented oat. Lipid oxidation products such as 2-pentylfuran, 1-octen-3-ol, hexanal, and nonanal were found to be the main contributors to oat samples fermented by L. paracasei with the level of 2-pentylfuran being the highest. In addition, the contents of ketones, alcohols, acids, and furan derivatives in the oat samples consistently increased with the fermentation time. On the other hand, the contents of degradation products of amino acids, such as 3-methylbutanal, benzaldehyde, acetophenone, dimethyl sulfide, and dimethyl disulfide, decreased in oat samples during fermentation. Principal component analysis (PCA) was applied to discriminate the fermented oat samples according to different fermentation times. The fermented oats were clearly differentiated on PCA plots. The initial fermentation stage was mainly affected by aldehydes, whereas the later samples of fermented oats were strongly associated with acids, alcohols, furan derivatives, and ketones. The application of PCA to data of the volatile profiles revealed that the oat samples fermented by L. paracasei could be distinguished according to fermentation time. © 2016 Institute of Food Technologists®.

  5. Characterization of non-methane volatile organic compounds at swine facilities in eastern North Carolina

    Science.gov (United States)

    Blunden, Jessica; Aneja, Viney P.; Lonneman, William A.

    Samples were collected and analyzed in a field study to characterize C 2-C 12 volatile organic compounds (VOCs) emitted at five swine facilities in Eastern North Carolina between April 2002 and February 2003. Two sites employed conventional lagoon and field spray technologies, while three sites utilized various alternative waste treatment technologies in an effort to substantially reduce gaseous compound emissions, odor, and pathogens from these swine facilities. More than 100 compounds, including various paraffins, olefins, aromatics, ethers, alcohols, aldehydes, ketones, halogenated hydrocarbons, phenols, and sulfides were positively identified and quantified by Gas Chromatographic/Flame Ionization Detection (GC/FID) analysis and confirmed by Gas Chromatographic/Mass Spectrometry (GC/MS). GC/MS analysis of one particularly complex sample collected assisted in providing identification and retention times for 17 sulfur-type VOCs including dimethyl sulfide, dimethyl disulfide, and dimethyl trisulfide as well as many other VOCs. Highest VOC concentration levels measured at each of the facilities were near the hog barn ventilation fans. Total measured VOCs at the hog barns were typically dominated by oxygenated hydrocarbons (HCs), i.e., ethanol, methanol, acetaldehyde, and acetone. These compounds, in addition to other oxygenated VOCs measured at the various sites, generally represented ˜37-73% of net total measured VOCs that were emitted from the hog barns at the various sites. Dimethyl sulfide and dimethyl disulfide, both recognized as malodorous compounds, were determined to have higher concentration levels at the barns than the background at every farm sampled with the exception of one farm during the warm sampling season.

  6. Collection, speciation and aerosol modelling for volatile organic compounds

    Science.gov (United States)

    Goodman-Rendall, Kevin Alan Scott

    Volatile organic compounds (VOCs) are collected on the integrated organic gas and particle sampler (IOGAPS) to measure particle loss and collection efficiency. Particle loss increases with increasing flow rate while collection efficiency is a function of alkane volatility. Unresolved complex mixtures (UCMs) are then analyzed and quantified using the novel technique supersonic molecular beam gas chromatography/mass spectrometry (SMB-GC/MS), to develop accurate inputs in modelling the formation of secondary organic aerosol (SOA). Alkanes were segregated by carbon number (NC), number of double bond equivalents (NDBE), and chemical structure. With the most explicit compositional knowledge to date, these mixtures were modelled for their affinity towards formation of SOA. Unsaturated alkanes formed the most and relatively equal amounts of aerosol based on their degree of unsaturation while branched species formed the least. Increasing specificity in chemical structure led to increased computational demands while only general structural motifs were needed to form an accurate picture of aerosol formation.

  7. The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products.

    Science.gov (United States)

    Butler, Alison; Carter-Franklin, Jayme N

    2004-02-01

    Halogenated natural products are frequently reported metabolites in marine seaweeds. These compounds span a range from halogenated indoles, terpenes, acetogenins, phenols, etc., to volatile halogenated hydrocarbons that are produced on a very large scale. In many cases these halogenated marine metabolites possess biological activities of pharmacological interest. Given the abundance of halogenated marine natural products found in marine organisms and their potentially important biological activities, the biogenesis of these compounds has intrigued marine natural product chemists for decades. Over a quarter of a century ago, a possible role for haloperoxidase enzymes was first suggested in the biogenesis of certain halogenated marine natural products, although this was long before haloperoxidases were discovered in marine organisms. Since that time, FeHeme- and Vanadium-haloperoxidases (V-HPO) have been discovered in many marine organisms. The structure and catalytic activity of vanadium haloperoxidases is reviewed herein, including the importance of V-HPO-catalyzed bromination and cyclization of terpene substrates.

  8. Computing sextic centrifugal distortion constants by DFT: A benchmark analysis on halogenated compounds

    Science.gov (United States)

    Pietropolli Charmet, Andrea; Stoppa, Paolo; Tasinato, Nicola; Giorgianni, Santi

    2017-05-01

    This work presents a benchmark study on the calculation of the sextic centrifugal distortion constants employing cubic force fields computed by means of density functional theory (DFT). For a set of semi-rigid halogenated organic compounds several functionals (B2PLYP, B3LYP, B3PW91, M06, M06-2X, O3LYP, X3LYP, ωB97XD, CAM-B3LYP, LC-ωPBE, PBE0, B97-1 and B97-D) were used for computing the sextic centrifugal distortion constants. The effects related to the size of basis sets and the performances of hybrid approaches, where the harmonic data obtained at higher level of electronic correlation are coupled with cubic force constants yielded by DFT functionals, are presented and discussed. The predicted values were compared to both the available data published in the literature and those obtained by calculations carried out at increasing level of electronic correlation: Hartree-Fock Self Consistent Field (HF-SCF), second order Møller-Plesset perturbation theory (MP2), and coupled-cluster single and double (CCSD) level of theory. Different hybrid approaches, having the cubic force field computed at DFT level of theory coupled to harmonic data computed at increasing level of electronic correlation (up to CCSD level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T)) were considered. The obtained results demonstrate that they can represent reliable and computationally affordable methods to predict sextic centrifugal terms with an accuracy almost comparable to that yielded by the more expensive anharmonic force fields fully computed at MP2 and CCSD levels of theory. In view of their reduced computational cost, these hybrid approaches pave the route to the study of more complex systems.

  9. 75 FR 57390 - Approval and Promulgation of Implementation Plans; Alabama: Volatile Organic Compounds

    Science.gov (United States)

    2010-09-21

    ... definition of ``volatile organic compounds'' (VOCs) found at Alabama Administrative Code (AAC) section 335-3... recordkeeping requirements, Volatile organic compounds. Dated: September 3, 2010. A. Stanley Meiburg, Acting... AGENCY 40 CFR Part 52 Approval and Promulgation of Implementation Plans; Alabama: Volatile Organic...

  10. Volatile organic compounds in the unsaturated zone from radioactive wastes

    Science.gov (United States)

    Baker, Ronald J.; Andraski, Brian J.; Stonestrom, David A.; Luo, Wentai

    2012-01-01

    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0–2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m-2 yr-1. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.

  11. Synthesis of Carbon Nanotubes and Volatile Organic Compounds Detection

    Directory of Open Access Journals (Sweden)

    Sobri S.

    2016-01-01

    Full Text Available In this work, the adsorption effect of volatile organic compounds (chloroacetophenone, acetonitrile and hexane towards the change of resistance of CNTs pellet as sensor signal was investigated. CNTs used in this research were synthesized using Floating Catalyst – Chemical Vapor Deposition (FC-CVD method in optimum condition. The synthesized CNTs were characterized using Scanning Electron Microscopy (SEM, Transmission Electron Microscopy (TEM and Raman Spectroscopy. The variation of resistance changes towards the tested gases were recorded using a multimeter. CNTs sensor pellet showed good responses towards the tested gases, however, the sensitivity, response time and recovery time of sensor pellet need to be optimized.

  12. Colorimetric Polydiacetylene-Aerogel Detector for Volatile Organic Compounds (VOCs).

    Science.gov (United States)

    Dolai, Susmita; Bhunia, Susanta Kumar; Beglaryan, Stella S; Kolusheva, Sofiya; Zeiri, Leila; Jelinek, Raz

    2017-01-25

    A new hybrid system comprising polydiacetylene (PDA), a chromatic conjugated polymer, embedded within aerogel pores has been constructed. The PDA-aerogel powder underwent dramatic color changes in the presence of volatile organic compounds (VOCs), facilitated through infiltration of the gas molecules into the highly porous aerogel matrix and their interactions with the aerogel-embedded PDA units. The PDA-aerogel composite exhibited rapid color/fluorescence response and enhanced signals upon exposure to low VOC concentrations. Encapsulation of PDA derivatives displaying different headgroups within the aerogel produced distinct VOC-dependent color transformations, forming a PDA-aerogel "artificial nose".

  13. Determination of Henry's law constants for low volatile mixed halogenated anisoles using solid-phase microextraction.

    Science.gov (United States)

    Diaz, Alfredo; Ventura, Francesc; Galceran, Maria Teresa

    2007-04-18

    Trihalogenated anisoles (THAs) that have been identified at low concentration levels (ngL(-1)) in drinking water are suspected of causing odor episodes, which are a frequent source of complaint by consumers. Henry's law constant (K(H)) is an important parameter in controlling the diffusion of organic compounds from the water to the vapor-phase, so its evaluation is of significance in the study of odor events. In this paper, the K(H) of a wide range of trihalogenated anisoles--in its dimensionless form [Formula: see text]--were calculated at two temperatures, 45 and 22 degrees C using equilibration partitioning in a closed system and headspace microextraction (EPICS-SPME). Two methodological approaches, Ramachandran and Dewulf, were used for the assessment of the Henry's law constant. Nevertheless, to apply these methods to THAs, a relatively narrow headspace/water volume ratio range (80/1-8/1) is required. At these conditions, a linearity (r(2)) using Ramachandran's theoretical relationship from 0.9276 to 0.9989 was obtained and the variability (R.S.D.%) when Dewulf's theoretical relationship was employed was lower than 20% (n=5).

  14. Monitoring biogenic volatile compounds emitted by Eucalyptus citriodora using SPME.

    Science.gov (United States)

    Zini, C A; Augusto, F; Christensen, T E; Smith, B P; Caramão, E B; Pawliszy, J

    2001-10-01

    A procedure to monitor BVOC emitted by living plants using SPME technique is presented. For this purpose, a glass sampling chamber was designed. This device was employed for the characterization of biogenic volatile compounds emitted by leaves of Eucalyptus citriodora. After extraction with SPME fibers coated with PDMS/ DVB, it was possible to identify or detect 33 compounds emitted by this plant. A semiquantitative approach was applied to monitor the behavior of the emitted BVOC during 9 days. Circadian profiles of the variation in the concentration of isoprene were plotted. Using diffusion-based SPME quantitation, a recently introduced analytical approach, with extraction times as short as 15 s, it was possible to quantify subparts-per-billion amounts of isoprene emitted by this plant.

  15. Volatile compounds of raspberry fruit: from analytical methods to biological role and sensory impact.

    Science.gov (United States)

    Aprea, Eugenio; Biasioli, Franco; Gasperi, Flavia

    2015-01-30

    Volatile compounds play a key role in the formation of the well-recognized and widely appreciated raspberry aroma. Studies on the isolation and identification of volatile compounds in raspberry fruit (Rubus idaeus L.) are reviewed with a focus on aroma-related compounds. A table is drawn up containing a comprehensive list of the volatile compounds identified so far in raspberry along with main references and quantitative data where available. Two additional tables report the glycosidic bond and enantiomeric distributions of the volatile compounds investigated up to now in raspberry fruit. Studies on the development and evolution of volatile compounds during fruit formation, ripening and senescence, and genetic and environmental influences are also reviewed. Recent investigations showing the potential role of raspberry volatile compounds in cultivar differentiation and fruit resistance to mold disease are reported as well. Finally a summary of research done so far and our vision for future research lines are reported.

  16. Formation of halogenated organic byproducts during medium-pressure UV and chlorine coexposure of model compounds, NOM and bromide.

    Science.gov (United States)

    Zhao, Quan; Shang, Chii; Zhang, Xiangru; Ding, Guoyu; Yang, Xin

    2011-12-01

    When chlorine is applied before or during UV disinfection of bromide-containing water, interactions between chlorine, bromide and UV light are inevitable. Formation of halogenated organic byproducts was studied during medium-pressure UV (MPUV) and chlorine coexposure of phenol, nitrobenzene and benzoic acid and maleic acid, chosen to represent electron-donating aromatics, electron-withdrawing aromatics, and aliphatic structures in natural organic matter (NOM), respectively. All were evaluated in the presence and absence of bromide. MPUV and chlorine coexposure of phenol produced less total organic halogen (TOX, a collective parameter for halogenated organic byproducts) than chlorination in the dark, and more haloacetic acids instead of halophenols. Increases in TOX were found in the coexposure of nitrobenzene and benzoic acid, but maleic acid was rather inert during coexposure. The presence of bromide increased the formation of brominated TOX but did not significantly affect total TOX formation, in spite of the fact that it reduced hydroxyl radical levels. MPUV and chlorine coexposure of NOM gave a higher differential UV absorbance of NOM and a larger shift to lower molecular weight compounds than chlorination in the dark. However, TOX formation with NOM remained similar to that observed from dark chlorination. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Diagnosing gastrointestinal illnesses using fecal headspace volatile organic compounds

    Science.gov (United States)

    Chan, Daniel K; Leggett, Cadman L; Wang, Kenneth K

    2016-01-01

    Volatile organic compounds (VOCs) emitted from stool are the components of the smell of stool representing the end products of microbial activity and metabolism that can be used to diagnose disease. Despite the abundance of hydrogen, carbon dioxide, and methane that have already been identified in human flatus, the small portion of trace gases making up the VOCs emitted from stool include organic acids, alcohols, esters, heterocyclic compounds, aldehydes, ketones, and alkanes, among others. These are the gases that vary among individuals in sickness and in health, in dietary changes, and in gut microbial activity. Electronic nose devices are analytical and pattern recognition platforms that can utilize mass spectrometry or electrochemical sensors to detect these VOCs in gas samples. When paired with machine-learning and pattern recognition algorithms, this can identify patterns of VOCs, and thus patterns of smell, that can be used to identify disease states. In this review, we provide a clinical background of VOC identification, electronic nose development, and review gastroenterology applications toward diagnosing disease by the volatile headspace analysis of stool. PMID:26819529

  18. Diagnosing gastrointestinal illnesses using fecal headspace volatile organic compounds.

    Science.gov (United States)

    Chan, Daniel K; Leggett, Cadman L; Wang, Kenneth K

    2016-01-28

    Volatile organic compounds (VOCs) emitted from stool are the components of the smell of stool representing the end products of microbial activity and metabolism that can be used to diagnose disease. Despite the abundance of hydrogen, carbon dioxide, and methane that have already been identified in human flatus, the small portion of trace gases making up the VOCs emitted from stool include organic acids, alcohols, esters, heterocyclic compounds, aldehydes, ketones, and alkanes, among others. These are the gases that vary among individuals in sickness and in health, in dietary changes, and in gut microbial activity. Electronic nose devices are analytical and pattern recognition platforms that can utilize mass spectrometry or electrochemical sensors to detect these VOCs in gas samples. When paired with machine-learning and pattern recognition algorithms, this can identify patterns of VOCs, and thus patterns of smell, that can be used to identify disease states. In this review, we provide a clinical background of VOC identification, electronic nose development, and review gastroenterology applications toward diagnosing disease by the volatile headspace analysis of stool.

  19. Microbial volatile compounds alter the soil microbial community.

    Science.gov (United States)

    Yuan, Jun; Zhao, Mengli; Li, Rong; Huang, Qiwei; Raza, Waseem; Rensing, Christopher; Shen, Qirong

    2017-10-01

    Volatile organic compounds (VOCs) from soil bacteria are likely to have an important role in the interactions among soil microorganisms. However, their effects on the soil microbial community have not been extensively studied. In this study, the effect of bacterial VOCs generated by growing Bacillus amyloliquefaciens NJN-6 on modified MS medium on soil microbial community was evaluated. B. amyloliquefaciens NJN-6 was able to produce 48 volatile compounds as determined by solid-phase microextraction-GC/MS. MiSeq sequencing data showed that bacterial VOCs could alter the composition of both soil bacterial and soil fungal communities and could decrease the alpha-diversity of the soil microbial community. Taxonomic analysis revealed that bacterial VOCs significantly increased the relative abundance of Proteobacteria, Bacteroidetes, and Firmicutes. Moreover, bacterial VOCs significantly increased the relative abundance of Ascomycota. The qPCR data showed that bacterial VOCs of strain NJN-6 decreased the soil fungal biomass and increased the soil bacterial biomass. Further evaluation of the effect of bacterial VOCs on functional genes revealed that VOCs could reduce the copies of nifH, nirS, and a gene encoding nonribosomal peptide synthase, while increasing the copy number of the ammonium-oxidizing bacteria gene. The effect on gene encoding polyketide synthase was insignificant. Results from this study indicated that bacterial VOCs could influence the soil microbial community as well as functional gene abundance.

  20. Mechanism and kinetics of halogenated compound removal by metallic iron: Transport in solution, diffusion and reduction within corrosion films.

    Science.gov (United States)

    Tang, Shun; Wang, Xiao-Mao; Liu, Shi-Ting; Yang, Hong-Wei; Xie, Yuefeng F; Yang, Xiao-Yi

    2017-07-01

    A detailed kinetic model comprised of mass transport (ktra), pore diffusion (kdif), adsorption and reduction reaction (krea), was developed to quantitatively evaluate the effect of corrosion films on the removal rate (kobs) of halogenated compounds by metallic iron. Different corrosion conditions were controlled by adjusting the iron aging time (0 or 1 yr) and dissolved oxygen concentration (0-7.09 mg/L DO). The kobs values for bromate, mono-, di- and tri-chloroacetic acids (BrO3-, MCAA, DCAA and TCAA) were 0.41-7.06, 0-0.16, 0.01-0.53, 0.10-0.73 h-1, with ktra values at 13.32, 12.12, 11.04 and 10.20 h-1, kdif values at 0.42-5.82, 0.36-5.04, 0.30-4.50, 0.30-3.90 h-1, and krea values at 14.94-421.18, 0-0.19, 0.01-1.30, 0.10-3.98 h-1, respectively. The variation of kobs value with reaction conditions depended on the reactant species, while those of ktra, kdif and krea values were irrelevant to the species. The effects of corrosion films on kdif and krea values were responsible for the variation of kobs value for halogenated compounds. For a mass-transfer-limited halogenated compound such as BrO3-, an often-neglected kdif value primarily determined its kobs value when pore diffusion was the rate-limiting step of its removal. In addition, the value of kdif might influence product composition during a consecutive dechlorination, such as for TCAA and DCAA. For a reaction-controlled compound such as MCAA, an increased krea value was achieved under low oxic conditions, which was favorable to improve its kobs value. The proposed model has a potential in predicting the removal rate of halogenated compounds by metallic iron under various conditions. Copyright © 2017. Published by Elsevier Ltd.

  1. Volatile organic compounds emissions from gasoline and diesel powered vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mugica, V [Universidad Autonoma Metropolitana, Mexico, D.F. (Mexico); Vega, E; Sanchez, G; Reyes, E; Arriaga, J. L [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Chow, J; Watson, J; Egami, R [Desert Research Institute, Reno, NV (United States)

    2001-01-01

    In this research, volatile organic compound emissions were characterized from gasoline and diesel vehicles. Sampling campaigns in the Metropolitan Area of Mexico City were designed and carried out in tunnels, crossroads, and truck and bus terminals. The samples were analyzed with gas chromatography getting more than 250 different compounds, being more or less 60 of them the 80% of all the emissions. The most abundant are the two carbon compounds, as a result of the combustion, and compounds related to fuels compositions, like isopentane, xylenes, toluene among others. The profiles obtained in tunnels and crossroads were very similar with the exception of the 3 and 4 carbon compounds, which were found in bigger proportion in the profiles at crossroads. This may probably be due to the blend with the ambient air. The profiles corresponding to trucks and buses have a smaller content of two carbon compounds and a bigger content of xylenes, toluene and ethylbenzene. The variations in the proportions of the compounds allow differentiating the profiles of vehicles using gasoline and diesel. [Spanish] En este trabajo se caracterizaron las emisiones de compuestos organicos volatiles provenientes de vehiculos a gasolina y a diesel. Para ello, se disenaron diversas campanas de muestreo en la zona Metropolitana de la Ciudad de Mexico, en tuneles, cruceros y estaciones de camiones de carga y autobuses. Las muestras se analizaron con cromatografia, de gases obteniendose mas de 250 compuestos distintos, de los cuales aproximadamente 60 corresponden a mas del 80% de las emisiones. Los compuestos mas abundantes son los de dos carbonos, resultado de la combustion, y 4 carbonos que se encontraron en mayor proporcion en los perfiles de cruceros, lo cual se debe probablemente a la mezcla con el aire ambiente. Los perfiles correspondientes a camiones de carga y autobuses tienen un menor contenido de compuestos de dos carbonos y un mayor contenido de xilenos, tolueno y etilbenceno. Estas

  2. Headspace Analysis of Volatile Compounds Coupled to Chemometrics in Leaves from the Magnoliaceae Family

    Directory of Open Access Journals (Sweden)

    Mohamed A. Farag

    2015-01-01

    Full Text Available Headspace volatile analysis has been used for volatiles profiling in leaves of 4 Magnolia species with a total of 75 compounds were identified. Monterpene hydrocarbons dominated the volatile blend of M. calophylla (86%, M. acuminata (78%, M. virginiana (70% and M. grandiflora (47% with b -pinene and b -ocimene occurring in the largest amounts, whereas sesquiterpenes were the most abundant compounds in M. grandiflora (39%. High levels of oxygenated compounds were only found in M. virginiana volatile blend (11.4% with 2-phenylethyl alcohol as major component. Hierarchical cluster analysis performed on volatiles content revealed the close relationship between M. acuminata and M. calophylla.

  3. Effect of volatile organic compounds from bacteria on nematodes.

    Science.gov (United States)

    Xu, You-Yao; Lu, Hao; Wang, Xin; Zhang, Ke-Qin; Li, Guo-Hong

    2015-09-01

    The five studied bacterial strains could produce volatile organic compounds (VOCs) that kill nematodes. Based on their 16S rRNA sequences, these strains were identified as Pseudochrobactrum saccharolyticum, Wautersiella falsenii, Proteus hauseri, Arthrobacter nicotianae, and Achromobacter xylosoxidans. The bacterial VOCs were extracted using solid-phase micro-extraction (SPME) and subsequently identified by GC/MS analysis. The VOCs covered a wide range of aldehydes, ketones, alkyls, alcohols, alkenes, esters, alkynes, acids, ethers, as well as heterocyclic and phenolic compounds. Among the 53 VOCs identified, 19 candidates, produced by different bacteria, were selected to test their nematicidal activity (NA) against Caenorhabditis elegans and Meloidogyne incognita. The seven compounds with the highest NAs were acetophenone, S-methyl thiobutyrate, dimethyl disulfide, ethyl 3,3-dimethylacrylate, nonan-2-one, 1-methoxy-4-methylbenzene, and butyl isovalerate. Among them, S-methyl thiobutyrate showed a stronger NA than the commercial insecticide dimethyl disulfide. It was reported for the first time here that the five bacterial strains as well as S-methyl thiobutyrate, ethyl 3,3-dimethylacrylate, 1-methoxy-4-methylbenzene, and butyl isovalerate possess NA. These strains and compounds might provide new insights in the search for novel nematicides. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  4. Volatile compound profiling of Turkish Divle Cave cheese during production and ripening

    NARCIS (Netherlands)

    Ozturkoglu-Budak, S; Gursoy, A; Aykas, D P; Koçak, C; Dönmez, S; de Vries, R P; Bron, P A

    2016-01-01

    The formation of volatile compounds in Turkish Divle Cave cheese produced in 3 different dairy farms was determined during production and ripening, revealing 110 compounds including acids, alcohols, ketones, esters, and terpenes. The presence and concentration of these volatile compounds varied

  5. Impact of protein, lipid and carbohydrate on the headspace delivery of volatile compounds from hydrating powders

    OpenAIRE

    Fisk, Ian; Boyer, Maxime; Linforth, Rob S.T.

    2012-01-01

    The release of volatile compounds, such as aroma, from a food material during hydration is of wide relevance to the food industry. To this end, dry powders of varying chemical composition were hydrated in a controlled system to investigate the impact of varying composition (protein, lipid and carbohydrate) on the delivery rate of volatile compounds to the headspace. Additional lipid and carbohydrate reduced the concentration of volatile compounds in the headspace and accelerated their rate of...

  6. Evaluation of fungicidal activity and identification of volatile organic compounds released by Trichoderma viride

    National Research Council Canada - National Science Library

    Diana Cristina Sinuco León; Andrés Camilo Pérez Cortés; Nubia Carmenza Moreno Sarmiento

    2017-01-01

    ... processing.Volatile organic compounds (VOCs) are a biologically relevant class of secondary metabolites, since they are suspected of playing a crucial role in the communication between microorganisms...

  7. First Characterisation of Volatile Organic Compounds Emitted by Banana Plants

    Science.gov (United States)

    Berhal, Chadi; De Clerck, Caroline; Fauconnier, Marie-Laure; Levicek, Carolina; Boullis, Antoine; Kaddes, Amine; Jijakli, Haïssam M.; Verheggen, François; Massart, Sébastien

    2017-01-01

    Banana (Musa sp.) ranks fourth in term of worldwide fruit production, and has economical and nutritional key values. The Cavendish cultivars correspond to more than 90% of the production of dessert banana while cooking cultivars are widely consumed locally around the banana belt production area. Many plants, if not all, produce Volatile Organic Compounds (VOCs) as a means of communication with their environment. Although flower and fruit VOCs have been studied for banana, the VOCs produced by the plant have never been identified despite their importance in plant health and development. A volatile collection methodology was optimized to improve the sensitivity and reproducibility of VOCs analysis from banana plants. We have identified 11 VOCs for the Cavendish, mainly (E,E)-α-farnesene (87.90 ± 11.28 ng/μl), methyl salicylate (33.82 ± 14.29) and 6-methyl-5-hepten-2-one (29.60 ± 11.66), and 14 VOCs for the Pacific Plantain cultivar, mainly (Z,E)-α-farnesene (799.64 ± 503.15), (E,E)-α-farnesene (571.24 ± 381.70) and (E) β ocimene (241.76 ± 158.49). This exploratory study paves the way for an in-depth characterisation of VOCs emitted by Musa plants. PMID:28508885

  8. Identification of volatile organic compounds in human cerumen.

    Science.gov (United States)

    Prokop-Prigge, Katharine A; Thaler, Erica; Wysocki, Charles J; Preti, George

    2014-03-15

    We report here the initial examination of volatile organic compounds (VOCs) emanating from human earwax (cerumen). Recent studies link a single nucleotide polymorphism (SNP) in the adenosine triphosphate (ATP) binding cassette, sub-family C, member 11 gene (ABCC11) to the production of different types of axillary odorants and cerumen. ABCC11 encodes an ATP-driven efflux pump protein that plays an important function in ceruminous apocrine glands of the auditory canal and the secretion of axillary odor precursors. The type of cerumen and underarm odor produced by East Asians differ markedly from that produced by non-Asians. In this initial report we find that both groups emit many of the same VOCs but differ significantly in the amounts produced. The principal odorants are volatile organic C2-to-C6 acids. The physical appearance of cerumen from the two groups also matches previously reported ethnic differences, viz., cerumen from East Asians appears dry and white while that from non-Asians is typically wet and yellowish-brown. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Volatile compounds and antioxidative activity of Porophyllum tagetoides extracts.

    Science.gov (United States)

    Jimenez, M; Guzman, A P; Azuara, E; Garcia, O; Mendoza, M R; Beristain, C I

    2012-03-01

    Porophyllum tagetoides is an annual warm-weather herb that has an intense typical smell. Its leaves are commonly used in soup preparation and traditional medicine for treatment of inflammatory diseases. Its volatile compounds and antioxidant properties were evaluated in crude, aqueous and ethanol leaf extract and an oil emulsion using different antioxidant assays in vitro, such as: DPPH radical scavenging activity, redox potential, polyphenol content, reducing power and optical density. A high antioxidative activity was found when comparing leaves with stems. The crude extract from leaves showed a very high reducing power (2.88 ± 0.20 O.D.) and DPPH radical-scavenging activity (54.63 ± 4.80%), in concordance with a major concentration of vitamin C (23.97 ± 0.36 mg/100 g). Instead, the highest polyphenol content (264.54 ± 2.17 mg GAE/g of sample) and redox potential (561.23 ± 0.15 mV) were found by the ethanol and aqueous extract, respectively. Aldehydes and terpenes such as nonanal, decanal, trans-pineno, β-myrcene and D-limonene were the major volatiles found. This study suggests that Porophyllum tagetoides extracts could be used as antioxidants.

  10. First Characterisation of Volatile Organic Compounds Emitted by Banana Plants.

    Science.gov (United States)

    Berhal, Chadi; De Clerck, Caroline; Fauconnier, Marie-Laure; Levicek, Carolina; Boullis, Antoine; Kaddes, Amine; Jijakli, Haïssam M; Verheggen, François; Massart, Sébastien

    2017-05-16

    Banana (Musa sp.) ranks fourth in term of worldwide fruit production, and has economical and nutritional key values. The Cavendish cultivars correspond to more than 90% of the production of dessert banana while cooking cultivars are widely consumed locally around the banana belt production area. Many plants, if not all, produce Volatile Organic Compounds (VOCs) as a means of communication with their environment. Although flower and fruit VOCs have been studied for banana, the VOCs produced by the plant have never been identified despite their importance in plant health and development. A volatile collection methodology was optimized to improve the sensitivity and reproducibility of VOCs analysis from banana plants. We have identified 11 VOCs for the Cavendish, mainly (E,E)-α-farnesene (87.90 ± 11.28 ng/μl), methyl salicylate (33.82 ± 14.29) and 6-methyl-5-hepten-2-one (29.60 ± 11.66), and 14 VOCs for the Pacific Plantain cultivar, mainly (Z,E)-α-farnesene (799.64 ± 503.15), (E,E)-α-farnesene (571.24 ± 381.70) and (E) β ocimene (241.76 ± 158.49). This exploratory study paves the way for an in-depth characterisation of VOCs emitted by Musa plants.

  11. Nontargeted biomonitoring of halogenated organic compounds in two ecotypes of bottlenose dolphins (Tursiops truncatus) from the Southern California Bight.

    Science.gov (United States)

    Shaul, Nellie J; Dodder, Nathan G; Aluwihare, Lihini I; Mackintosh, Susan A; Maruya, Keith A; Chivers, Susan J; Danil, Kerri; Weller, David W; Hoh, Eunha

    2015-02-03

    Targeted environmental monitoring reveals contamination by known chemicals, but may exclude potentially pervasive but unknown compounds. Marine mammals are sentinels of persistent and bioaccumulative contaminants due to their longevity and high trophic position. Using nontargeted analysis, we constructed a mass spectral library of 327 persistent and bioaccumulative compounds identified in blubber from two ecotypes of common bottlenose dolphins (Tursiops truncatus) sampled in the Southern California Bight. This library of halogenated organic compounds (HOCs) consisted of 180 anthropogenic contaminants, 41 natural products, 4 with mixed sources, 8 with unknown sources, and 94 with partial structural characterization and unknown sources. The abundance of compounds whose structures could not be fully elucidated highlights the prevalence of undiscovered HOCs accumulating in marine food webs. Eighty-six percent of the identified compounds are not currently monitored, including 133 known anthropogenic chemicals. Compounds related to dichlorodiphenyltrichloroethane (DDT) were the most abundant. Natural products were, in some cases, detected at abundances similar to anthropogenic compounds. The profile of naturally occurring HOCs differed between ecotypes, suggesting more abundant offshore sources of these compounds. This nontargeted analytical framework provided a comprehensive list of HOCs that may be characteristic of the region, and its application within monitoring surveys may suggest new chemicals for evaluation.

  12. Methods in plant foliar volatile organic compounds research.

    Science.gov (United States)

    Materić, Dušan; Bruhn, Dan; Turner, Claire; Morgan, Geraint; Mason, Nigel; Gauci, Vincent

    2015-12-01

    Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant-plant and plant-insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas analysis, usually based on gas chromatography and soft chemical ionization mass spectrometry. Until now, these techniques (especially the latter one) have been developed and used primarily by physicists and analytical scientists, who have used them in a wide range of scientific research areas (e.g., aroma, disease biomarkers, hazardous compound detection, atmospheric chemistry). The interdisciplinary nature of plant foliar VOC research has recently attracted the attention of biologists, bringing them into the field of applied environmental analytical sciences. In this paper, we review the sampling methods and available analytical techniques used in plant foliar VOC research to provide a comprehensive resource that will allow biologists moving into the field to choose the most appropriate approach for their studies.

  13. Characterization by volatile compounds of microbial deep spoilage in Iberian dry-cured ham.

    Science.gov (United States)

    Martín, Alberto; Benito, María J; Aranda, Emilio; Ruiz-Moyano, Santiago; Córdoba, Juan J; Córdoba, María G

    2010-08-01

    In the present study, volatile compounds of spoiled dry-cured Iberian ham with deep spoilage or "bone taint" were analyzed and correlated with level of spoilage and the microorganisms detected. Volatile compounds extracted by a solid phase micro-extraction technique were assayed by gas chromatography/mass spectrometry. The spoiled hams were evaluated sensorially, and the correlations among volatile compounds, spoilage level, and microbial counts were studied. The spoiled hams had higher concentrations of hydrocarbons, alcohols, acids, esters, pyrazines, sulfur compounds, and other minor volatile compounds than unspoiled hams. The sensorial analysis showed that the spoilage level of hams correlated with several volatile compounds, most of them associated with Gram-positive catalase positive cocci and Enterobacteriaceae counts. Cyclic compounds such as cyclohexanone, some ethers, and pyrazines should be considered as indicators to monitor incipient microbial deep spoilage in the elaboration of this meat product.

  14. Emission of Biogenic Volatile Organic Compounds in the Arctic

    DEFF Research Database (Denmark)

    Lindwall, Frida

    Emissions of biogenic volatile organic compounds (BVOCs) from arctic ecosystems are scarcely studied and the effect of climate change on BVOC emissions even less so. BVOCs are emitted from all living organisms and play a role for atmospheric chemistry. The major part of BVOCs derives from plants...... growing seasons, low temperatures and low statured plants, occurs at twice the speed of the global average. Changes in temperature and precipitation patterns have consequences for soil, plant species distribution, plant biomass and reproductive success. Emission and production of BVOCs are temperature...... that canopy surfaces temperatures should be used in BVOC models instead of air temperatures obtained from weather stations. BVOC emissions will likely increase significantly in a future warmer climate due to the direct effect of temperature, but also due to the indirect effect of more plants biomass. Thus...

  15. [Definition and Control Indicators of Volatile Organic Compounds in China].

    Science.gov (United States)

    Jiang, Mei; Zou, Lan; Li, Xiao-qian; Che, Fei; Zhao, Guo-hua; Li, Gang; Zhang, Guo-ning

    2015-09-01

    Volatile organic compounds (VOCs) are the most complex of a wide range of pollutants that harms human health and ecological environment. However, various countries around the world differ on its definition and control indicators. Its definition, control indicators and monitoring methods of our country and local standards were also different. Based on detailed analysis of the definitions and control indicators of VOCs, the recommendations were proposed: the definition of VOCs should be different according to the different concerns between "air quality management" and "pollution emissions management"; base on different control way from production source, technological process, terminal emission, total discharge control, the control indicators system consists of 10 indicators; to formulate industry VOCs emissions standards, the most effective control way and indicators should be chosen according to characteristics of production process, way of VOCs emissions and possible control measures, etc.

  16. Detection of volatile organic compounds using surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chang, A S; Maiti, A; Ileri, N; Bora, M; Larson, C C; Britten, J A; Bond, T C

    2012-03-22

    The authors present the detection of volatile organic compounds directly in their vapor phase by surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. The type of nanopillars is known as the tapered pillars. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of toluene vapor. The results show that SERS signal from a toluene vapor concentration of ppm level can be achieved, and the toluene vapor can be detected within minutes of exposing the SERS substrate to the vapor. A simple adsorption model is developed which gives results matching the experimental data. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors.

  17. Catabolism of volatile organic compounds influences plant survival.

    Science.gov (United States)

    Oikawa, Patricia Y; Lerdau, Manuel T

    2013-12-01

    Plants emit a diverse array of phytogenic volatile organic compounds (VOCs). The production and emission of VOCs has been an important area of research for decades. However, recent research has revealed the importance of VOC catabolism by plants and VOC degradation in the atmosphere for plant growth and survival. Specifically, VOC catabolism and degradation have implications for plant C balance, tolerance to environmental stress, plant signaling, and plant-atmosphere interactions. Here we review recent advances in our understanding of VOC catabolism and degradation, propose experiments for investigating VOC catabolism, and suggest ways to incorporate catabolism into VOC emission models. Improving our knowledge of VOC catabolism and degradation is crucial for understanding plant metabolism and predicting plant survival in polluted environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Volatile Organic Compound Optical Fiber Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Francisco J. Arregui

    2006-11-01

    Full Text Available Volatile organic compound (VOC detection is a topic of growing interest withapplications in diverse fields, ranging from environmental uses to the food or chemicalindustries. Optical fiber VOC sensors offering new and interesting properties whichovercame some of the inconveniences found on traditional gas sensors appeared over twodecades ago. Thanks to its minimum invasive nature and the advantages that optical fiberoffers such as light weight, passive nature, low attenuation and the possibility ofmultiplexing, among others, these sensors are a real alternative to electronic ones inelectrically noisy environments where electronic sensors cannot operate correctly. In thepresent work, a classification of these devices has been made according to the sensingmechanism and taking also into account the sensing materials or the different methods offabrication. In addition, some solutions already implemented for the detection of VOCsusing optical fiber sensors will be described with detail.

  19. Flux Measurements of Volatile Organic Compounds from an Urban Landscape

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, E.; Lamb, Brian K.; Pressley, S.; Allwine, Eugene J.; Westberg, Halvor; Jobson, B Tom T.; Alexander, M. Lizabeth; Prazeller, Peter; Molina, Luisa; Molina, Mario J.

    2005-10-19

    Direct measurements of volatile organic compound (VOC) emissions that include all anthropogenic and biogenic emission sources in urban areas are a missing requirement to evaluate emission inventories and constrain current photochemical modelling practices. Here we demonstrate the use of micrometeorological techniques coupled with fast-response sensors to measure urban VOC fluxes from a neighborhood of Mexico City, where the spatial variability of surface cover and roughness is high. Fluxes of olefins, methanol, acetone, toluene and C2-benzenes were measured and compared with the local gridded emission inventory. VOC fluxes exhibited a clear diurnal pattern with a strong relationship to vehicular traffic. Recent photochemical modeling results suggest that VOC emissions are significantly underestimated in Mexico City1, but the measured VOC fluxes described here indicate that the official emission inventory2 is essentially correct. Thus, other explanations are needed to explain the photochemical modelling results.

  20. Emissions of volatile sulfur compounds (VSCs) throughout wastewater biosolids processing.

    Science.gov (United States)

    Fisher, R M; Le-Minh, N; Alvarez-Gaitan, J P; Moore, S J; Stuetz, R M

    2017-11-02

    Volatile sulfur compounds (VSCs) are important contributors to nuisance odours from the processing of wastewater sludge and biosolids. However, emission characteristics are difficult to predict as they vary between sites and are likely to be affected by biosolids processing configuration and operation. VSC emissions from biosolids throughout 6 wastewater treatment plants (WWTPs) in Sydney, Australia were examined in this study. H2S was the VSC found at the highest concentrations throughout the WWTPs, with concentrations ranging from 7 to 39,000μg/m(3). Based on odour activity values (OAVs), H2S was typically also the most dominant odorant. However, methyl mercaptan (MeSH) was also found to be sensorially important in the biosolids storage areas given its low odour detection threshold (ODT). High concentrations of VOSCs such as MeSH in the storage areas were shown to potentially interfere with H2S measurements using the Jerome 631-X H2S sensor and these interferences should be investigated in more detail. The VSC composition of emissions varied throughout biosolids processing as well as between the different WWTPs. The primary sludge and biosolids after dewatering and during storage, were key stages producing nuisance odours as judged by the determination of OAVs. Cluster analysis was used to group sampling locations according to VSC emissions. These groups were typically the dewatered and stored biosolids, primary and thickened primary sludge, and waste activated sludge (WAS), thickened WAS, digested sludge and centrate. Effects of biosolids composition and process operation on VSC emissions were evaluated using best subset regression. Emissions from the primary sludge were dominated by H2S and appeared to be affected by the presence of organic matter, pH and Fe content. While volatile organic sulfur compounds (VOSCs) emitted from the produced biosolids were shown to be correlated with upstream factors such as Fe and Al salt dosing, anaerobic digestion and

  1. Global simulation of aromatic volatile organic compounds in the atmosphere

    Science.gov (United States)

    Cabrera Perez, David; Taraborrelli, Domenico; Pozzer, Andrea

    2015-04-01

    Among the large number of chemical compounds in the atmosphere, the organic group plays a key role in the tropospheric chemistry. Specifically the subgroup called aromatics is of great interest. Aromatics are the predominant trace gases in urban areas due to high emissions, primarily by vehicle exhausts and fuel evaporation. They are also present in areas where biofuel is used (i.e residential wood burning). Emissions of aromatic compounds are a substantial fraction of the total emissions of the volatile organic compounds (VOC). Impact of aromatics on human health is very important, as they do not only contribute to the ozone formation in the urban environment, but they are also highly toxic themselves, especially in the case of benzene which is able to trigger a range of illness under long exposure, and of nitro-phenols which cause detrimental for humans and vegetation even at very low concentrations. The aim of this work is to assess the atmospheric impacts of aromatic compounds on the global scale. The main goals are: lifetime and budget estimation, mixing ratios distribution, net effect on ozone production and OH loss for the most emitted aromatic compounds (benzene, toluene, xylenes, ethylbenzene, styrene and trimethylbenzenes). For this purpose, we use the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model to build the global atmospheric budget for the most emitted and predominant aromatic compounds in the atmosphere. A set of emissions was prepared in order to include biomass burning, vegetation and anthropogenic sources of aromatics into the model. A chemical mechanism based on the Master Chemical Mechanism (MCM) was developed to describe the chemical oxidation in the gas phase of these aromatic compounds. MCM have been reduced in terms of number of chemical equation and species in order to make it affordable in a 3D model. Additionally other features have been added, for instance the production of HONO via ortho

  2. Volatile Organic Compounds Sensing Using Optical Fibre Long Period Grating with Mesoporous Nano-Scale Coating

    National Research Council Canada - National Science Library

    Hromadka, Jiri; Korposh, Sergiy; Partridge, Matthew; James, Stephen; Davis, Frank; Crump, Derrick; Tatam, Ralph

    2017-01-01

      A long period grating (LPG) modified with a mesoporous film infused with a calixarene as a functional compound was employed for the detection of individual volatile organic compounds (VOCs) and their mixtures...

  3. [Metabolism and gene regulation of important volatile sulfur compounds in wine--a review].

    Science.gov (United States)

    Ma, Jie; Liu, Yanlin

    2011-01-01

    Wine microbes can produce volatile sulfur compounds during wine fermentation. The main volatile sulfur compounds found in wine are hydrogen sulfide, sulfides, thiol, thiolesters, sulful-containing fusel alcohols, sulful-containing heterocycles and "fruity volatile thiols". They can affect the wine flavor dramatically. Metabolism pathways and related gene regulations of these compounds are discussed in this review. This review also proposes that research on wine microbes is an effective way to increase concentrations of flavor compounds in wine and inhibit undesirable off-flavor compounds at the same time.

  4. Volatile organic compounds in fourteen U.S. retail stores.

    Science.gov (United States)

    Nirlo, E L; Crain, N; Corsi, R L; Siegel, J A

    2014-10-01

    Retail buildings have a potential for both short-term (customer) and long-term (occupational) exposure to indoor pollutants. However, little is known about volatile organic compound (VOC) concentrations in the retail sector and influencing factors, such as ventilation, in-store activities, and store type. We measured VOC concentrations and ventilation rates in 14 retail stores in Texas and Pennsylvania. With the exception of formaldehyde and acetaldehyde, VOCs were present in retail stores at concentrations well below health guidelines. Indoor formaldehyde concentrations ranged from 4.6 ppb to 67 ppb. The two mid-sized grocery stores in the sample had the highest levels of ethanol and acetaldehyde, with concentrations up to 2.6 ppm and 92 ppb, respectively, possibly due to the preparation of dough and baking activities. Indoor-to-outdoor concentration ratios indicated that indoor sources were the main contributors to indoor VOC concentrations for the majority of compounds. There was no strong correlation between ventilation and VOC concentrations across all stores. However, increasing the air exchange rates at two stores led to lower indoor VOC concentrations, suggesting that ventilation can be used to reduce concentrations for some specific stores. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Novel collection method for volatile organic compounds (VOCs) from dogs.

    Science.gov (United States)

    Holderman, Chris J; Kaufman, Phillip E; Booth, Matthew M; Bernier, Ulrich R

    2017-09-01

    Host derived chemical cues are an important aspect of arthropod attraction to potential hosts. Host cues that act over longer distances include CO2, heat, and water vapor, while cues such as volatile organic compounds (VOCs) act over closer distances. Domestic dogs are important hosts for disease cycles that include dog heartworm disease vectored by mosquitoes, however the host VOCs utilized by vectors are not well known. Herein we present a novel method that sampled VOCs from a dog host. A Tenax TD stainless steel tube was held near a dog's fur and skin, which collected VOCs that were later desorbed and tentatively identified using a gas chromatograph-mass spectrospectrometer (GC-MS). Background air chemicals were subtracted from the dog sample, resulting in 182 differentiated compounds, a majority of which were identified by ionization fragmentation patterns. Four dogs were sampled and shared 41 of the identified chemicals. VOCs were representative of aliphatics, aromatics, aldehydes, alcohols and carboxylic acids. This chemical characterization method has the potential to identify both individuals and breeds of dogs in addition to other potential uses such as disease diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Constituents of volatile organic compounds of evaporating essential oil

    Science.gov (United States)

    Chiu, Hua-Hsien; Chiang, Hsiu-Mei; Lo, Cho-Ching; Chen, Ching-Yen; Chiang, Hung-Lung

    2009-12-01

    Essential oils containing aromatic compounds can affect air quality when used indoors. Five typical and popular essential oils—rose, lemon, rosemary, tea tree and lavender—were investigated in terms of composition, thermal characteristics, volatile organic compound (VOC) constituents, and emission factors. The activation energy was 6.3-8.6 kcal mol -1, the reaction order was in the range of 0.6-0.8, and the frequency factor was 0.01-0.24 min -1. Toluene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, n-undecane, p-diethylbenzene and m-diethylbenzene were the predominant VOCs of evaporating gas of essential oils at 40 °C. In addition, n-undecane, p-diethylbenzene, 1,2,4-trimethylbenzene, m-diethylbenzene, and 1,2,3-trimethylbenzene revealed high emission factors during the thermogravimetric (TG) analysis procedures. The sequence of the emission factors of 52 VOCs (137-173 mg g -1) was rose ≈ rosemary > tea tree ≈ lemon ≈ lavender. The VOC group fraction of the emission factor of aromatics was 62-78%, paraffins were 21-37% and olefins were less than 1.5% during the TG process. Some unhealthy VOCs such as benzene and toluene were measured at low temperature; they reveal the potential effect on indoor air quality and human health.

  7. Heterogeneous reactions of volatile organic compounds in the atmosphere

    Science.gov (United States)

    Shen, Xiaoli; Zhao, Yue; Chen, Zhongming; Huang, Dao

    2013-04-01

    Volatile organic compounds (VOCs) are of central importance in the atmosphere because of their close relation to air quality and climate change. As a significant sink for VOCs, the fate of VOCs via heterogeneous reactions may explain the big gap between field and model studies. These reactions play as yet unclear but potentially crucial role in atmospheric processes. In order to better evaluate this reaction pathway, we present the first specific review for the progress of heterogeneous reaction studies on VOCs, including carbonyl compounds, organic acids, alcohols, and so on. Our review focuses on the processes for heterogeneous reactions of VOCs under varying experimental conditions, as well as their implications for trace gas and HOx budget, secondary organic aerosol (SOA) formation, physicochemical properties of aerosols, and human health. Finally, we propose the future direction for laboratory studies of heterogeneous chemistry of VOCs that should be carried out under more atmospherically relevant conditions, with a special emphasis on the effects of relative humidity and illumination, the multicomponent reaction systems, and reactivity of aged and authentic particles. In particular, more reliable uptake coefficients, based on the abundant elaborate laboratory studies, appropriate calibration, and logical choice criterion, are urgently required in atmospheric models.

  8. 40 CFR 60.112b - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... organic compounds (VOC). (a) The owner or operator of each storage vessel either with a design capacity...

  9. 40 CFR 60.112a - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.112a Section 60.112a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Commenced After May 18, 1978, and Prior to July 23, 1984 § 60.112a Standard for volatile organic compounds...

  10. 40 CFR 60.312 - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.312 Section 60.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Surface Coating of Metal Furniture § 60.312 Standard for volatile organic compounds (VOC). (a) On and...

  11. 40 CFR 60.112 - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.112 Section 60.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... After June 11, 1973, and Prior to May 19, 1978 § 60.112 Standard for volatile organic compounds (VOC...

  12. 78 FR 78726 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound...

    Science.gov (United States)

    2013-12-27

    ..., Volatile organic compounds. Dated: December 6, 2013. Susan Hedman, Regional Administrator, Region 5. 40 CFR... Organic Compound Emission Control Measures for Industrial Solvent Cleaning for Northwest Indiana AGENCY... approving a request from the Indiana Department of Environmental Management to revise its volatile organic...

  13. 75 FR 57412 - Approval and Promulgation of Implementation Plans Alabama: Volatile Organic Compounds

    Science.gov (United States)

    2010-09-21

    ... ``volatile organic compounds'' (VOCs) found at Alabama Administrative Code section 335-3-1-.02(gggg... AGENCY 40 CFR Part 52 Approval and Promulgation of Implementation Plans Alabama: Volatile Organic Compounds AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to...

  14. 40 CFR 60.542a - Alternate standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... Rubber Tire Manufacturing Industry § 60.542a Alternate standard for volatile organic compounds. (a) On... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Alternate standard for volatile organic compounds. 60.542a Section 60.542a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  15. Determination of volatile compounds of the first rose oil and the first ...

    African Journals Online (AJOL)

    ... respectively, whereas geraniol contents were 11.81% and 15.97%, respectively. Conclusion: These findings suggest that HS-SPME/GC/MS is a suitable technique for the determination of volatile compounds of rose oil and rose water. Keywords: Oil-bearing rose, Rosa damascena, HS-SPME/GC/MS, volatile compounds.

  16. Characterization of volatile compounds in Fen-Daqu - a traditional Chinese liquor fermentation starter

    NARCIS (Netherlands)

    Van-Diep, L.; Zheng, X.; Chen, J.Y.; Han, B.Z.

    2012-01-01

    Fen-Daqu is a saccharifying agent and fermentation starter for the production of Chinese liquor Fen (alcoholic spirit) and Fen traditional vinegar. The volatile compounds produced at seven incubation steps were analysed by HS-SPME-GC-MS. A total of 83 major volatile compounds were identified,

  17. 78 FR 11119 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of trans

    Science.gov (United States)

    2013-02-15

    ... AGENCY 40 CFR Part 51 RIN 2060-AQ38 Air Quality: Revision to Definition of Volatile Organic Compounds...: Proposed rule. SUMMARY: The EPA is proposing to revise the definition of volatile organic compounds (VOCs) for purposes of preparing state implementation plans (SIPs) to attain the national ambient air quality...

  18. Microtrapping of volatile organic compounds with carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Chaudhery Mustansar Hussain

    2010-10-01

    Full Text Available Micro-sorbent traps referred to as microtraps serve as integrated concentration-injection devices for continuousmonitoring in gas phase streams. The application of carbon nanotubes as unique sorbents for the fabrication of microtrapsfor the nano-scale adsorption/desorption of volatile organic molecules is presented in this paper. The microtrap applicationrequires high adsorption capacity as well as easy desorbability; the latter being critical for injection mode of these integrateddevices. The micro-sorbent characteristics of single and multi-walled carbon nanotubes for gas phase adsorption/desorptionof several volatile organic compounds like DCM, ethanol and benzene etc. has been studied. The nonporous nature of carbonnanotubes (CNTs eliminates the mass transfer resistance related to diffusion into pore structures, thus allowing easydesorbability. At the same time, their high aspect ratios lead to large breakthrough volumes. As compared to a commercialsorbent carbopackTM, the breakthrough volume was as much as an order of magnitude higher in the CNTs, while the higherrate of desorption measured as the peak width at half height of the desorption band was found nearly eight times lower (i.e.,0.26 seconds with SWNT and 1.89 seconds with carbopackTM. The trapping and desorption characteristics of single andmulti walled nanotubes were found to be comparable. We also found that the presence of disordered carbon impurities,which could be removed by controlled oxidative annealing, could greatly degrade the performance of CNTs. This researchhas suggested that CNTs can be used in micro-sorbent traps and surprisingly enhance the efficiency of the integrated concentration-injection devices. Consequently, this will open the doors to the application of high-capacity, CNTs-based sorbentsas a better alternative to conventional sorbent in continuous monitoring devices.

  19. Ambient Volatile Organic Compounds (VOCs) pollution in Isolo ...

    African Journals Online (AJOL)

    The results from analysis of the air samples collected showed that twenty-six (26) VOCs were captured in Isolo Industrial area. The VOCs were classified thus: aromatics 41%, halogenated 42%, esters 3%, ketones 8%, alcohols 4%, and ethers 2%. There is a significant difference (P < 0.05) between the levels of VOCs in ...

  20. Volatile sulphur compounds elimination: A new insight in periodontal treatment

    Directory of Open Access Journals (Sweden)

    Ernie Maduratna Setiawatie

    2011-12-01

    Full Text Available Background: Recent evidences had demonstrated a link between halitosis and apoptosis in periodontitis. Periodontal pathogenic micro-organisms produce volatile sulphur compounds (VSCs. VSCs are toxic to periodontal tissue. Purpose: The purpose of this paper was to reveal the mechanism of VSCs in periodontal breakdown according to the most recent knowledges. Reviews: Halitosis is mainly attributed to VSCs such as hydrogen sulfide, methyl mercaptan and dimethyl sulfide. Several studies demonstrated a strong relationship between VSCs and periodontal disease progression. VSCs are released from amino acid breakdown from food, protein, cells, blood and saliva. In prone subjects, the VSCs may cause alteration in tissue integrity by increasing its permeability and facilitate the endotoxin to penetrate the tissue barrier. They may also causing apoptotic in gingival and periodontal tissue, which are considered the main pathogenesis in aggravating the periodontitis. VSCs may also initiate the increase of proinflammatory cytokines which is considered to have negative effects in host response. Conclusion: VSCs had been shown to have detrimental effects in gingival and periodontal ligament cells. The use of chlorine dioxine agent and topical antioxidant is beneficial in controlling the periodontal disease severity.Latar belakang: Penelitian terakhir menunjukkan adanya hubungan antara halitosis dengan terjadinya apoptosis pada periodontitis. Mikroorganisme penyebab periodontitis memproduksi volatile sulphur compounds (VSCs yang bersifat toksik terhadap jaringan periodontal. Tujuan: Tujuan penulisan ini adalah membahas mekanisme VSCs dalam menyebabkan kerusakan periodontal berdasarkan penelitian terakhir yang ada. Tinjauan pustaka: Halitosis seringkali dikaitkan dengan timbulnya VSCs seperti hidrogen sulfida, metil merkaptan, dan dimetil sulfida. Penelitian terakhir menunjukkan bahwa VSCs yang dilepaskan dari pemecahan asam amino makanan ternyata memiliki

  1. Urinary Volatile Organic Compounds for the Detection of Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Tanzeela Khalid

    Full Text Available The aim of this work was to investigate volatile organic compounds (VOCs emanating from urine samples to determine whether they can be used to classify samples into those from prostate cancer and non-cancer groups. Participants were men referred for a trans-rectal ultrasound-guided prostate biopsy because of an elevated prostate specific antigen (PSA level or abnormal findings on digital rectal examination. Urine samples were collected from patients with prostate cancer (n = 59 and cancer-free controls (n = 43, on the day of their biopsy, prior to their procedure. VOCs from the headspace of basified urine samples were extracted using solid-phase micro-extraction and analysed by gas chromatography/mass spectrometry. Classifiers were developed using Random Forest (RF and Linear Discriminant Analysis (LDA classification techniques. PSA alone had an accuracy of 62-64% in these samples. A model based on 4 VOCs, 2,6-dimethyl-7-octen-2-ol, pentanal, 3-octanone, and 2-octanone, was marginally more accurate 63-65%. When combined, PSA level and these four VOCs had mean accuracies of 74% and 65%, using RF and LDA, respectively. With repeated double cross-validation, the mean accuracies fell to 71% and 65%, using RF and LDA, respectively. Results from VOC profiling of urine headspace are encouraging and suggest that there are other metabolomic avenues worth exploring which could help improve the stratification of men at risk of prostate cancer. This study also adds to our knowledge on the profile of compounds found in basified urine, from controls and cancer patients, which is useful information for future studies comparing the urine from patients with other disease states.

  2. Can exhaled volatile organic compounds predict asthma exacerbations in children?

    Science.gov (United States)

    van Vliet, Dillys; Smolinska, Agnieszka; Jöbsis, Quirijn; Rosias, Philippe; Muris, Jean; Dallinga, Jan; Dompeling, Edward; van Schooten, Frederik-Jan

    2017-03-01

    Asthma control does not yet meet the goals of asthma management guidelines. Non-invasive monitoring of airway inflammation may help to improve the level of asthma control in children. (1) To identify a set of exhaled volatile organic compounds (VOCs) that is most predictive for an asthma exacerbation in children. (2) To elucidate the chemical identity of predictive biomarkers. In a one-year prospective observational study, 96 asthmatic children participated . During clinical visits at 2 month intervals, asthma control, fractional exhaled nitric oxide, lung function (FEV1, FEV1/VC) and VOCs in exhaled breath were determined by means of gas chromatography time-of-flight mass spectrometry. Random Forrest classification modeling was used to select predictive VOCs, followed by plotting of receiver operating characteristic-curves (ROC-curves). An inverse relationship was found between the predictive power of a set of VOCs and the time between sampling of exhaled breath and the onset of exacerbation. The sensitivity and specificity of the model predicting exacerbations 14 days after sampling were 88% and 75%, respectively. The area under the ROC-curve was 90%. The sensitivity for prediction of asthma exacerbations within 21 days after sampling was 63%. In total, 7 VOCs were selected for the classification model: 3 aldehydes, 1 hydrocarbon, 1 ketone, 1 aromatic compound, and 1 unidentified VOC. VOCs in exhaled breath showed potential for predicting asthma exacerbations in children within 14 days after sampling. Before using this in clinical practice, the validity of predicting asthma exacerbations should be studied in a larger cohort.

  3. Haloperoxidase-like activity in spruce forest soil. A source of volatile halogenated organic compounds?

    DEFF Research Database (Denmark)

    Laturnus, F.; Mehrtens, G.; Grøn, C.

    1995-01-01

    Haloperoxidase-like activity was monitored in samples from a podzol soil in an uncontaminated spruce forest at Klosterhede, Denmark. Activity for the oxidation of chloride and bromide was found. The pH optima for chlorination and bromination ranged between pH 2.5 and 4: Very high activity, up to ...

  4. [Volatile organic compounds (VOCs) emitted from large furniture].

    Science.gov (United States)

    Tanaka-Kagawa, Toshiko; Furuta, Mitsuko; Shibatsuji, Masayoshi; Jinno, Hideto; Nishimura, Tetsuji

    2011-01-01

    Indoor air pollution by volatile organic compounds (VOCs), which may cause a hazardous influence on human being such as sick building (sick house) syndrome, has become a serious problem. In this study, VOCs emitted from nine pieces of home furniture, three sets of dining tables, three sets of chest of drawers and three sofas, were analyzed as potential sources of indoor air pollution by large chamber test method (JIS A 1911). Based on the emission rates of total VOC (TVOC), the impacts on the indoor TVOC was estimated by the sample model with a volume of 20 m3 and ventilation frequency of 0.5 times/h. The estimated TVOC increment values were exceeded the provisional target value for indoor air (400 microg/m3) in three sets of dining tables, one set of chest of drawer and one sofa. The estimated increment of formaldehyde were exceeded the guideline value (100 microg/m3) in one set of dining table, two sets of chest of drawers and one sofa. These results revealed that VOC emissions from furniture may influence significantly indoor air quality. Also, in this study, to establish the alternative method for large chamber test methods, emission rates from representative three parts of furniture unit were evaluated using the small chamber and emission rate from full-sized furniture was predicted. Emission rates of TVOC and formaldehyde predicted by small chamber test were 3-46% and 6-252% of the data obtained using large chamber test, respectively.

  5. Measurements of volatile organic compounds over West Africa

    Directory of Open Access Journals (Sweden)

    J. G. Murphy

    2010-06-01

    Full Text Available In this paper we describe measurements of volatile organic compounds (VOC made using a Proton Transfer Reaction Mass Spectrometer (PTR-MS aboard the UK Facility for Atmospheric Airborne Measurements during the African Monsoon Multidisciplinary Analyses (AMMA campaign. Observations were made during approximately 85 h of flying time between 17 July and 17 August 2006, above an area between 4° N and 18° N and 3° W and 4° E, encompassing ocean, mosaic forest, and the Sahel desert. High time resolution observations of counts at mass to charge (m/z ratios of 42, 59, 69, 71, and 79 were used to calculate mixing ratios of acetonitrile, acetone, isoprene, the sum of methyl vinyl ketone and methacrolein, and benzene respectively using laboratory-derived humidity-dependent calibration factors. Strong spatial associations between vegetation and isoprene and its oxidation products were observed in the boundary layer, consistent with biogenic emissions followed by rapid atmospheric oxidation. Acetonitrile, benzene, and acetone were all enhanced in airmasses which had been heavily influenced by biomass burning. Benzene and acetone were also elevated in airmasses with urban influence from cities such as Lagos, Cotonou, and Niamey. The observations provide evidence that both deep convection and mixing associated with fair-weather cumulus were responsible for vertical redistribution of VOC emitted from the surface. Profiles over the ocean showed a depletion of acetone in the marine boundary layer, but no significant decrease for acetonitrile.

  6. Emission of volatile organic compounds from Portuguese eucalyptus forests

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, T.V.; Pio, C.A. [Universidade de Aveiro (Portugal). Dept. de Ambiente e Ordenamento

    2001-07-01

    Emission to the atmosphere of volatile organic compounds (VOCs) by Eucalyptus globulus was studied in the laboratory with young specimen, and in the field with adult trees. Eucalyptus emits both monoterpenes and isoprene. The leaves of young trees emit at higher rates than the leaves of adult trees. The emission of isoprene is highly predominant during the day. The emission of isoprene is dependent on temperature and solar radiation. The emission rate follows the Guenther algorithm if a based emission factor of 32 {mu}gg{sub dw} {sup -1}h{sup -1} is used, increasing with temperature, to a maximum at 40{sup o}C. At higher temperatures there is a decrease in the emission rate. The main C{sub 10} emitted is 1,8-cineol. Cineol emissions increase exponentially with temperature, and are also seasonally dependent. Application of the emission algorithm to the Portuguese eucalyptus forests shows that during summer isoprene and monoterpene emissions by eucalyptus are of the same order of anthropogenic VOC production. Furthermore, in certain regions, in the center-north of Portugal, where eucalyptus forests are predominant, isoprene emissions can reach an order of magnitude higher than anthropogenic production of VOCs during daytime periods in July and August. (Author)

  7. Measurements of volatile organic compounds over West Africa

    Science.gov (United States)

    Murphy, J. G.; Oram, D. E.; Reeves, C. E.

    2010-06-01

    In this paper we describe measurements of volatile organic compounds (VOC) made using a Proton Transfer Reaction Mass Spectrometer (PTR-MS) aboard the UK Facility for Atmospheric Airborne Measurements during the African Monsoon Multidisciplinary Analyses (AMMA) campaign. Observations were made during approximately 85 h of flying time between 17 July and 17 August 2006, above an area between 4° N and 18° N and 3° W and 4° E, encompassing ocean, mosaic forest, and the Sahel desert. High time resolution observations of counts at mass to charge (m/z) ratios of 42, 59, 69, 71, and 79 were used to calculate mixing ratios of acetonitrile, acetone, isoprene, the sum of methyl vinyl ketone and methacrolein, and benzene respectively using laboratory-derived humidity-dependent calibration factors. Strong spatial associations between vegetation and isoprene and its oxidation products were observed in the boundary layer, consistent with biogenic emissions followed by rapid atmospheric oxidation. Acetonitrile, benzene, and acetone were all enhanced in airmasses which had been heavily influenced by biomass burning. Benzene and acetone were also elevated in airmasses with urban influence from cities such as Lagos, Cotonou, and Niamey. The observations provide evidence that both deep convection and mixing associated with fair-weather cumulus were responsible for vertical redistribution of VOC emitted from the surface. Profiles over the ocean showed a depletion of acetone in the marine boundary layer, but no significant decrease for acetonitrile.

  8. Volatile organic compounds adsorption using different types of adsorbent

    Directory of Open Access Journals (Sweden)

    Pimanmes Chanayotha

    2014-09-01

    Full Text Available Adsorbents were synthesized from coconut shell, coal and coke by pyrolysis followed by chemical activation process. These synthesized materials were used as adsorbents in adsorption test to determine the amount of volatile organic compounds (VOCs namely, 2-Hydroxyethyl methacrylate (HEMA, Octamethylcyclotetrasiloxane and Alkanes standard solution (C8-C20. The adsorption capacities of both synthesized adsorbents and commercial grade adsorbents (Carbotrap™ B and Carbotrap™ C were also compared. It was found that adsorbent A402, which was produced from coconut shell, activated with 40% (wt. potassium hydroxide and at activating temperature of 800°C for 1 hr, could adsorb higher amount of both HEMA and Octamethylcyclotetrasiloxane than other synthesized adsorbents. The maximum adsorption capacity of adsorbent A402 in adsorbing HEMA and Octamethylcyclotetrasiloxane were 77.87% and 50.82% respectively. These adsorption capabilities were 79.73% and 70.07% of the adsorption capacity of the commercial adsorbent Carbotrap™ B respectively. All three types of the synthesized adsorbent (A402, C302, C402 showed the capability to adsorb alkanes standard solution through the range of C8-C20 . However, their adsorption capacities were high in a specific range of C10-C11. The result from the isotherm plot was indicated that surface adsorption of synthesized adsorbent was isotherm type I while the surface adsorption of commercial adsorbent was isotherm type III.

  9. [Research advances on volatile organic compounds emission inventory of plants].

    Science.gov (United States)

    Xie, Jun-Fei; Li, Yan-Ming

    2013-12-01

    Reference to relative literatures in recent years, model building and calculation on volatile organic compound (VOC) emission inventory of plants were summarized in different spatial scales, the total annual VOC emission amounts from Vegetation in China are in the range from 12.4 Tg x a(-1) to 28.4 Tg x a(-1). For garden plants in Beijing, the annual VOC emissions are approximately 38 500 tons C in 2000. Furthermore, in order to determine reduction strategies for Beijing urban atmospheric major pollutants, the contribution of garden plant VOC emissions to the ozone and secondary organic aerosol (SOA) formation was presented, compared to garden plant in the same period, the largest contribution to ozone formation comes from aromatic hydrocarbons and olefin which are exhausted from anthropogenic activity, besides, the aromatic hydrocarbons exhausted from anthropogenic activity is also a main contribution source for the potential formation of SOA. In the meantime, it is suggested to focus on emission control of VOCs which are emitted from urban anthropogenic sources.

  10. Evolution of Volatile Sulfur Compounds during Wine Fermentation.

    Science.gov (United States)

    Kinzurik, Matias I; Herbst-Johnstone, Mandy; Gardner, Richard C; Fedrizzi, Bruno

    2015-09-16

    Volatile sulfur compounds (VSCs) play a significant role in the aroma of foods and beverages. With very low sensory thresholds and strong unpleasant aromas, most VSCs are considered to have a negative impact on wine quality. In this study, headspace solid phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS) was used to analyze the time course of the biosynthesis of 12 VSCs formed during wine fermentation. Two different strains of Saccharomyces cerevisiae, the laboratory strain BY4743 and a commercial strain, F15, were assessed using two media: synthetic grape media and Sauvignon Blanc juice. Seven VSCs were detected above background, with three rising above their sensory thresholds. The data revealed remarkable differences in the timing and evolution of production during fermentation, with a transient spike in methanethiol production early during anaerobic growth. Heavier VSCs such as benzothiazole and S-ethyl thioacetate were produced at a steady rate throughout grape juice fermentation, whereas others, such as diethyl sulfide, appear toward the very end of the winemaking process. The results also demonstrate significant differences between yeast strains and fermentation media.

  11. Volatile organic compounds in ventilated critical care patients: a systematic evaluation of cofactors.

    Science.gov (United States)

    Hüppe, Tobias; Lorenz, Dominik; Wachowiak, Mario; Maurer, Felix; Meiser, Andreas; Groesdonk, Heinrich; Fink, Tobias; Sessler, Daniel I; Kreuer, Sascha

    2017-08-22

    Expired gas (exhalome) analysis of ventilated critical ill patients can be used for drug monitoring and biomarker diagnostics. However, it remains unclear to what extent volatile organic compounds are present in gases from intensive care ventilators, gas cylinders, central hospital gas supplies, and ambient air. We therefore systematically evaluated background volatiles in inspired gas and their influence on the exhalome. We used multi-capillary column ion-mobility spectrometry (MCC-IMS) breath analysis in five mechanically ventilated critical care patients, each over a period of 12 h. We also evaluated volatile organic compounds in inspired gas provided by intensive care ventilators, in compressed air and oxygen from the central gas supply and cylinders, and in the ambient air of an intensive care unit. Volatiles detectable in both inspired and exhaled gas with patient-to-inspired gas ratios compounds. A total of 76 unique MCC-IMS signals were detected, with 39 being identified volatile compounds: 73 signals were from the exhalome, 12 were identified in inspired gas from critical care ventilators, and 34 were from ambient air. Five volatile compounds were identified from the central gas supply, four from compressed air, and 17 from compressed oxygen. We observed seven contaminating volatiles with patient-to-inspired gas ratios Volatile organic compounds can be present in gas from central hospital supplies, compressed gas tanks, and ventilators. Accurate assessment of the exhalome in critical care patients thus requires frequent profiling of inspired gases and appropriate normalisation of the expired signals.

  12. Microcantilever sensors coated with a sensitive polyaniline layer for detecting volatile organic compounds.

    Science.gov (United States)

    Steffens, C; Leite, F L; Manzoli, A; Sandovall, R D; Fatibello, O; Herrmann, P S P

    2014-09-01

    This paper describes a silicon cantilever sensor coated with a conducting polymer layer. The mechanical response (deflection) of the bimaterial (the coated microcantilever) was investigated under the influence of several volatile compounds-methanol, ethanol, acetone, propanol, dichloroethane, toluene and benzene. The variations in the deflection of the coated and uncoated microcantilevers when exposed to volatile organic compounds were evaluated, and the results indicated that the highest sensitivity was obtained with the coated microcantilever and methanol. The uncoated microcantilever was not sensitive to the volatile organic compounds. An increase in the concentration of the volatile organic compound resulted in higher deflections of the microcantilever sensor. The sensor responses were reversible, sensible, rapid and proportional to the volatile concentration.

  13. Changes in volatile compounds and some physicochemical properties of European cranberrybush (Viburnum opulus L.) during ripening through traditional fermentation.

    Science.gov (United States)

    Yilmaztekin, Murat; Sislioglu, Kubra

    2015-04-01

    The changes in volatile compounds and some physicochemical properties of European Cranberrybush (Viburnum opulus L.) were investigated during traditional fermentation. Using the principal component analysis (PCA), relations between volatile compounds and fermentation were associated with dynamics of these compounds. In total, 58 volatile compounds were identified, 3-methylbutanoic acid (25.4% to 66.4% of identified volatile compounds) being the major constituent in raw, 2-, 3-, and 4-mo fermented European Cranberrybush fruits, while 2-octanone was dominant in 1-mo fermented sample with a 30% of the total identified volatiles. The amount of total volatile compounds was increased in the 1st month of fermentation and then decreased gradually in the following months. Acids were the dominant volatile compounds in raw and 3- to 4-mo fermented European Cranberrybush. Ketones and alcohols had the highest percentage in total volatile compounds in the 2nd and 3rd months of fermentation, respectively. © 2015 Institute of Food Technologists®

  14. Distribution of aroma volatile compounds in tangerine hybrids and proposed inheritance.

    Science.gov (United States)

    Miyazaki, Takayuki; Plotto, Anne; Goodner, Kevin; Gmitter, Fred G

    2011-02-01

    With the desirable combination of sugars and acids, volatile compounds contribute to the essential organoleptic attributes of citrus. This study evaluated the aroma volatiles of 20 tangerine hybrids of the University of Florida breeding program. Volatiles were sampled from hand-squeezed juice by headspace solid-phase microextraction (SPME), and analyzed by gas chromatography-mass spectrometry. Principal component analysis (PCA) and cluster analysis (CA) were used to find similarities among samples due to volatile composition with effect of genetic background. In total, 203 volatiles were detected in all samples. Volatiles in lower amounts were widely distributed among samples and were classified mainly as terpene hydrocarbons and oxygenated compounds, such as aldehydes, esters, alcohols and ketones. PCA, based on relative peak areas (content) clearly separated the samples higher in volatile content, mainly those with sweet orange genetic contributions in their background. CA, based on volatile presence/absence, grouped samples into five clusters, each showing distinctive volatile profiles. The genetic background of tangerine hybrids affected volatile composition and content of samples. In general, tangerines were characterized by fewer volatiles (in both quality and quantity) and more aldehydes, and hybrids with sweet orange in their background had more sesquiterpenes and esters, which would likely affect their aroma. Published 2010 by John Wiley & Sons, Ltd.

  15. Novel Set-Up for Low-Disturbance Sampling of Volatile and Non-volatile Compounds from Plant Roots.

    Science.gov (United States)

    Eilers, Elisabeth J; Pauls, Gerhard; Rillig, Matthias C; Hansson, Bill S; Hilker, Monika; Reinecke, Andreas

    2015-03-01

    Most studies on rhizosphere chemicals are carried out in substrate-free set-ups or in artificial substrates using sampling methods that require an air flow and may thus cause disturbance to the rhizosphere. Our study aimed to develop a simplified and inexpensive system that allows analysis of rhizosphere chemicals at experimentally less disturbed conditions. We designed a mesocosm in which volatile rhizosphere chemicals were sampled passively (by diffusion) without air- and water flow on polydimethylsiloxane-(PDMS) tubes. Dandelion (Taraxacum sect. ruderalia) was used as model plant; roots were left undamaged. Fifteen volatiles were retrieved from the sorptive material by thermal desorption for analysis by gas chromatography/mass spectrometry (GC/MS). Furthermore, three sugars were collected from the rhizosphere substrate by aqueous extraction and derivatized prior to GC/MS analysis. In order to study how the quantity of detected rhizosphere compounds depends on the type of soil or substrate, we determined the matrix-dependent recovery of synthetic rhizosphere chemicals. Furthermore, we compared sorption of volatiles on PDMS tubes with and without direct contact to the substrate. The results show that the newly designed mesocosm is suitable for low-invasive extraction of volatile and non-volatile compounds from rhizospheres. We further highlight how strongly the type of substrate and contact of PDMS tubes to the substrate affect the detectability of compounds from rhizospheres.

  16. Gas-phase photocatalytic oxidation of volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kachina, A.

    2008-07-01

    Substances emitted into the atmosphere by human activities in urban and industrial areas cause environmental problems such as air quality degradation, respiratory diseases, climate change, global warming, and stratospheric ozone depletion. Volatile organic compounds (VOCs) are major air pollutants, emitted largely by industry, transportation and households. Many VOCs are toxic, and some are considered to be carcinogenic, mutagenic, or teratogenic. A wide spectrum of VOCs is readily oxidized photocatalytically. Photocatalytic oxidation (PCO) over titanium dioxide may present a potential alternative to air treatment strategies currently in use, such as adsorption and thermal treatment, due to its advantageous activity under ambient conditions, although higher but still mild temperatures may also be applied. The objective of the present research was to disclose routes of chemical reactions, estimate the kinetics and the sensitivity of gas-phase PCO to reaction conditions in respect of air pollutants containing heteroatoms in their molecules. Deactivation of the photocatalyst and restoration of its activity was also taken under consideration to assess the practical possibility of the application of PCO to the treatment of air polluted with VOCs. UV-irradiated titanium dioxide was selected as a photocatalyst for its chemical inertness, non-toxic character and low cost. In the present work Degussa P25 TiO{sub 2} photocatalyst was mostly used. In transient studies platinized TiO{sub 2} was also studied. The experimental research into PCO of following VOCs was undertaken: - methyl tert-butyl ether (MTBE) as the basic oxygenated motor fuel additive and, thus, a major non-biodegradable pollutant of groundwater; - tert-butyl alcohol (TBA) as the primary product of MTBE hydrolysis and PCO; - ethyl mercaptan (ethanethiol) as one of the reduced sulphur pungent air pollutants in the pulp-and-paper industry; - methylamine (MA) and dimethylamine (DMA) as the amino compounds often

  17. Classification of Chinese Rice Wine According to Geographic Origin and Wine Age Based on Chemometric Methods and SBSE-TD-GC-MS Analysis of Volatile Compounds

    National Research Council Canada - National Science Library

    Xiao, Zuobing; Dai, Xin; Zhu, Jiancai; Yu, Haiyan

    2015-01-01

    ...) was used for the determination of volatile compounds. A total of 63 volatile compounds were identified, including 30 esters, 9 alcohols, 9 aldehydes, 7 acids, 4 ketones, 3 volatile phenols and 1 miscellaneous compound...

  18. Development of the colorimetric sensor array for detection of explosives and volatile organic compounds in air

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Alstrøm, Tommy Sonne; Johnsen, C

    2010-01-01

    In the framework of the research project 'Xsense' at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT and TNT, and identification of volatile organic compounds in the presence of water vapor in air...... a color difference map which gives a unique fingerprint for each explosive and volatile organic compound. Such sensing technology can be used to screen for relevant explosives in a complex background as well as to distinguish mixtures of volatile organic compounds distributed in gas phase. This sensor...... array is inexpensive, and can potentially be produced as single use disposable....

  19. Ethanol as Internal Standard for Quantitative Determination of Volatile Compounds in Spirit Drinks by Gas Chromatography

    CERN Document Server

    Charapitsa, Siarhei V; Kulevich, Nikita V; Makoed, Nicolai M; Mazanik, Arkadzi L; Sytova, Svetlana N

    2012-01-01

    The new methodical approach of using ethanol as internal standard in gas chromatographic analysis of volatile compounds in spirit drinks in daily practice of testing laboratories is proposed. This method provides determination of volatile compounds concentrations in spirit drinks directly expressed in milligrams per liter (mg/L) of absolute alcohol according to official methods without measuring of alcohol strength of analyzed sample. The experimental demonstration of this method for determination of volatile compounds in spirit drinks by gas chromatography is described. Its validation was carried out by comparison with experimental results obtained by internal standard method and external standard method.

  20. Peat fires and air quality: volatile organic compounds and particulates.

    Science.gov (United States)

    Blake, D; Hinwood, A L; Horwitz, P

    2009-07-01

    There are numerous localized peat deposits on the Swan Coastal Plain, an urban and rural bioregion otherwise dominated by wetland ecosystems in southwestern Australia. Hydrological change is significant in the bioregion: urban development encroaches on wetlands, groundwater extraction provides the city population with most of its water, and rainfall declines will not recharge aquifers in the future. The wetland processes which contribute to the formation of these peat deposits have therefore changed and are becoming vulnerable to fire events with residents increasingly exposed to peat smoke. There is an imperative to characterise this peat smoke to determine if exposures are harmful or toxic, and opportunities to do so in this setting arise due to the absence of bushfire smoke which has confounded other international studies. We have measured volatile organic compounds (VOCs) and particulate concentrations from an opportunistic assessment of two peat fires. SUMMA canister grab samples and a portable GCMS were used to determine the VOCs with high 1h benzene concentrations of 16 and 30 ppm v/v. PM10 and PM2.5 particulate data were collected using an Osiris continuous analyser with 24h concentrations recorded at varying time periods (within a 5 months timeframe) ranging from 1h maximums of between 23-37 microgm(-3) for PM10 and 50.5-106 microgm(-3) for PM2.5. While the 24h averages were generally below national air quality standards, elevated 1h concentrations were observed on numerous occasions and on most days. Given the proximity of residential development to many peat deposits, a drying climate and the increased risk of arson in peri-urban environments, the health impacts of exposure to peat smoke need to be determined and if necessary measures developed to prevent exposure (which would include maintaining wetland sediment integrity so as to reduce its vulnerability to fire).

  1. Diagnosing Tibetan pollutant sources via volatile organic compound observations

    Science.gov (United States)

    Li, Hongyan; He, Qiusheng; Song, Qi; Chen, Laiguo; Song, Yongjia; Wang, Yuhang; Lin, Kui; Xu, Zhencheng; Shao, Min

    2017-10-01

    Atmospheric transport of black carbon (BC) from surrounding areas has been shown to impact the Tibetan environment, and clarifying the geographical source and receptor regions is crucial for providing guidance for mitigation actions. In this study, 10 trace volatile organic compounds (VOCs) sampled across Tibet are chosen as proxies to diagnose source regions and related transport of pollutants to Tibet. The levels of these VOCs in Tibet are higher than those in the Arctic and Antarctic regions but much lower than those observed at many remote and background sites in Asia. The highest VOC level is observed in the eastern region, followed by the southern region and the northern region. A positive matrix factorization (PMF) model found that three factors-industry, biomass burning, and traffic-present different spatial distributions, which indicates that different zones of Tibet are influenced by different VOC sources. The average age of the air masses in the northern and eastern regions is estimated to be 3.5 and 2.8 days using the ratio of toluene to benzene, respectively, which indicates the foreign transport of VOC species to those regions. Back-trajectory analyses show that the Afghanistan-Pakistan-Tajikistan region, Indo-Gangetic Plain (IGP), and Meghalaya-Myanmar region could transport industrial VOCs to different zones of Tibet from west to east. The agricultural bases in northern India could transport biomass burning-related VOCs to the middle-northern and eastern zones of Tibet. High traffic along the unique national roads in Tibet is associated with emissions from local sources and neighboring areas. Our study proposes international joint-control efforts and targeted actions to mitigate the climatic changes and effects associated with VOCs in Tibet, which is a climate sensitive region and an important source of global water.

  2. Stable carbon isotope ratios of ambient aromatic volatile organic compounds

    Directory of Open Access Journals (Sweden)

    A. Kornilova

    2016-09-01

    Full Text Available Measurements of mixing ratios and stable carbon isotope ratios of aromatic volatile organic compounds (VOC in the atmosphere were made in Toronto (Canada in 2009 and 2010. Consistent with the kinetic isotope effect for reactions of aromatic VOC with the OH radical the observed stable carbon isotope ratios are on average significantly heavier than the isotope ratios of their emissions. The change of carbon isotope ratio between emission and observation is used to determine the extent of photochemical processing (photochemical age,  ∫ [OH]dt of the different VOC. It is found that  ∫ [OH]dt of different VOC depends strongly on the VOC reactivity. This demonstrates that for this set of observations the assumption of a uniform  ∫ [OH]dt for VOC with different reactivity is not justified and that the observed values for  ∫ [OH]dt are the result of mixing of VOC from air masses with different values for  ∫ [OH]dt. Based on comparison between carbon isotope ratios and VOC concentration ratios it is also found that the varying influence of sources with different VOC emission ratios has a larger impact on VOC concentration ratios than photochemical processing. It is concluded that for this data set the use of VOC concentration ratios to determine  ∫ [OH]dt would result in values for  ∫ [OH]dt inconsistent with carbon isotope ratios and that the concept of a uniform  ∫ [OH]dt for an air mass has to be replaced by the concept of individual values of an average  ∫ [OH]dt for VOC with different reactivity.

  3. Exposure to volatile organic compounds in healthcare settings.

    Science.gov (United States)

    LeBouf, Ryan F; Virji, M Abbas; Saito, Rena; Henneberger, Paul K; Simcox, Nancy; Stefaniak, Aleksandr B

    2014-09-01

    To identify and summarise volatile organic compound (VOC) exposure profiles of healthcare occupations. Personal (n=143) and mobile area (n=207) evacuated canisters were collected and analysed by a gas chromatograph/mass spectrometer to assess exposures to 14 VOCs among 14 healthcare occupations in five hospitals. Participants were volunteers identified by their supervisors. Summary statistics were calculated by occupation. Principal component analysis (PCA) was used to reduce the 14 analyte inputs to five orthogonal factors and identify occupations that were associated with these factors. Linear regressions were used to assess the association between personal and mobile area samples. Exposure profiles differed among occupations; ethanol had the highest geometric mean (GM) among nursing assistants (∼4900 and ∼1900 µg/m(3), personal and area), and 2-propanol had the highest GM among medical equipment preparers (∼4600 and ∼2000 µg/m(3), personal and area). The highest total personal VOC exposures were among nursing assistants (∼9200 µg/m(3)), licensed practical nurses (∼8700 µg/m(3)) and medical equipment preparers (∼7900 µg/m(3)). The influence of the PCA factors developed from personal exposure estimates varied by occupation, which enabled a comparative assessment of occupations. For example, factor 1, indicative of solvent use, was positively correlated with clinical laboratory and floor stripping/waxing occupations and tasks. Overall, a significant correlation was observed (r=0.88) between matched personal and mobile area samples, but varied considerably by analyte (r=0.23-0.64). Healthcare workers are exposed to a variety of chemicals that vary with the activities and products used during activities. These VOC profiles are useful for estimating exposures for occupational hazard ranking for industrial hygienists as well as epidemiological studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already

  4. Pengaruh Ritma Circadian Terhadap Produksi Volatile Sulfur Compounds (VSC Oral

    Directory of Open Access Journals (Sweden)

    Supriatno Supriatno

    2013-06-01

    Full Text Available Volatile sulfur compounds (VSCs oral dihasilkan dari produk putrifikasi mikroba gas hidrogen sulfida (H2S, metil merkaptan (CH3SH dan dimetil sulfida [(CH32S] yang merupakan gas utama penyebab halitosis. Ritma circadian mempunyai pengaruh terhadap fungsi beberapa organ tubuh termasuk sekresi saliva, produksi hormon, fungsi sistem tubuh, dan aktivitas mikroorganisma. Penelitian bertujuan menguji pengaruh ritma circadian terhadap produksi VSC oral yang diukur menggunakan OralChroma portable. Penelitian dilakukan dengan mengukur gas VSC individu yang sama pada pagi, siang dan malam hari di laboratorium riset terpadu FKG UGM. Hasil pengukuran H2S, CH3SH dan (CH32S diuji menggunakan analisis statistik Anava dua jalur dilanjutkan uji LSD dan uji korelasi Pearson dengan derajat kemaknaan 95%. Hasil penelitian menunjukkan terdapat perbedaan yang sangat bermakna antara produksi gas H2S, CH3SH dan (CH32S dengan waktu pengukuran (efek circadian (p=0,000. Perbedaan sangat bermakna diketahui pula pada pengukuran gas H2S dan (CH32S antara pagi, siang dan malam (p=0,01 dan p= 0,00, serta pengukuran gas CH3SH siang dan malam (p=0,006, tetapi tidak pada CH3SH pagi hari (p=0,061. Produksi gas H2S tertinggi diketahui pada pagi hari (mean 1,198 ng/10 ml, CH3SH pada malam hari (mean 0,099 ng/10 ml, dan (CH32S pada siang hari (mean 1,216 ng/10 ml. Kekuatan hubungan pengukuran antara ke tiga gas dengan efek circadian diketahui sebesar r=0,738. Disimpulkan bahwa ritma circadian berpengaruh terhadap produksi VSCs oral. Produksi gas H2S dan (CH32S berbeda antara pagi, siang dan malam hari, sedangkan produksi gas CH3SH berbeda hanya pengukuran siang dan malam hari. Produksi gas H2S tertinggi diketahui pada pagi hari, gas CH3SH pada malam hari, dan gas (CH32S pada siang hari. Maj Ked Gi. Juni 2013; 20(1: 14 - 20. The Effect Of Circadian Rhythm To Oral Volatile Sulfur Compounds Production. Oral volatile sulfur compound (VSC is produced from microbial purification

  5. Enantiomer distribution of major chiral volatile organic compounds in selected types of herbal honeys.

    Science.gov (United States)

    Pažitná, Alexandra; Džúrová, Jana; Spánik, Ivan

    2014-10-01

    In this article, volatile organic compounds in 14 honey samples (rosemary, eucalyptus, orange, thyme, sage, and lavender) were identified. Volatile organic compounds were extracted using a solid phase microextraction method followed by gas chromatography connected with mass spectrometry analysis. The studied honey samples were compared based on their volatile organic compounds composition. In total, more than 180 compounds were detected in the studied samples. The detected compounds belong to various chemical classes such as terpenes, alcohols, acids, aldehydes, ketones, esters, norisoprenoids, benzene and furane derivatives, and organic compounds containing sulfur and nitrogen heteroatom. Ten chiral compounds (linalool, trans-linalool oxide, cis-linalool oxide, 4-terpineol, α-terpineol, hotrienol, and four stereoisomers of lilac aldehydes) were selected for further chiral separation. © 2014 Wiley Periodicals, Inc.

  6. Recent advances in research on volatile aroma compounds in tomatoes and their impacting factors

    Science.gov (United States)

    Aroma is an important sensory attribute of tomatoes. Tomato aroma is formed by a complex mixture of more than 400 volatile compounds, and it plays an important role in the classification and consumer acceptability of tomato products. This article provides a brief overview of the volatile aroma compo...

  7. Assessment of indoor levels of volatile organic compounds and carbon dioxide in schools in Kuwait.

    Science.gov (United States)

    Al-Awadi, Layla

    2018-01-01

    Indoor air quality (IAQ) in schools is a matter of concern because children are most vulnerable and sensitive to pollutant exposure. Conservation of energy at the expense of ventilation in heating, ventilation, and air conditioning (HVAC) systems adversely affects IAQ. Extensive use of new materials in building, fitting, and refurbishing emit various pollutants such that the indoor environment creates its own discomfort and health risks. Various schools in Kuwait were selected to assess their IAQ. Comprehensive measurements of volatile organic compounds (VOCs) consisting of 72 organic compounds consisting of aliphatic (C3-C6), aromatic (C6-C9), halogenated (C1-C7), and oxygenated (C2-C9) functional groups in indoor air were made for the first time in schools in Kuwait. The concentrations of indoor air pollutants revealed hot spots (science preparation rooms, science laboratories, arts and crafts classes/paint rooms, and woodworking shops/decoration rooms where local sources contributed to the buildup of pollutants in each school. The most abundant VOC pollutant was chlorodifluoromethane (R22; ClF2CH), which leaked from air conditioning (AC) systems due to improper operation and maintenance. The other copious VOCs were alcohols and acetone at different locations due to improper handling of the chemicals and their excessive uses as solvents. Indoor carbon dioxide (CO2) levels were measured, and these levels reflected the performance of HVAC systems; a specific rate or lack of ventilation affected the IAQ. Recommendations are proposed to mitigate the buildup of indoor air pollutants at school sites. Indoor air quality in elementary schools has been a subject of extreme importance due to susceptibility and sensibility of children to air pollutants. The schools were selected based on their surrounding environment especially downwind direction from the highly industrialized zone in Kuwait. Extensive sampling from different sites in four schools for comprehensive VOCs and

  8. Volatile sulphur compounds in morning breath of human volunteers.

    NARCIS (Netherlands)

    Snel, J.; Burgering, M.; Smit, B.; Noordman, W.; Tangerman, A.; Winkel, E.G.; Kleerebezem, M.

    2011-01-01

    OBJECTIVE: morning breath contains elevated concentrations of volatile sulphur components (VSCs). Therefore, morning breath is recognised as a surrogate target for interventions on breath quality. Nevertheless, factors influencing morning breath are poorly understood. Our aim was to evaluate

  9. Volatile sulphur compounds in morning breath of human volunteers

    NARCIS (Netherlands)

    Snel, Johannes; Burgering, Maurits; Smit, Bart; Noordman, Wouter; Tangerman, Albert; Winkel, Edwin G.; Kleerebezem, Michiel

    Objective: Morning breath contains elevated concentrations of volatile sulphur components (VSCs). Therefore, morning breath is recognised as a surrogate target for interventions on breath quality. Nevertheless, factors influencing morning breath are poorly understood. Our aim was to evaluate

  10. Effect of culture of accumulation white mold volatile aromatic compounds in cheese

    OpenAIRE

    ZHUKOVA Y.; MALOVA V.; KOROL TS.; KOZLOVA L.; PHEDIN PH.

    2012-01-01

    The influence of different cultures of white mold Penicillium caseicolum and Geotrichum candidum on the content of aromatic compounds in a soft cheese have been investigated, methodical approaches to the definition of aromatic compounds by capillary gas chromatography have been developed, a number of characteristic volatile compounds identified and defined that have a specific cheese flavor.

  11. Low-Volatility Compound Evaporation from the Deepwater Horizon Oil Spill

    Science.gov (United States)

    Koss, A.; De Gouw, J. A.; Warneke, C.

    2011-12-01

    The Deepwater Horizon (DWH) oil spill in April-August 2010 provided an unusual opportunity to study secondary organic aerosol (SOA) formation on a large scale. Chemicals with differing volatility, evaporating at different rates, were spatially separated and released to the atmosphere at different locations. The resulting distribution of vapor and aerosol phase organic compounds were measured during research flights of the NOAA WP-3D aircraft over the Gulf in June 2010 (de Gouw et al., 2011). Known volatile SOA precursors (C8 to C11 hydrocarbons) were measured in a thin plume downwind of DWH. SOA was measured in a much wider plume, indicating contributions from less volatile compounds evaporating further from the source. Estimates of semi- and intermediate- volatile compound evaporation rates from the oil spill have been improved using a component-wise first-order kinetics model in which the evaporation rate of a compound is proportional to both its vapor pressure and mole fraction. The model was validated through proton-transfer-reaction ion-trap mass spectrometer measurements of evaporating South Louisiana crude oil and calibration mixtures of aromatic compounds. These new evaporation rate estimates highlight several concepts important to a revised interpretation of the June 2010 aerosol measurements. The rates of evaporation (and thus atmospheric concentrations) of low-volatility compounds did not necessarily reflect surface distribution. Low volatility compounds reached peak evaporation rates at appreciable distances from the source, and the area from which significant amounts of chemical were emitted was larger than previously thought.

  12. Factors that influence the volatile organic compound content in human breath

    NARCIS (Netherlands)

    Blanchet, L.; Smolinska, Agnieszka; Baranska, Agnieszka; Tigchelaar-Feenstra, E.; Swertz, M.; Zhernakova, A.; Dallinga, J. W.; Wijmenga, C.; van Schooten, Frederik J.

    Background. Thousands of endogenous and exogenous volatile organic compounds (VOCs) are excreted in each breath. Inflammatory and deviant metabolic processes affect the level of endogeneous VOCs, which can serve as specific biomarkers for clinical diagnosis and disease monitoring. Important issues

  13. Optimization of solid phase microextraction analysis for the headspace volatile compounds of parmesan cheese.

    Science.gov (United States)

    Lee, Jae-Hwan; Diono, Raymond; Kim, Gur-Yoo; Min, David B

    2003-02-26

    Optimum conditions of solid phase microextraction (SPME) analysis of the headspace volatile compounds of Parmesan cheese in airtightly sealed 100-mL bottles were developed. The coefficient of variation of SPME analysis on the headspace volatile compounds of Parmesan cheese was 2%. The reproducibility of SPME was improved by a combination of sampling at -10 degrees C, controlling the sample temperature, and uniform magnetic stirring of samples during equilibrium and isolation steps. The sensitivity of SPME increased by 125% in total peak areas by a combination of 40 min of sonication and 25% (w/v) sodium phosphate solution, compared with that of samples containing deionized water only (P < 0.05). The addition of salt solution or sonication treatment in samples increased the headspace volatile compounds of cheese quantitatively without producing any new volatile compounds.

  14. Analysis of breath volatile organic compounds as a screening tool for detection of Tuberculosis in cattle

    Science.gov (United States)

    • Keywords: bovine tuberculosis; Mycobacterium bovis; breath analysis; volatile organic compound; gas chromatography; mass spectrometry; NaNose • Introduction: This presentation describes two studies exploring the use of breath VOCs to identify Mycobacterium bovis infection in cattle. • Methods: ...

  15. Fact Sheets for the Architectural Coating Rule for Volatile Organic Compounds

    Science.gov (United States)

    This page contains an August 1998 fact sheet with information regarding the National Volatile Organic Compounds Emission Standards for Architectural Coatings Rule. This page also contains information on applicability and compliance for this rule.

  16. Multiscale Modelling Approach for a Fungal Biofilter Unit for the Hydrophobic Abatement of Volatile Organic Compounds

    DEFF Research Database (Denmark)

    Vergara-Fernández, A.; Rebolledo-Castro, J.; Morales Rodriguez, Ricardo

    2011-01-01

    Currently, biofiltration has become a viable and potential alternative for the treatment of airstreams with low concentrations of hydrophobic volatile organic compounds (VOCs), which can employ to this end, diverse microorganisms (such as, bacteria, fungal or microbial consortia, etc.) growing...

  17. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds

    NARCIS (Netherlands)

    Park, Yong-Soon; Dutta, Swarnalee; Ann, Mina; Raaijmakers, Jos M.; Park, Kyungseok

    2015-01-01

    Abstract Volatile organic compounds (VOCs) from plant growth-promoting rhizobacteria (PGPR) play key roles in modulating plant growth and induced systemic resistance (ISR) to pathogens. Despite their significance, the physiological functions of the specific VOCs produced by Pseudomonas fluorescens

  18. Arctic Vegetation under Climate Change – Biogenic Volatile Organic Compound Emissions and Leaf Anatomy

    DEFF Research Database (Denmark)

    Schollert, Michelle

    Biogenic volatile organic compounds (BVOCs) emitted from terrestrial vegetation are highly reactive non-methane hydrocarbons which participate in oxidative reactions in the atmosphere prolonging the lifetime of methane and contribute to the formation of secondary organic aerosols. The BVOC...

  19. Indoor Semi-volatile Organic Compounds (i-SVOC) Version 1.0

    Science.gov (United States)

    i-SVOC Version 1.0 is a general-purpose software application for dynamic modeling of the emission, transport, sorption, and distribution of semi-volatile organic compounds (SVOCs) in indoor environments.

  20. VOLATILE ORGANIC COMPOUND EMISSION RATES FROM MIXED DECIDUOUS AND CONIFEROUS FORESTS IN NORTHERN WISCONSIN, USA

    Science.gov (United States)

    Biogenic emissions of volatile organic compounds (VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regio...

  1. Indoor air quality in hair salons: Screening of volatile organic compounds and indicators based on health risk assessment

    Science.gov (United States)

    de Gennaro, Gianluigi; de Gennaro, Lucrezia; Mazzone, Antonio; Porcelli, Francesca; Tutino, Maria

    2014-02-01

    Volatile organic compounds (VOCs) are common ingredients in cosmetic products which can impact human health. This study monitored 12 hairdressing salons in order to assess the individual exposure of the people working in or frequenting these environments as well as identify the main products or activities responsible for the presence of these compounds. In each site halogenated, oxygenated, aliphatic and aromatic compounds were monitored during the work week with diffusive samplers suitable for thermal desorption and analysed using GC-MS. The study of indoor-outdoor concentration ratios and a knowledge of the composition of most of the products, whether ecological or traditional, used in the hair salons verified the presence of compounds linked to hairdressing activities. In particular, compounds widely used in products for hair care as spray lacquer and foam (butane), shampoo, balms, hair masks and oils (camphene, camphor, limonene, eucalyptol, alpha pinene, 1-methoxy-2-propanol, n-butanol and menthol), and hair dye (benzyl alcohol, isopropanol, limonene, hexane and methyl ethyl ketone) were found at much higher levels inside rather than outside the salons (mean I/O > 10). The importance of this finding is linked to the potential health hazards of some of the VOCs detected. Integrated indicators of health risk were proposed in this study to assess the criticality level and rank the investigated environments accordingly. The results of this study indicate that the level of VOC concentrations was most affected by the type of products used while the size of the environment, the efficiency of air exchange and the number of customers had less impact on those levels.

  2. Changes in volatile compound composition of Antrodia camphorata during solid state fermentation.

    Science.gov (United States)

    Xia, Yongjun; Zhang, Baorong; Li, Weijiang; Xu, Ganrong

    2011-10-01

    Although the volatiles present in mushrooms and fungi have been investigated by many researchers, including Antrodia camphorata in submerged fermentation, there are few data available regarding changes in volatile compounds during fermentation. Our research has revealed that solid state fermentation of A. camphorata is highly odiferous compared with submerged cultures and the odor changed with increasing culture time. Therefore the aim of this study was to investigate the changes in volatile compound composition of A. camphorata during solid state fermentation. Altogether, 124 major volatile compounds were identified. The volatile compounds produced by A. camphorata during growth in solid state fermentation were quite different. Oct-1-en-3-ol, octan-3-one and methyl 2-phenylacetate were predominant in exponential growth phase production, while the dominant volatiles produced in stationary phase were octan-3-one and methyl 2-phenylacetate. In stationary phase, lactone compounds in A. camphorata, such as 5-butyloxolan-2-one, 5-heptyloxolan-2-one, 6-heptyloxan-2-one, contributed greatly to peach and fruit-like flavor. Terpene and terpene alcohol compounds, such as 1-terpineol, L-linalool, T-cadinol, (E, E)-farnesol, β-elemene, cis-α-bisabolene and α-muurolene, made different contributions to herbal fresh aroma in A. camphorata. Nineteen volatile sesquiterpenes were detected from solid state fermentation of A. camphorata. The compounds 5-n-butyl-5H-furan-2-one, β-ionone, (-)-caryophyllene oxide, aromadendrene oxide, diepi-α-cedrene epoxide, β-elemene, α-selinene, α-muurolene, azulene, germacrene D, γ-cadinene and 2-methylpyrazine have not hitherto been reported in A. camphorata. The preliminary results suggest that the aroma-active compounds produced by A camphorata in solid state fermentation might serve as an important source of natural aroma compounds for the food and cosmetic industries or antibiotic activity compounds. The sesquiterpenes could be

  3. VOLATILE COMPOUNDS OF WATER-ETHANOLIC EXTRACT OF SATUREJA MONTANA L.

    Directory of Open Access Journals (Sweden)

    A. E. Paliy

    2014-01-01

    Full Text Available We have studied a composition and content of volatile compounds of Satureja montana L. extract. It was established that concentration of volatile compounds in water-ethanol extract of S. montana amounted to 325 mg/100g. The principal component of the extract is carvacrol. It was shown that the extract of Satureja montana represents high biological value

  4. Volatile Compounds in Dry Dog Foods and Their Influence on Sensory Aromatic Profile

    OpenAIRE

    Koushik Adhikari; Kadri Koppel; Brizio Di Donfrancesco

    2013-01-01

    The aim of this study was to determine volatile compounds in dry dog foods and their possible influence on sensory aromatic profile. Grain-free dry dog foods were compared to dry dog foods manufactured with grain, but also with different protein sources for their aromatic volatiles. Solid-phase microextraction/gas chromatography/mass spectrometry was used to determine the aromatic compounds present in the headspace of these samples. Partial Least Squares regression was performed to correlate ...

  5. Volatile Organic Compound Investigation Results, 300 Area, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Robert E.; Williams, Bruce A.; Smith, Ronald M.

    2008-07-07

    Unexpectedly high concentrations of volatile organic compounds (VOC) were discovered while drilling in the unconfined aquifer beneath the Hanford Site’s 300 Area during 2006. The discovery involved an interval of relatively finer-grained sediment within the unconfined aquifer, an interval that is not sampled by routine groundwater monitoring. Although VOC contamination in the unconfined aquifer has been identified and monitored, the concentrations of newly discovered contamination are much higher than encountered previously, with some new results significantly higher than the drinking water standards. The primary contaminant is trichloroethene, with lesser amounts of tetrachloroethene. Both chemicals were used extensively as degreasing agents during the fuels fabrication process. A biological degradation product of these chemicals, 1,2-dichloroethene, was also detected. To further define the nature and extent of this contamination, additional characterization drilling was undertaken during 2007. Four locations were drilled to supplement the information obtained at four locations drilled during the earlier investigation in 2006. The results of the combined drilling indicate that the newly discovered contamination is limited to a relatively finer-grained interval of Ringold Formation sediment within the unconfined aquifer. The extent of this contamination appears to be the area immediately east and south of the former South Process Pond. Samples collected from the finer-grained sediment at locations along the shoreline confirm the presence of the contamination near the groundwater/river interface. Contamination was not detected in river water that flows over the area where the river channel potentially incises the finer-grained interval of aquifer sediment. The source for this contamination is not readily apparent. A search of historical documents and the Hanford Waste Information Data System did not provide definitive clues as to waste disposal operations and

  6. Volatile organic compound emission factors from roadside measurements

    Science.gov (United States)

    Kawashima, Hiroto; Minami, Shigeki; Hanai, Yoshimichi; Fushimi, Akihiro

    Volatile organic compounds (VOCs) play a significant role in the generation of urban photochemical smog. In addition, some VOCs, such as benzene, are harmful to human health. In Japan, motor vehicles are the dominant source of VOCs. Therefore, it is important to determine the emission of VOCs from vehicles in order to estimate human risk and the production mechanisms of photochemical smog. In this study, we estimated emission factors with a methodology that considered the following points: (1) real-world emissions, (2) individual VOCs, (3) low vehicle speeds, (4) low investigation cost, and (5) user-friendly methodology. Samples were collected approximately 5 m from each side of National Route No. 467 in Kanagawa Prefecture, Japan. Sampling consisted of twelve 1-h sampling periods at three points on three dates: 21 February 2003 (7:00-19:00), 13 May 2003 (7:00-19:00), and 13 September 2003 (8:00-20:00). The samples were analyzed using GC/FID and GC/MS. In addition, information on vehicle types, traffic volumes, and weather conditions was collected from beside the road. Emission factors of individual VOCs were estimated from the measured data by running the CALINE4 dispersion model as an inverse model. The average speed of all vehicles was 22 km h -1; 81.3% of all vehicles were light-duty vehicles, 12.3% were heavy-duty vehicles, and 6.5% were motorcycles. We estimated the emission factors of 34 individual VOCs. The emission factors for all vehicles combined averaged over all sampling days ranged from 0.25 to 51 mg vehicle -1 km -1. The emission factors of benzene and toluene were 5.2 and 17 mg vehicle -1 km -1, respectively. In addition, the estimated emission factors were compared with those estimated from other recent studies. The emission factors for light-duty vehicles (LDVs), heavy-duty vehicles (HDVs), and motorcycles separately were also estimated by using a non-negative least squares method. However, these emission factors were found to be unreliable for

  7. Emission of volatile organic compounds from silage: Compounds, sources, and implications

    Science.gov (United States)

    Hafner, Sasha D.; Howard, Cody; Muck, Richard E.; Franco, Roberta B.; Montes, Felipe; Green, Peter G.; Mitloehner, Frank; Trabue, Steven L.; Rotz, C. Alan

    2013-10-01

    Silage, fermented cattle feed, has recently been identified as a significant source of volatile organic compounds (VOCs) to the atmosphere. A small number of studies have measured VOC emission from silage, but not enough is known about the processes involved to accurately quantify emission rates and identify practices that could reduce emissions. Through a literature review, we have focused on identifying the most important compounds emitted from corn silage (the most common type of silage in the US) and the sources of these compounds by quantifying their production and emission potential in silage and describing production pathways. We reviewed measurements of VOC emission from silage and assessed the importance of individual silage VOCs through a quantitative analysis of VOC concentrations within silage. Measurements of VOC emission from silage and VOCs present within silage indicated that alcohols generally make the largest contribution to emission from corn silage, in terms of mass emitted and potential ozone formation. Ethanol is the dominant alcohol in corn silage; excluding acids, it makes up more than half of the mean mass of VOCs present. Acids, primarily acetic acid, may be important when emission is high and all VOCs are nearly depleted by emission. Aldehydes and esters, which are more volatile than acids and alcohols, are important when exposure is short, limiting emission of more abundant but less volatile compounds. Variability in silage VOC concentrations is very high; for most alcohols and acids, tolerance intervals indicate that 25% of silages have concentrations a factor of two away from median values, and possibly much further. This observation suggests that management practices can significantly influence VOC concentrations. Variability also makes prediction of emissions difficult. The most important acids, alcohols, and aldehydes present in silage are probably produced by bacteria (and, in the case of ethanol, yeasts) during fermentation and

  8. Simultaneous control of apparent extract and volatile compounds concentrations in low-malt beer fermentation.

    Science.gov (United States)

    Kobayashi, Michiko; Nagahisa, Keisuke; Shimizu, Hiroshi; Shioya, Suteaki

    2006-12-01

    Volatile compounds cause undesirable flavor when their concentrations exceed threshold values in beer fermentation. The objective of this study is to develop a system for controlling apparent extract concentration, which indicates the fermentation degree and which should be decreased below a targeted value at a fixed time under a constraint of tolerable amounts of volatile compounds. In beer fermentation, even though the production of volatile compounds is suppressed by maintaining a low fermentation temperature, a low temperature causes a delay in the control of apparent extract concentration. Volatile compound concentration was estimated on-line, and the simulation of apparent extract consumption and volatile compound production was performed. To formulate various beer tastes and conserve energy for attemperation, optimal temperature profiles were determined using a genetic algorithm (GA). The developed feedback control of the brewing temperature profile was successfully applied, and apparent extract and volatile compound concentrations at a fixed time reached their target concentrations. Additionally, the control technique developed in this study enables us to brew a wide variety of beers with different tastes.

  9. Extraction optimization and pixel-based chemometric analysis of semi-volatile organic compounds in groundwater

    DEFF Research Database (Denmark)

    Christensen, Peter; Tomasi, Giorgio; Kristensen, Mette

    2017-01-01

    Semi-volatile organic compounds (semi-VOCs) are found in complex mixtures, and at low concentrations in groundwater. Chemical fingerprint analysis of groundwater is therefore challenging, as it is necessary to obtain high enrichment factors for compounds with a wide range of properties. In this s......Semi-volatile organic compounds (semi-VOCs) are found in complex mixtures, and at low concentrations in groundwater. Chemical fingerprint analysis of groundwater is therefore challenging, as it is necessary to obtain high enrichment factors for compounds with a wide range of properties...

  10. Volatile compounds and lipolysis levels of Kopanisti, a traditional Greek raw milk cheese.

    Science.gov (United States)

    Karali, Fotini; Georgala, Aikaterini; Massouras, Theophilos; Kaminarides, Stelios

    2013-06-01

    Kopanisti is a Protected Designation of Origin (PDO) traditional soft Greek cheese manufactured exclusively in the Cycladic island complex. It is made from raw bovine, ovine or caprine milk or a mixture of them without the addition of any lactic acid cultures. It has a spreadable texture, an intense salty and peppery taste and a strong flavour. Although Kopanisti cheese has properties similar to those of mould-ripened cheeses, its volatile compound content has never been reported. In this study the volatile compound content and lipolysis level of ten commercial Kopanisti samples were investigated. The main aromatic groups found in Kopanisti cheese were alcohols, esters and volatile free fatty acids. Ethanol and several ethyl esters were the main volatile compounds. Intense lipolysis was present, with an average total free fatty acid content of 48,979 mg kg(-1). Acetic, butyric and capric acids were the main volatile acids determined. The intense lipolysis contributes greatly to the strong flavour and peppery taste of Kopanisti cheese. The flavour of Kopanisti is attributable mainly to the volatile fatty acids and various other volatile compounds as well as to the interactions occurring between them. © 2012 Society of Chemical Industry.

  11. Effects of some leaf-emitted volatile compounds on aphid population increase.

    Science.gov (United States)

    Hildebrand, D F; Brown, G C; Jackson, D M; Hamilton-Kemp, T R

    1993-09-01

    A role of some volatile compounds produced by plant tissues may be as defensive molecules against various pests, including arthropods. Volatile six-carbon compounds derived in plant tissue from polyunsaturated fatty acids via lipoxygenase/hydroperoxide lyase reduced tobacco aphid fecundity at certain concentrations when added to headspace vapor to which aphids were exposed. Both C6 aldehydes and alcohols were effective, with the alcohols having greater activity. (Z)-3-Hexenyl acetate at levels in the headspace similar to those of the alcohols and aldehydes did not reduce aphid fecundity. A 6-hr exposure period to the C6 aldehydes and alcohols was needed for maximum effect on the aphids feeding on tobacco leaves. Analysis of the direct versus indirect effects of these compounds indicates that the volatile aldehydes had both direct effects on aphid fecundity and indirect effects due to induced changes in the leaves upon which the aphids were feeding, while only indirect effects were observed for the alcohols. Tomato leaves have the capacity to produce volatile compounds at levels that impact aphid population increase, with the volatiles produced from crushed leaves having a much larger effect. The C6 aldehydes and alcohols may be components of the fecundity reduction seen with tomato volatiles; however, volatile terpenes showed no effect. These results can be of significance for the genetic alteration of plants for improved aphid resistance.

  12. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene.

    Science.gov (United States)

    Lumholdt, Ludmilla; Fourmentin, Sophie; Nielsen, Thorbjørn T; Larsen, Kim L

    2014-01-01

    Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest-host complexes with ratios of up to 16:1.

  13. Comparison of volatile compounds in water- and oil-soluble annatto (Bixa orellana L.) extracts.

    Science.gov (United States)

    Galindo-Cuspinera, Verónica; Lubran, Meryl B; Rankin, Scott A

    2002-03-27

    Annatto is a natural food colorant extracted from the seeds of the Bixa orellana L. plant. Annatto is used in Latin American cuisine to add a deep red color as well as distinctive flavor notes to fish, meat, and rice dishes. In the United States, annatto extracts are primarily used to impart orange/yellow hues to cheese and other dairy foods. The objective of this study was to identify and compare volatile compounds present in water- and oil-soluble annatto extracts. Volatile compounds were recovered using dynamic headspace-solvent desorption sampling and analyzed using GC-MS. Compounds were identified by comparison to a mass spectral database, Kovats indexes, and retention times of known standards. Of the 107 compounds detected, 56 compounds were tentatively identified and 51 were positively identified. Volatile profile differences exist between water- and oil- soluble extracts, and annatto extracts contain odorants with the potential to influence food aroma.

  14. Analysis of Volatile Compounds from Solanumbetaceum Cav. Fruits from Panama by Head-Space Micro Extraction

    Directory of Open Access Journals (Sweden)

    Armando A. Durant

    2013-01-01

    Full Text Available The characterization of the volatile compounds of two varieties of Solanum betaceum Cav. by means of headspace solid-phase microextraction (HS-SPME coupled with gas chromatography-mass spectrometry ( GC-MS i s presented. The HS-SPME method for extraction of the volatiles compounds was optimized by using a 2 3 central composite design. Maximum extraction of volatile compounds was achieved by using a divinylbenzene-carboxen-polydimethylsiloxane (DVB/CAR/PDMS fiber, extraction temperature 76° C, incubation time 44 min, and extraction time of 46 min. The main types of compounds detected in both varieties are terpenoids, followed by aromatics, esters, and aldehydes. Golden-yellow cultivars contained higher levels of esters and terpenes, while the reddish-purple variety contained a significant amount of aromatic compounds. The data structure of the chemical information obtained as well as the relationship between variables was evaluated by means of principal component analysis and cluster analysis.

  15. Relationship between sensory attributes and volatile compounds of polish dry-cured loin

    Directory of Open Access Journals (Sweden)

    Ewa Górska

    2017-05-01

    Full Text Available Objective The aim of this work was to determine the relationship between objective sensory descriptors and volatile flavour compound composition of Polish traditional dry-cured loin. Methods The volatile compounds were investigated by using solid phase microextraction (SPME and gas chromatography–mass spectrometry (GC–MS. For sensory assessment, the quantitative descriptive analysis (QDA method was used. Results A total of 50 volatile compounds were found and assigned to 17 chemical families. Most of the detected volatile compounds derived from smoking, lipid oxidative reactions and seasoning (46.8%, 21.7%, and 18.9%, respectively. The dominant compounds were: aromatic hydrocarbon (toluene; alkanes (hexane, heptane, and 2,2,4-trimethylpentane; aldehyde (hexanal; alcohol (2-furanmethanol; ketone (3-hydroxy-2-butanone; phenol (guaiacol; and terpenes (eucalyptol, cymene, γ-terpinen, and limonene. Correlation analysis showed that some compounds derived from smoking were positively correlated with the intensity of cured meat odour and flavour and negatively with the intensity of dried meat odour and flavour, while terpenes were strongly correlated with odour and flavour of added spices. Conclusion The analysed dry-cured loins were characterized by specific and unique sensory profile. Odour and flavour of studied loins was mainly determined by volatile compounds originating from smoking, seasoning and lipid oxidation. Obtained results suggest that smoking process is a crucial stage during Polish traditional dry-cured loins production.

  16. Relationship between sensory attributes and volatile compounds of polish dry-cured loin

    Science.gov (United States)

    Górska, Ewa; Nowicka, Katarzyna; Jaworska, Danuta; Przybylski, Wiesław; Tambor, Krzysztof

    2017-01-01

    Objective The aim of this work was to determine the relationship between objective sensory descriptors and volatile flavour compound composition of Polish traditional dry-cured loin. Methods The volatile compounds were investigated by using solid phase microextraction (SPME) and gas chromatography–mass spectrometry (GC–MS). For sensory assessment, the quantitative descriptive analysis (QDA) method was used. Results A total of 50 volatile compounds were found and assigned to 17 chemical families. Most of the detected volatile compounds derived from smoking, lipid oxidative reactions and seasoning (46.8%, 21.7%, and 18.9%, respectively). The dominant compounds were: aromatic hydrocarbon (toluene); alkanes (hexane, heptane, and 2,2,4-trimethylpentane); aldehyde (hexanal); alcohol (2-furanmethanol); ketone (3-hydroxy-2-butanone); phenol (guaiacol); and terpenes (eucalyptol, cymene, γ-terpinen, and limonene). Correlation analysis showed that some compounds derived from smoking were positively correlated with the intensity of cured meat odour and flavour and negatively with the intensity of dried meat odour and flavour, while terpenes were strongly correlated with odour and flavour of added spices. Conclusion The analysed dry-cured loins were characterized by specific and unique sensory profile. Odour and flavour of studied loins was mainly determined by volatile compounds originating from smoking, seasoning and lipid oxidation. Obtained results suggest that smoking process is a crucial stage during Polish traditional dry-cured loins production. PMID:27456422

  17. Characterization and extraction of volatile compounds from pineapple (Ananas comosus L. Merril processing residues

    Directory of Open Access Journals (Sweden)

    Lília Calheiros de Oliveira Barretto

    2013-12-01

    Full Text Available The aim of this study was to extract and identify volatile compounds from pineapple residues generated during concentrated juice processing. Distillates of pineapple residues were obtained using the following techniques: simple hydrodistillation and hydrodistillation by passing nitrogen gas. The volatile compounds present in the distillates were captured by the solid-phase microextraction technique. The volatile compounds were identified in a system of high resolution gas chromatography system coupled with mass spectrometry using a polyethylene glycol polar capillary column as stationary phase. The pineapple residues constituted mostly of esters (35%, followed by ketones (26%, alcohols (18%, aldehydes (9%, acids (3% and other compounds (9%. Odor-active volatile compounds were mainly identified in the distillate obtained using hydrodistillation by passing nitrogen gas, namely decanal, ethyl octanoate, acetic acid, 1-hexanol, and ketones such as γ-hexalactone, γ-octalactone, δ-octalactone, γ-decalactone, and γ-dodecalactone. This suggests that the use of an inert gas and lower temperatures helped maintain higher amounts of flavor compounds. These data indicate that pineapple processing residue contained important volatile compounds which can be extracted and used as aroma enhancing products and have high potential for the production of value-added natural essences.

  18. Volatile Organic Compounds in the Breath of Oral Squamous Cell Carcinoma Patients: A Pilot Study.

    Science.gov (United States)

    Hartwig, Stefan; Raguse, Jan D; Pfitzner, Dorothee; Preissner, Robert; Paris, Sebastian; Preissner, Saskia

    2017-12-01

    Objective To assess the feasibility of detecting signature volatile organic compounds in the breath of patients with oral squamous cell carcinoma. Study Design Prospective cohort pilot study. Setting University hospital. Subjects and Methods Using gas chromatography and mass spectrometry, emitted volatile organic compounds in the breath of patients before and after curative surgery (n = 10) were compared with those of healthy subjects (n = 4). It was hypothesized that certain volatile organic compounds disappear after surgical therapy. A characteristic signature of these compounds for diseased patients was compiled and validated. Results Breath analyses revealed 125 volatile organic compounds in patients with oral cancer. A signature of 8 compounds that were characteristic for patients with oral cancer could be detected: 3 from this group presented were absent after surgery. Conclusion The presented results confirmed the hypothesis of an absence of cancer-associated volatile organic compounds in the breath after therapy. In this pilot study, we proved the feasibility of this test approach. Further studies should be initiated to establish protocols for usage in a clinical setting.

  19. Effect of {gamma}-irradiation on the volatile compounds of medicinal herb, Paeoniae Radix

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Sung-Lye; Hwang, In-Min; Ryu, Keun-Young; Jung, Min-Seok [Department of Food and Nutrition, Chosun University (Korea, Republic of); Seo, Hye-young [Korea Food Research Institute (Korea, Republic of); Kim, Hee-Yeon [Korea Food and Drug Administration (Korea, Republic of); Song, Hyun-Pa; Kim, Jae-Hun; Lee, Ju-Woon; Byun, Myung-Woo [Advanced Radiation Technology Institute, KAERI, Jeongeup 580-185 (Korea, Republic of); Kwon, Joong-Ho [Department of Food Science and Technology, Kyungpook National University (Korea, Republic of); Kim, Kyong-Su [Korea Food Research Institute (Korea, Republic of)], E-mail: kskim@chosun.ac.kr

    2009-07-15

    A study was carried out to find the effect of {gamma}-irradiation on contents of volatile compounds from medicinal herb, Paeoniae Radix (Paenia albiflora Pallas var. trichocarpa Bunge). The volatile compounds of control, 1, 3, 5 and 10 kGy irradiated samples were extracted by simultaneous steam distillation and extraction (SDE) method and analyzed by gas chromatograph-mass spectrometer. The major volatile compounds were paeonol, (E)-carveol, (E,E)-2,4-octadienal, methyl salicylate, myrtanol and eugenol acetate. Volatile compounds belonging to chemical classes of acids, alcohols, aldehydes, esters, hydrocarbons and miscellaneous were identified in all experimental samples. The types of volatile compounds in irradiated samples were similar to those of non-irradiated sample and the concentrations of these compounds differed between treatments. 1,3-Bis (1,1-dimethylethyl)-benzene was identified by using the selected ion monitoring (GC/MS-SIM) mode. The concentration of this compound increased with the increase of irradiation dose level. These results suggest that it could be used as the base data for the effect of {gamma}-irradiation on medicinal herb.

  20. The Volatile Compounds of the Elderflowers Extract and the Essential Oil

    Directory of Open Access Journals (Sweden)

    Hale Gamze Ağalar

    2017-09-01

    Full Text Available Sambucus nigra L. (Caprifoliaceae known as ‘black elder’ is widely used as both food and medicinal plant in Europe. Elderflowers are consumed as herbal tea and its gargle has benefits in respiratory tract illnesses such as cough, influenza, inflammation in throat. In this study, we aimed to show the compositions of the volatile compounds-rich in extract and the essential oil of the elderflowers cultivated in Kütahya, Turkey. HS-SPME (Headspace-Solid Phase MicroExtraction technique was employed to trap volatile compounds in the hexane extract of dried elderflowers. The volatile compounds in the essential oil from elderflowers isolated by hydrodistillation were analyzed GC and GC-MS systems, simultaneously. Results for the n-hexane extract: thirty volatile compounds were identified representing 84.4% of the sample. cis-Linalool oxide (27.3% and 2-hexanone (10.5% were found to be main compounds of the n-hexane extract. Results for the essential oil: fifteen volatile compounds were identified representing 90.4% of the oil. Heneicosane (18.8%, tricosane (17.3%, nonadecane (13% and pentacosane (10.3% were the major compounds of the oil.

  1. Sources and Seasonality of Volatile Organic Compounds in the Northern Front Range Metropolitan Area

    Science.gov (United States)

    Abeleira, A.; Pollack, I. B.; Sive, B. C.; Zaragoza, J.; Lindaas, J.; Fischer, E. V.; Farmer, D.

    2016-12-01

    The Northern Front Range Metropolitan Area (NFRMA) of Colorado, with a growing population of over 3 million, was deemed an ozone (O3) nonattainment area (NAA) in 2008 despite continued work on NOx reductions. Ground-level O3 is produced from photochemical catalytic cycles initiated by the OH oxidation of volatile organic compounds (VOCs), and propagated through reactions involving peroxy (HO2+RO2) and NOx (NO + NO2) radicals. We measured a suite of speciated VOCs during two 8-week deployments (March-May 2015, July-September 2015) at the Boulder Atmospheric Observatory in Erie, CO. The spring deployment overlapped with the NOAA SONGNEX (Shale Oil and Natural Gas Nexus) campaign. The BAO site lies at an urban-rural interface in the NFRMA with multiple urban centers surrounding the site, a major interstate highway within 2 miles, local suburban development in Erie, agricultural operations in the surrounding counties, and recent rapid expansion of oil and gas development in adjacent Weld County. VOCs were measured hourly with a custom-built online gas chromatography system along with measurements of O3, NOx, PAN, CO, and CH4. VOC measurements included C2-C8 hydrocarbons (NMHCs), C1-C5 alkyl nitrates, C1-C2 halocarbons, and several oxygenated species (OVOCs: methyl ethyl ketone, acetone, acetaldehyde). Using Positive Matrix Factorization (PMF) we have identified four distinct VOC sources in the spring and five in the summer: 1) Oil and Natural Gas (ONG, e.g. C2 - C5 alkanes), 2) Traffic (e.g. ethyne & aromatics), 3) Background species (e.g. long-lived halogenated species), 4) Secondary production (e.g. C3-C5 alkyl nitrates & OVOCs), and for summer 5) Biogenic (e.g. isoprene). Using the source factors generated from the PMF analysis we calculated the VOC reactivity (VOCr) of each source. For both seasons, the ONG factor dominates VOCr in the mornings. In spring afternoons, a combination of background species and secondary products make up a large percentage of VOCr as

  2. Biogenic volatile compounds of activated sludge and their ...

    African Journals Online (AJOL)

    The Fourier-transform infrared (FTIR) analysis has identified some organosulfur groups (thiol, disulfide and thiocarbonyl), in addition to amine group in the metal precipitates. This study highlighted the application of the microbial volatile metabolites for heavy metals bioremediation in a powerful, cost effective and ...

  3. Atmospheric fate of non volatile and ionizable compounds

    DEFF Research Database (Denmark)

    Franco, Antonio; Hauschild, Michael Zwicky; Jolliet, Olivier

    2011-01-01

    precipitation events. Given the underlying model assumptions, the presence of clouds contributes to the higher persistence in the troposphere because of the capacity of cloud water to accumulate and transport non-volatile (e.g.2,4-D) and surface-active chemicals (e.g. PFOA). This limits the efficiency of wet...

  4. Screening and identification of phytotoxic volatile compounds in medicinal plants and characterizations of a selected compound, eucarvone.

    Science.gov (United States)

    Sunohara, Yukari; Baba, Yohei; Matsuyama, Shigeru; Fujimura, Kaori; Matsumoto, Hiroshi

    2015-07-01

    Screening and identification of phytotoxic volatile compounds were performed using 71 medicinal plant species to find new natural compounds, and the characterization of the promising compound was investigated to understand the mode of action. The volatile compounds from Asarum sieboldii Miq. showed the strongest inhibitory effect on the hypocotyl growth of lettuce seedlings (Lactuca sativa L.cv. Great Lakes 366), followed by those from Schizonepeta tenuifolia Briquet and Zanthoxylum piperitum (L.) DC.. Gas chromatography-mass spectrometry (GC/MS) identified four volatile compounds, α-pinene (2,6,6-trimethylbicyclo[3.1.1]hept-2-ene), β-pinene (6,6-dimethyl-2-methylenebicyclo[3.1.1]heptane), 3-carene (3,7,7-trimethylbicyclo[4.1.0]hept-3-ene), and eucarvone (2,6,6-trimethy-2,4-cycloheptadien-1-one), from A. sieboldii, and three volatile compounds, limonene (1-methyl-4-(1-methylethenyl)-cyclohexene), menthone (5-methyl-2-(propan-2-yl)cyclohexan-1-one), and pulegone (5-methyl-2-propan-2-ylidenecyclohexan-1-one), from S. tenuifolia. Among these volatile compounds, eucarvone, menthone, and pulegone exhibited strong inhibitory effects on both the root and shoot growth of lettuce seedlings. Eucarvone-induced growth inhibition was species-selective. Cell death, the generation of reactive oxygen species (ROS), and lipid peroxidation were induced in susceptible finger millet seedlings by eucarvone treatment, whereas this compound (≤158 μM) did not cause the increase of lipid peroxidation and ROS production in tolerant maize. The results of the present study show that eucarvone can have strong phytotoxic activity, which may be due to ROS overproduction and subsequent oxidative damage in finger millet seedlings.

  5. Halogen, Hydroxy, Mercapto and Amino-Compounds: A Mechanistic Study--2

    Science.gov (United States)

    Hanson, R. W.

    1976-01-01

    Compare reactions in which the functional groups of title compounds are displaced. The overall order of activity observed for alkyl halides, alcohols, thiels, and aliphatic amines acting as bases or nucleophiles is reversed when reactions involve displacement of the functional group. (MLH)

  6. [Ammonia volatilization of slow release compound fertilizer in different soils water conditions].

    Science.gov (United States)

    Hu, Xiao-feng; Wang, Zheng-yin; You, Yuan; Li, Jing-chao

    2010-08-01

    By using venting method incubation experiment, we studied the ammonia volatilization and kinetics characteristics of uncoated slowed release compound fertilizer (SRF) under different soil water conditions and the growth and nitrogen utilization efficiency of rice in pot experiment. Results indicated that the ammonia volatilization of SRF under waterflooding reached the peak ahead of 3-4 days compared to the moist treatment. The peak and accumulation of ammonia volatilization in the waterflooding treatments were higher than those under the moist condition. SRF could significantly reduce total ammonia volatilization compared to the common compound fertilizer (CCF), reduced by 50.6% and 22.8% in the moist treatment and reduced by 24.2% and 10.4% in the waterflooding treatment,but the loss of ammonia volatilization of SRF was higher significantly than that of the coated fertilizer (CRF). Ammonia volatilization increased with the increasing of fertilizer application. The dynamics of ammonia volatilization of SRF could be quantitatively described with three equations: the first order kinetics equation, Elovich equation and parabola equation. Compared to moist condition, the biomass of rice plant in SRF, CCF and SRF treatments increased by 67.86%, 78.25% and 48.75%, and nitrogen utilization efficiency increased by 57.73%, 80.70% and 12.06% under waterflooding condition, respectively. Comparing with CCF, nitrogen utilization efficiency in SRF treatment improved by 59.10% and 10.40% under two soil moisture conditions. SRF could reduce ammonia volatilization and improve biomass and nitrogen utilization efficiency.

  7. Characterization of Volatile Flavor Compounds in Chinese Rice Wine Fermented from Enzymatic Extruded Rice.

    Science.gov (United States)

    Xu, Enbo; Long, Jie; Wu, Zhengzong; Li, Hongyan; Wang, Fang; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan

    2015-07-01

    Enzymatic extrusion, instead of traditional steam cooking, to treat rice is an efficient and alternative pretreatment for Chinese rice wine fermentation. In order to determine the formation of volatiles in enzymatic extrusion-processed rice wine (EE), and to confirm its characteristic flavor compounds, headspace solid-phase micro-extraction followed by GC-MS was used. A total of 66 volatile compounds were identified in EE. During fermentation, most volatiles generated from enzymatic extruded rice had the similar trends with those from steam-cooked rice, but the differences in the concentration of volatiles indicated a changed balance of flavors release caused by enzymatic extrusion. Besides, the concentrations and sorts of volatiles in EEs fermented from different rice particle sizes, were not dramatically different. By principal component analysis, EE could be distinctly separated from other traditional Chinese rice wines according to its characteristic volatiles, namely, 2-heptanol, 1-octen-3-ol, ethyl 4-hydroxybenzoate, methylpentyl 2-propenoate, γ-hexalactone, and 4-vinylguaiacol. Enzymatic extrusion liquefaction has been a popular thermal treatment for cereals, and gradually being applied in fermentation and liquor-making industry all over the world. The characterization of volatile flavor compounds in Chinese rice wine processed by enzymatic extrusion liquefaction pretreatment, might be made use not only for a better understanding of this new-type rice wine, but for the further utilization of enzymatic extrusion in other wine or alcohol production as well. © 2015 Institute of Food Technologists®

  8. Volatile organic compound (VOC) determination in working atmospheres; Determinacion de compuestos organicos volatiles (VOC) en ambiente laboral

    Energy Technology Data Exchange (ETDEWEB)

    Blass A, Georgina; Panama T, Luz A; Corrales C, Deyanira [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The present work describes, in a synthesized way, the implementation and application of procedures based on the normativity related to the subject of the volatile organic compounds (Volatile Organic Compounds VOC), that allow to sample, quantify and evaluate the present contamination in the working atmosphere of a refinery due to the fugitive emissions of VOC and other substances. In accordance with the corresponding normativity, more than 189 organic compounds denominated dangerous air polluting agents (Hazardous Air Pollutants, HAP) can be found in a working atmosphere, but they are the 11 main HAP that can be found in a refinery. In the present article the work made for the sampling and quantification of 5 of the 11 dangerous polluting agents of the air: benzene, toluene, xylene, iso-octane and naphthalene. [Spanish] El presente trabajo describe, de manera sintetizada, la implementacion y aplicacion de procedimientos basados en la normatividad relacionada al tema de los compuestos organicos volatiles (Volatil Organic Compounds, VOC), que permiten muestrear, cuantificar y evaluar la contaminacion presente en el ambiente laboral de una refineria debido a las emisiones fugitivas de VOC y otras sustancias. De acuerdo con la normatividad correspondiente, mas de 189 compuestos organicos denominados contaminantes peligrosos del aire (Hazardous Air Pollutants, HAP), pueden ser encontrados en un ambiente laboral, pero son 11 los principales HAP que pueden ser hallados en una refineria. En el presente articulo se informa el trabajo realizado para el muestreo y cuantificacion de 5 de los 11 contaminantes peligrosos del aire: benceno, tolueno, xileno, iso-octano y naftaleno.

  9. [Health effect of volatile aldehyde compounds in photocatalytic oxidation of aromatics compounds].

    Science.gov (United States)

    Zhao, Wei-rong; Liao, Qiu-wen; Yang, Ya-nan; Dai, Jiu-song

    2013-05-01

    Photocatalytic oxidation (PCO) of toluene and benzaldehyde in indoor air by N doped TiO2 (N-TiO2) was conducted under UV irradiation of 254 nm. The intermediates were identified and monitored on real-time by proton transfer reaction-mass spectrometry. The health risks of PCO of toluene and benzaldehyde were assessed based on health risk influence index (eta). Results indicated that both the conversion rate and mineralization rate of toluene and benzaldehyde were relatively high, however, the volatile aldehyde compounds (VAs), including acetaldehyde and formaldehyde generated from ring-opening, significantly influenced the health risks of PCO of toluene and benzaldehyde. Acetaldehyde played a crucial role on health risks, which was inclined to desorb from the surface of catalysts, accumulate in gas-phase, and increase the health risks of PCO of the aromatic compounds. The concentration of formaldehyde kept stable at a relatively low level, however its impact cannot be neglected. In the PCO process of toluene and benzaldehyde, eta reached the maximum values of 8 499.68 and 21.43, with the eta(VAs), contribution of VAs to the health risk influence index of outlet, reaching 99.3% and 98.3%, respectively. The average values of eta in the PCO process of 30 min were 932.86 and 8.52, and for which eta(VAs), reached 98.5% and 98.0%, respectively. When PCO of toluene and benzaldehyde reached steady state, eta were 236.09 and 2.30, and eta(VAs) reached 97.9% and 97.8%, respectively. Hence, eta(VAs), can be taken as a characteristic parameter in assessment of health risks of PCO of aromatic compounds.

  10. Comparison of methods for determining volatile compounds in milk, cheese, and whey powder

    Science.gov (United States)

    Solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) are commonly used for qualitative and quantitative analysis of volatile compounds in various dairy products, but conditions have to be adjusted for optimal SPME release while not generating new compounds that are abs...

  11. Analysis of volatile organic compound from Elaeis guineensis inflorescences planted on different soil types in Malaysia

    Science.gov (United States)

    Muhamad Fahmi, M. H.; Ahmad Bukhary, A. K.; Norma, H.; Idris, A. B.

    2016-11-01

    The main attractant compound for Eleidobius kamerunicus to male spikelet Elaeis guineensis (oil palm) were determined by analyzing volatile organic compound extracted from E. guineenses inflorescences planted on different soil types namely peat soil, clay soil and sandy soil. Anthesizing male oil palm inflorescences were randomly choosen from palm aged between 4-5 years old age. Extraction of the volatiles from the oil palm inflorescences were performed by Accelerated Solvent Extraction method (ASE). The extracted volatile compound were determined by using gas chromatography-mass spectrometry. Out of ten identified compound, estragole was found to be a major compound in sandy soil (37.49%), clay soil (30.71%) and peat soil (27.79%). Other compound such as 9,12-octadecadieonic acid and n-hexadecanoic acid were found as major compound in peat soil (27.18%) and (7.45%); sandy soil (14.15 %) and (9.31%); and clay soil (30.23%) and (4.99%). This study shows that estragole was the predominant volatile compound detected in oil palm inflorescences with highly concentrated in palm planted in sandy soil type.

  12. Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia

    NARCIS (Netherlands)

    Kessermeier, J.; Kuhn, U.; Wolf, A.; Andreae, P.; Ciccioli, P.; Brancaleoni, E.; Frattoni, M.; Ganzeveld, L.N.; Guenther, J.; Greenberg, J.P.; Castro Vasconcellos, De P.; Tavares, T.; Artaxo, P.

    2000-01-01

    According to recent assessments, tropical woodlands contribute about half of all global natural non-methane volatile organic compound (VOC) emissions. Large uncertainties exist especially about fluxes of compounds other than isoprene and monoterpenes. During the Large-Scale Biosphere/Atmosphere

  13. Porous Aromatic Frameworks for Size-Selective Halogenation of Aryl Compounds.

    Science.gov (United States)

    Yang, Yajie; Zou, Xiaoqin; Cui, Peng; Zhou, Yingxi; Zhao, Shuai; Wang, Lili; Yuan, Ye; Zhu, Guangshan

    2017-09-13

    Organic halides are vitally important chemical precursors or intermediates in the fields of agrochemical synthesis, molecular recognition, and material science. However, it is difficult to selectively synthesize these compounds due to the multiple reactive sites in aryl fragments. In this work, we prepared the first fully fluorinated porous aromatic framework (PAF). Its -C-F bond and hierarchical porosity have great benefits for PAF functionalization. After being decorated with different cyclodextrins (CDs), CD-PAF materials can incorporate diverse aryl compounds to protect their ortho sites from being attacked to produce para-substituted molecules. This selectivity obviously increased with a decrease in the substrate size (from 0.97 to 0.41 nm). In addition, the CD-PAFs can undergo long-term use in both chlorination and bromination.

  14. Effect of sequential fermentations and grape cultivars on volatile compounds and sensory profiles of Danish wines

    DEFF Research Database (Denmark)

    Liu, Jing; Arneborg, Nils; Toldam-Andersen, Torben

    2017-01-01

    in Denmark were used in sequential fermentations with S. cerevisiae on three cool-climate grape cultivars, Bolero, Rondo and Regent. During the fermentations, the yeast growth was determined as well as key oenological parameters, volatile compounds and sensory properties of finished rosé wines. RESULTS......: The different non-Saccharomyces strains and cool-climate grape cultivars produced wines with a distinctive aromatic profile. A total of 67 volatile compounds were identified, including 43 esters, 14 alcohols, five acids, two ketones, a C13-norisoprenoid, a lactone and a sulfur compound. The use of M. viticola...

  15. Relationships between volatile compounds and sensory characteristics in virgin olive oil by analytical and chemometric approaches.

    Science.gov (United States)

    Procida, Giuseppe; Cichelli, Angelo; Lagazio, Corrado; Conte, Lanfranco S

    2016-01-15

    The volatile fraction of virgin olive oil is characterised by low molecular weight compounds that vaporise at room temperature. In order to obtain an aroma profile similar to natural olfactory perception, the composition of the volatile compounds was determined by applying dynamic headspace gas chromatography, performed at room temperature, with a cryogenic trap directly connected to a gas chromatograph-mass spectrometer system. Samples were also evaluated according to European Union and International Olive Council official methods for sensory evaluation. In this paper, the composition of the volatile fraction of 25 extra virgin olive oils from different regions of Italy was analysed and some preliminary considerations on relationships between chemical composition of volatile fraction and sensory characteristics are reported. Forty-two compounds were identified by means of the particular analytical technique used. All the analysed samples, classified as extra virgin by the panel test, never present peaks whose magnitude is important enough in defected oils. The study was focused on the evaluation of volatile compounds responsible for the positive impact on olive odour properties ('green-fruity' and 'sweet') and olfactory perception. Chemometric evaluation of data, obtained through headspace analysis and the panel test evaluation, showed a correlation between chemical compounds and sensory properties. On the basis of the results, the positive attributes of virgin olive oil are divided into two separated groups: sweet types or green types. Sixteen volatile compounds with known positive impact on odour properties were extracted and identified. In particular, eight compounds seem correlated with sweet properties whereas the green sensation appears to be correlated with eight other different substances. The content of the compounds at six carbon atoms proves to be very important in defining positive attributes of extra virgin olive oils and sensory evaluation. © 2015

  16. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Sundin, Peter; Wesén, Clas

    1997-01-01

    and separation method. This review covers separation by solid phase chromatography, gel permeation chromatography, and liquid-liquid extraction, followed by halogen determination. All studies performed according to this outline have indicated that the major organohalogen compounds are chlorinated fatty acids...... bound in different lipids. For the detection and identification of individual, halogenated fatty acid methyl esters (FAMEs) liberated from the lipids, gas chromatography (GC) has been employed together with detection methods such as electron capture detection, electrolytic conductivity detection (ELCD......), atomic emission spectrometry, and mass spectrometry. For most environmental samples, chlorinated FAMEs must be enriched prior to GC. ELCD is a useful detection method for indicating halogenated FAMEs in the chromatograms, and tentative identification of the halogenated species can be obtained...

  17. Geographical traceability of Italian white truffle (Tuber magnatum Pico) by the analysis of volatile organic compounds.

    Science.gov (United States)

    Gioacchini, Anna Maria; Menotta, Michele; Guescini, Michele; Saltarelli, Roberta; Ceccaroli, Paola; Amicucci, Antonella; Barbieri, Elena; Giomaro, Giovanna; Stocchi, Vilberto

    2008-10-01

    Results are presented that were obtained on the geographic traceability of the white truffle Tuber magnatum Pico. Solid-phase microextraction coupled to gas chromatography/mass spectrometry (SPME-GC/MS) was employed to characterize the volatile profile of T. magnatum white truffle produced in seven geographical areas of Italy. The main components of the volatile fraction were identified using SPME-GC/MS. Significant differences in the proportion of volatile constituents from truffles of different geographical areas were detected. The results suggest that, besides genetic factors, environmental conditions influence the formation of volatile organic compounds. The mass spectra of the volatile fraction of the samples were used as fingerprints to characterize the geographical origin. Next, stepwise factorial discriminant analysis afforded a limited number of characteristic fragment ions that allowed a geographical classification of the truffles studied.

  18. Comparative study on volatile compounds from Tunisian and Sicilian monovarietal virgin olive oils.

    Science.gov (United States)

    Baccouri, Olfa; Bendini, Alessandra; Cerretani, Lorenzo; Guerfel, Mokhtar; Baccouri, Béchir; Lercker, Giovanni; Zarrouk, Mokhtar; Daoud Ben Miled, Douja

    2008-11-15

    The effects of ripening degree of olives on volatile profile of monovarietal virgin olive oils (VOO) from Tunisian and Sicilian cultivars were investigated. Fruits obtained from Tunisia (Chétoui and Chemlali) and Italy (Nocellara del Belice, Biancolilla and Cerasuola) were picked at three different stages of ripeness and then immediately processed. Moreover, the changes in volatile composition were evaluated in Chétoui variety as a function of the irrigation regime versus the rain-fed control. Using headspace-solid-phase microextraction (HS-SPME) technique coupled to GC-MS and GC-FID, the volatile compounds of the monovarietal virgin olive oils were identified and quantitatively analyzed. The proportions of different classes of volatiles of oils showed significant differences throughout the maturity process. The results suggest that adding to the genetic factor; agronomic conditions affect the volatile formation and therefore the organoleptic properties of VOO. Copyright © 2008 Elsevier Ltd. All rights reserved.

  19. Study of Volatile Compounds of Virgin Olive Oils with 'Frostbitten Olives' Sensory Defect.

    Science.gov (United States)

    Romero, Inmaculada; García-González, Diego L; Aparicio-Ruiz, Ramón; Morales, María T

    2017-05-31

    Freeze injuries in olives are responsible for the 'frostbitten olives' sensory defect that is sometimes detected in virgin olive oil. This defect is becoming one of the most common negative attributes today because climate change has modified weather patterns. The temperature changes can take place abruptly, with rapid freeze-thaw cycles, or gradually. These changes produce significant alterations in the quality of the oils. This study analyzed the volatile composition of virgin olive oils characterized with 'frostbitten olives' defect. The volatile information allowed grouping these oils into two types characterized with two different profiles. One of them is characterized by 'soapy' and 'strawberry-like' perceptions and the presence of two volatile compounds (ethyl 2-methyl butanoate and ethyl propanoate). The second profile is characterized by 'wood' and 'humidity' descriptors and a high concentration of two volatiles (pentanal and octanal). These results on volatiles explain the existence of two sensory profiles associated with the 'frostbitten olives' defect.

  20. Volatile organic compounds released by blowfly larvae and pupae: new perspectives in forensic entomology.

    Science.gov (United States)

    Frederickx, C; Dekeirsschieter, J; Brostaux, Y; Wathelet, J-P; Verheggen, F J; Haubruge, E

    2012-06-10

    To evaluate postmortem intervals (PMIs), one should take into account the determined age of necrophagous flies present on the cadaver. However, PMI determination needs further improvement, and rapid and accurate approaches have therefore to be developed. While previous studies have focussed on insect cuticular hydrocarbons, here we explore the volatile profile released by larvae and pupae of Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae). We monitored changes in volatile compounds daily, by headspace solid-phase microextraction, followed by gas chromatography-mass spectrometry. Branched and unbranched hydrocarbons, alcohols, esters and acids were identified, and the volatile profile was shown to vary, in both composition and quantity, with the age of the larva/pupa under investigation. We concluded, based on the analysis of the released volatile organic compounds, that it is possible to increase the accuracy of the estimated PMI, through improved estimation of the age of blowflies present on the cadaver. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1.

    Science.gov (United States)

    Wang, Changlu; Wang, Zhifang; Qiao, Xi; Li, Zhenjing; Li, Fengjuan; Chen, Mianhua; Wang, Yurong; Huang, Yufang; Cui, Haiyan

    2013-04-01

    Streptomyces sp. TD-1 was identified as Streptomyces alboflavus based on its morphological characteristics, physiological properties, and 16S rDNA gene sequence analysis. The antifungal activity of the volatile-producing S. alboflavus TD-1 was investigated. Results showed that volatiles generated by S. alboflavus TD-1 inhibited storage fungi Fusarium moniliforme Sheldon, Aspergillus flavus, Aspergillus ochraceus, Aspergillus niger, and Penicillum citrinum in vitro. GC/MS analysis revealed that 27 kinds of volatile organic compounds were identified from the volatiles of S. alboflavus TD-1 mycelia, among which the most abundant compound was 2-methylisoborneol. Dimethyl disulfide was proved to have antifungal activity against F. moniliforme by fumigation in vitro. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  2. Associations of Volatile Compounds with Sensory Aroma and Flavor: The Complex Nature of Flavor

    Directory of Open Access Journals (Sweden)

    Edgar Chambers IV

    2013-04-01

    Full Text Available Attempts to relate sensory analysis data to specific chemicals such as volatile compounds have been frequent. Often these associations are difficult to interpret or are weak in nature. Although some difficulties may relate to the methods used, the difficulties also result from the complex nature of flavor. For example, there are multiple volatiles responsible for a flavor sensation, combinations of volatiles yield different flavors than those expected from individual compounds, and the differences in perception of volatiles in different matrices. This review identifies some of the reasons sensory analysis and instrumental measurements result in poor associations and suggests issues that need to be addressed in future research for better understanding of the relationships of flavor/aroma phenomena and chemical composition.

  3. Solar driven production of toxic halogenated and nitroaromatic compounds in natural seawater

    Energy Technology Data Exchange (ETDEWEB)

    Calza, Paola [Dipartimento di Chimica Analitica, Universita di Torino, via P. Giuria 5, 10125 Torino (Italy)], E-mail: paola.calza@unito.it; Massolino, Cristina; Pelizzetti, Ezio; Minero, Claudio [Dipartimento di Chimica Analitica, Universita di Torino, via P. Giuria 5, 10125 Torino (Italy)

    2008-07-15

    Natural seawater (NSW) sampled in March and June 2007 in the Gulf of Trieste, Italy, has been spiked with phenol and irradiated in a device simulating solar light spectrum and intensity. Opposite to the case of artificial seawater, for which phenol is slightly degraded by direct photolysis, in NSW the phenol degradation mediated by natural photosensitizers occurs, forming several secondary pollutants, including hydroxyderivatives (1,4-benzoquinone, resorcinol), three chlorophenol isomers, 2,3-dichlorophenol, 2- and 4-bromophenol, 2- and 4-nitrophenol, and several condensed products (2 and 4-phenoxyphenol, 2,2'-, 4,4'- and 2,4-bisphenol). These compounds are toxic to bacteria and other living organisms. Ecotoxicologic effect has been evaluated by using the Vibrio Fischeri luminescent bacteria assay. This technique uses marine organisms, and it is therefore well suited for the study on marine samples. A correlation exists between the intermediates evolution and the toxicity profile, as the largest toxicity is observed when compounds with the lower EC50 (halophenols, phenoxyphenols) are formed at higher concentration.

  4. Changes in volatile compounds of gamma-irradiated fresh cilantro leaves during cold storage.

    Science.gov (United States)

    Fan, Xuetong; Sokorai, Kimberly J B

    2002-12-18

    Consumption of salsas and dishes containing cilantro has been linked to several recent outbreaks of food-borne illness due to contamination with human pathogens. Ionizing irradiation can effectively eliminate food-borne pathogens from various vegetables including cilantro. However, the effect of irradiation on aroma of fresh cilantro is unknown. This study was conducted to investigate the effect of irradiation on volatile compounds of fresh cilantro leaves. Fresh cilantro leaves (Coriandrum sativum L) were irradiated with 0, 1, 2, or 3 kGy gamma radiation and then stored at 3 degrees C up to 14 days. Volatile compounds were extracted using solid-phase microextraction (SPME), followed by gas chromatographic separation and mass spectra detection at 0, 3, 7, and 14 days after irradiation. Most of the volatile compounds identified were aldehydes. Decanal and (E)-2-decenal were the most abundant compounds, accounting for more than 80% of the total amount of identified compounds. The amounts of linalool, dodecanal, and (E)-2-dodecenal in irradiated samples were significantly lower than those in nonirradiated samples at day 14. However, the most abundant compounds [decanal and (E)-2-decenal] were not consistently affected by irradiation. During storage at 3 degrees C, the amount of most aldehydes peaked at 3 days and then decreased afterward. Our results suggest irradiation of fresh cilantro for safety enhancement at doses up to 3 kGy had minimal effect on volatile compounds compared with the losses that occurred during storage.

  5. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  6. Volatile compounds released during ripening in Italian dried sausage

    DEFF Research Database (Denmark)

    Sunesen, Lars Oddershede; Dorigoni, V.; Zanardi, E.

    2001-01-01

    increased during ripening. Pepper compound concentrations peaked in the middle of the ripening period. Lipid oxidation products increased especially towards the end of ripening, in particular, the compounds 2-heptanol, 1-octen-3-ol, 2-heptanone and 2-nonanone. Surface moulds probably caused 4-heptanone...

  7. Effect of toasting on non-volatile and volatile vine-shoots low molecular weight phenolic compounds.

    Science.gov (United States)

    Sánchez-Gómez, R; Zalacain, A; Alonso, G L; Salinas, M R

    2016-08-01

    Low molecular weight phenolic compounds (LMWPC), including non-volatile and volatile, of Airén and Moscatel vine-shoot cultivars waste submitted to different toasting conditions (light, 180°/15min; medium, 180°/30min; high 180°/45min) were studied in order to exploit them with oenological purposes. The LMWPC differences were mainly due to the toasting times rather than vine-shoot variety. In non-volatile LMWPC fraction, flavanols and almost all phenolic acids decreased by toasting. The presence of trans-resveratrol has a special relevance at light toasting: 14 times more concentrated in Airén and 6 times in Moscatel vine-shoots, than their respective non-toasted samples. The volatile LMWPC showed a significant increment with toasting, being vanillin the one with the highest difference respect to non-toasted samples at high conditions: more than 15 times in Airén and 11 in Moscatel. Although toasting reduced some LMWPC, particular characteristics of these vine-shoots must be taken into account when considering its future use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Volatile compounds and odor traits of dry-cured ham (Prosciutto crudo) irradiated by electron beam and gamma ray

    Science.gov (United States)

    Prosciutto crudo were irradiated at 0, 3 and 6kGy by gamma ray (GR) and electron beam (EB), respectively. The odor scores and volatile compounds were examined after 7 days storage at 4'. Volatile compounds from samples without and with irradiation at 6kGy were analyzed by GC-MS. Fifty-nine compounds...

  9. Volatile compounds as potential defective coffee beans' markers.

    Science.gov (United States)

    Toci, Aline T; Farah, Adriana

    2008-06-01

    Although Brazil is the largest raw coffee producer and exporter in the world, a large amount of its Arabica coffee production is considered inappropriate for exportation. This by-product of coffee industry is called PVA due to the presence of black (P), green (V) and sour (A) defective beans, which are known to contribute considerably for cup quality decrease. Data on the volatile composition of Brazilian defective coffee beans are scarce. In this study, we evaluated the volatile composition of defective coffee beans (two lots) compared to good quality beans from the respective lots. Potential defective beans' markers were identified. In the raw samples, 2-methylpyrazine and 2-furylmethanol acetate were identified only in black-immature beans and butyrolactone only in sour beans, while benzaldehyde and 2,3,5,6-tetramethylpyrazine showed to be potential markers of defective beans in general. In the roasted PVA beans, pyrazine, 2,3-butanediol meso, 2-methyl-5-(1-propenyl)pyrazine, hexanoic acid, 4-ethyl-guayacol and isopropyl p-cresol sulfide also showed to be potential defective coffee beans' markers. Copyright © 2007 Elsevier Ltd. All rights reserved.

  10. Volatile Compounds of Pluchea indica Less and Ocimum basillicum Linn Essential Oiland Potency as Antioxidant

    Directory of Open Access Journals (Sweden)

    DONDIN SAJUTHI

    2013-09-01

    Full Text Available This research was conducted to identify volatile compounds of pluchea and basil essential oils and their antioxidant capacity to scavenge a DPPH (1,1-diphenyl-2-picrylhidrazyl free radical and inhibit lipid peroxidation. Essential oil of pluchea and basil leaves was prepared by hydrodistillation method and then their volatile compounds were identified by GC-MS. The volatile compounds in the essential oil of pluchea leaves consist of 66 components with (10S,11S-Himachala-3-(12-4-diene (17.13% made up the highest proportion of volatile compounds. Basil leaves had 70 volatile components in which the major components were (E-3,7-dimethyl-2,6-octadienal (23.98% and (Z- 3,7-dimethyl-2,6-octadienal (17.35%. Total phenol levels in pluchea and basil essential oils were 275 and 209 ppm, respectively. DPPH scavenging activity of the essential oil of pluchea leaves was lower than that of basil leaves, conversely inhibition activity of lipid peroxidation in palm oil of pluchea essential oil was higher than that of basil leaves.

  11. Analysis of volatile compounds responsible for kiwifruit aroma by desiccated headspace gas chromatography-mass spectrometry.

    Science.gov (United States)

    Zhang, Chun-Yun; Zhang, Qiong; Zhong, Cai-Hong; Guo, Ming-Quan

    2016-04-01

    A new method for desiccated headspace (DHS) sampling of aqueous sample to GC-MS for the analysis of volatile compounds responsible for kiwifruit aroma in different kiwifruit cultivars has been developed based on the complete hydrate formation between the sample solvent (water) with anhydrous salt (calcium chloride) at an elevated temperature (above the boiling point of the aqueous sample) in a non-contact format, which overcame the water-effect challenge to directly introduce aqueous sample into GC-MS analysis. By means of DHS, the volatile compounds in three different kiwifruit cultivars were analyzed and compared under the optimized operating conditions, mainly time and temperature for headspace equilibration, column temperature program for GC-MS measurement. As a result, 20 peaks of volatile compounds responsible for kiwifruit aroma were detected and remarkable differences were found in the relative contents of three major volatile compounds among the three different kiwifruit cultivars, i.e., acetaldehyde, ethanol and furfural. The DHS sampling technique used in the present method can make the GC-MS analysis of volatile compounds in the aqueous sample within complex matrix possible without contaminating the GC-MS instrument. In terms of the analysis of volatile compounds in kiwifruit, the present method enabled a direct measurement on the filtrate of the aqueous kiwifruit pulp, without intermediate trap phase for the extraction of analytes, which will be more reliable and simpler as compared with any other headspace method in use. Thus, DHS coupled with GC-MS will be a new valuable tool available for the kiwifruit related research and organoleptic quality control. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Detection of volatile organic compounds indicative of human presence in the air.

    Science.gov (United States)

    Kwak, Jae; Geier, Brian A; Fan, Maomian; Gogate, Sanjay A; Rinehardt, Sage A; Watts, Brandy S; Grigsby, Claude C; Ott, Darrin K

    2015-07-01

    Volatile organic compounds were collected and analyzed from a variety of indoor and outdoor air samples to test whether human-derived compounds can be readily detected in the air and if they can be associated with human occupancy or presence. Compounds were captured with thermal desorption tubes and then analyzed by gas chromatography with mass spectrometry. Isoprene, a major volatile organic compound in exhaled breath, was shown to be the best indicator of human presence. Acetone, another major breath-borne compound, was higher in unoccupied or minimally occupied areas than in human-occupied areas, indicating that its majority may be derived from exogenous sources. The association of endogenous skin-derived compounds with human occupancy was not significant. In contrast, numerous compounds that are found in foods and consumer products were detected at elevated levels in the occupied areas. Our results revealed that isoprene and many exogenous volatile organic compounds consumed by humans are emitted at levels sufficient for detection in the air, which may be indicative of human presence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Changes in Volatile Compounds of Chinese Luzhou-Flavor Liquor during the Fermentation and Distillation Process.

    Science.gov (United States)

    Ding, Xiaofei; Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2015-11-01

    The aim of this study was to investigate the dynamic of volatile compounds in the Zaopei during the fermentation and distillation process by headspace solid-phase microextraction-gas chromatography mass spectrometry (HS-SPME-GCMS). Physicochemical properties analysis of Zaopei (fermented grains [FG], fermented grains mixed with sorghum [FGS], streamed grains [SG], and streamed grains mixed with Daqu [SGD]) showed distinct changes. A total number of 66 volatile compounds in the Zaopei were identified, in which butanoic acid, hexanoic acid, ethyl hexanoate, ethyl lactate, ethyl octanoate, hexyl hexanoate, ethyl hydrocinnamate, ethyl oleate, ethyl hexadecanoate, and ethyl linoleate were considered to be the dominant compounds due to their high concentrations. FG had the highest volatile compounds (112.43 mg/kg), which significantly decreased by 17.05% in the FGS, 67.12% in the SG, and 73.75% in the SGD. Furthermore, about 61.49% of volatile compounds of FGS were evaporated into raw liquor, whereas head, heart, and tail liquor accounted for 29.84%, 39.49%, and 30.67%, respectively. Each volatile class generally presented a decreasing trend, except for furans. Especially, the percentage of esters was 55.51% to 67.41% in the Zaopei, and reached 92.60% to 97.67% in the raw liquor. Principal component analysis based ordination of volatile compounds data segregated FGS and SGD samples. In addition, radar diagrams of the odor activity values suggested that intense flavor of fruit was weakened most from FG to SGD. The dynamic of volatile compounds in the Zaopei during the fermentation and distillation process was tested by SPME-GCMS. The result of this study demonstrated that both volatile compounds of Zaopei and thermal reaction during distillation simply determined the unique feature of raw liquor. This study was conducted based on the real products from liquor manufactory, so it is practicable that the method can be used in an industry setting. © 2015 Institute of Food

  14. Sensory and Physiological Effects on Humans of Combined Exposures to Air Temperatures and Volatile Organic Compounds

    DEFF Research Database (Denmark)

    Mølhave, Lars; Liu, Zunyong; Jørgensen, Anne Hempel

    1993-01-01

    Ten healthy humans were exposed to combinations of volatile organic compounds (VOCs) and air temperature (0 mg/m3 and 10 mg/m3 of a mixture of 22 volatile organic compounds and 18, 22 and 26° C). Previously demonstrated effects of VOCs and thermal exposures were replicated. For the first time nasal...... cross-sectional areas and nasal volumes, as measured by acoustic rhinometry, were shown to decrease with decreasing temperature and increasing VOC exposure. Temperature and pollutant exposures affected air quality, the need for more ventilation, skin humidity on the forehead, sweating, acute sensory...... indoor air concentrations of VOCs should depend on room air temperature....

  15. The Atmospheric Oxidation of Volatile Organic Compounds Through Hydrogen Shift Reactions

    DEFF Research Database (Denmark)

    Knap, Hasse Christian

    In this thesis the unimolecular hydrogen transfer reactions (H-shift) in peroxy and acyl peroxy radicals derived from the atmospheric oxidation of volatile organic compounds (VOC) have been investigated. A unimolecular isomerization reaction where a hydrogen atom is moved internally within...... the reaction rate constants of the H-shift reactions. The autoxidation of volatile organic compounds is an important oxidation mechanism that produces secondary organic aerosols (SOA) and recycles hydroxyl (OH) radicals. The autoxidation cycle produces a second generation peroxy radical (OOQOOH) through...

  16. Recovery of volatile fruit juice aroma compounds by membrane technology

    DEFF Research Database (Denmark)

    Bagger-Jørgensen, Rico; Meyer, Anne S.; Pinelo, Manuel

    2011-01-01

    The influence of temperature (10–45°C), feed flow rate (300–500L/h) and sweeping gas flow rate (1.2–2m3/h) on the recovery of berry fruit juice aroma compounds by sweeping gas membrane distillation (SGMD) was examined on an aroma model solution and on black currant juice in a lab scale membrane...... distillation set up. The data were compared to recovery of the aroma compounds by vacuum membrane distillation (VMD). The flux of SGMD increased with an increase in temperature, feed flow rate or sweeping gas flow rate. Increased temperature and feed flow rate also increased the concentration factors...... the degradation of anthocyanins and polyphenolic compounds in the juice. Industrial relevanceHigh temperature evaporation is the most widely used industrial technique for aroma recovery and concentration of juices, but membrane distillation (MD) may provide for gentler aroma stripping and lower energy consumption...

  17. Changes in volatile compounds of Parma ham during maturation.

    Science.gov (United States)

    Bolzoni, L; Barbieri, G; Virgili, R

    1996-07-01

    Changes in the aromatic profile of Parma ham caused by the normal course of aging up to 12 months were examined in order to identify distinctive signals for different maturing periods (6, 9, 12 months). The 28 samples analysed, divided among the three periods mentioned above, provided an aromatic profile in which methyl esters were the most relevant signals, followed by carbonyl compounds and alcohols. The greatest discriminating power is to be ascribed to components such as 3-methylbutanal and ethyl esters, and alcohols like 1-propanol, 1-butoxy-2-propanol and 2-butanol. These compounds were present in higher percentages at 12 months of aging.

  18. Analysis of Organic Volatile Flavor Compounds in Fermented Stinky Tofu Using SPME with Different Fiber Coatings

    Directory of Open Access Journals (Sweden)

    Wei Guan

    2012-03-01

    Full Text Available The organic volatile flavor compounds in fermented stinky tofu (FST were studied using SPME-GC/MS. A total of 39 volatile compounds were identified, including nine esters, seven alcohols, five alkenes, four sulfides, three heterocycles, three carboxylic acids, three ketones, two aldehydes, one phenol, one amine and one ether. These compounds were determined by MS, and conformed by comparison of the retention times of the separated constituents with those of authentic samples and by comparison of retention indexes (RIs of separated constituents with the RIs reported in the literature. The predominant volatile compound in FST was indole, followed by dimethyl trisulfide, phenol, dimethyl disulfide and dimethyl tetrasulfide. In order to find a better extraction time, the extraction times was optimized for each type of SPME fiber; the results show that the best extraction time for Carboxen/PDMS is 60 min, for PDMS/DVB 30 min, for DVB/CAR/PDMS 60 min and for PDMS 75 min. Of the four fibers used in this work, Carboxen/PDMS is found to be the most suitable to extract the organic volatile flavor compounds in fermented stinky tofu.

  19. Volatile compounds from organic and conventional passion fruit (Passiflora edulis F. Flavicarpa pulp

    Directory of Open Access Journals (Sweden)

    Mariana Serrão Macoris

    2011-06-01

    Full Text Available The volatile compositions from organic and conventional passion fruit pulps produced in Brazil were investigated. The pulps were also physicochemically characterized. The volatile compounds from the headspace of the passion fruit pulp were stripped to a Porapak Q trap for 2 hours; they were eluted with 300 µL of dichloromethane, separated by gas chromatography/flame ionisation detection and identified through gas chromatography/mass spectrometry. Both pulps conformed to the requirements of the Brazilian legislation, indicating they were suitable to be industrialized and consumed. A total of 77 compounds were detected in the headspace of the passion fruit pulps - 60 of which were identified, comprising 91% of the total chromatogram area. The major compounds were the following: ethyl butanoate, 52% and 57% of the total relative area of the chromatogram for the organic and conventional passion fruit pulps, respectively; ethyl hexanoate, 22% and 9%, respectively; and hexyl butanoate, 2% and 5%, respectively. The aroma of the organic passion fruit pulp is mainly related to the following volatile compounds: ethyl hexanoate, methyl hexanoate, β-myrcene and D-limonene. The conventional passion fruit pulp presented methyl butanoate, butyl acetate, hexanal, 1-butanol, butyl butanoate, trans-3-hexenyl acetate, cis-3-hexen-1-ol, butyl hexanoate, hexyl butanoate, 3-hexenyl butanoate and 3-hexenyl hexanoate as the main volatile compounds for aroma.

  20. Production of volatile aroma compounds by bacterial strains isolated from different surface-ripened French cheeses.

    Science.gov (United States)

    Deetae, Pawinee; Bonnarme, Pascal; Spinnler, Henry E; Helinck, Sandra

    2007-10-01

    Twelve bacterial strains belonging to eight taxonomic groups: Brevibacterium linens, Microbacterium foliorum, Arthrobacter arilaitensis, Staphylococcus cohnii, Staphylococcus equorum, Brachybacterium sp., Proteus vulgaris and Psychrobacter sp., isolated from different surface-ripened French cheeses, were investigated for their abilities to generate volatile aroma compounds. Out of 104 volatile compounds, 54 volatile compounds (identified using dynamic headspace technique coupled with gas chromatography-mass spectrometry [GC-MS]) appeared to be produced by the different bacteria on a casamino acid medium. Four out of eight species used in this study: B. linens, M. foliorum, P. vulgaris and Psychrobacter sp. showed a high flavouring potential. Among these four bacterial species, P. vulgaris had the greatest capacity to produce not only the widest varieties but also the highest quantities of volatile compounds having low olfactive thresholds such as sulphur compounds. Branched aldehydes, alcohols and esters were produced in large amounts by P. vulgaris and Psychrobacter sp. showing their capacity to breakdown the branched amino acids. This investigation shows that some common but rarely mentioned bacteria present on the surface of ripened cheeses could play a major role in cheese flavour formation and could be used to produce cheese flavours.

  1. VOLATILE COMPOUNDS IDENTIFIED IN BARBADOS CHERRY ‘BRS-366 JABURÚ’

    Directory of Open Access Journals (Sweden)

    Y. M. Garcia

    2016-07-01

    Full Text Available In foods, the flavor and aroma are very important attributes, thus the main objective of this study was to identify the volatile compounds (VC of the "BRS-366 Jaburú" acerola variety, for which we used the solid phase microextraction method (SPE. The separation and identification of volatile compounds was made using gas chromatography-mass spectrometry (GC-MS. Three fibers were evaluated, Polydimethylsiloxane / Divinylbenzene (PDMS / DVB, 65 micrometres Divinylbenzene / Carboxen / Polydimethylsiloxane (DVB / CAR / PDMS 50/30 m and polyacrylate (PA 85 uM to compare the extraction of its components. Thirty-three volatile compounds were identified and classified into eight chemical classes: carboxylic acids, alcohols, aldehydes, ketones, esters, hydrocarbons, phenylpropanoids and terpenoids. The peak areas of each of the extracted compounds were expressed as percentages to indicate the relative concentration of each, of which ethyl acetate is distinguished by being responsible for the fruity aroma notes. Thus, the fiber PDMS / DVB was the best as it enabled to extract a greater amount of volatile compounds

  2. Volatile compounds in Spanish, French, and American oak woods after natural seasoning and toasting.

    Science.gov (United States)

    Cadahía, Estrella; Fernández de Simón, Brígida; Jalocha, Jerzy

    2003-09-24

    The volatile composition (volatile phenols, phenolic aldehydes, furanic compounds, lactones, phenyl ketones, and other related compounds) of Spanish oak heartwood of Quercus robur, Quercus petraea,Quercus pyrenaica, and Quercus faginea was studied by gas chromatography/mass spectrometry, in relation to the processing in barrels cooperage and in relation to the French oak of Quercus robur (Limousin) and Quercus petraea (Allier) and American oak of Quercus alba (Missouri), which are habitually used in cooperage. The volatile composition of seasoned oak woods varied according to individual trees, species, and origins, and the differences were more significant in Spanish species with respect to American species than with respect to French species. The toasting process influenced the volatile composition of wood. It led to high increases in the concentration of volatile phenols, furanic aldehydes, phenyl ketones, and other related structures, but the effect on w-lactones levels depended on species and origin. The volatile composition in Spanish oak species evolved during toasting like in French and American oak, but quantitative differences were found, especially important in American species with respect to European species.

  3. Volatile compounds of vegetarian soybean kapi, a fermented Thai ...

    African Journals Online (AJOL)

    user

    2011-01-31

    Jan 31, 2011 ... predominance of indole, S-containing and N-containing compounds. Sensory evaluation of S1 showed a strong kapi odor with higher scores among the vegetarian soybean kapi and there were no significant differences in evaluation scores between S1 and commercial vegetarian kapi J1-J3. These data.

  4. Spatial variation of volatile organic compounds and carbon ...

    African Journals Online (AJOL)

    GREG

    2013-05-12

    May 12, 2013 ... compound levels were highest at public bus terminuses with 12.40 ± 0.83 ppm, and lowest for industrial locations (2.16 ± 0.09 ppm) ... terminus, busiest residential areas and selected industries (Figure. 1). The choice of ..... of a neural network model with PCA/RBF approach for forecasting pollutant trends in ...

  5. Effect of packaging materials and storage on major volatile compounds in three Australian native herbs.

    Science.gov (United States)

    Chaliha, Mridusmita; Cusack, Andrew; Currie, Margaret; Sultanbawa, Yasmina; Smyth, Heather

    2013-06-19

    Lemon myrtle, anise myrtle, and Tasmanian pepper leaf are commercial Australian native herbs with a high volatile or essential oil content. Packaging of the herbs in high- or low-density polyethylene (HDPE and LDPE) has proven to be ineffective in preventing a significant loss of volatile components on storage. This study investigates and compares the effectiveness of alternate high-barrier property packaging materials, namely, polyvinylidene chloride coated polyethylene terephthalate/casted polypropylene (PVDC coated PET/CPP) and polyethylene terephthalate/polyethylene terephthalate/aluminum foil/linear low-density polyethylene (PET/PET/Foil/LLDPE), in prevention of volatile compound loss from the three native herbs stored at ambient temperature for 6 months. Concentrations of major volatiles were monitored using gas chromatography-mass spectrometry (GC-MS) techniques. After 6 months of storage, the greatest loss of volatiles from lemon myrtle was observed in traditional LDPE packaging (87% loss) followed by storage in PVDC coated PET/CPP (58% loss) and PET/PET/Foil/LLDPE (loss of 23%). The volatile loss from anise myrtle and Tasmanian pepper leaf stored in PVDC coated PET/CPP and PET/PET/Foil/LLDPE packaging was material to retain the quality of herbs with high volatile content.

  6. Identification of volatile compound markers during the ripening and senescence of lulo (Solanum quitoenseLam.).

    Science.gov (United States)

    Corpas Iguarán, Eduardo; Taborda Ocampo, Gonzalo; Tapasco Alzate, Omar

    2018-01-01

    Lulo ( Solanum quitoense Lam.) is an exotic fruit cultivated in Colombia. During ripening and senescence, this climactic fruit undergoes biochemical processes that produce the volatiles responsible for its aroma. This study aimed to evaluate the changes in the volatile content during the ripening and senescence of lulo. Analysis of the volatile composition of lulo harvested in each of its five ripening stages and during its senescence time when stored at 18 ± 2 °C was performed using HS-SPME with GC-MS. Throughout ripening, the most notable change was the transformation of alcohols such as (Z)-3-hexen-1-ol and 1-penten-3-ol to afford esters such as (Z)-3-hexenyl acetate and ketones such as 1-penten-3-one. Some acids reacted with alcohols to produce acetate and hexanoate esters, concentrations which increased more than sixfold between stage one and five. Moreover, all the major compounds were C 6 straight chain compounds related to the lipoxygenase pathway. During senescence, majority of compounds were methyl esters, which increased in concentration consistently until day eight. Remarkably, the content of methyl butanoate increased from 0.9% of the total amount of volatiles on day two up to 76.4% on day eight. Some of these volatiles are probably contributors to the "off flavor" during senescence.

  7. Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth.

    Science.gov (United States)

    Lee, Samantha; Hung, Richard; Yap, Melanie; Bennett, Joan W

    2015-06-01

    Studying the effects of microbial volatile organic compounds (VOCs) on plant growth is challenging because the production of volatiles depends on many environmental factors. Adding to this complexity, the method of volatile exposure itself can lead to different responses in plants and may account for some of the contrasting results. In this work, we present an improved experimental design, a plate-within-a-plate method, to study the effects of VOCs produced by filamentous fungi. We demonstrate that the plant growth response to VOCs is dependent on the age of the plant and fungal cultures. Plants exposed to volatiles emitted by 5-day-old Trichoderma atroviride for 14 days exhibited inhibition, while plants exposed to other exposure conditions had growth promotion or no significant change. Using GC-MS, we compared fungal volatile emission of 5-day-old and 14-day-old T. atroviride. As the fungi aged, a few compounds were no longer detected, but 24 new compounds were discovered.

  8. Assessment of volatile and non-volatile compounds in durian wines fermented with four commercial non-Saccharomyces yeasts.

    Science.gov (United States)

    Lu, Yuyun; Huang, Dejian; Lee, Pin-Rou; Liu, Shao-Quan

    2016-03-30

    Chemical compositions of durian wines fermented with Metschnikowia pulcherrima Flavia, Torulaspora delbrueckii Biodiva, Pichia kluyveri FrootZen and Kluyveromyces thermotolerans Concerto were investigated. Sucrose was not utilized by M. pulcherrima and P. kluyveri, resulting in little formation of ethanol (0.3-0.5%, v/v), while about 7% ethanol was produced by the other two yeasts. Volatiles such as esters and sulfur-containing compounds were synthesized or catabolized and distinctive differences existed among yeasts. Larger amounts of higher alcohols and ethyl esters were detected in wines fermented by T. delbrueckii and K. thermotolerans, whereas M. pulcherrima and P. kluyveri produced more acetate esters such as ethyl acetate (1034.43 and 131.05 mg L(-1) respectively) and isoamyl acetate (0.56 and 27.68 mg L(-1) respectively). Most endogenous sulfur volatiles such as disulfides declined to trace levels, but new ones such as thioesters were formed. Sulfur volatiles in wines fermented by T. delbrueckii accounted for 0.20% relative peak area (RPA), followed by K. thermotolerans (0.23% RPA), P. kluyveri (1.43% RPA) and M. pulcherrima (4.16% RPA). The findings showed that a more complex flavor could result from fermentation with different non-Saccharomyces yeasts and the typical durian odor would still remain. © 2015 Society of Chemical Industry.

  9. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva.

    Science.gov (United States)

    Amann, Anton; Costello, Ben de Lacy; Miekisch, Wolfram; Schubert, Jochen; Buszewski, Bogusław; Pleil, Joachim; Ratcliffe, Norman; Risby, Terence

    2014-09-01

    Breath analysis is a young field of research with its roots in antiquity. Antoine Lavoisier discovered carbon dioxide in exhaled breath during the period 1777-1783, Wilhelm (Vilém) Petters discovered acetone in breath in 1857 and Johannes Müller reported the first quantitative measurements of acetone in 1898. A recent review reported 1765 volatile compounds appearing in exhaled breath, skin emanations, urine, saliva, human breast milk, blood and feces. For a large number of compounds, real-time analysis of exhaled breath or skin emanations has been performed, e.g., during exertion of effort on a stationary bicycle or during sleep. Volatile compounds in exhaled breath, which record historical exposure, are called the 'exposome'. Changes in biogenic volatile organic compound concentrations can be used to mirror metabolic or (patho)physiological processes in the whole body or blood concentrations of drugs (e.g. propofol) in clinical settings-even during artificial ventilation or during surgery. Also compounds released by bacterial strains like Pseudomonas aeruginosa or Streptococcus pneumonia could be very interesting. Methyl methacrylate (CAS 80-62-6), for example, was observed in the headspace of Streptococcus pneumonia in concentrations up to 1420 ppb. Fecal volatiles have been implicated in differentiating certain infectious bowel diseases such as Clostridium difficile, Campylobacter, Salmonella and Cholera. They have also been used to differentiate other non-infectious conditions such as irritable bowel syndrome and inflammatory bowel disease. In addition, alterations in urine volatiles have been used to detect urinary tract infections, bladder, prostate and other cancers. Peroxidation of lipids and other biomolecules by reactive oxygen species produce volatile compounds like ethane and 1-pentane. Noninvasive detection and therapeutic monitoring of oxidative stress would be highly desirable in autoimmunological, neurological, inflammatory diseases and cancer

  10. Remarkable effect of halogenation of aromatic compounds on efficiency of nanowire formation through polymerization/crosslinking by high-energy single particle irradiation

    Science.gov (United States)

    Horio, Akifumi; Sakurai, Tsuneaki; Kayama, Kazuto; Lakshmi, G. B. V. S.; Kumar Avasthi, Devesh; Sugimoto, Masaki; Yamaki, Tetsuya; Chiba, Atsuya; Saito, Yuichi; Seki, Shu

    2018-01-01

    Irradiation of high-energy ion particles on organic films induced solid-state polymerization and crosslinking reactions of the materials along the ion trajectories, resulting in the formation of insoluble uniform nanowires with a precise diameter. The nanowires were isolated by the development process i.e. the irradiated film was immersed in organic solvents, and their morphology was visualized by atomic force microscopy. The target organic materials are 4-vinyltriphenylamine, poly(4-vinyltriphenylamine), and polystyrene derivatives with/without the partial substitutions by halogen atoms. It was found that 4-vinyltriphenylamines, in spite of their small molecular sizes, afforded nanowires more clearly than poly(4-vinyltriphenylamine)s. Moreover, the efficiency of demonstrated polymerization/crosslinking reactions obviously depends on the substituted halogen atom species. The averaged diameters of nanowires from bromo- or iodo- substituted 4-vinyltriphenylamine (9.3 and 9.4 nm, respectively) were larger than that obtained from simple 4-vinyltriphenylamine (6.8 nm). The remarkable effect of halogenation of aromatic compounds on the efficiency of the radiation-induced reactions was also observed for polystyrene derivatives. This contrast was considered to originate from the sum of the efficiency of elementary reactions including dissociative electron attachment.

  11. Screening of Fungi for Biodegradation of Volatile Organic Compounds

    Science.gov (United States)

    2004-04-20

    rouxii (ATCC 44260), Phanerochaete chrysosporium (ATCC 24725), Cladosporium sphaerospermum (ATCC 200384), and Cladosporium resinae (ATCC 34066) were...was able to degrade n-butyl acetate, methyl ethyl ketone, and benzene but not p-xylene under the conditions tested. Cladosporium resinae was able to...Cladosporium sphaerospermum (ATCC 200384), and Cladosporium resinae (ATCC 34066) were screened for their ability to degrade compounds commonly found

  12. Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork

    DEFF Research Database (Denmark)

    Nieminen, Timo T.; Dalgaard, Paw; Björkroth, Johanna

    2016-01-01

    Accumulation of volatile organic compounds was monitored in association with sensory quality, bacterial concentrations and culture-independent microbial community analyses in raw pork loin and pork collar during storage under high-oxygen modified atmosphere at +4°C. Of the 48 volatile compounds...... detected in the pork samples, the levels of acetoin, diacetyl and 3-methyl-1-butanol had the highest correlations with the sensory scores and bacterial concentrations. These compounds accumulated in all of the four monitored lots of non-sterile pork but not in the sterilized pork during chilled storage...... with high proportion of Photobacterium spp. were associated with accumulation of acetoin, diacetyl and 3-methyl-1-butanol in meat, but these compounds did not explain all the off-odors reported in sensory analyses....

  13. Inhibitory Effect of Enterococcus faecium WB2000 on Volatile Sulfur Compound Production by Porphyromonas gingivalis

    OpenAIRE

    Suzuki, Nao; Higuchi, Takuya; Nakajima, Masato; Fujimoto, Akie; Morita, Hiromitsu; Yoneda, Masahiro; Hanioka, Takashi; Hirofuji, Takao

    2016-01-01

    Volatile sulfur compounds (VSCs) produced by oral anaerobes are the major compounds responsible for oral malodor. Enterococcus faecium WB2000 is recognized as an antiplaque probiotic bacterium. In this study, the effect of E. faecium WB2000 on VSC production by Porphyromonas gingivalis was evaluated, and the mechanism of inhibition of oral malodor was investigated. P. gingivalis ATCC 33277 was cultured in the presence of four lactic acid bacteria, including E. faecium WB2000. Subsequently, P....

  14. Early Detection of Necrotizing Enterocolitis by Fecal Volatile Organic Compounds Analysis

    NARCIS (Netherlands)

    de Meij, Tim G. J.; van der Schee, Marc P. C.; Berkhout, Daan J. C.; van de Velde, Mirjam E.; Jansen, Anna E.; Kramer, Boris W.; van Weissenbruch, Mirjam M.; van Kaam, Anton H.; Andriessen, Peter; van Goudoever, Johannes B.; Niemarkt, Hendrik J.; de Boer, Nanne K. H.

    2015-01-01

    To test the hypothesis that fecal volatile organic compounds (VOCs) analysis by electronic nose (eNose) allows for early detection of necrotizing enterocolitis (NEC). In 3 neonatal intensive care units, fecal samples of infants born at gestational age ≤ 30 weeks were collected daily, up to the 28th

  15. EXTRACTION METHODS FOR RECOVERY OF VOLATILE ORGANIC COMPOUNDS FROM FORTIFIED DRY SOILS

    Science.gov (United States)

    Recovery of 8 volatile organic compounds (VOCs) from dry soils, each fortified at 800 ng/g soil, was studied in relation to the extraction method and time of extraction. Extraction procedures studied on desiccator-dried soils were modifications of EPA low-and high-level purge-and...

  16. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS FROM A LOWLAND TROPICAL WET FOREST IN COSTA RICA

    Science.gov (United States)

    Twenty common plant species were screened for emissions of biogenic volatile organic compounds (BVOCS) at a lowland tropical wet forest site in Costa Rica. Ten of the species. examined emitted substantial quantities of isoprene. These species accounted for 35-50% of the total bas...

  17. Determination of volatile marker compounds in raw ham using headspace-trap gas chromatography.

    Science.gov (United States)

    Bosse Née Danz, Ramona; Wirth, Melanie; Konstanz, Annette; Becker, Thomas; Weiss, Jochen; Gibis, Monika

    2017-03-15

    A simple, reliable and automated method was developed and optimized for qualification and quantification of aroma-relevant volatile marker compounds of North European raw ham using a headspace (HS)-Trap gas chromatography-mass spectrometry (GC-MS) and GC-flame ionization detector (FID) analysis. A total of 38 volatile compounds were detected with this HS-Trap GC-MS method amongst which the largest groups were ketones (12), alcohols (8), hydrocarbons (7), aldehydes (6) and esters (3). The HS-Trap GC-FID method was optimized for the parameters: thermostatting time and temperature, vial and desorption pressure, number of extraction cycles and salt addition. A validation for 13 volatile marker compounds with limits of detection in ng/g was carried out. The optimized method can serve as alternative to conventional headspace and solid phase micro extraction methods and allows users to determine volatile compounds in raw hams making it of interest to industrial and academic meat scientists. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Volatile organic compound emmission rates from mixed deciduous and coniferous foest in Northern Wisconsin, USA

    Science.gov (United States)

    J. G. Isebrands; A. B. Guenther; P. Harley; D. Helmig; L. Klinger; L. Vierling; P. Zimmerman; C. Geron

    1999-01-01

    Biogenic emissions of volatile organic compounds {VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regions of the world to understand regional and global impacts and to implement possible...

  19. Microbial Volatile Organic Compound Emissions from Stachybotrys chartarum growing on Gypsum Wallboard and Ceiling tile

    Science.gov (United States)

    This study compared seven toxigenic strains of S. chartarum found in water-damaged buildings to characterize the microbial volatile organic compound (MVOC) emissions profile while growing on gypsum wallboard (W) and ceiling tile (C) coupons. The inoculated coupons with their sub...

  20. VOLATILE ORGANIC COMPOUNDS AND ISOPRENE OXIDATION PRODUCTS AT A TEMPERATE DECIDUOUS FOREST SITE

    Science.gov (United States)

    Biogenic volatile compounds (BVOCs) and their role in atmospheric oxidant formation were investigated at a forest site near Oak Ridge, Tennessee, as part of the Nashville Southern Oxidants Study (SOS) in July 1995. Of 98 VOCs detected, a major fraction were anthropogenic VOCs suc...

  1. VOLATILE ORGANIC COMPOUNDS AS BREATH BIOMARKERS FOR ACTIVE AND PASSIVE SMOKING

    Science.gov (United States)

    Real-time breath measurement technology was used to investigate the suitability of some volatile organic compounds (VOCs) to serve as breath biomarkers for active and passive smoking and to measure actual exposures and resulting breath concentrations for persons exposed to toba...

  2. Determination of source contributions to ambient volatile organic compound concentrations in Berlin

    NARCIS (Netherlands)

    Thijsse, T.R.; Oss, R.F. van; Lenschow, P.

    1999-01-01

    During three measuring campaigns in June, July, and August 1996, volatile organic compound (VOC) concentrations were measured at a rural background site, a city residential site, and a street site in Berlin. In addition, samples were taken near relevant sources of VOCs. The measurements covered the

  3. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

    Science.gov (United States)

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 d...

  4. Emission rates of selected volatile organic compounds from skin of healthy volunteers.

    Science.gov (United States)

    Mochalski, Paweł; King, Julian; Unterkofler, Karl; Hinterhuber, Hartmann; Amann, Anton

    2014-05-15

    Gas chromatography with mass spectrometric detection (GC-MS) coupled with solid phase micro-extraction as pre-concentration method (SPME) was applied to identify and quantify volatile organic compounds (VOCs) emitted by human skin. A total of 64 C4-C10 compounds were quantified in skin emanation of 31 healthy volunteers. Amongst them aldehydes and hydrocarbons were the predominant chemical families with eighteen and seventeen species, respectively. Apart from these, there were eight ketones, six heterocyclic compounds, six terpenes, four esters, two alcohols, two volatile sulphur compounds, and one nitrile. The observed median emission rates ranged from 0.55 to 4,790 fmol cm(-2)min(-1). Within this set of analytes three volatiles; acetone, 6-methyl-5-hepten-2-one, and acetaldehyde exhibited especially high emission rates exceeding 100 fmol cm(-2)min(-1). Thirty-three volatiles were highly present in skin emanation with incidence rates over 80%. These species can be considered as potential markers of human presence, which could be used for early location of entrapped victims during Urban Search and Rescue Operations (USaR). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Process engineering versus product engineering - A case study on volatile organic compounds removal

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Vilela, T.; Pereira, P.

    2005-01-01

    Three solutions for removing the dangerous volatile organic compound (VOC) xylene from an industrial coating process are presented and compared. Two of them are based on classical process engineering principles, i.e., development of separation-cleaning methods such as incineration and adsorption...

  6. Modeling emissions of volatile organic compounds from silage storages and feed lanes

    Science.gov (United States)

    An initial volatile organic compound (VOC) emission model for silage sources, developed using experimental data from previous studies, was incorporated into the Integrated Farm System Model (IFSM), a whole-farm simulation model used to assess the performance, environmental impacts, and economics of ...

  7. Sensory eye irritation in humans exposed to mixtures of volatile organic compounds

    DEFF Research Database (Denmark)

    Hempel-Jørgensen, Anne Hempel; Kjærgaard, Søren K.; Mølhave, Lars

    1999-01-01

    Eight subjects participated in a controlled eyes-only exposure study of human sensory irritation in ocular mucosal tissue. The authors investigated dose-response properties and the additive effects of three mixtures of volatile organic compounds. The dose-response relationships for these mixtures...

  8. A quick screening method for sorption effects of volatile organic compounds on indoor materials

    NARCIS (Netherlands)

    Wal, J.F. van der

    1998-01-01

    Sorption effects of a number of combinations of indoor materials and volatile organic compounds have been investigated. A limited number of experiments have been conducted to investigate the influence of parameters such as the adsorption time, the desorption time, the concentration of the pollutants

  9. Signals of speciation: Volatile organic compounds resolve closely related sagebrush taxa, suggesting their importance in evolution

    Science.gov (United States)

    Deidre M. Jaeger; Justin B. Runyon; Bryce A. Richardson

    2016-01-01

    Volatile organic compounds (VOCs) play important roles in the environmental adaptation and fitness of plants. Comparison of the qualitative and quantitative differences in VOCs among closely related taxa and assessing the effects of environment on their emissions are important steps to deducing VOC function and evolutionary importance.

  10. Emission of volatile organic compounds as affected by rate of application of cattle manure

    Science.gov (United States)

    Beef cattle manure can serve as a valuable nutrient source for crop production. However, emissions of volatile organic compounds (VOCs) following land application may pose a potential off-site odor concern. This study was conducted to evaluate the effects of land application method, N- application...

  11. Profiling of volatile organic compounds produced by clinical Aspergillus isolates using gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Gerritsen, M. G.; Brinkman, P.; Escobar, N.; Bos, L. D.; de Heer, K.; Meijer, M.; Janssen, H.-G.; de Cock, H.; Wösten, H. A. B.; Visser, C. E.; van Oers, M. H. J.; Sterk, P. J.

    2017-01-01

    Volatile organic compounds (VOCs) in exhaled breath may identify the presence of invasive pulmonary aspergillosis. We aimed to detect VOC profiles emitted by in vitro cultured, clinical Aspergillus isolates using gas chromatography-mass spectrometry (GC-MS). Three clinical Aspergillus isolates and a

  12. Analysis of selected volatile organic compounds at background level in South Africa.

    Science.gov (United States)

    Ntsasa, Napo; Tshilongo, James; Lekoto, Goitsemang

    2017-04-01

    Volatile organic compounds (VOC) are measured globally at urban air pollution monitoring and background level at specific locations such as the Cape Point station. The urban pollution monitoring is legislated at government level; however, the background levels are scientific outputs of the World Meteorological Organisation Global Atmospheric Watch program (WMO/GAW). The Cape Point is a key station in the Southern Hemisphere which monitors greenhouse gases and halocarbons, with reported for over the past decade. The Cape Point station does not have the measurement capability VOC's currently. A joint research between the Cape Point station and the National Metrology Institute of South Africa (NMISA) objective is to perform qualitative and quantitative analysis of volatile organic compounds listed in the GAW program. NMISA is responsible for development, maintain and disseminate primary reference gas mixtures which are directly traceable to the International System of Units (SI) The results of some volatile organic compounds which where sampled in high pressure gas cylinders will be presented. The analysis of samples was performed on the gas chromatography with flame ionisation detector and mass selective detector (GC-FID/MSD) with a dedicate cryogenic pre-concentrator system. Keywords: volatile organic compounds, gas chromatography, pre-concentrator

  13. Safety of food contact silicone rubber: Liberation of volatile compounds from soothers and teats

    DEFF Research Database (Denmark)

    Lund, Kirsten H.; Petersen, Jens Højslev

    2002-01-01

    C were observed using gravimetric measurements. One product had a weight loss above the proposed CEN limit of 0.5%. Secondly, the volatile compounds were identified using a thermal desorption/cold trap injector on a gas chromatograph equipped with infrared spectroscopic (IR) and mass spectrometric (MS...

  14. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Science.gov (United States)

    2010-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a...

  15. Determination of volatile compounds of the first rose oil and the first ...

    African Journals Online (AJOL)

    Proff.Adewunmi

    Background: Rose water and rose oil are used in the perfume, cosmetic, pharmaceutical and food industries. The determination of volatile compounds in rose oil and rose water obtained from oil-bearing rose is highly important in terms of availability in the industry and in human health. Materials and Methods: Twenty four ...

  16. Allelochemical effects of volatile compounds from Muscodor yucatanensis, an endophytic fungus from Bursera simaruba

    Science.gov (United States)

    Muscodor yucatanensis, a recently described endophytic fungus, was isolated from the leaves of Bursera simaruba. In the present study we tested in vitro the mixture of volatile organic compounds (VOCs) produced by M. yucatanensis for the allelochemical effects against phytopathogenic fungi and fungo...

  17. ISOTOPIC (14C) AND CHEMICAL COMPOSITION OF ATMOSPHERIC VOLATILE ORGANIC COMPOUND FRACTIONS - PRECURSORS TO OZONE FORMATION

    Science.gov (United States)

    Atmospheric volatile organic compounds (VOCs) are an important factor in the production of ozone near ground level [3]. Many hydrocarbons originate from auto exhaust. However, a number of VOCs, e.g., isoprene, are known to be natural in origin. To develop reliable models for un...

  18. Beer volatile compounds and their application to low-malt beer fermentation.

    Science.gov (United States)

    Kobayashi, Michiko; Shimizu, Hiroshi; Shioya, Suteaki

    2008-10-01

    Low-malt beers, in which the amount of wort is adjusted to less than two-thirds of that in regular beer, are popular in the Japanese market because the flavor of low-malt beer is similar to that of regular beer but the price lesser than that of regular beer. There are few published articles about low-malt beer. However, in the production process, there are many similarities between low-malt and regular beer, e.g., the yeast used in low-malt beer fermentation is the same as that used for regular beer. Furthermore, many investigations into regular beer are applicable to low-malt beer production. In this review, we focus on production of volatile compounds, and various studies that are applicable to regular and low-malt beer. In particular, information about metabolism of volatile compounds in yeast cells during fermentation, volatile compound measurement and estimation methods, and control of volatile compound production are discussed in this review, which concentrates on studies published in the last 5-6 years.

  19. SCREENING PROCESSED MILK FOR VOLATILE ORGANIC COMPOUNDS USING VACUUM DISTILLATION/GAS CHROMATOGRAPHY/MASS SPECTROMETRY

    Science.gov (United States)

    An adaptation of Office of Solid Waste and Emergency Response' Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW-846) method 8261 to analyze milk for an expanded list of volatile organic compounds is presented. The milk matriz exhibits a strong affinity for o...

  20. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS FROM DESERT VEGETATION OF THE SOUTHWESTERN U.S.

    Science.gov (United States)

    Thirteen common plant species in the Mojave and Sonoran Desert regions of the western United States were tested for emissions of biogenic non-methane volatile organic compounds (BVOCs). Only two of the species examined emitted isoprene at rates of 10 µgCg−1 ...

  1. Pilot study: volatile organic compounds as a diagnostic marker for head and neck tumors

    NARCIS (Netherlands)

    Schmutzhard, Joachim; Rieder, Josef; Deibl, Martina; Schwentner, Ilona M.; Schmid, Stefan; Lirk, Philip; Abraham, Irene; Gunkel, Andreas R.

    2008-01-01

    In the last decade, the analysis of volatile organic compounds (VOC) has undergone a rapid development. In this pilot study, patients with HNSCC were tested with a proton transfer reaction-mass spectrometry in order to establish a minimal invasive screening method. Overall in a period of 2 years, 22

  2. Electrospun Polyurethane Fibers for Absorption of Volatile Organic Compounds from Air

    NARCIS (Netherlands)

    Scholten, E.; Bromberg, L.; Rutledge, G.C.; Hatton, T.A.

    2011-01-01

    Electrospun polyurethane fibers for removal of volatile organic compounds (VOC) from air with rapid VOC absorption and desorption have been developed. Polyurethanes based on 4,4-methylenebis(phenylisocyanate) (MDI) and aliphatic isophorone diisocyanate as the hard segments and butanediol and

  3. MODELING OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER

    Science.gov (United States)

    A resistance-in-series model was used to study the pervaporation of multiple volatile organic compounds (VOCs)-water mixtures. Permeation experiments were carried out for four membranes: poly(dimethylsiloxane) (PDMS), polyether-block-polyamides (PEBA), polyurethane (PUR) and sil...

  4. OPTIMIZATION OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER

    Science.gov (United States)

    Optimal operation of a hollow fiber membrane module for pervaporative removal of multicomponent volatile organic compounds (VOCs) from wastewater was studied. A shell-and-tube heat-exchange type of hollow fiber module was considered for treatment of a wastewater containing toluen...

  5. Cold Temperature and Biodiesel Fuel Effects on Speciated Emissions of Volatile Organic Compounds from Diesel Trucks

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) were measured in diesel exhaust from three medium heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a chassis dynamometer at two ambient temperatures (-6.7°C and 21.7°C) operating on ...

  6. Effect of different cooking methods on lipid oxidation and formation of volatile compounds in foal meat.

    Science.gov (United States)

    Domínguez, Rubén; Gómez, María; Fonseca, Sonia; Lorenzo, José M

    2014-06-01

    The influence of four different cooking methods (roasting, grilling, microwaving and frying) on cooking loss, lipid oxidation and volatile profile of foal meat was studied. Cooking loss were significantly (Pfoal steaks, this increase was significantly (Pfoal steaks were microwaved or roasted. The four different cooking methods led to increased total volatile compounds (between 366.7 and 633.1AU×10(6)/g dry matter) compared to raw steaks (216.4AU×10(6)/g dry matter). The roasted steaks showed the highest volatile content, indicating that increased cooking temperature increases the formation of volatile compounds. Aldehydes were the most abundant compounds in cooked samples, with amounts of 217.2, 364.5, 283.5 and 409.1AU×10(6)/g dry matter in grilled, microwaved, fried and roasted samples, respectively, whereas esters were the most abundant compounds in raw samples, with mean amounts of 98.8AU×10(6)/g dry matter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. MEASUREMENTS OF VOLATILE ORGANIC COMPOUNDS AND PARTICLES DURING APPLICATION OF LATEX PAINT WITH AN AIRLESS SPRAYER

    Science.gov (United States)

    The paper discusses experiments, conducted at EPA's Indoor Air Quality Research House, to measure airborne concentrations of volatile organic compounds (VOCs) and particles during and following the spray-application of latex wall paint. (NOTE: Paint may be applied indoors by a v...

  8. Infrared decontamination of oregano: effects on Bacillus cereus spores, water activity, color, and volatile compounds.

    Science.gov (United States)

    Eliasson, Lovisa; Libander, Patrik; Lövenklev, Maria; Isaksson, Sven; Ahrné, Lilia

    2014-12-01

    Infrared (IR) heating, a novel technology for decontaminating oregano, was evaluated by investigating the reduction of inoculated Bacillus cereus spores and the effect on water activity (a(w)), color, and headspace volatile compounds after exposure to IR treatment. Conditioned oregano (a(w) 0.88) was IR-treated in a closed heating unit at 90 and 100 °C for holding times of 2 and 10 min, respectively. The most successful reduction in B. cereus spore numbers (5.6 log units) was achieved after a holding time of 10 min at 90 °C, while treatment at 100 °C for the same time resulted in a lower reduction efficiency (4.7 log units). The lower reduction at 100 °C was probably due to a reduced aw (aw 0.76) during IR treatment or possibly to the alteration or loss of volatile compounds possessing antimicrobial properties. The green color of oregano was only slightly affected, while the composition of volatile compounds was clearly altered by IR heating. However, two of the key aroma compounds, carvacrol and thymol, were only slightly affected, compared to the effect on the other studied compounds, indicating that the typical oregano aroma can likely be preserved. In conclusion, IR heating shows potential for the successful decontamination of oregano without severe alteration of its color or the key aroma compounds, carvacrol and thymol. © 2014 Institute of Food Technologists®

  9. Changes in volatile compounds of carrots (Daucus carota L.) during refrigerated and frozen storage.

    Science.gov (United States)

    Kjeldsen, Frank; Christensen, Lars P; Edelenbos, Merete

    2003-08-27

    Carrots (Daucus carota L.) of cv. Bolero and cv. Carlo were processed into shreds and stored for up to 4 months at -24 degrees C (frozen storage), or the roots were stored for up to 4 months at 1 degrees C (refrigerated storage) followed by processing into shreds. Volatiles from the carrot shreds were collected by dynamic headspace technique and analyzed by GC-FID, GC-MS, GC-MS/MS, and GC-O to determine the volatile composition and aroma active components of carrots stored under different temperature conditions. A total of 52 compounds were quantified, of which mono- and sesquiterpenes accounted for approximately 99% of the total volatile mass. Major volatile compounds were (-)-alpha-pinene, beta-myrcene, (-)-limonene, (+)-limonene, (+)-sabinene, gamma-terpinene, p-cymene, terpinolene, beta-caryophyllene, alpha-humulene, and (E)- and (Z)-gamma-bisabolene. A considerable increase in the concentration of mono- and sesquiterpenes was observed during refrigerated storage, whereas the concentration of terpenoids was around the same level during frozen storage. GC-O revealed that the major volatiles together with (+)-alpha-pinene, (-)-beta-pinene, (+)-beta-pinene, 6-methyl-5-hepten-2-one, (-)-beta-bisabolene, beta-ionone, and myristicin had an odor sensation, which included notes of "carrot top", "terpene-like", "green", "earthy", "fruity", "citrus-like", "spicy", "woody", and "sweet".

  10. Maximizing Information from Residential Measurements of Volatile Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Randy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Li, Na [Berkeley Analytical Associates, Richmond, CA (United States); Hodgson, Alfred [Berkeley Analytical Associates, Richmond, CA (United States); Offermann, Francis [Indoor Environmental Engineering, San Francisco, CA (United States); Singer, Brett [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-02-01

    Continually changing materials used in home construction and finishing can introduce new chemicals or changes in the VOC profile in residential air and the trend towards tighter homes can lead to higher exposure concentrations for many indoor sources. However, the complex mixture of VOCs in residential air makes it difficult to discover emerging contaminants and/or trends in pollutant profiles. The purpose of this study is to prepare a comprehensive library of chemicals found in homes, along with a semi-quantitative approach to maximize the information gained from VOC measurements. We carefully reviewed data from 108 new California homes and identified 238 individual compounds. The majority of the identified VOCs originated indoors. Only 31% were found to have relevant health based exposure guidelines and less than 10% had a chronic reference exposure level (CREL). The finding highlights the importance of extending IAQ studies to include a wider range of VOCs

  11. Identification of octanal as plant growth inhibitory volatile compound released from Heracleum sosnowskyi fruit.

    Science.gov (United States)

    Mishyna, Maryia; Laman, Nikolai; Prokhorov, Valery; Maninang, John Solomon; Fujii, Yoshiharu

    2015-05-01

    Heracleum sosnowskyi Manden of the Apiaceae family is a malignant invasive plant in Eastern Europe, Belarus and Russia. The species is known for its prolific seed production, which has been linked to the plant's invasive success. The fruit also has a strong aroma, but the contribution of the fruit's volatile constituent to out-compete neighboring plants has not been fully established. In this study, fruit volatiles of H. sosnowskyi and conspecifics (i.e. H. asperum, H. lescovii, H. dissectum, H. hirtum) were identified by headspace gas chromatography-mass spectrometry (HS-GC-MS). Octyl acetate, octanol, octanal, hexyl isobutyrate, and hexyl-2-methyl butyrate were found to be the principal volatiles. Using authentic standards, the growth-inhibitory property of the individual compounds was assayed by the novel Cotton swab method. Assay results with lettuce (Lactuca sativa) showed that octanal strongly inhibited seed germination and radicle elongation of seedlings. The results suggest that octanal may be the main contributor to the allelopathic activity of H. sosnowksyi fruits. Furthermore, the mixture of fruit volatiles from the invasive H. sosnowskyi more strongly delayed lettuce seedling elongation than the volatiles from fruits of the non-invasive H. asperum, H. lescovii, H. dissectum and H. hirtum. Thus, the present study is the first to demonstrate the possible involvement of fruit volatiles of Heracleum species in plant-plant interaction.

  12. Comparison of four extraction methods for analysis of volatile hop-derived aroma compounds in beer.

    Science.gov (United States)

    Richter, Tobias M; Eyres, Graham T; Silcock, Patrick; Bremer, Phil J

    2017-11-01

    The volatile organic compound profile in beer is derived from hops, malt, yeast, and interactions between the ingredients, making it very diverse and complex. Due to the range and diversity of the volatile organic compounds present, the choice of the extraction method is extremely important for optimal sensitivity and selectivity. This study compared four extraction methods for hop-derived compounds in beer late hopped with Nelson Sauvin. Extraction capacity and variation were compared for headspace solid-phase micro extraction, stir bar sorptive extraction, headspace sorptive extraction, and solvent-assisted flavor evaporation. Generally, stir bar sorptive extraction was better suited for acids, headspace sorptive extraction for esters and aldehydes, while headspace solid-phase microextraction was less sensitive overall, extracting 40% fewer compounds. Solvent-assisted flavor evaporation with dichloromethane was not suitable for the extraction of hop-derived volatile organic compounds in beer, as the profile was strongly skewed towards alcohols and acids. Overall, headspace sorptive extraction is found to be best suited, closely followed by stir bar sorptive extraction. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene

    Directory of Open Access Journals (Sweden)

    Ludmilla Lumholdt

    2014-11-01

    Full Text Available Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest–host complexes with ratios of up to 16:1.

  14. Volatile compounds in whole meal bread crust: The effects of yeast level and fermentation temperature.

    Science.gov (United States)

    Nor Qhairul Izzreen, M N; Hansen, Se S; Petersen, Mikael A

    2016-11-01

    The influence of fermentation temperatures (8°C, 16°C, and 32°C) and yeast levels (2%, 4%, and 6% of the flour) on the formation of volatile compounds in the crust of whole meal wheat bread was investigated. The fermentation times were regulated to optimum bread height for each treatment. The volatile compounds were extracted by dynamic headspace extraction and analyzed by gas chromatography-mass spectrometry. The results were evaluated using multivariate data analysis and ANOVA. In all crust samples 28 volatile compounds out of 58 compounds were identified and the other 30 compounds were tentatively identified. Higher fermentation temperatures promoted the formation of Maillard reaction products 3-methyl-1-butanol, pyrazine, 2-ethylpyrazine, 2-ethyl-3-methylpyrazine, 2-vinylpyrazine, 3-hydroxy-2-butanone, 3-(methylsulfanyl)-propanal, and 5-methyl-2-furancarboxaldehyde whereas at lower temperature (8°C) the formation of 2- and 3-methylbutanal was favored. Higher levels of yeast promoted the formation of 3-methyl-1-butanol, 2-methyl-1-propanol and 3-(methylsulfanyl)-propanal, whereas hexanal was promoted in the crust fermented with lower yeast level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. [Source profile of volatile carbonyl compounds in wastewater treatment plant of an oil refinery].

    Science.gov (United States)

    Zhou, Bo-Yu; Liu, Wang; Wang, Bo-Guang; Zhou, Mi; Huang, Qing; Zhou, Lei

    2013-07-01

    An observation was conducted at the wastewater treatment plant in a refinery in Guangdong province, using the PFPH-GC/MS method to analyze the composition and the concentration of volatile carbonyl compounds. The emission characteristics and the atmospheric chemical reactivity of these compounds were also studied. The results showed that 20 kinds of carbonyl compounds were detected with a concentration range of 0 to 68.80 microg x m(-3). The mean value of total concentration in all processing unit was (253.02 +/- 124.5) microg x m(-3). Background corrected concentrations showed that for each of the 6 treatment units of the plant, over 90% of the volatile carbonyl emissions were contributed by 14 of the 20 volatile carbonyl compounds, among which aldehyde was the most abundant with an average concentration of (44.74 +/- 20.89) microg x m(-3), followed by 2-butanone and acetaldehyde with average concentrations of (30.47 +/- 12.94) microg x m(-3) and (23.51 +/- 14.57) microg x m(-3), respectively. Several molecular markers were identified based on the analysis of the chemical activities and atmospheric lifetimes of the 20 carbonyl compounds. Finally, a source profile was established for the plant.

  16. Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds.

    Science.gov (United States)

    Han, Bingjun; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-01-07

    It was found that carbon atomic emission can be excited in low temperature dielectric barrier discharge (DBD), and an atmospheric pressure, low power consumption, and compact microplasma carbon atomic emission spectrometer (AES) was constructed and used as a universal and sensitive gas chromatographic (GC) detector for detection of volatile carbon-containing compounds. A concentric DBD device was housed in a heating box to increase the plasma operation temperature to 300 °C to intensify carbon atomic emission at 193.0 nm. Carbon-containing compounds directly injected or eluted from GC can be decomposed, atomized, and excited in this heated DBD for carbon atomic emission. The performance of this new optical detector was first evaluated by determination of a series of volatile carbon-containing compounds including formaldehyde, ethyl acetate, methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol, and absolute limits of detection (LODs) were found at a range of 0.12-0.28 ng under the optimized conditions. Preliminary experimental results showed that it provided slightly higher LODs than those obtained by GC with a flame ionization detector (FID). Furthermore, it is a new universal GC detector for volatile carbon-containing compounds that even includes those compounds which are difficult to detect by FID, such as HCHO, CO, and CO2. Meanwhile, hydrogen gas used in conventional techniques was eliminated; and molecular optical emission detection can also be performed with this GC detector for multichannel analysis to improve resolution of overlapped chromatographic peaks of complex mixtures.

  17. Comparison of SPME Methods for Determining Volatile Compounds in Milk, Cheese, and Whey Powder

    Directory of Open Access Journals (Sweden)

    Michael H. Tunick

    2013-11-01

    Full Text Available Solid phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS are commonly used for qualitative and quantitative analysis of volatile compounds in various dairy products, but conditions have to be adjusted to maximize release while not generating new compounds that are absent in the original sample. Queso Fresco, a fresh non-melting cheese, may be heated at 60 °C for 30 min; in contrast, compounds are produced in milk when exposed to light and elevated temperatures, so milk samples are heated as little as possible. Products such as dehydrated whey protein are more stable and can be exposed to longer periods (60 min of warming at lower temperature (40 °C without decomposition, allowing for capture and analysis of many minor components. The techniques for determining the volatiles in dairy products by SPME and GC-MS have to be optimized to produce reliable results with minimal modifications and analysis times.

  18. Production of volatile and sulfur compounds by ten Saccharomyces cerevisiae strains inoculated in Trebbiano must

    Directory of Open Access Journals (Sweden)

    Francesca ePatrignani

    2016-03-01

    Full Text Available In wines, the presence of sulphur compounds is the resulting of several contributions among which yeast metabolism. The characterization of the starter Saccharomyces cerevisiae needs to be performed also taking into account this ability even if evaluated together with the overall metabolic profile. In this perspective, principal aim of this experimental research was the evaluation of the volatile profiles, throughout GC/MS technique coupled with solid phase micro extraction, of wines obtained throughout the fermentation of 10 strains of Saccharomyces cerevisiae. In addition, the production of sulphur compounds was further evaluated by using a gas-chromatograph coupled with a Flame Photometric Detector. Specifically, the ten strains were inoculated in Trebbiano musts and the fermentations were monitored for 19 days. In the produced wines, volatile and sulphur compounds as well as amino acid concentrations were investigated. Also the physico-chemical characteristics of the wines and their electronic nose profiles were evaluated.

  19. Volatile Compounds in Dry Dog Foods and Their Influence on Sensory Aromatic Profile

    Directory of Open Access Journals (Sweden)

    Koushik Adhikari

    2013-02-01

    Full Text Available The aim of this study was to determine volatile compounds in dry dog foods and their possible influence on sensory aromatic profile. Grain-free dry dog foods were compared to dry dog foods manufactured with grain, but also with different protein sources for their aromatic volatiles. Solid-phase microextraction/gas chromatography/mass spectrometry was used to determine the aromatic compounds present in the headspace of these samples. Partial Least Squares regression was performed to correlate the instrumental aromatic data with the descriptive aroma analysis data. A total of 54 aromatic compounds were tentatively identified in the dry dog food samples, with aldehydes and ketones being the most represented organic volatiles group. Grain-added products were on the average higher in total volatiles than grain-free products. Partial Least Squares regression analysis indicated possible connections with sensory aromatic profile and grain-added samples, such as rancid aroma and aldehydes, especially hexanal. The results of this study showed that dry dog foods are products with complex odor characteristics and that grain-free products are less aromatic.

  20. Volatile compounds in dry dog foods and their influence on sensory aromatic profile.

    Science.gov (United States)

    Koppel, Kadri; Adhikari, Koushik; Di Donfrancesco, Brizio

    2013-02-27

    The aim of this study was to determine volatile compounds in dry dog foods and their possible influence on sensory aromatic profile. Grain-free dry dog foods were compared to dry dog foods manufactured with grain, but also with different protein sources for their aromatic volatiles. Solid-phase microextraction/gas chromatography/mass spectrometry was used to determine the aromatic compounds present in the headspace of these samples. Partial Least Squares regression was performed to correlate the instrumental aromatic data with the descriptive aroma analysis data. A total of 54 aromatic compounds were tentatively identified in the dry dog food samples, with aldehydes and ketones being the most represented organic volatiles group. Grain-added products were on the average higher in total volatiles than grain-free products. Partial Least Squares regression analysis indicated possible connections with sensory aromatic profile and grain-added samples, such as rancid aroma and aldehydes, especially hexanal. The results of this study showed that dry dog foods are products with complex odor characteristics and that grain-free products are less aromatic.

  1. Detection of semi-volatile organic compounds in permeable ...

    Science.gov (United States)

    Abstract The Edison Environmental Center (EEC) has a research and demonstration permeable parking lot comprised of three different permeable systems: permeable asphalt, porous concrete and interlocking concrete permeable pavers. Water quality and quantity analysis has been ongoing since January, 2010. This paper describes a subset of the water quality analysis, analysis of semivolatile organic compounds (SVOCs) to determine if hydrocarbons were in water infiltrated through the permeable surfaces. SVOCs were analyzed in samples collected from 11 dates over a 3 year period, from 2/8/2010 to 4/1/2013.Results are broadly divided into three categories: 42 chemicals were never detected; 12 chemicals (11 chemical test) were detected at a rate of less than 10% or less; and 22 chemicals were detected at a frequency of 10% or greater (ranging from 10% to 66.5% detections). Fundamental and exploratory statistical analyses were performed on these latter analyses results by grouping results by surface type. The statistical analyses were limited due to low frequency of detections and dilutions of samples which impacted detection limits. The infiltrate data through three permeable surfaces were analyzed as non-parametric data by the Kaplan-Meier estimation method for fundamental statistics; there were some statistically observable difference in concentration between pavement types when using Tarone-Ware Comparison Hypothesis Test. Additionally Spearman Rank order non-parame

  2. Volatile compound in cut and un-cut flowers of tetraploid Freesia hybrida.

    Science.gov (United States)

    Ao, Man; Liu, Baofeng; Wang, Li

    2013-01-01

    The flower volatile compounds (FVCs) of two tetraploid Freesia hybrida (pink-yellow and yellow) cultivars and their cut flowers were analysed by headspace solid-phase microextraction combined with gas chromatography-mass spectrometry. Twelve FVCs were identified in the pink-yellow cultivar, with linalool as the major compound; 30 FVCs were identified in the yellow cultivar, with linalool and terpineol as the two major compounds. The FVCs (>1%) of the two cut flower cultivars were very similar to that of the un-cut flowers, and no significant difference was observed.

  3. Influence of prefermentative treatments to the major volatile compounds of Assyrtiko wines.

    Science.gov (United States)

    Kechagia, Despina; Paraskevopoulos, Yannis; Symeou, Eleni; Galiotou-Panayotou, Maria; Kotseridis, Yorgos

    2008-06-25

    A study of the volatile fraction of Assyrtiko wines, using gas chromatography coupled with olfactometry, was realized. Twenty-seven volatile compounds were identified as potent odorants, most of them originating from the fermentation process. Quantification of the major volatile compounds was realized developing a rapid analytical method based on fractionation of a 50 mL wine aliquot using C 18-reversed phase adsorbent. After elution of the volatile compounds with pentane-diethyl ether and concentration under nitrogen, the final wine extract was injected in a gas chromatography-flame ionization detection system. The method allows satisfactory determination of more than 15 volatile compounds of wine. The linearity of the method gave a typical r (2) between 0.990 and 0.999, while reproducibility ranged from 5.1 to 12.2% (as relative standard deviation) with 9.5% as the average. The method was applied to wines produced by Assyrtiko grapes (AOC Santorini), for two consecutive years, to compare the effect of skin contact prior to fermentation and the must clarification process. Direct press and skin contact wines were differentiated analytically; however, highly significant differences were not. Inversely, the differences found between direct press/clarified and nonclarified wines were significant. Wines produced by direct press and clarified must presented significantly higher levels of ethylic esters and fusel alcohol acetates but lower fusel alcohol levels, leading probably to more fruity wines. This difference, between clarified and nonclarified grape musts, was not significant in the case of the wines produced by skin contact of Assyrtiko berries. These findings were validated by preference sensory analysis tests.

  4. Determination of halogenated flame retardants by GC-API-MS/MS and GC-EI-MS: a multi-compound multi-matrix method.

    Science.gov (United States)

    Neugebauer, Frank; Dreyer, Annekatrin; Lohmann, Nina; Koschorreck, Jan

    2017-12-13

    The extensive application of halogenated flame retardants has led to their widespread distribution in the environment. Recently, concerns emerged regarding their potential persistence, (bio)accumulation, and/or toxicity. Particularly halogenated flame retardants based on norbornene structures, like Dechlorane Plus as well as other brominated PBDE replacements, generically called emerging, novel, or alternative flame retardants, are in the focus of interest. A comprehensive analytical method for the determination of 21 halogenated flame retardants (HFRs) of different substance classes (dechloranes, brominated aromates, brominated ethers, cyclic BFR) in a broad variety of matrices (tree leaves, fish fillet, birds eggs, suspended particles) was developed in order to assess their environmental levels as well as temporal trends, especially for the use within environmental specimen banks (ESBs). In addition to the alternative HFRs, a set of 24 PBDEs were measured in the same samples, however using GC-EI-MS for detection. Samples were extracted using accelerated solvent extraction (ASE) with dichloromethane:hexane (exception: soxhlet extraction for suspended particles) followed by a multi column clean-up. Quantification was performed by API-GC-MS/MS as a modern, gentle, and sensitive technique for simultaneous detection of compounds throughout a wide range of masses and fragmentation characteristics (exception: PBDE detection using GC-EI-MS). With the exception of BDE 209, instrumental precisions of target compounds ranged from 1% to 16 % (at levels of 2 pg injection-1 for HFR, 20 pg injection-1 for DBDPE, 7-36 pg injection-1 for PBDEs). Interday precisions of the entire analytical method including extraction and clean-up were mostly below 25% for all validation matrices at spiked levels of 100 pg sample-1 for HFR (DBDPE: 1000 pg sample-1) and 1200-6000 pg sample-1 for PBDEs. The majority of analytes were investigated with expanded measurement uncertainties of less than

  5. Volatile aromatic compounds in Mexico City atmosphere: levels and source apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Mugica, V. [Universidad Autonoma Metropolitana - Unidad Azcapotzalco, Mexico, D.F. (Mexico); Ruiz, M.E. [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Watson, J.; Chow, J. [Desert Research Institute, Reno, Nevada (United States)

    2003-01-01

    Samples of ambient air were simultaneously collected at three different sites of Mexico City in March of 1997 in order to quantify the most abundant volatile aromatic compounds and estimate the source contributions by application of the chemical mass balance model (CMB). Volatile aromatic compounds were around 20% of the total of non-methane hydrocarbons present in morning air samples. The most abundant volatile aromatic species in urban air were toluene and xylenes followed by 1, 2, 4 trimethylbenzene, benzene, ethylbenzene, metaethyltoluene, 1, 3, 5 trimethylbenzene, styrene, n propylbenzene, and isopropylbenzene. Sampling campaigns were carried out at crossroads, a bus station, a parking place, and areas where solvents and petroleum distillates are used, with the objective of determining people's exposure to volatile aromatic compounds. The CMB was applied for estimating the contribution of different sources to the presence of each one of the most abundant aromatic compounds. Motor vehicle exhaust was the main source of all aromatic compounds, especially gasoline exhaust, although diesel exhausts and asphalt operations also accounted for toluene, xylenes, ethylbenzene, propylbenzenes, and styrene. Graphic arts and paint applications had an important impact on the presence of toluene. [Spanish] Se colectaron simultaneamente muestras de aire ambiente en tres sitios de la Ciudad de Mexico durante el mes de marzo de 1997 con el fin de conocer las concentraciones y el origen de compuestos aromaticos utilizando el modelo de balance de masa de especies quimicas (CMB). Los compuestos aromaticos volatiles representaron alrededor del 20% del total de hidrocarburos no metalicos presentes en las muestras matutinas colectadas. Las especies aromaticas volatiles mas abundantes en el ambiente fueron el tolueno y los xilenos, seguidos por 1, 2, 4 trimetilbenceno, benceno, etilbenceno, metaetiltolueno, nporpilbenceno, isopropilbenceno, 1, 3, 5 trimetilbenceno y estireno. Se

  6. Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms

    Directory of Open Access Journals (Sweden)

    J. Ofner

    2012-07-01

    Full Text Available Reactive halogen species (RHS, such as X·, X2 and HOX containing X = chlorine and/or bromine, are released by various sources like photo-activated sea-salt aerosol or from salt pans, and salt lakes. Despite many studies of RHS reactions, the potential of RHS reacting with secondary organic aerosol (SOA and organic aerosol derived from biomass-burning (BBOA has been neglected. Such reactions can constitute sources of gaseous organohalogen compounds or halogenated organic matter in the tropospheric boundary layer and can influence physicochemical properties of atmospheric aerosols.

    Model SOA from α-pinene, catechol, and guaiacol was used to study heterogeneous interactions with RHS. Particles were exposed to molecular chlorine and bromine in an aerosol smog-chamber in the presence of UV/VIS irradiation and to RHS, released from simulated natural halogen sources like salt pans. Subsequently, the aerosol was characterized in detail using a variety of physicochemical and spectroscopic methods. Fundamental features were correlated with heterogeneous halogenation, which results in new functional groups (FTIR spectroscopy, changes UV/VIS absorption, chemical composition (ultrahigh resolution mass spectroscopy (ICR-FT/MS, or aerosol size distribution. However, the halogen release mechanisms were also found to be affected by the presence of organic aerosol. Those interaction processes, changing chemical and physical properties of the aerosol are likely to influence e.g. the ability of the aerosol to act as cloud condensation nuclei, its potential to adsorb other gases with low-volatility, or its contribution to radiative forcing and ultimately the Earth's radiation balance.

  7. Validation of thermodesorption method for analysis of semi-volatile organic compounds adsorbed on wafer surface.

    Science.gov (United States)

    Hayeck, Nathalie; Gligorovski, Sasho; Poulet, Irène; Wortham, Henri

    2014-05-01

    To prevent the degradation of the device characteristics it is important to detect the organic contaminants adsorbed on the wafers. In this respect, a reliable qualitative and quantitative analytical method for analysis of semi-volatile organic compounds which can adsorb on wafer surfaces is of paramount importance. Here, we present a new analytical method based on Wafer Outgassing System (WOS) coupled to Automated Thermal Desorber-Gas chromatography-Mass spectrometry (ATD-GC-MS) to identify and quantify volatile and semi-volatile organic compounds from 6", 8" and 12" wafers. WOS technique allows the desorption of organic compounds from one side of the wafers. This method was tested on three important airborne contaminants in cleanroom i.e. tris-(2-chloroethyl) phosphate (TCEP), tris-(2-chloroisopropyl) phosphate (TCPP) and diethyl phthalate (DEP). In addition, we validated this method for the analysis and quantification of DEP, TCEP and TCPP and we estimated the backside organic contamination which may contribute to the front side of the contaminated wafers. We are demonstrating that WOS/ATD-GC-MS is a suitable and highly efficient technique for desorption and quantitative analysis of organophosphorous compounds and phthalate ester which could be found on the wafer surface. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Volatile compounds formation in alcoholic fermentation from grapes collected at 2 maturation stages: influence of nitrogen compounds and grape variety.

    Science.gov (United States)

    Martínez-Gil, Ana M; Garde-Cerdán, Teresa; Lorenzo, Cándida; Lara, José Félix; Pardo, Francisco; Salinas, M Rosario

    2012-01-01

    The aim of this work was to study the influence of nitrogen compounds on the formation of volatile compounds during the alcoholic fermentation carried out with 4 nonaromatic grape varieties collected at 2 different maturation stages. To do this, Monastrell, Merlot, Syrah, and Petit Verdot grapes were collected 1 wk before harvest and at harvest. Then, the musts were inoculated with the same Saccharomyces cerevisiae yeast strain and were fermented in the same winemaking conditions. Amino acids that showed the highest and the lowest concentration in the must were the same, regardless of the grape variety and maturation stage. Moreover, the consumption of amino acids during the fermentation increased with their concentration in the must. The formation of volatile compounds was not nitrogen composition dependent. However, the concentration of amino acids in the must from grapes collected 1 wk before harvest can be used as a parameter to estimate the concentration of esters in wines from grapes collected at harvest and therefore to have more information to know the grape oenological capacity. Application of principal components analysis (PCA) confirmed the possibility to estimate the concentration of esters in the wines with the concentration of nitrogen compounds in the must. © 2011 Institute of Food Technologists®

  9. Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds.

    Science.gov (United States)

    Bell, Luke; Methven, Lisa; Signore, Angelo; Oruna-Concha, Maria Jose; Wagstaff, Carol

    2017-03-01

    Sensory and chemical analyses were performed on accessions of rocket (Eruca sativa) to determine phytochemical influences on sensory attributes. A trained panel was used to evaluate leaves, and chemical data were obtained for polyatomic ions, amino acids, sugars and organic acids. These chemical data (and data of glucosinolates, flavonols and headspace volatiles previously reported) were used in Principal Component Analysis (PCA) to determine variables statistically important to sensory traits. Significant differences were observed between samples for polyatomic ion and amino acid concentrations. PCA revealed strong, positive correlations between glucosinolates, isothiocyanates and sulfur compounds with bitterness, mustard, peppery, warming and initial heat mouthfeel traits. The ratio between glucosinolates and sugars inferred reduced perception of bitter aftereffects. We highlight the diversity of E. sativa accessions from a sensory and phytochemical standpoint, and the potential for breeders to create varieties that are nutritionally and sensorially superior to existing ones. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Development of a fast GC/MS-system for airborne measurements of Volatile Organic Compounds

    Science.gov (United States)

    Wenk, Ann-Kathrin; Wegener, Robert; Hofzumahaus, Andreas; Wahner, Andreas

    2010-05-01

    Volatile Organic Compounds (VOC) determine the radical chemistry of the atmosphere. They can serve both as sources, or sinks for radicals. Mass spectrometry linked to gas chromatography (GC/MS) is a widespread technique in environmental analysis since it can be used to separate and analyze any compound which can be evaporated and pass the analytical column with very high precision and a good sensitivity. The use of special chromatographic phases and long capillary columns enables the quantification of a wide range of compounds with little interference from other sample constituents. An in situ GC/MS consists in principle of three compartments, 1) a preconcentration unit where the sample is extracted from the air, focussed onto a small volume and volatilized, 2) a chromatographic system where the analytes are separated on the analytical column and 3) a mass spectrometer where the compounds are ionized and detected. VOC have to be preconcentrated due to their low concentration level and in order to get enough sensitivity for analysis. The aim of this project was to develop an in situ GC/MS system to analyze volatile Nonmethane Hydrocarbons (NMHC) and Oxygenated Volatile Organic Compounds (OVOC) for the High Altitude and LOng Range Research Aircraft (HALO). In contrast to other analytical instruments a GC/MS works discontinuously. The preconcentration unit is either heated up when the compounds are volatilized or cooled down when substances are adsorbed. The same is true for the GC oven. It is heated up when the compounds are separated or it is cooled down to be ready for the next injection. On a system with a single GC oven, these processes will inevitably lengthen the whole analytical procedure. To speed up the analytical process the GC/MS system described here was equipped with two GC ovens and two adsorption units. While the components are adsorbed in one adsorption unit, in the other unit the components are desorbed and transferred to the GC unit. The second GC

  11. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.

    Science.gov (United States)

    Silva, I; Campos, F M; Hogg, T; Couto, J A

    2011-08-01

    To evaluate the effect of wine phenolic compounds on the production of volatile phenols (4-vinylphenol [4VP] and 4-ethylphenol [4EP]) from the metabolism of p-coumaric acid by lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus collinoides and Pediococcus pentosaceus were grown in MRS medium supplemented with p-coumaric acid, in the presence of different phenolic compounds: nonflavonoids (hydroxycinnamic and benzoic acids) and flavonoids (flavonols and flavanols). The inducibility of the enzymes involved in the p-coumaric acid metabolism was studied in resting cells. The hydroxycinnamic acids tested stimulated the capacity of LAB to synthesize volatile phenols. Growth in the presence of hydroxycinnamic acids, especially caffeic acid, induced the production of 4VP by resting cells. The hydroxybenzoic acids did not significantly affect the behaviour of the studied strains. Some of the flavonoids showed an effect on the production of volatile phenols, although strongly dependent on the bacterial species. Relatively high concentrations (1 g l(-1) ) of tannins inhibited the synthesis of 4VP by Lact. plantarum. Hydroxycinnamic acids were the main compounds stimulating the production of volatile phenols by LAB. The results suggest that caffeic and ferulic acids induce the synthesis of the cinnamate decarboxylase involved in the metabolism of p-coumaric acid. On the other hand, tannins exert an inhibitory effect. This study highlights the capacity of LAB to produce volatile phenols and that this activity is markedly influenced by the phenolic composition of the medium. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  12. Development of volatile compounds during storage at various conditions of different lipid containing lip balm products

    DEFF Research Database (Denmark)

    Thomsen, Birgitte Raagaard; Horn, A. F.; Hyldig, Grethe

    Many lip balms contain various lipids to care and soften the lips. However, the content of these lipids even in small amounts increases the risk of oxidation when exposed to heat, light or other conditions with a pro-oxidative effect. The progress of oxidation can be affected by several factors...... volatile compounds with off-odours. This presentation will include results from a storage experiment on four lip balms stored between 14 and 84 days, under different conditions. The samples were exposed to heat (20°C, 40°C and 50°C), light (samples at 20°C) and iron (samples at 40°C). Samples were analysed...... the concentration of most volatiles. Furthermore, high temperature (40 and 50 °C) increased the concentration of volatile oxidation products. For some volatiles the effect of iron addition was larger in some lip balms than in others, but none of the lip balms had consistently higher levels of volatiles...

  13. Volatile compounds in medlar fruit (Mespilus germanica L. at two ripening stages

    Directory of Open Access Journals (Sweden)

    Veličković Milovan M.

    2013-01-01

    Full Text Available Medlar is the fruit of Mespilus germanica L. in the family of Rosaceae. The fruit can be eaten only if ‘bletted’ (softened by frost or longer storage. The effect of the maturation stages on the volatile compounds of the medlar fruit was investigated during two different stages. Volatile flavour substances were isolated from the minced pulp of unripe and full ripe medlar fruits by simultaneous steam distillation extraction (SDE with methilen chloride as the extracting solvent. The concentrate was analysed by GC-FID-MS. Hexanoic and hexadecanoic acids were the predominant acids, hexanal and (E-2-hexenal were the predominant aldehydes, (Z-3-hexenol and hexanol were the predominant alcohols, with p-cymene, terpinen-4-ol, and γ-terpiene (the terpenes responsible for the characteristic medlar flavour being also present. The C6 aliphatic compounds, such as hexanal and (E-2-hexenal, were observed as the major volatile constituents in the green stage. In contrast, hexanol and (Z-3-hexenol were the main volatiles in ripe fruits.

  14. Emission of volatile organic compounds during composting of municipal solid wastes.

    Science.gov (United States)

    Komilis, Dimitris P; Ham, Robert K; Park, Jae K

    2004-04-01

    The objective of this study was to identify and quantify volatile and semi-volatile organic compounds (VOCs) produced during composting of the organic fraction of municipal solid wastes (MSW). A laboratory experiment was conducted using organic components of MSW that were decomposed under controlled aerobic conditions. Mixed paper primarily produced alkylated benzenes, alcohols and alkanes. Yard wastes primarily produced terpenes, alkylated benzenes, ketones and alkanes, while food wastes primarily produced sulfides, acids and alcohols. Among 13 aromatic VOCs found in MSW composting facilities, toluene, ethylbenzene, 1,4-dichlorobenzene, p-isopropyl toluene, and naphthalene were in the largest amounts. Unseeded mixed paper, seeded mixed paper, seeded yard wastes, unseeded yard wastes, seeded food wastes and unseeded food wastes produced approximately 6.5, 6.1, 2.1, 0.83, 2.5 and 0.33 mg of 13 volatile and semi-volatile aromatic organic compounds combined, respectively, per dry kg. All VOCs were emitted early during the composting process and their production rates decreased with time at thermophilic temperatures.

  15. Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum

    Directory of Open Access Journals (Sweden)

    Annalisa eGiorgio

    2015-10-01

    Full Text Available Six rhizobacteria isolated from common bean and able to protect bean plants from the common bacterial blight causal agent, were in vitro evaluated for their potential antifungal effects toward different plant pathogenic fungi, mostly soil-borne. By dual culture assays, the above bacteria resulted producing diffusible and volatile metabolites which inhibited the growth of the majority of the pathogens under study. In particular, the latter substances highly affected the mycelium growth of Sclerotinia sclerotiorum strains, one of which was selected for further studies either on mycelium or sclerotia.Gas chromatographic analysis of the bacterial volatiles led to the identification of an array of volatile organic compounds (VOCs. Time course studies showed the modification of the VOCs profile along a period of 5 days. In order to evaluate the single detected VOC effects on fungal growth, some of the pure compounds were tested on S. sclerotiorum mycelium and their minimal inhibitory quantities were determined. Similarly, the minimal inhibitory quantities on sclerotia germination were also defined. Moreover, observations by light and transmission electron microscopes highlighted hyphae cytoplasm granulation and ultrastructural alterations at cell organelles, mostly membranes, mitochondria and endoplasmic reticulum. The membranes appeared one of the primary targets of bacterial volatiles, as confirmed by haemolytic activity observed for the majority of pure VOCs. However, of interest is the alteration observed on mitochondria as well.

  16. Increase in volatilization of organic compounds using air sparging through addition in alcohol in a soil-water system.

    Science.gov (United States)

    Chao, Huan-Ping; Hsieh, Lin-Han Chiang; Tran, Hai Nguyen

    2018-02-15

    This study developed a novel method to promote the remediation efficiency of air sparging. According to the enhanced-volatilization theory presented in this study, selected alcohols added to groundwater can highly enhance the volatilization amounts of organic compounds with high Henry's law constants. In this study, the target organic compounds consisted of n-hexane, n-heptane, benzene, toluene, 1,1,2-trichloroethane, and tetrachloroethene. n-pentanol, n-hexanol, and n-heptanol were used to examine the changes in the volatilization amounts of organic compounds in the given period. Two types of soils with high and low organic matter were applied to evaluate the transport of organic compounds in the soil-water system. The volatilization amounts of the organic compounds increased with increasing alcohol concentrations. The volatilization amounts of the test organic compounds exhibited a decreasing order: n-heptanol>n-hexanol>n-pentanol. When 10mg/L n-heptanol was added to the system, the maximum volatilization enhancement rate was 18-fold higher than that in distilled water. Samples of soil with high organic matter might reduce the volatilization amounts by a factor of 5-10. In the present study, the optimal removal efficiency for aromatic compounds was approximately 98%. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of gamma radiation on the content {beta}-carotene and volatile compounds of cantaloupe melon

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Stefania P. de; Cardozo, Monique; Lima, Keila dos S.C.; Lima, Antonio L. dos S., E-mail: keila@ime.eb.br, E-mail: santoslima@ime.eb.br [Departamento de Quimica - IME - Instituto Militar de Engenharia, RJ (Brazil)

    2011-07-01

    The Japanese melon or cantaloupe (Cucumis melo L.) is characterized by fruits with almost 1.0 Kg, pulp usually salmon and musky scent. The fruits when ripe are sensitive to post harvest handling. This low transport resistance and reduced shelf-life makes it necessary to delay the ripening of fruit. In this way the use of irradiation technique is a good choice. Irradiation is the process of exposing food to high doses of gamma rays. The processing of fruits and vegetables with ionizing radiation has as main purpose to ensure its preservation. However, like other forms of food processing, irradiation may cause changes in chemical composition and nutritional value. This study aims to assess possible changes in carotene content and volatile compounds caused by exposure of cantaloupe melon fruit to gamma irradiation. Irradiation of the samples occurred in Centro Tecnologico do Exercito (Guaratiba-RJ), using Gamma irradiator (Cs{sub 137} source, dose rate 1.8 kGy/h), being applied 0.5 and 1.0 kGy doses and separated a control group not irradiated. Carotenoids were extracted with acetone and then suffered partition to petroleum ether, solvent was removed under nitrogen flow and the remainder dissolved in acetone again. The chromatographic analysis was performed using a Shimadzu gas chromatograph, with C30 column. For volatile compounds, we used gas chromatography (GC) associated with mass (MS). As a result, it was verified in analysis of carotenoids that cantaloupe melon is rich in {beta}-carotene. Both total content of carotenoids and specific {beta}-carotene amount wasn't suffer significant reduction in irradiated fruits at two doses, demonstrating that the irradiation process under these conditions implies a small loss of nutrients. The major volatile compounds were: 2-methyl-1-butyl acetate, ethyl hexanoate, n-hexyl acetate, benzyl acetate, 6-nonenyl acetate and {alpha} -terpinyl acetate. For all compounds we observed an increase in the volatile content in 0.5 k

  18. Influence of wine fermentation temperature on the synthesis of yeast-derived volatile aroma compounds.

    Science.gov (United States)

    Molina, Ana M; Swiegers, Jan H; Varela, Cristian; Pretorius, Isak S; Agosin, Eduardo

    2007-12-01

    The yeast Saccharomyces cerevisiae synthesises a variety of volatile aroma compounds during wine fermentation. In this study, the influence of fermentation temperature on (1) the production of yeast-derived aroma compounds and (2) the expression of genes involved in aroma compounds' metabolism (ADH1, PDC1, BAT1, BAT2, LEU2, ILV2, ATF1, ATF2, EHT1 and IAH1) was assessed, during the fermentation of a defined must at 15 and 28 degrees C. Higher concentrations of compounds related to fresh and fruity aromas were found at 15 degrees C, while higher concentrations of flowery related aroma compounds were found at 28 degrees C. The formation rates of volatile aroma compounds varied according to growth stage. In addition, linear correlations between the increases in concentration of higher alcohol and their corresponding acetates were obtained. Genes presented different expression profiles at both temperatures, except ILV2, and those involved in common pathways were co-expressed (ADH1, PDC1 and BAT2; and ATF1, EHT1 and IAH1). These results demonstrate that the fermentation temperature plays an important role in the wine final aroma profile, and is therefore an important control parameter to fine-tune wine quality during winemaking.

  19. Headspace Volatile Compounds of Steamed Liriopis Tuber Tea Affected by Steaming Frequency

    Science.gov (United States)

    Park, Jin-Yong; Park, So-Hae; Lee, Heeseob; Lee, Yang-Bong

    2014-01-01

    Flavor quality of Liriopis tuber tea that was made using a steaming process was studied by measuring changes in headspace volatile compounds. Headspace volatile compounds of the prepared samples were isolated, separated and identified by the combined system of purge & trap, automatic thermal desorber, gas chromatography, and mass selective detector. As steaming frequencies were increased, the area percent of aldehydes decreased from 32.01% to 3.39% at 1 and 9 steaming frequency times, respectively. However, furans and ketones increased from 18.67% to 33.86% and from 9.60% to 17.40% at 1 and 9 times, respectively. The savory flavor of Liriopis tuber tea was due to a decrease in aldehydes contributing a fresh flavor at the 1st steaming process and newly generated furans from nonenzymatic browning with repeated steaming frequencies. These results will provide basic information for quality control of the newly developed Liriopis tuber tea. PMID:25580396

  20. Development of volatile compounds during storage of different skin care products at various conditions

    DEFF Research Database (Denmark)

    Horn, A. F.; Thomsen, Birgitte Raagaard; Hyldig, Grethe

    Many skin care products contain various lipids to care and soften the skin. These lipids are either saturated or unsaturated. In the case of even small amounts of unsaturated lipids, these are at risk of oxidizing when exposed to heat, light or other conditions with a pro-oxidative effect. When...... a storage experiment on three cleansing milks stored between 14 and 84 days, under different conditions. The samples were exposed to heat (20°C, 40°C and 50°C), light (samples at 20°C) and iron (samples at 40°C). Samples were analysed for their development of volatile compounds by dynamic headspace gas...... stored in the homes of consumers skin care products may be exposed to relatively high temperatures and light. Hence, especially skin care products sold in countries with a warm climate can undergo lipid oxidation and develop volatile compounds with off-odours. This presentation will include results from...

  1. Influence of cold pre-fermentation treatments on the major volatile compounds of three wine varieties.

    Science.gov (United States)

    Moreno-Pérez, Ana; Vila-López, Rosario; Fernández-Fernández, José Ignacio; Martínez-Cutillas, Adrián; Gil-Muñoz, Rocío

    2013-08-15

    The volatile compounds of wines made from three grape varieties (Monastrell, Cabernet Sauvignon and Syrah) using three pre-fermentation techniques (grape freezing, dry-ice and cold maceration) and a control treatment were measured. The different winemaking practices, which are intended to increase the aromatic properties of wines, produced results that depended on the variety concerned. For example, freezing the Cabernet Sauvignon and Syrah grapes produced different results compared with the respective controls, whereas few changes were found on freezing the Monastrell wine. Differences were significant in the case of some volatile compounds. Linear discriminant analysis allowed some grouping of the varieties at sampling but not of the pre-fermentation techniques used. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Analysis of volatile compounds released during the grinding of roasted coffee beans using solid-phase microextraction.

    Science.gov (United States)

    Akiyama, Masayuki; Murakami, Kazuya; Ohtani, Noboru; Iwatsuki, Keiji; Sotoyama, Kazuyoshi; Wada, Akira; Tokuno, Katsuya; Iwabuchi, Hisakatsu; Tanaka, Kiyofumi

    2003-03-26

    A dynamic solid-phase microextraction (SPME) method to sample fresh headspace volatile compounds released during the grinding of roasted coffee beans was described and the analytical results using gas chromatography/mass spectrometry (GC/MS) and GC/olfactometry (GC/O) were compared to those of the conventional static SPME sampling methods using ground coffee. Volatile compounds released during the grinding of roasted coffee beans (150 g) were obtained by exposing the SPME fiber (poly(dimethylsiloxane)/divinylbenzene, PDMS/ DVB) for 8 min to nitrogen gas (600 mL/min) discharged from a glass vessel in which the electronic coffee grinder was enclosed. Identification and characterization of volatile compounds thus obtained were achieved by GC/MS and GC/O. Peak areas of 47 typical coffee volatile compounds, separated on total ion chromatogram (TIC), obtained by the dynamic SPME method, showed coefficients of variation less than 5% (n = 3) and the gas chromatographic profile of volatile compounds thus obtained was similar to that of the solvent extract of ground coffee, except for highly volatile compounds such as 4-hydroxy-2,5-dimethyl-3(2H)-furanone and 4-ethenyl-2-methoxyphenol. Also, SPME dilution analysis of volatile compounds released during the grinding of roasted coffee beans showed linear plots of peak area versus exposed fiber length (R (2) > 0.89). Compared with those of the headspace volatile compounds of ground coffee using GC/MS and GC/O, the volatile compounds generated during the grinding of roasted coffee beans were rich in nutty- and smoke-roast aromas.

  3. Dual mechanochemical immobilization of heavy metals and decomposition of halogenated compounds in automobile shredder residue using a nano-sized metallic calcium reagent.

    Science.gov (United States)

    Mallampati, Srinivasa Reddy; Lee, Byoung Ho; Mitoma, Yoshiharu; Simion, Cristian

    2016-11-01

    Simultaneous immobilization of heavy metals and decomposition of halogenated organic compounds in different fractions of automobile shredder residue (ASR) were achieved with a nano-sized metallic calcium through a 60-min ball milling treatment. Heavy metal (HM) immobilization and chlorinated/brominated compound (CBC) decomposition efficiencies both reached 90-100 %, after ball milling with nanometallic calcium/calcium oxide (Ca/CaO) dispersion, regardless of ASR particle size (1.0, 0.45-1.0, and 0.250 mm). Concentrations of leachable HMs substantially decreased to a level lower than the regulatory standard limits (Co and Cd 0.3 mg L(-1); Cr 1.5 mg L(-1); Fe, Pb, and Zn 3.0 mg L(-1); Mn and Ni 1 mg L(-1)) proposed by the Korean hazardous waste elution standard regulatory threshold. Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) element maps/spectra showed that while the amounts of HMs and CBCs detectable in ASR significantly decreased, the calcium mass percentage increased. X-ray powder diffraction (XRD) patterns indicate that the main fraction of enclosed/bound materials on ASR includes Ca-associated crystalline complexes that remarkably inhibit HM desorption and simultaneously transform dangerous CBCs into harmless compounds. The use of a nanometallic Ca/CaO mixture in a mechanochemical process to treat hazardous ASR (dry conditions) is an innovative approach to remediate cross-contaminated residues with heavy metals and halogenated compounds.

  4. Anodic alumina coating for extraction of volatile organic compounds in human exhaled breath vapor.

    Science.gov (United States)

    Zhang, GuoJuan; Zou, LiangYuan; Xu, Hui

    2015-01-01

    The objective of the study is to develop a facile and highly sensitive solid phase microextraction-gas chromatography/mass spectrometry method for the analysis of volatile organic compounds in human exhaled breath vapor. For the purpose, a highly ordered nanoporous anodic alumina coating was prepared by a two-step anodic oxidization method based on aluminum substrate. To have a good knowledge of the fiber, some features were characterized and the results indicate that the coating has several advantages, including excellent chemical and thermal stability, high mechanical strength, large surface area and good extraction performance. In addition, some parameters related to extraction efficiency were also studied. Under the optimal conditions, the coating was used to quantitatively extract volatile organic compounds. Good linearity and wide linear range were obtained with correlation coefficients (R(2)) ranging from 0.9933 to 0.9999. The detection limits of benzene homologues, aldehydes and ketones were between 0.7 and 3.4 ng L(-1). Relative standard deviations (n=5) ranged from 1.8 to 15.0%. Satisfied recovery (89-115%) was obtained at two spiked concentration levels. Finally, the developed method was successfully applied for the analysis of volatile organic compounds in human exhaled vapor samples of lung cancer patients and the controls, and the results were statistically analyzed with Independent-Sample T Test. The proposed method exhibits some outstanding merits, including convenience, non-invasion, low cost and sensitivity. It provides a potential tool for rapid detection of volatile organic compounds in human exhaled breath. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Analysis of Volatile Organic Compounds in a Controlled Environment: Ethylene Gas Measurement Studies on Radish

    Science.gov (United States)

    Kong, Suk Bin

    2001-01-01

    Volatile organic compound(VOC), ethylene gas, was characterized and quantified by GC/FID. 20-50 ppb levels were detected during the growth stages of radish. SPME could be a good analytical tool for the purpose. Low temperature trapping method using dry ice/diethyl ether and liquid nitrogen bath was recommended for the sampling process for GC/PID and GC/MS analysis.

  6. Understanding Exposures to Volatile and Semivolatile Organic Compounds in Indoor Environments

    OpenAIRE

    Parthasarathy, Srinandini

    2016-01-01

    Humans spend most of their time indoors, in residences and commercial buildings. In this thesis, I evaluate exposures to volatile (VOCs) and semivolatile organic compounds (SVOCs) in indoor environments. I use a combination of literature review and evaluation, mechanistic modeling, and skin-wipe collection and analysis to develop an understanding of the role of indoor air as an exposure medium for inhalation and passive dermal uptake of pollutants. This dissertation explores three related res...

  7. Effects of Beef Finishing Diets and Muscle Type on Meat Quality, Fatty Acids and Volatile Compounds

    OpenAIRE

    Chail, Arkopriya

    2015-01-01

    Consumer evaluation, proximate data, Warner-Bratzler shear force (WBSF), fatty acid (FA) composition and volatile compounds were analyzed from the Longissimus thoracis (LT), Tricep brachii (TB) and Gluteus medius (GM) muscles finished on conventional feedlot (FL) and forages, including a perennial legume, birdsfoot trefoil (BFT; Lotus corniculatus), and a grass, meadow brome (Bromus riparius Rehmann, Grass). Representative retail forage (USDA Certified Organic Grass-fed, COGF) and conventiona...

  8. Quartz Crystal Microbalance: A tool for analyzing loss of volatile compounds, gas sorption, and curing kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Bajric, Sendin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    Los Alamos National Laboratory (LANL) has recently procured a quartz crystal microbalance (QCM). Current popular uses are biological sensors, surface chemistry, and vapor detection. LANL has projects related to analyzing curing kinetics, measuring gas sorption on polymers, and analyzing the loss of volatile compounds in polymer materials. The QCM has yet to be employed; however, this review will cover the use of the QCM in these applications and its potential.

  9. Volatile organic compounds emitted from fungal-rotting beech (Fagus sylvatica)

    OpenAIRE

    Thakeow, Prodepran; Weißbecker, Bernhard; Schütz, Stefan

    2008-01-01

    Chemo-communication is an important mode of interaction within ecosystem. The living organism in the ecosystem can deliver signals to conspecifics, to co-organisms, and unintentionally to their enemies, by emitting the volatile organic compounds (VOCs) to the atmosphere. There are some insect-fungi-associations displaying interesting relationships. For example, some bark beetle species (PAINE et al. 1997) introduce fungi into the conifers during the attack process. Fungi take advantage by ass...

  10. Air concentrations of volatile compounds near oil and gas production: a community-based exploratory study.

    Science.gov (United States)

    Macey, Gregg P; Breech, Ruth; Chernaik, Mark; Cox, Caroline; Larson, Denny; Thomas, Deb; Carpenter, David O

    2014-10-30

    Horizontal drilling, hydraulic fracturing, and other drilling and well stimulation technologies are now used widely in the United States and increasingly in other countries. They enable increases in oil and gas production, but there has been inadequate attention to human health impacts. Air quality near oil and gas operations is an underexplored human health concern for five reasons: (1) prior focus on threats to water quality; (2) an evolving understanding of contributions of certain oil and gas production processes to air quality; (3) limited state air quality monitoring networks; (4) significant variability in air emissions and concentrations; and (5) air quality research that misses impacts important to residents. Preliminary research suggests that volatile compounds, including hazardous air pollutants, are of potential concern. This study differs from prior research in its use of a community-based process to identify sampling locations. Through this approach, we determine concentrations of volatile compounds in air near operations that reflect community concerns and point to the need for more fine-grained and frequent monitoring at points along the production life cycle. Grab and passive air samples were collected by trained volunteers at locations identified through systematic observation of industrial operations and air impacts over the course of resident daily routines. A total of 75 volatile organics were measured using EPA Method TO-15 or TO-3 by gas chromatography/mass spectrometry. Formaldehyde levels were determined using UMEx 100 Passive Samplers. Levels of eight volatile chemicals exceeded federal guidelines under several operational circumstances. Benzene, formaldehyde, and hydrogen sulfide were the most common compounds to exceed acute and other health-based risk levels. Air concentrations of potentially dangerous compounds and chemical mixtures are frequently present near oil and gas production sites. Community-based research can provide an

  11. Ultrasound-assisted extraction of volatile compounds from industrial Cannabis sativa L. inflorescences

    OpenAIRE

    Da Porto, C.; Decorti, D.; Natolino, A.

    2014-01-01

    Summary. This study investigated the use of ultrasound-assisted extraction (UAE) to recovery  volatile compounds from the inflorescences of a fiber type Cannabis sativa L. cultivar. The results show that ultrasonic treatment not longer than 5 min allows to obtain an enhanced concentration of terpenes in comparison with maceration. Instead, an ultrasonic treatment longer than 5 min increased  the concentration of δ-9-tetraidrocannabinol (THC). A preliminary screening of cannabis inflorescences...

  12. Performance specifications for technology development: Application for characterization of volatile organic compounds in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, S.E.; Doskey, P.V.; Erickson, M.D.; Lindahl, P.C.

    1994-07-01

    This report contains information about technology development for the monitoring and remediation of environmental pollution caused by the release of volatile organic compounds. Topics discussed include: performance specification processes, gas chromatography, mass spectrometer, fiber-optic chemical sensors, infrared spectroscopy, Raman spectroscopy, piezoelectric sensors and electrochemical sensors. These methods are analyzed for their cost efficiency, accuracy, and the ability to meet the needs of the customer.

  13. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile

    OpenAIRE

    Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé

    2017-01-01

    Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact ...

  14. Screening of tropical fruit volatile compounds using solid-phase microextraction (SPME) fibers and internally cooled SPME fiber.

    Science.gov (United States)

    Carasek, Eduardo; Pawliszyn, Janusz

    2006-11-15

    In this study, the optimization and comparison of an internally cooled fiber [cold fiber with polydimethylsiloxane (PDMS) loading] and several commercial solid-phase microextraction (SPME) fibers for the extraction of volatile compounds from tropical fruits were performed. Automated headspace solid-phase microextraction (HS-SPME) using commercial fibers and an internally cooled SPME fiber device coupled to gas chromatography-mass spectrometry (GC-MS) was used to identify the volatile compounds of five tropical fruits. Pulps of yellow passion fruit (Passiflora edulis), cashew (Anacardium occidentale), tamarind (Tamarindus indica L.), acerola (Malphigia glabra L.), and guava (Psidium guajava L.) were sampled. The extraction conditions were optimized using two experimental designs (full factorial design and Doehlert matrix) to analyze the main and secondary effects. The volatile compounds tentatively identified included alcohols, esters, carbonyl compounds, and terpernes. It was found that the cold fiber was the most appropriate fiber for the purpose of extracting volatile compounds from the five fruit pulps studied.

  15. Changes in the volatile compounds of pork loin (fresh and marinated) with different irradiation and packaging during storage

    OpenAIRE

    García-Márquez, I.; Narváez-Rivas, M.; Gallardo, E.; Cabeza, C. M.; M. León-Camacho

    2013-01-01

    The analysis of volatile compounds by gas chromatography- mass spectrometry after extraction by purge and trap has been used to investigate the volatile compounds of fresh and marinated pork loin after E-beam treatmet as a function of packaging type (air, vacuum and modified atmosphere), radiation dose (1 and 2 kGy) and storage temperature (4 and 8 °C). Major differences were found between fresh and marinated samples but, in general, only minor differences were found in the volatile compounds...

  16. A study of volatile compounds in the breath of children with type 1 diabetes

    CERN Document Server

    Stevens, S; Wei, C; Greenwood, R; Hamilton-Shield, J; Costello, B de Lacy; Ratcliffe, N; Probert, C

    2013-01-01

    A pilot study of exhaled volatile compounds and their correlation with blood glucose levels in eight children with type 1 diabetes is reported. Five paired blood and breath samples were obtained from each child over a 6 hour period. The blood glucose concentration ranged from 41.4 to 435.6 mg/dL. Breath samples were collected in Tedlar bags and immediately evacuated through thermal desorption tubes packed with Carbopack B and C. The VOCs were later recovered by thermal desorption and analysed using gas chromatography mass spectrometry. The study identified 74 volatile compounds present in at least 10% of the patient samples. Of these 74 volatiles 36 were found in all patient samples tested. Further analysis of the 36 compounds found that none showed significant overall correlation with blood glucose levels. Isoprene showed a weak negative correlation with blood glucose levels. Acetone was found to have no correlation with blood glucose levels for the patients studied. Some patients showed significant individu...

  17. A microfluidic device for open loop stripping of volatile organic compounds.

    Science.gov (United States)

    Cvetković, Benjamin Z; Dittrich, Petra S

    2013-03-01

    The detection of volatile organic compounds is of great importance for assessing the quality of water. In this contribution, we describe a miniaturized stripping device that allows fast online detection of organic solvents in water. The core component is a glass microfluidic chip that facilitates the creation of an annular-flowing stream of water and nitrogen gas. Volatile compounds are transferred efficiently from the water into the gas phase along the microfluidic pathway at room temperature within less than 5 s. Before exiting the microchip, the liquid phase is separated from the enriched gas phase by incorporating side capillaries through which the hydrophilic water phase is withdrawn. The gas phase is conveniently collected at the outlet reservoir by tubing. Finally, a semiconductor gas sensor analyzes the concentration of (volatile) organic compounds in the nitrogen gas. The operation and use of the stripping device is demonstrated for the organic solvents THF, 1-propanol, toluene, ethylbenzene, benzaldehyde, and methanol. The mobile, inexpensive, and continuously operating system with liquid flow rates in the low range of microliters per minute can be connected to other detectors or implemented in chemical production line for process control.

  18. Dependence of Oak-Related Volatile Compounds on the Physicochemical Characteristics of Barrel-Aged Wines

    Directory of Open Access Journals (Sweden)

    Pedro Rodríguez-Rodríguez

    2012-01-01

    Full Text Available This paper focuses on the effect of some of the physicochemical characteristics of wines such as volatile acidity, titratable acidity, pH, free SO2 and alcohol content on the accumulation of oak-related volatile compounds in barrel-aged wines, in order to give more light on the contradictory results found by other authors in this respect. For this, three different single variety wines were aged for twelve months in barrels with the same characteristics (same cooperage, wood origin, toasting level and volume, repeating the experiment in two consecutive years. Our results show that the percentage of wine alcohol and its titratable acidity positively correlated with the final concentration of vanillin and guaiacyl compounds in the oak-matured wines and negatively with the cis- and trans-β-methyl-γ-octalactone concentration. Therefore, when studying the effect of oak barrel variables (oak origin and seasoning, size of the barrel, number of uses, etc. on the concentration of oak-related volatile compounds in wine, the effect of the physicochemical variables of the wine, especially titratable acidity and alcohol content, should also be taken into account since the final wine aroma composition will also depend on these characteristics.

  19. [Rapid determination of volatile organic compounds in workplace air by protable gas chromatography-mass spectrometer].

    Science.gov (United States)

    Zhu, H B; Su, C J; Tang, H F; Ruan, Z; Liu, D H; Wang, H; Qian, Y L

    2017-10-20

    Objective: To establish a method for rapid determination of 47 volatile organic compounds in the air of workplace using portable gas chromatography-mass spectrometer(GC-MS). Methods: The mixed standard gas with different concentration levels was made by using the static gas distribution method with the high purity nitrogen as dilution gas. The samples were injected into the GC-MS by a hand-held probe. Retention time and characteristic ion were used for qualitative analysis,and the internal standard method was usd for quantitation. Results: The 47 poisonous substances were separated and determined well. The linear range of this method was 0.2-16.0 mg/m(3),and the relative standard deviation of 45 volatile ovganic compounds was 3.8%-15.8%. The average recovery was 79.3%-119.0%. Conclusion: The method is simple,accurate,sensitive,has good separation effect,short analysis period, can be used for qualitative and quantitative analysis of volatile organic compounds in the workplace, and also supports the rapid identification and detection of occupational hazards.

  20. Lack of heritability of exhaled volatile compound pattern: an electronic nose twin study.

    Science.gov (United States)

    Tarnoki, David Laszlo; Bikov, Andras; Tarnoki, Adam Domonkos; Lazar, Zsofia; Szilagyi, Blanka Krisztina; Korosi, Beata Zita; Horvath, Tamas; Littvay, Levente; Losonczy, Gyorgy; Horvath, Ildiko

    2014-03-01

    Electronic noses can distinguish various disorders by analyzing exhaled volatile organic compound (VOC) pattern; however it is unclear how hereditary and environmental backgrounds affect the exhaled VOC pattern. A twin study enrolling monozygotic (MZ) and dizygotic (DZ) twins is an ideal tool to separate the influence of these factors on the exhaled breath pattern. Exhaled breath samples were collected in duplicates from 28 never smoking twin pairs (in total 112 samples) without lung diseases and processed with an electronic nose (Cyranose 320). Univariate quantitative hereditary modeling (ACE analysis) adjusted for age and gender was performed to decompose the phenotypic variance of the exhaled volatile compound pattern (assessing principal components (PCs) derived from electronic nose data) into hereditary (A), shared (C), and unshared (E) environmental effects. Exhaled VOC pattern showed good intra-subject reproducibility as assessed with the Bland-Altman plot. Significant correlations were found between exhaled VOC patterns of both MZ and DZ twins. The hereditary background did not influence the VOC pattern. The shared environmental effect on PC 1, 2 and 3 was estimated to be 93%, 94% and 54%, respectively. The unshared (unique) environmental influence explained a smaller variance (7%, 6% and 46%). For the first time using the twin design, we have shown that the environmental background largely affects the exhaled volatile compound pattern in never smoking volunteers without respiratory disorders. Further studies should identify these environmental factors and also assess their influence on exhaled breath patterns in patients with lung diseases.

  1. Nutritional Value and Volatile Compounds of Black Cherry (Prunus serotina Seeds

    Directory of Open Access Journals (Sweden)

    Leticia García-Aguilar

    2015-02-01

    Full Text Available Prunus serotina (black cherry, commonly known in Mexico as capulín, is used in Mexican traditional medicine for the treatment of cardiovascular, respiratory, and gastrointestinal diseases. Particularly, P. serotina seeds, consumed in Mexico as snacks, are used for treating cough. In the present study, nutritional and volatile analyses of black cherry seeds were carried out to determine their nutraceutical potential. Proximate analysis indicated that P. serotina raw and toasted seeds contain mostly fat, followed by protein, fiber, carbohydrates, and ash. The potassium content in black cherry raw and toasted seeds is high, and their protein digestibility-corrected amino acid scores suggest that they might represent a complementary source of proteins. Solid phase microextraction and gas chromatography/flame ionization detection/mass spectrometry analysis allowed identification of 59 and 99 volatile compounds in the raw and toasted seeds, respectively. The major volatile compounds identified in raw and toasted seeds were 2,3-butanediol and benzaldehyde, which contribute to the flavor and odor of the toasted seeds. Moreover, it has been previously demonstrated that benzaldehyde possesses a significant vasodilator effect, therefore, the presence of this compound along with oleic, linoleic, and α-eleostearic fatty acids indicate that black cherry seeds consumption might have beneficial effects on the cardiovascular system.

  2. Estimation of the Accuracy of Method for Quantitative Determination of Volatile Compounds in Alcohol Products

    CERN Document Server

    Charepitsa, S V; Zadreyko, Y V; Sytova, S N

    2016-01-01

    Results of the estimation of the precision for determination volatile compounds in alcohol-containing products by gas chromatography: acetaldehyde, methyl acetate, ethyl acetate, methanol, isopropyl alcohol, propyl alcohol, isobutyl alcohol, butyl alcohol, isoamyl alcohol are presented. To determine the accuracy, measurements were planned in accordance with ISO 5725 and held at the gas chromatograph Crystal-5000. Standard deviation of repeatability, intermediate precision and their limits are derived from obtained experimental data. The uncertainty of the measurements was calculated on the base of an "empirical" method. The obtained values of accuracy indicate that the developed method allows measurement uncertainty extended from 2 to 20% depending on the analyzed compound and measured concentration.

  3. Release of volatile organic compounds (VOCs from the lung cancer cell line CALU-1 in vitro

    Directory of Open Access Journals (Sweden)

    Schubert Jochen

    2008-11-01

    Full Text Available Abstract Background The aim of this work was to confirm the existence of volatile organic compounds (VOCs specifically released or consumed by lung cancer cells. Methods 50 million cells of the human non-small cell lung cancer (NSCLC cell line CALU-1 were incubated in a sealed fermenter for 4 h or over night (18 hours. Then air samples from the headspace of the culture vessel were collected and preconcentrated by adsorption on solid sorbents with subsequent thermodesorption and analysis by means of gas chromatography mass spectrometry (GC-MS. Identification of altogether 60 compounds in GCMS measurement was done not only by spectral library match, but also by determination of retention times established with calibration mixtures of the respective pure compounds. Results The results showed a significant increase in the concentrations of 2,3,3-trimethylpentane, 2,3,5-trimethylhexane, 2,4-dimethylheptane and 4-methyloctane in the headspace of CALU-1 cell culture as compared to medium controls after 18 h. Decreased concentrations after 18 h of incubation were found for acetaldehyde, 3-methylbutanal, butyl acetate, acetonitrile, acrolein, methacrolein, 2-methylpropanal, 2-butanone, 2-methoxy-2-methylpropane, 2-ethoxy-2-methylpropane, and hexanal. Conclusion Our findings demonstrate that certain volatile compounds can be cancer-cell derived and thus indicative of the presence of a tumor, whereas other compounds are not released but seem to be consumed by CALU-1 cells.

  4. Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants

    Directory of Open Access Journals (Sweden)

    Antoni Sánchez

    2011-04-01

    Full Text Available Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities.

  5. Detection, composition and treatment of volatile organic compounds from waste treatment plants.

    Science.gov (United States)

    Font, Xavier; Artola, Adriana; Sánchez, Antoni

    2011-01-01

    Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities.

  6. Microbial communities related to volatile organic compound emission in automobile air conditioning units.

    Science.gov (United States)

    Diekmann, Nina; Burghartz, Melanie; Remus, Lars; Kaufholz, Anna-Lena; Nawrath, Thorben; Rohde, Manfred; Schulz, Stefan; Roselius, Louisa; Schaper, Jörg; Mamber, Oliver; Jahn, Dieter; Jahn, Martina

    2013-10-01

    During operation of mobile air conditioning (MAC) systems in automobiles, malodours can occur. We studied the microbial communities found on contaminated heat exchanger fins of 45 evaporators from car MAC systems which were operated in seven different regions of the world and identified corresponding volatile organic compounds. Collected biofilms were examined by scanning electron microscopy and fluorescent in situ hybridization. The detected bacteria were loosely attached to the metal surface. Further analyses of the bacteria using PCR-based single-strand conformation polymorphism and sequencing of isolated 16S rRNA gene fragments identified highly divergent microbial communities with multiple members of the Alphaproteobacteriales, Methylobacteria were the prevalent bacteria. In addition, Sphingomonadales, Burkholderiales, Bacillales, Alcanivorax spp. and Stenotrophomonas spp. were found among many others depending on the location the evaporators were operated. Interestingly, typical pathogenic bacteria related to air conditioning systems including Legionella spp. were not found. In order to determine the nature of the chemical compounds produced by the bacteria, the volatile organic compounds were examined by closed loop stripping analysis and identified by combined gas chromatography/mass spectrometry. Sulphur compounds, i.e. di-, tri- and multiple sulphides, acetylthiazole, aromatic compounds and diverse substituted pyrazines were detected. Mathematical clustering of the determined microbial community structures against their origin identified a European/American/Arabic cluster versus two mainly tropical Asian clusters. Interestingly, clustering of the determined volatiles against the origin of the corresponding MAC revealed a highly similar pattern. A close relationship of microbial community structure and resulting malodours to the climate and air quality at the location of MAC operation was concluded.

  7. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile.

    Science.gov (United States)

    Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé

    2017-01-01

    Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non-Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Pichia membranifaciens) in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available). We then carried out sequential fermentations at 20°C with S. cerevisiae, to assess the impact of the non-Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae. Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae. We report here, for the first time, that non-Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris, aspartic acid was assimilated very slowly by M. pulcherrima, and glutamine was not assimilated by P. membranifaciens. By contrast, cysteine appeared to be a preferred nitrogen source for all non-Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non-Saccharomyces yeasts may account for some of the

  8. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile

    Directory of Open Access Journals (Sweden)

    Antoine Gobert

    2017-11-01

    Full Text Available Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non-Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Pichia membranifaciens in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available. We then carried out sequential fermentations at 20°C with S. cerevisiae, to assess the impact of the non-Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae. Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae. We report here, for the first time, that non-Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris, aspartic acid was assimilated very slowly by M. pulcherrima, and glutamine was not assimilated by P. membranifaciens. By contrast, cysteine appeared to be a preferred nitrogen source for all non-Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non-Saccharomyces yeasts may account for

  9. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile

    Science.gov (United States)

    Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé

    2017-01-01

    Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non-Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Pichia membranifaciens) in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available). We then carried out sequential fermentations at 20°C with S. cerevisiae, to assess the impact of the non-Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae. Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae. We report here, for the first time, that non-Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris, aspartic acid was assimilated very slowly by M. pulcherrima, and glutamine was not assimilated by P. membranifaciens. By contrast, cysteine appeared to be a preferred nitrogen source for all non-Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non-Saccharomyces yeasts may account for some of the

  10. Characteristics of volatile organic compounds emission profiles from hot road bitumens.

    Science.gov (United States)

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2014-07-01

    A procedure for the investigation and comparison of volatile organic compounds (VOCs) emission profiles to the atmosphere from road bitumens with various degrees of oxidation is proposed. The procedure makes use of headspace analysis and gas chromatography with universal as well as selective detection, including gas chromatography-mass spectrometry (GC-MS). The studies revealed that so-called vacuum residue, which is the main component of the charge, contains variable VOC concentrations, from trace to relatively high ones, depending on the extent of thermal cracking in the boiler of the vacuum distillation column. The VOC content in the oxidation product, so-called oxidized paving bitumen, is similarly varied. There are major differences in VOC emission profiles between vacuum residue and oxidized bitumens undergoing thermal cracking. The VOC content in oxidized bitumens, which did not undergo thermal cracking, increases with the degree of oxidation of bitumens. The studies revealed that the total VOC content increases from about 120 ppm for the raw vacuum residue to about 1900 ppm for so-called bitumen 35/50. The amount of volatile sulfur compounds (VSCs) in the volatile fraction of fumes of oxidized bitumens increases with the degree of oxidation of bitumen and constitutes from 0.34% to 3.66% (w/w). The contribution of volatile nitrogen compounds (VNCs) to total VOC content remains constant for the investigated types of bitumens (from 0.16 to 0.28% (w/w) of total VOCs). The results of these studies can also find use during the selection of appropriate bitumen additives to minimize their malodorousness. The obtained data append the existing knowledge on VOC emission from oxidized bitumens. They should be included in reports on the environmental impact of facilities in which hot bitumen binders are used. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Emissions and Secondary Organic Aerosol Production from Semivolatile and Intermediate Volatility Organic Compounds

    Science.gov (United States)

    Robinson, A. L.; Presto, A. A.; Miracolo, M. A.; Donahue, N. M.; Kroll, J. H.; Worsnop, D. R.

    2008-12-01

    Organic aerosols are a highly-dynamic system dominated by both variable gas-particle partitioning and chemical evolution. Important classes of organics include semivolatile and intermediate volatility organic compounds (SVOC and IVOC, respectively). SVOCs are compounds that exist in both the gas and particle phases at typical atmospheric conditions while IVOC are low-volatility vapors that exist exclusively in the gas phase. Both classes have saturation concentrations that are orders of magnitude lower than volatile organic compounds (VOC) that are the traditional subjects of atmosphere chemistry, such as monoterpenes, alkyl benzenes, etc. The SVOC and IVOC are poorly represented for in current atmospheric chemistry models. Source testing indicates that SVOC and IVOC emissions from biomass combustion, diesel engines and other sources exceed the primary organic aerosol emissions; thus the oxidation of these vapors could serve as a significant source of organic aerosol in the atmosphere. The formation of secondary organic aerosol (SOA) from the reactions between OH radicals and SVOCs and IVOCs was investigated in the Carnegie Mellon University smog chamber. Experiments were conducted with n-alkanes and emission surrogates (diesel fuel and lubricating oil). SVOC oxidation produces oxidized organic aerosol but little new organic aerosol mass. This behavior can be explained by the coupled effects of partitioning and aging. Oxidation of SVOC vapors creates low volatility species that partition into the condensed phase; this oxidation also reduces the SVOC vapor concentration which, in turn, requires particle-phase SVOC to evaporate to maintain phase equilibrium. In contrast, oxidation of IVOC results in sustained production of SOA consistent with a reaction with relatively slow kinetics and high mass yield. Aerosol Mass Spectrometer data indicates that the SOA formed from IVOC has a mass spectrum that is quite similar to the oxygenated organic aerosol factor observed in

  12. PERUBAHAN KOMPOSISI VOLATIL DAGING BUAH MANGGA "KENSINGTON PRIDE" SELAMA PEMASAKAN [Changes in Volatile Compound Composition of Kensington Pride Mango Pulp During Fruit Ripening

    Directory of Open Access Journals (Sweden)

    Herianus J.D Lalel

    2003-08-01

    Full Text Available Volatile compounds of ‘Kesington Pride’ mango produced from the pulp during fruit ripening were studied using headspace solid-phase microextraction (SPME as a sampling method and gas chromatography with a flame ionisation detector (GC-FID and gas chromatography mass spectrophotometry (GC-MS for analysis. Ethylene production and respiration reached a peak on the second and third day of ripening, respectively. Seventy-eight volatile compounds were identified from the pulp of ‘Kesington Pride’ mango; however, only 73 volatile compounds were present in notable amount. The most abundant group of volatile compounds was monoterpenes, accounting for abaout 44% of the total identified compounds, followed by sesquiterpenes (19%, aldehydes (11%,esters (10% aromatics (8%, alcohol (2%, ketones (2%, alkanes (1% and norisoprenoid (1%. -Terpinolene was the major compound during ripening. Except for -pinene, 3,7-dimethl-1,3,7-octatriene, 4-methl-1 (1-methylethylidene-cyclohexene, p-mentha-1,5,8-triene, aloocimene, the concentration of all other monoterpenes increased for the first six or eight days and decreased afterwards. All sesquiteroenes, p-cymene, p-cymen-9-ol,2-ethyl-1,4-dimethl benzene also increased during ripening and peaked on day four, six or eight of ripening. Ketones, aldehydes alkane and cis-3-hexenol, on the other hand, decreased during ripening. Ethanol, esters and norisoprenoid increased quite sharply at the end of ripening period.

  13. A fast and simple method for quantitative determination of fat-derived medium and low-volatile compounds in cheese

    NARCIS (Netherlands)

    Alewijn, M.; Sliwinski, E.L.; Wouters, J.T.M.

    2003-01-01

    Cheese flavour is a mixture of many (volatile) compounds, mostly formed during ripening. The current method was developed to qualify and quantify fat-derived compounds in cheese. Cheese samples were extracted with acetonitrile, which led to a concentrated solution of potential favour compounds,

  14. Bacterial succession and the dynamics of volatile compounds during the fermentation of Chinese rice wine from Shaoxing region.

    Science.gov (United States)

    Liu, Shuang Ping; Mao, Jian; Liu, Yun Ya; Meng, Xiang Yong; Ji, Zhong Wei; Zhou, Zhi Lei; Ai-lati, Aisikaer

    2015-12-01

    Shaoxing rice wine is one of the most typical representatives of Chinese rice wine. It is brewed under non-sterile condition with various microorganism growing at the same time and forms a special flavor. The aims of this study was to monitor the bacterial succession by MiSeq pyrosequencing and the volatile compound dynamics by HS-SPME/GC–MS during brewing process. Moreover, the volatile compounds and bacterial community were analyzed by partial least squares regression to evaluate the effect of bacteria on volatile compounds formation. The results showed that there were ten dominating genera during Shaoxing rice wine fermentation process. Ten genera, Bacillus, Leuconostoc, Lactococcus, Weissella, Thermoactinomyces, Pseudomonas, Saccharopolyspora, Staphylococcus, Enterobacter and Lactobacillus, were identified as the main bacteria. The Bacillus and Lactobacillus dominated the Chinese rice wine ecosystems. In addition, a total of 64 volatile compounds were identified, mainly esters, alcohols, carbonyl compound and phenols. Pseudomonas were involved in synthesis of a wide variety of volatile compounds. Thermoactinomyces, Bacillus and Lactococcus also played critical roles in the formation of volatile compounds.

  15. Identification of volatile compounds in codfish ( Gadus) by a combination of two extraction Methods coupled with GC-MS analysis

    Science.gov (United States)

    Chang, Yufei; Hou, Hu; Li, Bafang

    2016-06-01

    Codfish is a kind of abyssal fish species with a great value in food industry. However, the flavor of codfish, especially the unpleasant odor, has caused serious problems in its processing. To accurately identify the volatile compounds in codfish, a combination of solid phase micro-extraction (SPME) method and simultaneous distillation extraction (SDE) method was used to extract the volatiles. Gas chromatography-mass spectrometry (GC-MS) along with Kovats indices (KI) and authentic standard compounds were used to identify the volatiles. The results showed that a total of 86 volatile compounds were identified in codfish, of them 24 were extracted by SDE, 69 compounds by SPME, and 10 compounds by both SDE and SPME. Seventy volatile compounds were found to have specific odors, of them 7 typical compounds contributed significantly to the flavor of codfish. Alcohols ( i.e., (E)-2-penten-1-ol and 2-octanol), esters ( i.e., ethyl butyrate and methyl geranate), aldehydes ( i.e., 2-dodecenal and pentadecanal) contributed the most to fresh flavor while nitrogen compounds, sulphur compounds, furans, as well as some ketones ( i.e., 2-hydroxy-3-pentanone) brought unpleasant odor, such as fishy and earthy odor. It was indicated that the combination of multiple extraction methods and GC-MS analysis can enhance the accuracy of identification, and provide a reference for the further study on flavor of aquatic products.

  16. Volatile organic compounds of Thai honeys produced from several floral sources by different honey bee species.

    Science.gov (United States)

    Pattamayutanon, Praetinee; Angeli, Sergio; Thakeow, Prodpran; Abraham, John; Disayathanoowat, Terd; Chantawannakul, Panuwan

    2017-01-01

    The volatile organic compounds (VOCs) of four monofloral and one multifloral of Thai honeys produced by Apis cerana, Apis dorsata and Apis mellifera were analyzed by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography and mass spectrometry (GC-MS). The floral sources were longan, sunflower, coffee, wild flowers (wild) and lychee. Honey originating from longan had more VOCs than all other floral sources. Sunflower honey had the least numbers of VOCs. cis-Linalool oxide, trans-linalool oxide, ho-trienol, and furan-2,5-dicarbaldehyde were present in all the honeys studied, independent of their floral origin. Interestingly, 2-phenylacetaldehyde was detected in all honey sample except longan honey produced by A. cerana. Thirty-two VOCs were identified as possible floral markers. After validating differences in honey volatiles from different floral sources and honeybee species, the results suggest that differences in quality and quantity of honey volatiles are influenced by both floral source and honeybee species. The group of honey volatiles detected from A. cerana was completely different from those of A. mellifera and A. dorsata. VOCs could therefore be applied as chemical markers of honeys and may reflect preferences of shared floral sources amongst different honeybee species.

  17. Volatile Compounds in Honey Produced in the Central Valley of Ñuble Province, Chile Compuestos Volatiles en Miel Producida en el Valle Central de la Provincia de Ñuble, Chile

    OpenAIRE

    María Pía Gianelli Barra; María Cristina Ponce-Díaz; César Venegas-Gallegos

    2010-01-01

    Headspace solid-phase microextraction (SPME) with an 85 µm Carboxen polydimethylsiloxane (CAR/PDMS) fiber was used to extract volatile compounds, and a gas chromatograph equipped with a mass spectometry detector (GC-MS) was used to identify the volatile compounds in honeys. Thirty-four different volatile compounds from the headspace of honey produced in the central valley of Ñuble Province, Chile, were extracted with fiber coating CAR/PDMS. The identified compounds were: 10 alcohols, 9 acids,...

  18. Transformation of aroma during dehydration and storage of foods. Part II, Separation into classes of volatile compounds by column chromatography

    National Research Council Canada - National Science Library

    Strocchi, A; Ferri, G

    1971-01-01

    There has been devised a simple method of separation in chemical classes of the volatile compounds present in food products by 15-17 C liquid column chromatography using silicic acid and Carbowax 10 M...

  19. Datasets used in the manuscript titled "Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms and organic aerosol"

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset documents that all of the data used in the manuscript "Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic...

  20. Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15, SOP No. HW-31 Revision 6

    Science.gov (United States)

    This document is designed to offer the data reviewer guidance in determining the validity of analytical data from the analysis of Volatile Organic Compounds in air samples taken in canisters and analyzed by method TO-15.

  1. Influence of volatile organic compounds of varnish-and-paint materials on the workers organism on the industrial enterprises

    Directory of Open Access Journals (Sweden)

    Г.І. Архіпова

    2010-02-01

    Full Text Available In article describes the reasons of air contamination in working area of endustrial enterprises, defines main ways of incoming and mechanism of action of volatile organic compounds of paintwork material on the organisms of workers.

  2. Influence of yeast strains on the physicochemical characteristics, methanol and acetaldehyde profiles and volatile compounds for Korean rice distilled spirit

    National Research Council Canada - National Science Library

    Kwak, Han Sub; Seo, Jae Soon; Hur, Yesung; Shim, Hyoung‐Seok; Lee, Yougnseung; Kim, Misook; Jeong, Yoonhwa

    2015-01-01

    The objective of this study was to investigate the influence of yeast strains on the physicochemical characteristics, methanol and acetaldehyde profiles, and volatile compounds of Korean rice distilled spirits...

  3. Volatile compounds profile and sensory evaluation of Beninese condiments produced by inocula of Bacillus subtilis

    DEFF Research Database (Denmark)

    Azokpota, Paulin; Hounhouigan, Joseph D.; Annan, Nana T.

    2010-01-01

    identified in relatively high concentrations and were subdivided into seven main groups with the predominance of four major groups: pyrazines, aldehydes, ketones and alcohols. Compared to the spontaneously fermented condiments, volatile compounds identified in controlled fermented condiments have been found...

  4. Determination of some volatile compounds in alcoholic beverage by headspace solid-phase microextraction gas chromatography - mass spectrometry

    Science.gov (United States)

    Schmutzer, G.; Avram, V.; Feher, I.; David, L.; Moldovan, Z.

    2012-02-01

    The volatile composition of alcoholic beverage was studied by headspace solid-phase microextraction (HSSPME) method and gas chromatography - mass spectrometry (GC-MS). Some volatile compounds, such as alcohols, esters, terpenes and other are mainly responsible for the flavor of fortified wines and their amounts specify the quality of the alcoholic beverages. From this perspective it is interesting to develop a rapid, selective and sensitive analytical method suitable for simultaneous quantification of the main molecules being responsible for the organoleptic characteristic of alcoholic beverages. Vermouth fortified drink was analyzed in order to characterize the volatile profile. Using the HS-SPME/GC-MS a number of twenty-six volatile compounds from a commercial market alcoholic beverage were identified. The most abundant compounds were m-thymol, o-thymol and eugenol, alongside of the ethyl ester compounds.

  5. VOLATILE ORGANIC COMPOUNDS FROM VEGETATION IN SOUTHERN YUNNAN PROVINCE, CHINA: EMISSION RATES AND SOME POTENTIAL REGIONAL IMPLICATIONS

    Science.gov (United States)

    Little information is currently available regarding emissions of biogenic volatile organic compounds (BVOCs) in southern Asia. To address the need for BVOC emission estimates in regional atmospheric chemistry simulations, 95 common plant species were screened for emissions of BVO...

  6. Volatile Compounds in Oleo-gum Resin of Socotran Species of Burseraceae

    Directory of Open Access Journals (Sweden)

    Petr Maděra

    2017-01-01

    Full Text Available Socotra Island is well known for its high rate of plant species endemism and having the highest concentration of frankincense species in the world. Thirteen species in Burseraceae occur on the island, of which 12 are endemic. A total of only four species from the island have had the chemical compositions of their resins published. Moreover, in general, most studies on chemical composition of frankincense and myrrh resins have analysed samples that were not freshly collected (including some of considerable age. Our study therefore aimed at analysing the volatile compound composition of all Socotran Burseraceae species, using fresh resin sample analysis. We found a total of 103 volatile compounds in all the species, with 53 of them fully identified, 27 of them partially determined and 23 still unidentified. These include four compounds (α‑fenchene, calarene, trans‑β‑farnesene, α‑elemene newly reported from Boswellia and two (phytol and ledene newly reported from Commiphora. Our results suggested the huge potential to find new chemical compounds among endemic Burseracean species.

  7. Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork.

    Science.gov (United States)

    Nieminen, Timo T; Dalgaard, Paw; Björkroth, Johanna

    2016-02-02

    Accumulation of volatile organic compounds was monitored in association with sensory quality, bacterial concentrations and culture-independent microbial community analyses in raw pork loin and pork collar during storage under high-oxygen modified atmosphere at +4 °C. Of the 48 volatile compounds detected in the pork samples, the levels of acetoin, diacetyl and 3-methyl-1-butanol had the highest correlations with the sensory scores and bacterial concentrations. These compounds accumulated in all of the four monitored lots of non-sterile pork but not in the sterilized pork during chilled storage. According to the culture-dependent and culture-independent characterization of bacterial communities, Brochothrix thermosphacta, lactic acid bacteria (Carnobacterium, Lactobacillus, Lactococcus, Leuconostoc, Weissella) and Photobacterium spp. predominated in pork samples. Photobacterium spp., typically not associated with spoilage of meat, were detected also in 8 of the 11 retail packages of pork investigated subsequently. Eleven isolates from the pork samples were shown to belong to Photobacterium phosphoreum by phenotypic tests and sequencing of the 16S rRNA and gyrB gene fragments. Off-odors in pork samples with high proportion of Photobacterium spp. were associated with accumulation of acetoin, diacetyl and 3-methyl-1-butanol in meat, but these compounds did not explain all the off-odors reported in sensory analyses. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Review. Sulfur-containing volatile compounds in seafood: occurrence, odorant properties and mechanisms of formation.

    Science.gov (United States)

    Varlet, V; Fernandez, X

    2010-12-01

    An inventory of the most part of sulfur-containing volatile compounds (SCVCs) present in seafood was carried out. These molecules constitute key compounds to understand and improve seafood quality. According to their nature, concentration and environmental parameters (temperature), they can move the overall seafood odor from desirable to rotten. Sulfury odors can also indicate problems in sanitary quality. Thus, it is essential to monitor the generation of these compounds to better control the organoleptic and sanitary quality of seafood. SCVC were divided in two categories: aliphatic compounds and cyclic compounds. Among cyclic SCVC, several families of compounds can be distinguished as thiophenes, thiazoles and their respective derivatives. The main pathways of formation of SCVC in seafood are investigated in order to better understand their presence in seafood aroma. Microbial mediated enzymatic reactions are mainly implied in the generation of aliphatic SCVC whereas Maillard reactions are involved in the generation of cyclic SCVC. A small part of SCVC could also derive from the environment by direct bioaccumulation of S-containing molecules or precursors. Then, the occurrence of SCVC in seafood is discussed according to the extraction methods, analysis methods - sometimes olfactometric methods and the species - the state and the average biochemical composition of the seafood matrix in which they were recovered. Finally, among the identified SCVC, the odorant properties of odor-active volatile compounds were investigated. Aromatic notes and odorant thresholds for odorant SCVC of seafood aroma are listed. Both pathways of formation and lists of SCVC linked to their odorant properties constitute important indicators to optimise seafood quality from an organoleptic and sanitary point of view.

  9. Simultaneous distillation-extraction of high-value volatile compounds from Cistus ladanifer L.

    Science.gov (United States)

    Teixeira, Salomé; Mendes, Adélio; Alves, Arminda; Santos, Lúcia

    2007-02-19

    The present paper describes a procedure to isolate volatiles from rock-rose (Cistus ladanifer L.) using simultaneous distillation-extraction (SDE). High-value volatile compounds (HVVC) were selected and the influence of the extraction conditions investigated. The effect of the solvent nature and extraction time on SDE efficiency was studied. The best performance was achieved with pentane in 1 h operation. The extraction efficiencies ranged from 65% to 85% and the repeatability varied between 4% and 6% (as a CV%). The C. ladanifer SDE extracts were analysed by headspace solid phase microextraction (HS-SPME) followed by gas chromatography with flame ionization detection (GC-FID). The HS-SPME sampling conditions such as fiber coating, temperature, ionic strength and exposure time were optimized. The best results were achieved with an 85 microm polyacrylate fiber for a 60 min headspace extraction at 40 degrees C with 20% (w/v) of NaCl. For optimized conditions the recovery was in average higher than 90% for all compounds and the intermediate precision ranged from 4 to 9% (as CV %). The volatiles alpha-pinene (22.2 mg g(-1) of extract), 2,2,6-trimethylcyclohexanone (6.1 mg g(-1) of extract), borneol (3.0 mg g(-1) of extract) and bornyl acetate (3.9 mg g(-1) of extract) were identified in the SDE extracts obtained from the fresh plant material.

  10. Differentiation of raw spirits of rye, corn and potato using chromatographic profiles of volatile compounds.

    Science.gov (United States)

    Ziółkowska, Angelika; Jeleń, Henryk H

    2012-10-01

    The origin of the raw spirits influences the sensory quality of rectified spirits that are subsequently used for the production of vodka. The aim of this research was to evaluate the effectiveness of two methods based on the comparison of profiles of volatile compounds [solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) and gas chromatography with flame ionisation detection (GC-FID)] for the determination of origin of raw spirits obtained from rye, corn (maize) and potato. Profiles obtained for the volatile compounds by using these methods were different and were influenced by the sample introduction method. The main groups of volatiles obtained using SPME-GC-MS method were fatty acid ethyl esters, while in the case of GC-FID fusel alcohols and ethyl acetate dominated. Data obtained from these methods were treated using principal component analysis and linear discriminant analysis to test the possibility of sample differentiation and classification. It was relatively easy to differentiate potato spirits from the remainder; however, it was not possible to fully distinguish the corn samples from rye samples. The classification ability of the SPME-GC-MS method was 95% but the prediction ability was 97.4%. For the GC-FID method the classification ability was 90.1%, whereas the prediction ability was 94.27%. The methods presented can be used for reliable differentiation of potato spirits from corn and rye spirits. Copyright © 2012 Society of Chemical Industry.

  11. Characterization of volatiles and identification of odor-active compounds of rocket leaves.

    Science.gov (United States)

    Raffo, Antonio; Masci, Maurizio; Moneta, Elisabetta; Nicoli, Stefano; Sánchez Del Pulgar, José; Paoletti, Flavio

    2018-02-01

    The volatile profile of crushed rocket leaves (Eruca sativa and Diplotaxis tenuifolia) was investigated by applying Headspace Solid-Phase MicroExtraction (HS-SPME), combined with GC-MS, to an aqueous extract obtained by homogenization of rocket leaves, and stabilized by addition of CaCl 2 . A detailed picture of volatile products of the lipoxygenase pathway (mainly C6-aldehydes) and of glucosinolate hydrolysis (mainly isothiocyanates), and their dynamics of formation after tissue disruption was given. Odor-active compounds of leaves were characterized by GC-Olfactometry (GC-O) and Aroma Extract Dilution Analysis (AEDA): volatile isolates obtained by HS-SPME from an aqueous extract and by Stir-Bar Sorptive Extraction (SBSE) from an ethanolic extract were analyzed. The most potent odor-active compounds fully or tentatively identified were (Z)- and (E)-3-hexenal, (Z)-1,5-octadien-3-one, responsible for green olfactory notes, along with 4-mercaptobutyl and 4-(methylthio)butyl isothiocyanate, associated with typical rocket and radish aroma. Relatively high odor potency was observed for 1-octen-3-one, (E)-2-octenal and 1-penten-3-one. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Analysis of volatile organic compounds in compost samples: A potential tool to determine appropriate composting time.

    Science.gov (United States)

    Zhu, Fengxiang; Pan, Zaifa; Hong, Chunlai; Wang, Weiping; Chen, Xiaoyang; Xue, Zhiyong; Yao, Yanlai

    2016-12-01

    Changes in volatile organic compound contents in compost samples during pig manure composting were studied using a headspace, solid-phase micro-extraction method (HS-SPME) followed by gas chromatography with mass spectrometric detection (GC/MS). Parameters affecting the SPME procedure were optimized as follows: the coating was carbon molecular sieve/polydimethylsiloxane (CAR/PDMS) fiber, the temperature was 60°C and the time was 30min. Under these conditions, 87 compounds were identified from 17 composting samples. Most of the volatile components could only be detected before day 22. However, benzenes, alkanes and alkenes increased and eventually stabilized after day 22. Phenol and acid substances, which are important factors for compost quality, were almost undetectable on day 39 in natural compost (NC) samples and on day 13 in maggot-treated compost (MC) samples. Our results indicate that the approach can be effectively used to determine the composting times by analysis of volatile substances in compost samples. An appropriate composting time not only ensures the quality of compost and reduces the loss of composting material but also reduces the generation of hazardous substances. The appropriate composting times for MC and NC were approximately 22days and 40days, respectively, during the summer in Zhejiang. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Characterization of olfactory receptor neurons for pheromone candidate and plant volatile compounds in the clover root weevil, Sitona lepidus.

    Science.gov (United States)

    Park, Kye Chung; McNeill, Mark; Unelius, C Rikard; Oh, Hyun-Woo; Suckling, David M

    2013-12-01

    Antennal olfactory receptor neurons (ORNs) for pheromone and plant volatile compounds were identified and characterized in male and female clover root weevil, Sitona lepidus (Gyllenhal), using the single sensillum recording technique with five pheromone-related compounds, and 40 host and non-host plant volatile compounds. Overall, seven different types of olfactory sensilla containing specialized ORNs were identified in each sex of S. lepidus. Among them, three different types of sensilla in the males and two types in the females housed ORNs specialized for pheromone-related compounds. The ORNs in males were specialized for 4-methyl-3,5-heptanedione or one or more of four stereoisomers of 5-hydroxy-4-methyl-3-heptanone. In contrast, female sensilla did not contain ORNs sensitive to 4-methyl-3,5-heptanedione while they contained ORNs sensitive to and specialized for the stereoisomers of (4S,5S)-5-hydroxy-4-methyl-3-heptanone. In addition to the pheromone-related ORNs, four types of olfactory sensilla contained ORNs responsive to plant volatile compounds in male S. lepidus, and five types in females. Most of the ORNs identified in S. lepidus showed a high degree of specificity to specific volatile compounds although some of the active compounds showed overlapping response spectra in the ORNs across different types of sensilla. The most active plant volatile compounds were the four green leaf volatile compounds, (E)-2-hexenol, (Z)-2-hexenol, (Z)-3-hexenol and (E)-2-hexenal, and isomers of two monoterpenols, (±)-linalool and (±)-α-terpineol, all eliciting strong responses from relatively large numbers of ORNs in male and female S. lepidus. Our study indicates that S. lepidus has a set of highly sensitive and selective ORNs for pheromone and plant volatile compounds. Further work is needed to elucidate the behavioral implications of these findings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Study of the influence of temperature the venting depollution process of soils contaminated with volatile organic compounds

    OpenAIRE

    GABRIELA-ALINA BRUSTUREAN; JEAN CARRÉ; DELIA PERJU; TEODOR TODINCA

    2006-01-01

    Venting is one of the most used in situ remediation methods for unsaturated soils contaiminated with volatile organic compounds (VOC). The development of mathematical models and their validation by means of experimental results allowed the identification of the main parameters which influence the soil depollution process. The influence of temperature on the venting depollution process of soils polluted with volatile organic compounds was studied in this investigation. It was found that the de...

  15. Changes in SPME-extracted volatile compounds from Iberian ham during ripening

    Directory of Open Access Journals (Sweden)

    García, Carmen

    2009-07-01

    Full Text Available A headspace SPME procedure was tested to study the evolution of volatile compounds during the ripening of Iberian hams from pigs reared in a Montanera system (outdoorbased, with acorn and pasture available and a HO-Pienso system (indoor-based, with a high oleic acid concentrate. The effect of the ripening time on volatile compounds was more marked than the effect of feeding system. Most volatile compounds affected by the ripening time were compounds that come from Strecker and Maillard reactions, which increased significantly ( p Un procedimiento de microextración en fase sólida (SPME en espacio de cabeza fue ensayado para estudiar la evolución de los compuestos volátiles durante la curación de Jamones Ibéricos de cerdos criados en régimen de montanera (en libertad, con bellotas y pasto disponible y un sistema OH-Pienso (estabulados, con un pienso alto en ácido oléico. El efecto del tiempo de curación en los compuestos volátiles fue más marcado que el efecto de la alimentación. La mayoría de los compuestos volátiles afectados por el tiempo de curación fueron compuestos que proceden de la reacción de Strecker y Maillard, que se incrementaron significativamente (p p < 0.05. Algunos de ellos (ácido butanoico, 2,6- dimetilpiracina y 1-octen-3-ol fueron más abundantes en jamones de Montanera que en jamones de Pienso. Estas pequeñas diferencias podrían ser importantes porque los compuestos involucrados han sido identificados como aromas del jamón Ibérico.

  16. Reproductive endocrine patterns and volatile urinary compounds of Arctictis binturong: discovering why bearcats smell like popcorn

    Science.gov (United States)

    Greene, Lydia K.; Wallen, Timothy W.; Moresco, Anneke; Goodwin, Thomas E.; Drea, Christine M.

    2016-06-01

    Members of the order Carnivora rely on urinary scent signaling, particularly for communicating about reproductive parameters. Here, we describe reproductive endocrine patterns in relation to urinary olfactory cues in a vulnerable and relatively unknown viverrid—the binturong ( Arctictis binturong). Female binturongs are larger than and dominate males, and both sexes engage in glandular and urinary scent marking. Using a large ( n = 33), captive population, we collected serum samples to measure circulating sex steroids via enzyme immunoassay and urine samples to assay volatile chemicals via gas chromatography-mass spectrometry. Male binturongs had expectedly greater androgen concentrations than did females but, more unusually, had equal estrogen concentrations, which may be linked to male deference. Males also expressed a significantly richer array of volatile chemical compounds than did females. A subset of these volatile chemicals resisted decay at ambient temperatures, potentially indicating their importance as long-lasting semiochemicals. Among these compounds was 2-acetyl-1-pyrroline (2-AP), which is typically produced at high temperatures by the Maillard reaction and is likely to be responsible for the binturong's characteristic popcorn aroma. 2-AP, the only compound expressed by all of the subjects, was found in greater abundance in males than females and was significantly and positively related to circulating androstenedione concentrations in both sexes. This unusual compound may have a more significant role in mammalian semiochemistry than previously appreciated. Based on these novel data, we suggest that hormonal action and potentially complex chemical reactions mediate communication of the binturong's signature scent and convey information about sex and reproductive state.

  17. Assessment of volatile organic compounds in surface water at Canal Creek, Aberdeen Proving Ground, Maryland, November 1999-September 2000

    Science.gov (United States)

    Phelan, Daniel J.; Olsen, Lisa D.; Senus, Michael P.; Spencer, Tracey A.

    2001-01-01

    The purpose of this report is to describe the occurrence and distribution of volatile organic compounds in surface-water samples collected by the U.S. Geological Survey in the Canal Creek area of Aberdeen Proving Ground, Maryland, from November 1999 through September 2000. The report describes the differences between years with below normal and normal precipitation, the effects of seasons, tide stages, and location on volatile organic compound concentrations in surface water, and provides estimates of volatile organic concentration loads to the tidal Gunpowder River. Eighty-four environmental samples from 20 surface-water sites were analyzed. As many as 13 different volatile organic compounds were detected in the samples. Concentrations of volatile organic compounds in surface-water samples ranged from below the reporting limit of 0.5 micrograms per liter to a maximum of 50.2 micrograms per liter for chloroform. Chloroform was detected most frequently, and was found in 55 percent of the environmental samples that were analyzed for volatile organic compounds (46 of 84 samples). Carbon tetrachloride was detected in 56 percent of the surface-water samples in the tidal part of the creek (34 of 61 samples), but was only detected in 3 of 23 samples in the nontidal part of the creek. 1,1,2,2-Tetrachloroethane was detected in 43 percent of the tidal samples (26 of 61 samples), but was detected at only two nontidal sites and only during November 1999. Three samples were collected from the tidal Gunpowder River about 300 feet from the mouth of Canal Creek in May 2000, and none of the samples contained volatile organic compound concentrations above detection levels. Volatile organic compound concentrations in surface water were highest in the reaches of the creek adjacent to the areas with the highest known levels of ground-water contamination. The load of total volatile organic compounds from Canal Creek to the Gunpowder River is approximately 1.85 pounds per day (0

  18. Application of horizontal spiral coil heat exchanger for volatile organic compounds (VOC) emission control.

    Science.gov (United States)

    Deshpande, P M; Dawande, S D

    2013-04-01

    The petroleum products have wide range of volatility and are required to be stored in bulk. The evaporation losses are significant and it is a economic as well as environmental concern, since evaporative losses of petroleum products cause increased VOC in ambient air. Control of these losses poses a major problem for the storage tank designers. Ever rising cost of petroleum products further adds to the gravity of the problem. Condensation is one of the technologies for reducing volatile organic compounds emissions. Condensation is effected by condenser, which is basically a heat exchanger and the heat exchanger configuration plays an important role. The horizontal spiral coil heat exchanger is a promising configuration that finds an application in VOC control. This paper attempts to understand underlying causes of emissions and analyse the option of horizontal spiral coil heat exchanger as vent condenser.

  19. Preliminary evaluation of selected in situ remediation technologies for Volatile Organic Compound contamination at Arid sites

    Energy Technology Data Exchange (ETDEWEB)

    Lenhard, R.J.; Gerber, M.A.; Amonette, J.E.

    1992-10-01

    To support the Volatile Organic Compounds-Arid Site (VOC-Arid) Integrated Demonstration (ID) in its technical, logistical, institutional, and economical testing of emerging environmental management and restoration technologies. Pacific Northwest Laboratory(a) is evaluating several in situ remediation technologies for possible inclusion in the demonstration. The evaluations are made with respect to the initial focus of the VOC-Arid ID: the carbon tetrachloride contamination at the Hanford Site, where it was disposed to the vadose zone along with other volatile and nonvolatile organic wastes. heavy metals, acids. and radionuclides. The purposes of this report are (1) to identify candidate in situ technologies for inclusion in the program, (2) to evaluate the candidate technologies based on their potential applicability to VOC contamination at arid sites and geologic conditions representative of the ID host site (i.e., Hanford Site), and (3) to prioritize those technologies for future US Department of Energy (DOE) support.

  20. In Vitro and In Vivo Studies of Non-Platinum-Based Halogenated Compounds as Potent Antitumor Agents for Natural Targeted Chemotherapy of Cancers.

    Science.gov (United States)

    Lu, Qing-Bin; Zhang, Qin-Rong; Ou, Ning; Wang, Chun-Rong; Warrington, Jenny

    2015-06-01

    Based on a molecular-mechanism-based anticancer drug discovery program enabled by an innovative femtomedicine approach, we have found a previously unknown class of non-platinum-based halogenated molecules (called FMD compounds) as potent antitumor agents for effective treatment of cancers. Here, we present in vitro and in vivo studies of the compounds for targeted chemotherapy of cervical, breast, ovarian, and lung cancers. Our results show that these FMD agents led to DNA damage, cell cycle arrest in the S phase, and apoptosis in cancer cells. We also observed that such a FMD compound caused an increase of reduced glutathione (GSH, an endogenous antioxidant) levels in human normal cells, while it largely depleted GSH in cancer cells. We correspondingly found that these FMD agents exhibited no or little toxicity toward normal cells/tissues, while causing significant cytotoxicity against cancer cells, as well as suppression and delay in tumor growth in mouse xenograft models of cervical, ovarian, breast and lung cancers. These compounds are therefore a previously undiscovered class of potent antitumor agents that can be translated into clinical trials for natural targeted chemotherapy of multiple cancers.

  1. The Use of Amberlite Adsorbents for Green Chromatography Determination of Volatile Organic Compounds in Air

    Directory of Open Access Journals (Sweden)

    Luis Juan-Peiró

    2012-01-01

    Full Text Available Passive samplers have been widely used for volatile organic compounds determination. Following the green chemistry tendency of the direct determination of adsorbed compounds in membrane-based devices through using head space direct chromatography analysis, this work has evaluated the use of Amberlite XAD-2, XAD-4, and XAD-16 adsorbents as a filling material for passive samplers. Direct analysis of the membranes by HS-GC-MS involves a solvent-free method avoiding any sample treatment. For exposed membranes, recoveries ranged from 10% to 203%, depending on the compound and adsorbent used. The limit of the detection values ranged from 1 to 140 ng per sampler. Acceptable precision and sensitivity levels were obtained for the XAD resins assayed.

  2. Volatile organic compounds in the indoor air of normal and sick houses

    Science.gov (United States)

    Kostiainen, Risto

    Over 200 volatile organic compounds (VOCs) were identified by thermal desorption/gas chromatography/mass spectrometry in the indoor air of 26 houses. The most common VOCs were alkylbenzenes, alkanes, terpenes, aliphatic aldehydes, and some chlorinated aliphatic hydrocarbons. Forty eight compounds were selected for quantitative analysis on the basis of their prevalence, toxicity, carcinogenicity and mutagenicity. The selected compounds were quantified in 50 normal houses and 38 sick houses, in which people complained about the odor or they had symptoms, which resembled the Sick Building Syndrome. The concentrations of the VOCs exceeded normal level more often in the sick than in the normal houses. Aromatic hydrocarbons, terpenes, some alkylcyclohexanes, 1,1,1-trichloroethane, and tetrachloroetliene occurred most often with increased concentrations in the sick houses.

  3. Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste

    DEFF Research Database (Denmark)

    Mustafa, Muhammad Farooq; Liu, Yanjun; Duan, Zhenhan

    2017-01-01

    Degradation of mechanically sorted organic fraction (MSOF) of municipal solid waste in composting facilities is among the major contributors of volatile compounds (VCs) generation and emission, causes nuisance problems and health risks on site as well as in the vicinages. The aim of current study...... was to determine the seasonal (summer and winter) variation and human health risk assessment of VCs in the ambient air of different processing units in MSOF at composting plant in China. Average concentration of VCs was 58.50 and 138.03 mg/m3 in summer and winter respectively. Oxygenated compounds were found...... attention should be made to minimize cumulative non-carcinogenic and carcinogenic risk as people are well exposed to mixture of compounds, not to individual....

  4. Compostos voláteis em méis florais Volatile compounds in floral honeys

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Bastos De Maria

    2003-01-01

    Full Text Available A review about origin, composition and importance of volatile compounds in floral honeys is presented. Hydrocarbons, aromatic components, acids, diacids, terpenoids, ketones, aldehydes, esters and alcohols have been found in honey aroma of different botanical origin. Cis-rose oxide has been proposed as an indicator for Tilia cordata honey. Citrus honeys are known to contain methyl anthranilate, a compound which other honeys virtually lack. Linalool, phenylethylalcohol, phenylacetaldehyde, p-anisaldehyde and benzaldehyde are important contributors for the aroma of different unifloral honeys. Both isovaleric acid, gama-decalactone and benzoic acid appears to be important odourants for Anarcadium occidentale and Croton sp. honeys from Brazil. The furfurylmercaptan, benzyl alcohol, delta-octalactone, eugenol, phenylethylalcohol and guaiacol appear to be only relevant compounds for Anarcadium occidentale. The vanillin was considered an important odourant only for Croton sp..

  5. [Environmental monitoring of volatile organic compounds and metallic elements in two analysis laboratories].

    Science.gov (United States)

    Bergonzi, Roberto; De Palma, Giuseppe; Apostoli, Pietro

    2011-01-01

    Environmental monitoring of volatile organic compounds (VOCs) in analytical chemistry laboratories is somewhat tricky because exposure levels are highly variable and the number of toxic compounds, often used in combination, may be very high. This study was designed to evaluate airborne levels of VOCs and metallic elements associated to inhalable dusts in two Italian labs. The airborne levels of VOCs and elements fell well below the occupational exposure limit values recorded in the Italian law (D.lgs. 81/2008, Allegato XXXVIII) and the TLV-TWA from the list of American Conference of Governmental Industrial Hygienists. The determination of measurable levels of toxic and potentially carcinogenic compounds in office rooms may be of interest for personnel not specifically engaged to handle chemicals.

  6. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer–chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS)

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B.; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A.; Schimmelmann, Arndt

    2017-01-01

    Rationale: Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H2) is responsible for non-quantitative H2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer–Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems.

  7. Volatile compounds from leaves of the African spider plant (Gynandropsis gynandra) with bioactivity against spider mite (Tetranychus urticae)

    DEFF Research Database (Denmark)

    Nyalala, Samuel Odeyo; Petersen, Mikael Agerlin; Grout, Brian William Wilson

    2013-01-01

    Previous studies have demonstrated that Gynandropsis gynandra emits acetonitrile as a foliar volatile from intact plants and isolated leaves, and that this compound is an effective spider mite repellent. This study has used gas chromatography–mass spectrometry to investigate volatile compounds...... emitted from homogenised G. gynandra leaves to evaluate their tissue acetonitrile content and to look for other compounds that might be exploited for the management of spider mites. Acetonitrile was absent from the homogenised tissues of five lines of G. gynandra, studied over two seasons. Thirteen...... volatile compounds were emitted by G. gynandra at significantly higher levels than mite-susceptible pot roses, including isothiocyanates, aldehydes, esters, alcohols and terpenes. Six representative compounds were selected to assess bioactivity. Spider mite populations were completely inactive after a 2¿h...

  8. Characterization of volatile compounds of “Drenja”, an alcoholic beverage obtained from the fruits of cornelian cherry

    Directory of Open Access Journals (Sweden)

    VELE TEŠEVIĆ

    2009-02-01

    Full Text Available In this study, volatile compounds were analyzed in five samples of home-made spirit beverage made by the distillation of fermented fruits of cornelian cherry (Cornus mas L.. The major volatile compounds, besides ethanol, identified and quantified were: methanol, acetaldehyde, 1-propanol, ethyl acetate, 2-methyl-1-propanol, 1-butanol, amyl alcohols, 1-hexanol and 2-phenylethanol. The minor volatiles were submitted to liquid–liquid extraction with dichloromethane and analyzed by gas chromatography and gas chromatography/ /mass spectrometry (GC/MS. A total of 84 compounds were identified. The most abundant compounds were straight-chain free fatty acids, ethyl esters of C6–C18 acids, limonene, 2-phenylethanol and 4-ethylphenol. Most of the compounds found in the “Drenja” spirits investigated in this study are similar to those present in other alcoholic beverages.

  9. Native Fluorescence Detection Methods and Detectors for Naphthalene and/or Other Volatile Organic Compound Vapors

    Science.gov (United States)

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor)

    2014-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds have been identified as serious health hazards. This is especially true for personnel working with JP8 jet fuel and other fuels containing naphthalene as well as other hazardous volatile organic compounds (VOCs). Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to naphthalene or other hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined. The badges employ a new native fluorescence based detection method to identify and differentiate VOCs. The particular focus of some embodiments are the detection and identification of naphthalene while other embodiments are directed to detection and identification of other VOCs like aromatic hydrocarbons such as benzene, toluene, and xylene.

  10. Effects of CO2 pretreatment on the volatile compounds of dried Chinese jujube (Zizyphus jujuba Miller

    Directory of Open Access Journals (Sweden)

    Kai CHEN

    Full Text Available Abstract The aim of this study was to investigate whether anaerobic metabolites could induce volatile compounds and improve aroma of dried jujube (Ziziphus jujuba Miller. Jujube fruits were incubated in a polyvinyl chloride bag containing 5% CO2 and 95% N2 for up to 168 h at 25 °C and 3 samples were randomly removed every 6 h and oven dried to a moisture content of ≅ 20%. The volatile compounds of control and 5% CO2-pretreated Chinese jujube fruits were extracted by simultaneous distillation extraction and identified by gas chromatography-mass spectrometry(GC-MS. The acetaldehyde and ethanol contents were determined by gas chromatography (GC. The results indicated that a large accumulation of acetaldehyde and ethanol caused changes in aroma composition of dried jujube products and 5% CO2 pretreatment led to an increase in the levels of some compounds, particularly esters, acetaldehydes, and ethanol, whereas the amount of acids were decreased significantly. Principal component analysis showed that integrative scores of 5% CO2 pretreatment at 120 h were the highest, and aroma quality was better than that of the control. Relatively low concentrations of anaerobic respiration metabolites are good for jujube fruit aroma composition.

  11. Levels and source apportionment of volatile organic compounds in southwestern area of Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Rodolfo Sosa, E. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico); Humberto Bravo, A. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico)], E-mail: hbravo@servidor.unam.mx; Violeta Mugica, A. [Universidad Autonoma Metropolitana, Azcapotzalco, D.F. (Mexico); Pablo Sanchez, A. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico); Emma Bueno, L. [Centro Nacional de Investigacion y Capacitacion Ambiental, Instituto Nacional de Ecologia (Mexico); Krupa, Sagar [Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108 (United States)

    2009-03-15

    Thirteen volatile organic compounds (VOCs) were quantified at three sites in southwestern Mexico City from July 2000 to February 2001. High concentrations of different VOCs were found at a Gasoline refueling station (GS), a Condominium area (CA), and at University Center for Atmospheric Sciences (CAS). The most abundant VOCs at CA and CAS were propane, n-butane, toluene, acetylene and pentane. In comparison, at GS the most abundant were toluene, pentane, propane, n-butane, and acetylene. Benzene, a known carcinogenic compound had average levels of 28, 35 and 250 ppbC at CAS, CA, and GS respectively. The main contributing sources of the measured VOCs at CA and CAS were the handling and management of LP (Liquid Propane) gas, vehicle exhaust, asphalt works, and use of solvents. At GS almost all of the VOCs came from vehicle exhaust and fuel evaporation, although components of LP gas were also present. Based on the overall results possible abatement strategies are discussed. - Volatile organic compounds were quantified in order to perform their source apportionment in southwestern area of Mexico City.

  12. Cheese powder as an ingredient in emulsion sausages: Effect on sensory properties and volatile compounds.

    Science.gov (United States)

    Xiang, Chen; Ruiz-Carrascal, Jorge; Petersen, Mikael A; Karlsson, Anders H

    2017-08-01

    Different types of cheese powder were added to meat emulsion sausages in order to address its influence on chemical composition, volatile compounds profile and sensory properties, and its potential to reduce salt content through boosting saltiness. Addition of cheese powder to emulsion sausages modified their profile of volatile compounds. Blue cheese increased some ketones, alcohols, and esters, while brown cheese brought typical Maillard reaction compounds. Overall, addition of cheese powders to sausages enhanced the intensity of flavour traits. A mixture of hard and blue cheese powder showed the highest effect on boosting saltiness, while brown cheese powder showed the strongest umami and meat flavour boosting effect, and sausages with added blue cheese powder showed a more intense aftertaste. Hardness significantly increased due to the addition of blue cheese powder. Addition of cheese powder to emulsion sausages might be an interesting tool to boost flavour and reduce salt content in cooked sausages with no negative effect on saltiness or overall flavour. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. (Semi)volatile organic compounds and microbiological entities in snow during OASIS Barrow 2009

    Science.gov (United States)

    Ariya, P.; Kos, G.

    2009-12-01

    Gregor Kos (1), Nafissa Adechina (2), Dwayne Lutchmann (2) , Roya Mortazavi, and Parisa Ariya* (1), (2) (1) McGill University, Department of Atmospheric and Oceanic Sciences, 805 Sherbrooke Street West, Montreal, Quebec, H3A 2K6, Canada (2) McGill University, Department of Chemistry, 801 Sherbrooke Street West, Montreal, Quebec, H3A 2K6, Canada an active medium for the deposition of (semi-)volatile (bio)organic compounds. We collected surface snow samples during the OASIS Barrow campaign in March 2009 for analysis of semi-volatile organic compounds using solid phase microextraction and gas chromatography with mass spectrometric detection (SPME-GC/MS). Additioal gab samples were taken for analysis of non-methane hydrocarbons in air. More over, we analyzed for microbial species in air and snow. Identifed organic compounds covered a wide range of functionalities andmolecular weigts, including oxygenated reactive speces such as aldehydes (e.g., hexanal to decanal), alcohols (e.g., hexanol, octanol) and aromatic species (e.g., methyl- and ethylbenzenes). Quantification data for selected aromatic species are presented with concentrations in the upper ng/L range. We will present our preliminary data on microbiological species, and will discuss the potential mplications of the results for organic snow chemistry.

  14. Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity.

    Science.gov (United States)

    Chung, Joon-hui; Song, Geun Cheol; Ryu, Choong-Min

    2016-04-01

    Beneficial bacteria produce diverse chemical compounds that affect the behavior of other organisms including plants. Bacterial volatile compounds (BVCs) contribute to triggering plant immunity and promoting plant growth. Previous studies investigated changes in plant physiology caused by in vitro application of the identified volatile compounds or the BVC-emitting bacteria. This review collates new information on BVC-mediated plant-bacteria airborne interactions, addresses unresolved questions about the biological relevance of BVCs, and summarizes data on recently identified BVCs that improve plant growth or protection. Recent explorations of bacterial metabolic engineering to alter BVC production using heterologous or endogenous genes are introduced. Molecular genetic approaches can expand the BVC repertoire of beneficial bacteria to target additional beneficial effects, or simply boost the production level of naturally occurring BVCs. The effects of direct BVC application in soil are reviewed and evaluated for potential large-scale field and agricultural applications. Our review of recent BVC data indicates that BVCs have great potential to serve as effective biostimulants and bioprotectants even under open-field conditions.

  15. Distribution of Total Volatile Organic Compounds at taxi drivers in Tehran

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Javad Golhosseini

    2015-06-01

    Full Text Available Air pollution is currently the most serious environmental health threat worldwide. Volatile Organic Compounds (VOC are considered as the main effective factors in causing air pollution. Vehicles are among the major sources which emit these compounds, so it seems that automobiles’ microenvironment is one of the places where people are exposed to high concentration of VOC. Evaluating the exposure amount of Total Volatile Organic Compounds (TVOC can indeed be used as an indicator to estimate the amount of exposure to every individual VOC. This study was conducted on the concentration of TVOC inside Tehran taxies for a period of one year. For this purpose, a real time instrument equipped with photo-ionization detector (PID was used. Consequently, the highest and the lowest measured TVOC in taxies equaled 3.33 ppm and 0.72 ppm, respectively. In addition, the arithmetic mean of TVOC concentration was 1.77±0.53 ppm inside the examined taxies. In this study, the parameters like measurement time, climate and vehicle conditions were found to have significant effect on the amount of exposure to TVOC.

  16. Iron Mineral Catalyzed C-H Activation As a Potential Pathway for Halogenation Processes

    Science.gov (United States)

    Tubbesing, C.; Schoeler, H. F.; Benzing, K.; Krause, T.; Lippe, S.; Rudloff, M.

    2014-12-01

    Due to increasing drinking water demand of mankind and an expected climate change the impact of salt lakes and salt deserts will increase within the next decades. Furthermore, a rising sea level influences coastal areas like salt marshes and abets processes which will lead to elevated organohalogen formation. An additional increase of the global warming potential, of particle formation and stratospheric ozone depletion is expected. Understanding these multifaceted processes is essential for mankind to be prepared for these alterations of the atmosphere. For example, Keppler et al. (2000) described the production of volatile halogenated organic compounds via oxidation of organic matter driven by ferric iron. However, the formation of long-chained alkyl halides in salt lakes is yet undisclosed. Despite the relative "inertness" of alkanes a direct halogenation of these compounds might be envisaged. In 2005 Vaillancourt et al. discovered a nonheme iron enzyme which is able to halogenate organic compounds via generating the high valent ferryl cation as reaction center. Based on various publications about C-H activation (Bergman, 2007) we postulate a halogenation process in which an iron containing minerals catalyse the C-H bond cleavage of organic compounds in soils. The generated organic radicals are highly reactive towards halides connected to the iron complex. We suggest that next to diagenetically altered iron containing enzymes, minerals such as oxides, hydroxides and sulfides are involved in abiotic halogenation processes. We applied the amino acid methionine as organic model compound and soluble iron species as reactants. All samples were incubated in aqueous phases containing various NaCl concentrations. As a result various halogenated ethanes and ethenes were identified as reaction products. References Bergman, R. G. (2007) Nature, 446(7134) 391-393 Keppler, F., et al. (2000) Nature, 403(6767) 298-301 Vaillancourt, F. H., et al. (2005) Nature, 436(7054) 1191-1194

  17. Volatile Organic Compounds from Native Potato-associated Pseudomonas as Potential Anti-oomycete Agents

    Science.gov (United States)

    De Vrieze, Mout; Pandey, Piyush; Bucheli, Thomas D.; Varadarajan, Adithi R.; Ahrens, Christian H.; Weisskopf, Laure; Bailly, Aurélien

    2015-01-01

    The plant kingdom represents a prominent biodiversity island for microbes that associate with the below- or aboveground organs of vegetal species. Both the root and the leaf represent interfaces where dynamic biological interactions influence plant life. Beside well-studied communication strategies based on soluble compounds and protein effectors, bacteria were recently shown to interact both with host plants and other microbial species through the emissions of volatile organic compounds (VOCs). Focusing on the potato late blight-causing agent Phytophthora infestans, this work addresses the potential role of the bacterial volatilome in suppressing plant diseases. In a previous study, we isolated and identified a large collection of strains with anti-Phytophthora potential from both the phyllosphere and the rhizosphere of potato. Here we report the characterization and quantification of their emissions of biogenic volatiles, comparing 16 Pseudomonas strains differing in (i) origin of isolation (phyllosphere vs. rhizosphere), (ii) in vitro inhibition of P. infestans growth and sporulation behavior, and (iii) protective effects against late blight on potato leaf disks. We systematically tested the pharmacological inhibitory activity of core and strain-specific single compounds against P. infestans mycelial growth and sporangial behavior in order to identify key effective candidate molecules present in the complex natural VOCs blends. We envisage the plant bacterial microbiome as a reservoir for functional VOCs and establish the basis for finding the primary enzymatic toolset that enables the production of active components of the volatile bouquet in plant-associated bacteria. Comprehension of these functional interspecies interactions will open perspectives for the sustainable control of plant diseases in forthcoming agriculture. PMID:26635763

  18. Impact of the addition of cocoa butter equivalent on the volatile compounds profile of dark chocolate.

    Science.gov (United States)

    de Silva Souza, Cristiano; Block, Jane Mara

    2018-02-01

    The effect of the partial replacement of cocoa butter (CB) by cocoa butter equivalent (CBE) in the release of volatile compounds in dark chocolate was studied. The fatty acid profile, triacylglyceride composition, solid fat content (SFC) and melting point were determined in CB and CBE. Chocolate with CB (F1) and with different content of CBE (5 and 10%-F2 and F3, respectively) were prepared. Plastic viscosity and Casson flow limit, particle size distribution and release of volatile compounds using a solid phase microextraction with gas chromatography (SMPE-GC) were determined in the chocolate samples. The melting point was similar for the studied samples but SFC indicated different melting behavior. CBE showed a higher saturated fatty acid content when compared to CB. The samples showed similar SOS triglyceride content (21 and 23.7% for CB and CBE, respectively). Higher levels of POS and lower POP were observed for CB when compared to CBE (44.8 and 19.7 and 19 and 41.1%, respectively). The flow limit and plastic viscosity were similar for the studied chocolates samples, as well as the particle size distribution. Among the 27 volatile compounds identified in the samples studied, 12 were detected in significantly higher concentrations in sample F1 (phenylacetaldehyde, methylpyrazine, 2,6-dimethylpyrazine, 2-ethyl-5-methylpyrazine, 2-ethyl-3,5-dimethylpyrazine, tetramethylpyrazine, trimethylpyrazine, 3-ethyl-2,5-dimethylpyrazine, phenethyl alcohol, 2-acetylpyrrole, acetophenone and isovaleric acid). The highest changes were observed in the pyrazines group, which presented a decrease of more than half in the formulations where part of the CB was replaced by the CBE.

  19. Estimation of volatile compounds emission rates from the working face of a large anaerobic landfill in China using a wind tunnel system

    Science.gov (United States)

    Liu, Yanjun; Lu, Wenjing; Li, Dong; Guo, Hanwen; Caicedo, Luis; Wang, Chi; Xu, Sai; Wang, Hongtao

    2015-06-01

    Municipal solid waste landfills are one of the major sources of odor complaints. The determination of volatile compounds (VCs) emissions and their rates is a necessary prerequisite to calculate and study VCs dispersion and control. In this study a wind tunnel system has been introduced to investigate the VCs emission rates from the working face of a large anaerobic landfill in China. The VCs in gas samples were characterized by gas-chromatograph-mass-spectrometer. The emission rates of VCs increased linearly with sweeping velocity (0.1 m·s-1 to 0.5 m·s-1), and 0.28 m·s-1 was selected as the recommended practical operation sweeping velocity. The VCs emission rates on the working face at the landfill site were investigated during the course of a day. 31 chemical species divided into six chemical groups were quantified with the following emission rates: oxygenated compounds: 205.73-750.00 μg·m-2·s-1, hydrocarbons: 61.82-220.37 μg·m-2·s-1, aromatics: 15.55-40.11 μg·m-2·s-1, halogenated compounds: 11.71-31.57 μg·m-2·s-1, terpenes: 2.71-18.70 μg·m-2·s-1, and sulfur compounds: 1.29-10.84 μg·m-2·s-1. The highest average emission rates of VCs were found from midnight to dawn (1:00-7:00). These results provide key input parameters to users of VCs dispersion models to calculate buffer distances.

  20. Kinetics of aerobic oxidation of volatile sulfur compounds in wastewater and biofilm from sewers

    DEFF Research Database (Denmark)

    Rudelle, Elise Alice; Vollertsen, Jes; Hvitved-Jacobsen, Thorkild

    2013-01-01

    Laboratory experiments were conducted to investigate the kinetics of aerobic chemical and biological oxidation of selected odorous volatile sulfur compounds (VSCs) by wastewater and biofilm from sewers. The VSCs included methyl mercaptan (MeSH), ethyl mercaptan (EtSH), dimethyl sulfide (DMS......-spot downstream of a force main and the other was a gravity sewer transporting young aerobic wastewater. The kinetics of VSC oxidation for both wastewater and suspended biofilm samples followed a first-order rate equation. The average values of the reaction rate constants demonstrated the following order...

  1. Off-season biogenic volatile organic compound emissions from heath mesocosms

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Gierth, Diana; Bilde, Merete

    2013-01-01

    Biogenic volatile organic compounds (BVOCs) affect both atmospheric processes and ecological interactions. Our primary aim was to differentiate between BVOC emissions from above- and belowground plant parts and heath soil outside the growing season. The second aim was to assess emissions from...... herbivory, mimicked by cutting the plants. Mesocosms from a temperate Deschampsia flexuosa-dominated heath ecosystem and a subarctic mixed heath ecosystem were either left intact, the aboveground vegetation was cut, or all plant parts (including roots) were removed. For 3-5 weeks, BVOC emissions were...

  2. Micro- and Nanostructured Metal Oxide Chemical Sensors for Volatile Organic Compounds

    Science.gov (United States)

    Alim, M. A.; Penn, B. G.; Currie, J. R., Jr.; Batra, A. K.; Aggarwal, M. D.

    2008-01-01

    Aeronautic and space applications warrant the development of chemical sensors which operate in a variety of environments. This technical memorandum incorporates various kinds of chemical sensors and ways to improve their performance. The results of exploratory investigation of the binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. A short review of the present status of the new types of nanostructured sensors such as nanobelts, nanorods, nanotube, etc. based on metal oxides is presented.

  3. Indoor air quality of public places in Mumbai, India in terms of volatile organic compounds.

    Science.gov (United States)

    Srivastava, Anjali; Devotta, Sukumar

    2007-10-01

    Indoor air quality at nine locations viz. food courts, restaurant, bar, conference room, office and theater, which can be classified as public places have been monitored for Volatile Organic Compounds (VOCs) content. Forty VOCs have been identified and one fourth of these are classified as Hazardous Air Pollutants. Levels of most VOCs are observed to be below the guideline values for public places and offices, as adopted by Hong Kong. Consumer goods are found to be predominant source of chlorinated VOCs in indoor air. Levels of benzene and carbon tetrachlorides were observed to be above the guideline values at all the locations. Effect of ozonisation on Total VOC concentrations have also been studied.

  4. Fecal volatile organic compounds: a novel, cheaper method of diagnosing inflammatory bowel disease?

    Science.gov (United States)

    Probert, Chris S J; Reade, Sophie; Ahmed, Iftikhar

    2014-09-01

    The investigation of a novel, cheaper method of diagnosing inflammatory bowel disease (IBD) is an area of active research. Recently, investigations into the metabolomic profile of IBD patients and animal models of colitis compared to healthy controls has begun to receive considerable attention and correlations between the fecal volatile organic compound (VOC) metabolome and IBD is merging. Patients and clinicians have often reported a change in odor of feces during relapse of IBD. Therefore, this article will focus specifically on the fecal VOC metabolome and its potential role in identifying a novel diagnostic method for IBD.

  5. Extended Research on Detection of Deception Using Volatile Organic Compound (VOC) Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Center for Human Reliability Studies

    2006-06-01

    A system that captures and analyzes volatile organic compound (VOC) emissions from skin surfaces may offer a viable alternative method to the polygraph instrument currently in use for detecting deception in U.S. government settings. Like the involuntary autonomic central nervous system response data gathered during polygraph testing, VOC emissions from the skin may provide data that can be used to detect stress caused by deception. Detecting VOCs, then, may present a noninvasive, non-intrusive method for observing, recording, and quantifying evidence of stress or emotional change.

  6. Fiber-optic multi-sensor array for detection of low concentration volatile organic compounds.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Kang, Byoung-Ho; Lee, Sang-Won; Kim, Su-Hwan; Yeom, Se-Hyuk; Lee, Seung-Ha; Kang, Shin-Won

    2013-08-26

    In this paper, we proposed a new type high sensitive volatile organic compounds (VOCs) gas sensor array that is based on the pulse width modulation technique. Four different types of solvatochromic dyes and two different types of polymers, were used to make the five different types of sensing membranes. These were deposited on the five side-polished optical fibers by a spin coater to make the five different sensing elements of the array. In order to ascertain the effectiveness of the sensors, five VOC gases were tested. Finally, principal component analysis (PCA) has been used to discriminates different types of VOCs.

  7. Toxic volatile organic compounds in environmental tobacco smoke: Emission factors for modeling exposures of California populations

    Energy Technology Data Exchange (ETDEWEB)

    Daisey, J.M.; Mahanama, K.R.R.; Hodgson, A.T. [Lawrence Berkeley Lab., CA (United States)

    1994-10-01

    The primary objective of this study was to measure emission factors for selected toxic air contaminants in environmental tobacco smoke (ETS) using a room-sized environmental chamber. The emissions of 23 volatile organic compounds (VOCs), including, 1,3-butadiene, three aldehydes and two vapor-phase N-nitrosamines were determined for six commercial brands of cigarettes and reference cigarette 1R4F. The commercial brands were selected to represent 62.5% of the cigarettes smoked in California. For each brand, three cigarettes were machine smoked in the chamber. The experiments were conducted over four hours to investigate the effects of aging. Emission factors of the target compounds were also determined for sidestream smoke (SS). For almost all target compounds, the ETS emission factors were significantly higher than the corresponding SS values probably due to less favorable combustion conditions and wall losses in the SS apparatus. Where valid comparisons could be made, the ETS emission factors were generally in good agreement with the literature. Therefore, the ETS emission factors, rather than the SS values, are recommended for use in models to estimate population exposures from this source. The variabilities in the emission factors ({mu}g/cigarette) of the selected toxic air contaminants among brands, expressed as coefficients of variation, were 16 to 29%. Therefore, emissions among brands were Generally similar. Differences among brands were related to the smoked lengths of the cigarettes and the masses of consumed tobacco. Mentholation and whether a cigarette was classified as light or regular did not significantly affect emissions. Aging was determined not to be a significant factor for the target compounds. There were, however, deposition losses of the less volatile compounds to chamber surfaces.

  8. Exhaled volatile organic compounds for phenotyping chronic obstructive pulmonary disease: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Basanta Maria

    2012-08-01

    Full Text Available Abstract Background Non-invasive phenotyping of chronic respiratory diseases would be highly beneficial in the personalised medicine of the future. Volatile organic compounds can be measured in the exhaled breath and may be produced or altered by disease processes. We investigated whether distinct patterns of these compounds were present in chronic obstructive pulmonary disease (COPD and clinically relevant disease phenotypes. Methods Breath samples from 39 COPD subjects and 32 healthy controls were collected and analysed using gas chromatography time-of-flight mass spectrometry. Subjects with COPD also underwent sputum induction. Discriminatory compounds were identified by univariate logistic regression followed by multivariate analysis: 1. principal component analysis; 2. multivariate logistic regression; 3. receiver operating characteristic (ROC analysis. Results Comparing COPD versus healthy controls, principal component analysis clustered the 20 best-discriminating compounds into four components explaining 71% of the variance. Multivariate logistic regression constructed an optimised model using two components with an accuracy of 69%. The model had 85% sensitivity, 50% specificity and ROC area under the curve of 0.74. Analysis of COPD subgroups showed the method could classify COPD subjects with far greater accuracy. Models were constructed which classified subjects with ≥2% sputum eosinophilia with ROC area under the curve of 0.94 and those having frequent exacerbations 0.95. Potential biomarkers correlated to clinical variables were identified in each subgroup. Conclusion The exhaled breath volatile organic compound profile discriminated between COPD and healthy controls and identified clinically relevant COPD subgroups. If these findings are validated in prospective cohorts, they may have diagnostic and management value in this disease.

  9. Measurements of semi-volatile organic compounds in settled dust: influence of storage temperature and duration.

    Science.gov (United States)

    Blanchard, O; Mercier, F; Ramalho, O; Mandin, C; Le Bot, B; Glorennec, P

    2014-04-01

    Indoor dust samples cannot always be analyzed immediately after collection. However, little information is currently available on how storage conditions may affect measurements. This study was designed to determine how sample storage conditions may affect the concentration of semi-volatile organic compounds (SVOCs) in the dust. A composite dust was prepared using a Standard Reference Material (SRM 2585) with real indoor dust samples. The composite dust was stored in various types of packaging, at different temperatures (-18°C, 5°C, 20°C, and 35°C), and in different light conditions. The concentration of SVOCs was measured after various storage durations. No effect on SVOC concentrations was observed for the composite dust stored in an amber glass vial at -18°C for 36 months. At 5°C, 20°C, and 35°C, losses occurred for the more volatile compounds. The experimental storage conditions clearly showed that temperature and duration affected the concentrations of SVOCs in the composite dust. The type of packaging material (polyethylene zip bag or polyethylene garbage bag) did not seem to have a systematic effect on the preservation of SVOCs in the composite dust. Maximum storage duration times are proposed for each compound at various temperatures. For most compounds, samples can be stored for 2 months at 20°C. For samples that cannot be analyzed immediately, we recommend to store them in the dark at -18°C to ensure a good recovery of all tested compounds. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Volatility

    Directory of Open Access Journals (Sweden)

    María Sánchez

    2016-11-01

    Full Text Available The action consists of moving with small kicks a tin of cola refresh -without Brand-from a point of the city up to other one. During the path I avoid bollards, the slope differences between sidewalks, pedestrians, parked motorcycles, etc. Volatility wants to say exactly that the money is getting lost. That the money is losing by gentlemen and by ladies who are neither financial sharks, nor big businessmen… or similarly, but ingenuous people, as you or as me, who walk down the street.

  11. Air monitoring for volatile organic compounds at the Pilot Plant Complex, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J.F.; O`Neill, H.J.; Raphaelian, L.A.; Tomczyk, N.A.; Sytsma, L.F.; Cohut, V.J.; Cobo, H.A.; O`Reilly, D.P.; Zimmerman, R.E.

    1995-03-01

    The US Army`s Aberdeen Proving Ground has been a test site for a variety of munitions, including chemical warfare agents (CWA). The Pilot Plant Complex (PPC) at Aberdeen was the site of development, manufacture, storage, and disposal of CWA. Deterioration of the buildings and violations of environmental laws led to closure of the complex in 1986. Since that time, all equipment, piping, and conduit in the buildings have been removed. The buildings have been declared free of surface CWA contamination as a result of air sampling using the military system. However, no air sampling has been done to determine if other hazardous volatile organic compounds are present in the PPC, although a wide range of toxic and/or hazardous materials other than CWA was used in the PPC. The assumption has been that the air in the PPC is not hazardous. The purpose of this air-monitoring study was to screen the indoor air in the PPC to confirm the assumption that the air does not contain volatile organic contaminants at levels that would endanger persons in the buildings. A secondary purpose was to identify any potential sources of volatile organic contaminants that need to be monitored in subsequent sampling efforts.

  12. Pulsed electric field and combination processing of mango nectar: effect on volatile compounds and HMF formation

    Directory of Open Access Journals (Sweden)

    A. S. Bawa

    2015-01-01

    Full Text Available Mango nectar is a commercially familiar and preferred product. The traditional processing of mango nectar has been by thermal processing which resulted in the alteration of the flavour of the product due to the effect of high temperature. The thermal processing of the nectar also resulted in the production of byproducts of non-enzymatic browning such as 5- hydroxy methyl furfural (HMF. These process induced effects, affect both the nutritive and sensory attributes of the fruit product, making it less preferable. With the growing interest and awareness about the benefits of alternative non-thermal technologies, such as pulsed electric field (PEF, the present work was proposed to use PEF to minimize the loss of volatiles and formation of HMF. The study involves thermal (96 ºC for 300 s and 600 s, PEF (24 µs, 120 Hz and 38 kV/cm and combination processing (PEF + Thermal (96 ºC for 90 s of mango nectar. The effect of these treatments on the volatile composition of mango nectar has been analysed using GC-MS technique. The reduction in the volatile compounds was significant (p 0.05 different from unprocessed sample, proving the fresh-like character of the product.

  13. Growth and volatile compound production by Brettanomyces/Dekkera bruxellensis in red wine.

    Science.gov (United States)

    Romano, A; Perello, M C; de Revel, G; Lonvaud-Funel, A

    2008-06-01

    Brettanomyces/Dekkera bruxellensis is a particularly troublesome wine spoilage yeast. This work was aimed at characterizing its behaviour in terms of growth and volatile compound production in red wine. Sterile red wines were inoculated with 5 x 10(3) viable cells ml(-1) of three B. bruxellensis strains and growth and volatile phenol production were followed for 1 month by means of plate counts and gas chromatography-mass spectrometry (GC-MS) respectively. Maximum population levels generally attained 10(6)-10(7) colony forming units (CFU) ml(-1) and volatile phenol concentrations ranged from 500 to 4000 microg l(-1). Brettanomyces bruxellensis multiplication was also accompanied by the production of organic acids (from C(2) to C(10)), short chain acid ethyl-esters and the 'mousy off-flavour' component 2-acetyl-tetrahydropyridine. Different kinds of 'Brett character' characterized by distinct metabolic and sensory profiles can arise in wine depending on the contaminating strain, wine pH and sugar content and the winemaking stage at which contamination occurs. We identified new chemical markers that indicate wine defects caused by B. bruxellensis. Further insight was provided into the role of some environmental conditions in promoting wine spoilage.

  14. Volatile organic compound emissions from arctic vegetation highly responsive to experimental warming

    Science.gov (United States)

    Rinnan, Riikka; Kramshøj, Magnus; Lindwall, Frida; Schollert, Michelle; Svendsen, Sarah H.; Valolahti, Hanna

    2017-04-01

    Arctic areas are experiencing amplified climate warming that proceeds twice as fast as the global temperature increase. The increasing temperature is already causing evident alterations, e.g. changes in the vegetation cover as well as thawing of permafrost. Climate warming and the concomitant biotic and abiotic changes are likely to have strong direct and indirect effects on emission of volatile organic compounds (VOCs) from arctic vegetation. We used long-term field manipulation experiments in the Subarctic, Low Arctic and High Arctic to assess effects of climate change on VOC emissions from vegetation communities. In these experiments, we applied passive warming with open-top chambers alone and in combination with other experimental treatments in well-replicated experimental designs. Volatile emissions were sampled in situ by drawing air from plant enclosures and custom-built chambers into adsorbent cartridges, which were analyzed by thermal desorption and gas chromatography-mass spectrometry in laboratory. Emission increases by a factor of 2-5 were observed under experimental warming by only a few degrees, and the strong response seems universal for dry, mesic and wet ecosystems. In some cases, these vegetation community level responses were partly due to warming-induced increases in the VOC-emitting plant biomass, changes in species composition and the following increase in the amount of leaf litter (Valolahti et al. 2015). In other cases, the responses appeared before any vegetation changes took place (Lindwall et al. 2016) or even despite a decrease in plant biomass (Kramshøj et al. 2016). VOC emissions from arctic ecosystems seem more responsive to experimental warming than other ecosystem processes. We can thus expect large increases in future VOC emissions from this area due to the direct effects of temperature increase, and due to increasing plant biomass and a longer growing season. References Kramshøj M., Vedel-Petersen I., Schollert M., Rinnan

  15. Minor Volatile Compounds Profiles of ‘Aligoté’ Wines Fermented with Different Yeast Strains

    Directory of Open Access Journals (Sweden)

    Florin VARARU

    2015-03-01

    Full Text Available The aroma of wine can be classified accordingly to its origin, in varietal aroma, pre-fermentative aroma, fermentative aroma and post-fermentative aroma. Although a number of flavor components are found in the original grape, the dominant and major compounds contributing to white wines are formed during alcoholic fermentation, in concordance with the yeast strain used. In order to highlight the influence of the yeast strain to the aroma composition of wines, wine samples from ‘Aligoté’ grape variety made with 8 different yeast strains were subjected to stir bar sorptive extraction-gas chromatography-mass spectrometry (SBSE-GC-MS analyses. Also, a sensorial analysis of the studied wines was performed by a tasting panel consisting of 15 tasters. 38 minor volatile compounds were quantified by SBSE-GC-MS technique. Different concentration of the same compound and different aroma compounds were identified and quantified in wines obtained with different yeast strains. A wine finger printing was obtained by multivariate data analyses of aroma compounds grouped by chemical families. The analytical and sensorial analysis of the wine samples confirms that there are differences in aroma composition of the wines made with different yeast strains.

  16. Compositions of volatile organic compounds emitted from melted virgin and waste plastic pellets.

    Science.gov (United States)

    Yamashita, Kyoko; Yamamoto, Naomichi; Mizukoshi, Atsushi; Noguchi, Miyuki; Ni, Yueyong; Yanagisawa, Yukio

    2009-03-01

    To characterize potential air pollution issues related to recycling facilities of waste plastics, volatile organic compounds (VOCs) emitted from melted virgin and waste plastics pellets were analyzed. In this study, laboratory experiments were performed to melt virgin and waste plastic pellets under various temperatures (150, 200, and 250 degrees C) and atmospheres (air and nitrogen [N2]). In the study presented here, low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS) and the recycled waste plastic pellets were used. The VOCs generated from each plastic pellets were collected by Tenax/Carboxen adsorbent tubes and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). The result showed the higher temperatures generated larger amounts of total VOCs (TVOCs). The VOCs emitted from the virgin plastic pellets likely originated from polymer degradation. Smaller TVOC emissions were observed in N2 atmosphere than in air atmosphere. In particular, larger amounts of the oxygenated compounds, which are generally hazardous and malodorous, were detected in air than in N2. In addition to the compounds originating from polymer degradation, the compounds originating from the plastic additives were also detected from LDPE and PS. Furthermore, various species of VOCs likely originating from contaminant inseparate polyvinyl chloride (PVC), food residues, cleaning agents, degreasers, and so on were detected from the waste plastic. Thus, melting waste plastics, as is conducted in recycling facilities, might generate larger amounts of potentially toxic compounds than producing virgin plastics.

  17. Medium- and low-volatile organic compounds generated by laser tissue interaction

    Science.gov (United States)

    Spleiss, Martin; Weber, Lothar W.

    1996-12-01

    Different tissue samples have been irradiated with surgical XeCl- and CO2-lasers. The generated laser plume was sampled and analyzed concerning medium and low volatile organic compounds. Differences in the composition of the pyrolysis products in dependance of tissues and lasers are presented. Quantification of aromatic hydrocarbons was carried out. It is obvious that the ratios between the single aromatic hydrocarbons gave hints at the temperatures of the laser tissue interaction process. Some aromatic hydrocarbons were typical high temperature products like phenylacetylene, whereas toluene could be found at lower temperatures with comparable high concentration. Two special classes of compounds, presumed by Curie point pyrolysis of proteins and not yet verified by synthesis, were identified in the aerosol of the CO2-laser. Probably five different amino acids might be the precursors of these compounds whereas by Curie point pyrolysis only three amino acids were reported as precursors. The particular debris which was sampled separately on glass fiber filters was extracted with different solvents. Several compounds absorbed at the particles could be identified and will be discussed. In the polar acetone extract some of main compounds remained unknown. A special clean-up procedure for polycyclic aromatic hydrocarbons (PAH) was carried out. Qualitative and quantitative results of the PAH analysis are presented. The results are compared with the results of other working groups.

  18. Nanogram-scale preparation and NMR analysis for mass-limited small volatile compounds.

    Directory of Open Access Journals (Sweden)

    Satoshi Nojima

    2011-03-01

    Full Text Available Semiochemicals are often produced in infinitesimally small quantities, so their isolation requires large amounts of starting material, not only requiring significant effort in sample preparation, but also resulting in a complex mixture of compounds from which the bioactive compound needs to be purified and identified. Often, compounds cannot be unambiguously identified by their mass spectra alone, and NMR analysis is required for absolute chemical identification, further exacerbating the situation because NMR is relatively insensitive and requires large amounts of pure analyte, generally more than several micrograms. We developed an integrated approach for purification and NMR analysis of <1 µg of material. Collections from high performance preparative gas-chromatography are directly eluted with minimal NMR solvent into capillary NMR tubes. With this technique, (1H-NMR spectra were obtained on 50 ng of geranyl acetate, which served as a model compound, and reasonable H-H COSY NMR spectra were obtained from 250 ng of geranyl acetate. This simple off-line integration of preparative GC and NMR will facilitate the purification and chemical identification of novel volatile compounds, such as insect pheromones and other semiochemicals, which occur in minute (sub-nanogram, and often limited, quantities.

  19. Volatile compounds analysis and antioxidant, antimicrobial and cytotoxic activities of Mindium laevigatum

    Directory of Open Access Journals (Sweden)

    Abdolrasoul Haghir Ebrahimabadi

    2016-12-01

    Full Text Available Objective(s: Mindium laevigatum is an endemic plant of Iran and Turkey and is widely used as blood purifier, antiasthma and antidyspnea in traditional medicine. Chemical composition of volatile materials of the plant and its antioxidant, antimicrobial and cytotoxic activities were reported in this study. Materials and Methods: Simultaneous distillation-extraction (SDE and GC-Mass-FID analysis were used for the plant volatile materials chemical composition identification and quantification. Several antioxidant tests including DPPH radical scavenging, hydrogen peroxide scavenging, reducing power determination, β-carotene-linoleic acid and total phenolic content tests were used for antioxidant activity evaluation. Antimicrobial and anticancer activities were also estimated using microbial strains, cancer cell lines and brine shrimp larva. Results: GC-Mass-FID analysis of volatile samples showed a total of 74 compounds of which palmitic acid (7.4-33.7%, linoleic acid (6.6-18.6%, heneicosane (1.3-9.6% and myristic acid (1.4-6.0% were detected as main volatile components. Moderate to good results were recorded for the plant in              β-carotene-linoleic acid test. Total phenolic content of the extracts as gallic acid equivalents were estimated in the range of 15.7 to 79.6 μg/mg. Some microbial strains showed moderate sensitivities to plant extracts. Brine shrimp lethality test and cytotoxic cancer cell line assays showed mild cytotoxic activities for the plant. Conclusion: Moderate to good antioxidant activities in β-carotene-linoleic acid test and presence of considerable amounts of unsaturated hydrocarbons may explain the plant traditional use in asthma and dyspnea. These findings also candidate it as a good choice for investigating its possible modern medical applications.

  20. 40 CFR Table 1 to Subpart B of... - Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Volatile Organic Compound (VOC) Content... Compound (VOC) Content Limits for Automobile Refinish Coatings Coating category Grams VOC per liter Pounds VOC per gallon a Pretreatment wash primers 780 6.5 Primers/primer surfacers 580 4.8 Primer sealers 550...

  1. The characteristics of the appearance and health risks of volatile organic compounds in industrial (pohang, ulsan) and non-industrial (gyeongju) areas.

    Science.gov (United States)

    Jung, Jong-Hyeon; Choi, Bong-Wook; Kim, Mi-Hyun; Baek, Sung-Ok; Lee, Gang-Woo; Shon, Byung-Hyun

    2012-01-01

    The aim of this study was to identify the health and environmental risk factors of air contaminants that influence environmental and respiratory diseases in Gyeongju, Pohang and Ulsan in South Korea, with a focus on volatile organic compounds (VOCs). Samples were collected by instantaneous negative pressure by opening the injection valve in the canister at a fixed height of 1 to 1.5 m. The sample that was condensed in -150℃ was heated to 180℃ in sample pre-concentration trap using a 6-port switching valve and it was injected to a gas chromatography column. The injection quantity of samples was precisely controlled using an electronic flow controller equipped in the gas chromatography-mass spectrometer. The quantity of the VOC emissions in the industrial area was 1.5 to 2 times higher than that in the non-industrial area. With regards to the aromatic hydrocarbons, toluene was detected at the highest level of 22.01 ppb in Ulsan, and chloroform was the halogenated hydrocarbons with the highest level of 10.19 ppb in Pohang. The emission of toluene was shown to be very important, as it accounted for more than 30% of the total aromatic hydrocarbon concentration. It was considered that benzene in terms of the cancer-causing grade standard, toluene in terms of the emission quantity, and chloroform and styrene in terms of their grades and emission quantities should be selected for priority measurement substances.

  2. Potential of volatile compounds produced by fungi to influence sensory quality of coffee beverage

    DEFF Research Database (Denmark)

    Iamanaka, B. T.; Teixeira, A. A.; Teixeira, A. R. R.

    2014-01-01

    Fungi are known producers of a large number of volatile compounds (VCs). Several VCs such as 2,4,6 trichloroanisole (TCA), geosmin and terpenes have been found in coffee beverages, and these compounds can be responsible for off-flavor development. However, few studies have related the fungal...... contamination of coffee with the sensory characteristics of the beverage. The aim of this research was to investigate the production of VCs by fungi isolated from coffee and their potential as modifiers of the sensory coffee beverage quality. Three species were isolated from coffee from the southwest of São...... Paulo state and selected for the study: Penicillium brevicompactum, Aspergillus luchuensis (belonging to section Nigri) and Penicillium sp. nov. (related to Penicillium crustosum). VCs produced by the fungal inoculated in raw coffee beans were extracted and tentatively identified by SPME...

  3. The determination of botanical origin of honeys based on enantiomer distribution of chiral volatile organic compounds.

    Science.gov (United States)

    Špánik, Ivan; Pažitná, Alexandra; Šiška, Peter; Szolcsányi, Peter

    2014-09-01

    The enantiomer ratios of chiral volatile organic compounds in rapeseed, chestnut, orange, acacia, sunflower and linden honeys were determined by multi-dimensional gas chromatography using solid phase microextraction (SPME) as a sample pre-treatment procedure. Linalool oxides, linalool and hotrienol were present at the highest concentration levels, while significantly lower amounts of α-terpineol, 4-terpineol and all isomers of lilac aldehydes were found in all studied samples. On the other hand, enantiomer distribution of some chiral organic compounds in honey depends on their botanical origin. The significant differences in enantiomer ratio of linalool were observed for rapeseed honey that allows us to distinguish this type of honey from the other ones. The enantiomer ratios of lilac aldehydes were useful for distinguishing of orange and acacia honey from other studied monofloral honeys. Similarly, different enantiomer ratio of 4-terpineol was found for sunflower honeys. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Analysis of microbial volatile organic compounds produced by wood-decay fungi.

    Science.gov (United States)

    Konuma, Rumi; Umezawa, Kiwamu; Mizukoshi, Atsushi; Kawarada, Kensuke; Yoshida, Makoto

    2015-09-01

    Microbial volatile organic compounds (MVOCs) produced by the brown-rot fungus Fomitopsis palustris and white-rot fungus Trametes versicolor grown on wood chip and potato dextrose agar were analyzed by GC-MS. In total, 110 organic compounds were identified as MVOCs. Among them, only 23 were MVOCs commonly observed in both types of fungi, indicating that the fungi have differential MVOC expression profiles. In addition, F. palustris and T. versicolor produced 38 and 22 MVOCs, respectively, which were detected only after cultivation on wood chip. This suggests that the fungi specifically released these MVOCs when degrading the cell-wall structure of the wood. Time course analysis of MVOC emission showed that both types of fungi produced the majority of MVOCs during the active phase of wood degradation. As both fungi produced specific MVOCs in the course of wood degradation indicates the possibility of the application of MVOCs as detection markers for wood-decay fungus existing in woody materials.

  5. Volatile organic compounds and trace metal level in some beers collected from Romanian market

    Science.gov (United States)

    Voica, Cezara; Kovacs, Melinda; Vadan, Marius

    2013-11-01

    Beer is one of the most popular beverages at worldwide level. Through this study fifteen different types of beer collected from Romanian market were analysed in order to evaluate their mineral, trace element as well the their organic content. Importance of such characterization of beer samples is supported by the fact that their chemical composition can affect both taste and stability of beer, as well the consumer health. Minerals and trace elements analysis were performed on ICP-MS while organic compounds analysis was done through GC-MS. Through ICP-MS analysis, elements as Ca, Na, K and Mg were evidenced at mgṡkg-1 order while elements as Cr, Ba, Co, Ni were detected at lower level. After GC-MS analysis the major volatile compounds that were detected belong to alcohols namely ethanol, propanol, isobutanol, isoamyl alcohol and linalool. Selected fatty acids and esters were evidenced also in the studied beer samples.

  6. Evaluation of the Effect of Two Volatile Organic Compounds on Barley Pathogens

    Directory of Open Access Journals (Sweden)

    Amine Kaddes

    2016-08-01

    Full Text Available This study aimed to determine the effect of Volatile Organic Compounds (VOCs on some pathogens, these VOCs were emitted during interactions of barley with Fusarium culmorum Schltdl and/or Cochliobolus sativus Shoemaker, two common root rot pathogens. Our work shows that two organic esters: methyl propanoate (MP and methyl prop-2-enoate (MA significantly reduced the development of fungi in vitro. Additional tests showed that the esters significantly inhibited spore germination of these pathogens. The activity of these VOCs on a wide range of fungal and bacterial pathogens was also tested in vitro and showed inhibitory action. The effect of the VOCs on infected barley seeds also showed plantlets growing without disease symptoms. MA and MP seem to have potential value as alternative plant protection compounds against barley bioagressors.

  7. Influence of cultivation parameters on the composition of volatile compounds and physico-chemical characteristics of kiwi fruit.

    Science.gov (United States)

    Santoni, François; Barboni, Toussaint; Paolini, Julien; Costa, Jean

    2013-02-01

    The effect of four cultivation parameters (post-maturity harvest date, storage period at 0 °C and input of nitrogen or potassium fertilisers) on the physico-chemical characteristics and composition of volatile compounds in kiwi fruit (Actinidia deliciosa) were evaluated. Five physico-chemical parameters were selected, namely, pH, total acidity, dry matter, conductivity and refractive index. To our knowledge, no published data are available concerning the influence of nitrogen or potassium fertilisers on the volatile compounds and physico-chemical parameters in kiwi fruit. Except for total acidity, these parameters were only weakly influenced by cultivation parameters. The concentrations of five main volatile compounds [hexanal, (E)-hex-2-enal, hexan-2-ol, ethyl butyrate and hexanol] were also measured using gas chromatography and gas chromatography-mass spectrometry. This work showed that the total content of volatile compounds decreased with post-maturity harvest date and storage period of 3 months. In contrast, the input levels of nitrogen and potassium had little effect on the concentrations of volatile components This study demonstrates a high degree of difference in the physiochemical parameters and volatile composition of kiwi fruit, depending on the harvest date, the time of storage and the input of fertilisers. Copyright © 2012 Society of Chemical Industry.

  8. Determination of volatile sulphur compounds in air at the parts per trillion level by Tenax trapping and gas chromatography.

    Science.gov (United States)

    Tangerman, A

    1986-09-24

    A gas chromatographic technique is described for measuring various volatile sulphur compounds (H2S, COS, CS2, thiols, sulphides, disulphides) in air at the parts per trillion level. The sulphur compounds are trapped and concentrated at -196 degrees C in a small glass tube filled with the porous polymer Tenax GC. The excess of water in the air samples is pretrapped by calcium chloride, which drying agent does not adsorb any of the sulphur volatiles. The Tenax trap tube fits exactly in the injection port of the gas chromatograph, where the adsorbed sulphur compounds are liberated at 200 degrees C directly into the carrier gas stream and are transferred to the gas chromatographic column. The sulphur compounds are then assayed by means of a flame photometric detector. The Tenax trap tubes can be stored at -196 degrees C for more than 1 week without any loss of sulphur volatiles.

  9. Diversity of food-borne Bacillus volatile compounds and influence on fungal growth.

    Science.gov (United States)

    Chaves-López, C; Serio, A; Gianotti, A; Sacchetti, G; Ndagijimana, M; Ciccarone, C; Stellarini, A; Corsetti, A; Paparella, A

    2015-08-01

    To evaluate the antifungal activity of the volatile organic compounds (VOCs) produced by 75 different food-borne Bacillus species against Aspergillus niger, Aspergillus flavus, Aspergillus parasiticus, Aspergillus clavatus, Fusarium oxysporum f. sp. lactucae and Moniliophthora perniciosa and to determine the VOCs responsible for the inhibition. Bacillus strains inhibited fungal growth, although with different inhibition grades, with Bacillus subtilis, Bacillus amyloliquefaciens and Bacillus cereus strains as the best antifungal VOCs producers. While M. perniciosa DM4B and F. oxysporum f.sp. lactucae MA28 were the most sensitive fungi, A. parasiticus MG51 showed the greatest resistance to Bacillus VOCs exposure. Thirty-seven compounds were detected by SPME-GC-MS analysis, although similar patterns in volatile compounds were evidenced within the species, interspecific VOCs differences determined different effects on fungal growth. Multiple partial least regression (MPLRS) and antifungal activity of the individual VOCs revealed that only propanone, 1-butanol, 3-methyl-1-butanol, acetic acid, 2-methylpropanoic acid, carbon disulphide, 3-methylbutanoic acid and ethyl acetate were responsible for mycelia inhibition of M. perniciosa DM4B and F. oxysporum f.sp. lactucae MA28. The antagonistic activity of the Bacillus VOCs was demonstrated, although it cannot easily be explained through the action of a single molecule, thus a holistic approach could be more appropriate to estimate the fungal growth inhibition. VOCs produced by Bacillus from cooked food can be considered as promising antifungal compounds useful in the control of fungal plant pathogens. This study investigates for the first time the correlation between mycelia inhibition of M. perniciosa and F. oxysporum f. sp. lactucae and the VOCs emitted by the Bacillus species. © 2015 The Society for Applied Microbiology.

  10. Car indoor air pollution by volatile organic compounds and aldehydes in Japan

    Directory of Open Access Journals (Sweden)

    Kouichi Tatsu

    2016-06-01

    Full Text Available Fifty-five organic substances including volatile organic compounds (VOCs and aldehydes present in indoor air were measured from 24 car cabins in Japan. A screening-level risk assessment was also performed. Acetaldehyde (3.81–36.0 μg/m3, formaldehyde (3.26–26.7 μg/m3, n-tetradecane (below the method quantification limit (compounds originated from the car interior materials. Total volatile organic compound (TVOC concentrations in 14 car cabins (58% of all car cabins exceeded the advisable values established by the Ministry of Health, Labour and Welfare of Japan (400 μg/m3. The highest TVOC concentration (1136 μg/m3 was found in a new car (only one month since its purchase date. Nevertheless, TVOC concentrations exceeded the advisable value even for cars purchased over 10 years ago. Hazard quotients (HQs for formaldehyde obtained using measured median and highest concentrations in both exposure scenarios for occupational use (residential time in a car cabin was assumed to be 8 h were higher than that expected, a threshold indicative of potential adverse effects. Under the same exposure scenarios, HQ values for all other organic compounds remained below this threshold.

  11. Airborne fungal volatile organic compounds in rural and urban dwellings: detection of mould contamination in 94 homes determined by visual inspection and airborne fungal volatile organic compounds method.

    Science.gov (United States)

    Moularat, Stéphane; Hulin, Marion; Robine, Enric; Annesi-Maesano, Isabella; Caillaud, Denis

    2011-05-01

    Moulds can both degrade the materials and structures they colonise and contribute to the appearance of symptoms and diseases in the inhabitants of contaminated dwellings. Only few data have compared the levels of contamination in urban and rural environments and the results are not consistent. The aim of this study was to use a fungal contamination index, based on the detection of specific Microbial Volatile Organic Compounds (MVOC), to determine the exposure to moulds of individuals living in urban and rural dwellings. For this purpose, 94 dwellings (47 in an urban setting in Clermont-Ferrand and 47 in rural areas of the Auvergne region, France) were studied. By demonstrating marked disparities between the proportion of visible contamination (19%) and that of active, visible and/or hidden contamination (59%) and the fact that almost all visible contamination was identified by MVOC, we were able to show that use of the index seemed relevant to confirm the actual presence of fungal contamination in a dwelling. Furthermore, it was possible to demonstrate a relationship between moulds and the presence of water on surfaces (condensation, infiltrations, water damage, etc.). A higher proportion of positive fungal contamination index in rural homes was observed compared to the proportion in urban ones (68% versus 49%; p<0.05). Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species.

    Science.gov (United States)

    Fincheira, Paola; Venthur, Herbert; Mutis, Ana; Parada, Maribel; Quiroz, Andrés

    2016-12-01

    Agrochemicals are currently used in horticulture to increase crop production. Nevertheless, their indiscriminate use is a relevant issue for environmental and legal aspects. Alternative tools for reducing fertilizers and synthetic phytohormones are being investigated, such as the use of volatile organic compounds (VOCs) as growth inducers. Some soil bacteria, such as Pseudomonas and Bacillus, stimulate Arabidopsis and tobacco growth by releasing VOCs, but their effects on vegetables have not been investigated. Lactuca sativa was used as model vegetable to investigate bacterial VOCs as growth inducers. We selected 10 bacteria strains, belonging to Bacillus, Staphylococcus and Serratia genera that are able to produce 3-hydroxy-2-butanone (acetoin), a compound with proven growth promoting activity. Two-day old-seedlings of L. sativa were exposed to VOCs emitted by the selected bacteria grown in different media cultures for 7 days. The results showed that the VOCs released from the bacteria elicited an increase in the number of lateral roots, dry weight, root growth and shoot length, depending on the media used. Three Bacillus strains, BCT53, BCT9 and BCT4, were selected according to its their growth inducing capacity. The BCT9 strain elicited the greatest increases in dry weight and primary root length when L. sativa seedlings were subjected to a 10-day experiment. Finally, because acetoin only stimulated root growth, we suggest that other volatiles could be responsible for the growth promotion of L. sativa. In conclusion, our results strongly suggest that bacteria volatiles can be used as growth-inducers as alternative or complementary strategies for application in horticulture species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Measurements of Volatile Organic Compounds in a Newly Built Daycare Center.

    Science.gov (United States)

    Noguchi, Miyuki; Mizukoshi, Atsushi; Yanagisawa, Yukio; Yamasaki, Akihiro

    2016-07-21

    We measured temporal changes in concentrations of total volatile organic compounds (TVOCs) and individual volatile organic compounds in a newly built daycare center. The temporal changes of the TVOC concentrations were monitored with a photo ionization detector (PID), and indoor air was sampled and analyzed by Gas Chromatography/Mass Spectrometry (GC/MS) and high performance liquid chromatography (HPLC) to determine the concentrations of the constituent VOCs. The measurements were performed just after completion of the building and again 3 months after completion. The TVOC concentration exceeded 1000 µg·m(-3) for all the sampling locations just after completion of building, and decreased almost one tenth after 3 months, to below the guideline values of the TVOC in Japan at 400 µg·m(-3). The concentrations of the target VOCs of which the indoor concentrations are regulated in Japan were below the guideline values for all the cases. The air-exchange rates were determined based on the temporal changes of the TVOC concentrations, and it was found that the countermeasure to increase the air exchange rate successfully decrease the TVOC concentration level in the rooms.

  14. Measurements of Volatile Organic Compounds in a Newly Built Daycare Center

    Directory of Open Access Journals (Sweden)

    Miyuki Noguchi

    2016-07-01

    Full Text Available We measured temporal changes in concentrations of total volatile organic compounds (TVOCs and individual volatile organic compounds in a newly built daycare center. The temporal changes of the TVOC concentrations were monitored with a photo ionization detector (PID, and indoor air was sampled and analyzed by Gas Chromatography/Mass Spectrometry (GC/MS and high performance liquid chromatography (HPLC to determine the concentrations of the constituent VOCs. The measurements were performed just after completion of the building and again 3 months after completion. The TVOC concentration exceeded 1000 µg·m−3 for all the sampling locations just after completion of building, and decreased almost one tenth after 3 months, to below the guideline values of the TVOC in Japan at 400 µg·m−3. The concentrations of the target VOCs of which the indoor concentrations are regulated in Japan were below the guideline values for all the cases. The air-exchange rates were determined based on the temporal changes of the TVOC concentrations, and it was found that the countermeasure to increase the air exchange rate successfully decrease the TVOC concentration level in the rooms.

  15. Sweet taste in apple: the role of sorbitol, individual sugars, organic acids and volatile compounds

    Science.gov (United States)

    Aprea, Eugenio; Charles, Mathilde; Endrizzi, Isabella; Laura Corollaro, Maria; Betta, Emanuela; Biasioli, Franco; Gasperi, Flavia

    2017-01-01

    Sweetness is one of the main drivers of consumer preference, and thus is given high priority in apple breeding programmes. Due to the complexity of sweetness evaluation, soluble solid content (SSC) is commonly used as an estimation of this trait. Nevertheless, it has been demonstrated that SSC and sweet taste are poorly correlated. Though individual sugar content may vary greatly between and within apple cultivars, no previous study has tried to investigate the relationship between the amount of individual sugars, or ratios of these, and apple sweetness. In this work, we quantified the major sugars (sucrose, glucose, fructose, xylose) and sorbitol and explored their influence on perceived sweetness in apple; we also related this to malic acid content, SSC and volatile compounds. Our data confirmed that the correlation between sweetness and SSC is weak. We found that sorbitol content correlates (similarly to SSC) with perceived sweetness better than any other single sugar or total sugar content. The single sugars show no differentiable importance in determining apple sweetness. Our predictive model based on partial least squares regression shows that after sorbitol and SSC, the most important contribution to apple sweetness is provided by several volatile compounds, mainly esters and farnesene. PMID:28322320

  16. Halitosis associated volatile sulphur compound levels in patients with laryngopharyngeal reflux.

    Science.gov (United States)

    Avincsal, Mehmet Ozgur; Altundag, Aytug; Ulusoy, Seckin; Dinc, Mehmet Emre; Dalgic, Abdullah; Topak, Murat

    2016-06-01

    Previous reports have suggested that laryngopharyngeal reflux (LPR) may cause halitosis. However, it remains unclear if LPR is a risk factor for halitosis. The aim of this study was to investigate if patients diagnosed with LPR have an increased probability of halitosis compared to a normal population. Fifty-eight patients complaining of LPR symptoms and 35 healthy subjects were included in the study. A LPR diagnosis was made using an ambulatory 24-h double pH-probe monitor, which is the gold standard diagnostic tool for LPR. Additionally, halitosis was evaluated by measuring the levels of volatile sulphur compounds using OralChroma™ and an organoleptic test score. The result of the final diagnosis of the 58 patients after the 24 h ambulatory pH monitoring was that 42 patients had LPR. Significant correlations were observed between the organoleptic test score and hydrogen sulfide (H2S) and methyl mercaptan (CH3SH) levels. These were also significantly correlated with LPR. We found a strong positive association between LPR and volatile sulphur compound levels. The H2S and CH3SH levels differed significantly between the LPR and control groups (p Halitosis was significantly associated with the occurrence and severity of LPR. The present study provides clear evidence for an association between halitosis and LPR. Halitosis has a high frequency in patients with LPR and reflux characteristics are directly related to their severity and therefore could be considered as a manifestation of LPR.

  17. Adsorptive performance of chromium-containing ordered mesoporous silica on volatile organic compounds (VOCs

    Directory of Open Access Journals (Sweden)

    Jianwei Fan

    2017-09-01

    Full Text Available Volatile organic compounds (VOCs are the primary poisonous emissions into the atmosphere in natural gas exploitation and disposing process. The adsorption method has been widely applied in actual production because of its good features such as low cost, low energy consumption, flexible devices needed, etc. The commonly used adsorbents like activated carbon, silicon molecular sieves and so on are not only susceptible to plugging or spontaneous combustion but difficult to be recycled. In view of this, a new adsorbent (CrSBA15 was made by the co-assembly method to synthesize the ordered mesoporous silica materials with different amounts of chromium to eliminate VOCs. This new adsorbent was characterized by small-angle-X-ray scattering (SAXS, nitrogen adsorption/desorption, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. Its adsorption performance to eliminate VOCs (toluene, benzene, cyclohexane and ethyl acetate used as typical pollutants was also tested systematically. Research results indicate that this new adsorbent of CrSBA-15(30, with the silicon/chromium ration being 30, owns the maximum micropore volume, and shows a higher adsorption performance in eliminating toluene, benzene, cyclohexane and ethyl acetate. Besides, it is cost-effective and much easier to be recycled than the activated carbon. In conclusion, CrSBA-15(30 is a good adsorbent to eliminate VOCs with broad application prospects. Keywords: Mesoporous materials, Silicon dioxide, Synthesis, Adsorption, Volatile organic compounds (VOCs, Recyclability, Energy saving

  18. Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery.

    Science.gov (United States)

    Cetin, Eylem; Odabasi, Mustafa; Seyfioglu, Remzi

    2003-08-01

    Air samples were collected between September 2000 and September 2001 in Izmir, Turkey at three sampling sites located around a petrochemical complex and an oil refinery to measure ambient volatile organic compound (VOC) concentrations. VOC concentrations were 4-20-fold higher than those measured at a suburban site in Izmir, Turkey. Ethylene dichloride, a leaded gasoline additive used in petroleum refining and an intermediate product of the vinyl chloride process in the petrochemical complex, was the most abundant volatile organic compound, followed by ethyl alcohol and acetone. Evaluations based on wind direction clearly indicated that ambient VOC concentrations measured were affected by the refinery and petrochemical complex emissions. VOC concentrations showed seasonal variations at all sampling sites. Concentrations were highest in summer, followed by autumn, probably due to increased evaporation of VOCs from fugitive sources as a result of higher temperatures. VOC concentrations generally increased with temperature and wind speed. Temperature and wind speed together explained 1-60% of the variability in VOC concentrations. The variability in ambient VOC concentrations that could not be explained by temperature and wind speed can be attributed to the effect of other factors (i.e. wind direction, other VOC sources).

  19. Sweet taste in apple: the role of sorbitol, individual sugars, organic acids and volatile compounds

    Science.gov (United States)

    Aprea, Eugenio; Charles, Mathilde; Endrizzi, Isabella; Laura Corollaro, Maria; Betta, Emanuela; Biasioli, Franco; Gasperi, Flavia

    2017-03-01

    Sweetness is one of the main drivers of consumer preference, and thus is given high priority in apple breeding programmes. Due to the complexity of sweetness evaluation, soluble solid content (SSC) is commonly used as an estimation of this trait. Nevertheless, it has been demonstrated that SSC and sweet taste are poorly correlated. Though individual sugar content may vary greatly between and within apple cultivars, no previous study has tried to investigate the relationship between the amount of individual sugars, or ratios of these, and apple sweetness. In this work, we quantified the major sugars (sucrose, glucose, fructose, xylose) and sorbitol and explored their influence on perceived sweetness in apple; we also related this to malic acid content, SSC and volatile compounds. Our data confirmed that the correlation between sweetness and SSC is weak. We found that sorbitol content correlates (similarly to SSC) with perceived sweetness better than any other single sugar or total sugar content. The single sugars show no differentiable importance in determining apple sweetness. Our predictive model based on partial least squares regression shows that after sorbitol and SSC, the most important contribution to apple sweetness is provided by several volatile compounds, mainly esters and farnesene.

  20. Determination of volatile organic compounds responsible for flavour in cooked river buffalo meat

    Directory of Open Access Journals (Sweden)

    A. Di Luccia

    2010-02-01

    Full Text Available Flavour is an important consumer attractive that directly influences the success of food products on the market. The determination of odorous molecules and their identification allows to useful knowledge for producers to valorise their own products. Buffalo meat has a different chemical composition from pork and beef and requires some cautions in cooking and processing. This work aims at the identification of volatile molecules responsible for flavours in river buffalo meat. The determination was carried out by solid phase micro-extraction (SPME technique and analysed by gas chromatography coupled to mass spectrometry (GC-MS. The most relevant results were the higher odorous impact of buffalo meat and the higher content of sulphide compounds responsible for wild aroma respect to pork and beef. These results were obtained comparing the total area of peaks detected in every chromatogram. We have also found significant differences concerning the contents of pentadecane, 1-hexanol-2 ethyl, butanoic acid, furano-2-penthyl. The origin of volatile organic compounds and their influence on the river buffalo aromas were discussed.