WorldWideScience

Sample records for volatile composition electronic

  1. Compositional Analysis and Antioxidant Activity of Volatile ...

    African Journals Online (AJOL)

    Compositional Analysis and Antioxidant Activity of Volatile. Components of Two Salvia spp. F Forouzin*, R Jamei and R Heidari. Department of Biology, Faculty of Science, Urmia University, West Azerbaijan, Iran. *For correspondence: Email: f_forouzin@yahoo.com, rjamei274@gmail.com, r.heidari@mail.urmia.ac.ir; Tel: ...

  2. The Volatile Composition of Portuguese Propolis Towards its Origin Discrimination

    Directory of Open Access Journals (Sweden)

    Soraia I. Falcão

    2016-03-01

    Full Text Available The volatiles from thirty six propolis samples collected from six different geographical locations in Portugal (mainland, Azores archipelago and Madeira Island were evaluated. Populus x canadensis Moenchen leaf-buds and Cistus ladanifer L. branches essential oils were comparatively analysed. The essential oils were isolated by hydrodistillation and analysed by Gas Chromatography (GC and Gas Chromatography-Mass Spectrometry (GC-MS. Cluster analysis based on propolis samples volatiles chemical composition defined three main clusters, not related to sample site collection. Cluster I grouped 28 samples with high relative amounts of oxygen-containing sesquiterpenes (20-77%, while cluster II grouped 7 samples rich in oxygen-containing monoterpenes (9-65% and the only sample from cluster III was monoterpene hydrocarbons rich (26%. Although Populus x canadensis and Cistus ladanifer were associated as resin sources of Portuguese propolis, other Populus species as well as plants like Juniperus genus may contribute to the resin in specific geographical locations.

  3. The effect of composition on volatility from a copper alloy

    International Nuclear Information System (INIS)

    McCarthy, K.A.; Smolik, G.R.; Wallace, R.S.

    1994-01-01

    During a Loss of Coolant Accident (LOCA) activated structural material can be mobilized through oxidation. Information on how much material is mobilized in an accident is necessary for performing safety assessments of fusion reactor designs. The Fusion Safety Program at the Idaho National Engineering Laboratory has an experimental program to measure mobilized mass as a function of temperature for various oxidizing environments. Materials studied have included beryllium (important because of its toxicity), copper alloys, a niobium alloy, PCA and HT-9 steel, tungsten (pure and an alloy), and a vanadium alloy. Some materials undergo a significant change in composition during irradiation. An example of this is copper (a candidate for the ITER first wall, divertor substrate, and various instrumentation probes and antennas), which can have as much as 1 wt% zinc due to transmutation. Additionally, as the design for ITER evolves, a slightly different copper alloy may be selected. Compositional changes may affect the extent that various elements are volatilized due to such mechanisms as diffusion through the alloy, and penetration and release from oxide layers formed on the material. To accurately calculate offsite doses for various irradiation scenarios, one must understand the effect of composition on volatility

  4. Electron beam treatment of toxic volatile organic compounds and dioxins

    International Nuclear Information System (INIS)

    Kojima, Takuji

    2006-01-01

    Considerations of wastes based on the reduction, reuse and recycle in daily life are primary measures to conserve our environment, but the control technology is necessary to support these measures. The electron beam (EB) process is promising as an advanced purification process having advantages such as a quick treatment of big volume gas, applicability even for very low concentration pollutants as the further purification at the downstream of existing process, and decomposition of pollutants into non-toxic substances by one process. The EB technology has been developed for treatment of toxic volatile organic compounds (VOCs) in ventilation gas and dioxins in solid waste incineration flue gas. (author)

  5. Electronic trading system and returns volatility in the oil futures market

    International Nuclear Information System (INIS)

    Liao, Huei-Chu; Lee, Yi-Huey; Suen, Yu-Bo

    2008-01-01

    This paper uses daily Brent crude prices to investigate the employment of electronic trading on the returns conditional volatility in the oil futures market. After a suitable GARCH model is established, the conditional volatility series are found. The Bai and Perron model is then used to find two significant structural breaks for these conditional volatility series around two implementation dates of electronic trading. This result indicates that the change in the trading system has significant impacts on the returns volatility since our estimated second break date is very close to the all-electronic trade implementation date. Moreover, the conditional volatility in the all-electronic trading period is found to be more dominated by the temporal persistence rather than the volatility clustering effect. All these evidence can shed some light for explaining the high relationship between more volatile world oil price and the more popular electronic trade. (author)

  6. Electron processing of fibre-reinforced advanced composites

    International Nuclear Information System (INIS)

    Singh, A.; Saunders, C.B.; Barnard, J.W.; Lopata, V.J.; Kremers, W.; McDougall, T.E.; Chung, M.; Tateishi, Miyoko

    1996-01-01

    Advanced composites, such as carbon-fibre-reinforced epoxies, are used in the aircraft, aerospace, sporting goods, and transportation industries. Though thermal curing is the dominant industrial process for advanced composites, electron curing of similar composites containing acrylated epoxy matrices has been demonstrated by our work. The main attraction of electron processing technology over thermal technology is the advantages it offers which include ambient temperature curing, reduced curing times, reduced volatile emissions, better material handling, and reduced costs. Electron curing technology allows for the curing of many types of products, such as complex shaped, those containing different types of fibres and up to 15 cm thick. Our work has been done principally with the AECL's 10 MeV, 1 kW electron accelerator; we have also done some comparative work with an AECL Gammacell 220. In this paper we briefly review our work on the various aspects of electron curing of advanced composites and their properties. (Author)

  7. Electron processing of fibre-reinforced advanced composites

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Saunders, C.B.; Barnard, J.W.; Lopata, V.J.; Kremers, W.; McDougall, T.E.; Chung, M.; Tateishi, Miyoko [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-08-01

    Advanced composites, such as carbon-fibre-reinforced epoxies, are used in the aircraft, aerospace, sporting goods, and transportation industries. Though thermal curing is the dominant industrial process for advanced composites, electron curing of similar composites containing acrylated epoxy matrices has been demonstrated by our work. The main attraction of electron processing technology over thermal technology is the advantages it offers which include ambient temperature curing, reduced curing times, reduced volatile emissions, better material handling, and reduced costs. Electron curing technology allows for the curing of many types of products, such as complex shaped, those containing different types of fibres and up to 15 cm thick. Our work has been done principally with the AECL`s 10 MeV, 1 kW electron accelerator; we have also done some comparative work with an AECL Gammacell 220. In this paper we briefly review our work on the various aspects of electron curing of advanced composites and their properties. (Author).

  8. Trichomes and chemical composition of the volatile oil of Trichogonia cinerea (Gardner) R. M. King & H. Rob. (Eupatorieae, Asteraceae).

    Science.gov (United States)

    Fernandes, Yanne S; Trindade, Luma M P; Rezende, Maria Helena; Paula, José R; Gonçalves, Letícia A

    2016-03-01

    Trichogonia cinerea is endemic to Brazil and occurs in areas of cerrado and campo rupestre. In this study, we characterized the glandular and non-glandular trichomes on the aerial parts of this species, determined the principal events in the development of the former, and identified the main constituents of the volatile oil produced in its aerial organs. Fully expanded leaves, internodes, florets, involucral bracts, and stem apices were used for the characterization of trichomes. Leaves, internodes, florets, and involucral bracts were examined by light microscopy and scanning electron microscopy, whereas stem apices were examined only by light microscopy. Branches in the reproductive phase were used for the extraction and determination of the composition of the volatile oil. The species has three types of glandular trichomes, biseriate vesicular, biseriate pedunculate, and multicellular uniseriate, which secrete volatile oils and phenolic compounds. The major components identified in the volatile oil were 3,5-muuroladiene (39.56%) and butylated hydroxytoluene (13.07%).

  9. Effects of high pressure processing on fatty acid composition and volatile compounds in Korean native black goat meat.

    Science.gov (United States)

    Kang, Geunho; Cho, Soohyun; Seong, Pilnam; Park, Beomyoung; Kim, Sangwoo; Kim, Donghun; Kim, Youngjun; Kang, Sunmun; Park, Kyoungmi

    2013-08-01

    This study investigated the effects of high pressure processing (HPP) on fatty acid composition and volatile compounds in Korean native black goat (KNBG) meat. Fatty acid content in KNBG meat was not significantly (p > 0.05) different among the control goats and those subjected HPP. The 9,12-octadecadienoic acid and octadecanoic acid, well-known causes of off-flavors, were detected from meat of some KNBG. A difference between the control and HPP treatment was observed in the discriminated function analysis using an electronic nose. The results suggest that the volatile compounds in KNBG meat were affected by HPP.

  10. THE DETERMINATION OF VOLATILE COMPOSITION OF SOLID FUELS BY CHROMATOGRAPHY

    OpenAIRE

    BICA Marin; SOFRONIE Sorin; CERNAIANU Corina Dana

    2014-01-01

    The volatile materials released during the heating of solid fuels ignite at relatively low temperatures releasing heat function of their quantity and quality. This heat raises the temperature of the solid residue creating the conditions for his ignition and burning. In the case of burning of the pulverized coal the phenomenon of production, ignition and burning of volatile materials are studied in different articles.

  11. Difference in volatile composition between the pericarp tissue and inner tissue of tomato (Solanum lycopersicum) fruit

    Science.gov (United States)

    Numerous studies have reported the volatile profiles in the whole fruit or pericarp tissue of tomato (Solanum lycopersicum) fruit; however, information is limited on the volatile composition in the inner tissue and its contribution to tomato aroma. For this, the pericarps and inner tissues of “Money...

  12. Associations between the sensory attributes and volatile composition of Cabernet Sauvignon wines and the volatile composition of the grapes used for their production.

    Science.gov (United States)

    Forde, Ciarán G; Cox, Agnieszka; Williams, Emlyn R; Boss, Paul K

    2011-03-23

    The sensory properties of wine are influenced by the chemical composition of the grapes used to produce them. Identification of grape and wine chemical markers associated with the attributes perceived by the consumer of the wine will enable better prediction of the potential of a parcel of grapes to produce wine of a certain flavor. This study explores the relationships between Cabernet Sauvignon grape volatile composition and wine volatile profiles with the sensory properties of wines. Twenty grape samples were obtained from nine vineyard sites across three vintages and wines vinified from these parcels using controlled winemaking methods. The volatile composition of the grapes were analyzed by SBSE-GCMS, the wines were analyzed by SPME-GCMS, and these data sets were compared to that obtained from the sensory analysis of the wines. Statistical treatment of the data to account for vintage and region effects allowed underlying relationships to be seen between wine sensory attributes and wine or grape volatile components. The observed associations between grape or wine volatile compounds and wine sensory attributes has revealed target compounds and pathways whose levels may reflect the biochemical effects on grape composition by differing growth conditions during berry development and ripening. The compounds identified in this study may be useful grape or wine markers for potential wine sensory characteristics.

  13. Volatile aroma components and MS-based electronic nose profiles of dogfruit (Pithecellobium jiringa and stink bean (Parkia speciosa

    Directory of Open Access Journals (Sweden)

    Yonathan Asikin

    2018-01-01

    Full Text Available Dogfruit (Pithecellobium jiringa and stink bean (Parkia speciosa are two typical smelly legumes from Southeast Asia that are widely used in the cuisines of this region. Headspace/gas chromatography/flame ionization detection analysis and mass spectrometry (MS-based electronic nose techniques were applied to monitor ripening changes in the volatile flavor profiles of dogfruit and stink bean. Compositional analysis showed that the ripening process greatly influenced the composition and content of the volatile aroma profiles of these two smelly food materials, particularly their alcohol, aldehyde, and sulfur components. The quantity of predominant hexanal in stink bean significantly declined (P < 0.05 during the ripening process, whereas the major volatile components of dogfruit changed from 3-methylbutanal and methanol in the unripe state to acetaldehyde and ethanol in the ripe bean. Moreover, the amount of the typical volatile flavor compound 1,2,4-trithiolane significantly increased (P < 0.05 in both ripened dogfruit and stink bean from 1.70 and 0.93%, to relative amounts of 19.97 and 13.66%, respectively. MS-based nose profiling gave further detailed differentiation of the volatile profiles of dogfruit and stink bean of various ripening stages through multivariate statistical analysis, and provided discriminant ion masses, such as m/z 41, 43, 58, 78, and 124, as valuable “digital fingerprint” dataset that can be used for fast flavor monitoring of smelly food resources.

  14. Volatile Composition of Smoked and Non-Smoked Iranian Rice

    Directory of Open Access Journals (Sweden)

    Leontina Lipan

    2016-11-01

    Full Text Available In this work, the volatile profiles of smoked and non-smoked Iranian rice were identified, and their relative abundance was calculated and compared. Headspace solid-phase microextraction together with gas chromatography-mass spectrometry (SPME-GC-MS were used to extract and identify the volatile compounds. The main groups of volatiles in Iranian rice were aldehydes, ketones, phenol derivatives, furans, linear hydrocarbons, esters and terpenes. The chemical family aldehydes was the most abundant one in the profile of non-smoked rice, while phenol derivatives and furans predominated in smoked samples. This study is the first one reporting comparative data of volatile compounds between smoked and non-smoked Iranian rice.

  15. Volatility

    Directory of Open Access Journals (Sweden)

    María Sánchez

    2016-11-01

    Full Text Available The action consists of moving with small kicks a tin of cola refresh -without Brand-from a point of the city up to other one. During the path I avoid bollards, the slope differences between sidewalks, pedestrians, parked motorcycles, etc. Volatility wants to say exactly that the money is getting lost. That the money is losing by gentlemen and by ladies who are neither financial sharks, nor big businessmen… or similarly, but ingenuous people, as you or as me, who walk down the street.

  16. Macro-fiscal volatility and the composition of public spending

    Czech Academy of Sciences Publication Activity Database

    Riscado, S. M.; Stančík, Juraj; Välilä, T.

    2011-01-01

    Roč. 32, č. 4 (2011), s. 511-538 ISSN 0143-5671 R&D Projects: GA MŠk LC542 Institutional research plan: CEZ:AV0Z70850503 Keywords : tax volatility * public investment * public consumption Subject RIV: AH - Economics Impact factor: 0.486, year: 2011

  17. CHANGES IN VOLATILE COMPOSITION OF KRALJEVINA WINES BY CONTROLLED MALOLACTIC FERMENTATION

    Directory of Open Access Journals (Sweden)

    Ana JEROMEL

    2008-11-01

    Full Text Available The effect of malolactic fermentation (MLF on the volatile composition of white wines made from autochtonous grape variety Kraljevina was studied by inoculation with selected lactic acid bacteria. At the end of malolactic fermentation, after the decomposition of the malic acid present in wine the non volatile compounds were analyzed by HPLC, while volatile compounds were analyzed by gas chromatography. All wines were also sensory analyzed. Results showed changes in acetaldehyde, some higher alcohols, ethyl esters, free and bound monoterpenes and some organic acids that contribute to enhance the sensory properties and quality of Kraljevina wines that underwent malolactic fermentation.

  18. Heating on the volatile composition and sensory aspects of extra-virgin olive oil

    Directory of Open Access Journals (Sweden)

    Cleiton Antônio Nunes

    2013-12-01

    Full Text Available The main ways by which extra-virgin olive oil is consumed include direct application on salads or as an ingredient in sauces, but it is also been used by some for cooking, including frying and baking. However, it has been reported that under heat stress, some nonglyceridic components of olive oil are degraded. So, the effect of heating (at 50, 100, 150, and 200 °C for 2 h on the volatile composition and sensory aspects of extra-virgin olive oil were evaluated. Heating altered the volatile composition of extra-virgin olive oil, mainly at higher temperatures (above 150 °C. The main modifications were related to the formation of large amounts of oxidized compounds, particularly large chain aldehydes. Sensory aspects were also altered when the oil was heated to higher temperatures, which might have occurred because of color alterations and mainly changes in the volatile composition of the oil.

  19. Chlorination of antimony and its volatilization treatment of waste antimony-uranium composite oxide catalyst

    International Nuclear Information System (INIS)

    Sawada, K.; Enokida, Y.

    2011-01-01

    For the waste antimony-uranium composite oxide catalyst, the chlorination of antimony and its volatilization treatment were proposed, and evaluated using hydrogen chloride gas at 873-1173 K. During the treatment, the weight loss of the composite oxide sample, which resulted from the volatilization of antimony, was confirmed. An X-ray diffraction analysis showed that uranium oxide, U 3 O 8 , was formed during the reaction. After the treatment at 1173 K for 1 h, almost all the uranium contained in the waste catalyst was dissolved by a 3 M nitric acid solution at 353 K within 10 min, although that of the non-treated catalyst was less than 0.1%. It was found that the chlorination and volatilization treatment was effective to separate antimony from the composite oxide catalyst and change uranium into its removable form. (orig.)

  20. Graphene and poly(methyl methacrylate) composite laminates on flexible substrates for volatile organic compound detection

    Science.gov (United States)

    Rattanabut, Chanoknan; Wongwiriyapan, Winadda; Muangrat, Worawut; Bunjongpru, Win; Phonyiem, Mayuree; Song, Young Jae

    2018-04-01

    In this paper, we present a gas sensor for volatile organic compound (VOC) detection based on graphene and poly(methyl methacrylate) (GR/PMMA) composite laminates fabricated using CVD-grown graphene. Graphene was transferred to a poly(ethylene terephthalate) (PET) substrate by PMMA-supported wet transfer process without PMMA removal in order to achieve the deposition of GR/PMMA composite laminates on PET. The GR/PMMA and graphene sensors show completely different sensitivities to VOC vapors. The GR/PMMA and graphene sensors showed the highest sensitivities to dichloromethane (DCM). The response of the GR/PMMA sensor to DCM was 3 times higher than that of the graphene sensor but the GR/PMMA sensor hardly responded to acetone, chloroform, or benzene. The sensing mechanism of the graphene sensor can be based on the dielectric constant of VOCs, the size of VOC molecule, and electron hopping effects on defect graphene, while that of the GR/PMMA sensor can be explained in terms of the polymer swelling owing to the Hansen solubility parameter.

  1. Trichomes and chemical composition of the volatile oil of Trichogonia cinerea (Gardner R. M. King & H. Rob. (Eupatorieae, Asteraceae

    Directory of Open Access Journals (Sweden)

    YANNE S. FERNANDES

    2016-03-01

    Full Text Available Trichogonia cinerea is endemic to Brazil and occurs in areas of cerrado and campo rupestre. In this study, we characterized the glandular and non-glandular trichomes on the aerial parts of this species, determined the principal events in the development of the former, and identified the main constituents of the volatile oil produced in its aerial organs. Fully expanded leaves, internodes, florets, involucral bracts, and stem apices were used for the characterization of trichomes. Leaves, internodes, florets, and involucral bracts were examined by light microscopy and scanning electron microscopy, whereas stem apices were examined only by light microscopy. Branches in the reproductive phase were used for the extraction and determination of the composition of the volatile oil. The species has three types of glandular trichomes, biseriate vesicular, biseriate pedunculate, and multicellular uniseriate, which secrete volatile oils and phenolic compounds. The major components identified in the volatile oil were 3,5-muuroladiene (39.56% and butylated hydroxytoluene (13.07%.

  2. Effects of Methyl Jasmonate on the Composition of Volatile Compounds in Pyropia yezoensis

    Science.gov (United States)

    He, Lihong; Wang, Liang; Wang, Linfang; Shen, Songdong

    2018-04-01

    Volatile organic compounds in marine algae have been reported to comprise characteristic flavor of algae and play an important role in their growth, development and defensive response. Yet their biogeneration remain largely unknown. Here we studied the composition of volatile compouds in Pyropia yezoensis and their variations in response to methyl jasmonate (MeJA) and diethyldithiocarbamic acid (DIECA) treatment using gas chromatography-mass spectrometry (GC-MS). A total of 44 compounds belonging to the following chemical classes (n) were identified, including aldehydes (11), alcohols (8), acids and esters (6), alkanes (5), ketones (5), alkenes (3), and S- or N-containing miscellaneous compounds (6). External treatment with plant hormone MeJA increased the content of 1-dodecanol, 4-heptenal, and 2-propenoic acid-2-methyl dodecylester, but decreased the content of phytol, 3-heptadecene, 2-pentadecanone, and isophytol. When pretreated with DIECA, an inhibitor of the octadecanoid pathway leading to the biosynthesis of endogeneous jasmonates and some secondary metabolites, phytol and isophytol were increased, while 4-heptenal, 1-dodecanol, and 2-propenoic acid-2-methyl dodecylester were decreased, both of which were negatively correlated with their variations under MeJA treatment. Collectively, these results suggest that MeJA does affect the volatile composition of P. yezoensis, and the octadecanoid pathway together with endogenous jasmonate pathway may be involved in the biosynthesis of volatile compounds, thereby providing some preliminary envision on the composition and biogeneration of volatile compounds in P. yezoensis.

  3. Composition and location of volatiles at Loki Patera, Io

    Science.gov (United States)

    Howell, Robert R.; Landis, Claire E.; Lopes, Rosaly M. C.

    2014-02-01

    Volatiles play a critical role in determining the nature of volcanic activity on Earth, but their role in the volcanism on Io is less clear. To help determine that role we analyze Voyager and Galileo images of Loki Patera. Loki is the largest caldera in the Solar System and Io’s most powerful volcano, however its eruptive behavior is still not understood. It appears to be relatively volatile poor, in comparison to other sites like Pele where volatiles drive a 350 km high plume. A resurfacing wave, either from spreading flows or from foundering of a lava lake crust, periodically sweeps around Loki Patera. Photometry from Voyager I and II violet and blue images shows that most of the features in and around Loki have colors well matched by macroscopic mixing of sulfur and basalt. The dark western portion of the patera has the color of bare basalt. Assuming such a macroscopic sulfur-basalt mix, in the Voyager I images most of the rest of the patera appears to be covered with a background of 13-38% sulfur. We infer this background sulfur was deposited from the nearby plume observed by Voyager I and II. The surface of the patera is also dotted by numerous small bright areas which have colloquially been called “bergs”. We find that they are also composed of sulfur, with coverage ranging up to 100%. Darker regions adjacent to the patera, such as the “southwest overflow”, are a mixture of intermediate amounts of sulfur and basalt. The “bathtub ring” at the edge of the overflow is again roughly 100% sulfur, perhaps with significant amounts of SO2 included. Colors seen during the Voyager II flyby are also consistent with this general pattern, but most of the patera has a sulfur abundance higher than that seen in Voyager I, while the then-dark southern portion is again close to the reflectance of bare basalt. We have also analyzed the spatial distribution of the bergs. They clearly avoid the inner and outer margins of the patera, and they also avoid each other

  4. A POLYMER-CERAMIC COMPOSITE MEMBRANE FOR RECOVERING VOLATILE ORGANIC COMPOUNDS FROM WASTEWATERS BY PERVAPORATION

    Science.gov (United States)

    A composite membrane was constructed on a porous ceramic support from a block copolymer of styrene and butadiene (SBS). It was tested in a laboratory pervaporation apparatus for recovering volatile organic compounds (VOCs) such a 1,1,1-trichloroethane (TCA) and trichloroethylene ...

  5. The volatile oil composition of fresh and air-dried buds of Cannabis sativa.

    Science.gov (United States)

    Ross, S A; ElSohly, M A

    1996-01-01

    The composition of the steam-distilled volatile oil of fresh and air-dried, indoor-grown marijuana was studied by GC/FID and GC/MS. In all, 68 components were detected of which 57 were fully identified. Drying of the plant material had no effect on the qualitative composition of the oil and did not affect the ability of individuals familiar with marijuana smell to recognize the odor.

  6. Chemical composition and seasonal variation of the volatile oils from Trembleya phlogiformis leaves

    Directory of Open Access Journals (Sweden)

    Sarah R. Fernandes

    Full Text Available ABSTRACT Trembleya phlogiformis DC., Melastomataceae, is a shrub whose leaves are used as a dye for dyeing wool and cotton. The present article aimed to carry out the morphological description of the species, to study the chemical composition of volatile oils from the leaves and flowers and the seasonal variability from the leaves during a year. Macroscopic characterization was carried out with the naked eye and with a stereoscopic microscope. Volatile oils were isolated by hydrodistillation in Clevenger apparatus and analyzed by gas chromatography/mass spectrometry. The major components of the volatile oil of T. phlogiformis flowers were: n-heneicosane (33.5%, phytol (12.3%, n-tricosane (8.4% and linoleic acid (6.1%. It was verified the existence of a large chemical variability of the volatile oils from the leaves of T. phlogiformis over the months, with the majority compound (oleic alcohol, ranging from 5.7 to 26.8% present in all samples. A combination of Cluster Analysis and Principal Component Analysis showed the existence of three main clusters, probably related to the seasons. The results suggested that the volatile oils of T. phlogiformis leaves possess high chemical variability, probably related to variation associated with rainfall and the variation in the behavior of specimens throughout the year. This research provides insights for future studies on the volatile oils obtained from the T. phlogiformis leaves and flowers, mainly related to biological markers of applications monitored in the leaves and flowers of this species.

  7. Sensory characteristics and volatile composition of a cereal beverage fermented with Bifidobacterium breve NCIMB 702257.

    Science.gov (United States)

    Salmerón, Ivan; Rozada, Raquel; Thomas, Keith; Ortega-Rivas, Enrique; Pandiella, Severino S

    2014-04-01

    Most of the commercialized lactic acid fermented products are dairy-based. Hence, the development of non-dairy fermented products with probiotic properties draws significant attention within the functional foods industry. The microorganisms used in such products have complex enzyme systems through which they generate diverse metabolites (volatile and non-volatile) that provide significant flavour attributes of importance for fermented foods. The correlation of the volatile flavour compounds of a malt beverage fermented with a Bifidobacterium breve strain with its unique sensory characteristics was performed. The volatile composition analysis exposed the presence of 12 components. Eight of these flavour volatiles were produced through the metabolic activity of the bifidobacteria strain. Notably acetic acid, of reported sour flavour characteristics, exhibited the greatest intensity. Four components of considerable organoleptic characteristics were identified as Maillard-derived products, namely maltol, pyranone, 2 (5H)-furanmethanol and 3-furanmethanol. The sensory evaluation exhibited that the fermented cereal beverage had a sour flavour with mild sweet and malty notes. These results indicate that the volatile compounds identified can be appointed as significant flavour markers of the novel fermented cereal beverage.

  8. Nanoparticle composites for printed electronics

    International Nuclear Information System (INIS)

    Männl, U; Van den Berg, C; Magunje, B; Härting, M; Britton, D T; Jones, S; Van Staden, M J; Scriba, M R

    2014-01-01

    Printed Electronics is a rapidly developing sector in the electronics industry, in which nanostructured materials are playing an increasingly important role. In particular, inks containing dispersions of semiconducting nanoparticles, can form nanocomposite materials with unique electronic properties when cured. In this study we have extended on our previous studies of functional nanoparticle electronic inks, with the development of a solvent-based silicon ink for printed electronics which is compatible with existing silver inks, and with the investigation of other metal nanoparticle based inks. It is shown that both solvent-based and water-based inks can be used for both silver conductors and semiconducting silicon, and that qualitatively there is no difference in the electronic properties of the materials printed with a soluble polymer binder to when an acrylic binder is used. (paper)

  9. Biological activity and phytochemical composition of the volatile oils from basilicum polystachyon

    International Nuclear Information System (INIS)

    Cui, H.X.; Cheng, F.R.

    2017-01-01

    This paper extracted and determined the chemical components of the volatile oil in Basilicum polystachyon, and measured and evaluated the bioactivity of the volatile oil in Basilicum polystachyon. The oils were obtained by hydrodistillation, and their chemical compositions were separated and determined by gas chromatography-mass spectrometry (GC-MS). Minimum inhibitory concentrations (MIC) were determined by using the 8 kinds of plant pathogenic fungi. The free radicals scavenging activity of its volatile oil for the IC/sub 50/ were investigated by using Trolox as the comparison and cytotoxicity by brine shrimp lethal bioassay. The results show that 64 constituents of oils isolated respectively from Basilicum polystachyon were identified. The appraised components take up 99.75% of the total peak area. The main composition of the volatile oil is sesquiterpenoids and monoterpene. The results exhibit that the volatile oil in Basilicum polystachyon has very strong bioactivity of antimicrobial, antioxidant and cytotoxicity. These results provided the reference for further understanding the chemical components and its bioactivity of this aromatic plant as well as its further development. (author)

  10. Chemical composition and volatile compounds in the artisanal ...

    African Journals Online (AJOL)

    Araceli

    2012-09-27

    Sep 27, 2012 ... composition of the raw materials, ratio of C/N and the environmental ... levels. On the other hand, in the cider production, Vidrich and Hribar .... Afr. J. Biotechnol. the total .... mezcal producer (Figure 1) and as the main objective.

  11. Composition of Non Volatile Oils and Antimicrobial Activities of ...

    African Journals Online (AJOL)

    The ethanol:dichloromethane (1:1) extract of the leaves of M. discolor showed four different components from those identified from root bark extracts among which heptacosane and tributylamine had percentage composition of (3.42%) and (0.34%),.respectively. The petroleum ether extract of the root bark of the undescribed ...

  12. Enhanced non-volatile and updatable holography using a polymer composite system.

    Science.gov (United States)

    Wu, Pengfei; Sun, Sam Q; Baig, Sarfaraz; Wang, Michael R

    2012-03-12

    Updatable holography is considered as the ultimate technique for true 3D information recording and display. However, there is no practical solution to preserve the required features of both non-volatility and reversibility which conflict with each other when the reading has the same wavelength as the recording. We demonstrate a non-volatile and updatable holographic approach by exploiting new features of molecular transformations in a polymer recording system. In addition, by using a new composite recording film containing photo-reconfigurable liquid-crystal (LC) polymer, the holographic recording is enhanced due to the collective reorientation of LC molecules around the reconfigured polymer chains.

  13. Nutrient Profiles and Volatile Odorous Compounds of Raw Milk After Exposure to Electron Beam Pasteurizing Doses.

    Science.gov (United States)

    Ward, Lindsay R; Kerth, Chris R; Pillai, Suresh D

    2017-07-01

    Raw milk is known to contain relatively high numbers of microorganisms, some of which include microbial pathogens. Electron beam (eBeam) processing is a nonthermal pasteurization food processing technology. The underlying hypothesis was that eBeam processing will not negatively influence the composition, nutrient content, and aroma profile of raw milk. Raw milk samples were exposed to eBeam doses of 1 and 2 kGy, since our studies had shown that 2 kGy is suitable for raw milk pasteurization. The untreated and eBeam-treated raw milk samples were analyzed to detect changes in lactose, vitamin B 2 , vitamin B 12 , and calcium concentrations. The possible breakdown of casein and whey proteins and lipid oxidation were investigated along with the formation of volatile aroma compounds. Even though vitamin B 2 showed a 31.6% decrease in concentration, the B 2 content in eBeam-pasteurized raw milk met all USDA nutritional guidelines. Even though there were no indications of lipid oxidation after the 2.0-kGy eBeam treatment, there was lipid oxidation (58%) after 7 d of refrigerated storage. However, based on the GC-olfactory analysis, the lipid oxidation did not necessarily result in the development of a wide variety of off-odors. © 2017 Institute of Food Technologists®.

  14. Influence of drying and irradiation on the composition of volatile compounds of thyme (Thymus vulgaris L.)

    International Nuclear Information System (INIS)

    Venskutonis, R.; Poll, L.; Larsen, M.

    1996-01-01

    An investigation of the influence of air-drying, freeze-drying, γ- and β-irradiation and storage for up to 10 months on the composition of volatile compounds in thyme herb (Thymus vulgaris L.) is presented. Altogether, 70 constituents were identified (53 positively and 17 tentatively), including those considered most important for thyme flavour. Quantitative results did not reveal significant differences in the composition of irradiated and non-irradiated samples, and the reduction of the amount of some volatile compounds after drying was comparable for air-dried and freeze-dried herb. The largest changes in flavour composition were observed during storage, especially the reduction in the concentration of monoterpene hydrocarbons

  15. Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures

    NARCIS (Netherlands)

    Steinbusch, K.J.J.; Hamelers, H.V.M.; Buisman, C.J.N.

    2008-01-01

    In this research we demonstrated a new method to produce alcohols. It was experimentally feasible to produce ethanol, propanol and butanol from solely volatile fatty acids (VFAs) with hydrogen as electron donor. In batch tests, VFAs such as acetic, propionic and butyric acids were reduced by mixed

  16. Analysis of volatile organic compounds of ‘Fuji’ apples following electron beam irradiation and storage

    International Nuclear Information System (INIS)

    Song, Hyun-Pa; Shim, Sung-Lye; Lee, Sun-Im; Kim, Dong-Ho; Kwon, Joong-Ho; Kim, Kyong-Su

    2012-01-01

    The volatile organic compounds of non-irradiated and electron-beam irradiated ‘Fuji’ apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph–mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated ‘Fuji’ apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of ‘Fuji’ apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds. - Highlights: ► We analyzed the volatile organic compounds of electron beam irradiated Fuji apples. ► The major compounds of samples were butanol, hexanal, [E]-2-hexenal, and hexanol. ► The contents of major flavor compounds of non-irradiated and irradiated samples were similar.

  17. Changes in volatile compound composition of Antrodia camphorata during solid state fermentation.

    Science.gov (United States)

    Xia, Yongjun; Zhang, Baorong; Li, Weijiang; Xu, Ganrong

    2011-10-01

    Although the volatiles present in mushrooms and fungi have been investigated by many researchers, including Antrodia camphorata in submerged fermentation, there are few data available regarding changes in volatile compounds during fermentation. Our research has revealed that solid state fermentation of A. camphorata is highly odiferous compared with submerged cultures and the odor changed with increasing culture time. Therefore the aim of this study was to investigate the changes in volatile compound composition of A. camphorata during solid state fermentation. Altogether, 124 major volatile compounds were identified. The volatile compounds produced by A. camphorata during growth in solid state fermentation were quite different. Oct-1-en-3-ol, octan-3-one and methyl 2-phenylacetate were predominant in exponential growth phase production, while the dominant volatiles produced in stationary phase were octan-3-one and methyl 2-phenylacetate. In stationary phase, lactone compounds in A. camphorata, such as 5-butyloxolan-2-one, 5-heptyloxolan-2-one, 6-heptyloxan-2-one, contributed greatly to peach and fruit-like flavor. Terpene and terpene alcohol compounds, such as 1-terpineol, L-linalool, T-cadinol, (E, E)-farnesol, β-elemene, cis-α-bisabolene and α-muurolene, made different contributions to herbal fresh aroma in A. camphorata. Nineteen volatile sesquiterpenes were detected from solid state fermentation of A. camphorata. The compounds 5-n-butyl-5H-furan-2-one, β-ionone, (-)-caryophyllene oxide, aromadendrene oxide, diepi-α-cedrene epoxide, β-elemene, α-selinene, α-muurolene, azulene, germacrene D, γ-cadinene and 2-methylpyrazine have not hitherto been reported in A. camphorata. The preliminary results suggest that the aroma-active compounds produced by A camphorata in solid state fermentation might serve as an important source of natural aroma compounds for the food and cosmetic industries or antibiotic activity compounds. The sesquiterpenes could be

  18. Discrimination of volatiles of refined and whole wheat bread containing red and white wheat bran using an electronic nose.

    Science.gov (United States)

    Sapirstein, Harry D; Siddhu, Silvi; Aliani, Michel

    2012-11-01

    The principal objective of this study was to evaluate the capability of electronic (E) nose technology to discriminate refined and whole wheat bread made with white or red wheat bran according to their headspace volatiles. Whole wheat flour was formulated with a common refined flour from hard red spring wheat, blended at the 15% replacement level with bran milled from representative samples of one hard red and 2 hard white wheats. A commercial formula was used for breadmaking. Results varied according to the nature of the sample, that is, crust, crumb, or whole slices. Bread crust and crumb were completely discriminated. Crumb of whole wheat bread made with red bran was distinct from other bread types. When misclassified, whole wheat bread crumb with white bran was almost invariably identified as refined flour bread crumb. Using crust as the basis for comparisons, the largest difference in volatiles was between refined flour bread and whole wheat bread as a group. When refined flour bread crust was misclassified, samples tended to be confused with whole white wheat crust. Samples prepared from whole bread slices were poorly discriminated in general. E-nose results indicated that whole wheat bread formulated with white bran was more similar in volatile makeup to refined flour bread compared to whole wheat bread made with red bran. The E-nose appears to be very capable to accommodate differentiation of bread volatiles whose composition varies due to differences in flour or bran type. Consumer preference of bread made using refined flour in contrast to whole wheat flour is partly due to the different aroma of whole wheat bread. This study used an electronic nose to analyze bread volatiles, and showed that whole wheat bread incorporating white bran was different from counterpart bread made using red bran, and was closer in volatile makeup to "white" bread made without bran. Commercial millers and bakers can take advantage of these results to formulate whole wheat flour

  19. Volatile Composition of Some Cultivated and Wild Culinary-Medicinal Mushrooms from Hungary.

    Science.gov (United States)

    Csóka, Mariann; Geosel, Andras; Amtmann, Maria; Korany, Kornel

    2017-01-01

    The volatile constituents of the fruiting bodies of 4 culinary-medicinal mushroom species (Agaricus bisporus, Boletus edulis, Cantharellus cibarius, and Hericium erinaceus) from Hungary were examined to review their aroma composition. Simultaneous distillation/extraction was applied to extract volatile compounds from fungi, and the values were measured with gas chromatography--mass spectrometry. Although the fragrances of fungi are not as characteristic as those of spices, several groups of volatile compounds have been found in mushrooms. The number of identified components ranged between 61 and 100, with a high ratio of 8-carbon volatiles generally occurring in fungi. Beyond common properties, individual attributes have been identified as well: an outstanding ratio of benzene compounds in champignons, numerous N-containing volatiles in boletes, carotenoid degradation products in chanterelles, and esters and fatty acids with a high carbon number in the lion's mane mushroom. The identification of these characteristic fragrance constituents can be very important in differentiating between species and confirming their presence in mushroom products.

  20. Water stress and ripeness effects on the volatile composition of Cabernet Sauvignon wines.

    Science.gov (United States)

    Talaverano, Inmaculada; Ubeda, Cristina; Cáceres-Mella, Alejandro; Valdés, María Esperanza; Pastenes, Claudio; Peña-Neira, Álvaro

    2018-02-01

    Controlled water deficits affect grape berry physiology and the resulting wines, with volatile composition being the one of the affected parameters. However, there is a potential disconnect between aromatic maturity and sugar accumulation. Accordingly, the effects of three different water status levels over two growing seasons (2014 and 2015) and two different harvest dates on the aroma compounds from Cabernet Sauvignon wines were studied. Volatile compounds were determined using headspace solid phase microextraction coupled with gas chromatoghraphy/mass spectrometry. Around 45 volatile compounds were determined in the wines and, among these, esters were affected the most, presenting lower concentrations when the most restrictive water treatment was applied in both years. By contrast, volatile acids presented the highest concentrations when the lowest level of irrigation was applied. On the other hand, a delay in harvesting produced an increase in the total amount of volatile compounds in samples from the most restrictive water treatment. These results are coincident with a principal component analysis that indicated a great separation between years, deficit irrigation treatments and harvest dates. The results of the present study suggest that a low water supply had a negative effect on the aromatic potential of wines at a similar ripening stage. However, this effect could be countered by harvesting at a later date. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Distribution of volatile composition in 'marion' ( rubus species hyb) blackberry pedigree.

    Science.gov (United States)

    Du, Xiaofen; Finn, Chad; Qian, Michael C

    2010-02-10

    The distribution of volatile constituents in ancestral genotypes of 'Marion' blackberry's pedigree was investigated over two growing seasons. Each genotype in the pedigree had a specific volatile composition. Red raspberry was dominated by norisoprenoids, lactones, and acids. 'Logan' and 'Olallie' also had a norisoprenoid dominance but at much lower concentrations. The concentration of norisoprenoids in other blackberry genotypes was significantly lower. Terpenes and furanones were predominant in wild 'Himalaya' blackberry, whereas terpenes were the major volatiles in 'Santiam'. 'Marion', a selection from 'Chehalem' and 'Olallie', contained almost all of the volatile compounds in its pedigree at moderate amount. The chiral isomeric ratios of 11 pairs of compounds were also studied. Strong chiral isomeric preference was observed for most of the chiral compounds, and each cultivar had its unique chiral isomeric distribution. An inherent pattern was observed for some volatile compounds in the 'Marion' pedigree. Raspberry and 'Logan' had a very high concentration of beta-ionone, but was reduced by half in 'Olallie' and by another half in 'Marion' as the crossing proceeded. A high content of linalool in 'Olallie' and a low content in 'Chehalem' resulted in a moderate content of linalool in their progeny 'Marion'. However, the concentration of furaneol in 'Marion' was higher than in its parents. A high content of (S)-linalool in 'Olallie' and a racemic content of (S)-,(R)-linalool in 'Chehalem' resulted in a preference for the (S)-form in 'Marion'.

  2. A study on the composition of off-odor volatiles in irradiated pork

    International Nuclear Information System (INIS)

    Lin Ruotai; Geng Shengrong; Zhang Jinmu; Chen Yuxia; Liu Yangmin; Wang Liping; Wang Hong; Xu Ying; Yao Side

    2006-01-01

    The purpose of this study was to lay a foundation on generation mechanisms and removal method of off-odor of irradiated meat products. Vacuum-package and refrigerated raw pork samples were irradiated with 60 Co γ-rays. Off-odor volatiles from the irradiated pork samples were taken in by a vacuum system and were collected by a cooled vial in liquid nitrogen. At the same time, the source of off-odor generation was investigated. Main compositions of off-odor volatiles of the irradiated pork were analyzed with gas chromatograph mass spectrometry (GC-MS). The results showed that main compositions of the off-odor volatiles were dimethyl disulfide, dimethyl sulfide, dimethyl trisulfide, methanethiol and S-methyl thioacetate, and the off-odor volatiles came from sulfide-containing amino acid and thiamin of the irradiated pork. Sulfide-containing compounds increased with the dose in the range of 0-3 kGy, and decreased with the refrigeration time, but changed from different kinds of the package. The non-irradiated samples, however, contained just a little sulfide-containing compounds of dimethyl sulfide and vangardbt. (authors)

  3. Composition of the volatile fraction of a sample of Brazilian green propolic and its phytotoxic activity.

    Science.gov (United States)

    Fernandes-Silva, Caroline C; Lima, Carolina A; Negri, Giuseppina; Salatino, Maria L F; Salatino, Antonio; Mayworm, Marco A S

    2015-12-01

    Propolis is a resinous material produced by honeybees, containing mainly beeswax and plant material. Despite the wide spectrum of biological activity of propolis, to our knowledge no studies have been carried out about phytotoxic properties of Brazilian propolis and its constituents. The aims of this study were to analyze the chemical composition and to evaluate the phytotoxic activity of the volatile fraction of a sample of Brazilian green propolis. Main constituents are the phenylpropanoid 3-prenylcinnamic acid allyl ester (26.3%) and the sesquiterpene spathulenol (23.4%). Several other sesquiterpenes and phenylpropanoids, in addition to linalool and α-terpineol (monoterpenes), were also detected. The activity of solutions of the volatile fraction at 1.0, 0.5 and 0.1% was tested on lettuce seeds and seedlings. The solution at 1% inhibited completely the seed germination and solutions at 0.1 and 0.5% reduced the germination rate index. The solution at 0.5% reduced the growth of the hypocotyl-radicle axis and the development of the cotyledon leaf. The chemical composition of the volatile fraction of this Brazilian green propolis is different from those previously described, and these results may contribute to a better understanding about the chemical variations in propolis. The volatile fraction of Brazilian green propolis influences both germination of seed lettuce and the growth of its seedlings, showing an phytotoxic potential. © 2014 Society of Chemical Industry.

  4. Microbiology, biochemistry, and volatile composition of Tulum cheese ripened in goat's skin or plastic bags.

    Science.gov (United States)

    Hayaloglu, A A; Cakmakci, S; Brechany, E Y; Deegan, K C; McSweeney, P L H

    2007-03-01

    Tulum cheeses were manufactured from raw ewe's milk and ripened in goat's skin bags (tulums) or plastic containers to understand the effect of ripening container on the chemical composition, biochemistry, microbiology, and volatile composition of Tulum cheeses during 150 d of ripening. Chemical compositions of the cheeses ripened in tulums were significantly different and the moisture contents decreased rapidly in those cheeses because of the porous structure of the tulum. Higher microbial counts were detected in the cheeses ripened in plastic than in cheeses ripened in tulums. Differences in nitrogenous compounds and total free AA of the cheeses were not significant. Total concentrations of free AA in cheeses increased with age and Glu, Ala, Val, Leu, and Phe were the most abundant AA in the cheeses. Urea-PAGE of pH 4.6-insoluble fractions of the cheeses during ripening showed similar degradation patterns in all cheeses. Peptide profiles by reversed-phase HPLC of pH 4.6- and ethanol-soluble or ethanol-insoluble fractions of the cheeses revealed only minor differences in the concentrations of some peptides among the cheeses; however, age-related changes in peptide concentrations were significantly different among the cheeses. Cheeses were analyzed at 90 d of ripening for volatile compounds by solid-phase microextraction gas chromatography-mass spectrometry. One hundred volatile components were identified, including 11 acids, 16 esters, 12 methyl ketones, 7 aldehydes, 22 alcohols, 7 sulfur compounds, 6 terpenes, and 19 miscellaneous compounds. The main components were short-chain fatty acids, 2-butanone, diacetyl, and primary alcohols. Quantitative differences in several volatile compounds were evident among the cheeses. Cheeses ripened in tulums or plastic had similar aroma patterns, but the concentrations of some components were different.

  5. Characterisation of commercial aromatised vinegars: phenolic compounds, volatile composition and antioxidant activity.

    Science.gov (United States)

    Cejudo-Bastante, María J; Durán-Guerrero, Enrique; Natera-Marín, Ramón; Castro-Mejías, Remedios; García-Barroso, Carmelo

    2013-04-01

    Nineteen commercially available aromatised vinegars, which were representative of this type of product, were tested to ascertain their phenolic and volatile composition and antioxidant activity. The aromatised vinegars came from different raw materials such as fruits, spices, herbs and vegetables. The antioxidant activity was determined by means of photochemiluminescence, phenolic profile by using ultra performance liquid chromatography with ultraviolet detection, and the volatile composition was determined by using stir bar sorptive extraction-gas chromatography-mass spectrometry. Nine polyphenolic compounds and 141 volatile compounds were identified. Vinegar aromatised with black truffle and rosemary obtained the highest values of antioxidant activity, followed by those aromatised with lemon, tarragon, aromatic herbs and vegetables. Antioxidant activity was highly correlated with the presence of trans-p-coutaric acid, trans-caftaric acid, 5-hydroxy-methylfurfural and furfural. Moreover, (Z)-3-hexen-1-ol was exclusive to the vinegar aromatised with tarragon, while p-menth-1,8-ol, dimethyl styrene, 4-methyl acetophenone and nootkatone were only found in vinegar aromatised with lemon. On the basis of the results from the cluster analysis of cases, it can be concluded that the grouping responds more to the trademark of each vinegar than to the raw material. © 2012 Society of Chemical Industry.

  6. Volatile composition and sensory profile of shiitake mushrooms as affected by drying method.

    Science.gov (United States)

    Politowicz, Joanna; Lech, Krzysztof; Lipan, Leontina; Figiel, Adam; Carbonell-Barrachina, Ángel A

    2018-03-01

    One of the best preservation method for long-term storage is drying. In this work, the influence of different drying methods on aroma and sensory profile of shiitake mushroom was evaluated. The drying methods tested were: convective drying (CD), freeze-drying (FD), vacuum-microwave drying (VMD), and a combination of convective pre-drying and vacuum-microwave finish-drying (CPD-VMFD). The volatile composition of fresh and dried shiitake mushrooms was analysed by SPME, GC-MS and GC-FID, and showed the presence of 71 volatile compounds, most of them present in all dried samples but with quantitative variation. The major volatile compounds in fresh shiitake were 1-octen-3-ol (20.2%), 2-octanone (20.7%), 1,2,4-trithiolane (9.8%), and 1,2,3,5,6-pentathiepane (8.2%). Drying of shiitake mushrooms caused significant losses of C8 compounds and cyclic sulfur compounds, such as 1,2,4-trithiolane (V31) and 1,2,4,5-tetrathiane (V57). Samples dried at CD 80 °C implied a relative short drying time (120 min), had the highest contents of total volatiles (1594 μg 100 g -1 ) and cyclic sulfur compounds (e.g. V57 126 μg 100 g -1 ), and the highest intensity of most of the key positive sensory attributes, such as inner colour (7.0), fresh shiitake flavour (6.7), and sponginess (6.2). The best dehydration methods, resulting in the highest total concentrations of volatile compounds and high intensity of key sensory attributes were FD (if vacuum and liquid nitrogen facilities are available) and CD at 80 °C (for companies with vacuum and liquid nitrogen facilities). © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Chemical Composition of the Volatile Components of Tropaeolum majus L. (Garden Nasturtium from North Western Algeria

    Directory of Open Access Journals (Sweden)

    B. BENYELLES

    2015-11-01

    Full Text Available Essential oil from Tropaeolum majus L. aerial parts, a plant native to North Western Algeria, was obtained by hydrodistillation. The oil volatile components were identified by a combination of gas chromatography/flame ionization detection (GC/FID, GC-mass spectrometry (GC-MS techniques, and NMR spectroscopy. Nine components representing 92.0 % of the essential oil total (GC/FID chromatogram were identified. The most abundant compounds were benzyl isothiocyanate (82.5 %, benzene acetonitrile (3.9 % and 2-phenylethyl isovalerate (2.9 %. Higher content in nitrogen- and sulfur-containing compounds accounting to 86.4 % of the volatile fraction composition of T. majus were quantified.

  8. Effects of mechanical wounding on essential oil composition and emission of volatiles from Minthostachys mollis.

    Science.gov (United States)

    Banchio, Erika; Zygadlo, Julio; Valladares, Graciela R

    2005-04-01

    Plant tissues may show chemical changes following damage. This possibility was analyzed for Minthostachys mollis, a Lamiaceae native to Central Argentina with medicinal and aromatic uses in the region. Effects of mechanical damage on its two dominant monoterpenes, pulegone and menthone, were analyzed by perforating M. mollis leaves and then assessing essential oil composition at 24, 48, and 120 hr; emission of volatiles was also measured 24 and 48 hr after wounding. Mechanical damage resulted in an increase of pulegone and menthone concentration in M. mollis essential oil during the first 24 hr. These changes did not occur in the adjacent undamaged leaves, suggesting a lack of systemic response. Postwounding changes in the volatiles released from M. mollis damaged leaves were also detected, most noticeably showing an increase in the emission of pulegone. Inducible chemical changes in aromatic plants might be common and widespread, affecting the specific compounds on which commercial exploitation is based.

  9. Electron beam curing of polymer matrix composites

    International Nuclear Information System (INIS)

    Janke, C.J.; Wheeler, D.; Saunders, C.

    1998-01-01

    The purpose of the CRADA was to conduct research and development activities to better understand and utilize the electron beam PMC curing technology. This technology will be used to replace or supplement existing PMC thermal curing processes in Department of Energy (DOE) Defense Programs (DP) projects and American aircraft and aerospace industries. This effort involved Lockheed Martin Energy Systems, Inc./Lockheed Martin Energy Research Corp. (Contractor), Sandia National Laboratories, and ten industrial Participants including four major aircraft and aerospace companies, three advanced materials companies, and three electron beam processing organizations. The technical objective of the CRADA was to synthesize and/or modify high performance, electron beam curable materials that meet specific end-use application requirements. There were six tasks in this CRADA including: Electron beam materials development; Electron beam database development; Economic analysis; Low-cost Electron Beam tooling development; Electron beam curing systems integration; and Demonstration articles/prototype structures development. The contractor managed, participated and integrated all the tasks, and optimized the project efforts through the coordination, exchange, and dissemination of information to the project participants. Members of the Contractor team were also the principal inventors on several electron beam related patents and a 1997 R and D 100 Award winner on Electron-Beam-Curable Cationic Epoxy Resins. The CRADA achieved a major breakthrough for the composites industry by having successfully developed high-performance electron beam curable cationic epoxy resins for use in composites, adhesives, tooling compounds, potting compounds, syntactic foams, etc. UCB Chemicals, the world's largest supplier of radiation-curable polymers, has acquired a license to produce and sell these resins worldwide

  10. Chemical Composition of the Semi-Volatile Grains of Comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Wurz, P.; Altwegg, K.; Balsiger, H. R.; Berthelier, J. J.; De Keyser, J.; Fiethe, B.; Fuselier, S. A.; Gasc, S.; Gombosi, T. I.; Korth, A.; Mall, U.; Reme, H.; Rubin, M.; Tzou, C. Y.

    2017-12-01

    Rosetta was in orbit of comet 67P/Churyumov-Gerasimenko from August 2014 to September 2016. On board is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) experiment that has been continuously collecting data on the chemical composition and activity of the coma from 3.5 AU to pericentre at 1.24 AU and out again to 3.5 AU. ROSINA consists of two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron-type Time-Of-Flight (RTOF), as well as the COmet Pressure Sensor (COPS). ROSINA recorded the neutral gas and thermal plasma in the comet's coma. The two mass spectrometers have high dynamic ranges and complement each other with high mass resolution, and high time resolution and large mass range. COPS measures total gas densities, bulk velocities, and gas temperatures. Occasionally, a dust grain of cometary origin enters the ion source of a ROSINA instrument where the volatile part evaporates since these ion sources are hot. The release of volatiles from cometary dust grains was observed with all three ROSINA instruments on several occasions. Because the volatile content of such a dust grain is completely evaporated after a few seconds, the RTOF instrument is best suited for the investigation of its chemical composition since complete mass spectra are recorded during this time. During the mission 9 dust grains were observed with RTOF during the October 2014 to July 2016 time period. It is estimated that these grains contain about 10-15 g of volatiles. The mass spectra were interpreted with a set of 75 molecules, with the major groups of chemical species being hydrocarbons, oxygenated hydrocarbons, nitrogen-bearing molecules, sulphur-bearing molecules, halogenated molecules and others. About 70% of these grains are depleted in water compared to the comet coma, thus, can be considered as semi-volatile dust grains, and the other about 30% are water grains. The chemical composition varies considerably from grain to grain

  11. Volatile Discrimination of Irradiated and Fumigated White Ginseng Powders at Different Storage Times and Temperatures Using the Electronic Nose

    International Nuclear Information System (INIS)

    Kwon, J.H.; Shin, J.A.; Lee, K.T.

    2006-01-01

    The pattern of volatile emissions from white ginseng powders (WGP) that were treated with selected preservatives was investigated during 5-months of storage (at-10 and 25℃) by an electronic nose system equipped with 12 metal-oxide sensors. WGP were treated with gamma radiation at 5 kGy, commercial methyl bromide (MeBr), and phosphine fumigations. Electronic nose differentiated the volatile patterns of the WGP with each different preservative treatment. In addition, each volatile pattern was affected by both storage time (1, 2 and 5 months) and temperature (-10 and 25℃)

  12. Changes in volatile composition and sensory attributes of wines during alcohol content reduction.

    Science.gov (United States)

    Longo, Rocco; Blackman, John W; Torley, Peter J; Rogiers, Suzy Y; Schmidtke, Leigh M

    2017-01-01

    A desirable sensory profile is a major consumer driver for wine acceptability and should be considered during the production of reduced-alcohol wines. Although various viticultural practices and microbiological approaches show promising results, separation technologies such as membrane filtration, in particular reverse osmosis and evaporative perstraction, in addition to vacuum distillation, represent the most common commercial methods used to produce reduced-alcohol wine. However, ethanol removal from wine can result in a significant loss of volatile compounds such as esters (ethyl octanoate, ethyl acetate, isoamyl acetate) that contribute positively to the overall perceived aroma. These losses can potentially reduce the acceptability of the wine to consumers and decrease their willingness to purchase wines that have had their alcohol level reduced. The change in aroma as a result of the ethanol removal processes is influenced by a number of factors: the type of alcohol reduction process; the chemical-physical properties (volatility, hydrophobicity, steric hindrance) of the aroma compounds; the retention properties of the wine non-volatile matrix; and the ethanol level. This review identifies and summarises possible deleterious influences of the dealcoholisation process and describes best practice strategies to maintain the original wine composition. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Volatile composition of peppermint (Mentha piperita L.) commercial teas through solid phase extraction.

    Science.gov (United States)

    Riachi, L G; Abi-Zaid, I E; Moreira, R F A; De Maria, C A B

    2012-12-01

    Volatiles from aqueous extract of peppermint commercial sachets were investigated through gas chromatography/flame ionization detection (GC/FID) and GC/mass spectrometry (MS). Samples were prepared under similar conditions as in homemade tea. Volatiles were isolated using solid phase extraction method (SPE) with Porapak Q trap followed by desorption with acetone. Estimated mean values for short and medium chain carboxylic acids (C2-C12) and ketones lay in the range of 50-64 microg kg(-1) whilst aliphatic alcohols and acyclic hydrocarbons had values lower than 6 microg kg(-1). The major volatiles were terpenes (275-382 microg kg(-1)) that reached 89 % of the total composition. A total of 16 compounds, among them dodecane, acetoin, acetol, citral, geraniol and octanoic acid have been described by the first time in peppermint tea. These findings could be attributed to the different analytical approach employed, mainly to the use of different extraction/pre-concentration techniques. Given the apparently lower proportion of terpenes in the aqueous extract it may be that the chemical properties of the peppermint essential oil are not entirely reproduced with homemade tea.

  14. Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans.

    Science.gov (United States)

    Dong, Wenjiang; Hu, Rongsuo; Chu, Zhong; Zhao, Jianping; Tan, Lehe

    2017-11-01

    This study investigated the effect of different drying techniques, namely, room-temperature drying (RTD), solar drying (SD), heat-pump drying (HPD), hot-air drying (HAD), and freeze drying (FD), on bioactive components, fatty acid composition, and the volatile compound profile of robusta coffee beans. The data showed that FD was an effective method to preserve fat, organic acids, and monounsaturated fatty acids. In contrast, HAD was ideal for retaining polyunsaturated fatty acids and amino acids. Sixty-two volatile compounds were identified in the differently dried coffee beans, representing 90% of the volatile compounds. HPD of the coffee beans produced the largest number of volatiles, whereas FD resulted in the highest volatile content. A principal component analysis demonstrated a close relationship between the HPD, SD, and RTD methods whereas the FD and HAD methods were significantly different. Overall, the results provide a basis for potential application to other similar thermal sensitive materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Volatile oil composition of Carthamus Tinctorius L. flowers grown in Kazakhstan.

    Science.gov (United States)

    Turgumbayeva, Aknur Amanbekovna; Ustenova, Gulbaram Omargazieva; Yeskalieva, Balakyz Kymyzgalievna; Ramazanova, Bakyt Amanullovna; Rahimov, Kairolla Duysenbayevich; Aisa, Hajiakbar; Juszkiewicz, Konrad T

    2018-03-14

    Carthamus tinctorius L. is commonly known as Safflower. C. tinctorius extracts and oil are important in drug development with numerous pharmacological activities in the world. This plant is cultivated mainly for its seed which is used as edible oil. For a long time, C. tinctorius has been used in traditional medicines as a purgative, analgesic, antipyretic and an antidote to poisoning. It is a useful plant in painful menstrual problems, post-partum haemorrhage and osteoporosis. The subject of this study is the seeds of Kazakhstan species of 'Akmai' safflower, collected in the flowering stage in Southern Kazakhstan. Volatile oil was carry out to study the component composition of Kazakhstan 'AkMai' safflower flowers. Pale yellow oily extracts were obtain by varying the process parameters. The volatile oil obtained by hydrodistillation of the petals Carthamus tinctorius L. was analyzed by gas chromatography/mass spectrometry (GC/MS). The yield of the oil was 0.175 % (v/w). 20 compounds representing 99.81% of the oil were characterized. The volatile oil was found to be rich in undecanoic acid, octane, 2-nonen -1-ol, hexadecanal, dodecanal, dec-2-en-1-ol, nonanoic acid, tetradecanoic acid, 2 pentadecanone, 6,10,14-trimethyl, 1,2-benzenedicarboxylic acid, isobutyl-beta-phenylpropionate, 1.3-cyclohexadiene, myrtenoic acid, octadecanoic acid, heneicosanoic acid, 2(3H)-furanone, 4,4-dipropylheptane, hexcosane,1-eicosanol, as well as heptocosane. Volatile oil from the flowers of the Kazakhstan safflower species 'Ak-Mai' were investigated by GC/MS which allowed the detection of 20 compounds. Biologically active complex of the flower of the Kazakhstan safflower species 'Ak-Mai' was released for the first time by using this oil.

  16. Quantitative analysis of different volatile organic compounds using an improved electronic nose

    International Nuclear Information System (INIS)

    Gao, Daqi; Ji, Jiuming; Gong, Jiayu; Cai, Chaoqian

    2012-01-01

    This paper sets up an improved electronic nose with an automatic sampling mode, large volumetric vapors and constant temperature for headspace vapors and gas sensor array. In order to facilitate the fast recovery and good repeatability of gas sensors, the steps taken include (A) short-time contact with odors measured; (B) long-time purification using environmental air; (C) exact calibration using clean air before sampling. We employ multiple single-output perceptrons to discriminate and quantify multiple kinds of odors. This task is first regarded as multiple two-class discrimination problems and then multiple quantification problems, and accomplished by multiple single-output perceptrons followed by multiple single-output perceptrons. The experimental results for measuring and quantifying 12 kinds of volatile organic compounds with changing concentrations show that the type of electronic nose with a hierarchical perceptron model has a simple structure, easy operation, good repeatability and good discrimination and quantification performance. (paper)

  17. Quantitative analysis of different volatile organic compounds using an improved electronic nose

    Science.gov (United States)

    Gao, Daqi; Ji, Jiuming; Gong, Jiayu; Cai, Chaoqian

    2012-10-01

    This paper sets up an improved electronic nose with an automatic sampling mode, large volumetric vapors and constant temperature for headspace vapors and gas sensor array. In order to facilitate the fast recovery and good repeatability of gas sensors, the steps taken include (A) short-time contact with odors measured; (B) long-time purification using environmental air; (C) exact calibration using clean air before sampling. We employ multiple single-output perceptrons to discriminate and quantify multiple kinds of odors. This task is first regarded as multiple two-class discrimination problems and then multiple quantification problems, and accomplished by multiple single-output perceptrons followed by multiple single-output perceptrons. The experimental results for measuring and quantifying 12 kinds of volatile organic compounds with changing concentrations show that the type of electronic nose with a hierarchical perceptron model has a simple structure, easy operation, good repeatability and good discrimination and quantification performance.

  18. Erosion of volatile elemental condensed gases by keV electron and light-ion bombardment

    International Nuclear Information System (INIS)

    Schou, J.

    1991-11-01

    Erosion of the most volatile elemental gases by keV electron and light-ion bombardment has been studied at the experimental setup at Risoe. The present work includes frozen neon, argon, krypton, nitrogen, oxygen and three hydrogen isotopes, deuterium, hydrogen deuteride and hydrogen. The yield of these condensed gases has been measured as a function of film thickness and primary energy for almost all combinations of primary particles (1-3 keV electrons, 5-10 keV hydrogen- and helium ions) and ices. These and other existing results show that there are substantial common features for the sputtering of frozen elemental gases. Within the two groups, the solid rare gases and the solid molecular gases, the similarity is striking. The hydrogenic solids deviate in some respects from the other elements. The processes that liberate kinetic energy for the particle ejection in sputtering are characteristic of the specific gas. (au) 3 tabs., 12 ills., 159 refs

  19. Volatile composition and sensory profile of Cantharellus cibarius Fr. as affected by drying method.

    Science.gov (United States)

    Politowicz, Joanna; Lech, Krzysztof; Sánchez-Rodríguez, Lucía; Szumny, Antoni; Carbonell-Barrachina, Ángel A

    2017-12-01

    In this work, the influence of different drying methods on the aroma composition and sensory quality of chanterelle mushrooms (Cantharellus cibarius Fr.) was evaluated. The drying methods tested were convective drying (CD), freeze drying (FD), vacuum microwave drying (VMD) and a combination of convective pre-drying and vacuum microwave finish drying (CPD-VMFD). Analyses of fresh and dried chanterelle samples by HS-SPME and GC/MS and GC-FID showed the presence of 39 volatile compounds at different concentrations. The most abundant compounds in fresh chanterelle were 1-hexanol (33.4 μg per 100 g dry basis (db)), 1-octen-3-ol (80.2 μg per 100 g db) and 2-octen-1-ol (19.3 μg per 100 g db). The results showed that fresh and dried chanterelle contained very low levels of aroma compounds; however, the highest contents of volatile compounds were found in samples after (i) CD at 80 °C (129 μg per 100 g db), (ii) CPD-VMFD at 70 °C-480/240 W (136 μg per 100 g db) and (iii) CPD-VMFD at 80 °C-480/240 W (136 μg per 100 g db). The best dehydration methods, which resulted in high contents of volatile compounds and appropriate sensory quality, according to descriptive sensory analysis and PCA tools, were CD at 70 and 80 °C. Besides, these methods led to spongy dried mushrooms with high intensities of fresh, mushroom ID, with proper color and without intense shrinkage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator.

    Science.gov (United States)

    Im, Chae Ho; Kim, Changman; Song, Young Eun; Oh, Sang-Eun; Jeon, Byong-Hun; Kim, Jung Rae

    2018-01-01

    Conversion of C1 gas feedstock, including carbon monoxide (CO), into useful platform chemicals has attracted considerable interest in industrial biotechnology. Nevertheless, the low conversion yield and/or growth rate of CO-utilizing microbes make it difficult to develop a C1 gas biorefinery process. The Wood-Ljungdahl pathway which utilize CO is a pathway suffered from insufficient electron supply, in which the conversion can be increased further when an additional electron source like carbohydrate or hydrogen is provided. In this study, electrode-based electron transference using a bioelectrochemical system (BES) was examined to compensate for the insufficient reducing equivalent and increase the production of volatile fatty acids. The BES including neutral red (BES-NR), which facilitated electron transfer between bacteria and electrode, was compared with BES without neutral red and open circuit control. The coulombic efficiency based on the current input to the system and the electrons recovered into VFAs, was significantly higher in BES-NR than the control. These results suggest that the carbon electrode provides a platform to regulate the redox balance for improving the bioconversion of CO, and amending the conventional C1 gas fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Volatile Metabolomic Composition of Vitex Species: Chemodiversity Insights and Acaricidal Activity

    Directory of Open Access Journals (Sweden)

    José G. de Sena Filho

    2017-11-01

    Full Text Available The Vitex genus (Lamiaceae produces a plethora of metabolites that include ecdysteroids and terpenoids, some of which have demonstrated insect repellent properties. The volatile composition of several members of this genus has not been chemically defined, as many taxa are endemic to remote ecosystems. In this study, leaves were collected from the northeast of Brazil from Vitex capitata, V. megapotamica, V. gardneriana, and V. rufescens plants and examined for their chemical profile via GC-MS/FID of essential oil extracts. The analyses showed a diversity of terpenoids. Of particular note were seven-member ring sesquiterpenes which were present in great abundance; a dendrogram showed clades separating by the production of bicyclogermacrene, aromadendrane and 5,10-cycloaromadendrane sesquiterpenoids for the four species. Comparison of volatile metabolite profiles to 13 other Vitex species showed strong similarities in the production of some monoterpenes, but varied by their production of larger terpenes, especially those with gem-dimethylcyclopropyl subunits on seven-member ring compounds. From this work, we suggest that the sesquiterpene skeleton with seven member rings is a good chemosystematic biomarker candidate for the Vitex genus. Separation using this biomarker was then validated using Inter-Simple Sequence Repeat profiling. Lastly, experiments examining the toxicity of these four oils against the coconut mite Aceria guerreronis showed that only the oil of V. gardneriana had strong acaricidal activity, with an LC50 of 0.85 mg/mL, thus demonstrating its potential for use as a natural pesticide.

  2. [The composition of volatile components of cepe (Boletus edulis) and oyster mushrooms (Pleurotus ostreatus)].

    Science.gov (United States)

    Misharina, T A; Mukhutdinova, S M; Zharikova, G G; Terenina, M B; Krikunova, N I

    2009-01-01

    The composition of aroma compounds in cooked and canned cepe (Boletus edulis) and in cooked oyster mushrooms (Pleurotus ostreatus) is studied using capillary gas chromatography and chromatography-mass spectrometry. It is found that unsaturated alcohols and ketones containing eight atoms of carbon determine the aroma of raw mushrooms and take part in the formation of the aroma of cooked mushrooms as well. The content of these compounds was the highest in canned cepes. In oyster mushrooms, the concentration of these alcohols and ketones was lower in comparison with cepes. The content of aliphatic and aromatic aldehydes was much higher in oyster mushrooms. Volatile aliphatic and heterocyclic Maillard reaction products and isomeric octenols and octenones formed the aroma of cooked and canned mushrooms.

  3. Dynamic measurement of coal thermal properties and elemental composition of volatile matter during coal pyrolysis

    Directory of Open Access Journals (Sweden)

    Rohan Stanger

    2014-01-01

    Full Text Available A new technique that allows dynamic measurement of thermal properties, expansion and the elemental chemistry of the volatile matter being evolved as coal is pyrolysed is described. The thermal and other properties are measured dynamically as a function of temperature of the coal without the need for equilibration at temperature. In particular, the technique allows for continuous elemental characterisation of tars as they are evolved during pyrolysis and afterwards as a function of boiling point. The technique is demonstrated by measuring the properties of maceral concentrates from a coal. The variation in heats of reaction, thermal conductivity and expansion as a function of maceral composition is described. Combined with the elemental analysis, the results aid in the interpretation of the chemical processes contributing to the physical and thermal behaviour of the coal during pyrolysis. Potential applications in cokemaking studies are discussed.

  4. Phytotoxic activity and chemical composition of aqueous volatile fractions from Eucalyptus species.

    Directory of Open Access Journals (Sweden)

    Jinbiao Zhang

    Full Text Available The essential oils from four Eucalyptus species (E. spathulata, E. salubris, E. brockwayii and E. dundasii have been previously confirmed to have stronger inhibitory effects on germination and seedling growth of silverleaf nightshade (Solanum elaeagnifolium Cav.. The aqueous volatile fractions (AVFs were the water soluble volatile fractions produced together with the essential oils (water insoluble fractions during the steam distillation process. The aim of this study was to further assess the phytotoxicity of AVFs from the four Eucalyptus species and their chemical composition. The fresh leaves of the four Eucalyptus species were used for the extraction of AVFs. The AVFs were tested for their phytotoxic effects on the perennial weed, silverleaf nightshade under laboratory conditions. The chemical compositions of the AVFs were determined by gas chromatograph-mass spectrometry (GC-MS. Our results showed that the AVFs had strong inhibition on the germination and seedling growth of silverleaf nightshade. The inhibition index increased with the increasing concentrations of AVFs. The inhibitory effects of the AVFs varied between different Eucalyptus species. The AVF from E. salubris demonstrated the highest inhibitory activity on the weed tested, with complete inhibition on germination and seedling growth at a concentration of 75%. The GC-MS analysis revealed that 1,8-cineole, isopentyl isovalerate, isomenthol, pinocarvone, trans-pinocarveol, alpha-terpineol and globulol were the main compounds in the AVFs. These results indicated that all AVFs tested had differential inhibition on the germination and seedling growth of silverleaf nightshade, which could be due to the joint effects of compounds present in the AVFs as these compounds were present in different quantities and ratio between Eucalyptus species.

  5. Phytotoxic Activity and Chemical Composition of Aqueous Volatile Fractions from Eucalyptus Species

    Science.gov (United States)

    Zhang, Jinbiao; An, Min; Wu, Hanwen; Liu, De Li; Stanton, Rex

    2014-01-01

    The essential oils from four Eucalyptus species (E. spathulata, E. salubris, E. brockwayii and E. dundasii) have been previously confirmed to have stronger inhibitory effects on germination and seedling growth of silverleaf nightshade (Solanum elaeagnifolium Cav.). The aqueous volatile fractions (AVFs) were the water soluble volatile fractions produced together with the essential oils (water insoluble fractions) during the steam distillation process. The aim of this study was to further assess the phytotoxicity of AVFs from the four Eucalyptus species and their chemical composition. The fresh leaves of the four Eucalyptus species were used for the extraction of AVFs. The AVFs were tested for their phytotoxic effects on the perennial weed, silverleaf nightshade under laboratory conditions. The chemical compositions of the AVFs were determined by gas chromatograph–mass spectrometry (GC-MS). Our results showed that the AVFs had strong inhibition on the germination and seedling growth of silverleaf nightshade. The inhibition index increased with the increasing concentrations of AVFs. The inhibitory effects of the AVFs varied between different Eucalyptus species. The AVF from E. salubris demonstrated the highest inhibitory activity on the weed tested, with complete inhibition on germination and seedling growth at a concentration of 75%. The GC-MS analysis revealed that 1,8-cineole, isopentyl isovalerate, isomenthol, pinocarvone, trans-pinocarveol, alpha-terpineol and globulol were the main compounds in the AVFs. These results indicated that all AVFs tested had differential inhibition on the germination and seedling growth of silverleaf nightshade, which could be due to the joint effects of compounds present in the AVFs as these compounds were present in different quantities and ratio between Eucalyptus species. PMID:24681490

  6. Comparison of the Chemical Composition of “Cystoseira sedoides (Desfontaines C. Agardh” Volatile Compounds Obtained by Different Extraction Techniques

    Directory of Open Access Journals (Sweden)

    Naima Bouzidi

    2016-01-01

    Full Text Available The volatile fraction of the brown alga Cystoseira sedoides (Desfontaines C.Agardh is prepared from the crude extract through the following three extraction methods: Hydrodistillation (HD, focused microwave assisted hydrodistillation (FMAHD and supercritical fluid extraction (SFE. The volatile fractions are analyzed by gas chromatography-flame ionization detector-mass spectrometry (GC-FID-MS, the chemical components are identified on the basis of the comparison of their retention indices with literature and their mass spectra with those reported in commercial databases. The chemical composition of the volatile fractions obtained by different extraction techniques fall into three major chemical classes: fatty acids and derivatives, sesquiterpenes, and hydrocarbons and derivatives. Others Compounds belonging to different chemical classes are found in that chemical composition.

  7. Chemical composition of the semi-volatile grains of comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Wurz, Peter; Altwegg, Kathrin; Balsiger, Hans; Berthelier, Jean-Jacques; Bieler, André; Calmonte, Ursina; De Keyser, Johan; Fiethe, Björn; Fuselier, Stefan; Gasc, Sébastien; Gombosi, Tamas; Jäckel, Annette; Korth, Axel; Le Roy, Lena; Mall, Urs; Rème, Henri; Rubin, Martin; Tzou, Chia-Yu

    2017-04-01

    The European Space Agency's Rosetta spacecraft (Glassmeier et al., 2007) has been in orbit of the comet 67P/Churyumov-Gerasimenko (67P/C-G) since August 2014. On board is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument suite (Balsiger et al., 2007). ROSINA consists of two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron-type Time-Of-Flight (RTOF) (Scherer et al., 2006), as well as the COmet Pressure Sensor (COPS). ROSINA is designed to detect and monitor the neutral gas and thermal plasma environment in the comet's coma by in situ investigation. The two mass spectrometers have high dynamic ranges and complement each other with high mass resolution (DFMS) and high time resolution and large mass range (RTOF). Especially the unprecedented sensitivity and mass resolution of DFMS together with the large mass range of RTOF allow determining precisely light species (e.g. isotopologues) as well as detecting heavy organic species. The pressure sensor COPS measures total gas densities, bulk velocities, and gas temperatures. ROSINA has been collecting data on the composition of the coma and activity of the comet from 3.5 AU to pericentre and out again to 3.5 AU. The Rosetta mission presents a unique opportunity to directly sample the parent species in the thin cometary atmosphere of a Kuiper-belt object at distances in excess of 2.5 AU from the Sun all the way to the pericentre of the cometary orbit at 1.24 AU. The ROSINA experiment continuously measured the chemical composition of the gases in the cometary coma. Occasionally, a dust grain of cometary origin enters the ion source of a ROSINA instrument where the volatile part evaporates since these ion sources are hot. We will report on the first measurements of the volatile inventory of such dust grains. Volatile release from cometary dust grains was observed with all three ROSINA instruments on several occasions. Because the volatile content of such a dust

  8. Variations in Volatile Oil Yield and Composition of "Xin-yi" (Magnolia biondii Pamp. Flower Buds) at Different Growth Stages.

    Science.gov (United States)

    Hu, Mingli; Bai, Mei; Ye, Wei; Wang, Yaling; Wu, Hong

    2018-06-01

    Dried flower buds of Magnolia biondii Pamp. are the main ingredient in "Xin-yi" in China, and the volatile oils of M. biondii flower buds are the principal medicinal component. Gas chromatographymass spectrometry (GC-MS) and microscopic techniques were employed to detect the volatile yields of M. biondii flowers at various growth stages. The volatile oil yields of M. biondii flowers differed significantly at different growth stages and were closely related to flower dry weight, oil cell density and degree of oil accumulation. In February 2016, flower buds had the highest dry weight, the maximum percentage of oil cells at the oil saturation stage and the highest density of oil cells, which coincided with the highest oil yield. In March 2016, flower buds had a lower dry weight, a higher percentage of oil cells at the oil-degrading stage and the lowest oil cell density, resulting in decreased oil yields. The total amounts of the major medicinal components in the M. biondii flower also showed regular changes at different growth stages. In January and February of 2016, M. biondii flowers had a higher dry weight, volatile oil yield and total content of medicinal ingredients, which was the best time for harvesting high-quality medicinal components. Our study reveals that volatile oil content and chemical composition are closely related to the growth stage of M. biondii flower buds. The results provide a scientific morphology and composition index for evaluating the medicinal value and harvesting of high-quality M. biondii medicinal herbs.

  9. Determinants of the Sensory Quality of Półgęsek in Relation to Volatile Compounds and Chemical Composition

    Directory of Open Access Journals (Sweden)

    Nowicka Katarzyna

    2017-12-01

    Full Text Available The objective of this study was to determine the sensory quality of a specific Polish traditional product made from cured and then smoked goose meat (półgęsek in relation to its volatile compounds and chemical composition. In general, the examined samples contained 66.2% water, 12.2% fat, 17.9% protein, 1.8% connective tissue, and 2.3% NaCl. Moreover, 47 volatile compounds were identified and quantified. The typical decomposition products derived from lipid oxidation, amino acid degradation, carbohydrate fermentation and microbial esterification were the main volatiles detected in all the samples. The volatiles generated by the smoking process and the ones originating from spices were also observed. The results of the sensory evaluation indicated that all the samples of the analyzed products were characterized by a high overall quality. Results of the Principal Component Analysis (PCA showed, however, that specific groups of products have their own unique sensory profile. Additionally, the sensory analysis confirmed the significant role of the chemical composition and volatile compounds in the development of the overall quality of półgęsek.

  10. Chemical Composition and Biological Activity of Volatile Extracts from Leaves and Fruits of Schinusterebinthifolius Raddi from Tunisia

    Directory of Open Access Journals (Sweden)

    Alessandra Piras

    2017-01-01

    Full Text Available Volatile oils composition from leaves and ripe fruits of pink pepper (Schinus terebinthifolius Raddi growing in Tunisia were investigated using GC-FID and GC-MS techniques. Volatile oil extraction was achieved by hydrodistillation (HD using a Clevenger apparatus and by supercritical fluid extraction (SFE using carbon dioxide. All plant organs, gave SFE extracts chiefly composed by a -pinene, a -phellandrene, b -phellandrene, germacrene D and bicyclogermacrene. In the case of the fruits, both extraction techniques gave volatile oils of similar composition; whereas the comparison between the HD and SFE leave oils revealed important differences in the content of a -pinene (6.1 % vs traces, a -phellandrene (22.7 % vs 0.8 % and b -phellandrene (14.6 % vs 1.2 %. All volatile samples were evaluated against yeasts and dermatophyte strains, being more active against Cryptococcus neoformans, particularly the volatile oil from the fruits, with MIC values of (0.32-0.64 mg/mL.Moreover, this oil revealed an inhibitory effect on germ tube formation in C. albicans at sub-inhibitory concentration. At the concentration of MIC/8 the inhibition of filamentation was more than 70 %.

  11. Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area

    Directory of Open Access Journals (Sweden)

    L. Xu

    2016-02-01

    Full Text Available The composition of PM1 (particulate matter with diameter less than 1 µm in the greater London area was characterized during the Clean Air for London (ClearfLo project in winter 2012. Two high-resolution time-of-flight aerosol mass spectrometers (HR-ToF-AMS were deployed at a rural site (Detling, Kent and an urban site (North Kensington, London. The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA concentration is comparable between the rural and urban sites, but the contribution from different sources is distinctly different between the two sites. The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70 % of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 °C in the TD, 40 % of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC; measured by a soot-particle aerosol mass spectrometer only accounts for < 10 % of the total OA (measured by a HR-ToF-AMS at 250 °C, the two measurements are well-correlated, suggesting that the non-volatile organics have similar sources or have

  12. Chemical composition and non-volatile components of three wild edible mushrooms collected from northwest Tunisia

    Directory of Open Access Journals (Sweden)

    ibtissem Kacem Jedidi

    2016-04-01

    Full Text Available In Tunisia, many people collect wild edible mushrooms as pickers for their own consumption. The present work aims at contributing to the determination of the chemical composition, non volatile components content (soluble sugars, free amino acids and minerals and trace elements of three popular Tunisian wild edible mushrooms species collected from the northwest of Tunisia (Agaricus campestris, Boletus edulis and Cantharellus cibarius.All investigated mushrooms revealed that these species are rich sources of proteins (123.70 – 374.10 g kg-1 dry weight (DW and carbohydrates (403.3 – 722.40 g kg-1 DW, and low content of fat (28.2 – 39.9 g kg-1 DW; the highest energetic contribution was guaranteed by C. cibarius (1542.71 kJ / 100 g. A. compestris (33.14 mg/g DW showed the highest concentration of essential amino acids. The composition in individual sugars was also determined, mannitol and trehalose being the most abundant sugars. C. cibarius revealed the highest concentrations of carbohydrates (722.4 g kg-1 DW and A. compestris the lowest concentration (403.3 g kg-1 DW. Potassium (K and sodium (Na are the most abundant minerals in analyzed samples (A. compestris showed the highest concentrations of K and Na, 49141.44 and 9263.886 µg/g DW respectively.

  13. Nutritional composition, bioactive compounds and volatile profile of cocoa beans from different regions of Cameroon.

    Science.gov (United States)

    Caprioli, Giovanni; Fiorini, Dennis; Maggi, Filippo; Nicoletti, Marcello; Ricciutelli, Massimo; Toniolo, Chiara; Prosper, Biapa; Vittori, Sauro; Sagratini, Gianni

    2016-06-01

    Analysis of the complex composition of cocoa beans provides fundamental information for evaluating the quality and nutritional aspects of cocoa-based food products, nutraceuticals and supplements. Cameroon, the world's fourth largest producer of cocoa, has been defined as "Africa in miniature" because of the variety it habitats. In order to evaluate the nutritional characteristics of cocoa beans from five different regions of Cameroon, we studied their polyphenolic content, volatile compounds and fatty acids composition. The High Performance Thin Layer Chromatography (HPTLC) analysis showed that the Mbalmayo sample had the highest content of theobromine (11.6 mg/g) and caffeic acid (2.1 mg/g), while the Sanchou sample had the highest level of (-)-epicatechin (142.9 mg/g). Concerning fatty acids, the lowest level of stearic acid was found in the Mbalmayo sample while the Bertoua sample showed the highest content of oleic acid. Thus, we confirmed that geographical origin influences the quality and nutritional characteristics of cocoa from these regions of Cameroon.

  14. Essential Oil Composition and Volatile Profile of Seven Helichrysum Species Grown in Italy.

    Science.gov (United States)

    Giovanelli, Silvia; De Leo, Marinella; Cervelli, Claudio; Ruffoni, Barbara; Ciccarelli, Daniela; Pistelli, Luisa

    2018-03-06

    Helichrysum genus consists of about 600 species widespread throughout the world, especially in South Africa and in the Mediterranean area. In this study the aroma profile (HS-SPME) and the EO compositions of seven Helichrysum species (H. cymosum, H. odoratissimum, H. petiolare, H. fontanesii, H. saxatile, H. sanguineum, and H. tenax) were evaluated. All the plants were grown in Italy under the same growth conditions. The volatile constituents, particularly monoterpenes, depended by the plant's genotype and ecological adaptation. This study represents the first headspace evaluation on the selected plants and the results evidenced that monoterpenes represented the main class of constituents in five of the seven species analysed (from 59.2% to 95.0%). The higher content in sesquiterpene hydrocarbons was observed in the Mediterranean species of H. sanguineum (68.0%). Only H. saxatile showed relative similar abundance of monoterpenes and sesquiterpene hydrocarbons. The essential oil composition of the majority of examined species are characterised by high percentage of sesquiterpenes (especially β-caryophyllene and δ-cadinene) ranging from 51.3% to 92.0%, except for H. cymosum, H. tenax, and H. sanguineum leaves where monoterpenes predominated (from 51.7% to 74.7%). © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  15. Composition quantification of electron-transparent samples by backscattered electron imaging in scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Müller, E., E-mail: erich.mueller@kit.edu; Gerthsen, D.

    2017-02-15

    The contrast of backscattered electron (BSE) images in scanning electron microscopy (SEM) depends on material parameters which can be exploited for composition quantification if some information on the material system is available. As an example, the In-concentration in thin In{sub x}Ga{sub 1−x}As layers embedded in a GaAs matrix is analyzed in this work. The spatial resolution of the technique is improved by using thin electron-transparent specimens instead of bulk samples. Although the BSEs are detected in a comparably small angular range by an annular semiconductor detector, the image intensity can be evaluated to determine the composition and local thickness of the specimen. The measured intensities are calibrated within one single image to eliminate the influence of the detection and amplification system. Quantification is performed by comparison of experimental and calculated data. Instead of using time-consuming Monte-Carlo simulations, an analytical model is applied for BSE-intensity calculations which considers single electron scattering and electron diffusion. - Highlights: • Sample thickness and composition are quantified by backscattered electron imaging. • A thin sample is used to achieve spatial resolution of few nanometers. • Calculations are carried out with a time-saving electron diffusion model. • Small differences in atomic number and density detected at low electron energies.

  16. Coating composition curable by electron beam irradiation

    International Nuclear Information System (INIS)

    Masuda, Hiromasa; Iijima, Ken-ichi.

    1971-01-01

    Here is provided a coating composition curable with low dose of electron beams to give a smooth coating film having no surface tackiness. In one example, 126 parts of melamine was reacted with 682 parts of formalin followed by 697 parts of β-hydroxyethyl acrylate to produce component (A) (viscosity 780 cp). On the other hand, 900 parts of tung oil was reacted with 343 parts of maleic anhydride followed by 22 parts of dimethylaminoethyl methacrylate and 406 parts of β-hydroxyethyl acrylate. The resulting product was diluted with 508 parts of methyl methacrylate to give component (B) (dark red, viscous substance). 900 parts of (A), 100 parts of (B), 0.5 part of bees wax and 0.2 part of paraffin wax were blended together. A sized material was coated with the mixture and irradiated with electron beams (6 Mrad) in the presence of air. A smooth film free from surface tackiness was obtained. β-hydroxyethyl acrylate may be replaced by other hydroxyalkyl esters of α,β-unsaturated acids, and melamine may be replaced by urea, benzoguanamine or acetoguanamine. Tung oil may be replaced by linseed, safflower, soybean, rice, oiticica or cotton seed oil. A more flexible film is obtained by using component (B) in a larger proportion. (A)/(B) ratio should be in the range of 90/10 to 10/90 by wt. (Kaichi, S.)

  17. Validation of exhaled volatile organic compounds analysis using electronic nose as index of COPD severity

    Directory of Open Access Journals (Sweden)

    Finamore P

    2018-05-01

    Full Text Available Panaiotis Finamore,1 Claudio Pedone,1 Simone Scarlata,1 Alessandra Di Paolo,1 Simone Grasso,2 Marco Santonico,2 Giorgio Pennazza,2 Raffaele Antonelli Incalzi1 1Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy; 2Unit of Electronics for Sensor Systems, Campus Bio-Medico di Roma University, Rome, Italy Aim: Six-minute walking test distance (6MWD and body mass index, obstruction, dyspnea and exercise (BODE index are measures of functional status in COPD patients, but require space, time and patient’s compliance. Exhaled volatile organic compounds (VOCs analysis via electronic nose is a quick and easy method that has already been used to discriminate COPD phenotypes. The aim of this study is to evaluate whether VOCs analysis can predict functional status and its variation over time in COPD patients.Methods: A monocentric prospective study with 1 year of follow-up was carried out. All patients underwent pulmonary function tests, arterial gas analysis, bioimpedance analysis, 6-minute walking test, and VOCs collection. Exhaled breath was collected with Pneumopipe® and analyzed using BIONOTE electronic nose. Outcomes prediction was performed by k-fold cross-validated partial least square discriminant analysis: accuracy, sensitivity and specificity as well as Cohen’s kappa for agreement were calculated.Results: We enrolled 63 patients, 60.3% men, with a mean age of 71 (SD: 8 years, median BODE index of 1 (interquartile range: 0–3 and mean 6MWD normalized by squared height (n6MWD of 133.5 (SD: 42 m/m2. The BIONOTE predicted baseline BODE score (dichotomized as BODE score <3 or ≥3 with an accuracy of 86% and quartiles of n6MWD with an accuracy of 79%. n6MWD decline more than the median value after 1 year was predicted with an accuracy of 86% by BIONOTE, 52% by Global Initiative for Chronic Obstructive Lung Disease (GOLD class and 78% by combined BIONOTE and GOLD class.Conclusion: Exhaled VOCs analysis identifies classes of BODE

  18. High pressure treatments accelerate changes in volatile composition of sulphur dioxide-free wine during bottle storage.

    Science.gov (United States)

    Santos, Mickael C; Nunes, Cláudia; Rocha, M Angélica M; Rodrigues, Ana; Rocha, Sílvia M; Saraiva, Jorge A; Coimbra, Manuel A

    2015-12-01

    The impact of high hydrostatic pressure (HHP) treatments on volatile composition of sulphur dioxide-free wines during bottle storage was studied. For this purpose, white and red wines were produced without sulphur dioxide (SO2) and, at the end of the alcoholic fermentation, the wines were pressurised at 500 MPa and 425 MPa for 5 min. Wine with 40 ppm of SO2 and a wine without a preservation treatment were used as controls. More than 160 volatile compounds, distributed over 12 chemical groups, were identified in the wines by an advanced gas chromatography technique. The pressurised wines contained a higher content of furans, aldehydes, ketones, and acetals, compared with unpressurised wines after 9 months of storage. The changes in the volatile composition indicate that HHP treatments accelerated the Maillard reaction, and alcohol and fatty acid oxidation, leading to wines with a volatile composition similar to those of faster aged and/or thermally treated wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath

    Science.gov (United States)

    Alphus D. Wilson

    2015-01-01

    Recent advancements in the use of electronic-nose (e-nose) devices to analyze human breath profiles for the presence of specific volatile metabolites, known as biomarkers or chemical bio-indicators of specific human diseases, metabolic disorders and the overall health status of individuals, are providing the potential for new noninvasive tools and techniques useful to...

  20. [Composition characteristics of atmospheric volatile organic compounds in the urban area of Beibei District, Chongqing].

    Science.gov (United States)

    Qi, Xin; Hao, Qing-ju; Ji, Dong-sheng; Zhang, Jun-ke; Liu, Zi-rui; Hu, Bo; Wang, Yue-si; Jiang, Chang-sheng

    2014-09-01

    In order to study the composition and distribution of VOCs (Volatile Organic Compounds) in the atmosphere in the urban area of Beibei district, Chongqing, atmospheric samples were collected from March 2012 to February 2013 with special stainless steel cylinders, and analyzed with a three-stage preconcentration method coupled with GC-MS. 78 species of VOCs were detected in this study, of which there were 25 species of alkanes, 15 species of olefins, 28 species of aromatic hydrocarbons and 10 species of halogenated hydrocarbons. The results showed that the top seven species of VOCs according to the order of annual average concentration in the atmosphere of Beibei were: Dichloromethane (3. 08 x 10(-9) ) , Benzene (2. 09 x 10-9) , Isopentane (1. 85 x 10 -9) , Toluene (1. 51 x 10(-9)) , Propane (1. 51 x 10(-9)), m/p-xylene (1.43 x 10(-9)) and Styrene (1. 39 x 10-9). The concentration of TVOCs (Total Volatile Organic Compounds) in the atmosphere of Beibei was 33. 89 x 10 -9 during the measuring period, and the seasonal variation was obvious with the order of spring (42. 57 x 10 -9) > autumn (33.89 x 10-9) > winter (31.91 x 10 -9) > summer (27.04 x 10(-9)). In the composition of TVOCs, alkanes and aromatic hydrocarbons provided the largest contribution to TVOCs (31.5% and 30.7% ) , followed by halogenated hydrocarbon, accounting for 27.4% , and the last one was olefins, with only 10.4%. By means of ozone formation potential, the analysis results showed that olefins and aromatic hydrocarbon compounds were the two important materials which made the biggest contribution to the formation of ozone in the atmosphere of Beibei. We further analyzed the sources of VOCs in atmosphere of Beibei by the method of Principal Component Analysis (PCA). Vehicle exhaust was the biggest source and its contribution to VOCs was 50. 41%. The calculated results with T/B value also confirmed that traffic was the biggest source contributing to the VOCs in atmosphere of Beibei.

  1. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Boyce, J. W.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Magna, T.; Ni, P.; Tartese, R.; hide

    2017-01-01

    The chapter will begin with an introduction that defines magmatic volatiles (e.g., H, F, Cl, S) versus geochemical volatiles (e.g., K, Rb, Zn). We will discuss our approach of understanding both types of volatiles in lunar samples and lay the ground work for how we will determine the overall volatile budget of the Moon. We will then discuss the importance of endogenous volatiles in shaping the "Newer Views of the Moon", specifically how endogenous volatiles feed forward into processes such as the origin of the Moon, magmatic differentiation, volcanism, and secondary processes during surface and crustal interactions. After the introduction, we will include a re-view/synthesis on the current state of 1) apatite compositions (volatile abundances and isotopic compositions); 2) nominally anhydrous mineral phases (moderately to highly volatile); 3) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar pyroclastic glass beads; 4) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar basalts; 5) volatile (moderately to highly volatile) abundances in and isotopic compositions of melt inclusions; and finally 6) experimental constraints on mineral-melt partitioning of moderately to highly volatile elements under lunar conditions. We anticipate that each section will summarize results since 2007 and focus on new results published since the 2015 Am Min review paper on lunar volatiles [9]. The next section will discuss how to use sample abundances of volatiles to understand the source region and potential caveats in estimating source abundances of volatiles. The following section will include our best estimates of volatile abundances and isotopic compositions (where permitted by available data) for each volatile element of interest in a number of important lunar reservoirs, including the crust, mantle, KREEP, and bulk Moon. The final section of the chapter will focus upon future work, outstanding questions

  2. Determination of the vertical distribution and areal of the composition in volatile oil and/or gas condensate reservoirs

    International Nuclear Information System (INIS)

    Santos Santos, Nicolas; Ortiz Cancino, Olga Patricia; Barrios Ortiz, Wilson

    2005-01-01

    The compositional variation in vertical and areal direction due to gravitational and thermal effects plays an important role in the determination of the original reserves in-situ and in the selection of the operation scheme for volatile oil and/or gas condensate reservoirs. In this work we presented the mathematical formulation of the thermodynamic behavior experienced by compositional fluids, such as volatile oil and/or gas condensate, under the influence of the mentioned effects (gravitational and thermal), which was implemented in a software tool, this tool determine the compositional variation in vertical direction and, in addition, it allows to know the saturation pressure variation in the hydrocarbon column and the location of the gas-oil contact. With the obtained results, product of the use of this tool, was developed a methodology to obtain one first approach of the compositional variation in areal direction to obtain compositional spatial distribution (iso composition maps) in the reservoir, for components like the methane, which experiences the greater variations. These iso composition maps allow to determine the location of the hydrocarbon deposits, in such a way that the production strategies can be selected and be applied to maximize the recovery, such as in fill wells, perforation of new zones, EOR processes, etc

  3. Reduced graphene oxide/δ-WO{sub 3} composites for volatile organic compounds sensing

    Energy Technology Data Exchange (ETDEWEB)

    Perfecto, Tarcisio Micheli; Zito, Cecilia de Almeida; Volanti, Diogo Paschoalini, E-mail: tarcisio93@hotmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: Metal oxide semiconductors (MOS) is a simple and low-cost alternative to detect volatile organic compounds (VOCs) with fast response and recovery time [1]. In this context, reduced graphene oxide (RGO) is used in order to achieve a superior metal oxides gas sensing performance [2]. Thus, we report the synthesis of RGO/δ-WO{sub 3} composites by microwave-assisted hydrothermal method and its application in VOCs detection. The composites were prepared in a single-step using a graphene oxide dispersion, tungsten salt, ammonium oxalate hydrate as morphological control agent, and HCl in aqueous medium. The mixture was sealed in an autoclave and irradiated by microwave (800W) at 140 °C for 10 minutes. Then the sample was heating treatment at 400 °C for 1 hour. δ-WO{sub 3} single phase was also prepared by the same process without graphene oxide. The XRD results indicated the successful formation of triclinic phase of WO{sub 3} for both samples. FEG-SEM images showed the δ-WO{sub 3} nanoplates formation that are agglomerated and become more disperse and with irregular shape in RGO/δ-WO{sub 3} composite. TEM analysis revealed the interaction between RGO and δ-WO{sub 3} particles. The preliminary gas sensing results showed that increasing the operation temperature, more sensitive the composite RGO/δ-WO{sub 3} was toward the ethanol, methanol, acetone, toluene and benzene. So far, the highest response observed was to acetone at 300 °C. The response of RGO/δ-WO{sub 3} to 5, 10, 50, 100 and 200 ppm of acetone was 1.08, 1.12, 1.42, 1.75, and 1.99, respectively. We expect that increasing the operating temperature, more sensitive the material will become, since reports shows that WO{sub 3} sensors exhibit higher responses at higher temperatures [3]. Acknowledgments: The authors acknowledge FAPESP grants: 16/04371-1, 15/04306-2 and 14/17343-0. Refs.: [1] Jiang, D.;et al. RSC Adv. 2015, 5 (49), 39442-39448. [2] Jie, X.; et al. Sensors Actuators B Chem. 2015, 220

  4. Electron Beam Curing of Polymer Matrix Composites - CRADA Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Janke, C. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Dave [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Norris, Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1997-05-01

    The major cost driver in manufacturing polymer matrix composite (PMC) parts and structures, and one of the elements having the greatest effect on their quality and performance, is the standard thermal cure process. Thermal curing of PMCs requires long cure times and high energy consumption, creates residual thermal stresses in the part, produces volatile toxic by-products, and requires expensive tooling that is tolerant of the high cure temperatures.

  5. Characterization of volatile composition of Laurencia dendroidea by gas chromatography-mass spectrometry

    Directory of Open Access Journals (Sweden)

    Vanessa Gressler

    2012-05-01

    Full Text Available In this study we report the characterization of the volatile compounds of Laurencia dendroidea. Solvent extracts (dichloromethane and methanol, hydrodistillation extracts and headspace solid-phase microextraction samples were obtained and analyzed by GC-MS. Forty-six volatile components were identified in L. dendroidea, among them hydrocarbons, alcohols, phenols, aldehydes, ketones, acids, esters and terpenes.

  6. Volatile-mediated suppression of plant pathogens is related to soil properties and microbial community composition

    NARCIS (Netherlands)

    Van Agtmaal, M.; Straathof, A.L.; Termorshuizen, Aad J; Lievens, Bart; Hoffland, Ellis; De Boer, W.

    2018-01-01

    There is increasing evidence that the soil microbial community produces a suite of volatile organic compounds that suppress plant pathogens. However, it remains unknown which soil properties and management practices influence volatile-mediated pathogen suppression. The aim of this study was to

  7. Volatile-mediated suppression of plant pathogens is related to soil properties and microbial community composition

    NARCIS (Netherlands)

    Agtmaal, van Maaike; Straathof, Angela L.; Termorshuizen, Aad; Lievens, Bart; Hoffland, Ellis; Boer, de Wietse

    2018-01-01

    There is increasing evidence that the soil microbial community produces a suite of volatile organic compounds that suppress plant pathogens. However, it remains unknown which soil properties and management practices influence volatile-mediated pathogen suppression. The aim of this study was to

  8. Composition of volatile aromatic compounds and minerals of tarhana enriched with cherry laurel (Laurocerasus officinalis).

    Science.gov (United States)

    Temiz, Hasan; Tarakçı, Zekai

    2017-03-01

    Different concentrations of cherry laurel pulp (0, 5, 10, 15 and 20%) were used to produce tarhana samples. Volatile aromatic compounds and minor mineral content were investigated. Volatile aromatic compounds were analyzed by using GC-MS with SPME fiber and minor mineral values were evaluated with inductively coupled plasma optical emission spectrometer. The statistical analysis showed that addition of pulp affected volatile aromatic compounds and minor mineral content significantly. Thirty five volatile aromatic compounds were found in tarhana samples. The octanoic acid from acids, benzaldehyde (CAS) phenylmethanal from aldehydes, 6-methyl-5-hepten-2-one from ketones, octadecane (CAS) n -octadecane form terpenes, ethyl caprylate from esters and benzenemethanol (CAS) benzyl alcohol from alcohols had the highest percentage of volatile aromatic compounds. Tarhana samples were rich source of Mn, Cu and Fe content.

  9. Investigating the Variation of Volatile Compound Composition in Maotai-Flavoured Liquor During Its Multiple Fermentation Steps Using Statistical Methods

    Directory of Open Access Journals (Sweden)

    Zheng-Yun Wu

    2016-01-01

    Full Text Available The use of multiple fermentations is one of the most specific characteristics of Maotai-flavoured liquor production. In this research, the variation of volatile composition of Maotai-flavoured liquor during its multiple fermentations is investigated using statistical approaches. Cluster analysis shows that the obtained samples are grouped mainly according to the fermentation steps rather than the distillery they originate from, and the samples from the first two fermentation steps show the greatest difference, suggesting that multiple fermentation and distillation steps result in the end in similar volatile composition of the liquor. Back-propagation neural network (BNN models were developed that satisfactorily predict the number of fermentation steps and the organoleptic evaluation scores of liquor samples from their volatile compositions. Mean impact value (MIV analysis shows that ethyl lactate, furfural and some high-boiling-point acids play important roles, while pyrazine contributes much less to the improvement of the flavour and taste of Maotai-flavoured liquor during its production. This study contributes to further understanding of the mechanisms of Maotai-flavoured liquor production.

  10. Advances in Electronic-Nose Technologies for the Detection of Volatile Biomarker Metabolites in the Human Breath

    Directory of Open Access Journals (Sweden)

    Alphus D. Wilson

    2015-03-01

    Full Text Available Recent advancements in the use of electronic-nose (e-nose devices to analyze human breath profiles for the presence of specific volatile metabolites, known as biomarkers or chemical bio-indicators of specific human diseases, metabolic disorders and the overall health status of individuals, are providing the potential for new noninvasive tools and techniques useful to point-of-care clinical disease diagnoses. This exciting new area of electronic disease detection and diagnosis promises to yield much faster and earlier detection of human diseases and disorders, allowing earlier, more effective treatments, resulting in more rapid patient recovery from various afflictions. E-nose devices are particularly suited for the field of disease diagnostics, because they are sensitive to a wide range of volatile organic compounds (VOCs and can effectively distinguish between different complex gaseous mixtures via analysis of electronic aroma sensor-array output profiles of volatile metabolites present in the human breath. This review provides a summary of some recent developments of electronic-nose technologies, particularly involving breath analysis, with the potential for providing many new diagnostic applications for the detection of specific human diseases associated with different organs in the body, detectable from e-nose analyses of aberrant disease-associated VOCs present in air expired from the lungs.

  11. Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition.

    Science.gov (United States)

    Mathieu, Sandrine; Cin, Valeriano Dal; Fei, Zhangjun; Li, Hua; Bliss, Peter; Taylor, Mark G; Klee, Harry J; Tieman, Denise M

    2009-01-01

    The unique flavour of a tomato fruit is the sum of a complex interaction among sugars, acids, and a large set of volatile compounds. While it is generally acknowledged that the flavour of commercially produced tomatoes is inferior, the biochemical and genetic complexity of the trait has made breeding for improved flavour extremely difficult. The volatiles, in particular, present a major challenge for flavour improvement, being generated from a diverse set of lipid, amino acid, and carotenoid precursors. Very few genes controlling their biosynthesis have been identified. New quantitative trait loci (QTLs) that affect the volatile emissions of red-ripe fruits are described here. A population of introgression lines derived from a cross between the cultivated tomato Solanum lycopersicum and its wild relative, S. habrochaites, was characterized over multiple seasons and locations. A total of 30 QTLs affecting the emission of one or more volatiles were mapped. The data from this mapping project, combined with previously collected data on an IL population derived from a cross between S. lycopersicum and S. pennellii populations, were used to construct a correlational database. A metabolite tree derived from these data provides new insights into the pathways for the synthesis of several of these volatiles. One QTL is a novel locus affecting fruit carotenoid content on chromosome 2. Volatile emissions from this and other lines indicate that the linear and cyclic apocarotenoid volatiles are probably derived from separate carotenoid pools.

  12. Effect of plant age on fresh rhizome yield and volatile oil composition of Acorus calamus linn

    International Nuclear Information System (INIS)

    Osman, M.A.; Bahl, J.R.; Darokar, M. P.; Garg, S.N.; Lal, R.K.; Khanuja, S.P.S.

    2008-01-01

    The effect of plant age on growth, yield and oil content and composition of sweet flag (Acorus calamus) was studied in four populations at four different ages, raised at CIMAP experimental research Farm, India. The plant age had significant effect on total fresh yield and leaves and rhizomes fresh weights. These parameters showed increasing trend with advancement of harvesting age up to 6 years, and age increase to more than 15 years resulted in their decrease . Significantly highest number of shoots per square meter was recorded in more than 15 year old crop, and the lowest number was recorded in the 6 year old crop. The highest oil yield of rhizomes was obtained from the six year old plants. Shoot length, rhizome leaf ratio (R/L) and oil yield of leaves did not show significant differences with the age of the plant. However, 6 year old plants recorded the highest average shoot length, and the three year old plants gave the highest oil yield of leaves. The total fresh yield showed a highly significant positive correlation with rhizomes fresh weight (r = 0.999), leaves fresh weight (r=0.994) and with rhizome: leaf ratio (r = 0.998). Highly significant positive correlations (r = 0.999) were also obtained between rhizomes oil content and rhizomes oil yield and between leaves oil content and leaves oil yield. β-asarone was the most dominant constituent in the oils of both leaves and rhizomes , constituting an average of 84.2% in the leaves and 88.9% in the rhizomes oil. The study indicated that the oil content of fresh rhizomes and leaves is the main contributor to their oil yields, and selection for high oil content will be effective. The constituents of the volatile oil remained the same irrespective of the plant age.(Author)

  13. Volatile composition of Merlot red wine and its contribution to the aroma: optimization and validation of analytical method.

    Science.gov (United States)

    Arcari, Stefany Grützmann; Caliari, Vinicius; Sganzerla, Marla; Godoy, Helena Teixeira

    2017-11-01

    A methodology for the determination of volatile compounds in red wine using headspace solid phase microextraction (HS-SPME) combined with gas chromatography-ion trap/ mass spectrometry (GC-IT/MS) and flame ionization detector (GC -FID) was developed, validated and applied to a sample of Brazilian red wine. The optimization strategy was conducted using the Plackett-Burman design for variable selection and central composite rotational design (CCRD). The response surface methodology showed that the performance of the extraction of the volatile compounds using divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber is improved with no sample dilution, the addition of 30% NaCl, applying an extraction temperature of 56°C and extraction time of 55min. The qualitative method allowed the extraction and identification of 60 volatile compounds in the sample studied, notably the classes of esters, alcohols, and fatty acids. Furthermore, the method was successfully validated for the quantification of 55 volatile compounds of importance in wines and applied to twelve samples of Merlot red wine from South of Brazil. The calculation of the odor activity value (OAV) showed the most important components of the samples aroma. Ethyl isovalerate, ethyl hexanoate, 1-hexanol, octanoic acid and ethyl cinnamate had the greatest contribution to the aroma of the wines analyzed, which is predominantly fruity with the presence of herbal and fatty odors. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Composition of the earth's upper mantle. II - Volatile trace elements in ultramafic xenoliths

    Science.gov (United States)

    Morgan, J. W.; Wandless, G. A.; Petrie, R. K.; Irving, A. J.

    1980-01-01

    Radiochemical neutron activation analysis was used to determine the nine volatile elements Ag, Bi, Cd, In, Sb, Se, Te, Tl, and Zn in 19 ultramafic rocks, consisting mainly of spinel and garnet lherzolites. A sheared garnet lherzolite, PHN 1611, may approximate undepleted mantle material and tends to have a higher volatile element content than the depleted mantle material represented by spinel lherzolites. Comparisons of continental basalts with PHN 1611 and of oceanic ridge basalts with spinel lherzolites show similar basalt: source material partition factors for eight of the nine volatile elements, Sb being the exception. The strong depletion of Te and Se in the mantle, relative to lithophile elements of similar volatility, suggests that 97% of the earth's S, Se and Te may be in the outer core.

  15. Composition of sulla (Hedysarum coronarium L.) honey solvent extractives determined by GC/MS: norisoprenoids and other volatile organic compounds.

    Science.gov (United States)

    Jerković, Igor; Tuberoso, Carlo I G; Tuberso, Carlo I G; Gugić, Mirko; Bubalo, Dragan

    2010-09-09

    Samples of unifloral sulla (Hedysarum coronarum L.) honey from Sardinia (Italy) were analysed. To investigate the chemical composition of the honey volatiles two solvent systems were used for ultrasonic solvent extraction (USE): 1) a 1:2 (v/v) pentane and diethyl ether mixture and 2) dichloromethane. All the extracts were analysed by GC and GC/MS. These procedures have permitted the identification of 56 compounds that include norisoprenoids, benzene derivatives, aliphatic compounds and Maillard reaction products. Norisoprenoids were the major compounds in both extracts, dominated by vomifoliol (5.3-11.2%; 9.6-14.0%) followed by minor percentages of other norisoprenoids such as α-isophorone, 4-ketoisophorone, 3-oxo-α-ionol or 3-oxo-α-ionone. Other abundant single compounds in the extracts were 3-hydroxy-4-phenylbutan-2-one (0.8-5.4%; 0.6-5.7%) and methyl syringate (3.0-5.7%; 2.2-4.1%). The composition of the volatiles and semi-volatiles in the obtained extracts suggests that sulla honey is quite distinctive relative to the other honeys that have been chemically studied by GC/MS, but no specific markers of the honey botanical origin were found.

  16. Composition of Sulla (Hedysarum coronarium L. Honey Solvent Extractives Determined by GC/MS: Norisoprenoids and Other Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Dragan Bubalo

    2010-09-01

    Full Text Available Samples of unifloral sulla (Hedysarum coronarum L. honey from Sardinia (Italy were analysed. To investigate the chemical composition of the honey volatiles two solvent systems were used for ultrasonic solvent extraction (USE: 1 a 1:2 (v/v pentane and diethyl ether mixture and 2 dichloromethane. All the extracts were analysed by GC and GC/MS. These procedures have permitted the identification of 56 compounds that include norisoprenoids, benzene derivatives, aliphatic compounds and Maillard reaction products. Norisoprenoids were the major compounds in both extracts, dominated by vomifoliol (5.3-11.2%; 9.6-14.0% followed by minor percentages of other norisoprenoids such as α-isophorone, 4-ketoisophorone, 3-oxo-α-ionol or 3-oxo-α-ionone. Other abundant single compounds in the extracts were 3-hydroxy-4-phenylbutan-2-one (0.8-5.4%; 0.6-5.7% and methyl syringate (3.0-5.7%; 2.2-4.1%. The composition of the volatiles and semi-volatiles in the obtained extracts suggests that sulla honey is quite distinctive relative to the other honeys that have been chemically studied by GC/MS, but no specific markers of the honey botanical origin were found.

  17. Cellulose Nanofiber Composite Substrates for Flexible Electronics

    Science.gov (United States)

    Ronald Sabo; Jung-Hun Seo; Zhenqiang Ma

    2012-01-01

    Flexible electronics have a large number of potential applications including malleable displays and wearable computers. The current research into high-speed, flexible electronic substrates employs the use of plastics for the flexible substrate, but these plastics typically have drawbacks, such as high thermal expansion coefficients. Transparent films made from...

  18. Influence of choice of yeasts on volatile fermentation-derived compounds, colour and phenolics composition in Cabernet Sauvignon wine.

    Science.gov (United States)

    Blazquez Rojas, Inmaculada; Smith, Paul A; Bartowsky, Eveline J

    2012-12-01

    Wine colour, phenolics and volatile fermentation-derived composition are the quintessential elements of a red wine. Many viticultural and winemaking factors contribute to wine aroma and colour with choice of yeast strain being a crucial factor. Besides the traditional Saccharomyces species S. cerevisiae, S. bayanus and several Saccharomyces interspecific hybrids are able to ferment grape juice to completion. This study examined the diversity in chemical composition, including phenolics and fermentation-derived volatile compounds, of an Australian Cabernet Sauvignon due to the use of different Saccharomyces strains. Eleven commercially available Saccharomyces strains were used in this study; S. cerevisiae (7), S. bayanus (2) and interspecific Saccharomyces hybrids (2). The eleven Cabernet Sauvignon wines varied greatly in their chemical composition. Nine yeast strains completed alcoholic fermentation in 19 days; S. bayanus AWRI 1375 in 26 days, and S. cerevisiae AWRI 1554 required 32 days. Ethanol concentrations varied in the final wines (12.7-14.2 %). The two S. bayanus strains produced the most distinct wines, with the ability to metabolise malic acid, generate high glycerol concentrations and distinctive phenolic composition. Saccharomyces hybrid AWRI 1501 and S. cerevisiae AWRI 1554 and AWRI 1493 also generated distinctive wines. This work demonstrates that the style of a Cabernet Sauvignon can be clearly modulated by choice of commercially available wine yeast.

  19. Chemical Compositions of Achillea sivasica: Different Plant Part Volatiles, Enantiomers and Fatty Acids

    Directory of Open Access Journals (Sweden)

    Gülmira Özek

    2018-03-01

    Full Text Available In the present work, Microsteam distillation - Solid phase microextraction (MSD-SPME and hydrodistillation (HD techniques were applied to obtain volatiles from Achillea sivasica, an endemic species from Turkey. GC-FID and GC/MS analysis revealed that 1,8-cineole (22.1% and a -pinene (9.3% were the main constituents of the hydrodistilled flower volatiles. (Z- b -Farnesene (23.9%, decanoic acid (10.1%, b- eudesmol (8.0%, tricosane (7.3% and hexadecanoic acid (7.2% were the main volatiles obtained from flowers by MSD-SPME. The leaf volatiles obtained by HD contained camphor (9.0%, b -pinene (6.9%, 1,8-cineole (6.7%, a -pinene (6.7% and a -bisabolol (6.6% as the main constituents while the leaf volatiles obtained by MSD-SPME technique were rich in (E-geranyl acetone (10.5%, (E- b -ionone (10.3%, camphor (10.2%, 1,8-cineole (9.6%, longiverbenone (7.9%, b -eudesmol (7.5%, isopropyl myristate (6.7% and epi- a -bisabolol (6.4%. The root volatiles were rich in longiverbenone (14.1%, (E-geranyl acetone (9.3%, nonanol (12.1% and decanol (12.5%. The enantiomeric distribution of the major volatile constituents was analyzed by using different b -cyclodextrin chiral columns. (1R-(+- a -Pinene, (1S-(-- b -pinene, (4R-(+-limonene, (1R,3S,5R-(--trans-pinocarveol, (1S,2R,4S-(--borneol, (2S-(-- a -bisabolol were detected as dominant enantiomers. The lipids extracted from the flower and leaf with Folch method and methylated with BF 3 reagent contained common acids: linolenic, linoleic, hexadecanoic acids. Oleic and stearic acids were detected particularly in high amount in the flower lipids

  20. Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles

    Directory of Open Access Journals (Sweden)

    Maaike evan Agtmaal

    2015-07-01

    Full Text Available There is increasing evidence that microbial volatiles (VOCs play an important role in natural suppression of soil-borne diseases, but little is known on the factors that influence production of suppressing VOCs. In the current study we examined whether a stress-induced change in soil microbial community composition would affect the production by soils of VOCs suppressing the plant-pathogenic oomycete Pythium. Using pyrosequencing of 16S ribosomal gene fragments we compared the composition of bacterial communities in sandy soils that had been exposed to anaerobic disinfestation (AD, a treatment used to kill harmful soil organisms, with the composition in untreated soils. Three months after the AD treatment had been finished, there was still a clear legacy effect of the former anaerobic stress on bacterial community composition with a strong increase in relative abundance of the phylum Bacteroidetes and a significant decrease of the phyla Acidobacteria, Planctomycetes, Nitrospirae, Chloroflexi and Chlorobi. This change in bacterial community composition coincided with loss of production of Pythium suppressing soil volatiles (VOCs and of suppression of Pythium impacts on Hyacinth root development. One year later, the composition of the bacterial community in the AD soils was reflecting that of the untreated soils. In addition, both production of Pythium-suppressing VOCs and suppression of Pythium in Hyacinth bioassays had returned to the levels of the untreated soil. GC/MS analysis identified several VOCs, among which compounds known to be antifungal, that were produced in the untreated soils but not in the AD soils. These compounds were again produced 15 months after the AD treatment. Our data indicate that soils exposed to a drastic stress can temporarily lose pathogen suppressive characteristics and that both loss and return of these suppressive characteristics coincides with shifts in the soil bacterial community composition. Our data are

  1. Crosslinking of thermoplastic composites using electron beam radiation

    International Nuclear Information System (INIS)

    Strong, A.B.; Black, S.R.; Bryce, G.R.; Olcott, D.D.

    1991-01-01

    The crosslinking of thermoset materials has been clearly demonstrated to improve many desirable physical and chemical properties for composite applications. While thermoplastic resins also offer many advantages for composite applications, they are not crosslinked and, therefore, may not meet the same property criteria as crosslinked thermosets. Electron beams have been used successfully for crosslinking non-reinforced thermoplastic materials. Electron beams have also been used for curing composite thermoset materials. This research utilizes electron beams to crosslink high performance thermoplastic composite materials (PEEK and PPS with glass and carbon fibers). The tensile strength and tensile modulus are compared under various crosslinking conditions. The method is found to have some advantages in potentially improving physical properties of thermoplastic composite materials

  2. Difference in the volatile composition of pine-mushrooms (Tricholoma matsutake Sing.) according to their grades.

    Science.gov (United States)

    Cho, In Hee; Choi, Hyung-Kyoon; Kim, Young-Suk

    2006-06-28

    The differences in volatile components of pine-mushrooms (Tricholoma matsutake Sing.) according to their grades were observed by applying multivariate statistical methods to GC-MS data sets. A total of 35 and 37 volatile components were identified in raw and cooked pine-mushrooms, respectively. The volatile components in pine-mushrooms were primarily composed of C8 species, such as 3-octanol, 1-octen-3-ol, 1-octanol, (E)-2-octen-1-ol, 3-octanone, 1-octen-3-one, (E)-2-octenal, and octanoic acid. The levels of ethyl octanoate, junipene, and 3-methyl-3-buten-2-one were much higher in raw pine-mushroom of higher grades, whereas the reverse was true for C8 components. On the other hand, furfuryl alcohol, benzyl alcohol, phenylethyl alcohol, dihydro-5-methyl-2(3H)-furanone, 2(5H)-furanone, (E)-2-methyl-2-butenal, furfural, phenylacetaldehyde, benzoic acid methyl ester, camphene, and beta-pinene were the major components of cooked mushrooms. These volatile components formed by various thermal reactions could be mainly responsible for the difference in volatile components of cooked pine-mushrooms according to their grades.

  3. Effect of micella interesterification on fatty acids composition and volatile components of soybean and rapeseed oils

    Directory of Open Access Journals (Sweden)

    Afifi, Sherine M.

    2000-10-01

    Full Text Available Micella interesterification of soybean and rapeseed oils was carried out using 0.2, 0.4 and 0.6 percentages of nickel catalyst, each at different temperatures of 60, 90 and 120ºC for 2, 4, and 6 hours. The proposed interesterification reaction conditions to obtain an oil with low linoleic acid level were 0.2 % nickel catalyst at 120ºC for 4 hours, 0.4% nickel catalyst at 90ºC for 4 hours and 0.6% at 60ºC for 4 hours. Fatty acid composition and chemical analysis of the interesterified and non-esterified oils were estimated. Selected samples undergo heating at 180ºC for 4 hours determining the volatile components. The appearance of some components supported the interesterification process for modification of fatty acid constituents of the oils.Se ha llevado a cabo la interesterificación en fase miscelar de aceites de soja y de colza usando un 0.2%, 0.4% y 0.6% de níquel como catalizador, a diferentes temperaturas (60, 90 y 120ºC durante 2, 4 y 6 horas. Las condiciones de reacción de interesterificación propuestas para obtener un aceite con niveles de ácidos linolénicos bajos fueron 0.2 % de níquel a 120ºC durante 4 horas, 0.4 % de níquel a 90ºC durante 4 horas y 0.6 % a 60ºC durante 4 horas. Se han estimado la composición en ácidos grasos y el análisis químico de los aceites interesterificados y no-esterificados. Las muestras seleccionadas se sometieron a calentamiento a 180ºC durante 4 horas determinando los componentes volátiles. La aparición de algunos componentes apoyó el proceso de interesterificación por modificación de los ácidos grasos constituyentes de los aceites.

  4. Feasibility and limitations of anti-fuses based on bistable non-volatile switches for power electronic applications

    Science.gov (United States)

    Erlbacher, T.; Huerner, A.; Bauer, A. J.; Frey, L.

    2012-09-01

    Anti-fuse devices based on non-volatile memory cells and suitable for power electronic applications are demonstrated for the first time using silicon technology. These devices may be applied as stand alone devices or integrated using standard junction-isolation into application-specific and smart-power integrated circuits. The on-resistance of such devices can be permanently switched by nine orders of magnitude by triggering the anti-fuse with a positive voltage pulse. Extrapolation of measurement data and 2D TCAD process and device simulations indicate that 20 A anti-fuses with 10 mΩ can be reliably fabricated in 0.35 μm technology with a footprint of 2.5 mm2. Moreover, this concept offers distinguished added-values compared to existing mechanical relays, e.g. pre-test, temporary and permanent reset functions, gradual turn-on mode, non-volatility, and extendibility to high voltage capability.

  5. Constraining the Volatile Regime of Primitive Somma-Vesuvius Magmas Based on the Compositions of Phenocrysts and Melt Inclusions

    Science.gov (United States)

    Danyushevsky, L. V.; Esposito, R.; De Vivo, B.; Redi, D.; Lima, A.; Bodnar, R. J.; Gurenko, A.

    2017-12-01

    The volcanic complex of Mt. Somma-Vesuvius is located in the Campanian Plain on east of Naples. We present the results of a mineralogical and melt inclusion studies of primitive volcanic products erupted during the last 2 magmatic cycles of Soma-Vesuvius, aimed at better understanding the volatile fluxes and eruptive behaviour of the volcano. Our results suggest that despite large differences in the compositions of the erupted magmas (from olivine-bearing basaltic lavas to leucite-bearing phonolites) and the eruption style (from plinian to strombolian), there was very little change in the nature of the parental magmas. Melt inclusions in olivine phenocrysts in all volcanic products and styles reveal the highest volatile contents in the most magnesian, early formed crystals (Fo90; H2O 4-5 wt%; CO2 3,000-4,000 ppm), decreasing to near 0 levels of concentrations in olivine Fo70. Major and trace element compositions of the clinopyroxene phenocrysts (Mg#92-70) also suggest a similar parental magma composition and similar liquid lines of decent for all Somma-Vesuvius eruptions. Our results are best explained by a model which relates the eruption style to the intensity of melt supply under the volcano. High intensity plinian eruptions occur after a prolonged repose time, whereas strombolian eruptions occur during periods of more frequent volcanic activity [1]. We will also discuss possible implications for the role of carbonate assimilation during magma evolution of Somma-Vesuvius and for total volatile budget of the SOmma-Vesuvius eruptions. [1] [42] Lima, A., Danyushevsky, L.V., De Vivo, B. and Fedele, L. 2003: A model for the evolution of the Mt. Somma-Vesuvius magmatic system based on fluid and melt inclusion investigations. In: Melt Inclusions in volcanic systems: Methods, applications and Problems (B. De Vivo & R.J. Bodnar, Eds), Series: Developments in Volcanology. No. 5 Elsevier, Amsterdam, 227-251

  6. Volatile oil composition of Carthamus Tinctorius L. flowers grown in Kazakhstan

    Directory of Open Access Journals (Sweden)

    Aknur Amanbekovna Turgumbayeva

    2018-03-01

    Volatile oil from the flowers of the Kazakhstan safflower species ‘Ak-Mai’ were investigated by GC/MS which allowed the detection of 20 compounds. Biologically active complex of the flower of the Kazakhstan safflower species ‘Ak-Mai’ was released for the first time by using this oil

  7. ISOTOPIC (14C) AND CHEMICAL COMPOSITION OF ATMOSPHERIC VOLATILE ORGANIC COMPOUND FRACTIONS - PRECURSORS TO OZONE FORMATION

    Science.gov (United States)

    Atmospheric volatile organic compounds (VOCs) are an important factor in the production of ozone near ground level [3]. Many hydrocarbons originate from auto exhaust. However, a number of VOCs, e.g., isoprene, are known to be natural in origin. To develop reliable models for un...

  8. Effect of electron beam irradiation on bacterial and Ascaris ova loads and volatile organic compounds in municipal sewage sludge

    International Nuclear Information System (INIS)

    Engohang-Ndong, Jean; Uribe, R.M.; Gregory, Roger; Gangoda, Mahinda; Nickelsen, Mike G.; Loar, Philip

    2015-01-01

    Wastewater treatment plants produce large amounts of biosolids that can be utilized for land applications. However, prior to their use, these biosolids must be treated to eliminate risks of infections and to reduce upsetting odors. In this study, microbiological and chemical analyzes were performed before and after treatment of sewage sludge with 3 MeV of an electron beam accelerator in a pilot processing plant. Thus, we determined that dose 4.5 kGy was required to reduce fecal coliform counts to safe levels for land applications of sludge while, 14.5 kGy was necessary to decrease Ascaris ova counts to safe levels. Furthermore, at low doses, electron beam irradiation showed little effect on the concentrations of volatile organic compounds, while some increase were recorded at high doses. The concentration of dimethyl sulfide was reduced by 50–70% at irradiation doses of 25.7 kGy and 30.7 kGy respectively. By contrast, electron beam irradiation increased dimethyl disulfide concentrations. We also showed that electron beam treatment was less energy-consuming with shorter processing times than conventional techniques used to decontaminate sludge. Hence opening new avenues for large urban agglomerations to save money and time when treating biosolids for land application. - Highlights: • Use of electron beam irradiation for the treatment of municipal sewage sludge. • Irradiation at 4.5 kGy is required to eliminate risks of bacterial infection. • Irradiation at 14.5 kGy is required to eliminate risks of helminth infection. • Electron beam technology is not effective for controlling volatile organic compounds. • Electron beam treatment of sludge is less expensive than traditional techniques

  9. The Composition of Comet C/2012 K1 (PanSTARRS) and the Distribution of Primary Volatile Abundances Among Comets

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Nathan X.; Gibb, Erika L. [Department of Physics and Astronomy, University of Missouri-St. Louis, 503 Benton Hall, One University Blvd., St. Louis, MO 63121 (United States); Bonev, Boncho P.; DiSanti, Michael A.; Mumma, Michael J.; Villanueva, Geronimo L.; Paganini, Lucas, E-mail: nxrq67@mail.umsl.edu [Goddard Center for Astrobiology, NASA Goddard Space Flight Center, Mail Stop 690, Greenbelt, MD 20771 (United States)

    2017-04-01

    On 2014 May 22 and 24 we characterized the volatile composition of the dynamically new Oort cloud comet C/2012 K1 (PanSTARRS) using the long-slit, high resolution ( λ /Δ λ  ≈ 25,000) near-infrared echelle spectrograph (NIRSPEC) at the 10 m Keck II telescope on Maunakea, Hawaii. We detected fluorescent emission from six primary volatiles (H{sub 2}O, HCN, CH{sub 4}, C{sub 2}H{sub 6}, CH{sub 3}OH, and CO). Upper limits were derived for C{sub 2}H{sub 2}, NH{sub 3}, and H{sub 2}CO. We report rotational temperatures, production rates, and mixing ratios (relative to water). Compared with median abundance ratios for primary volatiles in other sampled Oort cloud comets, trace gas abundance ratios in C/2012 K1 (PanSTARRS) for CO and HCN are consistent, but CH{sub 3}OH and C{sub 2}H{sub 6} are enriched while H{sub 2}CO, CH{sub 4}, and possibly C{sub 2}H{sub 2} are depleted. When placed in context with comets observed in the near-infrared to date, the data suggest a continuous distribution of abundances of some organic volatiles (HCN, C{sub 2}H{sub 6}, CH{sub 3}OH, CH{sub 4}) among the comet population. The level of “enrichment” or “depletion” in a given comet does not necessarily correlate across all molecules sampled, suggesting that chemical diversity among comets may be more complex than the simple organics-enriched, organics-normal, and organics-depleted framework.

  10. Volatile composition and enantioselective analysis of chiral terpenoids of nine fruit and vegetable fibres resulting from juice industry by-products

    OpenAIRE

    Marsol i Vall, Alexis; Sgorbini, Barbara; Cagliero, Cecilia; Bicchi, Carlo; Eras i Joli, Jordi; Balcells Fluvià, Mercè

    2017-01-01

    Fruit and vegetable fibres resulting as by-products of the fruit juice industry have won popularity because they can be valorised as food ingredients. In this regard, bioactive compounds have already been studied but little attention has been paid to their remaining volatiles. Considering all the samples, 57 volatiles were identified. Composition greatly differed between citrus and noncitrus fibres. The former presented over 90% of terpenoids, with limonene being the most abundant and ranging...

  11. Nanodiamond composite as a material for cold electron emitters

    International Nuclear Information System (INIS)

    Arkhipov, A V; Sominski, G G; Uvarov, A A; Gordeev, S K; Korchagina, S B

    2008-01-01

    Characteristics of field-induced electron emission were investigated for one of newly designed all-carbon materials - nanodiamond composite (NDC). The composite is comprised by 4-6 nm diamond grains covered with 0.2-1 nm-thick graphite-like shells that merge at grain junctions and determine such properties as mechanical strength and high electric conductivity. Large number of uniformly distributed sp 3 -sp 2 interfaces allowed to expect enhanced electron emission in electric field. Combination of these features makes NDC a promising material for cold electron emitters in various applications. Experimental testing confirmed high efficiency of electron emission from NDC. In comparison with previousely tested forms of nanocarbon, NDC emitters demonstrated better stabily and tolerance to performance conditions. Unusual activation scenarios and thermal dependencies of emission characteristics observed in experiments with NDC can add new background for explanation of facilitated electron emission from nanocarbons with relatively 'smooth' surface morphology

  12. Nanodiamond composite as a material for cold electron emitters

    Energy Technology Data Exchange (ETDEWEB)

    Arkhipov, A V; Sominski, G G; Uvarov, A A [St.Petersburg State Polytechnic University, 29 Politchnicheskaya, St.Petersburg, 195251 (Russian Federation); Gordeev, S K; Korchagina, S B [FSUE ' Central Research Institute for Materials' , 8 Paradnaya Street, St.Petersburg, 191014 (Russian Federation)], E-mail: arkhipov@rphf.spbstu.ru

    2008-03-15

    Characteristics of field-induced electron emission were investigated for one of newly designed all-carbon materials - nanodiamond composite (NDC). The composite is comprised by 4-6 nm diamond grains covered with 0.2-1 nm-thick graphite-like shells that merge at grain junctions and determine such properties as mechanical strength and high electric conductivity. Large number of uniformly distributed sp{sup 3}-sp{sup 2} interfaces allowed to expect enhanced electron emission in electric field. Combination of these features makes NDC a promising material for cold electron emitters in various applications. Experimental testing confirmed high efficiency of electron emission from NDC. In comparison with previousely tested forms of nanocarbon, NDC emitters demonstrated better stabily and tolerance to performance conditions. Unusual activation scenarios and thermal dependencies of emission characteristics observed in experiments with NDC can add new background for explanation of facilitated electron emission from nanocarbons with relatively 'smooth' surface morphology.

  13. Development of a portable mass spectrometric system for determination of isotopic composition of solid uranium samples using fluorine volatilization

    Science.gov (United States)

    Loge, G.

    1994-09-01

    Using hardware and materials supplied by LANL, a prototype quadrupole mass spectrometer system designed for portable field analysis of isotopic composition of solid uranium samples was assembled and tested. The system contained the capability for fluorine volatilization of solid uranium samples with gas introduction, which was successfully tested and demonstrated using 100 mg samples of U3O8. Determination of precision and accuracy for measuring isotopic composition was performed using isotopic standards. Use with soil samples containing uranium were also attempted. Silicates in the soil forming SiF4 were found to be a kinetic bottleneck to the formation of UF6. This could be avoided by performing some sort of chemical separation as a pre-treatment step, which was demonstrated using nitric acid.

  14. Portuguese Thymbra and Thymus species volatiles: chemical composition and biological activities.

    Science.gov (United States)

    Figueiredo, A C; Barroso, J G; Pedro, L G; Salgueiro, L; Miguel, M G; Faleiro, M L

    2008-01-01

    Thymbra capitata and Thymus species are commonly known in Portugal as thyme and they are currently used as culinary herbs, as well as for ornamental, aromatizing and traditional medicinal purposes. The present work reports on the state of the art on the information available on the taxonomy, ethnobotany, cell and molecular biology of the Portuguese representatives of these genera and on the chemotaxonomy and antibacterial, antifungal and antioxidant activities of their essential oils and other volatile-containing extracts.

  15. Electron tunneling in carbon nanotube composites

    International Nuclear Information System (INIS)

    Gau, C; Kuo, Cheng-Yung; Ko, H S

    2009-01-01

    Nanocomposites, such as polymer blending with carbon nanotubes (CNTs), have been shown to have a drastic reduction in the resistivity and become conductive when the CNTs concentration has reached a certain percolation threshold. The reduction could be more than a millionth of the original polymer material. This has been realized as the formation of an infinite cluster of connected CNTs or pathways. Therefore, the conductivity of a nanocomposite should follow that of CNTs. Here we show that the resistivity of a nanocomposite is not governed by the interconnected CNTs, but the polymer between neighboring CNTs. That is, polymer-CNTs exhibit the nature of a conducting polymer, which can be explained as the tunneling of electrons one by one from the first CNT electrode to the next-nearest CNT electrode, forming a CNT/polymer pathway. A conduction model based on the tunneling of electrons passing, one by one, through the polymer gap between two neighboring CNT electrodes is formulated and derived. This model can accurately predict the significant reduction of the polymer-CNTs' resistivity with the addition of CNTs. The temperature effect can be readily incorporated to account for resistivity variation with the temperature of this nanocomposites.

  16. Electron beam curing of composites in North America

    International Nuclear Information System (INIS)

    Berejka, Anthony J.; Eberle, Cliff

    2002-01-01

    Electron beam curing of fiber-reinforced composites was explored over 30 years ago. Since then there have been developments in accelerator technology, in processes for handling materials presented to an accelerator, and in materials that can be used as matrix binders. In recent years in North America, Cooperative Research and Development Agreements (CRADAs) have been formed involving collaboration amongst materials suppliers, accelerator manufacturers and service providers, national laboratories, such as Oak Ridge National Laboratory, and interested potential users. The scope and status of these CRADAs are reviewed along with other recent developments in the electron beam curing of composites in North America. Innovative and proprietary materials technology has been developed and progress made toward implementing commercial practice. Significant market interest has developed in the military/aerospace industries that are finding the process and performance of electron beam cured composites to offer significant benefits

  17. Effect of γ-irradiation on bioactivity, fatty acid compositions and volatile compounds of clary sage seed (Salvia sclarea L.).

    Science.gov (United States)

    Yalcin, Hasan; Ozturk, Ismet; Tulukcu, Eray; Sagdic, Osman

    2011-09-01

    Clary sage seeds (Salvia sclarea L.) were obtained from plants cultivated, and 2.5, 4.0, 5.5, and 7.0 kGy doses of γ-irradiation were applied to the clary sage seeds. They were then analyzed for their protein, ash, oil and dry matter contents, and fatty acid composition. Additionally, the total phenolic contents, antiradical, antioxidant activities, and volatile compounds of the clary sage seed extract were determined. There was no significant difference in protein content. However, the moisture, oil, and ash contents of the samples were affected by irradiation. While the 7 kGy dose had a positive effect on the total phenolic content and antiradical activity of the sage seed extract, all doses have negative effects on the antioxidant activity of the sage seed. The main fatty acid of the sage seed was remarkably found as α-linolenic acid. The four irradiation levels caused significant differences in fatty acid composition by affecting all fatty acids except palmitic, palmitoleic, and eicosenoic acids. The dominant volatile compounds of control sage seed were found as β-pinene (18.81%) and limonene (15.60%). Higher doses of the irradiation decreased volatile components of sage seed. Clary sage seed including high omega-3 can be irradiated with low doses (≤ 2.5 kGy) of γ-irradiation. Clary sage is one of the most popular Salvia species in Turkey and many countries. Clary sage seed has approximately 29% oil content and this oil contains >50% of α-linolenic acid. γ-Irradiation is widely applied in the preservation of spice quality. The present study shows that the antioxidant activity of the clary sage seed is decreased by γ-irradiation. Additionally, higher doses of irradiation also decreased the volatile components of sage seed. Therefore, we suggest that clary sage seed which includes high levels of omega-3 should be irradiated with low doses (≤ 2.5 kGy) of γ-irradiation. © 2011 Institute of Food Technologists®

  18. Volatile Composition and Enantioselective Analysis of Chiral Terpenoids of Nine Fruit and Vegetable Fibres Resulting from Juice Industry By-Products

    Directory of Open Access Journals (Sweden)

    Alexis Marsol-Vall

    2017-01-01

    Full Text Available Fruit and vegetable fibres resulting as by-products of the fruit juice industry have won popularity because they can be valorised as food ingredients. In this regard, bioactive compounds have already been studied but little attention has been paid to their remaining volatiles. Considering all the samples, 57 volatiles were identified. Composition greatly differed between citrus and noncitrus fibres. The former presented over 90% of terpenoids, with limonene being the most abundant and ranging from 52.7% in lemon to 94.0% in tangerine flesh. Noncitrus fibres showed more variable compositions, with the predominant classes being aldehydes in apple (57.5% and peach (69.7%, esters (54.0% in pear, and terpenoids (35.3% in carrot fibres. In addition, enantioselective analysis of some of the chiral terpenoids present in the fibre revealed that the enantiomeric ratio for selected compounds was similar to the corresponding volatile composition of raw fruits and vegetables and some derivatives, with the exception of terpinen-4-ol and α-terpineol, which showed variation, probably due to the drying process. The processing to which fruit residues were submitted produced fibres with low volatile content for noncitrus products. Otherwise, citrus fibres analysed still presented a high volatile composition when compared with noncitrus ones.

  19. Whitefly attraction to rosemary (Rosmarinus officinialis L. is associated with volatile composition and quantity.

    Directory of Open Access Journals (Sweden)

    Dganit Sadeh

    Full Text Available Whitefly (Bemisia tabaci is an important insect pest, causing severe damage to agricultural crops. The pest was recorded in a commercial rosemary (Rosmarinus officinalis, Lamiaceae field, colonizing rosemary variety (var. '2', but not '11'. A series of field and controlled laboratory choice bioassays confirmed the observed phenomenon. Mature potted plants of the two varieties were randomly organized in a lemon verbena (Lippia citrodora and lemon grass (Cymbopogon spp. fields. Seven days later var. '2' was significantly more colonized by whiteflies than var. '11'. Under lab conditions, whiteflies were significantly more attracted to var. '2' plantlets than to var. '11' following choice bioassays. Furthermore, cotton plants dipped in an essential oil emulsion of var. '2' had significantly greater colonization than cotton plants dipped in the essential oil emulsion of var. '11'. Similar results were obtained in 'plant-plant', 'plant-no plant' as well as, 'essential oil-essential oil' choice bioassay designs. Analyses of the essential oils of the two varieties identified a set of common and unique volatiles in each variety. Among these volatiles were β-caryophyllene and limonene, two compounds known to be associated with plant-insect interactions. The attraction of B. tabaci to pure (>95% β-caryophyllene and limonene using a range of concentrations was examined in vitro by choice bioassays. The compounds were attractive to the insect at moderate concentration, but not at the lowest or highest concentrations used, where the insect was not attracted or repelled, respectively. Limonene attracted the insects at rates that were 10-fold lower than β-caryophyllene. The results emphasized the role of host plant volatiles in shaping the structure of B. tabaci populations in nature and in agricultural systems, and provided insights into the factors that contribute to the development of insect populations with unique characteristics. The results could also

  20. Characterization of wood plastic composites made from landfill-derived plastic and sawdust: Volatile compounds and olfactometric analysis

    International Nuclear Information System (INIS)

    Félix, Juliana S.; Domeño, Celia; Nerín, Cristina

    2013-01-01

    Graphical abstract: This work details the characterization of VOCs of WPC, produced from residual materials which would have landfills as current destination, and evaluates their odor profile. Highlights: ► More than 140 volatile compounds were identified in raw materials and WPC products. ► Markers were related to the thermal degradation, sawdust or coupling agents. ► WPC prototype showed a characteristic odor profile of burnt, sweet and wax-like. ► Aldehydes, carboxylic acids, ketones and phenols were odor descriptors of WPC. - Abstract: Application of wood plastic composites (WPCs) obtained from recycled materials initially intended for landfill is usually limited by their composition, mainly focused on release of volatile organic compounds (VOCs) which could affect quality or human safety. The study of the VOCs released by a material is a requirement for new composite materials. Characterization and quantification of VOCs of several WPC produced with low density polyethylene (LDPE) and polyethylene/ethylene vinyl acetate (PE/EVA) films and sawdust were carried out, in each stage of production, by solid phase microextraction in headspace mode (HS-SPME) and gas chromatography–mass spectrometry (GC–MS). An odor profile was also obtained by HS-SPME and GC–MS coupled with olfactometry analysis. More than 140 compounds were observed in the raw materials and WPC samples. Some quantified compounds were considered WPC markers such as furfural, 2-methoxyphenol, N-methylphthalimide and 2,4-di-tert-butylphenol. Hexanoic acid, acetic acid, 2-methoxyphenol, acetylfuran, diacetyl, and aldehydes were the most important odorants. None of the VOCs were found to affect human safety for use of the WPC

  1. Characterization of wood plastic composites made from landfill-derived plastic and sawdust: Volatile compounds and olfactometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Félix, Juliana S., E-mail: jfelix@unizar.es [Department of Analytical Chemistry, I3A, EINA, University of Zaragoza (UNIZAR), Zaragoza 50018 (Spain); Domeño, Celia, E-mail: cdomeno@unizar.es [Department of Analytical Chemistry, I3A, EINA, University of Zaragoza (UNIZAR), Zaragoza 50018 (Spain); Nerín, Cristina, E-mail: cnerin@unizar.es [Department of Analytical Chemistry, I3A, EINA, University of Zaragoza (UNIZAR), Zaragoza 50018 (Spain)

    2013-03-15

    Graphical abstract: This work details the characterization of VOCs of WPC, produced from residual materials which would have landfills as current destination, and evaluates their odor profile. Highlights: ► More than 140 volatile compounds were identified in raw materials and WPC products. ► Markers were related to the thermal degradation, sawdust or coupling agents. ► WPC prototype showed a characteristic odor profile of burnt, sweet and wax-like. ► Aldehydes, carboxylic acids, ketones and phenols were odor descriptors of WPC. - Abstract: Application of wood plastic composites (WPCs) obtained from recycled materials initially intended for landfill is usually limited by their composition, mainly focused on release of volatile organic compounds (VOCs) which could affect quality or human safety. The study of the VOCs released by a material is a requirement for new composite materials. Characterization and quantification of VOCs of several WPC produced with low density polyethylene (LDPE) and polyethylene/ethylene vinyl acetate (PE/EVA) films and sawdust were carried out, in each stage of production, by solid phase microextraction in headspace mode (HS-SPME) and gas chromatography–mass spectrometry (GC–MS). An odor profile was also obtained by HS-SPME and GC–MS coupled with olfactometry analysis. More than 140 compounds were observed in the raw materials and WPC samples. Some quantified compounds were considered WPC markers such as furfural, 2-methoxyphenol, N-methylphthalimide and 2,4-di-tert-butylphenol. Hexanoic acid, acetic acid, 2-methoxyphenol, acetylfuran, diacetyl, and aldehydes were the most important odorants. None of the VOCs were found to affect human safety for use of the WPC.

  2. Effects of electron irradiation on LDPE/MWCNT composites

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jianqun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Li, Xingji, E-mail: lxj0218@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Liu, Chaoming; Rui, Erming [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics, Harbin Institute of Technology, Harbin 150001 (China)

    2015-12-15

    In this study, mutiwalled carbon nanotubes (MWCNTs) were incorporated into low density polyethylene (LDPE) in different concentrations (2%, 4% and 8%) using a melt blending process. Structural, thermal stability and tensile property of the unirradiated/irradiated LDPE/MWCNT composites by 110 keV electrons were investigated by means of scanning electron microscopy (SEM), small angle X-ray scattering (SAXS), Raman spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, thermogravimetric analysis (TGA) and uniaxial tensile techniques. Experimental results show that the addition of MWCNTs obviously increases the ultimate tensile strength of LDPE and decreases the elongation at break, which is attributed to the homogeneous distribution of the MWCNTs in LDPE and intense interaction between MWCNTs and LDPE matrix. Also, the electron irradiation further increases the ultimate tensile strength of LDPE/MWCNT composites, which can be ascribed to the more intense interaction between MWCNTs and LDPE matrix, and the formation of crosslinking sites in LDPE matrix induced by the electron irradiation. The addition of MWCNTs significantly enhances thermal stability of the LDPE due to the hindering effect and the scavenging free radicals, while the electron irradiation decreases thermal stability of the LDPE/MWCNT composites since the structure of the MWCNTs and LDPE matrix damages.

  3. Carbon Nano tube Composites for Electronic Packaging Applications: A Review

    International Nuclear Information System (INIS)

    Aryasomayajula, L.; Wolter, K.J.

    2013-01-01

    Composite engineering comprises of metal matrix composites. They have high strength-weight ratio, better stiffness, economical production, and ease of availability of raw materials. The discovery of carbon nano tubes has opened new possibilities to face challenges better. Carbon Nano tubes are known for their high mechanical strength, excellent thermal and electrical properties. Recent research has made progress in fabricating carbon nano tube metal matrix and polymer-based composites. The methods of fabrication of these composites, their properties and possible applications restricted to the field of electronic packaging have been discussed in this paper. Experimental and theoretical calculations have shown improved mechanical and physical properties like tensile stress, toughness, and improved electrical and thermal properties. They have also demonstrated the ease of production of the composites and their adaptability as one can tailor their properties as per the requirement. This paper reviews work reported on fabricating and characterizing carbon- nano tube-based metal matrix and polymer composites. The focus of this paper is mainly to review the importance of these composites in the field of electronics packaging.

  4. Volatile compounds and phenolic composition of virgin olive oil: optimization of temperature and time of exposure of olive pastes to air contact during the mechanical extraction process.

    Science.gov (United States)

    Servili, Maurizio; Selvaggini, Roberto; Taticchi, Agnese; Esposto, Sonia; Montedoro, GianFrancesco

    2003-12-31

    The operative conditions of malaxation such as temperature and time of exposure of olive pastes to air contact (TEOPAC) affect volatile and phenolic composition of virgin olive oil (VOO) and, as a consequence, its sensory and healthy qualities. In this paper, optimal temperature and TEOPAC during malaxation were studied, in lab scale, in two Italian cultivars using phenolic compounds, volatile composition, and sensory analysis of VOO as markers. The optimal temperature and TEOPAC, selected by response surface modeling,were cultivar-dependent being 30 min of TEOPAC at the lowest temperature investigated (22 degrees C) and 0 min of TEOPAC at 26 degrees C for Frantoio and Moraiolo cultivars, respectively.

  5. Electron beam irradiation effects on carbon fiber reinforced PEEK composite

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Hagiwara, Miyuki; Odajima, Tosikazu; Sakai, Hideo; Nakakura, Toshiyuki; Masutani, Masahiro.

    1987-03-01

    Carbon fiber(CF) reinforced composites, using polyarylether-sulfone (PES) or polyarylether-ether-ketone (PEEK) as matrix material, were prepared and their electron beam irradiation effects were studied on the basis of changes in mechanical and dynamic viscoelastic properties and observation of fracture surfaces. The flexural strength of PES-CF composite decreased to 70 % of the initial strength after the irradiation of 3 MGy and 40 % after 15 MGy. The change in the profile of stress-strain (S-S) curves and fractographic observation by electron microscopy indicated that this composite irradiated with over 3 MGy was fractured by delamination caused by to the degradation of matrix polymer. The mechanical properties of PEEK-CF composite were scarcely decreased even after irradiated up to 180 MGy and this composite showed very high radiation resistance. The change in the profile of S-S curves and fractographic observation showed that this composite fractured due to destruction of fiber in the dose range less than 180 MGy, indicating that PEEK was excellent matrix material used in high radiation field. PEEK-PES-CF composite which was composed of the carbon fibers coated with PES solution showed less radiation resistance compared with PEEK-CF composite; the flexural strength decreased to 85 % of the initial value after the irradiation with 90 MGy. It was revealed from the changes in the profile of S-S curve that the specimen irradiated over 120 MGy was fractured due to not only fiber destruction but delamination. Deterioration mechanism of PEEK-PES-CF composite was studied by dynamic viscoelastic measurements in connection with the damage on matrix-fiber interface. It was suggested that the deterioration in mechanical properties of this composite was caused by the degradation of PES that coated on the surface of the carbon fibers. (author)

  6. Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory

    Science.gov (United States)

    Ng, Tse Nga; Schwartz, David E.; Lavery, Leah L.; Whiting, Gregory L.; Russo, Beverly; Krusor, Brent; Veres, Janos; Bröms, Per; Herlogsson, Lars; Alam, Naveed; Hagel, Olle; Nilsson, Jakob; Karlsson, Christer

    2012-01-01

    Scalable circuits of organic logic and memory are realized using all-additive printing processes. A 3-bit organic complementary decoder is fabricated and used to read and write non-volatile, rewritable ferroelectric memory. The decoder-memory array is patterned by inkjet and gravure printing on flexible plastics. Simulation models for the organic transistors are developed, enabling circuit designs tolerant of the variations in printed devices. We explain the key design rules in fabrication of complex printed circuits and elucidate the performance requirements of materials and devices for reliable organic digital logic. PMID:22900143

  7. Shareholder composition, share turnover, and returns in volatile markets : The case of international REITs

    NARCIS (Netherlands)

    Brounen, Dirk; Kok, N.; Ling, D.C.

    2012-01-01

    The shareholder composition of listed property companies has changed from the fragmented, retail ownership, to more concentrated, institutional ownership over the past decade. In this paper, we first document significant variation in the composition of the shareholder base across the world's five

  8. The effect of composition, electron irradiation and quenching on ...

    Indian Academy of Sciences (India)

    The ionic conductivity at room temperature exhibits a characteristic double peak for the composition = 20 and 70. Both electron beam irradiation and quenching at low temperature have resulted in an increase in conductivity by 1–2 orders of magnitude. The enhancement of conductivity upon irradiation and quenching is ...

  9. Access Control Model for Sharing Composite Electronic Health Records

    Science.gov (United States)

    Jin, Jing; Ahn, Gail-Joon; Covington, Michael J.; Zhang, Xinwen

    The adoption of electronically formatted medical records, so called Electronic Health Records (EHRs), has become extremely important in healthcare systems to enable the exchange of medical information among stakeholders. An EHR generally consists of data with different types and sensitivity degrees which must be selectively shared based on the need-to-know principle. Security mechanisms are required to guarantee that only authorized users have access to specific portions of such critical record for legitimate purposes. In this paper, we propose a novel approach for modelling access control scheme for composite EHRs. Our model formulates the semantics and structural composition of an EHR document, from which we introduce a notion of authorized zones of the composite EHR at different granularity levels, taking into consideration of several important criteria such as data types, intended purposes and information sensitivities.

  10. Chemical and volatile composition of jujube wines fermented by Saccharomyces cerevisiae with and without pulp contact and protease treatment

    Directory of Open Access Journals (Sweden)

    Wenye ZHANG

    2016-01-01

    Full Text Available Abstract This study evaluated the chemical and volatile composition of jujube wines fermented with Saccharomyces cerevisiae A1.25 with and without pulp contact and protease treatment during fermentation. Yeast cell population, total reducing sugar and methanol contents had significant differences between nonextracted and extracted wine. The nonextracted wines had significantly higher concentrations of ethyl 9-hexadecenoate, ethyl palmitate and ethyl oleate than the extracted wines. Pulp contact also could enhance phenylethyl alcohol, furfuryl alcohol, ethyl palmitat and ethyl oleate. Furthermore, protease treatment can accelerate the release of fusel oils. The first principal component separated the wine from the extracted juice without protease from other samples based on the higher concentrations of medium-chain fatty acids and medium-chain ethyl esters. Sensory evaluation showed pulp contact and protease could improve the intensity and complexity of wine aroma due to the increase of the assimilable nitrogen.

  11. CHANGES IN VOLATILE COMPOSITION AND SENSORY PROPERTIES OF VUGAVA WINES AGED IN CROATIA OAK BARRELS

    Directory of Open Access Journals (Sweden)

    Stanka HERJAVEC

    2001-09-01

    Full Text Available Vugava musts were fermented in medium-toasted Croatian barrique barrels (225 L made from Quercus petrea and Q. robur oak wood. The oak species used in this research infl uenced the specifi c change of the aroma structure of Vugava wines. During the age period the increase in the concentration of cis and trans oaklactons, guaiacol, eugenol, furfural and 5-methylfurfural was noted. Wines fermented and aged in Q. petrea barrels have higher concentrations of most volatile phenols compared to wines from Q. robur oak wood. From the organoleptic point of view this study suggested that fermentation and on the lees ageing production method in Croatian oak barrels positively infl uenced the quality of Vugava wines where best results were achieved by use of Q. petrea oak wood.

  12. Composition of the volatile oil of Achillea conferta DC. from Iran

    Directory of Open Access Journals (Sweden)

    Soodabeh Saeidnia

    2005-01-01

    Full Text Available Top flowered aerial parts of Achillea conferta DC. (Compositae, which is found in the central and western regions of Iran were collected from Taleghan area and the volatile oil was isolateds by hydrodistillation. The oil (0.2 % V/W was analyzed by GC and GC/MS using DB-5 column. Forty-eight components, representing 91.4% of the oil were identified. The main components were camphor (22.1% and 1,8-cineole (10.0%. The percentage of oxygenated compounds was 79.0% of the total oil. The oil o was rich in monoterpenes with two typical major components of Achillea species, camphor (22.1% and 1, 8- cineole (10.0%.

  13. Sensory profile and volatile aroma composition of reduced alcohol Merlot wines fermented with Metschnikowia pulcherrima and Saccharomyces uvarum.

    Science.gov (United States)

    Varela, C; Barker, A; Tran, T; Borneman, A; Curtin, C

    2017-07-03

    Strategies for production of wines containing lower alcohol concentrations are in strong demand, for reasons of quality, health, and taxation. Development and application of wine yeasts that are less efficient at transforming grape sugars into ethanol has the potential to allow winemakers the freedom to make lower alcohol wines from grapes harvested at optimal ripeness, without the need for post-fermentation processes aimed at removing ethanol. We have recently shown that two non-conventional wine yeast species Metschnikowia pulcherrima and Saccharomyces uvarum were both able to produce wine with reduced alcohol concentration. Both species produced laboratory-scale wines with markedly different volatile aroma compound composition relative to Saccharomyces cerevisiae. This work describes the volatile composition and sensory profiles of reduced-alcohol pilot-scale Merlot wines produced with M. pulcherrima and S. uvarum. Wines fermented with M. pulcherrima contained 1.0% v/v less ethanol than S. cerevisiae fermented wines, while those fermented with S. uvarum showed a 1.7% v/v reduction in ethanol. Compared to S. cerevisiae ferments, wines produced with M. pulcherrima showed higher concentrations of ethyl acetate, total esters, total higher alcohols and total sulfur compounds, while wines fermented with S. uvarum were characterised by the highest total concentration of higher alcohols. Sensorially, M. pulcherrima wines received relatively high scores for sensory descriptors such as red fruit and fruit flavour and overall exhibited a sensory profile similar to that of wine made with S. cerevisiae, whereas the main sensory descriptors associated with wines fermented with S. uvarum were barnyard and meat. This work demonstrates the successful application of M. pulcherrima AWRI3050 for the production of pilot-scale red wines with reduced alcohol concentration and highlights the need for rigorous evaluation of non-conventional yeasts with regard to their sensory impacts

  14. THE VOLATILE COMPOSITION AND ACTIVITY OF COMET 103P/HARTLEY 2 DURING THE EPOXI CLOSEST APPROACH

    International Nuclear Information System (INIS)

    Dello Russo, N.; Vervack, R. J. Jr; Lisse, C. M.; Weaver, H. A.; Kawakita, H.; Kobayashi, H.; Cochran, A. L.; Harris, W. M.; McKay, A. J.; Biver, N.; Bockelee-Morvan, D.; Crovisier, J.

    2011-01-01

    We report time-resolved measurements of the absolute and relative abundances of eight parent volatiles (H 2 O, CH 3 OH, C 2 H 6 , C 2 H 2 , NH 3 , HCN, H 2 CO, and HC 3 N) in the coma of 103P/Hartley 2 on UT 2010 November 4, the date the EPOXI spacecraft made its closest approach to the comet, using high-dispersion infrared spectroscopy with NIRSPEC at the W. M. Keck Observatory. Overall gas and dust production increased by roughly 60% between UT 10:49 and 15:54. Differences in the spatial distributions of species in the coma suggest icy sources of different composition in the nucleus of 103P/Hartley 2. However, differences in the relative abundances of species with time are minor, suggesting either internal compositional heterogeneity in 103P/Hartley 2 is small compared with the diversity of chemistry observed within the comet population, or more significant heterogeneity exists on scales smaller than our spatial resolution. Observations contemporaneous with the EPOXI encounter test how compositional heterogeneity over the surface and the inner coma of a comet manifests itself in remote-sensing observations of the bulk coma.

  15. Influence of yeast strain, canopy management, and site on the volatile composition and sensory attributes of cabernet sauvignon wines from Western Australia.

    Science.gov (United States)

    Robinson, Anthony L; Boss, Paul K; Heymann, Hildegarde; Solomon, Peter S; Trengove, Robert D

    2011-04-13

    Understanding what factors are the major influences on wine composition will assist in the successful management of grape composition in the vineyard and/or variables in the winery to produce wines with specific sensory attributes. A recently developed analytical method [headspace solid-phase microextraction comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry] was employed to analyze over 350 volatile compounds in research scale wines and was combined with descriptive sensory analysis. Both compositional and sensory results showed significant differences among the wines, and in many cases, multiple factors influenced the abundance of wine volatile compounds. Site had the most significant influence on sensory scores and wine composition, followed by canopy management. Unexpectedly, yeast strain had no significant sensory effect despite the fact that a number of volatile compounds were significantly different in the wines made from different strains. PLS analysis, combining the sensory and chemical analyses, also supports the concept of volatile compound interactions contributing to the aroma characteristics of Cabernet Sauvignon wine.

  16. PERUBAHAN KOMPOSISI VOLATIL DAGING BUAH MANGGA "KENSINGTON PRIDE" SELAMA PEMASAKAN [Changes in Volatile Compound Composition of Kensington Pride Mango Pulp During Fruit Ripening

    Directory of Open Access Journals (Sweden)

    Herianus J.D Lalel

    2003-08-01

    Full Text Available Volatile compounds of ‘Kesington Pride’ mango produced from the pulp during fruit ripening were studied using headspace solid-phase microextraction (SPME as a sampling method and gas chromatography with a flame ionisation detector (GC-FID and gas chromatography mass spectrophotometry (GC-MS for analysis. Ethylene production and respiration reached a peak on the second and third day of ripening, respectively. Seventy-eight volatile compounds were identified from the pulp of ‘Kesington Pride’ mango; however, only 73 volatile compounds were present in notable amount. The most abundant group of volatile compounds was monoterpenes, accounting for abaout 44% of the total identified compounds, followed by sesquiterpenes (19%, aldehydes (11%,esters (10% aromatics (8%, alcohol (2%, ketones (2%, alkanes (1% and norisoprenoid (1%. -Terpinolene was the major compound during ripening. Except for -pinene, 3,7-dimethl-1,3,7-octatriene, 4-methl-1 (1-methylethylidene-cyclohexene, p-mentha-1,5,8-triene, aloocimene, the concentration of all other monoterpenes increased for the first six or eight days and decreased afterwards. All sesquiteroenes, p-cymene, p-cymen-9-ol,2-ethyl-1,4-dimethl benzene also increased during ripening and peaked on day four, six or eight of ripening. Ketones, aldehydes alkane and cis-3-hexenol, on the other hand, decreased during ripening. Ethanol, esters and norisoprenoid increased quite sharply at the end of ripening period.

  17. Chemical composition, bioactive compounds, and volatiles of six table grape varieties (Vitis vinifera L.).

    Science.gov (United States)

    Aubert, Christophe; Chalot, Guillaume

    2018-02-01

    Six table grape cultivars (Centennial Seedless, Chasselas, Italia, Italia Rubi, Alphonse Lavallée, and Muscat de Hambourg) were analyzed for their levels of soluble solids, titratable acidity, sugars, organic acids, vitamin C and E, carotenoids, polyphenolics and volatile compounds during two successive years. Descriptive sensory analyses of the six table grape varieties were also performed. Mainly due to anthocyanins, black cultivars had the highest total phenolic contents. Alphonse Lavallée had also both the highest levels of trans-resveratrol and piceid, and Muscat de Hambourg the highest levels of α-tocopherol, β-carotene and monoterpenols, well-known key aroma compounds in Muscat varieties having also interesting pharmacological properties. This study shows that the two traditional black French cultivars, Muscat de Hambourg and Alphonse Lavallée, are particularly rich in bioactive compounds and have a great potential for human health. Finally, Muscat de Hambourg was significantly rated sweeter, juicier and more aromatic than the others cultivars. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Compositions of volatile organic compounds emitted from melted virgin and waste plastic pellets.

    Science.gov (United States)

    Yamashita, Kyoko; Yamamoto, Naomichi; Mizukoshi, Atsushi; Noguchi, Miyuki; Ni, Yueyong; Yanagisawa, Yukio

    2009-03-01

    To characterize potential air pollution issues related to recycling facilities of waste plastics, volatile organic compounds (VOCs) emitted from melted virgin and waste plastics pellets were analyzed. In this study, laboratory experiments were performed to melt virgin and waste plastic pellets under various temperatures (150, 200, and 250 degrees C) and atmospheres (air and nitrogen [N2]). In the study presented here, low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS) and the recycled waste plastic pellets were used. The VOCs generated from each plastic pellets were collected by Tenax/Carboxen adsorbent tubes and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). The result showed the higher temperatures generated larger amounts of total VOCs (TVOCs). The VOCs emitted from the virgin plastic pellets likely originated from polymer degradation. Smaller TVOC emissions were observed in N2 atmosphere than in air atmosphere. In particular, larger amounts of the oxygenated compounds, which are generally hazardous and malodorous, were detected in air than in N2. In addition to the compounds originating from polymer degradation, the compounds originating from the plastic additives were also detected from LDPE and PS. Furthermore, various species of VOCs likely originating from contaminant inseparate polyvinyl chloride (PVC), food residues, cleaning agents, degreasers, and so on were detected from the waste plastic. Thus, melting waste plastics, as is conducted in recycling facilities, might generate larger amounts of potentially toxic compounds than producing virgin plastics.

  19. Rosé wine volatile composition and the preferences of Chinese wine professionals.

    Science.gov (United States)

    Wang, Jiaming; Capone, Dimitra L; Wilkinson, Kerry L; Jeffery, David W

    2016-07-01

    Rosé wine aromas range from fruity and floral, to more developed, savoury characters. Lighter than red wines, rosé wines tend to match well with Asian cuisines, yet little is known about the factors driving desirability of rosé wines in emerging markets such as China. This study involved Chinese wine professionals participating in blind rosé wine tastings comprising 23 rosé wines from Australia, China and France in three major cities in China. According to the sensory results, a link between the preference, quality and expected retail price of the wines was observed, and assessors preferred wines with prominent red fruit, floral, confectionery and honey characters, and without developed attributes or too much sweetness. Basic wine chemical parameters and 47 volatile compounds, including 5 potent thiols, were determined. Correlations between chemical components, sensory attributes and preference/quality/expected price were visualised by network analysis, revealing relationships that are worthy of further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Estimation and analysis of the sensitivity of monoenergetic electron radiography of composite materials with fluctuating composition

    International Nuclear Information System (INIS)

    Rudenko, V.N.; Yunda, N.T.

    1978-01-01

    A sensitivity analysis of the electron defectoscopy method for composite materials with fluctuating composition has been carried out. Quantitative evaluations of the testing sensitivity depending on inspection conditions have been obtained, and calculations of the instrumental error are shown. Based on numerical calculations, a comparison of error has been carried out between high-energy electron and X-ray testings. It is shown that when testing composite materials with a surface density of up to 7-10 g/cm 2 , the advantage of the electron defectoscopy method as compared to the X-ray one is the higher sensitivity and lower instrumental error. The advantage of the electron defectoscopy method over the X-ray one as regards the sensitivity is greater when a light-atom component is predomenant in the composition. A monoenergetic electron beam from a betatron with an energy of up to 30 MeV should be used for testing materials with a surface density of up to 15 g/cm 2

  1. Application of electron and Bremsstrahlung beams for composite materials processing

    International Nuclear Information System (INIS)

    Zalyubovsky, I.I.; Avilov, A.M.; Popov, G.F.; Rudychev, V.G.

    1998-01-01

    In Kharkiv University the radiation process of obtaining composite polymer materials, CPM, with high strength properties and corrosion resistance was studied. CPM are manufactured by vacuum impregnating capillary-porous materials with synthetic monomers and oligomers or by molding granular waste and resins which are further treated by relativistic electron or Bremsstrahlung beam. Such radiation treatment yields new CPM in which capillary-porous structure acting as reinforcement is filled with polymer. The results of the applied research with industrial electron accelerator in the field of thick CPM formation are presented

  2. Gelatin/piassava composites treated by Electron Beam Radiation

    International Nuclear Information System (INIS)

    Takinami, Patricia Yoko Inamura; Shimazaki, Kleber; Moura, Esperidiana Augusta Barretos de; Mastro, Nelida Lucia del; Colombo, Maria Aparecida

    2010-01-01

    Piassava (Attalea funifera Mart) fiber has been investigated as reinforcement for polymer composites with potential for practical applications. The purpose of the present work was to assess the behavior of specimens of piassava fiber and gelatin irradiated with electron beam at different doses and percentage. The piassava/gelatin specimens were made with 5 and 10% (w/w) piassava fiber, gelatin 25% (w/w), glycerin as plasticizer and acrylamide as copolymer. The samples were irradiated up to 40 kGy using an electron beam accelerator, at room temperature in presence of air. Preliminary results showed mechanical properties enhancement with the increase in radiation dose. (author)

  3. Rumen volatile fatty acids and milk composition from cows fed hay, haylage, or urea-treated corn silage.

    Science.gov (United States)

    Schingoethe, D J; Voelker, H H; Beardsley, G L; Parsons, J G

    1976-05-01

    Alfalfa-brome hay, haylage, .5% urea-treated corn silage, or .5% urea plus 1% dried whey-treated corn silage was fed as the only forage to one of four groups of 10 lactating cows per group for a lactation trial of 10 wk. Rumen samples were collected via stomach tube 3 to 4 h after the morning feeding. The pH of the rumen samples from cows fed hay was higher than for cows fed haylage, urea-treated corn silage, and urea-whey corn silage, 6.69 versus 6.36, 6.40, and 6.50. Total volatile fatty acids and propionate were highest from cows fed urea-whey corn silage and were higher on all three fermented forages than cows fed hay. Acetate/propionate ratio was highest from cows fed hay and lowest from cows fed corn silages. Butyrate was highest from cows fed haylage or hay. Milk protein composition was not affected by ration although nonprotein nitrogen of milk was highest from cows fed the urea-treated corn silages. Oleic acid and total unsaturated fatty acids were lowest in milk fat from cows fed hay while palmitic acid was highest from cows fed hay and haylage. These results suggest that type of forage fed may cause small changes in rumen fermentation and in milk composition. The importance of these changes is unknown but may affect properties of dairy products produced from this milk.

  4. Change in Color and Volatile Composition of Skim Milk Processed with Pulsed Electric Field and Microfiltration Treatments or Heat Pasteurization.

    Science.gov (United States)

    Chugh, Anupam; Khanal, Dipendra; Walkling-Ribeiro, Markus; Corredig, Milena; Duizer, Lisa; Griffiths, Mansel W

    2014-04-23

    Non-thermal processing methods, such as pulsed electric field (PEF) and tangential-flow microfiltration (TFMF), are emerging processing technologies that can minimize the deleterious effects of high temperature short time (HTST) pasteurization on quality attributes of skim milk. The present study investigates the impact of PEF and TFMF, alone or in combination, on color and volatile compounds in skim milk. PEF was applied at 28 or 40 kV/cm for 1122 to 2805 µs, while microfiltration (MF) was conducted using membranes with three pore sizes (lab-scale 0.65 and 1.2 µm TFMF, and pilot-scale 1.4 µm MF). HTST control treatments were applied at 75 or 95 °C for 20 and 45 s, respectively. Noticeable color changes were observed with the 0.65 µm TFMF treatment. No significant color changes were observed in PEF-treated, 1.2 µm TFMF-treated, HTST-treated, and 1.4 µm MF-treated skim milk ( p ≥ 0.05) but the total color difference indicated better color retention with non-thermal preservation. The latter did not affect raw skim milk volatiles significantly after single or combined processing ( p ≥ 0.05), but HTST caused considerable changes in their composition, including ketones, free fatty acids, hydrocarbons, and sulfur compounds ( p < 0.05). The findings indicate that for the particular thermal and non-thermal treatments selected for this study, better retention of skim milk color and flavor components were obtained for the non-thermal treatments.

  5. Change in Color and Volatile Composition of Skim Milk Processed with Pulsed Electric Field and Microfiltration Treatments or Heat Pasteurization

    Directory of Open Access Journals (Sweden)

    Anupam Chugh

    2014-04-01

    Full Text Available Non-thermal processing methods, such as pulsed electric field (PEF and tangential-flow microfiltration (TFMF, are emerging processing technologies that can minimize the deleterious effects of high temperature short time (HTST pasteurization on quality attributes of skim milk. The present study investigates the impact of PEF and TFMF, alone or in combination, on color and volatile compounds in skim milk. PEF was applied at 28 or 40 kV/cm for 1122 to 2805 µs, while microfiltration (MF was conducted using membranes with three pore sizes (lab-scale 0.65 and 1.2 µm TFMF, and pilot-scale 1.4 µm MF. HTST control treatments were applied at 75 or 95 °C for 20 and 45 s, respectively. Noticeable color changes were observed with the 0.65 µm TFMF treatment. No significant color changes were observed in PEF-treated, 1.2 µm TFMF-treated, HTST-treated, and 1.4 µm MF-treated skim milk (p ≥ 0.05 but the total color difference indicated better color retention with non-thermal preservation. The latter did not affect raw skim milk volatiles significantly after single or combined processing (p ≥ 0.05, but HTST caused considerable changes in their composition, including ketones, free fatty acids, hydrocarbons, and sulfur compounds (p < 0.05. The findings indicate that for the particular thermal and non-thermal treatments selected for this study, better retention of skim milk color and flavor components were obtained for the non-thermal treatments.

  6. Physico-chemical, nutritional, and volatile composition and sensory profile of Spanish jujube (Ziziphus jujuba Mill.) fruits.

    Science.gov (United States)

    Hernández, Francisca; Noguera-Artiaga, Luis; Burló, Francisco; Wojdyło, Aneta; Carbonell-Barrachina, Ángel A; Legua, Pilar

    2016-06-01

    Jujube fruit is eaten mostly fresh, but may be dried (Chinese dates and tea) or processed into confectionary recipes in bread, cakes, compotes, and candy. Given that the quality of jujube available on the market differs on account of various factors such as geographical environment, cultivar, processing conditions, and storage conditions, and that, for consumers, flavour and nutrition properties of jujube represent the major parameters in determining the quality of jujube, the main goal of this study were to determine the main physico-chemical properties of jujube fruits, sugars and organic acids profiles, protein, mineral constituents, volatile composition and sensory profile of jujube fruits. This would allow breeders to select cultivars with higher levels of nutrients and also enable increasing dietary intake by consumers. Investigations showed that jujube fruit weight ranged from 4.8 to 29.3 g fruit(-1) . Four sugars (glucose, fructose, sucrose and sorbitol) and four organic acids (citric, malic, ascorbic and succinic acids) were identified and quantified by high-performance liquid chromatography in jujube fruits. Potassium, calcium and magnesium were the major mineral constituents in jujube fruits. Fifteen volatiles compounds were found in the aroma profile of jujube fruits (nine were aldehydes, three terpenes, one ester, one ketone and one linear hydrocarbon). The results showed that Spanish jujube cultivars studied are a good source of vitamin C, and they have a low content of Na. The jujube cultivar with the most appreciated quality by consumers was GAL; the GAL fruits were sweet, crunchy, and had high intensities of jujube ID and apple flavour a long after-taste. Therefore, jujube grown in Spain has a great potential to be exploited for functional foods. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  7. Volatile sulphur compounds in wines related to yeast metabolism and nitrogen composition of grape musts

    OpenAIRE

    Moreira, N.; Mendesa, F.; Pereira, O.; Pinho, P. Guedes de

    2002-01-01

    The influence of nitrogen compounds in grape musts on the content of sulphur compounds of wines was studied. Different vinifications were performed with the addition of methionine (20 mg l−1) and/or cysteine (40 mg l−1) to grape musts before alcoholic fermentation. Six grape musts, with different nitrogen composition, from cultivars of the ‘Vinhos Verdes’ Region, in Portugal, were used. Addition of methionine to grape musts enhanced the content of wines in 3-(methylthio)-1-propanol, ...

  8. Volatiles composition and extraction kinetics from Schinus terebinthifolius and Schinus molle leaves and fruit

    OpenAIRE

    dos Santos Cavalcanti, Adriano; de Souza Alves, Marcela; da Silva, Laurine Cristina Paulo; dos Santos Patrocínio, Daiane; Sanches, Mirza Nalesso; Chaves, Douglas Siqueira de Almeida; de Souza, Marco Andre Alves

    2015-01-01

    AbstractEssential oils extracted from Schinus molle L. and Schinus terebinthifolius Raddi, Anacardiaceae, leaves and fruit hydrodistillation, as well as, their chemical composition and extraction kinetic were evaluated. For this proposal, 6 h extraction and aliquots collected at sequencing different times (0.5, 1, 2, 4 and 6 h) were carried out allowing calculating accumulated content (% w/w) and verifying essential oil chemical profile. β-caryophyllene (35.2%), α-pinene (28.1%) and...

  9. Characterization of Volatile Compounds in Chilled Cod (Gadus morhua) fillets by gas chromatography and detection of quality indicators by an electronic nose

    NARCIS (Netherlands)

    Olafsdottir, G.; Jonsdottir, R.; Lauzon, H.L.; Luten, J.B.; Kristbergsson, K.

    2005-01-01

    Volatile compounds in cod fillets packed in Styrofoam boxes were analyzed during chilled storage (0.5 C) by gas chromatography (GC)-mass spectrometry and GC-olfactometry to screen potential quality indicators present in concentrations high enough for detection by an electronic nose. Photobacterium

  10. Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME-GC-MS and electronic nose.

    Science.gov (United States)

    Yang, Wenjian; Yu, Jie; Pei, Fei; Mariga, Alfred Mugambi; Ma, Ning; Fang, Yong; Hu, Qiuhui

    2016-04-01

    Volatile compounds are important factors that affect the flavor quality of Flammulina velutipes, but the changes occurring during hot air drying is still unclear. To clarify the dynamic changes of flavor components during hot air drying, comprehensive flavor characterization and volatile compounds of F. velutipes were evaluated using electronic nose technology and headspace solid phase micro-extraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS), respectively. Results showed that volatile components in F. velutipes significantly changed during hot air drying according to the principal component analysis and radar fingerprint chart of electronic nose. Volatile compounds of fresh F. velutipes consisted mainly of ketones, aldehydes and alcohols, and 3-octanone was the dominant compound. Drying process could significantly decrease the relative content of ketones and promoted the generation of alcohols, acids, and esters, which became the main volatile compounds of dried F. velutipes. These may provide a theoretical basis for the formation mechanism of flavor substances in dried F. velutipes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Chemical composition of the volatile extract and antioxidant activities of the volatile and nonvolatile extracts of Egyptian corn silk (Zea mays L.).

    Science.gov (United States)

    El-Ghorab, Ahmed; El-Massry, Khaled F; Shibamoto, Takayuki

    2007-10-31

    A total of 36 compounds, which comprised 99.4% of the extract, were identified by gas chromatography and mass spectrometry (GC-MS) in the volatile dichloromethane extract obtained from Egyptian corn silk. The main constituents of the volatile extract were cis-alpha-terpineol (24.22%), 6,11-oxidoacor-4-ene (18.06%), citronellol (16.18%), trans-pinocamphone (5.86%), eugenol (4.37%), neo-iso-3-thujanol (2.59%), and cis-sabinene hydrate (2.28%). Dried Egyptian corn silk was also directly extracted with petroleum ether, ethanol, and water. All extracts from solvent extraction and the volatile extract described above exhibited clear antioxidant activities at levels of 50-400 microg/mL in the 2,2-diphenyl-1-picrylhydrazyl (DPPH)/linoleic acid assay. The ethanol extract inhibited DPPH activity by 84% at a level of 400 microg/mL. All samples tested via the beta-carotene bleaching assay also exhibited satisfactory antioxidant activity with clear dose responses. This study indicates that corn silk could be used to produce novel natural antioxidants as well as a flavoring agent in various food products.

  12. Chemical Composition, Antimicrobial and Antioxidant Activities of the Flower Volatile Oils of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum Cymosum

    Directory of Open Access Journals (Sweden)

    Jianglin Zhao

    2018-01-01

    Full Text Available The purpose of this study was to investigate the chemical composition and biological activity of the volatile oils (VOs from the flowers of three buckwheat species, Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum cymosum. The VOs were obtained from the fresh buckwheat flowers by hydrodistillation, and were analyzed for their chemical composition by gas chromatography-mass spectrometry (GC-MS. Nonanoic acid (7.58%, (E-3-hexen-1-ol (6.52%, and benzothiazole (5.08% were the major constituents among the 28 identified components which accounted for 92.89% of the total oil of F. esculentum. 2-Pentadecanone (18.61%, eugenol (17.18%, 1,2-benzenedicarboxylic acid, bis(2-methylpropyl ester (13.19%, and (E,E-farnesylacetone (7.15% were the major compounds among the 14 identified components which accounted for 88.48% of the total oil of F. tataricum. Eugenol (12.22%, (E-3-hexen-1-yl acetate (8.03%, linalool oxide (7.47%, 1-hexanol (7.07%, and benzothiazole (6.72% were the main compounds of the 20 identified components which accounted for 90.23% of the total oil of F. cymosum. The three VOs were screened to have broad spectrum antibacterial activity with minimum inhibitory concentration (MIC values ranged from 100.0 μg/mL to 800.0 μg/mL against the tested bacteria, and their median inhibitory concentration (IC50 values were from 68.32 μg/mL to 452.32 μg/mL. Xanthomonas vesicatoria was the most sensitive bacterium. Moreover, the flower VOs of F. esculentum, F. tataricum and F. cymosum also exhibited noteworthy antioxidant capacity with the IC50 value of 354.15 μg/mL, 210.63 μg/mL, and 264.92 μg/mL for the 1,1-diphenyl-2-picrylhydrazyl (DPPH free radical scavenging assay, and the value of 242.06 μg/mL, 184.13 μg/mL, and 206.11 μg/mL respectively for the β-carotene-linoleic bleaching test. These results suggested the volatile oils of buckwheat flowers could be potential resource of natural antimicrobial and antioxidant agents.

  13. Biological Assays and Chemical Composition of Volatile Oils of Bupleurum fruticosum L. (Apiaceae

    Directory of Open Access Journals (Sweden)

    Andrea Maxia

    2011-01-01

    Full Text Available The composition of supercritical CO 2 extracts and essential oils obtained by hydrodistillation of Bupleurum fruticosum L., growing spontaneously in Italy and Portugal, and its antifungal activity is reported. The collected extracts were analyzed by GC-FID and GC-MS methods. The minimal inhibitory concentration (MIC and the minimal lethal concentration (MLC were used to evaluate the antifungal activity of the oils against Candida albicans, C. tropicalis, C. krusei, C. guillermondii, C. parapsilosis, Cryptococcus neoformans, Trichophyton rubrum, T. mentagrophytes, Microsporum canis, M. gypseum, Epidermophyton floccosum, Aspergillus niger, A. fumigatus and A. flavus.

  14. Electron donation characteristics and interplays of major volatile fatty acids from anaerobically fermented organic matters in bioelectrochemical systems.

    Science.gov (United States)

    Zhang, Zhiqiang; Li, Jiamiao; Hao, Xiaoxuan; Gu, Zaoli; Xia, Siqing

    2018-02-23

    Anaerobic fermentation liquid of waste organic matters (WOMs) is rich in volatile fatty acids (VFAs), which can be treated with bioelectrochemical systems for both electrical energy recovery and organics removal. In this work, four major VFAs in the fermented WOMs supernatant were selected to examine their electron donation characteristics for power output and their complicated interplays in microbial fuel cells (MFCs). Results indicated a priority sequence of acetate, propionate, n-butyrate and i-valerate when served as the sole electron donor for electricity generation. The MFC solely fed with acetate showed the highest coulombic efficiency and power density, and the longest period for electricity production. When two of the VFAs were added with equal proportion, both acids contributed positively to electricity generation, while the selective or competitive use of substrates by diverse microorganisms behaved as an antagonism effect to prolong the degradation time of each VFA. When acetate and propionate, the preferable substrates for electricity generation, were mixed in various proportions, their large concentration difference led to improved electrical performance but decreased organic removal rate.

  15. The Chemical Compositions of the Volatile Oils of Garlic (Allium sativum) and Wild Garlic (Allium vineale).

    Science.gov (United States)

    Satyal, Prabodh; Craft, Jonathan D; Dosoky, Noura S; Setzer, William N

    2017-08-05

    Garlic, Allium sativum , is broadly used around the world for its numerous culinary and medicinal uses. Wild garlic, Allium vineale , has been used as a substitute for garlic, both in food as well as in herbal medicine. The present study investigated the chemical compositions of A. sativum and A. vineale essential oils. The essential oils from the bulbs of A. sativum , cultivated in Spain, were obtained by three different methods: laboratory hydrodistillation, industrial hydrodistillation, and industrial steam distillation. The essential oils of wild-growing A. vineale from north Alabama were obtained by hydrodistillation. The resulting essential oils were analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Both A. sativum and A. vineale oils were dominated by allyl polysulfides. There were minor quantitative differences between the A. sativum oils owing to the distillation methods employed, as well as differences from previously reported garlic oils from other geographical locations. Allium vineale oil showed a qualitative similarity to Allium ursinum essential oil. The compositions of garlic and wild garlic are consistent with their use as flavoring agents in foods as well as their uses as herbal medicines. However, quantitative differences are likely to affect the flavor and bioactivity profiles of these Allium species.

  16. The Chemical Compositions of the Volatile Oils of Garlic (Allium sativum and Wild Garlic (Allium vineale

    Directory of Open Access Journals (Sweden)

    Prabodh Satyal

    2017-08-01

    Full Text Available Garlic, Allium sativum, is broadly used around the world for its numerous culinary and medicinal uses. Wild garlic, Allium vineale, has been used as a substitute for garlic, both in food as well as in herbal medicine. The present study investigated the chemical compositions of A. sativum and A. vineale essential oils. The essential oils from the bulbs of A. sativum, cultivated in Spain, were obtained by three different methods: laboratory hydrodistillation, industrial hydrodistillation, and industrial steam distillation. The essential oils of wild-growing A. vineale from north Alabama were obtained by hydrodistillation. The resulting essential oils were analyzed by gas chromatography-flame ionization detection (GC-FID and gas chromatography-mass spectrometry (GC-MS. Both A. sativum and A. vineale oils were dominated by allyl polysulfides. There were minor quantitative differences between the A. sativum oils owing to the distillation methods employed, as well as differences from previously reported garlic oils from other geographical locations. Allium vineale oil showed a qualitative similarity to Allium ursinum essential oil. The compositions of garlic and wild garlic are consistent with their use as flavoring agents in foods as well as their uses as herbal medicines. However, quantitative differences are likely to affect the flavor and bioactivity profiles of these Allium species.

  17. [Characteristics of volatile organic compounds (VOCs) emission from electronic products processing and manufacturing factory].

    Science.gov (United States)

    Cui, Ru; Ma, Yong-Liang

    2013-12-01

    Based on the EPA method T0-11 and 14/15 for measurement of toxic organics in air samples, fast VOCs detector, Summa canister and DNPH absorbent were used to determine the VOCs concentrations and the compositions in the ambient air of the workshops for different processes as well as the emission concentration in the exhaust gas. In all processes that involved VOCs release, concentrations of total VOCs in the workshops were 0.1-0.5 mg x m(-3), 1.5-2.5 mg x m(-3) and 20-200 mg x m(-3) for casting, cutting and painting respectively. Main compositions of VOCs in those workshops were alkanes, eneynes, aromatics, ketones, esters and ethers, totally over 20 different species. The main compositions in painting workshop were aromatics and ketones, among which the concentration of benzene was 0.02-0.34 mg x m(-3), toluene was 0.24-3.35 mg x m(-3), ethyl benzene was 0.04-1.33 mg x m(-3), p-xylene was 0.13-0.96 mg x m(-3), m-xylene was 0.02-1.18 mg x m(-3), acetone was 0.29-15.77 mg x m(-3), 2-butanone was 0.06-22.88 mg x m(-3), cyclohexene was 0.02-25.79 mg x m(-3), and methyl isobutyl ketone was 0-21.29 mg x m(-3). The VOCs emission from painting process was about 14 t x a(-1) for one single manufacturing line, and 840 t x a(-1) for the whole factory. According to the work flows and product processes, the solvent used during painting process was the main source of VOCs emission, and the exhaust gas was the main emission point.

  18. Effect of cytokinins on in vitro multiplication, volatiles composition and rosmarinic acid content of Thymus leucotrichus Hal. shoots.

    Science.gov (United States)

    Bekircan, Tuba; Yaşar, Ahmet; Yıldırım, Sercan; Sökmen, Münevver; Sökmen, Atalay

    2018-03-01

    An efficient in vitro multiplication protocol was designed to Thymus leucotrichus , a subshrub and perennial herb growing naturally in the Northwest of Turkey. Of all basal media studied, Murashige and Skoog medium was found to be superior to the others, providing higher shoot formation and the maximum shoot length. Varying concentrations of cytokinins, i.e., 6-benzyladenine, thidiazuron, 2-isopentenyladenine and kinetin were supplemented in the nutrient media to observe their effects on shoot development and biomass. Rosmarinic acid content and volatile compositions of both naturally growing plants and in vitro multiplied plantlets were also evaluated. 6-benzyladenine (1.0 mg/L) and kinetin (0.5 mg/L) were found to be optimum for shoot number and shoot elongation, respectively. Thidiazuron (1.0 mg/L) was superior for biomass production. Rosmarinic acid content of in vitro multiplied plants was found to be higher than that of wild plants, reaching a maximum with 0.5 mg/L 2-isopentenyladenine, which yielded 10.15 mg/g dry weight. The highest thymol content was obtained with 1.0 mg/L kinetin (55.82%), while thidiazuron (0.1 mg/L) increased carvacrol production (12.53%). Overall, Murashige and Skoog medium supplemented with 1.0 mg/L kinetin was determined to be the most favorable medium studied.

  19. Evaluation of the Volatile Oil Composition and Antiproliferative Activity of Laurus nobilis L. (Lauraceae on Breast Cancer Cell Line Models

    Directory of Open Access Journals (Sweden)

    Rana Abu-Dahab

    2014-03-01

    Full Text Available Volatile oil composition and antiproliferative activity of Laurus nobilis L. (Lauraceae fruits and leaves grown in Jordan were investigated. GC-MS analysis of the essential oil of the fruits resulted in the identification of 45 components representing 99.7 % of the total oil content, while the leaf essential oil yielded 37 compounds representing 93.7% of the total oil content. Oxygenated monoterpene 1,8-cineole was the main component in the fruit and leaf oils. Using sulphorhodamine B assay; the crude ethanol fraction, among other solvent extracts, showed strong antiproliferative activity for both leaves and fruits, nevertheless, the fruits were more potent against both breast cancer cell models (MCF7 and T47D. At IC 50 values ; the mechanism of apoptosis was nevertheless different: where L. nobilis fruit proapoptotic efficacy was not regulated by either p53 or p21, L. nobilis leaf extract components enhanced the p53 levels substantially. In both extracts, apoptosis was not caspase-8 or Fas Ligand and sFas (Fas/APO-1 dependent. Our studies highlight L. nobilis as a potential natural agent for breast cancer therapy. Compared with non induced basal cells, both L. nobilis fruits and leaves induced a significant enrichment in the cytoplasmic mono- and oligonucleosomes after assumed induction of programmed MCF7 cell death.

  20. Effect of Raw Material, Pressing and Glycosidase on the Volatile Compound Composition of Wine Made From Goji Berries

    Directory of Open Access Journals (Sweden)

    Guanshen Yuan

    2016-10-01

    Full Text Available This study investigated the effect of raw material, pressing, and glycosidase on the aromatic profile of goji berry wine. The free-run and the pressed juice of dried and fresh goji berries were used for wine production, whereas glycosidase was applied to wine after fermentation. Dried goji berry fermented wine exhibited much stronger fruity, floral, caramel, and herbaceous odors due to higher levels of esters, β-ionone and methionol. However, fresh berry fermented wine possessed stronger chemical notes due to higher levels of 4-ethylphenol. Pressing treatment reduced the fruity and caramel odors in these fermented wines, and fresh berry free-run juice fermented wine exhibited the least floral aroma. Glycosidase addition did not alter the aromatic composition of wines. The principal component analysis indicated that goji raw material played a primary role in differentiating the aromatic profiles of the wines due to the difference on the content of 20 esters, nine benzenes, eight aldehydes/ketones, three acids, two alcohols and six other volatiles. The content differences on isopentyl alcohol, styrene, benzyl alcohol, 1-octanol, (E-5-decen-1-ol, 1-hexanol, and β-cyclocitral resulted in the segregation of the wines with and without the pressing treatment, especially for fresh berry fermented wine.

  1. Chemical Composition of Volatiles; Antimicrobial, Antioxidant and Cholinesterase Inhibitory Activity of Chaerophyllum aromaticum L. (Apiaceae) Essential Oils and Extracts.

    Science.gov (United States)

    Petrović, Goran M; Stamenković, Jelena G; Kostevski, Ivana R; Stojanović, Gordana S; Mitić, Violeta D; Zlatković, Bojan K

    2017-05-01

    The present study reports the chemical composition of the headspace volatiles (HS) and essential oils obtained from fresh Chaerophyllum aromaticum root and aerial parts in full vegetative phase, as well as biological activities of their essential oils and MeOH extracts. In HS samples, the most dominant components were monoterpene hydrocarbons. On the other hand, the essential oils consisted mainly of sesquiterpenoids, representing 73.4% of the root and 63.4% of the aerial parts essential oil. The results of antibacterial assay showed that the aerial parts essential oil and MeOH extract have no antibacterial activity, while the root essential oil and extract showed some activity. Both of the tested essential oils exhibited anticholinesterase activity (47.65% and 50.88%, respectively); MeOH extract of the root showed only 8.40% inhibition, while aerial part extract acted as an activator of cholinesterase. Regarding the antioxidant activity, extracts were found to be more effective than the essential oils. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  2. Seasonal Variation in the Chemical Composition and Antimicrobial Activity of Volatile Oils of Three Species of Leptospermum (Myrtaceae Grown in Brazil

    Directory of Open Access Journals (Sweden)

    Antonio Lelis Pinheiro

    2011-01-01

    Full Text Available This study investigates the seasonal variation of three species of Leptospermum (Myrtaceae grown in Brazil. The chemical composition of the volatile oils of L. flavescens and L. petersonii did not show any significant seasonal variation in the major components, while for Leptospermum madidum subsp. sativum the levels of major constituents of the volatile oils varied with the harvest season. Major fluctuations in the composition of L. madidum subsp. sativum oil included α-pinene (0–15.2%, β-pinene (0.3–18.5%, α-humulene (0.8–30%, 1,8-cineole (0.4–7.1% and E-caryophyllene (0.4–11.9%. Levels of β-pinene (0.3–5.6%, terpinen-4-ol (4.7–7.2% and nerolidol (55.1–67.6% fluctuated seasonally in the L. flavescens oil. In L. petersonii, changes were noted for geranial (29.8–32.8%, citronellal (26.5–33.9% and neral (22.7–23.5%. The activity of the volatile oils against the tested bacteria differed, depending on season the oils were obtained. In general, the volatile oils were more active against Gram-positive bacteria.

  3. Electron beam processing of carbon fibre reinforced braided composites beams

    International Nuclear Information System (INIS)

    Halasz, L.; Zsigmond, B.; Czvikovszky, T.

    2002-01-01

    Complete text of publication follows. In this paper the possibility of producing a new type carbon fiber reinforced composite is examined by applying braiding, a well-known process of textile technology. The appearance of the new Hungarian carbon fiber with excellent mechanical properties in the market enables the development of newer type carbon fiber reinforced composites in the continuously widening range of engineering applications. Advanced hollow profiles, pipes and other composite products can be manufactured in continuous operation. A new way of composite production of this kind is the manufacturing of reinforcing structure by braiding technology producing a composite with sufficient mechanical properties from this cross directional fabric-like textile structure by impregnation. This manufacturing process can complete the variety of hollow products serving the same purpose as pultrusion or filament winding. This way a profile type framework element with a hollow cross section is manufactured having favorable mechanical properties. Owing to its small mass and high specific strength this product can be applied in dynamically loaded structures e.g. in the automotive industry. For crosslinking of the matrix the method of high-speed electron beam curing has been examined in order to reach continuous operation. The field of use and application of carbon fiber braided structures has a great chance especially in machine engineering and in the automotive industry. The main reason for this is that braiding processes are capable of producing structures having good mechanical properties at a low processing price. The mass of the composite load-bearing structure produced this way is one fifth of the steel product having similar geometry, and its specific mechanical properties are nearly as good as that of the most commonly applied semiproduct and structural component, the welded steel profile

  4. Influence of magmatic volatiles on boron isotope compositions in vent fluids from the Eastern Manus Basin, Papua New Guinea

    Science.gov (United States)

    Wilckens, F. K.; Kasemann, S.; Bach, W.; Reeves, E. P.; Meixner, A.; Seewald, J.

    2016-12-01

    In this study we present boron (B), lithium (Li) and strontium (Sr) concentrations and isotopic composition of submarine hydrothermal fluids collected in 2006 and 2011 from PACMANUS, DESMOS and SuSu Knolls vent fields located in the Eastern Manus Basin [1,2]. Hydrothermal vent fluids within the Eastern Manus Basin range from high-temperature black smoker fluids to low-temperature diffuse fluids and acid-sulfate fluids. In general, the different fluid types show variable water-rock ratios during water-rock interaction and different inputs of magmatic volatiles. End-member black smoker fluids, which have in general high temperatures (mostly higher than 280°C) and pH values higher than 2 (measured at 25°C) are characterized by low δ7Li values (3.9 to 5.9‰) and 87Sr/86Sr ratios (0.704 to 0.705) similar to the values for island arc basalts. These results suggest low water-rock ratios during hydrothermal circulation. B concentrations and isotopic compositions in these fluids range from 1.0 to 2.6μM and 13 to 20‰, respectively. These data match with other vent fluids from island arc settings in the Western Pacific and plot in a B versus δ11B diagram on a two-component mixing line between seawater and island arc basalts [3]. Sr and Li isotopic composition of white smoker and acid-sulfate fluids overlap generally with the isotopic ratios for the black smoker fluids. However, in some fluids Sr isotope ratios are up to 0.709 near seawater composition suggesting higher water-rock ratios during water-rock interaction. B concentrations and isotope ratios in the white smoker and acid-sulfate fluids range from 0.6 to 2.2μM and 9 to 16‰, respectively which are lower compared with the values of black smoker fluids. In addition, these fluids do not fit on the mixing line between seawater and island arc basalt, and define another mixing trend in a B versus δ11B diagram. To explain this contradictory trend, a third mixing endmember is required that shifts B concentrations

  5. Analysis of volatile flavor compounds influencing Chinese-type soy sauces using GC-MS combined with HS-SPME and discrimination with electronic nose.

    Science.gov (United States)

    Gao, Lihua; Liu, Ting; An, Xinjing; Zhang, Jinlan; Ma, Xiaoran; Cui, Jinmei

    2017-01-01

    Soy sauce contains a variety of volatiles that are highly valuable to its quality with regard to sensory characteristics. This paper describes the analysis of volatile compounds influencing the flavor quality of Chinese-type soy sauces. Gas chromatography-mass spectrometry (GC-MS) combined with headspace-solid phase microextraction and electronic nose (E-nose) were applied for identifying the volatile flavor compounds as well as determining their volatile profiles of 12 soy sauces manufactured by different fermentation process. Forty one key volatile components of these 12 soy sauce products, a pure soy sauce and an acid-hydrolyzed vegetable protein sample, were compared in semi-quantitative form, and their volatile flavor profiles were analyzed by E-nose. The substantially similar results between hierarchical cluster analysis based on GC-MS data and E-nose analysis suggested that both techniques may be useful in evaluating the flavor quality of soy sauces and differentiating soy sauce products. The study also showed that there were less volatile flavor compounds in soy sauces produced through low-salt solid-state fermentation process, a traditional manufacturing technology and a widely adopted technology in Chinese soy sauce industries. In addition, the investigation suggested that the flavor quality of soy sauce varied widely in Chinese domestic market, and that the present Chinese national standards of soy sauce should be further perfected by the addition of flavor grades of soy sauce in the physical and chemical index. Meanwhile, this research provided valuable information to manufacturers and government regulators, which have practical significance to improve quality of soy sauces.

  6. Compositions of the volatile oils of Citrus macroptera and C. maxima.

    Science.gov (United States)

    Rana, Virendra S; Blazquez, Maria A

    2012-10-01

    The essential oils obtained by hydrodistillation from the fresh peels of Citrus macroptera Montr. and C. maxima (Burm.) Merr. were analyzed by GC and GC/MS. The yields of oil ranged from 0.53% in C. macroptera to 0.13% in C. maxima cultivar (white). Forty-seven compounds were identified in the oils with limonene (55.3-80.0%), dodecyl acrylate (2.2-8.0%), geranial (0.4-3.5%), trans-linalool oxide (1.0-2.8%), alpha-terpineol (0.7-2.3%), linalool (0.7-1.5%) and cis-linalool oxide (0.5-1.4%) identified as major compounds. The oil ofC. macroptera contained limonene (55.3%), beta-caryophyllene (4.7%) and geranial (3.5%) as main compounds. Similarly, oils from two C. maxima (pink and white) cultivars were rich in limonene (72.0-80.0%), dodecyl acrylate (8.0-7.2%) and nootkatone (1.6-2.5%). C. maxima (pink and white) cultivars were found to contain higher amount of limonene (72.0 and 80.0%) as compared with C. macroptera (55.3%). The chemical compositions of the oils were found to be similar, but nootkatone (1.6-2.5%) was identified only in C. maxima cultivars.

  7. Volatiles composition and extraction kinetics from Schinus terebinthifolius and Schinus molle leaves and fruit

    Directory of Open Access Journals (Sweden)

    Adriano dos Santos Cavalcanti

    Full Text Available AbstractEssential oils extracted from Schinus molle L. and Schinus terebinthifolius Raddi, Anacardiaceae, leaves and fruit hydrodistillation, as well as, their chemical composition and extraction kinetic were evaluated. For this proposal, 6 h extraction and aliquots collected at sequencing different times (0.5, 1, 2, 4 and 6 h were carried out allowing calculating accumulated content (% w/w and verifying essential oil chemical profile. β-caryophyllene (35.2%, α-pinene (28.1% and germacrene D (15.5% represent S. terebinthifolius dried leaves essential oil major components, as well as, α-pinene (44.9%, germacrene D (17.6% and β-pinene (15.1% in the fruit. Cubenol (27.1%, caryophyllene oxide (15.3% and spathulenol (12.4% represent S. molle dried leaves essential oil major components, and β-pinene (36.3% α-pinene (20.3%, germacrene D (12.1% and spathulenol in the fruit. Essential oil extraction kinetics showed a hyperbolic distribution; monoterpene content presented exponential decay in time function and sesquiterpene showed exponential growth. Faster monoterpene extraction than the sesquiterpene extraction was observed, however, both presented increasing exponential distribution.

  8. Effect of Exogenous Abscisic Acid and Methyl Jasmonate on Anthocyanin Composition, Fatty Acids, and Volatile Compounds of Cabernet Sauvignon (Vitis vinifera L.) Grape Berries.

    Science.gov (United States)

    Ju, Yan-Lun; Liu, Min; Zhao, Hui; Meng, Jiang-Fei; Fang, Yu-Lin

    2016-10-12

    The anthocyanin composition, fatty acids, and volatile aromas are important for Cabernet Sauvignon grape quality. This study evaluated the effect of exogenous abscisic acid (ABA) and methyl jasmonate (MeJA) on the anthocyanin composition, fatty acids, lipoxygenase activity, and the volatile compounds of Cabernet Sauvignon grape berries. Exogenous ABA and MeJA improved the content of total anthocyanins (TAC) and individual anthocyanins. Lipoxygenase (LOX) activity also increased after treatment. Furthermore, 16 fatty acids were detected. The linoleic acid concentration gradually increased with ABA concentration. The fatty acid content decreased with increasing MeJA concentration and then increased again, with the exception of linoleic acid. After exogenous ABA and MeJA treatment, the C6 aroma content increased significantly. Interestingly, the exogenous ABA and MeJA treatments improved mainly the content of 1-hexanol, hexanal, and 2-heptanol. These results provide insight into the effect of plant hormones on wine grapes, which is useful for grape quality improvement.

  9. Comparison of consecutive harvests versus blending treatments to produce lower alcohol wines from Cabernet Sauvignon grapes: Impact on wine volatile composition and sensory properties.

    Science.gov (United States)

    Schelezki, Olaf J; Šuklje, Katja; Boss, Paul K; Jeffery, David W

    2018-09-01

    This study extends previous work on Cabernet Sauvignon wines of lowered alcohol concentrations produced by pre-fermentatively substituting proportions of juice from an overripe crop with "green harvest wine" or water to adjust initial sugar concentrations. Resulting wines were assessed for their volatile compositions and sensory characteristics to evaluate the suitability of this winemaking approach to managing wine alcohol concentrations in warm viticulture regions. Wines from water or green harvest wine substitution were also compared to wines of similar alcohol content produced from earlier harvested grapes. Implementation of water substitution in particular resulted in minor alterations of wine volatile composition compared to the control, and positive aroma and flavour characteristics were preserved. However, overripe sensory attributes such as 'hotness' and 'port wine' were conserved whereas they were absent in wines of similar alcohol level made from earlier harvested grapes, thereby emphasising the relevance of grape (over)maturity when producing lower alcohol wines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Differences in volatile composition and sexual morphs in rambutan (Nephelium lappaceum L. flowers and their effect in the Apis mellifera L. (Hymenoptera, Apidae attraction

    Directory of Open Access Journals (Sweden)

    Lorena Aceves-Chong

    2018-01-01

    Full Text Available We studied the volatile composition and sexual morphs of Nephelium lappaceum flowers from two orchards, and investigated the choice behavior of the honey bee, Apis mellifera toward the floral extracts from both locations. Our results showed significant differences in chemical composition and sexual morphs; only the hermaphrodite flowers from the Herradero orchard produced limonene and α-pinene and had longer peduncle and sepal than flowers from the Metapa orchard; on the other hand, the hermaphrodite flowers from the Metapa orchard had longer gynoecium. In the behavioral experiment the extracts from the Herradero orchard seemed to give A. mellifera foragers better cues for orientation to food sources, perhaps due to the presence of limonene and α-pinene, which are absent in the samples from Metapa. Such differences in both orchards could affect pollinator attraction and ultimately seed set and productivity. Keywords: Floral volatiles, Hermaphrodite sex, Morphological traits, Orchards, Plant–insect interactions.

  11. Reconstruction and visualization of nanoparticle composites by transmission electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.Y. [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Canada T6H 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, Canada T6G 2G7 (Canada); Lockwood, R. [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Canada T6H 2M9 (Canada); Malac, M., E-mail: marek.malac@nrc-cnrc.gc.ca [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Canada T6H 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, Canada T6G 2G7 (Canada); Furukawa, H. [SYSTEM IN FRONTIER INC., 2-8-3, Shinsuzuharu bldg. 4F, Akebono-cho, Tachikawa-shi, Tokyo 190-0012 (Japan); Li, P.; Meldrum, A. [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Canada T6H 2M9 (Canada)

    2012-02-15

    This paper examines the limits of transmission electron tomography reconstruction methods for a nanocomposite object composed of many closely packed nanoparticles. Two commonly used reconstruction methods in TEM tomography were examined and compared, and the sources of various artefacts were explored. Common visualization methods were investigated, and the resulting 'interpretation artefacts' ( i.e., deviations from 'actual' particle sizes and shapes arising from the visualization) were determined. Setting a known or estimated nanoparticle volume fraction as a criterion for thresholding does not in fact give a good visualization. Unexpected effects associated with common built-in image filtering methods were also found. Ultimately, this work set out to establish the common problems and pitfalls associated with electron beam tomographic reconstruction and visualization of samples consisting of closely spaced nanoparticles. -- Highlights: Black-Right-Pointing-Pointer Electron tomography limits were explored by both experiment and simulation. Black-Right-Pointing-Pointer Reliable quantitative volumetry using electron tomography is not presently feasible. Black-Right-Pointing-Pointer Volume rendering appears to be better choice for visualization of composite samples.

  12. Volatile organic compound emissions from the oil and natural gas industry in the Uinta Basin, Utah: point sources compared to ambient air composition

    OpenAIRE

    C. Warneke; F. Geiger; P. M. Edwards; W. Dube; G. Pétron; J. Kofler; A. Zahn; S. S. Brown; M. Graus; J. Gilman; B. Lerner; J. Peischl; T. B. Ryerson; J. A. de Gouw; J. M. Roberts

    2014-01-01

    The emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uinta Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aroma...

  13. Induction of stress volatiles and changes in essential oil content and composition upon microwave exposure in the aromatic plant Ocimum basilicum

    Energy Technology Data Exchange (ETDEWEB)

    Lung, Ildikó [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, Cluj-Napoca 400293 (Romania); Soran, Maria-Loredana, E-mail: loredana.soran@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, Cluj-Napoca 400293 (Romania); Opriş, Ocsana; Truşcă, Mihail Radu Cătălin [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, Cluj-Napoca 400293 (Romania); Niinemets, Ülo [Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 1 Kreutzwaldi Street, Tartu 51014 (Estonia); Copolovici, Lucian [Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 1 Kreutzwaldi Street, Tartu 51014 (Estonia); Institute of Technical and Natural Sciences Research-Development of “Aurel Vlaicu” University, 2 Elena Drăgoi Street, Arad 310330 (Romania)

    2016-11-01

    Exposure to sustained low intensity microwaves can constitute a stress for the plants, but its effects on plant secondary chemistry are poorly known. We studied the influence of GSM and WLAN-frequency microwaves on emissions of volatile organic compounds and content of essential oil in the aromatic plant Ocimum basilicum L. hypothesizing that microwave exposure leads to enhanced emissions of stress volatiles and overall greater investment in secondary compounds. Compared to the control plants, microwave irradiation led to decreased emissions of β-pinene, α-phellandrene, bornyl acetate, β-myrcene, α-caryophyllene and benzaldehyde, but increased emissions of eucalyptol, estragole, caryophyllene oxide, and α-bergamotene. The highest increase in emission, 21 times greater compared to control, was observed for caryophyllene oxide. The irradiation resulted in increases in the essential oil content, except for the content of phytol which decreased by 41% in the case of GSM-frequency, and 82% in the case of WLAN-frequency microwave irradiation. The strongest increase in response to WLAN irradiation, > 17 times greater, was observed for hexadecane and octane contents. Comparisons of volatile compositions by multivariate analyses demonstrated a clear separation of different irradiance treatments, and according to the changes in the volatile emissions, the WLAN-frequency irradiation represented a more severe stress than the GSM-frequency irradiation. Overall, these results demonstrating important modifications in the emission rates, essential oil content and composition indicate that microwave irradiation influences the quality of herbage of this economically important spice plant. - Highlights: • Microwave irradiation represents a stress for the plants. • Microwave exposure leads to enhanced emissions of stress volatiles. • O. basilicum irradiation with microwaves increases the essential oil content. • Microwave pollution can constitute a threat to the

  14. Induction of stress volatiles and changes in essential oil content and composition upon microwave exposure in the aromatic plant Ocimum basilicum

    International Nuclear Information System (INIS)

    Lung, Ildikó; Soran, Maria-Loredana; Opriş, Ocsana; Truşcă, Mihail Radu Cătălin; Niinemets, Ülo; Copolovici, Lucian

    2016-01-01

    Exposure to sustained low intensity microwaves can constitute a stress for the plants, but its effects on plant secondary chemistry are poorly known. We studied the influence of GSM and WLAN-frequency microwaves on emissions of volatile organic compounds and content of essential oil in the aromatic plant Ocimum basilicum L. hypothesizing that microwave exposure leads to enhanced emissions of stress volatiles and overall greater investment in secondary compounds. Compared to the control plants, microwave irradiation led to decreased emissions of β-pinene, α-phellandrene, bornyl acetate, β-myrcene, α-caryophyllene and benzaldehyde, but increased emissions of eucalyptol, estragole, caryophyllene oxide, and α-bergamotene. The highest increase in emission, 21 times greater compared to control, was observed for caryophyllene oxide. The irradiation resulted in increases in the essential oil content, except for the content of phytol which decreased by 41% in the case of GSM-frequency, and 82% in the case of WLAN-frequency microwave irradiation. The strongest increase in response to WLAN irradiation, > 17 times greater, was observed for hexadecane and octane contents. Comparisons of volatile compositions by multivariate analyses demonstrated a clear separation of different irradiance treatments, and according to the changes in the volatile emissions, the WLAN-frequency irradiation represented a more severe stress than the GSM-frequency irradiation. Overall, these results demonstrating important modifications in the emission rates, essential oil content and composition indicate that microwave irradiation influences the quality of herbage of this economically important spice plant. - Highlights: • Microwave irradiation represents a stress for the plants. • Microwave exposure leads to enhanced emissions of stress volatiles. • O. basilicum irradiation with microwaves increases the essential oil content. • Microwave pollution can constitute a threat to the

  15. Scanning electron microscopy and roughness study of dental composite degradation.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; Cortez, Louise Ribeiro; Zarur, Raquel de Oliveira; Martin, Airton Abrahão

    2012-04-01

    Our aim was to test the hypothesis that the use of mouthwashes, consumption of soft drinks, as well as the type of light curing unit (LCU), would change the surface roughness (Ra) and morphology of a nanofilled composite resin (Z350® 3M ESPE). Samples (80) were divided into eight groups: Halogen LCU, group 1, saliva (control); group 2, Pepsi Twist®; group 3, Listerine®; group 4, Colgate Plax®; LED LCU, group 5, saliva; group 6, Pepsi Twist®; group 7, Listerine®; group 8, Colgate Plax®. Ra values were measured at baseline, and after 7 and 14 days. One specimen of each group was prepared for scanning electron microscopy analysis after 14 days. The data were subjected to multifactor analysis of variance at a 95% confidence followed by Tukey's honestly significant difference post-hoc test. All the treatments resulted in morphological changes in composite resin surface, and the most significant change was in Pepsi Twist® groups. The samples of G6 had the greatest increase in Ra. The immersion of nanofilled resin in mouthwashes with alcohol and soft drink increases the surface roughness. Polymerization by halogen LCU (reduced light intensity) associated with alcohol contained mouthwash resulted in significant roughness on the composite.

  16. Emissions of volatile organic compounds (VOCs) from concentrated animal feeding operations (CAFOs): chemical compositions and separation of sources

    Science.gov (United States)

    Yuan, Bin; Coggon, Matthew M.; Koss, Abigail R.; Warneke, Carsten; Eilerman, Scott; Peischl, Jeff; Aikin, Kenneth C.; Ryerson, Thomas B.; de Gouw, Joost A.

    2017-04-01

    Concentrated animal feeding operations (CAFOs) emit a large number of volatile organic compounds (VOCs) to the atmosphere. In this study, we conducted mobile laboratory measurements of VOCs, methane (CH4) and ammonia (NH3) downwind of dairy cattle, beef cattle, sheep and chicken CAFO facilities in northeastern Colorado using a hydronium ion time-of-flight chemical-ionization mass spectrometer (H3O+ ToF-CIMS), which can detect numerous VOCs. Regional measurements of CAFO emissions in northeastern Colorado were also performed using the NOAA WP-3D aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX) campaign. Alcohols and carboxylic acids dominate VOC concentrations and the reactivity of the VOCs with hydroxyl (OH) radicals. Sulfur-containing and phenolic species provide the largest contributions to the odor activity values and the nitrate radical (NO3) reactivity of VOC emissions, respectively. VOC compositions determined from mobile laboratory and aircraft measurements generally agree well with each other. The high time-resolution mobile measurements allow for the separation of the sources of VOCs from different parts of the operations occurring within the facilities. We show that the emissions of ethanol are primarily associated with feed storage and handling. Based on mobile laboratory measurements, we apply a multivariate regression analysis using NH3 and ethanol as tracers to determine the relative importance of animal-related emissions (animal exhalation and waste) and feed-related emissions (feed storage and handling) for different VOC species. Feed storage and handling contribute significantly to emissions of alcohols, carbonyls, carboxylic acids and sulfur-containing species. Emissions of phenolic species and nitrogen-containing species are predominantly associated with animals and their waste.

  17. Characterization of Chemical Composition of Pericarpium Citri Reticulatae Volatile Oil by Comprehensive Two-Dimensional Gas Chromatography with High-Resolution Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Kunming Qin

    2013-01-01

    Full Text Available Pericarpium Citri Reticulatae (Chenpi in Chinese has been widely used as an herbal medicine in Korea, China, and Japan. Chenpi extracts are used to treat indigestion and inflammatory syndromes of the respiratory tract such as bronchitis and asthma. This thesis will analyze chemical compositions of Chenpi volatile oil, which was performed by comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry (GC × GC-HR-TOFMS. One hundred and sixty-seven components were tentatively identified, and terpene compounds are the main components of Chenpi volatile oil, a significant larger number than in previous studies. The majority of the eluted compounds, which were identified, were well separated as a result of high-resolution capability of the GC × GC method, which significantly reduces, the coelution. β-Elemene is tentatively qualified by means of GC × GC in tandem with high-resolution TOFMS detection, which plays an important role in enhancing the effects of many anticancer drugs and in reducing the side effects of chemotherapy. This study suggests that GC × GC-HR-TOFMS is suitable for routine characterization of chemical composition of volatile oil in herbal medicines.

  18. Process for producing a coating composition. [electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, T; Harada, H; Kobayashi, S; Nakamoto, H; Sunano, K

    1968-07-19

    An easily hardenable acrylic coating composition is produced by irradiation with low energy electron beams to economize the industrial application of the composition. A polymer with molecular weights in the 5,000 to 500,000 range is composed of 1 to 40% by weight of a vinyl monomer containing a glycidyl radical, 30 to 99% of a methacrylic monomer and 0 to 69% of other copolymerizable vinyl monomers. This polymer dissolves in a monomer containing at least 30% of an acrylic monomer and 70% of other vinyl monomers. The reaction takes place between 0.1 to 1.0 mole of vinyl monomer containing a carboxyl radical and one mole of glycidyl radical in the solution. In an embodiment, 17.5% by weight of glycidyl methacrylate and 82.5% of alkyl acrylate are polymerized in suspension in the presence of a catalyst to form a bead like polymer with molecular weights in the 5,000 to 500,000 range. After 120 parts of the bead like polymer are dissolved in 180 parts of the acrylic monomer in the presence of a polymerization inhibitor by heating, 22 parts of ..cap alpha.., ..beta..- unsaturated monocarboxylic acid are added to the solution to react with the glycidyl radical, whereby a non-solvent type coating material containing the polymer having a vinyl radical side chain is produced. In the place of the catalyst, electron beams can be used at an energy level of 0.1 to 20 MeV. The dose rate may be in the range of 0.1 to 2.0 Mrad/sec.

  19. Gas Chromatographic-Ion Trap Mass Spectrometric Analysis of Volatile Organic Compounds by Ion-Molecule Reactions Using the Electron-Deficient Reagent Ion CCl{3/+}

    Science.gov (United States)

    Wang, Cheng-Zhong; Su, Yue; Wang, Hao-Yang; Guo, Yin-Long

    2011-10-01

    When using tetrachloromethane as the reagent gas in gas chromatography-ion trap mass spectrometry equipped with hybrid ionization source, the cation CCl{3/+} was generated in high abundance and further gas-phase experiments showed that such an electron-deficient reagent ion CCl{3/+} could undergo interesting ion-molecule reactions with various volatile organic compounds, which not only present some informative gas-phase reactions, but also facilitate qualitative analysis of diverse volatile compounds by providing unique mass spectral data that are characteristic of particular chemical structures. The ion-molecule reactions of the reagent ion CCl{3/+} with different types of compounds were studied, and results showed that such reactions could give rise to structurally diagnostic ions, such as [M + CCl3 - HCl]+ for aromatic hydrocarbons, [M - OH]+ for saturated cyclic ether, ketone, and alcoholic compounds, [M - H]+ ion for monoterpenes, M·+ for sesquiterpenes, [M - CH3CO]+ for esters, as well as the further fragment ions. The mechanisms of ion-molecule reactions of aromatic hydrocarbons, aliphatic ketones and alcoholic compounds with the reagent ion CCl{3/+} were investigated and proposed according to the information provided by MS/MS experiments and theoretical calculations. Then, this method was applied to study volatile organic compounds in Dendranthema indicum var. aromaticum and 20 compounds, including monoterpenes and their oxygen-containing derivatives, aromatic hydrocarbon and sesquiterpenes were identified using such ion-molecule reactions. This study offers a perspective and an alternative tool for the analysis and identification of various volatile compounds.

  20. Contamination of Optical Surfaces Under Irradiation by Outgassed Volatile Products

    International Nuclear Information System (INIS)

    Khasanshin, R. H.; Grigorevskiy, A. V.; Galygin, A. N.; Alexandrov, N. G.

    2009-01-01

    Deposition of outgassed products of a polymeric composite on model material surfaces being irradiated by electrons and protons with initial energies of E e = 40 keV and E p = 30 keV respectively was studied. It was shown that deposition of volatile products on model material surfaces being under ionizing radiations results in increase of organic film growth rate.

  1. Studying volatility from composition, dilution, and heating measurements of secondary organic aerosols formed during α-pinene ozonolysis

    Science.gov (United States)

    Sato, Kei; Fujitani, Yuji; Inomata, Satoshi; Morino, Yu; Tanabe, Kiyoshi; Ramasamy, Sathiyamurthi; Hikida, Toshihide; Shimono, Akio; Takami, Akinori; Fushimi, Akihiro; Kondo, Yoshinori; Imamura, Takashi; Tanimoto, Hiroshi; Sugata, Seiji

    2018-04-01

    Traditional yield curve analysis shows that semi-volatile organic compounds are a major component of secondary organic aerosols (SOAs). We investigated the volatility distribution of SOAs from α-pinene ozonolysis using positive electrospray ionization mass analysis and dilution- and heat-induced evaporation measurements. Laboratory chamber experiments were conducted on α-pinene ozonolysis, in the presence and absence of OH scavengers. Among these, we identified not only semi-volatile products, but also less volatile highly oxygenated molecules (HOMs) and dimers. Ozonolysis products were further exposed to OH radicals to check the effects of photochemical aging. HOMs were also formed during OH-initiated photochemical aging. Most HOMs that formed from ozonolysis and photochemical aging had 10 or fewer carbons. SOA particle evaporation after instantaneous dilution was measured at fraction remaining of SOAs decreased with time and the equilibration timescale was determined to be 24-46 min for SOA evaporation. The experimental results of the equilibration timescale can be explained when the mass accommodation coefficient is assumed to be 0.1, suggesting that the existence of low-volatility materials in SOAs, kinetic inhibition, or some combined effect may affect the equilibration timescale measured in this study.

  2. Electro-volatilization of ruthenium in nitric medium: influences of ruthenium species nature and models solutions composition

    International Nuclear Information System (INIS)

    Mousset, F.

    2004-12-01

    Ruthenium is one of the fission products in the reprocessing of irradiated fuels that requires a specific processing management. Its elimination, upstream by the PUREX process, has been considered. A process, called electro-volatilization, which take advantage of the RuO 4 volatility, has been optimised in the present study. It consists in a continuous electrolysis of ruthenium solutions in order to generate RuO 4 species that is volatilized and easily trapped. This process goes to satisfying ruthenium elimination yields with RuNO(NO 3 ) 3 (H 2 O) 2 synthetic solutions but not with fuel dissolution solutions. Consequently, this work consisted in the speciation studies of dissolved ruthenium species were carried out by simulating fuel solutions produced by hot acid attack of several ruthenium compounds (Ru(0), RuO 2 ,xH 2 O, polymetallic alloy). In parallel with dissolution kinetic studies, the determination of dissolved species was performed using voltammetry, spectrometry and spectro-electrochemistry. The results showed the co-existence of Ru(IV) and RuNO(NO 2 ) 2 (H 2 O) 3 . Although these species are different from synthetic RuNO(NO 3 ) 3 (H 2 O) 2 , their electro-oxidation behaviour are similar. The electro-volatilization tests of these dissolution solutions yielded to comparable results as the synthetic RuNO(NO 3 ) 3 (H 2 O) 2 solutions. Then, complexity increase of models solutions was performed by in-situ generation of nitrous acid during ruthenium dissolution. Nitrous acid showed a catalytic effect on ruthenium dissolution. Its presence goes to quasi exclusively RuNO(NO 2 ) 2 (H 2 O) 3 species. It is also responsible of the strong n-bond formation between Ru 2+ and NO + . In addition, it has been shown that its reducing action on RuO 4 hinders the electro-volatilization process. Mn 2+ and Ce 3+ cations also reveal, but to a lesser extent, an electro-eater behaviour as well as Pu 4+ and Cr 3+ according to the thermodynamics data. These results allow one to

  3. Assessment of Volatile Chemical Composition of the Essential Oil of Jatropha ribifolia (Pohl Baill by HS-SPME-GC-MS Using Different Fibers

    Directory of Open Access Journals (Sweden)

    Celia Eliane de Lara da Silva

    2013-01-01

    Full Text Available The chemical composition of essential oil and volatile obtained from the roots of Jatropha ribifolia (Pohl Baill was performed in this work. The Clevenger extractor was utilized in hydrodistillation of oil and chemical composition determined by gas chromatography coupled with mass spectrometry detector (GC-MS. The identification of compounds was confirmed by retention index (Kovats index obtained from a series of straight chain alkanes (C7–C30 and by comparison with NIST and ADAMS library. A total of 61 compounds were identified in essential oil by GC-MS. The extraction of volatile was performed also by the use of the solid phase microextraction (SPME with four different fibers. The essential oil extraction was extremely rapid (15 s to avoid saturation of the fiber and the MS detector. The majority of the composition of essential oil is the terpenes: β-pinene (major compound 9.16%, β-vatirene (8.34%, α-gurjunene (6.98%, α-pinene (6.35%, camphene (4.34%, tricyclene (3.79% and dehydro aromadendrene (3.52% it and aldehydes and alcohols. Through the SPME it was possible to determine the nine volatile compounds not identified in oil 2,3,4-trimethyl-2-cyclopenten-1-one, α-phellandrene, 3-carene, trans-p-mentha-2,8-dienol, pinocamphone, D-verbenon, 1,3,3-trimethyl-2-(2-methyl-cyclopropyl-cyclohexene, 2,4-diisocyanato-1-methylbenzene, and (6-hydroxymethyl-2,3-dimethylehenyl methanol.

  4. Volatility Discovery

    DEFF Research Database (Denmark)

    Dias, Gustavo Fruet; Scherrer, Cristina; Papailias, Fotis

    The price discovery literature investigates how homogenous securities traded on different markets incorporate information into prices. We take this literature one step further and investigate how these markets contribute to stochastic volatility (volatility discovery). We formally show...... that the realized measures from homogenous securities share a fractional stochastic trend, which is a combination of the price and volatility discovery measures. Furthermore, we show that volatility discovery is associated with the way that market participants process information arrival (market sensitivity......). Finally, we compute volatility discovery for 30 actively traded stocks in the U.S. and report that Nyse and Arca dominate Nasdaq....

  5. Oak (Quercus frainetto Ten. Honeydew Honey—Approach to Screening of Volatile Organic Composition and Antioxidant Capacity (DPPH and FRAP Assay

    Directory of Open Access Journals (Sweden)

    Igor Jerković

    2010-05-01

    Full Text Available Two samples of oak honeydew honey were investigated. Headspace solid-phase microextraction (HS-SPME combined with GC and GC/MS enabled identification of the most volatile organic headspace compounds being dominated by terpenes(mainly cis- and trans-linalool oxides. The volatile and less-volatile organic composition of the samples was obtained by ultrasonic assisted extraction (USE with two solvents (1:2 (v/v pentane -diethyl ether mixture and dichloromethane followed by GC and GC/MS analysis. Shikimic pathway derivatives are of particular interest with respect to the botanical origin of honey and the most abundant was phenylacetic acid (up to 16.4%. Antiradical activity (DPPH assay of the honeydew samples was 4.5 and 5.1 mmol TEAC/kg. Ultrasonic solvent extracts showed several dozen times higher antiradical capacity in comparison to the honeydew. Antioxidant capacity (FRAP assay of honeydew samples was 4.8 and 16.1 mmol Fe2+/kg, while the solvent mixture extracts showed antioxidant activity of 374.5 and 955.9 Fe2+/kg, respectively, and the dichloromethane extracts 127.3 and 101.5 mmol Fe2+/kg.

  6. The role of the canonical biplot method in the study of volatile compounds in cheeses of variable composition

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Martin, M.I.; Vicente Tavera, S.; Revilla Martin, I.; Vivar Quintana, A.M.; Gonzalez Perez, C.; Hernandez Hierro, J.M.; Lobos Ortega, I.A.

    2016-07-01

    The canonical biplot method (CB) is used to determine the discriminatory power of volatile chemical compounds in cheese. These volatile compounds were used as variables in order to differentiate among 6 groups or populations of cheeses (combinations of two seasons (winter and summer) with 3 types of cheese (cow, sheep and goat’s milk). We analyzed a total of 17 volatile compounds by means of gas chromatography coupled with mass detection. The compounds included aldehydes and methyl-aldehydes, alcohols (primary, secondary and branched chain), ketones, methyl-ketones and esters in winter (WC) and summer (SC) cow’s cheeses, winter (WSh) and summer (SSh) sheep’s cheeses and in winter (WG) and summer (SG) goat’s cheeses. The CB method allows differences to be found as a function of the elaboration of the cheeses, the seasonality of the milk, and the separation of the six groups of cheeses, characterizing the specific volatile chemical compounds responsible for such differences. (Author)

  7. Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles

    NARCIS (Netherlands)

    Os, van G.J.; Agtmaal, van M.; Hol, G.; Hundscheid, M.P.J.; Runia, W.T.; Hordijk, C.; Boer, de W.

    2015-01-01

    There is increasing evidence that microbial volatiles (VOCs) play an important role in natural suppression of soil-borne diseases, but little is known on the factors that influence production of suppressing VOCs. In the current study we examined whether a stress-induced change in soil microbial

  8. Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles

    NARCIS (Netherlands)

    van Agtmaal, Maaike; van Os, Gera; Hol, Gera; Hundscheid, M.P.J.; Runia, Willemien; Hordijk, Cees; De Boer, Wietse

    2015-01-01

    BACKGROUND: There is increasing evidence that microbial volatiles (VOCs) play an important role in natural suppression of soil-borne diseases, but little is known on the factors that influence production of suppressing VOCs. In the current study we examined whether a stress-induced change in soil

  9. Non-volatile memories

    CERN Document Server

    Lacaze, Pierre-Camille

    2014-01-01

    Written for scientists, researchers, and engineers, Non-volatile Memories describes the recent research and implementations in relation to the design of a new generation of non-volatile electronic memories. The objective is to replace existing memories (DRAM, SRAM, EEPROM, Flash, etc.) with a universal memory model likely to reach better performances than the current types of memory: extremely high commutation speeds, high implantation densities and retention time of information of about ten years.

  10. Effect of e-beam irradiation and microwave heating on the fatty acid composition and volatile compound profile of grass carp surimi

    International Nuclear Information System (INIS)

    Zhang, Hongfei; Wang, Wei; Wang, Haiyan; Ye, Qingfu

    2017-01-01

    In this study, we evaluated the effects of e-beam irradiationпј€1–7 kGyпј‰ and irradiation coupled to microwave heating (e-I-MC, 70 °C internal temperature) on the fatty acid composition and volatile compound profile of grass carp surimi. Compared to control samples, e-beam irradiation generated three novel volatile compounds (heptane, 2,6-dimethyl-nonane, and dimethyl disulfide) and increased the relative proportions of alcohols, aldehydes, and ketones. Meanwhile, e-I-MC significantly increased aldehyde levels and generated five heterocyclic compounds along with these three novel compounds. No significant difference in volatile compounds were detected in e-I-MC samples with increasing irradiation dose (p>0.05), comparing to the control group. E-beam irradiation at 5 and 7 kGy increased the levels of saturated fatty acids (SFAs) and decreased the levels of unsaturated fatty acids (p≤0.05), but did not affect the content of trans fatty acid levels (p>0.05). Irradiation, which had no significant effects on (Eicosapentaenoic acid) EPA, decreased (Docose Hexaenoie Acid) DHA levels. In the e-I-MC group, SFA levels increased and PUFA levels decreased. Additionally, MUFA levels were unaffected and trans fatty acid levels increased slightly following e-I-MC. - Highlights: • E-beam irradiation generated three novel volatile compounds. • E-beam irradiation increased the relative proportions of alcohols, aldehydes, and ketones. • E-beam irradiation coupled to microwave heating increased aldehyde levels and generated five heterocyclic compounds. • E-beam irradiation at 5 and 7 kGy decreased the levels of unsaturated fatty acids, but did not affect trans fatty acid levels.

  11. Development of a portable mass spectrometric system for determination of isotopic composition of solid uranium samples using fluorine volatilization. Final report

    International Nuclear Information System (INIS)

    Loge, G.

    1994-01-01

    Using hardware and materials supplied by LANL, a prototype quadrupole mass spectrometer system designed for portable field analysis of isotopic composition of solid uranium samples was assembled and tested. The system contained the capability for fluorine volatilization of solid uranium samples with gas introduction, which was successfully tested and demonstrated using 100 mg samples of U 3 O 8 . Determination of precision and accuracy for measuring isotopic composition was performed using isotopic standards. Use with soil samples containing uranium were also attempted. Silicates in the soil forming SiF 4 were found to be a kinetic bottleneck to the formation of UF 6 . This could be avoided by performing some sort of chemical separation as a pre-treatment step, which was demonstrated using nitric acid

  12. Differences in volatile composition and sexual morphs in rambutan (Nephelium lappaceum L. flowers and their effect in the Apis mellifera L. (Hymenoptera, Apidae attraction

    Directory of Open Access Journals (Sweden)

    Lorena Aceves-Chong

    Full Text Available ABSTRACT We studied the volatile composition and sexual morphs of Nephelium lappaceum flowers from two orchards, and investigated the choice behavior of the honey bee, Apis mellifera toward the floral extracts from both locations. Our results showed significant differences in chemical composition and sexual morphs; only the hermaphrodite flowers from the Herradero orchard produced limonene and α-pinene and had longer peduncle and sepal than flowers from the Metapa orchard; on the other hand, the hermaphrodite flowers from the Metapa orchard had longer gynoecium. In the behavioral experiment the extracts from the Herradero orchard seemed to give A. mellifera foragers better cues for orientation to food sources, perhaps due to the presence of limonene and α-pinene, which are absent in the samples from Metapa. Such differences in both orchards could affect pollinator attraction and ultimately seed set and productivity.

  13. Effect of Exogenous Abscisic Acid and Methyl Jasmonate on Anthocyanin Composition, Fatty Acids, and Volatile Compounds of Cabernet Sauvignon (Vitis vinifera L. Grape Berries

    Directory of Open Access Journals (Sweden)

    Yan-Lun Ju

    2016-10-01

    Full Text Available The anthocyanin composition, fatty acids, and volatile aromas are important for Cabernet Sauvignon grape quality. This study evaluated the effect of exogenous abscisic acid (ABA and methyl jasmonate (MeJA on the anthocyanin composition, fatty acids, lipoxygenase activity, and the volatile compounds of Cabernet Sauvignon grape berries. Exogenous ABA and MeJA improved the content of total anthocyanins (TAC and individual anthocyanins. Lipoxygenase (LOX activity also increased after treatment. Furthermore, 16 fatty acids were detected. The linoleic acid concentration gradually increased with ABA concentration. The fatty acid content decreased with increasing MeJA concentration and then increased again, with the exception of linoleic acid. After exogenous ABA and MeJA treatment, the C6 aroma content increased significantly. Interestingly, the exogenous ABA and MeJA treatments improved mainly the content of 1-hexanol, hexanal, and 2-heptanol. These results provide insight into the effect of plant hormones on wine grapes, which is useful for grape quality improvement.

  14. Change in Color and Volatile Composition of Skim Milk Processed with Pulsed Electric Field and Microfiltration Treatments or Heat Pasteurization

    OpenAIRE

    Chugh, Anupam; Khanal, Dipendra; Walkling-Ribeiro, Markus; Corredig, Milena; Duizer, Lisa; Griffiths, Mansel

    2014-01-01

    Non-thermal processing methods, such as pulsed electric field (PEF) and tangential-flow microfiltration (TFMF), are emerging processing technologies that can minimize the deleterious effects of high temperature short time (HTST) pasteurization on quality attributes of skim milk. The present study investigates the impact of PEF and TFMF, alone or in combination, on color and volatile compounds in skim milk. PEF was applied at 28 or 40 kV/cm for 1122 to 2805 µs, while microfiltration (MF) was c...

  15. Composition of the volatile compounds from Aniba canelilla (H. B. K. Mez. extracted by CO2 in the supercritical state

    Directory of Open Access Journals (Sweden)

    Janete H. Y. Vilegas

    Full Text Available The volatile compounds obtained by SFE-CO2 (supercritical fluid extraction utilizing CO2 from the barks of Aniba canelilla (H. B. K. Mez. (Lauraceae were analyzed by HRGC-FID (high resolution gas chromatography - flame ionization detector and HRGC-MS (high resolution gas chromatography -mass spectrometry. Phenylpropanoids and lower amounts of sesquiterpenoids, representing ca. 97% of the total oil, were identified. The main compound, 2-phenylnitroethane, corresponds to 71,12% of the total oil.

  16. Effect of post-fermentation and packing stages on the volatile composition of Spanish-style green table olives.

    Science.gov (United States)

    Sánchez, Antonio Higinio; López-López, Antonio; Cortés-Delgado, Amparo; Beato, Víctor Manuel; Medina, Eduardo; de Castro, Antonio; Montaño, Alfredo

    2018-01-15

    The volatile profile of Spanish-style green table olives after fermentation and the changes in volatile compounds that occurred as a result of the post-fermentation and subsequent packing stage were explored by solid phase micro-extraction (SPME) and gas chromatography coupled to mass spectrometry (GC-MS). Three olive cultivars (Manzanilla, Gordal, and Hojiblanca) were processed and olive samples were taken at three different times throughout the elaboration: after fermentation, after post-fermentation, and after packing. A total of 132 volatile compounds were identified, including 10 phenols, 25 alcohols, 11 acids, 39 esters, 8 hydrocarbons, 14 carbonyl compounds, 17 terpenes, and 6 other compounds. A varying number of compounds from each chemical family underwent significant changes because of the post-fermentation and packing stages. Among them, some typical reaction products of lipid oxidation (e.g. (E)-2-decenal and (E,E)-2,4-decadienal) increased with the post-fermentation in Manzanilla cultivar, and also as a result of packing in all three cultivars. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Volatile fraction composition and physicochemical parameters as tools for the differentiation of lemon blossom honey and orange blossom honey.

    Science.gov (United States)

    Kadar, Melinda; Juan-Borrás, Marisol; Carot, Jose M; Domenech, Eva; Escriche, Isabel

    2011-12-01

    Volatile fraction profile and physicochemical parameters were studied with the aim of evaluating their effectiveness for the differentiation between lemon blossom honey (Citrus limon L.) and orange blossom honey (Citrus spp.). They would be useful complementary tools to the traditional analysis based on the percentage of pollen. A stepwise discriminant analysis constructed using 37 volatile compounds (extracted by purge and trap and analysed by gas chromatography-mass spectrometry), and physicochemical and colour parameters (diastase, conductivity, Pfund colour and CIE L a b) together provided a model that permitted the correct classification of 98.3% of the original and 96.6% of the cross-validated cases, indicating its efficiency and robustness. This model proved its effectiveness in the differentiation of both types of honey with another set of batches from the following year. This model, developed from the volatile compounds, physicochemical and colour parameters, has been useful for the differentiation of lemon and orange blossom honeys. Furthermore, it may be of particular interest for the attainment of a suitable classification of orange honey in which the pollen count is very low. These capabilities imply an evident marketing advantage for the beekeeping sector, since lemon blossom honey could be commercialized as unifloral honey and not as generic citrus honey and orange blossom honey could be correctly characterized. Copyright © 2011 Society of Chemical Industry.

  18. Virtual volatility

    Science.gov (United States)

    Silva, A. Christian; Prange, Richard E.

    2007-03-01

    We introduce the concept of virtual volatility. This simple but new measure shows how to quantify the uncertainty in the forecast of the drift component of a random walk. The virtual volatility also is a useful tool in understanding the stochastic process for a given portfolio. In particular, and as an example, we were able to identify mean reversion effect in our portfolio. Finally, we briefly discuss the potential practical effect of the virtual volatility on an investor asset allocation strategy.

  19. Iodine volatility

    International Nuclear Information System (INIS)

    Beahm, E.C.; Shockley, W.E.

    1984-01-01

    The ultimate aim of this program is to couple experimental aqueous iodine volatilities to a fission product release model. Iodine partition coefficients, for inorganic iodine, have been measured during hydrolysis and radiolysis. The hydrolysis experiments have illustrated the importance of reaction time on iodine volatility. However, radiolysis effects can override hydrolysis in determining iodine volatility. In addition, silver metal in radiolysis samples can react to form silver iodide accompanied by a decrease in iodine volatility. Experimental data are now being coupled to an iodine transport and release model that was developed in the Federal Republic of Germany

  20. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses

    Science.gov (United States)

    Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis,1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste

  1. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  2. Plume composition and volatile flux of Nyamulagira volcano, Democratic Republic of Congo, during birth and evolution of the lava lake, 2014-2015

    Science.gov (United States)

    Bobrowski, N.; Giuffrida, G. B.; Arellano, S.; Yalire, M.; Liotta, M.; Brusca, L.; Calabrese, S.; Scaglione, S.; Rüdiger, J.; Castro, J. M.; Galle, B.; Tedesco, D.

    2017-12-01

    Very little is known about the volatile element makeup of the gaseous emissions of Nyamulagira volcano. This paper tries to fill this gap by reporting the first gas composition measurements of Nyamulagira's volcanic plume since the onset of its lava lake activity at the end of 2014. Two field surveys were carried out on 1 November 2014, and 13-15 October 2015. We applied a broad toolbox of volcanic gas composition measurement techniques in order to geochemically characterize Nyamulagira's plume. Nyamulagira is a significant emitter of SO2, and our measurements confirm this, as we recorded SO2 emissions of up to 14 kt/d during the studied period. In contrast to neighbouring Nyiragongo volcano, however, Nyamulagira exhibits relatively low CO2/SO2 molar ratios ( 92% of total gas emissions). Strong variations in the volatile composition, in particular for the CO2/SO2 ratio, were measured between 2014 and 2015, which appear to reflect the simultaneous variations in volcanic activity. We also determined the molar ratios for Cl/S, F/S and Br/S in the plume gas, finding values of 0.13 and 0.17, 0.06 and 0.11, and 2.3·10-4 and 1·10-4, in 2014 and 2015, respectively. A total gas emission flux of 48 kt/d was estimated for 2014. The I/S ratio in 2015 was found to be 3.6·10-6. In addition, we were able to distinguish between hydrogen halides and non-hydrogen halides in the volcanic plume. Considerable amounts of bromine (18-35% of total bromine) and iodine (8-18% of total iodine) were found in compounds other than hydrogen halides. However, only a negligible fraction of chlorine was found as compounds other than hydrogen chloride.

  3. The role of the canonical biplot method in the study of volatile compounds in cheeses of variable composition

    Directory of Open Access Journals (Sweden)

    González-Martín, M. I.

    2016-03-01

    Full Text Available The canonical biplot method (CB is used to determine the discriminatory power of volatile chemical compounds in cheese. These volatile compounds were used as variables in order to differentiate among 6 groups or populations of cheeses (combinations of two seasons (winter and summer with 3 types of cheese (cow, sheep and goat’s milk. We analyzed a total of 17 volatile compounds by means of gas chromatography coupled with mass detection. The compounds included aldehydes and methyl-aldehydes, alcohols (primary, secondary and branched chain, ketones, methyl-ketones and esters in winter (WC and summer (SC cow’s cheeses, winter (WSh and summer (SSh sheep’s cheeses and in winter (WG and summer (SG goat’s cheeses. The CB method allows differences to be found as a function of the elaboration of the cheeses, the seasonality of the milk, and the separation of the six groups of cheeses, characterizing the specific volatile chemical compounds responsible for such differences.El m.todo biplot can.nico (CB se utiliza para determinar el poder discriminatorio de compuestos qu.micos vol.tiles en queso. Los compuestos vol.tiles se utilizan como variables con el fin de diferenciar entre los 6 grupos o poblaciones de quesos (combinaciones de dos temporadas (invierno y verano con 3 tipos de queso (vaca, oveja y cabra. Se analizan un total de 17 compuestos vol.tiles por medio de cromatograf.a de gases acoplada con detecci.n de masas. Los compuestos incluyen aldeh.dos y metil-aldeh.dos, alcoholes (primarios de cadena, secundaria y ramificada, cetonas, metil-cetonas y .steres. Los seis grupos de quesos son, quesos de vaca de invierno (WC y verano (SC; quesos de oveja de invierno (WSh y verano (SSh y quesos de cabra de invierno (WG y verano (SG. El m.todo CB permite la separaci.n de los seis grupos de quesos y encontrar las diferencias en funci.n del tipo y estacionalidad de la leche, caracterizando los compuestos qu.micos vol.tiles espec.ficos responsables de

  4. Composição volátil dos defeitos intrínsecos do café por CG/EM-headspace Volatile composition of intrinsic defective coffee beans by GC/MS-headspace

    Directory of Open Access Journals (Sweden)

    Raquel D. C. C. Bandeira

    2009-01-01

    Full Text Available About 20% of Brazilian raw coffee production is considered inappropriate for exportation. Consequently, these beans are incorporated to good quality beans in the Brazilian market. This by-product of coffee industry is called PVA due to the presence of black (P, green (V and sour (A defective beans which are known to contribute considerably for cup quality decrease. Data on the volatile composition of Brazilian defective coffee beans are scarce. In this study, we evaluated the volatile composition of immature, black-immature, black defective beans and PVA compared to good quality beans. Potential defective beans markers were identified.

  5. High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission

    International Nuclear Information System (INIS)

    Hojati-Talemi, Pejman; Gibson, Mark A.; East, Daniel; Simon, George P.

    2011-01-01

    We report the preparation of new nanocomposites based on a combination of bulk metallic glass and carbon nanotubes for electron field emission applications. The use of bulk metallic glass as the matrix ensures high electrical and thermal conductivity, high thermal stability, and ease of processing, whilst the well dispersed carbon nanotubes act as highly efficient electron emitters. These advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

  6. High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission

    Energy Technology Data Exchange (ETDEWEB)

    Hojati-Talemi, Pejman [Department of Materials Engineering, Monash University, Clayton, Vic 3800 (Australia); Mawson Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Gibson, Mark A. [Process Science and Engineering, Commonwealth Scientific and Industrial Research Organisation, Clayton, Vic 3168 (Australia); East, Daniel; Simon, George P. [Department of Materials Engineering, Monash University, Clayton, Vic 3800 (Australia)

    2011-11-07

    We report the preparation of new nanocomposites based on a combination of bulk metallic glass and carbon nanotubes for electron field emission applications. The use of bulk metallic glass as the matrix ensures high electrical and thermal conductivity, high thermal stability, and ease of processing, whilst the well dispersed carbon nanotubes act as highly efficient electron emitters. These advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

  7. Non-volatile nano-floating gate memory with Pt-Fe{sub 2}O{sub 3} composite nanoparticles and indium gallium zinc oxide channel

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Quanli [Myongji University, Department of Nano Science and Engineering (Korea, Republic of); Lee, Seung Chang; Baek, Yoon-Jae [Myongji University, Department of Materials Science and Engineering (Korea, Republic of); Lee, Hyun Ho [Myongji University, Department of Chemical Engineering (Korea, Republic of); Kang, Chi Jung [Myongji University, Department of Nano Science and Engineering (Korea, Republic of); Kim, Hyun-Mi; Kim, Ki-Bum [Seoul National University, Department of Materials Science and Engineering (Korea, Republic of); Yoon, Tae-Sik, E-mail: tsyoon@mju.ac.kr [Myongji University, Department of Nano Science and Engineering (Korea, Republic of)

    2013-02-15

    Non-volatile nano-floating gate memory characteristics with colloidal Pt-Fe{sub 2}O{sub 3} composite nanoparticles with a mostly core-shell structure and indium gallium zinc oxide channel layer were investigated. The Pt-Fe{sub 2}O{sub 3} nanoparticles were chemically synthesized through the preferential oxidation of Fe and subsequent pileup of Pt into the core in the colloidal solution. The uniformly assembled nanoparticles' layer could be formed with a density of {approx}3 Multiplication-Sign 10{sup 11} cm{sup -2} by a solution-based dip-coating process. The Pt core ({approx}3 nm in diameter) and Fe{sub 2}O{sub 3}-shell ({approx}6 nm in thickness) played the roles of the charge storage node and tunneling barrier, respectively. The device exhibited the hysteresis in current-voltage measurement with a threshold voltage shift of {approx}4.76 V by gate voltage sweeping to +30 V. It also showed the threshold shift of {approx}0.66 V after pulse programming at +20 V for 1 s with retention > {approx}65 % after 10{sup 4} s. These results demonstrate the feasibility of using colloidal nanoparticles with core-shell structure as gate stacks of the charge storage node and tunneling dielectric for low-temperature and solution-based processed non-volatile memory devices.

  8. Characterization of Fatty Acid, Amino Acid and Volatile Compound Compositions and Bioactive Components of Seven Coffee (Coffea robusta Cultivars Grown in Hainan Province, China

    Directory of Open Access Journals (Sweden)

    Wenjiang Dong

    2015-09-01

    Full Text Available Compositions of fatty acid, amino acids, and volatile compound were investigated in green coffee beans of seven cultivars of Coffea robusta grown in Hainan Province, China. The chlorogenic acids, trigonelline, caffeine, total lipid, and total protein contents as well as color parameters were measured. Chemometric techniques, principal component analysis (PCA, hierarchical cluster analysis (HCA, and analysis of one-way variance (ANOVA were performed on the complete data set to reveal chemical differences among all cultivars and identify markers characteristic of a particular botanical origin of the coffee. The major fatty acids of coffee were linoleic acid, palmitic acid, oleic acid, and arachic acid. Leucine (0.84 g/100 g DW, lysine (0.63 g/100 g DW, and arginine (0.61 g/100 g DW were the predominant essential amino acids (EAAs in the coffee samples. Seventy-nine volatile compounds were identified and semi-quantified by HS-SPME/GC-MS. PCA of the complete data matrix demonstrated that there were significant differences among all cultivars, HCA supported the results of PCA and achieved a satisfactory classification performance.

  9. Chemical composition and biological evaluation of the volatile constituents from the aerial parts of Nephrolepis exaltata (L.) and Nephrolepis cordifolia (L.) C. Presl grown in Egypt.

    Science.gov (United States)

    El-Tantawy, Mona E; Shams, Manal M; Afifi, Manal S

    2016-01-01

    The essential oil from the aerial parts of Nephrolepis exaltata and Nephrolepis cordifolia obtained by hydro-distillation were analyzed by gas chromatography/ mass spectrometry. The essential oils exhibited potential antibacterial and antifungal activities against a majority of the selected microorganisms. NEA oil showed promising cytotoxicity in breast, colon and lung carcinoma cells. The results presented indicate that NEA oil could be useful alternative for the treatment of dermatophytosis. Comparative investigation of hydro-distilled volatile constituents from aerial parts (A) of Nephrolepis exaltata (NE) and Nephrolepis cordifolia (NC) (Family Nephrolepidaceae) was carried out. Gas chromatography/mass spectrometry revealed that oils differ in composition and percentages of components. Oxygenated compounds were dominant in NEA and NCA. 2,4-Hexadien-1-ol (16.1%), nonanal (14.4%), β-Ionone (6.7%) and thymol (2.7%) were predominant in NEA. β-Ionone (8.0%), eugenol (7.2%) and anethol (4.6%) were the main constituents in NCA. Volatile samples were screened for their antibacterial and antifungal activities using agar diffusion method and minimum inhibitory concentrations. The cytotoxic activity was evaluated using viability assay in breast (MCF-7), colon (HCT-116) and lung carcinoma (A-549) cells by the MTT assay. The results revealed that NEA oil exhibited potential antimicrobial activity against most of the tested organisms and showed promising cytotoxicity.

  10. Strongly nonlinear electronic transport in Cr-Si composite films

    International Nuclear Information System (INIS)

    Burkov, A.T.; Vinzelberg, H.; Schumann, J.; Nakama, T.; Yagasaki, K.

    2004-01-01

    The phase formation, the resistivity and the thermopower of amorphous Cr 0.15 Si 0.85 , and nanocrystalline CrSi 2 -Si thin film composites have been studied. The films were produced by a magnetron sputtering of a composite target onto unheated substrates with subsequent crystallization of the film at high temperatures. As the film composite develops under the heat treatment from the initial amorphous state into the final polycrystalline material, two percolation thresholds were found. At first, the percolating cluster of nanocrystalline CrSi 2 is formed. However, this cluster is destroyed with further annealing due to crystallization and redistribution of Si. The composite films which are close to this insulating threshold reveal a strongly nonlinear conductivity. The conductivity increases with the current by two orders of magnitude

  11. Electron field emission from screen-printed graphene/DWCNT composite films

    International Nuclear Information System (INIS)

    Xu, Jinzhuo; Pan, Rong; Chen, Yiwei; Piao, Xianqin; Qian, Min; Feng, Tao; Sun, Zhuo

    2013-01-01

    Highlights: ► The field emission performance improved significantly when adding graphene into DWCNTs as the emission material. ► We set up a model of pure DWCNT films and graphene/DWCNT composite films. ► We discussed the contact barrier between emission films and electric substrates by considering the Fermi energies of silver, DWCNT and graphene. - Abstract: The electron field emission properties of graphene/double-walled carbon nanotube (DWCNT) composite films prepared by screen printing have been systematically studied. Comparing with the pure DWCNT films and pure graphene films, a significant enhancement of electron emission performance of the composite films are observed, such as lower turn-on field, higher emission current density, higher field enhancement factor, and long-term stability. The optimized composite films with 20% weight ratio of graphene show the best electron emission performance with a low turn-on field of 0.62 V μm −1 (at 1 μA cm −2 ) and a high field enhancement factor β of 13,000. A model of the graphene/DWCNT composite films is proposed, which indicate that a certain amount of graphene will contribute the electron transmission in the silver substrate/composite films interface and in the interior of composite films, and finally improve the electron emission performance of the graphene/DWCNT composite films.

  12. Electronic structure and physical properties of 13C carbon composite

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This review is devoted to the application of graphite and graphite composites in science and technology. Structure and electrical properties, as so technological aspects of producing of high-strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry. Author was focused on the properties of graphite composites based on carbon isotope 13C. Generally, the review relies on the original results and concentrates...

  13. Unstable volatility

    DEFF Research Database (Denmark)

    Casas, Isabel; Gijbels, Irène

    2012-01-01

    The objective of this paper is to introduce the break-preserving local linear (BPLL) estimator for the estimation of unstable volatility functions for independent and asymptotically independent processes. Breaks in the structure of the conditional mean and/or the volatility functions are common...... in Finance. Nonparametric estimators are well suited for these events due to the flexibility of their functional form and their good asymptotic properties. However, the local polynomial kernel estimators are not consistent at points where the volatility function has a break. The estimator presented...

  14. Chemical composition of volatiles from Opuntia littoralis, Opuntia ficus-indica, and Opuntia prolifera growing on Catalina Island, California.

    Science.gov (United States)

    Wright, Cynthia R; Setzer, William N

    2014-01-01

    The essential oils from the cladodes of Opuntia littoralis, Opuntia ficus-indica and Opuntia prolifera growing wild on Santa Catalina Island, California, were obtained by hydrodistillation and analysed by gas chromatography-mass spectrometry (GC-MS). Terpenoids were the dominant class of volatiles in O. littoralis, with the two main components being the furanoid forms of cis-linalool oxide (10.8%) and trans-linalool oxide (8.8%). Fatty acid-derived compounds dominated the essential oil of O. ficus-indica with linoleic acid (22.3%), palmitic acid (12.7%), lauric acid (10.5%) and myristic acid (4.2%) as major fatty acids. O. prolifera oil was composed of 46.6% alkanes and the primary hydrocarbon component was heptadecane (19.2%). Sixteen compounds were common to all the three Opuntia species.

  15. A comparison study of the nutritional, mineral and volatile compositions of three dry forms of ginger rhizomes, and antioxidant properties of their ethanolic and aqueous extracts

    Directory of Open Access Journals (Sweden)

    Aicha Jelled

    2017-02-01

    Full Text Available Objective: To compare the most accessible dry forms of ginger rhizomes (Zingiber officinale used as a spice and as a remedy in order to choose the best ginger for medicinal purpose. Methods: Freshly air dried ginger, commercially dry rhizomes and ginger available in powder form are investigated in terms of nutritional values (proximate and mineral compositions and volatiles profile. Ethanolic and aqueous extracts (decoctions and infusions were prepared for total phenolic, flavonoid and tannin contents determination. Also, three standard tests were established in order to estimate the best extract with the better antioxidant potential. Results: The results showed unlike proximate composition revealing different nutritional values. In fact, freshly dried ginger contained much ash, while already dry samples contained much protein. In addition, mineral contents of studied samples indicated their dissimilar richness especially in Ca, Mg, Na, K, Cu, Fe, and Mn. Solid phase micro-extraction gave volatile profiles with many interesting compounds, only 26 from the 51 identified components were common to studied samples with bioactive compounds predominance in freshly dried sample. Also, the antioxidant potential established by three different tests was higher in already dry samples and was positively correlated with their higher contents in the determined phytochemicals. The ethanolic extracts showed higher antioxidant activities than aqueous extracts. Decoctions and infusions were almost similar proving that long cooking time did not affect ginger antioxidant potential. Conclusions: This work highlighted the benefits of traditional preparations of ginger as sources of bioactive compounds, namely antioxidants, and proved that the available commercial samples are not identical and encouraged analyzing samples before uses depending on needs.

  16. Effect of heat reflux extraction on the structure and composition of a high-volatile bituminous coal

    International Nuclear Information System (INIS)

    Tian, Bin; Qiao, Ying-yun; Tian, Yuan-yu; Xie, Ke-chang; Li, Da-wei

    2016-01-01

    Highlights: • A novel HRE process with CYC is proposed to dissolve coal. • Most of the aliphatic compounds in coal are extracted during HRE process. • The carbon crystallite structure of coal changes after HRE process with CYC. • The thermal degradation behavior of ER is significantly different from that of the SFHB. - Abstract: Heat reflux extraction (HRE) process with cyclohexanone (CYC) in a high-performance mass transfer extractor was applied to dissolve Shenmu-Fugu high-volatile bituminous (SFHB) coal for the first time to afford extract (E) and extract residue (ER) from the extraction. SFHB, E, and ER were characterized by elemental analysis, solid-state "1"3C NMR spectrometry, FTIR spectrometry, XRD, SEM, and TG-FTIR to elucidate the effect of HRE on the evolution of functional groups and macromolecular structure of coal during extraction. The soluble portion in SFHB was 24.37% in the course of HRE with CYC. The aromaticity of SFHB derived from both curve-fitting of "1"3C NMR and FTIR spectra was obviously increased after extraction suggesting that most of the aliphatic fractions were extracted during HRE process. It was clarified that the substituted degree of aromatic ring in SFHB became low but the substituents on aromatics were larger after extraction. Due to irreversibly swelling crystal structure of SFHB, its interlayer spacing became larger and the stacking height of crystallite decreased after extraction. Moreover, significant amounts of volatile matters were extracted, which caused relatively lower mass loss rate and contents of gaseous products (CO_2, aliphatic moieties, CH_4, and CO) of ER than SFHB during main pyrolysis stage.

  17. Electron spectroscopy of rubber and resin-based composites containing 2D carbon

    Energy Technology Data Exchange (ETDEWEB)

    Kaciulis, S., E-mail: saulius.kaciulis@ismn.cnr.it [Institute for the Study of Nanostructured Materials, ISMN-CNR, P.O. Box 10, Monterotondo Stazione, 00015 Roma (Italy); Mezzi, A.; Balijepalli, S.K. [Institute for the Study of Nanostructured Materials, ISMN-CNR, P.O. Box 10, Monterotondo Stazione, 00015 Roma (Italy); Lavorgna, M. [Institute of Polymers, Composites and Biomaterials, IPCB-CNR, P.le Fermi, 80055 Napoli (Italy); Xia, H.S. [State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 Sichuan (China)

    2015-04-30

    Composite materials with 2D carbon (graphene and/or single wall carbon nanotubes) are very promising due to their extraordinary electrical and mechanical properties. Graphene and natural rubber composites, which may be used for the gaskets or sealants, were prepared by ultrasonically assisted latex-mixing exfoliation and in-situ reduction process, with two vulcanization approaches: roll-mixing and hot-pressing. Also the resin-based composites, filled with micro-particles of Ag and graphene or carbon nanotubes, have been studied. The standards for the compositional characterization of these materials still are not established. In addition to the mostly used techniques, such as Raman spectroscopy and electron microscopy, also Auger electron spectroscopy can be employed for the identification of graphene. In this study, the shape of C KVV peak, excited by electron beam and X-ray photons, has been investigated in different composite materials containing graphene and carbon nanotubes. A spectroscopic method for 2D carbon recognition, based on the D{sub x} parameter which is determined from C KVV signal excited by X-ray photons, was proposed and verified. Even a small content of graphene in different types of composites was sufficient for this recognition due to the dominating presence of graphene on the surface of composites. - Highlights: • Chemical composition of the rubber composites was determined by XPS. • Auger spectrum of carbon was used for graphene identification in composites. • Small content of graphene was sufficient for its recognition from the D parameter.

  18. Electron spectroscopy of rubber and resin-based composites containing 2D carbon

    International Nuclear Information System (INIS)

    Kaciulis, S.; Mezzi, A.; Balijepalli, S.K.; Lavorgna, M.; Xia, H.S.

    2015-01-01

    Composite materials with 2D carbon (graphene and/or single wall carbon nanotubes) are very promising due to their extraordinary electrical and mechanical properties. Graphene and natural rubber composites, which may be used for the gaskets or sealants, were prepared by ultrasonically assisted latex-mixing exfoliation and in-situ reduction process, with two vulcanization approaches: roll-mixing and hot-pressing. Also the resin-based composites, filled with micro-particles of Ag and graphene or carbon nanotubes, have been studied. The standards for the compositional characterization of these materials still are not established. In addition to the mostly used techniques, such as Raman spectroscopy and electron microscopy, also Auger electron spectroscopy can be employed for the identification of graphene. In this study, the shape of C KVV peak, excited by electron beam and X-ray photons, has been investigated in different composite materials containing graphene and carbon nanotubes. A spectroscopic method for 2D carbon recognition, based on the D x parameter which is determined from C KVV signal excited by X-ray photons, was proposed and verified. Even a small content of graphene in different types of composites was sufficient for this recognition due to the dominating presence of graphene on the surface of composites. - Highlights: • Chemical composition of the rubber composites was determined by XPS. • Auger spectrum of carbon was used for graphene identification in composites. • Small content of graphene was sufficient for its recognition from the D parameter

  19. Chasing volatility

    DEFF Research Database (Denmark)

    Caporin, Massimiliano; Rossi, Eduardo; Santucci de Magistris, Paolo

    The realized volatility of financial returns is characterized by persistence and occurrence of unpreditable large increments. To capture those features, we introduce the Multiplicative Error Model with jumps (MEM-J). When a jump component is included in the multiplicative specification, the condi......The realized volatility of financial returns is characterized by persistence and occurrence of unpreditable large increments. To capture those features, we introduce the Multiplicative Error Model with jumps (MEM-J). When a jump component is included in the multiplicative specification...... estimate alternative specifications of the model using a set of daily bipower measures for 7 stock indexes and 16 individual NYSE stocks. The estimates of the jump component confirm that the probability of jumps dramatically increases during the financial crisis. Compared to other realized volatility...... models, the introduction of the jump component provides a sensible improvement in the fit, as well as for in-sample and out-of-sample volatility tail forecasts....

  20. Lightning current tests to evaluate vulnerability of electronics in composite structures

    NARCIS (Netherlands)

    Blaj, M.A.; Buesink, Frederik Johannes Karel; Damstra, G.C.; Leferink, Frank Bernardus Johannes

    2010-01-01

    Protecting highly sensitive electronics housed inside composite structures against lightning is a real challenge. The direct strike represents the worst-case scenario for composite structures. The electromagnetic field generated by an indirect lightning strike in the vicinity of highly sensitive

  1. An emerging alternative to thermal curing: Electron curing of fiber-reinforced composites

    International Nuclear Information System (INIS)

    Singh, A.; Saunders, C.B.; Lopata, V.J.; Kremers, W.; Chung, M.

    1995-01-01

    Electron curing of fiber-reinforced composites to produce materials with good mechanical properties has been demonstrated by the authors' work, and by Aerospatiale. The attractions of this technology are the technical and processing advantages offered over thermal curing, and the projected cost benefits. Though the work so far has focused on the higher value composites for the aircraft and aerospace industries, the technology can also be used to produce composites for the higher volume industries, such as transportation and automotive

  2. Emissions of Volatile Organic Compounds (VOCs) from Animal Husbandry: Chemical Compositions, Separation of Sources and Animal Types

    Science.gov (United States)

    Yuan, B.; Coggon, M.; Koss, A.; Warneke, C.; Eilerman, S. J.; Neuman, J. A.; Peischl, J.; Aikin, K. C.; Ryerson, T. B.; De Gouw, J. A.

    2016-12-01

    Concentrated animal feeding operations (CAFOs) are important sources of volatile organic compounds (VOCs) in the atmosphere. We used a hydronium ion time-of-flight chemical ionization mass spectrometer (H3O+ ToF-CIMS) to measure VOC emissions from CAFOs in the Northern Front Range of Colorado during an aircraft campaign (SONGNEX) for regional contributions and from a mobile laboratory sampling for chemical characterizations of individual animal feedlots. The main VOCs emitted from CAFOs include carboxylic acids, alcohols, carbonyls, phenolic species, sulfur- and nitrogen-containing species. Alcohols and carboxylic acids dominate VOC concentrations. Sulfur-containing and phenolic species become more important in terms of odor activity values and NO3 reactivity, respectively. The high time-resolution mobile measurements allow the separation of the sources of VOCs from different parts of the operations occurring within the facilities. We show that the increase of ethanol concentrations were primarily associated with feed storage and handling. We apply a multivariate regression analysis using NH3 and ethanol as tracers to attribute the relative importance of animal-related emissions (animal exhalation and waste) and feed-related emissions (feed storage and handling) for different VOC species. Feed storage and handling contribute significantly to emissions of alcohols, carbonyls and carboxylic acids. Phenolic species and nitrogen-containing species are predominantly associated with animals and their waste. VOC ratios can be potentially used as indicators for the separation of emissions from dairy and beef cattle from the regional aircraft measurements.

  3. Effect of Vertical Shoot-Positioned, Scott-Henry, Geneva Double-Curtain, Arch-Cane, and Parral Training Systems on the Volatile Composition of Albariño Wines

    Directory of Open Access Journals (Sweden)

    Mar Vilanova

    2017-09-01

    Full Text Available Viticultural practices influence both grape and wine quality. The influence of training systems on volatile composition was investigated for Albariño wine from Rías Baixas AOC in Northwest Spain. The odoriferous contribution of the compounds to the wine aroma was also studied. Volatile compounds belonging to ten groups (alcohols, C6-compounds, ethyl esters, acetates, terpenols, C13-norisoprenoids, volatile phenols, volatile fatty acids, lactones and carbonyl compounds were determined in Albariño wines from different training systems, Vertical Shoot-Positioned (VSP, Scott-Henry (SH, Geneva Double-Curtain (GDC, Arch-Cane (AC, and Parral (P during 2010 and 2011 vintages. Wines from GDC showed the highest total volatile composition with the highest concentrations of alcohols, ethyl esters, fatty acids, and lactones families. However, the highest levels of terpenes and C13-norisoprenoids were quantified in the SH system. A fruitier aroma was observed in Albariño wines from GDC when odor activity values were calculated.

  4. Gamma and electron beam curing of polymers and composites

    International Nuclear Information System (INIS)

    Saunders, C.B.; Dickson, L.W.; Singh, A.

    1987-01-01

    Radiation polymerization has helped us understand polymer chemistry, and is also playing an increasing role in the field of practical applications. Radiation curing has a present market share of about 5% of the total market for curing of polymers and composites and the annual growth rate of the radiation curing market is ≥20% per year. Advantages of radiation curing over thermal or chemical curing methods include: improved control of the curing rate, reduced curing times, curing at ambient temperatures, curing without the need for chemical initiators, and complete (100%) curing with minimal toxic chemical emissions. Radiation treatment may also be used to effect crosslinking and grafting of polymer and composite materials. The major advantage in these cases is the ability to process products in their final shape. Cable insulation, automotive and aircraft components, and improved construction materials are some of the current and near-future industrial applications of radiation curing and crosslinking. 19 refs

  5. Thermochemical stability of zirconia-titanium nitride as mixed ionic-electronic composites

    DEFF Research Database (Denmark)

    Silva, P. S. M.; Esposito, V.; Marani, D.

    2018-01-01

    Dense zirconia (8% molar yttria-stabilized ZrO2)-titanium nitride (TiN) composites are fabricated to obtain mixed ionic-electronic conducting ceramic systems with high degree of electronic and thermal conductivity. The composites are consolidated by spark plasma sintering (SPS), starting from pure...... the composites, high electrical conductivity is attained. Samples exhibit metallic behavior, showing an unexpected percolation of TiN in the YSZ matrix for volume fraction ≤ 25 wt% (27 vol%). Chemical degradation and electrical properties of the compounds were monitored under oxidative (air) and inert (Ar...... transport properties of the composite can be tuned by both the relative volume fraction of phases and controlled oxidative treatments. Adjusting such parameters different electric behaviors were observed ranging from predominant electronic conductors, to temperature-independent resistivity...

  6. Volatility in energy prices

    International Nuclear Information System (INIS)

    Duffie, D.

    1999-01-01

    This chapter with 58 references reviews the modelling and empirical behaviour of volatility in energy prices. Constant volatility and stochastic volatility are discussed. Markovian models of stochastic volatility are described and the different classes of Markovian stochastic volatility model are examined including auto-regressive volatility, option implied and forecasted volatility, Garch volatility, Egarch volatility, multivariate Garch volatility, and stochastic volatility and dynamic hedging policies. Other volatility models and option hedging are considered. The performance of several stochastic volatility models as applied to heating oil, light oil, natural gas, electricity and light crude oil are compared

  7. Interface electron structure of Fe3Al/TiC composites

    Institute of Scientific and Technical Information of China (English)

    PANG Lai-xue; SUN Kang-ning; SUN Jia-tao; FAN Run-hua; REN Shuai

    2006-01-01

    Based on YU's solids and molecules emperical electron theory(EET), interface valence electron structure of TiC-Fe3Al composites was set up, and the valence electron density of different atomic states TiC and Fe3Al composites in various planes was determined. The results indicate that the electron density of (100)Fe3Al is consistent with that of (110)TiC in the first-class approximation, the absolute value of minimum electron density difference along the interface is 0.007 37 nm-2, and the relative value is 0.759%. (110)TiC//(100)Fe3Al preferred orientation is believed to benefit the formation of the cuboidal shape TiC. In the other hand, it shows that the particle growth is accompanied by the transport of electron, the deviation continuity of electron density intrinsically hinders the grain growth. The electron density of (100)TiC is not consistent with Fe3Al arbitrary crystallographic plane,thus it well explains that the increased titanium and carbon contents do not increase the size of large particles. The crystallographic orientation of (110)TiC//(100)FeAl will improve the mechanical properties. Therefore interface electron theory is an effective theoretical implement for designing excellent property of composites.

  8. Effect of grape bunch sunlight exposure and UV radiation on phenolics and volatile composition of Vitis vinifera L. cv. Pinot noir wine.

    Science.gov (United States)

    Song, Jianqiang; Smart, Richard; Wang, Hua; Dambergs, Bob; Sparrow, Angela; Qian, Michael C

    2015-04-15

    The effect of canopy leaf removal and ultraviolet (UV) on Pinot noir grape and wine composition was investigated in this study. Limited basal leaf removal in the fruit zone was conducted, compared to shaded bunches. The UV exposure was controlled using polycarbonate screens to block UV radiation, and acrylic screens to pass the UV. The results showed that bunch sunlight and UV exposure significantly increased the Brix and pH in the grape juice, and increased substantially wine colour density, anthocyanins, total pigment, total phenolics and tannin content. Bunch sunlight and UV exposure affected terpene alcohols, C13-norisprenoids and other volatile composition of the wine differently. Sunlight exposure and UV resulted in increase of nerol, geraniol and citronellol but not linalool. Sunlight exposure slightly increased the concentration of β-ionone, but the increase was not statistically significant for UV treatment. Neither sunlight nor UV treatment showed any impact on the concentration of β-damascenone. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Change in Color and Volatile Composition of Skim Milk Processed with Pulsed Electric Field and Microfiltration Treatments or Heat Pasteurization †

    Science.gov (United States)

    Chugh, Anupam; Khanal, Dipendra; Walkling-Ribeiro, Markus; Corredig, Milena; Duizer, Lisa; Griffiths, Mansel W.

    2014-01-01

    Non-thermal processing methods, such as pulsed electric field (PEF) and tangential-flow microfiltration (TFMF), are emerging processing technologies that can minimize the deleterious effects of high temperature short time (HTST) pasteurization on quality attributes of skim milk. The present study investigates the impact of PEF and TFMF, alone or in combination, on color and volatile compounds in skim milk. PEF was applied at 28 or 40 kV/cm for 1122 to 2805 µs, while microfiltration (MF) was conducted using membranes with three pore sizes (lab-scale 0.65 and 1.2 µm TFMF, and pilot-scale 1.4 µm MF). HTST control treatments were applied at 75 or 95 °C for 20 and 45 s, respectively. Noticeable color changes were observed with the 0.65 µm TFMF treatment. No significant color changes were observed in PEF-treated, 1.2 µm TFMF-treated, HTST-treated, and 1.4 µm MF-treated skim milk (p ≥ 0.05) but the total color difference indicated better color retention with non-thermal preservation. The latter did not affect raw skim milk volatiles significantly after single or combined processing (p ≥ 0.05), but HTST caused considerable changes in their composition, including ketones, free fatty acids, hydrocarbons, and sulfur compounds (p < 0.05). The findings indicate that for the particular thermal and non-thermal treatments selected for this study, better retention of skim milk color and flavor components were obtained for the non-thermal treatments. PMID:28234317

  10. Stochastic volatility of volatility in continuous time

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Veraart, Almut

    This paper introduces the concept of stochastic volatility of volatility in continuous time and, hence, extends standard stochastic volatility (SV) models to allow for an additional source of randomness associated with greater variability in the data. We discuss how stochastic volatility...... of volatility can be defined both non-parametrically, where we link it to the quadratic variation of the stochastic variance process, and parametrically, where we propose two new SV models which allow for stochastic volatility of volatility. In addition, we show that volatility of volatility can be estimated...

  11. New pbysical methods used in the study of composition, electronic properties and surface phenomena of solid substances. I. Electronic spectroscopies

    International Nuclear Information System (INIS)

    Toderean, A; Ilonca, Gh.

    1981-01-01

    The discovery of different kinds of interactions between solids and fotonic, respectively electronic and ionic beams, leads to the development of many new, very sensitive, physical methods for the study of solids. This monograph tries to present some of these methods, useful in compositional analysis, in the study of electronic properties and of the surface processes of solid substances. This is done from the point of view both of physical phenomena underlying them and of the information obtainable with such methods. But the whole monograph is limited only to the methods based on the electronic properties of the elements existing in the solid probes studied and this paper presents only those of them in which the detected beam is an electronic one, like: ELS, DAPS, ILS, AES, AEAPS, INS, TSS, XPS and UPS. (authors)

  12. Polymeric composites based on polysilanes for plastic electronics

    Czech Academy of Sciences Publication Activity Database

    Nešpůrek, Stanislav; Pospíšil, Jan; Kratochvílová, Irena; Sworakowski, J.

    2008-01-01

    Roč. 484, - (2008), s. 265-290 ISSN 1542-1406 R&D Projects: GA AV ČR IAA100100622; GA MŠk OC 138; GA MŠk OC 137; GA AV ČR KAN401770651 Grant - others:Czech-Polish collaboration(PL) CZ-24 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z10100520 Keywords : polysilane * electronic structure * charge transport * photoconductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.537, year: 2008

  13. Electronic-nose applications in forensic science and for analysis of volatile biomarkers in the human breath

    Science.gov (United States)

    AD Wilson

    2014-01-01

    The application of electronic-nose (E-nose) technologies in forensic science is a recent new development following a long history of progress in the development of diverse applications in the related biomedical and pharmaceutical fields. Data from forensic analyses must satisfy the needs and requirements of both the scientific and legal communities. The type of data...

  14. Discrimination Method of the Volatiles from Fresh Mushrooms by an Electronic Nose Using a Trapping System and Statistical Standardization to Reduce Sensor Value Variation

    Directory of Open Access Journals (Sweden)

    Kouki Fujioka

    2013-11-01

    Full Text Available Electronic noses have the benefit of obtaining smell information in a simple and objective manner, therefore, many applications have been developed for broad analysis areas such as food, drinks, cosmetics, medicine, and agriculture. However, measurement values from electronic noses have a tendency to vary under humidity or alcohol exposure conditions, since several types of sensors in the devices are affected by such variables. Consequently, we show three techniques for reducing the variation of sensor values: (1 using a trapping system to reduce the infering components; (2 performing statistical standardization (calculation of z-score; and (3 selecting suitable sensors. With these techniques, we discriminated the volatiles of four types of fresh mushrooms: golden needle (Flammulina velutipes, white mushroom (Agaricus bisporus, shiitake (Lentinus edodes, and eryngii (Pleurotus eryngii among six fresh mushrooms (hen of the woods (Grifola frondosa, shimeji (Hypsizygus marmoreus plus the above mushrooms. Additionally, we succeeded in discrimination of white mushroom, only comparing with artificial mushroom flavors, such as champignon flavor and truffle flavor. In conclusion, our techniques will expand the options to reduce variations in sensor values.

  15. Fennel (Foeniculum vulgare Mill. subsp. piperitum) florets, a traditional culinary spice in Italy: evaluation of phenolics and volatiles in local populations, and comparison with the composition of other plant parts.

    Science.gov (United States)

    Ferioli, Federico; Giambanelli, Elisa; D'Antuono, L Filippo

    2017-12-01

    Wild fennel (Foeniculum vulgare Mill. subsp. piperitum) florets are used as a typical spice in central and southern Italy. Although fennel (Foeniculum vulgare Mill.), belonging to the Apiaceae (syn. Umbelliferae) family, is a well-known vegetable and aromatic plant, whose main phytochemical compounds have been extensively analysed and investigated as flavouring agents and for their putative health promoting functions, its florets have not been specifically considered up to now. Therefore, the volatile and phenolic composition of florets from an Italian wild fennel crop was determined at different developmental stages, and compared to that of leaves and fruits. Moreover, florets of nine Italian wild fennel populations of different geographical origin from northern-central Italy were also analysed. The total phenolic amount increased from leaves to florets, reaching its highest value in early florets, at 58 012 mg kg -1 of dry matter (DM), then constantly decreased in fruits. In florets of wild populations, phenolics ranged from 6666 to 43 368 mg kg -1 DM. The total amount of volatile compounds was more than twice higher in florets (21 449 mg kg -1 DM) than in leaves (10 470 mg kg -1 DM), reaching its highest value in fruits (50 533 mg kg -1 DM). Estragole and trans-anethole were the main compounds of the volatile fraction. Total volatiles ranged from 24 367 to 60 468 mg kg -1 DM in florets of local populations. Significant changes in the total amount and profile of both phenolic and volatile compounds occurred during plant development. The consistent increase of estragole at later developmental stages supported the claim of different sensory properties of florets and fruits. Geographical origin significantly affected phenolic and volatile composition of wild fennel florets. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Studies on possibilities of polymer composites with conductive nanomaterials application in wearable electronics

    Science.gov (United States)

    Gralczyk, Kinga; Janczak, D.; Dybowska-Sarapuk, Ł.; Lepak, S.; Wróblewski, G.; Jakubowska, M.

    2017-08-01

    In the last few years there has been a growing interest in wearable electronic products, which are generating considerable interest especially in sport and medical industries. But rigid electronics is not comfortable to wear, so things like stretchable substrates, interconnects and electronic devices might help. Flexible electronics could adjust to the curves of a human body and allow the users to move freely. The objective of this paper is to study possibilities of polymer composites with conductive nanomaterials application in wearable electronics. Pastes with graphene, silver nanoplates and carbon nanotubes were manufactured and then interconnects were screen-printed on the surfaces of polyethylene terephthalate (PET) and fabric. Afterwards, the resistance and mechanical properties of samples were examined, also after washing them in a washing machine. It has been found that the best material for the conductive phase is silver. Traces printed directly on the fabric using conductive composites with one functional phase (silver nanoplates or graphene or carbon nanotubes) are too fragile to use them as a common solution in wearable electronics. Mechanical properties can be improved not only by adding carbon nanotubes or graphene to the silver paste, but also by printing additional layer of graphene paste or carbon nanotube paste onto silver layer. In fact, these solutions are not sufficient enough to solve a problem of using these composites in wearable electronics.

  17. Application of electron-chemical curing in the production of thin composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Kopetchenov, V.; Shik, V.; Konev, V.; Kurapov, A.; Misin, I.; Gavrilov, V.; Malik, V. (Polyrad Research and Production Co., Moscow (Russian Federation))

    Thousands of tons of various thin composite materials in rolls for electrotechnical and domestic application including a whole range of electrical insulating materials, such as varnished and polymer fabrics, glass-micatapes, prepregs, thin laminated plastics and clad laminates, materials for decorative and domestic purposes - pressure sensitive adhesive tape and laminates, covering and finishing compositions based on fabrics, films and papers are produced. An important advantage of the electron-chemical processing in the production of composite materials is an essential energy saving (reduction of energy consumption 3-5 times). Absence of the organic diluents in binders decreases fire and explosion hazards of the production and sufficiently decreases danger for the environment of the technology used. Research and Production Company ''Polyrad'' is engaged in the development of technologies and equipment for the production of thin composite materials by the Electron-Chemical Method. (author).

  18. Application of electron-chemical curing in the production of thin composite materials

    International Nuclear Information System (INIS)

    Kopetchenov, V.; Shik, V.; Konev, V.; Kurapov, A.; Misin, I.; Gavrilov, V.; Malik, V.

    1993-01-01

    Thousands of tons of various thin composite materials in rolls for electrotechnical and domestic application including a whole range of electrical insulating materials, such as varnished and polymer fabrics, glass-micatapes, prepregs, thin laminated plastics and clad laminates, materials for decorative and domestic purposes - pressure sensitive adhesive tape and laminates, covering and finishing compositions based on fabrics, films and papers are produced. An important advantage of the electron-chemical processing in the production of composite materials is an essential energy saving (reduction of energy consumption 3-5 times). Absence of the organic diluents in binders decreases fire and explosion hazards of the production and sufficiently decreases danger for the environment of the technology used. Research and Production Company ''Polyrad'' is engaged in the development of technologies and equipment for the production of thin composite materials by the Electron-Chemical Method. (author)

  19. Volatiles in the Martian regolith

    International Nuclear Information System (INIS)

    Clark, B.C.; Baird, A.K.

    1979-01-01

    An inventory of released volatiles on Mars has been derived based upon Viking measurements of atmospheric and surface chemical composition, and upon the inferred mineralogy of a ubiquitous regolith, assumed to average 200m in depth. This model is consistent with the relative abundances of volatiles (except for S) on the Earth's surface, but implies one-fifteenth of the volatile release of Earth if starting materials were comparable. All constituents are accommodated as chemical components of, or absorbed phases on, regolith materials--without the necessity of invoking unobservable deposits of carbonates, nitrates, or permafrost ice

  20. Antimicrobial Activity and the Chemical Composition of the Volatile Oil Blend from Allium sativum (Garlic Clove) and Citrus reticulata (Tangerine Fruit)

    OpenAIRE

    OO Johnson; GA Ayoola; T Adenipekun

    2013-01-01

    The synergistic effect in the antimicrobial activity of the volatile oil blend from Garlic clove (Allium sativum) and tangerine fruits (Citrus reticulata) were investigated and compared to antimicrobial activity when the individual volatile oils were used alone. The volatile oils were extracted by steam distillation using Clevenger hydrodistillator apparatus and each oil was tested for antimicrobial activity, while equal volume of these oils were blended and tested for antimicrobial activity....

  1. Antimicrobial activity and composition of the volatiles of Cinnamomum tamala Nees. and Murraya koenigii (L. Spreng. from Uttarakhand (India

    Directory of Open Access Journals (Sweden)

    Manindra Mohan

    2012-05-01

    Full Text Available Objective: To examine the composition of Cinnamomum tamala and Murraya koenigii essential oils and their antimicrobial activities against nine microbial strains. Methods: Essential oils were obtained by hydrodistillation from the leaves of two spice trees and were analyzed by GC and GC/MS. The oils were also tested for their antimicrobial activity using broth micro dilution method. Results: Cinnamaldehyde (37.85% and cis-linalool oxide (29.99% were the main components characterized in the oil of C. tamala, whereas α -pinene (39.93%, sabinene (13.31% and trans-caryophyllene (9.02% detected as the major constituents in M. koenigii oil. C. tamala oil exhibited significant antifungal activity and satisfactory antibacterial activity, while lesser antimicrobial activity was observed in M. koenigii oil. Conclusions: The present study suggested that C. tamala oil was more effective against bacterial and fungal strains as compared with M. koenghii oil.

  2. Volatile composition of microinclusions in diamonds from the Panda kimberlite, Canada: Implications for chemical and isotopic heterogeneity in the mantle

    Science.gov (United States)

    Burgess, Ray; Cartigny, Pierre; Harrison, Darrell; Hobson, Emily; Harris, Jeff

    2009-03-01

    In order to better investigate the compositions and the origins of fluids associated with diamond growth, we have carried-out combined noble gas (He and Ar), C and N isotope, K, Ca and halogen (Cl, Br, I) determinations on fragments of individual microinclusion-bearing diamonds from the Panda kimberlite, North West Territories, Canada. The fluid concentrations of halogens and noble gases in Panda diamonds are enriched by several orders of magnitude over typical upper mantle abundances. However, noble gas, C and N isotopic ratios ( 3He/ 4He = 4-6 Ra, 40Ar/ 36Ar = 20,000-30,000, δ 13C = -4.5‰ to -6.9‰ and δ 15N = -1.2‰ to -8.8‰) are within the worldwide range determined for fibrous diamonds and similar to the mid ocean ridge basalt (MORB) source value. The high 36Ar content of the diamonds (>1 × 10 -9 cm 3/g) is at least an order of magnitude higher than any previously reported mantle sample and enables the 36Ar content of the subcontinental lithospheric mantle to be estimated at ˜0.6 × 10 -12 cm 3/g, again similar to estimates for the MORB source. Three fluid types distinguished on the basis of Ca-K-Cl compositions are consistent with carbonatitic, silicic and saline end-members identified in previous studies of diamonds from worldwide sources. These fluid end-members also have distinct halogen ratios (Br/Cl and I/Cl). The role of subducted seawater-derived halogens, originally invoked to explain some of the halogen ratio variations in diamonds, is not considered an essential component in the formation of the fluids. In contrast, it is considered that large halogen fractionation of a primitive mantle ratio occurs during fluid-melt partitioning in forming silicic fluids, and during separation of an immiscible saline fluid.

  3. Can X-ray spectrum imaging replace backscattered electrons for compositional contrast in the scanning electron microscope?

    Science.gov (United States)

    Newbury, Dale E; Ritchie, Nicholas W M

    2011-01-01

    The high throughput of the silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS) enables X-ray spectrum imaging (XSI) in the scanning electron microscope to be performed in frame times of 10-100 s, the typical time needed to record a high-quality backscattered electron (BSE) image. These short-duration XSIs can reveal all elements, except H, He, and Li, present as major constituents, defined as 0.1 mass fraction (10 wt%) or higher, as well as minor constituents in the range 0.01-0.1 mass fraction, depending on the particular composition and possible interferences. Although BSEs have a greater abundance by a factor of 100 compared with characteristic X-rays, the strong compositional contrast in element-specific X-ray maps enables XSI mapping to compete with BSE imaging to reveal compositional features. Differences in the fraction of the interaction volume sampled by the BSE and X-ray signals lead to more delocalization of the X-ray signal at abrupt compositional boundaries, resulting in poorer spatial resolution. Improved resolution in X-ray elemental maps occurs for the case of a small feature composed of intermediate to high atomic number elements embedded in a matrix of lower atomic number elements. XSI imaging strongly complements BSE imaging, and the SDD-EDS technology enables an efficient combined BSE-XSI measurement strategy that maximizes the compositional information. If 10 s or more are available for the measurement of an area of interest, the analyst should always record the combined BSE-XSI information to gain the advantages of both measures of compositional contrast. Copyright © 2011 Wiley Periodicals, Inc.

  4. Physicochemical Study of Irradiated polypropylene/Organo :Modified Montmorillonite Composites by Using Electron Beam Irradiation Technique

    International Nuclear Information System (INIS)

    Hassan, M.S.

    2008-01-01

    Polypropylene/ Organo modified montmorillonite composites (PP/ OMMT) were prepared by melt blending with a twin screw extruder. The thermal properties by thermo gravimetric analysis (TGA), the dispersion of OMMT of macromolecules by X-ray diffraction (XRD), mechanical properties and the morphology by scanning electron microscopy (SEM) were investigated. The effect of electron beam irradiation on these properties was also studied. The results showed an intercalation between the silicate layers and the PP polymer matrix. The (PP/ OMMT) composites exhibit higher thermal stability and lower mechanical properties than pure polypropylene

  5. Effects of electron-beam irradiation on HDPE/Brazil nut shell fiber composite

    International Nuclear Information System (INIS)

    Ferreira, Maiara S.; Sartori, Mariana N.; Oliveira, Rene R.; Moura, Esperidiana A.B.

    2013-01-01

    In recent years, research on the replacement of synthetic fibers by natural fibers as reinforcement in thermoplastic composites has increased dramatically due to the advantages of natural fibers, such as low density, low cost, environmental appeal and recyclability. In the present work, the influence of electron-beam irradiation on mechanical properties of HDPE and HDPE/Brazil Nut Shell (Bertholletia excelsa) fiber compositive was investigated. The HDPE composite reinforced with 5% or 10%, by weight of Brazil nut shell fiber powder with particle sizes equal or smaller than 250 μm were obtained by extrusion, using a twin screw extruder. The materials were irradiated at 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. The irradiated and non-irradiated specimens tests samples were submitted to mechanical and thermo-mechanical tests, scanning electron microscopy (SEM), X-Ray diffraction (XRD) and sol-gel analysis and the correlation between their properties was discussed. The results showed significant changes in HDPE mechanical and thermo-mechanical properties due to Brazil nut shell fibers addition and electron-beam irradiation. The surface of the cryo fractured composite samples irradiated showed important visual changes which suggest a better fiber-matrix interfacial adhesion, due to irradiation treatment. These results showed that it is possible to get interesting property gains by using waste from renewable sources instead of the traditional ones and electron-beam radiation treatment. (author)

  6. Effects of electron-beam irradiation on HDPE/Brazil nut shell fiber composite

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Maiara S.; Sartori, Mariana N.; Oliveira, Rene R.; Moura, Esperidiana A.B., E-mail: maiara.sferreira@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    In recent years, research on the replacement of synthetic fibers by natural fibers as reinforcement in thermoplastic composites has increased dramatically due to the advantages of natural fibers, such as low density, low cost, environmental appeal and recyclability. In the present work, the influence of electron-beam irradiation on mechanical properties of HDPE and HDPE/Brazil Nut Shell (Bertholletia excelsa) fiber compositive was investigated. The HDPE composite reinforced with 5% or 10%, by weight of Brazil nut shell fiber powder with particle sizes equal or smaller than 250 μm were obtained by extrusion, using a twin screw extruder. The materials were irradiated at 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. The irradiated and non-irradiated specimens tests samples were submitted to mechanical and thermo-mechanical tests, scanning electron microscopy (SEM), X-Ray diffraction (XRD) and sol-gel analysis and the correlation between their properties was discussed. The results showed significant changes in HDPE mechanical and thermo-mechanical properties due to Brazil nut shell fibers addition and electron-beam irradiation. The surface of the cryo fractured composite samples irradiated showed important visual changes which suggest a better fiber-matrix interfacial adhesion, due to irradiation treatment. These results showed that it is possible to get interesting property gains by using waste from renewable sources instead of the traditional ones and electron-beam radiation treatment. (author)

  7. Impact of alternative technique to ageing using oak chips in alcoholic or in malolactic fermentation on volatile and sensory composition of red wines.

    Science.gov (United States)

    Gómez García-Carpintero, E; Gómez Gallego, M A; Sánchez-Palomo, E; González Viñas, M A

    2012-09-15

    This paper reports on a complete study of the effect of wood, in the form of oak chips, on the volatile composition and sensory characteristics of Moravia Agria wines added at different stages of the fermentation process. Aroma compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). Sensory profile was evaluated by experienced wine-testers. Oak chips were added to wines in two dose rates at different stages of the winemaking process: during alcoholic fermentation (AF), during malolactic fermentation (MLF) and in young, red Moravia Agria wine. Wines fermented with oak chips during AF showed higher concentrations of the ethyl esters of straight-chain fatty acids, ethyl, hexyl, isoamyl acetates and superior alcohols than the control wines. The higher concentrations of benzene compound, oak lactones and furanic compounds were found in wines in contact with oak chips during MLF. The use of oak chips gives rise to a different sensorial profile of wines depending of the point of addition. Higher intensities of woody, coconut, vanilla and sweet spices descriptors were obtained when a large dose rate of chips was employed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Correlation between composition of the bacterial community and concentration of volatile fatty acids in the rumen during the transition period and ketosis in dairy cows.

    Science.gov (United States)

    Wang, Xiaoxu; Li, Xiaobing; Zhao, Chenxu; Hu, Pan; Chen, Hui; Liu, Zhaoxi; Liu, Guowen; Wang, Zhe

    2012-04-01

    The transition period is a severe challenge to dairy cows. Glucose supply cannot meet demand and body fat is mobilized, potentially leading to negative energy balance (NEB), ketosis, or fatty liver. Propionate produces glucose by gluconeogenesis, which depends heavily on the number and species of microbes. In the present study, we analyzed the rumen microbiome composition of cows in the transition period, cows with ketosis, and nonperinatal cows by terminal restriction fragment length polymorphism (TRFLP) analysis of 16S rRNA genes and quantitative PCR. TRFLP analysis indicated that the quantity of Veillonellaceae organisms was reduced and that of Streptococcaceae organisms was increased in rumen samples from the transition period and ketosis groups, with the number of Lactobacillaceae organisms increased after calving. Quantitative PCR data suggested that the numbers of the main propionate-producing microbes, Megasphaera elsdenii and Selenomonas ruminantium, were decreased, while numbers of the main lactate-producing bacterium, Streptococcus bovis, were increased in the rumen of cows from the transition period and ketosis groups, with the number of Lactobacillus sp. organisms increased after calving. Volatile fatty acid (VFA) and glucose concentrations were decreased, but the lactic acid concentration was increased, in rumen samples from the transition period and ketosis groups. Our results indicate that the VFA concentration is significantly related to the numbers of Selenomonas ruminantium and Megasphaera elsdenii organisms in the rumen.

  9. Addition of wood chips in red wine during and after alcoholic fermentation: differences in color parameters, phenolic content and volatile composition

    Directory of Open Access Journals (Sweden)

    Maria Kyraleou

    2016-12-01

    Full Text Available The effect of the time of wood chip addition on phenolic content, color parameters and volatile composition of a red wine made by a native Greek variety (Agiorgitiko was evaluated. For this purpose, chips from American, French, Slavonia oak and Acacia were added in the wine during and after fermentation. Various chemical parameters of wines were studied after one, two and three months of contact with chips. The results showed that the addition of oak chips during alcoholic fermentation did not favor ellagitannin extraction and the reactions involved in tannin condensation and anthocyanin stabilization. Moreover, wines fermented with wood chips contained higher contents of whiskey lactones, eugenol, ethyl vanillate and acetate esters while their ethyl ester content was lower compared with the wines where chip addition took place after fermentation. Practical Application: The outcomes of this study would be of practical interest to winemakers since they could improve the control over the wood extraction process. When chips are added after fermentation wines seem to have a greater ageing potential compared to the wines fermented with chips due to their higher ellagitannin content and enhanced condensation reactions. On the other hand, color stabilization and tannin polymerization occur faster when chips are added during fermentation resulting in shorter ageing periods suitable for early consumed wines.

  10. Effects of host gut-derived probiotic bacteria on gut morphology, microbiota composition and volatile short chain fatty acids production of Malaysian Mahseer Tor tambroides

    Directory of Open Access Journals (Sweden)

    Md. Asaduzzaman

    2018-02-01

    Full Text Available Three host-associated probiotics (Bacillus sp. AHG22, Alcaligenes sp. AFG22, and Shewanella sp. AFG21 were isolated from the gastrointestinal tract of Tor tambroides, and their effects were evaluated on gut morphology, microbiota composition and volatile short chain fatty acids (VSCFAs production of the same species. A control diet (40% crude protein and 10% lipid was formulated, and three different probiotic supplemented diets were prepared by immersing the control diet in each host-derived isolated probiotic, suspended in sterile phosphate buffered saline (PBS, to achieve concentration at 1.0 × 108 CFU g−1 feed. Triplicate groups of T. tambroides juveniles (1.39 ± 0.06 g were stocked in twelve glass aquaria (100 L capacity with stocking density of 20 individuals per aquarium. The feed was applied twice daily at 3.0% of the body weight per day for 90 days. The intake of probiotics drastically modified the gut microbiota composition. The average number of OTUs, Shannon index and Margalef species richness were significantly higher in host-associated probiotic treatments compared to the control. A significant increase of lipolytic, proteolytic and cellulolytic bacterial number were observed in the gastrointestinal tracts of T. tambroides fed the diets supplemented with Alcaligenes sp. AFG22 compared to the control. Villus length, villus width and villus area were significantly higher in T. tambroides juveniles fed the diet supplemented with Alcaligenes sp. AFG22. Acetate and butyrate were detected as main VSCFA production in the gastrointestinal tract of T. tambroides. Acetate and total VSCFAs production in Alcaligenes sp. AFG22 supplemented treatment was significantly higher than control. These results indicate that host-derived probiotics, especially Alcaligenes sp. has a significant potential as an important probiotic to enhance the nutrients utilization and metabolism through increasing gut surface area and VSCFAs

  11. Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition

    Science.gov (United States)

    Warneke, C.; Geiger, F.; Edwards, P. M.; Dube, W.; Pétron, G.; Kofler, J.; Zahn, A.; Brown, S. S.; Graus, M.; Gilman, J. B.; Lerner, B. M.; Peischl, J.; Ryerson, T. B.; de Gouw, J. A.; Roberts, J. M.

    2014-10-01

    Emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uintah Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aromatics, alkanes, cycloalkanes and methanol were observed for extended periods of time and for short-term spikes caused by local point sources. The mixing ratios during the time the mobile laboratory spent on the well pads were averaged. High mixing ratios were found close to all point sources, but gas well pads with collection and dehydration on the well pad were clearly associated with higher mixing ratios than other wells. The comparison of the VOC composition of the emissions from the oil and natural gas well pads showed that gas well pads without dehydration on the well pad compared well with the majority of the data at Horse Pool, and that oil well pads compared well with the rest of the ground site data. Oil well pads on average emit heavier compounds than gas well pads. The mobile laboratory measurements confirm the results from an emissions inventory: the main VOC source categories from individual point sources are dehydrators, oil and condensate tank flashing and pneumatic devices and pumps. Raw natural gas is emitted from the pneumatic devices and pumps and heavier VOC mixes from the tank flashings.

  12. Volatile organic compound emissions from the oil and natural gas industry in the Uinta Basin, Utah: point sources compared to ambient air composition

    Science.gov (United States)

    Warneke, C.; Geiger, F.; Edwards, P. M.; Dube, W.; Pétron, G.; Kofler, J.; Zahn, A.; Brown, S. S.; Graus, M.; Gilman, J.; Lerner, B.; Peischl, J.; Ryerson, T. B.; de Gouw, J. A.; Roberts, J. M.

    2014-05-01

    The emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uinta Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aromatics, alkanes, cycloalkanes and methanol were observed for extended periods of time and short-term spikes caused by local point sources. The mixing ratios during the time the mobile laboratory spent on the well pads were averaged. High mixing ratios were found close to all point sources, but gas wells using dry-gas collection, which means dehydration happens at the well, were clearly associated with higher mixing ratios than other wells. Another large source was the flowback pond near a recently hydraulically re-fractured gas well. The comparison of the VOC composition of the emissions from the oil and natural gas wells showed that wet gas collection wells compared well with the majority of the data at Horse Pool and that oil wells compared well with the rest of the ground site data. Oil wells on average emit heavier compounds than gas wells. The mobile laboratory measurements confirm the results from an emissions inventory: the main VOC source categories from individual point sources are dehydrators, oil and condensate tank flashing and pneumatic devices and pumps. Raw natural gas is emitted from the pneumatic devices and pumps and heavier VOC mixes from the tank flashings.

  13. Constraining the Volatile Composition and Coma Photochemistry in Jupiter Family Comet 41P/Tuttle-Giacobini-Kresak with High Resolution IR and Optical Spectroscopy

    Science.gov (United States)

    McKay, Adam; DiSanti, Michael; Cochran, Anita; Dello Russo, Neil; Bonev, Boncho; Vervack, Ronald; Gibb, Erika; Roth, Nathan; Kawakita, Hideyo

    2018-01-01

    Over the past 20 years optical and IR spectroscopy of cometary comae has expanded our understanding both of cometary volatile composition and coma photochemistry. However, these observations tend to be biased towards Nearly Isotropic Comets (NIC'S) from the Oort Cloud, rather than the generally fainter and less active Jupiter Family Comets (JFC's) that are thought to originate from the Scattered Disk. However, early 2017 provided a rare opportunity to study several JFC's. We present preliminary results from IR and optical spectroscopy of JFC 41P/Tuttle-Giacobini-Kresak obtained during its 2017 apparition. IR spectra were obtained with the NIRSPEC instrument on Keck II and the new iSHELL spectrograph on NASA IRTF. High spectral resolution optical spectra were obtained with the Tull Coude spectrograph on the 2.7-meter Harlan J. Smith Telescope at McDonald Observatory. We will discuss mixing ratios of HCN, NH3, C2H6, C2H2, H2CO, and CH3OH compared to H2O and compare these to previous observations of comets. Preliminary results from the NIRSPEC observations indicate that 41P has typical C2H2 and HCN abundances compared to other JFC's, while the C2H6 abundance is similar to that of NIC's, but is enriched compared to other JFC's. H2CO appears to be heavily depleted in 41P. Analysis of the iSHELL spectra is underway and we will include results from these observations, which complement those from NIRSPEC and extend the scope or our compositional study by measuring additional molecules. We will also present abundances for CN, C2, NH2, C3, and CH obtained from the optical spectra and discuss the implications for the coma photochemistry.This work is supported by the NASA Postdoctoral Program, administered by the Universities Space Research Association, with additional funding from the NSF and NASA PAST.

  14. Variation in Gas and Volatile Compound Emissions from Human Urine as It Ages, Measured by an Electronic Nose

    Directory of Open Access Journals (Sweden)

    Siavash Esfahani

    2016-01-01

    Full Text Available The medical profession is becoming ever more interested in the use of gas-phase biomarkers for disease identification and monitoring. This is due in part to its rapid analysis time and low test cost, which makes it attractive for many different clinical arenas. One technology that is showing promise for analyzing these gas-phase biomarkers is the electronic nose—an instrument designed to replicate the biological olfactory system. Of the possible biological media available to “sniff”, urine is becoming ever more important as it is easy to collect and to store for batch testing. However, this raises the question of sample storage shelf-life, even at −80 °C. Here we investigated the effect of storage time (years on stability and reproducibility of total gas/vapour emissions from urine samples. Urine samples from 87 patients with Type 2 Diabetes Mellitus were collected over a four-year period and stored at −80 °C. These samples were then analyzed using FAIMS (field-asymmetric ion mobility spectrometry—a type of electronic nose. It was discovered that gas emissions (concentration and diversity reduced over time. However, there was less variation in the initial nine months of storage with greater uniformity and stability of concentrations together with tighter clustering of the total number of chemicals released. This suggests that nine months could be considered a general guide to a sample shelf-life.

  15. Variation in Gas and Volatile Compound Emissions from Human Urine as It Ages, Measured by an Electronic Nose.

    Science.gov (United States)

    Esfahani, Siavash; Sagar, Nidhi M; Kyrou, Ioannis; Mozdiak, Ella; O'Connell, Nicola; Nwokolo, Chuka; Bardhan, Karna D; Arasaradnam, Ramesh P; Covington, James A

    2016-01-25

    The medical profession is becoming ever more interested in the use of gas-phase biomarkers for disease identification and monitoring. This is due in part to its rapid analysis time and low test cost, which makes it attractive for many different clinical arenas. One technology that is showing promise for analyzing these gas-phase biomarkers is the electronic nose--an instrument designed to replicate the biological olfactory system. Of the possible biological media available to "sniff", urine is becoming ever more important as it is easy to collect and to store for batch testing. However, this raises the question of sample storage shelf-life, even at -80 °C. Here we investigated the effect of storage time (years) on stability and reproducibility of total gas/vapour emissions from urine samples. Urine samples from 87 patients with Type 2 Diabetes Mellitus were collected over a four-year period and stored at -80 °C. These samples were then analyzed using FAIMS (field-asymmetric ion mobility spectrometry--a type of electronic nose). It was discovered that gas emissions (concentration and diversity) reduced over time. However, there was less variation in the initial nine months of storage with greater uniformity and stability of concentrations together with tighter clustering of the total number of chemicals released. This suggests that nine months could be considered a general guide to a sample shelf-life.

  16. Variation in Gas and Volatile Compound Emissions from Human Urine as It Ages, Measured by an Electronic Nose

    Science.gov (United States)

    Esfahani, Siavash; Sagar, Nidhi M.; Kyrou, Ioannis; Mozdiak, Ella; O’Connell, Nicola; Nwokolo, Chuka; Bardhan, Karna D.; Arasaradnam, Ramesh P.; Covington, James A.

    2016-01-01

    The medical profession is becoming ever more interested in the use of gas-phase biomarkers for disease identification and monitoring. This is due in part to its rapid analysis time and low test cost, which makes it attractive for many different clinical arenas. One technology that is showing promise for analyzing these gas-phase biomarkers is the electronic nose—an instrument designed to replicate the biological olfactory system. Of the possible biological media available to “sniff”, urine is becoming ever more important as it is easy to collect and to store for batch testing. However, this raises the question of sample storage shelf-life, even at −80 °C. Here we investigated the effect of storage time (years) on stability and reproducibility of total gas/vapour emissions from urine samples. Urine samples from 87 patients with Type 2 Diabetes Mellitus were collected over a four-year period and stored at −80 °C. These samples were then analyzed using FAIMS (field-asymmetric ion mobility spectrometry—a type of electronic nose). It was discovered that gas emissions (concentration and diversity) reduced over time. However, there was less variation in the initial nine months of storage with greater uniformity and stability of concentrations together with tighter clustering of the total number of chemicals released. This suggests that nine months could be considered a general guide to a sample shelf-life. PMID:26821055

  17. The impact of the fuel chemical composition on volatile organic compounds emitted by an in-service aircraft gas turbine engine

    Science.gov (United States)

    Setyan, A.; Kuo, Y. Y.; Brem, B.; Durdina, L.; Gerecke, A. C.; Heeb, N. V.; Haag, R.; Wang, J.

    2017-12-01

    Aircraft emissions received increased attention recently because of the steady growth of aviation transport in the last decades. Aircraft engines substantially contribute to emissions of particulate matter and gaseous pollutants in the upper and lower troposphere. Among all the pollutants emitted by aircrafts, volatile organic compounds (VOCs) are particularly important because they are mainly emitted at ground level, posing a serious health risk for people living or working near airports. A series of measurements was performed at the aircraft engine testing facility of SR Technics (Zürich airport, Switzerland). Exhausts from an in-service turbofan engine were sampled at the engine exit plane by a multi-point sampling probe. A wide range of instruments was connected to the common sampling line to determine physico-chemical characteristics of non-volatile particulate matter and gaseous pollutants. Conventional Jet A-1 fuel was used as the base fuel, and measurements were performed with the base fuel doped with two different mixtures of aromatic compounds (Solvesso 150 and naphthalene-depleted Solvesso 150) and an alternative fuel (hydro-processed esters and fatty acids [HEFA] jet fuel). During this presentation, we will show results obtained for VOCs. These compounds were sampled with 3 different adsorbing cartridges, and analyzed by thermal desorption gas chromatography/mass spectrometry (TD-GC/MS, for Tenax TA and Carboxen 569) and by ultra-performance liquid chromatography/ mass spectrometry (UPLC/MS, for DNPH). The total VOC concentration was also measured with a flame ionization detector (FID). In addition, fuel samples were also analyzed by GC/MS, and their chemical compositions were compared to the VOCs emitted via engine exhaust. Total VOCs concentrations were highest at ground idle (>200 ppm C at 4-7% thrust), and substantially lower at high thrust (engine were mainly constituted of alkanes, oxygenated compounds, and aromatics. More than 50 % of the

  18. Comparison of ChemicalComposition and Free Radical Scavenging Ability of Glycosidically Bound andFree Volatiles from Bosnian Pine (Pinus heldreichii Christ. var. leucodermis

    Directory of Open Access Journals (Sweden)

    Mladen Milos

    2007-03-01

    Full Text Available The results obtained show that Bosnian pine is richin glycosidically bound volatile compounds with strong free radical scavengingproperties. Since volatiles can be released from nonvolatile glycosideprecursors, these compounds can be considered as a hidden potential source ofantioxidant substances and may contribute to the total free radical scavengingability of Bosnian pine.

  19. Evaluation of Volatile Profile, Fatty Acids Composition and in vitro Bioactivity of Tagetes minuta Growing Wild in Northern Iran

    Directory of Open Access Journals (Sweden)

    Farshid Rezaei

    2018-03-01

    Full Text Available Purpose: The aim of the present study was to investigate the chemical properties of wild Tagetes minuta L. (family Astreacea collected from Northern Iran during the flowering period concerning the chemical combination of the essential oil along with its antioxidant properties and composition of fatty acids. Methods: The essential oil of the plant was extracted by a Clevenger approach and analyzed using gas chromatography-mass spectroscopy (Capillary HP-5ms GC/MS Column. Fatty acid contents of this species as a result of hexane extraction were analyzed by means of gas chromatography (GC-FID while their phenolic contents were analyzed by high performance liquid chromatography (HPLC-UV. In this research also the total polyphenolic (TPC and total flavonoid (TFC content was determined spectrophotometrically while the antioxidant activity was evaluated using the DPPH (2,2'-diphenyl-1-picrylhydrazyl bleaching method. Results: GC/MS analysis of the essential oil identified monoterpenoid fractions (52.13% as the main components and among them dihydrotagetone (23.44% and spathulenol (10.56% were the predominant compounds. The evaluation of fatty acid content revealed that saturated acids were prevailing compounds and the major components are: palmitic (30.74±0.4% and capric (24.15±0.5% acids. Chromatographic separation of its phenolic contents indicated that this herb contain sinapic acid derivatives rather than hydroxybenzoic acid derivatives. Also the essential oil showed an effective antioxidant capacity (TPC=153.27±0.9 mg/g, TFC=63.79±0.1 mg/g, IC50 = 29.31±0.8 µg/ml. Conclusion: The results proved that the plant could be used for nutritional and pharmaceutical purposes.

  20. Development of a wood-polymer composite by electron beam hardening

    International Nuclear Information System (INIS)

    Gotoda, Masao

    1974-01-01

    An incombustible wood-polymer composite (WPC) was studied. The dimensional stability was also tested. The comparison of conversion ratio was made between gamma-ray and electron beam and between a vinylidene chloride 100% impregnated beech composite and bulk. In the case of gamma-ray of low dose rate, the conversion ratio in the vinylidene chloride beech composite was lower than the bulk. In the case of electron beam, though dose rate was higher than that of gamma-ray, the conversion ratio was low, and was influenced by the moisture content of wood. The conversion ratio markedly decreased with the increase of the dose rate of electron beam. Roughly 50% polymer loading can be obtained when the dose rate of electron beam is low. In the case of gamma-ray, the effect of dimensional stability was approximately none with small polymer loading, whereas in the case of electron beam irradiation of moist wood, marked effect of dimensional stability was shown. Incombustibility effect was tested by burning a 150 mm long piece, in which three small pieces of 5 x 10 x 50 mm were connected with epoxy resin adhesive, with a Bunsen burner for 30 seconds. After the completion of burning, the long piece was separated back into three small pieces, and the char length, weight loss and after glow time were tested. The beech composite was expected to become incombustible at 40% polymer loading. The vinyl monomer solution of chlorinated aryl chloride oligomer can be easily hardened by electron beam irradiation. Addition of crosslinking agent such as trimethylol propane trimethracrylate prevents the dissolution of hardened methyl acrylate and methyl methacrylate by acetone. The electron beam hardening of aryl resin compound is possible, using benzen peroxide as a catalyst. Floor material can be produced by this process from low density, low price wood. (Iwakiri, K.)

  1. Validation of chromatographic methods two to determine the composition of biogas and the concentration of volatile fatty acids generated in an anaerobic biodigester at different temperatures and compositions of substrate

    International Nuclear Information System (INIS)

    Jimenez Godinez, Ivannia

    2014-01-01

    Two methods of gas chromatography were validated: one to determine the concentration of volatile fatty acids and other for the proportion of CH 4 and CO 2 in biogas. Validations have characterized the production of biogas of biodigesters operated to 50 degrees celsius and 35 degrees celsius, and with three different substrate compositions: 100% manure, 90% manure - 10% food waste and 80% manure - 20% food waste. The results were analyzed statistically to verify if they present a normal distribution. The data obtained have been without normal distribution, so non-parametric statistics were applied and variance analysis tests of two factors for data without normal distribution: the Friedman test and Kruskal and Wallis, to determine if there were significant differences between the biogas produced in different operating conditions of the biodigesters. The results obtained have indicated without significant difference existing between the composition of biogas obtained for the six operating conditions. The results have been statistically without significant differences between treatments used and have checked that the variability of the results obtained for the biodigesters operated to 35 degrees celsius was higher than for those operated to 50 degrees celsius. In addition, the average percentage results of methane from biogesters operated to 50 degrees celsius have been greater and very constants. The stability of biodigesters has concluded that the highest percentages of food waste present in its composition have yielded with a higher productivity of biogas. The results have recommended the adoption as operating conditions, developed to 50 degrees celsius and a substrate composition of 80% manure and 20% food waste. (author) [es

  2. Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques.

    Science.gov (United States)

    Huang, Lin; Zhao, Jiewen; Chen, Quansheng; Zhang, Yanhua

    2014-02-15

    Total volatile basic nitrogen (TVB-N) content is an important reference index for evaluating pork freshness. This paper attempted to measure TVB-N content in pork meat using integrating near infrared spectroscopy (NIRS), computer vision (CV), and electronic nose (E-nose) techniques. In the experiment, 90 pork samples with different freshness were collected for data acquisition by three different techniques, respectively. Then, the individual characteristic variables were extracted from each sensor. Next, principal component analysis (PCA) was used to achieve data fusion based on these characteristic variables from 3 different sensors data. Back-propagation artificial neural network (BP-ANN) was used to construct the model for TVB-N content prediction, and the top principal components (PCs) were extracted as the input of model. The result of the model was achieved as follows: the root mean square error of prediction (RMSEP) = 2.73 mg/100g and the determination coefficient (R(p)(2)) = 0.9527 in the prediction set. Compared with single technique, integrating three techniques, in this paper, has its own superiority. This work demonstrates that it has the potential in nondestructive detection of TVB-N content in pork meat using integrating NIRS, CV and E-nose, and data fusion from multi-technique could significantly improve TVB-N prediction performance. Copyright © 2013. Published by Elsevier Ltd.

  3. 12 CFR 7.5003 - Composite authority to engage in electronic activities.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Composite authority to engage in electronic activities. 7.5003 Section 7.5003 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY... itself part of or incidental to the business of banking or is otherwise permissible under Federal law. ...

  4. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hui, E-mail: penghui@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Liu, Chang [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Guo, Hongbo, E-mail: guo.hongbo@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Yuan, Yuan [Zhuzhou Seed Cemented Carbide Technology Co. Ltd, No. 1099 Xiangda Road, Zhuzhou, Hunan 412000 (China); Gong, Shengkai; Xu, Huibin [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China)

    2016-06-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  5. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    International Nuclear Information System (INIS)

    Peng, Hui; Liu, Chang; Guo, Hongbo; Yuan, Yuan; Gong, Shengkai; Xu, Huibin

    2016-01-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  6. Effect of electron beam irradiation on thermal and mechanical properties of aluminum based epoxy composites

    Science.gov (United States)

    Visakh, P. M.; Nazarenko, O. B.; Sarath Chandran, C.; Melnikova, T. V.; Nazarenko, S. Yu.; Kim, J.-C.

    2017-07-01

    The epoxy resins are widely used in nuclear and aerospace industries. The certain properties of epoxy resins as well as the resistance to radiation can be improved by the incorporation of different fillers. This study examines the effect of electron beam irradiation on the thermal and mechanical properties of the epoxy composites filled with aluminum nanoparticles at percentage of 0.35 wt%. The epoxy composites were exposed to the irradiation doses of 30, 100 and 300 kGy using electron beam generated by the linear electron accelerator ELU-4. The effects of the doses on thermal and mechanical properties of the aluminum based epoxy composites were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The results revealed that the studied epoxy composites showed good radiation resistance. The thermal and mechanical properties of the aluminum based epoxy composites increased with increasing the irradiation dose up to 100 kGy and decreased with further increasing the dose.

  7. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells.

    Science.gov (United States)

    Koh, Ai Leen; Shachaf, Catherine M; Elchuri, Sailaja; Nolan, Garry P; Sinclair, Robert

    2008-12-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  8. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells

    International Nuclear Information System (INIS)

    Koh, Ai Leen; Shachaf, Catherine M.; Elchuri, Sailaja; Nolan, Garry P.; Sinclair, Robert

    2008-01-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  9. A study on chemical composition of spices irradiated by electron beam

    International Nuclear Information System (INIS)

    Ding Lianzhong; Ding Shiyue; Zhu Yan; Li Yixu; Zhu Songmei

    1998-01-01

    Quantitative changes in common organic acids and inorganic acids from spices irradiated by electron beam were studied by Dionex-4000i ion chromatograph. The results showed that the acids content of either chilli or the five-spice powder irradiated with a dose of 9.94 kGy did not undergo significant changes in comparison with the control samples. The flavour composition in the five-spice powder irradiated by electron beam was also determined by Finnigan MAT-8230B gas chromatograph-mass spectrometer, and compared to the results by heating treatment (120 deg. C, 30min). The comparison indicated that the effect of electron beam treatment on flavour composition was less than that of heating

  10. A study on chemical composition of spices irradiated by electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Lianzhong, Ding [Inst. of Applied Technical Physics of Zhejiang Province (China); Shiyue, Ding; Yan, Zhu; Yixu, Li [Testing Technology Inst. of Zhejiang Province (China)

    1992-02-01

    Quantitative changes in common organic acids and inorganic acids from spices irradiated by electron beam were studied by Dionex-4000 ion Chromatograph. The results showed that the acids content of either achilli or the five-spice powder irradiated with a dose of 9.94 kGy did not undergo significant changes in comparison with the control samples. The flavour composition in the five-spice powder irradiated by electron beam was also determined by Finnigan MAT-8230B gas chromatograph-mass spectrometer, and compared to the results by heating treatment (120 C, 30 min). The comparison indicated that the effect of electron beam treatment on flavour composition was less than that of heating.

  11. Oxidation/volatilization rates in air for candidate fusion reactor blanket materials, PCA and HT-9

    International Nuclear Information System (INIS)

    Piet, S.J.; Kraus, H.G.; Neilson, R.M. Jr.; Jones, J.L.

    1986-01-01

    Large uncertainties exist in the quantity of neutron-induced activation products that can be mobilized in potential fusion accidents. The accidental combination of high temperatures and oxidizing conditions might lead to mobilization of a significant amount of activation products from structural materials. Here, the volatilization of constituents of PCA and HT-9 resulting from oxidation in air was investigated. Tests were conducted in flowing air at temperatures from 600 to 1300 0 C for 1, 5, or 20 hours. Elemental volatility was calculated in terms of the weight fraction of the element volatilized from the initial alloy. Molybdenum and manganese were the radiologically significant primary constituents most volatilized, suggesting that molybdenum and manganese should be minimized in fusion steel compositions. Higher chromium content appears beneficial in reducing hazards from mobile activation products. Scanning electron microscopy and energy dispersive spectroscopy were used to study the oxide layer on samples

  12. Strong Adhesion of Silver/Polypyrrole Composite onto Plastic Substrates toward Flexible Electronics

    Science.gov (United States)

    Kawakita, Jin; Hashimoto, Yasuo; Chikyow, Toyohiro

    2013-06-01

    Flexible electronics require sufficient adhesion to substrates, such as a plastic or a polymer, of the electric wiring for devices. A composite of a conducting metal and a polymer is a candidate alternative to pure metals in terms of wire flexibility. The purpose of this study was to evaluate the adhesiveness of a silver/polypyrrole composite to plastic substrates and to clarify the mechanism of adhesion. The composite was prepared on various plastic substrates by dropping its fluid dispersion. Its adhesiveness was evaluated by the peel-off test and its interfacial structure was characterized by microscopy measurements. Some polymers including Teflon with generally weak adhesion to different materials showed a high adhesiveness of more than 90%. The strong adhesion was related to the anchoring effect of the composite penetrating into the pores near the surface of the substrate.

  13. Emissions of volatile organic compounds (VOCs) from oil and natural gas activities: compositional comparison of 13 major shale basins via NOAA airborne measurements

    Science.gov (United States)

    Gilman, J.; Lerner, B. M.; Aikin, K. C.; De Gouw, J. A.; Koss, A.; Yuan, B.; Warneke, C.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Graus, M.; Tokarek, T. W.; Isaacman-VanWertz, G. A.; Sueper, D.; Worsnop, D. R.

    2015-12-01

    The recent and unprecedented increase in natural gas production from shale formations is associated with a rise in the production of non-methane volatile organic compounds (VOCs) including natural gas plant liquids (e.g., ethane, propane, and butanes) and liquid lease condensate (e.g., pentanes, hexanes, aromatics and cycloalkanes). Since 2010, the production of natural gas liquids and the amount of natural gas vented/flared has increased by factors of ~1.28 and 1.57, respectively (U.S. Energy and Information Administration), indicating an increasingly large potential source of hydrocarbons to the atmosphere. Emission of VOCs may affect local and regional air quality due to the potential to form tropospheric ozone and organic particles as well as from the release of toxic species such as benzene and toluene. The 2015 Shale Oil and Natural Gas Nexus (SONGNex) campaign studied emissions from oil and natural gas activities across the central United States in order to better understand their potential air quality and climate impacts. Here we present VOC measurements from 19 research flights aboard the NOAA WP-3D over 11 shale basins across 8 states. Non-methane hydrocarbons were measured using an improved whole air sampler (iWAS) with post-flight analysis via a custom-built gas chromatograph-mass spectrometer (GC-MS). The whole air samples are complimented by higher-time resolution measurements of methane (Picarro spectrometer), ethane (Aerodyne spectrometer), and VOCs (H3O+ chemical ionization mass spectrometer). Preliminary analysis show that the Permian Basin on the New Mexico/Texas border had the highest observed VOC mixing ratios for all basins studied. We will utilize VOC enhancement ratios to compare the composition of methane and VOC emissions for each basin and the associated reactivities of these gases with the hydroxyl radical, OH, as a proxy for potential ozone formation.

  14. Temperature-dependent surface structure, composition, and electronic properties of the clean SrTiO3(111) crystal face: Low-energy-electron diffraction, Auger-electron spectroscopy, electron energy loss, and ultraviolet-photoelectron spectroscopy studies

    International Nuclear Information System (INIS)

    Lo, W.J.; Somorjai, G.A.

    1978-01-01

    Low-energy-electron diffraction, Auger-electron spectroscopy, electron-energy-loss, and ultraviolet-photoelectron spectroscopies were used to study the structure, composition, and electron energy distribution of a clean single-crystal (111) face of strontium titanate (perovskite). The dependence of the surface chemical composition on the temperature has been observed along with corresponding changes in the surface electronic properties. High-temperature Ar-ion bombardment causes an irreversible change in the surface structure, stoichiometry, and electron energy distribution. In contrast to the TiO 2 surface, there are always significant concentrations of Ti 3+ in an annealed ordered SrTiO 3 (111) surface. This stable active Ti 3+ monolayer on top of a substrate with large surface dipole potential makes SrTiO 3 superior to TiO 2 when used as a photoanode in the photoelectrochemical cell

  15. Influence of electron beam Irradiation on PP/Piassava fiber composite prepared by melt extrusion process

    International Nuclear Information System (INIS)

    Gomes, Michelle G.; Ferreira, Maiara S.; Oliveira, Rene R.; Silva, Valquiria A.; Teixeira, Jaciele G.; Moura, Esperidiana A.B.

    2013-01-01

    In the latest years, the interest for the use of natural fibers in materials composites polymeric has increased significantly due to their environmental and technological advantages. Piassava fibers (Attalea funifera) have been used as reinforcement in the matrix of thermoplastic and thermoset polymers. In the present work (20%, in mass), piassava fibers with particle sizes equal or smaller than 250 μm were incorporated in the polypropylene matrix (PP) no irradiated and polypropylene matrix containing 10 % and 30 % of polypropylene treated by electron-beam radiation at 40 kGy (PP/PPi/Piassava). The composites PP/Piassava and PP/PPi/Piassava were prepared by using a twin screw extruder, followed by injection molding. The composite material samples obtained were treated by electron-beam radiation at 40 kGy, using a 1.5 MeV electron beam accelerator, at room temperature, in presence of air. After irradiation treatment, the irradiated and non-irradiated specimens tests samples were submitted to thermo-mechanical tests, melt flow index (MFI), sol-gel analysis, X-Ray diffraction (XRD) and scanning electron microscopy (SEM). (author)

  16. Composite Fermi surface in the half-filled Landau level with anisotropic electron mass

    Science.gov (United States)

    Ippoliti, Matteo; Geraedts, Scott; Bhatt, Ravindra

    We study the problem of interacting electrons in the lowest Landau level at half filling in the quantum Hall regime, when the electron dispersion is given by an anisotropic mass tensor. Based on experimental observations and theoretical arguments, the ground state of the system is expected to consist of composite Fermions filling an elliptical Fermi sea, with the anisotropy of the ellipse determined by the competing effects of the isotropic Coulomb interaction and anisotropic electron mass tensor. We test this idea quantitatively by using a numerical density matrix renormalization group method for quantum Hall systems on an infinitely long cylinder. Singularities in the structure factor allow us to map the Fermi surface of the composite Fermions. We compute the composite Fermi surface anisotropy for several values of the electron mass anisotropy which allow us to deduce the functional dependence of the former on the latter. This research was supported by Department of Energy Office of Basic Energy Sciences through Grant No. DE-SC0002140.

  17. New Insights on Subsurface Imaging of Carbon Nanotubes in Polymer Composites via Scanning Electron Microscopy

    Science.gov (United States)

    Zhao, Minhua; Ming, Bin; Kim, Jae-Woo; Gibbons, Luke J.; Gu, Xiaohong; Nguyen, Tinh; Park, Cheol; Lillehei, Peter T.; Villarrubia, J. S.; Vladar, Andras E.; hide

    2015-01-01

    Despite many studies of subsurface imaging of carbon nanotube (CNT)-polymer composites via scanning electron microscopy (SEM), significant controversy exists concerning the imaging depth and contrast mechanisms. We studied CNT-polyimide composites and, by threedimensional reconstructions of captured stereo-pair images, determined that the maximum SEM imaging depth was typically hundreds of nanometers. The contrast mechanisms were investigated over a broad range of beam accelerating voltages from 0.3 to 30 kV, and ascribed to modulation by embedded CNTs of the effective secondary electron (SE) emission yield at the polymer surface. This modulation of the SE yield is due to non-uniform surface potential distribution resulting from current flows due to leakage and electron beam induced current. The importance of an external electric field on SEM subsurface imaging was also demonstrated. The insights gained from this study can be generally applied to SEM nondestructive subsurface imaging of conducting nanostructures embedded in dielectric matrices such as graphene-polymer composites, silicon-based single electron transistors, high resolution SEM overlay metrology or e-beam lithography, and have significant implications in nanotechnology.

  18. Annealing effects of carbon fiber-reinforced epoxy resin composites irradiated by electron beams

    International Nuclear Information System (INIS)

    Udagawa, Akira; Sasuga, Tuneo; Ito, Hiroshi; Hagiwara, Miyuki

    1987-01-01

    Carbon cloth-reinforced epoxy resin composites were irradiated with 2 MeV electrons at room temperature and then annealed in air for 2 h at temperatures up to 180 deg C. A considerable decrease in the three-point bending strength occurred when the irradiated composites were annealed in the temperature range of 115 - 135 deg C which is below the glass transition temperature T g of the matrix resin, while the bending strength remained unchanged up to 180 deg C for the unirradiated composites. In the dynamic viscoelastic spectra of the irradiated matrix, a new relaxation appeared at the temperature extending from 50 deg C to just below the matrix T g and disappeared on annealing for 2 h at 135 deg C. Annealing also decreased the concentration of free radicals existing stably in the irradiated matrix at room temperature. After annealing, a large amount of clacks and voids were observed in the fractography of the composites by scanning electron microscopy. These results indicate: (1) Annealing brings about rearrangement of the radiation-induced molecular chain scission in the matrix; (2) The bending strength of the irradiated composites decreased owing to the increased brittleness of the matrix by annealing. (author)

  19. Quantitative characterization of the composition, thickness and orientation of thin films in the analytical electron microscope

    International Nuclear Information System (INIS)

    Williams, D.B.; Watanabe, M.; Papworth, A.J.; Li, J.C.

    2003-01-01

    Compositional variations in thin films can introduce lattice-parameter changes and thus create stresses, in addition to the more usual stresses introduced by substrate-film mismatch, differential thermal expansion, etc. Analytical electron microscopy comprising X-ray energy-dispersive spectrometry within a probe-forming field-emission gun scanning transmission electron microscope (STEM) is one of the most powerful methods of composition measurement on the nanometer scale, essential for thin-film analysis. Recently, with the development of improved X-ray collection efficiencies and quantitative computation methods it has proved possible to map out composition variations in thin films with a spatial resolution approaching 1-2 nm. Because the absorption of X-rays is dependent on the film thickness, concurrent composition and film thickness determination is another advantage of X-ray microanalysis, thus correlating thickness and composition variations, either of which may contribute to stresses in the film. Specific phenomena such as segregation to interfaces and boundaries in the film are ideally suited to analysis by X-ray mapping. This approach also permits multiple boundaries to be examined, giving some statistical certainty to the analysis particularly in nano-crystalline materials with grain sizes greater than the film thickness. Boundary segregation is strongly affected by crystallographic misorientation and it is now possible to map out the orientation between many different grains in the (S)TEM

  20. Compositional changes in industrial hemp biomass (Cannabis sativa L.) induced by electron beam irradiation Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Yong Joo [Department of Biobased Materials, College of Agriculture and Life Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Shin, Soo-Jeong [Department of Wood and Paper Science, College of Agriculture and Life Science, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2011-07-15

    The effects of electron beam irradiation on chemical decomposition of industrial hemp biomass were evaluated at doses of 150, 300, and 450 kGy. The quantity of decomposed components was indirectly estimated by measuring changes in alkaline extraction. The more severe degradation of structural components induced by higher irradiation doses resulted in larger amounts of alkaline extract. Carbohydrate compositional analysis using {sup 1}H-NMR spectroscopy was applied to quantitatively investigate changes in the polysaccharides of the industrial hemp. The xylose peak intensity in the NMR spectra decreased with increasing electron irradiation dose, indicating that xylan was more sensitive to electron beam irradiation than cellulose. -- Highlights: {yields} The more severe degradation of structural components induced by higher irradiation. {yields} Carbohydrate analysis was applied to quantitatively investigate changes in the industrial hemp. {yields} Xylan was more sensitive to electron beam irradiation than cellulose.

  1. Compositional changes in industrial hemp biomass (Cannabis sativa L.) induced by electron beam irradiation Pretreatment

    International Nuclear Information System (INIS)

    Sung, Yong Joo; Shin, Soo-Jeong

    2011-01-01

    The effects of electron beam irradiation on chemical decomposition of industrial hemp biomass were evaluated at doses of 150, 300, and 450 kGy. The quantity of decomposed components was indirectly estimated by measuring changes in alkaline extraction. The more severe degradation of structural components induced by higher irradiation doses resulted in larger amounts of alkaline extract. Carbohydrate compositional analysis using 1 H-NMR spectroscopy was applied to quantitatively investigate changes in the polysaccharides of the industrial hemp. The xylose peak intensity in the NMR spectra decreased with increasing electron irradiation dose, indicating that xylan was more sensitive to electron beam irradiation than cellulose. -- Highlights: → The more severe degradation of structural components induced by higher irradiation. → Carbohydrate analysis was applied to quantitatively investigate changes in the industrial hemp. → Xylan was more sensitive to electron beam irradiation than cellulose.

  2. Intermediate energy electron impact excitation of composite vibrational modes in phenol

    Energy Technology Data Exchange (ETDEWEB)

    Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Lopes, M. C. A.; Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física ‘Gleb Wataghin,’ Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, C.P. 19044, 81531-990 Curitiba, Paraná (Brazil); Silva, G. B. da [Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-05-21

    We report differential cross section results from an experimental investigation into the electron impact excitation of a number of the low-lying composite (unresolved) vibrational modes in phenol (C{sub 6}H{sub 5}OH). The measurements were carried out at incident electron energies in the range 15–40 eV and for scattered-electron angles in the range 10–90°. The energy resolution of those measurements was typically ∼80 meV. Calculations, using the GAMESS code, were also undertaken with a B3LYP/aug-cc-pVDZ level model chemistry, in order to enable us to assign vibrational modes to the features observed in our energy loss spectra. To the best of our knowledge, the present cross sections are the first to be reported for vibrational excitation of the C{sub 6}H{sub 5}OH molecule by electron impact.

  3. Pricing Volatility Referenced Assets

    Directory of Open Access Journals (Sweden)

    Alan De Genaro Dario

    2006-12-01

    Full Text Available Volatility swaps are contingent claims on future realized volatility. Variance swaps are similar instruments on future realized variance, the square of future realized volatility. Unlike a plain vanilla option, whose volatility exposure is contaminated by its asset price dependence, volatility and variance swaps provide a pure exposure to volatility alone. This article discusses the risk-neutral valuation of volatility and variance swaps based on the framework outlined in the Heston (1993 stochastic volatility model. Additionally, the Heston (1993 model is calibrated for foreign currency options traded at BMF and its parameters are used to price swaps on volatility and variance of the BRL / USD exchange rate.

  4. Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring

    Science.gov (United States)

    Ryan, M. A.; Shevade, A. V.; Zhou, H.; Homer, M. L.

    2004-01-01

    An electronic nose that uses an array of 32 polymer-carbon black composite sensors has been developed, trained, and tested. By selecting a variety of chemical functionalities in the polymers used to make sensors, it is possible to construct an array capable of identifying and quantifying a broad range of target compounds, such as alcohols and aromatics, and distinguishing isomers and enantiomers (mirror-image isomers). A model of the interaction between target molecules and the polymer-carbon black composite sensors is under development to aid in selecting the array members and to enable identification of compounds with responses not stored in the analysis library.

  5. Composite model describing the excitation and de-excitation of nitrogen by an electron beam

    International Nuclear Information System (INIS)

    Kassem, A.E.; Hickman, R.S.

    1975-01-01

    Based on recent studies, the effect of re-excited ions in the emission of electron beam induced fluorescence in nitrogen has been estimated. These effects are included in the formulation of a composite model describing the excitation and de-excitation of nitrogen by an electron beam. The shortcomings of previous models, namely the dependence of the measured temperature on true gas temperature as well as the gas density, are almost completely eliminated in the range of temperatures and densities covered by the available data. (auth)

  6. Surface analysis of WC--Co composite materials (2) Quantitative Auger electron spectrometry

    International Nuclear Information System (INIS)

    Tongson, L.L.; Biggers, J.V.; Dayton, G.O.; Bind, J.M.; Knox, B.E.

    1978-01-01

    The unique sensitivity of Auger electron spectrometry (AES) to combined carbon has been exploited in measuring the surface compositions of hot-pressed, conventionally sintered and mixed powders of WC--Co composite materials. AES sensitivity factors for tungsten and carbon (in WC) relative to cobalt were determined. The concentrations of the major elements in hot-pressed samples measured with AES using the relative sensitivity method were compared to those obtained independently by electron microprobe (EMP) and x-ray fluorescence (XRF) techniques. Corollary studies using ion scattering spectrometry (ISS) showed the absence of (1) matrix effects in the AES measurements, (2) preferential sputtering during ion bombardment, and (3) deposition of the easier-to-sputter component (cobalt) onto WC

  7. New Green Polymeric Composites Based on Hemp and Natural Rubber Processed by Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Maria-Daniela Stelescu

    2014-01-01

    Full Text Available A new polymeric composite based on natural rubber reinforced with hemp has been processed by electron beam irradiation and characterized by several methods. The mechanical characteristics: gel fraction, crosslink density, water uptake, swelling parameters, and FTIR of natural rubber/hemp fiber composites have been investigated as a function of the hemp content and absorbed dose. Physical and mechanical properties present a significant improvement as a result of adding hemp fibres in blends. Our experiments showed that the hemp fibers have a reinforcing effect on natural rubber similar to mineral fillers (chalk, carbon black, silica. The crosslinking rates of samples, measured using the Flory-Rehner equation, increase as a result of the amount of hemp in blends and the electron beam irradiation dose increasing. The swelling parameters of samples significantly depend on the amount of hemp in blends, because the latter have hydrophilic characteristics.

  8. Thermally conductive, dielectric PCM-boron nitride nanosheet composites for efficient electronic system thermal management.

    Science.gov (United States)

    Yang, Zhi; Zhou, Lihui; Luo, Wei; Wan, Jiayu; Dai, Jiaqi; Han, Xiaogang; Fu, Kun; Henderson, Doug; Yang, Bao; Hu, Liangbing

    2016-11-24

    Phase change materials (PCMs) possessing ideal properties, such as superior mass specific heat of fusion, low cost, light weight, excellent thermal stability as well as isothermal phase change behavior, have drawn considerable attention for thermal management systems. Currently, the low thermal conductivity of PCMs (usually less than 1 W mK -1 ) greatly limits their heat dissipation performance in thermal management applications. Hexagonal boron nitride (h-BN) is a two-dimensional material known for its excellent thermally conductive and electrically insulating properties, which make it a promising candidate to be used in electronic systems for thermal management. In this work, a composite, consisting of h-BN nanosheets (BNNSs) and commercialized paraffin wax was developed, which inherits high thermally conductive and electrically insulating properties from BNNSs and substantial heat of fusion from paraffin wax. With the help of BNNSs, the thermal conductivity of wax-BNNS composites reaches 3.47 W mK -1 , which exhibits a 12-time enhancement compared to that of pristine wax (0.29 W mK -1 ). Moreover, an 11.3-13.3 MV m -1 breakdown voltage of wax-BNNS composites was achieved, which shows further improved electrical insulating properties. Simultaneously enhanced thermally conductive and electrically insulating properties of wax-BNNS composites demonstrate their promising application for thermal management in electronic systems.

  9. Kinetics of radiation-induced structural alterations in electron-irradiated polymer-based composites

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Potanin, A.S.; Koztaeva, U.P.

    2002-01-01

    Complete text of publication follows. In our previous studies measurements of internal friction temperature dependence were used for characterization of thermally activated and radiation-induced structural evolution in different types of polymer-based composites. This paper supplements these measurements with kinetic studies of internal friction (IF) parameters and EPR signals in a glass-cloth epoxy-filled laminate ST-ETF after electron irradiation up to doses of 1-10 MGy. Experiment have shown that the lifetime of free radicals in this composite considerably exceeds the characteristic time of molecular structural rearrangement due to scission and cross-linking after irradiation, as determined from IF measurements. This result is explained by slow proceeding of sterically hindered disproportionation reactions that stabilize the end groups of the macro-chain disrupt during irradiation and finally fix the act of scission. A mathematical model is formulated for description of structural evolution and alterations of IF parameters in polymer-based composites during and after electron irradiation. The description is based on the track model of radiation damage in polymers and phenomenological theory of radiation-induced structural transformations. General description does not give details of radiation-chemical conversion in different structural components of composites but indicates the direction of their structural evolution. In the model considered a composite material was divided into three parts (binder, filler, and a boundary layer). It was supposed that after primary distribution of radiation energy radiation-chemical conversion proceeds independently in each of these regions. It was also suggested that all the radical reactions were of the second order. On the example of glass-cloth laminate ST-ETF it is shown that this model allows to describe alterations in composite structural characteristics during irradiation and in the course of their self-organization after

  10. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring

    Science.gov (United States)

    Jang, Kyung-In; Han, Sang Youn; Xu, Sheng; Mathewson, Kyle E.; Zhang, Yihui; Jeong, Jae-Woong; Kim, Gwang-Tae; Webb, R. Chad; Lee, Jung Woo; Dawidczyk, Thomas J.; Kim, Rak Hwan; Song, Young Min; Yeo, Woon-Hong; Kim, Stanley; Cheng, Huanyu; Rhee, Sang Il; Chung, Jeahoon; Kim, Byunggik; Chung, Ha Uk; Lee, Dongjun; Yang, Yiyuan; Cho, Moongee; Gaspar, John G.; Carbonari, Ronald; Fabiani, Monica; Gratton, Gabriele; Huang, Yonggang; Rogers, John A.

    2014-09-01

    Research in stretchable electronics involves fundamental scientific topics relevant to applications with importance in human healthcare. Despite significant progress in active components, routes to mechanically robust construction are lacking. Here, we introduce materials and composite designs for thin, breathable, soft electronics that can adhere strongly to the skin, with the ability to be applied and removed hundreds of times without damaging the devices or the skin, even in regions with substantial topography and coverage of hair. The approach combines thin, ultralow modulus, cellular silicone materials with elastic, strain-limiting fabrics, to yield a compliant but rugged platform for stretchable electronics. Theoretical and experimental studies highlight the mechanics of adhesion and elastic deformation. Demonstrations include cutaneous optical, electrical and radio frequency sensors for measuring hydration state, electrophysiological activity, pulse and cerebral oximetry. Multipoint monitoring of a subject in an advanced driving simulator provides a practical example.

  11. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring.

    Science.gov (United States)

    Jang, Kyung-In; Han, Sang Youn; Xu, Sheng; Mathewson, Kyle E; Zhang, Yihui; Jeong, Jae-Woong; Kim, Gwang-Tae; Webb, R Chad; Lee, Jung Woo; Dawidczyk, Thomas J; Kim, Rak Hwan; Song, Young Min; Yeo, Woon-Hong; Kim, Stanley; Cheng, Huanyu; Rhee, Sang Il; Chung, Jeahoon; Kim, Byunggik; Chung, Ha Uk; Lee, Dongjun; Yang, Yiyuan; Cho, Moongee; Gaspar, John G; Carbonari, Ronald; Fabiani, Monica; Gratton, Gabriele; Huang, Yonggang; Rogers, John A

    2014-09-03

    Research in stretchable electronics involves fundamental scientific topics relevant to applications with importance in human healthcare. Despite significant progress in active components, routes to mechanically robust construction are lacking. Here, we introduce materials and composite designs for thin, breathable, soft electronics that can adhere strongly to the skin, with the ability to be applied and removed hundreds of times without damaging the devices or the skin, even in regions with substantial topography and coverage of hair. The approach combines thin, ultralow modulus, cellular silicone materials with elastic, strain-limiting fabrics, to yield a compliant but rugged platform for stretchable electronics. Theoretical and experimental studies highlight the mechanics of adhesion and elastic deformation. Demonstrations include cutaneous optical, electrical and radio frequency sensors for measuring hydration state, electrophysiological activity, pulse and cerebral oximetry. Multipoint monitoring of a subject in an advanced driving simulator provides a practical example.

  12. Spectroscopic studies of organic-inorganic composite film cured by low energy electron beam

    International Nuclear Information System (INIS)

    Mahathir Mohamed; Dahlan Mohd; Ibrahim Abdullah; Eda Yuhana Ariffin

    2009-01-01

    Liquid epoxidized natural rubber acrylate (LENRA) film was reinforced with silica particles formed in-situ via sol gel process. Combination of these two components produces organic-inorganic composites. Tetraethyl orthosilicate (TEOS) was used as precursor material for silica generation. Sol gel reactions was carried out at different concentrations of TEOS i.e. between 10 and 50 phr. The compounds that contain silica were crosslinked by electron beam. Structural properties studies were carried out by Fourier Transform Infrared Spectrometer (FTIR). It was found that miscibility between organic and inorganic components improved with the presence of silanol groups (Si-OH) and polar solvent i.e. THF, via hydrogen bonding formation between siloxane and LENRA. Morphology study by the transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed in-situ generated silica particles were homogenous and well dispersed at any concentrations of TEOS. (author)

  13. Molecular modeling of polymer composite-analyte interactions in electronic nose sensors

    Science.gov (United States)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K. S.

    2003-01-01

    We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL electronic nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereoisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings with no hydrogens. The Dreiding 2.21 force field is used for the polymer, solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4-vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic and organic compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites. c2003 Elsevier Science B.V. All rights reserved.

  14. Fluoropolymer based composite with Ag particles as 3D printable conductive ink for stretchable electronics

    Science.gov (United States)

    Kumar, Amit; La, Thanh Giang; Li, Xinda; Chung, Hyun Joong

    The recent development of stretchable electronics expands the scope of wearable and healthcare applications. This creates a high demand in stretchy conductor that can maintain conductivity at high strain conditions. Here, we describe a simple fabrication pathway to achieve stretchable, 3D-printable and low-cost conductive composite ink. The ink is used to print complex stretchable patterns with high conductivity. The elastic ink is composed of silver(Ag) flakes, fluorine rubber, an organic solvent and surfactant. The surfactant plays multiple roles in in the composite. The surfactant promotes compatibility between silver flakes and fluorine rubber; at the same time, it affects the mechanical properties of the hosting fluoropolymers and adhesion properties of the composite. Based on experimental observations, we discuss the exact role of the surfactant in the composite. The resulting composite exhibits high conductivity value of 8.49 *10 4 S/m along with high reliability against repeated stretching/releasing cycles. Interesting examples of transfer printing of the printed ink and its applications in working devices, such as RFID tag and antennas, are also showcased.

  15. Mechanical properties of organic composite materials irradiated with 2 MeV electrons

    International Nuclear Information System (INIS)

    Egusa, S.; Kirk, M.A.; Birtcher, R.C.; Argonne National Lab., IL; Hagiwara, M.; Kawanishi, S.

    1983-01-01

    Four kinds of cloth-filled organic composites (filter: glass or carbon fiber; matrix; epoxy or polyimide resin) were irradiated with 2 MeV electrons at room temperature, and were examined with regard to the mechanical properties. Following irradiation the Young's (tensile) modulus of these composites remains practically unchanged even after irradiation up to 15.000 Mrad. The shear modulus and the ultimate strength, on the other hand, begin to decrease after the absorbed dose reaches about 2.000 Mrad for the glass/epoxy composite and about 5.000-10.000 Mrad for the other composites. This result is ascribed to the decrease in the capacity of load transfer from the matrix to the fiber due to the radiation damage at the interface, and the dose dependence is interpreted and formulated based on the mechanics of composite materials and the target theory used in radiation biology. As to the fracture behavior, the propagation energy increases from the beginning of irradiation. This result is attributed to the radiation-induced decrease in the bonding energy at the interface. (orig.)

  16. [Solidification of volatile oil with graphene oxide].

    Science.gov (United States)

    Yan, Hong-Mei; Jia, Xiao-Bin; Zhang, Zhen-Hai; Sun, E; Xu, Yi-Hao

    2015-02-01

    To evaluate the properties of solidifying volatile oil with graphene oxide, clove oil and zedoary turmeric oil were solidified by graphene oxide. The amount of graphene oxide was optimized with the eugenol yield and curcumol yield as criteria. Curing powder was characterized by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The effects of graphene oxide on dissolution in vitro and thermal stability of active components were studied. The optimum solidification ratio of graphene oxide to volatile oil was 1:1. Dissolution rate of active components had rare influence while their thermal stability improved after volatile oil was solidified. Solidifying herbal volatile oil with graphene oxide deserves further study.

  17. Enteric methane production, rumen volatile fatty acid concentrations, and milk fatty acid composition in lactating Holstein-Friesian cows fed grass silage- or corn silage-based diets.

    Science.gov (United States)

    van Gastelen, S; Antunes-Fernandes, E C; Hettinga, K A; Klop, G; Alferink, S J J; Hendriks, W H; Dijkstra, J

    2015-03-01

    The objective of this study was to determine the effects of replacing grass silage (GS) with corn silage (CS) in dairy cow diets on enteric methane (CH4) production, rumen volatile fatty acid concentrations, and milk fatty acid (FA) composition. A completely randomized block design experiment was conducted with 32 multiparous lactating Holstein-Friesian cows. Four dietary treatments were used, all having a roughage-to-concentrate ratio of 80:20 based on dry matter (DM). The roughage consisted of either 100% GS, 67% GS and 33% CS, 33% GS and 67% CS, or 100% CS (all DM basis). Feed intake was restricted (95% of ad libitum DM intake) to avoid confounding effects of DM intake on CH4 production. Nutrient intake, apparent digestibility, milk production and composition, nitrogen (N) and energy balance, and CH4 production were measured during a 5-d period in climate respiration chambers after adaptation to the diet for 12 d. Increasing CS proportion linearly decreased neutral detergent fiber and crude protein intake and linearly increased starch intake. Milk production and milk fat content (on average 23.4 kg/d and 4.68%, respectively) were not affected by increasing CS inclusion, whereas milk protein content increased quadratically. Rumen variables were unaffected by increasing CS inclusion, except the molar proportion of butyrate, which increased linearly. Methane production (expressed as grams per day, grams per kilogram of fat- and protein-corrected milk, and as a percent of gross energy intake) decreased quadratically with increasing CS inclusion, and decreased linearly when expressed as grams of CH4 per kilogram of DM intake. In comparison with 100% GS, CH4 production was 11 and 8% reduced for the 100% CS diet when expressed per unit of DM intake and per unit fat- and protein-corrected milk, respectively. Nitrogen efficiency increased linearly with increased inclusion of CS. The concentration of trans C18:1 FA, C18:1 cis-12, and total CLA increased quadratically, and

  18. Study on off-odor volatiles of irradiated packaged raw pork

    International Nuclear Information System (INIS)

    Lin Ruotai; Geng Shengrong; Liu Yangmin

    2008-01-01

    Analysing the compositions of off-odor volatiles in irradiated refrigerated vacuum-packaged pork and research on its origin. First, the off-odor volatiles were collected by a cooled via in liquid nitrogen, then the main composition of off-odor volatiles were analyzed by gas chromatograph mass spectrometry (GC-MS). The main composition of off-odor volatiles are dimethyl disulfide, dimethyl sulfide, dimethyl trisulfide, methanethiol and S-methyl thioacetate. The off-odor volatiles come from irradiated cystine, methionine and VB1. The main composition of off-odor volatiles are S-containing compounds from irradiated S-containing amino acid and VB1

  19. Electron Density Profile Data Contains Virtual Height/Frequency Pairs from a Profile or Profiles (Composite Months) of Ionograms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Electron Density Profile, N(h), data set contains both individual profiles and composite months. The data consist of virtual height/frequency pairs from a...

  20. Observability of market daily volatility

    Science.gov (United States)

    Petroni, Filippo; Serva, Maurizio

    2016-02-01

    We study the price dynamics of 65 stocks from the Dow Jones Composite Average from 1973 to 2014. We show that it is possible to define a Daily Market Volatility σ(t) which is directly observable from data. This quantity is usually indirectly defined by r(t) = σ(t) ω(t) where the r(t) are the daily returns of the market index and the ω(t) are i.i.d. random variables with vanishing average and unitary variance. The relation r(t) = σ(t) ω(t) alone is unable to give an operative definition of the index volatility, which remains unobservable. On the contrary, we show that using the whole information available in the market, the index volatility can be operatively defined and detected.

  1. Forecasting waste compositions: A case study on plastic waste of electronic display housings.

    Science.gov (United States)

    Peeters, Jef R; Vanegas, Paul; Kellens, Karel; Wang, Feng; Huisman, Jaco; Dewulf, Wim; Duflou, Joost R

    2015-12-01

    Because of the rapid succession of technological developments, the architecture and material composition of many products used in daily life have drastically changed over the last decades. As a result, well-adjusted recycling technologies need to be developed and installed to cope with these evolutions. This is essential to guarantee continued access to materials and to reduce the ecological impact of our material consumption. However, limited information is currently available on the material composition of arising waste streams and even less on how these waste streams will evolve. Therefore, this paper presents a methodology to forecast trends in the material composition of waste streams. To demonstrate the applicability and value of the proposed methodology, it is applied to forecast the evolution of plastic housing waste from flat panel display (FPD) TVs, FPD monitors, cathode ray tube (CRT) TVs and CRT monitors. The results of the presented forecasts indicate that a wide variety of plastic types and additives, such as flame retardants, are found in housings of similar products. The presented case study demonstrates that the proposed methodology allows the identification of trends in the evolution of the material composition of waste streams. In addition, it is demonstrated that the recycling sector will need to adapt its processes to deal with the increasing complexity of plastics of end-of-life electronic displays while respecting relevant directives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Bias voltage effect on electron tunneling across a junction with a ferroelectric–ferromagnetic two-phase composite barrier

    International Nuclear Information System (INIS)

    Wang Jian; Ju Sheng; Li, Z.Y.

    2012-01-01

    The effect of bias voltage on electron tunneling across a junction with a ferroelectric–ferromagnetic composite barrier is investigated theoretically. Because of the inversion symmetry breaking of the spontaneous ferroelectric polarization, bias voltage dependence of the electron tunneling shows significant differences between the positive bias and the negative one. The differences of spin filtering or tunnel magnetoresistance increase with the increasing absolute value of bias voltage. Such direction preferred electron tunneling is found intimately related with the unusual asymmetry of the electrical potential profile in two-phase composite barrier and provides a unique change to realize rectifying functions in spintronics. - Highlights: ► Electron tunneling across a ferroelectric–ferromagnetic composite barrier junction. ► TMR effect is different under the same value but opposite direction bias voltage. ► This directionality of the electron tunneling enhances with increasing bias voltage.

  3. Sample preparation technique for transmission electron microscopy anodized Al-Li-SiC metal matrix composite

    International Nuclear Information System (INIS)

    Shahid, M.; Thomson, G.E.

    1997-01-01

    Along with improved mechanical properties, metal matrix composites (MMC) have a disadvantage of enhanced corrosion susceptibility in aggressive environments. Recent studies on corrosion behaviour of an Al-alloy 8090/SiC MMC, revealed considerably high corrosion rates of the MMC in near neutral solutions containing chloride ions. Anodizing is one of the potential surface treatment for the MMC to provide protective coating against corrosion. The surface and cross section of the anodized MMC can easily be observed using scanning electron microscope. The anodizing behaviour of the MMC can be understood further if the anodized cross section in examined under transmission electron microscope (TEM). However, it is relatively difficult to prepare small (3 mm diameter) electron transparent specimens of the MMC supporting an anodic film. In the present study a technique has been developed for preparing thin electron transparent specimens of the anodized MMC. This technique employed conventional ion beam thinning process but the preparation of small discs was a problem. A MMMC consisting of Al-alloy 8090 with 20 % (by weight) SiC particulate with an average size of 5 Mu m, was anodized and observed in TEM after preparing the samples using the above mentioned techniques. (author)

  4. Temperature Dependent Electron Transport Properties of Gold Nanoparticles and Composites: Scanning Tunneling Spectroscopy Investigations.

    Science.gov (United States)

    Patil, Sumati; Datar, Suwarna; Dharmadhikari, C V

    2018-03-01

    Scanning tunneling spectroscopy (STS) is used for investigating variations in electronic properties of gold nanoparticles (AuNPs) and its composite with urethane-methacrylate comb polymer (UMCP) as function of temperature. Films are prepared by drop casting AuNPs and UMCP in desired manner on silicon substrates. Samples are further analyzed for morphology under scanning electron microscopy (SEM) and atomic force microscopy (AFM). STS measurements performed in temperature range of 33 °C to 142 °C show systematic variation in current versus voltage (I-V) curves, exhibiting semiconducting to metallic transition/Schottky behavior for different samples, depending upon preparation method and as function of temperature. During current versus time (I-t) measurement for AuNPs, random telegraphic noise is observed at room temperature. Random switching of tunneling current between two discrete levels is observed for this sample. Power spectra derived from I-t show 1/f2 dependence. Statistical analysis of fluctuations shows exponential behavior with time width τ ≈ 7 ms. Local density of states (LDOS) plots derived from I-V curves of each sample show systematic shift in valance/conduction band edge towards/away from Fermi level, with respect to increase in temperature. Schottky emission is best fitted electron emission mechanism for all samples over certain range of bias voltage. Schottky plots are used to calculate barrier heights and temperature dependent measurements helped in measuring activation energies for electron transport in all samples.

  5. Acid fermentation of municipal sludge: the effect of sludge type and origin on the production and composition of volatile fatty acids

    International Nuclear Information System (INIS)

    Ucisik, A. S.; Schmidit, J. E.; Henze, M.

    2009-01-01

    Due to the more stringent legislations controlling discharges of wastewater treatment plants (WWTPs) and existing problems such as high sludge production, new wastewater treatment processes resulting in considerably reduced sludge production and more effective treatment would be of great value. In this study, the feasibility of implementing acid fermentation process on different types of municipal sludge to increase soluble chemical oxygen demand (SCOD), especially short-chain volatile fatty acids (VFAs) was investigated by batch and semi-continuous experiments. (Author)

  6. Asymmetric Realized Volatility Risk

    Directory of Open Access Journals (Sweden)

    David E. Allen

    2014-06-01

    Full Text Available In this paper, we document that realized variation measures constructed from high-frequency returns reveal a large degree of volatility risk in stock and index returns, where we characterize volatility risk by the extent to which forecasting errors in realized volatility are substantive. Even though returns standardized by ex post quadratic variation measures are nearly Gaussian, this unpredictability brings considerably more uncertainty to the empirically relevant ex ante distribution of returns. Explicitly modeling this volatility risk is fundamental. We propose a dually asymmetric realized volatility model, which incorporates the fact that realized volatility series are systematically more volatile in high volatility periods. Returns in this framework display time varying volatility, skewness and kurtosis. We provide a detailed account of the empirical advantages of the model using data on the S&P 500 index and eight other indexes and stocks.

  7. Low temperature sintering of Ag nanoparticles/graphene composites for paper based writing electronics

    International Nuclear Information System (INIS)

    Wang, Fuliang; He, Hu; Zhu, Haixin

    2016-01-01

    With the great demand in the applications of flexible electronics, the methods leading to improvements in the electrical and mechanical performance have been widely investigated. In this work, we firstly prepared a hybrid composite ink using Ag nanoparticles and graphene. Then, a hot-press sintering process was deployed to obtain the desired electrical tracks which could be applied in flexible electronics. We have systematically investigated the effects of sintering time, pressure and temperature, as well as the different percentage of weight (wt%) of graphene for the electrical and mechanical performance of sintered electrical tracks. We achieved reasonably low electrical resistivity at low sintering temperature (120 °C). Specifically, the resistivity reaches 6.19  ×  10 −8 Ω · m which is just 3.87 times higher than the value of bulk silver. Additionally, the prepared hybrid composite ink obtained better electrical reliability against bending test comparing with Ag nanoparticle ink. Finally, the optimal wt% of graphene and potential effect to the electrical and mechanical performance were also investigated. (paper)

  8. Reconstruction of composite in-line electron holograms using a small emission cone

    International Nuclear Information System (INIS)

    Holenstein, Roman; Rothwell, Timothy A.; Shegelski, Mark R.A.

    2003-01-01

    We report a new method that gives atomic resolution in the reconstruction of simulated holograms in theoretical low energy electron point source (LEEPS) microscopy, and that uses a screen size that is commensurate with screen sizes used in experimental LEEPS. The method exploits the spherical symmetry in the electron waves emerging from the source. We compare holograms obtained by rotating the screen about an axis passing through the point source as opposed to rotating the atomic cluster in the opposite sense about the same axis. We show that, by generating and combining simulated holograms obtained by rotating the cluster, with the screen held fixed, a composite hologram, comprised of the individual holograms, captures enough information that atomic resolution in the reconstructions is obtained. A key feature is to choose the rotations to optimize the collective interference pattern on the composite hologram. This results in sharper resolution while using a considerably smaller screen size; results are reported for a screen size about ten times smaller than screen sizes typically used in theoretical LEEPS. The method used gives commensurate or better resolution on comparison to results obtained using the larger screen size. Possible implications for experimental LEEPS are briefly discussed

  9. Cotton-based Cellulose Nanomaterials for Applications in Composites and Electronics

    Science.gov (United States)

    Farahbakhsh, Nasim

    A modern society demands development of highly valued and sustainable products via innovative process technologies and utilizing bio-based alternatives for petroleum based materials. Systematic comparative study of nanocellulose particles as a biodegradable and renewable reinforcing agent can help to develop criteria for selecting an appropriate candidate to be incorporated in polymer nanocomposites. Of particular interest has been nanocellulosic materials including cellulose nanocrystal (CNC) and micro/nanofibrilated cellulose (MFC/NFC) which possess a hierarchical structure that permits an ordered structure with unique properties that has served as building blocks for the design of green and novel materials composites for applications in flexible electronics, medicine and composites. Key differences exist in nanocellulosic materials as a result the process by which the material is produced. This research demonstrates the applicability for the use of recycled cotton as promising sustainable material to be utilized as a substrate for electronic application and a reinforcing agent choice that can be produced without any intensive purification process and be applied to synthetic-based polymer nanocomposites in melt-processing. (Abstract shortened by ProQuest.).

  10. Composite depth dose measurement for total skin electron (TSE) treatments using radiochromic film

    International Nuclear Information System (INIS)

    Gamble, Lisa M; Farrell, Thomas J; Jones, Glenn W; Hayward, Joseph E

    2003-01-01

    Total skin electron (TSE) radiotherapy is routinely used to treat cutaneous T-cell lymphomas and can be implemented using a modified Stanford technique. In our centre, the composite depth dose for this technique is achieved by a combination of two patient positions per day over a three-day cycle, and two gantry angles per patient position. Due to patient morphology, underdosed regions typically occur and have historically been measured using multiple thermoluminescent dosimeters (TLDs). We show that radiochromic film can be used as a two-dimensional relative dosimeter to measure the percent depth dose in TSE radiotherapy. Composite depth dose curves were measured in a cylindrical, polystyrene phantom and compared with TLD data. Both multiple films (1 film per day) and a single film were used in order to reproduce a realistic clinical scenario. First, three individual films were used to measure the depth dose, one per treatment day, and then compared with TLD data; this comparison showed a reasonable agreement. Secondly, a single film was used to measure the dose delivered over three daily treatments and then compared with TLD data; this comparison showed good agreement throughout the depth dose, which includes doses well below 1 Gy. It will be shown that one piece of radiochromic film is sufficient to measure the composite percent depth dose for a TSE beam, hence making radiochromic film a suitable candidate for monitoring underdosed patient regions

  11. Compositional redistribution in alloy films under high-voltage electron microscope irradiation

    Science.gov (United States)

    Lam, Nghi Q.; Leaf, O. K.; Minkoff, M.

    1983-10-01

    The problem of nonequilibrium segregation in alloy films under high-voltage electron microscope (HVEM) irradiation at elevated temperatures is re-examined in the present work, taking into account the damage-rate gradients caused by radial variation in the electron flux. Axial and radial compositional redistributions in model solid solutions, representative of concentrated Ni-Cu, Ni-Al and Ni-Si alloys, were calculated as a function of time, temperature, and film thickness, using a kinetic theory of segregation in binary alloys. The numerical results were achieved by means of a new software package (DISPL2) for solving convection-diffusion-kinetics problems with general orthogonal geometries. It was found that HVEM irradiation-induced segregation in thin films consists of two stages. Initially, due to the proximity of the film surfaces as sinks for point defects, the usual axial segregation (to surfaces) occurs at relatively short irradiation times, and rapidly attains quasi-steady state. Then, radial segregation becomes more and more competitive, gradually affecting the kinetics of axial segregation. At a given temperature, the buildup time to steady state is much longer in the present situation than in the simple case of one-dimensional segregation with uniform defect production. Changes in the alloy composition occur in a much larger zone than the irradiated volume. As a result, the average alloy composition within the irradiated region can differ greatly from that of the unirradiated alloy. The present calculations may be useful in the interpretation of the kinetics of certain HVEM irradiation-induced processes in alloys.

  12. Oxidation/volatilization rates in air for candidate fusion reactor blanket materials, PCA and HT-9

    International Nuclear Information System (INIS)

    Piet, S.J.; Kraus, H.G.; Neilson, R.M. Jr.; Jones, J.L.

    1986-01-01

    Large uncertainties exist in the quantity of neutron-induced activation products that can be mobilized in potential fusion accidents. The accidental combination of high temperatures and oxidizing conditions might lead to mobilization of a significant amount of activation products from structural materials. Here, the volatilization of constituents of PCA and HT-9 resulting from oxidation in air was investigated. Tests were conducted in flowing air at temperatures from 600 to 1300 0 C for 1, 5, or 20 h. Elemental volatility was calculated in terms of the weight fraction of the element volatilized from the initial alloy. Molybdenum and manganese were the radiologically significant primary constituents most volatilizized, suggesting that molybdenum and manganese should be minimized in fusion steel compositions. Higher chromium content appears beneficial in reducing hazards from mobile activation products. Scanning electron microscopy and energy dispersive spectroscopy were used to study the oxide layer on samples. (orig.)

  13. The study of composition changes in thin film coatings of Ge-As-Se type under relativistic electron irradiation by means of electron Auger spectroscopy

    International Nuclear Information System (INIS)

    Kesler, L.G.; Dovgoshej, N.I.; Savchenko, N.D.

    1991-01-01

    Data on the influence of relativistic electrons on depth profile of Ge 33 As 12 Se 55 films were obtained for the first time. It was established that the most sufficient change of element composition of films in result of electron irradiation took place in the surface layer and on film-sublayer interface. It can be explained by increase of diffusion of impurities and free atoms

  14. Preparation of TiO2-based nanotubes/nanoparticles composite thin film electrodes for their electron transport properties

    International Nuclear Information System (INIS)

    Zhao, Wanyu; Fu, Wuyou; Chen, Jingkuo; Li, Huayang; Bala, Hari; Wang, Xiaodong; Sun, Guang; Cao, Jianliang; Zhang, Zhanying

    2015-01-01

    The composite thin film electrodes were prepared with one-dimensional (1D) TiO 2 -B nanotubes (NTs) and zero-dimensional TiO 2 nanoparticles (NPs) based on different weight ratios. The electron transport properties of the NTs/NPs composite thin film electrodes applied for dye-sensitized solar cells had been investigated systematically. The results indicated that although the amount of dye adsorption decreased slightly, the devices with the NTs/NPs composite thin film electrodes could obtain higher open-circuit voltage and overall conversion efficiency compared to devices with pure TiO 2 NPs electrodes by rational tuning the weight ratio of TiO 2 -B NTs and TiO 2 NPs. When the weight ratio of TiO 2 -B NTs in the NTs/NPs composite thin film electrodes increased, the density of states and recombination rate decreased. The 1D structure of TiO 2 -B NTs can provide direct paths for electron transport, resulting in higher electron lifetime, electron diffusion coefficient and electron diffusion length. The composite thin film electrodes possess the merits of the rapid electron transport of TiO 2 -B NTs and the high surface area of TiO 2 NPs, which has great applied potential in the field of photovoltaic devices. - Highlights: • The composite thin film electrodes (CTFEs) were prepared with nanotubes and nanoparticles. • The CTFEs possess the rapid electron transport and high surface area. • The CTFEs exhibit lower recombination rate and longer electron life time. • The CTFEs have great applied potential in the field of photovoltaic devices

  15. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    Science.gov (United States)

    Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.

  16. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    Directory of Open Access Journals (Sweden)

    Simon J Leigh

    Full Text Available 3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping' before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.

  17. Surface composite nanostructures of AZ91 magnesium alloy induced by high current pulsed electron beam treatment

    International Nuclear Information System (INIS)

    Li, M.C.; Hao, S.Z.; Wen, H.; Huang, R.F.

    2014-01-01

    High current pulsed electron beam (HCPEB) treatment was conducted on an AZ91 cast magnesium alloy with accelerating voltage 27 kV, energy density 3 J/cm 2 and pulse duration 2.5 μs. The surface microstructure was characterized by optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), and transmission electron microscope (TEM). The surface corrosion property was tested with electrochemical method in 3.5 wt.% NaCl solution. It is found that after 1 pulse of HCPEB treatment, the initial eutectic α phase and Mg 17 Al 12 particles started to dissolve in the surface modified layer of depth ∼15 μm. When using 15 HCPEB pulses, the Al content in surface layer increased noticeably, and the phase structure was modified as composite nanostructures consisted of nano-grained Mg 3.1 Al 0.9 domains surrounded by network of Mg 17 Al 12 phase. The HCPEB treated samples showed an improved corrosion resistance with cathodic current density decreased by two orders of magnitude as compared to the initial AZ91 alloy.

  18. Renormalization of Fermi Velocity in a Composite Two Dimensional Electron Gas

    Science.gov (United States)

    Weger, M.; Burlachkov, L.

    We calculate the self-energy Σ(k, ω) of an electron gas with a Coulomb interaction in a composite 2D system, consisting of metallic layers of thickness d ≳ a0, where a0 = ħ2ɛ1/me2 is the Bohr radius, separated by layers with a dielectric constant ɛ2 and a lattice constant c perpendicular to the planes. The behavior of the electron gas is determined by the dimensionless parameters kFa0 and kFc ɛ2/ɛ1. We find that when ɛ2/ɛ1 is large (≈5 or more), the velocity v(k) becomes strongly k-dependent near kF, and v(kF) is enhanced by a factor of 5-10. This behavior is similar to the one found by Lindhard in 1954 for an unscreened electron gas; however here we take screening into account. The peak in v(k) is very sharp (δk/kF is a few percent) and becomes sharper as ɛ2/ɛ1 increases. This velocity renormalization has dramatic effects on the transport properties; the conductivity at low T increases like the square of the velocity renormalization and the resistivity due to elastic scattering becomes temperature dependent, increasing approximately linearly with T. For scattering by phonons, ρ ∝ T2. Preliminary measurements suggest an increase in vk in YBCO very close to kF.

  19. Critical parameters for electron beam curing of cationic epoxies and property comparison of electron beam cured cationic epoxies versus thermal cured resins and composites

    International Nuclear Information System (INIS)

    Janke, C.J.; Norris, R.E.; Yarborough, K.; Lopata, V.J.

    1997-01-01

    Electron beam curing of composites is a nonthermal, nonautoclave curing process offering the following advantages compared to conventional thermal curing: substantially reduced manufacturing costs and curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvements in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance electron beam curing of composites. The CRADA has successfully developed hundreds of new toughened and untoughened resins, offering unlimited formulation and processing flexibility. Several patent applications have been filed for this work. Composites made from these easily processable, low shrinkage material match the performance of thermal cured composites and exhibit: low void contents comparable to autoclave cured composites (less than 1%); superb low water absorption values in the same range as cyanate esters (less than 1%); glass transition temperatures rivaling those of polyimides (greater than 390 C); mechanical properties comparable to high performance, autoclave cured composites; and excellent property retention after cryogenic and thermal cycling. These materials have been used to manufacture many composite parts using various fabrication processes including hand lay-up, tow placement, filament winding, resin transfer molding and vacuum assisted resin transfer molding

  20. Effect of sterilization dose on electron beam irradiated biodegradable polymers and coconut fiber based composites

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Yasko; Machado, Luci D.B., E-mail: ykodama@ipen.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Oishi, Akihiro; Nakayama, Kazuo, E-mail: a.oishi@aist.go.j, E-mail: kazuo-nakayama@jcom.home.ne.j [National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki-ken (Japan). Research Institute for Sustainable Chemical Innovation; Nagasawa, Naotsugu; Tamada, Masao, E-mail: nagasawa.naotsugu@jaea.go.j [Japan Atomic Energy Agency (JAEA), Gunma-ken (Japan). Quantum Beam Science Directorate

    2009-07-01

    In Brazil, annual production of coconut fruit is 1.5 billion in a cultivated area of 2.7 million ha. Coconut fiber applications as reinforcement for polymer composites, besides reducing the coconut waste, would reduce cost of the composite. On the other hand, biodegradable polymers have been receiving much attention due to the plastic waste problem. Poly(e-caprolactone), PCL, and poly(lactic acid), PLA, besides being biodegradable aliphatic polyesters, are biocompatible polymers. Considering the biomedical application of PLA and PCL, their products must be sterilized for use, and ionizing radiation has been widely used for medical devices sterilization. It is important to study the effect of ionizing radiation on the blends and composites due to the fact that they are based on biocompatible polymers. Is this research, hot pressed samples based on PLA:PCL (80:20, ratio of weight:weight) blend and the composites containing chemically treated or untreated coconut fiber (5, 10%) were irradiated by electron beams and gamma radiation from Co-60 source at doses in the range up to 200 kGy. Thermal mechanical analysis (TMA) and gel fraction measurements were performed in irradiated samples. From TMA curves it can be observed that thermal stability of samples with untreated coconut fiber slightly decreased with increasing fiber content. On the other hand, deformation increased with increasing fiber content. Acetylated coconut fibers slightly decreased thermal stability of samples. It seems that no interaction occurs between the natural fibers and the polymeric matrix due to irradiation. PLLA undergoes to main chain scission under ionizing irradiation according to thermal stability results and also because no gel fraction was observed. In contrast, PCL cross-linking is induced by ionizing radiation that increases thermal stability and decreases deformation. (author)

  1. Effect of sterilization dose on electron beam irradiated biodegradable polymers and coconut fiber based composites

    International Nuclear Information System (INIS)

    Kodama, Yasko; Machado, Luci D.B.; Oishi, Akihiro; Nakayama, Kazuo; Nagasawa, Naotsugu; Tamada, Masao

    2009-01-01

    In Brazil, annual production of coconut fruit is 1.5 billion in a cultivated area of 2.7 million ha. Coconut fiber applications as reinforcement for polymer composites, besides reducing the coconut waste, would reduce cost of the composite. On the other hand, biodegradable polymers have been receiving much attention due to the plastic waste problem. Poly(e-caprolactone), PCL, and poly(lactic acid), PLA, besides being biodegradable aliphatic polyesters, are biocompatible polymers. Considering the biomedical application of PLA and PCL, their products must be sterilized for use, and ionizing radiation has been widely used for medical devices sterilization. It is important to study the effect of ionizing radiation on the blends and composites due to the fact that they are based on biocompatible polymers. Is this research, hot pressed samples based on PLA:PCL (80:20, ratio of weight:weight) blend and the composites containing chemically treated or untreated coconut fiber (5, 10%) were irradiated by electron beams and gamma radiation from Co-60 source at doses in the range up to 200 kGy. Thermal mechanical analysis (TMA) and gel fraction measurements were performed in irradiated samples. From TMA curves it can be observed that thermal stability of samples with untreated coconut fiber slightly decreased with increasing fiber content. On the other hand, deformation increased with increasing fiber content. Acetylated coconut fibers slightly decreased thermal stability of samples. It seems that no interaction occurs between the natural fibers and the polymeric matrix due to irradiation. PLLA undergoes to main chain scission under ionizing irradiation according to thermal stability results and also because no gel fraction was observed. In contrast, PCL cross-linking is induced by ionizing radiation that increases thermal stability and decreases deformation. (author)

  2. Volatiles Of Lysimachia Paridiformis Var. Stenophylla, Lysimachia ...

    African Journals Online (AJOL)

    Twenty-one compounds were identified in the leaves of L. fortumei, accounting for 94.72% of the total volatile fraction. ... Conclusion: The results showed that the main composition types were similar in the three plants, but the content was different, which indicated that the similar composition types provided the same medical ...

  3. Volatile molecular markers of VOO Thermo-oxidation: Effect of heating processes, macronutrients composition, and olive ripeness on the new emitted aldehydic compounds.

    Science.gov (United States)

    Oueslati, Imen; Manaï, Hédia; Madrigal-Martínez, Mónica; Martínez-Cañas, Manuel A; Sánchez-Casas, Jacinto; Zarrouk, Mokhtar; Flamini, Guido

    2018-04-01

    Heating operation has been applied to Chétoui extra-virgin olive oils (EVOOs) extracted from fruits with several ripening stages (RS). The studied samples, were subjected to microwave and conventional heating. Results showed that heated VOOs after 2.5 h and 7 min of conventional and microwave heating, respectively, gave rise to a drastically decrease of LOX products and allowed the detection of toxic new formed aldehydic volatiles (alkanal: nonanal, alkenals: (Z)-2-heptenal and (E)-2-decenal, and alkadienals: (E.E)-2.4-decadienal), which can be used as markers of VOO degradation. Their abundance in the VOO headspaces depends on their boiling points, the rate of their possible degradation to yield other compounds, on the heating processes and on the rate of macronutrients. The emission rate of the new synthesized volatiles during heating processes was mainly attributed to enzymatic oxidation of some fatty acids. Hexanal, (Z)-2-heptenal, (E)-2-octenal, (E)-2-nonenal, (E,E) and (E,Z)-2,4-decadienal, and (E,E)-2,4-nonadienal, derived from linoleic acid, and heptanol, octanal, nonanal, decanal, (E) and (Z)-2-decenal, (E)-2-undecenal, and (E,E)-2,4-nonadienal, are emitted after degradation of oleic acid. During thermo-oxidation, the ECN 44 (LLO, and OLnO), and the ECN 46 (OLO, and PLO + SLL) compounds decreased, whereas, the ECN 48 (OOO, and PPO), and the ECN 50 (SOO) compounds increased when temperature and heating time increased. The several variations of the studied biochemical compounds depend to the heating processes. Ripening stage of olive fruits can be used as a tool to monitor the emission rate of the aldehydic volatiles, but cannot be used for a chemometric discrimination. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Anand, M.; Boyce, J. W.; Burney, D.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Klima, R. L.; Magna, T.; Ni, P.; Steenstra, E.; Tartèse, R.; Vander Kaaden, K. E.

    2018-04-01

    This abstract discusses numerous outstanding questions on the topic of endogenous lunar volatiles that will need to be addressed in the coming years. Although substantial insights into endogenous lunar volatiles have been gained, more work remains.

  5. Effects of electron irradiation in space environment on thermal and mechanical properties of carbon fiber/bismaleimide composite

    International Nuclear Information System (INIS)

    Yu, Qi; Chen, Ping; Gao, Yu; Ma, Keming; Lu, Chun; Xiong, Xuhai

    2014-01-01

    Highlights: •Electron irradiation decreased the storage modulus finally. •T g decreased first and then increased and finally decreased. •The thermal stability was reduced and then improved and finally decreased. •The changing trend of flexural strength and ILSS are consistent. -- Abstract: The effects of electron irradiation in simulated space environment on thermal and mechanical properties of high performance carbon fiber/bismaleimide composites were investigated. The dynamic mechanical properties of the composites exposed to different fluences of electron irradiation were evaluated by Dynamic mechanical analysis (DMA). Thermogravimetric analysis was applied to investigate the changes in thermal stability of the resin matrix after exposure to electron irradiation. The changes in mechanical properties of the composites were evaluated by flexural strength and interlaminar shear strength (ILSS). The results indicated that electron irradiation in high vacuum had an impact on thermal and mechanical properties of CF/BMI composites, which depends on irradiation fluence. At lower irradiation fluences less than 5 × 10 15 cm −2 , the dynamic storage modulus, cross-linking degree, thermal stability and mechanical properties that were determined by a competing effect between chain scission and cross-linking process, decreased firstly and then increased. While at higher fluences beyond 5 × 10 15 cm −2 , the chain scission process was dominant and thus led to the degradation in thermal and mechanical properties of the composites

  6. Nonvolatile, semivolatile, or volatile: redefining volatile for volatile organic compounds.

    Science.gov (United States)

    Võ, Uyên-Uyén T; Morris, Michael P

    2014-06-01

    Although widely used in air quality regulatory frameworks, the term "volatile organic compound" (VOC) is poorly defined. Numerous standardized tests are currently used in regulations to determine VOC content (and thus volatility), but in many cases the tests do not agree with each other, nor do they always accurately represent actual evaporation rates under ambient conditions. The parameters (time, temperature, reference material, column polarity, etc.) used in the definitions and the associated test methods were created without a significant evaluation of volatilization characteristics in real world settings. Not only do these differences lead to varying VOC content results, but occasionally they conflict with one another. An ambient evaporation study of selected compounds and a few formulated products was conducted and the results were compared to several current VOC test methodologies: SCAQMD Method 313 (M313), ASTM Standard Test Method E 1868-10 (E1868), and US. EPA Reference Method 24 (M24). The ambient evaporation study showed a definite distinction between nonvolatile, semivolatile, and volatile compounds. Some low vapor pressure (LVP) solvents, currently considered exempt as VOCs by some methods, volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents they are meant to replace. Conversely, bio-based and heavy hydrocarbons did not readily volatilize, though they often are calculated as VOCs in some traditional test methods. The study suggests that regulatory standards should be reevaluated to more accurately reflect real-world emission from the use of VOC containing products. The definition of VOC in current test methods may lead to regulations that exclude otherwise viable alternatives or allow substitutions of chemicals that may limit the environmental benefits sought in the regulation. A study was conducted to examine volatility of several compounds and a few formulated products under several current VOC test

  7. Normalization for Implied Volatility

    OpenAIRE

    Fukasawa, Masaaki

    2010-01-01

    We study specific nonlinear transformations of the Black-Scholes implied volatility to show remarkable properties of the volatility surface. Model-free bounds on the implied volatility skew are given. Pricing formulas for the European options which are written in terms of the implied volatility are given. In particular, we prove elegant formulas for the fair strikes of the variance swap and the gamma swap.

  8. Realized Volatility Risk

    NARCIS (Netherlands)

    D.E. Allen (David); M.J. McAleer (Michael); M. Scharth (Marcel)

    2013-01-01

    textabstractIn this paper we document that realized variation measures constructed from highfrequency returns reveal a large degree of volatility risk in stock and index returns, where we characterize volatility risk by the extent to which forecasting errors in realized volatility are substantive.

  9. External Application of the Volatile Oil from Blumea balsamifera May Be Safe for Liver — A Study on Its Chemical Composition and Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Yu-Xin Pang

    2014-11-01

    Full Text Available Ainaxiang (Blumea balsamifera, also known as Sambong, is an important ancient medicinal herb in Southeast Asia. It is rich in volatile oil, and still widely used nowadays for skin wound healing and treatment of sore throats. We analyzed the volatile oil from Blumea balsamifera (BB oil by gas chromatography-mass spectrometry (GC-MS. Forty one components, including l-borneol, were identified. Next, the damaging effects of BB oil diluted with olive oil on liver at different concentrations (100%, 50%, 20%, were evaluated, using both normal and wounded skin. Plasma ALT, AST, ALP and TBili were assessed, along with liver histopathology. The results showed that serum levels of liver toxicity markers in the high concentration groups (100% w/v increased compared with control groups, whereas no significant changes was observed in histopathology of liver samples. In the wound groups, treatment with BB oil resulted in a decrease in serum toxicity index, compared with normal animal groups. This study confirms the safety of short term BB oil consumption, though high BB oil doses may lead to mild liver injury and this response might be weakened in the case of cutaneous wounds. These results are expected to be helpful for guiding appropriate therapeutic use of BB oil.

  10. Physical properties of wood-polymer composites prepared by an electron beam accelerator

    International Nuclear Information System (INIS)

    Yoshizawa, S.; Handa, T.; Fukuoka, M.; Hashizume, Y.; Nakamura, T.

    1981-01-01

    The dual characteristics in the performance of polymers in wood-polymer composites systems have been pursued with regard to the resolution of mechanical anisotropy of wood and the improvement in dimensional stability. The objective of the present study is to pursue the polymerization mechanism in wood under electron beam irradiation and the temperature dependence of polymer-wood interactions induced at various levels of higher order structure of wood in order to understand the polymer performance. Veneers used in the study were of rotary-cut beech (Fagus crenata Blume) 0.65 mm thick. All samples were oven-dried in vacuo at 80 0 C for 30 hr. The monomers used in the study were methyl methacrylate, styrene, acrylic acid, acrylonitrile, and unsaturated polyester. Experimental details are given. Results are given and discussed. (U.K.)

  11. Process for hardening an alkyd resin composition using ionizing radiation. [electron beams, gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T; Murata, K; Maruyama, T

    1969-11-27

    In an alkyd resin composition having free hydroxide radicals and containing a conjugated unsaturated fatty acid and/or oil as a component thereof, a process for hardening an alkyd resin composition comprises the steps of dissolving into a vinyl monomer, the product obtained by the semi-esterification reaction of said hydroxide radicals with acid anhydrides having polymerizable radicals and hardening by ionizing radiation to provide a coating with a high degree of cross-linking, with favorable properties such as toughness, hardness, chemical resistance and resistance to weather and with the feasibility of being applied as the ground and finish coat on metals, wood, paper, outdoor construction or the like. Any kind of ionization radiation, particularly accelerated electron beams, ..gamma.. radiation can be used at 50/sup 0/C to -5/sup 0/C for a few seconds or minutes, permitting continuous operation. In one example, 384 parts of phthalic anhydride, 115 parts of pentaerythritol, 233 parts of trimethylol ethane, 288 parts of tung fatty acid and 49 parts of para-tertiary-butyl benzoic acid are mixed and heated with 60 parts of xylene to an acid value of 12. In addition, 271 parts of maleic anhydride and 0.6 parts of hydroquinone are admixed with the content and heated to terminate the reaction. 100 parts of a 50% stylene solution of this alkyd resin are mixed with 1 part of a 60% toluene solution of cobalt naphthenate, and then coated on a glass plate and irradiated with high energy electron beams of 300 kV with a dose of 5 Mrad for 1 sec.

  12. Efficient composite fabrication using electron-beam rapidly cured polymers engineered for several manufacturing processes

    International Nuclear Information System (INIS)

    Walton, T.C.; Crivello, J.V.

    1995-01-01

    Low cost, efficiently processed ultra high specific strength and stiffness graphite fiber reinforced polymeric composite materials are of great interest to commercial transportation, construction and aerospace industries for use in various components with enhanced degrees of weight reduction, corrosion/erosion resistance and fatigue resistance. 10 MeV Electron Beam cure processing has been found to increase the cure rate by an order of magnitude over thermally cured systems yet provide less molded in stresses and high T g s. However, a limited range of resins are available which are easily processed with low shrinkage and with performance properties equal or exceeding those of state of the art toughened epoxies and BMI's. The technology, introduced by an academia-industry partnership sparked by Langley Research Center utilizes a cost effective, rapid curing polymeric composite processing technique which effectively reduces the need for expensive tooling and energy inefficient autoclave processing and can cure the laminate in seconds (compared to hours for thermal curing) in ambient or sub-ambient conditions. The process is based on electron beam (E-Beam) curing of a new series of (65 to 1,000,000 cPs.) specially formulated resins that have been shown to exhibit excellent mechanical and physical properties once cured. Fabrication processes utilizing these specially formulated and newly commercialized resins, (e.g. including Vacuum Assist Resin Transfer molding (VARTM), vacuum bag prepreg layup, pultrusion and filament winding grades) are engineered to cure with low shrinkage, provide excellent mechanical properties, be processed solventless (environmentally friendly) and are inherently non toxic

  13. Increase in electron mobility of InGaAs/InP composite channel high electron mobility transistor structure due to SiN passivation

    International Nuclear Information System (INIS)

    Liu Yuwei; Wang Hong; Radhakrishnan, K.

    2007-01-01

    The influence of silicon nitride passivation on electron mobility of InGaAs/InP composite channel high electron mobility transistor structure has been studied. Different from the structures with single InGaAs channel, an increase in effective mobility μ e with a negligible change of sheet carrier density n s after SiN deposition is clearly observed in the composite channel structures. The enhancement of μ e could be explained under the framework of electrons transferring from the InP sub-channel into InGaAs channel region due to the energy band bending at the surface region caused by SiN passivation, which is further confirmed by low temperature photoluminescence measurements

  14. CRADA Final Report for CRADA No. ORNL99-0544, Interfacial Properties of Electron Beam Cured Composites

    Energy Technology Data Exchange (ETDEWEB)

    Janke, C.J.

    2005-10-17

    Electron beam (EB) curing is a technology that promises, in certain applications, to deliver lower cost and higher performance polymer matrix composite (PMC) structures compared to conventional thermal curing processes. PMCs enhance performance by making products lighter, stronger, more durable, and less energy demanding. They are essential in weight- and performance-dominated applications. Affordable PMCs can enhance US economic prosperity and national security. US industry expects rapid implementation of electron beam cured composites in aircraft and aerospace applications as satisfactory properties are demonstrated, and implementation in lower performance applications will likely follow thereafter. In fact, at this time and partly because of discoveries made in this project, field demonstrations are underway that may result in the first fielded applications of electron beam cured composites. Serious obstacles preventing the widespread use of electron beam cured PMCs in many applications are their relatively poor interfacial properties and resin toughness. The composite shear strength and resin toughness of electron beam cured carbon fiber reinforced epoxy composites were about 25% and 50% lower, respectively, than those of thermally cured composites of similar formulations. The essential purpose of this project was to improve the mechanical properties of electron beam cured, carbon fiber reinforced epoxy composites, with a specific focus on composite shear properties for high performance aerospace applications. Many partners, sponsors, and subcontractors participated in this project. There were four government sponsors from three federal agencies, with the US Department of Energy (DOE) being the principal sponsor. The project was executed by Oak Ridge National Laboratory (ORNL), NASA and Department of Defense (DOD) participants, eleven private CRADA partners, and two subcontractors. A list of key project contacts is provided in Appendix A. In order to properly

  15. Optical properties and electronic transitions of DNA oligonucleotides as a function of composition and stacking sequence.

    Science.gov (United States)

    Schimelman, Jacob B; Dryden, Daniel M; Poudel, Lokendra; Krawiec, Katherine E; Ma, Yingfang; Podgornik, Rudolf; Parsegian, V Adrian; Denoyer, Linda K; Ching, Wai-Yim; Steinmetz, Nicole F; French, Roger H

    2015-02-14

    The role of base pair composition and stacking sequence in the optical properties and electronic transitions of DNA is of fundamental interest. We present and compare the optical properties of DNA oligonucleotides (AT)10, (AT)5(GC)5, and (AT-GC)5 using both ab initio methods and UV-vis molar absorbance measurements. Our data indicate a strong dependence of both the position and intensity of UV absorbance features on oligonucleotide composition and stacking sequence. The partial densities of states for each oligonucleotide indicate that the valence band edge arises from a feature associated with the PO4(3-) complex anion, and the conduction band edge arises from anti-bonding states in DNA base pairs. The results show a strong correspondence between the ab initio and experimentally determined optical properties. These results highlight the benefit of full spectral analysis of DNA, as opposed to reductive methods that consider only the 260 nm absorbance (A260) or simple purity ratios, such as A260/A230 or A260/A280, and suggest that the slope of the absorption edge onset may provide a useful metric for the degree of base pair stacking in DNA. These insights may prove useful for applications in biology, bioelectronics, and mesoscale self-assembly.

  16. Monitoring micro-crack healing in an engineered cementitious composite using the environmental scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Suryanto, B., E-mail: b.suryanto@hw.ac.uk; Buckman, J.O.; Thompson, P.; Bolbol, M.; McCarter, W.J.

    2016-09-15

    Environmental Scanning Electron Microscopy (ESEM) is used to study the origin of micro-crack healing in an Engineered Cementitious Composite (ECC). ESEM images were acquired from ECC specimens cut from pre-cracked, dog-bone samples which then subjected to submerged curing followed by exposure to the natural environment. The mineralogical and chemical compositions of the healing products were determined using the EDX facility in the ESEM. It is shown that the precipitation of calcium carbonate is the main contributor to micro-crack healing at the crack mouth. The healing products initially appeared in an angular rhombohedral morphology which then underwent a discernable transformation in size, shape and surface texture, from relatively flat and smooth to irregular and rough, resembling the texture of the original surface areas surrounding the micro-cracks. It is also shown that exposure to the natural environment, involving intermittent wetting/drying cycles, promotes additional crystal growth, which indicates enhanced self-healing capability in this environment. - Highlights: •ESEM with EDX used to characterize the origin of micro-crack healing in an ECC •Evolution of healing precipitates studied at three specific locations over four weeks •Specimens exposed to laboratory environment, followed by the natural environment •Calcium carbonate is the main contributor to crack healing at the crack mouth. •Outdoor exposure involving intermittent rain promotes additional crystal growth.

  17. Textural and electronic characteristics of mechanochemically activated composites with nanosilica and activated carbon

    International Nuclear Information System (INIS)

    Gun’ko, V.M.; Zaulychnyy, Ya.V.; Ilkiv, B.I.; Zarko, V.I.; Nychiporuk, Yu.M.; Pakhlov, E.M.; Ptushinskii, Yu.G.; Leboda, R.; Skubiszewska-Zięba, J.

    2011-01-01

    Nanosilicas (A-50, A-300, A-500)/activated carbon (AC, S BET = 1520 m 2 /g) composites were prepared using short-term (5 min) mechanochemical activation (MCA) of powder mixtures in a microbreaker. Smaller silica nanoparticles of A-500 (average diameter d av = 5.5 nm) can more easily penetrate into broad mesopores and macropores of AC microparticles than larger nanoparticles of A-50 (d av = 52.4 nm) or A-300 (d av = 8.1 nm). After MCA of silica/AC, nanopores of non-broken AC nanoparticles remained accessible for adsorbed N 2 molecules. According to ultra-soft X-ray emission spectra (USXES), MCA of silica/AC caused formation of chemical bonds Si-O-C; however, Si-C and Si-Si bonds were practically not formed. A decrease in intensity of OK α band in respect to CK α band of silica/AC composites with diminishing sizes of silica nanoparticles is due to both changes in the surface structure of particles and penetration of a greater number of silica nanoparticles into broad pores of AC microparticles and restriction of penetration depth of exciting electron beam into the AC particles.

  18. Electron-beam irradiation effects on mechanical properties of PEEK/CF composite

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Seguchi, Tadao

    1989-01-01

    Carbon fibre-reinforced composite (PEEK/CF) using polyarylether-ether-ketone (PEEK) as a matrix material was prepared and electron-beam irradiation effects on the mechanical properties at low and high temperatures were studied. The flexural strength and modulus of the unirradiated PEEK/CF were almost the same as those of carbon fibre-reinforced composites with epoxide resin. The mechanical properties at room temperature were little affected by irradiation up to 180 MGy, but in the test at 77K the strength of the specimens irradiated over 100 MGy was slightly decreased. The mechanical properties of the unirradiated specimen decreased with increasing testing temperature, but the high-temperature properties were improved by irradiation, i.e. the strength measured at 413K for the specimen irradiated with 120 MGy almost reached the value for the unirradiated specimen measured at room temperature. It was apparent from the viscoelastic measurement that the improvement of mechanical properties at high temperature resulted from the high-temperature shift of the glass transition of the matrix PEEK caused by radiation-induced cross-linking. (author)

  19. Production of muscovite-feldspathic glass composite: scanning electron microscopy and X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Costa, F.P.F.; Ogasawara, T.; Santos, S.F.

    2009-01-01

    The objective of this work was to find the sintering conditions for the feldspathic glass + muscovite mixture to produce a dense composite block for manufacturing dental prosthesis by using CAD-CAM. Each 20g of the glass-frit had : 15.55g of Armil-feldspar; 0.53g of Al 2 O 3 ; 1.56g of Na 2 CO 3 ; 0.5g of borax; 1.74g of K 2 CO 3 ; 0.13g of CeO 2 . Frit's powder finer than 350 Tyler mesh was mixed with 0 wt%, 10 wt%, 20 wt% and 100 wt% of muscovite pressed cylinders (5600 pounds force) 16mm in diameter and sintered under vacuum Vacumat (VITA) furnace at 850 deg C, 900 deg C, 950 deg C, 1000 deg C, 1050 deg C, 1100 deg C and 1150 deg C. X-ray diffraction analysis and scanning electron microscopy were carried out. The necessary temperature for high densification depended on the composition of the mixture: 850 deg C (for pure frit); 1050 deg C (for 10 wt% mica) and 1150 deg C (for 20 wt% mica); pure mica degraded during sintering. (author)

  20. Aerosol volatility in a boreal forest environment

    Science.gov (United States)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed

  1. Sugarcane bagasse ash reinforced HDPE composites: effects of electron-beam radiation crosslinking on tensile and morphological properties

    International Nuclear Information System (INIS)

    Teixeira, Jaciele G.; Gomes, Michelle G.; Oliveira, Rene R.; Silva, Valquiria A.; Sartori, Mariana M.; Ortiz, Angel V.; Moura, Esperidiana A.B.

    2013-01-01

    Environmental issues have led to the development of polymeric materials reinforced with fibers originated from renewable agricultural sources such as pineapple leaf, sisal, jute, piassava, coir, and sugarcane bagasse. Although sugarcane bagasse fiber residues has been extensively studied and used as a source of reinforcement of polymers, the major portion of these residues is currently burnt for energy supply in the sugar and alcohol industries and as a result of its burning, tons of ashes are produced. Due to the inorganic composition, ashes can be used as reinforcement in polymeric materials. This study presents the preparation and characterization of a composite based on HDPE matrix and sugarcane bagasse ashes as reinforcement cross-linked by electron-beam radiation. The HDPE /Ash composite (95:5 wt %) was obtained by using a twin-screw extruder machine followed by injection molding. After extrusion and injection molding process, the composites were subjected to electron-beam radiation, at radiation doses of 150 kGy and 250 kGy using a Dynamitron electron beam accelerator, at room temperature in the presence of air. The irradiated and non-irradiated composite specimens were characterization by tensile and MFI tests, scanning electron microscopy (SEM), X-ray diffraction (XRD) and sol-gel analysis. In addition, ash from bagasse fiber was characterized by WDXRF. (author)

  2. Sugarcane bagasse ash reinforced HDPE composites: effects of electron-beam radiation crosslinking on tensile and morphological properties

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Jaciele G.; Gomes, Michelle G.; Oliveira, Rene R.; Silva, Valquiria A.; Sartori, Mariana M.; Ortiz, Angel V.; Moura, Esperidiana A.B., E-mail: jacielegteixeira@yahoo.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Environmental issues have led to the development of polymeric materials reinforced with fibers originated from renewable agricultural sources such as pineapple leaf, sisal, jute, piassava, coir, and sugarcane bagasse. Although sugarcane bagasse fiber residues has been extensively studied and used as a source of reinforcement of polymers, the major portion of these residues is currently burnt for energy supply in the sugar and alcohol industries and as a result of its burning, tons of ashes are produced. Due to the inorganic composition, ashes can be used as reinforcement in polymeric materials. This study presents the preparation and characterization of a composite based on HDPE matrix and sugarcane bagasse ashes as reinforcement cross-linked by electron-beam radiation. The HDPE /Ash composite (95:5 wt %) was obtained by using a twin-screw extruder machine followed by injection molding. After extrusion and injection molding process, the composites were subjected to electron-beam radiation, at radiation doses of 150 kGy and 250 kGy using a Dynamitron electron beam accelerator, at room temperature in the presence of air. The irradiated and non-irradiated composite specimens were characterization by tensile and MFI tests, scanning electron microscopy (SEM), X-ray diffraction (XRD) and sol-gel analysis. In addition, ash from bagasse fiber was characterized by WDXRF. (author)

  3. Optical properties of YbF3-CaF2 composite thin films deposited by electron-beam evaporation

    Science.gov (United States)

    Wang, Songlin; Mi, Gaoyuan; Zhang, Jianfu; Yang, Chongmin

    2018-03-01

    We studied electron-beam evaporated YbF3-CaF2 composite films on ZnS substrate at different deposition parameters. The optical properties of films have been fitted, the surface roughness have been measured by AFM. The results of experiments indicated that increased the refractive indices, extinction coefficients, and surface roughness at higher deposition rate. The refractive index of composite film deposited by electron-beam evaporation with assisted-ion source was obviously higher than it without assisted-ion source.

  4. Erosion resistance of composite materials on titanium, zirconium and aluminium nitride base under the electron beam effect

    International Nuclear Information System (INIS)

    Verkhoturov, A.D.; Kuzenkova, M.A.; Slutskin, M.G.; Kravchuk, L.A.

    1977-01-01

    Erosion resistance of composites based on nitrides of titanium, zirconium and aluminium to spark and electron beam processing has been studied. The erosion resistance in spark processing is shown to depend on specific electric resistance of the alloys. TiN-AlN and ZrN-AlN alloys containing more than 70% AlN (with specific electric resistance more than 10 6 -10 7 ohm/cm) caot be processed by spark method. It is shown that erosion of the composites by an electron beam depends primarily on the rate of evaporation of the components

  5. Composites

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1983-01-01

    This chapter discusses the roles of composite laminates and aggregates in cryogenic technology. Filamentary-reinforced composites are emphasized because they are the most widely used composite materials. Topics considered include composite systems and terminology, design and fabrication, composite failure, high-pressure reinforced plastic laminates, low-pressure reinforced plastics, reinforced metals, selectively reinforced structures, the effect of cryogenic temperatures, woven-fabric and random-mat composites, uniaxial fiber-reinforced composites, composite joints in cryogenic structures, joining techniques at room temperature, radiation effects, testing laminates at cryogenic temperatures, static and cyclic tensile testing, static and cyclic compression testing, interlaminar shear testing, secondary property tests, and concrete aggregates. It is suggested that cryogenic composite technology would benefit from the development of a fracture mechanics model for predicting the fitness-for-purpose of polymer-matrix composite structures

  6. Granulometric composition study of mineral resources using opto-electronic devices and Elsieve software system

    Directory of Open Access Journals (Sweden)

    Kaminski Stanislaw

    2016-01-01

    Full Text Available The use of mechanical sieves has a great impact on measurement results because occurrence of anisometric particles causes undercounting the average size. Such errors can be avoided by using opto-electronic measuring devices that enable measurement of particles from 10 μm up to a few dozen millimetres in size. The results of measurement of each particle size fraction are summed up proportionally to its weight with the use of Elsieve software system and for every type of material particle-size distribution can be obtained. The software allows further statistical interpretation of the results. Beam of infrared radiation identifies size of particles and counts them precisely. Every particle is represented by an electronic impulse proportional to its size. Measurement of particles in aqueous suspension that replaces the hydrometer method can be carried out by using the IPS L analyser (range from 0.2 to 600 μm. The IPS UA analyser (range from 0.5 to 2000 μm is designed for measurement in the air. An ultrasonic adapter enables performing measurements of moist and aggregated particles from 0.5 to 1000 μm. The construction and software system allow to determine second dimension of the particle, its shape coefficient and specific surface area. The AWK 3D analyser (range from 0.2 to 31.5 mm is devoted to measurement of various powdery materials with subsequent determination of particle shape. The AWK B analyser (range from 1 to 130 mm measures materials of thick granulation and shape of the grains. The presented method of measurement repeatedly accelerates and facilitates study of granulometric composition.

  7. Composite Biofilms grown in Acidic Mining Lakes and assessed by Electron Microscopy and Molecular Techniques

    International Nuclear Information System (INIS)

    Luensdorf, Heinrich; Wenderoth, Dirk F.; Abraham, Wolf-Rainer

    2002-01-01

    Microbial consortia of composite biofilms, grown in surface water of acidicmining lakes near Lauchhammer, Germany, were investigated. The red-brown colored lake water was acidic (pH 2.5), had high concentrations of Fe(III), Al(III), and sulphate and low concentrations of dissolved organic matter. As a result the abundance of bacteria in the lake is with 10 4 cells mL -1 rather low. One input of organic material into the lake are autumnal leaves from trees, growing in the lakeside area. From aliquots of unfixed birch leave biofilms the 16S rRNA genes were amplified by PCR and community fingerprints were determined by single-strand conformation polymorphism (SSCP) analysis. Specific bands within the fingerprints were extracted from SSCP gels and sequenced for the taxonomical affiliation.These results were compared with those from the second type of biofilms which were grown on sterile substrata, floating submersed in surface waters of the lakes. By excising the bands from the gel and sequencing the individual bands bacterial taxa, common to both types of biofilms, were found but also some, which were only present in one type of biofilm. Ultrathin sectioned biofilms often showed bacteria associated with electron dense particles as main inorganic constituents. Elemental microanalysis by energy dispersive X-ray analysis (EDX) revealed them to contain iron, sulfur and oxygen as main elemental fractions and electron diffraction ring pattern analysis classified them to be schwertmannite. These bacteria and their interactions with each other as well as with the inorganic minerals formed in this lake generally is of great interest, in order to use these results for bioremediation applications

  8. The Profile of Anti-inflammatory Activity of Syzigium Aromaticum Volatile Oil in Lotion with Variation Composition of Oleic Acid and Propylene Glycol as Enhancer

    Directory of Open Access Journals (Sweden)

    Fitriah Ardiawijianti Iriani

    2017-08-01

    Full Text Available Essential oil of clove (Syzygium aromaticum containing eugenol has an anti-inflammatory activity. The study was aimed to develop the formulation of lotion by adding of oleic acid and propylene glycol as penetration enhancer. The effect of enhancer composition was also studied. Lotion was prepared with the composition of oleic acid (AO and propylene glycol (PG as follow: 1:0 (FI, 0,5:0,5 (FII, 0:1 (FIII. Capacity an anti-inflammatory of formulation based on parameters of the amount of cells with COX-2 expression, the number of inflammatory cells and the epidermis thickness was evaluated using male mouse strain BALb/C induced by crotton oil as inflammatory agents. The results showed that the increasing composition propylene glycol caused the decreasing of the amount of cells with COX-2 expression (p <0.05, the inflammatory cells (P <0.05 and the epidermis thickness (p <0.05

  9. [Study on two preparation methods for beta-CD inclusion compound of four traditional Chinese medicine volatile oils].

    Science.gov (United States)

    Li, Hailiang; Cui, Xiaoli; Tong, Yan; Gong, Muxin

    2012-04-01

    To compare inclusion effects and process conditions of two preparation methods-colloid mill and saturated solution-for beta-CD inclusion compound of four traditional Chinese medicine volatile oils and study the relationship between each process condition and volatile oil physical properties and the regularity of selective inclusion of volatile oil components. Volatile oils from Nardostachyos Radix et Rhizoma, Amomi Fructus, Zingiberis Rhizoma and Angelicaesinensis Radix were prepared using two methods in the orthogonal test. These inclusion compounds by optimized processes were assessed and compared by such methods as TLC, IR and scanning electron microscope. Inclusion oils were extracted by steam distillation, and the components found before and after inclusion were analyzed by GC-MS. Analysis showed that new inclusion compounds, but inclusion compounds prepared by the two processes had differences to some extent. The colloid mill method showed a better inclusion effect than the saturated solution method, indicating that their process conditions had relations with volatile oil physical properties. There were differences in the inclusion selectivity of components between each other. The colloid mill method for inclusion preparation is more suitable for industrial requirements. To prepare volatile oil inclusion compounds with heavy gravity and high refractive index, the colloid mill method needs longer time and more water, while the saturated solution method requires higher temperature and more beta-cyclodextrin. The inclusion complex prepared with the colloid mill method contains extended molecular weight chemical composition, but the kinds of components are reduced.

  10. Scanning electron microscopy analysis of marginal adaptation of composite resines to enamel after using of standard and gradual photopolimerization

    Directory of Open Access Journals (Sweden)

    Dačić Stefan

    2014-01-01

    Full Text Available Introduction. Bonding between composite and hard dental tissue is most commonly assessed by measuring bonding strength or absence of marginal gap along the restoration interface. Marginal index (MI is a significant indicator of the efficiency of the bond between material and dental tissue because it also shows the values of width and length of marginal gap. Objective. The aim of this investigation was to estimate quantitative and qualitative features of the bond between composite resin and enamel and to determine the values of MI in enamel after application of two techniques of photopolymerization with two composite systems. Methods. Forty Class V cavities on extracted teeth were prepared and restored for scanning electron microscope (SEM analysis of composite bonding to enamel. Adhesion to enamel was achieved by Adper Single Bond 2 - ASB (3M ESPE, or by Adper Easy One - AEO (3M ESPE. Photopolymerization of Filtek Ultimate - FU (3M ESPE was performed using constant halogen light (HIP or soft start program (SOF. Results. Quantitative and qualitative analysis, showed better mikromorphological bonding with SOF photopolymerization and ASB/FU composite system. Differences in MI between different photopolymerization techniques (HIP: 0.6707; SOF: 0.2395 were statistically significant (p<0.001, as well as differences between the composite systems (ASB/FU: 0.0470; AEO/ FU: 0.8651 (p<0.001 by two-way ANOVA test. Conclusion. Better marginal adaptation of composite to enamel was obtained with SOF photopolymerization in both composite systems.

  11. Volatility in Equilibrium

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Sizova, Natalia; Tauchen, George

    Stock market volatility clusters in time, carries a risk premium, is fractionally inte- grated, and exhibits asymmetric leverage effects relative to returns. This paper develops a first internally consistent equilibrium based explanation for these longstanding empirical facts. The model is cast i......, and the dynamic cross-correlations of the volatility measures with the returns calculated from actual high-frequency intra-day data on the S&P 500 aggregate market and VIX volatility indexes....

  12. Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management

    International Nuclear Information System (INIS)

    Wu, Weixiong; Zhang, Guoqing; Ke, Xiufang; Yang, Xiaoqing; Wang, Ziyuan; Liu, Chenzhen

    2015-01-01

    Highlights: • A kind of composite phase change material board (PCMB) is prepared and tested. • PCMB presents a large thermal storage capacity and enhanced thermal conductivity. • PCMB displays much better cooling effect in comparison to natural air cooling. • PCMB presents different cooling characteristics in comparison to ribbed radiator. - Abstract: A kind of phase change material board (PCMB) was prepared for use in the thermal management of electronics, with paraffin and expanded graphite as the phase change material and matrix, respectively. The as-prepared PCMB presented a large thermal storage capacity of 141.74 J/g and enhanced thermal conductivity of 7.654 W/(m K). As a result, PCMB displayed much better cooling effect in comparison to natural air cooling, i.e., much lower heating rate and better uniformity of temperature distribution. On the other hand, compared with ribbed radiator technology, PCMB also presented different cooling characteristics, demonstrating that they were suitable for different practical application

  13. Control of composition and crystallinity in hydroxyapatite films deposited by electron cyclotron resonance plasma sputtering

    Science.gov (United States)

    Akazawa, Housei; Ueno, Yuko

    2014-01-01

    Hydroxyapatite (HAp) films were deposited by electron cyclotron resonance plasma sputtering under a simultaneous flow of H2O vapor gas. Crystallization during sputter-deposition at elevated temperatures and solid-phase crystallization of amorphous films were compared in terms of film properties. When HAp films were deposited with Ar sputtering gas at temperatures above 460 °C, CaO byproducts precipitated with HAp crystallites. Using Xe instead of Ar resolved the compositional problem, yielding a single HAp phase. Preferentially c-axis-oriented HAp films were obtained at substrate temperatures between 460 and 500 °C and H2O pressures higher than 1×10-2 Pa. The absorption signal of the asymmetric stretching mode of the PO43- unit (ν3) in the Fourier-transform infrared absorption (FT-IR) spectra was the narrowest for films as-crystallized during deposition with Xe, but widest for solid-phase crystallized films. While the symmetric stretching mode of PO43- (ν1) is theoretically IR-inactive, this signal emerged in the FT-IR spectra of solid-phase crystallized films, but was absent for as-crystallized films, indicating superior crystallinity for the latter. The Raman scattering signal corresponding to ν1 PO43- sensitively reflected this crystallinity. The surface hardness of as-crystallized films evaluated by a pencil hardness test was higher than that of solid-phase crystallized films.

  14. Final Report - Composite Fermion Approach to Strongly Interacting Quasi Two Dimensional Electron Gas Systems

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John

    2009-11-30

    Work related to this project introduced the idea of an effective monopole strength Q* that acted as the effective angular momentum of the lowest shell of composite Fermions (CF). This allowed us to predict the angular momentum of the lowest band of energy states for any value of the applied magnetic field simply by determining N{sub QP} the number of quasielectrons (QE) or quasiholes (QH) in a partially filled CF shell and adding angular momenta of the N{sub QP} Fermions excitations. The approach reported treated the filled CF level as a vacuum state which could support QE and QH excitations. Numerical diagonalization of small systems allowed us to determine the angular momenta, the energy, and the pair interaction energies of these elementary excitations. The spectra of low energy states could then be evaluated in a Fermi liquid-like picture, treating the much smaller number of quasiparticles and their interactions instead of the larger system of N electrons with Coulomb interactions.

  15. Effects of solids concentration, pH and carbon addition on the production rate and composition of volatile fatty acids in prefermenters using primary sewage sludge

    DEFF Research Database (Denmark)

    Zeng, Raymond Jianxiong; Yuan, Z.; Keller, J.

    2006-01-01

    the dominating species. Consequently, prefermenters are often employed to generate additional VFAs to meet the demand for carbon by EBPR and/or denitrification processes. Limited knowledge is currently available on the effects of operational conditions on the production rate and composition of VFAs...

  16. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD

    NARCIS (Netherlands)

    Dragonieri, Silvano; Annema, Jouke T.; Schot, Robert; van der Schee, Marc P. C.; Spanevello, Antonio; Carratú, Pierluigi; Resta, Onofrio; Rabe, Klaus F.; Sterk, Peter J.

    2009-01-01

    Background: Exhaled breath contains thousands of gaseous volatile organic compounds (VOCs) that may be used as non-invasive markers of lung disease. The electronic nose analyzes VOCs by composite nano-sensor arrays with learning algorithms. It has been shown that an electronic nose can distinguish

  17. Interfacial reaction in SiC_f/Ti-6Al-4V composite by using transmission electron microscopy

    International Nuclear Information System (INIS)

    Huang, Bin; Li, Maohua; Chen, Yanxia; Luo, Xian; Yang, Yanqing

    2015-01-01

    The interfacial reactions of continuous SiC fiber reinforced Ti-6Al-4V matrix composite (SiC_f/Ti-6Al-4V composite) and continuous SiC fiber coated by C reinforced Ti-6Al-4V matrix composite (SiC_f/C/Ti-6Al-4V composite) were investigated by using micro-beam electron diffraction (MBED) and energy disperse spectroscopy (EDS) on transmission electron microscopy (TEM). The sequence of the interfacial reactions in the as-processed and exposed at 900°C for 50h SiC_f/Ti-6Al-4V composites can be described as SiC||TiC||Ti_5Si_3 + TiC||Ti-6Al-4V and SiC||TiC||Ti_5Si_3||TiC||Ti_5Si_3||TiC||Ti_5Si_3||Ti-6Al-4V, respectively. Additionally, both in as-processed and exposed composites, Ti_3SiC_2 and Ti_3Si are absent at the interfaces. For the SiC_f/C/Ti-6Al-4V composite exposed at 900 °C for 50 h, the sequence of the interfacial reaction can be described as SiC||C||TiC_F||TiC_C||Ti-6Al-4V before C coating is completely consumed by interfacial reaction. When interfacial reaction consumes C coating completely, the sequence of the interfacial reaction can be described as SiC||TiC||Ti_5Si_3||TiC||Ti-6Al-4V. Furthermore, in SiC_f/C/Ti-6Al-4V composite, C coating can absolutely prevent Si diffusion from SiC fiber to matrix. Basing on these results, the model of formation process of the interfacial reaction products in the composites was proposed. - Highlights: • We obtained the sequence of the interfacial reactions in the as-processed and exposed at 900 °C for 50 h SiC_f/Ti-6Al-4 V composites as well as in the SiC_f/C/Ti-6Al-4 V composite exposed at 900 °C for 50 h. • We verified that both in as-processed and exposed SiC_f/Ti-6Al-4 V composites, Ti_3SiC_2 and Ti_3Si are absent at the interfaces. • Carbon coating can absolutely prevent silicon diffusion from SiC fiber to matrix. • Basing on these results, the model of formation process of the interfacial reaction products in the composites was proposed.

  18. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2011-01-01

    Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...

  19. Composition

    DEFF Research Database (Denmark)

    2014-01-01

    Memory Pieces are open compositions to be realised solo by an improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them...

  20. Composition measurement in substitutionally disordered materials by atomic resolution energy dispersive X-ray spectroscopy in scanning transmission electron microscopy.

    Science.gov (United States)

    Chen, Z; Taplin, D J; Weyland, M; Allen, L J; Findlay, S D

    2017-05-01

    The increasing use of energy dispersive X-ray spectroscopy in atomic resolution scanning transmission electron microscopy invites the question of whether its success in precision composition determination at lower magnifications can be replicated in the atomic resolution regime. In this paper, we explore, through simulation, the prospects for composition measurement via the model system of Al x Ga 1-x As, discussing the approximations used in the modelling, the variability in the signal due to changes in configuration at constant composition, and the ability to distinguish between different compositions. Results are presented in such a way that the number of X-ray counts, and thus the expected variation due to counting statistics, can be gauged for a range of operating conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Volatile components and continental material of planets

    International Nuclear Information System (INIS)

    Florenskiy, K.P.; Nikolayeva, O.V.

    1984-01-01

    It is shown that the continental material of the terrestrial planets varies in composition from planet to planet according to the abundances and composition of true volatiles (H 2 0, CO 2 , etc.) in the outer shells of the planets. The formation of these shells occurs very early in a planet's evolution when the role of endogenous processes is indistinct and continental materials are subject to melting and vaporizing in the absence of an atmosphere. As a result, the chemical properties of continental materials are related not only to fractionation processes but also to meltability and volatility. For planets retaining a certain quantity of true volatile components, the chemical transformation of continental material is characterized by a close interaction between impact melting vaporization and endogeneous geological processes

  2. Composition control of low-volatile solids through chemical vapor transport reactions. III. The example of gallium monoselenide: Control of the polytypic structure, non-stoichiometry and properties

    International Nuclear Information System (INIS)

    Zavrazhnov, A.; Naumov, A.; Sidey, V.; Pervov, V.

    2012-01-01

    Highlights: ► This work is devoted to the composition control of solids with selective CVT method. ► Phase identity and non-stoichiometry of solids (GaSe, etc.) depend on CVT-temperatures. ► The interrelation between the properties of GaSe and CVT conditions is also found. ► For iodide transporting system the diagram of phase stability of solids is adjusted. ► High temperatures and Se-rich non-stoichiometry are necessary for γ-GaSe stability. - Abstract: By means of particular examples, the present work demonstrates the possibility of directed delicate non-destructive control of structure, composition and properties of inorganic solids using the method of selective chemical vapor transport (SCVT). Gallium monoselenide GaSe is the main model object. Additional, though less detailed, explanation is given by the example of gallium monosulfide GaS. Experimental evidences on the possibility of the control of polytypic structure, non-stoichiometry and properties of gallium monoselenide were obtained in non-isothermal variant of selective chemical vapor transport which has non-destructive character. Diagnostics of the phase (polytypic) composition and non-stoichiometry of GaSe was performed with the use of X-ray diffractometry as well as with the use of cathode luminescence spectra. It was experimentally found that there exists a connection of non-stoichiometry and the properties of gallium selenides with the determining conditions of selective chemical vapor transport: temperature of controlled sample (T 2 ) and the difference of temperatures between the hot and cold zones (ΔT). It is shown that the phase diagram of Ga–Se system needs to be partially revised near the composition of Ga 1 Se 1 . The reason for such revision is the fact that two polytypes (ε-GaSe and γ-GaSe) exist on this phase diagram as independent phases.

  3. Human skin volatiles: a review.

    Science.gov (United States)

    Dormont, Laurent; Bessière, Jean-Marie; Cohuet, Anna

    2013-05-01

    Odors emitted by human skin are of great interest to biologists in many fields; applications range from forensic studies to diagnostic tools, the design of perfumes and deodorants, and the ecology of blood-sucking insect vectors of human disease. Numerous studies have investigated the chemical composition of skin odors, and various sampling methods have been used for this purpose. The literature shows that the chemical profile of skin volatiles varies greatly among studies, and the use of different sampling procedures is probably responsible for some of these variations. To our knowledge, this is the first review focused on human skin volatile compounds. We detail the different sampling techniques, each with its own set of advantages and disadvantages, which have been used for the collection of skin odors from different parts of the human body. We present the main skin volatile compounds found in these studies, with particular emphasis on the most frequently studied body regions, axillae, hands, and feet. We propose future directions for promising experimental studies on odors from human skin, particularly in relation to the chemical ecology of blood-sucking insects.

  4. Understanding Financial Market Volatility

    NARCIS (Netherlands)

    A. Opschoor (Anne)

    2014-01-01

    markdownabstract__Abstract__ Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. Loosely speaking, volatility is defined as the average magnitude of fluctuations observed in some phenomenon over

  5. Improving Garch Volatility Forecasts

    NARCIS (Netherlands)

    Klaassen, F.J.G.M.

    1998-01-01

    Many researchers use GARCH models to generate volatility forecasts. We show, however, that such forecasts are too variable. To correct for this, we extend the GARCH model by distinguishing two regimes with different volatility levels. GARCH effects are allowed within each regime, so that our model

  6. Asymmetric Realized Volatility Risk

    NARCIS (Netherlands)

    D.E. Allen (David); M.J. McAleer (Michael); M. Scharth (Marcel)

    2014-01-01

    markdownabstract__Abstract__ In this paper we document that realized variation measures constructed from high-frequency returns reveal a large degree of volatility risk in stock and index returns, where we characterize volatility risk by the extent to which forecasting errors in realized

  7. Identification Of Geographical Origin Of Coffee Before And After Roasting By Electronic Noses

    Science.gov (United States)

    Sberveglieri, V.; Concina, I.; Falasconi, M.; Ongo, E.; Pulvirenti, A.; Fava, P.

    2011-09-01

    Geographical origin traceability of food is a relevant issue for both producers' business protection and customers' rights safeguard. Differentiation of coffees on the basis of geographical origin is still a challenging issue, though possible by means of chemical techniques [1]. Between the most widely consumed beverage, coffee is a valuable one, with an aroma constituted by hundreds of volatiles [2]. Since the final global volatile composition is also determined by the cultivation climatic conditions, Electronic Noses (ENs) could be interesting candidates for distinguishing the geographical provenience by exploiting differences in chemical volatile profile. The present investigation is directed toward the characterization of green and roasted coffees samples according to their geographical origin.

  8. The volatility of HOL

    International Nuclear Information System (INIS)

    Wren, D.J.; Sanipelli, G.

    1985-01-01

    The volatility of HOI has been measured using a mass spectrometer to analyze the gas phase above an aqueous solution. The HOI in solution was generated continuously in a flow reactor that combined I/sup -/ and OCl/sup -/ solutions. The analysis has resulted in a lower limit of 6X10/sup 3/ mol . dm/sup -3/ . atm/sup -1/ for the equilibrium constant for the reaction HOI(g)/equilibrium/HOI(aq). This value is a factor 30 greater than the best previous estimate. This new limit for HOI volatility results in higher total iodine partition coefficients, particularly for solutions with pH>8. The upper limit for the equilibrium constant is consistent with essentially zero volatility for HOI. The effect of HOI volatility on total iodine volatility is briefly discussed as a function of solution chemistry and kinetics

  9. Electron beam synthesis of silica/nano silver composite and its application in controlling microorganisms in drinking water

    International Nuclear Information System (INIS)

    Ramnani, S.P.; Biswal, Jayashree; Sabharwal, S.; Rama Rao, K.C.; Sai Prasad, P.

    2008-01-01

    Silica/nano silver composites were prepared by electron beam (EB) irradiation technique. The solution containing silica nanoparticles and AgNO 3 in various proportion were subjected to EB irradiation. The EB dose delivered was such that all the Ag + is converted into metallic silver. The samples were characterized by XRD, SEM and TEM analysis. The composites were tested for their anti microbial activity in water samples. The results indicated that there is an optimum size of Ag nanoparticles that shows better antimicrobial activity. (author)

  10. Measurement of the High-Mass Drell-Yan Cross Section and Limits on Quark-Electron Compositeness Scales

    International Nuclear Information System (INIS)

    Grinstein, S.; Mostafa, M.; Piegaia, R.; Alves, G.A.; Carvalho, W.; Maciel, A.K.; Motta, H. da; Oliveira, E.; Santoro, A.; Lima, J.G.; Oguri, V.; Gomez, B.; Hoeneisen, B.; Mooney, P.; Negret, J.P.; Ducros, Y.; Beri, S.B.; Bhatnagar, V.; Kohli, J.M.; Singh, J.B.; Shivpuri, R.K.; Acharya, B.S.; Banerjee, S.; Dugad, S.R.; Gupta, A.; Krishnaswamy, M.R.; Mondal, N.K.; Narasimham, V.S.; Parua, N.; Shankar, H.C.; Park, Y.M.; Choi, S.; Kim, S.K.; Castilla-Valdez, H.; Gonzalez Solis, J.L.; Hernandez-Montoya, R.; Magana-Mendoza, L.; Sanchez-Hernandez, A.; Pawlik, B.; Gavrilov, V.; Gershtein, Y.; Kuleshov, S.; Belyaev, A.; Dudko, L.V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Manankov, V.; Merkin, M.; Shabalina, E.; Abramov, V.; Babintsev, V.V.; Bezzubov, V.A.; Bojko, N.I.; Burtovoi, V.S.; Chekulaev, S.V.; Denisov, S.P.; Dyshkant, A.; Eroshin, O.V.; Evdokimov, V.N.; Galyaev, A.N.; Goncharov, P.I.; Gurzhiev, S.N.; Kostritskiy, A.V.; Kozelov, A.V.; Kozlovsky, E.A.; Mayorov, A.A.; Babukhadia, L.; Davis, K.; Fein, D.; Forden, G.E.; Guida, J.A.; Johns, K.; Nang, F.; Narayanan, A.; Rutherfoord, J.; Shupe, M.; Aihara, H.; Barberis, E.; Clark, A.R.

    1999-01-01

    We present a measurement of the Drell-Yan cross section at high dielectron invariant mass using 120 pb -1 of data collected in p bar p collisions at √ (s) =1.8 TeV by the D0 Collaboration during 1992 - 1996. No deviation from standard model expectations is observed. We use the data to set limits on the quark-electron compositeness scale. The 95% confidence level lower limits on the compositeness scale vary between 3.3 and 6.1thinspthinspTeV depending on the assumed form of the effective contact interaction. copyright 1999 The American Physical Society

  11. Electron capture rate of a composite of partially ionized atomic nuclei

    International Nuclear Information System (INIS)

    Yokoi, K.; Takahashi, K.

    1979-01-01

    Electron captures (or more generally β-transitions) are known to play key roles at various stages of stellar evolution and in many nucleosynthesis processes. With decreasing temperatures and densities, the bound electron captures start to compete with the free electron captures, and eventually in the low-temperature, low-density limit the total capture rate shall converge to that of the orbital electrons observed in laboratory. The authors calculate the occupation probabilities of the electron orbits and the electron capture rates in a mixture of atoms and ions which are supposedly under a chemical equilibrium. (orig./AH)

  12. Volatile flavor compounds in yogurt: a review.

    Science.gov (United States)

    Cheng, Hefa

    2010-11-01

    Considerable knowledge has been accumulated on the volatile compounds contributing to the aroma and flavor of yogurt. This review outlines the production of the major flavor compounds in yogurt fermentation and the analysis techniques, both instrumental and sensory, for quantifying the volatile compounds in yogurt. The volatile compounds that have been identified in plain yogurt are summarized, with the few key aroma compounds described in detail. Most flavor compounds in yogurt are produced from lipolysis of milkfat and microbiological transformations of lactose and citrate. More than 100 volatiles, including carbonyl compounds, alcohols, acids, esters, hydrocarbons, aromatic compounds, sulfur-containing compounds, and heterocyclic compounds, are found in yogurt at low to trace concentrations. Besides lactic acid, acetaldehyde, diacetyl, acetoin, acetone, and 2-butanone contribute most to the typical aroma and flavor of yogurt. Extended storage of yogurt causes off-flavor development, which is mainly attributed to the production of undesired aldehydes and fatty acids during lipid oxidation. Further work on studying the volatile flavor compounds-matrix interactions, flavor release mechanisms, and the synergistic effect of flavor compounds, and on correlating the sensory properties of yogurt with the compositions of volatile flavor compounds are needed to fully elucidate yogurt aroma and flavor.

  13. Variações no teor e na composição volátil de Hyptis marrubioides EPL: cultivada no campo e em casa de vegetação Variation in the content and volatile composition of Hyptis marrubioides EPL: cultivated in field and greenhouse

    Directory of Open Access Journals (Sweden)

    Priscila Pereira Botrel

    2010-01-01

    Full Text Available This work describes the chemical composition of the volatile oil of Hyptis marrubioides cultivated in field and greenhouse. The experimental design was completely randomized, with ten replications for each type of cultivation. The volatile oil was extracted by hydrodistillation and analyzed by GC-MS. The highest content of volatile oil was found for plants grown in field. The highest percentage of the compounds present in oils was observed in samples grown in the field, such as germacra-4(15,5,10(14-trien-1-α-ol (16.34%, β-caryophyllene (10.42%, γ-muurolene (12.83% and trans-thujone (9.98%. However, some compounds were found only in plants grown in a greenhouse, such as cis-muurol-5-en-4α-ol (10.84%, α-cadinol (3.06% and eudesma-4(15,7-dien-1β-ol (6.82%.

  14. Interior Volatile Reservoirs in Mercury

    Science.gov (United States)

    Anzures, B. A.; Parman, S. W.; Milliken, R. E.; Head, J. W.

    2018-05-01

    More measurements of 1) surface volatiles, and 2) pyroclastic deposits paired with experimental volatile analyses in silicate minerals can constrain conditions of melting and subsequent eruption on Mercury.

  15. Silicon isotopes in angrites and volatile loss in planetesimals

    OpenAIRE

    Pringle, Emily A.; Moynier, Frédéric; Savage, Paul S.; Badro, James; Barrat, Jean-Alix

    2014-01-01

    Understanding volatile elements in the early solar system is a key step toward understanding the processes of planetary formation and the composition of Earth, but the origin of volatiles on Earth is not well understood. In this article, we present measurements of silicon isotope ratios in angrites, a class of meteorites dating from the first few million years after condensation of solids from the solar nebula. We show that the silicon isotope composition of angrites is consistent with a depl...

  16. Pluto's Volatile Transport

    Science.gov (United States)

    Young, Leslie

    2012-10-01

    Pluto's varying subsolar latitude and heliocentric distance leads to large variations in the surface volatile distribution and surface pressure. I present results of new volatile transport models (Young 2012a, b). The models include insolation, thermal emission, subsurface conduction, heating of a volatile slab, internal heat flux, latent heat of sublimation, and strict global mass balance. Numeric advances include initial conditions that allow for rapid convergence, efficient computation with matrix arithmetic, and stable Crank-Nicholson timesteps for both bare and volatile-covered areas. Runs of the model show six distinct seasons on Pluto. (1) As Pluto approaches perihelion, the volatiles on the old winter pole (the Rotational North Pole, RNP) becomes more directly illuminated , and the pressure and albedo rise rapidly. (2) When a new ice cap forms on the Rotational South Pole, RSP, volatiles are exchanged between poles. The pressure and albedo change more slowly. (3) When all volatiles have sublimed from the RNP, the albedo and pressure drop rapidly. (4-6) A similar pattern is repeated near aphelion with a reversal of the roles and the poles. I will compare results with earlier Pluto models of Hansen and Paige (1996), show the dependence on parameters such as substrate inertia, and make predictions for the New Horizons flyby of Pluto in 2015. This work was supported, in part, by funding from NASA Planetary Atmospheres Grant NNG06GF32G and the Spitzer project (JPL research support Agreement 1368573). Hansen, C. J. and D. A. Paige 1996. Seasonal Nitrogen Cycles on Pluto. Icarus 120, 247-265. Young, L. A. 2012a. Volatile transport on inhomogeneous surfaces: I - Analytic expressions, with application to Pluto’s day. Icarus, in press Young, L. A. 2012b. Volatile transport on inhomogeneous surfaces: II. Numerical calculations, with application to Pluto's season. In preparation.

  17. Preparation and characterization of electron-beam treated HDPE composites reinforced with rice husk ash and Brazilian clay

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, A.V., E-mail: angelortiz@ipen.br [Nuclear and Energy Research Institute, IPEN-CNEN/SP Av. Prof. Lineu Prestes 2242, São Paulo, SP 05508-000 (Brazil); Teixeira, J.G.; Gomes, M.G.; Oliveira, R.R. [Nuclear and Energy Research Institute, IPEN-CNEN/SP Av. Prof. Lineu Prestes 2242, São Paulo, SP 05508-000 (Brazil); Díaz, F.R.V. [Metallurgical and Materials Engineering Department, Polytechnic School, University of São Paulo Av. Prof. Mello de Morais 2463, São Paulo, SP 05508-900 (Brazil); Moura, E.A.B. [Nuclear and Energy Research Institute, IPEN-CNEN/SP Av. Prof. Lineu Prestes 2242, São Paulo, SP 05508-000 (Brazil)

    2014-08-15

    Highlights: • We examine changes in HDPE properties when waste and clay are used as reinforcement. • The addition of only 3% of clay leads to important gains in HDPE properties. • The use of electron-beam contributes to greater improvements in material properties. • We observe 85% of cross-linking degree for the HDPE when treated with e-beam. - Abstract: This work evaluates the morphology, mechanical and thermo-mechanical properties of high density polyethylene (HDPE) composites. HDPE reinforced with rice husk ashes (80:20 wt%), HDPE reinforced with clay (97:3 wt%) and HDPE reinforced with both rice husk ashes and clay(77:20:3 wt%) were obtained. The Brazilian bentonite chocolate clay was used in this study. This Brazilian smectitic clay is commonly used to produce nanocomposites. The composites were produced by melting extrusion process and then irradiation was carried out in a 1.5 MeV electron-beam accelerator (room temperature, presence of air). Comparisons using the irradiated and non-irradiated neat polymer, and the irradiated and non-irradiated composites were made. The materials obtained were submitted to tensile, flexural and impact tests. Additionally HDT, SEM and XRD analyses were carried out along with the sol–gel analysis which aimed to assess the cross-linking degree of the irradiated materials. Results showed great improvement in most HDPE properties and a high cross-linking degree of 85% as a result of electron-beam irradiation of the material.

  18. Remote sensing of electron density and ion composition using nonducted whistler observations on OGO 1 and Van Allen Probes

    Science.gov (United States)

    Sonwalkar, V. S.; Butler, J.; Reddy, A.

    2017-12-01

    We present a new method to remotely measure magnetospheric electron density and ion composition using lightning generated nonducted whistlers observed on a satellite. Electron and ion densities play important roles in magnetospheric processes such as wave-particle interactions in the equatorial region and ion-neutral dynamics in the ionosphere, and are important for calculating space weather effects such as particle precipitation, GPS scintillations, and satellite drag. The nonducted whistler resulting from a single lightning appears on a spectrogram as a series of magnetospherically reflected traces with characteristic dispersion (time delay versus frequency) and upper and lower cut off frequencies. Ray tracing simulations show that these observed characteristics depend on the magnetospheric electron density and ion composition. The cut off frequencies depend on both electron density and ion composition. The dispersion depends strongly on electron density, but weakly on ion composition. Using an iterative process to fit the measured dispersion and cutoff frequencies to those obtained from ray tracing simulations, it is possible to construct the electron and ion density profiles of the magnetosphere. We demonstrate our method by applying it to nonducted whistlers observed on OGO 1 and Van Allen probe satellites. In one instance (08 Nov 1965), whistler traces observed on OGO 1 (L = 2.4, λm = -6°) displayed a few seconds of dispersion and cutoff frequencies in the 1-10 kHz range. Ray tracing analysis showed that a diffusive equilibrium density model with the following parameters can reproduce the observed characteristics of the whistler traces: 1900 el/cc at L=2.4 and the equator, 358,000 el/cc at F2 peak (hmF2 = 220 km), the relative ion concentrations αH+ = 0.2, αHe+ = 0.2, and αO+ = 0.6 at 1000 km, and temperature 1600 K. The method developed here can be applied to whistlers observed on the past, current, and future magnetospheric satellite missions carrying

  19. Effective attenuation lengths for quantitative determination of surface composition by Auger-electron spectroscopy and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Jablonski, A.; Powell, C.J.

    2017-01-01

    Highlights: • Effective attenuation lengths (EALs) for determination of surface composition by XPS. • Considerable difference from EALs used for overlayer thickness measurements. • New analytical algorithms for calculating the effective attenuation length. - Abstract: The effective attenuation length (EAL) is normally used in place of the inelastic mean free path (IMFP) to account for elastic-scattering effects when describing the attenuation of Auger electrons and photoelectrons from a planar substrate by an overlayer film. An EAL for quantitative determination of surface composition by Auger-electron spectroscopy (AES) or X-ray photoelectron spectroscopy (XPS) is similarly useful to account for elastic-scattering effects on the signal intensities. We calculated these EALs for four elemental solids (Si, Cu, Ag, and Au) and for energies between 160 eV and 1.4 keV. The XPS calculations were made for two instrumental configurations while the AES calculations were made from the XPS formalism after “switching off” the XPS anisotropy. The EALs for quantitative determination of surface composition by AES and XPS were weak functions of emission angle for emission angles between 0 and 50°. The ratios of the average values of these EALs to the corresponding IMFPs could be fitted to a second-order function of the single-scattering albedo, a convenient measure of the strength of elastic-scattering effects. EALs for quantitative determination of surface composition by AES and XPS for other materials can be simply found from this relationship.

  20. Electronic transport in heavily doped Ag/n-Si composite films

    Directory of Open Access Journals (Sweden)

    Clayton W. Bates Jr.

    2013-10-01

    Full Text Available Hall measurements characterized Ag/n-Si composite films 1 micron thick produced by magnetron co-sputtering onto high resistivity Si (111 substrates at 550°C. The targets were Ag and n-type Si doped with 3 × 1019/cm3 of antimony. Films were prepared with 13, 16 and 22 at. % Ag and measured over a temperature range 77–500°K. Conduction takes place at low temperatures by variable rang hopping in localized states at the Fermi level and by thermal activation over grain boundaries at higher temperatures. The Log Resistivity vs 1/kT curves for the three Ag concentrations vary in a similar manner, but decrease in magnitude with increasing Ag due to the smaller number of grain boundaries between Ag nanoparticles occurring with increasing Ag concentration. At low temperatures Hall mobilities are essentially independent of temperature as the carrier densities for the three Ag concentrations are constant from 77 to slightly under 300°K with resistivities varying by small amounts. The mobilities at all Ag concentrations increase with temperature and approach each other as the effects of grain boundaries become less important. This work presents for the first time the effects of metal particles embedded in a semiconductor on the transport properties of carriers in the semiconductor. Though these effects are for a given average particle size most of the results are expected to hold over a range of particle sizes. Free electrons produced in films containing 13 and 16 at. % Ag result in concentrations of 1.5 × 1019/cm3, one half the antimony doping, while those with 22 at. % Ag, the carrier concentrations are three orders of magnitude higher. These constant carrier concentrations are due to the metal-insulator transition that occurs in doped crystalline and polycrystalline silicon for carrier densities nc >3.9 × 1018/cm3. The three orders of magnitude higher carrier concentration produced in films with 22 at. % Ag is argued to be due to doping of the Si

  1. Optical properties of zirconium oxynitride films: The effect of composition, electronic and crystalline structures

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, P. [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal); Borges, J., E-mail: joelborges@fisica.uminho.pt [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal); Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Rodrigues, M.S. [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139,7), 2695-066 Bobadela LRS (Portugal); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Espinós, J.P.; González-Elipe, A.R. [Instituto de Ciencia de Materiales de Sevilla (CSIC-University Sevilla), Avda. Américo Vespucio 49, 41092 Sevilla (Spain); Cunha, L.; Marques, L.; Vasilevskiy, M.I.; Vaz, F. [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal)

    2015-12-15

    Highlights: • Optical behaviour of ZrO{sub x}N{sub y} films were correlated with structural properties. • A continuous depopulation of the d-band and an opening of an energy gap was observed. • Drude–Lorentz parameters changed for the metallic samples. • Optical bandgap of the films increases with non-metallic elements incorporation. - Abstract: This work is devoted to the investigation of zirconium oxynitride (ZrO{sub x}N{sub y}) films with varied optical responses prompted by the variations in their compositional and structural properties. The films were prepared by dc reactive magnetron sputtering of Zr, using Ar and a reactive gas mixture of N{sub 2} + O{sub 2} (17:3). The colour of the films changed from metallic-like, very bright yellow-pale and golden yellow, for low gas flows to red-brownish for intermediate gas flows. Associated to this colour change there was a significant decrease of brightness. With further increase of the reactive gas flow, the colour of the samples changed from red-brownish to dark blue or even to interference colourations. The variations in composition disclosed the existence of four different zones, which were found to be closely related with the variations in the crystalline structure. XRD analysis revealed the change from a B1 NaCl face-centred cubic zirconium nitride-type phase for films prepared with low reactive gas flows, towards a poorly crystallized over-stoichiometric nitride phase, which may be similar to that of Zr{sub 3}N{sub 4} with some probable oxygen inclusions within nitrogen positions, for films prepared with intermediate reactive gas flows. For high reactive gas flows, the films developed an oxynitride-type phase, similar to that of γ-Zr{sub 2}ON{sub 2} with some oxygen atoms occupying some of the nitrogen positions, evolving to a ZrO{sub 2} monoclinic type structure within the zone where films were prepared with relatively high reactive gas flows. The analysis carried out by reflected electron energy

  2. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2014-01-01

    Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all....... Please DOWNLOAD them to see/hear them in full length! This work is licensed under a Creative Commons "by-nc" License. You may for non-commercial purposes use and distribute it, performance instructions as well as specially designated recordings, as long as the author is mentioned. Please see http...

  3. Elemental volatility of HT-9 fusion reactor alloy

    International Nuclear Information System (INIS)

    Henslee, S.P.; Neilson, R.M. Jr.

    1985-01-01

    The volatility of elemental constituents from HT-9, a ferritic steel, proposed for fusion reactor structures, was investigated. Tests were conducted in flowing air at temperatures from 800 to 1200 0 C for durations of 1 to 20 h. Elemental volatility was calculated in terms of the weight fraction of the element volatilized from the initial alloy; molybdenum, manganese, and nickel were the primary constituents volatilized. Comparisons with elemental volatilities observed for another candidate fusion reactor materials. Primary Candidate Alloy (PCA), an austenitic stainless steel, indicate significant differences between the volatilities of these steels that may impact fusion reactor safety analysis and alloy selection. Scanning electron microscopy and energy dispersive spectrometry were used to investigate the oxide layers formed on HT-9 and to measure elemental contents within these layers

  4. Study of field induced hot-electron emission using the composite microemitters with varying dielectric layer thickness

    International Nuclear Information System (INIS)

    Mousa, M.S.

    1987-07-01

    The analysis of the measurements obtained from the of field emission of electrons from composite metal-insulator (M-I) micropoint cathodes, using the combination of a high resolution electron spectrometer and a field emission microscope, has been presented. Results obtained describe the reversible current-voltage characteristic, emission images and electron energy distribution measurements of both thin and the optimum thick coatings. The observed effects, e.g. the threshold switch-on phenomena and the field-dependence of the F.W.H.M. and energy shift of the electron spectra have been identified in terms of a field-induced hot-electron emission (FIHEE) mechanism resulting from field penetration in the insulating film where conducting channels are formed. The theoretical implications accounts for the channels field intensification mechanism and the conduction properties with applied field, and the F.W.H.M. dependence on electron temperature. The control of the emission process at low fields by the M-I contact junction and at high fields by the bulk properties of the insulator have also been accounted for. These experimental and theoretical findings have been shown to be consistent with recently published data on M-I microstructures on broad-area (BA) high-voltage electrodes. (author). 18 refs, 6 figs

  5. Cu incorporated amorphous diamond like carbon (DLC) composites: An efficient electron field emitter over a wide range of temperature

    Science.gov (United States)

    Ahmed, Sk Faruque; Alam, Md Shahbaz; Mukherjee, Nillohit

    2018-03-01

    The effect of temperature on the electron field emission properties of copper incorporated amorphous diamond like carbon (a-Cu:DLC) thin films have been reported. The a-Cu:DLC thin films have been deposited on indium tin oxide (ITO) coated glass and silicon substrate by the radio frequency sputtering process. The chemical composition of the films was investigated using X-ray photoelectron spectroscopy and the micro structure was established using high resolution transmission electron microscopy. The sp2 and sp3 bonding ratio in the a-Cu:DLC have been analyzed by the Fourier transformed infrared spectroscopy studies. The material showed excellent electron field emission properties; which was optimized by varying the copper atomic percentage and temperature of the films. It was found that the threshold field and effective emission barrier were reduced significantly by copper incorporation as well as temperature and a detailed explanation towards emission mechanism has been provided.

  6. Ultra-short channel GaN high electron mobility transistor-like Gunn diode with composite contact

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Yang, Lin' an, E-mail: layang@xidian.edu.cn; Wang, Zhizhe; Chen, Qing; Huang, Yonghong; Dai, Yang; Chen, Haoran; Zhao, Hongliang; Hao, Yue [The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2014-09-07

    We present a numerical analysis on an ultra-short channel AlGaN/GaN HEMT-like planar Gunn diode based on the velocity-field dependence of two-dimensional electron gas (2-DEG) channel accounting for the ballistic electron acceleration and the inter-valley transfer. In particular, we propose a Schottky-ohmic composite contact instead of traditional ohmic contact for the Gunn diode in order to significantly suppress the impact ionization at the anode side and shorten the “dead zone” at the cathode side, which is beneficial to the formation and propagation of dipole domain in the ultra-short 2-DEG channel and the promotion of conversion efficiency. The influence of the surface donor-like traps on the electron domain in the 2-DEG channel is also included in the simulation.

  7. Chemical Composition of Pinus roxburghii Bark Volatile Oil and Validation of Its Anti-Inflammatory Activity Using Molecular Modelling and Bleomycin-Induced Inflammation in Albino Mice

    Directory of Open Access Journals (Sweden)

    Rola M. Labib

    2017-08-01

    Full Text Available The chemical composition of Pinus roxburghii bark essential oil (PRO was qualitatively and quantitatively determined using GC/FID and GC/MS. The anti-inflammatory activity was assessed in vitro by evaluating the binding percentages on the cannabinoids and opioids receptors. Bleomycin (BLM-induced pulmonary inflammation in albino mice was adopted to assess PRO anti-inflammatory efficacy in vivo. In silico molecular modelling of its major components was performed on human glucocorticoids receptor (GR. Seventy-five components were identified in which longifolene (33.13% and palmitic acid (9.34% constituted the predominant components. No binding was observed on cannabinoid receptor type 1 (CB1, whereas mild binding was observed on cannabinoid receptor type 2 (CB2, delta, kappa, and mu receptors accounting for 2.9%, 6.9%, 10.9% and 22% binding. A significant in vivo activity was evidenced by reduction of the elevated malondialdehyde (MDA, nitric oxide (NO, myeloperoxidase (MPO, interleukin-6 (IL-6, and tumor necrosis factor-α (TNF-α levels by 55.56%, 55.66%, 64.64%, 58.85% and 77.78% with concomitant elevation of superoxide dismutase (SOD and catalase (CAT activities comparable to BLM-treated group at 100 mg/kg body weight. In silico studies showed that palmitic acid exerted the fittest binding. PRO could serve as a potent anti-inflammatory natural candidate that should be supported by further clinical trials.

  8. Chemical Composition of Pinus roxburghii Bark Volatile Oil and Validation of Its Anti-Inflammatory Activity Using Molecular Modelling and Bleomycin-Induced Inflammation in Albino Mice.

    Science.gov (United States)

    Labib, Rola M; Youssef, Fadia S; Ashour, Mohamed L; Abdel-Daim, Mohamed M; Ross, Samir A

    2017-08-29

    The chemical composition of Pinus roxburghii bark essential oil (PRO) was qualitatively and quantitatively determined using GC/FID and GC/MS. The anti-inflammatory activity was assessed in vitro by evaluating the binding percentages on the cannabinoids and opioids receptors. Bleomycin (BLM)-induced pulmonary inflammation in albino mice was adopted to assess PRO anti-inflammatory efficacy in vivo. In silico molecular modelling of its major components was performed on human glucocorticoids receptor (GR). Seventy-five components were identified in which longifolene (33.13%) and palmitic acid (9.34%) constituted the predominant components. No binding was observed on cannabinoid receptor type 1 (CB1), whereas mild binding was observed on cannabinoid receptor type 2 (CB2), delta , kappa , and mu receptors accounting for 2.9%, 6.9%, 10.9% and 22% binding. A significant in vivo activity was evidenced by reduction of the elevated malondialdehyde (MDA), nitric oxide (NO), myeloperoxidase (MPO), interleukin-6 (IL-6), and tumor necrosis factor- α (TNF- α ) levels by 55.56%, 55.66%, 64.64%, 58.85% and 77.78% with concomitant elevation of superoxide dismutase (SOD) and catalase (CAT) activities comparable to BLM-treated group at 100 mg/kg body weight. In silico studies showed that palmitic acid exerted the fittest binding. PRO could serve as a potent anti-inflammatory natural candidate that should be supported by further clinical trials.

  9. Composition of the volatile fraction of Ocotea bofo Kunth (Lauraceae) calyces by GC-MS and NMR fingerprinting and its antimicrobial and antioxidant activity.

    Science.gov (United States)

    Guerrini, Alessandra; Sacchetti, Gianni; Muzzoli, Mariavittoria; Moreno Rueda, Gabriela; Medici, Alessandro; Besco, Elena; Bruni, Renato

    2006-10-04

    The chemical composition of the essential oil obtained by steam distillation of the floral calyces of Ocotea bofo Kunth (Lauraceae) was studied by means of GC, GC-MS, and 1H, 13C, and bidimensional NMR (COSY, HSQC, HMBC). Twenty-five constituents were identified, and estragole (48.7%), alpha-phellandrene (19.6%) and sabinene (10.4%) were found to be the major components. Antimicrobial activity against six aerobic bacteria and five yeasts and antioxidant activity performed by photochemiluminescence (PCL), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and beta-carotene bleaching assays are reported. The oil showed fair inhibiting properties against bacteria and a good inhibition against most yeasts. Its radical scavenging and chain-breaking antioxidant properties were comparable to or better than those provided by synthetic controls. Particular emphasis has been given to the use of NMR as a fast and reliable tool to discriminate O. bofo essential oil from other commercial anethole- and estragole-rich oils, namely, Illicium verum, Foeniculum vulgare, and Artemisia dracunculus.

  10. Improvement of mechanical and thermal properties of high energy electron beam irradiated HDPE/hydroxyapatite nano-composite

    Science.gov (United States)

    Mohammadi, M.; Ziaie, F.; Majdabadi, A.; Akhavan, A.; Shafaei, M.

    2017-01-01

    In this research work, the nano-composites of high density polyethylene/hydroxyapatite samples were manufactured via two methods: In the first method, the granules of high density polyethylene and nano-structure hydroxyapatite were processed in an internal mixer to prepare the nano-composite samples with a different weight percentage of the reinforcement phase. As for the second one, high density polyethylene was prepared in nano-powder form in boiling xylene. During this procedure, the hydroxyapatite nano-powder was added with different weight percentages to the solvent to obtain the nano-composite. In both of the procedures, the used hydroxyapatite nano-powder was synthesized via hydrolysis methods. The samples were irradiated under 10 MeV electron beam in 70-200 kGy of doses. Mechanical, thermal and morphological properties of the samples were investigated and compared. The results demonstrate that the nano-composites which we have prepared using nano-polyethylene, show better mechanical and thermal properties than the composites prepared from normal polyethylene granules, due to the better dispersion of nano-particles in the polymer matrix.

  11. American options under stochastic volatility

    NARCIS (Netherlands)

    Chockalingam, A.; Muthuraman, K.

    2011-01-01

    The problem of pricing an American option written on an underlying asset with constant price volatility has been studied extensively in literature. Real-world data, however, demonstrate that volatility is not constant, and stochastic volatility models are used to account for dynamic volatility

  12. The Volatile Composition of newly-discovered C/2017 E4 (Lovejoy) before its dissolutionas revealed by iSHELL at NASA/IRTF

    Science.gov (United States)

    Faggi, Sara; Villanueva, Geronimo Luis; Mumma, Michael J.; Paganini, Lucas

    2017-10-01

    In April 2017, we acquired comprehensive high-resolution spectra of newly-discovered comet C/2017 E4 (Lovejoy) as it approached perihelion, and before its disintegration. We detected many cometary emission lines across 4 customized instrument settings (L1-b, L3, Lp1-b and M1) in the (1 - 5) μm range, using iSHELL - the new near-IR high resolution immersion echelle spectrograph on NASA/IRTF (Mauna Kea, Hawaii).In M1, near 5μm, we detected multiple ro-vibrational lines of H2O, CO and the (X-X) system of CN; the latter data constitute a complete survey of CN at these wavelengths. We derived quantitative abundances for CN and addressed its origin by comparing with quantitative production rates for HCN. The ability to quantify both primary and product species eliminates systematic error that may be introduced when measurements are acquired with different astronomical techniques and instruments.In L1, around 3 μm, we detected fluorescence emission from HCN, C2H2, and water, prompt emission from OH, and many other features. Methane, ethane and methanol were detected both in L3 and Lp1 settings. These species are relevant to astrobiology, owing to questions regarding the origin of pre-biotic organics and water on terrestrial planets.The many water emission lines detected in L1-b (and M1) provided an opportunity to retrieve independent measures of rotational temperature for ortho- and para-H2O, thereby reducing systematic uncertainty in the derived ortho-para ratio and nuclear spin temperature. Deuterated species were also sought and results will be presented.The bright Oort cloud comet E4 Lovejoy combined with the new capabilities of iSHELL provided unique results. The individual iSHELL settings cover very wide spectral range with very high accuracy, eliminating many sources of systematic errors when retrieving molecular abundances; future comparisons amongst comets will clarify the nature and meaning of cosmogonic indicators based on composition.Acknowledgments NASA

  13. Toward Authentic Electronic Music in the Curriculum: Connecting Teaching to Current Compositional Practices

    Science.gov (United States)

    Martin, Jeffrey

    2012-01-01

    Despite emerging efforts to teach from within authentic music making contexts, electronic music in schools generally remains detached from the practices of actual composers. Often electronic technology is regarded merely as a set of tools for learning and, as a result, many view active engagement in technology-based music making as a…

  14. Chapter 2.3 Cellulose Nanofibril Composite Substrates for Flexible Electronics

    Science.gov (United States)

    Ronald Sabo; Jung-Hun Seo; Zhenqiang Ma

    2013-01-01

    Flexible electronics have a large number of potential applications, including malleable displays and wearable computers. Current research into high-speed, flexible electronic substrates uses plastics for the flexible substrate, but these plastics typically have drawbacks, such as high thermal expansion coefficients. Transparent films made from cellulose...

  15. The monolithic carbon aerogels and aerogel composites for electronics and thermal protection applications

    Science.gov (United States)

    Lu, Sheng; Guo, Hui; Zhou, Yugui; Liu, Yuanyuan; Jin, Zhaoguo; Liu, Bin; Zhao, Yingmin

    2017-09-01

    Monolithic carbon aerogels have been prepared by condensation polymerization and high temperature pyrolysis. The morphology of carbon aerogels are characterized by SEM. The pore structure is characterized by N2 adsorption-desorption technique. Monolithic carbon aerogels are mesoporous nanomaterials. Carbon fiber reinforced carbon aerogel composites are prepared by in-situ sol-gel process. Fiber reinforced carbon aerogel composites are of high mechanical strength. The thermal response of the fiber reinforced aerogel composite samples are tested in an arc plasma wind tunnel. Carbon aerogel composites show good thermal insulation capability and high temperature resistance in inert atmosphere even at ultrahigh temperature up to 1800 °C. The results show that they are suitable for applications in electrodes for supercapacitors/ Lithium-ion batteries and aerospace thermal protection area.

  16. Selective laser melting of carbon/AlSi10Mg composites: Microstructure, mechanical and electronical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiao; Song, Bo, E-mail: bosong@hust.edu.cn; Fan, Wenrui; Zhang, Yuanjie; Shi, Yusheng

    2016-04-25

    Carbon nanotubes/AlSi10Mg composites has drawn lots of attention in structural engineering and functional device applications due to its extraordinary high elastic modulus and mechanical strength as well as excellent electrical and thermal conductivities. In this study, the CNTs/AlSi10Mg composites was firstly prepared and then processed by selective laser melting. The powder preparation, SLM process, and microstructure evolution, properties were clarified. The results showed that CNTs were decomposed due to the direct interaction with the laser beam. The SLMed composites displayed a similar microstructure to that of SLMed AlSi10Mg. The common brittleness phase Al{sub 4}C{sub 3} didn't form, and the carbon dispersion strengthening was observed. The electrical resistivity of the composites was reduced significantly and the hardness was improved. - Highlights: • Carbon nanotubes/AlSi10Mg powder were prepared by slurry ball milling process. • Carbon nanotubes/AlSi10Mg composites were firstly prepared by SLM. • The electrical resistivity of the composites was significantly reduced and hardness was improved.

  17. Silicon isotopes in angrites and volatile loss in planetesimals

    Science.gov (United States)

    Moynier, Frédéric; Savage, Paul S.; Badro, James; Barrat, Jean-Alix

    2014-01-01

    Inner solar system bodies, including the Earth, Moon, and asteroids, are depleted in volatile elements relative to chondrites. Hypotheses for this volatile element depletion include incomplete condensation from the solar nebula and volatile loss during energetic impacts. These processes are expected to each produce characteristic stable isotope signatures. However, processes of planetary differentiation may also modify the isotopic composition of geochemical reservoirs. Angrites are rare meteorites that crystallized only a few million years after calcium–aluminum-rich inclusions and exhibit extreme depletions in volatile elements relative to chondrites, making them ideal samples with which to study volatile element depletion in the early solar system. Here we present high-precision Si isotope data that show angrites are enriched in the heavy isotopes of Si relative to chondritic meteorites by 50–100 ppm/amu. Silicon is sufficiently volatile such that it may be isotopically fractionated during incomplete condensation or evaporative mass loss, but theoretical calculations and experimental results also predict isotope fractionation under specific conditions of metal–silicate differentiation. We show that the Si isotope composition of angrites cannot be explained by any plausible core formation scenario, but rather reflects isotope fractionation during impact-induced evaporation. Our results indicate planetesimals initially formed from volatile-rich material and were subsequently depleted in volatile elements during accretion. PMID:25404309

  18. Effects of electron beam radiation dose on the compatibilization behaviour in recycled polypropylene/microcrystalline cellulose composites

    Science.gov (United States)

    Samat, N.; Motsidi, S. N. R.; Lazim, N. H. M.

    2018-01-01

    The purpose of this research was to evaluate the influence of dose level of electron beam on the compatibilization behavior of recycled polypropylene (rPP) in rPP/microcrystalline cellulose (MCC) composites. Initially, the rPP was irradiated with various dose of electron beam (5 kGy up to 250 kGy) which then mixed with unirradiated rPP (u-rPP) at a ratio of 30:70 respectively. The composites were prepared by incorporating a series wt% of MCC fibers into rPP (u-rPP : i-rPP) using extruder and finally moulded with an injection moulding machine. The compatibility behavior of irradiated rPP (i-rPP) were analysed with mechanical tensile and thermal methods. The results of mechanical analysis showed great improvement in tensile modulus but an increase in radiation dosage gradually decreased this property. Nevertheless, the tensile strength exhibited a minor effect. The thermal stability of composites is lowered with increase in the absorbed dose, more significantly at higher content of MCC. Fracture surface observations reveal adhesion between the cellulose and rPP matrix.

  19. Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsiloxane composite for wearable electronics.

    Science.gov (United States)

    Kim, Jeong Hun; Hwang, Ji-Young; Hwang, Ha Ryeon; Kim, Han Seop; Lee, Joong Hoon; Seo, Jae-Won; Shin, Ueon Sang; Lee, Sang-Hoon

    2018-01-22

    The development of various flexible and stretchable materials has attracted interest for promising applications in biomedical engineering and electronics industries. This interest in wearable electronics, stretchable circuits, and flexible displays has created a demand for stable, easily manufactured, and cheap materials. However, the construction of flexible and elastic electronics, on which commercial electronic components can be mounted through simple and cost-effective processing, remains challenging. We have developed a nanocomposite of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) elastomer. To achieve uniform distributions of CNTs within the polymer, an optimized dispersion process was developed using isopropyl alcohol (IPA) and methyl-terminated PDMS in combination with ultrasonication. After vaporizing the IPA, various shapes and sizes can be easily created with the nanocomposite, depending on the mold. The material provides high flexibility, elasticity, and electrical conductivity without requiring a sandwich structure. It is also biocompatible and mechanically stable, as demonstrated by cytotoxicity assays and cyclic strain tests (over 10,000 times). We demonstrate the potential for the healthcare field through strain sensor, flexible electric circuits, and biopotential measurements such as EEG, ECG, and EMG. This simple and cost-effective fabrication method for CNT/PDMS composites provides a promising process and material for various applications of wearable electronics.

  20. Directly writing resistor, inductor and capacitor to composite functional circuits: a super-simple way for alternative electronics.

    Directory of Open Access Journals (Sweden)

    Yunxia Gao

    Full Text Available BACKGROUND: The current strategies for making electronic devices are generally time, water, material and energy consuming. Here, the direct writing of composite functional circuits through comprehensive use of GaIn10-based liquid metal inks and matching material is proposed and investigated, which is a rather easy going and cost effective electronics fabrication way compared with the conventional approaches. METHODS: Owing to its excellent adhesion and electrical properties, the liquid metal ink was demonstrated as a generalist in directly making various basic electronic components such as planar resistor, inductor and capacitor or their combination and thus composing circuits with expected electrical functions. For a precise control of the geometric sizes of the writing, a mask with a designed pattern was employed and demonstrated. Mechanisms for justifying the chemical components of the inks and the magnitudes of the target electronic elements so as to compose various practical circuits were disclosed. RESULTS: Fundamental tests on the electrical components including capacitor and inductor directly written on paper with working time up to 48 h and elevated temperature demonstrated their good stability and potential widespread adaptability especially when used in some high frequency circuits. As the first proof-of-concept experiment, a typical functional oscillating circuit including an integrated chip of 74HC04 with a supply voltage of 5 V, a capacitor of 10 nF and two resistors of 5 kΩ and 1 kΩ respectively was directly composed on paper through integrating specific electrical elements together, which presented an oscillation frequency of 8.8 kHz. CONCLUSIONS: The present method significantly extends the roles of the metal ink in recent works serving as only a single electrical conductor or interconnecting wires. It opens the way for directly writing out complex functional circuits or devices on different substrates. Such circuit

  1. Directly writing resistor, inductor and capacitor to composite functional circuits: a super-simple way for alternative electronics.

    Science.gov (United States)

    Gao, Yunxia; Li, Haiyan; Liu, Jing

    2013-01-01

    The current strategies for making electronic devices are generally time, water, material and energy consuming. Here, the direct writing of composite functional circuits through comprehensive use of GaIn10-based liquid metal inks and matching material is proposed and investigated, which is a rather easy going and cost effective electronics fabrication way compared with the conventional approaches. Owing to its excellent adhesion and electrical properties, the liquid metal ink was demonstrated as a generalist in directly making various basic electronic components such as planar resistor, inductor and capacitor or their combination and thus composing circuits with expected electrical functions. For a precise control of the geometric sizes of the writing, a mask with a designed pattern was employed and demonstrated. Mechanisms for justifying the chemical components of the inks and the magnitudes of the target electronic elements so as to compose various practical circuits were disclosed. Fundamental tests on the electrical components including capacitor and inductor directly written on paper with working time up to 48 h and elevated temperature demonstrated their good stability and potential widespread adaptability especially when used in some high frequency circuits. As the first proof-of-concept experiment, a typical functional oscillating circuit including an integrated chip of 74HC04 with a supply voltage of 5 V, a capacitor of 10 nF and two resistors of 5 kΩ and 1 kΩ respectively was directly composed on paper through integrating specific electrical elements together, which presented an oscillation frequency of 8.8 kHz. The present method significantly extends the roles of the metal ink in recent works serving as only a single electrical conductor or interconnecting wires. It opens the way for directly writing out complex functional circuits or devices on different substrates. Such circuit composition strategy has generalized purpose and can be extended to more

  2. Comparative analysis of juice volatiles in selected mandarins, mandarin relatives and other citrus genotypes.

    Science.gov (United States)

    Yu, Yuan; Bai, Jinhe; Chen, Chunxian; Plotto, Anne; Baldwin, Elizabeth A; Gmitter, Frederick G

    2018-02-01

    Citrus fruit flavor is an important attribute prioritized in variety improvement. The present study compared juice volatiles compositions from 13 selected citrus genotypes, including six mandarins (Citrus reticulata), three sour oranges (Citrus aurantium), one blood orange (Citrus sinensis), one lime (Citrus limonia), one Clementine (Citrus clementina) and one satsuma (Citrus unshiu). Large differences were observed with respect to volatile compositions among the citrus genotypes. 'Goutou' sour orange contained the greatest number of volatile compounds and the largest volatile production level. 'Ponkan' mandarin had the smallest number of volatiles and 'Owari' satsuma yielded the lowest volatile production level. 'Goutou' sour orange and 'Moro' blood orange were clearly distinguished from other citrus genotypes based on the analysis of volatile compositions, even though they were assigned into one single group with two other sour oranges by the molecular marker profiles. The clustering analysis based on the aroma volatile compositions was able to differentiate mandarin varieties and natural sub-groups, and was also supported by the molecular marker study. The gas chromatography-mass spectrometry analysis of citrus juice aroma volatiles can be used as a tool to distinguish citrus genotypes and assist in the assessment of future citrus breeding programs. The aroma volatile profiles of the different citrus genotypes and inter-relationships detected among volatile compounds and among citrus genotypes will provide fundamental information on the development of marker-assisted selection in citrus breeding. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Polyimide-Epoxy Composites with Superior Bendable Properties for Application in Flexible Electronics

    Science.gov (United States)

    Lee, Sangyoup; Yoo, Taewon; Han, Youngyu; Kim, Hanglim; Han, Haksoo

    2017-08-01

    The need for flexible electronics with outstanding bending properties is increasing due to the demand for wearable devices and next-generation flexible or rollable smartphones. In addition, the requirements for flexible or rigid-flexible electronics are sharply increasing to achieve the design of space-saving electronic devices. In this regard, coverlay (CL) film is a key material used in the bending area of flexible electronics, albeit infrequently. Because flexible electronics undergo folding and unfolding numerous times, CL films with superior mechanical and bending properties are required so that the bending area can endure such severe stress. However, because current CL films are only used for a designated bending area in the flexible electronics panel, their highly complicated and expensive manufacturing procedure is a disadvantage. In addition, the thickness of CL films must be decreased to satisfy the ongoing requirement for increasingly thin products. However, due to the limitations of the two-layer structure of existing CL films, the manufacturing process cannot be made more cost effective by simply applying more thin film onto the board. To address this problem, we have developed liquid coverlay inks (LCIs) with superior bendable properties, in comparison with CL films, when applied onto flexible electronics using a screen-printing method. The results show that LCIs have the potential to become one of the leading candidates to replace existing CL films because of their lower cost and faster manufacturing process.

  4. Direct electron transfer of hemoglobin in a CdS nanorods and Nafion composite film on carbon ionic liquid electrode

    International Nuclear Information System (INIS)

    Sun Wei; Wang Dandan; Li Guicun; Zhai Ziqin; Zhao Ruijun; Jiao Kui

    2008-01-01

    In this paper the direct electron transfer of hemoglobin (Hb) was carefully investigated by using a room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF 6 ) modified carbon paste electrode (CILE) as the basal working electrode. Hb was immobilized on the surface of CILE with the nanocomposite film composed of Nafion and CdS nanorods by a step-by-step method. UV-vis and FT-IR spectra showed that Hb in the composite film remained its native structure. The direct electrochemical behaviors of Hb in the composite film were further studied in a pH 7.0 phosphate buffer solution (PBS). A pair of well-defined and quasi-reversible cyclic voltammetric peaks of Hb was obtained with the formal potential (E 0 ') at -0.295 V (vs. SCE), which was the characteristic of heme Fe(III)/Fe(II) redox couples. The direct electrochemistry of Hb was achieved on the modified electrode and the apparent heterogeneous electron transfer rate constant (k s ) was calculated to be 0.291 s -1 . The formal potentials of Hb Fe(III)/Fe(II) couple shifted negatively with the increase of buffer pH and a slope value of -45.1 mV/pH was got, which indicated that one electron transfer accompanied with one proton transportation. The fabricated Hb sensor showed good electrocatalytic manner to the reduction of trichloroacetic acid (TCA)

  5. Oil and stock market volatility: A multivariate stochastic volatility perspective

    International Nuclear Information System (INIS)

    Vo, Minh

    2011-01-01

    This paper models the volatility of stock and oil futures markets using the multivariate stochastic volatility structure in an attempt to extract information intertwined in both markets for risk prediction. It offers four major findings. First, the stock and oil futures prices are inter-related. Their correlation follows a time-varying dynamic process and tends to increase when the markets are more volatile. Second, conditioned on the past information, the volatility in each market is very persistent, i.e., it varies in a predictable manner. Third, there is inter-market dependence in volatility. Innovations that hit either market can affect the volatility in the other market. In other words, conditioned on the persistence and the past volatility in their respective markets, the past volatility of the stock (oil futures) market also has predictive power over the future volatility of the oil futures (stock) market. Finally, the model produces more accurate Value-at-Risk estimates than other benchmarks commonly used in the financial industry. - Research Highlights: → This paper models the volatility of stock and oil futures markets using the multivariate stochastic volatility model. → The correlation between the two markets follows a time-varying dynamic process which tends to increase when the markets are more volatile. → The volatility in each market is very persistent. → Innovations that hit either market can affect the volatility in the other market. → The model produces more accurate Value-at-Risk estimates than other benchmarks commonly used in the financial industry.

  6. Volatility Spillover in Chinese Steel Markets

    Science.gov (United States)

    Fang, Wen

    2018-03-01

    This paper examines volatility spillover in Chinese steel markets by comparing spillover effects before and after steel futures market established and finds some interesting change. Volatility spillover method based on multi-GARCH model are proposed. The results show that there is significant proof for spillover effects from B2B electronic market to spot market, and two-way effects between futures and spot market. Market policy planners and practitioners could make decisions according to the master of spillovers. We also find that B2B e-market and futures market can both provide efficient protection against steel price volatility risk, B2B e-market offer a broad-based platform for trading steel commodities over time and space since e-market role in information flow process is dominant.

  7. Electron beam processing of rubber wood fibers - polypropylene composites. Effects of reactive additives on the physical and mechanical properties

    International Nuclear Information System (INIS)

    Nor Yuziah Mohd Yunus; Jalaluddin Harun; Khairul Zaman

    2000-01-01

    The purpose of this study is to determine the suitability of producing agro-fiber reinforced plastic composite (agro-FRPC) from rubber wood fiber blended in polypropylene matrix. The effects of varying fiber dimension and fiber content on the physical and mechanical properties of the composite were evaluated to provide an insight into the fiber matrix adhesion. The effects of reactive additives on the physical and mechanical properties of the composite were evaluated which provides the insight on the reinforcement of the composite. Rubber wood fiber used in this study is currently being used in the manufacturing of medium density fiber (MDF) board. Two sizes of rubber wood fiber were used i.e. 0.5-1.0 mm and 1.0-2.0 mm. Homopolymer polypropylene of MFI 14.0 was used as a matrix. The irradiation work was carried out using electron beam accelerator, 3.0 MeV, 3.0 mA. Various types of reactive additives (RA) with mono-functional, di-functional, tri-functional and oligomer were applied in the blend. For comparison, a conventional chemical cross-linking using two types of maleated polypropylene, MPA (Mw=9,000) and PMAP (Mw=220,000) were also performed. (author)

  8. Electron beam processing of rubber wood fibers - polypropylene composites. Effects of reactive additives on the physical and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Nor Yuziah Mohd Yunus; Jalaluddin Harun [Universiti Putra Malaysia, Selangor Darul Ehsan (Malaysia); Khairul Zaman [Malaysian Institute for Nuclear Technology Research (MINT), Selangor Darul Ehsan (Malaysia)

    2000-07-01

    The purpose of this study is to determine the suitability of producing agro-fiber reinforced plastic composite (agro-FRPC) from rubber wood fiber blended in polypropylene matrix. The effects of varying fiber dimension and fiber content on the physical and mechanical properties of the composite were evaluated to provide an insight into the fiber matrix adhesion. The effects of reactive additives on the physical and mechanical properties of the composite were evaluated which provides the insight on the reinforcement of the composite. Rubber wood fiber used in this study is currently being used in the manufacturing of medium density fiber (MDF) board. Two sizes of rubber wood fiber were used i.e. 0.5-1.0 mm and 1.0-2.0 mm. Homopolymer polypropylene of MFI 14.0 was used as a matrix. The irradiation work was carried out using electron beam accelerator, 3.0 MeV, 3.0 mA. Various types of reactive additives (RA) with mono-functional, di-functional, tri-functional and oligomer were applied in the blend. For comparison, a conventional chemical cross-linking using two types of maleated polypropylene, MPA (Mw=9,000) and PMAP (Mw=220,000) were also performed. (author)

  9. Measurement of charge composition of electron flows with an energy above hundreds MeV in inner radiaion belt

    International Nuclear Information System (INIS)

    Gusev, A.A.; Pugacheva, G.I.

    1990-01-01

    A detector for studying the charge composition of a high-energy electron component of an internal radiation belt when measuring the precipitation of charged particles in the region of Brazil magnetic anomaly is suggested. The detector is a telescope consisting of two semiconductors and CsI crystal housed into a protection detector in the form of a cup made of plastic scintillator. An absorber of plastic scintillator is placed between semiconductive detections. The detector may record positrons with energy up to 5 MeV in the composition of precipitating particles from the belt in definite detector signal combination and specific energy release 511 keV in CsI crystal. 16 refs.; 3 figs

  10. Novel powder/solid composites possessing low Young’s modulus and tunable energy absorption capacity, fabricated by electron beam melting, for biomedical applications

    International Nuclear Information System (INIS)

    Ikeo, Naoko; Ishimoto, Takuya; Nakano, Takayoshi

    2015-01-01

    Highlights: • We fabricated novel porous composites by electron beam melting. • The composites consist of necked powder and melted solid framework. • Unmelted powder that is usually discarded was mechanically functionalized by necking. • The composites possess controllably low Young’s modulus and excellent toughness. • The composites would be promising for utilization in biomedical applications. - Abstract: A novel, hierarchical, porous composite from a single material composed of necked powder and melted solid, with tunable mechanical properties, is fabricated by electron beam melting and subsequent heat treatment. The composite demonstrates low Young’s modulus (⩽31 GPa) and excellent energy absorption capacity, both of which are necessary for use in orthopedic applications. To the best of our knowledge, this is the first report on the synthesis of a material combining controllably low Young’s modulus and excellent toughness

  11. Electron Microscopy and Analytical X-ray Characterization of Compositional and Nanoscale Structural Changes in Fossil Bone

    Science.gov (United States)

    Boatman, Elizabeth Marie

    The nanoscale structure of compact bone contains several features that are direct indicators of bulk tissue mechanical properties. Fossil bone tissues represent unique opportunities to understand the compact bone structure/property relationships from a deep time perspective, offering a possible array of new insights into bone diseases, biomimicry of composite materials, and basic knowledge of bioapatite composition and nanoscale bone structure. To date, most work with fossil bone has employed microscale techniques and has counter-indicated the survival of bioapatite and other nanoscale structural features. The obvious disconnect between the use of microscale techniques and the discernment of nanoscale structure has prompted this work. The goal of this study was to characterize the nanoscale constituents of fossil compact bone by applying a suite of diffraction, microscopy, and spectrometry techniques, representing the highest levels of spatial and energy resolution available today, and capable of complementary structural and compositional characterization from the micro- to the nanoscale. Fossil dinosaur and crocodile long bone specimens, as well as modern ratite and crocodile femurs, were acquired from the UC Museum of Paleontology. Preserved physiological features of significance were documented with scanning electron microscopy back-scattered imaging. Electron microprobe wavelength-dispersive X-ray spectroscopy (WDS) revealed fossil bone compositions enriched in fluorine with a complementary loss of oxygen. X-ray diffraction analyses demonstrated that all specimens were composed of apatite. Transmission electron microscopy (TEM) imaging revealed preserved nanocrystallinity in the fossil bones and electron diffraction studies further identified these nanocrystallites as apatite. Tomographic analyses of nanoscale elements imaged by TEM and small angle X-ray scattering were performed, with the results of each analysis further indicating that nanoscale structure is

  12. High mobility two-dimensional electron gases in nitride heterostructures with high Al composition AlGaN alloy barriers

    International Nuclear Information System (INIS)

    Li Guowang; Cao Yu; Xing Huili Grace; Jena, Debdeep

    2010-01-01

    We report high-electron mobility nitride heterostructures with >70% Al composition AlGaN alloy barriers grown by molecular beam epitaxy. Direct growth of such AlGaN layers on GaN resulted in hexagonal trenches and a low mobility polarization-induced charge. By applying growth interruption at the heterojunction, the surface morphology improved dramatically and the room temperature two-dimensional electron gas (2DEG) mobility increased by an order of magnitude, exceeding 1300 cm 2 /V s. The 2DEG density was tunable at 0.4-3.7x10 13 /cm 2 by varying the total barrier thickness (t). Surface barrier heights of the heterostructures were extracted and exhibited dependence on t.

  13. The Herbaspirillum seropedicae SmR1 Fnr orthologs controls the cytochrome composition of the electron transport chain.

    Science.gov (United States)

    Batista, Marcelo B; Sfeir, Michelle Z T; Faoro, Helisson; Wassem, Roseli; Steffens, Maria B R; Pedrosa, Fábio O; Souza, Emanuel M; Dixon, Ray; Monteiro, Rose A

    2013-01-01

    The transcriptional regulatory protein Fnr, acts as an intracellular redox sensor regulating a wide range of genes in response to changes in oxygen levels. Genome sequencing of Herbaspirillum seropedicae SmR1 revealed the presence of three fnr-like genes. In this study we have constructed single, double and triple fnr deletion mutant strains of H. seropedicae. Transcriptional profiling in combination with expression data from reporter fusions, together with spectroscopic analysis, demonstrates that the Fnr1 and Fnr3 proteins not only regulate expression of the cbb3-type respiratory oxidase, but also control the cytochrome content and other component complexes required for the cytochrome c-based electron transport pathway. Accordingly, in the absence of the three Fnr paralogs, growth is restricted at low oxygen tensions and nitrogenase activity is impaired. Our results suggest that the H. seropedicae Fnr proteins are major players in regulating the composition of the electron transport chain in response to prevailing oxygen concentrations.

  14. Volatile liquid storage system

    International Nuclear Information System (INIS)

    Laverman, R.J.; Winters, P.J.; Rinehart, J.K.

    1992-01-01

    This patent describes a method of collecting and abating emission from a volatile liquid in an above ground storage tank. It comprises the liquid storage tank having a bottom, a vertical cylindrical circular wall having a lower edge portion joined to the bottom, and an external fixed roof, the tank having an internal floating roof floating on a volatile liquid stored in the tank, and air vent means in the tank in communication with a vapor space in the tank constituting at least the space above the floating roof when the floating roof floats on a predetermined maximum volume of volatile liquid in the tank; permitting ambient air; pumping emission laden air from the tank vapor space above the floating roof; and by means of the emissions abatement apparatus eliminating most of the emission from the emissions laden air with formation of a gaseous effluent and then discharging the resulting gaseous effluent to the atmosphere

  15. Understanding Interest Rate Volatility

    DEFF Research Database (Denmark)

    Volker, Desi

    This thesis is the result of my Ph.D. studies at the Department of Finance of the Copenhagen Business School. It consists of three essays covering topics related to the term structure of interest rates, monetary policy and interest rate volatility. The rst essay, \\Monetary Policy Uncertainty...... and Interest Rates", examines the role of monetary policy uncertainty on the term structure of interest rates. The second essay, \\A Regime-Switching A ne Term Structure Model with Stochastic Volatility" (co-authored with Sebastian Fux), investigates the ability of the class of regime switching models...... with and without stochastic volatility to capture the main stylized features of U.S. interest rates. The third essay, \\Variance Risk Premia in the Interest Rate Swap Market", investigates the time-series and cross-sectional properties of the compensation demanded for holding interest rate variance risk. The essays...

  16. Formation of structure, phase composition and properties of electro explosion resistant coatings using electron-beam processing

    International Nuclear Information System (INIS)

    Romanov, Denis A.; Sosnin, Kirill V.; Budovskikh, Evgenij A.; Gromov, Viktor E.; Semin, Alexander P.

    2014-01-01

    For the first time, the high intensity electron beam modification of electroexplosion composite coatings of MoCu, MoCCu, WCu, WCCu and TiB 2 Cu systems was done. The studies of phase and elemental composition, defective structure conditions of these coatings were carried out. The regimes of electron-beam processing making possible to form the dense, specular luster surface layers having a submicrocrystalline structure were revealed. It was established that electron-beam processing of elecroexplosion spraying of layer of elecroexplosion spraying carried out in the regime of melting results in the formation of structurally and contrationally homogeneous surface layer. Investigation of the effect of electron-beam processing of electroexplosion electroerosion resistant coatings on their tribological properties (wear resistanse and coefficient of friction) and electroerosion resistance was done. It was shown that all the examined costings demonstrate the increase of electroerosion resistance in spark erosion up to 10 times

  17. Formation of structure, phase composition and properties of electro explosion resistant coatings using electron-beam processing

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, Denis A., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Sosnin, Kirill V., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Budovskikh, Evgenij A., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Gromov, Viktor E., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Semin, Alexander P., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru [Siberian State Industrial University, Novokuznetsk, 654007 (Russian Federation)

    2014-11-14

    For the first time, the high intensity electron beam modification of electroexplosion composite coatings of MoCu, MoCCu, WCu, WCCu and TiB{sub 2}Cu systems was done. The studies of phase and elemental composition, defective structure conditions of these coatings were carried out. The regimes of electron-beam processing making possible to form the dense, specular luster surface layers having a submicrocrystalline structure were revealed. It was established that electron-beam processing of elecroexplosion spraying of layer of elecroexplosion spraying carried out in the regime of melting results in the formation of structurally and contrationally homogeneous surface layer. Investigation of the effect of electron-beam processing of electroexplosion electroerosion resistant coatings on their tribological properties (wear resistanse and coefficient of friction) and electroerosion resistance was done. It was shown that all the examined costings demonstrate the increase of electroerosion resistance in spark erosion up to 10 times.

  18. Structure-property effects on mechanical, friction and wear properties of electron modified PTFE filled EPDM composite

    Directory of Open Access Journals (Sweden)

    2009-01-01

    Full Text Available Tribological properties of Ethylene-Propylene-Diene-rubber (EPDM containing electron modified Polytetrafluoroethylene (PTFE have been investiagted with the help of pin on disk tribometer without lubrication for a testing time of 2 hrs in atmospheric conditions at a sliding speed and applied normal load of 0.05 m•s–1 and FN = 1 N, respectively. Radiation-induced chemical changes in electron modified PTFE powders were analyzed using Electron Spin Resonance (ESR and Fourier Transform Infrared (FTIR specroscopy to characterize the effects of compatibility and chemical coupling of modified PTFE powders with EPDM on mechanical, friction and wear properties. The composites showed different friction and wear behaviour due to unique morphology, dispersion behaviour and radiation functionalization of PTFE powders. In general, EPDM reinforced with electron modified PTFE powder demonstrated improvement both in mechanical and tribological properties. However, the enhanced compatibility of PTFE powder resulting from the specific chemical coupling of PTFE powder with EPDM has been found crucial for mechanical, friction and wear properties.

  19. Volatile composition of some Brazilian fruits: umbu-caja (Spondias citherea), camu-camu (Myrciaria dubia), Araça-boi (Eugenia stipitata), and Cupuaçu (Theobroma grandiflorum).

    Science.gov (United States)

    Franco, M R; Shibamoto, T

    2000-04-01

    Twenty-one volatile compounds were identified for the first time by GC-MS in umbu-caja and in camu-camu, plus 30 volatile compounds were identified in araça-boi samples. Terpenic compounds predominated among the volatile compounds in these fruit samples, with the major compounds being identified as cis-beta-ocimene and caryophyllene in the northeastern fruit; alpha-pinene and d-limonene were the most abundant volatile compounds in the headspace of the Amazonian fruit camu-camu. Sesquiterpenes were the most abundant compounds in the araça-boi sample, with germacrene D presenting a higher relative percentage. The chemical class of esters predominated in the cupuaçu sample. Ethyl butyrate and hexanoate were the major compounds in the headspace of this Amazonian fruit.

  20. Acrylic composition

    International Nuclear Information System (INIS)

    Kimura, Tadashi; Ozeki, Takao; Kobayashi, Juichi; Nakamoto, Hideo; Meda, Yutaka.

    1969-01-01

    An acrylic composition and a process for the production of an easily hardenable coating material by irradiating with active energy, particularly electron beams and ultraviolet light, are provided using a mixture of 10%-100% by weight of an unsaturated compound and 90%-0% of a vinyl monomer. The composition has a high degree of polymerization, low volatility, low viscosity and other properties similar to thermosetting acrylic or amino alkyd resins. The aforesaid unsaturated compound is produced by primarily reacting saturated cyclocarboxylic anhydride and/or alpha-, beta-ethylene unsaturated carboxylic anhydride and by secondarily reacting an epoxy radical-containing vinyl monomer by addition reaction with polyhydric alcohols. Each reaction is conducted in the presence of a tertiary amino radical-containing vinyl monomer as a catalyst. The cross-linking is effected generally with an electron beam accelerator of 0.1-2.0 MeV or with a light beam in the 2,000-8,000A range in the presence of a photosensitive agent. In one example, 62 parts of ethylene glycol and 196 parts of maleic anhydride were dissolved in a mixture consisting of 100 parts of n-butyl methacrylate and 30 parts of styrene. To the mixture were added 5 parts of 2-methyl 5 vinyl piridine and 0.005 part of hydroquinone monomethyl ether. After the reaction at 90 0 C for 3 hours, a compound HOC:O-CH=CHC:OCH 2 CH 2 C:OOH was produced. To this solution were added 285 parts of glycidyl methacrylate. After the reaction at 90 0 C for 6 hours, 95% of the carboxylic acids reacted with epoxy radicals. Fourteen examples are given. (Iwakiri, K.)

  1. Pricing Volatility of Stock Returns with Volatile and Persistent Components

    DEFF Research Database (Denmark)

    Zhu, Jie

    2009-01-01

    This paper introduces a two-component volatility model based on first moments of both components to describe the dynamics of speculative return volatility. The two components capture the volatile and the persistent part of volatility, respectively. The model is applied to 10 Asia-Pacific stock ma...... markets. A positive or risk-premium effect exists between the return and the volatile component, yet the persistent component is not significantly priced for the return dynamic process....... markets. Their in-mean effects on returns are tested. The empirical results show that the persistent component is much more important for the volatility dynamic process than is the volatile component. However, the volatile component is found to be a significant pricing factor of asset returns for most...

  2. Pricing Volatility of Stock Returns with Volatile and Persistent Components

    DEFF Research Database (Denmark)

    Zhu, Jie

    In this paper a two-component volatility model based on the component's first moment is introduced to describe the dynamic of speculative return volatility. The two components capture the volatile and persistent part of volatility respectively. Then the model is applied to 10 Asia-Pacific stock m......, a positive or risk-premium effect exists between return and the volatile component, yet the persistent component is not significantly priced for return dynamic process....... markets. Their in-mean effects on return are also tested. The empirical results show that the persistent component accounts much more for volatility dynamic process than the volatile component. However the volatile component is found to be a significant pricing factor of asset returns for most markets...

  3. The effect of external electron injection and the environment composition on development of atmospheric discharge investigation

    International Nuclear Information System (INIS)

    Bogachenkov, V.A.; Oginov, A.V.; Chajkovskij, S.A.; Shpakov, K.V.

    2012-01-01

    The effect of external electron injection (with energy about 150 keV) on initial phase development of the high-voltage (1.0-1.2 MV) long (500-700 mm) gas discharge is investigated. The experiments were conducted in atmospheric pressure air and in a mixture of air and water droplet phase [ru

  4. Complex composition film condensation in the sluice device of an electron microscope

    International Nuclear Information System (INIS)

    Kukuev, V.I.; Lesovoj, M.V.; Vlasov, D.A.; Malygin, M.V.; Domashevskaya, Eh.P.; Tomashpol'skij, Yu.Ya.

    1994-01-01

    Based on the sluice device of an electron microscope a system is developed for material laser evaporation and vapor condensation on a substrate, situated in the microscope specimen holder. Substrate heating by laser radiation to 100 deg C is used. The system is applied for investigating growth of high-temperature superconductor films

  5. Electron emission from nano-structured carbon composite materials and fabrication of high-quality electron emitters by using plasma technology

    International Nuclear Information System (INIS)

    Hiraki, H.; Hiraki, A.; Jiang, N.; Wang, H. X.

    2006-01-01

    Many trials have been done to fabricate high-quality electron-emitters from nano-composite carbon materials (such as nano-diamond, carbon nano tubes and others) by means of a variety of plasma chemical-vapor-deposition (CVD) techniques. Based upon the mechanism of electron emission, we have proposed several strategic guide lines for the fabrication of good emitters. Then, following these lines, several types of emitters were tried. One of the emitters has shown a worldclass, top ranking for fabricating very bright lamps: namely, a low turn-on voltage (0.5 ∼ 1 V/μm to induce 10 μA/cm 2 emission current) to emit a 1 mA/cm 2 current at 3 V/μm and 100 mA/cm 2 current at a slightly higher applied voltage. The bright lamps are Mercury-free fluorescence lamps to exhibit brightness of ∼10 5 cd/m 2 with high efficiency of ∼100 lm/w.

  6. Volatile oil composition of Taif Ros

    International Nuclear Information System (INIS)

    Bahaffi, Saleh Omar S.

    2005-01-01

    The city of Taif is located in the western region of the Kingdom of Saudi Arabia. This city is characterized by beautiful roses from the species of Rosa Damascena. Extraction of rose oil from fresh battles has been done using huge cupric pots. Identification of the chemical components of rose oil has been done with Shimadzu gas chromatograph-mass spectrometer, GC-MS QP 5050. Sixty five compounds have been identified; three of the represent 61.07% of oil components; they are citronellol 31.27%, geraniol 19.52, and 5-methyl octadecane 10.25%. Twelve compounds have percentage between 1% and 10%. Fifty compounds are less than 1%. (author)

  7. Morphology of Poly lactide/Polycaprolactone (PLA/PCL) Nano composite by Scanning Electron Microscopy (SEM)

    International Nuclear Information System (INIS)

    Siti Zulaiha Hairaldin; Wan Md Zin Wan Yunus; Norazowa Ibrahim

    2011-01-01

    In this study, Octadecylamine Modified Montmorillonites (ODAMMT) were used to prepare Poly lactide/ Polycaprolactone (PLA/ PCL) nano composites. PLA and PCL mix in 90:10 ratios, using an internal mixer by melt blending technique. The other sample was blend with Natrium Montmorillonite (NaMMT) and Octadecylamine Modified Montmorillonite (ODA-MMT) to produce PLA/ PCL-NaMMT and PLA/ PCL ODAMMT. To characterize the polymer nano composites, X-ray diffraction (XRD), FTIR and SEM analysis were conducted. Comparison of morphology were made up between PLA/ PCL, PLA/ PCL with presence of 7 % of Na-MMT and 7 % ODA-MMT respectively based on SEM micrograph by calculate the number-average diameter. (author)

  8. The polarization response in InAs quantum dots: theoretical correlation between composition and electronic properties

    International Nuclear Information System (INIS)

    Usman, Muhammad; O’Reilly, Eoin P; Tasco, Vittorianna; Todaro, Maria Teresa; De Giorgi, Milena; Passaseo, Adriana; Klimeck, Gerhard

    2012-01-01

    III–V growth and surface conditions strongly influence the physical structure and resulting optical properties of self-assembled quantum dots (QDs). Beyond the design of a desired active optical wavelength, the polarization response of QDs is of particular interest for optical communications and quantum information science. Previous theoretical studies based on a pure InAs QD model failed to reproduce experimentally observed polarization properties. In this work, multi-million atom simulations are performed in an effort to understand the correlation between chemical composition and polarization properties of QDs. A systematic analysis of QD structural parameters leads us to propose a two-layer composition model, mimicking In segregation and In–Ga intermixing effects. This model, consistent with mostly accepted compositional findings, allows us to accurately fit the experimental PL spectra. The detailed study of QD morphology parameters presented here serves as a tool for using growth dynamics to engineer the strain field inside and around the QD structures, allowing tuning of the polarization response. (paper)

  9. Method validation for chemical composition determination by electron microprobe with wavelength dispersive spectrometer

    Science.gov (United States)

    Herrera-Basurto, R.; Mercader-Trejo, F.; Muñoz-Madrigal, N.; Juárez-García, J. M.; Rodriguez-López, A.; Manzano-Ramírez, A.

    2016-07-01

    The main goal of method validation is to demonstrate that the method is suitable for its intended purpose. One of the advantages of analytical method validation is translated into a level of confidence about the measurement results reported to satisfy a specific objective. Elemental composition determination by wavelength dispersive spectrometer (WDS) microanalysis has been used over extremely wide areas, mainly in the field of materials science, impurity determinations in geological, biological and food samples. However, little information is reported about the validation of the applied methods. Herein, results of the in-house method validation for elemental composition determination by WDS are shown. SRM 482, a binary alloy Cu-Au of different compositions, was used during the validation protocol following the recommendations for method validation proposed by Eurachem. This paper can be taken as a reference for the evaluation of the validation parameters more frequently requested to get the accreditation under the requirements of the ISO/IEC 17025 standard: selectivity, limit of detection, linear interval, sensitivity, precision, trueness and uncertainty. A model for uncertainty estimation was proposed including systematic and random errors. In addition, parameters evaluated during the validation process were also considered as part of the uncertainty model.

  10. Quantifying requirements volatility effects

    NARCIS (Netherlands)

    Kulk, G.P.; Verhoef, C.

    2008-01-01

    In an organization operating in the bancassurance sector we identified a low-risk IT subportfolio of 84 IT projects comprising together 16,500 function points, each project varying in size and duration, for which we were able to quantify its requirements volatility. This representative portfolio

  11. Idiosyncratic Volatility Puzzle

    DEFF Research Database (Denmark)

    Aslanidis, Nektarios; Christiansen, Charlotte; Lambertides, Neophytos

    from a large pool of macroeconomic and Önancial variables. Cleaning for macro-Önance e§ects reverses the puzzling negative relation between returns and idiosyncratic volatility documented previously. Portfolio analysis shows that the e§ects from macro-Önance factors are economically strong...

  12. [Study on absorbing volatile oil with mesoporous carbon].

    Science.gov (United States)

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan

    2014-11-01

    Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying.

  13. Layered composites of PEDOT/PSS/nanoparticles and PEDOT/PSS/phthalocyanines as electron mediators for sensors and biosensors

    Directory of Open Access Journals (Sweden)

    Celia García-Hernández

    2016-12-01

    Full Text Available The sensing properties of electrodes chemically modified with PEDOT/PSS towards catechol and hydroquinone sensing have been successfully improved by combining layers of PEDOT/PSS with layers of a secondary electrocatalytic material such as gold nanoparticles (PEDOT/PSS/AuNPs, copper phthalocyanine (PEDOT/PSS/CuPc or lutetium bisphthalocyanine (PEDOT/PSS/LuPc2. Layered composites exhibit synergistic effects that strongly enhance the electrocatalytic activity as indicated by the increase in intensity and the shift of the redox peaks to lower potentials. A remarkable improvement has been achieved using PEDOT/PSS/LuPc2, which exhibits excellent electrocatalytic activity towards the oxidation of catechol. The kinetic studies demonstrated diffusion-controlled processes at the electrode surfaces. The kinetic parameters such as Tafel slopes and charge transfer coefficient (α confirm the improved electrocatalytic activity of the layered electron mediators. The peak currents increased linearly with concentration of catechol and hydroquinone over the range of 1.5 × 10−4 to 4.0 × 10−6 mol·L−1 with a limit of detection on the scale of μmol·L−1. The layered composite hybrid systems were also found to be excellent electron mediators in biosensors containing tyrosinase and laccase, and they combine the recognition and biocatalytic properties of biomolecules with the unique catalytic features of composite materials. The observed increase in the intensity of the responses allowed detection limits of 1 × 10−7 mol·L−1 to be attained.

  14. Manure application and ammonia volatilization

    NARCIS (Netherlands)

    Huijsmans, J.F.M.

    2003-01-01

    Keywords: manure application, ammonia volatilization, environmental conditions, application technique, incorporation technique, draught force, work organization, costs Livestock manure applied on farmland is an important source of ammonia (NH3) volatilization, and NH3 is a major atmospheric

  15. Volatile element trends in gas-rich meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Bart, G; Lipschutz, M E [Purdue Univ., Lafayette, IN (USA). Dept. of Chemistry

    1979-09-01

    Study of 10 volatile elements (and non-volatile Co) in co-existing light and dark portions of 5 gas-rich chondrites indicates patterns of distinct but non-uniform enrichment of volatile elements. Only Cs is enriched in all samples; Bi and Tl enrichments covary. The observed enrichments are inconsistent with prior suggestions of admixture of C1 or C2 chondritic matter, whether pristine or partly devolatilized, but suggest that both light and dark portions of each chondrite represents a compositionally more extended sampling of parental nebular material than hitherto known.

  16. Forecasting volatility in Chinese and Hong Kong stock markets.

    OpenAIRE

    Wu, Ming

    2011-01-01

    This paper analyses the forecasting performance of historical volatility models and GARCH-class models of Shenzhen component index, Shanghai composite index and Hang Seng index at weekly and daily frequency under both symmetric and asymmetric loss functions. Under symmetric loss functions exclude Theil-U and HR, results suggest that historical volatility models provide a much better forecast than GARCH-class models both in weekly and daily frequency. Under asymmetric loss functions historical...

  17. Electronics

    Science.gov (United States)

    2001-01-01

    International Acer Incorporated, Hsin Chu, Taiwan Aerospace Industrial Development Corporation, Taichung, Taiwan American Institute of Taiwan, Taipei, Taiwan...Singapore and Malaysia .5 - 4 - The largest market for semiconductor products is the high technology consumer electronics industry that consumes up...Singapore, and Malaysia . A new semiconductor facility costs around $3 billion to build and takes about two years to become operational

  18. Atomic spectral-product representations of molecular electronic structure: metric matrices and atomic-product composition of molecular eigenfunctions.

    Science.gov (United States)

    Ben-Nun, M; Mills, J D; Hinde, R J; Winstead, C L; Boatz, J A; Gallup, G A; Langhoff, P W

    2009-07-02

    Recent progress is reported in development of ab initio computational methods for the electronic structures of molecules employing the many-electron eigenstates of constituent atoms in spectral-product forms. The approach provides a universal atomic-product description of the electronic structure of matter as an alternative to more commonly employed valence-bond- or molecular-orbital-based representations. The Hamiltonian matrix in this representation is seen to comprise a sum over atomic energies and a pairwise sum over Coulombic interaction terms that depend only on the separations of the individual atomic pairs. Overall electron antisymmetry can be enforced by unitary transformation when appropriate, rather than as a possibly encumbering or unnecessary global constraint. The matrix representative of the antisymmetrizer in the spectral-product basis, which is equivalent to the metric matrix of the corresponding explicitly antisymmetric basis, provides the required transformation to antisymmetric or linearly independent states after Hamiltonian evaluation. Particular attention is focused in the present report on properties of the metric matrix and on the atomic-product compositions of molecular eigenstates as described in the spectral-product representations. Illustrative calculations are reported for simple but prototypically important diatomic (H(2), CH) and triatomic (H(3), CH(2)) molecules employing algorithms and computer codes devised recently for this purpose. This particular implementation of the approach combines Slater-orbital-based one- and two-electron integral evaluations, valence-bond constructions of standard tableau functions and matrices, and transformations to atomic eigenstate-product representations. The calculated metric matrices and corresponding potential energy surfaces obtained in this way elucidate a number of aspects of the spectral-product development, including the nature of closure in the representation, the general redundancy or

  19. Analytical solution for heat conduction problem in composite slab and its implementation in constructal solution for cooling of electronics

    International Nuclear Information System (INIS)

    Kuddusi, Luetfullah; Denton, Jesse C.

    2007-01-01

    The constructal solution for cooling of electronics requires solution of a fundamental heat conduction problem in a composite slab composed of a heat generating slab and a thin strip of high conductivity material that is responsible for discharging the generated heat to a heat sink located at one end of the strip. The fundamental 2D heat conduction problem is solved analytically by applying an integral transform method. The analytical solution is then employed in a constructal solution, following Bejan, for cooling of electronics. The temperature and heat flux distributions of the elemental heat generating slabs are assumed to be the same as those of the analytical solution in all the elemental volumes and the high conductivity strips distributed in the different constructs. Although the analytical solution of the fundamental 2D heat conduction problem improves the accuracy of the distributions in the elemental slabs, the results following Bejan's strategy do not affirm the accuracy of Bejan's constructal solution itself as applied to this problem of cooling of electronics. Several different strategies are possible for developing a constructal solution to this problem as is indicated

  20. The exploitation of volatile oil

    Institute of Scientific and Technical Information of China (English)

    MENG Teng; ZHANG Da; TENG Xiangjin; LINing; HAO Zaibin

    2007-01-01

    Rose is a kind of favorite ornamental plant. This article briefly introduced the cultivation and the use of rose around the world both in ancient time and nowadays. Today, volatile oil becomes the mainstream of the rose industry. People pay attention to the effect of volatile oil; meanwhile, they speed up their research on extracting volatile oil and the ingredients.

  1. Alternative Asymmetric Stochastic Volatility Models

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2010-01-01

    textabstractThe stochastic volatility model usually incorporates asymmetric effects by introducing the negative correlation between the innovations in returns and volatility. In this paper, we propose a new asymmetric stochastic volatility model, based on the leverage and size effects. The model is

  2. Essays on nonparametric econometrics of stochastic volatility

    NARCIS (Netherlands)

    Zu, Y.

    2012-01-01

    Volatility is a concept that describes the variation of financial returns. Measuring and modelling volatility dynamics is an important aspect of financial econometrics. This thesis is concerned with nonparametric approaches to volatility measurement and volatility model validation.

  3. Time-varying volatility in Malaysian stock exchange: An empirical study using multiple-volatility-shift fractionally integrated model

    Science.gov (United States)

    Cheong, Chin Wen

    2008-02-01

    This article investigated the influences of structural breaks on the fractionally integrated time-varying volatility model in the Malaysian stock markets which included the Kuala Lumpur composite index and four major sectoral indices. A fractionally integrated time-varying volatility model combined with sudden changes is developed to study the possibility of structural change in the empirical data sets. Our empirical results showed substantial reduction in fractional differencing parameters after the inclusion of structural change during the Asian financial and currency crises. Moreover, the fractionally integrated model with sudden change in volatility performed better in the estimation and specification evaluations.

  4. Influence of Bicarbonate, Sulfate, and Electron Donors on Biological reduction of Uranium and Microbial Community Composition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wensui [ORNL; Zhou, Jizhong [ORNL; Wu, Weimin [ORNL; Yan, Tingfen [ORNL; Criddle, Craig [ORNL; Jardine, Philip M [ORNL; Gu, Baohua [ORNL

    2007-01-01

    A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 mM or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonate (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and geoundwater geochemistry alter microbial communities responsible for U(VI) reduction.

  5. Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition

    Energy Technology Data Exchange (ETDEWEB)

    Luo Wensui [Oak Ridge Inst. for Science and Education, TN (United States); Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Wu Wei-Min; Criddle, C.S. [Stanford Univ., CA (United States). Dept. of Civil and Environmental Engineering; Yan Tingfen [Oak Ridge Inst. for Science and Education, TN (United States); Jardine, P.M.; Gu Baohua [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Zhou Jizhong [Oklahoma Univ., Norman, OK (United States). Dept. of Botany and Microbiology

    2007-12-15

    A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonate (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low-bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high-bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and groundwater geochemistry alter microbial communities responsible for U(VI) reduction. (orig.)

  6. Endogenous Lunar Volatiles: Insights into the Abundances of Volatiles in the Moon from Lunar Apatite

    Science.gov (United States)

    McCubbin, Francis

    2016-01-01

    At the time of publication of New Views of the Moon, it was thought that the Moon was bone dry with less than about 1 ppb H2O. However in 2007, initial reports at the 38th Lunar and Planetary Science Conference speculated that H-species were present in both apatites and pyroclastic volcanic lunar glasses. These early reports were later confirmed through peer-review, which motivated many subsequent studies on magmatic volatiles in and on the Moon within the last decade. Some of these studies have cast into question the post-Apollo view of lunar formation, the distribution and sources of volatiles in the Earth-Moon system, and the thermal and magmatic evolution of the Moon. The mineral apatite has been one of the pillars of this new field of study, and it will be the primary focus of this abstract. Although apatite has been used both to understand the abundances of volatiles in lunar systems as well as the isotopic compositions of those volatiles, the focus here will be on the abundances of F, Cl, and H2O. This work demonstrates the utility of apatite in advancing our understanding of lunar volatiles, hence apatite should be among the topics covered in the endogenous lunar volatile chapter in NVM II. Truncated ternary plot of apatite X-site occupancy (mol%) from highlands apatite and mare basalt apatite plotted on the relative volatile abundance diagram from. The solid black lines delineate fields of relative abundances of F, Cl, and H2O (on a weight basis) in the melt from which the apatite crystallized. The diagram was constructed using available apatite/melt partitioning data for fluorine, chlorine, and hydroxyl.

  7. Liquid biofuel production from volatile fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Steinbusch, K.J.J.

    2010-03-19

    The production of renewable fuels and chemicals reduces the dependency on fossil fuels and limits the increase of CO2 concentration in the atmosphere only if a sustainable feedstock and an energy efficient process are used. The thesis assesses the possibility to use municipal and industrial waste as biomass feedstock to have little of no competition with food production, and to save greenhouse gasses emissions. Waste is a complex substrate with a diverse composition and high water content. It can be homogenized without losing its initial energy value by anaerobic conversion to volatile fatty acids (VFA). Using VFA gives the opportunity to process cheap and abundantly present biomass residues to a fuel and chemical instead of sugar containing crops or vegetable oil. This thesis describes the feasibility to convert VFA to compounds with a higher energy content using mixed culture fermentations by eliminating of oxygen and/or increasing the carbon and hydrogen content. At high hydrogen pressure, protons and electrons release via the reduction of organic products such as VFA becomes thermodynamically more attractive. Three VFA reduction reactions were studied: hydrogenation to an alcohol with (1) hydrogen and (2) an electrode as electron donor, and (3) by chain elongation with hydrogen and ethanol. Based on concentration, production rate and efficiency, elongation of acetate with hydrogen and/or ethanol was the best technique to convert VFA into a fuel. In a CSTR (Continuous-flow stirred-tank reactor), 10.5 g L{sup -1} caproic acid and 0.48 g L{sup -1} caprylic acid were produced with ethanol and/or hydrogen at a specific MCFA (medium-chain fatty acids) production activity of 2.9 g caproate and 0.09 g caprylate per gram VSS d{sup -1} (volatile suspended solids). The products were selectively removed by calcium precipitation and solvent extraction with ethyl hexanoate and petroleum ether. Microbial characterization revealed that the microbial populations were stable and

  8. Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling

    International Nuclear Information System (INIS)

    Martinho, Graça; Pires, Ana; Saraiva, Luanha; Ribeiro, Rita

    2012-01-01

    Highlights: ► The article shows WEEE plastics characterization from a recycling unit in Portugal. ► The recycling unit has low machinery, with hand sorting of plastics elements. ► Most common polymers are PS, ABS, PC/ABS, HIPS and PP. ► Most plastics found have no identification of plastic type or flame retardants. ► Ecodesign is still not practiced for EEE, with repercussions in end of life stage. - Abstract: This paper describes a direct analysis study carried out in a recycling unit for waste electrical and electronic equipment (WEEE) in Portugal to characterize the plastic constituents of WEEE. Approximately 3400 items, including cooling appliances, small WEEE, printers, copying equipment, central processing units, cathode ray tube (CRT) monitors and CRT televisions were characterized, with the analysis finding around 6000 kg of plastics with several polymer types. The most common polymers are polystyrene, acrylonitrile–butadiene–styrene, polycarbonate blends, high-impact polystyrene and polypropylene. Additives to darken color are common contaminants in these plastics when used in CRT televisions and small WEEE. These additives can make plastic identification difficult, along with missing polymer identification and flame retardant identification marks. These drawbacks contribute to the inefficiency of manual dismantling of WEEE, which is the typical recycling process in Portugal. The information found here can be used to set a baseline for the plastics recycling industry and provide information for ecodesign in electrical and electronic equipment production.

  9. Composition of the mitochondrial electron transport chain in acanthamoeba castellanii: structural and evolutionary insights.

    Science.gov (United States)

    Gawryluk, Ryan M R; Chisholm, Kenneth A; Pinto, Devanand M; Gray, Michael W

    2012-11-01

    The mitochondrion, derived in evolution from an α-proteobacterial progenitor, plays a key metabolic role in eukaryotes. Mitochondria house the electron transport chain (ETC) that couples oxidation of organic substrates and electron transfer to proton pumping and synthesis of ATP. The ETC comprises several multiprotein enzyme complexes, all of which have counterparts in bacteria. However, mitochondrial ETC assemblies from animals, plants and fungi are generally more complex than their bacterial counterparts, with a number of 'supernumerary' subunits appearing early in eukaryotic evolution. Little is known, however, about the ETC of unicellular eukaryotes (protists), which are key to understanding the evolution of mitochondria and the ETC. We present an analysis of the ETC proteome from Acanthamoeba castellanii, an ecologically, medically and evolutionarily important member of Amoebozoa (sister to Opisthokonta). Data obtained from tandem mass spectrometric (MS/MS) analyses of purified mitochondria as well as ETC complexes isolated via blue native polyacrylamide gel electrophoresis are combined with the results of bioinformatic queries of sequence databases. Our bioinformatic analyses have identified most of the ETC subunits found in other eukaryotes, confirming and extending previous observations. The assignment of proteins as ETC subunits by MS/MS provides important insights into the primary structures of ETC proteins and makes possible, through the use of sensitive profile-based similarity searches, the identification of novel constituents of the ETC along with the annotation of highly divergent but phylogenetically conserved ETC subunits. © 2012 Elsevier B.V. All rights reserved.

  10. Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling.

    Science.gov (United States)

    Martinho, Graça; Pires, Ana; Saraiva, Luanha; Ribeiro, Rita

    2012-06-01

    This paper describes a direct analysis study carried out in a recycling unit for waste electrical and electronic equipment (WEEE) in Portugal to characterize the plastic constituents of WEEE. Approximately 3400 items, including cooling appliances, small WEEE, printers, copying equipment, central processing units, cathode ray tube (CRT) monitors and CRT televisions were characterized, with the analysis finding around 6000 kg of plastics with several polymer types. The most common polymers are polystyrene, acrylonitrile-butadiene-styrene, polycarbonate blends, high-impact polystyrene and polypropylene. Additives to darken color are common contaminants in these plastics when used in CRT televisions and small WEEE. These additives can make plastic identification difficult, along with missing polymer identification and flame retardant identification marks. These drawbacks contribute to the inefficiency of manual dismantling of WEEE, which is the typical recycling process in Portugal. The information found here can be used to set a baseline for the plastics recycling industry and provide information for ecodesign in electrical and electronic equipment production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Atomic layer deposition grown composite dielectric oxides and ZnO for transparent electronic applications

    International Nuclear Information System (INIS)

    Gieraltowska, S.; Wachnicki, L.; Witkowski, B.S.; Godlewski, M.; Guziewicz, E.

    2012-01-01

    In this paper, we report on transparent transistor obtained using laminar structure of two high-k dielectric oxides (hafnium dioxide, HfO 2 and aluminum oxide, Al 2 O 3 ) and zinc oxide (ZnO) layer grown at low temperature (60 °C–100 °C) using Atomic Layer Deposition (ALD) technology. Our research was focused on the optimization of technological parameters for composite layers Al 2 O 3 /HfO 2 /Al 2 O 3 for thin film transistor structures with ZnO as a channel and a gate layer. We elaborate on the ALD growth of these oxides, finding that the 100 nm thick layers of HfO 2 and Al 2 O 3 exhibit fine surface flatness and required amorphous microstructure. Growth parameters are optimized for the monolayer growth mode and maximum smoothness required for gating.

  12. Supercritical fluid extraction of volatile and non-volatile compounds from Schinus molle L.

    Directory of Open Access Journals (Sweden)

    M. S. T. Barroso

    2011-06-01

    Full Text Available Schinus molle L., also known as pepper tree, has been reported to have antimicrobial, antifungal, anti-inflammatory, antispasmodic, antipyretic, antitumoural and cicatrizing properties. This work studies supercritical fluid extraction (SFE to obtain volatile and non-volatile compounds from the aerial parts of Schinus molle L. and the influence of the process on the composition of the extracts. Experiments were performed in a pilot-scale extractor with a capacity of 1 L at pressures of 9, 10, 12, 15 and 20 MPa at 323.15 K. The volatile compounds were obtained by CO2 supercritical extraction with moderate pressure (9 MPa, whereas the non-volatile compounds were extracted at higher pressure (12 to 20 MPa. The analysis of the essential oil was carried out by GC-MS and the main compounds identified were sabinene, limonene, D-germacrene, bicyclogermacrene, and spathulenol. For the non-volatile extracts, the total phenolic content was determined by the Folin-Ciocalteau method. Moreover, one of the goals of this study was to compare the experimental data with the simulated yields predicted by a mathematical model based on mass transfer. The model used requires three adjustable parameters to predict the experimental extraction yield curves.

  13. Volatile metabolites from actinomycetes

    DEFF Research Database (Denmark)

    Scholler, C.E.G.; Gurtler, H.; Pedersen, R.

    2002-01-01

    Twenty-six Streptomyces spp. were screened for their volatile production capacity on yeast starch agar. The volatile organic compounds (VOCs) were concentrated on a porous polymer throughout an 8-day growth period. VOCs were analyzed by gas chromatography with flame ionization detection...... and identified or characterized by gas chromatography-mass spectrometry. A total of 120 VOCs were characterized by retention index and mass spectra. Fifty-three compounds were characterized as terpenoid compounds, among which 18 could be identified. Among the VOCs were alkanes, alkenes, alcohols, esters, ketones....... The relationship between the excretion of geosmin and the production of spores was examined for one isolate. A good correlation between headspace geosmin and the number of spores was observed, suggesting that VOCs could be used to indicate the activity of these microorganisms in heterogeneous substrates....

  14. Constraining the volatile budget of the lunar interior

    Science.gov (United States)

    Potts, N. J.; Bromiley, G. D.

    2017-12-01

    Measurements of volatiles (F, Cl, S, H2O) in a range of lunar samples confirm the presence of volatile material in lunar magmas. It remains unknown, however, where this volatile material is stored and when it was delivered to the Moon. On Earth, point defects within mantle olivine, and its high-pressure polymorphs, are thought to be the largest reservoir of volatile material. However, as volatiles have been cycled into and out of the Earth's mantle throughout geological time, via subduction and volcanism, this masks any original volatile signatures. As the Moon has no plate tectonics, it is expected that any volatile material present in the deep lunar interior would have been inherited during accretion and differentiation, providing insight into the delivery of volatiles to the early Earth-Moon system. Our aim was, therefore, to test the volatile storage capacity of the deep lunar mantle and determine mineral/melt partitioning for key volatiles. Experiments were performed in a primitive lunar mantle composition and run at relevant T, P, and at fO2 below the IW buffer. Experiments replicated the initial stages of LMO solidification with either olivine + melt, olivine + pyroxene + melt, or pyroxene + melt as the only phases present. Mineral-melt partition coefficients (Dx) derived for volatile material (F, Cl, S, H2O) vary significantly compared to those derived for terrestrial conditions. An order of magnitude more H2O was found to partition into lunar olivine compared to the terrestrial upper mantle. DF derived for lunar olivine are comparable to the highest terrestrial derived values whilst no Cl was found to partition into lunar olivine under these conditions. Furthermore, an inverse trend between DF and DOH hints towards coupled-substitution mechanisms between H and F under low-fO2/lunar bulk composition. These results suggest that if volatile material was present in the LMO a significant proportion could be partitioned into the lower lunar mantle. The

  15. Minimum Tracking Error Volatility

    OpenAIRE

    Luca RICCETTI

    2010-01-01

    Investors assign part of their funds to asset managers that are given the task of beating a benchmark. The risk management department usually imposes a maximum value of the tracking error volatility (TEV) in order to keep the risk of the portfolio near to that of the selected benchmark. However, risk management does not establish a rule on TEV which enables us to understand whether the asset manager is really active or not and, in practice, asset managers sometimes follow passively the corres...

  16. Recovering volatile liquids

    Energy Technology Data Exchange (ETDEWEB)

    Bregeat, J H

    1925-07-30

    The products of hydrogenation of alicyclic compounds, such as terpenes, for example, pinene or oil of turpentine, are used as washing liquids for absorbing vapours of volatile liquids from gases, such as natural gases from petroliferous regions, gases from the distillation of coal, lignite, schist, peat, etc. or from the cracking of heavy oils. Other liquids such as tar oils vaseline oils, cresols, etc. may be added.

  17. Understanding Interest Rate Volatility

    OpenAIRE

    Volker, Desi

    2016-01-01

    This thesis is the result of my Ph.D. studies at the Department of Finance of the Copenhagen Business School. It consists of three essays covering topics related to the term structure of interest rates, monetary policy and interest rate volatility. The rst essay, \\Monetary Policy Uncertainty and Interest Rates", examines the role of monetary policy uncertainty on the term structure of interest rates. The second essay, \\A Regime-Switching A ne Term Structure Model with Stochast...

  18. In-situ deformation studies of an aluminum metal-matrix composite in a scanning electron microscope

    Science.gov (United States)

    Manoharan, M.; Lewandowski, J. J.

    1989-01-01

    Tensile specimens made of a metal-matrix composite (cast and extruded aluminum alloy-based matrix reinforced with Al2O3 particulate) were tested in situ in a scanning electron microscope equipped with a deformation stage, to directly monitor the crack propagation phenomenon. The in situ SEM observations revealed the presence of microcracks both ahead of and near the crack-tip region. The microcracks were primarily associated with cracks in the alumina particles. The results suggest that a region of intense deformation exists ahead of the crack and corresponds to the region of microcracking. As the crack progresses, a region of plastically deformed material and associated microcracks remains in the wake of the crack.

  19. Chemical composition and electronic structure of the passive layer formed on stainless steels in a glucose-oxidase solution

    Energy Technology Data Exchange (ETDEWEB)

    Marconnet, C. [Laboratoire de Genie des Procedes et des Materiaux, Ecole Centrale Paris, Grande Voie des Vignes, 92290 CHATENAY-MALABRY (France)], E-mail: cyril.marconnet@yahoo.fr; Wouters, Y. [Science et Ingenierie des Materiaux et Procedes, Institut National Polytechnique de Grenoble, F-38402 Saint-Martin d' Heres Cedex (France); Miserque, F. [Laboratoire de Reactivite des Surfaces et des Interfaces, CEA Saclay, Bat. 391, 91191 GIF-SUR-YVETTE (France); Dagbert, C. [Laboratoire de Genie des Procedes et des Materiaux, Ecole Centrale Paris, Grande Voie des Vignes, 92290 CHATENAY-MALABRY (France)], E-mail: catherine.dagbert@ecp.fr; Petit, J.-P. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, INPG, F-38402 Saint-Martin d' Heres Cedex (France); Galerie, A. [Science et Ingenierie des Materiaux et Procedes, Institut National Polytechnique de Grenoble, F-38402 Saint-Martin d' Heres Cedex (France); Feron, D. [Service de Corrosion et du Comportement des Materiaux dans leur Environnement, CEA Saclay, Bat. 458, 91191 GIF-SUR-YVETTE (France)

    2008-12-01

    This article deals with the interaction between the passive layer formed on UNS S30403 and S31254 stainless steels and an enzymatic solution containing glucose oxidase (GOx) and its substrate D-glucose. This enzymatic solution is often used to reproduce in laboratory the ennoblement occuring in non-sterile aerated aqueous environments because of the biofilm settlement on the surface of the metallic material. GOx catalyses the oxidation of D-glucose to gluconic acid by reducing oxygen to hydrogen peroxide and produces an organic acid. Thanks to photocurrent measurements, XPS analysis and Mott-Schottky diagrams, it is here shown that such an environment generates modifications in the chemical composition and electronic structure of the passive layer: it induces a relative enrichment of the n-type semi-conducting phase containing chromium (chromine Cr{sub 2}O{sub 3}) and an increase of the donors density in the space charge region.

  20. Chemical composition and electronic structure of the passive layer formed on stainless steels in a glucose-oxidase solution

    International Nuclear Information System (INIS)

    Marconnet, C.; Wouters, Y.; Miserque, F.; Dagbert, C.; Petit, J.-P.; Galerie, A.; Feron, D.

    2008-01-01

    This article deals with the interaction between the passive layer formed on UNS S30403 and S31254 stainless steels and an enzymatic solution containing glucose oxidase (GOx) and its substrate D-glucose. This enzymatic solution is often used to reproduce in laboratory the ennoblement occuring in non-sterile aerated aqueous environments because of the biofilm settlement on the surface of the metallic material. GOx catalyses the oxidation of D-glucose to gluconic acid by reducing oxygen to hydrogen peroxide and produces an organic acid. Thanks to photocurrent measurements, XPS analysis and Mott-Schottky diagrams, it is here shown that such an environment generates modifications in the chemical composition and electronic structure of the passive layer: it induces a relative enrichment of the n-type semi-conducting phase containing chromium (chromine Cr 2 O 3 ) and an increase of the donors density in the space charge region

  1. Ion-induced Auger electron spectroscopy: a new detection method for compositional homogeneities of alloyed atoms in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, A [Osaka Univ., Japan; Imura, T; Iwami, M; Kim, S C; Ushita, K; Okamoto, H; Hamakawa, Y

    1979-09-01

    Auger spectra of Si LMM transitions induced by keV Ar/sup +/ ion bombardment of Si alloy systems have been studied. The spectra observed are composed of two well-defined peaks termed elsewhere the atomic-like and bulk-like peaks, repsectively. A clear correlation has been found between the intensity of the atomic-like peak lying at 88 eV and the content of the foreign atoms alloyed with Si. Experiments were carried out on metallic silicides, or Si alloys with Au, Cu, Pd and Ni, and covalently bonded non-metallic Si alloys of C and H. From these studies, we propose that ion-induced Auger electron spectroscopy might be a useful tool for the determination of alloyed foreign atoms as well as for the study of their compositional homogeneity in binary alloy systems of silicon.

  2. The memory of volatility

    Directory of Open Access Journals (Sweden)

    Kai R. Wenger

    2018-03-01

    Full Text Available The focus of the volatility literature on forecasting and the predominance of theconceptually simpler HAR model over long memory stochastic volatility models has led to the factthat the actual degree of memory estimates has rarely been considered. Estimates in the literaturerange roughly between 0.4 and 0.6 - that is from the higher stationary to the lower non-stationaryregion. This difference, however, has important practical implications - such as the existence or nonexistenceof the fourth moment of the return distribution. Inference on the memory order is complicatedby the presence of measurement error in realized volatility and the potential of spurious long memory.In this paper we provide a comprehensive analysis of the memory in variances of international stockindices and exchange rates. On the one hand, we find that the variance of exchange rates is subject tospurious long memory and the true memory parameter is in the higher stationary range. Stock indexvariances, on the other hand, are free of low frequency contaminations and the memory is in the lowernon-stationary range. These results are obtained using state of the art local Whittle methods that allowconsistent estimation in presence of perturbations or low frequency contaminations.

  3. Adaptive Optics System with Deformable Composite Mirror and High Speed, Ultra-Compact Electronics

    Science.gov (United States)

    Chen, Peter C.; Knowles, G. J.; Shea, B. G.

    2006-06-01

    We report development of a novel adaptive optics system for optical astronomy. Key components are very thin Deformable Mirrors (DM) made of fiber reinforced polymer resins, subminiature PMN-PT actuators, and low power, high bandwidth electronics drive system with compact packaging and minimal wiring. By using specific formulations of fibers, resins, and laminate construction, we are able to fabricate mirror face sheets that are thin (2 KHz. By utilizing QorTek’s proprietary synthetic impendence power supply technology, all the power, control, and signal extraction for many hundreds to 1000s of actuators and sensors can be implemented on a single matrix controller printed circuit board co-mounted with the DM. The matrix controller, in turn requires only a single serial bus interface, thereby obviating the need for massive wiring harnesses. The technology can be scaled up to multi-meter aperture DMs with >100K actuators.

  4. Effect of electron beam irradiation on mechanical properties of gelatin/Brazil nut shell fiber composites

    International Nuclear Information System (INIS)

    Inamura, Patricia Y.; Shimazaki, Kleber; Moura, Esperidiana Augusta Barretos de; Mastro, Nelida L. del; Colombo, Maria Aparecida; Rosa, Ricardo de

    2010-01-01

    The use of natural fiber as polymeric matrix reinforcement has attracted interest, as fibers are renewable, of low cost, biodegradable and possesses non-toxic properties. In the present paper, Brazil nuts (Bertholletia excelsa) shell fiber (10% w/w) were mixed with gelatin (25% w/w), glycerin as plasticizer and acrylamide as copolymer to investigate the resultant mechanical properties effects upon ionizing radiation. The samples were irradiated at 40 kGy using a Dynamitron electron beam accelerator, at room temperature in the presence of air. The results showed that samples of gelatin with 10% of Brazil nuts shell fiber and irradiated at 40 kGy presented promising results for mechanical performance. (author)

  5. In situ electron microscopy of Braille microsystems: photo-actuation of ethylene vinyl acetate/carbon nanotube composites

    Science.gov (United States)

    Czaniková, Klaudia; Krupa, Igor; Račko, Dušan; Šmatko, Vasilij; Campo, Eva M.; Pavlova, Ewa; Omastová, Mária

    2015-02-01

    The development of new types of tactile displays based on the actuation of composite materials can aid the visually impaired. Micro/nano systems based on ethylene vinyl acetate (EVA) polymeric matrices enriched with multiwalled carbon nanotubes (MWCNT) can produce ensembles capable of light-induced actuation. In this report, we investigate two types of commercial EVA copolymers matrices containing 28 and 50 wt% vinyl-acetate (VA). Non-covalent modification of carbon nanotubes was achieved through a compatibilization technique that appends the pyrenenyl and cholesteryl groups on the carbon nanotubes (CNTs) surface. EVA/MWCNT nanocomposites were prepared by casting from a solution. These composites were shaped into Braille elements using molds. The deformation of the Braille element (BE) under light-emitting diode (LED) illumination was observed for the first time by in situ scanning electron microscopy (SEM). The superior actuation performance promoted by the EVA/MWCNT nanocomposites indicates that these materials will be useful in the future as light-driven micro/nano system actuators.

  6. In situ electron microscopy of Braille microsystems: photo-actuation of ethylene vinyl acetate/carbon nanotube composites

    International Nuclear Information System (INIS)

    Czaniková, Klaudia; Krupa, Igor; Račko, Dušan; Omastová, Mária; Šmatko, Vasilij; Campo, Eva M; Pavlova, Ewa

    2015-01-01

    The development of new types of tactile displays based on the actuation of composite materials can aid the visually impaired. Micro/nano systems based on ethylene vinyl acetate (EVA) polymeric matrices enriched with multiwalled carbon nanotubes (MWCNT) can produce ensembles capable of light-induced actuation. In this report, we investigate two types of commercial EVA copolymers matrices containing 28 and 50 wt% vinyl-acetate (VA). Non-covalent modification of carbon nanotubes was achieved through a compatibilization technique that appends the pyrenenyl and cholesteryl groups on the carbon nanotubes (CNTs) surface. EVA/MWCNT nanocomposites were prepared by casting from a solution. These composites were shaped into Braille elements using molds. The deformation of the Braille element (BE) under light-emitting diode (LED) illumination was observed for the first time by in situ scanning electron microscopy (SEM). The superior actuation performance promoted by the EVA/MWCNT nanocomposites indicates that these materials will be useful in the future as light-driven micro/nano system actuators. (paper)

  7. Influence of natural antioxidants on lipid composition of beef burgers submitted to irradiation in 60 Co source and electron beams

    International Nuclear Information System (INIS)

    Trindade, Reginaldo Almeida da

    2007-01-01

    Radiation processing has been employed in some countries as a mean of treatment to assure microbiological safety of meat and meat products, avoiding the occurrence of food-borne disease. The ionizing radiation may cause some undesirable changes on chemistry composition of food and the lipid oxidation is one of the main reactions. In meat products processing industry, the lipid composition is directly related to nutritional and sensory quality of the product. For preventing oxidation, use of antioxidants which can be synthetic or natural, has been practically applied in some products. Currently, most attention has been given to natural antioxidants from herbs and spices like rosemary and oregano. The aim this study was to assess the antioxidant effects of either rosemary and oregano extract in beef burgers submitted to irradiation in 60 Co source with dose 6, 7 e 8 kGy, electron beams with dose 3,5 e 7 kGy and storage under freeze along 0, 45 e 90 days. The results showed that rosemary extract has the major antioxidant effects when it is used on heterogeneous food matrix like beef burger, but oregano extract was better efficient to delay lipid oxidation along storage time when it is used in synergism with rosemary and/or BHT/BHA. Although to have occurred changes in the fatty acids composition it was not possible to demonstrate a straight dependence of irradiation dose and/or storage time. Sensory analysis showed that between the samples prepared with natural antioxidants, the beef burger prepared with oregano has received better scores by panelists. Irradiated beef burger prepared with rosemary has received better scores when compared to non-irradiated one. The use of spices with antioxidant activity to avoid the oxidative damage in foods that contain fats in their formulation is thought to be promising to application in food facilities. (author)

  8. An Electronic Cigarette Vaping Machine for the Characterization of Aerosol Delivery and Composition.

    Science.gov (United States)

    Havel, Christopher M; Benowitz, Neal L; Jacob, Peyton; St Helen, Gideon

    2017-10-01

    Characterization of aerosols generated by electronic cigarettes (e-cigarettes) is one method used to evaluate the safety of e-cigarettes. While some researchers have modified smoking machines for e-cigarette aerosol generation, these machines are either not readily available, not automated for e-cigarette testing or have not been adequately described. The objective of this study was to build an e-cigarette vaping machine that can be used to test, under standard conditions, e-liquid aerosolization and nicotine and toxicant delivery. The vaping machine was assembled from commercially available parts, including a puff controller, vacuum pump, power supply, switch to control current flow to the atomizer, three-way value to direct air flow to the atomizer, and three gas dispersion tubes for aerosol trapping. To validate and illustrate its use, the variation in aerosol generation was assessed within and between KangerTech Mini ProTank 3 clearomizers, and the effect of voltage on aerosolization and toxic aldehyde generation were assessed. When using one ProTank 3 clearomizer and different e-liquid flavors, the coefficient of variation (CV) of aerosol generated ranged between 11.5% and 19.3%. The variation in aerosol generated between ProTank 3 clearomizers with different e-liquid flavors and voltage settings ranged between 8.3% and 16.3% CV. Aerosol generation increased linearly at 3-6V across e-liquids and clearomizer brands. Acetaldehyde, acrolein, and formaldehyde generation increased markedly at voltages at or above 5V. The vaping machine that we describe reproducibly aerosolizes e-liquids from e-cigarette atomizers under controlled conditions and is useful for testing of nicotine and toxicant delivery. This study describes an electronic cigarette vaping machine that was assembled from commercially available parts. The vaping machine can be replicated by researchers and used under standard conditions to generate e-cigarette aerosols and characterize nicotine and

  9. Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers

    Science.gov (United States)

    Kim, Jae-Woo; Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2014-02-01

    Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10 000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm-2. The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices.

  10. Porous polymer composite membrane based nanogenerator: A realization of self-powered wireless green energy source for smart electronics applications

    Science.gov (United States)

    Ghosh, Sujoy Kumar; Sinha, Tridib Kumar; Mahanty, Biswajit; Jana, Santanu; Mandal, Dipankar

    2016-11-01

    An efficient, flexible and unvaryingly porous polymer composite membrane based nanogenerator (PPCNG) without any electrical poling treatment has been realised as wireless green energy source to power up smart electronic gadgets. Owing to self-polarized piezo- and ferro-electretic phenomenon of in situ platinum nanoparticles (Pt-NPs) doped porous poly(vinylidenefluoride-co-hexafluoropropylene)-membrane, a simple, inexpensive and scalable PPCNG fabrication is highlighted. The molecular orientations of the -CH2/-CF2 dipoles that cause self-polarization phenomenon has been realized by angular dependent near edge X-ray absorption fine structure spectroscopy. The square-like hysteresis loop with giant remnant polarization, Pr ˜ 68 μC/cm2 and exceptionally high piezoelectric charge coefficient, d33 ˜ - 836 pC/N promises a best suited ferro- and piezo-electretic membrane. The PPCNG exhibits a high electrical throughput such as, ranging from 2.7 V to 23 V of open-circuit voltage (Voc) and 2.9 μA to 24.7 μA of short-circuit current (Isc) under 0.5 MPa to 4.3 MPa of imparted stress amplitude by periodic human finger motion. The harvested mechanical and subsequent electrical energy by PPCNG is shown to transfer wirelessly via visible and infrared transmitter-receiver systems, where 17% and 49% of wireless power transfer efficiency, respectively, has been realized to power up several consumer electronics.

  11. Influence of electron irradiation on internal friction and structure evolution of polymer composites

    International Nuclear Information System (INIS)

    Ismailova, G.A.

    2007-01-01

    Full text: Important qualitative information on structural evolution and radiation alterations in polymer materials under the action of ionizing radiation can be obtained from the analysis of the temperature dependences of internal friction. Changing of internal friction parameters of relax maxima during irradiation is qualitative degree parameter of radiation scission-cross linking of the polymer molecules. In this work, the general phenomenological approach is realized by introduction of the effective 'observed' parameters into the simple kinetic equations. The applicability of such approach is justified by the fact that kinetics of both internal friction and scission-cross linking processes can be characterized by the same effective parameters. Temperature dependences of internal friction are experimentally studied in epoxy irradiated by 2.5 MeV pulse electron beam to different doses (D=3 MGy, 6 MGy and 9 MGy). Time dependences of internal friction characteristics associated with radiation-induced processes of polymer scission and cross-linking are analyzed and discussed. Experimental data on kinetics of structural transformations in epoxy are interpreted on the base of analytical solutions of differential equations for free radical accumulation during and after irradiation subject to the arbitrary effective order of radical recombination. It is shown that in the range of doses and dose rates under study radiation-induced scission predominates during polymer irradiation but in a certain period of time after irradiation scission changes to cross-linking. Characteristics of the kinetic curves obtained essentially depend on the dose

  12. Effect of Remelting Duration on Microstructure and Properties of SiCp/Al Composite Fabricated by Powder-Thixoforming for Electronic Packaging

    Directory of Open Access Journals (Sweden)

    Siyu Cai

    2016-12-01

    Full Text Available In this work, a novel processing method called powder thixoforming was proposed to prepare composites reinforced with 50 vol % of SiC particles (SiCp that were used for electronic packaging in order to investigate the effects of remelting duration on its microstructure and properties. Optical Microscope (OM, Scanning Electron Microscope (SEM, X-ray Diffraction (XRD and Transmission Electron Microscope (TEM methods were applied for the material characterization and the corresponding physical and mechanical properties were examined in detail. The obtained results indicate that the remelting duration exerted a large effect on the microstructure as well as the SiCp/Al interfacial reaction. The density and hardness of the composite continuously increased with increasing remelting duration. The thermal conductivity (TC and bending strength (BS first increased during the initial 90 min and then decreased. The remelting duration exerted a limited influence on the coefficient of thermal expansion (CTE. The optimal TC, BS, and hardness of these composites were up to 135.79 W/(m·K, 348.53 MPa, and 105.23 HV, respectively, and the CTE was less than 6.5 ppm/K after the composites were remelted at 600 °C for 90 min. The properties of the composites could thus be controlled to conform to the application requirements for electronic packaging materials.

  13. Nano-composite of PtRu alloy electrocatalyst and electronically conducting polymer for use as the anode in a direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Jongho Choi; Kyungwon Park; Hyekyung Lee; Youngmin Kim; Jaesuk Lee; Yungeun Sung [Kwangju Inst. of Science and Technology, Dept. of Materials Science and Engineering, Gwangju (Korea)

    2003-08-15

    Nano-composites comprised of PtRu alloy nanoparticles and an electronically conducting polymer for the anode electrode in direct methanol fuel cell (DMFC) were prepared. Two conducting polymers of poly(N-vinyl carbazole) and poly(9-(4-vinyl-phenyl)carbazole) were used for the nano-composite electrodes. Structural analyses were carried out using Fourier transform nuclear magnetic resonance spectroscopy, AC impedance spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Electrocatalytic activities were investigated by voltammetry and chronoamperometry in a 2 M CH{sub 3}OH/{sub 0.5} M H{sub 2}SO{sub 4} solution and the data compared with a carbon-supported PtRu electrode. XRD patterns indicated good alloy formation and nano-composite formation was confirmed by TEM. Electrochemical measurements and DMFC unit-cell tests indicate that the nano-composites could be useful in a DMFC, but its performance would be slightly lower than that of a carbon-supported electrode. The interfacial property between the PtRu-polymer nano-composite anode and the polymer electrolyte was good, as evidenced by scanning electron microscopy. For better performance in a DMFC, a higher electric conductivity of the polymer and a lower catalyst loss are needed in nano-composite electrodes. (Author)

  14. A Role of Electron Beam Irradiation in the Property Improvement of Random and 2-D Type Jute/PLA Green Composites

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Donghwan; Ji, Sanggyu; Hwang, Junghyu; Lee, Byungchul [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2011-07-01

    The purpose of this research is to improve the interfacial adhesion between natural jute fibers and PlA and the mechanical and thermal properties of jute/PLA green composites by means of electron beam irradiation under optimal conditions for the modification of sustainable and naturally calculably natural fibers. In ths present study, randomly aligned jute fiber/PLA and 2-directionally aligned jute fabric/PLA green composites with jute treated with electron beam at different dosages were fabricated by compression molding method and the effect of electron beam treatment on their mechanical, impact and thermal properties and fracture surfaces was extensively investigated. It was clearly concluded that electron beam irradiation to jute fibers and jute fabrics at 10 kGy was surely improved the tensile, flexural, impact, dynamic mechanical properties, thermal expansion, heat deflection temperature and thermal stability of random jute fiber/PLA and 2-D jute fabric/PLA green composites, All the results were consistent with each other, supporting the positive role of electron beam irradiation on the improved properties of their green composites.

  15. Investigation of a novel protonic/electronic ceramic composite material as a candidate for hydrogen separation membranes

    Science.gov (United States)

    Fish, Jason S.

    A novel ceramic protonic/electronic conductor composite BaCe 0.2Zr0.7Y0.1O3-delta / Sr0.95 Ti0.9Nb0.1O3-delta (BCZY27/STN95: BS27) has been synthesized, and its electrical properties and hydrogen permeability have been investigated. The volume ratio of the STN95 phase was varied from 50 - 70 % to test the effects on conductivity and hydrogen permeability. BCZY27 and STN95 powders were prepared by solid-state reaction, and membrane samples were fabricated through conventional and spark plasma sintering techniques. The phase composition, density, and microstructure were compared between the sintering methodologies. Total conductivities of 0.01 - 0.06 S·cm -1 were obtained in wet (+1 % H2O) dilute H2/(N 2, He, Ar) from 600 - 800 °C for 50 volume % STN95. With increasing STN content (60 and 70 volume %), conductivity generally increased, though remained lower than predicted by standard effective medium models, even at 70 volume % STN95. A new effective medium model was proposed, which accounted for an interfacial resistance term associated with the heterojunctions formed between the BCZY27 and STN95 phases. Better fits for the measured data were achieved with this new method, although some effects remain unexplained. Discrepancies between the model and experiment were attributed to space charge effects, grain boundary resistances, and insulating impurity phase formation during synthesis. Dense BS27 samples were tested for high-temperature hydrogen permeation and a measured flux of 0.006 mumol·cm-2·s -1 was recorded for a 50 volume % STN95 sample at 700 °C, using dry argon as a sweep gas. This value represents a modest improvement on other ceramic composite membranes, but remains short of targets for commercialization. Persistent leaks in the flux experiments generated a shallower hydrogen gradient across the samples, although this p(H2) on the sweep side simultaneously decreased the oxygen partial pressure gradient across the sample and preserved the reduced state

  16. Surface Modification of Carbon Nanotubes with Conjugated Polyelectrolytes: Fundamental Interactions and Applications in Composite Materials, Nanofibers, Electronics, and Photovoltaics

    KAUST Repository

    Ezzeddine, Alaa

    2015-10-01

    the composites thermal, mechanical and electrical properties compared to pristine CNTs. Various spectroscopic and microscopic techniques such as UV-vis, fluorescence, TEM, AFM and SEM were used to study and characterize the CPE/CNT complexes. Also, TGA, DSC and DMA were used to study the thermal and mechanical properties of the composite materials. Our current work represents a fundamental study on the non-covalent interactions between CNTs and CPEs on one hand and gives a real life example on the CPE/CNT application in composite materials and electronics.

  17. Enhanced mobility in vertically scaled N-polar high-electron-mobility transistors using GaN/InGaN composite channels

    Science.gov (United States)

    Li, Haoran; Wienecke, Steven; Romanczyk, Brian; Ahmadi, Elaheh; Guidry, Matthew; Zheng, Xun; Keller, Stacia; Mishra, Umesh K.

    2018-02-01

    A GaN/InGaN composite channel design for vertically scaled N-polar high-electron-mobility transistor (HEMT) structures is proposed and demonstrated by metal-organic chemical vapor deposition. In a conventional N-polar HEMT structure, as the channel thickness (tch) decreases, the sheet charge density (ns) decreases, the electric field in the channel increases, and the centroid of the two-dimensional electron gas (2DEG) moves towards the back-barrier/channel interface, resulting in stronger scattering and lower electron mobility (μ). In this study, a thin InGaN layer was introduced in-between the channel and the AlGaN cap to increase the 2DEG density and reduce the electric field in the channel and therefore increase the electron mobility. The dependence of μ on the InGaN thickness (tInGaN) and the indium composition (xIn) was investigated for different channel thicknesses. With optimized tInGaN and xIn, significant improvements in electron mobility were observed. For a 6 nm channel HEMT structure, the electron mobility increased from 606 to 1141 cm2/(V.s) when the 6 nm thick pure GaN channel was replaced by the 4 nm GaN/2 nm In0.1Ga0.9N composite channel.

  18. Monitoring volatile anaesthetic agents

    International Nuclear Information System (INIS)

    Russell, W.J.

    2000-01-01

    Full text: The methods that have been used for monitoring volatile anaesthetic agents depend on some physical property such as Density, Refractometry, Mass, Solubility, Raman scattering, or Infra-red absorption. Today, refractometry and infra-red techniques are the most common. Refractometry is used for the calibration of vaporizers. All anaesthetic agents increase the refractive index of the carrier gas. Provided the mixture is known then the refractive change measures the concentration of the volatile anaesthetic agent. Raman Scattering is when energy hits a molecule a very small fraction of the energy is absorbed and re-emitted at one or more lower frequencies. The shift in frequency is a function of the chemical bonds and is a fingerprint of the substance irradiated. Electromagnetic (Infra-red) has been the commonest method of detection of volatile agents. Most systems use a subtractive system, i.e. the agent in the sampling cell absorbed some of the infrared energy and the photo-detector therefore received less energy. A different approach is where the absorbed energy is converted into a pressure change and detected as sound (Acoustic monitor). This gives a more stable zero reference. More recently, the detector systems have used multiple narrow-band wavelengths in the infrared bands and by shape matching or matrix computing specific agent identification is achieved and the concentration calculated. In the early Datex AS3 monitors, a spectral sweep across the 3 micron infrared band was used to create spectral fingerprints. The recently released AS3 monitors use a different system with five very narrow band filters in the 8-10 micron region. The transmission through each of these filters is a value in a matrix which is solved by a micro computer to identify the agent and its concentration. These monitors can assist in improving the safety and efficiency of our anaesthetics but do not ensure that the patient is completely anaesthetized. Copyright (2000

  19. Monitoring volatile anaesthetic agents

    Energy Technology Data Exchange (ETDEWEB)

    Russell, W J [Royal Adelaide Hospital, SA (Australia). Department of Anaesthesia and Intensive Care

    2000-12-01

    Full text: The methods that have been used for monitoring volatile anaesthetic agents depend on some physical property such as Density, Refractometry, Mass, Solubility, Raman scattering, or Infra-red absorption. Today, refractometry and infra-red techniques are the most common. Refractometry is used for the calibration of vaporizers. All anaesthetic agents increase the refractive index of the carrier gas. Provided the mixture is known then the refractive change measures the concentration of the volatile anaesthetic agent. Raman Scattering is when energy hits a molecule a very small fraction of the energy is absorbed and re-emitted at one or more lower frequencies. The shift in frequency is a function of the chemical bonds and is a fingerprint of the substance irradiated. Electromagnetic (Infra-red) has been the commonest method of detection of volatile agents. Most systems use a subtractive system, i.e. the agent in the sampling cell absorbed some of the infrared energy and the photo-detector therefore received less energy. A different approach is where the absorbed energy is converted into a pressure change and detected as sound (Acoustic monitor). This gives a more stable zero reference. More recently, the detector systems have used multiple narrow-band wavelengths in the infrared bands and by shape matching or matrix computing specific agent identification is achieved and the concentration calculated. In the early Datex AS3 monitors, a spectral sweep across the 3 micron infrared band was used to create spectral fingerprints. The recently released AS3 monitors use a different system with five very narrow band filters in the 8-10 micron region. The transmission through each of these filters is a value in a matrix which is solved by a micro computer to identify the agent and its concentration. These monitors can assist in improving the safety and efficiency of our anaesthetics but do not ensure that the patient is completely anaesthetized. Copyright (2000

  20. Nicotine and Carbonyl Emissions From Popular Electronic Cigarette Products: Correlation to Liquid Composition and Design Characteristics.

    Science.gov (United States)

    El-Hellani, Ahmad; Salman, Rola; El-Hage, Rachel; Talih, Soha; Malek, Nathalie; Baalbaki, Rima; Karaoghlanian, Nareg; Nakkash, Rima; Shihadeh, Alan; Saliba, Najat A

    2018-01-05

    Available in hundreds of device designs and thousands of flavors, electronic cigarette (ECIG) may have differing toxicant emission characteristics. This study assesses nicotine and carbonyl yields in the most popular brands in the U.S. market. These products included disposable, prefilled cartridge, and tank-based ECIGs. Twenty-seven ECIG products of 10 brands were procured and their power outputs were measured. The e-liquids were characterized for pH, nicotine concentration, propylene glycol/vegetable glycerin (PG/VG) ratio, and water content. Aerosols were generated using a puffing machine and nicotine and carbonyls were, respectively, quantified using gas chromatograph and high-performance liquid chromatography. A multiregression model was used to interpret the data. Nicotine yields varied from 0.27 to 2.91 mg/15 puffs, a range corresponding to the nicotine yield of less than 1 to more than 3 combustible cigarettes. Nicotine yield was highly correlated with ECIG type and brand, liquid nicotine concentration, and PG/VG ratio, and to a lower significance with electrical power, but not with pH and water content. Carbonyls, including the carcinogen formaldehyde, were detected in all ECIG aerosols, with total carbonyl concentrations ranging from 3.72 to 48.85 µg/15 puffs. Unlike nicotine, carbonyl concentrations were mainly correlated with power. In 15 puffs, some ECIG devices emit nicotine quantities that exceed those of tobacco cigarettes. Nicotine emissions vary widely across products but carbonyl emissions showed little variations. In spite of that ECIG users are exposed to toxicologically significant levels of carbonyl compounds, especially formaldehyde. Regression analysis showed the importance of design and e-liquid characteristics as determinants of nicotine and carbonyl emissions. Periodic surveying of characteristics of ECIG products available in the marketplace is valuable for understanding population-wide changes in ECIG use patterns over time. © The

  1. Carbon nanomaterials for non-volatile memories

    Science.gov (United States)

    Ahn, Ethan C.; Wong, H.-S. Philip; Pop, Eric

    2018-03-01

    Carbon can create various low-dimensional nanostructures with remarkable electronic, optical, mechanical and thermal properties. These features make carbon nanomaterials especially interesting for next-generation memory and storage devices, such as resistive random access memory, phase-change memory, spin-transfer-torque magnetic random access memory and ferroelectric random access memory. Non-volatile memories greatly benefit from the use of carbon nanomaterials in terms of bit density and energy efficiency. In this Review, we discuss sp2-hybridized carbon-based low-dimensional nanostructures, such as fullerene, carbon nanotubes and graphene, in the context of non-volatile memory devices and architectures. Applications of carbon nanomaterials as memory electrodes, interfacial engineering layers, resistive-switching media, and scalable, high-performance memory selectors are investigated. Finally, we compare the different memory technologies in terms of writing energy and time, and highlight major challenges in the manufacturing, integration and understanding of the physical mechanisms and material properties.

  2. Ambient Volatility of Triethyl Phosphate

    Science.gov (United States)

    2017-08-01

    of materials is predictable using Raoult’s law. This report details the measurement of the effect of water vapor partial pressure on the volatility...empirical correlation taking into account nonideal behavior was developed to enable estimation of TEPO volatility at any combination of ambient...of the second component is expected to be one-half as much as in the absence of water vapor. Similarly, the measured volatility of the second

  3. Effect of Electron Beam Irradiation of the Characteristics of Jute Fibers and the Interfacial Properties of Jute/PLA Green Composites

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Sang Gyu; Cho, Dong Hwan [Kumoh National Institute of Technology, Gumi (Korea, Republic of); Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-07-01

    Cellulose-based natural fibers such as jute, knife and hemp have promising potential as a replacement for glass fibers in a polymer composite system because of their many advantages like natural abundance, low cost, light weight, biodegradability, carbon dioxide reduction in nature and acceptable mechanical properties. However, natural fibers need an appropriate surface treatment modifying their surface characteristics in order to effectively improve the interfacial properties as well as the mechanical and thermal properties. Electron beam irradiation technique is particularly interesting as it may offer the possibility to modify the surfaces and to enhance the properties of polymer materials such as fibers, films and composites. In addition, electron beam processing has a merit because it is a dry, solvent free and eco-friendly method with a fast throughput rate. In the present study, Jute fibers were irradiated at different dosages of electron beam from 10 to 100 kGy. The result was compared with raw jute fibers un-irradiated, showing the effect on the interfacial shear strength between jute fibers and PLA in terms of single fiber tensile property, fiber surface topology, and chemical composition occurring in jute fibers upon irradiation. It has been found that the surface topology and chemical characteristics of jute fibers significantly depended on the electron beam dosage irradiated, directly influencing the interfacial shear strength and interlaminar shear strength of jute-PLA green composites. It was concluded that electron beam irradiation played a contributing role not only in physically modifying the jute fiber surfaces but also in improving the interfacial properties between jute fibers and poly in the green composite, exhibiting the most effectiveness at a low electron beam energy of 10 kGy.

  4. Volatiles from solids

    Energy Technology Data Exchange (ETDEWEB)

    Loughrey, C T

    1939-08-24

    To remove volatiles from solids, such as oil shale, gases, and/or vapours are passed through a mass of the materials, the vapours and gases separated, and the vapours condensed. The volatile-containing solid materials are fed to a retort, and a shaft is driven to rotate an impeller so as to displace the liquid and create a vortex tube, which draws in gas from the atmosphere through an intake, twyer, interstices in the material in the retort, a conduit, chamber, tubes, another chamber and cylinder. This gas is carried outwardly and upwardly by the vortices in the liquid and is carried to discharge through three conduits. The vapours entrained by the gas are part condensed in the liquid and the remainder directed to a condenser. Steam may be delivered to the twyer through a nozzle of a pipe, with or without air, and combustible hydrocarbon fuel may be fed through the burner nozzle or solid fuel may be directed from feeder and combusted in the twyer.

  5. Molecular plant volatile communication.

    Science.gov (United States)

    Holopainen, Jarmo K; Blande, James D

    2012-01-01

    Plants produce a wide array of volatile organic compounds (VOCs) which have multiple functions as internal plant hormones (e.g., ethylene, methyl jasmonate and methyl salicylate), in communication with conspecific and heterospecific plants and in communication with organisms of second (herbivores and pollinators) and third (enemies of herbivores) trophic levels. Species specific VOCs normally repel polyphagous herbivores and those specialised on other plant species, but may attract specialist herbivores and their natural enemies, which use VOCs as host location cues. Attraction of predators and parasitoids by VOCs is considered an evolved indirect defence, whereby plants are able to indirectly reduce biotic stress caused by damaging herbivores. In this chapter we review these interactions where VOCs are known to play a crucial role. We then discuss the importance of volatile communication in self and nonself detection. VOCs are suggested to appear in soil ecosystems where distinction of own roots from neighbours roots is essential to optimise root growth, but limited evidence of above-ground plant self-recognition is available.

  6. Volatility Mean Reversion and the Market Price of Volatility Risk

    NARCIS (Netherlands)

    Boswijk, H.P.

    2001-01-01

    This paper analyzes sources of derivative pricing errors in a stochastic volatility model estimated on stock return data. It is shown that such pricing errors may reflect the existence of a market price of volatility risk, but also may be caused by estimation errors due to a slow mean reversion in

  7. It’s all about volatility of volatility

    DEFF Research Database (Denmark)

    Grassi, Stefano; Santucci de Magistris, Paolo

    2015-01-01

    The persistent nature of equity volatility is investigated by means of a multi-factor stochastic volatility model with time varying parameters. The parameters are estimated by means of a sequential matching procedure which adopts as auxiliary model a time-varying generalization of the HAR model f...

  8. The effect of electron beam irradiation on the mechanical properties of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites

    Science.gov (United States)

    Siregar, J. P.; Sapuan, S. M.; Rahman, M. Z. A.; Zaman, H. M. D. K.

    2010-05-01

    The effects of electron beam irradiation on the mechanical properties of pineapple leaf fibre reinforced high impact polystyrene (HIPS) composites were studied. Two types of crosslinking agent that has been used in this study were trimethylolpropane triacrylate (TMPTA) and tripropylene gylcol diacrylate (TPGDA). A 50 wt.% of PALF was blended with HIPS and crosslinking agent using Brabender melt mixer at 165 °C. The composites were then irradiated using a 3 MeV electron beam accelerator with dosage of 0-100 kGy. The tensile strength, tensile modulus, flexural strength, flexural modulus, notched and unnotched impat and hardness of composites were measured and the effects of crosslinking agent were also compared.

  9. The effect of electron beam irradiation on the mechanical properties of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites

    Energy Technology Data Exchange (ETDEWEB)

    Siregar, J P; Sapuan, S M [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Rahman, M Z A [Department of Chemistry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Zaman, H M D K, E-mail: januarjasmine@yahoo.com [Radiation Processing Technology Division, Malaysia Nuclear Agency, Bangi 43000 Kajang, Selangor (Malaysia)

    2010-05-15

    The effects of electron beam irradiation on the mechanical properties of pineapple leaf fibre reinforced high impact polystyrene (HIPS) composites were studied. Two types of crosslinking agent that has been used in this study were trimethylolpropane triacrylate (TMPTA) and tripropylene gylcol diacrylate (TPGDA). A 50 wt.% of PALF was blended with HIPS and crosslinking agent using Brabender melt mixer at 165 deg. C. The composites were then irradiated using a 3 MeV electron beam accelerator with dosage of 0-100 kGy. The tensile strength, tensile modulus, flexural strength, flexural modulus, notched and unnotched impat and hardness of composites were measured and the effects of crosslinking agent were also compared.

  10. The effect of electron beam irradiation on the mechanical properties of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites

    International Nuclear Information System (INIS)

    Siregar, J P; Sapuan, S M; Rahman, M Z A; Zaman, H M D K

    2010-01-01

    The effects of electron beam irradiation on the mechanical properties of pineapple leaf fibre reinforced high impact polystyrene (HIPS) composites were studied. Two types of crosslinking agent that has been used in this study were trimethylolpropane triacrylate (TMPTA) and tripropylene gylcol diacrylate (TPGDA). A 50 wt.% of PALF was blended with HIPS and crosslinking agent using Brabender melt mixer at 165 deg. C. The composites were then irradiated using a 3 MeV electron beam accelerator with dosage of 0-100 kGy. The tensile strength, tensile modulus, flexural strength, flexural modulus, notched and unnotched impat and hardness of composites were measured and the effects of crosslinking agent were also compared.

  11. Siderophile Volatile Element Partitioning during Core Formation.

    Science.gov (United States)

    Loroch, D. C.; Hackler, S.; Rohrbach, A.; Klemme, S.

    2017-12-01

    Since the nineteen sixties it is known, that the Earth's mantle is depleted relative to CI chondrite in numerous elements as a result of accretion and core-mantle differentiation. Additionally, if we take the chondritic composition as the initial solar nebular element abundances, the Earth lacks 85 % of K and up to 98 % of other volatiles. However one potentially very important group of elements has received considerably less attention in this context and these elements are the siderophile but volatile elements (SVEs). SVEs perhaps provide important information regarding the timing of volatile delivery to Earth. Especially for the SVEs the partitioning between metal melt and silicate melt (Dmetal/silicate) at core formation conditions is poorly constrained, never the less they are very important for most of the core formation models. This study is producing new metal-silicate partitioning data for a wide range of SVEs (S, Se, Te, Tl, Ag, As, Au, Cd, Bi, Pb, Sn, Cu, Ge, Zn, In and Ga) with a focus on the P, T and fO2dependencies. The initial hypothesis that we are aiming to test uses the accretion of major portions of volatile elements while the core formation was still active. The key points of this study are: - What are the effects of P, T and fO2 on SVE metal-silicate partioning? - What is the effect of compositional complexity on SVE metal-silicate partioning? - How can SVE's D-values fit into current models of core formation? The partitioning experiments will be performed using a Walker type multi anvil apparatus in a pressure range between 10 and 20 GPa and temperatures of 1700 up to 2100 °C. To determine the Dmetal/silicate values we are using a field emission high-resolution JEOL JXA-8530F EPMA for major elements and a Photon Machines Analyte G2 Excimer laser (193 nm) ablation system coupled to a Thermo Fisher Element 2 single-collector ICP-MS (LA-ICP-MS) for the trace elements. We recently finished the first sets of experiments and can provide the

  12. Intense pyrification of volatile inorganic halides

    International Nuclear Information System (INIS)

    Nesel'son, L.A.; Tret'yakov, K.V.; Cherenkov, A.V.; Solov'ev, V.F.

    1992-01-01

    It is found that the studies systems form the fusibility curves of eutectic type with the limited regions of separation in the middle part of composition. The liquid-vapour equilibrium of the WF 6 -Nb(Ta)F 5 systems is characterized by strong positive deviation from the ideal case but without formation of azeotropes. The values of coefficients for relative volatility of the dilute solutions of niobium and tantalum pentafluorides in tungsten hexafluoride are found. The values of these coefficients are sufficiently large to provide the efficient purification from niobium and tantalum by the method of fractional distillation

  13. Effects of Rice Husk Modification with Liquid Natural Rubber and Exposure to Electron Beam Radiation on the Mechanical Properties of NR/ HDPE/ Rice Husk Composites

    International Nuclear Information System (INIS)

    Lane, C.E.; Ishak Ahmad; Ibrahim Abdullah; Dahlan Mohd

    2011-01-01

    Rice husk (RH) powder is a natural fibre capable of reinforcing natural rubber thermoplastic (TPNR) NR/ HDPE composites on specific modification of the particle surface. In this study the modification of RH powder involved pre-treatment with 5 % sodium hydroxide (NaOH) solution, soaking in LNR solution and exposure of LNR coated RH to electron beam (EB) irradiation. Preparation of NR/ HDPE/ RH composites was via melt-mixing in an internal mixer at predetermined conditions. Morphology study of the composites using scanning electron microscope (SEM) showed a homogeneous distribution of modified RH particles and particle-matrix interaction in the composite. Modified RH filled composites exhibited a significant change in mechanical properties. The maximum stress and impact strength were 6.7 MPa and 13.2 kJ/ m 2 , respectively at 20 kGy radiation, while the tensile modulus was 79 MPa at 30 kGy dose. The interfacial RH-TPNR interaction for the LNR-EB treated RH particles had improved in the EB dosage range of 20-30 kGy. However, over exposure to radiation caused degradation of rubber coat and interaction between particles to increase. Agglomeration of filler particles would occur and caused inhomogeneous distribution of filler in the composite. (author)

  14. Characterization of a Carbon Nanotube Field Emission Electron Gun for the VAPoR Miniaturized Pyrolysis-Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Getty, Stephanie; Li, Mary; Costen, Nicholas; Hess, Larry; Feng, Steve; King, Todd; Brinckerhoff, William; Mahaffy, Paul; Glavin, Daniel

    2009-01-01

    We are developing the VAPoR (Volatile Analysis by Pyrolysis of Regolith) instrument towards studying soil composition, volatiles, and trapped noble gases in the polar regions of the Moon. VAPOR will ingest a soil sample and conduct analysis by pyrolysis and time-of-flight mass spectrometry (ToF-MS). Here, we describe miniaturization efforts within this development, including a carbon nanotube (CNT) field emission electron gun that is under consideration for use as the electron impact ionization source for the ToF-MS.

  15. Synthesis of compact patterns for NMR relaxation decay in intelligent "electronic tongue" for analyzing heavy oil composition

    Science.gov (United States)

    Lapshenkov, E. M.; Volkov, V. Y.; Kulagin, V. P.

    2018-05-01

    The article is devoted to the problem of pattern creation of the NMR sensor signal for subsequent recognition by the artificial neural network in the intelligent device "the electronic tongue". The specific problem of removing redundant data from the spin-spin relaxation signal pattern that is used as a source of information in analyzing the composition of oil and petroleum products is considered. The method is proposed that makes it possible to remove redundant data of the relaxation decay pattern but without introducing additional distortion. This method is based on combining some relaxation decay curve intervals that increment below the noise level such that the increment of the combined intervals is above the noise level. In this case, the relaxation decay curve samples that are located inside the combined intervals are removed from the pattern. This method was tested on the heavy-oil NMR signal patterns that were created by using the Carr-Purcell-Meibum-Gill (CPMG) sequence for recording the relaxation process. Parameters of CPMG sequence are: 100 μs - time interval between 180° pulses, 0.4s - duration of measurement. As a result, it was revealed that the proposed method allowed one to reduce the number of samples 15 times (from 4000 to 270), and the maximum detected root mean square error (RMS error) equals 0.00239 (equivalent to signal-to-noise ratio 418).

  16. Phenolic composition and related antioxidant properties in differently colored lettuces: a study by electron paramagnetic resonance (EPR) kinetics.

    Science.gov (United States)

    Pérez-López, Usue; Pinzino, Calogero; Quartacci, Mike Frank; Ranieri, Annamaria; Sgherri, Cristina

    2014-12-10

    Differently colored lettuce (Lactuca sativa L.) cultivars (green, green/red, and red) were studied to correlate their phenolic composition with their antioxidant kinetic behavior. Electron paramagnetic resonance (EPR) was employed to monitor decay kinetics of 1,1-diphenyl-2-picrylhydrazyl (DPPH(•)), which allowed the identification of three differently paced antioxidants. The results showed that as long as lettuce had higher red pigmentation, the hydrophilic antioxidant capacity increased together with the contents in free and conjugated phenolic acids, free and conjugated flavonoids, and anthocyanins. EPR allowed the identification of slow-rate antioxidants in green and green/red cultivars, intermediate-rate antioxidants in green, green/red, and red cultivars, and fast-rate antioxidants in green/red and red cultivars. At present, the different kinetic behaviors cannot be attributed to a specific antioxidant, but it is suggested that the flavonoid quercetin accounted for the majority of the intermediate-rate antioxidants, whereas the anthocyanins accounted for the majority of the fast-rate antioxidants.