WorldWideScience

Sample records for volatile atmospheric acids

  1. Atmospheric fate of non volatile and ionizable compounds

    DEFF Research Database (Denmark)

    Franco, Antonio; Hauschild, Michael Zwicky; Jolliet, Olivier

    2011-01-01

    A modified version of theMultimedia Activity Model for Ionics MAMI, including two-layered atmosphere,air–water interface partitioning, intermittent rainfall and variable cloud coverage was developed to simulate the atmospheric fate of ten low volatility or ionizable organic chemicals. Probabilist...

  2. Measuring the atmospheric organic aerosol volatility distribution: a theoretical analysis

    Directory of Open Access Journals (Sweden)

    E. Karnezi

    2014-01-01

    Full Text Available Organic compounds represent a significant fraction of submicrometer atmospheric aerosol mass. Even if most of these compounds are semi-volatile in atmospheric concentrations, the ambient organic aerosol volatility is quite uncertain. The most common volatility measurement method relies on the use of a thermodenuder (TD. The aerosol passes through a heated tube where its more volatile components evaporate leaving the less volatile behind in the particulate phase. The typical result of a~thermodenuder measurement is the mass fraction remaining (MFR, which depends among other factors on the organic aerosol (OA vaporization enthalpy and the accommodation coefficient. We use a new method combining forward modeling, introduction of "experimental" error and inverse modeling with error minimization for the interpretation of TD measurements. The OA volatility distribution, its effective vaporization enthalpy, the mass accommodation coefficient and the corresponding uncertainty ranges are calculated. Our results indicate that existing TD-based approaches quite often cannot estimate reliably the OA volatility distribution, leading to large uncertainties, since there are many different combinations of the three properties that can lead to similar thermograms. We propose an improved experimental approach combining TD and isothermal dilution measurements. We evaluate this experimental approach using the same model and show that it is suitable for studies of OA volatility in the lab and the field.

  3. The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere

    Science.gov (United States)

    Rottenberger, S.; Kleiss, B.; Kuhn, U.; Wolf, A.; Piedade, M. T. F.; Junk, W.; Kesselmeier, J.

    2008-08-01

    reached 12 nmol m-2 min-1. The observed differences in emission rates between the tree species are discussed with respect to their root adaptive strategies to tolerate long term flooding, providing an indirect line of evidence that the root ethanol production is a major factor determining the foliar emissions. Species which develop morphological root structures allowing for enhanced root aeration produced less ethanol and showed much lower emissions compared to species which lack gas transporting systems, and respond to flooding with substantially enhanced fermentation rates and a non-trivial loss of carbon to the atmosphere. The pronounced differences in the relative emissions of ethanol to acetaldehyde and acetic acid between the tree species indicate that not only the ethanol production in the roots but also the metabolic conversion in the leaf is an important factor determining the release of these compounds to the atmosphere.

  4. Acid volatile sulfide (AVS)- a comment

    NARCIS (Netherlands)

    Meysman, F.J.R.; Middelburg, J.J.

    2005-01-01

    The review by Rickard and Morse (this volume) adequately summarizes our current understanding with respect to acid-volatile sulfides (AVS). At the same time, this review addresses some of the misunderstandings with regard to measurements and dynamics of this important sedimentary sulfur pool. In

  5. Xenon isotopic constraints on the timing of atmospheric volatile recycling

    Science.gov (United States)

    Parai, R.; Mukhopadhyay, S.

    2015-12-01

    Constraints on the recycling of atmospheric volatiles into the deep Earth provide important insights into mantle temperature, cooling rate, structure and style of convection over Earth history. Studies of ancient atmospheric gases trapped in Archean cherts show that the Xe isotopic composition of the atmosphere at ~3.5 Ga differed from the modern atmosphere [1]. This suggests the atmosphere evolved in isotopic composition until it reached its present-day composition at some time after 3.5 Ga. The evolution of the atmospheric Xe isotopic composition presents an opportunity to constrain the timing of Xe recycling into the Earth's mantle. Xe isotopes measured in mid-ocean ridge basalts [MORBs; 2,3] and plume-related basalts [4,5] indicate that both the upper mantle and plume source Xe isotopic compositions are dominated by recycled Xe [e.g., 3]. We find that the mantle source Xe isotopic compositions cannot be explained by recycling ancient atmospheric Xe alone; rather, subduction and incorporation of material bearing the modern atmospheric Xe composition must dominate. We note that our findings are consistent with a number of physical reasons that recently-subducted volatiles should be more prevalent than ancient subducted volatiles. First, a higher Archean mantle potential temperature should inhibit early Xe recycling to the deep Earth. Second, since the mantle turnover time scale is estimated to be between a few hundreds of Myr and 1 Gyr, the mantle recycled atmospheric Xe budget should be primarily composed of Xe subducted after ~2.5 Ga, at which point the atmosphere approaches the modern Xe composition [1]. Therefore, even if ancient atmospheric Xe were recycled efficiently to the mantle early in Earth history, the recycled atmospheric Xe budget of the mantle should still be dominated by the modern atmospheric Xe composition. [1] Pujol et al., 2011, EPSL; [2] Tucker et al., 2012, EPSL; [3] Parai and Mukhopadhyay, 2015, G-cubed; [4] Mukhopadhyay, 2012, Nature; [5

  6. The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere

    Directory of Open Access Journals (Sweden)

    W. Junk

    2008-08-01

    acetaldehyde. Acetic acid emissions reached 12 nmol m−2 min−1. The observed differences in emission rates between the tree species are discussed with respect to their root adaptive strategies to tolerate long term flooding, providing an indirect line of evidence that the root ethanol production is a major factor determining the foliar emissions. Species which develop morphological root structures allowing for enhanced root aeration produced less ethanol and showed much lower emissions compared to species which lack gas transporting systems, and respond to flooding with substantially enhanced fermentation rates and a non-trivial loss of carbon to the atmosphere. The pronounced differences in the relative emissions of ethanol to acetaldehyde and acetic acid between the tree species indicate that not only the ethanol production in the roots but also the metabolic conversion in the leaf is an important factor determining the release of these compounds to the atmosphere.

  7. 21 CFR 573.914 - Salts of volatile fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a... contains ammonium or calcium salts of volatile fatty acids and shall conform to the...

  8. Aerosol volatility and enthalpy of sublimation of carboxylic acids.

    Science.gov (United States)

    Salo, Kent; Jonsson, Asa M; Andersson, Patrik U; Hallquist, Mattias

    2010-04-08

    The enthalpy of sublimation has been determined for nine carboxylic acids, two cyclic (pinonic and pinic acid) and seven straight-chain dicarboxylic acids (C(4) to C(10)). The enthalpy of sublimation was determined from volatility measurements of nano aerosol particles using a volatility tandem differential mobility analyzer (VTDMA) set-up. Compared to the previous use of a VTDMA, this novel method gives enthalpy of sublimation determined over an extended temperature range (DeltaT approximately 40 K). The determined enthalpy of sublimation for the straight-chain dicarboxylic acids ranged from 96 to 161 kJ mol(-1), and the calculated vapor pressures at 298 K are in the range of 10(-6)-10(-3) Pa. These values indicate that dicarboxylic acids can take part in gas-to-particle partitioning at ambient conditions and may contribute to atmospheric nucleation, even though homogeneous nucleation is unlikely. To obtain consistent results, some experimental complications in producing nanosized crystalline aerosol particles were addressed. It was demonstrated that pinonic acid "used as received" needed a further purification step before being suspended as a nanoparticle aerosol. Furthermore, it was noted from distinct differences in thermal properties that aerosols generated from pimelic acid solutions gave two types of particles. These two types were attributed to crystalline and amorphous configurations, and based on measured thermal properties, the enthalpy of vaporization was 127 kJ mol(-1) and that of sublimation was 161 kJ mol(-1). This paper describes a new method that is complementary to other similar methods and provides an extension of existing experimental data on physical properties of atmospherically relevant compounds.

  9. Formation of volatile chemicals from thermal degradation of less volatile coffee components: quinic acid, caffeic acid, and chlorogenic acid.

    Science.gov (United States)

    Moon, Joon-Kwan; Shibamoto, Takayuki

    2010-05-12

    The less volatile constituents of coffee beans (quinic acid, caffeic acid, and chlorogenic acid) were roasted under a stream of nitrogen, air, or helium. The volatile degradation compounds formed were analyzed by gas chromatography and gas chromatography-mass spectrometry. Caffeic acid produced the greatest amount of total volatiles. Quinic acid and chlorogenic acid produced a greater number of volatiles under the nitrogen stream than under the air stream. These results suggest that the presence of oxygen does not play an important role in the formation of volatile compounds by the heat degradation of these chemicals. 2,5-Dimethylfuran formed in relatively large amounts (59.8-2231.0 microg/g) in the samples obtained from quinic acid and chlorogenic acid but was not found in the samples from caffeic acid. Furfuryl alcohol was found in the quinic acid (259.9 microg/g) and caffeic acid (174.4 microg/g) samples roasted under a nitrogen stream but not in the chlorogenic sample. The three acids used in the present study do not contain a nitrogen atom, yet nitrogen-containing heterocyclic compounds, pyridine, pyrrole, and pyrazines, were recovered. Phenol and its derivatives were identified in the largest quantities. The amounts of total phenols ranged from 60.6 microg/g (quinic acid under helium) to 89893.7 microg/g (caffeic acid under helium). It was proposed that phenol was formed mainly from quinic acid and that catechols were formed from caffeic acid. Formation of catechol from caffeic acid under anaerobic condition indicates that the reaction participating in catechol formation was not oxidative degradation.

  10. Muscodor albus Volatiles Control Toxigenic Fungi under Controlled Atmosphere (CA Storage Conditions

    Directory of Open Access Journals (Sweden)

    Gordon Braun

    2012-11-01

    Full Text Available Muscodor albus, a biofumigant fungus, has the potential to control post-harvest pathogens in storage. It has been shown to produce over 20 volatile compounds with fungicidal, bactericidal and insecticidal properties. However, M. albus is a warm climate endophyte, and its biofumigant activity is significantly inhibited at temperatures below 5 °C. Conidia of seven mycotoxin producing fungi, Aspergillus carbonarius, A. flavus, A. niger, A. ochraceus, Penicillium verrucosum, Fusarium culmorum and F. graminearum, were killed or prevented from germinating by exposure to volatiles from 2 g M. albus-colonized rye grain per L of headspace in sealed glass jars for 24 h at 20 °C. Two major volatiles of M. albus, isobutyric acid (IBA and 2-methyl-1-butanol (2MB at 50 µL/L and 100 µL/L, respectively, gave differential control of the seven fungi when applied individually at 20 °C. When the fungi were exposed to both IBA and 2MB together, an average of 94% of the conidia were killed or suppressed. In a factorial experiment with controlled atmosphere storage (CA at 3 °C and 72 h exposure to four concentrations of IBA and 2MB combinations, 50 µL/L IBA plus 100 µL/L 2MB killed or suppressed germination of the conidia of all seven fungi. Controlled atmosphere had no significant effect on conidial viability or volatile efficacy. Major volatiles of M. albus may have significant potential to control plant pathogens in either ambient air or CA storage at temperatures below 5 °C. However, combinations of volatiles may be required to provide a broader spectrum of control than individual volatiles.

  11. Determination of non-volatile and volatile organic acids in Korean traditional fermented soybean paste (Doenjang).

    Science.gov (United States)

    Shukla, Shruti; Choi, Tae Bong; Park, Hae-Kyong; Kim, Myunghee; Lee, In Koo; Kim, Jong-Kyu

    2010-01-01

    Organic acids are formed in food as a result of metabolism of large molecular mass compounds. These organic acids play an important role in the taste and aroma of fermented food products. Doenjang is a traditional Korean fermented soybean paste product that provides a major source of protein. The quantitative data for volatile and non-volatile organic acid contents of 18 samples of Doenjang were determined by comparing the abundances of each peak by gas (GC) and high performance liquid chromatography (HPLC). The mean values of volatile organic acids (acetic acid, butyric acid, propionic acid and 3-methyl butanoic acid), determined in 18 Doenjang samples, were found to be 91.73, 29.54, 70.07 and 19.80 mg%, respectively, whereas the mean values of non-volatile organic acids, such as oxalic acid, citric acid, lactic acid and succinic acid, were noted to be 14.69, 5.56, 9.95 and 0.21 mg%, respectively. Malonic and glutaric acids were absent in all the tested samples of Doenjang. The findings of this study suggest that determination of organic acid contents by GC and HPLC can be considered as an affective approach to evaluate the quality characteristics of fermented food products.

  12. Atmospheres on Volatile-Bearing Kuiper Belt Objects

    Science.gov (United States)

    Young, Leslie; McKinnon, W. B.

    2013-10-01

    Seven large bodies in the outer solar system have volatiles ices detected or inferred on their surfaces (Pluto, Triton, Eris, Makemake, 2007 OR10, Quaoar, and Sedna; Brown et al. 2011, ApJ 738, L26), which may lead to atmospheres over some or most of their orbits (Stern & Trafton 2008, Sol. Sys. Beyond Neptune, 365-380). We have investigated the role of internal heat (e.g., McKinnon et al. 1997, Pluto and Charon, 295-343) and thermal inertia on the seasonally varying surface temperatures and atmospheres. We quantify when atmospheres are global (Pluto-like, with similar pressures over the surface), local but collisional (Io-like, with large pressure gradients), or non-collisional. We conclude that four bodies (Pluto, Triton, Eris and Quaoar) should be global over some or all of their orbits, and that 2007 OR10 should be global near perihelion only for low thermal inertia. Five bodies (Pluto, Triton, Eris, Makemake and Quaoar) should be global or local-collisional over their entire orbits. 2007 OR10 reaches non-collisional pressures at aphelion for low thermal inertia. Sedna is non-collisional for most of its orbit, but may be collisional near perihelion for low thermal inertia. Long-lived radiogenic heat can be important for the atmospheres of larger and/or more distant Kuiper belt objects.

  13. Atmospheric Modeling Using Accelerometer Data During Mars Atmosphere and Volatile Evolution (MAVEN) Flight Operations

    Science.gov (United States)

    Tolson, Robert H.; Lugo, Rafael A.; Baird, Darren T.; Cianciolo, Alicia D.; Bougher, Stephen W.; Zurek, Richard M.

    2017-01-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is a NASA orbiter designed to explore the Mars upper atmosphere, typically from 140 to 160 km altitude. In addition to the nominal science mission, MAVEN has performed several Deep Dip campaigns in which the orbit's closest point of approach, also called periapsis, was lowered to an altitude range of 115 to 135 km. MAVEN accelerometer data were used during mission operations to estimate atmospheric parameters such as density, scale height, along-track gradients, and wave structures. Density and scale height estimates were compared against those obtained from the Mars Global Reference Atmospheric Model and used to aid the MAVEN navigation team in planning maneuvers to raise and lower periapsis during Deep Dip operations. This paper describes the processes used to reconstruct atmosphere parameters from accelerometers data and presents the results of their comparison to model and navigation-derived values.

  14. Atmospheric transformation of plant volatiles disrupts host plant finding

    Science.gov (United States)

    Li, Tao; Blande, James D.; Holopainen, Jarmo K.

    2016-09-01

    Plant-emitted volatile organic compounds (VOCs) play important roles in plant-insect interactions. Atmospheric pollutants such as ozone (O3) can react with VOCs and affect the dynamics and fidelity of these interactions. However, the effects of atmospheric degradation of plant VOCs on plant-insect interactions remains understudied. We used a system comprising Brassica oleracea subsp. capitata (cabbage) and the specialist herbivore Plutella xylostella to test whether O3-triggered VOC degradation disturbs larval host orientation, and to investigate the underlying mechanisms. Larvae oriented towards both constitutive and larva-induced cabbage VOC blends, the latter being the more attractive. Such behaviour was, however, dramatically reduced in O3-polluted environments. Mechanistically, O3 rapidly degraded VOCs with the magnitude of degradation increasing with O3 levels. Furthermore, we used Teflon filters to collect VOCs and their reaction products, which were used as odour sources in behavioural tests. Larvae avoided filters exposed to O3-transformed VOCs and spent less time searching on them compared to filters exposed to original VOCs, which suggests that some degradation products may have repellent properties. Our study clearly demonstrates that oxidizing pollutants in the atmosphere can interfere with insect host location, and highlights the need to address their broader impacts when evaluating the ecological significance of VOC-mediated interactions.

  15. Mass Spectrometry in Jupiter's Atmosphere: Vertical Variation of Volatile Vapors

    Science.gov (United States)

    Wong, Michael H.; Atreya, Sushil K.; Mahaffy, Paul R.

    2014-05-01

    The Galileo Probe made the first and only in situ measurements of composition in Jupiter's atmosphere, led by the Galileo Probe Mass Spectrometer, or GPMS [1]. The major contribution from this instrument was the measurement of abundances and isotope ratios of the noble gases, as well as the volatile gases CH4, NH3, H2O, and H2S [2,3]. These initial results were further refined by detailed laboratory calibrations for the noble gases [4] and the volatiles [5]. The probe measurements resulted in the first determination of the heavy element abundances (except carbon that was known previously) and He/H ratio, which provide critical constraints to models of the formation of Jupiter and the origin of its atmosphere [6,7]. The condensable volatiles, or CVs (ammonia, H2S, and water), increased with depth in the probe entry site. This vertical variation was observed at levels much deeper than the modeled cloud bases, as predicted by one-dimensional chemical equilibrium models. The discrepancy is due to the probe's entry into a dry region known as a 5-μm hot spot. The 5-μm hot spots are part of an atmospheric wave system that encircles Jupiter just north of the equator. Despite the anomalous meteorology, the bulk abundances of NH3 and H2S were measured by the probe, and found to be enriched with respect to solar composition (similarly to the non-condensable volatile CH4). The deepest water mixing ratio, however, was observed to be depleted relative to solar composition. We review an updated context for the CV vertical profiles measured by the GPMS, based on the latest results from remote sensing, simulation, and reinterpretation of Galileo Probe measurements. In particular, we find that (1) the bulk abundance of water in Jupiter's atmosphere must be greater than the subsolar abundance derived from the deepest GPMS measurements [8], and that (2) CV mixing ratios are controlled by a range of processes in addition to condensation of the ices NH3, NH4SH, and H2O [5-9]. Both

  16. Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork

    DEFF Research Database (Denmark)

    Nieminen, Timo T.; Dalgaard, Paw; Björkroth, Johanna

    2016-01-01

    Accumulation of volatile organic compounds was monitored in association with sensory quality, bacterial concentrations and culture-independent microbial community analyses in raw pork loin and pork collar during storage under high-oxygen modified atmosphere at +4°C. Of the 48 volatile compounds....... According to the culture-dependent and culture-independent characterization of bacterial communities, Brochothrix thermosphacta, lactic acid bacteria (Carnobacterium, Lactobacillus, Lactococcus, Leuconostoc, Weissella) and Photobacterium spp. predominated in pork samples. Photobacterium spp., typically...... not associated with spoilage of meat, were detected also in 8 of the 11 retail packages of pork investigated subsequently. Eleven isolates from the pork samples were shown to belong to Photobacterium phosphoreum by phenotypic tests and sequencing of the 16S rRNA and gyrB gene fragments. Off-odors in pork samples...

  17. Evolution of Martian atmospheric argon: Implications for sources of volatiles

    Science.gov (United States)

    Hutchins, Kevin S.; Jakosky, Bruce M.

    We have examined processes affecting isotopes of argon (36Ar, 38Ar, 40Ar) in order to determine important atmospheric sources and sinks. Our simple model for argon evolution incorporates production of radiogenic argon in the mantle, outgassing of all argon species by extrusive and intrusive volcanism, and loss to space by knock-on sputtering above the exobase. Sputtering has been shown previously to be an important loss process for atmospheric species, especially isotopes of noble gases, which have few other mechanisms of escape. The integrated evolution of argon (36Ar, 38Ar, and 40Ar, respectively) is modeled in terms of these variables: (1) the planetary concentration of potassium, (2) the fraction of juvenile argon released catastrophically during the first 600 Myr., (3) potential variation in the time-history of sputtering loss from that suggested by Luhmann et al. [1992], and (4) the volume of total outgassing to the surface as compared to outgassing contributed by volcanic release. Our results indicate that Mars has lost between 85-95% of 36Ar and 70-88% of outgassed 40Ar. Due to this substantial loss, the planet must have outgassed the equivalent of between 10 and 100 times the total volume of gases released by extrusive and intrusive volcanics. This indicates that volcanic outgassing, alone, is insufficient to explain the present-day abundances of 36Ar and 40Ar in the Martian atmosphere. Similar calculations for 20Ne suggest outgassed volumes of between 100 and 1800 times in excess of that due to volcanism. This results in a distinct Ne/Ar elemental fractionation, with a preference for outgassing argon, of the order of 10 to 17. Although the results must be evaluated within the model uncertainties, the results are compelling in that they unequivocally show the existence of additional sources of atmospheric volatiles and helps define a means to identify them.

  18. Volatile properties of atmospheric aerosols during nucleation events at Pune, India

    Indian Academy of Sciences (India)

    P Murugavel; D M Chate

    2011-06-01

    Continuous measurements of aerosol size distributions in the mid-point diameter range 20.5–500 nm were made from October 2005 to March 2006 at Pune (18° 32′N, 73° 51′E), India using Scanning Mobility Particle Sizer (SMPS). Volatilities of atmospheric aerosols were also measured at 40°, 125°, 175°, 300° and 350°C temperatures with Thermodenuder–SMPS coupled system to determine aerosol volatile fractions. Aerosols in nucleated, CCN and accumulated modes are characterized from the measured percentage of particles volatized at 40°, 125°, 175°, 300° and 350°C temperatures. Averaged monthly aerosol concentration is at its maximum in November and gradually decreases to its minimum at the end of March. The diurnal variations of aerosol concentrations gradually decrease in the night and in early morning hours (0400–0800 hr). However, concentration attains minimum in its variations in the noon (1400–1600 hr) due to higher ventilation factor (product of mixing height and wind speed). The half an hour averaged diurnal variation of aerosol number concentration shows about 5 to 10-fold increase despite the ventilation factor at higher side before 1200 hr. This sudden increase in aerosol concentrations is linked with prevailing conditions for nucleation bursts. The measurement of volatile fraction of ambient aerosols reveals that there are large number of highly volatile particles in the Aitken mode in the morning hours and these volatile fractions of aerosols at temperatures > 150°C are of ammonium chloride and ammonium sulfate, acetic and formic acids.

  19. The role of low-volatility organic compounds in initial particle growth in the atmosphere

    CERN Document Server

    Tröstl, Jasmin; Gordon, Hamish; Heinritzi, Martin; Yan, Chao; Molteni, Ugo; Ahlm, Lars; Frege, Carla; Bianchi, Federico; Wagner, Robert; Simon, Mario; Lehtipalo, Katrianne; Williamson, Christina; Craven, Jill S; Duplissy, Jonathan; Adamov, Alexey; Almeida, Joao; Bernhammer, Anne-Kathrin; Breitenlechner, Martin; Brilke, Sophia; Dias, Antònio; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Gysel, Martin; Hansel, Armin; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lawler, Michael; Leiminger, Markus; Mathot, Serge; Möhler, Ottmar; Nieminen, Tuomo; Onnela, Antti; Petäjä, Tuukka; Piel, Felix M; Miettinen, Pasi; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Sipilä, Mikko; Smith, James; Steiner, Gerhard; Tomè, Antònio; Virtanen, Annele; Wagner, Andrea C; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Carslaw, Kenneth S; Curtius, Joachim; Dommen, Josef; Kirkby, Jasper; Kulmala, Markku; Riipinen, Ilona; Worsnop, Douglas R; Donahue, Neil M; Baltensperger, Urs

    2016-01-01

    About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelv...

  20. Volatile fatty acids production in ruminants and the role of ...

    African Journals Online (AJOL)

    Yomi

    organic volatile fatty acids (VFAs) and microbial protein then become available to the ... short-chain fatty acids and lactate (Ritzhaupt et al.,. 1998a,b; Muller et al., 2002; .... staining for MCT4 was visualized in strata spinosum and basale. In the ...

  1. [Determination of volatile organic compounds in atmospheric environment].

    Science.gov (United States)

    Chen, H W; Li, G K; Li, H; Zhang, Z X; Wang, B G; Li, T; Luo, H K

    2001-11-01

    It is well known that volatile organic compounds (VOCs) are the main photochemical pollutants and ozone precursors of the photochemical smog. Investigation of photochemical pollution in the ambient air must focus on VOCs, but the concentration of VOCs in ambient air is in a very low level (10(-9)-10(-12), volume fraction), so there are difficulties in the determination of VOCs. In this work, based on the TO14A and TO15 methods recommended by the Environmental Protection Agency of United States, an improved method for the determination of fifty-six VOCs, mainly O3 precursors, in atmospheric environment was developed. Operating conditions of VOCs preconcentrator, gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were optimized. Air sample was first frozen by liquid nitrogen, and then H2O and CO2 were eliminated in the VOCs preconcentrator. The preconcentrated VOCs sample was injected to GC and detected by MS or hydrogen flame ionization detector (FID). The C2-C10 hydrocarbons were separated effectively in capillary columns under the high concentration of CO2. The detection limits were 0.1 microgram.m-3 and the relative standard deviations were in the range from 2.57% to 9.82%. This method has been used for the determination of VOCs in real samples. The results were satisfactory.

  2. Volatile depletion in the TW Hydrae disk atmosphere

    CERN Document Server

    Du, Fujun; Hogerheijde, Michiel R

    2015-01-01

    An abundance decrease in carbon- and oxygen-bearing species relative to dust has been frequently found in planet-forming disks, which can be attributed to an overall reduction of gas mass. However, in the case of TW Hya, the only disk with gas mass measured directly with HD rotational lines, the inferred gas mass ($\\lesssim$0.005 solar mass) is significantly below the directly measured value ($\\gtrsim$0.05 solar mass). We show that this apparent conflict can be resolved if the elemental abundances of carbon and oxygen are reduced in the upper layers of the outer disk but are normal elsewhere (except for a possible enhancement of their abundances in the inner disk). The implication is that in the outer disk, the main reservoir of the volatiles (CO, water, ...) resides close to the midplane, locked up inside solid bodies that are too heavy to be transported back to the atmosphere by turbulence. An enhancement in the carbon and oxygen abundances in the inner disk can be caused by inward migration of these solid ...

  3. Thermochromatography study of volatile polonium species in various gas atmospheres

    CERN Document Server

    Maugeri, Emilio Andrea; Eichler, Robert; Piguet,David; Mendonça, Tania Melo; Stora, Thierry; Schumann, Dorothea

    2014-01-01

    Phenomena related to the volatilization of polonium and its compounds are critical issues for the safety assessment of the innovative lead–bismuth cooled type of nuclear reactor or accelerator driven systems. The formation and volatilization of different species of polonium and their interaction with fused silica was studied by thermochromatography using carrier gases with varied redox potential. The obtained results show that under inert and reducing conditions in the absence of moisture, elemental polonium is formed. Polonium compounds more volatile than elemental polonium can be formed if traces of moisture are present in both inert and reducing carrier gas. The use of dried oxygen as carrier gas leads to the formation of polonium oxides, which are less volatile than elemental polonium. It was also found that the volatility of polonium oxides increases with increasing oxidation state. In the presence of moisture in an oxidizing carrier gas, species are formed that are more volatile than the oxides and le...

  4. The role of low-volatility organic compounds in initial particle growth in the atmosphere

    Science.gov (United States)

    Tröstl, Jasmin; Chuang, Wayne K.; Gordon, Hamish; Heinritzi, Martin; Yan, Chao; Molteni, Ugo; Ahlm, Lars; Frege, Carla; Bianchi, Federico; Wagner, Robert; Simon, Mario; Lehtipalo, Katrianne; Williamson, Christina; Craven, Jill S.; Duplissy, Jonathan; Adamov, Alexey; Almeida, Joao; Bernhammer, Anne-Kathrin; Breitenlechner, Martin; Brilke, Sophia; Dias, Antònio; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Gysel, Martin; Hansel, Armin; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lawler, Michael; Leiminger, Markus; Mathot, Serge; Möhler, Ottmar; Nieminen, Tuomo; Onnela, Antti; Petäjä, Tuukka; Piel, Felix M.; Miettinen, Pasi; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Sipilä, Mikko; Smith, James N.; Steiner, Gerhard; Tomè, Antònio; Virtanen, Annele; Wagner, Andrea C.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Carslaw, Kenneth S.; Curtius, Joachim; Dommen, Josef; Kirkby, Jasper; Kulmala, Markku; Riipinen, Ilona; Worsnop, Douglas R.; Donahue, Neil M.; Baltensperger, Urs

    2016-05-01

    About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10-4.5 micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10-4.5 to 10

  5. Copper corrosion originated by volatile organic acid vapours; Corrosion del cobre por acidos organicos volatiles

    Energy Technology Data Exchange (ETDEWEB)

    Cano, E.; Polo, J. L.; Kong, D. Y.; Mora, E. M.; Lopez-Caballero, J. A.; Bastidas, J. M.

    2004-07-01

    The corrosion of copper in the presence of volatile organic acids is frequent. Thus, for example, it is known that failures by corrosion of the copper tubes take place in the air conditioning equipment, caused by volatile organic acids emitted by oils used in their manufacturing. Another frequent case is the corrosion of copper objects caused by the acids emitted by the materials used in packing, wood and resins, amongst others. This communication presents the corrosion results of copper exposed to 100% relative humidity and different concentrations (10-300ppm) of formic (HCOOH), acetic (CH{sub 3}COOH), propionic (CH{sub 3}CH{sub 2}COOH) and butyric (CH{sub 3}(CH{sub 2}){sub 2}COOH) acid vapours, for short exposure times. the techniques used were gravimetric analysis, scanning electron microscopy (SEM) and X-ray diffraction (XRD). (Author) 9 refs.

  6. Liquid biofuel production from volatile fatty acids

    NARCIS (Netherlands)

    Steinbusch, K.J.J.

    2010-01-01

    The production of renewable fuels and chemicals reduces the dependency on fossil fuels and limits the increase of CO2 concentration in the atmosphere only if a sustainable feedstock and an energy efficient process are used. The thesis assesses the possibility to use municipal and industrial waste as

  7. Dynamics of the anaerobic process: Effects of volatile fatty acids

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    A complex and fast dynamic response of the anaerobic biogas system was observed when the system was subjected to pulses of volatile fatty acids (VFAs). It was shown that a pulse of specific VFAs into a well-functioning continuous stirred tank reactor (CSTR) system operating on cow manure affected...

  8. Plant volatiles in polluted atmospheres: stress responses and signal degradation

    National Research Council Canada - National Science Library

    BLANDE, JAMES D; HOLOPAINEN, JARMO K; NIINEMETS, ÜLO

    2014-01-01

    .... Volatiles induced by herbivore feeding are among the best studied plant responses to stress and may constitute an informative message to the surrounding community and further function in plant defence processes...

  9. Use of dietary rosemary diterpenes to inhibit rancid volatiles in lamb meat packed under protective atmosphere.

    Science.gov (United States)

    Ortuño, J; Serrano, R; Bañón, S

    2016-08-01

    The objective of the present study was to determine the inhibitory effect of dietary rosemary diterpenes on the formation of the volatile organic compounds (VOCs) responsible for rancid flavour in raw lamb meat. The lamb diet was supplemented during the fattening stage with two levels (200 and 400 mg/kg feed) of a dietary rosemary extract (DRE) containing carnosic acid and carnosol (1 : 1, w/w). The formation of VOCs (determined by headspace solid-phase microextraction at 40°C and MS) and odour deterioration (assessed by quantitative descriptive analysis) were monitored in meat fillets (longissimus dorsi-lumborum muscle) packed in a 70/30 O2/CO2 protective atmosphere and kept at 2°C for up to 14 days. The raw meat odour deteriorated under pro-oxidizing conditions due to the development of an incipient rancidity caused by the formation of volatiles from lipid oxidation. A total of 46 volatile compounds were determined in lamb headspace: 18 aldehydes, seven alcohols, seven organic acids, six ketones, four furan compounds, two benzene compounds, one ester and one terpenoid. The use of DRE contributed to inhibit VOC formation and rancidity. Heptanal, octanal, nonanal and 2-pentyl-furan were the only VOCs affected (P0.75; Plamb meat. Principal component analysis confirmed that the differences in the VOC profile make it possible to identify whether or not samples have been reinforced with dietary rosemary diterpenes. Thus, VOC profiling can be regarded as a useful tool for assessing the dietary treatments used in sheep to improve the oxidative stability of lamb meat.

  10. Volatile tritiated organic acids in stack effluents and in air surrounding contaminated materials

    Energy Technology Data Exchange (ETDEWEB)

    Belot, Y.; Camus, H.; Marini, T.; Raviart, S. (Institut de Protection et de Surete Nucleaire (France))

    1993-06-01

    A small fraction of the tritium released into the atmosphere from tritium-handling or solid waste storage facilities was shown to be in the form of volatile organic acids. The same compounds were also found, but at a much higher proportion, in the tritium evolved at room temperature from highly contaminated materials placed under air atmospheres. This might be due to the oxidation and labeling of hydrocarbon(s) by mechanisms that are presumably of a radiolytic nature. The new forms could have an impact on operational requirements and waste management strategies within a tritium facility and a fusion reactor hall. Further data are needed to assess the related doses.

  11. Volatility of mixed atmospheric humic-like substances and ammonium sulfate particles

    Science.gov (United States)

    Nie, Wei; Hong, Juan; Häme, Silja A. K.; Ding, Aijun; Li, Yugen; Yan, Chao; Hao, Liqing; Mikkilä, Jyri; Zheng, Longfei; Xie, Yuning; Zhu, Caijun; Xu, Zheng; Chi, Xuguang; Huang, Xin; Zhou, Yang; Lin, Peng; Virtanen, Annele; Worsnop, Douglas R.; Kulmala, Markku; Ehn, Mikael; Yu, Jianzhen; Kerminen, Veli-Matti; Petäjä, Tuukka

    2017-03-01

    The volatility of organic aerosols remains poorly understood due to the complexity of speciation and multiphase processes. In this study, we extracted humic-like substances (HULIS) from four atmospheric aerosol samples collected at the SORPES station in Nanjing, eastern China, and investigated the volatility behavior of particles at different sizes using a Volatility Tandem Differential Mobility Analyzer (VTDMA). In spite of the large differences in particle mass concentrations, the extracted HULIS from the four samples all revealed very high-oxidation states (O : C > 0.95), indicating secondary formation as the major source of HULIS in Yangtze River Delta (YRD). An overall low volatility was identified for the extracted HULIS, with the volume fraction remaining (VFR) higher than 55 % for all the regenerated HULIS particles at the temperature of 280 °C. A kinetic mass transfer model was applied to the thermodenuder (TD) data to interpret the observed evaporation pattern of HULIS, and to derive the mass fractions of semi-volatile (SVOC), low-volatility (LVOC) and extremely low-volatility components (ELVOC). The results showed that LVOC and ELVOC dominated (more than 80 %) the total volume of HULIS. Atomizing processes led to a size-dependent evaporation of regenerated HULIS particles, and resulted in more ELVOC in smaller particles. In order to understand the role of interaction between inorganic salts and atmospheric organic mixtures in the volatility of an organic aerosol, the evaporation of mixed samples of ammonium sulfate (AS) and HULIS was measured. The results showed a significant but nonlinear influence of ammonium sulfate on the volatility of HULIS. The estimated fraction of ELVOC in the organic part of the largest particles (145 nm) increased from 26 %, in pure HULIS samples, to 93 % in 1 : 3 (mass ratio of HULIS : AS) mixed samples, to 45 % in 2 : 2 mixed samples, and to 70 % in 3 : 1 mixed samples, suggesting that the interaction with ammonium sulfate

  12. Volatile organic compound (VOC) determination in working atmospheres; Determinacion de compuestos organicos volatiles (VOC) en ambiente laboral

    Energy Technology Data Exchange (ETDEWEB)

    Blass A, Georgina; Panama T, Luz A; Corrales C, Deyanira [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The present work describes, in a synthesized way, the implementation and application of procedures based on the normativity related to the subject of the volatile organic compounds (Volatile Organic Compounds VOC), that allow to sample, quantify and evaluate the present contamination in the working atmosphere of a refinery due to the fugitive emissions of VOC and other substances. In accordance with the corresponding normativity, more than 189 organic compounds denominated dangerous air polluting agents (Hazardous Air Pollutants, HAP) can be found in a working atmosphere, but they are the 11 main HAP that can be found in a refinery. In the present article the work made for the sampling and quantification of 5 of the 11 dangerous polluting agents of the air: benzene, toluene, xylene, iso-octane and naphthalene. [Spanish] El presente trabajo describe, de manera sintetizada, la implementacion y aplicacion de procedimientos basados en la normatividad relacionada al tema de los compuestos organicos volatiles (Volatil Organic Compounds, VOC), que permiten muestrear, cuantificar y evaluar la contaminacion presente en el ambiente laboral de una refineria debido a las emisiones fugitivas de VOC y otras sustancias. De acuerdo con la normatividad correspondiente, mas de 189 compuestos organicos denominados contaminantes peligrosos del aire (Hazardous Air Pollutants, HAP), pueden ser encontrados en un ambiente laboral, pero son 11 los principales HAP que pueden ser hallados en una refineria. En el presente articulo se informa el trabajo realizado para el muestreo y cuantificacion de 5 de los 11 contaminantes peligrosos del aire: benceno, tolueno, xileno, iso-octano y naftaleno.

  13. Laboratory investigations of the hydroxyl radical-initiated oxidation of atmospheric volatile organic compounds

    Science.gov (United States)

    Vimal, Deepali

    The hydroxyl radical (OH) is one of the most important oxidants in the atmosphere, because reaction with OH is the dominant atmospheric fate of most trace atmospheric species. OH is intimately involved in a complex non-linear photochemical pathway involving anthropogenic and biogenic emissions of volatile organic compounds (VOCs) and nitrogen oxides that are emitted from vehicular exhaust and industrial emissions. This chemistry generates secondary tropospheric ozone which is an important greenhouse gas as well as a component of photochemical smog. In addition, this chemistry leads to the formation of secondary organic aerosols in the atmosphere which have implications for public health and climate change. The focus of this dissertation is to improve our understanding of this complex chemistry by investigating the rate-limiting elementary reactions which are part of the OH-initiated oxidation of important VOCs. Experimental (discharge flow technique coupled with resonance fluorescence and laser induced fluorescence) and theoretical studies (Density Functional Theory computations) of the kinetics of three atmospheric VOCs, acetic acid, 1,3-butadiene and methyl ethyl ketone are discussed. The acetic acid and OH reaction has been thought to undergo a hydrogen-bonded complex mediated pathway instead of a direct one leading to faster rate constants at lower temperature. Our results for the experimental investigation between 263-373 K and pressures of 2-5 Torr for the gas phase reaction of acetic acid with OH confirm the complex mediated reaction mechanism and indicate that acetic acid can play an important role especially in the oxidative chemistry of upper troposphere. The 1,3-butadiene and OH reaction is thought to undergo electrophilicaddition by OH which could display a complex pressure dependence similar to isoprene and 232-butenol as noted earlier in this laboratory. However, our results for the kinetics of the reaction between 273-423 K and a pressure range of 1

  14. Proportions of rumen volatile fatty acids in relation to milk fatty acid profiles

    NARCIS (Netherlands)

    Vlaeminck, B.; Fievez, V.; Dhanoa, M.S.; Vuuren, van A.M.; Dewhurst, R.J.

    2003-01-01

    Three experiments were conducted in order to develop and validate principal component (PC) regressions for predicting rumen volatile fatty acid (VFA) proportions, based on a combination of milk odd and branched chain fatty acids (MOBCFA). Grass- or legume silage and concentrate-based diets were fed

  15. ISOTOPIC (14C) AND CHEMICAL COMPOSITION OF ATMOSPHERIC VOLATILE ORGANIC COMPOUND FRACTIONS - PRECURSORS TO OZONE FORMATION

    Science.gov (United States)

    Atmospheric volatile organic compounds (VOCs) are an important factor in the production of ozone near ground level [3]. Many hydrocarbons originate from auto exhaust. However, a number of VOCs, e.g., isoprene, are known to be natural in origin. To develop reliable models for un...

  16. Diurnal characteristics of volatile organic compounds in the Seoul atmosphere

    Science.gov (United States)

    Na, Kwangsam; Kim, Yong Pyo; Moon, Kil Choo

    Concentrations of volatile organic compounds (VOCs) were measured at a site in central Seoul from 8 to 13 September 1998. On each sampling day, three 2-h-integrated canister samples were collected in the morning, afternoon and evening, respectively, to observe diural variations of VOCs. Most of the VOCs species showed diurnal variations with higher concentrations during the morning and evening, and lower concentrations during the afternoon. However, in the afternoon, the concentrations of aromatic compounds, closely correlated with solvent usage such as toluene, ethylbenzene, m-/p-xylene, and o-xylene, were slightly higher than or comparable to those in the morning. This may be due to the increase of evaporative emissions derived from the rise in ambient temperature and additional sources such as the use of solvents in painting, printing and dry cleaning. To estimate the participation of individual VOCs in ozone formation, propylene equivalent concentrations were calculated. The results showed that toluene was the most dominant contributor to ozone formation as well as ambient VOC concentrations. Toluene/benzene and m-/ p-xylene/benzene ratios showed a high observed in the afternoon and a low observed in the morning and evening. This may be because the contribution of evaporative emissions by solvent usage on the ambient VOC concentrations is more dominant than those of vehicle-related emissions and photochemical loss.

  17. The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission

    Science.gov (United States)

    Mahaffy, Paul R.; Benna, Mehdi; King, Todd; Harpold, Daniel N.; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carrigan, Daniel; Errigo, Therese; Holmes, Vincent; Kellogg, James; Jaeger, Ferzan; Raaen, Eric; Tan, Florence

    2014-01-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) is designed to measure the composition, structure, and variability of the upper atmosphere of Mars. The NGIMS complements two other instrument packages on the MAVEN spacecraft designed to characterize the neutral upper atmosphere and ionosphere of Mars and the solar wind input to this region of the atmosphere. The combined measurement set is designed to quantify atmosphere escape rates and provide input to models of the evolution of the martian atmosphere. The NGIMS is designed to measure both surface reactive and inert neutral species and ambient ions along the spacecraft track over the 125-500 km altitude region utilizing a dual ion source and a quadrupole analyzer.

  18. Characterization of Sorghum and Millet with Special Reference to Fatty Acid and Volatile Profile.

    Directory of Open Access Journals (Sweden)

    Muhammad Farhan Jahangir Chughtai

    2015-07-01

    Full Text Available Sorghum and millet are important food staples in semi-arid tropics of Asia and Africa. Sorghum and millet are cereal grains that have prospective to be used as substitute to wheat flour for celiac patients. These are considered as the good source of many important and essential fatty acids. The volatile profiling of these two important crops is comparable to other cereals as well. The present study was an effort to explore biochemical composition of commercially available sorghum and millet varieties with special reference to their fatty acid and volatile profiling. Chemical composition of sorghum and millet was determined according to respective methods. Fatty acid methyl esters were prepared and then subjected to GC-FID for fatty acids analysis. The results indicated that both sorghum and millet oils are rich in essential fatty acids comprising mono and polyunsaturated fatty acids. Main fatty acids that are identified in current study includes palmitic acid, oleic acid, palmitoleic acid, behenic acid, linoleic acid, linoleic acid, stearic acid, myristic acid, etc. On the other hand volatile compounds from sorghum and millet were determined by preparing their respective volatile samples by using calvenger apparatus with suitable volatile extracting solvent. Volatile samples were then subjected to GC-MS analysis and respected results were compared with NIST library. About 30 different volatiles were identified in millet varieties while 35 different compounds were discovered in sorghum varieties belonging to aldehydes, ketones, benzene derivatives, esters, alcohols, sulphur compounds.

  19. Ion Atmosphere Near Nucleic Acids

    Science.gov (United States)

    Mohanty, Udayan

    2015-03-01

    We will discuss all­atom structure based model that explicitly includes ionic effects, i.e., electrostatic interactions with explicit magnesium ions and implicit KCl that allow us to carry out explicit solvent molecular dynamics simulations of adenine riboswitch and SAM­I riboswitch. Our predictions for the excess ions around the riboswitch, and the magnesium­RNA interaction free energy will be compared with experimental data. We will provide upper and lower bounds for preferential interaction coefficient, a statistical mechanical quantity that is a measure of excess ion atmosphere around a polyelectrolyte. We will discuss the role of surface charge density of mobile ions from added salt in determining the counterion release entropy associated with chain collapse. Finally, the Poisson's ratio of oligomeric DNA will be determined. (Work done in collaboration with R. Hayes, J. Noel, P. Whitford, S. Hennelly, J. Onuchic, and K. Sanbonmatsu.) Work supported by fellowship from John Simon Guggenheim Memorial Foundation.

  20. A two-component volatile atmosphere for Pluto. I. The bulk hydrodynamic escape regime

    Energy Technology Data Exchange (ETDEWEB)

    Trafton, L. (Texas Univ., Austin (USA))

    1990-08-01

    The seasonal effects on Pluto's atmosphere of a simplified system of CH{sub 4} and N{sub 2} saturated over a solid solution are investigated, and the results are compared with previous CH{sub 4} models. It is found that bulk escape occurs for CH{sub 4} mole fractions less than 0.7 of Pluto's volatile reservoir. Greater CH{sub 4} abundance leads to diffusive separation during the escape of both species and an atmospheric mixing ratio of about Xc(0). If Xc(0) is in the range 0.02-0.10, Pluto's atmosphere remains largely intact at aphelion rather than virtually freezing out as it does for Xc(0) greater than 0.3 or less than 0.001, or form an atmosphere with only a single volatile gas. An upper limit for the CH{sub 4} mixing ratio is about 0.07 if N{sub 2} is the second gas. On the other hand, CH{sub 4} is the dominant surface constituent of the volatile deposit if Xc(0) is greater than 0.0001. 29 refs.

  1. Direct Analysis of Volatile Organic Compounds in Foods by Headspace Extraction Atmospheric Pressure Chemical Ionisation Mass Spectrometry.

    Science.gov (United States)

    Perez-Hurtado, P; Palmer, E; Owen, T; Aldcroft, C; Allen, M H; Jones, J; Creaser, C S; Lindley, M R; Turner, M A; Reynolds, J C

    2017-08-30

    The rapid screening of volatile organic compounds (VOCs) by direct analysis has potential applications in the areas of food and flavour science. Currently the technique of choice for VOC analysis is gas chromatography-mass spectrometry (GC/MS). However, the long chromatographic run times and elaborate sample preparation associated with this technique have led a movement towards direct analysis techniques, such as selected ion flow tube mass spectrometry (SIFT-MS), proton transfer reaction mass spectrometry (PTR-MS) and electronic noses. The work presented here describes the design and construction of a Venturi jet-pump based modification for a compact mass spectrometer which enables the direct introduction of volatiles for qualitative and quantitative analysis. Volatile organic compounds were extracted from the headspace of heated vials into the atmospheric pressure chemical ionization source of a quadrupole mass spectrometer using a Venturi pump. Samples were analysed directly with no prior sample preparation. Principal component analysis was used to differentiate between different classes of samples RESULTS: The interface is shown to be able to routinely detect problem analytes such as fatty acids and biogenic amines without the requirement of a derivatisation step, and is shown to be able to discriminate between four different varieties of cheese with good intra and inter-day reproducibility using an unsupervised principal component analysis model. Quantitative analysis is demonstrated using indole standards with limits of detection and quantification of 0.395 μg/mL and 1.316 μg/mL, respectively. The described methodology can routinely detect highly reactive analytes such as volatile fatty acids and diamines without the need for a derivatisation step or lengthy chromatographic separations. The capability of the system was demonstrated by discriminating between different varieties of cheese and monitoring the spoilage of meats. This article is protected by

  2. Organic Aerosol Volatility Parameterizations and Their Impact on Atmospheric Composition and Climate

    Science.gov (United States)

    Tsigaridis, Konsta; Bauer, Susanne E.

    2015-01-01

    Despite their importance and ubiquity in the atmosphere, organic aerosols are still very poorly parameterized in global models. This can be explained by two reasons: first, a very large number of unconstrained parameters are involved in accurate parameterizations, and second, a detailed description of semi-volatile organics is computationally very expensive. Even organic aerosol properties that are known to play a major role in the atmosphere, namely volatility and aging, are poorly resolved in global models, if at all. Studies with different models and different parameterizations have not been conclusive on whether the additional complexity improves model simulations, but the added diversity of the different host models used adds an unnecessary degree of variability in the evaluation of results that obscures solid conclusions.

  3. Microbial electrochemical monitoring of volatile fatty acids during anaerobic digestion

    DEFF Research Database (Denmark)

    Jin, Xiangdan; Angelidaki, Irini; Zhang, Yifeng

    2016-01-01

    Volatile fatty acid (VFA) concentration is known as an important indicator to control and optimize anaerobic digestion (AD) process. In this study, an innovative VFA biosensor was developed based on the principle of a microbial desalination cell. The correlation between current densities and VFA...... concentrations was firstly evaluated with synthetic digestate. Two linear relationships were observed between current densities and VFA levels from 1 to 30 mM (0.04 to 8.50 mA/m2, R2=0.97) and then from 30 to 200 mM (8.50 to 10.80 mA/m2, R2=0.95). The detection range was much broader than that of other existing...... and reliable measurement of VFA levels during AD and other anaerobic processes....

  4. Microbial electrochemical monitoring of volatile fatty acids during anaerobic digestion

    DEFF Research Database (Denmark)

    Jin, Xiangdan; Angelidaki, Irini; Zhang, Yifeng

    2016-01-01

    Volatile fatty acid (VFA) concentration is known as an important indicator to control and optimize anaerobic digestion (AD) process. In this study, an innovative VFA biosensor was developed based on the principle of a microbial desalination cell. The correlation between current densities and VFA...... concentrations was firstly evaluated with synthetic digestate. Two linear relationships were observed between current densities and VFA levels from 1 to 30 mM (0.04 to 8.50 mA/m2, R2=0.97) and then from 30 to 200 mM (8.50 to 10.80 mA/m2, R2=0.95). The detection range was much broader than that of other existing...... and reliable measurement of VFA levels during AD and other anaerobic processes....

  5. Microbial electrochemical monitoring of volatile fatty acids during anaerobic digestion

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Jin, Xiangdan; Angelidaki, Irini

    2015-01-01

    Due to increasing environmental concerns of using fossil fuels and decreasing in their reserves, the promotion of renewable energy technologies is crucial. Anaerobic digestion (AD), a well-developed technology converting organic waste into biogas, is gaining increased attention in recent years....... Bioelectrochemical systems (e.g. MFC, MDC, MEC et al.) which transfer chemical energy to electricity by degrading organic waste have attracted great interest due to their environmental friendly and sustainability. In this study, to control and optimize AD process, a smart bioelectrochemical system (microbial...... desalination cell, MDC) was built to realize the on-line measuring the concentration of volatile fatty acid (VFA). The correlation between current densities of the biosensor and VFA concentrations was firstly evaluated with synthetic digestate. Two linear relationships were observed between current densities...

  6. Gas chromatography of volatile fatty acids. Method involving separation from biological material by vacuum distillation.

    Science.gov (United States)

    Tyler, J E; Dibdin, G H

    1975-02-19

    A method is described for the quantitation of C2-C5 volatile fatty acids present in biological tissues. It involved recovery of the acids from their biological matrix by vacuum micro-distillation at room temperature, followed by gas phase separation of aqueous solutions on orthophosphoric acid-modified Phasepak Q columns. The subsequent gas chromatographic procedure resolved iso from normal isomers and showed a linear response for each volatile acid over the range 10-400 ng. There was no evidence of ghosting, isomer peak broadening, or peak tailing. Relative molar response values were shown to be linear with carbon number for all the volatile fatty acids studied.

  7. Rapid detection of lipid oxidation in beef muscle packed under modified atmosphere by measuring volatile organic compounds using SIFT-MS.

    Science.gov (United States)

    Olivares, Alicia; Dryahina, Kseniya; Spaněl, Patrik; Flores, Mónica

    2012-12-01

    The objective of this work was to evaluate the use of a direct analysis technique (SIFT-MS) to measure the lipid oxidation process in beef meat packed under high oxygen atmosphere and compare it to conventional techniques such as gas chromatography-mass spectrometry analysis and TBARS values. Meat samples from two suppliers were selected and packaged under the same atmosphere conditions. The fatty acid content, the physicochemical (TBARS and volatile compounds) and sensory parameters were measured. The samples from supplier 2 had a highest content of PUFA and n6 fatty acids that was related with a highest oxidation during storage. SIFT-MS and SPME-GC-MS detected a significant increase for most of the volatiles compounds analyzed during storage especially, in aldehyde compounds. High correlation coefficients between TBARS values and linear aldehydes (C3-C7) measured by both techniques were obtained and this indicates that SIFT-MS can be used to monitor lipid oxidation changes.

  8. Modeling long-term uptake and re-volatilization of semi-volatile organic compounds (SVOCs) across the soil-atmosphere interface.

    Science.gov (United States)

    Bao, Zhongwen; Haberer, Christina; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter

    2015-12-15

    Soil-atmosphere exchange is important for the environmental fate and atmospheric transport of many semi-volatile organic compounds (SVOCs). This study focuses on modeling the vapor phase exchange of semi-volatile hydrophobic organic pollutants between soil and the atmosphere using the multicomponent reactive transport code MIN3P. MIN3P is typically applied to simulate aqueous and vapor phase transport and reaction processes in the subsurface. We extended the code to also include an atmospheric boundary layer where eddy diffusion takes place. The relevant processes and parameters affecting soil-atmosphere exchange were investigated in several 1-D model scenarios and at various time scales (from years to centuries). Phenanthrene was chosen as a model compound, but results apply for other hydrophobic organic compounds as well. Gaseous phenanthrene was assumed to be constantly supplied to the system during a pollution period and a subsequent regulation period (with a 50% decline in the emission rate). Our results indicate that long-term soil-atmosphere exchange of phenanthrene is controlled by the soil compartment - re-volatilization thus depends on soil properties. A sensitivity analysis showed that accumulation and transport in soils in the short term is dominated by diffusion, whereas in the long term groundwater recharge and biodegradation become relevant. As expected, sorption causes retardation and slows down transport and biodegradation. If atmospheric concentration is reduced (e.g. after environmental regulations), re-volatilization from soil to the atmosphere occurs only for a relatively short time period. Therefore, the model results demonstrate that soils generally are sinks for atmospheric pollutants. The atmospheric boundary layer is only relevant for time scales of less than one month. The extended MIN3P code can also be applied to simulate fluctuating concentrations in the atmosphere, for instance due to temperature changes in the topsoil.

  9. ‘Fuji’ apple (Malus domestica Borkh) volatile production during high pCO2 controlled atmosphere storage

    Science.gov (United States)

    ‘Fuji’apple [Malus sylvestris var. domestica (Borkh.) Mansf.] volatile compound dynamics were characterized during cold storage in air or at low pO2 controlled atmosphere (CA) with up to 5 kPa CO2. Volatile compounds in storage chambers were adsorbed onto solid sorbent traps and analyzed by GC-MS....

  10. Volatile fatty acids as an added value from biowaste.

    Science.gov (United States)

    den Boer, Emilia; Łukaszewska, Agnieszka; Kluczkiewicz, Władysław; Lewandowska, Daria; King, Kevin; Reijonen, Tero; Kuhmonen, Tero; Suhonen, Anssi; Jääskeläinen, Ari; Heitto, Anneli; Laatikainen, Reino; Hakalehto, Elias

    2016-12-01

    The aim of the present work was to provide proof of concept of employing a co-culture of K. mobilis and E. coli for producing short and medium chain volatile fatty acids (VFAs) from kitchen biowaste and potato peels. To this aim, experiments were carried out at pilot-scale installation with a bioreactor of 250L. Different feeding strategies were tested under microaerobic conditions, at pH 6.0-6.5 in order to enhance chain elongation. Acetic acid and ethanol were dominating products in the initial stages of the bioprocess, but in a relatively short time of approx. 20-22h from the process start accumulation of propionic acid took place followed by a chain elongation to butyric and valeric acids. The highest final products yield of 325mg/g TS was achieved for the substrate load of 99.1g TS/L (VS of 91.1g/L) and pH 6.5, with the productivity of 448mg/L/h. However, the highest average VFAs chain length (3.77C) was observed in the process run with the loading of 63.2g TS/L and pH 6.0. In this study, we demonstrated that the existing symbiosis of the co-culture of K. mobilis and E. coli favours formation and chain elongation of VFA, induced most likely by the enhanced ethanol formation. Our finding differs from the previous research which focus mostly on anaerobic conditions of VFAs production. The results provide good basis for further optimisation of VFAs production process.

  11. Observed glacier and volatile distribution on Pluto from atmosphere-topography processes.

    Science.gov (United States)

    Bertrand, Tanguy; Forget, François

    2016-12-01

    Pluto has a variety of surface frosts and landforms as well as a complex atmosphere. There is ongoing geological activity related to the massive Sputnik Planitia glacier, mostly made of nitrogen (N2) ice mixed with solid carbon monoxide and methane, covering the 4-kilometre-deep, 1,000-kilometre-wide basin of Sputnik Planitia near the anti-Charon point. The glacier has been suggested to arise from a source region connected to the deep interior, or from a sink collecting the volatiles released planetwide. Thin deposits of N2 frost, however, were also detected at mid-northern latitudes and methane ice was observed to cover most of Pluto except for the darker, frost-free equatorial regions. Here we report numerical simulations of the evolution of N2, methane and carbon monoxide on Pluto over thousands of years. The model predicts N2 ice accumulation in the deepest low-latitude basin and the threefold increase in atmospheric pressure that has been observed to occur since 1988. This points to atmospheric-topographic processes as the origin of Sputnik Planitia's N2 glacier. The same simulations also reproduce the observed quantities of volatiles in the atmosphere and show frosts of methane, and sometimes N2, that seasonally cover the mid- and high latitudes, explaining the bright northern polar cap reported in the 1990s and the observed ice distribution in 2015. The model also predicts that most of these seasonal frosts should disappear in the next decade.

  12. Observed glacier and volatile distribution on Pluto from atmosphere-topography processes

    Science.gov (United States)

    Bertrand, Tanguy; Forget, François

    2016-12-01

    Pluto has a variety of surface frosts and landforms as well as a complex atmosphere. There is ongoing geological activity related to the massive Sputnik Planitia glacier, mostly made of nitrogen (N2) ice mixed with solid carbon monoxide and methane, covering the 4-kilometre-deep, 1,000-kilometre-wide basin of Sputnik Planitia near the anti-Charon point. The glacier has been suggested to arise from a source region connected to the deep interior, or from a sink collecting the volatiles released planetwide. Thin deposits of N2 frost, however, were also detected at mid-northern latitudes and methane ice was observed to cover most of Pluto except for the darker, frost-free equatorial regions. Here we report numerical simulations of the evolution of N2, methane and carbon monoxide on Pluto over thousands of years. The model predicts N2 ice accumulation in the deepest low-latitude basin and the threefold increase in atmospheric pressure that has been observed to occur since 1988. This points to atmospheric-topographic processes as the origin of Sputnik Planitia’s N2 glacier. The same simulations also reproduce the observed quantities of volatiles in the atmosphere and show frosts of methane, and sometimes N2, that seasonally cover the mid- and high latitudes, explaining the bright northern polar cap reported in the 1990s and the observed ice distribution in 2015. The model also predicts that most of these seasonal frosts should disappear in the next decade.

  13. Potential atmospheric production of small volatile organic compounds from soot oxidation

    Science.gov (United States)

    Horn, A.; Carpenter, L.; Daly, H.; Jones, C.

    2003-04-01

    In the polluted troposphere, VOCs are involved in a range of interlinked chemical and photochemical cycles with a direct bearing on the production of ozone. The rates of emission, production and reaction of VOC are therefore an important component of atmospheric models. Recent urban measurements using 2D-GC methods show that there are a large number of unidentified and unattributed VOC components. Any new sources of such material with high photochemical ozone creation potentials may therefore be significant. Hydrocarbon, fossil fuel and biomass burning produces particulate carbonaceous aerosols (soot) in addition to gas phase products. Soot in the atmosphere is known to undergo oxidation becoming hydrophilic in aged urban plumes and the process is also known to produce water soluble organic compounds. In our experiments, soot samples are prepared by combustion of appropriate liquid hydrocarbons and reacted with ozone in a glass reaction vessel. Analysis of the surface and gas-phase during the course of this reaction confirms kinetic measurements showing irreversible uptake of O_3 on soot and further identify that the reaction has oxidised the surface. Transmission electron micrographs of the fresh and ozonised soot reveal small, coagulated particles: fresh soot particle size ranges from 50--90 nm which reduces to 40--50 nm after ozonolysis. Separation of the soluble components of fresh and ozonised soot samples analysed by GC/MS reveal the presence of polyaromatic and unsaturated components in unreacted soot and partially oxidised components post-ozonolysis. ATR-IR spectra of soot extracts and ozonised soot confirm that surface features due to the creation of oxidised surface products grow in with exposure time. These include carbonyl, ester and alcohol functional groups. Direct sampling of the gas-phase during the ozone reaction allows some gaseous products to be identified as small organic acids, ketones and alcohols. Overall, the reaction of ozone with soot

  14. Atmospheric Implications of Aqueous Solvation on the Photochemistry of Pyruvic Acid

    Science.gov (United States)

    Reed Harris, A. E.; Ervens, B.; Shoemaker, R.; Kroll, J. A.; Rapf, R.; Griffith, E. C.; Monod, A.; Vaida, V.

    2014-12-01

    Formation of aerosol from organic compounds is under investigation in order to better predict the overall radiative forcing from atmospheric aerosols and their influence on global climate. One possible formation pathway for secondary organic aerosol (SOA), which is now becoming more widely accepted, is from bulk aqueous photoreactions in atmospheric particles that create low volatility compounds. These products may remain particulate upon droplet evaporation, increasing SOA mass in the atmosphere. SOA formed in this manner may account for some of the discrepancy between measured and predicted amounts of SOA. This presentation will describe the photochemistry of pyruvic acid, an α-keto acid found in the atmosphere, in aqueous solutions representative of solutes in fogs, clouds, and wet aerosols. Solvation of pyruvic acid in water changes the photodissociation mechanism and products from that of the gas phase. The photoproducts from the aqueous phase are higher in molecular weight and therefore possible SOA precursors. Further, these polymers partition to the surface of water and are expected to modify the the surface properties of atmospheric aerosols that determine the kinetics of water uptake. The reaction mechanism of pyruvic acid as a function of its environment and concentration will be presented along with the kinetics obtained for the photochemistry in aqueous solution. These results are used as input in an atmospheric model to evaluate the atmospheric consequences of solvation of pyruvic acid on its atmospheric reactivity and its role as a global sink.

  15. Effect of atmospheric ageing on volatility and ROS of biodiesel exhaust nano-particles

    Directory of Open Access Journals (Sweden)

    A. M. Pourkhesalian

    2015-03-01

    Full Text Available In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a~significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric ageing processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.

  16. Using electromagnetic induction technology to predict volatile fatty acid, source area differences

    Science.gov (United States)

    Subsurface sampling techniques have been adapted to measure manure accumulation on feedlot surface. Objectives of this study were to determine if sensor data could be used to predict differences in volatile fatty acids (VFA) and other volatiles produced on the feedlot surface three days following a...

  17. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto; Kerminen, Veli-Matti; Junninen, Heikki; Paasonen, Pauli; Stratmann, Frank; Herrmann, Hartmut; Guenther, Alex B.; Worsnop, Douglas R.; Kulmala, M.; Ehn, Mikael K.; Sipila, Mikko

    2015-06-09

    Extremely low volatility organic compounds (ELVOC) are suggested to promote aerosol particle formation and cloud condensation nuclei (CCN) production in the atmosphere. We show that the capability of biogenic VOC (BVOC) to produce ELVOC depends strongly on their chemical structure and relative oxidant levels. BVOC with an endocyclic double bond, representative emissions from, e.g., boreal forests, efficiently produce ELVOC from ozonolysis. Compounds with exocyclic double bonds or acyclic compounds including isoprene, emission representative of the tropics, produce minor quantities of ELVOC, and the role of OH radical oxidation is relatively larger. Implementing these findings into a global modeling framework shows that detailed assessment of ELVOC production pathways is crucial for understanding biogenic secondary organic aerosol and atmospheric CCN formation.

  18. Studies of the Atmospheric Chemsitry of Energy-Related Volatile Organic Compounds and of their Atmospheric Reaction Products

    Energy Technology Data Exchange (ETDEWEB)

    Roger Atkinson; Janet Arey

    2007-04-14

    The focus of this contract was to investigate selected aspects of the atmospheric chemistry of volatile organic compounds (VOCs) emitted into the atmosphere from energy-related sources as well as from biogenic sources. The classes of VOCs studied were polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs, the biogenic VOCs isoprene, 2-methyl-3-buten-2-ol and cis-3-hexen-1-ol, alkenes (including alkenes emitted from vegetation) and their oxygenated atmospheric reaction products, and a series of oxygenated carbonyl and hydroxycarbonyl compounds formed as atmospheric reaction products of aromatic hydrocarbons and other VOCs. Large volume reaction chambers were used to investigate the kinetics and/or products of photolysis and of the gas-phase reactions of these organic compounds with hydroxyl (OH) radicals, nitrate (NO3) radicals, and ozone (O3), using an array of analytical instrumentation to analyze the reactants and products (including gas chromatography, in situ Fourier transform infrared spectroscopy, and direct air sampling atmospheric pressure ionization tandem mass spectrometry). The following studies were carried out. The photolysis rates of 1- and 2-nitronaphthalene and of eleven isomeric methylnitronaphthalenes were measured indoors using blacklamp irradiation and outdoors using natural sunlight. Rate constants were measured for the gas-phase reactions of OH radicals, Cl atoms and NO3 radicals with naphthalene, 1- and 2-methylnaphthalene, 1- and 2-ethylnaphthalene and the ten dimethylnaphthalene isomers. Rate constants were measured for the gas-phase reactions of OH radicals with four unsaturated carbonyls and with a series of hydroxyaldehydes formed as atmospheric reaction products of other VOCs, and for the gas-phase reactions of O3 with a series of cycloalkenes. Products of the gas-phase reactions of OH radicals and O3 with a series of biogenically emitted VOCs were identified and quantified. Ambient atmospheric measurements of the concentrations of a

  19. Effects of Ultrasonic and Acid Pretreatment on Food Waste Disintegration and Volatile Fatty Acid Production

    Institute of Scientific and Technical Information of China (English)

    Qinglian Wu; Wanqian Guo∗; Shanshan Yang; Haichao Luo; Simai Peng; Nanqi Ren

    2015-01-01

    This study aims at investigating the effects of ultrasonic and acid pretreatment on food waste ( FW) disintegration and volatile fatty acid ( VFA ) production. Single⁃factor experiments are carried out to obtain optimal conditions of individual ultrasonic and acid pretreatment, and response surface method ( RSM ) is applied to optimize the conditions of the combination of ultrasonic and acid ( UA) pretreatment. Results show that the optimal acid, ultrasonic and UA pretreatments conditions are individual pH 2, individual ultrasonic energy density of 1�0 W/mL and the combination of ultrasonic energy density1�11 W/mL and pH 1�43, respectively. Correspondingly, the maximum disintegration degrees ( DD) of 46�90%, 57�38% and68�83%are obtained by acid, ultrasonic and UA pretreatments, respectively. After optimizing pretreatment conditions, batch experiments are operated to produce VFA from raw and pretreated FW under anaerobic fermentation process. Both the maximum VFA production ( 976�17 mg COD/gVS) and VFA/SCOD ( 72�89%) are obtained with ultrasonic pretreatment, followed by UA pretreatment, non⁃pretreatment and acid pretreatment, respectively. This observation demonstrates that a higher acidity on acid and UA pretreatments inhibits the generation of VFA. Results suggest that ultrasonic pretreatment is preferable to promote the disintegration degree of FW and VFA production.

  20. Treatment of odorous volatile fatty acids using a biotrickling filter.

    Science.gov (United States)

    Tsang, Y F; Chua, H; Sin, S N; Chan, S Y

    2008-02-01

    In this study, a novel fibrous bioreactor was developed for treating odorous compounds present in contaminated air. The first stage of this work was a preliminary study which aimed at investigating the feasibility of using the fibrous bioreactor for the removal of malodorous volatile fatty acids (VFA) that is a common odorous contaminant generated from anaerobic degradation of organic compounds. The kinetics of microbial growth and VFA degradation in the selected culture, and the performance of the submerged bioreactor at different VFA mass loadings were studied. Above 95% of VFA removal efficiencies were achieved at mass loadings up to 22.4 g/m(3)/h. In the second stage, the odour treatment process was scaled up with system design and operational considerations. A trickling biofilter with synthetic fibrous packing medium was employed. The effects of inlet VFA concentration and empty bed retention time (EBRT) on the process performance were investigated. The bioreactor was effective in removing VFA at mass loadings up to 32 g/m(3)/h, beyond which VFA started to accumulate in the recirculation liquid, indicating the biofilm was unable to degrade all of the VFA introduced. Although VFA accumulated in the liquid phase, the removal efficiency remained above 99%. This suggested that the biochemical reaction rather than gas-liquid mass transfer was the limiting step of the treatment process. In addition, the biotrickling filter was stable for long-term operation with relatively low and steady pressure drop, no clogging and degeneration of the packing material occurred during the four-month study.

  1. Chicxulub ejecta plume: Influence of sedimentary target rock, volatiles and atmosphere

    Science.gov (United States)

    Salge, T.

    Terrestrial impact structures provide evidence for cratering processes on planetary bodies with an atmosphere and volatiles in the target rocks. The target of the Chicxulub impact structure (˜180 km Ø) was composed of (1) a ˜3 km thick sedimentary and, thus, extremely volatile-rich target sequence, and (2) a crystalline silicate basement. The suevites of El Guayal ˜520 km SW from the crater centre and UNAM-7 near the crater rim recorded the distinct behaviour of sedimentary target rock, water and atmospheric interactions during ejecta emplacement. El Guayal: A ˜10 m thick suevite sequence contains shocked minerals, altered (to clay minerals) silicate melt and spherulitic carbonate melt particles. Fusion of silicate melt with carbonate induced calcite recrystallisation at >750°C. Release of CO2 is indicated by voids in silicate melt at the contact with calcite. Accretionary lapilli 350°C by slaking and from silicate melt particles. Conclusions: The following sequence of processes is proposed: (1) Vapour release changed ejecta distribution from ballistic to flow-like transport. (2) Ejecta plume collapse separated suevite from impactor material that had been lifted into the stratosphere. (3) Fusion of the different target components initiated a hot gas-driven lateral transport in a basal flow. (4) Accretionary lapilli formed in a coherent turbulent ash cloud. Acknowledgements: TS kindly thanks P. Claeys for providing samples, R. Tagle for PGE analyses and H. Stosnach for introduction to TXRF analyses.

  2. Computer Interactives for the Mars Atmospheric and Volatile Evolution (MAVEN) Mission through NASA's "Project Spectra!"

    Science.gov (United States)

    Wood, E. L.

    2014-12-01

    "Project Spectra!" is a standards-based E-M spectrum and engineering program that includes paper and pencil activities as well as Flash-based computer games that help students solidify understanding of high-level planetary and solar physics. Using computer interactive games, students experience and manipulate information making abstract concepts accessible, solidifying understanding and enhancing retention of knowledge. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. As part of the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission education programming, we've developed two new interactives. The MAVEN mission will study volatiles in the upper atmosphere to help piece together Mars' climate history. In the first interactive, students explore black body radiation, albedo, and a simplified greenhouse effect to establish what factors contribute to overall planetary temperature. Students design a planet that is able to maintain liquid water on the surface. In the second interactive, students are asked to consider conditions needed for Mars to support water on the surface, keeping some variables fixed. Ideally, students will walk away with the very basic and critical elements required for climate studies, which has far-reaching implications beyond the study of Mars. These interactives were pilot tested at Arvada High School in Colorado.

  3. Effect of Volatile Fatty Acids and Trimethylamine on Nitrification in Activated Sludge

    DEFF Research Database (Denmark)

    Eilersen, Ann Marie; Henze, Mogens; Kløft, Lene

    1994-01-01

    The effect of volatile fatty acids and trimethylamine on the nitrification activity of activated sludge was studied in laboratory batch experiments. The critical concentration of inhibitor IK at which the activity ceases was determined by modelling. IK values for ammonia oxidation were found...... wastewater stripped of sulphide showed that volatile fatty acids and trimethylamine alone cannot account for the inhibition of the nitrification activity, indicating that other factors are also involved....

  4. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit

    Science.gov (United States)

    The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty-acids, carotenoids, amino-acids as well as terpenes. Incubation of melon fruit cubes with amino- and a-keto acids led to the enhanced formation of aroma compounds be...

  5. Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

    Science.gov (United States)

    Kourtchev, Ivan; Giorio, Chiara; Manninen, Antti; Wilson, Eoin; Mahon, Brendan; Aalto, Juho; Kajos, Maija; Venables, Dean; Ruuskanen, Taina; Levula, Janne; Loponen, Matti; Connors, Sarah; Harris, Neil; Zhao, Defeng; Kiendler-Scharr, Astrid; Mentel, Thomas; Rudich, Yinon; Hallquist, Mattias; Doussin, Jean-Francois; Maenhaut, Willy; Bäck, Jaana; Petäjä, Tuukka; Wenger, John; Kulmala, Markku; Kalberer, Markus

    2016-10-01

    Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.

  6. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica.

    Science.gov (United States)

    Fontanille, Pierre; Kumar, Vinod; Christophe, Gwendoline; Nouaille, Régis; Larroche, Christian

    2012-06-01

    The valorization of volatile fatty acids into microbial lipids by the oleaginous yeast Yarrowia lipolytica was investigated. Therefore, a two-stage fed-batch strategy was designed: the yeast was initially grown on glucose or glycerol as carbon source, then sequential additions of acetic acid under nitrogen limiting conditions were performed after glucose or glycerol exhaustion. The typical values obtained with an initial 40 g/L concentration of glucose were close to 31 g/L biomass, a lipid concentration of 12.4 g/L, which correspond to a lipid content of the biomass close to 40%. This cultivation strategy was also efficient with other volatile fatty acids (butyric and propionic acids) or with a mixture of these three VFAs. The lipids composition was found quite similar to that of vegetable oils. The study demonstrated the feasibility of simultaneous biovalorization of volatile fatty acids and glycerol, two cheap industrial by-products.

  7. Effect of added caffeic acid and tyrosol on the fatty acid and volatile profiles of camellia oil following heating.

    Science.gov (United States)

    Haiyan, Zhong; Bedgood, Danny R; Bishop, Andrea G; Prenzler, Paul D; Robards, Kevin

    2006-12-13

    Camellia oil is widely used in some parts of the world partly because of its high oxidative stability. The effect of heating a refined camellia oil for 1 h at 120 degrees C or 2 h at 170 degrees C with exogenous antioxidant, namely, caffeic acid and tyrosol, was studied. Parameters used to assess the effect of heating were peroxide and K values, volatile formation, and fatty acid profile. Of these, volatile formation was the most sensitive index of change as seen in the number of volatiles and the total area count of volatiles in gas chromatograms. Hexanal was generally the dominant volatile in treated and untreated samples with a concentration of 2.13 and 5.34 mg kg(-1) in untreated oils heated at 120 and 170 degrees C, respectively. The hexanal content was significantly reduced in heated oils to which tyrosol and/or caffeic acid had been added. Using volatile formation as an index of oxidation, tyrosol was the more effective antioxidant of these compounds. This is contradictory to generally accepted antioxidant structure-activity relationships. Changes in fatty acid profiles after heating for up to 24 h at 180 degrees C were not significant.

  8. Relationships between methane emission of Holstein Friesian dairy cows and fatty acids, volatile metabolites and non-volatile metabolites in milk

    NARCIS (Netherlands)

    Gastelen, van S.; Antunes-Fernandes, E.C.; Hettinga, K.A.; Dijkstra, Jan

    2017-01-01

    This study investigated the relationships between methane (CH4) emission and fatty acids, volatile metabolites (V) and non-volatile metabolites (NV) in milk of dairy cows. Data from an experiment with 32 multiparous dairy cows and four diets were used. All diets had a roughage : concentrate ratio of

  9. Total non-methane volatile organic compounds (TNMVOC) in the atmosphere of Delhi

    Science.gov (United States)

    Kumar Padhy, Pratap; Varshney, C. K.

    Volatile organic compounds (VOC), more specifically, non-methane volatile organic compounds (NMVOC) play a critical role in the atmospheric chemistry. NMVOC, through complex photochemical reactions, contribute to the formation of toxic oxidants, such as tropospheric ozone and PAN, which are injurious to health and highly phytotoxic. Certain NMVOC have been shown to be highly toxic, mutagenic and carcinogenic. NMVOC are receiving increasing attention in the west on account of their implication for human health and air quality. On the other hand, information on NMVOC in India and other developing countries is not available. As a result, appreciation of potential threat from NMVOC in relation to air quality and public health is sadly lacking among planners and policy makers. The paper deals with the estimation of total NMVOC at 13 sites in the urban environment of Delhi during November 1994 to June 1995. An inexpensive, labour intensive manual sample collection device was used and the air samples were analysed using GC-FID. The results show that the amount of NMVOC in the ambient environment of Delhi varied between 1.3 and 32.5 ppmv exhibiting wide temporal and seasonal variation. NMVOC levels mostly peaked at 0900 h, which coincide with the peak traffic hour. The implications of NMVOC build-up in the urban atmosphere are obvious for air quality. The results of this preliminary study make out a strong case for developing a regular monitoring programme for NMVOC in the urban environment of Delhi as well as in other major cities in the region.

  10. Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures

    NARCIS (Netherlands)

    Steinbusch, K.J.J.; Hamelers, H.V.M.; Buisman, C.J.N.

    2008-01-01

    In this research we demonstrated a new method to produce alcohols. It was experimentally feasible to produce ethanol, propanol and butanol from solely volatile fatty acids (VFAs) with hydrogen as electron donor. In batch tests, VFAs such as acetic, propionic and butyric acids were reduced by mixed m

  11. D/H Isotope Ratio Measurements of Atmospheric Volatile Organic Compounds

    Science.gov (United States)

    Meisehen, Thomas; Bühler, Fred; Koppmann, Ralf; Krebsbach, Marc

    2015-04-01

    Analysis of isotope ratios in atmospheric volatile organic compounds (VOC) is a reliable method to allocate their sources, to estimate atmospheric residence times and investigate physical and chemical processes on various temporal and spatial scales. Most investigations yet focus on carbon isotope ratios. Certainly more detailed information can be gained by the ratio of deuterium (D) to hydrogen (H) in VOC, especially due to the high mass ratio. Combining measurements of carbon and hydrogen isotopes could lead to considerable improvement in our understanding of atmospheric processes. For this purpose we set up and thoroughly characterised a gas chromatograph pyrolysis isotope ratio mass spectrometer to measure the D/H ratio in atmospheric VOC. From a custom-made gas standard mixture VOC were adsorbed on Tenax®TA which has the advantage that CO2 is not preconcentrated when measuring ambient air samples. Our results show that the pyrolysis method has significant impact on the D/H ratios. A pyrolysis temperature of at least 1723 K and conditioning of the ceramic tube on a regular basis is essential to obtain reproducible D/H isotope ratios. For an independent comparison D/H ratios of the pure VOC used in the gas standard were determined using elemental analysis by Agroisolab (Jülich, Germany). Comparisons of 10 VOC show perfect agreement within the standard deviations of our measurements and the errors given by Agroisolab, e.g. for n-pentane, toluene, 4-methyl-2-pentanone and n-octane. A slight mean difference of 5.1 o was obtained for n-heptane while significant mean differences of 15.5 o and 20.3 o arose for 1,2,4-trimethylbenzene and isoprene, respectively. We further demonstrate the stability of our system and show that the sample preparation does not affect the isotope ratios. Moreover the applicability of our system to ambient air samples is demonstrated.

  12. Productions of Volatile Organic Compounds (VOCs) in Surface Waters from Reactions with Atmospheric Ozone

    Science.gov (United States)

    Hopkins, Frances; Bell, Thomas; Yang, Mingxi

    2017-04-01

    Ozone (O3) is a key atmospheric oxidant, greenhouse gas and air pollutant. In marine environments, some atmospheric ozone is lost by reactions with aqueous compounds (e.g. dissolved organic material, DOM, dimethyl sulfide, DMS, and iodide) near the sea surface. These reactions also lead to formations of volatile organic compounds (VOCs). Removal of O3 by the ocean remains a large uncertainty in global and regional chemical transport models, hampering coastal air quality forecasts. To better understand the role of the ocean in controlling O3 concentrations in the coastal marine atmosphere, we designed and implemented a series of laboratory experiments whereby ambient surface seawater was bubbled with O3-enriched, VOC-free air in a custom-made glass bubble equilibration system. Gas phase concentrations of a range of VOCs were monitored continuously over the mass range m/z 33 - 137 at the outflow of the bubble equilibrator by a proton transfer reaction - mass spectrometer (PTR-MS). Gas phase O3 was also measured at the input and output of the equilibrator to monitor the uptake due to reactions with dissolved compounds in seawater. We observed consistent productions of a variety of VOCs upon reaction with O3, notably isoprene, aldehydes, and ketones. Aqueous DMS is rapidly removed from the reactions with O3. To test the importance of dissolved organic matter precursors, we added increasing (milliliter) volumes of Emiliania huxleyi culture to the equilibrator filled with aged seawater, and observed significant linear increases in gas phase concentrations of a number of VOCs. Reactions between DOM and O3 at the sea-air interface represent a potentially significant source of VOCs in marine air and a sink of atmospheric O3.

  13. The Aeronomy of Mars: Characterization by MAVEN of the Upper Atmosphere Reservoir That Regulates Volatile Escape

    Science.gov (United States)

    Bougher, S. W.; Cravens, T. E.; Grebowsky, J.; Luhmann, J.

    2015-12-01

    The Mars thermosphere-ionosphere-exosphere (TIE) system constitutes the atmospheric reservoir (i.e. available cold and hot planetary neutral and thermal ion species) that regulates present day escape processes from the planet. The characterization of this TIE system, including its spatial and temporal (e.g., solar cycle, seasonal, diurnal, episodic) variability is needed to determine present day escape rates. Without knowledge of the physics and chemistry creating this TIE region and driving its variations, it is not possible to constrain either the short term or long term histories of atmosphere escape from Mars. MAVEN (Mars Atmosphere and Volatile Evolution Mission) will make both in-situ and remote measurements of the state variables of the Martian TIE system. A full characterization of the thermosphere (˜100-250 km) and ionosphere (˜100-400 km) structure (and its variability) will be conducted with the collection of spacecraft in-situ measurements that systematically span most local times and latitudes, over a regular sampling of Mars seasons, and throughout the bottom half of the solar cycle. Such sampling will far surpass that available from existing spacecraft and ground-based datasets. In addition, remote measurements will provide a systematic mapping of the composition and structure of Mars neutral upper atmosphere and coronae (e.g. H, C, N, O), as well as probe lower altitudes. Such a detailed characterization is a necessary first step toward answering MAVEN's three main science questions (see Jakosky et al. 2014, this issue). This information will be used to determine present day escape rates from Mars, and provide an estimate of integrated loss to space throughout Mars history.

  14. On the use of plant emitted volatile organic compounds for atmospheric chemistry simulation experiments

    Science.gov (United States)

    Kiendler-Scharr, A.; Hohaus, T.; Yu, Z.; Tillmann, R.; Kuhn, U.; Andres, S.; Kaminski, M.; Wegener, R.; Novelli, A.; Fuchs, H.; Wahner, A.

    2015-12-01

    Biogenic volatile organic compounds (BVOC) contribute to about 90% of the emitted VOC globally with isoprene being one of the most abundant BVOC (Guenther 2002). Intensive efforts in studying and understanding the impact of BVOC on atmospheric chemistry were undertaken in the recent years. However many uncertainties remain, e.g. field studies have shown that in wooded areas measured OH reactivity can often not be explained by measured BVOC and their oxidation products (e.g. Noelscher et al. 2012). This discrepancy may be explained by either a lack of understanding of BVOC sources or insufficient understanding of BVOC oxidation mechanisms. Plants emit a complex VOC mixture containing likely many compounds which have not yet been measured or identified (Goldstein and Galbally 2007). A lack of understanding BVOC sources limits bottom-up estimates of secondary products of BVOC oxidation such as SOA. Similarly, the widespread oversimplification of atmospheric chemistry in simulation experiments, using single compound or simple BVOC mixtures to study atmospheric chemistry processes limit our ability to assess air quality and climate impacts of BVOC. We will present applications of the new extension PLUS (PLant chamber Unit for Simulation) to our atmosphere simulation chamber SAPHIR. PLUS is used to produce representative BVOC mixtures from direct plant emissions. We will report on the performance and characterization of the newly developed chamber. As an exemplary application, trees typical of a Boreal forest environment were used to compare OH reactivity as directly measured by LIF to the OH reactivity calculated from BVOC measured by GC-MS and PTRMS. The comparison was performed for both, primary emissions of trees without any influence of oxidizing agents and using different oxidation schemes. For the monoterpene emitters investigated here, we show that discrepancies between measured and calculated total OH reactivity increase with increasing degree of oxidation

  15. Dynamic Solution Injection: a new method for preparing pptv–ppbv standard atmospheres of volatile organic compounds

    Directory of Open Access Journals (Sweden)

    L. Abrell

    2010-11-01

    Full Text Available Proton Transfer Reaction-Mass Spectrometry (PTR-MS and thermal desorption Gas Chromatography-Mass Spectrometry (GC-MS allow for absolute quantification of a wide range of atmospheric volatile organic compounds (VOCs with concentrations in the ppbv to pptv range. Although often neglected, routine calibration is necessary for accurate quantification of VOCs by PTR-MS and GC-MS. Several gas calibration methods currently exist, including compressed gas cylinders, permeation tubes, diffusion tubes, and liquid injection. While each method has its advantages and limitations, no single technique has emerged that is capable of dynamically generating known concentrations of complex mixtures of VOCs over a large concentration range (ppbv to pptv and is technically simple, field portable, and affordable. We present the development of a new VOC calibration technique based on liquid injection with these features termed Dynamic Solution Injection (DSI. This method consists of injecting VOCs (0.1–0.5 mM dissolved in cyclohexane (PTR-MS or methanol (GC-MS into a 1.0 slpm flow of purified dilution gas in an unheated 25 ml glass vial. Upon changes in the injection flow rate (0.5–4.0 μl min−1, new VOC concentrations are reached within seconds to minutes, depending on the compound, with a liquid injection flow rate accuracy and precision of better than 7% and 4% respectively. We demonstrate the utility of the DSI technique by calibrating a PTR-MS to seven different cyclohexane solutions containing a total of 34 different biogenic compounds including volatile isoprenoids, oxygenated VOCs, fatty acid oxidation products, aromatics, and dimethyl sulfide. We conclude that because of its small size, low cost, and simplicity, the Dynamic Solution Injection method will be of great use to both laboratory and field VOC studies.

  16. Catabolism of Branched Chain Amino Acids Supports Respiration but Not Volatile Synthesis in Tomato Fruits

    Institute of Scientific and Technical Information of China (English)

    Andrej Kochevenko; Wagner L.Araújo; Gregory S.Maloney; Denise M.Tieman; Phuc Thi Do; Mark G.Taylor; Harry J.Klee; Alisdair R.Fernie

    2012-01-01

    The branched-chain amino acid transaminases (BCATs) have a crucial role in metabolism of the branched-chain amino acids leucine,isoleucine,and valine.These enzymes catalyze the last step of synthesis and the initial step of degradation of these amino acids.Although the biosynthetic pathways of branched chain amino acids in plants have been extensively investigated and a number of genes have been characterized,their catabolism in plants is not yet completely understood.We previously characterized the branched chain amino acid transaminase gene family in tomato,revealing both the subcellular localization and kinetic properties of the enzymes encoded by six genes.Here,we examined possible functions of the enzymes during fruit development.We further characterized transgenic plants differing in the expression of branched chain amino acid transaminases 1 and 3,evaluating the rates of respiration in fruits deficient in BCAT1 and the levels of volatiles in lines overexpressing either BCAT1 or BCAT3.We quantitatively tested,via precursor and isotope feeding experiments,the importance of the branched chain amino acids and their corresponding keto acids in the formation of fruit volatiles.Our results not only demonstrate for the first time the importance of branched chain amino acids in fruit respiration,but also reveal that keto acids,rather than amino acids,are the likely precursors for the branched chain flavor volatiles.

  17. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    Science.gov (United States)

    Ahn, D. U.; Nam, K. C.

    2004-09-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  18. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, D.U. E-mail: duahn@iastate.edu; Nam, K.C

    2004-10-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% {alpha}-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+{alpha}-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  19. Fatty acid composition and volatile compounds of caviar from farmed white sturgeon (Acipenser transmontanus).

    Science.gov (United States)

    Caprino, Fabio; Moretti, Vittorio Maria; Bellagamba, Federica; Turchini, Giovanni Mario; Busetto, Maria Letizia; Giani, Ivan; Paleari, Maria Antonietta; Pazzaglia, Mario

    2008-06-09

    The present study was conducted to characterize caviar obtained from farmed white sturgeons (Acipenser transmontanus) subjected to different dietary treatments. Twenty caviar samples from fish fed two experimental diets containing different dietary lipid sources have been analysed for chemical composition, fatty acids and flavour volatile compounds. Fatty acid make up of caviar was only minimally influenced by dietary fatty acid composition. Irrespective of dietary treatments, palmitic acid (16:0) and oleic acid (OA, 18:1 n-9) were the most abundant fatty acid followed by docosahexaenoic acid (DHA, 22:6 n-3) and eicopentaenoic (EPA, 20:5 n-3). Thirty-three volatile compounds were isolated using simultaneous distillation-extraction (SDE) and identified by GC-MS. The largest group of volatiles were represented by aldehydes with 20 compounds, representing the 60% of the total volatiles. n-Alkanals, 2-alkenals and 2,4-alkadienals are largely the main responsible for a wide range of flavours in caviar from farmed white surgeon.

  20. Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects.

    Science.gov (United States)

    Pinto, Delia M; Blande, James D; Souza, Silvia R; Nerg, Anne-Marja; Holopainen, Jarmo K

    2010-01-01

    Tropospheric ozone (O3) is an important secondary air pollutant formed as a result of photochemical reactions between primary pollutants, such as nitrogen oxides (NOx), and volatile organic compounds (VOCs). O3 concentrations in the lower atmosphere (troposphere) are predicted to continue increasing as a result of anthropogenic activity, which will impact strongly on wild and cultivated plants. O3 affects photosynthesis and induces the development of visible foliar injuries, which are the result of genetically controlled programmed cell death. It also activates many plant defense responses, including the emission of phytogenic VOCs. Plant emitted VOCs play a role in many eco-physiological functions. Besides protecting the plant from abiotic stresses (high temperatures and oxidative stress) and biotic stressors (competing plants, micro- and macroorganisms), they drive multitrophic interactions between plants, herbivores and their natural enemies e.g., predators and parasitoids as well as interactions between plants (plant-to-plant communication). In addition, VOCs have an important role in atmospheric chemistry. They are O3 precursors, but at the same time are readily oxidized by O3, thus resulting in a series of new compounds that include secondary organic aerosols (SOAs). Here, we review the effects of O3 on plants and their VOC emissions. We also review the state of current knowledge on the effects of ozone on ecological interactions based on VOC signaling, and propose further research directions.

  1. Characterization of Semi-volatility of Atmospheric Submicron Particles at a Regional Background Site in North China

    Science.gov (United States)

    He, L. Y.

    2015-12-01

    HE Lingyan1, HUANG Congni1, HUANG Xiaofeng11. Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China Abstract:The coupling of a Thermal Denuder (TD) with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was used in Xianghe, which is a regional background site in North China, during June - July, 2013 to on-line measure the mass concentrations and semi-volatilities of atmospheric submicron particles, including organic matter (OM), SO42- , NO3-, NH4+, and Cl-. The total PM1 mass concentration measured was averagely (47.9±47.3) mg/m3 during the campaign, with OM accounting for 38.2% of the total PM1 mass, followed by SO42- (33.7%), NH4+ (13.8%), NO3- (12.3%), and Cl- (2.0%). It was found that NO3- and Cl- had the highest semi-volatility, with about 60% of them evaporating into the gas phase by increasing the temperature to 50 °C, while SO42- showed the lowest semi-volatility, with almost 90% of its mass remaining in the particle phase at 50 °C. The semi-volatility of OM and NH4+ was at the middle level. The semi-volatility of NO3- was affected by the pollution level of the atmospheric submicron particles since it showed an increasing trend with the increasing of PM1 at 50 °C. The oxygen-to-carbon ration of organic aerosol was 0.47 to 0.60 by increasing the temperature from 50 ℃ to 200 °C. In addition, the semi-volatility of the PM1 species with vacuum aerodynamic diameters of 60-2000 nm was little size dependent. The calculation based on the high-resolution mass spectra of OM showed that CO2+-containing organic species had lower semi-volatility, while C4H9+-containing organic species had higher semi-volatility. The semi-volatility of OM was found to be negatively related to its oxidation state. The quantitative result of atmospheric submicron particles' semi-volatility is essential to the research of the physicochemical

  2. Analysis of volatile components, fatty acids, and phytosterols of Abies koreana growing in Poland.

    Science.gov (United States)

    Wajs-Bonikowska, Anna; Olejnika, Karol; Bonikowski, Radosław; Banaszczakb, Piotr

    2013-09-01

    Extracts and essential oils from seeds as well as essential oils from cone scales and needles with twigs of the Abies koreana population were studied. An analysis of Korean fir essential oils allowed us to determine 147 volatile compounds. The identified compounds constituted 97-99% of the seed, cone and needle oils. The main volatile in the seed and needle oils was limonene (56.6% and 23.4%, respectively), while the predominant volatile in cone oils was alpha-pinene (51.2%). Korean fir seeds provided a rich source of both essential oil (3.8-8.5%) and extract, which was isolated with a 24.5% yield and contained numerous groups of fatty acids and phytosterols (414 microg/100g extract). The most prominent fatty acids were unsaturated, among which linoleic (41.2%) and oleic (31.2%) fatty acid were the main ones while the dominant sterols were isomers of ergostadienol and beta-sitosterol. A. koreana seeds, cones and needles are a source of many volatile bioactive compounds while the seed extract, with a pleasant scent, contained not only volatiles, but also fractions rich in fatty acids and phytosterols. These facts make A. koreana essential oils and especially the seed extract potential components of cosmetics.

  3. Influence of modified atmosphere packaging on volatile compounds and physicochemical and antioxidant attributes of fresh-cut pineapple (Ananas comosus).

    Science.gov (United States)

    Montero-Calderón, Marta; Rojas-Graü, María Alejandra; Aguiló-Aguayo, Ingrid; Soliva-Fortuny, Robert; Martín-Belloso, Olga

    2010-04-28

    The effects of modified atmosphere packaging on volatile compound content and physicochemical and antioxidant attributes of Gold cultivar fresh-cut pineapples were assessed throughout storage at 5 degrees C. Fresh-cut pineapple pieces were packed under LO (low oxygen, 12% O(2), 1% CO(2)), AIR (20.9% O(2)) and HO (high oxygen, 38% O(2)) headspace atmospheres. Methyl butanoate, methyl 2-methylbutanoate, and methyl hexanoate were the most abundant volatiles regardless of the packaging atmosphere and days of storage; whereas most odor active volatiles were methyl and ethyl 2-methylbutanoate, 2,5-dimethyl-4-methoxy-3(2H)-furanone and ethyl hexanoate. Physicochemical attributes of pineapple did not significantly vary, whereas vitamin C content and total antioxidant capacity were lower for fresh-cut pineapple in HO (488 +/- 38 mg/100 mg(fw) and 54.4 +/- 5.7%, respectively) than for LO and AIR packages. Storage life of fresh-cut pineapple was limited to 14 days by volatile compounds losses and fermentation processes.

  4. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit.

    Science.gov (United States)

    Gonda, Itay; Bar, Einat; Portnoy, Vitaly; Lev, Shery; Burger, Joseph; Schaffer, Arthur A; Tadmor, Ya'akov; Gepstein, Shimon; Giovannoni, James J; Katzir, Nurit; Lewinsohn, Efraim

    2010-02-01

    The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty acids, carotenoids, amino acids, and terpenes. Although amino acids are known precursors of aroma compounds in the plant kingdom, the initial steps in the catabolism of amino acids into aroma volatiles have received little attention. Incubation of melon fruit cubes with amino acids and alpha-keto acids led to the enhanced formation of aroma compounds bearing the side chain of the exogenous amino or keto acid supplied. Moreover, L-[(13)C(6)]phenylalanine was also incorporated into aromatic volatile compounds. Amino acid transaminase activities extracted from the flesh of mature melon fruits converted L-isoleucine, L-leucine, L-valine, L-methionine, or L-phenylalanine into their respective alpha-keto acids, utilizing alpha-ketoglutarate as the amine acceptor. Two novel genes were isolated and characterized (CmArAT1 and CmBCAT1) encoding 45.6 kDa and 42.7 kDa proteins, respectively, that displayed aromatic and branched-chain amino acid transaminase activities, respectively, when expressed in Escherichia coli. The expression of CmBCAT1 and CmArAT1 was low in vegetative tissues, but increased in flesh and rind tissues during fruit ripening. In addition, ripe fruits of climacteric aromatic cultivars generally showed high expression of CmBCAT1 and CmArAT1 in contrast to non-climacteric non-aromatic fruits. The results presented here indicate that in melon fruit tissues, the catabolism of amino acids into aroma volatiles can initiate through a transamination mechanism, rather than decarboxylation or direct aldehyde synthesis, as has been demonstrated in other plants.

  5. Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids.

    Science.gov (United States)

    Layton, Donovan S; Trinh, Cong T

    2016-08-01

    Volatile organic acids are byproducts of fermentative metabolism, for example, anaerobic digestion of lignocellulosic biomass or organic wastes, and are often times undesired inhibiting cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic acids to acyl CoAs and alcohols to form a combinatorial library of esters. By assembling these modules with the engineered Escherichia coli modular chassis cell, we developed microbial manufacturing platforms to perform the following functions: (i) rapid in vivo screening of novel AATs for their catalytic activities; (ii) expanding combinatorial biosynthesis of unique fermentative esters; and (iii) upgrading volatile organic acids to esters using single or mixed cell cultures. To demonstrate this framework, we screened for a set of five unique and divergent AATs from multiple species, and were able to determine their novel activities as well as produce a library of 12 out of the 13 expected esters from co-fermentation of sugars and (C2-C6) volatile organic acids. We envision the developed framework to be valuable for in vivo characterization of a repertoire of not-well-characterized natural AATs, expanding the combinatorial biosynthesis of fermentative esters, and upgrading volatile organic acids to high-value esters. Biotechnol. Bioeng. 2016;113: 1764-1776. © 2016 Wiley Periodicals, Inc.

  6. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).

    Science.gov (United States)

    Knight, A L; Basoalto, E; Katalin, J; El-Sayed, A M

    2015-10-01

    Field studies were conducted in the United States, Hungary, and New Zealand to evaluate the effectiveness of septa lures loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E)-4,8-dimethyl-1,3,7-nonatriene (nonatriene) alone and in combination with an acetic acid co-lure for both sexes of codling moth, Cydia pomonella (L.). Additional studies were conducted to evaluate these host plant volatiles and acetic acid in combination with the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone). Traps baited with pear ester/nonatriene + acetic acid placed within orchards treated either with codlemone dispensers or left untreated caught significantly more males, females, and total moths than similar traps baited with pear ester + acetic acid in some assays. Similarly, traps baited with codlemone/pear ester/nonatriene + acetic acid caught significantly greater numbers of moths than traps with codlemone/pear ester + acetic acid lures in some assays in orchards treated with combinational dispensers (dispensers loaded with codlemone/pear ester). These data suggest that monitoring of codling moth can be marginally improved in orchards under variable management plans using a binary host plant volatile lure in combination with codlemone and acetic acid. These results are likely to be most significant in orchards treated with combinational dispensers. Significant increases in the catch of female codling moths in traps with the binary host plant volatile blend plus acetic acid should be useful in developing more effective mass trapping strategies.

  7. Determination and Correlation of Solubility for D-Xylose in Volatile Fatty Acid Solvents

    Institute of Scientific and Technical Information of China (English)

    李涛; 陈飞雄; 江振西; 任保增

    2014-01-01

    The solubility of D-xylose in formic acid and binary solvents of formic acid with formic acid and acetic acid, propionic acid, n-butyric acid or isobutyric acid was measured in the temperature range from 300.35 to 325.05 K using the synthetic method by a laser monitoring technique at atmospheric pressure. The solid-liquid equilibrium data will provide essential support for industrial design and further theoretical study. The experimental data show that the solubility of D-xylose in formic acid and in the mixtures of formic acid+acetic acid (1︰1), formic acid+propionic acid (1︰1), formic acid+n-butyric acid (1︰1), and formic acid+isobutyric acid (1︰1) increases with temperature. The Apelblat equation, theλh model, and the ideal solution equation correlate the solubility data well.

  8. Characterisation of volatile profile and sensory analysis of fresh-cut "Radicchio di Chioggia" stored in air or modified atmosphere.

    Science.gov (United States)

    Cozzolino, Rosaria; Martignetti, Antonella; Pellicano, Mario Paolo; Stocchero, Matteo; Cefola, Maria; Pace, Bernardo; De Giulio, Beatrice

    2016-02-01

    The volatile profile of two hybrids of "Radicchio di Chioggia", Corelli and Botticelli, stored in air or passive modified atmosphere (MAP) during 12 days of cold storage, was monitored by solid phase micro-extraction (SPME) GC-MS. Botticelli samples were also subjected to sensory analysis. Totally, 61 volatile organic compounds (VOCs) were identified in the headspace of radicchio samples. Principal component analysis (PCA) showed that fresh product possessed a metabolic content similar to that of the MAP samples after 5 and 8 days of storage. Projection to latent structures by partial least squares (PLS) regression analysis showed the volatiles content of the samples varied depending only on the packaging conditions. Specifically, 12 metabolites describing the time evolution and explaining the effects of the different storage conditions were highlighted. Finally, a PCA analysis revealed that VOCs profile significantly correlated with sensory attributes.

  9. Evaluation of NO+ reagent ion chemistry for online measurements of atmospheric volatile organic compounds

    Science.gov (United States)

    Koss, Abigail R.; Warneke, Carsten; Yuan, Bin; Coggon, Matthew M.; Veres, Patrick R.; de Gouw, Joost A.

    2016-07-01

    NO+ chemical ionization mass spectrometry (NO+ CIMS) can achieve fast (1 Hz and faster) online measurement of trace atmospheric volatile organic compounds (VOCs) that cannot be ionized with H3O+ ions (e.g., in a PTR-MS or H3O+ CIMS instrument). Here we describe the adaptation of a high-resolution time-of-flight H3O+ CIMS instrument to use NO+ primary ion chemistry. We evaluate the NO+ technique with respect to compound specificity, sensitivity, and VOC species measured compared to H3O+. The evaluation is established by a series of experiments including laboratory investigation using a gas-chromatography (GC) interface, in situ measurement of urban air using a GC interface, and direct in situ measurement of urban air. The main findings are that (1) NO+ is useful for isomerically resolved measurements of carbonyl species; (2) NO+ can achieve sensitive detection of small (C4-C8) branched alkanes but is not unambiguous for most; and (3) compound-specific measurement of some alkanes, especially isopentane, methylpentane, and high-mass (C12-C15) n-alkanes, is possible with NO+. We also demonstrate fast in situ chemically specific measurements of C12 to C15 alkanes in ambient air.

  10. Characterisation of calamansi (Citrus microcarpa). Part I: volatiles, aromatic profiles and phenolic acids in the peel.

    Science.gov (United States)

    Cheong, Mun Wai; Chong, Zhi Soon; Liu, Shao Quan; Zhou, Weibiao; Curran, Philip; Bin Yu

    2012-09-15

    Volatile compounds in the peel of calamansi (Citrus microcarpa) from Malaysia, the Philippines and Vietnam were extracted with dichloromethane and hexane, and then analysed by gas chromatography-mass spectroscopy/flame ionisation detector. Seventy-nine compounds representing >98% of the volatiles were identified. Across the three geographical sources, a relatively small proportion of potent oxygenated compounds was significantly different, exemplified by the highest amount of methyl N-methylanthranilate in Malaysian calamansi peel. Principal component analysis and canonical discriminant analysis were applied to interpret the complex volatile compounds in the calamansi peel extracts, and to verify the discrimination among the different origins. In addition, four common hydroxycinnamic acids (caffeic, p-coumaric, ferulic and sinapic acids) were determined in the methanolic extracts of calamansi peel using ultra-fast liquid chromatography coupled to photodiode array detector. The Philippines calamansi peel contained the highest amount of total phenolic acids. In addition, p-Coumaric acid was the dominant free phenolic acids, whereas ferulic acid was the main bound phenolic acid.

  11. Geographical provenance of palm oil by fatty acid and volatile compound fingerprinting techniques

    NARCIS (Netherlands)

    Tres, A.; Ruiz - Samblas, C.; Veer, van der G.; Ruth, van S.M.

    2013-01-01

    Analytical methods are required in addition to administrative controls to verify the geographical origin of vegetable oils such as palm oil in an objective manner. In this study the application of fatty acid and volatile organic compound fingerprinting in combination with chemometrics have been appl

  12. Production of volatile fatty acids from sewage organic matter by combined bioflocculation and alkaline fermentation

    NARCIS (Netherlands)

    Khiewwijit, R.; Temmink, B.G.; Rijnaarts, H.H.M.; Keesman, K.J.

    2015-01-01

    This study explored the potential of volatile fatty acids (VFA) production from sewage by a combined high-loaded membrane bioreactor and sequencing batch fermenter. VFA production was optimized with respect to SRT and alkaline pH (pH 8–10). Application of pH shock to a value of 9 at the start of a s

  13. Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans.

    Science.gov (United States)

    Dong, Wenjiang; Hu, Rongsuo; Chu, Zhong; Zhao, Jianping; Tan, Lehe

    2017-11-01

    This study investigated the effect of different drying techniques, namely, room-temperature drying (RTD), solar drying (SD), heat-pump drying (HPD), hot-air drying (HAD), and freeze drying (FD), on bioactive components, fatty acid composition, and the volatile compound profile of robusta coffee beans. The data showed that FD was an effective method to preserve fat, organic acids, and monounsaturated fatty acids. In contrast, HAD was ideal for retaining polyunsaturated fatty acids and amino acids. Sixty-two volatile compounds were identified in the differently dried coffee beans, representing 90% of the volatile compounds. HPD of the coffee beans produced the largest number of volatiles, whereas FD resulted in the highest volatile content. A principal component analysis demonstrated a close relationship between the HPD, SD, and RTD methods whereas the FD and HAD methods were significantly different. Overall, the results provide a basis for potential application to other similar thermal sensitive materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Volatile fatty acids production in ruminants and the role of ...

    African Journals Online (AJOL)

    Essential to these roles is their rapid transport across the plasma membrane, ... The aim of this review is to critically discuss short-chain fatty acids production and the ... Two major functions of monocarboxylate transporter proteins, namely the ...

  15. Effect of source on net portal flux of glucose, lactate, volatile fatty acids and amino acids in the pig

    NARCIS (Netherlands)

    Meulen, van der J.; Bakker, J.G.M.; Smits, B.; Visser, de H.

    1997-01-01

    The ileal digestibilities of maize starch and native pea starch do not differ. However maize starch is digested faster than pea starch and the ileal amino acid digestibility of a diet containing pea starch is lower. In the present study, the net portal fluxes of glucose, lactate, volatile fatty

  16. Atmospheric Volatile Organic Compounds and Ozone Creation Potential in an Urban Center of Southern Nigeria

    Directory of Open Access Journals (Sweden)

    Emmanuel Gbenga Olumayede

    2014-01-01

    Full Text Available The relative contribution of individual volatile organic compounds (VOC species to photochemical ozone formation depends on their atmospheric concentrations and their oxidation mechanism. In an attempt to evaluate the ozone creation potential of ambient VOCs captured in an urban settlement of Benin City, Nigeria, the VOCs concentrations data collected in field studies at nine measurement sites of different air quality in the city and a background site were analysed. Air samples were collected at human breathing height of 1.5 meters from ground level at each site. Active sampling method using the low volume sampling pump (Acuro, Drager, Lubeck, Germany was used to drawn the air into the tube; the absorbent was Chromosorb 106. The sampling periods were between May 2010 and June 2011; the period covered both dry and wet seasons. The adsorbed gases were desorbed using solvent extraction method with carbon disulphide as solvent. The extracted solutions were analyzed with gas chromatography and mass spectrometer. The observed concentrations of individual VOCs were determined and maximum incremental reactivity (MIR coefficient along with rate constants of VOC-OH reactions were applied to assess the ozone formation potential of individual VOC in the ambient atmosphere. Sixteen VOC species were observed at various sites with mixing height in decreasing order: toluene (5.82, mp-xylene (3.58, ethylbenzene (3.46, benzene (2.29, and n-butane (0.84. The ozone formation potential study revealed that, ranking by propyl-equivalent, the alkanes included in this study account for 58% of the total propyl-equivalent concentration. The total ozone creation potential in the atmosphere of the Benin City was calculated to be 281.1 µg/m3. A comparison of total ozone formation potential (OFP in our study with results obtained from other cities of the world revealed that the total concentration of ozone production in our study is threefold lower than the values reported

  17. Acetic Acid Acts as a Volatile Signal To Stimulate Bacterial Biofilm Formation

    Science.gov (United States)

    Chen, Yun; Gozzi, Kevin; Yan, Fang

    2015-01-01

    ABSTRACT Volatiles are small air-transmittable chemicals with diverse biological activities. In this study, we showed that volatiles produced by the bacterium Bacillus subtilis had a profound effect on biofilm formation of neighboring B. subtilis cells that grew in proximity but were physically separated. We further demonstrated that one such volatile, acetic acid, is particularly potent in stimulating biofilm formation. Multiple lines of genetic evidence based on B. subtilis mutants that are defective in either acetic acid production or transportation suggest that B. subtilis uses acetic acid as a metabolic signal to coordinate the timing of biofilm formation. Lastly, we investigated how B. subtilis cells sense and respond to acetic acid in regulating biofilm formation. We showed the possible involvement of three sets of genes (ywbHG, ysbAB, and yxaKC), all encoding putative holin-antiholin-like proteins, in cells responding to acetic acid and stimulating biofilm formation. All three sets of genes were induced by acetate. A mutant with a triple mutation of those genes showed a severe delay in biofilm formation, whereas a strain overexpressing ywbHG showed early and robust biofilm formation. Results of our studies suggest that B. subtilis and possibly other bacteria use acetic acid as a metabolic signal to regulate biofilm formation as well as a quorum-sensing-like airborne signal to coordinate the timing of biofilm formation by physically separated cells in the community. PMID:26060272

  18. Hydroperoxide-lyase activity in mint leaves. Volatile C6-aldehyde production from hydroperoxy-fatty acids.

    Science.gov (United States)

    Gargouri, Mohamed; Drouet, Philippe; Legoy, Marie-Dominique

    2004-07-01

    The extraction of 13-hydroperoxide-lyase activity from mint leaves as well as its use for C6-aldehyde production was studied in this work. The enzyme cleaves 13(S)-hydroperoxy-C18 fatty acids into C6-aldehyde and C12-oxo-acid. Two mint species were tested: Mentha veridis and Mentha pulegium. The headspace injection method coupled to gas chromatography was used for volatile compound analysis. The optimal conditions for temperature and pH were, respectively, 15 and 7 degrees C. We also studied the specific synthesis of hexanal and hexenals respectively from 13(S)-hydroperoxy-linoleic acid and 13(S)-hydroperoxy-linolenic acid. Considerable quantities of aldehyde (up to 2.58 micromol) were produced after 15 min of cleavage reaction in 2 ml stirred at 100 rpm, especially in presence of extract of M. veridis. The conversion yields decreased from 52.5% as maximum to 3.3% when using initial hydroperoxide concentrations between 0.2 and 15 mM. An unsaturated aldehyde, the 3(Z)-hexenal was produced from 13(S)-hydroperoxy-linolenic acid. The 3(Z)-isomer was unstable and isomerized in part to 2(E)-hexenal. In this work, we observed a very limited isomerization of 3(Z)-hexenal to 2(E)-hexenal, since the reaction and the volatile purge were carried out successively in the same flask without delay or any contact with the atmosphere. These aldehydes contribute to the fresh green odor in plants and are widely used in perfumes and in food technology. Their importance increases especially when the starting materials are of natural biological origin as used in this work. GC-MS analysis allowed the identification of the products.

  19. Dynamic Solution Injection: a new method for preparing pptv-ppbv standard atmospheres of volatile organic compounds

    Directory of Open Access Journals (Sweden)

    K. J. Jardine

    2010-07-01

    Full Text Available Proton Transfer Reaction-Mass Spectrometry (PTR-MS and thermal desorption Gas Chromatography-Mass Spectrometry (GC-MS allow for absolute quantification of a wide range of atmospheric volatile organic compounds (VOCs with concentrations in the ppbv to pptv range. Although often neglected, routine calibration is necessary for accurate quantification of VOCs by PTR-MS and GC-MS. Several gas calibration methods currently exist, including compressed gas cylinders, permeation tubes, diffusion tubes, and liquid injection. While each method has its advantages and limitations, no single technique has emerged that is capable of dynamically generating accurate concentrations of complex mixtures of VOCs over a large concentration range (ppbv to pptv, is technically simple and field portable, and affordable. We present the development of a new VOC calibration technique based on liquid injection with these features termed Dynamic Solution Injection (DSI. This method consists of injecting VOCs (0.1–0.5 mM dissolved in cyclohexane (PTR-MS or methanol (GC-MS into a 1.0 slpm flow of purified dilution gas in an unheated 25 mL glass vial. Upon changes in the injection flow rate (0.5–4.0 μL min−1, new VOC concentrations are reached within seconds to minutes, depending on the compound, with a liquid injection flow rate accuracy and precision of better than 7% and 4%, respectively. We demonstrate the utility of the DSI technique by calibrating a PTR-MS to seven different cyclohexane solutions containing a total of 34 different biogenic compounds including volatile isoprenoids, oxygenated VOCs, fatty acid oxidation products, aromatics, and dimethyl sulfide. In order to validate the new DSI method, a GC-MS and PTR-MS calibration intercomparison with VOC standards generated by dynamic dilution of NIST traceable permeation tubes (α-pinene, acetone, and ethanol and a compressed gas cylinder (acetaldehyde was made. The results revealed that while

  20. Fates, Budgets, and Health Implications of Macondo Spill Volatile Hydrocarbons in the Ocean and Atmosphere of the Gulf of Mexico

    Science.gov (United States)

    Leifer, I.; Barletta, B.; Blake, D. R.; Blake, N. J.; Bradley, E. S.; Meinardi, S.; Lehr, B.; Luyendyk, B. P.; Roberts, D. A.; Rowland, F. S.

    2010-12-01

    The Macondo Oil Spill released unprecedented oil and gas to the ocean, estimated at 63000 bbl/day, which dispersed and dissolved during rise (Technical Flow Rate Team Report, 2010); yet, most of the oil reached the sea surface as oil slicks that then evolved due to weathering and dispersant application (Mass Balance Report, 2010). Remote sensing (near infrared imaging spectrometry) allowed quantification of thick surface oil, values of which were incorporated into an overall oil budget calculation. Remote sensing data, atmospheric samples, and numerical modeling, strongly suggest significant volatile loss during rise, yet measured atmospheric concentrations were high. Scaling atmospheric measurements to the total oil spill implies very high, extensive, and persistent levels of atmospheric petroleum hydrocarbon exposure with strong health implications to on-site workers and to coastal residents from wind advection.

  1. The kinetics of chemical processes affecting acidity in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pienaar, J.J.; Helas, G. [Potchefstroom University of Christian Higher Education, Potchefstroom (South Africa). Atmospheric Chemistry Research Group

    1996-03-01

    The dominant chemical reactions affecting atmospheric pollution chemistry and in particular, those leading to the formation of acid rain are outlined. The factors controlling the oxidation rate of atmospheric pollutants as well as the rate laws describing these processes are discussed in the light of our latest results and the current literature.

  2. Effect of Boric Acid on Volatile Products of Thermooxidative Degradation of Epoxy Polymers

    Science.gov (United States)

    Nazarenko, O. B.; Bukhareva, P. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The polymeric materials are characterized by high flammability. The use of flame retardants in order to reduce the flammability of polymers can lead to the formation of toxic gaseous products under fire conditions. In this work we studied the effect of boric acid on the volatile products of thermooxidative degradation of epoxy polymers. The comparative investigations were carried out on the samples of the unfilled epoxy resin and epoxy resin filled with a boric acid at percentage 10 wt. %. The analysis of the volatile decomposition products and thermal stability of the samples under heating in an oxidizing medium was performed using a thermal mass-spectrometric analysis. It is found that the incorporation of boric acid into the polymer matrix increases the thermal stability of epoxy composites and leads to a reduction in the 2-2.7 times of toxic gaseous products

  3. Strong emissive nanofibers of organogels for the detection of volatile acid vapors.

    Science.gov (United States)

    Xue, Pengchong; Sun, Jiabao; Yao, Boqi; Gong, Peng; Zhang, Zhenqi; Qian, Chong; Zhang, Yuan; Lu, Ran

    2015-03-16

    Two L-phenylalanine derivatives with 5,8-bis(2-(carbazol-3-yl)vinyl)quinoxaline (PCQ) and 5,8-bis[2-(carbazol-3-yl)]-2,3-dimethylquinoxaline (DCQ) as fluorophores were synthesized, and their photophysical properties were measured and compared. The two compounds were found to gelate some organic solvents and self-assemble into 1D nanofibers in gels. The wet gel of PCQ emitted a weak orange fluorescence, but the DCQ gel had a strong green one. This result can be due to the presence of two methyl groups and the nonplanar conformation of fluorophore in DCQ. The gel film of DCQ also showed significantly stronger fluorescence than that of PCQ. Thus, the wet gel and xerogel film of DCQ were selected to study their sensing properties to acids. The yellow wet gel of DCQ transformed into a brown sol upon the addition of 0.2 equiv trifluoroacetic acid (TFA), accompanied by emission quenching. The xerogel film of DCQ rapidly responded to volatile acids, such as TFA, HCl, and HOAc. The fluorescence of the xerogel film was gradually quenched with increased concentration of volatile acid vapors. The fibrous film exhibited low detection limits for volatile acid. The detection limits of the thin films for TFA, HCl, and HOAc reached 43, 122, and 950 ppb, respectively.

  4. Poly(L-aspartic acid) derivative soluble in a volatile organic solvent for biomedical application.

    Science.gov (United States)

    Oh, Nam Muk; Oh, Kyung Taek; Youn, Yu Seok; Lee, Eun Seong

    2012-09-01

    In order to develop a novel functional poly(L-amino acid) that can dissolve in volatile organic solvents, we prepared poly[L-aspartic acid-g-(3-diethylaminopropyl)]-b-poly(ethylene glycol) [poly(L-Asp-g-DEAP)-b-PEG] via the conjugation of 3-diethylaminopropyl (DEAP) to carboxylate groups of poly(L-Asp) (M(n) 4 K)-b-PEG (M(n) 2 K). This poly(L-aspartic acid) derivative evidenced a relatively high solubility in volatile organic solvents such as dichloromethane, chloroform, and acetone. We fabricated a model nanostructure (i.e., polymeric micelle) using poly(L-Asp-g-DEAP)-b-PEG by the film rehydration method, which involves the simple removal of the volatile organic solvent (dichloromethane) used to dissolve polymer, reducing concerns about organic solvents remaining in a nano-sized particle. Interestingly, this micelle showed the pH-stimulated release of encapsulated model drug [i.e., doxorubicin (DOX)] due to the protonation of DEAP according to the pH of the solution. We expect that this poly(L-aspartic acid) derivative promises to provide pharmaceutical potential for constituting a new stimuli-sensitive drug carrier for various drug molecules.

  5. Adsorption of volatile polonium species on metals in various gas atmospheres. Pt. II. Adsorption of volatile polonium on platinum, silver and palladium

    Energy Technology Data Exchange (ETDEWEB)

    Maugeri, Emilio Andrea; Joerg Neuhausen; Dressler, Rugard; Piguet, David; Voegele, Alexander; Schumann, Dorothea [Paul Scherrer Institut (PSI), Villigen (Switzerland). Lab. for Radiochemistry; Misiak, Ryszard [The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Eichler, Robert [Paul Scherrer Institut (PSI), Villigen (Switzerland). Lab. for Radiochemistry; Bern Univ. (Switzerland). Dept. for Chemistry and Biochemistry

    2016-07-01

    This work presents the results obtained from studying the interaction between polonium compounds formed in different atmospheres and platinum, palladium and silver surfaces obtained by thermochromatography. These results are of crucial importance for the design of cover gas filter systems for lead-bismuth eutectic (LBE)-based nuclear facilities such as accelerator driven systems (ADS). The results obtained from studying the interaction of polonium and platinum under inert atmosphere and reducing atmospheres with and without addition of moisture show that polonium is deposited at temperatures between 993 and 1221 K, with adsorption enthalpies ranging from -235 to -291 kJ mol{sup -1}, indicating a very strong adsorption of the polonium species present on platinum surfaces. The interaction between polonium and silver was investigated using purified inert, reducing and oxidizing carrier gases. Results show a deposition temperature between 867 and 990 K, with adsorption enthalpies ranging from -205 to -234 kJ mol{sup -1}. The interaction of polonium and palladium was studied in purified helium and purified hydrogen. For both conditions a deposition temperature of 1221 K was observed corresponding to an adsorption enthalpy of -340 kJ mol{sup -1}. No highly volatile polonium species was formed at any of the applied experimental conditions.

  6. Reactions of volatile organic compounds in the atmosphere: Ozone-alkene reactions

    Science.gov (United States)

    Fenske, Jill Denise

    2000-08-01

    Photochemical smog cannot form without sunlight, nitrogen oxides, and volatile organic compounds (VOC). This dissertation addresses several different aspects of VOC chemistry in the atmosphere. Aside from ambient levels of VOC outdoors, VOC are also present at moderate concentrations indoors. Many studies have measured indoor air concentrations of VOC, but only one considered the effects of human breath. The major VOC in the breath of healthy individuals are isoprene (12-580 ppb), acetone (1.2-1800 ppb), ethanol (13-1000 ppb), methanol (160-2000 ppb), and other alcohols. Human emissions of VOC are negligible on a regional (less than 4%) and global scale (less than 0.3%). However, in indoor air, under fairly crowded situations, human emissions of VOC may dominate other sources of VOC. An important class of VOC in the atmosphere is alkenes, due to their high reactivity. The ozone reaction with alkenes forms OH radicals, a powerful oxidizing agent in the troposphere. OH radical formation yields from the ozonolysis of several cycloalkenes were measured using small amounts of fast-reacting aromatics and aliphatic ethers to trace OH formation. The values are 0.62 +/- 0.15, 0.54 +/- 0.13, 0.36 +/- 0.08, and 0.91 +/- 0.20 for cyclopentene, cyclohexene, cycloheptene and 1-methylcyclohexene, respectively. Density functional theory calculations at the B3LYP/6-31 G(d,p) level are presented to aid in understanding the trends observed. The pressure dependence of OH radical yields may lend insight into the formation mechanism. We have made the first study of the pressure dependence of the OH radical yield for ethene, propene, 1-butene, trans-2-butene, and 2,3-dimethyl-2- butene over the range 20-760 Torr, and trans -3-hexene, and cyclopentene over the range 200-760 Torr. The OH yields from ozonolysis of ethene and propene were pressure dependent, while the other compounds had OH yields that were independent of pressure. Ozone-alkene reactions form vibrationally excited carbonyl

  7. Surface Propensity of Atmospherically Relevant Amino Acids Studied by XPS.

    Science.gov (United States)

    Mocellin, Alexandra; Gomes, Anderson Herbert de Abreu; Araújo, Oscar Cardoso; de Brito, Arnaldo Naves; Bjorneholm, Olle

    2017-03-30

    Amino acids constitute an important fraction of the water-soluble organic nitrogen (WSON) compounds in aerosols and are involved in many processes in the atmosphere. In this work, we applied XPS to study aqueous solutions of four amino acids: glycine, alanine, valine and methionine, in their zwitterionic forms. We found that amino acids with hydrophilic side chains and smaller size, GLY and ALA, tend to stay in the bulk of the liquid, while the hydrophobic and bigger amino acids, VAL and MET, are found to concentrate more on the surface. We found experimental evidences that the amino acids have preferential orientation relative to the surface, with the hydrophobic side chain being closer to the surface than the hydrophilic carboxylate group. The observed amino acid surface propensity has implications in atmospheric science as the surface interaction play a central role in cloud droplet formation, and they should be considered in climate models.

  8. Free amino acids and other non-volatile compounds formed during processing of Iberian ham.

    Science.gov (United States)

    Martín, L; Antequera, T; Ventanas, J; Benítez-Donoso, R; Córdoba, J J

    2001-12-01

    Fifty-five legs from Iberian pigs were traditionally processed into dry cured hams. Free amino acids and other non-volatile compounds in the water-soluble fraction from the biceps femoris muscle were analyzed by HPLC. At the drying stage and in the last months in the cellar the largest increases in these water-soluble compounds took place. There was a clear influence on free amino acid formation of salt content and on the formation of peptides of the temperature at each processing stage. As the amount of non-volatile compounds in the water-soluble fraction increases with processing time, their determination could provide a maturation index for Iberian ham.

  9. Interlaboratory comparison of measurements of acid-volatile sulfide and simultaneously extracted nickel in spiked sediments

    Science.gov (United States)

    Brumbaugh, William G.; Hammerschmidt, Chad R.; Zanella, Luciana; Rogevich, Emily; Salata, Gregory; Bolek, Radoslaw

    2011-01-01

    An interlaboratory comparison of acid-volatile sulfide (AVS) and simultaneously extracted nickel (SEM_Ni) measurements of sediments was conducted among five independent laboratories. Relative standard deviations for the seven test samples ranged from 5.6 to 71% (mean?=?25%) for AVS and from 5.5 to 15% (mean?=?10%) for SEM_Ni. These results are in stark contrast to a recently published study that indicated AVS and SEM analyses were highly variable among laboratories.

  10. Volatile fatty acids distribution during acidogenesis of algal residues with pH control.

    Science.gov (United States)

    Li, Yan; Hua, Dongliang; Zhang, Jie; Zhao, Yuxiao; Xu, Haipeng; Liang, Xiaohui; Zhang, Xiaodong

    2013-06-01

    The anaerobic acidification of protein-rich algal residues with pH control (4, 6, 8, 10) was studied in batch reactors, which was operated at mesophilic(35 °C) condition. The distribution of major volatile fatty acids (VFAs) during acidogenesis was emphasized in this paper. The results showed that the acidification efficiency and VFAs distribution in the acid reactor strongly depended on the pH. The main product for all the runs involved acetic acid except that the proportion of butyric acid acidified at pH 6 was relatively higher. The other organic acids remained at lower levels. The VFAs yield reached the maximum value with about 0.6 g VFAs/g volatile solid (VS) added as pH was 8, and also the content of total ammonia nitrogen (TAN) reached the highest values of 9,629 mg/l. Low acidification degrees were obtained under the conditions at pH 4 and 10, which was not suitable for the metabolism of acidogens. Hydralic retention time (HRT) required for different conditions varied. As a consequence, it was indicated that pH was crucial to the acidification efficiency and products distribution. The investigation of acidogenesis process, which was producing the major substrates, short-chain fatty acids, would play the primary role in the efficient operation of methanogenesis.

  11. Adsorption of volatile polonium and bismuth species on metals in various gas atmospheres. Pt. I. Adsorption of volatile polonium and bismuth on gold

    Energy Technology Data Exchange (ETDEWEB)

    Maugeri, Emilio Andrea; Neuhausen, Joerg; Dressler, Rugard; Piguet, David; Voegele, Alexander; Schumann, Dorothea [Paul Scherrer Institut (PSI), Villigen (Switzerland). Lab. for Radiochemistry; Eichler, Robert [Paul Scherrer Institut (PSI), Villigen (Switzerland). Lab. for Radiochemistry; Bern Univ. (Switzerland). Dept. for Chemistry and Biochemistry; Rijpstra, Kim [Ghent Univ., Zwijnaarde (Belgium). Center for Molecular Modeling (CMM); Cottenier, Stefaan [Ghent Univ., Zwijnaarde (Belgium). Center for Molecular Modeling (CMM); Ghent Univ., Zwijnaarde (Belgium). Dept. of Materials Science and Engineering

    2016-07-01

    Polonium isotopes are considered the most hazardous radionuclides produced during the operation of accelerator driven systems (ADS) when lead-bismuth eutectic (LBE) is used as the reactor coolant and as the spallation target material. In this work the use of gold surfaces for capturing polonium from the cover gas of the ADS reactor was studied by thermochromatography. The results show that gaseous monoatomic polonium, formed in dry hydrogen, is adsorbed on gold at 1058 K. Its adsorption enthalpy was calculated as -250±7 kJ mol{sup -1}, using a Monte Carlo simulation code. Highly volatile polonium species that were observed in similar experiments in fused silica columns in the presence of moisture in both inert and reducing gas were not detected in the experiments studying adsorption on gold surfaces. PoO{sub 2} is formed in both dry and moist oxygen, and its interaction with gold is characterized by transport reactions. The interaction of bismuth, present in large amounts in the atmosphere of the ADS, with gold was also evaluated. It was found that bismuth has a higher affinity for gold, compared to polonium, in an inert, reducing, and oxidizing atmosphere. This fact must be considered when using gold as a material for filtering polonium in the cover gas of ADS.

  12. Importance of secondary sources in the atmospheric budgets of formic and acetic acids

    Directory of Open Access Journals (Sweden)

    F. Paulot

    2010-10-01

    Full Text Available We present a detailed budget of formic and acetic acids, two of the most abundant trace gases in the atmosphere. Our bottom-up estimate of the global source of formic and acetic acids are ~1200 and ~1400 Gmol/yr, dominated by photochemical oxidation of biogenic volatile organic compounds, in particular isoprene. Their sinks are dominated by wet and dry deposition. We use the GEOS-Chem chemical transport model to evaluate this budget against an extensive suite of measurements from ground, ship and satellite-based Fourier transform spectrometers, as well as from several aircraft campaigns over North America. The model captures the seasonality of formic and acetic acids well but generally underestimates their concentration, particularly in the Northern midlatitudes. We infer that the source of both carboxylic acids may be up to 50% greater than our estimate and report evidence for a long-lived missing secondary source of carboxylic acids that may be associated with the aging of organic aerosols. Vertical profiles of formic acid in the upper troposphere support a negative temperature dependence of the reaction between formic acid and the hydroxyl radical as suggested by several theoretical studies.

  13. The prebiotic synthesis of amino acids - interstellar vs. atmospheric mechanisms

    Science.gov (United States)

    Meierhenrich, U. J.; Muñoz Caro, G. M.; Schutte, W. A.; Barbier, B.; Arcones Segovia, A.; Rosenbauer, H.; Thiemann, W. H.-P.; Brack, A.

    2002-11-01

    Until very recently, prebiotic amino acids were believed to have been generated in the atmosphere of the early Earth, as successfully simulated by the Urey-Miller experiments. Two independent studies now identified ice photochemistry in the interstellar medium as a possible source of prebiotic amino acids. Ultraviolet irradiation of ice mixtures containing identified interstellar molecules (such as H2O, CO2, CO, CH3OH, and NH3) in the conditions of vacuum and low temperature found in the interstellar medium generated amino acid structures including glycine, alanine, serine, valine, proline, and aspartic acid. After warmup, hydrolysis and derivatization, our team was able to identify 16 amino acids as well as furans and pyrroles. Enantioselective analyses of the amino acids showed racemic mixtures. A prebiotic interstellar origin of amino acid structures is now discussed to be a plausible alternative to the Urey-Miller mechanism.

  14. Simultaneous determination of volatile and non-volatile nitrosamines in processed meat products by liquid chromatography tandem mass spectrometry using atmospheric pressure chemical ionisation and electrospray ionisation.

    Science.gov (United States)

    Herrmann, S S; Duedahl-Olesen, L; Granby, K

    2014-02-21

    A sensitive, selective and generic method has been developed for the simultaneous determination of the contents (μgkg(-1) range) of both volatile nitrosamines (VNA) and non-volatile nitrosamines (NVNA) in processed meat products. The extraction procedure only requires basic laboratory equipment and a small volume of organic solvent. Separation and quantification were performed by the developed LC-(APCI/ESI)MS/MS method. The method was validated using spiked samples of three different processed meat products. Satisfactory recoveries (50-130%) and precisions (2-23%) were obtained for eight VNA and six NVNAs with LODs generally between 0.2 and 1μgkg(-1), though for a few analyte/matrix combinations higher LODs were obtained (3 to 18μgkg(-1)). The validation results show that results obtained for one meat product is not always valid for other meat products. We were not able to obtain satisfactory results for N-nitrosohydroxyproline (NHPRO), N-nitrosodibenzylamine (NDBzA) and N-nitrosodiphenylamine (NDPhA). Application of the APCI interface improved the sensitivity of the method, because of less matrix interference, and gave the method a wider scope, as some NAs were ionisable only by APCI. However, it was only possible to ionize N-nitroso-thiazolidine-4-carboxylic acid (NTCA) and N-nitroso-2-methyl-thiazolidine-4-carboxylic acid (NMTCA) by ESI. The validated method was applied for the analysis of processed meat products and contents of N-nitrosodimethylamine (NDMA), N-nitrosopyrrolidine (NPYR), N-nitrosomethylaniline (NMA), N-nitrosoproline (NPRO), NTCA, and NMTCA were found in one or several nitrite cured meat products, whereas none were detected in non-nitrite cured bacon.

  15. Plant volatiles.

    Science.gov (United States)

    Baldwin, Ian T

    2010-05-11

    Plant volatiles are the metabolites that plants release into the air. The quantities released are not trivial. Almost one-fifth of the atmospheric CO2 fixed by land plants is released back into the air each day as volatiles. Plants are champion synthetic chemists; they take advantage of their anabolic prowess to produce volatiles, which they use to protect themselves against biotic and abiotic stresses and to provide information - and potentially disinformation - to mutualists and competitors alike. As transferors of information, volatiles have provided plants with solutions to the challenges associated with being rooted in the ground and immobile.

  16. Volatile aromatic compounds in Mexico City atmosphere: levels and source apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Mugica, V. [Universidad Autonoma Metropolitana - Unidad Azcapotzalco, Mexico, D.F. (Mexico); Ruiz, M.E. [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Watson, J.; Chow, J. [Desert Research Institute, Reno, Nevada (United States)

    2003-01-01

    Samples of ambient air were simultaneously collected at three different sites of Mexico City in March of 1997 in order to quantify the most abundant volatile aromatic compounds and estimate the source contributions by application of the chemical mass balance model (CMB). Volatile aromatic compounds were around 20% of the total of non-methane hydrocarbons present in morning air samples. The most abundant volatile aromatic species in urban air were toluene and xylenes followed by 1, 2, 4 trimethylbenzene, benzene, ethylbenzene, metaethyltoluene, 1, 3, 5 trimethylbenzene, styrene, n propylbenzene, and isopropylbenzene. Sampling campaigns were carried out at crossroads, a bus station, a parking place, and areas where solvents and petroleum distillates are used, with the objective of determining people's exposure to volatile aromatic compounds. The CMB was applied for estimating the contribution of different sources to the presence of each one of the most abundant aromatic compounds. Motor vehicle exhaust was the main source of all aromatic compounds, especially gasoline exhaust, although diesel exhausts and asphalt operations also accounted for toluene, xylenes, ethylbenzene, propylbenzenes, and styrene. Graphic arts and paint applications had an important impact on the presence of toluene. [Spanish] Se colectaron simultaneamente muestras de aire ambiente en tres sitios de la Ciudad de Mexico durante el mes de marzo de 1997 con el fin de conocer las concentraciones y el origen de compuestos aromaticos utilizando el modelo de balance de masa de especies quimicas (CMB). Los compuestos aromaticos volatiles representaron alrededor del 20% del total de hidrocarburos no metalicos presentes en las muestras matutinas colectadas. Las especies aromaticas volatiles mas abundantes en el ambiente fueron el tolueno y los xilenos, seguidos por 1, 2, 4 trimetilbenceno, benceno, etilbenceno, metaetiltolueno, nporpilbenceno, isopropilbenceno, 1, 3, 5 trimetilbenceno y estireno. Se

  17. Volatile fatty acids production from anaerobic treatment of cassava waste water: effect of temperature and alkalinity.

    Science.gov (United States)

    Hasan, Salah Din Mahmud; Giongo, Citieli; Fiorese, Mônica Lady; Gomes, Simone Damasceno; Ferrari, Tatiane Caroline; Savoldi, Tarcio Enrico

    2015-01-01

    The production of volatile fatty acids (VFAs), intermediates in the anaerobic degradation process of organic matter from waste water, was evaluated in this work. A batch reactor was used to investigate the effect of temperature, and alkalinity in the production of VFAs, from the fermentation of industrial cassava waste water. Peak production of total volatile fatty acids (TVFAs) was observed in the first two days of acidogenesis. A central composite design was performed, and the highest yield (3400 mg L(-1) of TVFA) was obtained with 30°C and 3 g L(-1) of sodium bicarbonate. The peak of VFA was in 45 h (pH 5.9) with a predominance of acetic (63%) and butyric acid (22%), followed by propionic acid (12%). Decreases in amounts of cyanide (12.9%) and chemical oxygen demand (21.6%) were observed, in addition to the production of biogas (0.53 cm(3) h(-1)). The process was validated experimentally and 3400 g L(-1) of TVFA were obtained with a low relative standard deviation.

  18. Influence of pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt.

    Science.gov (United States)

    Akbaridoust, Ghazal; Plozza, Tim; Trenerry, V Craige; Wales, William J; Auldist, Martin J; Ajlouni, Said

    2015-08-01

    The influence of different pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt was studied. Pasture is the main source of nutrients for dairy cows in many parts of the world, including southeast Australia. Milk and milk products produced in these systems are known to contain a number of compounds with positive effects on human health. In the current study, 260 cows were fed supplementary grain and forage according to one of 3 different systems; Control (a traditional pasture based diet offered to the cows during milking and in paddock), PMR1 (a partial mixed ration which contained the same supplement as Control but was offered to the cows as a partial mixed ration on a feedpad), PMR 2 (a differently formulated partial mixed ration compared to Control and PMR1 which was offered to the cows on a feedpad). Most of the yoghurt fatty acids were influenced by feeding systems; however, those effects were minor on organic acids. The differences in feeding systems did not lead to the formation of different volatile organic flavour compounds in yoghurt. Yet, it did influence the relative abundance of these components.

  19. Bioconversion of volatile fatty acids derived from waste activated sludge into lipids by Cryptococcus curvatus.

    Science.gov (United States)

    Liu, Jia; Liu, Jia-Nan; Yuan, Ming; Shen, Zi-Heng; Peng, Kai-Ming; Lu, Li-Jun; Huang, Xiang-Feng

    2016-07-01

    Pure volatile fatty acid (VFA) solution derived from waste activated sludge (WAS) was used to produce microbial lipids as culture medium in this study, which aimed to realize the resource recovery of WAS and provide low-cost feedstock for biodiesel production simultaneously. Cryptococcus curvatus was selected among three oleaginous yeast to produce lipids with VFAs derived from WAS. In batch cultivation, lipid contents increased from 10.2% to 16.8% when carbon to nitrogen ratio increased from about 3.5 to 165 after removal of ammonia nitrogen by struvite precipitation. The lipid content further increased to 39.6% and the biomass increased from 1.56g/L to 4.53g/L after cultivation for five cycles using sequencing batch culture (SBC) strategy. The lipids produced from WAS-derived VFA solution contained nearly 50% of monounsaturated fatty acids, including palmitic acid, heptadecanoic acid, ginkgolic acid, stearic acid, oleic acid, and linoleic acid, which showed the adequacy of biodiesel production.

  20. Recovery of volatile fatty acids via membrane contactor using flat membranes: experimental and theoretical analysis.

    Science.gov (United States)

    Tugtas, Adile Evren

    2014-07-01

    Volatile fatty acid (VFA) separation from synthetic VFA solutions and leachate was investigated via the use of a membrane contactor. NaOH was used as a stripping solution to provide constant concentration gradient of VFAs in both sides of a membrane. Mass flux (12.23 g/m(2)h) and selectivity (1.599) observed for acetic acid were significantly higher than those reported in the literature and were observed at feed pH of 3.0, flow rate of 31.5 ± 0.9 mL/min, and stripping solution concentration of 1.0 N. This study revealed that the flow rate, stripping solution strength, and feed pH affect the mass transfer of VFAs through the PTFE membrane. Acetic and propionic acid separation performances observed in the present study provided a cost effective and environmental alternative due to elimination of the use of extractants.

  1. In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion.

    Science.gov (United States)

    Xu, Zhiyang; Zhao, Mingxing; Miao, Hengfeng; Huang, Zhenxing; Gao, Shumei; Ruan, Wenquan

    2014-07-01

    Anaerobic digestion is considered to be an efficient way of disposing kitchen wastes, which can not only reduce waste amounts, but also produce biogas. However, the excessive accumulation of volatile fatty acids (VFA) caused by high organic loads will inhibit anaerobic digestion intensively. Effects of the VFA composition on biogas generation and microbial community are still required for the investigation under various organic loads of kitchen wastes. Our results showed that the maximum specific methane production was 328.3 ml g TS(-1), and acetic acid was the main inhibitor in methanogenesis. With the increase of organic load, aceticlastic methanogenesis was more sensitive to acetic acid than hydrogenotrophic methanogenesis. Meanwhile, methanogenic microbial community changed significantly, and few species grew well under excessive organic loads. This study provides an attempt to reveal the mechanism of VFA inhibition in anaerobic digestion of kitchen wastes.

  2. The atmospheric potential of biogenic volatile organic compounds from needles of White Pine (Pinus strobus in Northern Michigan

    Directory of Open Access Journals (Sweden)

    S. Bertman

    2011-09-01

    Full Text Available The key role biogenic volatile organic compounds (BVOC play in atmospheric chemistry requires a detailed understanding of how BVOC concentrations will be affected by environmental change. Large-scale screening of ecosystems is difficult with enclosure methods. In this study, BVOC in needles of 71 white pine trees (Pinus strobus, which are becoming a large part of Midwest forests, are tracked for three summers at the University of Michigan Biological Station (UMBS. α-pinene, the dominant terpene in all samples, accounts for 30–50% of all terpenes on a mole basis. The most abundant sesquiterpenoid was a C15 alcohol identified as germacrene-D-4-ol. The abundance of this material and its atmospheric relevance has not been considered previously. The relationship between limonene and α-pinene clearly shows two distinct trends in the population of these forests. About 15% of the trees showed high levels of limonene (up to 36% of the total BVOC in the same trees every year. With this mixture, limonene contributes 11% of the α-pinene contribution to total gas-phase OH loss at UMBS compared to less than 2% considering the composition of the majority trees. Hence we show that chemotypic variation within forests can affect atmospheric chemistry and that large-scale screening of BVOC can be used effectively to study the importance of BVOC variation for predicting atmospheric chemistry in future forests.

  3. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci

    Directory of Open Access Journals (Sweden)

    Xiaobin Shi

    2016-06-01

    Full Text Available The whitefly Bemisia tabaci (Gennadius (Hemiptera: Aleyrodidae causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV. The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles—especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles.

  4. Strong Fluorescent Smart Organogel as a Dual Sensing Material for Volatile Acid and Organic Amine Vapors.

    Science.gov (United States)

    Xue, Pengchong; Yao, Boqi; Wang, Panpan; Gong, Peng; Zhang, Zhenqi; Lu, Ran

    2015-11-23

    An L-phenylalanine derivative (C12PhBPCP) consisting of a strong emission fluorophore with benzoxazole and cyano groups is designed and synthesized to realize dual responses to volatile acid and organic amine vapors. The photophysical properties and self-assembly of the said derivative in the gel phase are also studied. C12PhBPCP can gelate organic solvents and self-assemble into 1 D nanofibers in the gels. UV/Vis absorption spectral results show H-aggregate formation during gelation, which indicates strong exciton coupling between fluorophores. Both wet gel and xerogel emit strong green fluorescence because the cyano group suppresses fluorescence quenching in the self-assemblies. Moreover, the xerogel film with strong green fluorescence can be used as a dual chemosensor for quantitative detection of volatile acid and organic amine vapors with fast response times and low detection limits owing to its large surface area and amplified fluorescence quenching. The detection limits are 796 ppt and 25 ppb for gaseous aniline and trifluoroacetic acid (TFA), respectively.

  5. Key volatile aroma compounds of lactic acid fermented malt based beverages - impact of lactic acid bacteria strains.

    Science.gov (United States)

    Nsogning Dongmo, Sorelle; Sacher, Bertram; Kollmannsberger, Hubert; Becker, Thomas

    2017-08-15

    This study aims to define the aroma composition and key aroma compounds of barley malt wort beverages produced from fermentation using six lactic acid bacteria (LAB) strains. Gas chromatography mass spectrometry-olfactometry and flame ionization detection was employed; key aroma compounds were determined by means of aroma extract dilution analysis. Fifty-six detected volatile compounds were similar among beverages. However, significant differences were observed in the concentration of individual compounds. Key aroma compounds (flavor dilution (FD) factors ≥16) were β-damascenone, furaneol, phenylacetic acid, 2-phenylethanol, 4-vinylguaiacol, sotolon, methional, vanillin, acetic acid, nor-furaneol, guaiacol and ethyl 2-methylbutanoate. Furthermore, acetaldehyde had the greatest odor activity value of up to 4266. Sensory analyses revealed large differences in the flavor profile. Beverage from L. plantarum Lp. 758 showed the highest FD factors in key aroma compounds and was correlated to fruity flavors. Therefore, we suggest that suitable LAB strain selection may improve the flavor of malt based beverages.

  6. Bio-electrolytic sensor for rapid monitoring of volatile fatty acids in anaerobic digestion process

    DEFF Research Database (Denmark)

    Jin, Xiangdan; Li, Xiaohu; Zhao, Nannan;

    2017-01-01

    This study presents an innovative biosensor that was developed on the basis of a microbial electrolysis cell for fast and reliable measurement of volatile fatty acids (VFA) during anaerobic digestion (AD) process. The bio-electrolytic sensor was first tested with synthetic wastewater containing...... to monitor VFA concentrations in a lab-scale AD reactor for a month. The VFA measurements from the sensor correlated well with those from GC analysis which proved the accuracy of the system. Since hydrogen was produced in the cathode as byproduct during monitoring, the system could be energy self...

  7. Oxygenated volatile organic carbon in the western Pacific convective center: ocean cycling, air–sea gas exchange and atmospheric transport

    Directory of Open Access Journals (Sweden)

    C. Schlundt

    2017-09-01

    Full Text Available A suite of oxygenated volatile organic compounds (OVOCs – acetaldehyde, acetone, propanal, butanal and butanone were measured concurrently in the surface water and atmosphere of the South China Sea and Sulu Sea in November 2011. A strong correlation was observed between all OVOC concentrations in the surface seawater along the entire cruise track, except for acetaldehyde, suggesting similar sources and sinks in the surface ocean. Additionally, several phytoplankton groups, such as haptophytes or pelagophytes, were also correlated to all OVOCs, indicating that phytoplankton may be an important source of marine OVOCs in the South China and Sulu seas. Humic- and protein-like fluorescent dissolved organic matter (FDOM components seemed to be additional precursors for butanone and acetaldehyde. The measurement-inferred OVOC fluxes generally showed an uptake of atmospheric OVOCs by the ocean for all gases, except for butanal. A few important exceptions were found along the Borneo coast, where OVOC fluxes from the ocean to the atmosphere were inferred. The atmospheric OVOC mixing ratios over the northern coast of Borneo were relatively high compared with literature values, suggesting that this coastal region is a local hotspot for atmospheric OVOCs. The calculated amount of OVOCs entrained into the ocean seemed to be an important source of OVOCs to the surface ocean. When the fluxes were out of the ocean, marine OVOCs were found to be enough to control the locally measured OVOC distribution in the atmosphere. Based on our model calculations, at least 0.4 ppb of marine-derived acetone and butanone can reach the upper troposphere, where they may have an important influence on hydrogen oxide radical formation over the western Pacific Ocean.

  8. The enhancement mechanism of glycolic acid on the formation of atmospheric sulfuric acid-ammonia molecular clusters

    Science.gov (United States)

    Zhang, Haijie; Kupiainen-Määttä, Oona; Zhang, Xiuhui; Molinero, Valeria; Zhang, Yunhong; Li, Zesheng

    2017-05-01

    Highly oxidized multifunctional organic molecules, which span a wide range of low volatilities, are capable of driving particle formation as well as the initial growth of particles in the atmosphere. However, their participant mechanism in new particle formation still remains largely ambiguous. Here we present an investigation of the potentially participant mechanism of the simplest hydroxyl acid, glycolic acid (GA) on clusters formation by sulfuric acid (SA) and ammonia (A). Density functional theory calculations at the M062X/6-311++G(3df,3pd) level of theory combining with atmospheric cluster dynamics code simulations of (𝐒𝐀)xṡ𝐀yṡ(𝐆𝐀)z cluster (y≤x + z ≤ 3) systems at different temperatures (298, 278, 258, 238, and 218 K) give direct evidence of the enhancement effect of GA on the formation rates of SA-A-based clusters at high concentration of GA and T = 238 K and 218 K. Moreover, within GA's enhancement concentrations, the enhancement strength R of GA presents a positive dependence on its atmospheric concentrations and a negative dependence on temperature. A competitive relationship between SA and GA has been identified through the negative dependence of R on the concentrations of SA. The influence of A on R is more complex that R first increases, reaching a maximum value, and then decreases with the increasing concentration of A. Finally, the combination of the traced growth paths of the system with the enhancement strength of GA suggests a "catalytic" enhancement mechanism of GA where GA acts as a mediate bridge for the formation of pure SA-A-based clusters.

  9. Reactions between water-soluble organic acids and nitrates in atmospheric aerosols: Recycling of nitric acid and formation of organic salts

    Science.gov (United States)

    Wang, Bingbing; Laskin, Alexander

    2014-03-01

    Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Nitrate as an important inorganic component can be chemically formed in the atmosphere. For instance, formation of sodium nitrate (NaNO3) and calcium nitrate (Ca(NO3)2) occurs when nitrogen oxides and nitric acid (HNO3) react with sea salt and calcite, respectively. Organic acids contribute a significant fraction of photochemically formed secondary organics that can condense on the preexisting nitrate-containing particles. Here we present a systematic microanalysis study on chemical composition of laboratory-generated particles composed of water-soluble organic acids and nitrates (i.e., NaNO3 and Ca(NO3)2) using computer-controlled scanning electron microscopy with energy-dispersive X-ray microanalysis and Fourier transform infrared microspectroscopy. The results show that water-soluble organic acids can react with nitrates and release gaseous HNO3 during the dehydration process. These reactions are attributed to acid displacement of nitrate with weak organic acids driven by the evaporation of HNO3 into gas phase because of its relatively high volatility. The reactions result in significant nitrate depletion and formation of organic salts in mixed organic acids/nitrate particles that, in turn, may affect their physical and chemical properties relevant to atmospheric environment and climate. Airborne nitrate concentrations are estimated by thermodynamic calculations corresponding to various nitrate depletions in selected organic acids of atmospheric relevance. The results indicate a potential mechanism of HNO3 recycling that may further affect concentrations of gas and condensed phase species in the atmosphere and the heterogeneous reaction chemistry between them.

  10. Determination of acrolein, ethanol, volatile acidity, and copper in different samples of sugarcane spirits

    Directory of Open Access Journals (Sweden)

    José Masson

    2012-09-01

    Full Text Available Seventy-one samples of sugarcane spirits from small and average size stills produced in the northern and southern Minas Gerais (Brazil were analyzed for acrolein using HPLC (High Performance Liquid Chromatography. Ethanol and copper concentrations and volatile acidity were also determined according to methods established by the Ministry of Agriculture, Livestock and Supply (MAPA. A total of 9.85% of the samples tested showed levels of acrolein above the legal limits, while the copper concentrations of 21.00% of the samples and the volatile acidity of 8.85% of the samples were higher than the limits established by the Brazilian legislation. The concentration of acrolein varied from 0 to 21.97 mg.100 mL-1 of ethanol. However, no significant difference at 5% of significance was observed between the samples produced in the northern and southern Minas Gerais. The method used for determination of acrolein in sugarcane spirits involved the formation of a derivative with 2,4-dinitrophenylhydrazine (2,4-DNPH and subsequent analysis by HPLC.

  11. A flowing atmospheric pressure afterglow as an ion source coupled to a differential mobility analyzer for volatile organic compound detection.

    Science.gov (United States)

    Bouza, Marcos; Orejas, Jaime; López-Vidal, Silvia; Pisonero, Jorge; Bordel, Nerea; Pereiro, Rosario; Sanz-Medel, Alfredo

    2016-05-23

    Atmospheric pressure glow discharges have been widely used in the last decade as ion sources in ambient mass spectrometry analyses. Here, an in-house flowing atmospheric pressure afterglow (FAPA) has been developed as an alternative ion source for differential mobility analysis (DMA). The discharge source parameters (inter-electrode distance, current and helium flow rate) determining the atmospheric plasma characteristics have been optimized in terms of DMA spectral simplicity with the highest achievable sensitivity while keeping an adequate plasma stability and so the FAPA working conditions finally selected were: 35 mA, 1 L min(-1) of He and an inter-electrode distance of 8 mm. Room temperature in the DMA proved to be adequate for the coupling and chemical analysis with the FAPA source. Positive and negative ions for different volatile organic compounds were tested and analysed by FAPA-DMA using a Faraday cup as a detector and proper operation in both modes was possible (without changes in FAPA operational parameters). The FAPA ionization source showed simpler ion mobility spectra with narrower peaks and a better, or similar, sensitivity than conventional UV-photoionization for DMA analysis in positive mode. Particularly, the negative mode proved to be a promising field of further research for the FAPA ion source coupled to ion mobility, clearly competitive with other more conventional plasmas such as corona discharge.

  12. Simultaneous determination of volatile and non-volatile nitrosamines in processed meat products by liquid chromatography tandem mass spectrometry using atmospheric pressure chemical ionisation and electrospray ionisation

    DEFF Research Database (Denmark)

    Herrmann, Susan Strange; Duedahl-Olesen, Lene; Granby, Kit

    2014-01-01

    A sensitive, selective and generic method has been developed for the simultaneous determination of the contents (μgkg−1 range) of both volatile nitrosamines (VNA) and non-volatile nitrosamines (NVNA) in processed meat products. The extraction procedure only requires basic laboratory equipment and...

  13. Measurement of vapor pressures and heats of sublimation of dicarboxylic acids using atmospheric solids analysis probe mass spectrometry.

    Science.gov (United States)

    Bruns, Emily A; Greaves, John; Finlayson-Pitts, Barbara J

    2012-06-21

    Vapor pressures of low volatility compounds are important parameters in several atmospheric processes, including the formation of new particles and the partitioning of compounds between the gas phase and particles. Understanding these processes is critical for elucidating the impacts of aerosols on climate, visibility, and human health. Dicarboxylic acids are an important class of compounds in the atmosphere for which reported vapor pressures often vary by more than an order of magnitude. In this study, atmospheric solids analysis probe mass spectrometry (ASAP-MS), a relatively new atmospheric pressure ionization technique, is applied for the first time to the measurement of vapor pressures and heats of sublimation of a series of dicarboxylic acids. Pyrene was also studied because its vapor pressures and heat of sublimation are relatively well-known. The heats of sublimation measured using ASAP-MS were in good agreement with published values. The vapor pressures, assuming an evaporation coefficient of unity, were typically within a factor of ∼3 lower than published values made at similar temperatures for most of the acids. The underestimation may be due to diffusional constraints resulting from evaporation at atmospheric pressure. However, this study establishes that ASAP-MS is a promising new technique for such measurements.

  14. Effects of corn oil on the volatile fatty acids in horses with induced gastric ulcers

    Directory of Open Access Journals (Sweden)

    José Martínez A

    2016-09-01

    Full Text Available Objetive. To determine the influence of corn oil on the volatile fatty acids (VFA concentrations in the gastric juice in horses with phenylbutazone (PBZ induced gastric ulcers and Correlate the gastroscopic findings with the VFA concentrations. Materials and methods. 15 horses were allotted in 3 groups. Group I (control received placebo during first 6 days (induction period and was treated with sucralfate for 2 weeks (treatment period. Groups II and III received PBZ during the induction phase. After 6 days, horses from group II received 70 mL of corn oil /100 kg of body weight/ po, twice a day, for 2 weeks and horses from group III received 90 mL of corn oil/100 kg of body weight/ po, twice a day, for 2 weeks. All horses were examined by gastroscopy at days 0, 7 and 21. The lesions were recorded and classified according to the number and severity. Samples from gastric fluid were taken to measure the concentrations of the acetic, propionic, butyric and lactic acids. Results. Both PBZ protocols produced lesions in the both non-glandular and glandular areas of the stomach. All the treatments produced healing of the injured mucosa glandular. Neither of the two corn oil treatments affected healing of the gastric ulcers located in the non-glandular area. Conclusions. The concentrations of acetic and butyric acids were highest in the gastric juice. The corn oil and sucralfate did not lead to differences in the concentration of acetic acid and butyric acid.

  15. Preparation of volatile fatty acid (VFA) calcium salts by anaerobic digestion of glucose.

    Science.gov (United States)

    Li, Xiaofen; Swan, Janis E; Nair, Giridhar R; Langdon, Alan G

    2015-01-01

    Many potentially useful intermediates such as hydrogen and volatile fatty acids (VFAs) are formed during the complex anaerobic digestion processes that produce methane from biomass. This study recovers VFAs from an anaerobic digester by a combination of gas stripping and absorption with calcium carbonate slurry. Glucose was used as the model substrate because it is readily available, inexpensive, and easily digested. Sludge from a meatworks anaerobic digester produced methane and carbon dioxide (and sometimes a small amount of hydrogen) when batch-fed with glucose. Conditioning the neutral anaerobic sludge to an acidic pH (below 4.8) was achieved using repeated 1 g L(-1) doses of glucose. After conditioning, mainly VFAs and hydrogen were produced. The intermediate VFAs could be stripped using headspace gas. In subsequent fed-batch digestion/stripping cycles, the pH decreased when glucose was added and then increased when the VFA was gas stripped. The predominant acids formed at low pH values were lactic, butyric, and acetic acids. Lactic acid was converted to VFAs during stripping. The VFA calcium salts recovered were 80% butyrate and 20% acetate with minor quantities of propionate and valerate.

  16. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen.

    Science.gov (United States)

    Dahiya, Shikha; Sarkar, Omprakash; Swamy, Y V; Mohan, S Venkata

    2015-04-01

    Fermentation experiments were designed to elucidate the functional role of the redox microenvironment on volatile fatty acid (VFA, short chain carboxylic acid) production and co-generation of biohydrogen (H2). Higher VFA productivity was observed at pH 10 operation (6.3g/l) followed by pH 9, pH 6, pH 5, pH 7, pH 8 and pH 11 (3.5 g/l). High degree of acidification, good system buffering capacity along with co-generation of higher H2 production from food waste was also noticed at alkaline condition. Experiments illustrated the role of initial pH on carboxylic acids synthesis. Alkaline redox conditions assist solubilization of carbohydrates, protein and fats and also suppress the growth of methanogens. Among the carboxylic acids, acetate fraction was higher at alkaline condition than corresponding neutral or acidic operations. Integrated process of VFA production from waste with co-generation of H2 can be considered as a green and sustainable platform for value-addition.

  17. Computer simulations for the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission through NASA's 'Project Spectra!'

    Science.gov (United States)

    Wood, E. L.

    2013-12-01

    'Project Spectra!' is a standards-based light science and engineering program on solar system exploration that includes both hands-on paper and pencil activities as well as Flash-based computer games that help students solidify understanding of high-level planetary and solar physics. Using computer interactive games where students experience and manipulate the information makes abstract concepts accessible. Visualizing lessons with multi-media tools solidifies understanding and retention of knowledge. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. As a part of the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission education programming, we've developed two new 'Project Spectra!' interactives that go hand-in-hand with a paper and pencil activity. The MAVEN mission will study volatiles in the upper atmosphere to help piece together Mars' climate history. In the first interactive, students explore black body radiation, albedo, and a simplified greenhouse effect to establish what factors contribute to overall planetary temperature and how they contribute. Students are asked to create a scenario in which a planet they build and design is able to maintain liquid water on the surface. In the second interactive, students are asked to consider Mars and the conditions needed for Mars to support water on the surface, keeping some variables fixed. Ideally, students will walk away with the very basic and critical elements required for climate studies, which has far-reaching implications beyond the study of Mars. These interactives were pilot tested at Arvada High School in Colorado.

  18. Vine-shoot waste aqueous extract applied as foliar fertilizer to grapevines: Effect on amino acids and fermentative volatile content.

    Science.gov (United States)

    Sánchez-Gómez, R; Garde-Cerdán, T; Zalacain, A; Garcia, R; Cabrita, M J; Salinas, M R

    2016-04-15

    The aim of this work was to study the influence of foliar applications of different wood aqueous extracts on the amino acid content of musts and wines from Airén variety; and to study their relationship with the volatile compounds formed during alcoholic fermentation. For this purpose, the foliar treatments proposed were a vine-shoot aqueous extract applied in one and two times, and an oak extract which was only applied once. Results obtained show the potential of Airén vine-shoot waste aqueous extracts to be used as foliar fertilizer, enhancing the wine amino acid content especially when they were applied once. Similar results were observed with the aqueous oak extract. Regarding wine fermentative volatile compounds, there is a close relationship between musts and their wines amino acid content allowing us to discuss about the role of proline during the alcoholic fermentation and the generation of certain volatiles.

  19. Understanding atmospheric peroxyformic acid chemistry: observation, modeling and implication

    Directory of Open Access Journals (Sweden)

    H. Liang

    2015-01-01

    Full Text Available The existence and importance of peroxyformic acid (PFA in the atmosphere has been under controversy. We present here, for the first time, the observation data for PFA from four field measurements carried out in China. These data provided powerful evidence that PFA can stay in the atmosphere, typically in dozens of pptv level. The relationship between PFA and other detected peroxides was examined. The results showed that PFA had a strong positive correlation with its homolog, peroxyacetic acid, due to their similar sources and sinks. Through an evaluation of PFA production and removal rates, we proposed that the reactions between peroxyformyl radical (HC(OO2 and formaldehyde or the hydroperoxyl radical (HO2 were likely to be the major source and degradation into formic acid (FA was likely to be the major sink for PFA. Based on a box model evaluation, we proposed that the HC(OO2 and PFA chemistry was a major source for FA under low NOx conditions. Furthermore, it is found that the impact of the HC(OO2 and PFA chemistry on radical cycling was dependent on the yield of HC(OO2 radical from HC(O + O2 reaction. When this yield exceeded 50%, the HC(OO2 and PFA chemistry should not be neglected for calculating the radical budget. To make clear the exact importance of HC(OO2 and PFA chemistry in the atmosphere, further kinetic, field and modeling studies are required.

  20. Composition of semi-volatile organic compounds in the urban atmosphere of Singapore: influence of biomass burning

    Directory of Open Access Journals (Sweden)

    J. He

    2010-04-01

    Full Text Available An intensive field study was conducted in the urban atmosphere of Singapore to investigate the composition of organic compounds in both gaseous and particulate phases during the period of August to early November 2006. 17 atmospheric samples were collected. These samples were subjected to accelerated solvent extraction with a mixture of dichloromethane and acetone and separated into functional group fractions for analyses by GC/MS. Over 180 organic compounds belonging to three major fractions (n-alkanes, polycyclic aromatic hydrocarbons (PAHs, and polar organic compounds (POCs were identified and quantified. The characteristics and abundance of the n-alkanes, PAHs, mono and dicarboxylic acids, methoxylated phenols and other POCs were determined. The composition of these organic compounds fluctuated temporally with most of them being relatively higher in October than those in other months of the sampling period. 3-D backward air mass trajectory analyses together with the carbon preference index (CPI, molecular diagnostic ratios and molecular markers were used to investigate the origin of organic species measured in this study. Based on these diagnostic tools, the increased abundance of atmospheric organic species during October could be attributed to the occurrence of regional smoke haze episodes due to biomass burning in Indonesia. Among the POCs investigated, phthalic acid and cis-pinonic acid showed a strong linear relationship with maximum daily ozone concentration, indicating secondary organic aerosols (SOA to be an important contributor to ambient atmospheric organics over Singapore.

  1. Determination of Volatile Organic Compounds in the Atmosphere Using Two Complementary Analysis Techniques.

    Science.gov (United States)

    Alonso, L; Durana, N; Navazo, M; García, J A; Ilardia, J L

    1999-08-01

    During a preliminary field campaign of volatile organic compound (VOC) measurements carried out in an urban area, two complementary analysis techniques were applied to establish the technical and scientific bases for a strategy to monitor and control VOCs and photochemical oxidants in the Autonomous Community of the Basque Country. Integrated sampling was conducted using Tenax sorbent tubes and laboratory analysis by gas chromatography, and grab sampling and in situ analysis also were conducted using a portable gas chromatograph. With the first technique, monocyclic aromatic hydrocarbons appeared as the compounds with the higher mean concentrations. The second technique allowed the systematic analysis of eight chlorinated and aromatic hydrocarbons. Results of comparing both techniques, as well as the additional information obtained with the second technique, are included.

  2. Insect herbivore feeding and their excretion contribute to volatile organic compounds emission to the atmosphere

    Science.gov (United States)

    Zebelo, S.; Gnavi, G.; Bertea, C.; Bossi, S.; Andrea, O.; Cordero, C.; Rubiolo, P.; Bicchi, C.; Maffei, M.

    2011-12-01

    Secondary plant metabolites play an important role in insect plant interactions. The Lamiaceae family, especially Mentha species, accumulate secondary plant metabolites in their glandular trichomes, mainly mono and sesquiterpenes. Here we show that mint plants respond to herbivory by changing the quality and quantity of leaf secondary plant metabolite components. The volatiles from herbivore damaged, mechanical damage and healthy plant were collected by HS-SPME and analyzed by GC-MS. Plants with the same treatment were kept for genomic analysis. Total RNA was extracted from the above specified treatments. The terpenoid quantitative gene expressions (qPCR) were then assayed. Upon herbivory, M. aquatica synthesizes and emits (+)-menthofuran and the other major monoterpene (+)-pulegone emitted by healthy and mechanically damaged plants. Herbivory was found to up-regulate the expression of genes involved in terpenoid biosynthesis. The increased emission of (+)-menthofuran was correlated with the upregulation of (+)-menthofuran synthase. In addition we analysed the VOC composition of C. herbacea frass from insects feeding on Mentha aquatica. VOCs were sampled by HS-SPME and analyzed by GCxGC-qMS, and the results compared through quantitative comparative analysis of 2D chromatographic data. Most terpenoids from M. aquatica were completely catabolized by C. herbacea and were absent in the frass volatile fraction. On the other hand, the monoterpene 1,8-cineole was oxidized and frass yielded several new hydroxy-1,8-cineoles, among which 2α-OH-, 3α-OH-, 3β-OH- and 9-OH-1,8-cineole. The role of VOC emitted during herbivory and frass excretion on secondary organic aerosol formation is discussed.

  3. Effect of nonylphenol on volatile fatty acids accumulation during anaerobic fermentation of waste activated sludge.

    Science.gov (United States)

    Duan, Xu; Wang, Xiao; Xie, Jing; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-11-15

    Most of the reported studies on anaerobic fermentation of sludge focused on the influences of operating conditions, pretreatment methods, and its characteristics, and little attention was paid to those of persistent organic pollutants (POPs) which widespreadly appeared in sludge. In this study, the effect of nonylphenol, a typical POPs in waste activated sludge (WAS), on anaerobic fermentation for volatile fatty acids (VFAs) accumulation was investigated. The concentration of VFAs during WAS anaerobic fermentation was found to be affected positively from 2856 mg COD/L in the control (without NP) to 5620 mg COD/L with NP of 200 mg/kg dry sludge. Mechanism exploration exhibited that the main reason for the enhanced VFAs accumulation in the presence of NP was that more acetic acid was generated during the acidification of WAS, which was increased by almost three times (3790 versus 1310 mg COD/L). In WAS fermentation systems, the abundance of anaerobic functional microorganisms was advantageous to the accumulation of acetic acid. Further investigation by the pure acetogen revealed that both the viability and activity of Proteiniphilum acetatigenes were improved by NP during anaerobic fermentation, resulting in more production of acetic acid and showing good agreement with that in the real WAS fermentation systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. 2,4-D removal via denitrification using volatile fatty acids.

    Science.gov (United States)

    He, X; Wareham, D G

    2011-01-01

    Many countries have waters contaminated with both herbicides and nitrates; however, information is limited with respect to removal rates for combined nitrate and herbicide elimination. This research investigates the removal of 2,4-D via denitrification, with a particular emphasis on the effect of adding naturally generated volatile fatty acids (VFAs). The acids were produced from an acid-phase anaerobic digester with a mean VFA concentration of 3153±801 mg/L (as acetic acid). Initially, 2,4-D degrading bacteria were developed in an SBR fed with both sewage and 2,4-D (30-100 mg/L). Subsequent denitrification batch tests demonstrated that the specific denitrification rate increased from 0.0119±0.0039 using 2,4-D alone to 0.0192±0.0079 g NO₃-N/g VSS per day, when 2,4-D was combined with natural VFAs from the digester. Similarly, the specific 2,4-D consumption rate increased from 0.0016±0.0009 using 2,4-D alone to 0.0055±0.0021 g 2,4-D/g VSS per day, when using 2,4-D plus natural VFAs. Finally, a parallel increase in the percent 2,4-D removal was observed, rising from 28.33±11.88 using 2,4-D alone to 54.17±21.89 using 2,4-D plus natural VFAs.

  5. Influence of volatile fatty acid concentration stability on anaerobic degradation of linear alkylbenzene sulfonate.

    Science.gov (United States)

    Okada, Dagoberto Y; Delforno, Tiago P; Esteves, Andressa S; Polizel, Juliana; Hirasawa, Julia S; Duarte, Iolanda C S; Varesche, Maria B A

    2013-10-15

    Linear alkylbenzene sulfonate (LAS) is an anionic surfactant used in cleaning products, which is usually found in wastewaters. Despite the greater LAS removal rate related to a lower concentrations of volatile fatty acids (VFA), the influence of different ranges of VFA on LAS degradation is not known. LAS degradation was evaluated in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors at different ranges of VFA concentrations. The reactors were fed with a synthetic wastewater containing LAS (14 mg/L). A greater LAS removal rate (40-80%) was related to the lower and narrower range of acetic acid concentration (1-22 mg/L) in the EGSB reactor. In the UASB reactor, the acetic acid concentrations presented a wider range (2-45 mg/L), and some low LAS removal rates (around 20-25%) were observed even at low acetic acid concentrations (<10 mg/L). The high recirculation rate in the EGSB reactor improved substrate-biomass contact, which resulted in a narrower range of VFA and greater LAS removal rate.

  6. Volatile fatty acid profile for grass hay or alfalfa hay fed to alpacas (Vicugna pacos).

    Science.gov (United States)

    Oldham, C L; Robinson, T F; Hunter, Z R; Taylor, L; White, J; Johnston, N P

    2014-10-01

    The purpose of this study was to determine the diurnal composition and concentration of volatile fatty acids (VFA) and to determine VFA composition and concentration differences between stomach compartment 1 (C1) and caecum of alpacas fed grass and alfalfa hay. The study was divided into two experiments. In Experiment 1 (EXP 1), 10 male alpacas (3+ years old, 65 kg BW) were divided into two groups, housed in drylot pens, provided ad libitum water and fed alfalfa (AH) or grass hay (GH) for 30 days. The alpacas were slaughtered and the digestive tract collected, divided into sub-tract sections, weighed and digesta sampled for pH, dry matter (DM) and NDF. Volatile fatty acid composition and concentration were determined on C1 and caecal material. Four adult male (3+ years old, 60 kg BW), C1 fistulated alpacas were housed in metabolism crates and divided into two forage groups for Experiment 2 (EXP 2). Alpacas were fed the forages as in EXP 1. Diurnal C1 VFA samples were drawn at 1, 3, 6, 9, 12, 18 and 24 h post-feeding. There were no differences between forages for tract weight, C1 and caecum digesta DM or NDF. Differences were noted (p pH between forages and sub-tract site. Volatile fatty acids concentrations were different (p < 0.05) for forage and site, and total VFA was higher for AH than GH (110.6 and 79.1 mm) and C1 than caecum (40.7 and 27.6 mm). Proportion of VFA was significant (p < 0.05) for forage and site, C1 acetate highest for GH (84.8 vs. 74.0 mm) and caecum acetate 83.7 and 76.2 mm for GH and AH respectively. These data demonstrate the level of VFA produced in C1 and the caecum of alpacas and the diurnal VFA patterns. Composition of VFA is similar to other ruminant species.

  7. Sweet taste in apple: the role of sorbitol, individual sugars, organic acids and volatile compounds

    Science.gov (United States)

    Aprea, Eugenio; Charles, Mathilde; Endrizzi, Isabella; Laura Corollaro, Maria; Betta, Emanuela; Biasioli, Franco; Gasperi, Flavia

    2017-03-01

    Sweetness is one of the main drivers of consumer preference, and thus is given high priority in apple breeding programmes. Due to the complexity of sweetness evaluation, soluble solid content (SSC) is commonly used as an estimation of this trait. Nevertheless, it has been demonstrated that SSC and sweet taste are poorly correlated. Though individual sugar content may vary greatly between and within apple cultivars, no previous study has tried to investigate the relationship between the amount of individual sugars, or ratios of these, and apple sweetness. In this work, we quantified the major sugars (sucrose, glucose, fructose, xylose) and sorbitol and explored their influence on perceived sweetness in apple; we also related this to malic acid content, SSC and volatile compounds. Our data confirmed that the correlation between sweetness and SSC is weak. We found that sorbitol content correlates (similarly to SSC) with perceived sweetness better than any other single sugar or total sugar content. The single sugars show no differentiable importance in determining apple sweetness. Our predictive model based on partial least squares regression shows that after sorbitol and SSC, the most important contribution to apple sweetness is provided by several volatile compounds, mainly esters and farnesene.

  8. 烟草中挥发性、半挥发性酸性成分的分析%Study on the analysis of the volatile and semi-volatile acidic components in tobacco

    Institute of Scientific and Technical Information of China (English)

    贾春晓; 曲志刚; 毛多斌; 王志韬; 张文叶

    2003-01-01

    A new method was developed for the analysis of the volatile and semi-volatile acidic components in tobacco by gas chromatography-mass spectrometry selected ion monitoring (GC-MS, SIM)method. The acidic components in tobacco samples were extracted by methylene chloride using simultaneous distillation and extraction equipment, and they were analyzed by HP-INNOWAX column (30m × 250μm × 0.25μm ). Thirteen acidic components were quantitatively determined by internal standard curve method. The experiment results showed that the added standard recoveries of the acidic components were in the range from 80.6% to 98.8%, the relative standard deviations(RSD)were less than 2.0% and the correlation coeflqcients were more than 0.99. The method is simple, rapid and accurate for the determination of the volatile and semi-volatile acidic components in tobacco.

  9. Volatile Organic Compounds in the Atmosphere of the Botanical Garden of the City of Rio de Janeiro: A Preliminary Study.

    Science.gov (United States)

    da Silva, Cleyton Martins; Souza, Elaine Cesar C A; da Silva, Luane Lima; Oliveira, Rafael Lopes; Corrêa, Sergio Machado; Arbilla, Graciela

    2016-11-01

    Volatile organic compounds (VOCs) play a central role in atmospheric chemistry. In this work, VOCs in the Botanical Garden of Rio de Janeiro were determined using the TO-15 Method. The park occupies 1,370,000 m(2) in the southern area of the city and is next to the Tijuca Forest, which is considered the largest secondary urban forest in the world. The total VOC concentrations ranged from 43.52 to 168.75 µg m(-3), depending on the sampling site and dates. In terms of concentration isoprene represented 4 %-14 % of the total VOC masses. The results suggested that the differences in biomass, distance from the street and activities within the park affected the concentrations of VOCs. The ratios of isoprene/aromatic compounds were higher than those determined in other areas of the city, confirming that the atmosphere of this green area has the contribution of other sources. Kinetic and mechanistic reactivities were also evaluated.

  10. The atmospheric potential of biogenic volatile organic compounds from needles of white pine (Pinus strobus) in Northern Michigan

    Science.gov (United States)

    Toma, S.; Bertman, S.

    2012-02-01

    The key role that biogenic volatile organic compounds (BVOC) play in atmospheric chemistry requires a detailed understanding of how BVOC concentrations will be affected by environmental change. Large-scale screening of BVOC emissions from whole forest ecosystems is difficult with enclosure methods. Leaf composition of BVOC, as a surrogate for direct emissions, can more easily reflect the distribution of BVOC compounds in a forest. In this study, BVOC composition in needles of 92 white pine trees (Pinus strobus), which are becoming a large part of Midwest forests, are tracked for three summers at the University of Michigan Biological Station (UMBS). α-Pinene, the dominant terpene in all samples, accounts for 30-50% of all terpenes on a mole basis. The most abundant sesquiterpenoid was a C15 alcohol identified as germacrene D-4-ol. The relationship between limonene and total other monoterpenes shows two distinct trends in the population of these forests. About 14% (n = 13) of the trees showed high levels of limonene (up to 36% of the total BVOC) in the same trees every year. Assuming that needle concentrations scale with emission rate, we estimate that hydroxyl radical reactivity due to reaction with monoterpenes from white pine increases approximately 6% at UMBS when these elevated concentrations are included. We suggest that chemotypic variation within forests has the potential to affect atmospheric chemistry and that large-scale screening of BVOC can be used to study the importance of BVOC variation.

  11. A new matrix assisted ionization method for the analysis of volatile and nonvolatile compounds by atmospheric probe mass spectrometry.

    Science.gov (United States)

    Chakrabarty, Shubhashis; Pagnotti, Vincent S; Inutan, Ellen D; Trimpin, Sarah; McEwen, Charles N

    2013-07-01

    Matrix assisted ionization of nonvolatile compounds is shown not to be limited to vacuum conditions and does not require a laser. Simply placing a solution of analyte dissolved with a suitable matrix such as 3-nitrobenzonitrile (3-NBN) or 2,5-dihydroxyacetophenone on a melting point tube and gently heating the dried sample near the ion entrance aperture of a mass spectrometer using a flow of gas produces abundant ions of peptides, small proteins, drugs, and polar lipids. Fundamental studies point to matrix-mediated ionization occurring prior to the entrance aperture of the mass spectrometer. The method is analytically useful, producing peptide mass fingerprints of bovine serum albumin tryptic digest consuming sub-picomoles of sample. Application of 100 fmol of angiotensin I in 3-NBN matrix produces the doubly and triply protonated molecular ions as the most abundant peaks in the mass spectrum. No carryover is observed for samples containing up to 100 pmol of this peptide. A commercial atmospheric samples analysis probe provides a simple method for sample introduction to an atmospheric pressure ion source for analysis of volatile and nonvolatile compounds without using the corona discharge but using sample preparation similar to matrix-assisted laser desorption/ionization.

  12. Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Jarosch, T.R.; Haselow, J.S.; Rossabi, J.; Burdick, S.A.; Raymond, R.; Young, J.E.; Lombard, K.H.

    1995-01-23

    The purpose of this report is to summarize the results of the program for off-gas treatment of atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program was funded through the Department of Energy Office of Technology Development`s VOC`s in Non-Arid Soils Integrated Demonstration (VNID). The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed (Looney et al., 1991). That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the United States to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate cost effective evaluation of the emerging technologies. Another motivation for the program is that many CVOCs will be regulated under the Clean Air Act Amendments of 1990 and are already regulated by many state regulatory programs. Additionally, compounds such as TCE and PCE are pervasive subsurface environmental contaminants, and, as a result, a small improvement in terms of abatement efficiency or cost will significantly reduce CVOC discharges to the environment as well as costs to United States government and industry.

  13. Ambient levels of volatile organic compounds in the atmosphere of Greater Cairo

    Science.gov (United States)

    Khoder, M. I.

    Ambient volatile organic compounds (VOCs) samples were collected at three locations, two in urban areas in Greater Cairo (Ramsis and Haram) and background one in rural area in Menofiya province (Kafr El-Akram), during the period of June, 2004-August, 2004. The highest concentrations of VOCs were found in Ramsis, whereas the lowest concentrations were detected in Kafr El-Akram, and the difference in mean concentrations were statistically significant ( pp)-xylene. This similarity implies a similar emission sources of VOCs in both urban locations, vehicle exhausts are the dominant one. Greater Cairo has high levels of volatile aromatic hydrocarbons compared with many polluted cities in the world. The BTEX (benzene: toluene: ethylbenzene: xylenes) concentration ratios were (2.01:4.94:1:4.95), (2.03:4.91:1:4.87) and (2.31:2.98:1:2.59) in Ramsis, Haram and Kafr El-Akram, respectively. The average toluene/benzene (T/B), ( m, p)-xylene/benzene (( m, p)-X/B) and o-xylene/benzene ( o-X/B) concentration ratios were 2.45, 1.61and 0.85, respectively in Ramsis and 2.42, 1.61 and 0.78, respectively in Haram. The ratios in both urban locations were of the same magnitude and close to those obtained from automotive exhausts, indicating that the ambient BTEX originate mainly from motor vehicle emissions. However, the (T/B), (( m, p)-X/B) and ( o-X/B) concentration ratios were 1.29, 0.71 and 0.41 in Kafr El-Akram, respectively. These ratios were lower than those found in Ramsis and Haram locations and in automotive exhaust, suggesting that the BTEX in Kafr El-Akram do not come from a local source and are exclusively results from the diffusion and dispersion of VOCs produced from the traffic density in the surrounding cities. Significant positive correlation coefficients ( p<0.001) were found between the concentrations of BTEX compounds at the three sampling locations. The diurnal variation of VOCs concentrations in Ramsis location showed two daily peaks linked to traffic density.

  14. Time course effects of fermentation on fatty acid and volatile compound profiles of Cheonggukjang using new soybean cultivars

    Directory of Open Access Journals (Sweden)

    Kye Man Cho

    2017-07-01

    Full Text Available In this study, we investigated the effects of the potential probiotic Bacillus subtilis CSY191 on the fatty acid profiles of Cheonggukjang, a fermented soybean paste, prepared using new Korean brown soybean cultivars, protein-rich cultivar (Saedanbaek, and oil-rich cultivar (Neulchan. Twelve fatty acids were identified in the sample set—myristic, palmitic, palmitoleic, stearic, oleic, vaccenic, linoleic, α-linolenic, arachidic, gondoic, behenic, and lignoceric acids—yet, no specific changes driven by fermentation were noted in the fatty acid profiles. To further explore the effects of fermentation of B. subtilis CSY191, complete profiles of volatiles were monitored. In total, 121, 136, and 127 volatile compounds were detected in the Saedanbaek, Daewon (control cultivar, and Neulchan samples, respectively. Interestingly, the content of pyrazines—compounds responsible for pungent and unpleasant Cheonggukjang flavors—was significantly higher in Neulchan compared to that in Saedanbaek. Although the fermentation period was not a strong factor affecting the observed changes in fatty acid profiles, we noted that profiles of volatiles in Cheonggukjang changed significantly over time, and different cultivars represented specific volatile profiles. Thus, further sensory evaluation might be needed to determine if such differences influence consumers' preferences. Furthermore, additional studies to elucidate the associations between B. subtilis CSY191 fermentation and other nutritional components (e.g., amino acids and their health-promoting potential are warranted.

  15. Changing Atmospheric Acidity and the Oceanic Solubility of Nutrients

    Science.gov (United States)

    Baker, Alex; Sarin, Manmohan; Duce, Robert; Jickells, Tim; Kanakidou, Maria; Myriokefalitakis, Stelios; Ito, Akinori; Turner, David; Mahowald, Natalie; Middag, Rob; Guieu, Cecile; Gao, Yuan; Croot, Peter; Shelley, Rachel; Perron, Morgane

    2017-04-01

    The atmospheric deposition of nutrients to the ocean is known to play a significant role in the marine carbon cycle. The impact of such deposition is dependent on the identity of the nutrient in question (e.g., N, P, Fe, Co, Zn, Ni, Cd), the location of the deposition, and the bioavailability of the deposited nutrient. Bioavailability is largely governed by the chemical speciation of a nutrient and, in general, insoluble species are not bioavailable. For Fe and P (and perhaps the other nutrient trace metals) solubility increases during transport through the atmosphere. The causes of this increase are complex, but interactions of aerosol particles with acids appears to play a significant role. Emissions of acidic (SO2 and NOx) and alkaline (NH3) gases have increased significantly since the Industrial Revolution, with a net increase in atmospheric acidity. This implies that Fe and P solubility may also have increased over this time period, potentially resulting in increased marine productivity. More recently, pollution controls have decreased emissions of SO2 from some regions and further reductions in SO2 and NOx are likely in the future. Emissions of NH3 are much more difficult to control however, and are projected to stabilise or increase slightly to the end of this century. Future anthropogenic emissions are thus likely to change the acidity of the atmosphere downwind of major urban / industrial centres, with potential consequences for the supply of soluble nutrients to the ocean. To address these issues UN/GESAMP Working Group 38, The Atmospheric Input of Chemicals to the Ocean, is convening a workshop on this topic at the University of East Anglia in February, 2017. The goals of this workshop are to review and synthesize the current scientific information on the solubility of aerosol-associated key biogeochemical elements, the biogeochemical controls on aerosol solubility, and the pH sensitivity of those controls; to consider the likely changes in solubility of

  16. Production of hydrogen and volatile fatty acid by Enterobacter sp. T4384 using organic waste materials.

    Science.gov (United States)

    Kim, Byung-Chun; Deshpande, Tushar R; Chun, Jongsik; Yi, Sung Chul; Kim, Hyunook; Um, Youngsoon; Sang, Byoung-In

    2013-02-01

    In a study of hydrogen-producing bacteria, strain T4384 was isolated from rice field samples in the Republic of Korea. The isolate was identified as Enterobacter sp. T4384 by phylogenetic analysis of 16S rRNA and rpoB gene sequences. Enterobacter sp. T4384 grew at a temperature range of 10-45 degrees C and at an initial pH range of 4.5-9.5. Strain T4384 produced hydrogen at 0-6% NaCl by using glucose, fructose, and mannose. In serum bottle cultures using a complete medium, Enterobacter sp. T4384 produced 1,098 ml/l H2, 4.0 g/l ethanol, and 1.0 g/l acetic acid. In a pH-regulated jar fermenter culture with the biogas removed, 2,202 ml/l H2, 6.2 g/l ethanol, and 1.0 g/l acetic acid were produced, and the lag-phase time was 4.8 h. Strain T4384 metabolized the hydrolysate of organic waste for the production of hydrogen and volatile fatty acid. The strain T4384 produced 947 ml/l H2, 3.2 g/l ethanol, and 0.2 g/l acetic acid from 6% (w/v) food waste hydrolysate; 738 ml/l H2, 4.2 g/l ethanol, and 0.8 g/l acetic acid from Miscanthus sinensis hydrolysate; and 805 ml/l H2, 5.0 g/l ethanol, and 0.7 g/l acetic acid from Sorghum bicolor hydrolysate.

  17. Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass.

    Science.gov (United States)

    Huang, Jingang; Zhou, Rongbing; Chen, Jianjun; Han, Wei; Chen, Yi; Wen, Yue; Tang, Junhong

    2016-07-01

    Anaerobic co-fermentation of waste activated sludge (WAS) and henna plant biomass (HPB) for the enhanced production of volatile fatty acids (VFAs) was investigated. The results indicated that VFAs was the main constituents of the released organics; the accumulation of VFAs was much higher than that of soluble carbohydrates and proteins. HPB was an advantageous substrate compared to WAS for VFAs production; and the maximum VFAs concentration in an HPB mono-fermentation system was about 2.6-fold that in a WAS mono-fermentation system. In co-fermentation systems, VFAs accumulation was positively related to the proportion of HPB in the mixed substrate, and the accumulated VFAs concentrations doubled when HPB was increased from 25% to 75%. HPB not only adjust the C/N ratio; the associated and/or released lawsone might also have a positive electron-shuttling effect on VFAs production.

  18. Volatile fatty acids productions by mesophilic and thermophilic sludge fermentation: Biological responses to fermentation temperature.

    Science.gov (United States)

    Hao, Jiuxiao; Wang, Hui

    2015-01-01

    The volatile fatty acids (VFAs) productions, as well as hydrolases activities, microbial communities, and homoacetogens, of mesophilic and thermophilic sludge anaerobic fermentation were investigated to reveal the microbial responses to different fermentation temperatures. Thermophilic fermentation led to 10-fold more accumulation of VFAs compared to mesophilic fermentation. α-glucosidase and protease had much higher activities in thermophilic reactor, especially protease. Illumina sequencing manifested that raising fermentation temperature increased the abundances of Clostridiaceae, Microthrixaceae and Thermotogaceae, which could facilitate either hydrolysis or acidification. Real-time PCR analysis demonstrated that under thermophilic condition the relative abundance of homoacetogens increased in batch tests and reached higher level at stable fermentation, whereas under mesophilic condition it only increased slightly in batch tests. Therefore, higher fermentation temperature increased the activities of key hydrolases, raised the proportions of bacteria involved in hydrolysis and acidification, and promoted the relative abundance of homoacetogens, which all resulted in higher VFAs production.

  19. INFLUENCE OF THE VOLATILE FATTY ACID CONTENT TO RADIATION VULCANIZED NATURAL RUBBER LATEX (RVNRL

    Directory of Open Access Journals (Sweden)

    CHIRINOS, Hugo David

    2012-01-01

    Full Text Available Natural rubber latex is a dispersion of natural rubber particles in water. These particles are coated with aprotein layer which will stabilize the dispersion in water by forming an electric charge in the layer. Any differentcondition affecting this layer disturbs the stability of dispersion. Microorganism attack disturbs the protein layerand consequently the stability of the dispersion. By adding 1.2% by weight of NH3, the stability of the dispersioncan be improved. The fresh latex was irradiated by Co-60 with irradiation dose of 10, 20, 30, 40 and 100 kGy.The results showed a relationship between the volatile fatty acid content (VFA, product from microorganismattack on carbohydrate and the green strength or the physical properties of vulcanized film. Low VFA numbershowing a higher physical strength of the film either un-vulcanized or vulcanized. It appeared that the structurewas responsible in yielding a good physical property of the film.

  20. Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion.

    Science.gov (United States)

    Khan, M A; Ngo, H H; Guo, W S; Liu, Y; Nghiem, L D; Hai, F I; Deng, L J; Wang, J; Wu, Y

    2016-11-01

    The anaerobic digestion process has been primarily utilized for methane containing biogas production over the past few years. However, the digestion process could also be optimized for producing volatile fatty acids (VFAs) and biohydrogen. This is the first review article that combines the optimization approaches for all three possible products from the anaerobic digestion. In this review study, the types and configurations of the bioreactor are discussed for each type of product. This is followed by a review on optimization of common process parameters (e.g. temperature, pH, retention time and organic loading rate) separately for the production of VFA, biohydrogen and methane. This review also includes additional parameters, treatment methods or special additives that wield a significant and positive effect on production rate and these products' yield.

  1. Open-atmosphere sustenance of highly volatile attoliter-size droplets on surfaces.

    Science.gov (United States)

    Galliker, Patrick; Schneider, Julian; Rüthemann, Lukas; Poulikakos, Dimos

    2013-08-13

    The controlled formation and handling of minute liquid volumes on surfaces is essential to the success of microfluidics in biology, chemistry, and materials applications. Even though current methods have demonstrated their potential in a variety of experimental assays, there remain significant difficulties concerning breadth of applicability, standardization, throughput, and economics. Here we introduce a unique microfluidic paradigm in which microscopic volatile droplets are formed, sustained, and manipulated in size and content at any desired spot on unpatterned substrates. Their sustainability is warranted by continuous replacement of the rapidly vaporizing sessile fluid through controlled equivalent volume deposition of smaller discrete liquid entities by an electrohydrodynamic nanodripping process. Using nanoparticle inks we show that the concentration of solutes in so-stabilized droplets can be linearly increased at isochoric conditions and user-defined rates. An intriguing insensitivity of the droplet shape toward surface heterogeneities ensures robustness and experimental reproducibility, even when handling attoliter quantities. The unique capabilities and technical simplicity of the presented method introduce a high degree of flexibility and make it pertinent to a diverse range of applications.

  2. Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms

    Directory of Open Access Journals (Sweden)

    S.-L. Sihto

    2006-01-01

    Full Text Available We have investigated the formation and early growth of atmospheric secondary aerosol particles building on atmospheric measurements. The measurements were part of the QUEST 2 campaign which took place in spring 2003 in Hyytiälä (Finland. During the campaign numerous aerosol particle formation events occurred of which 15 were accompanied by gaseous sulphuric acid measurements. Our detailed analysis of these 15 events is focussed on nucleation and early growth (to a diameter of 3 nm of fresh particles. It revealed that new particle formation seems to be a function of the gaseous sulphuric acid concentration to the power from one to two when the time delay between the sulphuric acid and particle number concentration is taken into account. From the time delay the growth rates of freshly nucleated particles from 1 nm to 3 nm were determined. The mean growth rate was 1.2 nm/h and it was clearly correlated with the gaseous sulphuric acid concentration. We tested two nucleation mechanisms – recently proposed cluster activation and kinetic type nucleation – as possible candidates to explain the observed dependences, and determined experimental nucleation coefficients. We found that some events are dominated by the activation mechanism and some by the kinetic mechanism. Inferred coefficients for the two nucleation mechanisms are the same order of magnitude as chemical reaction coefficients in the gas phase and they correlate with the product of gaseous sulphuric acid and ammonia concentrations. This indicates that besides gaseous sulphuric acid also ammonia has a role in nucleation.

  3. Pseudo catalytic transformation of volatile fatty acids into fatty acid methyl esters.

    Science.gov (United States)

    Jung, Jong-Min; Cho, Jinwoo; Kim, Ki-Hyun; Kwon, Eilhann E

    2016-03-01

    Instead of anaerobic digestion of biodegradable wastes for producing methane, this work introduced the transformation of acidogenesis products (VFAs) into fatty acid methyl esters (FAMEs) to validate the feasible production of short-chained fatty alcohols via hydrogenation of FAMEs. In particular, among VFAs, this work mainly described the mechanistic explanations for transforming butyric acid into butyric acid methyl ester as a case study. Unlike the conventional esterification process (conversion efficiency of ∼94%), the newly introduced esterification under the presence of porous materials via the thermo-chemical process reached up to ∼99.5%. Furthermore, the newly introduced esterification via the thermo-chemical pathway in this work showed extremely high tolerance of impurities: the conversion efficiency under the presence of impurities reached up to ∼99±0.3%; thus, the inhibition behaviors attributed from the impurities used for the experimental work were negligible.

  4. Effect of volatile fatty acids mixtures on the simultaneous photofermentative production of hydrogen and polyhydroxybutyrate.

    Science.gov (United States)

    Cardeña, René; Valdez-Vazquez, Idania; Buitrón, Germán

    2017-02-01

    Purple non-sulfur bacteria generate hydrogen and polyhydroxybutyrate (PHB) as a mechanism for disposing of reducing equivalents generated during substrate consumption. However, both pathways compete for the reducing equivalents released from bacteria growing under certain substrates, thus the formation of hydrogen or PHB is detrimental to the formation of each other. The effect of mixtures of acetic, propionic and butyric acids on the formation of H2 and PHB was evaluated using Box-Behnken design. A bacterial community mainly constituted by Rhodopseudomonas palustris was used as inoculum. It was observed that the three volatile fatty acids had a significant effect on the specific PHB production. However, only the propionic acid had a significant effect on the specific H2 production activity and the highest value was observed when acetate was the main component in the mixture. The maximum values for the specific PHB and hydrogen production rates were 16.4 mg-PHB/g-TSS/day and 391 mL-H2/g-TSS/day, respectively.

  5. Recovery of volatile fatty acids (VFA) from complex waste effluents using membranes.

    Science.gov (United States)

    Zacharof, M-P; Lovitt, R W

    2014-01-01

    Waste effluents from anaerobic digesters of agricultural waste were treated with a range of membranes, including microfiltration and nanofiltration (NF), to concentrate volatile fatty acids (VFA). Microfiltration was applied successfully to produce sterile, particle-free solutions with a VFA concentration of 21.08 mM of acetic acid and 15.81 mM of butyric acid. These were further treated using a variety of NF membranes: NF270 (Dow Chemicals, USA), HL, DL, DK (Osmonics, USA) and LF10 (Nitto Denko, Japan), achieving retention ratios of up to 75%, and giving retentates of up to 53.94 mM of acetate and 28.38 mM of butyrate. DK and NF270 membranes were identified as the best candidates for VFA separation and concentration from these multicomponent effluents, both in terms of retention and permeate flux. When the effluents are adjusted to alkali conditions, the highest productivity, retention and flux were achieved at pH 7. At higher pH there was a significant reduction in flux.

  6. Conversion of hydroxycinnamic acids into volatile phenols in a synthetic medium and in red wine by Dekkera bruxellensis

    Directory of Open Access Journals (Sweden)

    Maria João Cabrita

    2012-03-01

    Full Text Available The conversion of p-coumaric acid, ferulic acid, and caffeic acid into 4-ethylphenol, 4-ethylguaiacol and 4-ethylcatechol was studied in Dekkera bruxellensis ISA 1791 under defined conditions in a synthetic medium and in a red wine. Liquid chromatography (HPLC-DAD was used to quantify the phenolic acids, and gas chromatography (GC coupled to a FID detector was used to quantify volatile phenols using a novel analytical methodology that does not require sample derivatization. Identification was achieved by gas chromatography-mass detection (GC-MS. The results show that phenolic acids concentration decreases while volatile phenols concentration increases. The proportion of caffeic acid taken up by Dekkera bruxellensis is lower than that for p-coumaric or ferulic acid; therefore less 4-ethylcatechol is formed. More important, 4-ethylcathecol synthesis by Dekkera bruxellensis in wine has never been demonstrated so far. These results contribute decisively to a better understanding of the origin of the volatile phenols in wines. The accumulation of these compounds in wine is nowadays regarded as one of the key factors of quality control.

  7. Composition of semi-volatile organic compounds in the urban atmosphere of Singapore: influence of biomass burning

    Science.gov (United States)

    He, J.; Zielinska, B.; Balasubramanian, R.

    2010-12-01

    An intensive field study was conducted in the urban atmosphere of Singapore to investigate the composition of organic compounds in both gaseous and particulate phases during the period of August to early November 2006. 17 atmospheric samples were collected. These samples were subjected to accelerated solvent extraction with a mixture of dichloromethane and acetone and separated into functional group fractions for analyses by GC/MS. Over 180 organic compounds belonging to three major fractions (n-alkanes, polycyclic aromatic hydrocarbons - PAHs, and polar organic compounds - POCs) were identified and quantified. The characteristics and abundance of the n-alkanes, PAHs, mono and dicarboxylic acids, methoxylated phenols and other POCs were determined. The composition of these organic compounds fluctuated temporally with most of them being relatively higher in October than those in other months of the sampling period. 3-D backward air mass trajectory analyses together with the carbon preference index (CPI), molecular diagnostic ratios and molecular markers were used to investigate the origin of organic species measured in this study. Based on these diagnostic tools, the increased abundance of atmospheric organic species during October could be attributed to the occurrence of regional smoke haze episodes due to biomass burning in Indonesia. Among the POCs investigated, phthalic acid and cis-pinonic acid were abundant during October 2006. These two acids showed strong linear relationships with maximum daily ozone concentrations throughout the entire sampling period. This correlation with ozone suggested that the secondary aerosol constituents such as phthalic and cis-pinonic acids were probably formed through O3-induced photochemical transformation.

  8. Evaluation of models to predict the stoichiometry of volatile fatty acid profiles in rumen fluid of lactating Holstein cows

    NARCIS (Netherlands)

    Morvay, Y.; Bannink, A.; France, J.; Kebreab, E.; Dijkstra, J.

    2011-01-01

    Volatile fatty acids (VFA), produced in the rumen by microbial fermentation, are the main energy source for ruminants. The VFA profile, particularly the nonglucogenic (acetate, Ac; butyrate, Bu) to glucogenic (propionate, Pr) VFA ratio (NGR), is associated with effects on methane production, milk co

  9. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate

    Science.gov (United States)

    Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-met...

  10. Trapping female Pandemis limitata (Lepidoptera: Tortricidae) moths with mixtures of acetic acid, benzenoid apple leaf volatiles, and sex pheromones

    Science.gov (United States)

    Pandemis limitata (Robinson) is one of several leaf-feeding caterpillar pests of commercial tree-fruit crops in British Columbia. Recent discovery that European Pandemis spp. are attracted to lures containing acetic acid (AA) and caterpillar-induced benzenoid apple leaf volatiles, 2-phenylethanol a...

  11. A kinetic approach to evaluate the association of acid volatile sulfide and simultaneously extracted metals in aquatic sediments

    NARCIS (Netherlands)

    Poot, A.; Meerman, E.; Gillissen, F.; Koelmans, A.A.

    2009-01-01

    The acid volatile sulfide (AVS) and simultaneously extracted metals (¿SEM) method is widely used for evaluating potential bioavailability of heavy metals in soil and sediment. It is also criticized, because the requirement that AVS and SEM metals (i.e., Cd, Cu, Ni, Pb, and Zn) are associated in the

  12. Evaluation of models to predict the stoichiometry of volatile fatty acid profiles in rumen fluid of lactating Holstein cows

    NARCIS (Netherlands)

    Morvay, Y.; Bannink, A.; France, J.; Kebreab, E.; Dijkstra, J.

    2011-01-01

    Volatile fatty acids (VFA), produced in the rumen by microbial fermentation, are the main energy source for ruminants. The VFA profile, particularly the nonglucogenic (acetate, Ac; butyrate, Bu) to glucogenic (propionate, Pr) VFA ratio (NGR), is associated with effects on methane production, milk co

  13. Effect of substrate and cation requirement on anaerobic volatile fatty acid conversion rates at elevated biogas pressure

    NARCIS (Netherlands)

    Lindeboom, R.E.F.; Ferrer, I.; Weijma, J.; Lier, van J.B.

    2013-01-01

    This work studied the anaerobic conversion of neutralized volatile fatty acids (VFA) into biogas under Autogenerative High Pressure Digestion (AHPD) conditions. The effects of the operating conditions on the biogas quality, and the substrate utilisation rates were evaluated using 3 AHPD reactors (0.

  14. Direct analysis of volatile fatty acids in marine sediment porewater by two-dimensional ion chromatography-mass spectrometry

    DEFF Research Database (Denmark)

    Glombitza, Clemens; Pedersen, Jeanette; Røy, Hans

    2014-01-01

    Volatile fatty acids (VFAs) are key intermediates in the microbial food web. However, the analysis of low concentrations of VFAs in marine porewater is hampered by interference from high concentrations of inorganic ions. Published methods often use sample pretreatment, including distillation or d...

  15. Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase

    Directory of Open Access Journals (Sweden)

    C. Mouchel-Vallon

    2012-09-01

    Full Text Available The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and α-pinene is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (<2% under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation to 70% (octane oxidation of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for α-pinene and octane oxidation cases (40% and 60%, respectively. Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.

  16. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Directory of Open Access Journals (Sweden)

    Roze Ludmila V

    2010-08-01

    Full Text Available Abstract Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine; we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1 Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2 VeA coordinates the

  17. Polymerization of acrylic acid using atmospheric pressure DBD plasma jet

    Science.gov (United States)

    Bashir, M.; Bashir, S.

    2016-08-01

    In this paper polymerization of acrylic acid was performed using non thermal atmospheric pressure plasma jet technology. The goal of this study is to deposit organic functional coatings for biomedical applications using a low cost and rapid growth rate plasma jet technique. The monomer solution of acrylic acid was vaporized and then fed into the argon plasma for coating. The discharge was powered using a laboratory made power supply operating with sinusoidal voltage signals at a frequency of 10 kHz. The optical emission spectra were collected in order to get insight into the plasma chemistry during deposition process. The coatings were characterized using Fourier transform infrared spectroscopy, atomic force microscopy and growth rates analysis. A high retention of carboxylic functional groups of the monomer was observed at the surface deposited using this low power technique.

  18. Contribution of flowering trees to urban atmospheric biogenic volatile organic compound emissions

    Directory of Open Access Journals (Sweden)

    R. Baghi

    2012-03-01

    Full Text Available Emissions of biogenic volatile organic compounds (BVOC from urban trees during and after blooming were measured during spring and early summer 2009 in Boulder, Colorado. Air samples were collected onto solid adsorbent cartridges from branch enclosures on the tree species crabapple, horse chestnut, honey locust, and hawthorn. These species constitute ~65 % of the insect-pollinated fraction of the flowering tree canopy (excluding catkin-producing trees from the street area managed by the City of Boulder. Samples were analyzed for C10–C15 BVOC by thermal desorption and gas chromatography coupled to a flame ionization detector and a mass spectrometer (GC/FID/MS. Identified emissions and emission rates from these four tree species during the flowering phase were found to vary over a wide range. Monoterpene emissions were identified for honey locust, horse chestnut and hawthorn. Sesquiterpene emissions were observed in horse chestnut and hawthorn samples. Crabapple flowers were found to emit significant amounts of benzyl alcohol and benzaldehyde. Floral BVOC emissions increased with temperature, generally exhibiting exponential temperature dependence. Changes in BVOC speciation during and after the flowering period were observed for every tree studied. Emission rates were significantly higher during the blooming compared to the vegetative state for crabapple and honey locust. Total normalized (30 °C monoterpene emissions from honey locust were higher during flowering (5.26 μg Cg−1 h−1 than after flowering (1.23 μg Cg−1 h−1. The total normalized BVOC emission rate from crabapple (93 μg Cg−1 h−1 during the flowering period is of the same order as isoprene emissions from oak trees, which are among the highest BVOC emissions observed from plants to date. These findings illustrate that during the relatively brief springtime flowering period, floral

  19. Contribution of flowering trees to urban atmospheric biogenic volatile organic compound emissions

    Science.gov (United States)

    Baghi, R.; Helmig, D.; Guenther, A.; Duhl, T.; Daly, R.

    2012-10-01

    Emissions of biogenic volatile organic compounds (BVOC) from urban trees during and after blooming were measured during spring and early summer 2009 in Boulder, Colorado. Air samples were collected onto solid adsorbent cartridges from branch enclosures on the tree species crabapple (Malus sp.), horse chestnut (Aesculus carnea, "Ft. McNair"), honey locust (Gleditsia triacanthos, "Sunburst"), and hawthorn (Crataegus laevigata, "Pauls Scarlet"). These species constitute ~ 65% of the insect-pollinated fraction of the flowering tree canopy (excluding catkin-producing trees) from the street area managed by the City of Boulder. Samples were analyzed for C10-C15 BVOC by thermal desorption and gas chromatography coupled to a flame ionization detector and a mass spectrometer (GC/FID/MS). Identified emissions and emission rates from these four tree species during the flowering phase were found to vary over a wide range. Monoterpene emissions were identified for honey locust, horse chestnut and hawthorn. Sesquiterpene emissions were observed in horse chestnut and hawthorn samples. Crabapple flowers were found to emit significant amounts of benzyl alcohol and benzaldehyde. Floral BVOC emissions increased with temperature, generally exhibiting exponential temperature dependence. Changes in BVOC speciation during and after the flowering period were observed for every tree studied. Emission rates were significantly higher during the blooming compared to the post-blooming state for crabapple and honey locust. The results were scaled to the dry mass of leaves and flowers contained in the enclosure. Only flower dry mass was accounted for crabapple emission rates as leaves appeared at the end of the flowering period. Total normalized (30 °C) monoterpene emissions from honey locust were higher during flowering (5.3 μgC g-1 h-1) than after flowering (1.2 μgC g-1 h-1). The total normalized BVOC emission rate from crabapple (93 μgC g-1 h-1) during the flowering period is of the same

  20. Clathration of Volatiles in the Solar Nebula and Implications for the Origin of Titan's atmosphere

    CERN Document Server

    Mousis, Olivier; Thomas, Caroline; Pasek, Matthew; Marboeuf, Ulysse; Alibert, Yann; Ballenegger, Vincent; Cordier, Daniel; Ellinger, Yves; Pauzat, Francoise; Picaud, Sylvain

    2008-01-01

    We describe a scenario of Titan's formation matching the constraints imposed by its current atmospheric composition. Assuming that the abundances of all elements, including oxygen, are solar in the outer nebula, we show that the icy planetesimals were agglomerated in the feeding zone of Saturn from a mixture of clathrates with multiple guest species, so-called stochiometric hydrates such as ammonia hydrate, and pure condensates. We also use a statistical thermodynamic approach to constrain the composition of multiple guest clathrates formed in the solar nebula. We then infer that krypton and xenon, that are expected to condense in the 20-30 K temperature range in the solar nebula, are trapped in clathrates at higher temperatures than 50 K. Once formed, these ices either were accreted by Saturn or remained embedded in its surrounding subnebula until they found their way into the regular satellites growing around Saturn. In order to explain the carbon monoxide and primordial argon deficiencies of Titan's atmosp...

  1. Liquid Swine Manure Can Kill Verticillium dahliae Microsclerotia in Soil by Volatile Fatty Acid, Nitrous Acid, and Ammonia Toxicity.

    Science.gov (United States)

    Conn, Kenneth L; Tenuta, Mario; Lazarovits, George

    2005-01-01

    ABSTRACT In previous studies, liquid swine manure (LSM) was sometimes shown to reduce Verticillium wilt of potato caused by Verticillium dahliae. We also observed that microsclerotia of this fungus died within 1 day, or between 3 and 6 weeks, after addition of LSM to some acid soils and within 1 week in some alkaline soils. In this study, we demonstrated that a volatile fatty acid (VFA) mixture with an identical concentration of VFAs as that found in an effective LSM reduced germination in an acid soil (pH 5.1) to the same extent as the LSM after 1 day of exposure. Germination was reduced by 45, 75, and 90% in the 10, 20, and 40% ([wt/wt] soil moisture) treatments, respectively, with the latter being equivalent to an application of 80 hl/ha. Addition to this acid soil of 19 LSMs (30% [wt/wt] soil moisture) collected from different producers resulted in complete kill of microsclerotia with 12 manures. Effective manures had a total concentration of nonionized forms of VFAs in soil solution of 2.7 mM or higher. In some acid soils (pH 5.8), addition of LSM (40% [wt/wt] soil moisture) did not kill microsclerotia until 3 to 6 weeks later. Here, a reduction in viability of microsclerotia was attributed to the accumulation of 0.06 mM nitrous acid in the soil solution at 4 weeks. When an LSM was added (40% [wt/wt] soil moisture) to an alkaline soil (pH 7.9) where VFAs are not toxic, microsclerotia germination was reduced by 80% after 1 week. Here the pH increased to 8.9 and the concentration of ammonia reached 30 mM in the soil solution. An ammonium chloride solution having an equivalent concentration of ammonium as the manure was shown to have the same spectrum of toxicity as the manure in assays ranging from pH 7 to 9, both in solutions and above the solutions. At pH 9, the concentration of ammonia reached 18 mM and 100% mortality of microsclerotia occurred. Thus, in acid soils, LSM can kill microsclerotia of V. dahliae by VFA and/or nitrous acid toxicity and in alkaline

  2. Generation of the volatile spiroketals conophthorin and chalcogran by fungal spores on polyunsaturated fatty acids common to almonds and pistachios.

    Science.gov (United States)

    Beck, John J; Mahoney, Noreen E; Cook, Daniel; Gee, Wai S

    2012-12-05

    The spiroketal (E)-conophthorin has recently been reported as a semiochemical of the navel orangeworm moth, a major insect pest of California pistachios and almonds. Conophthorin and the isomeric spiroketal chalcogran are most commonly known as semiochemicals of several scolytid beetles. Conophthorin is both an insect- and plant-produced semiochemical widely recognized as a nonhost plant volatile from the bark of several angiosperm species. Chalcogran is the principal aggregation pheromone component of the six-spined spruce bark beetle. Recent research has shown conophthorin is produced by almonds undergoing hull-split, and both spiroketals are produced by mechanically damaged almonds. To better understand the origin of these spiroketals, the volatile emissions of orchard fungal spores on fatty acids common to both pistachios and almonds were evaluated. The volatile emission for the first 13 days of spores placed on a fatty acid was monitored. The spores investigated were Aspergillus flavus (atoxigenic), A. flavus (toxigenic), Aspergillus niger, Aspergillus parasiticus, Penicillium glabrum, and Rhizopus stolonifer. The fatty acids used as growth media were palmitic, oleic, linoleic, and linolenic. Spores on linoleic acid produced both spiroketals, those on linolenic acid produced only chalcogran, and those on palmitic and oleic acid did not produce either spiroketal. This is the first report of the spiroketals conophthorin and chalcogran from a fungal source.

  3. Volatile fatty acid degradation kinetics in anaerobic process; Cinetica de la degradacion de acidos grasos volatiles en procesos anaerobios

    Energy Technology Data Exchange (ETDEWEB)

    Riscado, S.; Osuna, B.; Iza, J.; Ruiz, E. [Universidad del Pais Vasco. Bilbao (Spain)

    1998-10-01

    While searching for the optimal substrate load for anaerobic toxicity assays, the inhibition caused by the propionic acid has been addressed. Lab scale experiments have been carried out to assess the effects of different loads and acid ratios. Results bad been subjected to kinetic analysis and show the degradation follows a first order kinetic, and acetic is easier to degrade than propionic acid. The optimal load for a 100 ml vial assay is composed of 158 mg COD of the 3:1:1 HAc:HPr:HBu mixture. (Author) 9 refs.

  4. Ammonia Volatilization from Urea Applied to Acid Paddy Soil in Southern China and Its Control

    Institute of Scientific and Technical Information of China (English)

    CAIGUI-XIN; PENGGUANG-HAO; 等

    1992-01-01

    Results showed that ammonia loss from urea broadcast into floodwater and incorporated into soil at transplanting was as high as 40% of applied N,and the corresponding total nitrogen (N) loss was 56%.Ammonia loss was measured with simplified micrometeorological method (ammonia sampler),and total N loss was concurrently measured using 15N balance technique.The experiment was conducted under strong sunshine conditions on acid paddy soil derived from Quaternary red clay.The ammonia loss in this particular condition was much greater than those obtained from previous studies when urea was also applied to acid paddy soil but under cloudy conditions.It is concluded that the strong sunshine conditions with high temperature and shallow floodwater during the period of present experiment favoured ammonia volatilization.Application of stearyl alcohol on the surface of the floodwater reduced ammonia loss to 23% of applied N.However,the effect of stearyl alcohol was short-lived,probably due to the microbiological decomposition.

  5. Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Gao-Lei; Valiev, Marat; Wang, Xue-Bin

    2016-03-31

    Dicarboxylic acids represent an important class of water-soluble organic compounds found in the atmosphere. In this work we are studying properties of dicarboxylic acid homodimer complexes (HO2(CH2)nCO2-[HO2(CH2)nCO2H], n = 0-12), as potentially important intermediates in aerosol formation processes. Our approach is based on experimental data from negative ion photoelectron spectra of the dimer complexes combined with updated measurements of the corresponding monomer species. These results are analyzed with quantum-mechanical calculations, which provide further information about equilibrium structures, thermochemical parameters associated with the complex formation, and evaporation rates. We find that upon formation of the dimer complexes the electron binding energies increase by 1.3–1.7 eV (30.0–39.2 kcal/mol), indicating increased stability of the dimerized complexes. Calculations indicate that these dimer complexes are characterized by the presence of strong intermolecular hydrogen bonds with high binding energies and are thermodynamically favorable to form with low evaporation rates. Comparison with previously studied HSO4-[HO2(CH2)2CO2H] complex (J. Phys. Chem. Lett. 2013, 4, 779-785) shows that HO2(CH2)2CO2-[HO2(CH2)2CO2H] has very similar thermochemical properties. These results imply that dicarboxylic acids not only can contribute to the heterogeneous complexes formation involving sulfuric acid and dicarboxylic acids, but also can promote the formation of homogenous complexes by involving dicarboxylic acids themselves.

  6. Contribution of flowering trees to urban atmospheric biogenic volatile organic compound emissions

    Directory of Open Access Journals (Sweden)

    R. Baghi

    2012-10-01

    Full Text Available Emissions of biogenic volatile organic compounds (BVOC from urban trees during and after blooming were measured during spring and early summer 2009 in Boulder, Colorado. Air samples were collected onto solid adsorbent cartridges from branch enclosures on the tree species crabapple (Malus sp., horse chestnut (Aesculus carnea, "Ft. McNair", honey locust (Gleditsia triacanthos, "Sunburst", and hawthorn (Crataegus laevigata, "Pauls Scarlet". These species constitute ~ 65% of the insect-pollinated fraction of the flowering tree canopy (excluding catkin-producing trees from the street area managed by the City of Boulder. Samples were analyzed for C10–C15 BVOC by thermal desorption and gas chromatography coupled to a flame ionization detector and a mass spectrometer (GC/FID/MS. Identified emissions and emission rates from these four tree species during the flowering phase were found to vary over a wide range. Monoterpene emissions were identified for honey locust, horse chestnut and hawthorn. Sesquiterpene emissions were observed in horse chestnut and hawthorn samples. Crabapple flowers were found to emit significant amounts of benzyl alcohol and benzaldehyde. Floral BVOC emissions increased with temperature, generally exhibiting exponential temperature dependence. Changes in BVOC speciation during and after the flowering period were observed for every tree studied. Emission rates were significantly higher during the blooming compared to the post-blooming state for crabapple and honey locust. The results were scaled to the dry mass of leaves and flowers contained in the enclosure. Only flower dry mass was accounted for crabapple emission rates as leaves appeared at the end of the flowering period. Total normalized (30 °C monoterpene emissions from honey locust were higher during flowering (5.3 μgC g−1 h−1 than after flowering (1.2 μgC g−1 h−1. The total normalized BVOC

  7. Effects of frozen storage and vacuum packaging on free fatty acid and volatile composition of Turkish Motal cheese.

    Science.gov (United States)

    Andic, S; Tuncturk, Y; Javidipour, I

    2011-08-01

    Effects of vacuum packaging and frozen storage were studied on the formation of free fatty acids (FFAs), volatile compounds and microbial counts of Motal cheese samples stored for a period of 180 days. The FFA concentration of Motal cheese samples increased throughout the storage period of 180 days. However, the FFA contents of samples stored at -18 °C showed considerably lower values than those of the samples stored at 4 °C. Palmitic (C16:0) and oleic (C18:1) acids were the most abundant FFAs in all the treatments. The volatile compounds detected by headspace solid-phase microextraction (HS-SPME) profile of Motal cheese consisted of 16 esters, 10 acids, 6 ketones, 4 alcohols, 3 aldehydes, styrene, p-cresol and m-cresol. Results showed that storage at -18 °C can limit the excessive volatile compound formation. Samples stored at 4°C with vacuum packaging showed comparatively high concentration of esters, ketones and alcohols. Samples stored without vacuum packaging at 4°C showed 2-nonanone as the most abundant volatile compound toward the end of storage period. Storage at 4°C under vacuum packaging decreased the mold-yeast counts of samples. Frozen storage could be a suitable method for storing the Motal cheese.

  8. Establishment and Evaluation of a Method for Analyzing Atmospheric Volatile Organic Compounds

    Institute of Scientific and Technical Information of China (English)

    SUN Yang; WANG Yuesi; XIU Tianyang; WANG Yinghong; XU Xin

    2007-01-01

    An automated cumulative sampling system and a method that combines a two-step cryo-concentrated system and gas chromatography/mass spectrometry (CCS-GC/MS) axe introduced. The method is evaluated by a set of special experiments and the results are presented. The lowest measurement detection limit was expanded from 10-6 nmol mol-1 to 10-12 nmol mol-1 by using CCS-GC/MS instead of the simpler method of gas chromatography/mass spectrometry (GC/MS), with the average responsible factor of 39 object compounds being 2.9×10-12. When the volume of air sample reached 1000 cm3, the lowest detection limit reached up to 7×10-12-40×10-12 nmol mol-1. The CCS-GC/MS method can potentially identify all objective chemical species in an atmospheric sample, with an average 2.5 s bias error of retention time for 39 gas chromatography (GC) peaks. Within the range 0-400×10-9 nmol mol-1, the concentration of 39 kinds of objective compounds can be individually calculated very accurately by a standard curve [average r2(coefficient of determination) value of above 0.99]. The recovery efficiency was 88%-111%, with an average of 100.8% +5.6%. The bias error of precision was 2%-14%, with an average of 6.6%.

  9. Influence of Oil and Gas Emissions on Ambient Atmospheric Volatile Organic Compounds in Residential Areas of Northeastern Colorado

    Science.gov (United States)

    Thompson, C. R.; Evans, J. M.; Wang, W.; Jacques, H.; Smith, K. R.; Terrell, R.; Helmig, D.

    2014-12-01

    The Northern Front Range (NFR) region of Colorado has experienced rapid expansion in drilling of shale and tight sands oil and gas reservoirs in recent years due to advances in hydraulic fracturing technology, with over 24,000 wells currently in operation. This region has also been designated as a federal ozone non-attainment area by the U.S. EPA. High ozone levels are a significant health concern, as are potential health impacts from chronic exposure to primary emissions of volatile organic compounds (VOC) for residents living near wells. Here we present observations of ambient atmospheric VOC present in residential areas located in close proximity to wells in Erie, Colorado, and show that the C2-C5 alkanes are enhanced by a factor of 18 - 77 relative to the regional background, and present at higher levels than typically found in large urban centers. These data are combined with VOC observations from downtown Denver and Platteville, as well as with measurements conducted this summer in conjunction with the FRAPPE and DISCOVER-AQ flight campaigns, to investigate the spatial distribution of VOC enhancements in correlation with proximity to oil and gas production areas. We show that these compounds, including the BTEX aromatics, are elevated across the NFR, with highest levels in communities within the Greater Wattenberg Gas Field. These analyses demonstrate that VOC emissions from oil and gas operations represent a large area source for ozone precursors in the NFR.

  10. Toxic Volatile Organic Compounds (VOCs in the Atmospheric Environment: Regulatory Aspects and Monitoring in Japan and Korea

    Directory of Open Access Journals (Sweden)

    Wen-Tien Tsai

    2016-09-01

    Full Text Available In the past decades, hazardous air pollutants (HAPs, so-called air toxics or toxic air pollutants, have been detected in the atmospheric air at low concentration levels, causing public concern about the adverse effect of long-term exposure to HAPs on human health. Most HAPs belong to volatile organic compounds (VOCs. More seriously, most of them are known carcinogens or probably carcinogenic to humans. The objectives of this paper were to report the regulatory aspects and environmental monitoring management of toxic VOCs designated by Japan and Korea under the Air Pollution Control Act, and the Clean Air Conservation Act, respectively. It can be found that the environmental quality standards and environmental monitoring of priority VOCs (i.e., benzene, trichloroethylene, tetrachloroethylene, and dichloromethane have been set and taken by the state and local governments of Japan since the early 2000, but not completely established in Korea. On the other hand, the significant progress in reducing the emissions of some toxic VOCs, including acrylonitrile, benzene, 1,3-butadiene, 1,2-dichloroethane, dichloromethane, chloroform, tetrachloroethylene, and trichloroethylene in Japan was also described as a case study in the brief report paper.

  11. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L. Extract

    Directory of Open Access Journals (Sweden)

    Pedro Mena

    2016-11-01

    Full Text Available This paper presents a comprehensive analysis of the phytochemical profile of a proprietary rosemary (Rosmarinus officinalis L. extract rich in carnosic acid. A characterization of the (polyphenolic and volatile fractions of the extract was carried out using mass spectrometric techniques. The (polyphenolic composition was assessed by ultra-high performance liquid chromatography-electrospray ionization-mass spectrometry (UHPLC-ESI-MSn and a total of 57 compounds were tentatively identified and quantified, 14 of these being detected in rosemary extract for the first time. The rosemary extract contained 24 flavonoids (mainly flavones, although flavonols and flavanones were also detected, 5 phenolic acids, 24 diterpenoids (carnosic acid, carnosol, and rosmanol derivatives, 1 triterpenoid (betulinic acid, and 3 lignans (medioresinol derivatives. Carnosic acid was the predominant phenolic compound. The volatile profile of the rosemary extract was evaluated by head space solid-phase microextraction (HS-SPME linked to gas chromatography-mass spectrometry (GC-MS. Sixty-three volatile molecules (mainly terpenes, alcohols, esters, aldehydes, and ketones were identified. This characterization extends the current knowledge on the phytochemistry of Rosmarinus officinalis and is, to our knowledge, the broadest profiling of its secondary metabolites to date. It can assist in the authentication of rosemary extracts or rosemary-containing products or in testing its bioactivity. Moreover, this methodological approach could be applied to the study of other plant-based food ingredients.

  12. Free amino acids in atmospheric particulate matter of Venice, Italy

    Science.gov (United States)

    Barbaro, Elena; Zangrando, Roberta; Moret, Ivo; Barbante, Carlo; Cescon, Paolo; Gambaro, Andrea

    2011-09-01

    The concentrations of free amino acids were determined in atmospheric particulate matter from the city of Venice (Italy) in order to better understand their origin. The analysis of aerosol samples was carried out via high-performance liquid chromatography coupled to a triple quadrupole tandem mass spectrometric detector (HPLC/ESI-MS/MS). The internal standard method was used and the analytical procedure was validated by evaluating the trueness, the precision, the recovery, the detection and the quantification limits. The particulate matter was collected using quartz fiber filters and extracted in methanol; after filtration the extract was directly analyzed. Forty samples were collected from April to October 2007 and the average concentrations of free amino acids in the aerosol were: alanine 35.6 pmol m -3, aspartic acid 31.1 pmol m -3, glycine 30.1 pmol m -3, glutamic acid 32.5 pmol m -3, isoleucine 2.4 pmol m -3, leucine 2.7 pmol m -3, methionine, cystine and 3-hydroxy-proline below the limit of detection, phenylalanine 2.8 pmol m -3, proline 43.3 pmol m -3, serine 8.6 pmol m -3, threonine 2.8 pmol m -3, tyrosine 1.7 pmolm -3, valine 3.8 pmol m -3, asparagine 70.2 pmol m -3, glutamine 38.0 pmol m -3, 4-hydroxy-proline 2.5 pmol m -3, methionine sulfoxide 1.1 pmol m -3, and methionine sulfone 0.1 pmol m -3. The total average concentration of these free amino acids in aerosol samples of Venice Lagoon was 334 pmol m -3. The temporal evolution and multivariate analysis indicated the photochemical origin of 4-hydroxy-proline and methionine sulfoxide and for other compounds an origin further away from the site of sampling, presumably reflecting transport from terrestrial sources.

  13. A large and ubiquitous source of atmospheric formic acid

    Science.gov (United States)

    Millet, D. B.; Baasandorj, M.; Farmer, D. K.; Thornton, J. A.; Baumann, K.; Brophy, P.; Chaliyakunnel, S.; de Gouw, J. A.; Graus, M.; Hu, L.; Koss, A.; Lee, B. H.; Lopez-Hilfiker, F. D.; Neuman, J. A.; Paulot, F.; Peischl, J.; Pollack, I. B.; Ryerson, T. B.; Warneke, C.; Williams, B. J.; Xu, J.

    2015-06-01

    Formic acid (HCOOH) is one of the most abundant acids in the atmosphere, with an important influence on precipitation chemistry and acidity. Here we employ a chemical transport model (GEOS-Chem CTM) to interpret recent airborne and ground-based measurements over the US Southeast in terms of the constraints they provide on HCOOH sources and sinks. Summertime boundary layer concentrations average several parts-per-billion, 2-3× larger than can be explained based on known production and loss pathways. This indicates one or more large missing HCOOH sources, and suggests either a key gap in current understanding of hydrocarbon oxidation or a large, unidentified, direct flux of HCOOH. Model-measurement comparisons implicate biogenic sources (e.g., isoprene oxidation) as the predominant HCOOH source. Resolving the unexplained boundary layer concentrations based (i) solely on isoprene oxidation would require a 3× increase in the model HCOOH yield, or (ii) solely on direct HCOOH emissions would require approximately a 25× increase in its biogenic flux. However, neither of these can explain the high HCOOH amounts seen in anthropogenic air masses and in the free troposphere. The overall indication is of a large biogenic source combined with ubiquitous chemical production of HCOOH across a range of precursors. Laboratory work is needed to better quantify the rates and mechanisms of carboxylic acid production from isoprene and other prevalent organics. Stabilized Criegee intermediates (SCIs) provide a large model source of HCOOH, while acetaldehyde tautomerization accounts for ~ 15% of the simulated global burden. Because carboxylic acids also react with SCIs and catalyze the reverse tautomerization reaction, HCOOH buffers against its own production by both of these pathways. Based on recent laboratory results, reaction between CH3O2 and OH could provide a major source of atmospheric HCOOH; however, including this chemistry degrades the model simulation of CH3OOH and NOx

  14. Interactions between volatile organic compounds and reactive halogen in the tropical marine atmosphere using WRF-Chem

    Science.gov (United States)

    Badia, Alba; Reeves, Claire E.; Baker, Alex; Volkamer, Rainer; von Glasow, Roland

    2016-04-01

    Halogen species (chlorine, bromine and iodine) are known to play an important role in the chemistry and oxidizing capacity of the troposphere, particularly in the marine boundary layer (MBL). Reactive halogens cause ozone (O3) destruction, change the HOx and NOX partitioning, affect the oxidation of volatile organic compounds (VOCs) and mercury, reduce the lifetime of methane, and take part in new particle formation. Numerical models predicted that reactive halogen compounds account for 30% of O3 destruction in the MBL and 5-20% globally. There are indications that the chemistry of reactive halogens and oxygenated VOCs (OVOCs) in the tropics are inter-related. Moreover, the presence of aldehydes, such as glyoxal (CHOCHO), has a potential impact on radical cycling and secondary organic aerosol (SOA) formation in the MBL and free troposphere (FT). Model calculations suggest aldehydes to be an important sink for bromine atoms and hence competition for their reaction with O3 forming BrO and so illustrating a link between the cycles of halogens and OVOCs in the marine atmosphere. The main objective of this contribution is to investigate the atmospheric chemistry in the tropical East Pacific with a focus on reactive halogens and OVOCs and their links using the latest version of the Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-Chem) and field data from the TORERO campaign. WRF-Chem is a highly flexible community model for atmospheric research where aerosol-radiation-cloud feedback processes are taken into account. Our current reaction mechanism in WRF-Chem is based on the MOZART mechanism and has been extended to include bromine, chlorine and iodine chemistry. The MOZART mechanism includes detailed gas-phase chemistry of CHOCHO formation as well as state-of-the-science pathways to form SOA. Oceanic emissions of aldehydes, including CHOCHO, and of organic halogens based on measurements from the TORERO campaign have been added into the model. Sea

  15. Thermal History and Volatile Partitioning between Proto-Atmosphere and Interior of Mars Accreted in a Solar Nebula

    Science.gov (United States)

    Saito, Hiroaki; Kuramoto, Kiyoshi

    2015-11-01

    Recent precise Hf-W chronometry of Martian meteorites reveals that Mars had likely reached the half of its present mass within 3 Myr from the birth of the solar system (Dauphas and Pourmand, 2011). Hence, the accretion is considered to almost proceed within the solar nebula associated with the capture of nebula gas components. At the same time, the impact degassing may inevitably occur because impact velocity increases high enough for such degassing when a proto-planet gets larger than around lunar size. Thus, we can expect the formation of a hybrid-type proto-atmosphere that consists of nebula gas and degassed one.This study analyzes the thermal structure of this proto-atmosphere sustained by accretional heating by building a 1D radiative-convective equilibrium model. Raw materials of Mars are supposed to be volatile-rich on the basis of the geochemical systematics of Mars meteorites (Dreibus and Wanke, 1988). The composition of degassed component comprised of H2, H2O, CH4, and CO is determined by chemical equilibrium with silicate and metal under the physical condition of locally heated region generated by each impact (Kuramoto, 1997). Degassed component lies beneath the nebula gas atmosphere at altitudes below the compositional boundary height that would change depending on the amount of degassed component. The accretion time is taken to be from 1 to 6 Myr.Our model predicts that the surface temperature exceeds the liquidus temperature of rock when a proto Mars grows larger than 0.7 times of its present mass for the longest accretion time case. In this case, the magma ocean mass just after the end of accretion is 0.2 times of its present mass if heat transfer and heat sources such as short-lived radionuclides are neglected in the interior. The corresponding amount of water dissolved into the magma ocean would be around 1.8 times the present Earth ocean mass. These results suggest that the earliest Mars would be hot enough to form deep magma oceans, which

  16. Atmospheric volatile organic compound measurements: Distributions and effects on air quality in coastal marine, rural and remote continental environments

    Science.gov (United States)

    Zhou, Yong

    A detailed description of the analytical methods employed for whole air sampling and analysis of atmospheric volatile organic compounds is presented. The system described in this thesis produced high precision measurements for a large suite of nonmethane hydrocarbons, halocarbons, and alkyl nitrates, from part per billion by volume (ppbv) to part per trillion by volume (pptv) levels. The measurement precision for most gases ranged from 1-10%. Results from two subsequent field campaigns (2002 and 2003) conducted in Yellowstone National Park (YNP) are presented. The findings indicate that 2-stroke snowmobile engine emissions furnish large quantities of air toxics to the YNP air shed. Air toxics, which are major components of 2stroke engine exhaust, show large enhancements between the high traffic and low traffic sampling periods. Evaluation of the photochemical history of air masses sampled in the Park reveals that the air toxic emissions were recent and persistent throughout the region and consistent with the 2-stroke exhaust sample fingerprints. Using a box model, the emission fluxes from snowmobile usage in the Park are estimated to be 0.35, 1.12, 0.24, 1.45, and 0.36 Gg/yr for benzene, toluene, ethyl benzene, xylenes, and hexane, respectively. The U.S. annual emissions from snowmobile usage are significant (˜14-21%) with respect to EPA estimates. Results of the atmospheric measurements of short-lived halocarbons are presented from the New England Air Quality Study 2002 campaign, summer 2003 at Thompson Farm (TF) and Great Bay, and the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) 2004 campaign. Elevated levels of bromoform (CHBr3) were frequently observed, with maxima of 37.9 pptv and 47.4 pptv for TF and Appledore Island (AI), respectively. During the ICARTT 2004 campaign, the average levels of CHBr3 and dibromomethane (CH2Br2) were higher at AI (CHBr3 = 14.3 pptv, CH2Br2 = 3.2 pptv) compared to Thompson Farm (CHBr3

  17. Kinetic and mechanism of atmospheric degradation of three volatile organics compounds: acetone, phenol and catechol; Cinetique et mecanisme de degradation atmospherique de trois composes organiques volatils: l'acetone, le phenol et le catechol

    Energy Technology Data Exchange (ETDEWEB)

    Turpin, E.

    2004-12-01

    In this thesis, atmospheric degradation of three VOC (volatile organic compound), acetone, phenol and catechol, has been studied. These compounds are renowned to be some of main compounds in the atmosphere because the relative importance of their primary emissions (biogenic, gas fumes,...) and secondary emissions (VOCs oxidation). This work has been realised in two laboratories using two complementary devices. These instruments are the fast flow tube with LIF (laser induce fluorescence) and a smog Teflon chamber with gas-phase chromatography with FTIR, FID, MS. The both use of these techniques enable to determine the main pathway of the acetone oxidation with OH radical. The smog chamber's studies of the phenol and catechol reactions with OH radical enable to determine some relative rate constants and mechanisms. It's the first mechanism proposition for the catechol + OH radical reaction. These obtained results have been used to mention the atmospheric impact of these compounds. (author)

  18. Photooxidation of cyclohexanone in simulated atmosphere: A potential source of atmospheric formic acid

    Science.gov (United States)

    Chattopadhyay, Aparajeo; Mondal, Koushik; Samanta, Monoj; Chakraborty, Tapas

    2017-05-01

    Gas phase photooxidation of cyclohexanone (CH) has been studied in the laboratory in a simulated atmospheric environment (synthetic air, 1 bar pressure) under the exposure of 311 nm UV light. Formic acid along with formaldehyde and ethylene are identified as the major photooxidation products. Quantum yield for the production of these species is measured and the values are compared with previous studies on the photo dissociation of CH. For 6 h of light irradiation with initial CH concentration of 9.19 ± 0.1 × 1016 molecules cm-3, the measured quantum yield values of ethylene and formaldehyde, the two primary photooxidation products, are 0.0395 ± 0.001 and 0.0028 ± 0.002, respectively. These values are comparable with CH dissociation quantum yield, 0.24 ± 0.02, and also the quantum yield of CO production, 0.0940 ± 0.001. The energetic parameters of different steps of the proposed reaction mechanism are calculated by electronic structure theory method at DFT/B3LYP/6-311++G** level. A reaction modeling has been performed, and similarity in simulated quantum yield values with that of the experimentally measured ones validates the suggested reaction mechanism. Experimentally measured values of rate constants of most of the elementary reaction steps incorporated in the modeling are not known, and the calculated values, obtained by use of CVT and RRKM theoretical methods are used. The total yield of formic acid, which has been assigned as a secondary oxidation product, is 3.46 ± 0.25 × 1015 molecules cm-3 as obtained from experiment and this data matches well with the value of 2.67 × 1015 molecules cm-3 obtained from reaction modeling for 6 h of UV irradiation. The yield of formic acid is comparable with the yield of primary photo products. The results imply that photooxidation of CH and analogous compounds might have significant contributions to production of formic acid in the earth's troposphere. According to the prediction of the modeling results presented

  19. The acid-catalyzed hydrolysis of an α-pinene-derived organic nitrate: kinetics, products, reaction mechanisms, and atmospheric impact

    Science.gov (United States)

    Rindelaub, Joel D.; Borca, Carlos H.; Hostetler, Matthew A.; Slade, Jonathan H.; Lipton, Mark A.; Slipchenko, Lyudmila V.; Shepson, Paul B.

    2016-12-01

    The production of atmospheric organic nitrates (RONO2) has a large impact on air quality and climate due to their contribution to secondary organic aerosol and influence on tropospheric ozone concentrations. Since organic nitrates control the fate of gas phase NOx (NO + NO2), a byproduct of anthropogenic combustion processes, their atmospheric production and reactivity is of great interest. While the atmospheric reactivity of many relevant organic nitrates is still uncertain, one significant reactive pathway, condensed phase hydrolysis, has recently been identified as a potential sink for organic nitrate species. The partitioning of gas phase organic nitrates to aerosol particles and subsequent hydrolysis likely removes the oxidized nitrogen from further atmospheric processing, due to large organic nitrate uptake to aerosols and proposed hydrolysis lifetimes, which may impact long-range transport of NOx, a tropospheric ozone precursor. Despite the atmospheric importance, the hydrolysis rates and reaction mechanisms for atmospherically derived organic nitrates are almost completely unknown, including those derived from α-pinene, a biogenic volatile organic compound (BVOC) that is one of the most significant precursors to biogenic secondary organic aerosol (BSOA). To better understand the chemistry that governs the fate of particle phase organic nitrates, the hydrolysis mechanism and rate constants were elucidated for several organic nitrates, including an α-pinene-derived organic nitrate (APN). A positive trend in hydrolysis rate constants was observed with increasing solution acidity for all organic nitrates studied, with the tertiary APN lifetime ranging from 8.3 min at acidic pH (0.25) to 8.8 h at neutral pH (6.9). Since ambient fine aerosol pH values are observed to be acidic, the reported lifetimes, which are much shorter than that of atmospheric fine aerosol, provide important insight into the fate of particle phase organic nitrates. Along with rate constant

  20. Efficacy of essence oil supplementation to feeds on volatile fatty acid production

    Directory of Open Access Journals (Sweden)

    Ahmet Tekeli

    2015-11-01

    Full Text Available Objective. Determine the effect of some plant extract supplementation to Total Mixed Ration (TMR, concentrate and hay on volatile fatty acid (VFA production at 8 and 24 hours (h using in vitro gas production technique in cattle. Material and methods. Three fistulated Holstein dairy cows were used for rumen fluid collection for application of in vitro gas production technique. Four essence oils (T. vulgaris, O. vulgare, S. aromaticum, Z. officinale were used as plant extracts. Results. Essence oil supplementations to the examined feed groups had significant effect only on C2/C3 VFA level at 8 h in all feed groups (p<0.05. C2/C3 VFA level at 8 h significantly increased in the groups with Oregano 25 ppm supplementation for TMR and concentrate and in the groups with Thymol 25 ppm supplementation for hay. C3 VFA level at 8 h significantly increased in the group that received Syzygium 200 ppm supplementation for hay. Different plant extracts supplemented to TMR, concentrate and hay significantly affected C2, C3, IC4, IC5, C5 and C2/C3 VFA levels at 24 h (p<0.05. Conclusions. The findings of the study indicate that moderate doses of plant extracts result in increased VFA levels in ruminants while higher doses demonstrate the opposite effect.

  1. Volatile sulphur compounds-forming abilities of lactic acid bacteria: C-S lyase activities.

    Science.gov (United States)

    Bustos, Irene; Martínez-Bartolomé, Miguel A; Achemchem, Fouad; Peláez, Carmen; Requena, Teresa; Martínez-Cuesta, M Carmen

    2011-08-01

    Volatile sulphur compounds (VSCs) are of prime importance in the overall aroma of cheese and make a significant contribution to their typical flavours. Thus, the control of VSCs formation offers considerable potential for industrial applications. Here, lactic acid bacteria (LAB) from different ecological origins were screened for their abilities to produce VSCs from L-methionine. From the data presented, VSC-forming abilities were shown to be strain-specific and were correlated with the C-S lyase enzymatic activities determined using different approaches. High VSCs formation were detected for those strains that were also shown to possess high thiol-producing abilities (determined either by agar plate or spectrophotometry assays). Moreover, differences in C-S lyase activities were shown to correspond with the enzymatic potential of the strains as determined by in situ gel visualization. Therefore, the assessment of the C-S lyase enzymatic potential, by means of either of these techniques, could be used as a valuable approach for the selection of LAB strains with high VSC-producing abilities thus, representing an effective way to enhance cheese sulphur aroma compounds synthesis. In this regard, this study highlights the flavour forming potential of the Streptococcus thermophilus STY-31, that therefore could be used as a starter culture in cheese manufacture. Furthermore, although C-S lyases are involved in both biosynthetic and catabolic pathways, an association between methionine and cysteine auxotrophy of the selected strains and their VSCs-producing abilities could not be found.

  2. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2015-09-15

    Volatile fatty acids (VFA) are organic compounds of great importance for various industries and environmental processes. Fermentation and anaerobic digestion of organic wastes are promising alternative technologies for VFA production. However, one of the major challenges is development of sustainable downstream technologies for VFA recovery. In this study, an innovative microbial bipolar electrodialysis cell (MBEDC) was developed to meet the challenge of waste-derived VFA recovery, produce hydrogen and alkali, and potentially treat wastewater. The MBEDC was operated in fed-batch mode. At an applied voltage of 1.2 V, a VFA recovery efficiency of 98.3%, H2 of 18.4 mL and alkali production presented as pH of 12.64 were obtained using synthetic fermentation broth. The applied voltage, initial VFA concentrations and composition were affecting the VFA recovery. The energy balance revealed that net energy (5.20-6.86 kWh/kg-VFA recovered) was produced at all the applied voltages (0.8-1.4 V). The coexistence of other anionic species had no negative effect on VFA transportation. The VFA concentration was increased 2.96 times after three consecutive batches. Furthermore, the applicability of MBEDC was successfully verified with digestate. These results demonstrate for the first time the possibility of a new method for waste-derived VFA recovery and valuable products production that uses wastewater as fuel and bacteria as catalyst. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment.

    Science.gov (United States)

    Yin, Jun; Wang, Kun; Yang, Yuqiang; Shen, Dongsheng; Wang, Meizhen; Mo, Han

    2014-11-01

    Food waste (FW) was pretreated by a hydrothermal method and then fermented for volatile fatty acid (VFAs) production. The soluble substance in FW increased after hydrothermal pretreatment (⩽200 °C). Higher hydrothermal temperature would lead to mineralization of the organic compounds. The optimal temperature for organic dissolution was 180 °C, at which FW dissolved 42.5% more soluble chemical oxygen demand than the control. VFA production from pretreated FW fermentation was significantly enhanced compared with the control. The optimal hydrothermal temperature was 160 °C with a VFA yield of 0.908 g/g VSremoval. Butyrate and acetate were the prevalent VFAs followed by propionate and valerate. FW fermentation was inhibited after 200 °C pretreatment. The VFAs were extracted from the fermentation broth by liquid-liquid extraction. The VFA recovery was 50-70%. Thus, 0.294-0.411 g VFAs could be obtained per gram of hydrothermally pretreated FW (in dry weight) by this method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effects of volatile fatty acids on a thermophilic anaerobic hydrogen fermentation process degrading peptone.

    Science.gov (United States)

    Cheng, S S; Chang, S M; Chen, S T

    2002-01-01

    Hydrogen fermentation using glucose as a single substrate caused abrupt pH drops and the gradual losses of hydrogen producers, which in turn led to system failure. In this study the use of a proteinaceous substrate, peptone, avoided the abrupt pH drops in the reactive system and allowed for further exploration of volatile fatty acids (VFAs) and pH effects on the hydrogen fermentation process. Our results showed that: (1) during the hydrogen fermentation tests, the abrupt pH drops were avoided thus system stability increased due to the production of ammonia from the peptone fermented, (2) pH control was not necessary and the addition of acetate to the process had little effect on the hydrogen fermentation process, (3) at the extreme pHs the addition of acetate either lengthened the lag phase (pH hydrogen production rate (pH > or = 8), and both situations were not desired, and (4) high VFA content in the system sped up the consumption of hydrogen gas. Results of this study suggested that the hydrogen fermentation using the protein-containing substances as substrate was beneficial in maintaining the system pH. As long as the pH was maintained around 6-8, system inhibition due to VFAs accumulation was minimized. Thus, the optimal operation of a hydrogen fermentation process would be achievable via the control of substrate composition at a certain carbohydrate-to-protein ratio.

  5. Volatile fatty acid recovery by anaerobic fermentation from blue-green algae: Effect of pretreatment.

    Science.gov (United States)

    Cho, Hyun Uk; Kim, Hye Gyeong; Kim, Young Mo; Park, Jong Moon

    2017-05-17

    The aims of this study were to quantify how pretreatment affects production of volatile fatty acids (VFAs) from cyanobacterial biomass and production of subsequent microbial lipid by an oleaginous microorganism that uses the VFAs as carbon sources. The highest biomass solubilization was obtained using thermal-alkaline (th-alkaline) pretreatment (33.1%), followed by alkaline pretreatment (29.1%), and thermal pretreatment (7.2%), but the highest VFA yield was obtained using alkaline pretreatment (0.54±0.02g/gVS), followed by the untreated condition (0.47±0.03g/gVS), and th-alkaline pretreatment (0.44±0.02g/gVS). Although VFA yield was higher using alkaline pretreatment condition than in the untreated condition, the difference was not great. However, lipid productivity by Cryptococcus curvatus after the alkaline pretreatment condition was 2.0-fold higher than that under the untreated condition. This study confirmed the feasibility of using biologically produced VFAs from cyanobacterial biomass for microbial lipid production by the oleaginous microorganism. Copyright © 2017. Published by Elsevier Ltd.

  6. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in Lima bean plants

    NARCIS (Netherlands)

    Dicke, M.; Gols, R.; Ludeking, D.; Posthumus, M.A.

    1999-01-01

    Lima bean plants respond to feeding damage of two-spotted spider mites (Tetranychus urticae) with the emission of a complex blend of volatiles that are products of several different biosynthetic pathways. These volatiles attract the carnivorous mite Phytoseiulus persimilis, a specialist predator of

  7. Intrinsic degradation of volatile fatty acids in laboratory-compacted clayey soil

    Science.gov (United States)

    Hrapovic, L.; Rowe, R. K.

    2002-10-01

    Volatile fatty acids (VFAs) represent the major organic constituent of landfill leachate and provide the greatest potential for leachate induced organic contamination of groundwater (e.g. as represented by an increase in the concentration of dissolved organic carbon and chemical oxygen demand). Long-term diffusion tests were performed for laboratory-compacted clayey soil plugs exposed to continuous supply of synthetic leachate containing VFAs. Significant microbial activity developed upon exposure of the soil's indigenous microorganisms to these degradable contaminants. The growth of heterotrophic aerobic bacteria (HAB, which include facultative anaerobes), sulfate reducing bacteria (SRB) and methanogenic bacteria carrying out fermentation and mineralization of the VFAs became evident after 30-50 days of testing. The maximum microbial counts of (2-8)×10 8 and (0.1-1)×10 8 cfu/g for HAB and SRB were localized in the soil layer at the interface with the source of organic and inorganic nutrients. Regardless of this rapid growth in microbial population, the VFA consumption was small and measurable only after a lag of 140-180 days. It is considered that this lag of otherwise readily degradable organic compounds (such as VFAs) persisted due to a combination of the effects of a high initial concentration of these acids (2.4 g/l as dissolved organic carbon, DOC) applied to carbon starved soil microorganisms and the small pore size of the compacted clay. Once the significant amounts of gas were generated from fermentation, conditions developed for improved mass transport and exchange of the nutrients and bacteria and the outcome of the intrinsic degradation was more apparent. The breakdown of VFAs that followed after the lag was localized near the top of the soil and was characterized by a short half-life of 0.75-5 days for DOC (total VFAs as dissolved organic carbon).

  8. Removing volatile fatty acids during the anaerobic treatment of pig sewage; Remocion de acidos grasos volatiles durante el tratamiento anaerobio de aguas residuales porcicolas

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez Borges, E.; Mendez Novelo, R.; Magana Pietra, A.; Partinez Pereda, P.; Fernandez Villagomez, G. [Facultad de Ingenieria, Universidad Atuonoma de Yucatan. Mexico (Mexico)

    1997-06-01

    This study examined the behaviour of a hybrid anaerobic digester in treating pig farm sewage. The experimental model consisted of a 208-litre UASB reactor at the bottom and a 195-litre high-rate sedimentator at the top. The digester was installed on a pig farm and its efficiency in removing volatile (acetic and propionic) fatty acids (VFA) was determined with hydraulic retention time (HTR) as the critical parameter for evaluating the anaerobic system`s performance. The results obtained with the five different HRTs used during the experiment are reported. The highest removal rates were obtained with an HRT of 2.8 days: 98% in the UASB, 28% in the sedimentator and 98% in the digester as a whole. An HRT of 1 day gave VFA removal rates of 40%, 12% and 50% in the UASB reactor sedimentator and digest respectively. (Author) 16 refs.

  9. Inoculation of the nonlegume Capsicum annuum L. with Rhizobium strains. 2. Changes in sterols, triterpenes, fatty acids, and volatile compounds.

    Science.gov (United States)

    Silva, Luís R; Azevedo, Jessica; Pereira, Maria J; Carro, Lorena; Velazquez, Encarna; Peix, Alvaro; Valentão, Patrícia; Andrade, Paula B

    2014-01-22

    Peppers (Capsicum spp.) are consumed worldwide, imparting flavor, aroma, and color to foods, additionally containing high concentrations of biofunctional compounds. This is the first report about the effect of the inoculation of two Rhizobium strains on sterols, triterpenes, fatty acids, and volatile compounds of leaves and fruits of pepper (Capsicum annuum L.) plants. Generally, inoculation with strain TVP08 led to the major changes, being observed a decrease of sterols and triterpenes and an increase of fatty acids, which are related to higher biomass, growth, and ripening of pepper fruits. The increase of volatile compounds may reflect the elicitation of plant defense after inoculation, since the content on methyl salicylate was significantly increased in inoculated material. The findings suggest that inoculation with Rhizobium strains may be employed to manipulate the content of interesting metabolites in pepper leaves and fruits, increasing potential health benefits and defense abilities of inoculated plants.

  10. A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models

    Directory of Open Access Journals (Sweden)

    M. Karl

    2009-06-01

    Full Text Available We present a new European plant-specific emission inventory for isoprene, monoterpenes, sesquiterpenes and oxygenated VOC (OVOC, on a spatial resolution of 0.089×0.089 degrees, for implementation in atmospheric transport models. The inventory incorporates more accurate data on foliar biomass densities from several litterfall databases that became available in the last years for the main tree species in Europe. A bioclimatic correction factor was introduced to correct the foliar biomass densities of trees and crops for the different plant growth conditions that can be found in Pan-Europe. Long-term seasonal variability of agriculture and forest emissions was taken into account by implementing a new growing season concept. The 2004–2005 averaged annual total biogenic volatile organic compound (BVOC emissions for the Pan-European domain are estimated to be about 12 Tg with a large contribution from the OVOC class of about 4.5 Tg and from monoterpenes of about 4 Tg. Annual isoprene emissions are found to be about 3.5 Tg, insensitive to the chosen emission algorithm. Emissions of OVOC were found to originate to a large extent from agriculture. Further experiments on crop emissions should be carried out to check the validity of the applied standard emission factors. The new inventory aims at a fully transparent and verifiable aggregation of detailed land use information and at the inclusion of plant-specific emission data. Though plant-specific land use data is available with relatively high accuracy, a lack of experimental biomass densities and emission data on terpenes, sesquiterpenes and oxygenated VOC, in particular for agricultural plants, currently limits the setup of a highly accurate plant-specific emission inventory.

  11. Characterization of Fatty Acid, Amino Acid and Volatile Compound Compositions and Bioactive Components of Seven Coffee (Coffea robusta Cultivars Grown in Hainan Province, China

    Directory of Open Access Journals (Sweden)

    Wenjiang Dong

    2015-09-01

    Full Text Available Compositions of fatty acid, amino acids, and volatile compound were investigated in green coffee beans of seven cultivars of Coffea robusta grown in Hainan Province, China. The chlorogenic acids, trigonelline, caffeine, total lipid, and total protein contents as well as color parameters were measured. Chemometric techniques, principal component analysis (PCA, hierarchical cluster analysis (HCA, and analysis of one-way variance (ANOVA were performed on the complete data set to reveal chemical differences among all cultivars and identify markers characteristic of a particular botanical origin of the coffee. The major fatty acids of coffee were linoleic acid, palmitic acid, oleic acid, and arachic acid. Leucine (0.84 g/100 g DW, lysine (0.63 g/100 g DW, and arginine (0.61 g/100 g DW were the predominant essential amino acids (EAAs in the coffee samples. Seventy-nine volatile compounds were identified and semi-quantified by HS-SPME/GC-MS. PCA of the complete data matrix demonstrated that there were significant differences among all cultivars, HCA supported the results of PCA and achieved a satisfactory classification performance.

  12. Characterization of Fatty Acid, Amino Acid and Volatile Compound Compositions and Bioactive Components of Seven Coffee (Coffea robusta) Cultivars Grown in Hainan Province, China.

    Science.gov (United States)

    Dong, Wenjiang; Tan, Lehe; Zhao, Jianping; Hu, Rongsuo; Lu, Minquan

    2015-09-14

    Compositions of fatty acid, amino acids, and volatile compound were investigated in green coffee beans of seven cultivars of Coffea robusta grown in Hainan Province, China. The chlorogenic acids, trigonelline, caffeine, total lipid, and total protein contents as well as color parameters were measured. Chemometric techniques, principal component analysis (PCA), hierarchical cluster analysis (HCA), and analysis of one-way variance (ANOVA) were performed on the complete data set to reveal chemical differences among all cultivars and identify markers characteristic of a particular botanical origin of the coffee. The major fatty acids of coffee were linoleic acid, palmitic acid, oleic acid, and arachic acid. Leucine (0.84 g/100 g DW), lysine (0.63 g/100 g DW), and arginine (0.61 g/100 g DW) were the predominant essential amino acids (EAAs) in the coffee samples. Seventy-nine volatile compounds were identified and semi-quantified by HS-SPME/GC-MS. PCA of the complete data matrix demonstrated that there were significant differences among all cultivars, HCA supported the results of PCA and achieved a satisfactory classification performance.

  13. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    Science.gov (United States)

    Vaïtilingom, M.; Charbouillot, T.; Deguillaume, L.; Maisonobe, R.; Parazols, M.; Amato, P.; Sancelme, M.; Delort, A.-M.

    2011-02-01

    Clouds are multiphasic atmospheric systems in which the dissolved organic compounds, dominated by carboxylic acids, are subject to multiple chemical transformations in the aqueous phase. Among them, solar radiation, by generating hydroxyl radicals (•OH), is considered as the main catalyzer of the reactivity of organic species in clouds. We investigated to which extent the active biomass existing in cloud water represents an alternative route to the chemical reactivity of carboxylic acids. Pure cultures of seventeen bacterial strains (Arthrobacter, Bacillus, Clavibacter, Frigoribacterium, Pseudomonas, Sphingomonas and Rhodococcus), previously isolated from cloud water and representative of the viable community of clouds were first individually incubated in two artificial bulk cloud water solutions at 17 °C and 5 °C. These solutions mimicked the chemical composition of cloud water from "marine" and "continental" air masses, and contained the major carboxylic acids existing in the cloud water (i.e. acetate, formate, succinate and oxalate). The concentrations of these carboxylic compounds were monitored over time and biodegradation rates were determined. In average, they ranged from 2 ×10-19 for succinate to 1 × 10-18 mol cell-1 s-1 for formate at 17 °C and from 4 × 10-20 for succinate to 6 × 10-19 mol cell-1 s-1 for formate at 5 °C, with no significant difference between "marine" and "continental" media. In parallel, irradiation experiments were also conducted in these two artificial media to compare biodegradation and photodegradation of carboxylic compounds. To complete this comparison, the photodegradation rates of carboxylic acids by •OH radicals were calculated from literature data. Inferred estimations suggested a significant participation of microbes to the transformation of carboxylic acids in cloud water, particularly for acetate and succinate (up to 90%). Furthermore, a natural cloud water sample was incubated (including its indigenous microflora

  14. Effect of micella interesterification on fatty acids composition and volatile components of soybean and rapeseed oils

    Directory of Open Access Journals (Sweden)

    Afifi, Sherine M.

    2000-10-01

    Full Text Available Micella interesterification of soybean and rapeseed oils was carried out using 0.2, 0.4 and 0.6 percentages of nickel catalyst, each at different temperatures of 60, 90 and 120ºC for 2, 4, and 6 hours. The proposed interesterification reaction conditions to obtain an oil with low linoleic acid level were 0.2 % nickel catalyst at 120ºC for 4 hours, 0.4% nickel catalyst at 90ºC for 4 hours and 0.6% at 60ºC for 4 hours. Fatty acid composition and chemical analysis of the interesterified and non-esterified oils were estimated. Selected samples undergo heating at 180ºC for 4 hours determining the volatile components. The appearance of some components supported the interesterification process for modification of fatty acid constituents of the oils.Se ha llevado a cabo la interesterificación en fase miscelar de aceites de soja y de colza usando un 0.2%, 0.4% y 0.6% de níquel como catalizador, a diferentes temperaturas (60, 90 y 120ºC durante 2, 4 y 6 horas. Las condiciones de reacción de interesterificación propuestas para obtener un aceite con niveles de ácidos linolénicos bajos fueron 0.2 % de níquel a 120ºC durante 4 horas, 0.4 % de níquel a 90ºC durante 4 horas y 0.6 % a 60ºC durante 4 horas. Se han estimado la composición en ácidos grasos y el análisis químico de los aceites interesterificados y no-esterificados. Las muestras seleccionadas se sometieron a calentamiento a 180ºC durante 4 horas determinando los componentes volátiles. La aparición de algunos componentes apoyó el proceso de interesterificación por modificación de los ácidos grasos constituyentes de los aceites.

  15. Priming by Hexanoic acid induce activation of mevalonic and linolenic pathways and promotes the emission of plant volatiles.

    Directory of Open Access Journals (Sweden)

    Eugenio eLlorens

    2016-04-01

    Full Text Available Hexanoic acid is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of hexanoic acid in response to the challenge pathogen Alternaria alternata, focusing on the response of the plant. Moreover, we used 13C labeled hexanoic to analyze its behavior inside the plants. Finally, we studied the volatile emission of the treated plants after the challenge inoculation. Drench application of 13C labeled hexanoic demonstrated that this molecule stays in the roots and is not mobilized to the leaves, suggesting long distance induction of resistance. Moreover, the study of the metabolic profile showed an alteration of more than two hundred molecules differentially induced by the application of the compound and the inoculation with the fungus. Bioinformatics analysis of data showed that most of these altered molecules could be related with the mevalonic and linolenic pathways suggesting the implication of these pathways in the induced resistance mediated by hexanoic acid. Finally, the application of this compound showed an enhancement of the emission of 17 volatile metabolites. Taken together, this study indicates that after the application of hexanoic acid this compound remains in the roots, provoking molecular changes that may trigger the defensive response in the rest of the plant mediated by changes in the mevalonic and linolenic pathways and enhancing the emission of volatile compounds, suggesting for the first time the implication of mevalonic pathway in response to hexanoic application.

  16. atmospheric volatile organic compounds

    Directory of Open Access Journals (Sweden)

    A. R. Koss

    2016-07-01

    organic compounds (VOCs that cannot be ionized with H3O+ ions (e.g., in a PTR-MS or H3O+ CIMS instrument. Here we describe the adaptation of a high-resolution time-of-flight H3O+ CIMS instrument to use NO+ primary ion chemistry. We evaluate the NO+ technique with respect to compound specificity, sensitivity, and VOC species measured compared to H3O+. The evaluation is established by a series of experiments including laboratory investigation using a gas-chromatography (GC interface, in situ measurement of urban air using a GC interface, and direct in situ measurement of urban air. The main findings are that (1 NO+ is useful for isomerically resolved measurements of carbonyl species; (2 NO+ can achieve sensitive detection of small (C4–C8 branched alkanes but is not unambiguous for most; and (3 compound-specific measurement of some alkanes, especially isopentane, methylpentane, and high-mass (C12–C15 n-alkanes, is possible with NO+. We also demonstrate fast in situ chemically specific measurements of C12 to C15 alkanes in ambient air.

  17. Simultaneous determination of six mercapturic acid metabolites of volatile organic compounds in human urine.

    Science.gov (United States)

    Ding, Yan S; Blount, Benjamin C; Valentin-Blasini, Liza; Applewhite, Heather S; Xia, Yang; Watson, Clifford H; Ashley, David L

    2009-06-01

    The widespread exposure to potentially harmful volatile organic compounds (VOCs) merits the development of practical and accurate exposure assessment methods. Measuring the urinary concentrations of VOC mercapturic acid (MA) metabolites provides noninvasive and selective information about recent exposure to certain VOCs. We developed a liquid chromatography-tandem mass spectrometry method for quantifying urinary levels of six MAs: N-acetyl-S-(2-carboxyethyl)-L-cysteine (CEMA), N-acetyl-S-(3-hydroxypropyl)-L-cysteine (HPMA), N-acetyl-S-(2-hydroxy-3-butenyl)-L-cysteine (MHBMA), N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA), N-acetyl-S-(2-hydroxyethyl)-L-cysteine (HEMA), and N-acetyl-S-(phenyl)-L-cysteine (PMA). The method provides good accuracy (102% mean accuracy) and high precision (3.5% mean precision). The sensitivity (limits of detection of 0.01-0.20 microg/L) and wide dynamic detection range (0.025-500 microg/L) make this method suitable for assessing VOC exposure of minimally exposed populations and those with significant exposures, such as cigarette smokers. We used this method to quantify MA levels in urine collected from smokers and nonsmokers. Median levels of creatinine-corrected CEMA, HPMA, MHBMA, DHBMA, HEMA, and PMA among nonsmokers (n = 59) were 38.1, 24.3, 21.3, 104.7, 0.9, and 0.5 microg/g creatinine, respectively. Among smokers (n = 61), median levels of CEMA, HPMA, MHBMA, DHBMA, HEMA, and PMA were 214.4, 839.7, 10.2, 509.7, 2.2, and 0.9 microg/g creatinine, respectively. All VOC MAs measured were higher among smokers than among nonsmokers, with the exception of MHBMA.

  18. Determination of hydroxycinnamic acids and volatile phenols in wort and beer by isocratic high-performance liquid chromatography using electrochemical detection.

    Science.gov (United States)

    Vanbeneden, Nele; Delvaux, Filip; Delvaux, Freddy R

    2006-12-15

    The suitability of a simple and rapid isocratic RP-HPLC method with amperometric electrochemical detection for the simultaneous detection and quantification of hydroxycinnamic acids and their corresponding aroma-active volatile phenols in wort and beer is reported. The technique gives good specificity and sensitivity, and can therefore be used for routine monitoring of hydroxycinnamic acids in wort and the development of volatile phenolic flavour compounds during the beer production process and subsequent conservation.

  19. Abiogenic and Microbial Controls on Volatile Fatty Acids in Precambrian Crustal Fracture Waters

    Science.gov (United States)

    McDermott, J. M.; Heuer, V.; Tille, S.; Moran, J.; Slater, G.; Sutcliffe, C. N.; Glein, C. R.; Hinrichs, K. U.; Sherwood Lollar, B.

    2015-12-01

    Saline fracture waters within the Precambrian Shield rocks of Canada and South Africa have been sequestered underground over geologic timescales up to 1.1-1.8 Ga [1, 2]. These fluids are rich in H2 derived from radiolysis and hydration of mafic and ultramafic rocks [1, 2, 3] and host a low-biomass, low-diversity microbial ecosystem at some sites [2]. The abiogenic or biogenic nature of geochemical processes has important implications for bioavailable carbon sources and the role played by abiotic organic synthesis in sustaining a chemosynthetic deep biosphere. Volatile fatty acids (VFAs) are simple carboxylic acids that may support microbial communities in such environments, such as those found in terrestrial [4] and deep-sea [5] hot springs. We present abundance and δ13C analysis for VFAs in a spectrum of Canadian Shield fluids characterized by varying dissolved H2, CH4, and C2+ n-alkane compositions. Isotope mass balance indicates that microbially mediated fermentation of carbon-rich graphitic sulfides may produce the elevated levels of acetate (39-273 μM) found in Birchtree and Thompson mine. In contrast, thermodynamic considerations and isotopic signatures of the notably higher acetate (1.2-1.9 mM), as well as formate and propionate abundances (371-816 μM and 20-38 μM, respectively) found at Kidd Creek mine suggest a role for abiogenic production via reduction of dissolved inorganic carbon with H2 for formate, and oxidation of C2+ n-alkanes for acetate and propionate, along with possible microbial cycling. VFAs comprise the bulk of dissolved and total organic carbon in the mines surveyed, and as such represent a potential key substrate for life. [1] Holland et al. (2013) Nature 497: 367-360. [2] Lin et al. (2006) Science 314: 479-482. [3] Sherwood Lollar et al. (2014) Nature 516: 379-382. [4] Windman et al. (2007) Astrobiology 7(6): 873-890. [5] Lang et al. (2010) Geochim. Cosmochim. Acta 92: 82-99.

  20. Target identification of volatile metabolites to allow the differentiation of lactic acid bacteria by gas chromatography-ion mobility spectrometry.

    Science.gov (United States)

    Gallegos, Janneth; Arce, Cristina; Jordano, Rafael; Arce, Lourdes; Medina, Luis M

    2017-04-01

    The purpose of this work was to study the potential of gas chromatography-ion mobility spectrometry (GC-IMS) to differentiate lactic acid bacteria (LAB) through target identification and fingerprints of volatile metabolites. The LAB selected were used as reference strains for their influence in the flavour of cheese. The four strains of LAB can be distinguished by the fingerprints generated by the volatile organic compounds (VOCs) emitted. 2-butanone, 2-pentanone, 2-heptanone and 3-methyl-1-butanol were identified as relevant VOCs for Lactobacillus casei and Lactobacillus paracasei subsp. paracasei. 2-Butanone and 3-methyl-1-butanol were identified in Lactococcus lactis subsp. lactis and Lactococcus cremoris subsp. cremoris. The IMS signals monitoring during a 24-30h period showed the growth of the LAB in vitro. The results demonstrated that GC-IMS is a useful technology for bacteria recognition and also for screening the aromatic potential of new isolates of LAB.

  1. High temperature corrosion studies. A. Iron: based superalloy in SO/sub 2//O/sub 2/ atmospheres. B. Gas: solid reaction with formation of volatile species

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.K.

    1980-03-01

    The thermogravimetric method was used to study high temperature corrosion under SO/sub 2//O/sub 2/ atmosphere applied to Armco 18SR alloys with different heat treatment histories, Armco T310 and pure chromium between 750 and 1100/sup 0/C. The weight gain follows the parabolic rate law. The volatilization of the protective Cr/sub 2/O/sub 3/ layer via formation of CrO/sub 3/ was taken into account above 900/sup 0/C for long time runs. The parabolic rate and the volatilization rate, derived from fitting the experimental data to the modified Tedmon's non-linear model, were correlated using the Arrhenius equation. Armco 18SR-C has the best corrosion resistance of the Armco 18SR alloys. Armco T310 is not protective at high temperatures. The available rate data on the oxidation of chromium oxide, chlorination of chromium, oxidation-chlorination of chromium oxide, chlorination of nickel and chlorination of iron were found to be predictable. The calculation of high temperature volatilization rate was performed using the available fluid correlation equations and the Lennard-Jones parameters derived from the molecule with similar structure and from the low temperature viscosity measurement. The lower predicted volatilization rate is due to the use of the Chapman-Enskog equation with the Lennard-Jones parameters mostly derived from the low temperature viscosity measurement. This was substantiated by comparing the reliable high temperature diffusion rate in the literature with the above mentioned calculational method. The experimental volatilization rates of this study are compared with the other related studies and the mass transfer predictions.

  2. Effect of atmospheric humic-like substances on the enhanced dissolution of volatile organic compounds into dew water

    Science.gov (United States)

    Okochi, H.; Sato, E.; Matsubayashi, Y.; Igawa, M.

    2008-03-01

    Simultaneous sampling of chlorinated hydrocarbons (CHs) and monocyclic aromatic hydrocarbons (MAHs), potentially harmful to humans and/or responsible for the formation of ozone and secondary particles, in dew water and in the ambient air was carried out from August 2004 to July 2005 in Hino City, situated in the western part of Greater Tokyo, Japan. CHs were less contained in dew water than MAHs. Toluene (volume-weighted mean concentration, VWM: 4.77 nM) and m, p-Xylenes (VWM: 5.07 nM) except dichloromethane, which was abnormally high (VWM: 1.14 μM), were abundant among eleven VOCs determined in dew water. Chloroform, carbon tetrachloride, 1,2-dichloroethane, and benzene were not detected in dew water during the study period. Dew water contained higher amounts of VOCs than would have been expected from the ambient gas-phase concentrations and the temperature-corrected Henry's law constants. Following the determination method of humic substances in river water proposed by Hiraide et al. [Hiraide, M., Shima, T., Kawaguchi, H., 1994. Separation and determination of dissolved and particulate humic substances in river water. Mikrochim. Acta 113, 269-276], the VWM of soluble humic and fulvic acid fractions in dew water was found to be 1.00 mg/L and 0.87 mg/L ( n = 20), respectively, while the VWM of particulate humic and fulvic acid fractions was found to be 0.61 mg/L and 0.42 mg/L ( n = 20), respectively. Surface tension decreased with an increase in dissolved fulvic acid fraction in dew water, indicating that humic-like substances with relatively lower molecular weight, which is soluble in acid solution, could be an effective surface-active species within dew water. The enrichment factors, which were defined as the ratio of the observed VOCs concentration to the estimated, were over 10 2 for MAHs except for benzene and increased as the increment of total humic-like substances (HULIS) concentration (the sum of humic and fulvic acid fractions in both dissolved and

  3. Acidity and conductivity of Pinus massoniana bark as indicators to atmospheric acid deposition in Guangdong, China

    Institute of Scientific and Technical Information of China (English)

    KUANG Yuan-wen; ZHOU Guo-yi; WEN Da-zhi; LIU Shi-zhong

    2006-01-01

    Barks of Pinus masoniana collected from two polluted sites, Qujiang and Xiqiaoshan, and from the relatively clean site Dinghushan were used to evaluate the pollution indication by the determination of their acidity and conductivity. The acidity of the inner and outer barks from the polluted sites was significantly higher than those from the clean site, suggesting that the acidity of the bark occurred in concurrent with the air pollution. The significant lower pH values of the outer bark than the inner bark collected from all sites indicated that the outer bark was more sensitive than the inner bark in response to acid pollution, implying that the outer bark is more preferable when used as indication of atmospheric acid pollution. The conductivities of the inner barks differed significantly among the three sites, with higher values at the clean site. However, the significant differences were not observed among these sites.Furthermore, the pH values for the inner and outer barks were not correlated with the conductivity, which did not coincide with some other studies.

  4. Measurements of hygroscopicity and volatility of atmospheric ultrafine particles in the rural Pearl River Delta area of China

    Science.gov (United States)

    Kim, Jae-Seok; Kim, Young J.; Park, Kihong

    2011-09-01

    A hygroscopicity and volatility tandem differential mobility analyzer (HVTDMA) technique was used to determine the time- and size-resolved properties of ultrafine particles and to infer relative volume fractions of non-volatile and non-hygroscopic (NV_NH), volatile and non-hygroscopic (V_NH), volatile and hygroscopic (V_H), and non-volatile and hygroscopic (NV_H) groups. Cluster analysis of wind direction and air mass backward trajectory have revealed that enhanced ultrafine particle concentrations were often observed when air mass was transported with high wind speed (>3 m s -1) from the polluted northeast region containing a significant amount of SO 2 and experienced a strong photochemical activity. We found the photochemically-produced ultrafine particles to consist primarily of NV_H with a little V_NH and V_H. In morning traffic events, we estimated ultrafine particles to consist of 61% NV_NH, 36% V (volatile group = the sum of V_NH and V_H), and 2% NV_H, while during biomass burning events, ultrafine particles consisted of 69% NV_NH, 21% V and 10% NV_H. Further, as determined by TEM/EDS analysis, the increase in NV_H during the biomass burning event was consistent with the frequent existence of K element in ultrafine particles. Comparison of data among different geometric locations in China and Korea revealed ultrafine particle hygroscopicity and volatility during the photochemical event as being highly variable in locations affected by diverse sources and variable precursor gases (e.g., SO 2 and VOC), while during the combustion events, less hygroscopicity variation across different locations was observed.

  5. In Situ Atmospheric Pressure Measurements in the Martian Southern Polar Region: Mars Volatiles and Climate Surveyor Meteorology Package on the Mars Polar Lander

    Science.gov (United States)

    Harri, A.-M.; Polkko, J.; Siili, T.; Crisp, D.

    1998-01-01

    Pressure observations are crucial for the success of the Mars Volatiles and Climate Surveyor (MVACS) Meteorology (MET) package onboard the Mars Polar Lander (MPL), due for launch early next year. The spacecraft is expected to land in December 1999 (L(sub s) = 256 degrees) at a high southern latitude (74 degrees - 78 degrees S). The nominal period of operation is 90 sols but may last up to 210 sols. The MVACS/MET experiment will provide the first in situ observations of atmospheric pressure, temperature, wind, and humidity in the southern hemisphere of Mars and in the polar regions. The martian atmosphere goes through a large-scale atmospheric pressure cycle due to the annual condensation/sublimation of the atmospheric CO2. Pressure also exhibits short period variations associated with dust storms, tides, and other atmospheric events. A series of pressure measurements can hence provide us with information on the large-scale state and dynamics of the atmosphere, including the CO2 and dust cycles as well as local weather phenomena. The measurements can also shed light on the shorter time scale phenomena (e.g., passage of dust devils) and hence be important in contributing to our understanding of mixing and transport of heat, dust, and water vapor.

  6. Influence of microflora on texture and contents of amino acids, organic acids, and volatiles in semi-hard cheese made with DL-starter and propionibacteria

    DEFF Research Database (Denmark)

    Rehn, Lina Ulrika Ingeborg; Vogensen, Finn Kvist; Persson, S.-E.;

    2011-01-01

    for the cheese variety Grevé was obtained by using a PAB culture in combination with different DL-starters and making the cheeses at 2 dairy plants with different time and temperature profiles during ripening. Propionic acid bacteria dominated the microflora during ripening after a warm room period at levels......The microflora of semi-hard cheese made with DL-starter and propionic acid bacteria (PAB) is quite complex, and we investigated the influence of its variation on texture and contents of organic acids, free amino acids, and volatile compounds. Variation in the microflora within the normal range......, propionate, total content of free amino acids, 2-propanol, and ethyl propionate in the ripened cheeses were related to the number of PAB. A decrease in the relative content of Asp and Lys and increase of Phe over the ripening time were different from what is observed in semi-hard cheese without PAB...

  7. Impact of acid atmospheric deposition on soils: Field monitoring and aluminium chemistry.

    OpenAIRE

    1988-01-01

    The effect of acid atmospheric deposition on concentrations and transfer of major solutes in acid, sandy soils was studied. Emphasis was given to mobilization and transport of potentially toxic aluminum. Data on solute concentrations and fluxes in meteoric water as well as soil solutions were obtained from intensive monitoring programmes conducted at a number of sites in northwestern Europe and North-America. Specific hypotheses were tested in laboratory experiments.Atmospheric acid inputs do...

  8. Spoilage of light (PSE-like) and dark turkey meat under aerobic or modified atmosphere package: microbial indicators and their relationship with total volatile basic nitrogen

    OpenAIRE

    Fraqueza, Maria João Ramos; Ferreira, Marilia Catarina; Barreto, António Salvador

    2008-01-01

    Abstract 1. The aim of this work was to evaluate the shelf life of turkey meat from different colour categories (light (PSE-like), intermediate and dark), packaged under aerobic or modified atmosphere (MAP) conditions; also to establish a relationship between microbial quality and total volatile basic nitrogen (TVB-N), evaluating its capacity for shelf life determination. Breasts were selected according to Luminance (L*) and pH24: L ? 51 and pH < 5.8 for light colour, 43 < L < 51 f...

  9. Atmospheric transport of persistent semi-volatile organic chemicals to the Arctic and cold condensation in the mid-troposphere – Part 1: 2-D modeling in mean atmosphere

    Directory of Open Access Journals (Sweden)

    J. Ma

    2010-08-01

    Full Text Available In the first part of this study for revisiting the cold condensation effect on global distribution of semi-volatile organic chemicals (SVOCs, the atmospheric transport of SVOCs to the Arctic in the mid-troposphere in a mean meridional atmospheric circulation over the Northern Hemisphere was simulated by a two-dimensional (2-D atmospheric transport model. Results show that under the mean meridional atmospheric circulation the long-range atmospheric transport of SVOCs from warm latitudes to the Arctic occurs primarily in the mid-troposphere. Although major sources are in low and mid-latitude soils, the modeled air concentration of SVOCs in the mid-troposphere is of the same order as or higher than that near the surface, demonstrating that the mid-troposphere is an important pathway and reservoir of SVOCs. The cold condensation of the chemicals is also likely to take place in the mid-troposphere over a source region of SVOCs in warm low latitudes through interacting with clouds. We demonstrate that the temperature dependent vapour pressure and atmospheric degradation rate of SVOCs exhibit similarities between lower atmosphere over the Arctic and the mid-troposphere over a tropical region. Frequent occurrence of atmospheric ascending motion and convection over warm latitudes carry the chemicals to a higher altitude where some of these chemicals may partition onto solid or aqueous phase through interaction with atmospheric aerosols, cloud water droplets and ice particles, and become more persistent at lower temperatures. Stronger winds in the mid-troposphere then convey solid and aqueous phase chemicals to the Arctic where they sink by large-scale descending motion and wet deposition. Using calculated water droplet-air partitioning coefficient of several persistent organic semi-volatile chemicals under a mean air temperature profile from the equator to the North Pole we propose that clouds are likely important sorbing media for SVOCs and pathway of

  10. Priming by Hexanoic Acid Induce Activation of Mevalonic and Linolenic Pathways and Promotes the Emission of Plant Volatiles.

    Science.gov (United States)

    Llorens, Eugenio; Camañes, Gemma; Lapeña, Leonor; García-Agustín, Pilar

    2016-01-01

    Hexanoic acid (Hx) is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of Hx in response to the challenge pathogen A. alternata, focusing on the response of the plant. Moreover, we used (13)C labeled hexanoic to analyze its behavior inside the plants. Finally, we studied the volatile emission of the treated plants after the challenge inoculation. Drench application of (13)C labeled hexanoic demonstrated that this molecule stays in the roots and is not mobilized to the leaves, suggesting long distance induction of resistance. Moreover, the study of the metabolic profile showed an alteration of more than 200 molecules differentially induced by the application of the compound and the inoculation with the fungus. Bioinformatics analysis of data showed that most of these altered molecules could be related with the mevalonic and linolenic pathways suggesting the implication of these pathways in the induced resistance mediated by Hx. Finally, the application of this compound showed an enhancement of the emission of 17 volatile metabolites. Taken together, this study indicates that after the application of Hx this compound remains in the roots, provoking molecular changes that may trigger the defensive response in the rest of the plant mediated by changes in the mevalonic and linolenic pathways and enhancing the emission of volatile compounds, suggesting for the first time the implication of mevalonic pathway in response to hexanoic application.

  11. Can the development and autolysis of lactic acid bacteria influence the cheese volatile fraction? The case of Grana Padano.

    Science.gov (United States)

    Lazzi, Camilla; Povolo, Milena; Locci, Francesco; Bernini, Valentina; Neviani, Erasmo; Gatti, Monica

    2016-09-16

    In this study, the relationship between the dynamics of the growth and lysis of lactic acid bacteria in Grana Padano cheese and the formation of the volatile flavor compounds during cheese ripening was investigated. The microbial dynamics of Grana Padano cheeses that were produced in two different dairies were followed during ripening. The total and cultivable lactic microflora, community composition as determined by length heterogeneity-PCR (LH-PCR), and extent of bacterial lysis using an intracellular enzymatic activity assay were compared among cheeses after 2, 6 and 13months of ripening in two dairies. The evolution of whole and lysed microbiota was different between the two dairies. In dairy 2, the number of total cells was higher than that in dairy 1 in all samples, and the number of cells that lysed during ripening was lower. In addition, at the beginning of ripening (2months), the community structure of the cheese from dairy 2 was more complex and was composed of starter lactic acid bacteria (Lactobacillus helveticus and Lactobacillus delbrueckii) and NSLAB, possibly arising from raw milk, including Lactobacillus rhamnosus/Lactobacillus casei and Pediococcus acidilactici. On the other hand, the cheese from dairy 1 that ripened for 2months was mainly composed of the SLAB L. helveticus and L. delbrueckii. An evaluation of the free-DNA fraction through LH-PCR identified those species that had a high degree of lysis. Data on the dynamics of bacterial growth and lysis were evaluated with respect to the volatile profile and the organic acid content of the two cheeses after 13months of ripening, producing very different results. Cheese from dairy 1 showed a higher content of free fatty acids, particularly those deriving from milk fat lipolysis, benzaldehyde and organic acids, such as pGlu and citric. In contrast, cheese from dairy 2 had a greater amount of ketones, alcohols, hydrocarbons, acetic acid and propionic acid. Based on these results, we can conclude that

  12. Direct analysis of volatile fatty acids in marine sediment porewater by two-dimensional ion chromatography-mass spectrometry

    DEFF Research Database (Denmark)

    Glombitza, Clemens; Pedersen, Jeanette; Røy, Hans

    2014-01-01

    Volatile fatty acids (VFAs) are key intermediates in the microbial food web. However, the analysis of low concentrations of VFAs in marine porewater is hampered by interference from high concentrations of inorganic ions. Published methods often use sample pretreatment, including distillation...... or derivatization, to overcome this problem. This is not only labor intensive but also increases the risk of contamination. We have developed an analytical procedure that enables the direct quantification of several VFAs (formate, acetate, propionate, butyrate, valerate, pyruvate, and lactate) in marine porewater...

  13. DripFume: A Visual Basic Program For Simulating Distribution And Atmospheric Volatilization Of Soil Fumigants Applied Through Drip Irrigation

    Science.gov (United States)

    A Windows-based graphical user interface program (DripFume) was developed in MS Visual Basic (VB) to utilize a two-dimensional multi-phase finite element pesticide transport model to simulate distribution and emission of volatile fumigant chemicals when applied through drip irrigation or shank injec...

  14. Effect of Initial Headspace O2 Level on the Growth and Volatile Metabolite Production of Leuconostoc Mesenteriodes and the Microbial and Sensorial Quality of Modified Atmosphere Packaged Par-Fried French Fries.

    Science.gov (United States)

    Samapundo, Simbarashe; Mujuru, Felix Mugove; de Baenst, Ilse; Denon, Quenten; Devlieghere, Frank

    2016-02-01

    This study evaluated the effect of residual O2 level (0% to 5%) on microbial growth and volatile metabolite production on par-fried French fries packaged in a modified atmosphere with 60% CO2 (rest N2 ) at 4 °C. The results obtained showed that the initial headspace (IH) O2 level had an effect on growth of Leuconostoc mesenteroides on French fry simulation agar, whereby growth was slightly faster under 5% O2 . In terms of quantity, ethanol, 2-methyl-1-propanol, and dimethyl disulphide were the most significant volatile metabolites produced by L. mesenteroides. The production of ethanol by L. mesenteroides was highest on simulation agar packaged under low IH O2 levels (0% to 1%), indicating that the fermentative metabolism was induced under these conditions. In agreement with the results observed on the simulation medium, growth of native lactic acid bacteria was faster under an IH O2 level of 5%. In addition, ethanol, 2-methyl-1-propanol, and dimethyl disulphide were also quantitatively the most important volatile metabolites. However, in contrast, greater quantities of ethanol and dimethyl disulphide were produced on par-fried French fries packaged under 5% O2 . This was attributed to the limited growth of the native flora on the par-fried French fries under residual O2 levels of 0% and 1%. Although some significant differences (P < 0.05) occurred between the French fries packaged in 0%, 1%, and 5 % residual O2 during storage, all products were considered to be acceptable for consumption. The results of this study can be used to optimize the shelf-life of packaged chill stored potato products.

  15. Experimental Observation of Strongly Bound Dimers of Sulfuric Acid: Application to Nucleation in the Atmosphere

    DEFF Research Database (Denmark)

    Petaja, Tuukka; Sipila, Mikko; Paasonen, Pauli

    2011-01-01

    Sulfuric acid is a key compound in atmospheric nucleation. Here we report on the observation of a close-to-collision-limited sulfuric acid dimer formation in atmospherically relevant laboratory conditions in the absence of measurable quantities of ammonia or organics. The observed dimer formation...... compound(s) with (a) concentration(s) high enough to prevent the dimer evaporation. Such a stabilizing compound should be abundant enough in any natural environment and would therefore not limit the formation of sulfuric acid dimers in the atmosphere....

  16. Production of medium-chain volatile fatty acids by mixed ruminal microorganisms is enhanced by ethanol in co-culture with Clostridium kluyveri

    Science.gov (United States)

    Fermentative production of medium-chain (C5-C8) volatile fatty acids by the carboxylate platform has several potential advantages as a route to biofuel precursors. However, its practicality is limited by the relatively slow synthesis of these acids from shorter precursors (C2-C4) that accumulate dur...

  17. Effects of solids concentration, pH and carbon addition on the production rate and composition of volatile fatty acids in prefermenters using primary sewage sludge

    DEFF Research Database (Denmark)

    Zeng, Raymond Jianxiong; Yuan, Z.; Keller, J.

    2006-01-01

    Increasing evidence is emerging that the performance of enhanced biological phosphorus removal (EBPR) systems relies on not only the total amount but also the composition of volatile fatty acids (VFAs). Domestic wastewater often contains limited amounts of VFAs with acetic acid typically being...

  18. Thermal Discrimination Technique for Airborne Measurement of Sulfuric Acid on Atmospheric Aerosol: Calibration and Performance

    Science.gov (United States)

    Schmid, O.; Hagen, D. E.; Whitefield, P. D.

    2001-12-01

    The thermal discrimination or volatility technique has been widely used to determine the number fraction of volatile atmospheric aerosol (e.g. Hagen et al., 1998). Here we extend this method to measure both number and volume fraction of upper-tropospheric/lower-stratospheric aerosol with particular concern for the conditions in aircraft and rocket plumes. The volatility method infers the amount of volatile aerosol material from the change in aerosol volume under heated conditions. Accurate measurements require size resolved volatility data, corrected for possible systematic effects due to particle wall losses, incomplete evaporation, and recondensation of evaporated material. A tandem differential mobility analyzer was employed to investigate these effects for mixed H2SO4/H2O aerosol conditioned by a thermal discriminator that had been used by the University of Missouri-Rolla for several field studies in the past including the recent ACCENT mission. For an operating temperature of 300 \\deg C and an aerosol residence time of 0.25 s, we found that complete evaporation of H2SO4/H2O aerosol occurred up to diameters of at least 2 micron. This is consistent with the theoretically estimated upper diameter limit for complete evaporation of about 10 micron. No evidence for recondensation was found for H2SO4 abundances occurring in the atmosphere. We also showed that for a given set of discriminator parameters, wall losses depend only on charge state and particle diameter downstream of the discriminator. Based on these findings an improved volatility method with analytical correction for wall losses is described and its accuracy is tested with mixed H2SO4/H2O-NaCl aerosol of known composition. The observed accuracy is consistent with the estimated accuracy of the system parameters. Finally, some results from atmospheric measurements are presented. Hagen, D., Whitefield, P., Paladino, J., Trueblood, M., and Lilenfeld, H. Particulate Sizing and Emission Indices for a Jet

  19. Volatile fatty acids as substrates for iron and sulfate reduction in Arctic marine sediments, Svalbard

    Science.gov (United States)

    Finke, N.; Vandieken, V.; Jorgensen, B. B.

    2006-12-01

    Anaerobic degradation of complex organic material in aquatic systems is a multi-step process. The metabolic products of fermentative bacteria serve as electron donors for the terminal oxidizing bacteria. In marine sediments, iron reduction and sulfate reduction are generally the most important terminal oxidation processes in the upper anoxic zone [1]. Microorganisms that reduce iron and sulfate may use a broad range of electron donors, yet the list of potential substrates provides little information about the substrates used in situ by these organisms. Investigations on the electron donors for sulfate reducers in marine sediments have shown that volatile fatty acids (VFA), and in particular acetate, together with hydrogen are the major substrates (e.g. [2-4]). Similar investigations for iron reduction or simultaneous iron and sulfate reduction are lacking for marine sediments. Furthermore, most of these studies were made in temperate sediments and little is known about the substrates for sulfate reducers in permanently cold sediments, which account for >90% of the ocean floor [5]. We investigated the relative contributions of iron reduction and sulfate reduction to the terminal oxidation of organic carbon and the importance of acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in permanently cold, Arctic sediments from Svalbard. In the surface layer (0-2 cm) sulfate reduction accounted for 2/3 of the organic carbon oxidation (determined as DIC production), the remaining 1/3 were attributed to iron reduction. In the 5-9 cm layer sulfate reduction was the sole important terminal oxidation step. The contribution of acetate to terminal oxidation was determined by radiotracer incubation as well as from the accumulation after the inhibition of sulfate reduction by selenate. The rates determined with the two methods varied by less than 20%. Acetate turnover, determined with the tracer incubations, accounted for 10 and 40% of

  20. Temperature and solids retention time control microbial population dynamics and volatile fatty acid production in replicated anaerobic digesters

    Science.gov (United States)

    Vanwonterghem, Inka; Jensen, Paul D.; Rabaey, Korneel; Tyson, Gene W.

    2015-02-01

    Anaerobic digestion is a widely used technology for waste stabilization and generation of biogas, and has recently emerged as a potentially important process for the production of high value volatile fatty acids (VFAs) and alcohols. Here, three reactors were seeded with inoculum from a stably performing methanogenic digester, and selective operating conditions (37°C and 55°C 12 day and 4 day solids retention time) were applied to restrict methanogenesis while maintaining hydrolysis and fermentation. Replicated experiments performed at each set of operating conditions led to reproducible VFA production profiles which could be correlated with specific changes in microbial community composition. The mesophilic reactor at short solids retention time showed accumulation of propionate and acetate (42 +/- 2% and 15 +/- 6% of CODhydrolyzed, respectively), and dominance of Fibrobacter and Bacteroidales. Acetate accumulation (>50% of CODhydrolyzed) was also observed in the thermophilic reactors, which were dominated by Clostridium. Under all tested conditions, there was a shift from acetoclastic to hydrogenotrophic methanogenesis, and a reduction in methane production by >50% of CODhydrolyzed. Our results demonstrate that shortening the SRT and increasing the temperature are effective strategies for driving microbial communities towards controlled production of high levels of specific volatile fatty acids.

  1. Neutral molecular cluster formation of sulfuric acid-dimethylamine observed in real time under atmospheric conditions

    National Research Council Canada - National Science Library

    Andreas Kürten; Tuija Jokinen; Mario Simon; Mikko Sipilä; Nina Sarnela; Heikki Junninen; Alexey Adamov; João Almeida; Antonio Amorim; Federico Bianchi; Martin Breitenlechner; Josef Dommen; Neil M. Donahue; Jonathan Duplissy; Sebastian Ehrhart; Richard C. Flagan; Alessandro Franchin; Jani Hakala; Armin Hansel; Martin Heinritzi; Manuel Hutterli; Juha Kangasluoma; Jasper Kirkby; Ari Laaksonen; Katrianne Lehtipalo; Markus Leiminger; Vladimir Makhmutov; Serge Mathot; Antti Onnela; Tuukka Petäjä; Arnaud P. Praplan; Francesco Riccobono; Matti P. Rissanen; Linda Rondo; Siegfried Schobesberger; John H. Seinfeld; Gerhard Steiner; António Tomé; Jasmin Tröstl; Paul M. Winkler; Christina Williamson; Daniela Wimmer; Penglin Ye; Urs Baltensperger; Kenneth S. Carslaw; Markku Kulmala; Douglas R. Worsnop; Joachim Curtius

    2014-01-01

    For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates...

  2. Ab initio investigations of the dynamic and thermodynamic properties of atmospherically relevant strong acids

    OpenAIRE

    Partanen, Lauri

    2017-01-01

    Sulfuric and hydrochloric acids participate in several important chemical processes occurring in the atmosphere. Due to its tendency to react with water molecules, sulfuric acid is an important factor in cloud formation and related phenomena. Hydrochloric acid is heavily implicated in stratospheric ozone depletion because of its role as a temporary reservoir for chlorine radicals. In this thesis, the thermodynamics and dynamics of these two acids are investigated. The dynamic part focuse...

  3. Plant volatiles and the environment

    NARCIS (Netherlands)

    Loreto, F.; Dicke, M.; Schnitzler, J.P.; Turlings, T.C.J.

    2014-01-01

    Volatile organic compounds emitted by plants represent the largest part of biogenic volatile organic compounds (BVOCs) released into our atmosphere. Plant volatiles are formed through many biochemical pathways, constitutively and after stress induction. In recent years, our understanding of the func

  4. Plasma polymerization of acrylic acid onto polystyrene by cyclonic plasma at atmospheric pressure

    Science.gov (United States)

    Chang, Yi-Jan; Lin, Chin-Ho; Huang, Chun

    2016-01-01

    The cyclonic atmospheric-pressure plasma is developed for chamberless deposition of poly(acrylic acid) film from argon/acrylic acid mixtures. The photoemission plasma species in atmospheric-pressure plasma polymerization was identified by optical emission spectroscopy (OES). The OES diagnosis data and deposition results indicated that in glow discharge, the CH and C2 species resulted from low-energy electron-impact dissociation that creates deposition species, but the strong CO emission lines are related to nondeposition species. The acrylic acid flow rate is seen as the key factor affecting the film growth. The film surface analysis results indicate that a smooth, continuous, and uniform surface of poly(acrylic acid) films can be formed at a relatively low plasma power input. This study reveals the potential of chamberless film growth at atmospheric pressure for large-area deposition of poly(acrylic acid) films.

  5. Similar PAH fate in anaerobic digesters inoculated with three microbial communities accumulating either volatile fatty acids or methane.

    Science.gov (United States)

    Braun, Florence; Hamelin, Jérôme; Bonnafous, Anaïs; Delgenès, Nadine; Steyer, Jean-Philippe; Patureau, Dominique

    2015-01-01

    Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA) production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR), in community structure (SSCP fingerprinting) and in dominant microbial species (454-pyrosequencing). The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10% to 30%, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm that PAH removal

  6. Similar PAH fate in anaerobic digesters inoculated with three microbial communities accumulating either volatile fatty acids or methane.

    Directory of Open Access Journals (Sweden)

    Florence Braun

    Full Text Available Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH. Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR, in community structure (SSCP fingerprinting and in dominant microbial species (454-pyrosequencing. The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10% to 30%, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm

  7. The volatile profiles of a rare apple (Malus domestica Borkh.) honey: shikimic acid-pathway derivatives, terpenes, and others.

    Science.gov (United States)

    Kuś, Piotr Marek; Jerković, Igor; Tuberoso, Carlo Ignazio Giovanni; Šarolić, Mladenka

    2013-09-01

    The volatile profiles of rare Malus domestica Borkh. honey were investigated for the first time. Two representative samples from Poland (sample I) and Spain (sample II) were selected by pollen analysis (44-45% of Malus spp. pollen) and investigated by GC/FID/MS after headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE). The apple honey is characterized by high percentage of shikimic acid-pathway derivatives, as well as terpenes, norisoprenoids, and some other compounds such as coumaran and methyl 1H-indole-3-acetate. The main compounds of the honey headspace were (sample I; sample II): benzaldehyde (9.4%; 32.1%), benzyl alcohol (0.3%; 14.4%), hotrienol (26.0%, 6.2%), and lilac aldehyde isomers (26.3%; 1.7%), but only Spanish sample contained car-2-en-4-one (10.2%). CH2 Cl2 and pentane/Et2 O 1 : 2 (v/v) were used for USE. The most relevant compounds identified in the extracts were: benzaldehyde (0.9-3.9%), benzoic acid (2.0-11.2%), terpendiol I (0.3-7.4%), coumaran (0.0-2.8%), 2-phenylacetic acid (2.0-26.4%), methyl syringate (3.9-13.1%), vomifoliol (5.0-31.8%), and methyl 1H-indole-3-acetate (1.9-10.2%). Apple honey contained also benzyl alcohol, 2-phenylethanol, (E)-cinnamaldehyde, (E)-cinnamyl alcohol, eugenol, vanillin, and linalool that have been found previously in apple flowers, thus disclosing similarity of both volatile profiles.

  8. Concentrations of volatile 4-alkyl-branched fatty acids in sheep and goat milk and dairy products.

    Science.gov (United States)

    Kaffarnik, Stefanie; Kayademir, Yasemin; Heid, Carolina; Vetter, Walter

    2014-11-01

    Goat and sheep milk and dairy products thereof are characterized by a strong and unique flavor. In this context, the volatile minor fatty acid 4-ethyloctanoic acid plays a prominent role along with 4-methyloctanoic acid when both are present in free form. Using a novel GC/MS method in the selected ion-monitoring mode, previously developed for sheep subcutaneous adipose tissue, we were able to analyze the total concentrations of these flavor-relevant minor fatty acids as methyl esters in goat and sheep milk as well as in their products. Differences between the concentrations and ratios of 4-methyloctanoic acid and 4-ethyloctanoic acid in goat milk (n = 4), goat cheese (n = 4), sheep milk (n = 2), and sheep cheese (n = 4) were observed. Goat milk and cheese resulted in higher concentrations for both fatty acids (190 to 480 μg/g milk fat) and smaller 4-Me-8:0 to 4-Et-8:0 ratios (1.4 to 2.7) compared to sheep milk and cheese (78 to 220 μg/g milk fat; 4-Me-8:0 to 4-Et-8:0 ratio: 15 to 42). In all samples, the concentration of 4-Me-8:0 exceeded the one of 4-Et-8:0. However, due to its lower flavor threshold value the contribution of 4-Et-8:0 to the flavor was generally >76%. The calculated flavor values were >1400 for goat milk and cheeses and >200 for sheep milk and cheeses. In goat milk and its products, only a proportion of milk and sheep samples would be sufficient to generate the characteristic goaty flavor. Parameters that promote or prevent the release of 4-Me-8:0, and especially 4-Et-8:0, will be decisive for the flavor in the resulting dairy product.

  9. Trace Atmospheric Gas Analyzer (TAGA) Volatile Organic Compound (VOC) Data for BP Spill/Deepwater Horizon - August 2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  10. Trace Atmospheric Gas Analyzer (TAGA) Volatile Organic Compound (VOC) Data for BP Spill/Deepwater Horizon - July 2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  11. Trace Atmospheric Gas Analyzer (TAGA) Volatile Organic Compound (VOC) Data for BP Spill/Deepwater Horizon - May 2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  12. Trace Atmospheric Gas Analyzer (TAGA) Volatile Organic Compound (VOC) Data for BP Spill/Deepwater Horizon - June 2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Trace Atmospheric Gas Analyzer (TAGA) buses are self-contained mobile laboratories that conduct instant-result monitoring of air quality at particular locations....

  13. Control of amphibious weed ipomoea (Ipomoea carnea by utilizing it for the extraction of volatile fatty acids as energy precursors

    Directory of Open Access Journals (Sweden)

    M. Rafiq Kumar

    2015-01-01

    Full Text Available Volatile fatty acids (VFAs, comprising mainly of acetic acid and lesser quantities of propionic and butyric acids, are generated when zoomass or phytomass is acted upon by acidogenic and acetogenic microorganisms. VFAs can be utilized by methanogens under anaerobic conditions to generate flammable methane–carbon dioxide mixtures known as ‘biogas’. Acting on the premise that this manner of VFA utilization for generating relatively clean energy can be easily accomplished in a controlled fashion in conventional biogas plants as well as higher-rate anaerobic digesters, we have carried out studies aimed to generate VFAs from the pernicious weed ipomoea (Ipomoea carnea. The VFA extraction was accomplished by a simple yet effective technology, appropriate for use even by laypersons. For this acid-phase reactors were set, to which measured quantities of ipomoea leaves were charged along with water inoculated with cow dung. The reactors were stirred intermittently. It was found that VFA production started within hours of the mixing of the reactants and peaked by the 10th or 11th day in all the reactors, effecting a conversion of over 10% of the biomass into VFAs. The reactor performance had good reproducibility and the process appeared easily controllable, frugal and robust.

  14. Model studies on the pattern of volatiles generated in mixtures of amino acids, lipid-oxidation-derived aldehydes, and glucose.

    Science.gov (United States)

    Adams, An; Kitryté, Vaida; Venskutonis, Rimantas; De Kimpe, Norbert

    2011-02-23

    The development of flavor and browning in thermally treated foods results mainly from the Maillard reaction and lipid degradation but also from the interactions between both reaction pathways. To study these interactions, we analyzed the volatile compounds resulting from model reactions of lysine or glycine with aldehydes originating from lipid oxidation [hexanal, (E)-2-hexenal, or (2E,4E)-decadienal] in the presence and absence of glucose. The main reaction products identified in these model mixtures were carbonyl compounds, resulting essentially from amino-acid-catalyzed aldol condensation reactions. Several 2-alkylfurans were detected as well. Only a few azaheterocyclic compounds were identified, in particular 5-butyl-2-propylpyridine from (E)-2-hexenal model systems and 2-pentylpyridine from (2E,4E)-decadienal model reactions. Although few reaction products were found resulting from the condensation of an amino acid with a lipid-derived aldehyde, the amino acid plays an important role in catalyzing the degradation and further reaction of these carbonyl compounds. These results suggest that amino-acid-induced degradations and further reactions of lipid oxidation products may be of considerable importance in thermally processed foods.

  15. Technical Note: Performance of Chemical Ionization Reaction Time-of-Flight Mass Spectrometry (CIR-TOF-MS for the measurement of atmospherically significant oxygenated volatile organic compounds

    Directory of Open Access Journals (Sweden)

    K. P. Wyche

    2007-01-01

    Full Text Available The performance of a new chemical ionization reaction time-of-flight mass spectrometer (CIR-TOF-MS utilising the environment chamber SAPHIR (Simulation of Atmospheric Photochemistry In a large Reaction Chamber- Forschungzentrum Jülich, Germany is described. The work took place as part of the ACCENT (Atmospheric Composition and Change the European NeTwork for excellence supported oxygenated volatile organic compound (OVOC measurement intercomparison during January 2005. The experiment entailed the measurement of 14 different atmospherically significant OVOCs at various mixing ratios in the approximate range 10.0–0.6 ppbV. The CIR-TOF-MS operated throughout the exercise with the hydronium ion (H3O+ as the primary chemical ionization (CI reagent in order to facilitate proton transfer to the analyte OVOCs. The results presented show that the CIR time-of-flight mass spectrometer is capable of detecting a wide range of atmospheric OVOCs at mixing ratios of around 10 ppbV in "real-time" (i.e. detection on the one-minute time scale, with sub-ppbV measurement also achieved following an increase in averaging time to tens of minutes. It is shown that in general OVOC measurement is made with high accuracy and precision, with integration time, mixing ratio and compound dependent values as good as 4–13% and 3–15% respectively. It is demonstrated that CIR-TOF-MS has rapid multi-channel response at the required sensitivity, accuracy and precision for atmospheric OVOC measurement.

  16. Impact of acid atmosphere deposition on soils : field monitoring and aluminum chemistry

    NARCIS (Netherlands)

    Mulder, J.

    1988-01-01

    The effect of acid atmospheric deposition on concentrations and transfer of major solutes in acid, sandy soils was studied. Emphasis was given to mobilization and transport of potentially toxic aluminum. Data on solute concentrations and fluxes in meteoric water as well as soil solutions

  17. Impact of acid atmospheric deposition on soils: Field monitoring and aluminium chemistry.

    NARCIS (Netherlands)

    Mulder, J.

    1988-01-01

    The effect of acid atmospheric deposition on concentrations and transfer of major solutes in acid, sandy soils was studied. Emphasis was given to mobilization and transport of potentially toxic aluminum. Data on solute concentrations and fluxes in meteoric water as well as soil solutions were obtain

  18. Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate.

    Science.gov (United States)

    Jiang, Jianguo; Zhang, Yujing; Li, Kaimin; Wang, Quan; Gong, Changxiu; Li, Menglu

    2013-09-01

    The effects of pH, temperature, and organic loading rate (OLR) on the acidogenesis of food waste have been determined. The present study investigated their effects on soluble chemical oxygen demand (SCOD), volatile fatty acids (VFAs), volatile solids (VS), and ammonia nitrogen (NH4(+)-N). Both the concentration and yield of VFAs were highest at pH 6.0, acetate and butyrate accounted for 77% of total VFAs. VFAs concentration and the VFA/SCOD ratio were highest, and VS levels were lowest, at 45 °C, but the differences compared to the values at 35 °C were slight. The concentrations of VFAs, SCOD, and NH4(+)-N increased as OLR increased, whereas the yield of VFAs decreased from 0.504 at 5 g/Ld to 0.306 at 16 g/Ld. Acetate and butyrate accounted for 60% of total VFAs. The percentage of acetate and valerate increased as OLR increased, whereas a high OLR produced a lower percentage of propionate and butyrate.

  19. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion.

    Science.gov (United States)

    Nieto-Jacobo, Maria F; Steyaert, Johanna M; Salazar-Badillo, Fatima B; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T; Jimenez-Bremont, Juan F; Ohkura, Mana; Stewart, Alison; Mendoza-Mendoza, Artemio

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. "atroviride B" LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions.

  20. How displaced migratory birds could use volatile atmospheric compounds to find their migratory corridor? A test using a particle dispersion model.

    Directory of Open Access Journals (Sweden)

    Kamran Safi

    2016-10-01

    Full Text Available Olfaction represents an important sensory modality for navigation of both homing pigeons and wild birds. Experimental evidence in homing pigeons showed that airborne volatile compounds carried by the winds at the home area are learned in association with wind directions. When displaced, pigeons obtain information on the direction of their displacement using local odours at the release site. Recently, the role of olfactory cues in navigation has been reported also for wild birds during migration. However, the question whether wild birds develop an olfactory navigational map similar to that described in homing pigeons or, alternatively, exploit the distribution of volatile compounds in different manners for reaching the goal is still an open question. Using an interdisciplinary approach, we evaluate the possibilities of reconstructing spatio-temporally explicit aerosol dispersion at large spatial scales using the particle dispersion model FLEXPART. By combining atmospheric information with particle dispersion models, atmospheric scientists predict the dispersion of pollutants for example, after nuclear fallouts or volcanic eruptions or wildfires, or in retrospect reconstruct the origin of emissions such as aerosols. Using simple assumptions, we reconstructed the putative origin of aerosols traveling to the location of migrating birds. We use the model to test whether the putative odour plume could have originated from an important stopover site. If the migrating birds knew this site and the associated plume from previous journeys, the odour could contribut to the reorientation towards the migratory corridor, as suggested for the model scenario in displaced Lesser black-backed gulls migrating from Northern Europe into Africa.

  1. Effect of substrate and cation requirement on anaerobic volatile fatty acid conversion rates at elevated biogas pressure.

    Science.gov (United States)

    Lindeboom, Ralph E F; Ferrer, Ivet; Weijma, Jan; van Lier, Jules B

    2013-12-01

    This work studied the anaerobic conversion of neutralized volatile fatty acids (VFA) into biogas under Autogenerative High Pressure Digestion (AHPD) conditions. The effects of the operating conditions on the biogas quality, and the substrate utilisation rates were evaluated using 3 AHPD reactors (0.6 L); feeding a concentration of acetate and VFA (1-10 g COD/L) corresponding to an expected pressure increase of 1-20 bar. The biogas composition improved with pressure up to 4.5 bar (>93% CH4), and stabilized at 10 and 20 bar. Both, acetotrophic and hydrogenotrophic methanogenic activity was observed. Substrate utilisation rates of 0.2, 0.1 and 0.1 g CODCH4/g VSS/d for acetate, propionate and butyrate were found to decrease by up to 50% with increasing final pressure. Most likely increased Na(+)-requirement to achieve CO2 sequestration at higher pressure rather than end-product inhibition was responsible.

  2. Peak alignment and robust principal component analysis of gas chromatograms of fatty acid methyl esters and volatiles

    DEFF Research Database (Denmark)

    Frosch, Stina; Jørgensen, Bo

    2007-01-01

    Gas chromatograms of fatty acid methyl esters and of volatile lipid oxidation products from fish lipid extracts are analyzed by multivariate data analysis [principal component analysis (PCA)]. Peak alignment is necessary in order to include all sampled points of the chromatograms in the data set....... The ability of robust algorithms to deal with outlier problems, including both sample-wise and element-wise outliers, and the advantages and drawbacks of two robust PCA methods, robust PCA (ROBPCA) and robust singular value decomposition when analysing these GC data were investigated. The results show...... that the usage of ROPCA is advantageous, compared with traditional PCA, when analysing the entire profile of chromatographic data in cases of sub-optimally aligned data. It also demonstrates how choosing the most robust PCA (sample or element-wise) depends on the type of outliers present in the data set....

  3. Removal of volatile fatty acids and ammonia recovery from unstable anaerobic digesters with a microbial electrolysis cell.

    Science.gov (United States)

    Cerrillo, Míriam; Viñas, Marc; Bonmatí, August

    2016-11-01

    Continuous assays with a microbial electrolysis cell (MEC) fed with digested pig slurry were performed to evaluate its stability and robustness to malfunction periods of an anaerobic digestion (AD) reactor and its feasibility as a strategy to recover ammonia. When performing punctual pulses of volatile fatty acids (VFA) in the anode compartment of the MEC, simulating a malfunction of the AD process, an increase in the current density was produced (up to 14 times, reaching values of 3500mAm(-2)) as a result of the added chemical oxygen demand (COD), especially when acetate was used. Furthermore, ammonium diffusion from the anode to the cathode compartment was enhanced and the removal efficiency achieved up to 60% during daily basis VFA pulses. An AD-MEC combined system has proven to be a robust and stable configuration to obtain a high quality effluent, with a lower organic and ammonium content.

  4. Acidogenic fermentation characteristics of different types of protein-rich substrates in food waste to produce volatile fatty acids.

    Science.gov (United States)

    Shen, Dongsheng; Yin, Jun; Yu, Xiaoqin; Wang, Meizhen; Long, Yuyang; Shentu, Jiali; Chen, Ting

    2017-03-01

    In this study, tofu and egg white, representing typical protein-rich substrates in food waste based on vegetable and animal protein, respectively, were investigated for producing volatile fatty acids (VFAs) by acidogenic fermentation. VFA production, composition, conversion pathways and microbial communities in acidogenesis from tofu and egg white with and without hydrothermal (HT) pretreatment were compared. The results showed HT pretreatment could improve the VFA production of tofu but not for egg white. The optimum VFA yields were 0.46g/gVS (tofu with HT) and 0.26g/gVS (egg white without HT), respectively. Tofu could directly produce VFAs through the Stickland reaction, while egg white was converted to lactate and VFAs simultaneously. About 30-40% of total protein remained in all groups after fermentation. Up to 50% of the unconverted soluble protein in the HT groups was protease. More lactate-producing bacteria, mainly Leuconostoc and Lactobacillus, were present during egg white fermentation.

  5. A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating Holstein cows

    DEFF Research Database (Denmark)

    Storm, Adam Christian; Kristensen, Niels Bastian; Hanigan, Mark D

    2012-01-01

    Ruminal absorption of volatile fatty acids (VFA) is quantitatively the most important nutrient flux in cattle. Historically, VFA absorption models have been derived primarily from ruminal variables such as chemical composition of the fluid, volume, and pH. Recently, a mechanistic model incorporated...... means (RMSPE) of 5.86, 5.75, 11.3, and 4.12, respectively. The epithelial blood flow was predicted with 26.3% RMSPE. Sensitivity analyses indicated that when ruminal butyrate concentration increased from 4.0 to 37.4 mmol/L, blood flow of the epithelium increased 47% and the ruminal disappearance rate...... of propionate increased 11%. The concentration gradient of propionate between ruminal fluid and epithelium was no more than 3:1 and increased with increasing blood flow. In conclusion, a dynamic model based on rumen epithelial blood flow and bidirectional fluxes of VFA between ruminal fluid and epithelium gave...

  6. Optimization of volatile fatty acids and hydrogen production from Saccharina japonica: acidogenesis and molecular analysis of the resulting microbial communities.

    Science.gov (United States)

    Jung, Kwonsu; Kim, Woong; Park, Gwon Woo; Seo, Charles; Chang, Ho Nam; Kim, Yeu-Chun

    2015-04-01

    Response surface methodology (RSM) was used to optimize the production of volatile fatty acids (VFAs) and hydrogen from mixed anaerobic cultures of Saccharina japonica with respect to two independent variables: methanogenic inhibitor concentration and temperature. The effects of four methanogenic inhibitors on acidogenic processes were tested, and qualitative microbial analyses were carried out. Escherichia, Acinetobacter, and Clostridium were the most predominant genera in samples treated with chloroform (CHCl3), iodoform (CHI3), 2-bromoethanesulfonate (BES), or β-cyclodextrin (β-CD), respectively. RSM showed that the production of VFAs reached a peak of 12.5 g/L at 38.6 °C in the presence of 7.4 g/L β-CD; these were the conditions under which hydrogen production was also nearly maximal. The quantitative polymerase chain reaction (qPCR) showed that shifts in the bacterial community population correlated with the concentrations of β-CD indicating that this compound effectively inhibited methanogens.

  7. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation.

    Science.gov (United States)

    Singhania, Reeta Rani; Patel, Anil Kumar; Christophe, Gwendoline; Fontanille, Pierre; Larroche, Christian

    2013-10-01

    VFAs can be obtained from lignocellulosic agro-industrial wastes, sludge, and various biodegradable organic wastes as key intermediates through dark fermentation processes and synthesized through chemical route also. They are building blocks of several organic compounds viz. alcohol, aldehyde, ketones, esters and olefins. These can serve as alternate carbon source for microbial biolipid, biohydrogen, microbial fuel cells productions, methanisation, and for denitrification. Organic wastes are the substrate for VFA platform that is of zero or even negative cost, giving VFA as intermediate product but their separation from the fermentation broth is still a challenge; however, several separation technologies have been developed, membrane separation being the most suitable one. These aspects will be reviewed and results obtained during anaerobic treatment of slaughterhouse wastes with further utilisation of volatile fatty acids for yeast cultivation have been discussed.

  8. Hepatic metabolism of anaesthetized growing pigs during acute portal infusion of volatile fatty acids and hydroxy-methyl butyrate

    DEFF Research Database (Denmark)

    Theil, Peter Kappel; Larsen, Uffe Krogh; Bjerre-Harpøth, Vibeke

    2016-01-01

    ABSTRACT: The objective of the experiment was to study hepatic metabolism during infusion of volatile fatty acids (VFA) differing in amounts and composition or infusion of HMB. Three fasted (20 h) pigs (mean BW ± SE; 58 kg ± 1) were fitted with indwelling catheters in the portal vein, hepatic vein......, mesenteric artery and two in mesenteric veins. One of the mesenteric vein catheters was used to infuse VFA in the anesthetized pigs to mimic effects of increased consumption of dietary fibers. Sixteen sets of blood samples were simultaneously drawn from the artery and portal and hepatic veins at 15 min...... accounting for repeated measurements. A net hepatic uptake of propionate, butyrate, and lactate was observed, whereas the liver released acetate, glucose, and urea. The portal lactate absorption could not account for the net hepatic uptake of lactate, suggesting lactate originated from partial oxidation...

  9. Development of a submerged anaerobic membrane bioreactor for concurrent extraction of volatile fatty acids and biohydrogen production.

    Science.gov (United States)

    Trad, Zaineb; Akimbomi, Julius; Vial, Christophe; Larroche, Christian; Taherzadeh, Mohammad J; Fontaine, Jean-Pierre

    2015-11-01

    The aim of this work was to study an externally-submerged membrane bioreactor for the cyclic extraction of volatile fatty acids (VFAs) during anaerobic fermentation, combining the advantages of submerged and external technologies for enhancing biohydrogen (BioH2) production from agrowaste. Mixing and transmembrane pressure (TMP) across a hollow fiber membrane placed in a recirculation loop coupled to a stirred tank were investigated, so that the loop did not significantly modify the hydrodynamic properties in the tank. The fouling mechanism, due to cake layer formation, was reversible. A cleaning procedure based on gas scouring and backwashing with the substrate was defined. Low TMP, 10(4)Pa, was required to achieve a 3Lh(-1)m(-2) critical flux. During fermentation, BioH2 production was shown to restart after removing VFAs with the permeate, so as to enhance simultaneously BioH2 production and the recovery of VFAs as platform molecules.

  10. Atmospheric photochemistry at a fatty acid-coated air-water interface

    Science.gov (United States)

    Rossignol, Stéphanie; Tinel, Liselotte; Bianco, Angelica; Passananti, Monica; Brigante, Marcello; Donaldson, D. James; George, Christian

    2016-08-01

    Although fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over a monolayer of NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase, and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet-state NA molecules excited by direct absorption of actinic light at the water surface. Because fatty acids-covered interfaces are ubiquitous in the environment, such photochemical processing will have a substantial impact on local ozone and particle formation.

  11. Effect of Volatile Fatty Acids and Trimethylamine on Denitrification in Activated Sludge

    DEFF Research Database (Denmark)

    Eilersen, Ann Marie; Henze, Mogens; Kløft, Lene

    1995-01-01

    with the strongest effect, n-butyric acid has a moderate effect, while TMA only have a small effect in stimulating the rates. Propionic, isobutyric, n-valeric, isovaleric and caproic acid inhibit denitrification, nitrate reduction being more inhibited than nitrite reduction. The inhibitor concentration, KI, at which...

  12. Volatile organic compounds in urban atmospheres: Long-term measurements of ambient air concentrations in differently loaded regions of Leipzig

    Energy Technology Data Exchange (ETDEWEB)

    Knobloch, T.; Asperger, A.; Engewald, W. [University of Leipzig, Institute of Analytical Chemistry, Leipzig (Germany)

    1997-09-01

    For the comprehensive characterization of ambient air concentrations of a broad spectrum of volatile organic compounds (VOCs) an analytical method is described, consisting of adsorptive enrichment, thermal desorption without cryofocusing, and capillary gas chromatographic separation. The method was applied during two-week measuring campaigns in winter and summer 1995, and in the winter of 1996. Long-term sampling was carried out at sampling points in residential areas in the suburbs and near the city center of Leipzig. About 70 VOCs - mainly hydrocarbons from propene to hexadecane - were identified both by GC-MS and chromatographic retention data and quantified after external calibration. Mean values of VOC concentrations obtained during the sampling periods are reported and discussed with regard to the topographical location of the sampling points in the Leipzig area, seasonal variations, and possible emission sources. (orig.) With 7 figs., 3 tabs., 18 refs.

  13. Extraction and Esterification of Low-Titer Short-Chain Volatile Fatty Acids from Anaerobic Fermentation with Ionic Liquids.

    Science.gov (United States)

    Andersen, Stephen J; Berton, Jan K E T; Naert, Pieter; Gildemyn, Sylvia; Rabaey, Korneel; Stevens, Christian V

    2016-08-23

    Ionic liquids can both act as a solvent and mediate esterification to valorize low-titer volatile fatty acids and generate organic solvents from renewable carbon sources including biowaste and CO2 . In this study, four phosphonium ionic liquids were tested for single-stage extraction of acetic acid from a dilute stream and esterification to ethyl acetate with added ethanol and heat. The esterification proceeded with a maximum conversion of 85.9±1.3 % after 30 min at 75 °C at a 1:1 stoichiometric ratio of reactants. Extraction and esterification can be tailored using mixed-anion ionic liquids; this is demonstrated herein using a common trihexyl(tetradecyl)phosphonium cation and a mixed chloride and bis(trifluoromethylsulfonyl)imide anion ionic liquid. As a further proof-of-concept, ethyl acetate was generated from an ionic liquid-driven esterification of an acetic acid extractant generated using CO2 as the only carbon source by microbial electrosynthesis.

  14. Prevention of volatile fatty acids production and limitation of odours from winery wastewaters by denitrification.

    Science.gov (United States)

    Bories, André; Guillot, Jean-Michel; Sire, Yannick; Couderc, Marie; Lemaire, Sophie-Andréa; Kreim, Virginie; Roux, Jean-Claude

    2007-07-01

    The effect of the addition of nitrate to winery wastewaters to control the formation of VFA in order to prevent odours during storage and treatment was studied in batch bioreactors at different NO(3)/chemical oxygen demand (COD) ratios and at full scale in natural evaporation ponds (2 x 7000 m(2)) by measuring olfactory intensity. In the absence of nitrate, butyric acid (2304 mgL(-1)), acetic acid (1633 mgL(-1)), propionic acid (1558 mgL(-1)), caproic acid (499 mgL(-1)) and valeric acid (298 mgL(-1)) were produced from reconstituted winery wastewater. For a ratio of NO(3)/COD=0.4 gg(-1), caproic and valeric acids were not formed. The production of butyric and propionic acids was reduced by 93.3% and 72.5%, respectively, at a ratio of NO(3)/COD=0.8, and by 97.4% and 100% at a ratio of NO(3)/COD=1.2 gg(-1). Nitrate delayed and decreased butyric acid formation in relation to the oxidoreduction potential. Studies in ponds showed that the addition of concentrated calcium nitrate (NITCAL) to winery wastewaters (3526 m(3)) in a ratio of NO(3)/COD=0.8 inhibited VFA production, with COD elimination (94%) and total nitrate degradation, and no final nitrite accumulation. On the contrary, in ponds not treated with nitrate, malodorous VFA (from propionic to heptanoïc acids) represented up to 60% of the COD. Olfactory intensity measurements in relation to the butanol scale of VFA solutions and the ponds revealed the pervasive role of VFA in the odour of the untreated pond as well as the clear decrease in the intensity and not unpleasant odour of the winery wastewater pond enriched in nitrates. The results obtained at full scale underscored the feasibility and safety of the calcium nitrate treatment as opposed to concentrated nitric acid.

  15. Measurement of volatile organic compounds in the urban atmosphere of Yokohama, Japan, by an automated gas chromatographic system

    Science.gov (United States)

    Yamamoto, Noriko; Okayasu, Hideki; Murayama, Satoru; Mori, Sachiko; Hunahashi, Kenji; Suzuki, Koji

    Urban air concentrations of six selected volatile aromatic and five selected volatile chlorinated compounds were measured at Hiyoshi in Yokohama, Japan, from November 1994 to October 1997 using an automated gas chromatographic (GC) system. Continuous measurements were made with 1 h cycles over a 1- or 2-day period. The data from these studies were analyzed and interpreted with respect to variabilities in the urban air concentrations and the diurnal changes in relation to prevailing sources. The mean concentrations of aromatic hydrocarbons were in the range of 0.38-1.13 ppb benzene, 1.23-8.95 ppb toluene, 0.12-0.88 ppb ethylbenzene, 0.03-0.18 ppb m-, p-xylene, 0.23-0.46 ppb o-xylene and 0.24-0.38 ppb 1.2.4-trimethylbenzene. Although variations exist in the measurements, the mean distributions in the aromatic hydrocarbons were 10.4% benzene, 69.7% toluene, 7.7% ethylbenzene, 5.4% m-, p-xylene, 1.6% o-xylene and 5.3% 2.4-trimethybenzene. Diurnal variations in the aromatic hydrocarbons were found to be very similar to each other and positively correlated with traffic activities. On the other hand, the mean concentrations of 1,1-dichloroethene, 1,1,1-trichloroethane, trichloroethene, tetrachloroethene and 1,4-dichlorobenzene were 0.08-0.86, 0.08-0.93, 0.24-0.79, 0.03-0.24 and 0.07-0.42 ppb, respectively. The concentrations of these chlorinated hydrocarbons were always lower and less variable than those of the aromatic hydrocarbons.

  16. Effect of e-beam irradiation and microwave heating on the fatty acid composition and volatile compound profile of grass carp surimi

    Science.gov (United States)

    Zhang, Hongfei; Wang, Wei; Wang, Haiyan; Ye, Qingfu

    2017-01-01

    In this study, we evaluated the effects of e-beam irradiation(1-7 kGy) and irradiation coupled to microwave heating (e-I-MC, 70 °C internal temperature) on the fatty acid composition and volatile compound profile of grass carp surimi. Compared to control samples, e-beam irradiation generated three novel volatile compounds (heptane, 2,6-dimethyl-nonane, and dimethyl disulfide) and increased the relative proportions of alcohols, aldehydes, and ketones. Meanwhile, e-I-MC significantly increased aldehyde levels and generated five heterocyclic compounds along with these three novel compounds. No significant difference in volatile compounds were detected in e-I-MC samples with increasing irradiation dose (p>0.05), comparing to the control group. E-beam irradiation at 5 and 7 kGy increased the levels of saturated fatty acids (SFAs) and decreased the levels of unsaturated fatty acids (p≤0.05), but did not affect the content of trans fatty acid levels (p>0.05). Irradiation, which had no significant effects on (Eicosapentaenoic acid) EPA, decreased (Docose Hexaenoie Acid) DHA levels. In the e-I-MC group, SFA levels increased and PUFA levels decreased. Additionally, MUFA levels were unaffected and trans fatty acid levels increased slightly following e-I-MC.

  17. Atmospheric chemistry of perfluorinated carboxylic acids: Reaction with OH radicals and atmospheric lifetimes

    DEFF Research Database (Denmark)

    Hurley, MD; Andersen, Mads Peter Sulbæk; Wallington, TJ

    2004-01-01

    Relative rate techniques were used to study the kinetics of the reactions of OH radicals with a homologous series of perfluorinated acids, F(CF2)(n)COOH (n = 1, 2, 3, 4), in 700 Torr of air at 296 +/- 2 K. For n > 1, the length of the F(CF2)(n) group had no discernible impact on the reactivity of...

  18. The oleic acid-ozone heterogeneous reaction system: products, kinetics, secondary chemistry, and atmospheric implications of a model system – a review

    Directory of Open Access Journals (Sweden)

    J. Zahardis

    2007-01-01

    Full Text Available The heterogeneous processing of organic aerosols by trace oxidants has many implications to atmospheric chemistry and climate regulation. This review covers a model heterogeneous reaction system (HRS: the oleic acid-ozone HRS and other reaction systems featuring fatty acids, and their derivatives. The analysis of the commonly observed aldehyde and organic acid products of ozonolysis (azelaic acid, nonanoic acid, 9-oxononanoic acid, nonanal is described. The relative product yields are noted and explained by the observation of secondary chemical reactions. The secondary reaction products arising from reactive Criegee intermediates are mainly peroxidic, notably secondary ozonides and α-acyloxyalkyl hydroperoxide oligomers and polymers, and their formation is in accord with solution and liquid-phase ozonolysis. These highly oxygenated products are of low volatility and hydrophilic which may enhance the ability of particles to act as cloud condensation nuclei (CCN. The kinetic description of this HRS is critically reviewed. Most kinetic studies suggest this oxidative processing is either a near surface reaction that is limited by the diffusion of ozone or a surface based reaction. Internally mixed particles and coatings represent the next stage in the progression towards more realistic proxies of tropospheric organic aerosols and a description of the products and the kinetics resulting from the ozonolysis of these proxies, which are based on fatty acids or their derivatives, is presented. Finally, the main atmospheric implications of oxidative processing of particulate containing fatty acids are presented. These implications include the extended lifetime of unsaturated species in the troposphere facilitated by the presence of solids, semi-solids or viscous phases, and an enhanced rate of ozone uptake by particulate unsaturates compared to corresponding gas-phase organics. Ozonolysis of oleic acid enhances its CCN activity, which implies that

  19. Effects of dietary postbiotic and inulin on growth performance, IGF1 and GHR mRNA expression, faecal microbiota and volatile fatty acids in broilers

    OpenAIRE

    2016-01-01

    Background Postbiotics (metabolic products by lactic acid bacteria) and prebiotics have been established as substitute to antibiotics in order to enhance immunity and growth performance in broiler chickens. Nonetheless, insufficient information is available on the effects of postbiotics and prebiotics combination on growth performance, faecal microbiota, pH and volatile fatty acids (VFA), as well as liver insulin like growth factor 1 (IGF1) and growth hormone receptor (GHR) mRNA expressions i...

  20. Comparative study of the Martian suprathermal electron depletions based on Mars Global Surveyor, Mars Express, and Mars Atmosphere and Volatile EvolutioN mission observations

    Science.gov (United States)

    Steckiewicz, M.; Garnier, P.; André, N.; Mitchell, D. L.; Andersson, L.; Penou, E.; Beth, A.; Fedorov, A.; Sauvaud, J.-A.; Mazelle, C.; Brain, D. A.; Espley, J. R.; McFadden, J.; Halekas, J. S.; Larson, D. E.; Lillis, R. J.; Luhmann, J. G.; Soobiah, Y.; Jakosky, B. M.

    2017-01-01

    Nightside suprathermal electron depletions have been observed at Mars by three spacecraft to date: Mars Global Surveyor, Mars Express, and the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. This spatial and temporal diversity of measurements allows us to propose here a comprehensive view of the Martian electron depletions through the first multispacecraft study of the phenomenon. We have analyzed data recorded by the three spacecraft from 1999 to 2015 in order to better understand the distribution of the electron depletions and their creation mechanisms. Three simple criteria adapted to each mission have been implemented to identify more than 134,500 electron depletions observed between 125 and 900 km altitude. The geographical distribution maps of the electron depletions detected by the three spacecraft confirm the strong link existing between electron depletions and crustal magnetic field at altitudes greater than 170 km. At these altitudes, the distribution of electron depletions is strongly different in the two hemispheres, with a far greater chance to observe an electron depletion in the Southern Hemisphere, where the strongest crustal magnetic sources are located. However, the unique MAVEN observations reveal that below a transition region near 160-170 km altitude the distribution of electron depletions is the same in both hemispheres, with no particular dependence on crustal magnetic fields. This result supports the suggestion made by previous studies that these low-altitudes events are produced through electron absorption by atmospheric CO2.

  1. Effect of hypoiodous acid volatility on the iodine source term in reactor accidents

    Energy Technology Data Exchange (ETDEWEB)

    Routamo, T. [Imatran Voima Oy, Vantaa (Finland)

    1996-12-01

    A FORTRAN code ACT WATCH has been developed to establish an improved understanding of essential radionuclide behaviour mechanisms, especially related to iodine chemistry, in reactor accidents. The accident scenarios calculated in this paper are based on the Loss of Coolant accident at the Loviisa Nuclear Power Plant. The effect of different airborne species, especially HIO, on the iodine source term has been studied. The main cause of the high HIO release in the system modelled is the increase of I{sub 2} hydrolysis rate along with the temperature increase, which accelerates HIO production. Due to the high radiation level near the reactor core, I{sub 2} is produced from I{sup -}very rapidly. High temperature in the reactor coolant causes I{sub 2} to be transformed into HIO and through the boiling of the coolant volatile I{sub 2} and HIO are transferred efficiently into the gas phase. High filtration efficiency for particulate iodine causes I{sup -} release to be much lower than those of I{sub 2} and HIO. (author) 15 figs., 1 tab., refs.

  2. Limitations to ruminal absorption of volatile fatty acids in lactating dairy cows

    DEFF Research Database (Denmark)

    Storm, Adam Christian

    gradient of propionate was 3:1 between ruminal fluid and epithelial blood and increased to 4:1 when blood flow increased. On the basis of the presented papers and a review of the existing published data, a revision of current mechanistic models of ruminal VFA production and absorption is suggested. A model...... of production in the medial mat to the site of absorption. b) VFA absorption can be limited by the permeability of the ruminal epithelium to VFA. c) VFA absorption can be limited by the rate of removal of the absorbed VFA from the serosal side of the epithelium with the blood. The Ph.D. thesis is based on two...... experiments with multicatheterized lactating dairy cows and one dynamic model of ruminal absorption of VFA described in three papers as follows. Paper 1 is entitled “Effects of particle size and dry matter content of a total mixed ration on intraruminal equilibration and net portal flux of volatile fatty...

  3. Volatile aromatic hydrocarbons and dicarboxylic acid concentrations in air at an urban site in the Southwestern US

    Science.gov (United States)

    Tran, Ngoc K.; Steinberg, Spencer M.; Johnson, Brian J.

    Concentrations of benzene, toluene, ethylbenzene, o-xylene, and m- and p-xylene were measured at an urban sampling site in Las Vegas, NV by sorbent sampling followed by thermal desorption and determination by GC-PID. Simultaneously, measurements of oxalic, malonic, succinic, and adipic acids were made at the same site by collection on quartz filters, extraction, esterification, and determination by GC-FID. For the period from April 7, 1997 to June 11, 1997, 201 sets of hydrocarbon measurements and 99 sets of acid measurements were made. Additional measurements of dicarboxylic acids were made on samples that represented potential direct sources, e.g. green plants and road dust. Correlations between the hydrocarbon and CO concentrations (measured by the Clark County Health District at a nearby site) were highly significant and a strong negative correlation of hydrocarbon concentration with ozone concentration (also from the county site) was observed under quiescent atmospheric conditions. In general, dicarboxylic acid concentrations were well correlated with one another (with the exception of adipic acid) but not well correlated with hydrocarbon, CO, and ozone concentrations. Multiple sources and complex formation processes are indicated for the dicarboxylic acids.

  4. Physicochemical properties, phenolic acids and volatile compounds of oil extracted from dry alhydwan (Boerhavia elegana Choisy seeds

    Directory of Open Access Journals (Sweden)

    Al-Farga, A.

    2015-09-01

    Full Text Available In this study, the chemical composition, physicochemical properties, phenolic acids and volatile compounds of alhydwan (Boerhavia elegana Choisy seed oil were evaluated. The crude oil content was 11.49%, ash 6.88%, moisture 6.12%, protein content 14.60%, total carbohydrate 24.77% and fiber 36.13%. The oil contain a high quantity of unsaturated fatty acids (74.63 mg·100 g−1 with oleic (C18:1 (57.77%, palmitic (C16:0 (18.65% and linoleic (C18:2 (12.88% acids as the most abundant. The relative density was 0.88 and the iodine value 105.59. The color analysis showed a value of 28.33 Y+1.43 R. The oil also had a high relative oxidative stability. The tocol composition showed that α-tocotrienol, γ-tocopherol and γ-tocotrienol were in a higher concentration than the rest. Seven phenolic acids (caffeic, vanillic, galic, p-coumaric, ascorbic, cinnamic and ferulic were detected, with ascorbic acid as the predominant one (5.44 mg·100 g−1. In relation to the volatile composition, 48 compounds were found with Z-10-Pentadecen-1-ol (56.73%; Hexadecenoic acid, Z-11- (18.52%; 9,12-Octadecadienoic acid (Z,Z- (3.93% and 9,12-Octadecadienoic acid (Z,Z-, 2-hydroxy-1-(hydroxymethyl ethyl ester (3.04% as the most abundant. These findings demonstrated the potential of alhydwan seeds to be used as a good source of quality edible oil.En este estudio se ha determinado la composición química, las propiedades físico-químicas, ácidos fenólicos y compuestos volátiles de aceites de semillas de alhydwan (Boerhavia elegana Choisy. Las semillas contenían un 11.49% de aceite, 6.88% de cenizas, 6,12% de humedad, 14.60% de proteínas, 24.77% de carbohidratos totales y 36.13% de fibra. El aceite contiene 74,63 mg·100 g−1 de ácidos grasos insaturados, con oleico (C18: 1 (57,77%, palmítico (C16: 0 (18,65% y linoleico (C18: 2 (12,88% como los más abundantes. La densidad relativa fue de 0,88 y el índice de yodo de 105,59. El análisis del color mostró un valor de

  5. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere

    CERN Document Server

    Almeida, João; Kürten, Andreas; Ortega, Ismael K; Kupiainen-Määttä, Oona; Praplan, Arnaud P; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Vehkamaki, Hanna; Kirkby, Jasper

    2013-01-01

    Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates ...

  6. An improved, automated whole air sampler and gas chromatography mass spectrometry analysis system for volatile organic compounds in the atmosphere

    Science.gov (United States)

    Lerner, Brian M.; Gilman, Jessica B.; Aikin, Kenneth C.; Atlas, Elliot L.; Goldan, Paul D.; Graus, Martin; Hendershot, Roger; Isaacman-VanWertz, Gabriel A.; Koss, Abigail; Kuster, William C.; Lueb, Richard A.; McLaughlin, Richard J.; Peischl, Jeff; Sueper, Donna; Ryerson, Thomas B.; Tokarek, Travis W.; Warneke, Carsten; Yuan, Bin; de Gouw, Joost A.

    2017-01-01

    Volatile organic compounds were quantified during two aircraft-based field campaigns using highly automated, whole air samplers with expedited post-flight analysis via a new custom-built, field-deployable gas chromatography-mass spectrometry instrument. During flight, air samples were pressurized with a stainless steel bellows compressor into electropolished stainless steel canisters. The air samples were analyzed using a novel gas chromatograph system designed specifically for field use which eliminates the need for liquid nitrogen. Instead, a Stirling cooler is used for cryogenic sample pre-concentration at temperatures as low as -165 °C. The analysis system was fully automated on a 20 min cycle to allow for unattended processing of an entire flight of 72 sample canisters within 30 h, thereby reducing typical sample residence times in the canisters to less than 3 days. The new analytical system is capable of quantifying a wide suite of C2 to C10 organic compounds at part-per-trillion sensitivity. This paper describes the sampling and analysis systems, along with the data analysis procedures which include a new peak-fitting software package for rapid chromatographic data reduction. Instrument sensitivities, uncertainties and system artifacts are presented for 35 trace gas species in canister samples. Comparisons of reported mixing ratios from each field campaign with measurements from other instruments are also presented.

  7. Recovery of volatile fatty acids from fermentation of sewage sludge in municipal wastewater treatment plants.

    Science.gov (United States)

    Longo, S; Katsou, E; Malamis, S; Frison, N; Renzi, D; Fatone, F

    2015-01-01

    This work investigated the pilot scale production of short chain fatty acids (SCFAs) from sewage sludge through alkaline fermentation and the subsequent membrane filtration. Furthermore, the impact of the fermentation liquid on nutrient bioremoval was examined. The addition of wollastonite in the fermenter to buffer the pH affected the composition of the carbon source produced during fermentation, resulting in higher COD/NH4-N and COD/PO4-P ratios in the liquid phase and higher content of propionic acid. The addition of wollastonite decreased the capillary suction time (CST) and the time to filter (TTF), resulting in favorable dewatering characteristics. The sludge dewatering characteristics and the separation process were adversely affected from the use of caustic soda. When wollastonite was added, the permeate flux increased by 32%, compared to the use of caustic soda. When fermentation liquid was added as carbon source for nutrient removal, higher removal rates were obtained compared to the use of acetic acid.

  8. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion

    Science.gov (United States)

    Nieto-Jacobo, Maria F.; Steyaert, Johanna M.; Salazar-Badillo, Fatima B.; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T.; Jimenez-Bremont, Juan F.; Ohkura, Mana; Stewart, Alison

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. “atroviride B” LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions. PMID:28232840

  9. Identification of Bioactivity, Volatile and Fatty Acid Profile in Supercritical Fluid Extracts of Mexican arnica

    Directory of Open Access Journals (Sweden)

    J. Saúl García-Pérez

    2016-09-01

    Full Text Available Supercritical fluid extraction (SFE is a sustainable technique used for the extraction of lipophilic metabolites such as pigments and fatty acids. Arnica plant is considered a potential candidate material with high antioxidant and antimicrobial activities. Therefore, in this study, a locally available Heterotheca inuloides, also known as Mexican arnica, was analyzed for the extraction of high-value compounds. Based on different pressure (P, temperature (T, and co-solvent (CoS, four treatments (T were prepared. A maximum 7.13% yield was recovered from T2 (T = 60 °C, P = 10 MPa, CoS = 8 g/min, followed by 6.69% from T4 (T = 60 °C, P = 30 MPa, CoS = 4 g/min. Some bioactive sesquiterpenoids such as 7-hydroxycadalene, caryophyllene and δ-cadinene were identified in the extracts by GC/MS. The fatty acid profile revealed that the main components were palmitic acid (C16:0, followed by linoleic acid (C18:2ω6c, α-linolenic acid (C18:3ω3 and stearic acid (C18:0 differing in percent yield per treatment. Antibacterial activities were determined by the agar diffusion method, indicating that all the treatments exerted strong antibacterial activity against S. aureus, C. albicans, and E. coli strains. The antioxidant capacity of the extracts was also measured by three in vitro assays, DPPH, TEAC and FRAP, using Trolox as a standard. Results showed high antioxidant capacity enabling pharmaceutical applications of Mexican arnica.

  10. Identification of Bioactivity, Volatile and Fatty Acid Profile in Supercritical Fluid Extracts of Mexican arnica.

    Science.gov (United States)

    García-Pérez, J Saúl; Cuéllar-Bermúdez, Sara P; Arévalo-Gallegos, Alejandra; Rodríguez-Rodríguez, José; Iqbal, Hafiz M N; Parra-Saldivar, Roberto

    2016-09-12

    Supercritical fluid extraction (SFE) is a sustainable technique used for the extraction of lipophilic metabolites such as pigments and fatty acids. Arnica plant is considered a potential candidate material with high antioxidant and antimicrobial activities. Therefore, in this study, a locally available Heterotheca inuloides, also known as Mexican arnica, was analyzed for the extraction of high-value compounds. Based on different pressure (P), temperature (T), and co-solvent (CoS), four treatments (T) were prepared. A maximum 7.13% yield was recovered from T2 (T = 60 °C, P = 10 MPa, CoS = 8 g/min), followed by 6.69% from T4 (T = 60 °C, P = 30 MPa, CoS = 4 g/min). Some bioactive sesquiterpenoids such as 7-hydroxycadalene, caryophyllene and δ-cadinene were identified in the extracts by GC/MS. The fatty acid profile revealed that the main components were palmitic acid (C16:0), followed by linoleic acid (C18:2ω6c), α-linolenic acid (C18:3ω3) and stearic acid (C18:0) differing in percent yield per treatment. Antibacterial activities were determined by the agar diffusion method, indicating that all the treatments exerted strong antibacterial activity against S. aureus, C. albicans, and E. coli strains. The antioxidant capacity of the extracts was also measured by three in vitro assays, DPPH, TEAC and FRAP, using Trolox as a standard. Results showed high antioxidant capacity enabling pharmaceutical applications of Mexican arnica.

  11. Formation of volatile compounds in kefir made of goat and sheep milk with high polyunsaturated fatty acid content.

    Science.gov (United States)

    Cais-Sokolińska, D; Wójtowski, J; Pikul, J; Danków, R; Majcher, M; Teichert, J; Bagnicka, E

    2015-10-01

    This article explored the formation of volatile compounds during the production of kefir from goat and sheep milks with high polyunsaturated fatty acids (PUFA) as a result of feeding animals forage supplemented with maize dried distillers grains with solubles (DDGS). The increased PUFA content of the goat and sheep milks resulted in significant changes to the fermentation process. In particular, apart from an increase in the time taken to ferment sheep milk, fermentation yielded less 2,3-butanedione. The highest quantities of this compound were assayed in kefir produced from goat milk with an increased content of PUFA. An increase of PUFA significantly elevated ethanal synthesis during lactose-alcohol fermentation of sheep milk. Neither the origin of milk (sheep or goat) nor the level of PUFA had any statistical effect on the amount of ethanal assayed during the fermentation of milk and within the finished product. The proportion of l(+)-lactic acid was higher in kefirs produced using goat milk compared with sheep milk and did not depend on the content of PUFA in milk fat. The content of PUFA had a significant effect on the aroma profile of the resulting kefirs. An increase in PUFA content resulted in the loss of whey aroma in goat milk kefirs and the animal odor in sheep milk kefirs, and a creamy aroma became more prevalent in kefirs made from sheep milk.

  12. Optimization of hydrolysis and volatile fatty acids production from sugarcane filter cake: Effects of urea supplementation and sodium hydroxide pretreatment.

    Science.gov (United States)

    Janke, Leandro; Leite, Athaydes; Batista, Karla; Weinrich, Sören; Sträuber, Heike; Nikolausz, Marcell; Nelles, Michael; Stinner, Walter

    2016-01-01

    Different methods for optimization the anaerobic digestion (AD) of sugarcane filter cake (FC) with a special focus on volatile fatty acids (VFA) production were studied. Sodium hydroxide (NaOH) pretreatment at different concentrations was investigated in batch experiments and the cumulative methane yields fitted to a dual-pool two-step model to provide an initial assessment on AD. The effects of nitrogen supplementation in form of urea and NaOH pretreatment for improved VFA production were evaluated in a semi-continuously operated reactor as well. The results indicated that higher NaOH concentrations during pretreatment accelerated the AD process and increased methane production in batch experiments. Nitrogen supplementation resulted in a VFA loss due to methane formation by buffering the pH value at nearly neutral conditions (∼ 6.7). However, the alkaline pretreatment with 6g NaOH/100g FCFM improved both the COD solubilization and the VFA yield by 37%, mainly consisted by n-butyric and acetic acids.

  13. Volatile fatty acid formation and utilization in anaerobic sulphidogenic batch reactors

    CSIR Research Space (South Africa)

    Greben, HA

    2006-05-01

    Full Text Available feed are converted into microbial cells and into acetic, propionic and butyric acids, which acids are food for the ruminant. The rumen is inhabited with billions of bacteria and protozoa which can efficiently execute the anaerobic degradation..., K.J. 2000). Relative contribution of bacteria, protozoa and fungi to in vitro degradation of orchard grass cell walls and their interaction. App. Environ Micr. 66 (9): 3807-3813. 8 Sonakya, V., Raizada, N., Dalhoff, R and Wilderer, P.A. (2003...

  14. Significance of the carbonization of volatile pyrolytic products on the properties of activated carbons from phosphoric acid activation of lignocellulosic material

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Songlin; Yang, Jianxiao; Cai, Xuan [Faculty of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 (China); Liu, Junli [Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042 (China)

    2009-07-15

    Two series of activated carbons derived from China fir (Cunninghamia lanceolata) wood impregnated with phosphoric acid were prepared in a cylindrical container that was kept in a closed state covered with a lid (the covered case) or in an open state. The effects of the carbonization of volatile pyrolytic products of starting materials on the properties of activated carbon were investigated in the process of phosphoric acid activation. Elemental analysis and SEM observation showed that both activating in the covered case and increasing the mass of starting material used favored the carbonization of volatile pyrolytic products. An investigation of N{sub 2} adsorption isotherms revealed that the carbonization of volatile pyrolytic products significantly enhanced mesopore development in the final carbons, especially pores with a size range from 2.5 to 30 nm, with little influence on micropores, and therefore produced a large increase in the adsorption capacity to Vitamin B12 (with a molecular size of 2.09 nm). Activated carbons with highly developed mesopores could be obtained in the covered case. The carbonization mechanism of volatiles was discussed and two different carbonization pathways (in solid and gas phases) were proposed during phosphoric acid activation. (author)

  15. Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. I - Amino acids

    Science.gov (United States)

    Schlesinger, G.; Miller, S. L.

    1983-01-01

    The prebiotic synthesis of amino acids, HCN, H2CO, and NH3 using a spark discharge on various simulated primitive earth atmospheres at 25 C is investigated. Various mixtures of CH4, CO, CO2, N2, NH3, H2O, and H2 were utilized in different experiments. The yields of amino acids (1.2-4.7 percent based on the carbon) are found to be approximately independent of the H2/CH4 ratio and the presence of NH3, and a wide variety of amino acids are obtained. Glycine is found to be almost the only amino acid produced from CO and CO2 model atmospheres, with the maximum yield being about the same for the three carbon sources at high H2/carbon ratios,whereas CH4 is superior at low H2/carbon ratios. In addition, it is found that the directly synthesized NH3 together with the NH3 obtained from the hydrolysis of HCN, nitriles, and urea could have been a major source of ammonia in the atmosphere and oceans of the primitive earth. It is determined that prebiotic syntheses from HCN and H2CO to give products such as purines and sugars and some amino acids could have occurred in primitive atmospheres containing CO and CO2 provided the H2/CO and H2/CO2 ratios were greater than about 1.0.

  16. Anthropogenic non-methane volatile hydrocarbons at Mt. Cimone (2165 m a.s.l., Italy): Impact of sources and transport on atmospheric composition

    Science.gov (United States)

    Lo Vullo, Eleonora; Furlani, Francesco; Arduini, Jgor; Giostra, Umberto; Graziosi, Francesco; Cristofanelli, Paolo; Williams, Martin L.; Maione, Michela

    2016-09-01

    To advance our understanding of the factors that affect pollution in mountainous areas, long-term, high frequency measurements of thirteen Non Methane Volatile Organic Compounds (NMVOCs) have been carried out at the atmospheric observatory on the top of Mt. Cimone (2165 m a.s.l.), whose location is ideal for sampling both aged air masses representing the regional background and polluted air masses coming from nearby sources of anthropogenic pollution. An analysis of the NMVOC time series available at Mt. Cimone during 2010-2014 was used to examine the influence of transport processes on NMVOC atmospheric composition and to derive information on the emission sources. We performed a multifactor principal component analysis whose results allowed us to identify the source categories emitting the NMVOCs measured at Mt. Cimone as well as to assess transport ranges in winter and summer. Aged air masses, due to long-range transport and related to vehicular traffic exhaust emissions accounted for 78% of the NMVOC variability in winter and 62% in summer, whereas evaporative emissions, likely to be associated with fresh emissions from nearby sources, accounted for 12% of the NMVOC variability and 24% in winter and summer, respectively. Such results have been confirmed by a further analysis in which the NMVOC variability as a function of their atmospheric lifetimes has been evaluated. The ratios of alkane isomers potentially provides a metric to investigate seasonal changes in NMVOCs composition and in the emission fields of butanes and pentanes, suggesting that during the summer the butanes are originating mainly from the European domain and that for pentanes non-anthropogenic sources may be contributing to the measured concentrations.

  17. The oleic acid-ozone heterogeneous reaction system: products, kinetics, secondary chemistry, and atmospheric implications of a model system – a review

    Directory of Open Access Journals (Sweden)

    J. Zahardis

    2006-11-01

    Full Text Available The heterogeneous processing of organic aerosols by trace oxidants has many implications to atmospheric chemistry and climate regulation. This review covers a model heterogeneous reaction system (HRS: the oleic acid-ozone HRS and other reaction systems featuring fatty acids, and their derivatives. The analysis of the primary products of ozonolysis (azelaic acid, nonanoic acid, 9-oxononanoic acid, nonanal is described. Anomalies in the relative product yields are noted and explained by the observation of secondary chemical reactions. The secondary reaction products arising from reactive Criegee intermediates are mainly peroxidic, notably secondary ozonides and α-acyloxyalkyl hydroperoxide polymers. These highly oxygenated products are of low volatility and hydrophilic which may enhance the ability of particles to act as cloud condensation nuclei. The kinetic description of this HRS is critically reviewed. Most kinetic studies suggest this oxidative processing is either a near surface reaction that is limited by the diffusion of ozone or a surface based reaction. Internally mixed particles and coatings represent the next stage in the progression towards more realistic proxies of tropospheric organic aerosols and a description of the products and the kinetics resulting from the ozonolysis of these proxies, which are based on fatty acids or their derivatives, is presented. Finally, a series of atmospheric implications of oxidative processing of particulate containing fatty acids is presented. These implications include the extended lifetime of unsaturated species in the troposphere facilitated by the presence of solids, semisolids or viscous phases, and an enhanced rate of ozone uptake by particulate unsaturates compared to corresponding gas phase organics. Ozonolysis of oleic acid enhances its CCN activity, which implies that oxidatively processed particulate may contribute to indirect forcing of radiation. Other effects, including the potential

  18. Observation of atmospheric nitrous acid with DOAS in Beijing, China

    Institute of Scientific and Technical Information of China (English)

    QIN Min; XIE Pin-hua; LIU Wen-qing; LI Ang; DOU Ke; FANG Wu; LIU Jian-guo; ZHANG Wei-jun

    2006-01-01

    Measurements of nitrous acid (HONO) and nitrogen dioxide (NO2) in Beijing City have been performed by means of a developed differential optical absorption spectroscopy (DOAS) system based on photodiode array (PDA), during the autumn of 2004.HONO and NO2 were simultaneously identified by their characteristic absorption bands in the spectral region between 337 nm and 372 nm with high sensibility and time resolution. The concentrations of HONO exhibit obviously diurnal variation with a nocturnal maximum and a daytime minimum. The highest HONO value up to 11.8 μg/m3 was observed during the night of 2/3 September.Possible sources of the observed HONO were discussed. Good correlation to NO2 indicates that NO2 is a main source component. The measurement also shows direct emission of HONO is an important source in strongly polluted urban area.

  19. Volatile fatty acids influence on the structure of microbial communities producing PHAs.

    Science.gov (United States)

    Ciesielski, Slawomir; Przybylek, Grzegorz

    2014-01-01

    Polyhydroxyalkanoates (PHAs) can be produced by microorganisms and are a biodegradable alternative to fossil-fuel based plastics. Currently, the focus is on reducing production costs by exploring alternative substrates for PHAs production, and on producing copolymers which are less brittle than monomers. Accordingly, this study used a substrate consisting of wastewater from waste-glycerol fermentation, supplemented with different amounts of acetic and propionic acids. These substrates were used to feed mixed microbial communities enriched from activated sludge in a sequencing batch reactor. A reactor supplemented with 2 mL of acetic acid produced 227.8 mg/L of a homopolymer of hydroxybutyrate (3 HB); 4 mL of acetic acid produced 279.8 mg/L 3 HB; whereas 4 mL of propionic acid produced 673.0 mg/L of a copolymer of 3 HB and 3 HV (hydroxyvalerate). Ribosomal Intergenic Spacer Analysis (RISA) was used to show the differences between the communities created in the reactors. Thauera species predominated in biomass that produced 3 HB; Paracoccus denitrificans in the biomass that produced 3 HB-co-3 HV. Because P. denitrificans produced the more desirable copolymer, it may be advantageous to promote its growth in PHAs-producing reactors by adding propionate.

  20. Volatile fatty acids influence on the structure of microbial communities producing PHAs

    Directory of Open Access Journals (Sweden)

    Slawomir Ciesielski

    2014-06-01

    Full Text Available Polyhydroxyalkanoates (PHAs can be produced by microorganisms and are a biodegradable alternative to fossil-fuel based plastics. Currently, the focus is on reducing production costs by exploring alternative substrates for PHAs production, and on producing copolymers which are less brittle than monomers. Accordingly, this study used a substrate consisting of wastewater from waste-glycerol fermentation, supplemented with different amounts of acetic and propionic acids. These substrates were used to feed mixed microbial communities enriched from activated sludge in a sequencing batch reactor. A reactor supplemented with 2 mL of acetic acid produced 227.8 mg/L of a homopolymer of hydroxybutyrate (3HB; 4 mL of acetic acid produced 279.8 mg/L 3HB; whereas 4 mL of propionic acid produced 673.0 mg/L of a copolymer of 3HB and 3HV (hydroxyvalerate. Ribosomal Intergenic Spacer Analysis (RISA was used to show the differences between the communities created in the reactors. Thauera species predominated in biomass that produced 3HB; Paracoccus denitrificans in the biomass that produced 3HB-co-3HV. Because P. denitrificans produced the more desirable copolymer, it may be advantageous to promote its growth in PHAs-producing reactors by adding propionate.

  1. Methanogenesis from volatile fatty acids in downflow stationary fixed-film reactor.

    Science.gov (United States)

    Bhadra, A; Scharer, J M; Moo-Young, M

    1987-08-05

    Methanogenesis was studied in downflow stationary fixed-film bioreactors. The support materials in this study included ceramic Raschig rings, hardwood chips, and sized charcoal. The performances of these support materials have been compared using both synthetic acid mixture and acid products obtained from paper mill sludge. Woodchips appeared to be the most promising support material: The maximum methane productivity of 3.56 L/L day at a nominal retention time of 0.78 day was obtained using initial total acid concentrations of 9.125 g/L. Higher productivity was achieved at the cost of efficiency of the process in terms of conversion of acids. From nitrogen balances, it was deduced that ammonia supplemented methane generation by supplying hydrogen for there duction of carbon dioxide.An ionic balance was developed to ascertain the relationship between the composition and the pH of the liquid and the mole fraction of carbon dioxide in the gas phase. From these ionic balance equations, it was possible to predict the gas phase composition at various retention times. The maximum error between the computed and the experimental values was less than 13%.

  2. Effects of volatile fatty acids, ketone bodies, glucose, and insulin on lipolysis in bovine adipose tissue

    NARCIS (Netherlands)

    Metz, S.H.M.; Bergh, S.G. van den

    1972-01-01

    Our interest in the aetiology of ketosis in cattle recently led us to investigate possible metabolic control mechanisms of fat mobilization in bovine adipose tissue. Acetic, propionic and butyric acid are the major sources of metabolic energy made available to the adult ruminant by digestion and abs

  3. Effects of volatile fatty acids, ketone bodies, glucose, and insulin on lipolysis in bovine adipose tissue

    NARCIS (Netherlands)

    Metz, S.H.M.; Bergh, S.G. van den

    1972-01-01

    Our interest in the aetiology of ketosis in cattle recently led us to investigate possible metabolic control mechanisms of fat mobilization in bovine adipose tissue. Acetic, propionic and butyric acid are the major sources of metabolic energy made available to the adult ruminant by digestion

  4. Volatile disinfection byproducts resulting from chlorination of uric acid: implications for swimming pools.

    Science.gov (United States)

    Lian, Lushi; E, Yue; Li, Jing; Blatchley, Ernest R

    2014-03-18

    Cyanogen chloride (CNCl) and trichloramine (NCl3) are important disinfection byproducts in chlorinated swimming pools. However, some unknowns exist regarding the precursors of their formation. In this study, uric acid is shown to be an efficient precursor to formation of CNCl and NCl3. The molar yields of CNCl and NCl3 were observed to be as high as 44% (pH = 6.0, chlorine/precursor molar ratio [Cl/P] = 6.4) and 108% (pH = 7.0, Cl/P = 30), respectively, both being strong functions of Cl/P, pH, and temperature. Analysis of swimming pool water samples, combined with the results of experiments involving chlorination of uric acid, and chlorination of body fluid analog mixtures, indicated that uric acid chlorination may account for a large fraction of CNCl formation in swimming pools. Moreover, given that uric acid introduction to pools is attributable to urination, a voluntary action for most swimmers, these findings indicate important benefits to pool water and air chemistry that could result from improved hygiene habits on the part of swimmers.

  5. A Simultaneous Analytical Method to Profile Non-Volatile Components with Low Polarity Elucidating Differences Between Tobacco Leaves Using Atmospheric Pressure Chemical Ionization Mass Spectrometry Detection

    Directory of Open Access Journals (Sweden)

    Ishida Naoyuki

    2016-04-01

    Full Text Available A comprehensive analytical method using liquid chromatography atmospheric pressure chemical ionization mass spectrometry detector (LC/APCI-MSD was developed to determine key non-volatile components with low polarity elucidating holistic difference among tobacco leaves. Nonaqueous reversed-phase chromatography (NARPC using organic solvent ensured simultaneous separation of various components with low polarity in tobacco resin. Application of full-scan mode to APCI-MSD hyphenated with NARPC enabled simultaneous detection of numerous intense product ions given by APCI interface. Parameters for data processing to filter, feature and align peaks were adjusted in order to strike a balance between comprehensiveness and reproducibility in analysis. 63 types of components such as solanesols, chlorophylls, phytosterols, triacylglycerols, solanachromene and others were determined on total ion chromatograms according to authentic components, wavelength spectrum and mass spectrum. The whole area of identified entities among the ones detected on total ion chromatogram reached to over 60% and major entities among those identified showed favorable linearity of determination coefficient of over 0.99. The developed method and data processing procedure were therefore considered feasible for subsequent multivariate analysis. Data matrix consisting of a number of entities was then subjected to principal component analysis (PCA and hierarchical clustering analysis. Cultivars of tobacco leaves were distributed far from each cultivar on PCA score plot and each cluster seemed to be characterized by identified non-volatile components with low polarity. While fluecured Virginia (FCV was loaded by solanachromene, phytosterol esters and triacylglycerols, free phytosterols and chlorophylls loaded Burley (BLY and Oriental (ORI respectively. Consequently the whole methodology consisting of comprehensive method and data processing procedure proved useful to determine key

  6. Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere?

    Science.gov (United States)

    Gebala, Magdalena; Bonilla, Steve; Bisaria, Namita; Herschlag, Daniel

    2016-08-31

    Electrostatics are central to all aspects of nucleic acid behavior, including their folding, condensation, and binding to other molecules, and the energetics of these processes are profoundly influenced by the ion atmosphere that surrounds nucleic acids. Given the highly complex and dynamic nature of the ion atmosphere, understanding its properties and effects will require synergy between computational modeling and experiment. Prior computational models and experiments suggest that cation occupancy in the ion atmosphere depends on the size of the cation. However, the computational models have not been independently tested, and the experimentally observed effects were small. Here, we evaluate a computational model of ion size effects by experimentally testing a blind prediction made from that model, and we present additional experimental results that extend our understanding of the ion atmosphere. Giambasu et al. developed and implemented a three-dimensional reference interaction site (3D-RISM) model for monovalent cations surrounding DNA and RNA helices, and this model predicts that Na(+) would outcompete Cs(+) by 1.8-2.1-fold; i.e., with Cs(+) in 2-fold excess of Na(+) the ion atmosphere would contain an equal number of each cation (Nucleic Acids Res. 2015, 43, 8405). However, our ion counting experiments indicate that there is no significant preference for Na(+) over Cs(+). There is an ∼25% preferential occupancy of Li(+) over larger cations in the ion atmosphere but, counter to general expectations from existing models, no size dependence for the other alkali metal ions. Further, we followed the folding of the P4-P6 RNA and showed that differences in folding with different alkali metal ions observed at high concentration arise from cation-anion interactions and not cation size effects. Overall, our results provide a critical test of a computational prediction, fundamental information about ion atmosphere properties, and parameters that will aid in the

  7. Geogenic and atmospheric sources for volatile organic compounds in fumarolic emissions from Mt. Etna and Vulcano Island (Sicily, Italy)

    Science.gov (United States)

    Tassi, F.; Capecchiacci, F.; Cabassi, J.; Calabrese, S.; Vaselli, O.; Rouwet, D.; Pecoraino, G.; Chiodini, G.

    2012-09-01

    In this paper, fluid source(s) and processes controlling the chemical composition of volatile organic compounds (VOCs) in gas discharges from Mt. Etna and Vulcano Island (Sicily, Italy) were investigated. The main composition of the Etnean and Volcano gas emissions is produced by mixing, to various degrees, of magmatic and hydrothermal components. VOCs are dominated by alkanes, alkenes and aromatics, with minor, though significant, concentrations of O-, S- and Cl(F)-substituted compounds. The main mechanism for the production of alkanes is likely related to pyrolysis of organic-matter-bearing sediments that interact with the ascending magmatic fluids. Alkanes are then converted to alkene and aromatic compounds via catalytic reactions (dehydrogenation and dehydroaromatization, respectively). Nevertheless, an abiogenic origin for the light hydrocarbons cannot be ruled out. Oxidative processes of hydrocarbons at relatively high temperatures and oxidizing conditions, typical of these volcanic-hydrothermal fluids, may explain the production of alcohols, esters, aldehydes, as well as O- and S-bearing heterocycles. By comparing the concentrations of hydrochlorofluorocarbons (HCFCs) in the fumarolic discharges with respect to those of background air, it is possible to highlight that they have a geogenic origin likely due to halogenation of both methane and alkenes. Finally, chlorofluorocarbon (CFC) abundances appear to be consistent with background air, although the strong air contamination that affects the Mt. Etna fumaroles may mask a possible geogenic contribution for these compounds. On the other hand, no CFCs were detected in the Vulcano gases, which are characterized by low air contribution. Nevertheless, a geogenic source for these compounds cannot be excluded on the basis of the present data.

  8. The Consistency of Isotopologues of Ambient Atmospheric Nitric Acid in Passively Collected Samples

    Science.gov (United States)

    Bell, M. D.; Sickman, J. O.; Bytnerowicz, A.; Padgett, P.; Allen, E. B.

    2012-12-01

    Anthropogenic sources of nitrogen oxides have previously been shown to have distinctive isotopic signatures of oxygen and nitrogen. Nylon filters are currently used in passive sampling arrays to measure ambient atmospheric nitric acid concentrations and estimate deposition rates. This experiment measured the ability of nylon filters to consistently collect isotopologues of atmospheric nitric acid in the same ratios as they are present in the atmosphere. Samplers were deployed in continuous stirred tank reactors (CSTR) and at field sites across a nitrogen deposition gradient in Southern California. Filters were exposed over a four week period with individual filters being subjected to 1-4 week exposure times. Extracted nitric acid were measured for δ18O and δ15N ratios and compared for consistency based on length of exposure and amount of HNO3 collected. Filters within the CSTRs collected HNO3 at a consistent rate in both high and low concentration chambers. After two weeks of exposure, the mean δ18O values were within 0.5‰ of the δ18O of the source HNO3 solution. The mean of all weekly exposures were within 0.5‰ of the δ15N of the source solution, but after three weeks, the mean δ15N of adsorbed HNO3 was within 0.2‰. As the length of the exposure increased, the variability of measured delta values decreased for both elements. The field samplers collected HNO3 consistent with previously measured values along a deposition gradient. The mean δ18O at high deposition sites was 52.2‰ compared to 35.7‰ at the low deposition sites. Mean δ15N values were similar at all sites across the deposition gradient. Due to precipitation events occurring during the exposure period, the δ15N and δ18O of nitric acid were highly variable at all field sites. At single sites, changes in δ15N and δ18O were negatively correlated, consistent with two-sourcing mixing dynamics, but the slope of the regressions differed between high and low deposition sites. Anthropogenic

  9. 动物生产中挥发性脂肪酸的研究进展%Review of Volatile Fatty Acid in Animal Production

    Institute of Scientific and Technical Information of China (English)

    罗佳捷; 张彬; 兰欣怡; 王洁

    2012-01-01

    Volatile fatty acid is a short chain fatty acid,can regulate metabolism and preserve animal health.The article summarized the biological functions,measuring methods and research situations in animal production of volatile fatty acid.%挥发性脂肪酸是一种短链脂肪酸,在调节新陈代谢及维护动物机体健康等方面发挥着重要的作用。文章从生物学功能、测定方法及其在动物生产中的研究情况等方面对挥发性脂肪酸进行了综述。

  10. Influence of acid volatile sulfide and metal concentrations on metal bioavailability to marine invertebrates in contaminated sediments

    Science.gov (United States)

    Lee, B.-G.; Lee, J.-S.; Luoma, S.N.; Choi, H.J.; Koh, C.-H.

    2000-01-01

    An 18-day microcosm study was conducted to evaluate the influence of acid volatile sulfides (AVS) and metal additions on bioaccumulation from sediments of Cd, Ni, and Zn in two clams (Macoma balthica and Potamocorbula amurensis) and three marine polychaetes (Neanthes arenaceodentata, Heteromastus filiformis, and Spiophanes missionensis). Manipulation of AVS by oxidation of naturally anoxic sediments allowed use of metal concentrations typical of nature and evaluation of processes important to chronic metal exposure. A vertical sediment column similar to that often found in nature was used to facilitate realistic biological behavior. Results showed that AVS or porewater (PW) metals controlled bioaccumulation in only 2 of 15 metal-animal combinations. Bioaccumulation of all three metals by the bivalves was related significantly to metal concentrations extracted from sediments (SEM) but not to [SEM - AVS] or PW metals. SEM predominantly influenced bioaccumulation of Ni and Zn in N. arenaceodentata, but Cd bioaccumulation followed PW Cd concentrations. SEM controlled tissue concentrations of all three metals in H. filiformis and S. missionensis, with minor influences from metal-sulfide chemistry. Significant bioaccumulation occurred when SEM was only a small fraction of AVS in several treatments. Three factors appeared to contribute to the differences between these bioaccumulation results and the results from toxicity tests reported previously: differences in experimental design, dietary uptake, and biological attributes of the species, including mode and depth of feeding.An 18-day microcosm study was conducted to evaluate the influence of acid volatile sulfides (AVS) and metal additions on bioaccumulation from sediments of Cd, Ni, and Zn in two clams (Macoma balthica and Potamocorbula amurensis) and three marine polychaetes (Neanthes arenaceodentata, Heteromastus filiformis, and Spiophanes missionensis). Manipulation of AVS by oxidation of naturally anoxic sediments

  11. Computing Electric Currents in the Martian Ionosphere Using Magnetometer Data from the Mars Atmospheric Volatile EvolutioN (MAVEN) Spacecraft

    Science.gov (United States)

    Fogle, A. L.

    2015-12-01

    Mars does not have a global magnetic field like Earth does. However, due to solar wind and interplanetary magnetic field (IMF) interactions, electric currents are induced which create an induced magnetosphere. As MAVEN passes through the ionosphere of Mars, the magnetometer on board continuously measures the induced magnetic field in the ionosphere. Using Ampere's Law (∇ × B = µ0j) along with these measurements of the induced magnetic field, we can quantify the electric currents in the ionosphere. We are particularly interested in magnetic field profiles that have a radial component that is less than or equal to 5 nanoteslas in magnitude. By only using measurements where the radial component of the magnetic field satisfies the aforementioned condition and assuming that there are no horizontal gradients in the magnetic field, we will calculate horizontal currents in the ionosphere. Using these calculated currents, we will analyze altitudinal variations in magnitude and direction of the currents. Measuring these horizontal currents can give us insights into how the solar wind and IMF can affect the upper atmosphere of Mars. For example, induced electric currents can cause Joule heating in the atmosphere, which can potentially modify its neutral dynamics.

  12. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: Implications for atmospheric processing of organic aerosols

    Science.gov (United States)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Cao, Fang; Lee, Meehye

    2016-04-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls, and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C values of particle phase glyoxal and methylglyoxal are significantly larger than those previously reported for isoprene and other precursors. The values are consistently less negative in oxalic acid (C2, average -14.1‰), glyoxylic acid (-13.8‰), pyruvic acid (-19.4‰), glyoxal (-13.5‰), and methylglyoxal (-18.6‰) compared to other organic species (e.g., palmitic acid, -26.3‰), which can be explained by the kinetic isotope effects during atmospheric oxidation of pre-aged precursors (e.g., isoprene) and the subsequent gas-particle partitioning after the evaporation of clouds or wet aerosols. The δ13C values of C2 is positively correlated with C2 to organic carbon ratio, indicating that photochemical production of C2 is more pronounced than its degradation during long-range atmospheric transport. The isotopic results also suggest that aqueous phase oxidation of glyoxal and methylglyoxal is a major formation process of oxalic acid via the intermediates such as glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photochemically aged in the western North Pacific rim.

  13. The urban atmosphere as a non-point source for the transport of MTBE and other volatile organic compounds (VOCS) to shallow groundwater

    Science.gov (United States)

    Pankow, J.F.; Thomson, N.R.; Johnson, R.L.; Baehr, A.L.; Zogorski, J.S.

    1997-01-01

    Infiltration and dispersion (including molecular diffusion) can transport volatile organic compounds (VOCs) from urban air into shallow groundwater. The gasoline additive methyl-tert-butyl ether (MTBE) is of special interest because of its (1) current levels in some urban air, (2) strong partitioning from air into water, (3) resistance to degradation, (4) use as an octane-booster since the 1970s, (5) rapidly increasing use in the 1990s to reduce CO and O3 in urban air, and (6) its frequent detection rat lOW microgram per liter levels in shallow urban groundwater in Denver, New England, and elsewhere. Numerical simulations were conducted using a l-D model domain set in medium sand (depth to water table = 5 m) to provide a test of whether MTBE and other atmospheric VOCs could move to shallow groundwater within the 10-15 y time frame over which MTBE has now been used in large amounts. Degradation and sorption were assumed negligible. In case 1 (no infiltration, steady atmospheric source), 10 y was not long enough to permit significant VOC movement by diffusion into shallow groundwater. Case 2 considered a steady atmospheric source plus 36 cm/y of net infiltration; groundwater at 2 m below the water table became nearly saturated with atmospheric levels of VOC within 5 y. Case 3 was similar to case 2, but considered the source to be seasonal being 'on' for only 5 of 12 months each year, as with the use of MTBE during the winter fuel-oxygenate season; groundwater at 2 m below the water table became equilibrated with 5/12 of the 'source-on' concentration within 5 y. Cases 4 and 5 added an evapotranspiration (ET) loss of 36 cm/y, resulting in no net recharge. Case 4 took the ET from the surface, and case 5 took the ET from the capillary fringe at a depth of 3.5 m. Net VOC mass transfer to shallow groundwater after 5 y was less for both cases 4 and 5 than for case 3. However, it was significantly greater for cases 4 and 5 than for case 1, even though cases 1, 4, add 5 were

  14. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years

    Science.gov (United States)

    Weber, Rodney J.; Guo, Hongyu; Russell, Armistead G.; Nenes, Athanasios

    2016-04-01

    Particle acidity affects aerosol concentrations, chemical composition and toxicity. Sulfate is often the main acid component of aerosols, and largely determines the acidity of fine particles under 2.5 μm in diameter, PM2.5. Over the past 15 years, atmospheric sulfate concentrations in the southeastern United States have decreased by 70%, whereas ammonia concentrations have been steady. Similar trends are occurring in many regions globally. Aerosol ammonium nitrate concentrations were assumed to increase to compensate for decreasing sulfate, which would result from increasing neutrality. Here we use observed gas and aerosol composition, humidity, and temperature data collected at a rural southeastern US site in June and July 2013 (ref. ), and a thermodynamic model that predicts pH and the gas-particle equilibrium concentrations of inorganic species from the observations to show that PM2.5 at the site is acidic. pH buffering by partitioning of ammonia between the gas and particle phases produced a relatively constant particle pH of 0-2 throughout the 15 years of decreasing atmospheric sulfate concentrations, and little change in particle ammonium nitrate concentrations. We conclude that the reductions in aerosol acidity widely anticipated from sulfur reductions, and expected acidity-related health and climate benefits, are unlikely to occur until atmospheric sulfate concentrations reach near pre-anthropogenic levels.

  15. Atmospheric geochemistry of formic and acetic acids at a mid-latitude temperate site

    Science.gov (United States)

    Talbot, R. W.; Beecher, K. M.; Harriss, R. C.; Cofer, R. W., III

    1988-01-01

    Tropospheric concentrations of formic and acetic acids in the gas, the aerosol, and the rainwater phases were determined in samples collected 1-2 m above ground level at an open field site in eastern Virginia. These acids were found to occur principally (98 percent or above) in the gas phase, with a marked annual seasonality, averaging 1890 ppt for formate and 1310 ppt for acetate during the growing season, as compared to 695 ppt and 700 ppt, respectively, over the nongrowing season. The data support the hypothesis that biogenic emissions from vegatation are important sources of atmospheric formic and acetic acid during the local growing season. The same time trends were observed for precipitation, although with less defined seasonality. The relative increase of the acetic acid/formic acid ratio during the nongrowing season points to the dominance of anthropogenic inputs of acetic acid from motor vehicles and biomass combustion in the wintertime.

  16. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution.

    Directory of Open Access Journals (Sweden)

    Renwu Zhou

    Full Text Available Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS. Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma.

  17. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution

    Science.gov (United States)

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129

  18. Low atmospheric nitrogen loads lead to grass encroachment in coastal dunes, but only on acid soils

    NARCIS (Netherlands)

    Remke, E.; Brouwer, E.; Kooijman, A.; Blindow, I.; Roelofs, J.G.M.

    2009-01-01

    The impact of atmospheric N-deposition on succession from open sand to dry, lichen-rich, short grassland, and tall grass vegetation dominated by Carex arenaria was surveyed in 19 coastal dune sites along the Baltic Sea. Coastal dunes with acid or slightly calcareous sand reacted differently to atmos

  19. Continuous wet denuder measurements of atmospheric nitric and nitrous acids during the 1999 Atlanta Supersite

    NARCIS (Netherlands)

    Genfa, Z.; Slanina, J.; Boring, C.B.; Jongejan, A.C.; Purnendu, K.D.

    2003-01-01

    Two different measurement methods for atmospheric nitric and nitrous acid during the Atlanta Supersite study are described and compared. Both approaches combined wet denuder collection coupled to ion chromatographic analysis. One of these utilized a rotating wet annular denuder maintained indoor wit

  20. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation

    CERN Document Server

    Kirkby, Jasper; Almeida, João; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Franchin, Alessandro; Gagné, Stéphanie; Ickes, Luisa; Kürten, Andreas; Kupc, Agnieszka; Metzger, Axel; Riccobono, Francesco; Rondo, Linda; Schobesberger, Siegfried; Tsagkogeorgas, Georgios; Wimmer, Daniela; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Downard, Andrew; Ehn, Mikael; Flagan, Richard C; Haider, Stefan; Hansel, Armin; Hauser, Daniel; Jud, Werner; Junninen, Heikki; Kreissl, Fabian; Kvashin, Alexander; Laaksonen, Ari; Lehtipalo, Katrianne; Lima, Jorge; Lovejoy, Edward R; Makhmutov, Vladimir; Mathot, Serge; Mikkilä, Jyri; Minginette, Pierre; Mogo, Sandra; Nieminen, Tuomo; Onnela, Antti; Pereira, Paulo; Petäjä, Tuukka; Schnitzhofer, Ralf; Seinfeld, John H; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Vanhanen, Joonas; Viisanen, Yrjo; Vrtala, Aron; Wagner, Paul E; Walther, Hansueli; Weingartner, Ernest; Wex, Heike; Winkler, Paul M; Carslaw, Kenneth S; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku

    2011-01-01

    Atmospheric aerosols exert an important influence on climate1 through their effects on stratiform cloud albedo and lifetime2 and the invigoration of convective storms3. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours4, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small5, 6. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia7. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100–1,000-fold. Time-resolved molecular measurements reveal that n...

  1. Effects of irrigation regimes on fatty acid composition, antioxidant and antifungal properties of volatiles from fruits of Koroneiki cultivar grown under Tunisian conditions.

    Science.gov (United States)

    Brahmi, Faten; Chehab, Hechmi; Flamini, Guido; Dhibi, Madiha; Issaoui, Manel; Mastouri, Maha; Hammami, Mohamed

    2013-11-15

    The olive tree is generally grown under rain-fed conditions. However, since the yield response to irrigation is great, even with low amounts of water, there is increasing interest in irrigated agriculture. The main goal of this study was, therefore, to investigate the effect of irrigation regimes on olive (Olea europaea L., cv. Koroneiki) obtained from an intensively-managed orchard in a semi-arid area with a Mediterranean climate in Tunisia. Different irrigation treatments 50% ETc, 75% ETc and 100% ETc were applied to the olive orchard. Accordingly, the effects of three irrigation regimes on volatile compounds, fatty acid composition and biological activities of Koroneiki cultivar were studied. The total profile of the volatile constituents of all samples revealed the predominance of 3-ethenylpyridine (from 14.9-19.6%), phenylethyl alcool (from 7.8-19.2%) and benzaldehyde (from 9.0 to 13.8%). During watering level treatments studied, the major fatty acids were oleic, palmitic and linoleic. Antioxidant activity of the fresh fruit volatiles cultivated at a watering level of 100% ETc was higher than that obtained under 50 and 75% Etc. The results of antifungal activity showed that the fruits volatiles of the three irrigation treatments had varying degrees of growth inhibition against the microorganisms tested.

  2. Peroxyacetic acid in urban and rural atmosphere: concentration, feedback on PAN-NOx cycle and implication on radical chemistry

    Directory of Open Access Journals (Sweden)

    J. L. Li

    2010-01-01

    Full Text Available Peroxyacetic acid (PAA is one of the most important atmospheric organic peroxides, which have received increasing attention for their potential contribution to the oxidation capacity of the troposphere and the formation of secondary aerosols. We report here, for the first time, a series of data for atmospheric PAA concentrations at urban and rural sites, from five field campaigns carried out in China in summer 2006, 2007 and 2008. For these five measurements, daytime mean (08:00–20:00 LT PAA concentrations on sunlit days were 21.4–148.0 pptv with a maximum level of ~1 ppbv. The various meteorological and chemical parameters influencing PAA concentrations were examined using Principal Factor Analysis. This statistical analysis shows that the local photochemical production was the major source of PAA, and its concentration increased with increasing temperature, solar radiation and ozone but decreased with increasing NOx (NO and NO2, CO, SO2, and relative humidity. Based on the dataset, several issues are highlighted in this study: (i Because PAA is a product from the photochemical oxidation of some specific volatile organic compounds (VOCs that lead to acetyl peroxy radicals, the importance of various VOCs with respect to the PAA formation is therefore ranked using the incremental reactivity method. (ii The contribution of PAN thermal degradation to PAA formation under conditions of different NOx concentrations is estimated based on the chemical kinetics analysis. The result shows that PAN seems to play an important role in the formation of PAA when the NO/NO2 concentration ratio was less than 0.2 and PAA would correspondingly have feedback on the PAN-NOx cycle. (iii PAA and other peroxides, such as methyl hydroperoxide (MHP and H2O2, usually exhibited a similar asymmetric shape typically shifted to the afternoon. However, under some conditions, H2O2 diurnal cycle was out of phase with MHP and PAA. The combination of linear regression and

  3. Peroxyacetic acid in urban and rural atmosphere: concentration, feedback on PAN-NOx cycle and implication on radical chemistry

    Directory of Open Access Journals (Sweden)

    J. L. Li

    2009-10-01

    Full Text Available Peroxyacetic Acid (PAA is one of important atmospheric organic peroxides, which have received increasing attention for their potential contribution to the oxidation capacity of the troposphere and the formation of secondary aerosols. We report here that, for the first time, a series of data for atmospheric PAA concentrations at urban and rural sites, from five field campaigns carried out in China in summer 2006, 2007 and 2008. For these five measurements, daytime mean PAA concentrations on sunlit days were 0.02–0.14 ppbv with a maximum level of ~1 ppbv. The various meteorological and chemical parameters influencing PAA concentrations were examined using the Principal Factor Analysis. This statistical analysis shows that the local photochemical production was the major source of PAA, and its concentration increased with increasing temperature, solar radiation and ozone but decreased with increasing NOx (NO and NO2, CO, SO2, and relative humidity. Based on the dataset, several issues are highlighted in this study: (i because PAA is a product from the photochemical oxidation of some specific volatile organic compounds (VOCs that lead to acetyl peroxy radicals, the importance of various VOCs with respect to the PAA formation is therefore ranked using the incremental reactivity method. (ii The contribution of PAN thermal degradation to PAA formation under conditions of different NOx concentrations is estimated based on the chemical kinetics analysis. The result shows that PAN seems to play an important role in the formation of PAA when the NO/NO2 concentration ratio was less than 0.2 and PAA would correspondingly have feedback on the PAN-NOx cycle. (iii PAA and other peroxides, such as methyl hydroperoxide (MHP and H2O2, usually exhibited a similar asymmetric shape typically shifted to the afternoon. However, at a high SO2 level, H2O2 showed a profile different from those of MHP and PAA. The combination of linear regression and chemical kinetics

  4. On the formation of sulphuric acid – amine clusters in varying atmospheric conditions and its influence on atmospheric new particle formation

    Directory of Open Access Journals (Sweden)

    I. K. Ortega

    2012-10-01

    Full Text Available Sulphuric acid is a key component in atmospheric new particle formation. However, sulphuric acid alone does not form stable enough clusters to initiate particle formation in atmospheric conditions. Strong bases, such as amines, have been suggested to stabilize sulphuric acid clusters and thus participate in particle formation. We modelled the formation rate of clusters with two sulphuric acid and two amine molecules (JA2B2 at varying atmospherically relevant conditions with respect to concentrations of sulphuric acid ([H2SO4], dimethylamine ([DMA] and trimethylamine ([TMA], temperature and relative humidity (RH. We also tested how the model results change if we assume that the clusters with two sulphuric acid and two amine molecules would act as seeds for heterogeneous nucleation of organic vapours (other than amines with higher atmospheric concentrations than sulphuric acid. The modelled formation rates JA2B2 were functions of sulphuric acid concentration with close to quadratic dependence, which is in good agreement with atmospheric observations of the connection between the particle formation rate and sulphuric acid concentration. The coefficients KA2B2 connecting the cluster formation rate and sulphuric acid concentrations as JA2B2=KA2B2[H2SO4]2 turned out to depend also on amine concentrations, temperature and relative humidity. We compared the modelled coefficients KA2B2 with the corresponding coefficients calculated from the atmospheric observations (Kobs from environments with varying temperatures and levels of anthropogenic influence. By taking into account the modelled behaviour of JA2B2 as a function of [H2SO4], temperature and RH, the atmospheric particle formation rate was reproduced more closely than with the traditional semi-empirical formulae based on sulphuric acid concentration only. The formation rates of clusters with two sulphuric acid and two amine molecules with different amine compositions (DMA or TMA or one of both had

  5. Volatile Fatty Acids Production from Codigestion of Food Waste and Sewage Sludge Based on β-Cyclodextrins and Alkaline Treatments

    Directory of Open Access Journals (Sweden)

    Xue Yang

    2016-01-01

    Full Text Available Volatile fatty acids (VFAs are preferred valuable resources, which can be produced from anaerobic digestion process. This study presents a novel technology using β-cyclodextrins (β-CD pretreatment integrated alkaline method to enhance VFAs production from codigestion of food waste and sewage sludge. Experiment results showed that optimized ratio of food waste to sewage sludge was 3 : 2 because it provided adequate organic substance and seed microorganisms. Based on this optimized ratio, the integrated treatment of alkaline pH 10 and β-CD addition (0.2 g/g TS performed the best enhancement on VFAs production, and the maximum VFAs production was 8631.7 mg/L which was 6.13, 1.38, and 1.57 times higher than that of control, initial pH 10, and 0.2 g β-CD/g TS treatment, respectively. Furthermore, the hydrolysis rate of protein and polysaccharides was greatly improved in integration treatment, which was 1.18–3.45 times higher than that of other tests. Though the VFAs production and hydrolysis of polymeric organics were highly enhanced, the primary bacterial communities with different treatments did not show substantial differences.

  6. Simulation Analysis of Sludge Disposal and Volatile Fatty Acids Production from Gravity Pressure Reactor via Wet Air Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gwon Woo [Biomass and Waste Energy Laboratory, KIER, Daejeon (Korea, Republic of); Seo, Tae Wan; Lee, Hong-Cheol; Hwang, In-Ju [Environmental and Plant Engineering Research Institute, KICT, Goyang (Korea, Republic of)

    2016-04-15

    Efficacious wastewater treatment is essential for increasing sewage sludge volume and implementing strict environmental regulations. The operation cost of sludge treatment amounts up to 50% of the total costs for wastewater treatment plants, therefore, an economical sludge destruction method is crucially needed. Amid several destruction methods, wet air oxidation (WAO) can efficiently treat wastewater containing organic pollutants. It can be used not only for sludge destruction but also for useful by-product production. Volatile fatty acids (VFAs), one of many byproducts, is considered to be an important precursor of biofuel and chemical materials. Its high reaction condition has instituted the study of gravity pressure reactor (GPR) for an economical process of WAO to reduce operation cost. Simulation of subcritical condition was conducted using Aspen Plus with predictive Soave-Redlich-Kwong (PSRK) equation of state. Conjointly, simulation analysis for GPR depth, oxidizer type, sludge flow rate and oxidizer injection position was carried out. At GPR depth of 1000m and flow rate of 2 ton/h, the conversion and yield of VFAs were 92.02% and 0.17g/g, respectively.

  7. Oenological characteristics, amino acids and volatile profiles of Hongqu rice wines during pottery storage: Effects of high hydrostatic pressure processing.

    Science.gov (United States)

    Tian, Yuting; Huang, Jiamei; Xie, Tingting; Huang, Luqiang; Zhuang, Weijin; Zheng, Yafeng; Zheng, Baodong

    2016-07-15

    Hongqu rice wines were subjected to high hydrostatic pressure (HHP) treatments of 200 MPa and 550 MPa at 25 °C for 30 min and effects on wine quality during pottery storage were examined. HHP treatment can significantly (pwines. After 18 months of storage, the HHP-treated wines exhibited a more rapid decrease in total sugars (9.3-15.3%), lower free amino acid content (e.g. lysine content decreased by 45.0-84.5%), and higher ketone content (e.g. 6- and 14-fold increase for 2-nonanone). These changes could be attributed to the occurrence of Maillard and oxidation reactions. The wines treated at 550 MPa for 30 min developed about twice as rapidly during pottery storage than untreated wines based on principal component analysis. After only 6 months, treated wines had a volatile composition and an organoleptic quality similar to that of untreated wines stored in pottery for 18 months. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Volatile fatty acids derived from waste organics provide an economical carbon source for microbial lipids/biodiesel production.

    Science.gov (United States)

    Park, Gwon Woo; Fei, Qiang; Jung, Kwonsu; Chang, Ho Nam; Kim, Yeu-Chun; Kim, Nag-jong; Choi, Jin-dal-rae; Kim, Sangyong; Cho, Jaehoon

    2014-12-01

    Volatile fatty acids (VFAs) derived from organic waste, were used as a low cost carbon source for high bioreactor productivity and titer. A multi-stage continuous high cell density culture (MSC-HCDC) process was employed for economic assessment of microbial lipids for biodiesel production. In a simulation study we used a lipid yield of 0.3 g/g-VFAs, cell mass yield of 0.5 g/g-glucose or wood hydrolyzates, and employed process variables including lipid contents from 10-90% of cell mass, bioreactor productivity of 0.5-48 g/L/h, and plant capacity of 20000-1000000 metric ton (MT)/year. A production cost of USD 1.048/kg-lipid was predicted with raw material costs of USD 0.2/kg for wood hydrolyzates and USD 0.15/kg for VFAs; 9 g/L/h bioreactor productivity; 100, 000 MT/year production capacity; and 75% lipids content. The variables having the highest impact on microbial lipid production costs were the cost of VFAs and lipid yield, followed by lipid content, fermenter cost, and lipid productivity. The cost of raw materials accounted for 66.25% of total operating costs. This study shows that biodiesel from microbial lipids has the potential to become competitive with diesels from other sources.

  9. Improving volatile fatty acids production by exploiting the residual substrates in post-fermented sludge: Protease catalysis of refractory protein.

    Science.gov (United States)

    Yin, Bo; Liu, Hongbo; Wang, Yuanyuan; Bai, Jie; Liu, He; Fu, Bo

    2016-03-01

    The real cause to the low yield of volatile fatty acids (VFAs), from inhibition or low biodegradation, is uncertain in sludge anaerobic fermentation. In this study, poor biodegradability of proteins and fast decrease of the indigenous hydrolase activity in the residual post-fermented sludge were found to be the major reasons. With the addition of trypsin or alkaline protease in residual post-fermented sludge after primary alkaline fermentation, degradation efficiency of refractory protein increased by 33.6% and 34.8%, respectively. Accordingly, the VFAs yields were improved by 69.7% and 106.1%, respectively. Furthermore, the activities of added trypsin and alkaline protease could maintain at 13.52 U/mL and 19.11 U/mL in the alkaline fermentation process. This study demonstrated that exploiting the refractory proteins in residual post-fermented sludge by protease addition seems to be a very promising way for improving VFAs yield of conventional alkaline fermentations with waste activated sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities

    Energy Technology Data Exchange (ETDEWEB)

    Franke-Whittle, Ingrid H., E-mail: ingrid.whittle@uibk.ac.at [Institut für Mikrobiologie, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck (Austria); Walter, Andreas [Institut für Mikrobiologie, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck (Austria); Ebner, Christian [Abwasserverband Zirl und Umgebung, Meilbrunnen 5, 6170 Zirl (Austria); Insam, Heribert [Institut für Mikrobiologie, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck (Austria)

    2014-11-15

    Highlights: • Different methanogenic communities in mesophilic and thermophilic reactors. • High VFA levels do not cause major changes in archaeal communities. • Real-time PCR indicated greater diversity than ANAEROCHIP microarray. - Abstract: A study was conducted to determine whether differences in the levels of volatile fatty acids (VFAs) in anaerobic digester plants could result in variations in the indigenous methanogenic communities. Two digesters (one operated under mesophilic conditions, the other under thermophilic conditions) were monitored, and sampled at points where VFA levels were high, as well as when VFA levels were low. Physical and chemical parameters were measured, and the methanogenic diversity was screened using the phylogenetic microarray ANAEROCHIP. In addition, real-time PCR was used to quantify the presence of the different methanogenic genera in the sludge samples. Array results indicated that the archaeal communities in the different reactors were stable, and that changes in the VFA levels of the anaerobic digesters did not greatly alter the dominating methanogenic organisms. In contrast, the two digesters were found to harbour different dominating methanogenic communities, which appeared to remain stable over time. Real-time PCR results were inline with those of microarray analysis indicating only minimal changes in methanogen numbers during periods of high VFAs, however, revealed a greater diversity in methanogens than found with the array.

  11. Microbial load, acidity, lipid oxidation and volatile basic nitrogen of irradiated fish and meat-bone meals.

    Science.gov (United States)

    Al-Masri, M R; Al-Bachir, M

    2007-04-01

    Experiments were carried out to study the effect of different doses of gamma irradiation (0, 5, 10, 15 and 20 kilo gray; kGy) on some nutritive components and chemical aspects pertaining to quality of fish meal and meat-bone meal. The radiation doses required to reduce the total microbial load and Salmonella sp. one log cycle (D(10)) in fish meal and meat-bone meal were determined. Results indicated that gamma irradiation of fish meal and meat-bone meal with 5-20 kGy doses had no effects on the total acidity values but increased the values of lipid oxidation and total volatile basic nitrogen. D(10) of total microbial load and Salmonella sp. were 833 and 313 Gy for fish meal and 526 Gy and 278 Gy for meat-bone meal, respectively. It can be concluded that radiation processing could be employed in the recycling of fish and meat-bone meals by using them as feedstuffs in poultry diets with no fear of losing their nutritive components.

  12. O-Toluic Acid Monomer and Monohydrate: Rotational Spectra, Structures, and Atmospheric Implications

    Science.gov (United States)

    Schnitzler, Elijah G.; Zenchyzen, Brandi L. M.; Jäger, Wolfgang

    2015-06-01

    Clusters of carboxylic acids with water, sulfuric acid, and other atmospheric species potentially increase the rate of new particle formation in the troposphere. Here, we present high-resolution pure rotational spectra of o-toluic acid and its complex with water in the range of 5-14 GHz, measured with a cavity-based molecular beam Fourier-transform microwave spectrometer. In both the monomer and the complex, the carboxylic acid functional group adopts a syn- conformation, with the acidic proton oriented away from the aromatic ring. In the complex, water participates in two hydrogen bonds, forming a six-membered intermolecular ring. Despite its large calculated c-dipole moment, no c-type transitions were observed for the complex, because of a large amplitude "wagging" motion of the unbound hydrogen of water, similar to the case of the benzoic acid-water complex. No methyl internal rotation splittings were observed, consistent with a high barrier (7 kJ mol-1) calculated for the monomer at the B3LYP/6-311++G(d,p) level of theory. Using statistical thermodynamics, experimental rotational constants were combined with a theoretical frequency analysis and binding energy to give an estimate of the percentage of hydrated acid in the atmosphere under various conditions. F. Riccobono, et al., Science, 344, 717 (2014). R. Zhang, et al., Science, 304, 1487 (2004). E. G. Schnitzler and W. Jäger, Phys. Chem. Chem. Phys., 16, 2305 (2014).

  13. Limitations to ruminal absorption of volatile fatty acids in lactating dairy cows

    DEFF Research Database (Denmark)

    Storm, Adam Christian

    The symbiotic relationship between ruminants and the microbial inhabitants of the rumen constitutes a unique feature of the ruminant digestive system. Through the microbial utilization of feed carbohydrates and protein in the rumen, substantial amounts of fermentation products and microbial cell...... acids in lactating dairy cows”. We hypothesized that by changing the physical characteristics of the rumen mat through changes in dietary factors of TMR, dry matter, and forages particle size, we could manipulate intra-ruminal equilibration of VFA and ruminal absorption pattern. We observed...... that the ruminal VFA concentrations and net portal flux of VFA were not manipulated by these dietary changes when feeding a balanced ration. The dry matter content of the TMR had generally no effect and the effect of dietary particle size was limited to the ruminal mat size and chewing activities. We observed...

  14. Automatic on-line monitoring of atmospheric volatile organic compounds: gas chromatography-mass spectrometry and gas chromatography-flame ionization detection as complementary systems.

    Science.gov (United States)

    de Blas, Maite; Navazo, Marino; Alonso, Lucio; Durana, Nieves; Iza, Jon

    2011-11-15

    Traditionally air quality networks have been carrying out the continuous, on-line measurement of volatile organic compounds (VOC) in ambient air with GC-FID. In this paper some identification and coelution problems observed while using this technique in long-term measurement campaigns are described. In order to solve these problems a GC-MS was set up and operated simultaneously with a GC-FID for C2-C11 VOCs measurement. There are few on-line, unattended, long term measurements of atmospheric VOCs performed with GC-MS. In this work such a system has been optimized for that purpose, achieving good repeatability, linearity, and detection limits of the order of the GC-FID ones, even smaller in some cases. VOC quantification has been made by using response factors, which is not frequent in on-line GC-MS. That way, the identification and coelution problems detected in the GC-FID, which may led to reporting erroneous data, could be corrected. The combination of GC-FID and GC-MS as complementary techniques for the measurement of speciated VOCs in ambient air at sub-ppbv levels is proposed. Some results of the measurements are presented, including concentration values for some compounds not found until now on public ambient air VOC databases, which were identified and quantified combining both techniques. Results may also help to correct previously published VOC data with wrongly identified compounds by reprocessing raw chromatographic data.

  15. Automatic on-line monitoring of atmospheric volatile organic compounds: Gas chromatography-mass spectrometry and gas chromatography-flame ionization detection as complementary systems

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Maite de, E-mail: maite.deblas@ehu.es [Chemical and Environmental Engineering Department, University College of Technical Mining and Civil Engineering, University of the Basque Country, Colina de Beurco s/n, 48902 Barakaldo (Spain); Navazo, Marino; Alonso, Lucio; Durana, Nieves [Chemical and Environmental Engineering Department, School of Engineering, University of the Basque Country, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Iza, Jon [Chemical and Environmental Engineering Department, Faculty of Pharmacy, University of the Basque Country, Paseo de la Universidad, 7, 01006, Vitoria-Gasteiz (Spain)

    2011-11-15

    Traditionally air quality networks have been carrying out the continuous, on-line measurement of volatile organic compounds (VOC) in ambient air with GC-FID. In this paper some identification and coelution problems observed while using this technique in long-term measurement campaigns are described. In order to solve these problems a GC-MS was set up and operated simultaneously with a GC-FID for C{sub 2}-C{sub 11} VOCs measurement. There are few on-line, unattended, long term measurements of atmospheric VOCs performed with GC-MS. In this work such a system has been optimized for that purpose, achieving good repeatability, linearity, and detection limits of the order of the GC-FID ones, even smaller in some cases. VOC quantification has been made by using response factors, which is not frequent in on-line GC-MS. That way, the identification and coelution problems detected in the GC-FID, which may led to reporting erroneous data, could be corrected. The combination of GC-FID and GC-MS as complementary techniques for the measurement of speciated VOCs in ambient air at sub-ppbv levels is proposed. Some results of the measurements are presented, including concentration values for some compounds not found until now on public ambient air VOC databases, which were identified and quantified combining both techniques. Results may also help to correct previously published VOC data with wrongly identified compounds by reprocessing raw chromatographic data.

  16. Inhibition of volatile compounds derived from fatty acid oxygenation with chilling and heating treatments and their influences on the oxylipin pathawy gene expression and enzyme activity levels in tomato (Solanum lycopersicon

    Science.gov (United States)

    Hexanal, Z-3-hexenal, E-2-hexenal, hexanol and Z-3-hexenol are major tomato (Solanum Lycopersicon) volatile aromas derived from oxygenation of unsaturated fatty acids. Chilling or heating treatments suppress production of these C6 volatiles. The objective of this research was to determine the respon...

  17. Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels.

    Science.gov (United States)

    Kondaveeti, Sanath; Min, Booki

    2015-12-15

    This study proves for the first time the feasibility of biofuel production from anaerobic digestion effluent via bioelectrochemical cell operation at various applied cell voltages (1.0, 1.5 and 2.0 V). An increase in cell voltage from 1 to 2 V resulted in more reduction current generation (-0.48 to -0.78 mA) at a lowered cathode potential (-0.45 to -0.84 mV vs Ag/AgCl). Various alcohols were produced depending on applied cell voltages, and the main products were butanol, ethanol, and propanol. Hydrogen and methane production were also observed in the headspace of the cell. A large amount of lactic acid was unexpectedly formed at all conditions, which might be the primary cause of the limited biofuel production. The addition of neutral red (NR) to the system could increase the cathodic reduction current, and thus more biofuels were produced with an enhanced alcohol formation compared to without a mediator.

  18. Effect of xylanase and cellulase supplementation on growth performance, volatile fatty acids and caecal bacteria of broiler chickens fed with palm kernel meal-based diet

    OpenAIRE

    2014-01-01

    In this study, the effect of xylanase and cellulase supplementation in palm kernel meal (PKM) based diet on growth performance, volatile fatty acids (VFAs) and the caecal bacterial populations of broiler chickens were investigated. Seventy five day old male Cobb broiler chicks were randomly allocated to three dietary treatment groups receiving T1 (20% PKM-based diet without enzyme), T2 (20% PKM-based diet with xylanase) and T3 (20% PKM-based diet with cellulase). Each enzyme was supplemented ...

  19. Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF

    Directory of Open Access Journals (Sweden)

    T. Jokinen

    2011-12-01

    Full Text Available The first ambient measurements using nitrate ion based Chemical Ionization with the Atmospheric Pressure interface Time-Of-Flight mass spectrometer (CI-APi-TOF for sulphuric acid and neutral cluster detection are presented. We have found CI-APi-TOF a highly stable and sensitive tool for molecular sulphuric acid detection. The lowest limit of detection for sulphuric acid was determined to be 3 × 104 molecules cm−3 for two hour averaging. Signals from sulphuric acid clusters up to tetramer accompanied by ammonia were also obtained but these were found to result from naturally charged clusters formed by ion induced clustering in the atmosphere during nucleation. Opposite to earlier studies with cluster mass spectrometers, we had no indication of neutral clusters. The reason is either less efficient charging of clusters in comparison to molecular sulphuric acid, or in low concentration of neutral clusters at our measurement site during these particular nucleation events. We show that utilizing high resolution mass spectrometry is crucial in separating the weak sulfuric acid cluster signal from the other compounds.

  20. Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF

    Directory of Open Access Journals (Sweden)

    T. Jokinen

    2012-05-01

    Full Text Available The first ambient measurements using nitrate ion based Chemical Ionization with the Atmospheric Pressure interface Time-Of-Flight mass spectrometer (CI-APi-TOF for sulphuric acid and neutral cluster detection are presented. We have found CI-APi-TOF a highly stable and sensitive tool for molecular sulphuric acid detection. The lowest limit of detection for sulphuric acid was determined to be 3.6 × 104 molecules cm−3 for 15 min averaging. Signals from sulphuric acid clusters up to tetramer containing ammonia were also obtained but these were found to result from naturally charged clusters formed by ion induced clustering in the atmosphere during nucleation. Opposite to earlier studies with cluster mass spectrometers, we had no indication of neutral clusters. The reason is either less efficient charging of clusters in comparison to molecular sulphuric acid, or the low concentration of neutral clusters at our measurement site during these particular nucleation events. We show that utilizing high resolution mass spectrometry is crucial in separating the weak sulfuric acid cluster signal from other compounds.

  1. Volatility Discovery

    DEFF Research Database (Denmark)

    Dias, Gustavo Fruet; Scherrer, Cristina; Papailias, Fotis

    The price discovery literature investigates how homogenous securities traded on different markets incorporate information into prices. We take this literature one step further and investigate how these markets contribute to stochastic volatility (volatility discovery). We formally show...... that the realized measures from homogenous securities share a fractional stochastic trend, which is a combination of the price and volatility discovery measures. Furthermore, we show that volatility discovery is associated with the way that market participants process information arrival (market sensitivity...

  2. Volatile Metabolites

    Directory of Open Access Journals (Sweden)

    Daryl D. Rowan

    2011-11-01

    Full Text Available Volatile organic compounds (volatiles comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites.

  3. Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution

    Science.gov (United States)

    Takai, Eisuke; Kitamura, Tsuyoshi; Kuwabara, Junpei; Ikawa, Satoshi; Yoshizawa, Shunsuke; Shiraki, Kentaro; Kawasaki, Hideya; Arakawa, Ryuichi; Kitano, Katsuhisa

    2014-07-01

    Plasma medicine is an attractive new research area, but the principles of plasma modification of biomolecules in aqueous solution remain elusive. In this study, we investigated the chemical effects of atmospheric-pressure cold plasma on 20 naturally occurring amino acids in aqueous solution. High-resolution mass spectrometry revealed that chemical modifications of 14 amino acids were observed after plasma treatment: (i) hydroxylation and nitration of aromatic rings in tyrosine, phenylalanine and tryptophan; (ii) sulfonation and disulfide linkage formation of thiol groups in cysteine; (iii) sulfoxidation of methionine and (iv) amidation and ring-opening of five-membered rings in histidine and proline. A competitive reaction experiment using 20 amino acids demonstrated that sulfur-containing and aromatic amino acids were preferentially decreased by the plasma treatment. These data provide fundamental information for elucidating the mechanism of protein inactivation for biomedical plasma applications.

  4. Surface modification of cellulosic substrates via atmospheric pressure plasma polymerization of acrylic acid: Structure and properties

    Science.gov (United States)

    Garcia-Torres, Jose; Sylla, Dioulde; Molina, Laura; Crespo, Eulalia; Mota, Jordi; Bautista, Llorenç

    2014-06-01

    Surface chemical modification of cellulose-based substrates has been carried out by atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD) of acrylic acid. The structure/properties relationship of the samples was studied as a function of the plasma experimental conditions. Acrylic acid monomer/helium ratio and treatment speed clearly influences the wettability properties of the paper substrate: advancing contact angle values were reduced to the half if compare to non-treated paper. Surface morphology of the films did not greatly vary at short polymerization times but fibers were covered by a poly(acrylic acid) film at longer times. FTIR and XPS techniques allowed detecting the retention of carboxylic acid groups/moieties. The possibility to quickly design architectures with tunable carboxylic functions by modifying the plasma processing parameters is shown.

  5. Evaluating enhanced sulfate reduction and optimized volatile fatty acids (VFA) composition in anaerobic reactor by Fe (III) addition.

    Science.gov (United States)

    Liu, Yiwen; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-17

    Anaerobic reactors with ferric iron addition have been experimentally demonstrated to be able to simultaneously improve sulfate reduction and organic matter degradation during sulfate-containing wastewater treatment. In this work, a mathematical model is developed to evaluate the impact of ferric iron addition on sulfate reduction and organic carbon removal as well as the volatile fatty acids (VFA) composition in anaerobic reactor. The model is successfully calibrated and validated using independent long-term experimental data sets from the anaerobic reactor with Fe (III) addition under different operational conditions. The model satisfactorily describes the sulfate reduction, organic carbon removal and VFA production. Results show Fe (III) addition induces the microbial reduction of Fe (III) by iron reducing bacteria (IRB), which significantly enhances sulfate reduction by sulfate reducing bacteria (SRB) and subsequently changes the VFA composition to acetate-dominating effluent. Simultaneously, the produced Fe (II) from IRB can alleviate the inhibition of undissociated H2S on microorganisms through iron sulfide precipitation, resulting in further improvement of the performance. In addition, the enhancement on reactor performance by Fe (III) is found to be more significantly favored at relatively low organic carbon/SO4(2-) ratio (e.g., 1.0) than at high organic carbon/SO4(2-) ratio (e.g., 4.5). The Fe (III)-based process of this work can be easily integrated with a commonly used strategy for phosphorus recovery, with the produced sulfide being recovered and then deposited into conventional chemical phosphorus removal sludge (FePO4) to achieve FeS precipitation for phosphorus recovery while the required Fe (III) being acquired from the waste ferric sludge of drinking water treatment process, to enable maximum resource recovery/reuse while achieving high-rate sulfate removal.

  6. Nitrogen isotopes in ice core nitrate linked to anthropogenic atmospheric acidity change

    Science.gov (United States)

    Geng, Lei; Alexander, Becky; Cole-Dai, Jihong; Steig, Eric J.; Savarino, Joël; Sofen, Eric D.; Schauer, Andrew J.

    2014-01-01

    Nitrogen stable isotope ratio (δ15N) in Greenland snow nitrate and in North American remote lake sediments has decreased gradually beginning as early as ∼1850 Christian Era. This decrease was attributed to increasing atmospheric deposition of anthropogenic nitrate, reflecting an anthropogenic impact on the global nitrogen cycle, and the impact was thought to be amplified ∼1970. However, our subannually resolved ice core records of δ15N and major ions (e.g., , ) over the last ∼200 y show that the decrease in δ15N is not always associated with increasing concentrations, and the decreasing trend actually leveled off ∼1970. Correlation of δ15N with H+, , and HNO3 concentrations, combined with nitrogen isotope fractionation models, suggests that the δ15N decrease from ∼1850–1970 was mainly caused by an anthropogenic-driven increase in atmospheric acidity through alteration of the gas−particle partitioning of atmospheric nitrate. The concentrations of and also leveled off ∼1970, reflecting the effect of air pollution mitigation strategies in North America on anthropogenic NOx and SO2 emissions. The consequent atmospheric acidity change, as reflected in the ice core record of H+ concentrations, is likely responsible for the leveling off of δ15N ∼1970, which, together with the leveling off of concentrations, suggests a regional mitigation of anthropogenic impact on the nitrogen cycle. Our results highlight the importance of atmospheric processes in controlling δ15N of nitrate and should be considered when using δ15N as a source indicator to study atmospheric flux of nitrate to land surface/ecosystems. PMID:24711383

  7. Oxaldihydroxamic acid as a new reagent for the fixation of atmospheric sulfur dioxide

    Science.gov (United States)

    Paul, Khana Rani; Gupta, V. K.

    In the present investigation 0.01 M aqueous oxaldihydroxamic acid has been used to stabilize the atmospheric sulfur dioxide. The collection efficiency of the reagent was found to be ~ 100% and the sulfite solution was stable for ⩾ 30 days at room temperature. The sulfite ion was estimated colorimetrically using acidified p-aminoazobenzene and formaldehyde. The pink coloured dye, λmax 505 nm, obeys Beer's law in the range of 0.1-1 ppm. The procedure has been optimized with respect to the acidity, time and reagent concentration. The method is simple, free from pH dependence and several commonly present air pollutants do not interfere.

  8. Cyanuric Acid-Based Organocatalyst for Utilization of Carbon Dioxide at Atmospheric Pressure.

    Science.gov (United States)

    Yu, Bing; Kim, Daeun; Kim, Seoksun; Hong, Soon Hyeok

    2017-03-22

    A organocatalytic system based on economical and readily available cyanuric acid has been developed for the synthesis of 2-oxazolidinones and quinazoline-2,4(1H,3H)-diones from propargylamines and 2-aminobenzonitriles under atmospheric pressure carbon dioxide. Notably, a low concentration of carbon dioxide in air was directly converted into 2-oxazolidinone in excellent yields without an external base. Through mechanistic investigation by in situ FTIR spectroscopy, cyanuric acid was demonstrated to be an efficient catalyst for carbon dioxide fixation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Dissolved total hydrolyzable enantiomeric amino acids in precipitation: Implications on bacterial contributions to atmospheric organic matter

    Science.gov (United States)

    Yan, Ge; Kim, Guebuem; Kim, Jeonghyun; Jeong, Yu-Sik; Kim, Young Il

    2015-03-01

    We analyzed dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved enantiomeric amino acids in precipitation samples collected at two sites in Korea over a one-year period. The average concentrations of DOC, DON, and total hydrolyzable amino acids at Seoul (an inland urban area) were lower than those at Uljin (a coastal rural area). The different bulk compositions of dissolved organic matter (DOM) at these two sites (reflected by qualitative indicators) were mainly attributed to differences in contributing sources. The D-enantiomers of four individual amino acids (aspartic acid, glutamic acid, serine, and alanine) were ubiquitously present, with average enantiomeric (D/L) ratios of 0.34, 0.26, 0.21, and 0.61 for Seoul, and 0.18, 0.11, 0.09, and 0.31 for Uljin, respectively. The much higher D/L ratios observed at Seoul than at Uljin might result from more advanced diagenetic stages as well as higher contributions from bacteria inhabiting terrestrial environments. The C- and N-normalized yields of D-alanine in DOM of our samples were found to be comparable to literature values reported for aquatic systems, where a significant portion of DOM was suggested to be of bacterial origin. Our study suggests that bacteria and their remnants might constitute an important fraction of OM in the atmosphere, contributing significantly to the quality of atmospheric OM and its post-depositional bioavailability in the surface ecosystems.

  10. Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions

    Science.gov (United States)

    Brus, D.; Neitola, K.; Hyvärinen, A.-P.; Petäjä, T.; Vanhanen, J.; Sipilä, M.; Paasonen, P.; Kulmala, M.; Lihavainen, H.

    2011-06-01

    In this study the homogeneous nucleation rates in the system of sulfuric acid and water were measured by using a flow tube technique. The goal was to directly compare particle formation rates obtained from atmospheric measurements with nucleation rates of freshly nucleated particles measured with particle size magnifier (PSM) which has detection efficiency of unity for particles having mobility diameter of 1.5 nm. The gas phase sulfuric acid concentration in this study was measured with the chemical ionization mass spectrometer (CIMS), commonly used in field measurements. The wall losses of sulfuric acid were estimated from measured concentration profiles along the flow tube. The initial concentrations of sulfuric acid estimated from loss measurements ranged from 108 to 3 × 109 molecules cm-3. The nucleation rates obtained in this study cover about three orders of magnitude from 10-1 to 102 cm-3 s-1 for commercial ultrafine condensation particle counter (UCPC) TSI model 3025A and from 101 to 104 cm-3 s-1 for PSM. The nucleation rates and the slopes (dlnJ/dln [H2SO4]) show satisfactory agreement when compared to empirical kinetic and activation models and the latest atmospheric nucleation data. To the best of our knowledge, this is the first experimental work providing temperature dependent nucleation rate measurements using a high efficiency particle counter with a cut-off-size of 1.5 nm together with direct measurements of gas phase sulfuric acid concentration.

  11. Technical Note: A fully automated purge and trap GC-MS system for quantification of volatile organic compound (VOC fluxes between the ocean and atmosphere

    Directory of Open Access Journals (Sweden)

    S. J. Andrews

    2015-04-01

    Full Text Available The oceans are a key source of a number of atmospherically important volatile gases. The accurate and robust determination of trace gases in seawater is a significant analytical challenge, requiring reproducible and ideally automated sample handling, a high efficiency of seawater–air transfer, removal of water vapour from the sample stream, and high sensitivity and selectivity of the analysis. Here we describe a system that was developed for the fully automated analysis of dissolved very short-lived halogenated species (VSLS sampled from an under-way seawater supply. The system can also be used for semi-automated batch sampling from Niskin bottles filled during CTD (conductivity, temperature, depth profiles. The essential components comprise a bespoke, automated purge and trap (AutoP & T unit coupled to a commercial thermal desorption and gas chromatograph mass spectrometer (TD-GC-MS. The AutoP & T system has completed five research cruises, from the tropics to the poles, and collected over 2500 oceanic samples to date. It is able to quantify >25 species over a boiling point range of 34–180 °C with Henry's law coefficients of 0.018 and greater (CH22l, kHcc dimensionless gas/aqueous and has been used to measure organic sulfurs, hydrocarbons, halocarbons and terpenes. In the eastern tropical Pacific, the high sensitivity and sampling frequency provided new information regarding the distribution of VSLS, including novel measurements of a photolytically driven diurnal cycle of CH22l within the surface ocean water.

  12. Sensitive monitoring of volatile chemical warfare agents in air by atmospheric pressure chemical ionization mass spectrometry with counter-flow introduction.

    Science.gov (United States)

    Seto, Yasuo; Kanamori-Kataoka, Mieko; Tsuge, Koichiro; Ohsawa, Isaac; Iura, Kazumitsu; Itoi, Teruo; Sekiguchi, Hiroyuki; Matsushita, Koji; Yamashiro, Shigeharu; Sano, Yasuhiro; Sekiguchi, Hiroshi; Maruko, Hisashi; Takayama, Yasuo; Sekioka, Ryoji; Okumura, Akihiko; Takada, Yasuaki; Nagano, Hisashi; Waki, Izumi; Ezawa, Naoya; Tanimoto, Hiroyuki; Honjo, Shigeru; Fukano, Masumi; Okada, Hidehiro

    2013-03-05

    A new method for sensitively and selectively detecting chemical warfare agents (CWAs) in air was developed using counter-flow introduction atmospheric pressure chemical ionization mass spectrometry (MS). Four volatile and highly toxic CWAs were examined, including the nerve gases sarin and tabun, and the blister agents mustard gas (HD) and Lewisite 1 (L1). Soft ionization was performed using corona discharge to form reactant ions, and the ions were sent in the direction opposite to the airflow by an electric field to eliminate the interfering neutral molecules such as ozone and nitrogen oxide. This resulted in efficient ionization of the target CWAs, especially in the negative ionization mode. Quadrupole MS (QMS) and ion trap tandem MS (ITMS) instruments were developed and investigated, which were movable on the building floor. For sarin, tabun, and HD, the protonated molecular ions and their fragment ions were observed in the positive ion mode. For L1, the chloride adduct ions of L1 hydrolysis products were observed in negative ion mode. The limit of detection (LOD) values in real-time or for a 1 s measurement monitoring the characteristic ions were between 1 and 8 μg/m(3) in QMS instrument. Collision-induced fragmentation patterns for the CWAs were observed in an ITMS instrument, and optimized combinations of the parent and daughter ion pairs were selected to achieve real-time detection with LOD values of around 1 μg/m(3). This is a first demonstration of sensitive and specific real-time detection of both positively and negatively ionizable CWAs by MS instruments used for field monitoring.

  13. Use of chloroflurocarbons as internal standards for the measurement of atmospheric non-methane volatile organic compounds sampled onto solid adsorbent cartridges.

    Science.gov (United States)

    Karbiwnyk, Christine M; Mills, Craig S; Helmig, Detlev; Birks, John W

    2003-03-01

    Solid adsorbents have proven useful for determining the vertical profiles of volatile organic compounds (VOCs) using sampling platforms such as balloons, kites, and light aircraft, and those profiles provide valuable information about the sources, sinks, transformations, and transport of atmospheric VOCs. One of the largest contributions to error in VOC concentrations is the estimation of the volume of air sampled on the adsorbent cartridge. These errors arise from different sources, such as variations in pumping flow rates from changes in ambient temperature and pressure with altitude, and decrease in the sampling pump battery power. Another significant source for sampling rate variations are differences in the flow resistance of individual sampling cartridges. To improve the accuracy and precision of VOC measurements, the use of ambient chlorofluorocarbons (CFCs) as internal standards was investigated. A multibed solid adsorbent, AirToxic (Supelco), was chosen for its wide sampling range (C3-C12). Analysis was accomplished by thermal desorption and dual detection GC/FID/ECD, resulting in sensitive and selective detection of both VOCs and CFCs in the same sample. Long-lived chlorinated compounds (CFC-11, CFC-12, CFC-113, CCl4 and CH3CCl3) banned by the Montreal Protocol and subsequent amendments were studied for their ability to predict sample volumes using both ground-based and vertical profiling platforms through the boundary layer and free troposphere. Of these compounds, CFC-113 and CCl4 were found to yield the greatest accuracy and precision for sampling volume determination. Use of ambient CFC-113 and CCl4 as internal standards resulted in accuracy and precision of generally better than 10% for the prediction of sample volumes in ground-, balloon-, and aircraft-based measurements. Consequently, use of CFCs as reference compounds can yield a significant improvement of accuracy and precision for ambient VOC measurements in situations where accurate flow

  14. Spoilage of light (PSE-like) and dark turkey meat under aerobic or modified atmosphere package: microbial indicators and their relationship with total volatile basic nitrogen.

    Science.gov (United States)

    Fraqueza, M J; Ferreira, M C; Barreto, A S

    2008-01-01

    1. The aim of this work was to evaluate the shelf life of turkey meat from different colour categories (Pale, Soft and Exudative (PSE)-like), intermediate and dark), packaged under aerobic or modified atmosphere (MAP) conditions; also to establish a relationship between microbial quality and total volatile basic nitrogen (TVB-N), evaluating its capacity for shelf life determination. 2. Breasts were selected according to luminance (L*) and pH(24): L >/= 51 and pH 5.8 for dark colour. Sliced meat was packaged under aerobic or MAP conditions with 50% N(2) and 50% CO(2), then stored in the dark at 0 +/- 1 degrees C for periods of 12 or 25 d. Meat under aerobic conditions was evaluated for microbiological characteristics and TVB-N on d 0, 5 and 12. This evaluation was extended to include d 19 and 25 when samples were under MAP conditions. 3. The dark meat group after 12 d of storage in aerobiosis presented significantly higher plate counts of aerobic mesophilic, psychrotrophic micro-organisms and higher TVB-N than other meat colour categories. The shelf life of turkey meat under MAP was one week longer for intermediate and light colour meat (20 d) than for dark meat. TVB-N values of 20 to 30 mg NH(3)/100 g turkey meat correspond to advanced spoilage stages. We proposed 14 mg NH(3)/100 g as the limit of freshness acceptability for turkey meat. 4. TVB-N was an indicator of turkey meat microbial spoilage but was not a suitable early predictor for microbial spoilage and in particular for turkey meat stored under MAP conditions because counts of micro-organisms were moderately correlated (Pseudomonas spp. and Enterobacteriaceae) with this index, as they were inhibited by MAP gas mixture and storage temperature used in the present study.

  15. Simultaneous determination of five mercapturic acid derived from volatile organic compounds in human urine by LC-MS/MS and its application to relationship study.

    Science.gov (United States)

    Zhang, Xiaotao; Xiong, Wei; Shi, Longkai; Hou, Hongwei; Hu, Qingyuan

    2014-09-15

    Acrylonitrile, acrolein, 1,3-butadiene, benzene, and crotonaldehyde are hazard volatile organic compounds in tobacco smoke, which can be metabolized to mercapturic acids (MAs) excreted in urine. MAs are can be regarded as important and specific biomarkers to evaluate exposure to those carcinogenic volatile organic compounds. A simultaneous determination of N-acetyl-S-2-cyanoethyl-cysteine (CEMA), 3-hydroxypropyl)-L-cysteine (3-HPMA), N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA), N-acetyl-S-(phenyl)-L-cysteine (SPMA) and 3-hydroxy-1-methylpropylmercapturic acid (HMPMA) derived from five volatile organic compounds by column-switching LC-MS/MS has been described. MAs were concentrated and cleaned up by an online reusable pre-column packed with restricted access material. The intra- and inter-day precisions of the method ranged from 0.7% to 15.2%. The LODs was 0.013-0.053 ng/mL. The recovery of the whole analytical procedure ranged from 79.3% to 116%. After validation, this method was successfully applied to urine samples from smokers (n=246) and nonsmokers (n=58). The results showed MAs in urine from smokers were significantly higher than that in nonsmoker except for SPMA. Urinary CEMA significantly correlated with 3-HPMA (r=0.763, PCEMA, 3-HPMA and HMPMA are potential biomarkers to distinguish the differences between smokers and nonsmokers.

  16. Chilling Stress Upregulates α-Linolenic Acid-Oxidation Pathway and Induces Volatiles of C6 and C9 Aldehydes in Mango Fruit.

    Science.gov (United States)

    Sivankalyani, Velu; Maoz, Itay; Feygenberg, Oleg; Maurer, Dalia; Alkan, Noam

    2017-01-25

    Mango-fruit storage period and shelf life are prolonged by cold storage. However, chilling temperature induces physiological and molecular changes, compromising fruit quality. In our previous transcriptomic study of mango fruit, cold storage at suboptimal temperature (5 °C) activated the α-linolenic acid metabolic pathway. To evaluate changes in fruit quality during chilling, we analyzed mango "Keitt" fruit peel volatiles. GC-MS analysis revealed significant modulations in fruit volatiles during storage at suboptimal temperature. Fewer changes were seen in response to the time of storage. The mango volatiles related to aroma, such as δ-3-carene, (Z)-β-ocimene, and terpinolene, were downregulated during the storage at suboptimal temperature. In contrast, C6 and C9 aldehydes and alcohols-α-linolenic acid derivatives 1-hexanal, (Z)-3-hexenal, (Z)-3-hexenol, (E)-2-hexenal, and nonanal-were elevated during suboptimal-temperature storage, before chilling-injury symptoms appeared. Detection of those molecules before chilling symptoms could lead to a new agro-technology to avoid chilling injuries and maintain fruit quality during cold storage at the lowest possible temperature.

  17. Historical trends in occurrence and atmospheric inputs of halogenated volatile organic compounds in untreated ground water used as a source of drinking water

    Science.gov (United States)

    Shapiro, S.D.; Busenberg, E.; Focazio, M.J.; Plummer, L.N.

    2004-01-01

    Analyses of samples of untreated ground water from 413 community-, non-community- (such as restaurants), and domestic-supply wells throughout the US were used to determine the frequency of detection of halogenated volatile organic compounds (VOCs) in drinking-water sources. The VOC data were compiled from archived chromatograms of samples analyzed originally for chlorofluorocarbons (CFCs) by purge-and-trap gas chromatography with an electron-capture detector (GC-ECD). Concentrations of the VOCs could not be ascertained because standards were not routinely analyzed for VOCs other than trichloromonofluoromethane (CFC-11), dichlorodifluoromethane (CFC-12) and 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113). Nevertheless, the peak areas associated with the elution times of other VOCs on the chromatograms can be classified qualitatively to assess concentrations at a detection limit on the order of parts per quadrillion. Three or more VOCs were detected in 100% (percent) of the chromatograms, and 77.2% of the samples contained 10 or more VOCs. The maximum number of VOCs detected in any sample was 24. Modeled ground-water residence times, determined from concentrations of CFC-12, were used to assess historical trends in the cumulative occurrence of all VOCs detected in this analysis, as well as the occurrence of individual VOCs, such as CFC-11, carbon tetrachloride (CCl4), chloroform and tetrachloroethene (PCE). The detection frequency for all of the VOCs detected has remained relatively constant from approximately 1940 to 2000; however, the magnitude of the peak areas on the chromatograms for the VOCs in the water samples has increased from 1940 to 2000. For CFC-11, CCl4, chloroform and PCE, small peaks decrease from 1940 to 2000, and large peaks increase from 1940 to 2000. The increase in peak areas on the chromatograms from analyses of more recently recharged water is consistent with reported increases in atmospheric concentrations of the VOCs. Approximately 44% and 6

  18. Propagated fixed-bed mixed-acid fermentation: Part I: Effect of volatile solid loading rate and agitation at high pH.

    Science.gov (United States)

    Golub, Kristina W; Forrest, Andrea K; Mercy, Kevin L; Holtzapple, Mark T

    2011-11-01

    Countercurrent fermentation is a high performing process design for mixed-acid fermentation. However, there are high operating costs associated with moving solids, which is an integral component of this configuration. This study investigated the effect of volatile solid loading rate (VSLR) and agitation in propagated fixed-bed fermentation, a configuration which may be more commercially viable. To evaluate the role of agitation on fixed-bed configuration performance, continuous mixing was compared with periodic mixing. VSLR was also varied and not found to affect acid yields. However, increased VSLR and liquid retention time did result in higher conversions, productivity, acid concentrations, but lower selectivities. Agitation was demonstrated to be important for this fermentor configuration, the periodically-mixed fermentation had the lowest conversion and yields. Operating at a high pH (∼9) contributed to the high selectivity to acetic acid, which might be industrially desirable but at the cost of lower yield compared to a neutral pH.

  19. Theoretical study of the hydration of atmospheric nucleation precursors with acetic acid.

    Science.gov (United States)

    Zhu, Yu-Peng; Liu, Yi-Rong; Huang, Teng; Jiang, Shuai; Xu, Kang-Ming; Wen, Hui; Zhang, Wei-Jun; Huang, Wei

    2014-09-11

    While atmosphere is known to contain a significant fraction of organic substance and the effect of acetic acid to stabilize hydrated sulfuric acids is found to be close that of ammonia, the details about the hydration of (CH3COOH)(H2SO4)2 are poorly understood, especially for the larger clusters with more water molecules. We have investigated structural characteristics and thermodynamics of the hydrates using density functional theory (DFT) at PW91PW91/6-311++G(3df,3pd) level. The phenomena of the structural evolution may exist during the early stage of the clusters formation, and we tentatively proposed a calculation path for the Gibbs free energies of the clusters formation via the structural evolution. The results in this study supply a picture of the first deprotonation of sulfuric acids for a system consisting of two sulfuric acid molecules, an acetic acid molecule, and up to three waters at 0 and 298.15 K, respectively. We also replace one of the sulfuric acids with a bisulfate anion in (CH3COOH)(H2SO4)2 to explore the difference of acid dissociation between two series of clusters and interaction of performance in clusters growth between ion-mediated nucleation and organics-enhanced nucleation.

  20. The role of cluster energy nonaccommodation in atmospheric sulfuric acid nucleation.

    Science.gov (United States)

    Kurtén, Theo; Kuang, Chongai; Gómez, Pedro; McMurry, Peter H; Vehkamäki, Hanna; Ortega, Ismael; Noppel, Madis; Kulmala, Markku

    2010-01-14

    We discuss the possible role of energy nonaccommodation (monomer-cluster collisions that do not result in stable product formation due to liberated excess energy) in atmospheric nucleation processes involving sulfuric acid. Qualitative estimates of the role of nonaccommodation are computed using quantum Rice-Ramsberger-Kassel theory together with quantum chemically calculated vibrational frequencies and anharmonic coupling constants for small sulfuric acid-containing clusters. We find that energy nonaccommodation effects may, at most, decrease the net formation rate of sulfuric acid dimers by up to a factor of 10 with respect to the hard-sphere collision rate. A decrease in energy nonaccommodation due to an increasing number of internal degrees of freedom may kinetically slightly favor the participation of amines rather than ammonia as stabilizing agents in sulfuric acid nucleation, though the kinetic enhancement factor is likely to be less than three. However, hydration of the clusters (which always occurs in ambient conditions) is likely to increase the energy accommodation factor, reducing the role that energy nonaccommodation plays in atmospheric nucleation.

  1. Homogenous nucleation of sulfuric acid and water at atmospherically relevant conditions

    Science.gov (United States)

    Brus, D.; Neitola, K.; Petäjä, T.; Vanhanen, J.; Hyvärinen, A.-P.; Sipilä, M.; Paasonen, P.; Lihavainen, H.; Kulmala, M.

    2010-11-01

    In this study the homogeneous nucleation rates of sulfuric acid and water were measured by using a flow tube technique. The goal was to directly compare particle formation rates obtained from atmospheric measurements with nucleation rates of freshly nucleated particles measured with particle size magnifier (PSM) which has detection efficiency of unity for particles having mobility diameter of 1.5 nm. The gas phase sulfuric acid concentration in this study was measured with the chemical ionization mass spectrometer (CIMS), commonly used in field measurements. The wall losses of sulfuric acid were estimated from measured concentration profiles along the flow tube. The initial concentrations of sulfuric acid estimated from loss measurements ranged from 108 to 3×109 molecules cm-3. The nucleation rates obtained in this study cover about three orders of magnitude from 10-1 to 102 cm3 s-1 for commercial ultrafine condensation particle counter (UCPC) TSI model 3025A and from 101 to 104 cm3 s-1 for PSM. The nucleation rates and the slopes (dlnJ/dln[H2SO4]) show satisfactory agreement when compared to empirical kinetic and activation models and the latest atmospheric nucleation data.

  2. The OH-initiated oxidation of atmospheric peroxyacetic acid: Experimental and model studies

    Science.gov (United States)

    Wu, Huihui; Wang, Yin; Li, Huan; Huang, Liubin; Huang, Dao; Shen, Hengqing; Xing, Yanan; Chen, Zhongming

    2017-09-01

    Peroxyacetic acid (PAA, CH3C(O)OOH) plays an important role in atmospheric chemistry, serving as reactive oxidant and affecting radical recycling. However, previous studies revealed an obvious gap between modelled and observed concentrations of atmospheric PAA, which may be partly ascribed to the uncertainty in the kinetics and mechanism of OH-oxidation. In this study, we measured the rate constant of OH radical reaction with PAA (kPAA+OH) and investigated the products in order to develop a more robust atmospheric PAA chemistry. Using the relative rates technique and employing toluene and meta-xylene as reference compounds, the kPAA+OH was determined to be (9.4-11.9) × 10-12 cm3 molecule-1 s-1 at 298 K and 1 atm, which is about (2.5-3.2) times larger than that parameter used in Master Chemical Mechanism v3.3.1 (MCM v3.3.1) (3.70 × 10-12 cm3 molecule-1 s-1). Incorporation of a box model and MCM v3.3.1 with revised PAA chemistry represented a better simulation of atmospheric PAA observed during Wangdu Campaign 2014, a rural site in North China Plain. It is found that OH-oxidation is an important sink of atmospheric PAA in this rural area, accounting for ∼30% of the total loss. Moreover, the major terminal products of PAA-OH reaction were identified as formaldehyde (HCHO) and formic acid (HC(O)OH). The modelled results show that both primary and secondary chemistry play an important role in the large HCHO and HC(O)OH formation under experimental conditions. There should exist the channel of methyl H-abstraction for PAA-OH reaction, which may also provide routes to HCHO and HC(O)OH formation.

  3. Propagated fixed-bed mixed-acid fermentation: effect of volatile solid loading rate and agitation at near-neutral pH.

    Science.gov (United States)

    Golub, Kristina W; Golub, Stacey R; Meysing, Daniel M; Holtzapple, Mark T

    2012-11-01

    To increase conversion and product concentration, mixed-acid fermentation can use a countercurrent strategy where solids and liquids pass in opposite directions through a series of fermentors. To limit the requirement for moving solids, this study employed a propagated fixed-bed fermentation, where solids were stationary and only liquid was transferred. To evaluate the role of agitation, continuous mixing was compared with periodic mixing. The periodically mixed fermentation had similar conversion, but lower yield and selectivity. Increasing volatile solid loading rate from 1.5 to 5.1g non-acid volatile solids/(L(liq)·d) and increasing liquid retention time decreased yield, conversion, selectivity, but increased product concentrations. Compared to a previous study at high pH (~9), this study achieved higher performance at near neutral pH (~6.5) and optimal C-N ratios. Compared to countercurrent fermentation, propagated fixed-bed fermentations have similar selectivities and produce similar proportions of acetic acid, but have lower yields, conversion, productivities, and acid concentrations.

  4. Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation.

    Science.gov (United States)

    Andersen, Stephen J; Candry, Pieter; Basadre, Thais; Khor, Way Cern; Roume, Hugo; Hernandez-Sanabria, Emma; Coma, Marta; Rabaey, Korneel

    2015-01-01

    Volatile fatty acids (VFA) are building blocks for the chemical industry. Sustainable, biological production is constrained by production and recovery costs, including the need for intensive pH correction. Membrane electrolysis has been developed as an in situ extraction technology tailored to the direct recovery of VFA from fermentation while stabilizing acidogenesis without caustic addition. A current applied across an anion exchange membrane reduces the fermentation broth (catholyte, water reduction: H2O + e(-) → ½ H2 + OH(-)) and drives carboxylate ions into a clean, concentrated VFA stream (anolyte, water oxidation: H2O → 2e(-) + 2 H(+) + O2). In this study, we fermented thin stillage to generate a mixed VFA extract without chemical pH control. Membrane electrolysis (0.1 A, 3.22 ± 0.60 V) extracted 28 ± 6 % of carboxylates generated per day (on a carbon basis) and completely replaced caustic control of pH, with no impact on the total carboxylate production amount or rate. Hydrogen generated from the applied current shifted the fermentation outcome from predominantly C2 and C3 VFA (64 ± 3 % of the total VFA present in the control) to majority of C4 to C6 (70 ± 12 % in the experiment), with identical proportions in the VFA acid extract. A strain related to Megasphaera elsdenii (maximum abundance of 57 %), a bacteria capable of producing mid-chain VFA at a high rate, was enriched by the applied current, alongside a stable community of Lactobacillus spp. (10 %), enabling chain elongation of VFA through lactic acid. A conversion of 30 ± 5 % VFA produced per sCOD fed (60 ± 10 % of the reactive fraction) was achieved, with a 50 ± 6 % reduction in suspended solids likely by electro-coagulation. VFA can be extracted directly from a fermentation broth by membrane electrolysis. The electrolytic water reduction products are utilized in the fermentation: OH(-) is used for pH control without added chemicals, and H2 is

  5. Photo-oxidation of Acetone to Formic Acid in Synthetic Air and Its Atmospheric Implication.

    Science.gov (United States)

    Chattopadhyay, Aparajeo; Chatterjee, Piyali; Chakraborty, Tapas

    2015-07-23

    Acetone photo-oxidation in synthetic air under exposure of 311 nm ultraviolet light has been studied, and the photo-oxidation products are identified by means of infrared spectroscopy. Analysis reveals that formic acid is one of the major products, although there have been debates in the past concerning the authenticity of formation of this acid in synthetic air via the photo-oxidation pathway. The quantum yield of formation of this acid is similar to that of other major photoproducts like methanol, formaldehyde, and carbon monoxide. The reaction yield, however, decreases with an increase in total air pressure in the reaction cell, but it is still significant at pressures relevant to tropospheric conditions. A kinetic model has been used to simulate the measured reaction kinetics, and the quantum yields predicted by the model are found to be consistent with the measured yields for different durations of light exposure. The same model has also been used to investigate the effect of atmospheric nitric oxide on the fate of formation of this acid in the troposphere. Although nitric oxide is known to be a quencher of peroxy radicals, the precursors of formaldehyde and formic acid in acetone photo-oxidation, but our model predicts that this oxide plays a positive role in the overall reaction kinetics for production of this acid in the troposphere.

  6. Virtual volatility

    Science.gov (United States)

    Silva, A. Christian; Prange, Richard E.

    2007-03-01

    We introduce the concept of virtual volatility. This simple but new measure shows how to quantify the uncertainty in the forecast of the drift component of a random walk. The virtual volatility also is a useful tool in understanding the stochastic process for a given portfolio. In particular, and as an example, we were able to identify mean reversion effect in our portfolio. Finally, we briefly discuss the potential practical effect of the virtual volatility on an investor asset allocation strategy.

  7. Virtual volatility

    OpenAIRE

    A. Christian Silva; Prange, Richard E.

    2006-01-01

    We introduce the concept of virtual volatility. This simple but new measure shows how to quantify the uncertainty in the forecast of the drift component of a random walk. The virtual volatility also is a useful tool in understanding the stochastic process for a given portfolio. In particular, and as an example, we were able to identify mean reversion effect in our portfolio. Finally, we briefly discuss the potential practical effect of the virtual volatility on an investor asset allocation st...

  8. Tetracycline removal and effect on the formation and degradation of extracellular polymeric substances and volatile fatty acids in the process of hydrogen fermentation.

    Science.gov (United States)

    Hou, Guangying; Hao, Xiaoyan; Zhang, Rui; Wang, Jing; Liu, Rutao; Liu, Chunguang

    2016-07-01

    Many research indicate antibiotics show adverse effect on methane fermentation, while few research focus on their effect on hydrogen fermentation. The present study aimed to gain insight of the effect of antibiotics on hydrogen fermentation with waste sludge and corn straw as substrate. For this purpose, tetracycline, as a model, was investigated with regard to tetracycline removal, hydrogen production, interaction with extracellular polymeric substances (EPSs) of substrate and volatile fatty acids (VFAs) on concentration and composition. Results show that tetracycline could be removed efficiently by hydrogen fermentation, and relative low-dose tetracycline (200mg/l) exposure affects little on hydrogen production. While tetracycline exposure could change hydrogen fermentation from butyric acid-type to propionic acid-type depending on tetracycline level. Based upon three-dimensional excitation-emission matrix fluorescence spectroscopy and UV-vis tetracycline changed the component and content of EPSs, and static quenching was the main mechanism between EPSs with tetracycline.

  9. Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions

    Directory of Open Access Journals (Sweden)

    D. Brus

    2011-06-01

    Full Text Available In this study the homogeneous nucleation rates in the system of sulfuric acid and water were measured by using a flow tube technique. The goal was to directly compare particle formation rates obtained from atmospheric measurements with nucleation rates of freshly nucleated particles measured with particle size magnifier (PSM which has detection efficiency of unity for particles having mobility diameter of 1.5 nm. The gas phase sulfuric acid concentration in this study was measured with the chemical ionization mass spectrometer (CIMS, commonly used in field measurements. The wall losses of sulfuric acid were estimated from measured concentration profiles along the flow tube. The initial concentrations of sulfuric acid estimated from loss measurements ranged from 108 to 3 × 109 molecules cm−3. The nucleation rates obtained in this study cover about three orders of magnitude from 10−1 to 102 cm−3 s−1 for commercial ultrafine condensation particle counter (UCPC TSI model 3025A and from 101 to 104 cm−3 s−1 for PSM. The nucleation rates and the slopes (dlnJ/dln [H2SO4] show satisfactory agreement when compared to empirical kinetic and activation models and the latest atmospheric nucleation data. To the best of our knowledge, this is the first experimental work providing temperature dependent nucleation rate measurements using a high efficiency particle counter with a cut-off-size of 1.5 nm together with direct measurements of gas phase sulfuric acid concentration.

  10. On the formation of sulphuric acid-amine clusters in varying atmospheric conditions and its influence on atmospheric new particle formation

    Directory of Open Access Journals (Sweden)

    P. Paasonen

    2012-05-01

    Full Text Available Sulphuric acid is a key component in atmospheric new particle formation. However, sulphuric acid alone does not form stable enough clusters to initiate particle formation in atmospheric conditions. Strong bases, such as amines, have been suggested to stabilize sulphuric acid clusters and thus participate in particle formation. We modelled the formation rate of clusters with two sulphuric acid and two amine molecules (JA2B2 at varying atmospherically relevant conditions with respect to concentrations of sulphuric acid ([H2SO4], dimethylamine ([DMA] and trimethylamine ([TMA], temperature and relative humidity (RH. The modelled formation rates JA2B2 were functions of sulphuric acid concentration with close to quadratic dependence, which is in good agreement with atmospheric observations of the connection between the particle formation rate and sulphuric acid concentration. The coefficients KA2B2 connecting the cluster formation rate and sulphuric acid concentrations as JA2B2 = KA2B2[H2SO4]2 turned out to depend also on amine concentrations, temperature and relative humidity. We tested how the model results change if the clusters with two sulphuric acid and two amine molecules are assumed to act as seeds for heterogeneous nucleation of organic vapours (other than amines with higher atmospheric concentrations than sulphuric acid. We also compared the modelled coefficients KA2B2 with the corresponding coefficients calculated from the atmospheric observations (Kobs from environments with varying temperatures and levels of anthropogenic influence. By taking into account the modelled behaviour of JA2B2 as a function of [H2SO4], temperature and RH, the atmospheric particle formation rate was reproduced more closely than with the

  11. Impact of pollution controls in Beijing on atmospheric oxygenated volatile organic compounds (OVOCs during the 2008 Olympic Games: observation and modeling implications

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2014-10-01

    Full Text Available Oxygenated volatile organic compounds (OVOCs are important products of the photo-oxidation of hydrocarbons. They influence the oxidizing capacity and the ozone forming potential of the atmosphere. In the summer of 2008 two months' emission restrictions were enforced in Beijing to improve air quality during the Olympic Games. Observation evidence has been reported in related studies that these control measures were efficient in reducing the concentrations of primary anthropogenic pollutants (CO, NOx and non-methane hydrocarbons, i.e. NMHCs by 30–40%. In this study, the influence of the emission restrictions on ambient levels of OVOCs was explored using a neural network analysis with consideration of meteorological conditions. Statistically significant reductions in formaldehyde (HCHO, acetaldehyde (CH3CHO, methyl ethyl ketone (MEK and methanol were found to be 12.9, 15.8, 17.1 and 19.6%, respectively, when the restrictions were in place. The effect of emission control on acetone was not detected in neural network simulations, probably due to pollution transport from surrounding areas outside Beijing. Although the ambient levels of most NMHCs were decreased by ~35% during the full control period, the emission ratios of reactive hydrocarbons attributed to vehicular emissions did not present obvious difference. A zero-dimensional box model based on Master Chemical Mechanism version 3.2 (MCM3.2 was applied to evaluate how OVOCs productions respond to the reduced precursors during the emission controlled period. On average, secondary HCHO was produced from the oxidation of anthropogenic alkenes (54%, isoprene (30% and aromatics (15%. The importance of biogenic source for the total HCHO formation was almost on a par with that of anthropogenic alkenes during the daytime. Anthropogenic alkenes and alkanes dominated the photochemical production of other OVOCs such as acetaldehyde, acetone and MEK. The relative changes of modelled aldehydes, methyl vinyl

  12. Solid Phase Micro-extraction (SPME) with In Situ Transesterification: An Easy Method for the Detection of Non-volatile Fatty Acid Derivatives on the Insect Cuticle.

    Science.gov (United States)

    Kühbandner, Stephan; Ruther, Joachim

    2015-06-01

    Triacylglycerides (TAGs) and other non-volatile fatty acid derivatives (NFADs) occur in large amounts in the internal tissues of insects, but their presence on the insect cuticle is controversially discussed. Most studies investigating cuticular lipids of insects involve solvent extraction, which implies the risk of extracting lipids from internal tissues. Here, we present a new method that overcomes this problem. The method employs solid phase micro-extraction (SPME) to sample NFADs by rubbing the SPME fiber over the insect cuticle. Subsequently, the sampled NFADs are transesterified in situ with trimethyl sulfonium hydroxide (TMSH) into more volatile fatty acid methyl esters (FAMEs), which can be analyzed by standard GC/MS. We performed two types of control experiments to enable significant conclusions: (1) to rule out contamination of the GC/MS system with NFADs, and (2) to exclude the presence of free fatty acids on the insect cuticle, which would also furnish FAMEs after TMSH treatment, and thus might simulate the presence of NFADs. In combination with these two essential control experiments, the described SPME technique can be used to detect TAGs and/or other NFADs on the insect cuticle. We analyzed six insect species from four insect orders with our method and compared the results with conventional solvent extraction followed by ex situ transesterification. Several fatty acids typically found as constituents of TAGs were detected by the SPME method on the cuticle of all species analyzed. A comparison of the two methods revealed differences in the fatty acid compositions of the samples. Saturated fatty acids showed by trend higher relative abundances when sampled with the SPME method, while several minor FAMEs were detected only in the solvent extracts. Our study suggests that TAGs and maybe other NFADs are far more common on the insect cuticle than usually thought.

  13. Compartive study of volatile components and fatty acids of plants and in vitro cultures of parsley (Petroselinum crispum (Mill) nym ex hill).

    Science.gov (United States)

    López, M G; Sánchez-Mendoza, I R; Ochoa-Alejo, N

    1999-08-01

    Volatile compounds from plants, callus tissue cultures, and cell suspensions of parsley (Petroselinum crispum) were captured during the growth cycle using a dynamic headspace extraction and were identified by gas chromatography-mass spectrometry. Parsley plants were found to produce mainly monoterpenes, and the compound of major abundance was p-1,3,8-menthatriene, followed by beta-phellandrene and apiole. Callus cultures and cell suspensions produced aldehydes (nonanal and decanal) that were also detected in parsley plant. The former also produced limonene, acetophenone, and benzotiazol; these were not observed in the plants. The production of volatiles in plants, callus tissue, and cell suspensions was found to be time-dependent. Free and bound fatty acids were also monitored by an in situ method. Palmitic (C16:0) and stearic (C18:0) acids were the most abundant fatty acids in all materials; however, higher levels were found in plants. On the other hand, the unsaturated C16:1 and C16:3 were not detected in the in vitro cultures.

  14. Transient atmospheric effects of the landing of the Mars Science Laboratory rover: The emission and dissipation of dust and carbazic acid

    Science.gov (United States)

    Moores, John E.; Schieber, Juergen; Kling, Alexandre M.; Haberle, Robert M.; Moore, Casey A.; Anderson, Mark S.; Katz, Ira; Yavrouian, Andre; Malin, Michael C.; Olson, Timothy; Rafkin, Scot C. R.; Lemmon, Mark T.; Sullivan, Robert J.; Comeaux, Keith; Vasavada, Ashwin R.

    2016-09-01

    Imaging during and after the landing of the Mars Science Laboratory (MSL) rover in 2012 provides a means to examine two transitory phenomena for the first time: the settling of the plume of material raised by the powered terminal descent, and the possible dispersal of 140 kg of hydrazine into the atmosphere as fine-grained solid carbazic acid. The peri-landing images, acquired by the Mars Descent Imager (MARDI) and the rover hazard cameras (Hazcams), allow the first comparison of post-landing geological assessment of surface deflation with the plume itself. Examination of the Hazcam images acquired over a period of 4011 s shows that only a small fraction (350-1000 kg) of the total mass of fine-grained surface material displaced by the landing (4000 kg) remained in the atmosphere for this duration. Furthermore, a large component of this dust occurs as particles for which the characteristic optical radius is 20-60 μm, preventing them from being substantially mixed with the atmospheric column by eddy diffusion. Examination of the MARDI record over 225 s post-landing reveals a rapidly settling component that comprised approximately 1800-2400 kg and had a larger particle size with an optical radius of 360-470 μm. The possible release of hydrazine by the sky crane stage also may have created particles of carbazic acid that would, analogous to the dust, spread through eddy diffusivity and settle to the ground. Peri-landing Hazcam images of the plume created during sky crane destruction constrains the particle radius to be either less than 23 μm or greater than 400 μm. When combined with a Lagrangian model of the atmosphere, such particle sizes suggest that the carbazic acid was either deposited very near the sky crane crash site, or was widely dispersed as small particles which would have been quickly photodissociated to volatile ammonia and carbon dioxide. Surfaces visited by the MSL rover, Curiosity, would have received at most <0.2 ppb of carbazic acid and levels

  15. Iron-catalyzed photochemical transformation of benzoic acid in atmospheric liquids: Product identification and reaction mechanisms

    Science.gov (United States)

    Deng, Yiwei; Zhang, Kai; Chen, Hao; Wu, Taixing; Krzyaniak, Metthew; Wellons, Amina; Bolla, Dawn; Douglas, Kenneth; Zuo, Yuegang

    This study investigated iron-catalyzed photochemical oxidation of benzoic acid (BA), one of the major photodegradation products of petroleum hydrocarbons, under sunlight or monochromatic light irradiation in a wavelength range of 254-419 nm. The photochemical degradation of BA in the absence of iron (III) occurred at irradiation wavelengths below 300 nm. The photochemical transformation of BA in the presence Fe(III) was observed at both 254, 350, 419 nm and under solar irradiation. The half-life for the photodegradation of BA (100 μM) was 160±20 min in the presence of 20 μM Fe(III) at pH 3.20 on sunny August days at noon time. The degradation rate increased with increasing concentration of Fe(III). The reaction products were separated and identified using capillary electrophoresis (CE), gas chromatography/mass spectrometry (GC/MS) and UV-Visible spectrophotometry. The major reaction products were 2-hydroxybenzoic, 3-hydroxybenzoic and 4-hydroxybenzoic acids. Hydrogen peroxide (H 2O 2) and Fe(II) species were also formed during the photochemical reactions. The proposed reaction mechanisms include the photoexcitation of Fe(III) hydroxide complexes to form Fe(II) ions and hydroxyl radicals (OH rad ) that attack ortho, meta and para positions of BA to form corresponding monohydroxybenzoic acids and H 2O 2. The monohydroxybenzoic acids formed further react with hydroxyl and surperoxide radicals (HO 2- rad /O 2- rad ) to yield dihydroxybenzoic acids in atmospheric water droplets.

  16. Effect of organic loading rate on methane and volatile fatty acids productions from anaerobic treatment of palm oil mill effluent in UASB and UFAF reactors

    Directory of Open Access Journals (Sweden)

    Sumate Chaiprapat

    2007-05-01

    Full Text Available Anaerobic treatment of palm oil mill effluent (POME with the separation of the acidogenic and methanogenic phase was studied in an up-flow anaerobic sludge blanket (UASB reactor and an up-flowanaerobic filter (UFAF reactor. Furthermore, the effect of OLR on methane and volatile fatty acid productions in UASB and UFAF reactors was investigated. In this research, UASB as acidogenic reactor wasused for volatile fatty acid production and UFAF as methanogenic reactor was used for methane production. Therefore, POME without pH adjustment was used as influent for the UASB reactor. Moreover, the syntheticwastewater with pH adjustment to 6.00 was fed into the UFAF reactor. The inoculum source for both reactors was the combination of POME sludge collected from the CSTR of a POME treatment plant and granulesludge collected from the UASB reactor of a frozen sea food industry treatment plant. During experimental operation, the organic loading rate (OLR was gradually increased from 2.50 to 17.5 g COD/l/day in theUASB reactor and 1.10 to 10.0 g COD/l/day in the UFAF reactor. Consequently, hydraulic retention time (HRT ranged from 20.0 to 2.90 days in the UASB reactor and from 13.5 to 1.50 days in the UFAF reactor.The result showed that the COD removal efficiency from both reactors was greater than 60.0%. In addition, the total volatile fatty acids increased with the increasing OLR. The total volatile fatty acids and acetic acidproduction in the UASB reactor reached 5.50 g/l and 4.90 g/l, respectively at OLR of 17.5 g COD/l/day and HRT of 2.90 days before washout was observed. In the UFAF reactor, the methane and biogas productionincreased with increasing OLR until an OLR of 7.50 g COD/l/day. However, the methane and biogas production significantly decreased when OLR increased up to 10.0 g COD/l/day. Therefore, the optimum OLR inthe laboratory-scale UASB and UFAF reactors were concluded to be 15.5 and 7.50 g COD/l/day, respectively.

  17. Unstable volatility

    DEFF Research Database (Denmark)

    Casas, Isabel; Gijbels, Irène

    2012-01-01

    The objective of this paper is to introduce the break-preserving local linear (BPLL) estimator for the estimation of unstable volatility functions for independent and asymptotically independent processes. Breaks in the structure of the conditional mean and/or the volatility functions are common i...

  18. Unstable volatility

    DEFF Research Database (Denmark)

    Casas, Isabel; Gijbels, Irène

    2012-01-01

    The objective of this paper is to introduce the break-preserving local linear (BPLL) estimator for the estimation of unstable volatility functions for independent and asymptotically independent processes. Breaks in the structure of the conditional mean and/or the volatility functions are common i...

  19. Volatiles in protoplanetary disks

    CERN Document Server

    Pontoppidan, Klaus M; Bergin, Edwin A; Brittain, Sean; Marty, Bernard; Mousis, Olvier; Oberg, Karin L

    2014-01-01

    Volatiles are compounds with low sublimation temperatures, and they make up most of the condensible mass in typical planet-forming environments. They consist of relatively small, often hydrogenated, molecules based on the abundant elements carbon, nitrogen and oxygen. Volatiles are central to the process of planet formation, forming the backbone of a rich chemistry that sets the initial conditions for the formation of planetary atmospheres, and act as a solid mass reservoir catalyzing the formation of planets and planetesimals. This growth has been driven by rapid advances in observations and models of protoplanetary disks, and by a deepening understanding of the cosmochemistry of the solar system. Indeed, it is only in the past few years that representative samples of molecules have been discovered in great abundance throughout protoplanetary disks - enough to begin building a complete budget for the most abundant elements after hydrogen and helium. The spatial distributions of key volatiles are being mapped...

  20. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    CERN Document Server

    Schobesberger, Siegfried; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molec...

  1. Rotational spectroscopy of the atmospheric photo-oxidation product o-toluic acid and its monohydrate.

    Science.gov (United States)

    Schnitzler, Elijah G; Zenchyzen, Brandi L M; Jäger, Wolfgang

    2016-01-07

    o-Toluic acid, a photo-oxidation product in the atmosphere, and its monohydrate were characterized in the gas phase by pure rotational spectroscopy. High-resolution spectra were measured in the range of 5-14 Hz using a cavity-based molecular beam Fourier-transform microwave spectrometer. Possible conformers were identified computationally, at the MP2/6-311++G(2df,2pd) level of theory. For both species, one conformer was identified experimentally, and no methyl internal rotation splittings were observed, indicative of relatively high barriers to rotation. In the monomer, rocking of the carboxylic acid group is a large amplitude motion, characterized by a symmetrical double-well potential. This and other low-lying out-of-plane vibrations contribute to a significant (methyl top-corrected) inertial defect (-1.09 amu Å(2)). In the monohydrate, wagging of the free hydrogen atom of water is a second large amplitude motion, so the average structure is planar. As a result, no c-type transitions were observed. Water tunneling splittings were not observed, because the water rotation coordinate is characterized by an asymmetrical double-well potential. Since the minima are not degenerate, tunneling is precluded. Furthermore, a concerted tunneling path involving simultaneous rotation of the water moiety and rocking of the carboxylic acid group is precluded, because the hilltop along this coordinate is a virtual, rather than a real, saddle-point. Inter- and intramolecular non-covalent bonding is discussed in terms of the quantum theory of atoms in molecules. The percentage of o-toluic acid hydrated in the atmosphere is estimated to be about 0.1% using statistical thermodynamics.

  2. Application of a Non-thermal Atmospheric Pressure Plasma Jet to the Decomposition of Salicylic Acid to Inorganic Carbon

    OpenAIRE

    Kuroda, Kosuke; Ishijima, Tatsuo; Kaga, Toshiki; Shiomomura, Kai; Ninomiya, Kazuaki; Takahashi, Kenji

    2015-01-01

    A non-thermal atmospheric pressure plasma jet technique was applied to decompose salicylic acid to inorganic carbon. Excess hydroxyl radical, which has a high oxidation potential, decomposed salicylic acid within 10 min, and total organic carbon decreased to 20% after 30 min. © 2015 The Chemical Society of Japan.

  3. STREAMWATER ACID-BASED CHEMISTRY AND CRITICAL LOADS OF ATMOSPHERIC SULFUR DEPOSITION IN SHENANDOAH NATIONAL PARK, VIRGINIA

    Science.gov (United States)

    A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the Park have acid neutraliz...

  4. Using in situ GC-MS for analysis of C2-C7 volatile organic acids in ambient air of a boreal forest site

    Science.gov (United States)

    Hellén, Heidi; Schallhart, Simon; Praplan, Arnaud P.; Petäjä, Tuukka; Hakola, Hannele

    2017-01-01

    An in situ method for studying gas-phase C2-C7 monocarboxylic volatile organic acids (VOAs) in ambient air was developed and evaluated. Samples were collected directly into the cold trap of the thermal desorption unit (TD) and analysed in situ using a gas chromatograph (GC) coupled to a mass spectrometer (MS). A polyethylene glycol column was used for separating the acids. The method was validated in the laboratory and tested on the ambient air of a boreal forest in June 2015. Recoveries of VOAs from fluorinated ethylene propylene (FEP) and heated stainless steel inlets ranged from 83 to 123 %. Different VOAs were fully desorbed from the cold trap and well separated in the chromatograms. Detection limits varied between 1 and 130 pptv and total uncertainty of the method at mean ambient mixing ratios was between 16 and 76 %. All straight chain VOAs except heptanoic acid in the ambient air measurements were found with mixing ratios above the detection limits. The highest mixing ratios were found for acetic acid and the highest relative variations for hexanoic acid. In addition, mixing ratios of acetic and propanoic acids measured by the novel GC-MS method were compared with proton-mass-transfer time-of-flight mass spectrometer (PTR-TOFMS) data. Both instruments showed similar variations, but differences in the mixing ratio levels were significant.

  5. Photochemical reaction between triclosan and nitrous acid in the atmospheric aqueous environment

    Science.gov (United States)

    Ma, Jianzhong; Zhu, Chengzhu; Lu, Jun; Lei, Yu; Wang, Jizhong; Chen, Tianhu

    2017-05-01

    Nitrous acid (HONO) is an important tropospheric pollutant and a major source of hydroxyl radical in the atmospheric gas phase. However, studies on the role of HONO in atmospheric aqueous phase chemistry processes are relatively few. The present work investigated the photochemical reaction of HONO with triclosan (TCS), which is an emerging contaminant, using a combination of laser flash photolysis spectrometry and gas chromatography mass spectrometry. With these techniques, the reaction pathway of HONO with TCS was proposed by directly monitoring the transient species and detecting the stable products. ·OH was generated from the photodissociation of the HONO aqueous solution and attacked TCS molecules on different sites to produce the TCS-OH adducts with a second-order rate constant of 1.11 × 109 L mol-1 s-1. The ·OH added a C atom adjacent to the ether bond in the aromatic ring of TCS and self-decayed when the ether bond broke. The intermediates generated from the addition of ·OH to the benzene ring of the TCS molecular structure were immediately nitrated by HONO, which played a key role in the formation process of nitrocompounds. An atmospheric model suggests that the aqueous oxidation of TCS by ·OH is a major reaction at high liquid water concentrations, and the photolysis of TCS dominates under low-humidity conditions.

  6. Neutral molecular cluster formation of sulfuric acid-dimethylamine observed in real time under atmospheric conditions.

    Science.gov (United States)

    Kürten, Andreas; Jokinen, Tuija; Simon, Mario; Sipilä, Mikko; Sarnela, Nina; Junninen, Heikki; Adamov, Alexey; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Hutterli, Manuel; Kangasluoma, Juha; Kirkby, Jasper; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud P; Riccobono, Francesco; Rissanen, Matti P; Rondo, Linda; Schobesberger, Siegfried; Seinfeld, John H; Steiner, Gerhard; Tomé, António; Tröstl, Jasmin; Winkler, Paul M; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Kenneth S; Kulmala, Markku; Worsnop, Douglas R; Curtius, Joachim

    2014-10-21

    For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions. These measurements bridge the gap between the molecular and particle perspectives of nucleation, revealing the fundamental processes involved in particle formation and growth. The neutral clusters are found to form at or close to the kinetic limit where particle formation is limited only by the collision rate of SA molecules. Even though the neutral particles are stable against evaporation from the SA dimer onward, the formation rates of particles at 1.7-nm size, which contain about 10 SA molecules, are up to 4 orders of magnitude smaller compared with those of the dimer due to coagulation and wall loss of particles before they reach 1.7 nm in diameter. This demonstrates that neither the atmospheric particle formation rate nor its dependence on SA can simply be interpreted in terms of cluster evaporation or the molecular composition of a critical nucleus.

  7. Influence of Volatile Anesthesia on the Release of Glutamate and other Amino Acids in the Nucleus Accumbens in a Rat Model of Alcohol Withdrawal: A Pilot Study

    Science.gov (United States)

    Seidemann, Thomas; Spies, Claudia; Morgenstern, Rudolf; Wernecke, Klaus-Dieter; Netzhammer, Nicolai

    2017-01-01

    Background Alcohol withdrawal syndrome is a potentially life-threatening condition, which can occur when patients with alcohol use disorders undergo general anesthesia. Excitatory amino acids, such as glutamate, act as neurotransmitters and are known to play a key role in alcohol withdrawal syndrome. To understand this process better, we investigated the influence of isoflurane, sevoflurane, and desflurane anesthesia on the profile of excitatory and inhibitory amino acids in the nucleus accumbens (NAcc) of alcohol-withdrawn rats (AWR). Methods Eighty Wistar rats were randomized into two groups of 40, pair-fed with alcoholic or non-alcoholic nutrition. Nutrition was withdrawn and microdialysis was performed to measure the activity of amino acids in the NAcc. The onset time of the withdrawal syndrome was first determined in an experiment with 20 rats. Sixty rats then received isoflurane, sevoflurane, or desflurane anesthesia for three hours during the withdrawal period, followed by one hour of elimination. Amino acid concentrations were measured using chromatography and results were compared to baseline levels measured prior to induction of anesthesia. Results Glutamate release increased in the alcohol group at five hours after the last alcohol intake (p = 0.002). After 140 min, desflurane anesthesia led to a lower release of glutamate (p < 0.001) and aspartate (p = 0.0007) in AWR compared to controls. GABA release under and after desflurane anesthesia was also significantly lower in AWR than controls (p = 0.023). Over the course of isoflurane anesthesia, arginine release decreased in AWR compared to controls (p < 0.001), and aspartate release increased after induction relative to controls (p20min = 0.015 and p40min = 0.006). However, amino acid levels did not differ between the groups as a result of sevoflurane anesthesia. Conclusions Each of three volatile anesthetics we studied showed different effects on excitatory and inhibitory amino acid concentrations. Under

  8. Model studies on the pattern of volatiles generated in mixtures of amino acids, lipid oxidation-derived aldehydes, and glucose

    OpenAIRE

    Adams, An; Kitrytė, Vaida; Venskutonis, Rimantas; De Kimpe, Norbert

    2011-01-01

    The development of flavor and browning in thermally treated foods results mainly from the Maillard reaction and lipid degradation but also from the interactions between both reaction pathways. To study these interactions, we analyzed the volatile compounds resulting from model reactions of lysine or glycine with aldehydes originating from lipid oxidation [hexanal, (E)-2-hexenal, or (2E,4E)-decadienal] in the presence and absence of glucose. The main reaction products identified in these model...

  9. A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles

    Science.gov (United States)

    Hennigan, C. J.; Izumi, J.; Sullivan, A. P.; Weber, R. J.; Nenes, A.

    2015-03-01

    Given significant challenges with available measurements of aerosol acidity, proxy methods are frequently used to estimate the acidity of atmospheric particles. In this study, four of the most common aerosol acidity proxies are evaluated and compared: (1) the ion balance method, (2) the molar ratio method, (3) thermodynamic equilibrium models, and (4) the phase partitioning of ammonia. All methods are evaluated against predictions of thermodynamic models and against direct observations of aerosol-gas equilibrium partitioning acquired in Mexico City during the Megacity Initiative: Local and Global Research Objectives (MILAGRO) study. The ion balance and molar ratio methods assume that any deficit in inorganic cations relative to anions is due to the presence of H+ and that a higher H+ loading and lower cation / anion ratio both correspond to increasingly acidic particles (i.e., lower pH). Based on the MILAGRO measurements, no correlation is observed between H+ levels inferred with the ion balance and aerosol pH predicted by the thermodynamic models and NH3-NH4+ partitioning. Similarly, no relationship is observed between the cation / anion molar ratio and predicted aerosol pH. Using only measured aerosol chemical composition as inputs without any constraint for the gas phase, the E-AIM (Extended Aerosol Inorganics Model) and ISORROPIA-II thermodynamic equilibrium models tend to predict aerosol pH levels that are inconsistent with the observed NH3-NH4+ partitioning. The modeled pH values from both E-AIM and ISORROPIA-II run with gas + aerosol inputs agreed well with the aerosol pH predicted by the phase partitioning of ammonia. It appears that (1) thermodynamic models constrained by gas + aerosol measurements and (2) the phase partitioning of ammonia provide the best available predictions of aerosol pH. Furthermore, neither the ion balance nor the molar ratio can be used as surrogates for aerosol pH, and previously published studies with conclusions based

  10. A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles

    Directory of Open Access Journals (Sweden)

    C. J. Hennigan

    2014-11-01

    Full Text Available Given significant challenges with available measurements of aerosol acidity, proxy methods are frequently used to estimate the acidity of atmospheric particles. In this study, four of the most common aerosol acidity proxies are evaluated and compared: (1 the ion balance method, (2 the molar ratio method, (3 thermodynamic equilibrium models, and (4 the phase partitioning of ammonia. All methods are evaluated against predictions of thermodynamic models and against direct observations of aerosol-gas equilibrium partitioning acquired in Mexico City during the MILAGRO study. The ion balance and molar ratio methods assume that any deficit in inorganic cations relative to anions is due to the presence of H+; and that a higher H+ loading and lower cation/anion ratio both correspond to increasingly acidic particles (i.e., lower pH. Based on the MILAGRO measurements, no correlation is observed between H+ levels inferred with the ion balance and aerosol pH predicted by the thermodynamic models and ammonia–ammonium (NH3–NH4+ partitioning. Similarly, no relationship is observed between the cation / anion molar ratio and predicted aerosol pH. Using only measured aerosol chemical composition as inputs without any constraint for the gas phase, the Extended Aerosol Inorganics Model (E-AIM and ISORROPIA-II thermodynamic equilibrium models tend to predict aerosol pH levels that are inconsistent with the observed NH3–NH4+ partitioning. The modeled pH values from both models run with gas + aerosol inputs agreed well with the aerosol pH predicted by the phase partitioning of ammonia. It appears that (1 thermodynamic models constrained by gas + aerosol measurements, and (2 the phase partitioning of ammonia provide the best available predictions of aerosol pH. Furthermore, neither the ion balance nor the molar ratio can be used as surrogates for aerosol pH, and published studies to date with conclusions based on such acidity proxies may need to be reevaluated

  11. Production of biodegradable plastics from volatile fatty acids using activated sludge; Kassei odei wo mochiiru kihatsuei teikyu shibosan kara no seibunkaisei plastic no seisan to hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y.; Soejima, T.; Tomozawa, T. [Taisei Corp., Tokyo (Japan); Doi, Y. [Institute of Physical and Chemical Research, Tokyo (Japan); Kiya, F. [Tokyo Institute of Technology, Tokyo (Japan)

    1995-08-21

    The production of biodegradable plastics, polyhydroxyalkanoates (PHA) from volatile fatty acids (VFA) by aerobic or anaerobic/aerobic activated sludge was investigated. The anaerobic/aerobic activated sludge produced co-polyesters composed of 2-4 monomer units from VFA(C 2-C 5), and that the contents in dried sludge were as high as 7.8. -18.2wt%. The anaerobic/aerobic activated sludge produced co-polyester composed of [R]-hydroxybuyrate (3HB), [R]-3-hydroxyvalerate (3HV), [R]-3-hydroxynonanoate(3HN), and [R]-3-hydroxydecanoate (3HD) with high yield of 40 wt% from acetic acid as the sole carbon source in nitrogen-free wastewater for 6-12 h. It was suggested that PHA production from wastewater treatment was possible by using the anaerobic/aerobic activated sludge. 9 refs., 9 figs., 8 tabs.

  12. Formation of amino acids and nucleotide bases in a Titan atmosphere simulation experiment.

    Science.gov (United States)

    Hörst, S M; Yelle, R V; Buch, A; Carrasco, N; Cernogora, G; Dutuit, O; Quirico, E; Sciamma-O'Brien, E; Smith, M A; Somogyi, A; Szopa, C; Thissen, R; Vuitton, V

    2012-09-01

    The discovery of large (>100 u) molecules in Titan's upper atmosphere has heightened astrobiological interest in this unique satellite. In particular, complex organic aerosols produced in atmospheres containing C, N, O, and H, like that of Titan, could be a source of prebiotic molecules. In this work, aerosols produced in a Titan atmosphere simulation experiment with enhanced CO (N(2)/CH(4)/CO gas mixtures of 96.2%/2.0%/1.8% and 93.2%/5.0%/1.8%) were found to contain 18 molecules with molecular formulae that correspond to biological amino acids and nucleotide bases. Very high-resolution mass spectrometry of isotopically labeled samples confirmed that C(4)H(5)N(3)O, C(4)H(4)N(2)O(2), C(5)H(6)N(2)O(2), C(5)H(5)N(5), and C(6)H(9)N(3)O(2) are produced by chemistry in the simulation chamber. Gas chromatography-mass spectrometry (GC-MS) analyses of the non-isotopic samples confirmed the presence of cytosine (C(4)H(5)N(3)O), uracil (C(5)H(4)N(2)O(2)), thymine (C(5)H(6)N(2)O(2)), guanine (C(5)H(5)N(5)O), glycine (C(2)H(5)NO(2)), and alanine (C(3)H(7)NO(2)). Adenine (C(5)H(5)N(5)) was detected by GC-MS in isotopically labeled samples. The remaining prebiotic molecules were detected in unlabeled samples only and may have been affected by contamination in the chamber. These results demonstrate that prebiotic molecules can be formed by the high-energy chemistry similar to that which occurs in planetary upper atmospheres and therefore identifies a new source of prebiotic material, potentially increasing the range of planets where life could begin.

  13. Enteric methane production, rumen volatile fatty acid concentrations, and milk fatty acid composition in lactating Holstein-Friesian cows fed grass silage- or corn silage-based diets.

    Science.gov (United States)

    van Gastelen, S; Antunes-Fernandes, E C; Hettinga, K A; Klop, G; Alferink, S J J; Hendriks, W H; Dijkstra, J

    2015-03-01

    The objective of this study was to determine the effects of replacing grass silage (GS) with corn silage (CS) in dairy cow diets on enteric methane (CH4) production, rumen volatile fatty acid concentrations, and milk fatty acid (FA) composition. A completely randomized block design experiment was conducted with 32 multiparous lactating Holstein-Friesian cows. Four dietary treatments were used, all having a roughage-to-concentrate ratio of 80:20 based on dry matter (DM). The roughage consisted of either 100% GS, 67% GS and 33% CS, 33% GS and 67% CS, or 100% CS (all DM basis). Feed intake was restricted (95% of ad libitum DM intake) to avoid confounding effects of DM intake on CH4 production. Nutrient intake, apparent digestibility, milk production and composition, nitrogen (N) and energy balance, and CH4 production were measured during a 5-d period in climate respiration chambers after adaptation to the diet for 12 d. Increasing CS proportion linearly decreased neutral detergent fiber and crude protein intake and linearly increased starch intake. Milk production and milk fat content (on average 23.4 kg/d and 4.68%, respectively) were not affected by increasing CS inclusion, whereas milk protein content increased quadratically. Rumen variables were unaffected by increasing CS inclusion, except the molar proportion of butyrate, which increased linearly. Methane production (expressed as grams per day, grams per kilogram of fat- and protein-corrected milk, and as a percent of gross energy intake) decreased quadratically with increasing CS inclusion, and decreased linearly when expressed as grams of CH4 per kilogram of DM intake. In comparison with 100% GS, CH4 production was 11 and 8% reduced for the 100% CS diet when expressed per unit of DM intake and per unit fat- and protein-corrected milk, respectively. Nitrogen efficiency increased linearly with increased inclusion of CS. The concentration of trans C18:1 FA, C18:1 cis-12, and total CLA increased quadratically, and

  14. Chasing volatility

    DEFF Research Database (Denmark)

    Caporin, Massimiliano; Rossi, Eduardo; Santucci de Magistris, Paolo

    The realized volatility of financial returns is characterized by persistence and occurrence of unpreditable large increments. To capture those features, we introduce the Multiplicative Error Model with jumps (MEM-J). When a jump component is included in the multiplicative specification, the condi...... models, the introduction of the jump component provides a sensible improvement in the fit, as well as for in-sample and out-of-sample volatility tail forecasts....

  15. Volatility Risk

    OpenAIRE

    Zhiguang Wang

    2009-01-01

    Classical capital asset pricing theory tells us that riskaverse investors would require higher returns to compensate for higher risk on an investment. One type of risk is price (return) risk, which reflects uncertainty in the price level and is measured by the volatility (standard deviation) of asset returns. Volatility itself is also known to be random and hence is perceived as another type of risk. Investors can bear price risk in exchange for a higher return. But are investors willing to p...

  16. Novel consortium of Klebsiella variicola and Lactobacillus species enhances the functional potential of fermented dairy products by increasing the availability of branched-chain amino acids and the amount of distinctive volatiles.

    Science.gov (United States)

    Rosales-Bravo, H; Morales-Torres, H C; Vázquez-Martínez, J; Molina-Torres, J; Olalde-Portugal, V; Partida-Martínez, L P

    2017-08-17

    Identify novel bacterial taxa that could increase the availability of branched-chain amino acids and the amount of distinctive volatiles during skim milk fermentation. We recovered 344 bacterial isolates from stool samples of healthy and breastfed infants. Five were selected based on their ability to produce branched-chain amino acids. Three strains were identified as Escherichia coli, one as Klebsiella pneumoniae and other as Klebsiella variicola by molecular and biochemical methods. HPLC and solid-phase microextraction with GC-MS were used for the determination of free amino acids and volatile compounds respectively. The consortium formed by K. variicola and four Lactobacillus species showed the highest production of Leu and Ile in skim milk fermentation. In addition, the production of volatile compounds, such as acetoin, ethanol, 2-nonanone, and acetic, hexanoic and octanoic acids, increased in comparison to commercial yogurt, Emmental and Gouda cheese. Also, distinctive volatiles, such as 2,3-butanediol, 4-methyl-2- hexanone and octanol, were identified. The use of K. variicola in combination with probiotic Lactobacillus species enhances the availability of Leu and Ile and the amount of distinctive volatiles during skim milk fermentation. The identified consortium increases the functional potential of fermented dairy products. © 2017 The Society for Applied Microbiology.

  17. Atmospheric leaching of nickel and cobalt from nickel saprolite ores using the Starved Acid Leaching Technology

    Science.gov (United States)

    Dreisinger, David

    2017-01-01

    There is great potential to recover nickel from below cut-off grade nickel saprolite ores using the Starved Acid Leach Technology (SALT). Nickel saprolite ores are normally mined as feed to Fe-Ni smelters or Ni matte smelting operations. The smelting processes typically require high Ni cut-off grades of 1.5 to 2.2% Ni, depending on the operation. These very high cutoff grades result in a significant portion of the saprolite profile being regarded as "waste" and hence having little to no value. The below cut-off grade (waste) material can be processed by atmospheric acid leaching with "starvation" levels of acid addition. The leached nickel and cobalt may be recovered as a mixed hydroxide (or alternate product). The mixed hydroxide may be added to the saprolite smelting operation feed system to increase the nickel production of the smelter or may be refined separately. The technical development of the SALT process will be described along with an economic summary. The SALT process has great potential to treat many Indonesian Nickel ores that are too low a grade for current technology.

  18. Ag recovery from copper anode slime by acid leaching at atmospheric pressure to synthesize silver nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Atefeh Khaleghi; Sattar Ghader; Dariush Afzali

    2014-01-01

    In this paper, recovery of silver from anode slime of Sarcheshmeh copper complex in Iran and subsequent synthesis of silver nanoparticles from leaching solution is investigated. Sarcheshmeh anode slime is mainly consisted of Cu, Ag, Pb and Se. Amount of Ag in the considered anode slime was 5.4%(by weight). The goal was to recover as much as possible Ag from anode slime at atmospheric pressure to synthesize Ag nanoparticles. Therefore, acid leaching was used for this purpose. The anode slime was leached with sulfuric and nitric acid from room to 90 ?C at different acid concentrations and the run which yielded the most recovery of Ag was selected for Ag nanoparticles synthesis. At this condition, Cu, Pb and Se are lea-ched as well as Ag. To separate Ag from leach solution HCl was added and silver was precipitated as AgCl which were then dissolved by ammonia solution. The Ag nanoparticles are synthesized from this solution by chemical reduction method by aid of sodium borohydride in the presence of PVP and PEG as stabiliz-ers. The synthesized Ag nanoparticles showed a peak of 394 nm in UV-vis spectrum and TEM images showed a rather uniform Ag nanoparticles of 12 nm.

  19. Priming by Hexanoic Acid Induce Activation of Mevalonic and Linolenic Pathways and Promotes the Emission of Plant Volatiles

    OpenAIRE

    Eugenio eLlorens; Gemma eCamañes; Leonor eLapeña; Pilar eGarcía-Agustín

    2016-01-01

    Hexanoic acid is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of hexanoic acid in response to the challenge pathogen Alternaria altern...

  20. Effects of steam-treated rice straw feeding on growth, digestibility, and plasma volatile fatty acids of goats under different housing systems.

    Science.gov (United States)

    Muhammad, Naeem; Nasir, Rajput; Li, Dong; Lili, Zhang; Tian, Wang

    2014-12-01

    In order to use rice straw as forage in livestock feeding, the effects of steam-treated rice straw (at 15.5 kgf/cm(2) for 120 s) feeding on growth performance, plasma volatile fatty acid profile, and nutrient digestibility of goats were determined. Twenty male goats (18.69 ± 0.34 kg) were used in an 84-day trial. The goats were divided into four groups of five goats each to receive steam-treated (STRS) or untreated (UTRS) rice straw diet under closed house (CH) and open house (OH) systems. The results revealed that the goats fed with STRS had significantly higher dry matter (DM), organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) digestibility; similarly, the average daily weight gain and feed conversion ratio were higher for STRS groups under both CH and OH systems than those for UTRS. The plasma protein and insulin in STRS and cholesterol in UTRS groups was higher (P  0.05) at 30 days. The plasma amylase, lipase, T3, T4 and glucagon at 30 and 60 days were not different (P > 0.05) among the groups. The plasma acetate, propionate, butyrate, and total volatile fatty acid were higher (P  0.05) on these parameters. It could be concluded that steam treatment of rice straw at 15.5 kgf/cm(2) for 120 s increased apparent nutrient digestibility, hence increased the growth and feed efficiency of growing goats.

  1. Effects of aging on the adhesive properties of poly(lactic acid) by atmospheric air plasma treatment

    OpenAIRE

    Jordá Vilaplana, Amparo; Sánchez Nacher, Lourdes; García Sanoguera, David; Carbonell Verdú, Alfredo; Ferri Azor, José Miguel

    2016-01-01

    The aim of this study was to analyze the durability of a plasma treatment on the surface of poly(lactic acid) (PLA). We used atmospheric-plasma treatment with air to improve the wettability of PLA by evaluating the aging effect under controlled conditions of relative humidity (RH) and temperature (25% RH and 258C). We studied the durability of the atmospheric-plasma treatment by measuring the contact angle, calculating the surface energy, and observing changes in the resistance of th...

  2. Sulfuric acid vapor and other cloud-related gases in the Venus atmosphere - Abundances inferred from observed radio opacity

    Science.gov (United States)

    Steffes, P. G.; Eshleman, V. R.

    1982-01-01

    It is suggested that the absorbing characteristics of sulfuric acid vapor appear to reconcile what had been thought to be an inconsistency among measurements and deductions regarding the constituents of the Venus atmosphere and radio occultation, radar reflection, and radio emission measurements of its opacity. Laboratory measurements of sulfuric acid, sulfur dioxide, water vapor, and carbon dioxide are used to model relative contributions to opacity as a function of height in a way that is consistent with observations of the constituents and absorbing properties of the atmosphere. It is concluded that sulfuric acid vapor is likely to be the principal microwave absorber in the 30-50 km altitude range of the middle atmosphere of Venus.

  3. Lactic acid bacteria in marinades used for modified atmosphere packaged broiler chicken meat products.

    Science.gov (United States)

    Lundström, Hanna-Saara; Björkroth, Johanna

    2007-03-01

    Lactic acid bacteria (LAB) in some marinades commonly used in Finland for modified atmosphere packaged poultry meat products were enumerated and identified to determine whether the marinades contained LAB species that cause meat spoilage. The concentrations of LAB in 51 marinade samples ranged from less than 100 to 8.0 x 10(5) CFU/ml. Seventeen of the samples produced LAB growth only after enrichment, and in five samples no growth was detected either by direct culturing or enrichment. Eighty-eight randomly selected isolates, 51 from the enumerated plates and 37 from enriched samples, were identified using a database of 16S and 23S rRNA gene HindIII restriction fragment length polymorphism patterns of over 300 type and references LAB strains as operational taxonomic units in numerical analyses. The predominating LAB in the enumerated samples was Lactobacillus plantarum (25 of 51 isolates). Eleven isolates were identified as Lactobacillus paracasei subsp. paracasei, and nine were Lactobacillus parabuchneri. None of these species are considered specific spoilage LAB in marinated modified atmosphere packaged poultry meat products nor have they been reported to dominate in unspoiled late-shelf-life products. These results indicate that even though marinades may contain high numbers of LAB, they are not necessarily sources of specific meat spoilage LAB. Therefore, risks associated with meat quality are not predicted by quantitative enumeration of LAB in marinades.

  4. Ambient concentrations of atmospheric ammonia, nitrogen dioxide and nitric acid in an intensive agricultural region

    Science.gov (United States)

    Zbieranowski, Antoni L.; Aherne, Julian

    2013-05-01

    The spatial and temporal distribution of ambient atmospheric gaseous reactive nitrogen (Nr) species concentrations (ammonia [NH3], nitrogen dioxide [NO2] and nitric acid [HNO3]) were measured at the field scale in an intensive agricultural region in southern Ontario, Canada. Atmospheric concentrations were measured with the Willems badge diffusive passive sampler (18 sites for NH3, 9 sites for NO2 and HNO3) for one year (April 2010-March 2011; under a two week measurement frequency) within a 15 km × 15 km area. Dry deposition was calculated using the inferential method and estimated across the entire study area. The spatial distribution of emission sources associated with agricultural activity resulted in high spatial variability in annual average ambient NH3 concentrations (8 μg m-3 within a 2 km distance, coefficient of variation ˜50%) and estimated dry deposition (4-13 kg N ha-1 yr-1) between sample sites. In contrast, ambient concentrations and deposition of both NO2 (˜5.2->6.5 μg m-3; 1.0-1.5 kg N ha-1 yr-1) and HNO3 (0.6-0.7 μg m-3; 0.5-1 kg N ha-1 yr-1) had low variability (coefficient of variation mycorrhiza and ground vegetation within adjacent semi-natural ecosystems (estimated at ˜10% of the study area).

  5. Reactions between Criegee Intermediates and the Inorganic Acids HCl and HNO3 : Kinetics and Atmospheric Implications.

    Science.gov (United States)

    Foreman, Elizabeth S; Kapnas, Kara M; Murray, Craig

    2016-08-22

    Criegee intermediates (CIs) are a class of reactive radicals that are thought to play a key role in atmospheric chemistry through reactions with trace species that can lead to aerosol particle formation. Recent work has suggested that water vapor is likely to be the dominant sink for some CIs, although reactions with trace species that are sufficiently rapid can be locally competitive. Herein, we use broadband transient absorption spectroscopy to measure rate constants for the reactions of the simplest CI, CH2 OO, with two inorganic acids, HCl and HNO3 , both of which are present in polluted urban atmospheres. Both reactions are fast; at 295 K, the reactions of CH2 OO with HCl and HNO3 have rate constants of 4.6×10(-11)  cm(3)  s(-1) and 5.4×10(-10)  cm(3)  s(-1) , respectively. Complementary quantum-chemical calculations show that these reactions form substituted hydroperoxides with no energy barrier. The results suggest that reactions of CIs with HNO3 in particular are likely to be competitive with those with water vapor in polluted urban areas under conditions of modest relative humidity.

  6. Investigating diesel engines as an atmospheric source of isocyanic acid in urban areas

    Science.gov (United States)

    Jathar, Shantanu H.; Heppding, Christopher; Link, Michael F.; Farmer, Delphine K.; Akherati, Ali; Kleeman, Michael J.; de Gouw, Joost A.; Veres, Patrick R.; Roberts, James M.

    2017-07-01

    Isocyanic acid (HNCO), an acidic gas found in tobacco smoke, urban environments, and biomass-burning-affected regions, has been linked to adverse health outcomes. Gasoline- and diesel-powered engines and biomass burning are known to emit HNCO and hypothesized to emit precursors such as amides that can photochemically react to produce HNCO in the atmosphere. Increasingly, diesel engines in developed countries like the United States are required to use selective catalytic reduction (SCR) systems to reduce tailpipe emissions of oxides of nitrogen. SCR chemistry is known to produce HNCO as an intermediate product, and SCR systems have been implicated as an atmospheric source of HNCO. In this work, we measure HNCO emissions from an SCR system-equipped diesel engine and, in combination with earlier data, use a three-dimensional chemical transport model (CTM) to simulate the ambient concentrations and source/pathway contributions to HNCO in an urban environment. Engine tests were conducted at three different engine loads, using two different fuels and at multiple operating points. HNCO was measured using an acetate chemical ionization mass spectrometer. The diesel engine was found to emit primary HNCO (3-90 mg kg fuel-1) but we did not find any evidence that the SCR system or other aftertreatment devices (i.e., oxidation catalyst and particle filter) produced or enhanced HNCO emissions. The CTM predictions compared well with the only available observational datasets for HNCO in urban areas but underpredicted the contribution from secondary processes. The comparison implied that diesel-powered engines were the largest source of HNCO in urban areas. The CTM also predicted that daily-averaged concentrations of HNCO reached a maximum of ˜ 110 pptv but were an order of magnitude lower than the 1 ppbv level that could be associated with physiological effects in humans. Precursor contributions from other combustion sources (gasoline and biomass burning) and wintertime

  7. An online monitoring system for atmospheric nitrous acid (HONO) based on stripping coil and ion chromatography

    Institute of Scientific and Technical Information of China (English)

    Peng Cheng; Yafang Cheng; Keding Lu; Hang Su; Qiang Yang; Yikan Zou; Yanran Zhao

    2013-01-01

    A new instrument for measuring atmospheric nitrous acid (HONO) was developed,consisting of a double-wail glass stripping coil sampler coupled with ion chromatography (SC-IC).SC-IC is featured by small size (50 × 35 × 25 cm) and modular construction,including three independent parts:the sampling unit,the transfer and supporting unit,and the detection unit.High collection efficiency (> 99%) was achieved with 25 μmol/L Na2CO3 as absorption solution even in the presence of highly acidic compounds.This instrument has a detection limit of 8 pptv at 15 min time resolution,with a measurement uncertainty of 7%.Potentiai interferences from NOx,NO2+SO2,NO2+VOCs,HONO+O3,HNO3,peroxyacetyl nitrite (PAN) and particle nitrite were quantified in laboratory studies and were found to be insignificant under typical atmospheric conditions.Within the framework of the 3C-STAR project,inter-comparison between the SC-IC and LOPAP (long path liquid absorption photometer) was conducted at a rurai site in the Pearl River Delta.Good agreement was achieved between the two instruments over three weeks.Both instruments determined a clear diurnai profile of ambient HONO concentrations from 0.1 to 2.5 ppbv.However,deviations were found for low ambient HONO concentrations (i.e.<0.3 ppbv),which cannot be explained by previous investigated interference species.To accurately determine the HONO budget under illuminated conditions,more intercomparison of HONO measurement techniques is still needed in future studies,especiaily at low HONO concentrations.

  8. Effect of different extraction methods on fatty acids, volatile compounds, and physical and chemical properties of avocado (Persea americana Mill.) oil.

    Science.gov (United States)

    Moreno, Alicia Ortiz; Dorantes, Lidia; Galíndez, Juvencio; Guzmán, Rosa I

    2003-04-09

    Because Mexico is the number one producer of avocados in the world, this fruit has potential as a source for oil extraction. It is appropriate to further investigate the detailed changes that the oil undergoes when different extraction methods are applied. This research paper presents the study of the physical and chemical changes, the fatty acids profile, the trans fatty acid content, and the identification of volatile compounds of the oils from avocado pulp (Persea americana Mill.), obtained by four different extraction methods. The method with the greatest extraction yield was the combined microwave-hexane method. The amount of trans fatty acids produced in the microwave-squeezing treatment was <0.5 g/100 g. On the other hand, the amounts of trans fatty acids produced with the hexane and acetone treatments were 0.52 and 0.87 g/100 g, respectively. The method that caused the slightest modification to the oil quality was a novel combined extraction method of microwave-squeezing proposed by the authors.

  9. Hydrolysis-acidogenesis of food waste in solid-liquid-separating continuous stirred tank reactor (SLS-CSTR) for volatile organic acid production.

    Science.gov (United States)

    Karthikeyan, Obulisamy Parthiba; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-01-01

    The use of conventional continuous stirred tank reactor (CSTR) can affect the methane (CH4) recovery in a two-stage anaerobic digestion of food waste (FW) due to carbon short circuiting in the hydrolysis-acidogenesis (Hy-Aci) stage. In this research, we have designed and tested a solid-liquid-separating CSTR (SLS-CSTR) for effective Hy-Aci of FW. The working conditions were pH 6 and 9 (SLS-CSTR-1 and -2, respectively); temperature-37°C; agitation-300rpm; and organic loading rate (OLR)-2gVSL(-1)day(-1). The volatile fatty acids (VFA), enzyme activities and bacterial population (by qPCR) were determined as test parameters. Results showed that the Hy-Aci of FW at pH 9 produced ∼35% excess VFA as compared to that at pH 6, with acetic and butyric acids as major precursors, which correlated with the high enzyme activities and low lactic acid bacteria. The design provided efficient solid-liquid separation there by improved the organic acid yields from FW.

  10. The individual contribution of starter and non-starter lactic acid bacteria to the volatile organic compound composition of Caciocavallo Palermitano cheese.

    Science.gov (United States)

    Guarrasi, Valeria; Sannino, Ciro; Moschetti, Marta; Bonanno, Adriana; Di Grigoli, Antonino; Settanni, Luca

    2017-07-31

    The contribution of two starter (Lactobacillus delbrueckii and Streptococcus thermophilus) and nine non-starter (Enterococcus casselliflavus, Enterococcus faecalis, Enterococcus durans, Enterococcus gallinarum, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus, Pediococcus acidilactici and Pediococcus pentosaceus) species of lactic acid bacteria (LAB) to the volatile organic compounds (VOCs) of Caciocavallo Palermitano cheese was investigated. The strains used in this study were isolated during the production/ripening of the stretched cheese and tested in a cheese-based medium (CBM). The fermented substrates were analyzed for the growth of the single strains and subjected to the head space solid phase micro-extraction (HS-SPME) and gas chromatography - mass spectrometry (GC-MS). The 11 strains tested were all able to increase their numbers in CBM, even though the development of the starter LAB was quite limited. GC-MS analysis registered 43 compounds including seven chemical classes. A lower diversity of VOCs was registered for the unfermented curd based medium (CuBM) analyzed for comparison. The class of ketones represented a consistent percentage of the VOCs for almost all LAB, followed by alcohols and esters. The volatile profile of Pediococcus acidilactici and Lactobacillus delbrueckii was mainly characterized by 2-butanol, butanoic acid and hexanoic acid and their esters, while that of Lactobacillus casei and Lactobacillus rhamnosus was characterized by 2,3-butanedione and 2-butanone, 3-hydroxy. In order to correlate the VOCs produced by Caciocavallo Palermitano cheeses with those generated by individual LAB, the 4-month ripened cheeses resulting from the dairy process monitored during the isolation of LAB were also analyzed for the volatile chemical fraction and the compounds in common were subjected to a multivariate statistical analysis. The canonical analysis indicated that the VOCs of the ripened cheeses were mainly influenced by E

  11. Measurement of atmospheric nitrous acid at Bodgett Forest during BEARPEX2007

    Directory of Open Access Journals (Sweden)

    X. Ren

    2010-07-01

    Full Text Available Nitrous acid (HONO is an important precursor of the hydroxyl radical (OH in the lower troposphere. Understanding HONO chemistry, particularly its sources and contribution to HOx (=OH+HO2 production, is very important for understanding atmospheric oxidation processes. A highly sensitive instrument for detecting atmospheric HONO based on wet chemistry followed by liquid waveguide long path absorption photometry was deployed in the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX at Blodgett Forest, California in late summer 2007. The median diurnal variation shows minimum HONO levels of about 20–30 pptv during the day and maximum levels of about 60–70 pptv at night, a diurnal pattern quite different from the results at various other forested sites. Measured HONO/NO2 ratios for a 24-h period ranged from 0.05 to 0.13 with a mean ratio of 0.07. Speciation of reactive nitrogen compounds (NOy indicates that HONO accounted for only ~3% of total NOy. However, due to the fast HONO loss through photolysis, a strong HONO source (1.59 ppbv day−1 existed in this environment in order to sustain the observed HONO levels, indicating the significant role of HONO in NOy cycling. The wet chemistry HONO measurements were compared to the HONO measurements made with a Chemical Ionization Mass Spectrometer (CIMS over a three-day period. Good agreement was obtained between the measurements from the two different techniques. Using the expansive suite of photochemical and meteorological measurements, the contribution of HONO photolysis to HOx budget was calculated to be relatively small (6% compared to results from other forested sites. The lower HONO mixing ratio and thus its smaller contribution to HOx production are attributed to the unique meteorological conditions and low acid precipitation at Blodgett Forest. Further studies of HONO in this

  12. Contribution of low vapor pressure-volatile organic compounds (LVP-VOCs) from consumer products to ozone formation in urban atmospheres

    Science.gov (United States)

    Shin, Hyeong-Moo; McKone, Thomas E.; Bennett, Deborah H.

    2015-05-01

    Because recent laboratory testing indicates that some low vapor pressure-volatile organic compounds (LVP-VOC) solvents readily evaporate at ambient conditions, LVP-VOCs used in some consumer product formulations may contribute to ozone formation. The goal of this study is to determine the fraction of LVP-VOCs available for ozone formation from the use of consumer products for two hypothetical emissions. This study calculates and compares the fraction of consumed product available for ozone formation as a result of (a) volatilization to air during use and (b) down-the-drain disposal. The study also investigates the impact of different modes of releases on the overall fraction available in ambient air for ozone formation. For the portion of the LVP-VOCs volatilized to air during use, we applied a multi-compartment mass-balance model to track the fate of emitted LVP-VOCs in a multimedia urban environment. For the portion of the LVP-VOCs disposed down the drain, we used a wastewater treatment plant (WWTP) fate model to predict the emission rates of LVP-VOCs to ambient air at WWTPs or at the discharge zone of the facilities and then used these results as emissions in the multimedia urban environment model. In a WWTP, the LVP-VOCs selected in this study are primarily either biodegraded or removed via sorption to sludge depending on the magnitude of the biodegradation half-life and the octanol-water partition coefficient. Less than 0.2% of the LVP-VOCs disposed down the drain are available for ozone formation. In contrast, when the LVP-VOC in a consumer product is volatilized from the surface to which it has been applied, greater than 90% is available for photochemical reactions either at the source location or in the downwind areas. Comparing results from these two modes of releases allows us to understand the importance of determining the fraction of LVP-VOCs volatilized versus disposed down the drain when the product is used by consumers. The results from this study

  13. A laboratory study of the effect of acetic acid vapor on atmospheric copper corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Delgado, A.; Cano, E.; Bastidas, J.M.; Lopez, F.A. [Centro Nacional de Investigaciones Metalurgicas, Madrid (Spain)

    1998-12-01

    A study was made of the copper corrosion rate and corrosion products originated by the action of acetic acid vapor at 100% relative humidity. Copper plates were exposed to an acetic acid contaminated atmosphere for a period of 21 days. Five acetic vapor concentration levels were used. The copper corrosion rate was in the range of 1 to 23 mg/dm{sup 2} day. The corrosion-product layers were characterized using electrochemical, X-ray powder diffraction, Fourier transform infrared spectrometry, and scanning electron microscopy techniques. Thermal and calorimetric studies were also performed. Some of the compounds identified were cuprite (Cu{sub 2}O), copper acetate hydrate [Cu(CH{sub 3}COO){sub 2}{center_dot}2H{sub 2}O], and copper hydroxide acetate [Cu{sub 4}(OH)(CH{sub 3}COO){sub 7}{center_dot}2H{sub 2}O]. This last compound was also characterized. The thickness of the patina layers was 4 to 8 nm for amorphous cuprite, 11 to 48 nm for cuprite, and 225 nm for copper acetate. The patina, in which the cementation process of different corrosion-product layers plays an important role, is formed by the reaction of acetic vapor with copper through porous cuprite paths.

  14. Rapid analysis of formic acid, acetic acid, and furfural in pretreated wheat straw hydrolysates and ethanol in a bioethanol fermentation using atmospheric pressure chemical ionisation mass spectrometry

    Directory of Open Access Journals (Sweden)

    Smart Katherine A

    2011-09-01

    Full Text Available Abstract Atmospheric pressure chemical ionisation mass spectrometry (APCI-MS offers advantages as a rapid analytical technique for the quantification of three biomass degradation products (acetic acid, formic acid and furfural within pretreated wheat straw hydrolysates and the analysis of ethanol during fermentation. The data we obtained using APCI-MS correlated significantly with high-performance liquid chromatography analysis whilst offering the analyst minimal sample preparation and faster sample throughput.

  15. Influence of operating conditions for volatile fatty acids enrichment as a first step for polyhydroxyalkanoate production on a municipal waste water treatment plant.

    Science.gov (United States)

    Pittmann, Timo; Steinmetz, Heidrun

    2013-11-01

    This work describes the generation of volatile fatty acids (VFAs) as the first step of the polyhydroxyalkanoate (PHA) production cycle. Therefore four different substrates from a municipal waste water treatment plant (WWTP) were investigated regarding high VFA production and stable VFA composition. Due to its highest VFA yield primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT) and withdrawal (WD)) in order to find suitable conditions for a stable VFA production. The results demonstrated that although the substrate primary sludge differs in its consistence a stable composition of VFA could be achieved. Experiments with a semi-continuous reactor operation showed that a short RT of 4d and a small WD of 25% at pH=6 and around 30°C is preferable for high VFA mass flow (MF=1913 mg VFA/(Ld)) and a stable VFA composition.

  16. Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source.

    Science.gov (United States)

    Sydney, Eduardo Bittencourt; Larroche, Christian; Novak, Alessandra Cristine; Nouaille, Regis; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Letti, Luiz Alberto; Soccol, Vanete Thomaz; Soccol, Carlos Ricardo

    2014-05-01

    This work evaluates the potential of vinasse (a waste obtained at the bottom of sugarcane ethanol distillation columns) as nutrient source for biohydrogen and volatile fatty acids production by means of anaerobic consortia. Two different media were proposed, using sugarcane juice or molasses as carbon source. The consortium LPBAH1 was selected for fermentation of vinasse supplemented with sugarcane juice, resulting in a higher H2 yield of 7.14 molH2 molsucrose(-1) and hydrogen content in biogas of approx. 31%, while consortium LPBAH2 resulted in 3.66 molH2/molsucrose and 32.7% hydrogen content in biogas. The proposed process showed a rational and economical use for vinasse, a mandatory byproduct of the renewable Brazilian energy matrix.

  17. Ion Exclusion Chromatography Method Determination of Volatile Organic Acids and Lactic Acid in the Environmental Samples%离子排斥色谱法测定环境样品中挥发性有机酸及乳酸

    Institute of Scientific and Technical Information of China (English)

    杨学灵; 林瑛

    2011-01-01

    Volatile organic acids and lactic acid in the environmental samples were simultaneously determined by ion exclusion chromatography(IEC) method.The concentration and velocity of mobile phase were examined for the effects to the separation of organic acids.The results showed that lactic acid,formic acid,acetic acid,propionic acid,butyric acid and pentanoic acid were completely separated.The measured concentrations of organic acids showed good linear relationships with those peak heights in a certain range.The detection limits were less than 0.10 mg/L.The concentrations of organic acids in molasses alcohol waste and digested sludge were determined and the results met the testing requirements.The relative standard derivations were from 2.2% to 5.6%.%提出了同时测定环境样品中挥发性有机酸及乳酸的离子排斥色谱法(IEC法)。考察了流动相浓度、流速对有机酸分离的影响。实验结果表明,乳酸、甲酸、乙酸、丙酸、正丁酸和正戊酸可达到完全分离,被测组分的浓度与其峰高在一定的范围呈良好的线性关系,检出限均低于0.10 mg/L。测定了糖蜜酒精废水和消化污泥中有机酸的含量,结果满足检测的要求,样品中各组分的相对标准偏差为2.2%~5.6%。

  18. Combining pH and electrical conductivity measurements to improve titrimetric methods to determine ammonia nitrogen, volatile fatty acids and inorganic carbon concentrations.

    Science.gov (United States)

    Charnier, C; Latrille, E; Lardon, L; Miroux, J; Steyer, J P

    2016-05-15

    Volatile fatty acids (VFA), inorganic carbon (IC) and total ammonia nitrogen (TAN) are key variables in the current context of anaerobic digestion (AD). Accurate measurements like gas chromatography and infrared spectrometry have been developed to follow the concentration of these compounds but none of these methods are affordable for small AD units. Only titration methods answer the need for small plant monitoring. The existing methods accuracy was assessed in this study and reveals a lack of accuracy and robustness to control AD plants. To solve these issues, a new titrimetric device to estimate the VFA, IC and TAN concentrations with an improved accuracy was developed. This device named SNAC (System of titration for total ammonia Nitrogen, volatile fatty Acids and inorganic Carbon) has been developed combining the measurement of electrical conductivity and pH. SNAC were tested on 24 different plant samples in a range of 0-0.16 mol.L(-1) TAN, 0.01-0.21 mol.L(-1) IC and 0-0.04 mol.L(-1) VFA. The standard error was about 0.012 mol.L(-1) TAN, 0.015 mol.L(-1) IC and 0.003 mol.L(-1) VFA. The coefficient of determination R(2) between the estimated and reference data was 0.95, 0.94 and 0.95 for TAN, IC and VFA respectively. Using the same data, current methods based on key pH points lead to standard error more than 14.5 times higher on VFA and more than 1.2 times higher on IC. These results show that SNAC is an accurate tool to improve the management of AD plant.

  19. Comparison of sugar, acids, and volatile composition in raspberry bushy dwarf virus-resistant transgenic raspberries and the wild type 'meeker' (rubus idaeus L.).

    Science.gov (United States)

    Malowicki, Sarah M M; Martin, Robert; Qian, Michael C

    2008-08-13

    Raspberry bushy dwarf virus (RBDV) causes a significant reduction in yield and quality in raspberry and raspberry-blackberry hybrid. Genetic modifications were made to 'Meeker' red raspberries to impart RBDV resistance. The RBDV-resistant transgenic and wild type 'Meeker' plants were grown in Oregon and Washington, and the fruits were harvested in the 2004 and 2005 growing seasons. Year-to-year and site-to-site variations were observed for the degrees Brix and titratable acidity, with Oregon raspberries having slightly higher degrees Brix and lower titratable acidity than Washington raspberries. Twenty-nine volatile compounds were quantified using stir bar sorptive extraction (SBSE) paired with gas chromatography-mass spectrometry (GC-MS). There were very few differences in volatile concentrations between the transgenic varieties and the wild type 'Meeker'. Much larger variations were observed between sites and harvest seasons. Raspberries grown in Oregon appeared to have higher concentrations of delta-octalactone, delta-decalactone, geraniol, and linalool. Chiral analysis of alpha-ionone, alpha-pinene, linalool, terpinen-4-ol, delta-octalactone, and delta-decalactone demonstrated a much higher percentage of one isomer over the other, particularly alpha-ionone, alpha-pinene, delta-octalactone, and delta-decalactone, with more than 90% of one isomer, while a racemic mixture was observed for linalool. The isomeric analysis revealed very little variation between varieties, locations, or years. The flavor compounds tested in this study did not show any difference between the transgenic lines and the wild type 'Meeker' raspberry.

  20. Correlation between citric acid and nitrate metabolisms during CAM cycle in the atmospheric bromeliad Tillandsia pohliana.

    Science.gov (United States)

    Freschi, Luciano; Rodrigues, Maria Aurineide; Tiné, Marco Aurélio Silva; Mercier, Helenice

    2010-12-15

    Crassulacean acid metabolism (CAM) confers crucial adaptations for plants living under frequent environmental stresses. A wide metabolic plasticity can be found among CAM species regarding the type of storage carbohydrate, organic acid accumulated at night and decarboxylating system. Consequently, many aspects of the CAM pathway control are still elusive while the impact of this photosynthetic adaptation on nitrogen metabolism has remained largely unexplored. In this study, we investigated a possible link between the CAM cycle and the nitrogen assimilation in the atmospheric bromeliad Tillandsia pohliana by simultaneously characterizing the diel changes in key enzyme activities and metabolite levels of both organic acid and nitrate metabolisms. The results revealed that T. pohliana performed a typical CAM cycle in which phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase phosphorylation seemed to play a crucial role to avoid futile cycles of carboxylation and decarboxylation. Unlike all other bromeliads previously investigated, almost equimolar concentrations of malate and citrate were accumulated at night. Moreover, a marked nocturnal depletion in the starch reservoirs and an atypical pattern of nitrate reduction restricted to the nighttime were also observed. Since reduction and assimilation of nitrate requires a massive supply of reducing power and energy and considering that T. pohliana lives overexposed to the sunlight, we hypothesize that citrate decarboxylation might be an accessory mechanism to increase internal CO₂ concentration during the day while its biosynthesis could provide NADH and ATP for nocturnal assimilation of nitrate. Therefore, besides delivering photoprotection during the day, citrate might represent a key component connecting both CAM pathway and nitrogen metabolism in T. pohliana; a scenario that certainly deserves further study not only in this species but also in other CAM plants that nocturnally accumulate citrate

  1. The gas chromatographic determination of volatile fatty acids in wastewater samples: evaluation of experimental biases in direct injection method against thermal desorption method.

    Science.gov (United States)

    Ullah, Md Ahsan; Kim, Ki-Hyun; Szulejko, Jan E; Cho, Jinwoo

    2014-04-11

    The production of short-chained volatile fatty acids (VFAs) by the anaerobic bacterial digestion of sewage (wastewater) affords an excellent opportunity to alternative greener viable bio-energy fuels (i.e., microbial fuel cell). VFAs in wastewater (sewage) samples are commonly quantified through direct injection (DI) into a gas chromatograph with a flame ionization detector (GC-FID). In this study, the reliability of VFA analysis by the DI-GC method has been examined against a thermal desorption (TD-GC) method. The results indicate that the VFA concentrations determined from an aliquot from each wastewater sample by the DI-GC method were generally underestimated, e.g., reductions of 7% (acetic acid) to 93.4% (hexanoic acid) relative to the TD-GC method. The observed differences between the two methods suggest the possibly important role of the matrix effect to give rise to the negative biases in DI-GC analysis. To further explore this possibility, an ancillary experiment was performed to examine bias patterns of three DI-GC approaches. For instance, the results of the standard addition (SA) method confirm the definite role of matrix effect when analyzing wastewater samples by DI-GC. More importantly, their biases tend to increase systematically with increasing molecular weight and decreasing VFA concentrations. As such, the use of DI-GC method, if applied for the analysis of samples with a complicated matrix, needs a thorough validation to improve the reliability in data acquisition.

  2. Organic acids produced by lactic acid bacteria (Leuconostoc sp.) contribute to sensorial quality loss in modified-atmosphere-packed fresh-cut iceberg lettuce

    NARCIS (Netherlands)

    Paillart, M.J.M.; Vossen, van der J.M.B.M.; Lommen, E.; Levin, E.; Otma, E.C.; Snels, J.C.M.A.; Woltering, E.J.

    2016-01-01

    The shelf-life of fresh-cut lettuce packed in a modified atmosphere (MA) is determined by its "overall visual quality" (OVQ), being a measure of its general appearance based on colour and shape criteria. In addition to the OVQ, the development of off-flavour and acid off-smell reduces consumer ac

  3. Ascorbic acid and tissue browning in pears (Pyrus communis L. cvs Rocha and Conference) under controlled atmosphere conditions

    NARCIS (Netherlands)

    Veltman, R.H.; Kho, R.M.; Schaik, van A.C.R.; Sanders, M.G.; Oosterhaven, J.

    2000-01-01

    The relationships between storage gas composition and ascorbic acid (AA) levels, and between AA levels and the development of internal browning, were studied in 'Conference' and 'Rocha' pears (Pyrus communis L.). In both cultivars, AA levels declined under (browning-inducing) controlled atmosphere (

  4. Investigating diesel engines as an atmospheric source of isocyanic acid in urban areas

    Directory of Open Access Journals (Sweden)

    S. H. Jathar

    2017-07-01

    Full Text Available Isocyanic acid (HNCO, an acidic gas found in tobacco smoke, urban environments, and biomass-burning-affected regions, has been linked to adverse health outcomes. Gasoline- and diesel-powered engines and biomass burning are known to emit HNCO and hypothesized to emit precursors such as amides that can photochemically react to produce HNCO in the atmosphere. Increasingly, diesel engines in developed countries like the United States are required to use selective catalytic reduction (SCR systems to reduce tailpipe emissions of oxides of nitrogen. SCR chemistry is known to produce HNCO as an intermediate product, and SCR systems have been implicated as an atmospheric source of HNCO. In this work, we measure HNCO emissions from an SCR system-equipped diesel engine and, in combination with earlier data, use a three-dimensional chemical transport model (CTM to simulate the ambient concentrations and source/pathway contributions to HNCO in an urban environment. Engine tests were conducted at three different engine loads, using two different fuels and at multiple operating points. HNCO was measured using an acetate chemical ionization mass spectrometer. The diesel engine was found to emit primary HNCO (3–90 mg kg fuel−1 but we did not find any evidence that the SCR system or other aftertreatment devices (i.e., oxidation catalyst and particle filter produced or enhanced HNCO emissions. The CTM predictions compared well with the only available observational datasets for HNCO in urban areas but underpredicted the contribution from secondary processes. The comparison implied that diesel-powered engines were the largest source of HNCO in urban areas. The CTM also predicted that daily-averaged concentrations of HNCO reached a maximum of ∼ 110 pptv but were an order of magnitude lower than the 1 ppbv level that could be associated with physiological effects in humans. Precursor contributions from other combustion sources (gasoline and biomass

  5. Interactions of methylamine and ammonia with atmospheric nucleation precursor H{sub 2}SO{sub 4} and common organic acids: Thermodynamics and atmospheric implications

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.; Jiang, L.; Bai, Z. [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Nadykto, A. B., E-mail: anadykto@gmail.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Department of Applied Mathematics, Moscow State University of Technology “STANKIN”, Vadkovsky per. 1, Moscow 127055 (Russian Federation); Atmospheric Science Research Center, State University of New York at Albany, 251 Fuller Road, Albany, NY 12203 (United States)

    2016-06-08

    Interactions of the two common atmospheric bases, ammonia (NH{sub 3}) and methylamine MA (CH{sub 3}NH{sub 2}), which are considered to be important stabilizers of binary clusters in the Earth’s atmosphere, with H{sub 2}SO{sub 4}, the key atmospheric precursor, and 14 common atmospheric organic acids (COA) (formic (CH{sub 2}O{sub 2}), acetic (C{sub 2}H{sub 4}O{sub 2}), oxalic (C{sub 2}H{sub 2}O{sub 4}), malonic (C{sub 3}H{sub 4}O{sub 4}), succinic (C{sub 4}H{sub 6}O{sub 4}), glutaric acid (C{sub 5}H{sub 8}O{sub 4}), adipic (C{sub 6}H{sub 10}O{sub 4}), benzoic (C{sub 6}H{sub 5}COOH), phenylacetic (C{sub 6}H{sub 5}CH{sub 2}COOH), pyruvic (C{sub 3}H{sub 4}O{sub 3}), maleic acid (C{sub 4}H{sub 4}O{sub 4}), malic (C{sub 4}H{sub 6}O{sub 5}), tartaric (C{sub 4}H{sub 6}O{sub 6}) and pinonic acid (C{sub 10}H{sub 16}O{sub 3})) have been studied using the composite high-accuracy G3MP2 method. The thermodynamic stability of mixed (COA) (H{sub 2}SO{sub 4}), (COA)(B1) and (COA)(B2) dimers and (COA) (H{sub 2}SO{sub 4}) (B1) and (COA) (H{sub 2}SO{sub 4}) (B1) trimers, where B1 and B2 represent methylamine (CH{sub 3}NH{sub 2}) and ammonia (NH{sub 3}), respectively, have been investigated and their impacts on the thermodynamic stability of clusters containing H{sub 2}SO{sub 4} have been analyzed. It has been shown that in many cases the interactions of H{sub 2}SO{sub 4} with COA, ammonia and methylamine lead to the formation of heteromolecular dimers and trimers, which are certainly more stable than (H{sub 2}SO{sub 4}){sub 2} and (H{sub 2}SO{sub 4}){sub 3}. It has also been found that free energies of (COA) (H{sub 2}SO{sub 4})+ CH{sub 3}NH{sub 2}⇔(COA) (H{sub 2}SO{sub 4})(CH{sub 3}NH{sub 2}) reactions exceed 10-15 kcal mol{sup −1}. This is a clear indication that mixed trimers composed of COA, H{sub 2}SO{sub 4} and methylamine are very stable and can thus serve as possible nucleation sites. The present study leads us to conclude that the interactions of COA coexisting with H

  6. Production of hydrogen, ethanol and volatile fatty acids through co-fermentation of macro- and micro-algae.

    Science.gov (United States)

    Xia, Ao; Jacob, Amita; Tabassum, Muhammad Rizwan; Herrmann, Christiane; Murphy, Jerry D

    2016-04-01

    Algae may be fermented to produce hydrogen. However micro-algae (such as Arthrospira platensis) are rich in proteins and have a low carbon/nitrogen (C/N) ratio, which is not ideal for hydrogen fermentation. Co-fermentation with macro-algae (such as Laminaria digitata), which are rich in carbohydrates with a high (C/N) ratio, improves the performance of hydrogen production. Algal biomass, pre-treated with 2.5% dilute H2SO4 at 135°C for 15min, effected a total yield of carbohydrate monomers (CMs) of 0.268g/g volatile solids (VS). The CMs were dominating by glucose and mannitol and most (ca. 95%) were consumed by anaerobic fermentative micro-organisms during subsequent fermentation. An optimal specific hydrogen yield (SHY) of 85.0mL/g VS was obtained at an algal C/N ratio of 26.2 and an algal concentration of 20g VS/L. The overall energy conversion efficiency increased from 31.3% to 54.5% with decreasing algal concentration from 40 to 5 VS g/L.

  7. Thermodynamic properties of multifunctional oxygenates in atmospheric aerosols from quantum mechanics and molecular dynamics: dicarboxylic acids.

    Science.gov (United States)

    Tong, Chinghang; Blanco, Mario; Goddard, William A; Seinfeld, John H

    2004-07-15

    Ambient particulate matter contains polar multifunctional oxygenates that partition between the vapor and aerosol phases. Vapor pressure predictions are required to determine the gas-particle partitioning of such organic compounds. We present here a method based on atomistic simulations combined with the Clausius-Clapeyron equation to predict the liquid vapor pressure, enthalpies of vaporization, and heats of sublimation of atmospheric organic compounds. The resulting temperature-dependent vapor pressure equation is a function of the heat of vaporization at the normal boiling point [deltaHvap(Tb)], normal boiling point (Tb), and the change in heat capacity (liquid to gas) of the compound upon phase change [deltaCp(Tb)]. We show that heats of vaporization can be estimated from calculated cohesive energy densities (CED) of the pure compound obtained from multiple sampling molecular dynamics. The simulation method (CED) uses a generic force field (Dreiding) and molecular models with atomic charges determined from quantum mechanics. The heats of vaporization of five dicarboxylic acids [malonic (C3), succinic (C4), glutaric (C5), adipic (C6), and pimelic (C7)] are calculated at 500 K. Results are in agreement with experimental values with an averaged error of about 4%. The corresponding heats of sublimation at 298 K are also predicted using molecular simulations. Vapor pressures of the five dicarboxylic acids are also predicted using the derived Clausius-Clapeyron equation. Predicted liquid vapor pressures agree well with available literature data with an averaged error of 29%, while the predicted solid vapor pressures at ambient temperature differ considerably from a recent study by Bilde et al. (Environ. Sci. Technol. 2003, 37, 1371-1378) (an average of 70%). The difference is attributed to the linear dependence assumption thatwe used in the derived Clausius-Clapeyron equation.

  8. Pentane and other volatile organic compounds, including carboxylic acids, in the exhaled breath of patients with Crohn's disease and ulcerative colitis.

    Science.gov (United States)

    Dryahina, Kseniya; Smith, David; Bortlík, Martin; Machková, Naděžda; Lukáš, Milan; Spanel, Patrik

    2017-08-07

    A study has been carried out of the volatile organic compounds (VOCs) in the exhaled breath of patients suffering from inflammatory bowel disease (IBD), comprising 136 with Crohn's disease (CD) and 51 with ulcerative colitis (UC), together with a cohort of 14 healthy persons as controls. Breath samples were collected by requesting the patients to inflate Nalophan bags which were then quantitatively analysed using selected ion flow tube mass spectrometry, SIFT-MS. Initially, the focus was on n-pentane that had previously been quantified in single exhalations by on line to SIFT-MS for smaller cohorts of IBD patients. It was seen that the median concentration of pentane was elevated in the bag breath samples of the IBD patients compared to those of the healthy controls, in accordance with the previous study. However, the absolute median pentane concentrations in the bag samples were about a factor of two lower than those in the directly analysed single exhalations, well illustrating the dilution of VOCs in samples of breath collected into bags. Accounting for this dilution effect, the concentrations of the common breath VOCs ethanol, propanol, acetone and isoprene were largely as expected for healthy controls. The concentrations of the much less frequently measured hydrogen sulphide, acetic acid, propanoic acid and butanoic acid were seen to be more widely spread in the exhaled breath of the IBD patients compared to those for the healthy controls. The relative concentrations of pentane and these other VOCs weakly correlate with simple clinical activity indices. It is speculated that, potentially, hydrogen sulphide and these carboxylic acids could be exhaled breath biomarker of intestinal bacterial overgrowth, which could assist therapeutic intervention and thus alleviate the symptoms of IBD. © 2017 IOP Publishing Ltd.

  9. Effects of Tannic Acid on Lipid and Protein Oxidation, Color, and Volatiles of Raw and Cooked Chicken Breast Meat during Storage

    Directory of Open Access Journals (Sweden)

    Marwan Al-Hijazeen

    2016-06-01

    Full Text Available The objective of this study was to determine the effect of tannic acid (TA on the oxidative stability and the quality characteristics of ground chicken breast meat. Five treatments including (1 control (none added, (2 2.5 ppm TA, (3 5 ppm TA, (4 10 ppm TA, and (5 5 ppm butylated hydroxyanisole (BHA were added to boneless, skinless ground chicken breast meat, and used for both raw and cooked meat studies. For the raw meat study, the ground chicken breast meat was packaged in oxygen-permeable bags and stored at 4 °C for 7 days. For the cooked study, raw ground meat samples were vacuum-packaged in oxygen-impermeable vacuum bags, cooked in-bag to the internal temperature of 75 °C, re-packaged in oxygen-permeable bags, and then stored. Both raw and cooked meats were analyzed for lipid and protein oxidation, color, and volatiles (cooked meat only at 0, 3, and 7 days of storage. Raw meats with 10 ppm of TA added had significantly (p ≤ 0.05 lower lipid and protein oxidation than other treatments during storage. In addition, TA at 10 ppm level maintained the highest color a*- and L*-values during storage. Cooked chicken breast meat with 5 and 10 ppm TA added produced significantly (p ≤ 0.05 lower amounts of off-odor volatiles than other treatments. Among the volatile compounds, the amount of hexanal increased rapidly during storage for cooked meat. However, meats with 5 and 10 ppm TA added showed the lowest amount of hexanal and other aldehydes related to lipid oxidation, indicating a strong antioxidant effect of TA in cooked chicken breast meat. Furthermore, the differences in aldehydes among the treatments were bigger in cooked than in raw meat, indicating that the antioxidant effect of TA in cooked meat was greater than that in raw meat. Therefore, TA at >5 ppm can be used as a good natural preservative in cooked chicken meat to maintain its quality during storage.

  10. Volatile Organic Compounds in Naturally Fermented Milk and Milk Fermented Using Yeasts, Lactic Acid Bacteria and Their Combinations As Starter Cultures

    Directory of Open Access Journals (Sweden)

    Bennie C. Viljoen

    2007-01-01

    Full Text Available The volatile organic compounds present in 18 Zimbabwean naturally fermented milk (amasi samples and those produced by various yeasts, lactic acid bacteria (LAB and yeast/ LAB combinations were determined using headspace gas chromatography. The yeast strains used were: Candida kefyr 23, C. lipolytica 57, Saccharomyces cerevisiae 71, C. lusitaniae 68, C. tropicalis 78, C. lusitaniae 63, C. colliculosa 41, S. dairenensis 32, and Dekkera bruxellensis 43, and were coded Y1 to Y9, respectively. The LAB strains used were Lactococcus lactis subsp. lactis Lc39, L. lactis subsp. lactis Lc261, Lactobacillus paracasei Lb11, and L. lactis subsp. lactis biovar. diacetylactis C1, and were coded B1 to B4, respectively. Some of the volatile organic compounds found in amasi were acetaldehyde, ethanol, acetone, 2-methyl propanal, 2-methyl-1-propanol and 3-methyl-1-butanol. However, the levels of volatile organic compounds in the naturally fermented milk (NFM samples varied from one sample to another, with acetaldehyde ranging from 0.1–18.4 ppm, 3-methyl butanal from <0.1–0.47 ppm and ethanol from 39.3–656 ppm. The LAB/C. kefyr 23 (B/Y1 co-cultures produced significantly (p<0.05 higher levels of acetaldehyde and ethanol than the levels found in the NFM. The acetaldehyde levels in the B/Y1 samples ranged from 26.7–87.7 ppm, with L. lactis subsp. lactis biovar. diacetylactis C1 (B4 producing the highest level of acetaldehyde in combination with C. kefyr 23 (Y1. Using principal component analysis (PCA, most of the NFM samples were grouped together with single and co-cultures of Lc261, Lb11 and the non-lactose fermenting yeasts, mainly because of the low levels of ethanol and similar levels of 3-methyl butanal. Chromatograms of amasi showed prominent peak of methyl aldehydes and their alcohols including 3-methyl-butanal and 3-methyl-butanol, suggesting that these compounds are important attributes of Zimbabwean naturally fermented milk.

  11. The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows

    Directory of Open Access Journals (Sweden)

    Mao Shengyong

    2012-12-01

    Full Text Available Abstract Background Sub-acute ruminal acidosis (SARA is a well-recognized digestive disorder found in particular in well-managed dairy herds. SARA can result in increased flow of fermentable substrates to the hindgut, which can increase the production of volatile fatty acids, alter the structure of the microbial community, and have a negative effect on animal health and productivity. However, little is known about changes in the structure of the microbial community and its relationship with fatty acids during SARA. Four cannulated primiparous (60 to 90 day in milk Holstein dairy cows were assigned to two diets in a 2 × 2 crossover experimental design. The diets contained (on a dry matter basis: 40% (control diet, COD and 70% (SARA induction diet, SAID concentrate feeds. Samples of ruminal fluid and feces were collected on day 12, 15, 17 and 21 of the treatment period, and the pH was measured in the ruminal and fecal samples; the fecal microbiota was determined by pyrosequencing analysis of the V1–V3 region of amplified 16S ribosomal RNA (16S rRNA. Results SAID decreased ruminal and fecal pH and increased the propionate, butyrate and total volatile fatty acid (TVFA concentration in feces when compared with the COD. A barcoded DNA pyrosequencing method was used to generate 2116 16S operational taxonomic units (OTUs. A total of 11 phyla were observed, distributed amongst all cattle on both diets; however, only 5 phyla were observed in all animals regardless of dietary treatment, and considerable animal to animal variation was revealed. The average abundance and its range of the 5 phyla were as follows: Firmicutes (63.7%, 29.1–84.1%, Proteobacteria (18.3%, 3.4–46.9%, Actinobacteria (6.8%, 0.4–39.9%, Bacteroidetes (7.6%, 2.2–17.7% and Tenericutes (1.6%, 0.3–3%. Feeding the SAID resulted in significant shifts in the structure of the fecal microbial community when compared with the traditional COD. Among the 2116 OTUs detected in the

  12. Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8:2 fluorotelomer alcohol

    DEFF Research Database (Denmark)

    Wallington, T. J.; Hurley, M. D.; Xia, J.;

    2006-01-01

    Calculations using a three-dimensional global atmospheric chemistry model (IMPACT) indicate that n-C8F17CH2CH2-OH (widely used in industrial and consumer products) degrades in the atmosphere to give perfluorooctanoic acid (PFOA) and other perfluorocarboxylic acids (PFCAs). PFOA is persistent, bio...

  13. Palmitic Acid on Salt Subphases and in Mixed Monolayers of Cerebrosides: Application to Atmospheric Aerosol Chemistry

    Directory of Open Access Journals (Sweden)

    Ellen M. Adams

    2013-10-01

    Full Text Available Palmitic acid (PA has been found to be a major constituent in marine aerosols, and is commonly used to investigate organic containing atmospheric aerosols, and is therefore used here as a proxy system. Surface pressure-area isotherms (π-A, Brewster angle microscopy (BAM, and vibrational sum frequency generation (VSFG were used to observe a PA monolayer during film compression on subphases of ultrapure water, CaCl2 and MgCl2 aqueous solutions, and artificial seawater (ASW. π-A isotherms indicate that salt subphases alter the phase behavior of PA, and BAM further reveals that a condensation of the monolayer occurs when compared to pure water. VSFG spectra and BAM images show that Mg2+ and Ca2+ induce ordering of the PA acyl chains, and it was determined that the interaction of Mg2+ with the monolayer is weaker than Ca2+. π-A isotherms and BAM were also used to monitor mixed monolayers of PA and cerebroside, a simple glycolipid. Results reveal that PA also has a condensing effect on the cerebroside monolayer. Thermodynamic analysis indicates that attractive interactions between the two components exist; this may be due to hydrogen bonding of the galactose and carbonyl headgroups. BAM images of the collapse structures show that mixed monolayers of PA and cerebroside are miscible at all surface pressures. These results suggest that the surface morphology of organic-coated aerosols is influenced by the chemical composition of the aqueous core and the organic film itself.

  14. Effects of two probiotic additives containing Bacillus spores on carcass characteristics, blood lipids and cecal volatile fatty acids in meat type chickens.

    Science.gov (United States)

    Novak, R; Bogovič Matijašić, B; Terčič, D; Cervek, M; Gorjanc, G; Holcman, A; Levart, A; Rogelj, I

    2011-08-01

    The objective of this study was to evaluate effects of two commercially available probiotic additives, containing Bacillus spores, on carcass and meat characteristics, serum lipids and concentration of cecal volatile fatty acids of meat type chickens. Birds were fed regular corn-soy meal based feed (control), supplemented with additive A, containing 1.6 × 10(6) spores per gram of feed of Bacillus subtilis and Bacillus licheniformis (group A) or additive B, containing the same concentration of Bacillus cereus var. toyoi spores (group B). One hundred and twenty birds (20 per replicate) were slaughtered at the age of 55 days. Results showed that birds in group B had higher (p blood serum cholesterol profile. Both probiotics influenced the cecal fermentation, which was observed as decrease in cecal concentrations of propionic, butyric, n-butyric and n-valeric acids, but the differences compared to control group were statistically significant for group A only. It was established that probiotic additive B was more effective regarding carcass and meat part weights than additive A, however the animals from group B also had more abdominal fat and their meat had significantly higher conductivity than control group, which is not considered as beneficial.

  15. Effects of organic loading rate on hydrogen and volatile fatty acid production and microbial community during acidogenic hydrogenesis in a continuous stirred tank reactor using molasses wastewater.

    Science.gov (United States)

    Yun, J; Cho, K-S

    2016-12-01

    Microbial community associated with hydrogen production and volatile fatty acids (VFAs) accumulation was characterized in acidogenic hydrogenesis using molasses wastewater as a feedstock. Hydrogen and VFAs production were measured under an organic loading rate (OLR) from 19 to 35 g-COD l(-1)  day(-1) . The active microbial community was analysed using RNA-based massively parallel sequencing technique, and their correlation patterns were analysed using networking analysis. The continuous stirred tank reactor achieved stable hydrogen production at different OLR conditions, and the maximum hydrogen production rate (HPR) was 1·02 L-H2  l(-1)  day(-1) at 31·0 g-COD l(-1)  day(-1) . Butyrate (50%) and acetate (38%) positively increased with increase in OLR. Total VFA production stayed around 7135 mg l(-1) during the operation period. Although Clostridiales and Lactobacillales were relatively abundant, the HPR was positively associated with Pseudomonadaceae and Micrococcineae. Total VFA and acetate, butyrate and propionate concentrations were positively correlated with lactic acid bacteria (LAB) such as Bacillales, Sporolactobacillus and Lactobacillus. The close relationship between Pseudomonadaceae and Micrococcineae, and LAB play important roles for stable hydrogen and VFA production from molasses wastewater. Microbial information on hydrogen and VFA production can be useful to design and operate for acidogenic hydrogenesis using high strength molasses wastewater. © 2016 The Society for Applied Microbiology.

  16. Effects of feeding metabolite combinations produced by Lactobacillus plantarum on growth performance, faecal microbial population, small intestine villus height and faecal volatile fatty acids in broilers.

    Science.gov (United States)

    Thanh, N T; Loh, T C; Foo, H L; Hair-Bejo, M; Azhar, B K

    2009-05-01

    1. Four combinations of metabolites produced from strains of Lactobacillus plantarum were used to study the performance of broiler chickens. 2. A total of 432 male Ross broilers were raised from one-day-old to 42 d of age in deep litter pens (12 birds/pen). These birds were divided into 6 groups and fed on different diets: (i) standard maize-soybean-based diet (negative control); (ii) standard maize-soybean-based diet + Neomycin and Oxytetracycline (positive control); (iii) standard maize-soybean-based diet + 0.3% metabolite combination of Lactobacillus plantarum RS5, RI11, RG14 and RG11 strains (com3456); (iv) standard maize-soybean-based diet + 0.3% metabolite combination of L. plantarum TL1, RI11 and RG11 (Com246); (v) standard maize-soybean-based diet + 0.3% metabolite combination of L. plantarum TL1, RG14 and RG11 (Com256) and (vi) standard maize-soybean-based diet + 0.3% metabolite combination of L. plantarum TL1, RS5, RG14 and RG11 (Com2356). 3. Higher final body weight, weight gain, average daily gain and lower feed conversion ratio were found in all 4 treated groups. 4. The addition of a metabolite combination supplementation also increased faecal lactic acid bacteria population, small intestine villus height and faecal volatile fatty acids and faecal Enterobacteriaceae population.

  17. The synthesis of amino acids and sugars on an inorganic template from constituents of the prebiotic atmosphere

    Science.gov (United States)

    Field, B. O.; Spencer, J. E. D.

    1990-05-01

    Inelastic Electron Tunnelling Spectroscopy (IETS) has been used to identify the reaction products present on an alumina surface when it is exposed to likely components of the earth's prebiotic atmosphere. The alumina barrier of Al-AlO x -Pb tunnelling junctions have been exposed to water; aqueous ammonia; wet carbon monoxide gas and to aqueous formaldehyde vapour under normal atmospheric conditions at room temperature. The water spectrum shows strong coincidence with that of a genuine sample of formic acid. It is proposed that atmospheric CO2 is involved in this surface catalyzed reaction. The aqueous ammonia spectrum is assigned as an amino acid species produced from ammonia, water and atmospheric carbon dioxide. This spectrum compares very closely with the tunnelling spectrum of a genuine sample of glycine. The wet carbon monoxide spectrum and the aqueous formaldehyde spectrum have been produced by an infusion doping process. These spectra of CO and aqueous formaldehyde are assigned as a sugar like polymer or a sugar formed on the alumina surface. A tunnelling spectrum of D(-) fructose has been produced to aid this assignment. The role of an inorganic template such as alumina in the original prebiotic synthesis of amino acids and sugars is considered.

  18. Quantitative analysis of growth and volatile fatty acid production by the anaerobic ruminal bacterium Megasphaera elsdenii T81

    Science.gov (United States)

    Megaspheara elsdenii T81 grew on either DL-lactate or D-glucose at similar rates (0.85 per h), but displayed major differences in the fermentation of these substrates. Lactate was fermented at up to 210-mM concentration to yield acetic, propionic, butyric, and valeric acids. The bacterium was able t...

  19. Signal and distribution of volatile Mercury (Hg0) in the Marine High Arctic During Polar Summer in the Sequel of Enhanced Atmospheric Deposition of HgⅡ

    Institute of Scientific and Technical Information of China (English)

    Jonas O. Sommar; Maria E. Andersson

    2008-01-01

    @@ 1 Introduction It has been elucidated that high levels of neurotoxic mercury (Hg) in the Arctic is related to a rapid, near-compete depletion of Hg0 (MDE) in the atmospheric boundary-layer occurring episodically during the Polar spring[1].

  20. Sources of atmospheric acidity in an agricultural-industrial region of São Paulo State, Brazil

    Science.gov (United States)

    Da Rocha, G. O.; Franco, A.; Allen, A. G.; Cardoso, A. A.

    2003-04-01

    Surface-based measurements of atmospheric formic acid (HCOOH), acetic acid (CH3COOH), sulfur dioxide (SO2), hydrogen chloride (HCl), and nitric acid (HNO3) were made in central São Paulo State, Brazil, between April 1999 and March 2000. Mean concentrations were 9.0 ppb (HCOOH), 1.3 ppb (CH3COOH), 4.9 ppb (SO2), 0.3 ppb (HCl), and 0.5 ppb (HNO3). Concentrations in sugar cane burning plumes were 1160-4230 ppb (HCOOH), 360-1750 ppb (CH3COOH), 10-630 ppb (SO2), 4-210 ppb (HCl), and 14-90 ppb (HNO3). Higher ambient concentrations of SO2, HCl and HNO3 were measured during the burning season (May-November). Concentrations of SO2 and HCl increased during the evening, and of HCOOH and CH3COOH were lowest in the morning, with peak levels in the afternoon. Ratios obtained between different species showed either nighttime maxima (SO2/HCOOH, SO2/CH3COOH, SO2/HNO3, CH3COOH/HNO3, SO2/HCl and HCOOH/HNO3), daytime maxima (HCOOH/HCl, CH3COOH/HCl and HNO3/HCl), or no clear trends (HCOOH/CH3COOH). Correlation analysis showed that SO2 and HCl were primary emissions from biomass burning and road transport; HCOOH, HNO3 and CH3COOH were products of photochemistry; HCOOH and CH3COOH were emitted directly during combustion as well as from biogenic sources. Biomass burning affected atmospheric acidity on a regional scale, while vehicular emissions had greater impact in urban and adjacent areas. Atmospheric ammonia levels were insufficient to neutralize atmospheric acidity, which was mainly removed by deposition to the surface.

  1. Cation-exchange high-performance liquid chromatography: Separation of highly basic proteins using volatile acidic solvents

    NARCIS (Netherlands)

    Eijnden-van Raaij, A.J.M. van den; Koornneef, I.; Oostwaard, Th.M.J.; Laat, S.W. de; Zoelen, E.J.J. van

    1987-01-01

    The chromatographic behavior of a number of globular proteins was studied on a Bio-Sil TSK CM-2-SW weak cation exchange HPLC column under acidic conditions. A linear gradient of O-I M NH₄Ac in I M HOAc, inducing a convex pH gradient from 2.4-4.8, resulted in an excellent separation of highly basic p

  2. Atmospheric oxalic acid and related secondary organic aerosols in Qinghai Lake, a continental background site in Tibet Plateau

    Science.gov (United States)

    Meng, Jingjing; Wang, Gehui; Li, Jianjun; Cheng, Chunlei; Cao, Junji

    2013-11-01

    Summertime PM2.5 aerosols collected from Qinghai Lake (3200 m a.s.l.), a remote continental site in the northeastern part of Tibetan Plateau, were analyzed for dicarboxylic acids (C2-C11), ketocarboxylic acids and α-dicarbonyals. Oxalic acid (C2) is the dominant dicarboxylic acid in the samples, followed by malonic, succinic and azelaic acids. Total dicarboxylic acids (231 ± 119 ng m-3), ketocarboxylic acids (8.4 ± 4.3 ng m-3), and α-dicarbonyls (2.7 ± 2.1 ng m-3) at the Tibetan background site are 2-5 times less than those detected in lowland areas such as 14 Chinese megacities. Compared to those in other urban and marine areas enhancements in relative abundances of C2/total diacids and diacids-C/WSOC of the PM2.5 samples suggest that organic aerosols in the region are more oxidized due to strong solar radiation. Molecular compositions and air mass trajectories demonstrate that the above secondary organic aerosols in the Qinghai Lake atmosphere are largely derived from long-range transport. Ratios of oxalic acid, glyoxal and methylglyoxal to levoglucosan in PM2.5 aerosols emitted from household burning of yak dung, a major energy source for Tibetan in the region, are 30-400 times lower than those in the ambient air, which further indicates that primary emission from biomass burning is a negligible source of atmospheric oxalic acid and α-dicarbonyls at this background site.

  3. Molecular composition of dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids in atmospheric aerosols from Tanzania, East Africa during wet and dry seasons

    Directory of Open Access Journals (Sweden)

    S. L. Mkoma

    2013-02-01

    Full Text Available Atmospheric aerosol samples of PM2.5 and PM10 were collected during the wet and dry seasons in 2011 from a rural site in Tanzania and analysed for water-soluble dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, and fatty acids using a gas chromatography/flame ionization detector (GC/FID and GC/mass spectrometry. Here we report the molecular composition and sources of diacids and related compounds for wet and dry seasons. Oxalic acid (C2 was found as the most abundant diacid species followed by succinic and/or malonic acids whereas glyoxylic acid and glyoxal were the dominant ketoacid and α-dicarbonyl, respectively in both seasons in PM2.5 and PM10. Mean concentration of C2 in PM2.5 (121 ± 47 ng m−3 was lower in wet season than dry season (258 ± 69 ng m−3. Similarly, PM10 samples showed lower concentration of C2 (169 ± 42 ng m−3 in wet season than dry season (292 ± 165 ng m−3. Relative abundances of C2 in total diacids were 65% and 67% in PM2.5 and 65% and 64% in PM10 in the wet and dry seasons, respectively. Total concentrations of diacids (289–362 ng m−3, ketoacids (37.8–53.7 ng m−3, and α-dicarbonyls (5.7–7.8 ng m−3 in Tanzania are higher than those reported at a rural background site in Nylsvley (South Africa but comparable or lower than those reported from sites in Asia and Europe. Diacids and ketoacids were found to be present mainly in PM2.5 in both seasons (total α-dicarbonyls in the dry season, suggesting a production of organic acids from pyrogenic sources and photochemical oxidations. Averaged contributions of total diacids to aerosol total carbon were 1.4% in PM2.5 and 2.1% in PM10 during wet season and 3.3% in PM2.5 and 3.9% in PM10 during

  4. Search for Non-Volatile Components with Low Polarity Characterizing Tobacco Leaves Using Liquid Chromatography / Atmospheric Pressure Chemical Ionization Mass Spectrometry Detector

    Directory of Open Access Journals (Sweden)

    Ishida Naoyuki

    2015-06-01

    Full Text Available Alors que les regards se sont principalement tournés sur les composants à faible polarité dans la résine de feuilles de tabac en raison de leur lien probable avec le goût et l’arôme des produits du tabac, l’absence d’une méthode praticable et d’un outil analytique a longtemps fait obstacle à l’identification des composants non-volatils à faible polarité. L’auteur a, en l’occurrence, porté son attention sur l’analyse recourant à la chromatographie en phase inverse non aqueuse couplée à un détecteur à barrettes de photodiodes et à un détecteur de spectrométrie de masse par ionisation chimique à pression atmosphérique. Cette analyse fut considérée applicable à la séparation des composants nonvolatils significatifs mais inconnus. Son application a permis, avec succès, de séparer, détecter et quantifier simultanément plus de 100 composants non-volatils présentant des polarités faibles et différenciées. Ces composantes furent, entre autres, des solanésols, des triacylglycérides, des phytostérols et des chlorophylles. Cependant, les données concernant les différences de composition parmi les diverses feuilles de tabac demeurent encore partielles et basées sur une analyse ciblée plutôt que globales et basées sur une analyse exhaustive. Aucune étude n’a été, à ce jour, accomplie qui recense les composants essentiels permettant de distinguer, parmi les feuilles de tabac, les différents goûts, arômes, variétés, cultivars, processus de séchage et régions de culture. Par conséquent, toutes les données de quantification ont été consolidées dans le but de former une matrice multidimensionnelle complète et ont subi un traitement statistique qui a mis en exergue les catégories et les composants-clés des diverses feuilles de tabac grâce à une analyse en composantes principales et une classification hiérarchique. Les feuilles de tabac ont, dans un premier temps, été ventilées en

  5. Influence of Biomass Burning on Temporal and Diurnal Variations of Acidic Gases, Particulate Nitrate, and Sulfate in a Tropical Urban Atmosphere

    OpenAIRE

    Sailesh N. Behera; Rajasekhar Balasubramanian

    2014-01-01

    The present study investigated the temporal and diurnal distributions of atmospheric acidic gases (sulphur dioxide (SO2), nitrous acid (HONO), and nitric acid (HNO3)) and those of particulate nitrate (NO3-) and sulfate (SO42-) through a comprehensive field campaign during the largest smoke haze episode in Singapore, a representative country in Southeast Asia (SEA). To identify the atmospheric behavior of these pollutants during the smoke haze period, the data generated from the measurement ca...

  6. Volatile compounds in low-acid fermented sausage "espetec" and sliced cooked pork shoulder subjected to high pressure processing. A comparison of dynamic headspace and solid-phase microextraction.

    Science.gov (United States)

    Rivas-Cañedo, Ana; Juez-Ojeda, Cristina; Nuñez, Manuel; Fernández-García, Estrella

    2012-05-01

    Two extraction techniques, dynamic headspace extraction (DHE) and solid-phase microextraction (SPME), were compared to assess the effect of high-pressure treatment (400MPa, 10min, 12°C) on the volatile compounds of low-acid fermented sausage "espetec" and sliced cooked pork shoulder stored at 4°C. DHE was more efficient at extracting low-boiling compounds such as ethanal, 2,3-butanedione and alcohols, while SPME extracted more efficiently a higher number of chemical families, especially fatty acids. The effect of pressurisation on the volatile fraction of "espetec" was better categorized by DHE, whereas SPME was more appropriate for cooked pork shoulder. The volatile fraction of "espetec" changed slightly after pressurisation, mainly showing a decrease in the levels of lipid-derived compounds, like linear alkanes, aldehydes, or 1-alcohols in pressurised samples. The volatile profile of cooked pork shoulder underwent substantial changes during refrigerated storage, mainly due to microbial metabolism, most of these changes being limited by HPP.

  7. Size distributions of dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids in atmospheric aerosols from Tanzania, East Africa during wet and dry seasons

    Directory of Open Access Journals (Sweden)

    K. Kawamura

    2012-09-01

    Full Text Available Atmospheric aerosol samples of PM2.5 and PM10 were collected during the wet and dry seasons in 2011 from a rural site in Tanzania and analysed for water-soluble dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids using a gas chromatography (GC and GC/mass spectrometry. Here we report the size distribution and sources of diacids and related compounds for wet and dry seasons. Oxalic acid (C2 was found as the most abundant diacid species followed by succinic and/or malonic acids whereas glyoxylic acid and glyoxal were the dominant ketoacids and α-dicarbonyls, respectively in both seasons in PM2.5 and PM10. Mean concentration of C2 in PM2.5 (121.5± 46.6 ng m−3 was lower in wet season than dry season (258.1± 69.5 ng m−3. Similarly, PM10 samples showed lower concentration of C2 (168.6 ± 42.4 ng m−3 in wet season than dry season (292.4± 164.8 ng m−3. Relative abundances of C2 in total diacids were 65.4% and 67.1% in PM2.5 and 64.6% and 63.9% in PM10 in the wet and dry seasons, respectively. Total concentrations of diacids (289–362 m−3, ketoacids (37.8–53.7ng m−3, and α-dicarbonyls (5.7–7.8 ng m−3 in Tanzania are higher to those reported at a rural background site in Nylsvley (South Africa but comparable or lower to those reported from sites in Asia and Europe. Diacids and ketoacids were found to be present mainly in the fine fraction in both seasons (total α-dicarbonyls in the dry season, suggesting a production of organic aerosols from pyrogenic sources and photochemical oxidations. The averaged contributions of total diacid carbon to aerosol total carbon were 1.4% in PM2.5 and 2.1% in PM10 in wet season and 3.3% in PM2.5 and 3.9% in PM10 in dry season whereas those to water-soluble organic carbon were 2.2% and 4.7% inPM2.5 and 3.1% and 5.8% in PM10 during the wet and dry seasons, respectively. These ratios suggest an enhanced photochemical oxidation of organic precursors and heterogeneous

  8. Improvement of mechanical properties of polylactic acid adhesion joints with bio-based adhesives by using air atmospheric plasma treatment

    OpenAIRE

    Jordá Vilaplana, Amparo; Sánchez Nacher, Lourdes; Fombuena Borrás, Vicent; García García, Daniel; Carbonell Verdú, Alfredo

    2015-01-01

    The packaging industry generates a high volume of wastes; so that, there is a high demand of biodegradable materials, which do not damage the environment. Nowadays, there is an interesting consumption of polylactic acid (PLA) due to its biodegradable features. This work focuses on the improvement of mechanical properties of PLA adhesion joints for uses in the packaging industry. In order to achieve that purpose, atmospheric plasma treatment is used to selectively modify PLA surface properties...

  9. Pricing Volatility Referenced Assets

    Directory of Open Access Journals (Sweden)

    Alan De Genaro Dario

    2006-12-01

    Full Text Available Volatility swaps are contingent claims on future realized volatility. Variance swaps are similar instruments on future realized variance, the square of future realized volatility. Unlike a plain vanilla option, whose volatility exposure is contaminated by its asset price dependence, volatility and variance swaps provide a pure exposure to volatility alone. This article discusses the risk-neutral valuation of volatility and variance swaps based on the framework outlined in the Heston (1993 stochastic volatility model. Additionally, the Heston (1993 model is calibrated for foreign currency options traded at BMF and its parameters are used to price swaps on volatility and variance of the BRL / USD exchange rate.

  10. Effects of particle size and dry matter content of a total mixed ration on intraruminal equilibration and net portal flux of volatile fatty acids in lactating dairy cows

    DEFF Research Database (Denmark)

    Storm, Adam Christian; Kristensen, Niels Bastian

    2010-01-01

    Effects of physical changes in consistency of ruminal contents on intraruminal equilibration and net portal fluxes of volatile fatty acids (VFA) in dairy cows were studied. Four Danish Holstein cows (121 ± 17 d in milk, 591 ± 24 kg of body weight, mean ± SD) surgically fitted with a ruminal cannula......H or milk fat percentage. Cows maintained average ventral ruminal pH of 6.65 ± 0.02, medial ruminal pH of 5.95 ± 0.04, and milk fat of 4.42 ± 0.12% with chewing time of 28.0 ± 2.1 min/kg of DM when fed short particles. The medial ruminal pool of wet particulate matter was decreased by 10.53 ± 2.29 kg...... particles. The estimated ruminal fluid flow and therefore intraruminal VFA transport between medial and ventral phase was not affected by the FPS. In conclusion, the ruminal mat pool of VFA was proportional to the size of the mat and the only detected effects of decreasing FPS were decreasing the mat size...

  11. Production of poly(hydroxybutyrate-hydroxyvalerate) from waste organics by the two-stage process: focus on the intermediate volatile fatty acids.

    Science.gov (United States)

    Shen, Liang; Hu, Hongyou; Ji, Hongfang; Cai, Jiyuan; He, Ning; Li, Qingbiao; Wang, Yuanpeng

    2014-08-01

    The two-stage process, coupling volatile fatty acids (VFAs) fermentation and poly(hydroxybutyrate-hydroxyvalerate) (P(HB/HV)) biosynthesis, was investigated for five waste organic materials. The overall conversion efficiencies were glycerol>starch>molasses>waste sludge>protein, meanwhile the maximum P(HB/HV) (1.674 g/L) was obtained from waste starch. Altering the waste type brought more effects on VFAs composition other than the yield in the first stage, which in turn greatly changed the yield in the second stage. Further study showed that even-number carbon VFAs (or odd-number ones) had a good positive linear relationship with P(HB/HV) content of HB (or HV). Additionally, VFA producing microbiota was analyzed by pyrosequencing methods for five wastes, which indicated that specific species (e.g., Lactobacillus for protein; Ethanoligenens for starch; Ruminococcus and Limnobacter for glycerol) were dominant in the community for VFAs production. Potential competition among acidogenic bacteria specially involved to produce some VFA was proposed as well.

  12. An endophyte of Picrorhiza kurroa Royle ex. Benth, producing menthol, phenylethyl alcohol and 3-hydroxypropionic acid, and other volatile organic compounds.

    Science.gov (United States)

    Qadri, Masroor; Deshidi, Ramesh; Shah, Bhawal Ali; Bindu, Kushal; Vishwakarma, Ram A; Riyaz-Ul-Hassan, Syed

    2015-10-01

    An endophytic fungus, PR4 was found in nature associated with the rhizome of Picrorhiza kurroa, a high altitude medicinal plant of Kashmir Himalayas. The fungus was found to inhibit the growth of several phyto-pathogens by virtue of its volatile organic compounds (VOCs). Molecular phylogeny, based on its ITS1-5.8S-ITS2 ribosomal gene sequence, revealed the identity of the fungus as Phomopsis/Diaporthe sp. This endophyte was found to produce a unique array of VOCs, particularly, menthol, phenylethyl alcohol, (+)-isomenthol, β-phellandrene, β-bisabolene, limonene, 3-pentanone and 1-pentanol. The purification of compounds from the culture broth of PR4 led to the isolation of 3-hydroxypropionic acid (3-HPA) as a major metabolite. This is the first report of a fungal culture producing a combination of biologically and industrially important metabolites—menthol, phenylethyl alcohol, and 3-HPA. The investigation into the monoterpene biosynthetic pathway of PR4 led to the partial characterization of isopiperitenone reductase (ipr) gene, which seems to be significantly distinct from the plant homologue. The biosynthesis of plant-like-metabolites, such as menthol, is of significant academic and industrial significance. This study indicates that PR4 is a potential candidate for upscaling of menthol, phenylethyl alcohol, and 3-HPA, as well as for understanding the menthol/monoterpene biosynthetic pathway in fungi.

  13. Reduced energy density of close-up diets decrease ruminal pH and increase concentration of volatile fatty acids postpartum in Holstein cows.

    Science.gov (United States)

    Huang, Wenming; Tian, Yujia; Li, Shengli; Wu, Zhaohai; Cao, Zhijun

    2017-06-27

    The objective of this study was to determine the effect of reduced energy density of close-up diets on ruminal fermentation parameters in transition cows. Fourteen Holstein dry cows were blocked and assigned randomly to three groups fed a high energy density diet (HD, 1.62 Mcal of net energy for lactation (NEL )/kg dry matter (DM)), or a middle energy density diet (MD, 1.47 Mcal NEL /kg DM), or a low energy density diet (LD, 1.30 Mcal NEL /kg DM) prepartum, and were fed the same diet postpartum. The reduced energy density diets decreased the average dry matter intake (DMI) prepartum and tended to increase the DMI postpartum. The ruminal pH of the LD group was significantly higher prepartum and lower during the first week of lactation compared with the other two groups. The reduced energy density diet depressed the average ruminal concentration of propionate and butyrate prepartum, and increased the average concentration of total volatile fatty acids (VFA) postpartum. The LD group had higher populations of Butyrivibrio fibrisolvens and Ruminococcus flavefaciens relative to HD and MD groups on 7 days in milk. In conclusion, the cows fed reduced energy density diet prepartum had higher VFA concentration, but were more susceptible to subacute ruminal acidosis postpartum. © 2017 Japanese Society of Animal Science.

  14. Improved Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate Produced by Comamonas sp. EB172 Utilizing Volatile Fatty Acids by Regulating the Nitrogen Source

    Directory of Open Access Journals (Sweden)

    Mohd Rafein Zakaria

    2013-01-01

    Full Text Available This study presents the effect of carbon to nitrogen ratio (C/N (mol/mol on the cell growth and poly(3-hydroxybutyrate-co-3-hydroxyvalerate accumulation by Comamonas sp. EB172 in 2 L fermenters using volatile fatty acids (VFA as the carbon source. This VFA was supplemented with ammonium sulphate and yeast extract in the feeding solution to achieve C/N (mol/mol 5, 15, 25, and 34.4, respectively. By extrapolating the C/N and the source of nitrogen, the properties of the polymers can be regulated. The number average molecular weight (Mn of P(3HB-co-3HV copolymer reached the highest at 838 × 103 Da with polydispersity index (PDI value of 1.8, when the culture broth was supplemented with yeast extract (C/N 34.4. Tensile strength and Young’s modulus of the copolymer containing 6–8 mol% 3HV were in the ranges of 13–14.4 MPa and 0.26–0.34 GPa, respectively, comparable to those of polyethylene (PE. Thus, Comamonas sp. EB172 has shown promising bacterial isolates producing polyhydroxyalkanoates from renewable carbon materials.

  15. An improved titration model reducing over estimation of total volatile fatty acids in anaerobic digestion of energy crop, animal slurry and food waste.

    Science.gov (United States)

    Purser, B J Jobling; Thai, S-M; Fritz, T; Esteves, S R; Dinsdale, R M; Guwy, A J

    2014-09-15

    Titration methodologies have been used for the many years for low cost routine monitoring of full scale anaerobic digestion plants. These methodologies have been correlated to indicate the carbonate alkalinity and the volatile fatty acids (VFA) content within digesters. Two commonly used two end-point titration methods were compared using a dataset of 154 samples from energy crop and animal slurry digestates and were shown to be inaccurate in the estimation of tVFA. Using this dataset correlated with HPLC VFA analysis, two empirical bivariate linear regression equations were derived, where the validation dataset showed an absolute tVFA mean error improvement from ±3386 and ±3324 mg kg(-1) tVFA to ±410 and ±286 mg kg(-1) tVFA, respectively. The same equation was then applied to a food waste dataset where an absolute tVFA mean error was improved from ±3828 to ±576 mg kg(-1) tVFA. The newly derived titration equations can provide greater confidence in digester performance monitoring and are tools that can improve digester management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Extraction of volatile fatty acids (VFAs) from water hyacinth using inexpensive contraptions, and the use of the VFAs as feed supplements in conventional biogas digester

    Energy Technology Data Exchange (ETDEWEB)

    Sankar Ganesh, P.; Ramasamy, E.V.; Gajalakshmi, S.; Abbasi, S.A. [Pondicherry Univ., Pondicherry (India). Centre for Pollution Control and Energy Technology

    2004-07-01

    Water hyacinth is an aquatic weed and a readily available organic waste which can be fermented anaerobically. However, it cannot be fed to conventional biogas digesters because the phytomass is lighter than water and therefore floats on top of the digester contents and clogs the digester. This study used a simple and low-cost apparatus to extract volatile fatty acids (VFAs) from water hyacinth. The VFAs were then used as a supplement feed in cow dung-fed floating dome biogas digesters which are widely used in third World countries. The objective was to provide such digesters with feed derived from phytomass, particularly for times when animal dung is in short supply. The extraction of VFA occurs by aerobic degradation of water hyacinth. Methanogenesis takes place when the VFAs are fed into the biogas digesters, resulting in methane rich biogas. This newly developed VFA extraction method enables phytomass to be used as a feed supplement for biogas digesters without the adverse effects of solid accumulation, frothing or clogging that occurs with phytomass feed. 11 refs., 3 figs.

  17. Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants.

    Science.gov (United States)

    Morgan-Sagastume, F; Pratt, S; Karlsson, A; Cirne, D; Lant, P; Werker, A

    2011-02-01

    This work focuses on fermentation of pre-treated waste activated sludge (WAS) to generate volatile fatty acids (VFAs). Pre-treatment by high-pressure thermal hydrolysis (HPTH) was shown to aid WAS fermentation. Compared to fermentation of raw WAS, pre-treatment enabled a 2-5x increase in VFA yield (gVFA(COD)gTCOD(-1)) and 4-6x increase in VFA production rate (gVFA(COD) L(-1) d(-1)). Three sludges, pre-treated in full-scale HPTH plants, were fermented. One was from a plant processing a mix of primary sludge and WAS and the other two from plants processing solely WAS. The HPTH plants solubilised suspended matter, evidenced by a 20-30% decrease in suspended solids and an increase of soluble COD : total COD from 0.04 to 0.4. Fermentation of the three sludges yielded similar VFA concentrations (15-20gVFA(COD) L(-1)). The yields were largely independent of retention time (1 d-6 d) and temperature (42°C, 55°C). Also, the product spectrum depended mostly on the composition of the sludge rather than on operating conditions.

  18. Hepatic metabolism of anaesthetized growing pigs during acute portal infusion of volatile fatty acids and hydroxy-methyl butyrate

    DEFF Research Database (Denmark)

    Theil, Peter Kappel; Larsen, Uffe Krogh; Bjerre-Harpøth, Vibeke;

    2016-01-01

    intervals and analyzed for contents of paraamino- hippuric acid (PAH; blood flow marker) and plasma metabolites. Total VFA was infused at a rate of 0 mmol/h (background; Inf1, Inf6), 60 mmol/h (Inf2) or 120 mmol/h (Inf3 to Inf5). Infused VFA contained 70, 20, and 5% of acetate, propionate, and butyrate......, respectively, for Inf2 and Inf3, or 65%, 20%, and 10% of acetate, propionate, and butyrate, respectively, for Inf4 and Inf5. In addition, for Inf5, HMB was infused at 2 mmol/h. Statistical analysis included fixed effects of infusion and interaction between infusion and samplings within infusion while...... accounting for repeated measurements. A net hepatic uptake of propionate, butyrate, and lactate was observed, whereas the liver released acetate, glucose, and urea. The portal lactate absorption could not account for the net hepatic uptake of lactate, suggesting lactate originated from partial oxidation...

  19. Feeding of different levels of metabolite combinations produced by Lactobacillus plantarum on growth performance, fecal microflora, volatile fatty acids and villi height in broilers.

    Science.gov (United States)

    Loh, Teck C; Thanh, Nguyen T; Foo, Hooi L; Hair-Bejo, Mohd; Azhar, Bin K

    2010-04-01

    The effects of feeding different dosages of metabolite combination of L. plantarum RS5, RI11, RG14 and RG11 strains (Com3456) on the performance of broiler chickens was studied. A total of 504 male Ross broilers were grouped into 7 treatments and offered different diets: (i) standard corn-soybean based diet (negative control); (ii) standard corn-soybean based diet +100 ppm neomycin and oxytetracycline (positive control); (iii) standard corn-soybean based diet + 0.1% metabolite combination of L. plantarum RS5, RI11, RG14 and RG11 strains (Com3456); (iv) standard corn-soybean based diet + 0.2% of Com3456; (v) standard corn-soybean based diet + 0.3% of Com3456 (vi) standard corn-soybean based diet + 0.4% of Com3456 and (vii) standard corn-soybean based diet + 0.5% of Com3456. Supplementation of Com3456 with different dosages improved growth performance, reduced Enterobacteriaceae and increased lactic acid bacteria count, and increased villi height of small intestine and fecal volatile fatty acid concentration. Treatment with 0.4% and 0.2% Com3456 had the best results, especially in terms of growth performance, feed conversion ratio and villi height among other dosages. However, the dosage of 0.2% was recommended due to its lower concentration yielding a similar effect as 0.4% supplementation. These results indicate that 0.2% is an optimum level to be included in the diets of broiler in order to replace antibiotic growth promoters.

  20. The influence of pre-fermentative treatments on the volatile, chromatic features, organic acids and phenolic content of Fetească albă Romanian wine

    Directory of Open Access Journals (Sweden)

    Moroşanu Ana-Maria

    2016-01-01

    Full Text Available The present study evaluates the influence of some pre-fermentative treatments on the volatile content, the chromatic parameters, the total polyphenol index and Folin-Ciocâlteu index of experimental wines obtained from Fetească albă grape variety. Five experimental samples were produced: FA V0 (control sample, FA V1 (sodium bentonite treatment, FA V2 (glutathione treatment, FA V3 (tannin treatment, FA V4 (oenological coal treatment. The use of pre-fermentative treatments show lower values of Folin-Ciocâlteu index and total polyphenol index, excepting sample treated with tannin. Major color differences are found in the sample treated with tannin and oenological coal. Gas-chromatographic analysis reveals the presence of common wine esters, such as: hexanoic acid ethyl ester, ethyl caprylate, ethyl lactate, ethyl caprate, ethyl myristate, ethyl palmitate, that contributes at the accomplishment of the wines from the sensorial point of view. Diethyl malonate, a compound that occurs naturally in grapes has an apple-like odor and it was identified in the control sample and in the samples treated with tannin and oenological coal, being found n greater quantity in the control sample (0.02 mmol/Land the sample treated with coal (0.03 mmol/L. Another ester, methyl oleate that offers a mild-fatty odor wasn't identified in the control sample, but it was detected in the samples treated with clay, tannin and oenological coal. Using the HPLC method it was also analysed the presence of some organic acids in wine samples.

  1. Simultaneous indoor and outdoor on-line hourly monitoring of atmospheric volatile organic compounds in an urban building. The role of inside and outside sources.

    Science.gov (United States)

    de Blas, Maite; Navazo, Marino; Alonso, Lucio; Durana, Nieves; Gomez, Maria Carmen; Iza, Jon

    2012-06-01

    Indoor air quality (IAQ) has become a very important issue in recent years. As in developed countries people spend more than 90% of their time indoors, besides outdoor pollution assessment, the indoor one is also required. IAQ is not only affected by indoor sources linked to indoor activities, outdoor sources such as road or street traffic and industrial and commercial activities have their role too. Volatile organic compounds (VOCs) frequently show higher indoor mixing ratios with respect to the outdoor ones, and monitoring is required to report their indoor mixing ratios. Many studies have reported average indoor VOCs' mixing ratios in different environments, but their temporal variability has not been well documented. The main objective of this work was to simultaneously measure VOCs' indoor and outdoor mixing ratios with high time-resolution in order to assess the effect of sources inside and outside the building upon indoor mixing ratios of individual VOCs. Simultaneous hourly, continuous, and on-line measurements of C(2)-C(11) VOCs were performed inside and outside the School of Engineering of Bilbao (ETSI) building, located in the city center of Bilbao, an urban area in Northern Spain. The analysis of simultaneous data allowed the classification of VOCs based on their main sources. Some VOCs were mainly emitted by indoor sources (1-pentene, 2-methylpentane, n-hexane, methylcyclopentane, benzene, 1-heptene+2,2,4-trimethylbenzene, and tetrachloroethylene) or by outdoor sources (n-heptane, C(8) alkanes except trimethylpentanes and C(9) aromatics). Other VOCs, such as toluene, were emitted by both indoor and outdoor sources. The isoprene indoor pattern indicated that its main indoor source could be the air exhaled by people occupying the building. Some halocarbons, such as trichloroethylene, tetrachloroethylene, and carbon tetrachloride may be generated from the use inside the building of chlorine bleach containing products.

  2. Rumen odd and branched chain fatty acids in relation to in vitro rumen volatile fatty acid productions and dietary characteristics of incubated substrates

    NARCIS (Netherlands)

    Vlaeminck, B.; Fievez, V.; Laar, van H.; Demeyer, D.

    2004-01-01

    A first aim of this batch in vitro experiment (21 h) was to use changes in odd and branched chain fatty acid (OBCFA) patterns to suggest shifts in microbial populations, associated with four types of incubated whole dairy cow diets. Principal component analysis suggested higher dietary starch increa

  3. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.

    Science.gov (United States)

    Wang, Mian; Favi, Pelagie; Cheng, Xiaoqian; Golshan, Negar H; Ziemer, Katherine S; Keidar, Michael; Webster, Thomas J

    2016-12-01

    Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. However, scaffolds not only need 3D biocompatible structures that mimic the micron structure of natural tissues, they also require mimicking of the nano-scale extracellular matrix properties of the tissue they intend to replace. In order to achieve this, the objective of the present in vitro study was to use cold atmospheric plasma (CAP) as a quick and inexpensive way to modify the nano-scale roughness and chemical composition of a 3D printed scaffold surface. Water contact angles of a normal 3D printed poly-lactic-acid (PLA) scaffold dramatically dropped after CAP treatment from 70±2° to 24±2°. In addition, the nano-scale surface roughness (Rq) of the untreated 3D PLA scaffolds drastically increased (up to 250%) after 1, 3, and 5min of CAP treatment from 1.20nm to 10.50nm, 22.90nm, and 27.60nm, respectively. X-ray photoelectron spectroscopy (XPS) analysis showed that the ratio of oxygen to carbon significantly increased after CAP treatment, which indicated that the CAP treatment of PLA not only changed nano-scale roughness but also chemistry. Both changes in hydrophilicity and nano-scale roughness demonstrated a very efficient plasma treatment, which in turn significantly promoted both osteoblast (bone forming cells) and mesenchymal stem cell attachment and proliferation. These promising results suggest that CAP surface modification may have potential applications for enhancing 3D printed PLA bone tissue engineering materials (and all 3D printed materials) in a quick and an inexpensive manner and, thus, should be further studied. Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. Although their success is related to their ability to exactly mimic the structure of natural tissues and control mechanical

  4. The effect of SO2 on the production of ethanol, acetaldehyde, organic acids, and flavor volatiles during industrial cider fermentation.

    Science.gov (United States)

    Herrero, Mónica; García, Luis A; Díaz, Mario

    2003-05-21

    SO(2) is widely used in cider fermentation but also in other alcoholic beverages such as wine. Although the authorized limit is 200 ppm total SO(2), the International Organizations recommend its total elimination or at least reduction due to health concerns. Addition of SO(2) to apple juice at levels frequently used in industrial cidermaking (100 mg/L) induced significantly higher acetaldehyde production by yeast than that obtained without SO(2). Although the practical implications of acetaldehyde evolution under cidermaking conditions has been overcome by research and few data are available, this compound reached levels in two 2000 L bioreactors that may have prevented the occurrence of simultaneous alcoholic and malolactic fermentation. It was observed that malolactic fermentation had a positive effect promoting reduction of acetaldehyde levels in cider fermented with juice, SO(2)-treated or not. The addition of SO(2) clearly delayed malolactic fermentation comparing to the control, affecting not the onset of the malolactic fermentation but the rate of malic acid degradation. This compound, however, had a stimulatory effect on alcoholic fermentation.

  5. Acidic gases and nitrate and sulfate particles in the atmosphere in the city of Guadalajara, México.

    Science.gov (United States)

    Saldarriaga-Noreña, Hugo; Waliszewski, Stefan; Murillo-Tovar, Mario; Hernández-Mena, Leonel; de la Garza-Rodríguez, Iliana; Colunga-Urbina, Edith; Cuevas-Ordaz, Rosalva

    2012-05-01

    Atmospheric concentrations of nitrous acid, nitric acid, nitrate and sulfate particles were obtained in this study from April to June 2008 in the center of the city of Guadalajara, while concentrations of ozone, sulfur dioxide, nitrogen dioxide and meteorological parameters (temperature and relative humidity), were acquired by the Secretaría del Medio Ambiente para el Desarrollo Sustentable del Estado de Jalisco (SEMADES). The results showed that nitric acid (2.7 μg m(-3)) was 2.7 times higher than nitrous acid (1.0 μg m(-3)). The sulfur dioxide (SO(2)) concentration indicated an opposite trend to sulfate (SO(4) (2-)), with the average concentration of SO(2) (6.9 μg m(-3)) higher in almost the entire period of study. The sulfur conversion ratio (Fs, 24.9%) and nitrogen conversion ratio (Fn, 6.2%), were revealed to be similar to that reported in other urban areas during warm seasons. It is also noted that ozone is not the main oxidizer of nitrogen dioxide and sulfur dioxide. This determination was made by taking into account the slightly positively correlation determined for Fn (r(2) = 0.084) and Fs (r(2) = 0.092) with ozone that perhaps suggests there are other oxidizing species such as the radical OH, which are playing an important role in the processes of atmospheric oxidation in this area.

  6. Heterogeneous conversion of NO2 on secondary organic aerosol surfaces: A possible source of nitrous acid (HONO in the atmosphere?

    Directory of Open Access Journals (Sweden)

    R. Bröske

    2003-01-01

    Full Text Available The heterogeneous conversion of NO2 on different secondary organic aerosols (SOA was investigated with the focus on a possible formation of nitrous acid (HONO. In one set of experiments different organic aerosols were produced in the reactions of O3 with alpha-pinene, limonene or catechol and OH radicals with toluene or limonene, respectively. The aerosols were sampled on filters and exposed to humidified NO2  mixtures under atmospheric conditions. The estimated upper limits for the uptake coefficients of NO2  and the reactive uptake coefficients NO2  -> HONO are in the range of 10-6 and 10-7, respectively. The integrated HONO formation for 1 h reaction time was 13 cm-2 geometrical surface and 17 g-1 particle mass. In a second set of experiments the conversion of NO2 into HONO in the presence of organic particles was carried out in an aerosol flow tube under atmospheric conditions. In this case the aerosols were produced in the reaction of O3 with beta-pinene, limonene or catechol, respectively. The upper limits for the reactive uptake coefficients NO2 -> HONO were in the range of 7 x 10-7 - 9 x 10-6. The results from the present study show that heterogeneous formation of nitrous acid on secondary organic aerosols (SOA is unimportant for the atmosphere.

  7. Daytime formation of nitrous acid at a coastal remote site in Cyprus indicating a common ground source of atmospheric HONO and NO

    NARCIS (Netherlands)

    Meusel, Hannah; Kuhn, Uwe; Reiffs, Andreas; Mallik, Chinmay; Harder, Hartwig; Martinez, Monica; Schuladen, Jan; Bohn, Birger; Parchatka, Uwe; Crowley, John N.; Fischer, Horst; Tomsche, Laura; Novelli, Anna; Hoffmann, Thorsten; Janssen, Ruud H.H.; Hartogensis, Oscar; Pikridas, Michael; Vrekoussis, Mihalis; Bourtsoukidis, Efstratios; Weber, Bettina; Lelieveld, Jos; Williams, Jonathan; Pöschl, Ulrich; Cheng, Yafang; Su, Hang

    2016-01-01

    Characterization of daytime sources of nitrous acid (HONO) is crucial to understand atmospheric oxidation and radical cycling in the planetary boundary layer. HONO and numerous other atmospheric trace constituents were measured on the Mediterranean island of Cyprus during the CYPHEX (CYprus PHotoche

  8. INFLUENCE OF THE NATURE OF THE ENERGY SOURCE IN THE CONCENTRATE ON THE CONCENTRATION AND MOLAR PROPORTIONS OF VOLATILE FATTY ACIDS IN THE RUMEN OF THE SICILO-SARDE SHEEP BREED

    OpenAIRE

    Selmi, H.; G. Tibaui; A. BEN GARA; B. Jemmali; B. Rekik; Rouissi, H.

    2011-01-01

    The effect of the nature of the source of energy supplementation on ruminal pH, concentration of volatile fatty acids (VFA) and the proportions of the main acids in the rumen of the dairy Sicilo-Sarde breed were evaluated. Four rams with an average live weight at the beginning of the experience of 45.25 ± 3.5 kg and aged 4.8 ± 0.5 years, fitted with permanent cannulas in the rumen were used in this experiment. The animals had a common basal diet at 1.5 kg DM / head / day of oat hay supplement...

  9. Relationships of Non-volatile Organic Acids and Higher Fatty Acids in Flue-cured Tobacco with its Other Chemical Components and Smoking Quality%烤烟非挥发有机酸、高级脂肪酸与其他成分及其感官品质的关系

    Institute of Scientific and Technical Information of China (English)

    杜咏梅; 张怀宝; 付秋娟; 徐光军; 商耀; 林建胜

    2011-01-01

    The relationships of non-volatile organic acids and higher fatty acids with routine chemical components, calcium, neutral aroma components and sensory quality of tobacco were studied with 176 flue-cured tobacco samples. The results showed that; 1) Non-volatile organic acids and higher fatty acids closely related to major chemical indexes and aroma components, particularly malonic acid related to total nitrogen, malic acid to calcium, lactic acid to megastigmatrienone, palmitic acid to nicotine, geranylacetone, damascene and megastigmatrienone, linoleic acid + oleic acid to geranylacetone, with higher correlation coefficients and in scatter diagrams fitted to a straight line, or a quadratic, cubic or power curve. 2) The smoking quality of flue-cured tobacco was mainly influenced by malonic acid, oxalic acid, the ratio of total non-volatile organic acids to nicotine, the ratio of malic acid to citric acid, and calcium to malic acid, particularly, malonic acid and the ratio of total non-volatile organic acids to nicotine. The contents of palmiticacid and linoleic acid + oleic acid affected the flavor style and smoking quality significantly. The contents of palmitic acid and linoleic acid + oleic acid and the ratios of total non-volatile organic acids to nicotine and malic acid to citric acid in tobacco leaves of better quality were relatively higher, however, the contents of malonic acid and oxalic acid and the ratio of calcium to malic acid were relatively lower. The contents of palmitic acid and linoleic acid + oleic acid in thick flavor style tobacco were relatively lower.%研究了176份烤烟样品中的非挥发有机酸、高级脂肪酸含量与其常规化学成分、钙、中性致香成分和吸食品质的关系.结果表明:非挥发有机酸、高级脂肪酸均与烤烟主要化学指标及香气成分相关关系密切,尤其是丙二酸与总氮,苹果酸与钙、乳酸与巨豆三烯酮,棕榈酸与烟碱、香叶基丙酮、二氢大马酮、巨豆

  10. Bioavailability assessment of toxic metals using the technique "acid-volatile sulfide (AVS)-simultaneously extracted metals (SEM)" in marine sediments collected in Todos os Santos Bay, Brazil.

    Science.gov (United States)

    Silva, Jucelino B; Nascimento, Rodrigo A; de Oliva, Sergio T; de Oliveira, Olívia M C; Ferreira, Sergio L C

    2015-10-01

    This paper reports the bioavailability of the metals (cadmium, copper, zinc, lead, and nickel) in sediment samples collected in seven stations from the São Paulo Estuary, Todos os Santos Bay, Brazil. The bioavailability was determined by employing the technique "acid-volatile sulfide (AVS) and simultaneously extracted metal (SEM)". The elements cadmium, copper, lead, and zinc were determined using differential pulse anodic stripping voltammetry (DPASV), while nickel was quantified utilizing electrothermal atomic absorption spectrometry (ET AAS). The accuracy of these methods was confirmed using a certified reference material of estuarine sediment (NIST 1646). The sulfide was quantified using potentiometry with selective electrode and the organic matter determination employing an indirect volumetric method using potassium dichromate and iron(II) sulfate solutions. The bioavailability of the metals was estimated by relationship between the concentration of AVS and the sum of the concentrations of the simultaneously extracted metals (ΣSEM), considering a significant toxicity when (ΣSEM)/(AVS) is higher than 1. The bioavailability values in the seven stations studied varied from 0.93 to 1.31 (June, 2014) and from 0.34 to 0.58 (September, 2014). These results demonstrated a critical condition of toxicity (bioavailability >1) in six of the seven sediment samples collected during the rainy season (June, 2014). In the other period (September, 2014), the bioavailability was always lower than 1 for all sediment samples collected in the seven stations. The individual values of the concentrations of the five metals were compared with the parameters PEL (probable effects level) and TEL (threshold effects level), which are commonly employed for characterization of ecological risk in environmental systems. This comparison revealed that all metals have concentrations lower than the PEL and only zinc and lead in some stations have contents higher than the TEL. The

  11. Emerald ash borer responses to induced plant volatiles

    Science.gov (United States)

    Cesar Rodriguez-Saona; Therese M. Poland; James Miller; Lukasz Stelinski; Linda Buchan; Gary Grant; Peter de Groot; Linda MacDonald

    2007-01-01

    Herbivore feeding and methyl jasmonate, a volatile derivative of the stress-eliciting plant hormone, jasmonic acid, induce responses in plants which include the synthesis and emission of volatiles. These induced volatiles can serve to attract or repel herbivores; therefore, they may have potential use in pest management programs. The exotic emerald ash borer (EAB),...

  12. Is Recovery of Forest Soils from Acidic Deposition Accelerating Watershed Release of Atmospherically Deposited Nitrogen Accumulated over Past Decades?

    Science.gov (United States)

    Lawrence, G. B.; Sabo, R.; Scanga, S. E.; Momen, B.

    2016-12-01

    The trend of decreasing atmospheric N deposition in the northeastern U.S. has accelerated since 2000, leading to the possibility that surface water concentrations of NO3 and its acidifying effects would also decrease. Decreases of NO3 in lakes have been observed in regions such as the Adirondacks of NY, but these decreases were linked to increased productivity within the lakes. Less information is available on changes in NO3 concentrations in streams and watershed export of N. In a previous analysis, monitoring from 2000-2012 of the North and South Tributary watersheds of Buck Creek, in the western Adirondack region, showed no trends in annual watershed NO3 export, despite a decline in atmospheric N deposition. Surveys of 64 Adirondack streams also showed no overall change in NO3 concentrations between 2004 and 2014. Following on these studies, controls of N retention in the Buck Creek watersheds were investigated with data on tree growth, soil chemistry, stream flow, and stream chemistry. Tree measurements showed little change in basal area from 2000-2015 in the North Watershed (+ 0.8 percent) and an increase (+16 percent) in the South Watershed; results inconsistent with decreased N retention by vegetation. However, large decreases in Al and stable or increasing Ca were measured in O horizons of these watersheds (1997- 2009/10, North; 1998-2014, South), as the soils responded to long-term decreases in acidic deposition. Past increases in Al and decreases in Ca from acidic deposition have been linked to slowed decomposition rates. The lower Al concentrations and higher Ca availability measured at Buck Creek may have led to increased decomposition rates, providing an explanation for the sustained watershed export of N since 2000. These results suggest a possible legacy effect of atmospheric N deposition that is reversing as these ecosystems recover from acidic deposition.

  13. 肉桂等3种挥发油对苯甲酸透皮吸收的影响%The influence of Cinnamon oil and other volatile oils on percutaneous absorption of benzoic acid

    Institute of Scientific and Technical Information of China (English)

    沈琦; 胡晋红; 徐莲英

    2001-01-01

    OBJECTIVE To study the effect of Cinnamon oil, Eugenia oil andGalangal oil on the percutaneous penetration of benzoic acid. METHODS In order to compare the effect of the volatile oils and in combination with ethanol and propylene glycol on percutaneous penetration, the cumulative amount of benzoic acid penetrated through the skin was determined in vitro with Valia-Chien horizontal diffusio