WorldWideScience

Sample records for volatile aromas derived

  1. Comparison of four extraction methods for analysis of volatile hop-derived aroma compounds in beer.

    Science.gov (United States)

    Richter, Tobias M; Eyres, Graham T; Silcock, Patrick; Bremer, Phil J

    2017-09-09

    The volatile organic compound profile in beer is derived from hops, malt, yeast, and interactions between the ingredients, making it very diverse and complex. Due to the range and diversity of the volatile organic compounds present, the choice of the extraction method is extremely important for optimal sensitivity and selectivity. This study compared four extraction methods for hop-derived compounds in beer late hopped with Nelson Sauvin. Extraction capacity and variation were compared for headspace solid phase micro extraction, stir bar sorptive extraction, headspace sorptive extraction, and solvent assisted flavour evaporation. Generally, stir bar sorptive extraction was better suited for acids, headspace sorptive extraction for esters and aldehydes, while headspace solid phase micro extraction was less sensitive overall, extracting 40% fewer compounds. Solvent assisted flavour evaporation with dichloromethane was not suitable for the extraction of hop-derived volatile organic compounds in beer, as the profile was strongly skewed towards alcohols and acids. Overall, headspace sorptive extraction found to be best suited, closely followed by stir bar sorptive extraction. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit

    Science.gov (United States)

    The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty-acids, carotenoids, amino-acids as well as terpenes. Incubation of melon fruit cubes with amino- and a-keto acids led to the enhanced formation of aroma compounds be...

  3. Recovery of volatile fruit juice aroma compounds by membrane technology

    DEFF Research Database (Denmark)

    Bagger-Jørgensen, Rico; Meyer, Anne S.; Pinelo, Manuel

    2011-01-01

    The influence of temperature (10–45°C), feed flow rate (300–500L/h) and sweeping gas flow rate (1.2–2m3/h) on the recovery of berry fruit juice aroma compounds by sweeping gas membrane distillation (SGMD) was examined on an aroma model solution and on black currant juice in a lab scale membrane...... (Cpermeate/Cfeed) of the aroma compounds. At 45°C the most volatile and hydrophobic aroma compounds obtained the highest concentration factors: 12.1–9.3 (black currant juice) and 17.2–12.8 (model solution). With black currant juice a volume reduction of 13.7% (vol.%) at 45°C, 400L/h, resulted in an aroma...... the degradation of anthocyanins and polyphenolic compounds in the juice. Industrial relevanceHigh temperature evaporation is the most widely used industrial technique for aroma recovery and concentration of juices, but membrane distillation (MD) may provide for gentler aroma stripping and lower energy consumption...

  4. Entrapment of a volatile lipophilic aroma compound (d-limonene) in spray dried water-washed oil bodies naturally derived from sunflower seeds (Helianthus annus).

    Science.gov (United States)

    Fisk, Ian D; Linforth, Robert; Trophardy, Gil; Gray, David

    2013-11-01

    Oil bodies are natural emulsions that can be extracted from oil seeds and have previously been shown to be stable after spray drying. The aim of the study was to evaluate for the first time if spray dried water-washed oil bodies are an effective carrier for volatile lipophilic actives (the flavour compound d-limonene was used as an example aroma compound). Water-washed oil bodies were blended with maltodextrin and d-limonene and spray dried using a Buchi B-191 laboratory spray dryer. Lipid and d-limonene retention was 89-93% and 24-27%. Samples were compared to processed emulsions containing sunflower oil and d-limonene and stabilised by either lecithin or Capsul. Lecithin and Capsul processed emulsions had a lipid and d-limonene retention of 82-89%, 7.7-9.1% and 48-50%, 55-59% respectively indicating that water-washed oil bodies could retain the most lipids and Capsul could retain the most d-limonene. This indicates that whilst additional emulsifiers may be required for future applications of water-washed oil bodies as carriers of lipophilic actives, oil bodies are excellent agents for lipid encapsulation.

  5. Chilling and heating may regulate C6 volatile aroma production by different mechanisms in tomato (Solanum lycopersicum) fruit

    Science.gov (United States)

    Hexanal, Z-3-hexenal, E-2-hexenal, hexanol, and Z-3-hexenol are major tomato (Solanum lycopersicum L.) volatile aromas derived from oxygenation of unsaturated fatty acids. Chilling and heating may suppress production of these C6 volatiles. The objective of this research was to determine the response...

  6. Characterization of volatile aroma compounds in different brewing barley cultivars.

    Science.gov (United States)

    Dong, Liang; Hou, Yingmin; Li, Feng; Piao, Yongzhe; Zhang, Xiao; Zhang, Xiaoyu; Li, Cheng; Zhao, Changxin

    2015-03-30

    Beer is a popular alcoholic malt beverage resulting from fermentation of the aqueous extract of malted barley with hops. The aroma of brewing barley impacts the flavor of beer indirectly, because some flavor compounds or their precursors in beer come from the barley. The objectives of this research were to study volatile profiles and to characterize odor-active compounds of brewing barley in order to determine the variability of the aroma composition among different brewing barley cultivars. Forty-one volatiles comprising aldehydes, ketones, alcohols, organic acids, aromatic compounds and furans were identified using solid phase microextraction combined with gas chromatography/mass spectrometry, among which aldehydes, alcohols and ketones were quantitatively in greatest abundance. Quantitative measurements performed by means of solvent extraction and calculation of odor activity values revealed that acetaldehyde, 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, hexanal, heptanal, octanal, nonanal, 3-methyl-1-butanol, cyclopentanol, 2,3-butanedione, 2,3-pentanedione, 2-heptanone, acetic acid, ethyl acetate, 2-pentylfuran and benzeneacetaldehyde, whose concentrations exceeded their odor thresholds, could be considered as odor-active compounds of brewing barley. Principal component analysis was employed to evaluate the differences among cultivars. The results demonstrated that the volatile profile based on the concentrations of aroma compounds enabled good differentiation of most barley cultivars. © 2014 Society of Chemical Industry.

  7. Differential Contribution of Jasmine Floral Volatiles to the Aroma of Scented Green Tea

    Directory of Open Access Journals (Sweden)

    Jian-Xia Shen

    2017-01-01

    Full Text Available Tea volatiles’ generation and retention over manufacturing processes are crucial for tea quality. In this study, floral volatile adsorption and retention in green tea scented with Jasminum sambac flowers were examined over the scenting process. Out of 34 enhanced volatiles in the scented tea, β-ionone, β-linalool, indole, and methyl anthranilate were the most potent odorants with 5.1–45.2-fold higher odor activity values than the corresponding controls in the nonscented tea. Scenting efficiencies for the floral volatiles retained in the scented tea (the percentage of volatile abundance over its corresponding amount in jasmine flowers ranged from 0.22% for α-farnesene to 75.5% for β-myrcene. Moreover, due to additional rounds of heat treatment for scented green tea manufacturing, some volatiles such as carotenoid-derived geraniol and β-ionone and lipid-derived (Z-jasmone were heat-enhanced and others such as nonanal were heat-desorbed in the scented green tea. Our study revealed that dynamic volatile absorption and desorption collectively determined tea volatile retention and tea aroma. Our findings may have a great potential for practical improvement of tea aroma.

  8. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit.

    Science.gov (United States)

    Gonda, Itay; Bar, Einat; Portnoy, Vitaly; Lev, Shery; Burger, Joseph; Schaffer, Arthur A; Tadmor, Ya'akov; Gepstein, Shimon; Giovannoni, James J; Katzir, Nurit; Lewinsohn, Efraim

    2010-02-01

    The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty acids, carotenoids, amino acids, and terpenes. Although amino acids are known precursors of aroma compounds in the plant kingdom, the initial steps in the catabolism of amino acids into aroma volatiles have received little attention. Incubation of melon fruit cubes with amino acids and alpha-keto acids led to the enhanced formation of aroma compounds bearing the side chain of the exogenous amino or keto acid supplied. Moreover, L-[(13)C(6)]phenylalanine was also incorporated into aromatic volatile compounds. Amino acid transaminase activities extracted from the flesh of mature melon fruits converted L-isoleucine, L-leucine, L-valine, L-methionine, or L-phenylalanine into their respective alpha-keto acids, utilizing alpha-ketoglutarate as the amine acceptor. Two novel genes were isolated and characterized (CmArAT1 and CmBCAT1) encoding 45.6 kDa and 42.7 kDa proteins, respectively, that displayed aromatic and branched-chain amino acid transaminase activities, respectively, when expressed in Escherichia coli. The expression of CmBCAT1 and CmArAT1 was low in vegetative tissues, but increased in flesh and rind tissues during fruit ripening. In addition, ripe fruits of climacteric aromatic cultivars generally showed high expression of CmBCAT1 and CmArAT1 in contrast to non-climacteric non-aromatic fruits. The results presented here indicate that in melon fruit tissues, the catabolism of amino acids into aroma volatiles can initiate through a transamination mechanism, rather than decarboxylation or direct aldehyde synthesis, as has been demonstrated in other plants.

  9. Aroma Volatile Compounds from Two Fresh Pineapple Varieties in China

    Directory of Open Access Journals (Sweden)

    Chang-Bin Wei

    2012-06-01

    Full Text Available Volatile compounds from two pineapples varieties (Tainong No.4 and No.6 were isolated by headspace solid phase microextraction (HS-SPME and identified and quantified by gas chromatography-mass spectrometry (GC/MS. In the Tainong No. 4 and No. 6 pineapples, a total of 11 and 28 volatile compounds were identified according to their retention time on capillary columns and their mass spectra, and quantified with total concentrations of 1080.44 µg·kg−1 and 380.66 µg·kg−1 in the Tainong No.4 and No. 6 pineapples, respectively. The odor active values (OAVs of volatile compounds from pineapples were also calculated. According to the OAVs, four compounds were defined as the characteristic aroma compounds for the Tainong No. 4 pineapple, including furaneol, 3-(methylthiopropanoic acid methyl ester, 3-(methylthiopropanoic acid ethyl ester and δ-octalactone. The OAVs of five compounds including ethyl-2-methylbutyrate, methyl-2-methylbutyrate, 3-(methylthiopropanoic acid ethyl ester, ethyl hexanoate and decanal were considered to be the characteristic aroma compounds for the Tainong No. 6 pineapple.

  10. Rapid volatile metabolomics and genomics in large strawberry populations segregating for aroma

    Science.gov (United States)

    Volatile organic compounds (VOCs) in strawberry (Fragaria spp.) represent a large portion of the fruit secondary metabolome, and contribute significantly to aroma, flavor, disease resistance, pest resistance and overall fruit quality. Understanding the basis for volatile compound biosynthesis and it...

  11. Recovery of volatile aroma compounds from black currant juice by vacuum membrane distillation

    DEFF Research Database (Denmark)

    Bagger-Jørgensen, Rico; Meyer, Anne S.; Warming, C.

    2004-01-01

    l/h at 30 degreesC gave concentration factors, calculated for each aroma compound as C-permeate/C-feed: from similar to4 to 15. The concentration factors increased with decreased juice temperature during VMD; at 10 degreesC concentration factors of 21-31 were obtained for the highly volatile aroma....... VMD thus turned out to be a promising technique for gentle stripping of black currant juice aroma compounds....

  12. Characterization of volatile compounds responsible for the aroma in naturally fermented sausages by gas chromatography-olfactometry.

    Science.gov (United States)

    Olivares, Alicia; Navarro, José Luis; Flores, Mónica

    2015-03-01

    The objective of this study was to characterize naturally fermented dry sausages produced without the use of microbial starters and to determine which odour-active compounds are responsible for their aroma. The traditional manufacture was responsible for different chemical characteristics and consumer's acceptance. The volatile compounds detected in the headspace comprised a complex mixture of volatile compounds derived from bacterial metabolism (mainly esterase activity of Staphyloccoci), spices and lipid auto-oxidation. The odour-active volatile compounds were identified using gas chromatography coupled to olfactometry (GC-O) using the detection frequency method. The aroma profile was characterized by the presence of several compounds such as acetic acid, ethyl butanoate, hexanal, methional, 1-octen-3-ol, benzeneacetaldehyde and 4-methyl-phenol. However, naturally fermented sausages were also characterized by numerous esters, both ethyl and methyl esters, which impart a wide variety of fruity notes.

  13. Extraction and GC determination of volatile aroma compounds from extracts of three plant species of the Apiaceae family

    Science.gov (United States)

    Stan, M.; Soran, M. L.; Varodi, C.; Lung, I.; Copolovici, L.; MǎruÅ£oiu, C.

    2013-11-01

    Parsley (Petroselinum crispum), dill (Anethum graveolens) and celery (Apium graveolens), three aromatic plants belonging to the Apiaceae (Umbelliferae) botanical family, were selected as sources of essential or volatile oils. Essential oils are composed of a large diversity of volatile aroma compounds. Plant-derived essential oils and extracts have long been used as natural agents in food preservation, pharmaceuticals and medicinal therapies. In the present study, the plant extracts from leaves of parsley, dill and celery, were obtained by maceration, ultrasound-assisted extraction and microwave-assisted extraction. All extractions were performed at 30°C, using different solvents (ethanol, diethyl ether, n-hexane) and solvent mixtures (1:1, v/v). The most effective solvent system for the extraction of volatile aroma compounds was diethyl ether - n-hexane (1:1, v/v). Extraction efficiency and determination of aroma volatiles were performed by GC-FID and GC-MS, respectively. The major volatile compounds present in plant extracts were myristicin, α-phellandrene, β-phellandrene, 1,3,8-p-menthatriene, apiol, dill ether and allyl phenoxyacetate.

  14. Effect of trehalose addition on volatiles responsible for strawberry aroma.

    Science.gov (United States)

    Kopjar, Mirela; Hribar, Janez; Simcic, Marjan; Zlatić, Emil; Pozrl, Tomaz; Pilizota, Vlasta

    2013-12-01

    Aroma is one of the most important quality properties of food products and has a great influence on quality and acceptability of foods. Since it is very difficult to control, in this study the effect of addition of trehalose (3, 5 and 10%) to freeze-dried strawberry cream fillings was investigated as a possible means for retention of some of the aroma compounds responsible for the strawberry aroma. In samples with added trehalose, higher amounts of fruity esters were determined. Increase of trehalose content did not cause a proportional increase in the amount of fruity esters. However, results of our research showed that trehalose addition did not have the same effect on both gamma-decalactone and furaneol.

  15. Influence of maturity and ripening on aroma volatiles and flavor in avocado

    Science.gov (United States)

    Changes in aroma volatiles were determined using solid phase microextraction (SPME) and gas chromatography in ripe avocados (Persea americana Mill.) throughout an eight-month maturation period and related to the sensory properties of the fruit. As maturation progressed sensory panelists found the li...

  16. Altered Levels of Aroma and Volatiles by Metabolic Engineering of Shikimate Pathway Genes in Tomato Fruits

    Directory of Open Access Journals (Sweden)

    Vered Tzin

    2015-06-01

    Full Text Available The tomato (Solanum lycopersicum fruit is an excellent source of antioxidants, dietary fibers, minerals and vitamins and therefore has been referred to as a “functional food”. Ripe tomato fruits produce a large number of specialized metabolites including volatile organic compounds. These volatiles serve as key components of the tomato fruit flavor, participate in plant pathogen and herbivore defense, and are used to attract seed dispersers. A major class of specialized metabolites is derived from the shikimate pathway followed by aromatic amino acid biosynthesis of phenylalanine, tyrosine and tryptophan. We attempted to modify tomato fruit flavor by overexpressing key regulatory genes in the shikimate pathway. Bacterial genes encoding feedback-insensitive variants of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase (DAHPS; AroG209-9 and bi-functional Chorismate Mutase/Prephenate Dehydratase (CM/PDT; PheA12 were expressed under the control of a fruit-specific promoter. We crossed these transgenes to generate tomato plants expressing both the AroG209 and PheA12 genes. Overexpression of the AroG209-9 gene had a dramatic effect on the overall metabolic profile of the fruit, including enhanced levels of multiple volatile and non-volatile metabolites. In contrast, the PheA12 overexpression line exhibited minor metabolic effects compared to the wild type fruit. Co-expression of both the AroG209-9 and PheA12 genes in tomato resulted overall in a similar metabolic effect to that of expressing only the AroG209-9 gene. However, the aroma ranking attributes of the tomato fruits from PheA12//AroG209-9 were unique and different from those of the lines expressing a single gene, suggesting a contribution of the PheA12 gene to the overall metabolic profile. We suggest that expression of bacterial genes encoding feedback-insensitive enzymes of the shikimate pathway in tomato fruits provides a useful metabolic engineering tool for the modification of

  17. The effect of Yucca schidigera extract on canine and feline faecal volatiles occurring concurrently with faecal aroma amelioration.

    Science.gov (United States)

    Lowe, J A; Kershaw, S J; Taylor, A J; Linforth, R S

    1997-01-01

    Addition of Yucca schidigera extract (YSE) products to canine or feline diets improved faecal aroma as monitored by a human panel. Odour port-gas chromatography (GC) indicated different odour component types in dog faecal volatiles and, in particular, 'faecal'-type odours due to methyl sulfides. GC-mass spectrometry demonstrated several chemical compound classes present in faecal volatiles and quantitation in the cat indicated apparently significant changes in the concentrations of several compounds on YSE treatment, although these were not necessarily aroma components. The potential for direct YSE alteration of aroma perception in a mixture of volatiles, possibly by binding, was demonstrated.

  18. Chemical Compositions and Aroma Evaluation of Volatile Oil from the Industrial Cultivation Medium of Enterococcus faecalis.

    Science.gov (United States)

    Ono, Toshirou; Usami, Atsushi; Nakaya, Satoshi; Maeba, Keisuke; Yonejima, Yasunori; Toyoda, Masanori; Ikeda, Atsushi; Miyazawa, Mitsuo

    2015-01-01

    Enterococcus faecalis is one of the major lactic acid bacterium (LAB) species colonizing the intestines of animals and humans. The characteristic odor of the volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) in the cultivation process of E. faecalis was investigated to determine the utility of the liquid medium. In total, fifty-six and thirty-two compounds were detected in the volatile oils from the MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were 2,5-dimethylpyrazine (19.3%), phenylacetaldehyde (19.3%), and phenylethyl alcohol (9.3%). The aroma extract dilution analysis (AEDA) method was performed using gas chromatography-olfactometry (GC-O). The total number of aroma-active compounds identified in the volatile oil from MBI and MAI was thirteen compounds; in particular, 5-methyl-2-furanmethanol, phenylacetaldehyde, and phenylethyl alcohol were the most primary aroma-active compounds in MAI oil. These results imply that the industrial cultivation medium after incubation of E. faecalis may be utilized as a source of volatile oils.

  19. Volatile Compound Profiling by HS-SPME/GC-MS-FID of a Core Olive Cultivar Collection as a Tool for Aroma Improvement of Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Lourdes García-Vico

    2017-01-01

    Full Text Available Virgin olive oil (VOO is the only food product requiring official sensory analysis to be classified in commercial categories, in which the evaluation of the aroma plays a very important role. The selection of parents, with the aim of obtaining new cultivars with improved oil aroma, is of paramount importance in olive breeding programs. We have assessed the volatile fraction by headspace-solid-phase microextraction/gas chromatography-mass spectrometry-flame ionization detection (HS-SPME/GC-MS-FID and the deduced aroma properties of VOO from a core set of olive cultivars (Core-36 which possesses most of the genetic diversity found in the World Olive Germplasm Collection (IFAPA Alameda del Obispo located in Cordoba, Spain. The VOO volatile fractions of Core-36 cultivars display a high level of variability. It is mostly made of compounds produced from polyunsaturated fatty acids through the lipoxygenase pathway, which confirms to be a general characteristic of the olive species (Olea europaea L.. The main group of volatile compounds in the oils was six straight-chain carbon compounds derived from linolenic acid, some of them being the main contributors to the aroma of the olive oils according to their odor activity values (OAV. The high level of variability found for the volatile fraction of the oils from Core-36 and, therefore, for the aroma odor notes, suggest that this core set may be a very useful tool for the choice of optimal parents in olive breeding programs in order to raise new cultivars with improved VOO aroma.

  20. Volatile Compound Profiling by HS-SPME/GC-MS-FID of a Core Olive Cultivar Collection as a Tool for Aroma Improvement of Virgin Olive Oil.

    Science.gov (United States)

    García-Vico, Lourdes; Belaj, Angjelina; Sánchez-Ortiz, Araceli; Martínez-Rivas, José M; Pérez, Ana G; Sanz, Carlos

    2017-01-14

    Virgin olive oil (VOO) is the only food product requiring official sensory analysis to be classified in commercial categories, in which the evaluation of the aroma plays a very important role. The selection of parents, with the aim of obtaining new cultivars with improved oil aroma, is of paramount importance in olive breeding programs. We have assessed the volatile fraction by headspace-solid-phase microextraction/gas chromatography-mass spectrometry-flame ionization detection (HS-SPME/GC-MS-FID) and the deduced aroma properties of VOO from a core set of olive cultivars (Core-36) which possesses most of the genetic diversity found in the World Olive Germplasm Collection (IFAPA Alameda del Obispo) located in Cordoba, Spain. The VOO volatile fractions of Core-36 cultivars display a high level of variability. It is mostly made of compounds produced from polyunsaturated fatty acids through the lipoxygenase pathway, which confirms to be a general characteristic of the olive species (Olea europaea L.). The main group of volatile compounds in the oils was six straight-chain carbon compounds derived from linolenic acid, some of them being the main contributors to the aroma of the olive oils according to their odor activity values (OAV). The high level of variability found for the volatile fraction of the oils from Core-36 and, therefore, for the aroma odor notes, suggest that this core set may be a very useful tool for the choice of optimal parents in olive breeding programs in order to raise new cultivars with improved VOO aroma.

  1. Key volatile aroma compounds of lactic acid fermented malt based beverages - impact of lactic acid bacteria strains.

    Science.gov (United States)

    Nsogning Dongmo, Sorelle; Sacher, Bertram; Kollmannsberger, Hubert; Becker, Thomas

    2017-08-15

    This study aims to define the aroma composition and key aroma compounds of barley malt wort beverages produced from fermentation using six lactic acid bacteria (LAB) strains. Gas chromatography mass spectrometry-olfactometry and flame ionization detection was employed; key aroma compounds were determined by means of aroma extract dilution analysis. Fifty-six detected volatile compounds were similar among beverages. However, significant differences were observed in the concentration of individual compounds. Key aroma compounds (flavor dilution (FD) factors ≥16) were β-damascenone, furaneol, phenylacetic acid, 2-phenylethanol, 4-vinylguaiacol, sotolon, methional, vanillin, acetic acid, nor-furaneol, guaiacol and ethyl 2-methylbutanoate. Furthermore, acetaldehyde had the greatest odor activity value of up to 4266. Sensory analyses revealed large differences in the flavor profile. Beverage from L. plantarum Lp. 758 showed the highest FD factors in key aroma compounds and was correlated to fruity flavors. Therefore, we suggest that suitable LAB strain selection may improve the flavor of malt based beverages.

  2. Associations of Volatile Compounds with Sensory Aroma and Flavor: The Complex Nature of Flavor

    Directory of Open Access Journals (Sweden)

    Edgar Chambers IV

    2013-04-01

    Full Text Available Attempts to relate sensory analysis data to specific chemicals such as volatile compounds have been frequent. Often these associations are difficult to interpret or are weak in nature. Although some difficulties may relate to the methods used, the difficulties also result from the complex nature of flavor. For example, there are multiple volatiles responsible for a flavor sensation, combinations of volatiles yield different flavors than those expected from individual compounds, and the differences in perception of volatiles in different matrices. This review identifies some of the reasons sensory analysis and instrumental measurements result in poor associations and suggests issues that need to be addressed in future research for better understanding of the relationships of flavor/aroma phenomena and chemical composition.

  3. Determination of volatile aroma compounds of Ganoderma lucidum by gas chromatography mass spectrometry (HS-GC/MS).

    Science.gov (United States)

    Taşkın, Hatıra; Kafkas, Ebru; Çakıroğlu, Özgün; Büyükalaca, Saadet

    2013-01-01

    This study was conducted at Horticulture Department of Cukurova University, Adana, Turkey during 2010-2011. Fresh sample of Ganoderma lucidum collected from Mersin province of Turkey was used as material. Volatile aroma compounds were performed by Headspace Gas Chromatography (HS-GC/MS). Alcohols, aldehydes, acids, phenol, L-Alanine, d-Alanine, 3Methyl, 2-Butanamine, 2-Propanamine were determined. 1-Octen-3-ol (Alcohol) and 3-methyl butanal (Aldehyde) were identified as major aroma compounds.

  4. Analysis of the volatile aroma constituents of parental and hybrid clones of pepino (Solanum muricatum).

    Science.gov (United States)

    Rodríguez-Burruezo, Adrián; Kollmannsberger, Hubert; Prohens, Jaime; Nitz, Siegfried; Nuez, Fernando

    2004-09-08

    The volatile constituents of 10 clones (4 parents with different flavors and 6 hybrids from selected crossings among these parents) of pepino fruit (Solanum muricatum) were isolated by simultaneous distillation-extraction and analyzed by gas chromatography-mass spectrometry (GC-MS). Odor-contributing volatiles (OCVs) were detected by GC-olfactometry-MS analyses and included 24 esters (acetates, 3-methylbutanoates, and 3-methylbut-2-enoates), 7 aldehydes (especially hexenals and nonenals), 6 ketones, 9 alcohols, 3 lactones, 2 terpenes, beta-damascenone, and mesifurane. Among these compounds, 17, of which 5 had not been reported previously in pepino, were found to contribute significantly to pepino aroma. OCVs can be assigned to three groups according to their odor quality: fruity fresh (acetates and prenol), green vegetable (C6 and C9 aldehydes), and exotic (lactones, mesifuran, and beta-damascenone). Quantitative and qualitative differences between clones for these compounds are clearly related to differences in their overall flavor impression. The positive value found for the hybrid-midparent regression coefficient for volatile composition indicates that an important fraction of the variation observed is inheritable, which has important implications in breeding for improving aroma. Significant and positive correlations were found between OCVs having common precursors or related pathways.

  5. Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production.

    Science.gov (United States)

    Aggelopoulos, Theodoros; Katsieris, Konstantinos; Bekatorou, Argyro; Pandey, Ashok; Banat, Ibrahim M; Koutinas, Athanasios A

    2014-02-15

    Growth of selected microorganisms of industrial interest (Saccharomyces cerevisiae, Kluyveromyces marxianus and kefir) by solid state fermentation (SSF) of various food industry waste mixtures was studied. The fermented products were analysed for protein, and nutrient minerals content, as well as for aroma volatile compounds by GC/MS. The substrate fermented by K. marxianus contained the highest sum of fat and protein concentration (59.2% w/w dm) and therefore it could be considered for utilisation of its fat content and for livestock feed enrichment. Regarding volatiles, the formation of high amounts of ε-pinene was observed only in the SSF product of kefir at a yield estimated to be 4 kg/tn of SSF product. A preliminary design of a biorefinery-type process flow sheet and its economic analysis, indicated potential production of products (enriched livestock feed, fat and ε-pinene) of significant added value.

  6. Feasibility and application of a retronasal aroma-trapping device to study in vivo aroma release during the consumption of model wine-derived beverages.

    Science.gov (United States)

    Muñoz-González, Carolina; Rodríguez-Bencomo, Juan José; Moreno-Arribas, Maria Victoria; Pozo-Bayón, Maria Ángeles

    2014-07-01

    New types of wine-derived beverages are now in the market. However, little is known about the impact of ingredient formulation on aroma release during consumption, which is directly linked to consumer preferences and liking. In this study, the optimization and validation of a retronasal aroma-trapping device (RATD) for the in vivo monitoring of aroma release was carried out. This device was applied to assess the impact of two main ingredients (sugar and ethanol) in these types of beverages on in vivo aroma release. Two aroma-trapping materials (Lichrolut and Tenax) were firstly assayed. Tenax provided higher recovery and lower intra- and inter-trap variability. In in vivo conditions, RATD provided an adequate linear range (R (2) > 0.91) between 0 and 50 mg L(-1) of aroma compounds. Differences in the total aroma release were observed in equally trained panelists. It was proven that the addition of sugar (up to 150 mg kg(-1)) did not have effect on aroma release, while ethanol (up to 40 mg L(-1)) enhanced the aroma release during drinking. The RATD is a useful tool to collect real in vivo data to extract reliable conclusions about the effect of beverage components on aroma release during consumption. The concentration of ethanol should be taken into consideration for the formulation of wine-derived beverages.

  7. Screening of the key volatile organic compounds of Tuber melanosporum fermentation by aroma sensory evaluation combination with principle component analysis.

    Science.gov (United States)

    Liu, Rui-Sang; Jin, Guang-Huai; Xiao, Deng-Rong; Li, Hong-Mei; Bai, Feng-Wu; Tang, Ya-Jie

    2015-12-11

    Aroma results from the interplay of volatile organic compounds (VOCs) and the attributes of microbial-producing aromas are significantly affected by fermentation conditions. Among the VOCs, only a few of them contribute to aroma. Thus, screening and identification of the key VOCs is critical for microbial-producing aroma. The traditional method is based on gas chromatography-olfactometry (GC-O), which is time-consuming and laborious. Considering the Tuber melanosporum fermentation system as an example, a new method to screen and identify the key VOCs by combining the aroma evaluation method with principle component analysis (PCA) was developed in this work. First, an aroma sensory evaluation method was developed to screen 34 potential favorite aroma samples from 504 fermentation samples. Second, PCA was employed to screen nine common key VOCs from these 34 samples. Third, seven key VOCs were identified by the traditional method. Finally, all of the seven key VOCs identified by the traditional method were also identified, along with four others, by the new strategy. These results indicate the reliability of the new method and demonstrate it to be a viable alternative to the traditional method.

  8. Production of volatile aroma compounds by bacterial strains isolated from different surface-ripened French cheeses.

    Science.gov (United States)

    Deetae, Pawinee; Bonnarme, Pascal; Spinnler, Henry E; Helinck, Sandra

    2007-10-01

    Twelve bacterial strains belonging to eight taxonomic groups: Brevibacterium linens, Microbacterium foliorum, Arthrobacter arilaitensis, Staphylococcus cohnii, Staphylococcus equorum, Brachybacterium sp., Proteus vulgaris and Psychrobacter sp., isolated from different surface-ripened French cheeses, were investigated for their abilities to generate volatile aroma compounds. Out of 104 volatile compounds, 54 volatile compounds (identified using dynamic headspace technique coupled with gas chromatography-mass spectrometry [GC-MS]) appeared to be produced by the different bacteria on a casamino acid medium. Four out of eight species used in this study: B. linens, M. foliorum, P. vulgaris and Psychrobacter sp. showed a high flavouring potential. Among these four bacterial species, P. vulgaris had the greatest capacity to produce not only the widest varieties but also the highest quantities of volatile compounds having low olfactive thresholds such as sulphur compounds. Branched aldehydes, alcohols and esters were produced in large amounts by P. vulgaris and Psychrobacter sp. showing their capacity to breakdown the branched amino acids. This investigation shows that some common but rarely mentioned bacteria present on the surface of ripened cheeses could play a major role in cheese flavour formation and could be used to produce cheese flavours.

  9. Analysis of Volatile Markers for Virgin Olive Oil Aroma Defects by SPME-GC/FID: Possible Sources of Incorrect Data.

    Science.gov (United States)

    Oliver-Pozo, Celia; Aparicio-Ruiz, Ramón; Romero, Inmaculada; García-González, Diego L

    2015-12-09

    The need to explain virgin olive oil (VOO) aroma descriptors by means of volatiles has raised interest in applying analytical techniques for trapping and quantitating volatiles. Static headspace sampling with solid phase microextraction (SPME) as trapping material is one of the most applied solutions for analyzing volatiles. The use of an internal standard and the determination of the response factors of the main volatiles seem to guarantee the correct determination of volatile concentrations in VOOs by SPME-GC/FID. This paper, however, shows that the competition phenomena between volatiles in their adsorption to the SPME fiber, inherent in static headspace sampling, may affect the quantitation. These phenomena are more noticeable in the particular case of highly odorant matrices, such as rancid and vinegary VOOs with high intensity of defect. The competition phenomena can modify the measurement sensitivity, which can be observed in volatile quantitation as well as in the recording of internal standard areas in different matrices. This paper analyzes the bias of the peak areas and concentrations of those volatiles that are markers for each sensory defect of VOOs (rancid, vinegary, musty, and fusty) when the intensity and complexity of aroma are increased. Of the 17 volatile markers studied in this work, 10 presented some anomalies in the quantitation in highly odorant matrices due the competition phenomena. However, quantitation was not affected in the concentration ranges at which each volatile marker is typically found in the defective oils they were characteristic of, validating their use as markers.

  10. Multi-volatile method for aroma analysis using sequential dynamic headspace sampling with an application to brewed coffee.

    Science.gov (United States)

    Ochiai, Nobuo; Tsunokawa, Jun; Sasamoto, Kikuo; Hoffmann, Andreas

    2014-12-05

    A novel multi-volatile method (MVM) using sequential dynamic headspace (DHS) sampling for analysis of aroma compounds in aqueous sample was developed. The MVM consists of three different DHS method parameters sets including choice of the replaceable adsorbent trap. The first DHS sampling at 25 °C using a carbon-based adsorbent trap targets very volatile solutes with high vapor pressure (>20 kPa). The second DHS sampling at 25 °C using the same type of carbon-based adsorbent trap targets volatile solutes with moderate vapor pressure (1-20 kPa). The third DHS sampling using a Tenax TA trap at 80 °C targets solutes with low vapor pressure (aroma compounds for each DHS sampling and the combined MVM procedure were evaluated as a function of vapor pressure in the range of 0.000088-120 kPa. The MVM provided very good recoveries in the range of 91-111%. The method showed good linearity (r2>0.9910) and high sensitivity (limit of detection: 1.0-7.5 ng mL(-1)) even with MS scan mode. The feasibility and benefit of the method was demonstrated with analysis of a wide variety of aroma compounds in brewed coffee. Ten potent aroma compounds from top-note to base-note (acetaldehyde, 2,3-butanedione, 4-ethyl guaiacol, furaneol, guaiacol, 3-methyl butanal, 2,3-pentanedione, 2,3,5-trimethyl pyrazine, vanillin, and 4-vinyl guaiacol) could be identified together with an additional 72 aroma compounds. Thirty compounds including 9 potent aroma compounds were quantified in the range of 74-4300 ng mL(-1) (RSD<10%, n=5).

  11. Aroma active volatiles in four southern highbush blueberry cultivars determined by gas chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS).

    Science.gov (United States)

    Du, Xiaofen; Rouseff, Russell

    2014-05-21

    Aroma active volatiles in four southern highbush blueberry cultivars ('Prima Dona', 'Jewel', 'Snow Chaser', and 'Kestrel') were determined using solid phase microextraction (SPME) in combination with gas chromatography-olfactometry (GC-O) and identified via GC-PFPD and GC-MS using retention indices of reference compounds and mass spectral data. The aromas of total, unseparated SPME extracts evaluated using GC-O were rated 8.2-9.0/10 for the four cultivars in terms of similarity to the original blueberry homogenates. In terms of GC-O aroma similarity, those aroma active volatile groups characterized as green, fruity, and floral were most intense. Of the 43 volatiles found to have aroma activity, 38 were identified and 13 had not been previously reported in blueberries. Although linalool and (E)-2-hexenal were common major aroma impact volatiles, dominant aroma-active volatiles were different for each cultivar. Principal component analysis confirmed that each cultivar possessed a unique aroma active profile as each cultivar was clustered into a separate score plot quadrant.

  12. Impact of thermal and nonthermal processing technologies on unfermented apple cider aroma volatiles.

    Science.gov (United States)

    Azhu Valappil, Zareena; Fan, Xuetong; Zhang, Howard Q; Rouseff, Russell L

    2009-02-11

    Aroma composition and microbial quality of identical lots of apple cider treated by pulsed electric field (PEF), ultraviolet irradiation (UV), or thermal pasteurization stored at 4 degrees C were compared at 0 and 4 weeks. Conditions were optimized to achieve identical 5 log reductions in Escherichia coli K12 for each treatment. PEF and thermal pasteurization maintained acceptable microbial quality for 4 weeks, but UV samples fermented after 2 weeks. Twenty-eight volatiles were quantified using gas chromatography-mass spectrometry (GC-MS) and odor activity values (OAV) determined. OAVs of 69:hexyl acetate, 41:hexanal, 25:2-methylbutyl acetate, 23:2-methyl ethyl butyrate, and 14:2-(E)-hexenal were observed for the control cider. Significant differences (p ciders only after 4 weeks of storage. Thermal samples lost 30% of the major ester and aldehyde volatiles during storage with significant decreases (p cider, hexanal and 2-(E)-hexenal were completely lost after 4 weeks of storage. Microbial spoilage in UV cider after 4 weeks of storage was chemically confirmed by the detection of the microbial metabolite 1,3-pentadiene. PEF cider lost cider.

  13. Aroma interactions with starch

    DEFF Research Database (Denmark)

    Jørgensen, Anders Dysted

    Starches are used to enhance aroma perception in low-fat foods. Aroma compounds can bind physically to the starch in grooves on the surface or they can form complexes inside amylose helices. This study has been divided into two parts: one part regarding binding of aromas to starches and their aroma......-release, and another part regarding stimulation of a fungal secretome using different carbohydrates. In the first part, nine aromas and one aroma-mixture were mixed with nine different starches, including genetically modified starches. The objective of this sub-project was to bind aromas to the starches to 15 weight......-percent. Aroma binding was tested on both amorphous starches and on native starch granules. A series of aldehydes and alcohols were also tested for binding to the starches. The aromas with the highest volatility were positively retained by starch, whereas for aromas with a lower volatility the starch had...

  14. Influence of volatile thiols in the development of blackcurrant aroma in red wine.

    Science.gov (United States)

    Rigou, Peggy; Triay, Aurélie; Razungles, Alain

    2014-01-01

    A strong blackcurrant aroma was recently perceived in some red wines originating from the same appellation. Varietal thiols such as 4-mercapto-4-methyl-2-pentanone (4MMP), 3-(mercapto)hexyl acetate (3MHA) and 3-mercapto-1-hexanol (3MH) are compounds potentially responsible for the development of this aroma. In order to demonstrate the correlation between thiols concentrations in red wines and blackcurrant aroma intensity, a multiple variable analysis was realised with thiols concentrations obtained by chemical analysis and blackcurrant aroma intensities obtained by descriptive sensory analysis. The 4MMP concentration was very well correlated to the blackcurrant aroma, and 3MHA and 3MH present at high concentrations act as enhancers of the perception of this aroma. This correlation was further supported after performing a sensory comparison by classification test. The different factors that could impact on the development of blackcurrant aroma in red wine were discussed.

  15. Aroma Volatile Compound Analysis of SPME Headspace and Extract Samples from Crabapple (Malus sp.) Fruit Using GC-MS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Volatile compounds from the ripened crabapple fruit of six varieties (Red Splendor, Strawberry Parfait, Pink Spire, Radiant, Sparkler, and Flame) were analyzed by the use of the SPME/GC/MS method. The changes in the volatiles between the ripened and upon full maturity fruit states were studied in Red Splendor and Strawberry Parfait. An effort was made to summarize an effective method for searching and identifying new idioplasms containing a particular fruit aroma within Malus. A total of 37 compounds were identified from the sample. The main aroma volatiles of the six varieties of fruit were comprised of 2-hexenal, 3-hexenal, hexanal, 2,4-hexadienal, benzaldehyde, diethyl phthalate. The main volatile compound of the crabapple fruit was 2-hexenal, but the relative content percentages were different (45.37, 21.98, 33.56, 32.21, 38.60, and 45.88%). The aroma components accumulated differently as the fruits ripened. The relative content of aldehydes and esters decreased as alcohols increased after the Red Splendor and Strawberry Parfait fruit ripened. For Red Splendor, the main volatile was still 2-hexenal, but the relative content decreased to 42.89%, and the relative content of alcohols increased by 13.86% as aldehydes and esters declined by 12.16 and 7.18%, respectively. For Strawberry Parfait, the main volatile was changed to cyclohexanol, and the relative content increased to 46.43%, while the relative content of alcohols increased by 49.03% as aldehydes and esters declined by 23.74 and 9.34%, respectively.

  16. Meta-Analysis of the Core Aroma Components of Grape and Wine Aroma.

    Science.gov (United States)

    Ilc, Tina; Werck-Reichhart, Danièle; Navrot, Nicolas

    2016-01-01

    Wine aroma strongly influences wine quality, yet its composition and its evolution during the winemaking process are poorly understood. Volatile compounds that constitute wine aroma are traditionally divided into three classes according to their origin: grape, fermentation, and maturation aroma. We challenge this view with meta-analysis and review of grape and wine volatiles and their precursors from 82 profiling experiments. We compiled a list of 141 common grape and wine volatiles and quantitatively compared 43 of them. Our work offers insight into complex relationships between biosynthesis of aroma in grapes and the changes during the winemaking process. Monoterpenes are one of the largest and most researched wine aroma compounds. We show that their diversity in wines is mainly due to the oxidative metabolism of linalool in grapes. Furthermore, we demonstrate that most of the linalool produced in grapes is converted to these oxidized derivatives.

  17. Meta-Analysis of the Core Aroma Components of Grape and Wine Aroma

    Science.gov (United States)

    Ilc, Tina; Werck-Reichhart, Danièle; Navrot, Nicolas

    2016-01-01

    Wine aroma strongly influences wine quality, yet its composition and its evolution during the winemaking process are poorly understood. Volatile compounds that constitute wine aroma are traditionally divided into three classes according to their origin: grape, fermentation, and maturation aroma. We challenge this view with meta-analysis and review of grape and wine volatiles and their precursors from 82 profiling experiments. We compiled a list of 141 common grape and wine volatiles and quantitatively compared 43 of them. Our work offers insight into complex relationships between biosynthesis of aroma in grapes and the changes during the winemaking process. Monoterpenes are one of the largest and most researched wine aroma compounds. We show that their diversity in wines is mainly due to the oxidative metabolism of linalool in grapes. Furthermore, we demonstrate that most of the linalool produced in grapes is converted to these oxidized derivatives.

  18. Meta-analysis of the core aroma components of grape and wine aroma

    Directory of Open Access Journals (Sweden)

    Tina Ilc

    2016-09-01

    Full Text Available Wine aroma strongly influences wine quality, yet its composition and its evolution during the winemaking process are poorly understood. Volatile compounds that constitute wine aroma are traditionally divided into three classes according to their origin: grape, fermentation and maturation aroma. We challenge this view with meta-analysis and review of grape and wine volatiles and their precursors from 82 profiling experiments. We compiled a list of 141 common grape and wine volatiles and quantitatively compared 43 of them. Our work offers insight into complex relationships between biosynthesis of aroma in grapes and the changes during the winemaking process. Monoterpenes are one of the largest and most researched wine aroma compounds. We show that their diversity in wines is mainly due to the oxidative metabolism of linalool in grapes. Furthermore, we demonstrate that most of the linalool produced in grapes is converted to these oxidized derivatives.

  19. Characterization of the Volatile Substances and Aroma Components from Traditional Soypaste

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2010-05-01

    Full Text Available In this study, the flavor substances of soypaste were extracted by a simultaneous distillation method and identified by GC-MS. The characteristic aroma components of soypaste were determined by the GC-O technique and the FD value of the characteristic aroma components was determined by AEDA method. It could be inferred that the aroma of the soypaste should be attributed to the presence of heterocyclic compounds and organic acids, with the heterocyclic compounds playing a prominent role.

  20. Gene-Metabolite Networks of Volatile Metabolism in Airen and Tempranillo Grape Cultivars Revealed a Distinct Mechanism of Aroma Bouquet Production

    Science.gov (United States)

    Rambla, José L.; Trapero-Mozos, Almudena; Diretto, Gianfranco; Rubio-Moraga, Angela; Granell, Antonio; Gómez-Gómez, Lourdes; Ahrazem, Oussama

    2016-01-01

    Volatile compounds are the major determinants of aroma and flavor in both grapes and wine. In this study, we investigated the emission of volatile and non-volatile compounds during berry maturation in two grape varieties (Airén and Tempranillo) throughout 2010 and 2011. HS-SPME coupled to gas chromatography and mass spectrometry was applied for the identification and relative quantitation of these compounds. Principal component analysis was performed to search for variability between the two cultivars and evolution during 10 developmental stages. Results showed that there are distinct differences in volatile compounds between cultivars throughout fruit development. Early stages were characterized in both cultivars by higher levels of some apocarotenoids such as β-cyclocitral or β-ionone, terpenoids (E)-linalool oxide and (Z)-linalool oxide and several furans, while the final stages were characterized by the highest amounts of ethanol, benzenoid phenylacetaldehyde and 2-phenylethanol, branched-amino acid-derived 3-methylbutanol and 2-methylbutanol, and a large number of lipid derivatives. Additionally, we measured the levels of the different classes of volatile precursors by using liquid chromatography coupled to high resolution mass spectrometry. In both varieties, higher levels of carotenoid compounds were detected in the earlier stages, zeaxanthin and α-carotene were only detected in Airén while neoxanthin was found only in Tempranillo; more variable trends were observed in the case of the other volatile precursors. Furthermore, we monitored the expression of homolog genes of a set of transcripts potentially involved in the biosynthesis of these metabolites, such as some glycosyl hydrolases family 1, lipoxygenases, alcohol dehydrogenases hydroperoxide lyases, O-methyltransferases and carotenoid cleavage dioxygenases during the defined developmental stages. Finally, based on Pearson correlation analyses, we explored the metabolite-metabolite fluctuations

  1. Detection of Volatile Aroma Compounds of Morchella by Headspace Gas Chromatography Mass Spectrometry (HS-GC/MS

    Directory of Open Access Journals (Sweden)

    Hatira TAŞKIN

    2013-05-01

    Full Text Available   This study was conducted at the Horticulture Department of Çukurova University, Adana, Turkey, in 2010 to determine the volatile aroma compounds of Morchella mushroom. Fresh samples of Morchella esculenta (Sample 1 and Morchella elata (Sample 2 were collected from Çanakkale (Sample 1 and Mersin (Sample 2 provinces in Turkey in the spring of 2010. Volatile aroma compounds were analyzed by headspace gas chromatography mass spectrometry (HS-GC/MS. A total of 31 aroma compounds were identified in the 2 analyzed samples: 7 alcohols, 7 esters, 7 ketones, 3 acids, 2 aldehydes, 1 terpene, phenol, 1-propanamine, geranyl linalool, and quinoline. Seventeen aroma components were identified in Sample 1, and 18 compounds were found in Sample 2. Phenol was determined as the major aroma compound in both Sample 1 and Sample 2, at 50.888% and 58.293% content, respectively. Alcohols, especially 1-octen-3-ol, were detected as the second major aroma components in Sample 1 and Sample 2, at 15.500% and 5.660% content, respectively. Carbamic acid, methyl ester was found only in Sample 1, at 11.379% content. The aroma components detected in the two samples differed. 1-Octadecanol; cyclooctylalcohol; trans-2-undecen-1-ol; butanoic acid, butyl ester (CAS; carbamic acid, methyl ester; 2-ethylhexyl-2-ethylhexanoate; phthalic acid, decyl isobutyl ester; 2,2,4-trimethyl-1,3-pentanediol diisobutyrate; decanal; nonanal; 7,9-di-tert-butyl-1-oxaspiro(4.5deca-6,9-diene-2,8-dione; 2,5-cyclohexadiene-1,4-dione; 2,6-bis(1,1-dimethylethyl; and trans-alpha-bisabolene were detected only in Sample 1. Ethanol; silanediol, 2-methylaminoethanol; L-alanine, ethyl ester; carbonic acid, dodecyl isobutyl ester; acetic acid; butanoic acid; 2,3,4H-pyran-4-one; 5,9-undecadien-2-one; cyclooctene; 2-cyclopenten-1-one; 1-propanamine; geranyl linalool; and quinoline were determined only in Sample 2.

  2. Comparison of Aroma Character Impact Volatiles of Thummong Leaves (Litsea petiolata Hook. f.), Mangdana Water Beetle (Lethocerus indicus), and a Commercial Product as Flavoring Agents in Thai Traditional Cooking.

    Science.gov (United States)

    Mahattanatawee, Kanjana; Luanphaisarnnont, Torsak; Rouseff, Russell

    2017-07-11

    Thummong (Litsea petiolata Hook. f.) is a tree native to southern Thailand. The leaves of this tree are highly aromatic and used to flavor Thai dishes in place of the traditional water beetle Mangdana (Lethocerus indicus) for religious and cultural reasons. Total and aroma-active volatiles from both flavoring materials were compared using gas chromatography-olfactory (GC-O) and gas chromatography-mass spectrometry (GC-MS). The volatiles from Thummong leaves and the Mangdana water beetle were collected and concentrated using headspace solid-phase microextraction. A total of 23 and 25 aroma-active volatiles were identified in Thummong leaves and Mangdana, respectively. The major aroma-active volatiles in Thummong leaves consisted of 7 aldehydes, 5 ketones, and 3 esters. In contrast, the aroma-active volatiles in the water beetle consisted of 11 aldehydes, 3 esters, and 2 ketones. Both had (E)-2-nonenal as the most intense aroma-active volatile. The water beetle character impact volatile (E)-2-hexenyl acetate was absent in the leaves, but its aroma character was mimicked by 11-dodecen-2-one in the leaves, which was absent in the beetle. In addition, a commercial Mangdana flavoring was examined using GC-O and GC-MS and found to contain only a single aroma-active volatile, hexyl acetate. All three flavoring sources exhibited similar aroma characteristics but were produced from profoundly different aroma-active volatiles.

  3. Identification of aroma-active volatiles in banana Terra spirit using multidimensional gas chromatography with simultaneous mass spectrometry and olfactometry detection.

    Science.gov (United States)

    Capobiango, Michely; Mastello, Raíssa Bittar; Chin, Sung-Tong; Oliveira, Evelyn de Souza; Cardeal, Zenilda de Lourdes; Marriott, Philip John

    2015-04-03

    Fruit spirits have been produced and consumed throughout the world for centuries. However, the aroma composition of banana spirits is still poorly characterised. We have investigated the aroma-impact compounds of the banana Terra spirit for the first time, using multidimensional gas chromatography (MDGC and GC × GC) in a multi-hyphenated system - i.e., coupled to flame ionisation detection (FID), mass spectrometry (MS), and olfactometry (O). Solid-phase microextraction (SPME) was used to isolate the headspace aroma compounds of the banana spirit. The detection frequency (DF) technique was applied and aroma regions, detected in the first column separation at >60% Nasal Impact Frequency (NIF), were screened as target potent odour regions in the sample. Using a polar/non-polar phase column set, the potent odour regions were further subjected to MDGC separation with simultaneous O and MS detection for correlation of the aroma perception with MS data for individual resolved aroma-impact compounds. GC-O analysis enabled 18 aroma-impact regions to be located as providing volatiles of interest for further study; for example, those comprising perceptions of flower, whisky, green, amongst others. Compounds were tentatively identified through MS data matching and retention indices in both first and second dimensions. The principal volatile compounds identified in this work, which are responsible for the characteristic aroma of the banana spirit, are 3-methylbutan-1-ol, 3-methylbutan-1-ol acetate, 2-phenylethyl acetate and phenylethyl alcohol. This is the first such study to reveal the major aroma compounds that contribute to banana spirit aroma.

  4. Barrier Properties of Polymeric Packaging Materials to Major Aroma Volatiles in Herbs

    Directory of Open Access Journals (Sweden)

    Leelaphiwat Pattarin

    2016-01-01

    Full Text Available This study determined the main transport coefficients (diffusion, solubility and permeability of key aroma compounds present in tropical herbs (eucalyptol and estragol through low‒density polyethylene (LDPE, polypropylene (PP, nylon (Nylon, polyethylene terephthalate (PET, metalized‒polyethylene terephthalate (MPET and poly(lactic acid (PLA films at 15 and 25 °C. The concentration of aroma compounds permeating through the films were evaluated at various time intervals using a gas chromatograph flame ionization detector (GC–FID. Results showed that the diffusion coefficients of aroma compounds were highest in LDPE whereas the solubility coefficients were highest in PLA at both temperatures. PLA had the highest permeability coefficients for estragol at both temperatures. PP and LDPE had the highest permeability coefficients for eucalyptol at 15 and 25 °C, respectively. MPET had the lowest permeability for both aroma compounds studied. Aroma barrier properties can be used when selecting polymeric packaging materials to prevent aroma loss in various food and consumer products.

  5. Tea aroma formation

    OpenAIRE

    Chi-Tang Ho; Xin Zheng; Shiming Li

    2015-01-01

    Besides water, tea is one of the most popular beverages around the world. The chemical ingredients and biological activities of tea have been summarized recently. The current review summarizes tea aroma compounds and their formation in green, black, and oolong tea. The flavor of tea can be divided into two categories: taste (non-volatile compounds) and aroma (volatile compounds). All of these aroma molecules are generated from carotenoids, lipids, glycosides, etc. precursors, and also from Ma...

  6. Effect of reuterin-producing Lactobacillus reuteri coupled with glycerol on the volatile fraction, odour and aroma of semi-hard ewe milk cheese.

    Science.gov (United States)

    Gómez-Torres, Natalia; Ávila, Marta; Delgado, David; Garde, Sonia

    2016-09-02

    The effect of the biopreservation system formed by Lactobacillus reuteri INIA P572, a reuterin-producing strain, and glycerol (required for reuterin production), on the volatile fraction, aroma and odour of industrial sized semi-hard ewe milk cheese (Castellano type) was investigated over a 3-month ripening period. The volatile compounds were extracted and analyzed by SPME-GC-MS and cheese odour and aroma profiles were studied by descriptive sensory analysis. Control cheese was made only with a mesophilic starter and experimental cheeses with L. reuteri were made with and without glycerol. The addition of L. reuteri INIA P572 to milk enhanced the formation of six volatile compounds. Despite the changes in the volatile compounds profile, the use of L. reuteri INIA P572 did not noticeably affect the sensory characteristics of cheese. On the other hand, the addition of L. reuteri INIA P572 coupled with 30mM glycerol enhanced the formation of twelve volatile compounds, but decreased the formation of five ones. The use of the biopreservation system did not affect overall odour and aroma quality of cheese although it resulted in a significant decrease of the odour intensity scores. In addition, this cheese received significant higher scores for "cheesy" aroma and significant lower scores for the aroma attributes "milky", "caramel" and "yogurt-like". The first two axes of a principal component analysis (PCA) performed for selected volatile compounds and sensory characteristics, accounting for 75% of the variability between cheeses, separated cheeses made with L. reuteri INIA P572 and glycerol from the rest of cheeses, and also differentiated control cheese from cheeses made with L. reuteri INIA P572 from day 60 onward. Our results showed that the reuterin-producing L. reuteri INIA P572 strain, when coupled with glycerol, may be a suitable biopreservation system to use in cheese without affecting odour and aroma quality.

  7. Comparison of Aroma-Active Volatiles in Oolong Tea Infusions Using GC-Olfactometry, GC-FPD, and GC-MS.

    Science.gov (United States)

    Zhu, JianCai; Chen, Feng; Wang, LingYing; Niu, YunWei; Yu, Dan; Shu, Chang; Chen, HeXing; Wang, HongLin; Xiao, ZuoBing

    2015-09-02

    The aroma profile of oolong tea infusions (Dongdingwulong, DDWL; Tieguanyin, TGY; Dahongpao, DHP) were investigated in this study. Gas chromatography-olfactometry (GC-O) with the method of aroma intensity (AI) was employed to investigate the aroma-active compounds in tea infusions. The results presented forty-three, forty-five, and forty-eight aroma-active compounds in the TGY, DHP, and DDWL infusions, including six, seven, and five sulfur compounds, respectively. In addition, the concentration of volatile compounds in the tea infusions was further quantitated by solid phase microextraction-gas chromatography (SPME)-GC-MS and SPME-GC-flame photometric detection (FPD). Totally, seventy-six and thirteen volatile and sulfur compounds were detected in three types of tea infusions, respectively. Quantitative results showed that forty-seven aroma compounds were at concentrations higher than their corresponding odor thresholds. On the basis of the odor activity values (OAVs), 2-methylpropanal (OAV: 230-455), 3-methylbutanal (1-353), 2-methylbutanal (34-68), nerolidol (108-184), (E)-2-heptenal (148-294), hexanal (134-230), octanal (28-131), β-damascenone (29-59), indole (96-138), 6-methyl-5-hepten-2-one (34-67), (R)-(-)-linalool (63-87), and dimethyl sulfide (7-1320) presented relatively higher OAVs than those of other compounds, indicating the importance of these compounds in the overall aroma of tea infusions.

  8. 1-Methylcyclopropene effects on temporal changes of aroma volatiles and phytochemicals of fresh-cut cantaloupe

    Science.gov (United States)

    Orange fleshed cantaloupe melons have intense aroma and flavor, but are very perishable. Changes in quality traits were characterized during storage-life of fresh-cut cantaloupe (Cucumis melo var. cantalupensis "Fiesta") cubes treated with 1.0 µL L-1 4 of 1-methylcyclopene for 24 h at 5 ºC, packaged...

  9. Mango fruit aroma volatile production following quarantine hot water treatment and subsequent ripening

    Science.gov (United States)

    Mangos are an important tropical fruit crop worldwide that are appreciated for their attractive peel and flesh colors, juicy texture, sweetness, and unique aroma. Mangos exported to the U.S. receive quarantine hot water treatment (QHWT) at 46.1 °C for 65 to 110 min (depending on fruit shape and size...

  10. Tea aroma formation

    Directory of Open Access Journals (Sweden)

    Chi-Tang Ho

    2015-03-01

    Full Text Available Besides water, tea is one of the most popular beverages around the world. The chemical ingredients and biological activities of tea have been summarized recently. The current review summarizes tea aroma compounds and their formation in green, black, and oolong tea. The flavor of tea can be divided into two categories: taste (non-volatile compounds and aroma (volatile compounds. All of these aroma molecules are generated from carotenoids, lipids, glycosides, etc. precursors, and also from Maillard reaction. In the current review, we focus on the formation mechanism of main aromas during the tea manufacturing process.

  11. Pineapple (Ananas comosus L. Merr.) wine production in Angola: Characterisation of volatile aroma compounds and yeast native flora.

    Science.gov (United States)

    Dellacassa, Eduardo; Trenchs, Oriol; Fariña, Laura; Debernardis, Florencia; Perez, Gabriel; Boido, Eduardo; Carrau, Francisco

    2017-01-16

    A pineapple vinification process was conducted through inoculated and spontaneous fermentation to develop a process suitable for a quality beverage during two successive vintages in Huambo, Angola. Wines obtained with the conventional Saccharomyces cerevisiae strain, were analysed by gas chromatography, and a total of 61 volatile constituents were detected in the volatile fraction and 18 as glycosidically bound aroma compounds. Concentration levels of carbonyl and sulphur compounds were in agreement with the limited information reported about pineapple fruits of other regions. We report, for the first time in pineapple wines, the presence of significant concentrations of lactones, ketones, terpenes, norisoprenoids and a variety of volatile phenols. Eight native yeast strains were isolated from spontaneous batches. Further single-strain fermentations allowed us to characterise their suitability for commercial fermentation. Three native strains (Hanseniaspora opuntiae, H. uvarum and Meyerozyma guilliermondii) were selected with sensory potential to ferment pineapple fruits with increased flavour diversity. Results obtained here contribute to a better understanding of quality fermentation alternatives of this tropical fruit in subtropical regions.

  12. Optimization of extraction of apple aroma by dynamic headspace and influence of saliva on extraction of volatiles.

    Science.gov (United States)

    Mehinagic, Emira; Prost, Carole; Demaimay, Michel

    2004-08-11

    The dynamic headspace procedure of aroma extraction was optimized on Gala apples (Malus domestica). Two parameters affecting the extractability of compounds were studied: temperature and purge time. The influence of artificial saliva was also included. An increase in purge time and temperature caused an increase in the extraction of volatiles from the apple matrix. The optimum point of extraction was 40 degrees C and 70 min of purge. The study also showed that the addition of saliva influenced the extraction of volatile compounds, but this effect was different from one compound to another. To verify that the headspace extracts presented a global odor representativeness of fresh apple under these conditions of extraction, eight assessors compared the odor of extracts with fresh fruit odor for three different cultivars. With regard to the sensory profiles of extracts, the optimal conditions of extraction were suitable for extraction of volatile compounds, even if cooked apple odor appeared in some extracts. The similarity marks of extracts were low but acceptable.

  13. Persistence of aroma volatiles in the oral and nasal cavities: real-time monitoring of decay rate in air exhaled through the nose and mouth.

    Science.gov (United States)

    Sánchez-López, José Antonio; Ziere, Aldo; Martins, Sara I F S; Zimmermann, Ralf; Yeretzian, Chahan

    2016-07-06

    The persistence of aroma compounds in breath after swallowing is an important attribute of the overall aroma experience during eating and drinking. It is mainly related to the coating of the oral tract with food residues and the interaction between volatile compounds and airway mucosa. We have studied the persistence of eight compounds (2,5-dimethylpyrazine, guaiacol, 4-methylguaiacol, phenylethylalcohol, ethylbutanoate, ethyloctanoate, isoamylacetate and 2-heptanone) both in-nose and in-mouth after administration of volatiles in gas phase (vapor) to five different panelists. By using volatiles in the gas phase, only the interaction with the mucosa is highlighted and the formation of a liquid coating in the oral and tracheal airway is avoided. The physicochemical properties of the compounds, mainly polarity and vapor pressure, determine the interactions of the volatiles with the airway mucosa. The use of different breathing protocols allowed the study of the differences between nasal and oral mucosa in volatile retention, with higher persistence of volatiles obtained in-mouth. Initial concentration also affected persistence, but only for compounds with high volatility and at low concentration.

  14. Linking gene regulation and the exo-metabolome: A comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast

    Directory of Open Access Journals (Sweden)

    Bauer Florian F

    2008-11-01

    Full Text Available Abstract Background 'Omics' tools provide novel opportunities for system-wide analysis of complex cellular functions. Secondary metabolism is an example of a complex network of biochemical pathways, which, although well mapped from a biochemical point of view, is not well understood with regards to its physiological roles and genetic and biochemical regulation. Many of the metabolites produced by this network such as higher alcohols and esters are significant aroma impact compounds in fermentation products, and different yeast strains are known to produce highly divergent aroma profiles. Here, we investigated whether we can predict the impact of specific genes of known or unknown function on this metabolic network by combining whole transcriptome and partial exo-metabolome analysis. Results For this purpose, the gene expression levels of five different industrial wine yeast strains that produce divergent aroma profiles were established at three different time points of alcoholic fermentation in synthetic wine must. A matrix of gene expression data was generated and integrated with the concentrations of volatile aroma compounds measured at the same time points. This relatively unbiased approach to the study of volatile aroma compounds enabled us to identify candidate genes for aroma profile modification. Five of these genes, namely YMR210W, BAT1, AAD10, AAD14 and ACS1 were selected for overexpression in commercial wine yeast, VIN13. Analysis of the data show a statistically significant correlation between the changes in the exo-metabome of the overexpressing strains and the changes that were predicted based on the unbiased alignment of transcriptomic and exo-metabolomic data. Conclusion The data suggest that a comparative transcriptomics and metabolomics approach can be used to identify the metabolic impacts of the expression of individual genes in complex systems, and the amenability of transcriptomic data to direct applications of

  15. Co-Treatment of EFF and 1-MCP for Enhancing the Shelf-Life and Aroma Volatile Compounds of Oriental Sweet Melons (Cucumis melo var. makuwa Makino)

    Institute of Scientific and Technical Information of China (English)

    BAI Xiao-hang; TENG Lu-hua; LÜ De-qing; QI Hong-yan

    2014-01-01

    Compared to other melon types, oriental sweet melon (Cucumis melo var. makuwa Makino) is quite a different species with a shorter shelf-life due to its typical climacteric behavior and thin pericarp. The purpose of this experiment is to explore the effects of co-treatment of enhanced freshness formulation (EFF) and 1-methylcyclopropene (1-MCP) on physiological changes and the content of aroma volatile compounds introduced by them of two oriental sweet melon cultivars (Yumeiren and Tianbao) during storage. The melons were stored in incubators with temperature of 15°C and a relative humidity of 85%for 24 d during which fruit quality and related physiological index were measured. Compared to the control, both treatments delayed fruit weight loss rate and kept the fruit ifrmness, water content and soluble solids content. Ascorbate peroxidase (APX) and phenylalanine ammonia lyase (PAL) activities showed lfuctuations in treated melons, while lipoxygenase (LOX) activity (P<0.01) and malondialdehyde (MDA) content (P<0.05) decreased compared to control. During the early stage of storage, alcohols and aldehydes were the main volatile compounds, and esters gradually increased during storage. Of all the esters, acetic esters were the main components, followed by oxalic acid esters and other esters. The total content of aroma volatile compounds, esters, alcohols and aldehydes of co-treated melons were all higher than those of 1-MCP treated and control melons. In addition, the aroma volatile peak of co-treated melons occurred later than that of 1-MCP treated and control melons. In summary, co-treatment of EFF and 1-MCP was more beneifcial than 1-MCP treatment to delay ripening and senescence, maintain fruit quality, enhance shelf-life and improve levels of aroma volatile compounds.

  16. Inhibition of volatile compounds derived from fatty acid oxygenation with chilling and heating treatments and their influences on the oxylipin pathawy gene expression and enzyme activity levels in tomato (Solanum lycopersicon

    Science.gov (United States)

    Hexanal, Z-3-hexenal, E-2-hexenal, hexanol and Z-3-hexenol are major tomato (Solanum Lycopersicon) volatile aromas derived from oxygenation of unsaturated fatty acids. Chilling or heating treatments suppress production of these C6 volatiles. The objective of this research was to determine the respon...

  17. Sensory and instrumental analysis of food aromas

    NARCIS (Netherlands)

    Bult, J.H.F.

    2006-01-01

    Food aromas are generally perceived as unitary aromas, i.e. fried potatoes smell like fried potatoes and roasted coffee smells like roasted coffee. Nonetheless, nearly all food aromas are produced by a multitude of volatile components that contribute to an extensive collection of aromas in various

  18. Sensory and instrumental analysis of food aromas

    NARCIS (Netherlands)

    Bult, J.H.F.

    2006-01-01

    Food aromas are generally perceived as unitary aromas, i.e. fried potatoes smell like fried potatoes and roasted coffee smells like roasted coffee. Nonetheless, nearly all food aromas are produced by a multitude of volatile components that contribute to an extensive collection of aromas in various c

  19. Changes of Aroma Volatile Compounds in Pineapple Fruit during Postharvest Storage%菠萝贮藏过程中香气成分的变化

    Institute of Scientific and Technical Information of China (English)

    杨文秀; 赵维峰; 魏长宾; 孙光明

    2011-01-01

    The aroma volatile compounds and changes in Ananas comosus cv.Comte de Paris were extracted by head-space solid-phase microextraction(HS-SPME) and analyzed by gas chromatograph-mass spectrophotometer(GC-MS) during postharvest storage.Esters were the main aroma volatiles,and the content increased during storage.Hexanoic acid methyl ester,which were also increased with the storage time,was the maximum part in esters.The relative content of aroma volatile compounds showed a great difference during the storage of pineapple.%采用顶空固相微萃取技术,研究巴厘菠萝果实贮藏过程中香气成分的组成及变化。结果表明,巴厘菠萝果实贮藏过程中主要香气成分是酯类,且含量随贮藏时间的延长增加。己酸甲酯是主要的酯类成分,在贮藏过程中含量也随时间的延长而增加。巴厘菠萝在果实贮藏期间,各香气成分的相对含量变化较大。

  20. Changes in the hop-derived volatile profile upon lab scale boiling.

    Science.gov (United States)

    Praet, Tatiana; Van Opstaele, Filip; Steenackers, Bart; De Brabanter, Joseph; De Vos, Dirk; Aerts, Guido; De Cooman, Luc

    2015-09-01

    Hop terpenes might be oxidized during kettle boiling into more water soluble compounds that could contribute to 'hoppy' aroma of kettle hopped lager beers. Our current research proves that the boiling process induces significant changes in the hop oil volatile profile. The discrimination between volatile profiles of unboiled and boiled hop essential oil was evaluated via principal component and cluster analysis (PCA and CA). HS-SPME-GC-MS analysis revealed quantitative changes (e.g. increases in the levels of oxygenated α-humulene and β-caryophyllene derivatives) as well as qualitative changes (i.e. detection of compounds, not found in unboiled hop essential oil) in the hop oil volatile profile upon boiling. Many of these compounds were previously found in lager beer and may therefore contribute to beer flavor. Interestingly, the analytical difference between unboiled and boiled hop essential oil proved to be more pronounced as the initial hop essential oil concentration used for boiling was increased. In addition, lager beers spiked with boiled hop oil were described as 'hoppy/spicy' during sensory evaluations. Therefore, the newly formed products and hop oil constituents that are characterized by an increased recovery after boiling, are candidate compounds for 'hoppy' aroma in real brewing practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Impact of starter cultures and fermentation techniques on the volatile aroma and sensory profile of chocolate

    DEFF Research Database (Denmark)

    Crafack, Michael; Keul, Hanna; Eskildsen, Carl Emil Aae

    2014-01-01

    The sensory quality of chocolate is widely determined by the qualitative and quantitative composition of volatile compounds resulting from microbial metabolism during fermentation, and Maillard reactions taking place during drying, roasting and conching. The influence of applying mixed starter...... in roasted cocoa liquors and finished chocolates. 19 of the 56 volatile compounds identified in the chocolates were found in significantly higher amounts in the tray fermented sample, whilst significantly higher amounts of 2-methoxyphenol was measured in the two inoculated chocolates. The P. kluyveri...... inoculated chocolate was characterized by a significantly higher concentration of phenylacetaldehyde and the K. marxianus inoculated chocolate by significantly higher amounts of benzyl alcohol, phenethyl alcohol, benzyl acetate and phenethyl acetate compared to a spontaneously fermented control. Sensory...

  2. Impact of starter cultures and fermentation techniques on the volatile aroma and sensory profile of chocolate

    DEFF Research Database (Denmark)

    Crafack, Michael; Keul, Hanna; Eskildsen, Carl Emil Aae

    2014-01-01

    The sensory quality of chocolate is widely determined by the qualitative and quantitative composition of volatile compounds resulting from microbial metabolism during fermentation, and Maillard reactions taking place during drying, roasting and conching. The influence of applying mixed starter...... in roasted cocoa liquors and finished chocolates. 19 of the 56 volatile compounds identified in the chocolates were found in significantly higher amounts in the tray fermented sample, whilst significantly higher amounts of 2-methoxyphenol was measured in the two inoculated chocolates. The P. kluyveri...... inoculated chocolate was characterized by a significantly higher concentration of phenylacetaldehyde and the K. marxianus inoculated chocolate by significantly higher amounts of benzyl alcohol, phenethyl alcohol, benzyl acetate and phenethyl acetate compared to a spontaneously fermented control. Sensory...

  3. Changes in physico-chemical and volatile aroma compound composition of Gewürztraminer wine as a result of late and ice harvest.

    Science.gov (United States)

    Lukić, Igor; Radeka, Sanja; Grozaj, Nikola; Staver, Mario; Peršurić, Đordano

    2016-04-01

    To investigate the changes in physico-chemical and aroma composition after late and ice harvest, Gewürztraminer wines were subjected to standard, enzymatic and GC/MS analysis. Late harvest (LHGW) and ice wines (IHGW) contained more sugars, extract and volatile acidity than standard wines (SGW). IHGW had elevated glycerol and gluconic acid amounts. LHGW was richer in monoterpenol oxides, β-damascenone, 1-octen-3-ol, acetates, ethyl cinnamate and 4-vinylguaiacol than SGW. IHGW contained even higher amounts, with increased citronellol, acetaldehyde, ethyl acetate, dicarboxylic acids esters, benzenoids, furans and acetals, and reduced fermentation aroma compounds. Based on odour activity values, the strongest odorants in SGW were fruity esters. In LHGW the impact of esters increased, while in IHGW cis-rose oxide, β-damascenone and 1,1-diethoxyethane emerged as the most potent. Fruity and sweet were the dominant aroma compound series in SGW and LHGW, but in IHGW declined, while terpenic, floral, chemical, pungent and ripe fruit aroma compound series increased.

  4. Chemical composition, aroma evaluation, and oxygen radical absorbance capacity of volatile oil extracted from Brassica rapa cv. "yukina" used in Japanese traditional food.

    Science.gov (United States)

    Usami, Atsushi; Motooka, Ryota; Takagi, Ayumi; Nakahashi, Hiroshi; Okuno, Yoshiharu; Miyazawa, Mitsuo

    2014-01-01

    The chemical composition of the volatile oil extracted from the aerial parts of Brassica rapa cv. "yukina" was analyzed using GC-MS, GC-PFPD, and GC-O. A total of 50 compounds were identified. The most prominent constituents were (E)-1,5-heptadiene (40.27%), 3-methyl-3-butenenitrile (25.97%) and 3-phenylpropanenitrile (12.41%). With regard to aroma compounds, 12 compounds were identified by GC-O analysis. The main aroma-active compounds were dimethyl tetrasulfide (sulphury-cabbage, FD = 64), 3-phenylpropanenitrile (nutty, FD = 64), 3-methylindole (pungent, FD = 64), and methional (potato, FD = 32). The antioxidant activity of the aroma-active compounds of the oil was determined using an oxygen radical absorbance capacity (ORAC) assay using fluorescein as the fluorescent probe. The ORAC values were found to be 785 ± 67 trolox equivalents (μmol TE/g) for B. rapa cv. "yukina" oil. The results obtained showed that the volatile oil extracted from the aerial parts is a good dietary source of antioxidants.

  5. Stable isotope dilution assay (SIDA) and HS-SPME-GCMS quantification of key aroma volatiles for fruit and sap of Australian mango cultivars.

    Science.gov (United States)

    San, Anh T; Joyce, Daryl C; Hofman, Peter J; Macnish, Andrew J; Webb, Richard I; Matovic, Nicolas J; Williams, Craig M; De Voss, James J; Wong, Siew H; Smyth, Heather E

    2017-04-15

    Reported herein is a high throughput method to quantify in a single analysis the key volatiles that contribute to the aroma of commercially significant mango cultivars grown in Australia. The method constitutes stable isotope dilution analysis (SIDA) in conjunction with headspace (HS) solid-phase microextraction (SPME) coupled with gas-chromatography mass spectrometry (GCMS). Deuterium labelled analogues of the target analytes were either purchased commercially or synthesised for use as internal standards. Seven volatiles, hexanal, 3-carene, α-terpinene, p-cymene, limonene, α-terpinolene and ethyl octanoate, were targeted. The resulting calibration functions had determination coefficients (R(2)) ranging from 0.93775 to 0.99741. High recovery efficiencies for spiked mango samples were also achieved. The method was applied to identify the key aroma volatile compounds produced by 'Kensington Pride' and 'B74' mango fruit and by 'Honey Gold' mango sap. This method represents a marked improvement over current methods for detecting and measuring concentrations of mango fruit and sap volatiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Comparative Characterization of Aroma Volatiles and Related Gene Expression Analysis at Vegetative and Mature Stages in Basmati and Non-Basmati Rice (Oryza sativa L.) Cultivars.

    Science.gov (United States)

    Hinge, Vidya; Patil, Hemant; Nadaf, Altafhusain

    2016-02-01

    Aroma volatiles in Basmati-370, Ambemohar-157 (non-basmati scented), and IR-64 (non-scented) rice cultivars were qualitatively and quantitatively analyzed at vegetative and maturity stages to study their differential accumulation using headspace solid-phase microextraction, followed by gas chromatography mass spectrometry (HS-SPME-GCMS) with selected ion monitoring (SIM) approach. In addition, expression analysis of major aroma volatile 2-acetyl-1-pyrroline (2AP)-related genes, betaine aldehyde dehydrogenase 2 (badh2) and Δ(1)-pyrolline-5-carboxylic acid synthetase (P5CS), were studied by real-time PCR. Maximum number of volatiles recorded at vegetative (72-58) than at mature stage (54-39). Twenty new compounds (12 in scented and 8 in both) were reported in rice. N-containing aromatic compounds were major distinguishing class separating scented from non-scented. Among quantified 26 volatiles, 14 odor-active compounds distinguished vegetative and mature stage. Limit of detection (LOD) and limit of quantification (LOQ) for 2AP was 0.001 mg/kg of 2AP and 0.01 g of rice, respectively. 2AP accumulation in mature grains was found three times more than in leaves of scented rice. Positive correlation of 2AP with 2-pentylfuran, 6-methyl-5-hepten-2-one, and (E)-2-nonenal suggests their major role as aroma contributors. The badh2 expression was inversely and P5CS expression was positively correlated with 2AP accumulation in scented over non-scented cultivar.

  7. Influence of Starter Cultures, Fermentation Techniques, and Acetic Acid on the Volatile Aroma and Sensory Profile of Cocoa Liquor and Chocolate

    DEFF Research Database (Denmark)

    Crafack, Michael

    the principal raw material for chocolate production, good quality cocoa beans are in high demand on the World market as a prerequisite for the production of high quality chocolates and other confectionary products. To produce good quality cocoa suitable for chocolate production, it is essential that the beans......-independent molecular techniques, the growth and survival of the two yeast inoculation cultures was verified at strain level, whilst the bacterial inoculum was identified at species level. Aroma profiling was conducted using dynamic headspace gas chromatography-mass spectrometry for identification and relative...... of fermentation technique therefore seemed to have a greater influence on the quantitative composition of volatile aroma compounds than the use of starter cultures. Sensory profiling described the conventional heap and tray fermented chocolates as sweet with cocoa and caramel flavours, whilst the inoculated...

  8. Characterization of the Key Aroma Volatile Compounds in Cranberry (Vaccinium macrocarpon Ait.) Using Gas Chromatography-Olfactometry (GC-O) and Odor Activity Value (OAV).

    Science.gov (United States)

    Zhu, JianCai; Chen, Feng; Wang, LingYing; Niu, YunWei; Chen, HeXing; Wang, HongLin; Xiao, ZuoBing

    2016-06-22

    The volatile compounds of cranberries obtained from four cultivars (Early Black, Y1; Howes, Y2; Searles, Y3; and McFarlin, Y4) were analyzed by gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS), and GC-flame photometric detection (FPD). The result presented that a total of thirty-three, thirty-four, thirty-four, and thirty-six odor-active compounds were identified by GC-O in the Y1, Y2, Y3, and Y4, respectively. In addition, twenty-two, twenty-two, thirty, and twenty-seven quantified compounds were demonstrated as important odorants according to odor activity values (OAVs > 1). Among these compounds, hexanal (OAV: 27-60), pentanal (OAV: 31-51), (E)-2-heptenal (OAV: 17-66), (E)-2-hexenal (OAV: 18-63), (E)-2-octenal (OAV: 10-28), (E)-2-nonenal (OAV: 8-77), ethyl 2-methylbutyrate (OAV: 10-33), β-ionone (OAV: 8-73), 2-methylbutyric acid (OAV: 18-37), and octanal (OAV: 4-24) contributed greatly to the aroma of cranberry. Partial least-squares regression (PLSR) was used to process the mean data accumulated from sensory evaluation by the panelists, odor-active aroma compounds (OAVs > 1), and samples. Sample Y3 was highly correlated with the sensory descriptors "floral" and "fruity". Sample Y4 was greatly related to the sensory descriptors "mellow" and "green and grass". Finally, an aroma reconstitution (Model A) was prepared by mixing the odor-active aroma compounds (OAVs > 1) based on their measured concentrations in the Y1 sample, indicating that the aroma profile of the reconstitution was pretty similar to that of the original sample.

  9. The Effect of CmLOXs on the Production of Volatile Organic Compounds in Four Aroma Types of Melon (Cucumis melo).

    Science.gov (United States)

    Tang, Yufan; Zhang, Chong; Cao, Songxiao; Wang, Xiao; Qi, Hongyan

    2015-01-01

    Lipoxygenases (LOXs) play important role in the synthesis of volatile organic compounds (VOCs), which influence the aroma of fruit. In this study, we elucidate that there is a positive relationship between LOXs activity and VOC production in melon (Cucumis melo), and CmLOX genes are involved in fruit aroma generation in melon. To this end, we tested four aroma types of melon that feature a thin pericarp: two aromatic cultivars of the oriental melons (C. melo var. makuwa Makino), 'Yu Meiren' (YMR) and 'Cui Bao' (CB); a non-aromatic oriental pickling melon (C. melo var. conomon), 'Shao Gua' (SHAO); and a non-aromatic snake melon (C. melo L. var. flexuosus Naud), 'Cai Gua' (CAI). A principal component analysis (PCA) revealed that the aromas of SHAO and CAI are similar in nature because their ester contents are lower than those of YMR and CB. Ethyl acetate, benzyl acetate, (E, Z)-2, 6-nonadienal and menthol are four principal volatile compounds that affect the aromatic characteristics of these four types of melons. The LOX activity and total ester content in YMR were the highest among the examined melon varieties. The expression patterns of 18 CmLOX genes were found to vary based on the aromatic nature of the melon. Four of them were highly expressed in YMR. Moreover, we treated the fruit disks of YMR with LOX substrates (linoleic acid and linolenic acid) and LOX inhibitors (n-propyl gallate and nordihydroguariaretic acid). Substrate application promoted LOX activity and induced accumulation of hexanal, (2E)-nonenal and straight-chain esters, such as ethyl acetate. In contrast, LOX inhibitors decreased the levels of these compounds. The effect of CmLOXs in the biosynthesis of esters in melons are discussed.

  10. The Effect of CmLOXs on the Production of Volatile Organic Compounds in Four Aroma Types of Melon (Cucumis melo.

    Directory of Open Access Journals (Sweden)

    Yufan Tang

    Full Text Available Lipoxygenases (LOXs play important role in the synthesis of volatile organic compounds (VOCs, which influence the aroma of fruit. In this study, we elucidate that there is a positive relationship between LOXs activity and VOC production in melon (Cucumis melo, and CmLOX genes are involved in fruit aroma generation in melon. To this end, we tested four aroma types of melon that feature a thin pericarp: two aromatic cultivars of the oriental melons (C. melo var. makuwa Makino, 'Yu Meiren' (YMR and 'Cui Bao' (CB; a non-aromatic oriental pickling melon (C. melo var. conomon, 'Shao Gua' (SHAO; and a non-aromatic snake melon (C. melo L. var. flexuosus Naud, 'Cai Gua' (CAI. A principal component analysis (PCA revealed that the aromas of SHAO and CAI are similar in nature because their ester contents are lower than those of YMR and CB. Ethyl acetate, benzyl acetate, (E, Z-2, 6-nonadienal and menthol are four principal volatile compounds that affect the aromatic characteristics of these four types of melons. The LOX activity and total ester content in YMR were the highest among the examined melon varieties. The expression patterns of 18 CmLOX genes were found to vary based on the aromatic nature of the melon. Four of them were highly expressed in YMR. Moreover, we treated the fruit disks of YMR with LOX substrates (linoleic acid and linolenic acid and LOX inhibitors (n-propyl gallate and nordihydroguariaretic acid. Substrate application promoted LOX activity and induced accumulation of hexanal, (2E-nonenal and straight-chain esters, such as ethyl acetate. In contrast, LOX inhibitors decreased the levels of these compounds. The effect of CmLOXs in the biosynthesis of esters in melons are discussed.

  11. Expression of genes associated with aroma formation derived from the fatty acid pathway during peach fruit ripening.

    Science.gov (United States)

    Zhang, Bo; Shen, Ji-Yuan; Wei, Wen-Wen; Xi, Wan-Peng; Xu, Chang-Jie; Ferguson, Ian; Chen, Kunsong

    2010-05-26

    Changes in characteristic aroma volatiles, levels of fatty acids as aroma precursors, and expression patterns of related genes, including lipoxygenase (LOX), hydroperoxide lyase (HPL), alcohol dehydrogenase (ADH), alcohol acyltransferase (AAT), and fatty acid desaturase (FAD), were studied in peach ( Prunus persica L. Batsch., cv. Yulu) fruit during postharvest ripening at 20 degrees C. Concentrations of n-hexanal, (E)-2-hexenal, (E)-2-hexenol, and (Z)-3-hexenol decreased, whereas the production of (Z)-3-hexenyl acetate, gamma-hexalactone, gamma-octalactone, gamma-decalactone, and delta-decalactone increased with fruit ripening. Lactones showed a clear pattern concomitant with the climacteric rise in ethylene production, with gamma-decalactone being the principal volatile compound at the late ripening stage. Of the LOX family genes, PpLOX2 and PpLOX3 had relatively high transcript levels initially followed by a decline with fruit ripening, while levels of PpLOX1 and PpLOX4 transcripts were upregulated by accumulated ethylene production. Expression of PpHPL1, PpADH1, PpADH2, and PpADH3 showed similar decreasing patterns during ripening. Expression levels of PpAAT1 showed a rapid increase during the first 2 days of postharvest ripening followed by a gradual decrease. Contents of polyunsaturated linoleic and linolenic acids increased, and saturated palmitic acid levels tended to decline as the fruit ripened. The increased levels of unsaturated fatty acids closely paralleled increasing expression of PpFAD1 and PpFAD2. The significance of gene expression changes in relation to aroma volatile production is discussed.

  12. Comparitive study on volatile aroma compounds of two different garlic types (Kastamonu and Chinese) using gas chromatography mass spectrometry (HS-GC/MS) technique.

    Science.gov (United States)

    Keleş, Davut; Taşkin, Hatira; Baktemur, Gökhan; Kafkas, Ebru; Büyükalaca, Saadet

    2014-01-01

    The medicinal use of garlic is much older than its usage as a food. The medical importance of garlic comes forward for its sulfur-containing components. In this study, it was aimed to compare Kastamonu garlic type with Chinese garlic type based on their aroma profiles. Fresh Kastamonu garlic samples harvested from Kastamonu region of Turkey and Chinese garlic samples obtained from Turkish market were used as plant material. Volatile aroma compounds were determined using Headspace Gas Chromatography Mass Spectrometry (HS-GC/MS). Sixteen and twenty aroma components were identified in Kastamonu and Chinese garlic types, respectively. Kastamonu garlic type was found to be richer than Chinese garlic types in terms of sulfur-containing compounds. Diallyl disulphide, which is one of these components, was detected at level of 41.87% and 34.95% in the Kastamonu and Chinese garlic types, respectively. Also di-2-propenyl trisulfide was found only in Kastamonu garlic types. Disulfide, methyl 2-propenyl was determined at similar levels in both garlic types. The majority of garlic grown in Kastamonu region of Turkey is assessed by medical companies. The results of the current study showed that Kastamonu garlic type has important medical properties. Therefore, this garlic can also be used in the medical field, as well as the consumption as food.

  13. Influence of Starter Cultures, Fermentation Techniques, and Acetic Acid on the Volatile Aroma and Sensory Profile of Cocoa Liquor and Chocolate

    DEFF Research Database (Denmark)

    Crafack, Michael

    the principal raw material for chocolate production, good quality cocoa beans are in high demand on the World market as a prerequisite for the production of high quality chocolates and other confectionary products. To produce good quality cocoa suitable for chocolate production, it is essential that the beans...... quantification of volatile compounds present in roasted and un-roasted cocoa liquors, as well as in finished chocolates. Sensory analyses of un-conched chocolate and finished chocolate was performed using a panel of un-trained judges and ordinary consumers. Furthermore, the present study describes the impact...... found to be identical to the inoculation strain, four strains of P. kluyveri were identified, with the inoculation strain composing ~88% of the population. The volatile aroma profile of chocolates made from cocoa beans inoculated with P. kluyveri contained significantly higher concentrations...

  14. Use of headspace mulberry paper bag micro solid phase extraction for characterization of volatile aromas of essential oils from Bulgarian rose and Provence lavender.

    Science.gov (United States)

    Won, Mi-Mi; Cha, Eun-Ju; Yoon, Ok-Kyung; Kim, Nam-Sun; Kim, Kun; Lee, Dong-Sun

    2009-01-05

    In this study, a new sampling method called headspace mulberry paper bag micro solid phase extraction (HS-MPB-mu-SPE) combined to gas chromatography-mass spectrometry has been applied for the analysis of volatile aromas of liquid essential oils from Bulgarian rose and Provence lavender. The technique uses an adsorbent (Tenax TA) contained in a mulberry paper bag, minimal amount of organic solvent. Linearities for the six-points calibration curves were excellent. LOD values were in the rage from 0.38 ng mL(-1) to 0.77 ng mL(-1). Overall, precision and recovery were generally good. Phenethyl alcohol and citronellol were the main components in the essential oil from Bulgarian rose. Linalyl acetate and linalool were the most abundant components in the essential oils from true lavender or lavandin. Additionally, the relative extraction efficiencies of proposed method have been compared with HS-SPME. The overall extraction efficiency was evaluated by the relative concentration factors (CF) of the several characteristic components. CF values by HS-MPB-mu-SPE were lower than those by headspace solid phase microextraction (HS-SPME). The HS-MPB-mu-SPE method is very simple to use, inexpensive, rapid, requires small sample amounts and solvent consumption. In addition, this method allowed combining of extraction, enrichment, and clean-up in a single step. HS-MPB-mu-SPE and GC/MS is a promising technique for the characterization of volatile aroma compounds from liquid essential oils.

  15. Improvement of soluble coffee aroma using an integrated process of supercritical CO2 extraction with selective removal of the pungent volatiles by adsorption on activates carbon

    Directory of Open Access Journals (Sweden)

    S. Lucas

    2006-06-01

    Full Text Available In this paper a two-step integrated process consisting of CO2 supercritical extraction of volatile coffee compounds (the most valuable from roasted and milled coffee, and a subsequent step of selective removal of pungent volatiles by adsorption on activated carbon is presented. Some experiments were carried out with key compounds from roasted coffee aroma in order to study the adsorption step: ethyl acetate as a desirable compound and furfural as a pungent component. Operational parameters such as adsorption pressure and temperature and CO2 flowrate were optimized. Experiments were conducted at adsorption pressures of 12-17 MPa, adsorption temperatures of 35-50ºC and a solvent flow rate of 3-5 kg/h. In all cases, the solute concentration and the activated particle size were kept constant. Results show that low pressures (12 MPa, low temperatures (35ºC and low CO2 flowrates (3 kg/h are suitable for removing the undesirable pungent and smell components (e.g. furfural and retaining the desirable aroma compounds (e.g. ethyl acetate. The later operation with real roasted coffee has corroborated the previous results obtained with the key compounds.

  16. Encapsulation of Aroma

    Science.gov (United States)

    Zuidam, Nicolaas Jan; Heinrich, Emmanuel

    Flavor is one of the most important characteristics of a food product, since people prefer to eat only food products with an attractive flavor (Voilley and Etiévant 2006). Flavor can be defined as a combination of taste, smell and/or trigeminal stimuli. Taste is divided into five basic ones, i.e. sour, salty, sweet, bitter and umami. Components that trigger the so-called gustatory receptors for these tastes are in general not volatile, in contrast to aroma. Aroma molecules are those that interact with the olfactory receptors in the nose cavity (Firestein 2001). Confusingly, aroma is often referred to as flavor. Trigeminal stimuli cause sensations like cold, touch, and prickling. The current chapter only focuses on the encapsulation of the aroma molecules.

  17. Spectral quality of photo-selective nets improves phytochemicals and aroma volatiles in coriander leaves (Coriandrum sativum L.) after postharvest storage.

    Science.gov (United States)

    Buthelezi, Millicent N Duduzile; Soundy, Puffy; Jifon, John; Sivakumar, Dharini

    2016-08-01

    The influence of spectral light on leaf quality and phytochemical contents and composition of aroma compounds in coriander leaves grown for fresh use under photo-selective nets; pearl net [40% shading; and 3.88 blue/red ratio; 0.21 red/far red ratio; photosynthetic radiation (PAR) 233.24 (μmolm(-2)s(-1))] and red net [40% shading and 0.57 blue/red ratio; 0.85 red/far red ratio; 221.67 (μmolm(-2)s(-1))] were compared with commercially used black nets [25% shading; 3.32 blue/red ratio 0.96 red/far red ratio; 365.26 (μmolm(-2)s(-1))] at harvest and after 14days of storage. Black nets improved total phenols, flavonoid (quercetin) content, ascorbic acid content, and total antioxidant activity in coriander leaves at harvest. The characteristic leaf aroma compound decanal was higher in leaves from the plants under the red nets at harvest. However, coriander leaves from plants produced under red nets retained higher total phenols, flavonoids (quercetin) and antioxidant scavenging activity 14days after postharvest storage (0°C, 10days, 95% RH and retailers' shelf at 15°C for 4days, 75% RH). But production under the pearl nets improved marketable yield reduced weight loss and retained overall quality, ascorbic acid content and aroma volatile compounds in fresh coriander leaves after postharvest storage. Pearl nets thus have the potential as a pre-harvest tool to enhance the moderate retention of phytochemicals and saleable weight for fresh coriander leaves during postharvest storage.

  18. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Kokholm, Thomas

    We propose a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index. Our model reproduces various empirically observed properties of variance swap dynamics and enables volatility derivatives and options on the underlying index...... to be priced consistently, while allowing for jumps in volatility and returns. An affine specification using Lévy processes as building blocks leads to analytically tractable pricing formulas for volatility derivatives, such as VIX options, as well as efficient numerical methods for pricing of European options...

  19. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Cont, Rama; Kokholm, Thomas

    2013-01-01

    We propose a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index. Our model reproduces various empirically observed properties of variance swap dynamics and enables volatility derivatives and options on the underlying index...... to be priced consistently, while allowing for jumps in volatility and returns. An affine specification using Lévy processes as building blocks leads to analytically tractable pricing formulas for volatility derivatives, such as VIX options, as well as efficient numerical methods for pricing of European options...

  20. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Kokholm, Thomas

    We propose a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index. Our model reproduces various empirically observed properties of variance swap dynamics and enables volatility derivatives and options on the underlying index...... to be priced consistently, while allowing for jumps in volatility and returns. An affine specification using Lévy processes as building blocks leads to analytically tractable pricing formulas for volatility derivatives, such as VIX options, as well as efficient numerical methods for pricing of European options...

  1. The Relationship between CmADHs and the Diversity of Volatile Organic Compounds of Three Aroma Types of Melon (Cucumis melo).

    Science.gov (United States)

    Chen, Hao; Cao, Songxiao; Jin, Yazhong; Tang, Yufan; Qi, Hongyan

    2016-01-01

    Alcohol dehydrogenase (ADH) plays an important role in aroma volatile compounds synthesis of plants. In this paper, we tried to explore the relationship between CmADHs and the volatile organic compounds (VOCs) in oriental melon. Three different aroma types of melon were used as materials. The principle component analysis of three types of melon fruit was conducted. We also measured the CmADHs expression level and enzymatic activities of ADH and alcohol acyl-transferase (AAT) on different stages of fruit ripening. An incubation experiment was carried out to investigate the effect of substrates and inhibitor (4-MP, 4-methylpyrazole) on CmADHs expression, ADH activity, and the main compounds of oriental melon. The results illustrated that ethyl acetate, hexyl acetate (E,Z)-3,6-nonadien-1-ol and 2-ethyl-2hexen-1-ol were the four principal volatile compounds of these three types of melon. AAT activity was increasing with fruit ripening, and the AAT activity in CH were the highest, whereas ADH activity peaked on 32 DAP, 2 days before maturation, and the ADH activity in CB and CG were higher than that in CH. The expression pattern of 11 CmADH genes from 24 to 36 day after pollination (DAP) was found to vary in three melon varieties. CmADH4 was only expressed in CG and the expression levels of CmADH3 and CmADH12 in CH and CB were much higher than that in CG, and they both peaked 2 days before fruit ripening. Ethanol and 4-MP decreased the reductase activity of ADH, the expression of most CmADHs and ethyl acetate or hexyl acetate contents of CB, except for 0.1 mM 4-MP, while aldehyde improved the two acetate ester contents. In addition, we found a positive correlation between the expression of CmADH3 and CmADH12 and the key volatile compound of CB. The relationship between CmADHs and VOCs synthesis of oriental melon was discussed.

  2. Identification of predominant aroma components of raw, dry roasted and oil roasted almonds.

    Science.gov (United States)

    Erten, Edibe S; Cadwallader, Keith R

    2017-02-15

    Volatile components of raw, dry roasted and oil roasted almonds were isolated by solvent extraction/solvent-assisted flavor evaporation and predominant aroma compounds identified by gas chromatography-olfactometry (GCO) and aroma extract dilutions analysis (AEDA). Selected odorants were quantitated by GC-mass spectrometry and odor-activity values (OAVs) determined. Results of AEDA indicated that 1-octen-3-one and acetic acid were important aroma compounds in raw almonds. Those predominant in dry roasted almonds were methional, 2- and 3-methylbutanal, 2-acetyl-1-pyrroline and 2,3-pentanedione; whereas, in oil roasted almonds 4-hydroxy-2,5-dimethyl-3(2H)-furanone, 2,3-pentanedione, methional and 2-acetyl-1-pyrroline were the predominant aroma compounds. Overall, oil roasted almonds contained a greater number and higher abundance of aroma compounds than either raw or dry roasted almonds. The results of this study demonstrate the importance of lipid-derived volatile compounds in raw almond aroma. Meanwhile, in dry and oil roasted almonds, the predominant aroma compounds were derived via the Maillard reaction, lipid degradation/oxidation and sugar degradation.

  3. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Kokholm, Thomas

    on the underlying asset. The model has the convenient feature of decoupling the vanilla skews from spot/volatility correlations and allowing for different conditional correlations in large and small spot/volatility moves. We show that our model can simultaneously fit prices of European options on S&P 500 across......We propose a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index. Our model reproduces various empirically observed properties of variance swap dynamics and enables volatility derivatives and options on the underlying index...

  4. Low intramuscular fat (but high in PUFA) content in cooked cured pork ham decreased Maillard reaction volatiles and pleasing aroma attributes.

    Science.gov (United States)

    Benet, Iu; Guàrdia, Maria Dolors; Ibañez, Carles; Solà, Josep; Arnau, Jacint; Roura, Eugeni

    2016-04-01

    The influence of intramuscular fat content (high - HI versus low - LI) and fatty acid composition on pork cooked cured ham flavour was analysed by gas chromatography-olfactometry using nasal impact frequency (GC-O/NIF) and quantitative descriptive analysis (QDA). Potential relationships were studied by principal component analysis (PCA). Sixteen and fourteen odourants were identified by GC-O/NIF in LI and HI cooked hams, respectively. The two ham types differed in lipid oxidation odourants: polyunsaturated fatty acid (PUFA) derivatives hexanal, 1-octen-3-one and (E,E)-2,4-decadienal were higher in LI ham; while monounsaturated fatty acid (MUFA) derivative decanal was higher in HI. HI samples resulted in higher values for odour-active aroma compounds from Maillard reaction, which are related to roast flavour and a higher overall flavour liking. In summary, our results suggest that Maillard derived odour-active aroma compounds were partially inhibited in LI samples (high in PUFA), resulting in lower positive sensory ratings.

  5. Evolution of free and bound volatile aroma compounds and phenols during fermentation of Muscat blanc grape juice with and without skins.

    Science.gov (United States)

    Lukić, Igor; Lotti, Cesare; Vrhovsek, Urska

    2017-10-01

    Recently, various technologies which utilise fermentation with skins have been developed for obtaining distinct white wines. This study first reports the dynamic changes of volatiles and phenols that occur during skin fermentation in white winemaking. Volatiles were analysed by solid-phase extraction (SPE), solid-phase microextraction (SPME) and gas chromatography (GC), and phenols by ultra-performance liquid chromatography (UPLC), both with mass spectrometric detection. Monoterpenols increased during the first 3days of skin fermentation, after which certain glycosides decreased, but were higher than in control. The presence of skins reduced ho-trienol, β-damascenone, acids and esters. After a 1-3days lag phase, skin fermentation caused a constant increase of most phenols. It was estimated that skin fermentation up to 1-3days might be beneficial for monoterpenol varietal aroma, which should be re-evaluated through further studies. Longer durations promoted phenol extraction more strongly, which is possibly suitable for obtaining more distinct wines or blending components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Interest Rate Derivative Pricing with Stochastic Volatility

    NARCIS (Netherlands)

    Chen, B.

    2012-01-01

    One purpose of exotic derivative pricing models is to enable financial institutions to quantify and manage their financial risk, arising from large books of portfolios. These portfolios consist of many non-standard exotic financial products. Risk is managed by means of the evaluation of sensitivity

  7. Non-Destructive Assessment of Aroma Volatiles from a Climacteric Near-Isogenic Line of Melon Obtained by Headspace Stir-Bar Sorptive Extraction

    Science.gov (United States)

    Fernández-Trujillo, Juan Pablo; Dos-Santos, Noelia; Martínez-Alcaraz, Rocío; Le Bleis, Inés

    2013-01-01

    A climacteric aromatic near-isogenic line (NIL) of melon (Cucumis melo L.) SC3-5-1 contained an introgression of the non-climacteric Korean cultivar “Shongwan Charmi” accession PI 161375 (SC) in the genetic background of the non-climacteric cultivar “Piel de Sapo” (PS). The aroma production was monitored during ripening at 21 °C in intact fruit using headspace sorptive bar extraction (HSSE). Bars were composed of polydimethylsiloxane (PDMS) and aromas were desorbed and analyzed by gas-chromatography mass-spectrometry. The aromatic profile was composed of 70 aromatic compounds plus 21 alkanes with a predominance of esters, particularly acetate (2-methylbutyl acetate, 2-methylpropyl acetate, hexyl acetate, and phenylmethyl acetate). Some compounds were severely affected by postharvest time. The acetate esters (3-methylbutyl acetate, butan-2-yl acetate and phenylmethyl acetate) decreased with ripening and sulfur-derived compounds (S-methyl butanethioate and S-methyl 3-methylbutanethioate) increased gradually with ripening. A few compounds increased at the senescence phase (propyl ethanoate). Other compounds such as hexadecanoic acid showed a marked decrease after harvest, some decreasing from a relative maximum at harvest (2-methylpropyl hexanoate; n-hexanoic acid; nonanoic acid).

  8. Potential of derived lunar volatiles for life support

    Science.gov (United States)

    Bula, R. J.; Wittenberg, L. J.; Tibbitts, T. W.; Kulcinski, G. L.

    1992-01-01

    The lunar regolith contains small quantities of solar wind implanted volatile compounds that have vital, basic uses for maintaining life support systems of lunar or space settlements. Recent proposals to utilize the helium-3 isotope (He-3) derived from the lunar regolith as a fuel for fusion reactors would result in the availability of large quantities of other lunar volatile compounds. The quantities obtained would provide the annual life support replacement requirements of 1150 to 23,000 inhabitants per ton of He-3 recovered, depending on the volatile compound. Utilization of the lunar volatile compounds for life support depends on the costs, in terms of materials and energy, associated with their extraction from the lunar regolith as compared to the delivery costs of these compounds from Earth resources. Considering today's conservative estimated transportation costs ($10,000 dollars per kilogram) and regolith mining costs ($5 dollars per ton), the life support replacement requirements could be more economically supplied by recovering the lunar volatile compounds than transporting these materials from Earth resources, even before He-3 will be utilized as a fusion fuel. In addition, availability of lunar volatile compounds could have a significant cost impact on maintaining the life support systems of the space station and a Mars base.

  9. Aroma Glycosides in Grapes and Wine.

    Science.gov (United States)

    Liu, Jibin; Zhu, Xiao-Lin; Ullah, Niamat; Tao, Yong-Sheng

    2017-02-01

    The major aroma components in grapes and wine include free volatile compounds and glycosidic nonvolatile compounds. The latter group of compounds is more than 10 times abundant of the former, and constitutes a big aroma reserve in grapes and wine. This review summarizes the research results obtained recently for the identification of aroma glycosides in grapes and wine, including grape glycoside structures, differences in aroma glycosides among grape varieties, hydrolysis mechanisms, and the factors that influence them. It also presents the analytical techniques used to identify the glycosidic aroma precursors. The operational strategies, challenges, and improvements of each step encountered in the analysis of glycosidic aroma precursors are described. This review intends to provide a convenient reference for researchers interested in the methods used for the determination of the aroma glucosides composition and the recognition of their chemical structures.

  10. Biochemistry of Apple Aroma: A Review

    Directory of Open Access Journals (Sweden)

    Miguel Espino-Díaz

    2016-01-01

    Full Text Available Flavour is a key quality att ribute of apples defined by volatile aroma compounds. Biosynthesis of aroma compounds involves metabolic pathways in which the main precursors are fatty and amino acids, and the main products are aldehydes, alcohols and esters. Some enzymes are crucial in the production of volatile compounds, such as lipoxygenase, alcohol dehydrogenase, and alcohol acyltransferase. Composition and concentration of volatiles in apples may be altered by pre- and postharvest factors that cause a decline in Apple flavour. Addition of biosynthetic precursors of volatile compounds may be a strategy to promote aroma production in apples. The present manuscript compiles information regarding the biosynthesis of volatile aroma compounds, including metabolic pathways, enzymes and substrates involved, factors that may affect their production and also includes a wide number of studies focused on the addition of biosynthetic precursors in their production.

  11. Biochemistry of Apple Aroma: A Review.

    Science.gov (United States)

    Espino-Díaz, Miguel; Sepúlveda, David Roberto; González-Aguilar, Gustavo; Olivas, Guadalupe I

    2016-12-01

    Flavour is a key quality attribute of apples defined by volatile aroma compounds. Biosynthesis of aroma compounds involves metabolic pathways in which the main precursors are fatty and amino acids, and the main products are aldehydes, alcohols and esters. Some enzymes are crucial in the production of volatile compounds, such as lipoxygenase, alcohol dehydrogenase, and alcohol acyltransferase. Composition and concentration of volatiles in apples may be altered by pre- and postharvest factors that cause a decline in apple flavour. Addition of biosynthetic precursors of volatile compounds may be a strategy to promote aroma production in apples. The present manuscript compiles information regarding the biosynthesis of volatile aroma compounds, including metabolic pathways, enzymes and substrates involved, factors that may affect their production and also includes a wide number of studies focused on the addition of biosynthetic precursors in their production.

  12. Pre-fermentative cold maceration, saignée, and various thermal treatments as options for modulating volatile aroma and phenol profiles of red wine.

    Science.gov (United States)

    Lukić, Igor; Budić-Leto, Irena; Bubola, Marijan; Damijanić, Kristijan; Staver, Mario

    2017-06-01

    The effects of six maceration treatments on volatile aroma and phenol composition of Teran red wine were studied: standard maceration (control C), cold pre-fermentation maceration (CPM), saignée (S), pre-fermentation heating with extended maceration (PHT) or juice fermentation (PHP), and post-fermentation heating (POH). PHP wine contained the highest amounts of esters, fatty acids and anthocyanins, and the lowest content of other phenols. Alternative treatments decreased higher alcohols in relation to control C. CPM treatment lowered the extraction of seed tannins, exhibited the highest acetaldehyde, ethyl acetate and C6-compounds levels, and had increased ester levels in relation to control C. POH wine contained the highest concentration of total phenols, flavonoids, monomeric, oligomeric and polymeric flavanols, and color intensity and hue. S and PHT wines contained lower amount of total phenols, but higher than in C and CPM wines. The calculated Odor Activity Values were used to establish significant differences between the treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Influence of wine fermentation temperature on the synthesis of yeast-derived volatile aroma compounds

    OpenAIRE

    Molina, Ana; Swiegers, Jan; Varela, Cristian; Pretorius, Isak; Agosin, Eduardo

    2007-01-01

    Las cepas de levaduras influyen en las características de la fermentación de un mosto para la obtención de vino, para lo cual se revisa el efecto de la temperatura en el crecimiento de la levadura.

  14. 巨峰葡萄成熟过程中挥发性香气物质的变化%Changes of Aroma Volatiles during Berry Ripening of Kyoho Grape

    Institute of Scientific and Technical Information of China (English)

    袁园园; 马盼; 门洪文; 黄翊鹏; 郭守鹏; 姚玉新

    2015-01-01

    香气是葡萄果实的重要品质性状之一。本文以8年生巨峰(Vitis vinifera-V. Labrusca. cv, Kyoho)葡萄为试材,利用顶空固相微萃取技术提取挥发性香气物质,利用 GC/MS QP2010 Plus 气质联用仪分析葡萄成熟过程中可挥发性香气的种类和含量变化。巨峰葡萄的香气主要由酯、萜、醛、醇和其它杂环类物质组成,转色后可挥发性香气成分总的种类和含量明显增加;酯和萜是成熟的巨峰葡萄最主要的香气物质;邻苯二甲酸二乙酯、角鲨烯、己-2-烯醛和(E)-2-己烯-1-醇分别是最主要的酯、萜烯、醛和醇类物质,并且它们随着果实成熟含量逐渐升高,在成熟果实中邻苯二甲酸二乙酯和角鲨烯分别占总香气含量的28.8%和26.2%。邻苯二甲酸二乙酯、角鲨烯、己-2-烯醛和(E)-2-己烯-1-醇是成熟的巨峰葡萄最主要的香气物质,并且随着果实成熟含量逐渐升高。%Aroma is one of the most important berry qualities. The eight-year Kyoho grape vines were selected to determine berry aroma. Aroma volatiles of Kyoho grape were extracted by headspace solid phase microextraction. Aroma variety and amount were detected by GC/MS QP2010 Plus. The results showed that aroma volatiles of Kyoho berries consisted of esters, terpenes, aldehydes, alcohols and other volatiles. The total variety and amount were clearly enhanced after veraison. Esters and terpenes consisted of the two most important aroma volatiles in the ripened berries. Diethyl Phthalate, Squalane, 2-Hexenal and 2-Hexen-1-ol, (E)- exhibited the highest amount for esters, terpenes, aldehydes and alcohols, respectively; in addition, the above four volatiles kept increasing along with the berry ripening. In the ripened berries, Diethyl Phthalate and Squalane accounted for 28.8% and 26.2% of the total volatiles, respectively. Diethyl Phthalate, Squalane, 2-Hexenal and 2-Hexen-1-ol, (E)- were the most important aroma volatiles

  15. An atmospheric pressure chemical ionization-ion-trap mass spectrometer for the on-line analysis of volatile compounds in foods: a tool for linking aroma release to aroma perception.

    Science.gov (United States)

    Le Quéré, Jean-Luc; Gierczynski, Isabelle; Sémon, Etienne

    2014-09-01

    An atmospheric pressure chemical ionization ion-trap mass spectrometer was set up for the on-line analysis of aroma compounds. This instrument, which has been successfully employed for some years in several in vitro and in vivo flavour release studies, is described for the first time in detail. The ion source was fashioned from polyether ether ketone and operated at ambient pressure and temperature making use of a discharge corona pin facing coaxially the capillary ion entrance of the ion-trap mass spectrometer. Linear dynamic ranges (LDR), limits of detection (LOD) and other analytical characteristics have been re-evaluated. LDRs and LODs have been found fully compatible with the concentrations of aroma compounds commonly found in foods. Thus, detection limits have been found in the low ppt range for common flavouring aroma compounds (for example 5.3 ppt (0.82 ppbV) for ethyl hexanoate and 4.8 ppt (1.0 ppbV) for 2,5-dimethylpyrazine). This makes the instrument applicable for in vitro and in vivo aroma release investigations. The use of dynamic sensory techniques such as the temporal dominance of sensations (TDS) method conducted simultaneously with in vivo aroma release measurements allowed to get some new insights in the link between flavour release and flavour perception.

  16. Analysis of volatile aroma components in steamed wheat by SPME%固相微萃取法提取蒸麦芽中风味物质

    Institute of Scientific and Technical Information of China (English)

    呼德; 陈存社; 张甜甜; 卢志兴

    2012-01-01

    Wheat germ is rich in nutriton and the flavor of its products varies according to the processing technology.Peanut was pressure steamed,extracted by SPME and then condensed for GC-MS and GC-O analysis of its volatile aroma components.Besides 56 kinds of aroma compounds were identified from steamed wheat by SPME-GC-MS,accounting for 97.76% of the total peak areas of components which were 9 aldehydes(11.79%),6 alcohols(14.87%),4 hydrocarbons(2.8%),8 ketones(9.7%),7 ester(27.91%),3 phenols(2.19%),9 acids(15.58%),10 nitrogen-or sulfur-containing or heterocyclic compounds(14.16%),and 31 odor-active compounds were identified by SPME-GC-O of which the components that had the highest FD factors were ethyl acetate(wine),isovaleraldehyde(chocolate),2-methylpyrazine(roasted),furfural(caramel),2-acetylfuran(toast),hexanoic acid(musty),gamma-nonanolactone(potato),(E)-2-decenal(licorice),and they account for the pivotal aroma components of steamed wheat.%小麦胚芽具有很高的营养价值,但加工工艺复杂,不同的工艺会产生不同的风味,采用高压蒸汽的方式对小麦胚芽进行处理,通过SPME法萃取蒸麦香的风味物质,经GC-MS与GC-O分析,确定蒸麦芽的挥发性香味成分。SPME-GC-MS共从蒸麦风味物质中鉴定出56种化合物,占总峰面积的97.76%,包括醛类9种(11.79%)、醇类6种(14.87%)、酮类8种(9.7%)、烃类4种(2.8%)、酯类7种(27.91%)、酚类3种(2.19%)、酸类9种(15.58%)、含氮杂环化合物10种(14.16%);通过GC-O检测共发现31个气味活性区,其中FD=6的化合物为:乙酸乙酯(葡萄酒香)、异戊醛(巧克力香可可香)、2-甲基吡嗪(焙烤香)、糠醛(焦糖香)、2-乙酰基呋喃(烤面包香)、己酸(霉香)、丙位壬内酯(土豆香)、(E)-2-癸烯醛(甘草香),是蒸麦风味的主要贡献化合物。

  17. Kluyveromyces lactis and Saccharomyces cerevisiae, two potent deacidifying and volatile-sulphur-aroma-producing microorganisms of the cheese ecosystem.

    Science.gov (United States)

    Kagkli, Dafni-Maria; Tâche, Roselyne; Cogan, Timothy M; Hill, Colin; Casaregola, Serge; Bonnarme, Pascal

    2006-11-01

    Cheese flavour is the result of complex biochemical transformations attributed to bacteria and yeasts grown on the curd of smear-ripened cheeses. Volatile sulphur compounds (VSCs) are responsible for the characteristic aromatic notes of several cheeses. In the present study, we have assessed the ability of Kluyveromyces lactis, Kluyveromyces marxianus and Saccharomyces cerevisiae strains, which are frequently isolated from smear-ripened cheeses, to grow and deacidify a cheese medium and generate VSCs resulting from L-methionine degradation. The Kluyveromyces strains produced a wider variety and higher amounts of VSCs than the S. cerevisiae ones. We have shown that the pathway is likely to be proceeding differently in these two yeast genera. The VSCs are mainly generated through the degradation of 4-methylthio-oxobutyric acid in the Kluyveromyces strains, in contrast to the S. cerevisiae ones which have higher L-methionine demethiolating activity, resulting in a direct conversion of L-methionine to methanethiol. The deacidification activity which is of major importance in the early stages of cheese-ripening was also compared in S. cerevisiae and Kluyveromyces strains.

  18. Aroma compounds and characteristics of noble-rot wines of Chardonnay grapes artificially botrytized in the vineyard.

    Science.gov (United States)

    Wang, Xing-Jie; Tao, Yong-Sheng; Wu, Yun; An, Rong-Yan; Yue, Zhuo-Ya

    2017-07-01

    Aroma characteristics and their impact volatile components of noble-rot wines elaborated from artificial botrytized Chardonnay grapes, obtained by spraying Botrytis cinerea suspension in Yuquan vineyard, Ningxia, China, were explored in this work. Dry white wine made from normal-harvested grapes and sweet wine produced from delay-harvested grapes were compared. Wine aromas were analysed by trained sensory panelists, and aroma compounds were determined by SPME-GC-MS. Results indicated that esters, fatty acids, thiols, lactones, volatile phenols and 2-nonanone increased markedly in noble-rot wines. In addition to typical aromas of noble-rot wines, artificial noble-rot wines were found to contain significant cream and dry apricot attributes. Partial Least-Squares Regression models of aroma characteristics against aroma components revealed that non-fermentative odorants were the primary contributor to dry apricot attribute, especially, thiols, C13-norisoprenoids, lactones, terpenols and phenolic acid derivatives, while cream attribute was dependent on both fermentative and non-fermentative volatile components.

  19. Determinação do perfil de compostos voláteis e avaliação do sabor e aroma de bebidas produzidas a partir da erva-mate (Ilex paraguariensis Volatile compounds profile and flavor analysis of yerba mate (Ilex paraguariensis beverages

    Directory of Open Access Journals (Sweden)

    Carla Carolina Batista Machado

    2007-06-01

    Full Text Available Volatile compounds from green and roasted yerba mate were analyzed by gas chromatography/mass spectrometry and the flavor profile from yerba mate beverages was determined by descriptive quantitative analyses. The main compounds tentatively identified in green mate were linalool, alpha-terpineol and trans-linalool oxide and in roasted mate were (E,Z-2,4-heptadienal isomers and 5-methylfurfural. Green mate infusion was qualified as having bitter taste and aroma as well as green grass aroma while roasted mate was defined as having a smooth, slightly burnt aroma. The relationship between the tentatively identified compounds and flavor must be determined by olfatometric analysis.

  20. Investigations of aroma volatile biosynthesis under anoxic conditions and in different tissues of "Redchief Delicious" apple fruit (Malus domestica Borkh.).

    Science.gov (United States)

    Rudell, D R; Mattinson, D S; Mattheis, J P; Wyllie, S G; Fellman, J K

    2002-04-24

    Disks from different tissues were obtained from "Redchief Delicious" apple fruit (Malus domestica Borkh.) and analyzed for the ability to metabolize 1-pentanol as well as synthesize constitutive esters and alcohols under anoxic and aerobic conditions. The skin tissue displayed a greater capacity to synthesize pentanal, pentyl acetate, pentyl propionate, pentyl butyrate, and pentyl hexanoate than the hypanthial and carpellary tissues during incubation with 1-pentanol. With the exception of pentyl acetate and pentyl propionate biosynthesis, the hypanthial tissue synthesized these compounds at a higher rate than the carpellary tissue. Anoxia inhibited both constituent and 1-pentanol-derived ester biosynthesis. While anoxia inhibited ester biosynthesis, ethanol biosynthesis increased at a greater rate in tissue disks held under these conditions. Biosynthesis of 1-butanol, 2-methyl-1-butanol, and 1-hexanol was greater in tissue disks held in air during the first part of the measurement period and dropped off more rapidly than those transpiring in tissue disks held under anoxic conditions. The biosynthetic rates of all esters, both constituent and 1-pentanol-derived, increased as a result of air exposure. While hypoxic or anoxic conditions may promote ethanol synthesis, these conditions also appear to inhibit the formation of the ethanol-derived esters partially responsible for the off-flavor in apples attributed to ultralow O(2) controlled atmosphere storage.

  1. Metabolic engineering of aroma components in fruits.

    Science.gov (United States)

    Aragüez, Irene; Valpuesta, Victoriano

    2013-10-01

    Plants have the ability to produce a diversity of volatile metabolites, which attract pollinators and seed dispersers and strengthen plant defense responses. Selection by plant breeders of traits such as rapid growth and yield leads, in many cases, to the loss of flavor and aroma quality in crops. How the aroma can be improved without affecting other fruit attributes is a major unsolved issue. Significant advances in metabolic engineering directed at improving the set of volatiles that the fruits emit has been aided by the characterization of enzymes involved in the biosynthesis of flavor and aroma compounds in some fruits. However, before this technology can be successfully applied to modulate the production of volatiles in different crops, further basic research is needed on the mechanisms that lead to the production of these compounds in plants. Here we review the biosynthesis and function of volatile compounds in plants, and the attempts that have been made to manipulate fruit aroma biosynthesis by metabolic engineering. In addition, we discuss the possibilities that molecular breeding offers for aroma enhancement and the implications of the latest advances in biotechnological modification of fruit flavor and aroma.

  2. Optimising aroma quality in curry sauce products using in vivo aroma release measurements.

    Science.gov (United States)

    Hatakeyama, Jun; Davidson, James M; Kant, Avinash; Koizumi, Takeshi; Hayakawa, Fumiyo; Taylor, Andrew J

    2014-08-15

    Reducing fat content in foods to meet consumers' preferences and to address the obesity issue is a key task for food manufacturers but simply reducing fat content affects aroma quality adversely. Measuring the aroma release from regular and low-fat samples during eating to rebalance the aroma release has proved successful in model systems. Here, the reformulation of the spice content in a low fat curry sauce is described. Volatile markers of the key spices (coriander, cumin and turmeric) were selected and used to measure aroma release in regular (10 g oil/100 g) and low (2.5 or 5 g oil/100 g) fat sauces. Regression models were used to adjust the ingredient formulation so that the aroma release profiles in vivo were the same for the regular and reduced oil curry sauces and sensory analysis showed no significant difference between these samples. Despite the complexity of spice aromas, rebalancing was successful.

  3. Wine flavor and aroma.

    Science.gov (United States)

    Styger, Gustav; Prior, Bernard; Bauer, Florian F

    2011-09-01

    The perception of wine flavor and aroma is the result of a multitude of interactions between a large number of chemical compounds and sensory receptors. Compounds interact and combine and show synergistic (i.e., the presence of one compound enhances the perception of another) and antagonistic (a compound suppresses the perception of another) interactions. The chemical profile of a wine is derived from the grape, the fermentation microflora (in particular the yeast Saccharomyces cerevisiae), secondary microbial fermentations that may occur, and the aging and storage conditions. Grape composition depends on the varietal and clonal genotype of the vine and on the interaction of the genotype and its phenotype with many environmental factors which, in wine terms, are usually grouped under the concept of "terroir" (macro, meso and microclimate, soil, topography). The microflora, and in particular the yeast responsible for fermentation, contributes to wine aroma by several mechanisms: firstly by utilizing grape juice constituents and biotransforming them into aroma- or flavor-impacting components, secondly by producing enzymes that transform neutral grape compounds into flavor-active compounds, and lastly by the de novo synthesis of many flavor-active primary (e.g., ethanol, glycerol, acetic acid, and acetaldehyde) and secondary metabolites (e.g., esters, higher alcohols, fatty acids). This review aims to present an overview of the formation of wine flavor and aroma-active components, including the varietal precursor molecules present in grapes and the chemical compounds produced during alcoholic fermentation by yeast, including compounds directly related to ethanol production or secondary metabolites. The contribution of malolactic fermentation, ageing, and maturation on the aroma and flavor of wine is also discussed.

  4. Rice aroma and flavor: a literature review.

    Science.gov (United States)

    Descriptive sensory analysis has identified over a dozen different aromas and flavors in rice. Instrumental analyses have found over 200 volatile compounds present in rice. However, after over 30 years of research, little is known about the relationships between the numerous volatile compounds and a...

  5. Pricing Volatility Derivatives Under the Modified Constant Elasticity of Variance Model

    OpenAIRE

    Leunglung Chan; Eckhard Platen

    2015-01-01

    This paper studies volatility derivatives such as variance and volatility swaps, options on variance in the modified constant elasticity of variance model using the benchmark approach. The analytical expressions of pricing formulas for variance swaps are presented. In addition, the numerical solutions for variance swaps, volatility swaps and options on variance are demonstrated.

  6. The impact of kitchen and food service preparation practices on the volatile aroma profile in ripe tomatoes: Effects of refrigeration and blanching

    Science.gov (United States)

    Both refrigeration and blanching of red stage tomatoes are common practices in Japan home kitchens and in food service operations. However, little is reported on the impact of such practices on aroma profiles in tomato fruits. In this study, ‘FL 47’ tomatoes at red stage were dipped in 50 °C hot wat...

  7. Aroma-active compounds in jinhua ham produced with different fermentation periods.

    Science.gov (United States)

    Liu, Xiao-Sheng; Liu, Jian-Bin; Yang, Zheng-Mao; Song, Huan-Lu; Liu, Ye; Zou, Ting-Ting

    2014-11-19

    The aroma-active compounds in Jinhua ham processed and stored for 9, 12, 15 and 18 months were extracted by dynamic headspace sampling (DHS) and solvent-assisted flavor evaporation (SAFE) and analyzed by gas chromatography-olfactometry-mass spectrometry (GC-O-MS). In GC-O-MS, volatile compounds were identified based on their mass spectrum, linear retention index (LRI), odor properties, or reference compound comparisons. The results showed that a total number of 81 aroma-active compounds were identified by GC-O-MS. Among them, acids (such as acetic acid, butanoic acid and 3-methylbutanoic acid), saturated aldehydes (such as hexanal, heptanal, octanal and 3-methylbutanal), benzene derivatives (such as benzeneacetic acid), ester and lactone (such as γ-nonalactone and γ-decalactone) were identified as critical compounds in Jinhua ham aroma. The results also indicated that the type and content of the odorants increased significantly with the duration of the fermentation period.

  8. Aroma-Active Compounds in Jinhua Ham Produced With Different Fermentation Periods

    Directory of Open Access Journals (Sweden)

    Xiao-Sheng Liu

    2014-11-01

    Full Text Available The aroma-active compounds in Jinhua ham processed and stored for 9, 12, 15 and 18 months were extracted by dynamic headspace sampling (DHS and solvent-assisted flavor evaporation (SAFE and analyzed by gas chromatography-olfactometry-mass spectrometry (GC-O-MS. In GC-O-MS, volatile compounds were identified based on their mass spectrum, linear retention index (LRI, odor properties, or reference compound comparisons. The results showed that a total number of 81 aroma-active compounds were identified by GC-O-MS. Among them, acids (such as acetic acid, butanoic acid and 3-methylbutanoic acid, saturated aldehydes (such as hexanal, heptanal, octanal and 3-methylbutanal, benzene derivatives (such as benzeneacetic acid, ester and lactone (such as γ-nonalactone and γ-decalactone were identified as critical compounds in Jinhua ham aroma. The results also indicated that the type and content of the odorants increased significantly with the duration of the fermentation period.

  9. 3种新疆杂交羊肉质比较及香气成分分析%Comparative Analysis of Meat Quality and Volatile Aroma Components of Lamb from Three Sheep Breeds

    Institute of Scientific and Technical Information of China (English)

    高志英; 郑祖林; 张金山; 艾尼阿木提; 孙宝忠; 张荣

    2015-01-01

    以新疆多浪羊为母本分别与杜泊羊、多浪羊和萨福克羊杂交后代肉质感官及理化指标;采用固相微萃取技术(SPME技术)进行提取,使用气相色谱-质谱仪进行分析测定,比较不同烹饪方式对香气成分的影响。结果表明:萨福克与多浪杂交后代的肉质最好,而杜泊与多浪杂交后代的肉质最差;生鲜羊肉中主要的香气成分为叶醇,而烤羊肉及涮羊肉的主要香气成分为己醛。%This study investigated sensory and physicochemical qualities of lamb from Xinjiang Duolang sheep and cross-breeds with Dorper sheep or Suffolk sheep. The volatile aroma compounds of raw and cooked lamb were extracted by solid phase micro extraction (SPME) and comparatively analyzed by gas chromatography-mass spectrometry (GC-MS). The results showed that the meat quality of lamb from Suffolk-Duolan hybrid was the best, while lamb from Dorper-Duolan hybrid had the worst meat quality. The major aroma component of raw lamb was leaf alcohol, whereas for both roast and instant-boiled lamb, hexanal was identified as the predominant aroma compound.

  10. Preparation of reminiscent aroma mixture of Japanese soy sauce.

    Science.gov (United States)

    Bonkohara, Kaori; Fuji, Maiko; Nakao, Akito; Igura, Noriyuki; Shimoda, Mitsuya

    2016-01-01

    To prepare an aroma mixture of Japanese soy sauce by fewest components, the aroma concentrate of good sensory attributes was prepared by polyethylene membrane extraction, which could extract only the volatiles with diethyl ether. GC-MS-Olfactometry was done with the aroma concentrate, and 28 odor-active compounds were detected. Application of aroma extract dilution analysis to the separated fraction revealed high flavor dilution factors with respect to acetic acid, 4-hydroxy-2(or5)-ethyl-5(or2)-methyl-3(2H)-furanone (HEMF), 3-methyl-1-butanol (isoamyl alcohol), and 3-(methylsulfanyl)propanal (methional). A model aroma mixture containing above four odorants showed a good similarity with the aroma of the soy sauce itself. Consequently, the reminiscent aroma mixture of soy sauce was prepared in water. The ratio of acetic acid, HEMF, isoamyl alcohol, and methional was 2500:300:100:1.

  11. Yeast strains as potential aroma enhancers in dry fermented sausages

    OpenAIRE

    Flores Llovera, Mónica; Corral, Sara; CANO GARCÍA, LILIANA; SALVADOR ALCARAZ, ANA; Belloch, Carmela

    2015-01-01

    Actual healthy trends produce changes in the sensory characteristics of dry fermented sausages therefore, new strategies are needed to enhance their aroma. In particular, a reduction in the aroma characteristics was observed in reduced fat and salt dry sausages. In terms of aroma enhancing, generally coagulase-negative cocci were selected as the most important group from the endogenous microbiota in the production of flavour compounds. Among the volatile compounds analysed in dry sausages, es...

  12. Modulation of coffee aroma via the fermentation of green coffee beans with Rhizopus oligosporus: I. Green coffee.

    Science.gov (United States)

    Lee, Liang Wei; Cheong, Mun Wai; Curran, Philip; Yu, Bin; Liu, Shao Quan

    2016-11-15

    Modulation of coffee aroma via the biotransformation/fermentation of different coffee matrices during post-harvest remains sparingly explored despite some studies showing their positive impacts on coffee aroma. Therefore, this is an unprecedented study aimed at modulating coffee aroma via the fermentation of green coffee beans with a food-grade fungus Rhizopus oligosporus. The objective of part I of this two-part study was to characterize the volatile and non-volatile profiles of green coffee beans after fermentation. Proteolysis during fermentation resulted in 1.5-fold increase in the concentrations of proline and aspartic acid which exhibited high Maillard reactivity. Extensive degradation of ferulic and caffeic acids led to 2-fold increase in the total concentrations of volatile phenolic derivatives. 36% of the total volatiles detected in fermented green coffee beans were generated during fermentation. Hence, the work presented demonstrated that R. oligosporus fermentation of green coffee beans could induce modification of the aroma precursors of green coffees.

  13. 天福号酱香鸡挥发性香成分的提取与分析%Extraction and Analysis of Volatile Aroma Components in Tianfuhao-Branded Sauce Fragrant Chicken

    Institute of Scientific and Technical Information of China (English)

    徐晓兰; 张宁; 綦艳梅; 陈海涛; 孙宝国

    2012-01-01

    In order to explore the volatile aroma composition of Tianfuhao-branded Sauce fragrant chicken, volatile aroma components were isolated and identified by simultaneous distillation extraction-gas chromatography-mass spectrometry (SDE- GC-MS). 84 and 72 volatile aromatic compounds were identified from the ethyl ether and dichloromethane extracts from Tianfuhao- branded Sauce fragrant chicken, respectively. Altogether, 85 flavor compounds were found in both extracts, including 10 hydrocarbons, 24 aldehydes, 12 ketones, 2 ethers, 2 phenols, 19 alcohols, 4 acids, 4 ester and 8 nitrogen-containing or sulfur- containing or heterocyclic compounds. The major volatile aroma components with relatively higher peak area (〉 1%) were hexanal, 1- methoxy-4-(1-propenyl)-benzene, hexadecanal, nonanal, eucalyptol, heptanal, 2-pentyl-furan, (E,E)-2,4-decadienal, octanal, 1-octen- 3-ol, (E)-2-octenal, (E)-2-decenal, 3,7-dimethyl-1,6-octadien-3-ol, (S)-alpha, a/pha-4-trimethyl-3-cyclohexene-1-methanol and 2,3- octanedione. Among these aroma components, aldehydes, ethers and nitrogen-containing and sulfur-containing and heterocyclic compounds were considered as the major flavor components in Tianfuhao Sauce fragrant chicken.%为探究北京传统肉制品——天福号酱香鸡的挥发性风味成分,采用同时蒸馏萃取法对酱香鸡的香成分进行提取,并采用气相色谱-质谱联用法对香成分进行分离鉴定。结果表明:以乙醚作溶剂共鉴定出84种风味化合物,以二氯甲烷作溶剂共鉴定出72种风味化合物,两者共计鉴定出85种风味化合物,可分为9类,即烃类10种、醛类24种、酮类12种、醚类2种、酚类2种、醇类19种、酸类4种、酯类4种、含氮含硫及杂环化合物8种;含量较高(峰面积大于1%)的化合物有己醛、茴香脑、棕榈醛、壬醛、桉叶油醇、庚醛、2-正戊基呋喃、(反,反)-2,4-癸二烯醛、正辛醛、1-辛烯-3-醇、反-2-

  14. A new approach to saffron aroma.

    Science.gov (United States)

    Carmona, M; Zalacain, A; Salinas, M R; Alonso, G L

    2007-01-01

    The aroma of saffron has received much attention from scientists in recent years, not only for the compounds that make it up, but also for its glycosidic precursors. Despite it all, the volatile generation mechanisms of the spice are almost completely unknown. Only the generation of safranal, the major compound, from picrocrocin has been established. The great effort carried out to detect and identify the volatile compounds of saffron has not been enough to clarify which compounds are responsible for saffron aroma. In general, scientists has devoted little attention to the sample analyzed, taking for granted that all saffron is the same, something that makes it difficult to establish a comparison between the results obtained by the different authors, to the point that saffron aroma has not been defined yet. It must be clarified whether saffron aroma is what the consumer perceives via nasally when a container of the spice is uncovered, or whether on the contrary, it is the aroma conferred to food, normally after a thermal cooking process, and perceived retronasally. After an extensive bibliographic research, simple assays are suggested to understand what could be considered as saffron aroma, results that may help to delimit the research for future studies.

  15. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Cont, Rama; Kokholm, Thomas

    options on the underlying asset. The model has the convenient feature of decoupling the vanilla skews from spot/volatility correlations and allowing for different conditional correlations in large and small spot/volatility moves. We show that our model can simultaneously fit prices of European options......We propose and study a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index, allowing options on forward variance swaps and options on the underlying index to be priced consistently. Our model reproduces various empirically...... on S&P 500 across strikes and maturities as well as options on the VIX volatility index. The calibration of the model is done in two steps, first by matching VIX option prices and then by matching prices of options on the underlying....

  16. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Kokholm, Thomas

    on the underlying asset. The model has the convenient feature of decoupling the vanilla skews from spot/volatility correlations and allowing for different conditional correlations in large and small spot/volatility moves. We show that our model can simultaneously fit prices of European options on S&P 500 across......We propose and study a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index, allowing options on forward variance swaps and options on the underlying index to be priced consistently. Our model reproduces various empirically...... strikes and maturities as well as options on the VIX volatility index. The calibration of the model is done in two steps, first by matching VIX option prices and then by matching prices of options on the underlying....

  17. 干姜和炮姜挥发油中致香成分的GC-MS分析%GC-MS Analysis of Aroma Components in Volatile Oils of Rhizoma Zingiberis and Rhizoma Zingiberis Preparata

    Institute of Scientific and Technical Information of China (English)

    谢常珑

    2016-01-01

    Objective] To research the effects of processing on the aroma components in volatile oils of zingiber, and to provide references for the development and utilization of zingiber and its preparata in perfume industry.[Method] Volatile oils were extracted by steam distillation method.The aroma components in volatile oils of Rhizoma Zingiberis and Rhizoma Zingiberis Preparata were analyzed by gas chromatography-mass spectrometry technology.[Result] Components with relatively high content in volatile oils of Rhizoma Zingiberis were sabinene, camphene, eucalyptol, borneol, α-zingiberene, linalyl propionate, α-pinene and so on; while those of Rhizoma Zingiberis Preparata were camphene , sabinene,α-curcumene, borneol, eucalyptol,α-pinene and so on.Two components of cymene and elemol were newly added.At the same time, relative contents of α-curcumene,α-pinene, camphene,α-bisabolene, 6-methyl-5-heptene-2-ketone, tricyclene, eucalyptol, nerolidol and α-sesquiphellandrene increased significantly;while relative contents of α-zingiberene,α-phellandrene, eucalyptol, (E)-citral, (Z)-citral, linalyl propionate,α-terpilenol and geranyl acetate.[ Conclusion] After Rhizoma Zingiberis was processed into Rhizoma Zingiberis Preparata by heat-ing, its physicochemical properties has certain changes, which leads to the differences in aroma components.%[目的]研究炮制对姜挥发油中致香成分的影响,为姜及其炮制品在香料行业的开发利用提供参考。[方法]采用水蒸气蒸馏法提取挥发油,以气相色谱-质谱联用技术对干姜挥发油和炮姜挥发油致香成分进行分析。[结果]干姜挥发油中相对含量较高的组分依次是桧烯、莰烯、桉叶油醇、龙脑、α-姜烯、丙酸芳樟醇和α-蒎烯等,而炮姜挥发油中相对含量较高的组分依次是莰烯、桧烯、α-姜黄烯、龙脑、桉叶油醇和α-蒎烯等,新增加了对伞花烃和榄香醇2种成分,同时α-姜黄烯、α

  18. The role of saliva in aroma release and perception.

    Science.gov (United States)

    Ployon, Sarah; Morzel, Martine; Canon, Francis

    2017-07-01

    Aroma perception is an important factor driving food acceptance. Volatile organic compounds (VOCs) are released from the food matrix and then reach the receptors located in the nasal cavity, leading to their perception. These steps are closely dependent on the physicochemical properties of the volatile compounds and the food matrix, but also on human physiology. Among the different physiological parameters involved, the literature reports that saliva has various effects on VOCs and therefore appears as a major actor impacting the perception of aroma. This article reviews how saliva takes part in aroma release, considering both in vitro and in vivo approaches, and how it may affect perception. It describes the direct mechanisms (molecular interactions, enzymatic conversion, salting-out effect, dilution) involving salivary components (salts, proteins including enzymes, microbiota) that can modify the release of aroma compounds. It also considers the indirect impact of saliva, such as changes of aroma diffusion through modification of the physicochemical properties of the food matrix.

  19. Pollen aroma fingerprint of two sunflower (Helianthus annuus L.) genotypes characterized by different pollen colors.

    Science.gov (United States)

    Bertoli, Alessandra; Fambrini, Marco; Doveri, Silvia; Leonardi, Michele; Pugliesi, Claudio; Pistelli, Luisa

    2011-09-01

    Samples of fresh pollen grains, collected from capitula in full bloom from two genotypes of sunflower (Helianthus annuus L.) and characterized by a different color, i.e., white-cream (WC) and orange (O), were analyzed by the HS-SPME (headspacesolid phase microextraction)/GC/MS technique. This study defined for the first time the fingerprint of the sunflower pollen, separated from the disc flowers, to define its contribution to the inflorescence aroma. In the GC/MS fingerprints of the WC and O genotypes, 61 and 62 volatile compounds were identified, respectively. Monoterpene hydrocarbons (34% in O vs. 28% in WC) and sesquiterpene hydrocarbons (37% in O vs. 31% in WC) were ubiquitous in all samples analyzed and represented the main chemical classes. α-Pinene (21% in O vs. 20% in WC) and sabinene (11% in O vs. 6% in WC) were the dominant volatiles, but also a full range of aliphatic hydrocarbons and their oxygenated derivatives gave a decisive contribution to the aroma composition (10% in O vs. 12% in WC). In addition, dendrolasin (3% in O vs. 4% in WC) and some minor constituents such as (E)-hex-2-en-1-ol (0.4% in O vs. 0.1% in WC) were pointed out not only for their contribution to the pollen scent, but also for their well-known role in the plant ecological relationships. Having evaluated two pollen morphs with different carotenoid-based colors, the study sought to highlight also the presence of some volatile precursors or derivatives of these pigments in the aroma. However, the pollen aroma of the two selected genotypes made a specific chemical contribution to the sunflower inflorescence scent without any influence on carotenoid derivatives.

  20. Aroma compound analysis of Eruca sativa (Brassicaceae) SPME headspace leaf samples using GC, GC-MS, and olfactometry.

    Science.gov (United States)

    Jirovetz, Leopold; Smith, David; Buchbauer, Gerhard

    2002-07-31

    The aroma compounds of rocket salad (Eruca sativa) SPME headspace samples of fresh leaves were analyzed using GC, GC-MS, and olfactometry. More than 50 constituents of the Eruca headspace could be identified to be essential volatiles, responsible for the characteristic intense green; herbal; nutty and almond-like; Brassicaceae-like (direction of cabbage, broccoli, and mustard); and horseradish-like aroma of these salad leaves. As aroma impact compounds, especially isothiocyanates, and derivatives of butane, hexane, octane, and nonane were identified. 4-Methylthiobutyl isothiocyanate (14.2%), cis-3-hexen-1-ol (11.0%), cis-3-hexenyl butanoate (10.8%), 5-methylthiopentyl isothiocyanate (9.3%), cis-3-hexenyl 2-methylbutanoate (5.4%), and 5-methylthiopentanenitrile (5.0%) were found in concentrations higher than 5.0% (calculated as % peak area of GC analysis using a nonpolar column).

  1. Evaluation of aroma enhancement for "Ecolly" dry white wines by mixed inoculation of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae.

    Science.gov (United States)

    Wang, Xing-Chen; Li, Ai-Hua; Dizy, Marta; Ullah, Niamat; Sun, Wei-Xuan; Tao, Yong-Sheng

    2017-08-01

    To improve the aroma profile of Ecolly dry white wine, the simultaneous and sequential inoculations of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae were performed in wine making of this work. The two yeasts were mixed in various ratios for making the mixed inoculum. The amount of volatiles and aroma characteristics were determined the following year. Mixed fermentation improved both the varietal and fermentative aroma compound composition, especially that of (Z)-3-hexene-1-ol, nerol oxide, certain acetates and ethyls group compounds. Citrus, sweet fruit, acid fruit, berry, and floral aroma traits were enhanced by mixed fermentation; however, an animal note was introduced upon using higher amounts of R. mucilaginosa. Aroma traits were regressed with volatiles as observed by the partial least-square regression method. Analysis of correlation coefficients revealed that the aroma traits were the multiple interactions of volatile compounds, with the fermentative volatiles having more impact on aroma than varietal compounds.

  2. Recent Advances in Volatiles of Teas

    Directory of Open Access Journals (Sweden)

    Xin-Qiang Zheng

    2016-03-01

    Full Text Available Volatile compounds are important components of tea aroma, a key attribute of sensory quality. The present review examines the formation of aromatic volatiles of various kinds of teas and factors influencing the formation of tea volatiles, including tea cultivar, growing environment and agronomic practices, processing method and storage of tea. The determination of tea volatiles and the relationship of active-aroma volatiles with the sensory qualities of tea are also discussed in the present paper.

  3. The effect of surfactant on headspace single drop microextraction for the determination of some volatile aroma compounds in citronella grass and lemongrass leaves by gas chromatography

    Science.gov (United States)

    A rapid method for the determination of some volatile aromatic compounds (VACs), including citronellal, citronellol, neral, geranial, geraniol, and eugenol in citronella grass and lemongrass leaves, was developed using surfactant as a surface tension modifier while performing headspace single drop m...

  4. Aroma characterization based on aromatic series analysis in table grapes.

    Science.gov (United States)

    Wu, Yusen; Duan, Shuyan; Zhao, Liping; Gao, Zhen; Luo, Meng; Song, Shiren; Xu, Wenping; Zhang, Caixi; Ma, Chao; Wang, Shiping

    2016-08-04

    Aroma is an important part of quality in table grape, but the key aroma compounds and the aroma series of table grapes remains unknown. In this paper, we identified 67 aroma compounds in 20 table grape cultivars; 20 in pulp and 23 in skin were active compounds. C6 compounds were the basic background volatiles, but the aroma contents of pulp juice and skin depended mainly on the levels of esters and terpenes, respectively. Most obviously, 'Kyoho' grapevine series showed high contents of esters in pulp, while Muscat/floral cultivars showed abundant monoterpenes in skin. For the aroma series, table grapes were characterized mainly by herbaceous, floral, balsamic, sweet and fruity series. The simple and visualizable aroma profiles were established using aroma fingerprints based on the aromatic series. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) showed that the aroma profiles of pulp juice, skin and whole berries could be classified into 5, 3, and 5 groups, respectively. Combined with sensory evaluation, we could conclude that fatty and balsamic series were the preferred aromatic series, and the contents of their contributors (β-ionone and octanal) may be useful as indicators for the improvement of breeding and cultivation measures for table grapes.

  5. Mechanism of Aroma Fixation and Aroma Fixer Preparation%定香机理及定香基的配制

    Institute of Scientific and Technical Information of China (English)

    林翔云

    2011-01-01

    通过一系列实验确定:在一个香精体系中,高沸点物质可以令头香香料在一段时间内的挥发量减少,如果该物质本身没有香气,则没有留香或定香作用;有香气的高沸点物质则有一定的留香或定香作用;高沸点且香比强值大的香料留香或定香作用最强.列出了3个很有实际价值的香水用定香基为例说明.%A series of experiments to determine that in the perfume compound system, high boiling point substances allows top aroma components to reduce the amount of volatile in a period of time. Odorless substances couldn't make the action of aroma reservation or aroma fixation. Odor substances with high boiling paint can make the action of aroma reservation or aroma fixation. The components with higher boiling point and stronger aroma can make the action of aroma reservation or aroma fixation stronger. This paper sets out three aroma fixers with practical value as examples.

  6. Characterization of the Key Odorants in Chinese Zhima Aroma-Type Baijiu by Gas Chromatography-Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Studies.

    Science.gov (United States)

    Zheng, Yang; Sun, Baoguo; Zhao, Mouming; Zheng, Fuping; Huang, Mingquan; Sun, Jinyuan; Sun, Xiaotao; Li, Hehe

    2016-07-06

    Zhima aroma-type Baijiu with typical sesame aroma is particularly popular in northern China. To our knowledge, it is still uncertain which components are important to make contributions to its unique aroma, although a few pieces of research have reported many volatile compounds in this Baijiu. The aroma-active compounds from the Baijiu were researched in this paper. A total of 56 odorants were identified in Chinese Zhima aroma-type Baijiu by aroma extract dilution analysis (AEDA). Their odor activity values (OAVs) were determined by different quantitative measurements, and then 26 aroma compounds were further confirmed as important odorants due to their OAVs ≥ 1, and these had higher values, such as ethyl hexanoate (OAV 2691), 3-methylbutanal (2403), ethyl pentanoate (1019), and so on. The overall aroma of Zhima aroma-type Baijiu could be simulated by mixing of the 26 key odorants in their measured concentrations. The similarity of the overall aroma profiles between the recombination model and the commercial sample was judged to be 2.7 out of 3.0 points. Omission experiments further corroborated the importance of methional and ethyl hexanoate for the overall aroma of Chinese Zhima aroma-type Baijiu.

  7. Discrimination of roast and ground coffee aroma

    Directory of Open Access Journals (Sweden)

    Fisk Ian

    2012-08-01

    Full Text Available Abstract Background Four analytical approaches were used to evaluate the aroma profile at key stages in roast and ground coffee brew preparation (concentration within the roast and ground coffee and respective coffee brew; concentration in the headspace of the roast and ground coffee and respective brew. Each method was evaluated by the analysis of 15 diverse key aroma compounds that were predefined by odour port analysis. Results Different methods offered complimentary results for the discrimination of products; the concentration in the coffee brew was found to be the least discriminatory and concentration in the headspace above the roast and ground coffee was shown to be most discriminatory. Conclusions All approaches should be taken into consideration when classifying roast and ground coffee especially for alignment to sensory perception and consumer insight data as all offer markedly different discrimination abilities due to the variation in volatility, hydrophobicity, air-water partition coefficient and other physicochemical parameters of the key aroma compounds present.

  8. Catabolism of L-methionine in the formation of sulfur and other volatiles in melon (Cucumis melo L.) fruit.

    Science.gov (United States)

    Gonda, Itay; Lev, Shery; Bar, Einat; Sikron, Noga; Portnoy, Vitaly; Davidovich-Rikanati, Rachel; Burger, Joseph; Schaffer, Arthur A; Tadmor, Ya'akov; Giovannonni, James J; Huang, Mingyun; Fei, Zhangjun; Katzir, Nurit; Fait, Aaron; Lewinsohn, Efraim

    2013-05-01

    Sulfur-containing aroma volatiles are important contributors to the distinctive aroma of melon and other fruits. Melon cultivars and accessions differ in the content of sulfur-containing and other volatiles. L-methionine has been postulated to serve as a precursor of these volatiles. Incubation of melon fruit cubes with ¹³C- and ²H-labeled L-methionine revealed two distinct catabolic routes into volatiles. One route apparently involves the action of an L-methionine aminotransferase and preserves the main carbon skeleton of L-methionine. The second route apparently involves the action of an L-methionine-γ-lyase activity, releasing methanethiol, a backbone for formation of thiol-derived aroma volatiles. Exogenous L-methionine also generated non-sulfur volatiles by further metabolism of α-ketobutyrate, a product of L-methionine-γ-lyase activity. α-Ketobutyrate was further metabolized into L-isoleucine and other important melon volatiles, including non-sulfur branched and straight-chain esters. Cell-free extracts derived from ripe melon fruit exhibited L-methionine-γ-lyase enzymatic activity. A melon gene (CmMGL) ectopically expressed in Escherichia coli, was shown to encode a protein possessing L-methionine-γ-lyase enzymatic activity. Expression of CmMGL was relatively low in early stages of melon fruit development, but increased in the flesh of ripe fruits, depending on the cultivar tested. Moreover, the levels of expression of CmMGL in recombinant inbred lines co-segregated with the levels of sulfur-containing aroma volatiles enriched with +1 m/z unit and postulated to be produced via this route. Our results indicate that L-methionine is a precursor of both sulfur and non-sulfur aroma volatiles in melon fruit.

  9. Aroma characterization of chinese rice wine by gas chromatography-olfactometry, chemical quantitative analysis, and aroma reconstitution.

    Science.gov (United States)

    Chen, Shuang; Xu, Yan; Qian, Michael C

    2013-11-27

    The aroma profile of Chinese rice wine was investigated in this study. The volatile compounds in a traditional Chinese rice wine were extracted using Lichrolut EN and further separated by silica gel normal phase chromatography. Seventy-three aroma-active compounds were identified by gas chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS). In addition to acids, esters, and alcohols, benzaldehyde, vanillin, geosmin, and γ-nonalactone were identified to be potentially important to Chinse rice wine. The concentration of these aroma-active compounds in the Chinese rice wine was further quantitated by combination of four different methods, including headsapce-gas chromatography, solid phase microextraction-gas chromatography (SPME)-GC-MS, solid-phase extraction-GC-MS, and SPME-GC-pulsed flame photometric detection (PFPD). Quantitative results showed that 34 aroma compounds were at concentrations higher than their corresponding odor thresholds. On the basis of the odor activity values (OAVs), vanillin, dimethyl trisulfide, β-phenylethyl alcohol, guaiacol, geosmin, and benzaldehyde could be responsible for the unique aroma of Chinese rice wine. An aroma reconstitution model prepared by mixing 34 aroma compounds with OAVs > 1 in an odorless Chinese rice wine matrix showed a good similarity to the aroma of the original Chinese rice wine.

  10. Study of the volatile compounds from plum (Prunus domestica L. cv. Horvin and estimation of their contribution to the fruit aroma

    Directory of Open Access Journals (Sweden)

    Jorge Antonio Pino

    2012-03-01

    Full Text Available Simultaneous Distillation-Extraction (SDE and headspace-solid phase microextraction (HS-SPME combined with GC-FID and GC-MS were used to analyze volatile compounds from plum (Prunus domestica L. cv. Horvin and to estimate the most odor-active compounds by application of the Odor Activity Values (OAV. The analyses led to the identification of 148 components, including 58 esters, 23 terpenoids, 14 aldehydes, 11 alcohols, 10 ketones, 9 alkanes, 7 acids, 4 lactones, 3 phenols, and other 9 compounds of different structures. According to the results of SDE-GC-MS, SPME-GC-MS and OAV, ethyl 2-methylbutanoate, hexyl acetate, (E-2-nonenal, ethyl butanoate, (E-2-decenal, ethyl hexanoate, nonanal, decanal, (E-β-ionone, Γ-dodecalactone, (Z-3-hexenyl acetate, pentyl acetate, linalool, Γ-decalactone, butyl acetate, limonene, propyl acetate, Δ-decalactone, diethyl sulfide, (E-2-hexenyl acetate, ethyl heptanoate, (Z-3-hexenol, (Z-3-hexenyl hexanoate, eugenol, (E-2-hexenal, ethyl pentanoate, hexyl 2-methylbutanoate, isopentyl hexanoate, 1-hexanol, Γ-nonalactone, myrcene, octyl acetate, phenylacetaldehyde, 1-butanol, isobutyl acetate, (E-2-heptenal, octadecanal, and nerol are characteristic odor active compounds in fresh plums since they showed concentrations far above their odor thresholds.

  11. Neuroprotective Effects of Selected Microbial-Derived Phenolic Metabolites and Aroma Compounds from Wine in Human SH-SY5Y Neuroblastoma Cells and Their Putative Mechanisms of Action

    Science.gov (United States)

    Esteban-Fernández, A.; Rendeiro, C.; Spencer, J. P. E.; del Coso, D. Gigorro; de Llano, M. D. González; Bartolomé, B.; Moreno-Arribas, M. V.

    2017-01-01

    Moderate wine consumption has shown the potential to delay the onset of neurodegenerative diseases. This study investigates the molecular mechanisms underlying the protective effects of wine-derived phenolic and aroma compounds in a neuroinflammation model based on SIN-1 stress-induced injury in SH-SY5Y neuroblastoma cells. Cell pretreatment with microbial metabolites found in blood after wine consumption, 3,4-dihydroxyphenylacetic (3,4-DHPA), 3-hydroxyphenylacetic acids and salicylic β-d-O-glucuronide, at physiologically concentrations (0.1–10 μM) resulted in increased cell viability versus SIN-1 control group (p aroma compounds may be effective at protecting neuroblastoma cells from nitrosative stress injury by inhibiting neuronal MAPK p38 and ERK1/2, as well as downstream caspase 3 activity. PMID:28352628

  12. Metabolome based volatiles profiling in 13 date palm fruit varieties from Egypt via SPME GC-MS and chemometrics.

    Science.gov (United States)

    Khalil, Mohammed N A; Fekry, Mostafa I; Farag, Mohamed A

    2017-02-15

    Dates (Phoenix dactylifera L.) are distributed worldwide as major food complement providing a source of sugars and dietary fiber as well as macro- and micronutrients. Although phytochemical analyses of date fruit non-volatile metabolites have been reported, much less is known about the aroma given off by the fruit, which is critical for dissecting sensory properties and quality traits. Volatile constituents from 13 date varieties grown in Egypt were profiled using SPME-GCMS coupled to multivariate data analysis to explore date fruit aroma composition and investigate potential future uses by food industry. A total of 89 volatiles were identified where lipid-derived volatiles and phenylpropanoid derivatives were the major components of date fruit aroma. Multivariate data analyses revealed that 2,3-butanediol, hexanal, hexanol and cinnamaldehyde contributed the most to classification of different varieties. This study provides the most complete map of volatiles in Egyptian date fruit, with Siwi and Sheshi varieties exhibiting the most distinct aroma among studied date varieties.

  13. 基于动态顶空成分的烟叶原料香型特征判别分析%Data discriminant analysis of aroma characteristics of tobacco based on DHS-GC/MS volatile data

    Institute of Scientific and Technical Information of China (English)

    郜强; 余苓; 陈磊; 刘百战; 房鼎业

    2012-01-01

    传统上,国产烤烟根据产地和感官评吸结果分为浓香、清香和中间香三大级别.为了探索国产烤烟香型与香气成分之间的联系,利用吹扫捕集-GC/MS,建立根据不同香型分组的72种烟叶样本的香气成分指纹图谱,并采用判别分析技术进行样本的分类判别.结果显示:对于34个化学变量,浓香、清香和中间香典型判别函数,交叉验证准确率为83.6%.利用主成分分析(PCA)对不同香型烤烟进行区分,获得与感官评价一致的结果.因此,基于顶空香气成分的判别分析能较好地表征烟叶香型归属,有利于揭示不同香型烟叶的化学特征.%According to the geographical origin,the three classifications of flue cured tobaccos have been assessed through the sensory evaluation.They are rich,moderate and freshly flavor.In the paper,a Dynamic Headspace method using Purge and Trap GC/MS was developed for analysis of tobaccos.The volatiles chromatographs (aroma Fingerprints) of 72 tobaccos were obtained by DHS-GC/MS.By Principal Components Analysis,the tobaccos GC profiles were divided into three groups as that had been distinguished by sensory experts.The Discriminant Analysis found three models on the basis of 34 volatile constituents.The model objectively predicted rich,moderate and freshly characteristics of tobacco observations with good cross validation (83.6%).

  14. Comprehensive GC–FID, GC–MS and FT-IR spectroscopic analysis of the volatile aroma constituents of Artemisia indica and Artemisia vestita essential oils

    Directory of Open Access Journals (Sweden)

    Manzoor A. Rather

    2017-05-01

    Full Text Available In the current study, the leaf volatile constituents of the essential oils of Artemisia indica Willd. and Artemisia vestita Wall were studied using a combination of capillary GC–FID, GC–MS and FT-IR (Fourier-Transform Infra-Red analytical techniques. The analysis led to the identification of 42 compounds in the essential oil of A. indica, representing 96.6% of the essential oil and the major components were found to be artemisia ketone (42.1%, germacrene D (8.6%, borneol (6.1% and cis-chrysanthenyl acetate (4.8%. The essential oil was dominated by the presence of oxygenated monoterpenes constituting 65.2% of the total oil composition followed by sesquiterpene hydrocarbons and monoterpene hydrocarbons constituting 15.7% and 10.7%, respectively of the total oil composition. The essential oil composition of A. vestita was found to contain a total of 18 components representing 94.2% of the total oil composition. The principal components were found to be 1,8-cineole (46.8%, (E-citral (13.7%, limonene (9.8%, α-phellandrene (6.4%, camphor (5.0%, (Z and (E-thujones (3.0% each. Oxygenated monoterpenes were the dominant group of terpenes in the essential oil constituting 73.1% of the total oil composition followed by monoterpene hydrocarbons (17.3%. The results of the current study reveal remarkable differences in the essential oil compositions of these two Artemisia species already reported in the literature from other parts of the globe.

  15. Aroma of some plants cultivated in Lithuania : Composition, processing and release

    NARCIS (Netherlands)

    Bylaite, E.

    2000-01-01

    In this study, some factors affecting the aroma of some plants of the families Umbelliferae and Asteraceae were evaluated. The composition of the aromas is influenced by several factors: plant family, harvesting time, anatomical part of plant, method used to isolate volatiles, cultivar, fertilisers

  16. Real-Time Mass Spectrometry Monitoring of Oak Wood Toasting: Elucidating Aroma Development Relevant to Oak-aged Wine Quality

    Science.gov (United States)

    Farrell, Ross R.; Wellinger, Marco; Gloess, Alexia N.; Nichols, David S.; Breadmore, Michael C.; Shellie, Robert A.; Yeretzian, Chahan

    2015-11-01

    We introduce a real-time method to monitor the evolution of oak aromas during the oak toasting process. French and American oak wood boards were toasted in an oven at three different temperatures, while the process-gas was continuously transferred to the inlet of a proton-transfer-reaction time-of-flight mass spectrometer for online monitoring. Oak wood aroma compounds important for their sensory contribution to oak-aged wine were tentatively identified based on soft ionization and molecular mass. The time-intensity profiles revealed toasting process dynamics illustrating in real-time how different compounds evolve from the oak wood during toasting. Sufficient sensitivity was achieved to observe spikes in volatile concentrations related to cracking phenomena on the oak wood surface. The polysaccharide-derived compounds exhibited similar profiles; whilst for lignin-derived compounds eugenol formation differed from that of vanillin and guaiacol at lower toasting temperatures. Significant generation of oak lactone from precursors was evident at 225 oC. Statistical processing of the real-time aroma data showed similarities and differences between individual oak boards and oak wood sourced from the different origins. This study enriches our understanding of the oak toasting process and demonstrates a new analytical approach for research on wood volatiles.

  17. Revisiting The Financial VolatilityDerivative Products Relationship On Euronext. Liffe Using A Frequency Domain Analysis

    OpenAIRE

    Albulescu, Claudiu Tiberiu; Daniel GOYEAU; Tiwari, Aviral Kumar

    2013-01-01

    International audience; The present paper analyse the relationship between the volume of transactions with futures equity index products and the return volatility of their underlying assets. The study addresses the case of five stock markets, members of the Euronext.liffe: London, Paris, Amsterdam, Brussels and Lisbon. We employ a frequency domain analysis, using monthly data for the period 2001.09 – 2010.06, which allows us to identify the direction of the causality between the derivatives v...

  18. Impact of Derivative Trading On Stock Market Volatility in India: A Study of S&P CNX Nifty

    Directory of Open Access Journals (Sweden)

    Ruchika GAHLOT

    2010-11-01

    Full Text Available The Purpose of the study is to examine the impact of derivative trading on stock market volatility. The sample data consist of closing prices of S&P CNX Nifty as well as closing prices of five derivative stocks and five non derivative stocks from April 1, 2002 to March 31, 2005. The study uses GARCH model to capture nature of volatility over time and volatility clustering phenomenon of data. The evidences suggest that there is no significant change in the volatility of S &P CNX Nifty, but the structure of volatility has changed to some extent. However, results show mixed effect in case of 10 individual stocks. These results can assist investors in making investment decision. It also helps to identify need for regulation.

  19. Identification and quantification of aroma-active components that contribute to the distinct malty flavor of buckwheat honey.

    Science.gov (United States)

    Zhou, Qiaoxuan; Wintersteen, Carol L; Cadwallader, Keith R

    2002-03-27

    Characteristic aroma components of buckwheat honey were studied by combined sensory and instrumental techniques. Relative aroma intensity of individual volatile components was evaluated by aroma extract dilution analysis (AEDA) of solvent extracts and by gas chromatography-olfactometry (GCO) of decreasing headspace samples (GCO-H). Results indicated that 3-methylbutanal, 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolon), and (E)-beta-damascenone were the most potent odorants in buckwheat honey, with 3-methylbutanal being primarily responsible for the distinct malty aroma. Other important aroma-active compounds included methylpropanal, 2,3-butanedione, phenylacetaldehyde, 3-methylbutyric acid, maltol, vanillin, methional, coumarin, and p-cresol.

  20. Characterization of the most aroma-active compounds in cherry tomato by application of the aroma extract dilution analysis.

    Science.gov (United States)

    Selli, Serkan; Kelebek, Hasim; Ayseli, Mehmet Turan; Tokbas, Habip

    2014-12-15

    Aroma and aroma-active compounds of cherry tomato (Lycopersicum esculentum) was analyzed by gas chromatography-mass spectrometry-olfactometry (GC-MS-O). According to sensory analysis, the aromatic extract obtained by liquid-liquid extraction was representative of tomato odour. A total of 49 aroma compounds were identified and quantified in fresh cherry tomato. Aldehydes were qualitatively and quantitatively the most dominant volatiles in cherry tomato, followed by alcohols. Aroma extract dilution analysis (AEDA) was used for the determination of aroma-active compounds of tomato sample. A total of 21 aroma-active compounds were detected in aromatic extract of fresh tomato, of which 18 were identified. On the basis of the flavour dilution (FD) factor, the most powerful aroma-active compounds identified in the extract were (Z)-3-hexenal (FD=1024) and (E)-2-hexenal (FD=256), which were described as the strong green-grassy and green-leafy odour, respectively. The major organic acid and sugar found were citric acid and fructose, respectively.

  1. Green tea aroma fraction reduces β-amyloid peptide-induced toxicity in Caenorhabditis elegans transfected with human β-amyloid minigene.

    Science.gov (United States)

    Takahashi, Atsushi; Watanabe, Tatsuro; Fujita, Takashi; Hasegawa, Toshio; Saito, Michio; Suganuma, Masami

    2014-01-01

    Green tea is a popular world-wide beverage with health benefits that include preventive effects on cancer as well as cardiovascular, liver and Alzheimer's diseases (AD). This study will examine the preventive effects on AD of a unique aroma of Japanese green tea. First, a transgenic Caenorhabditis elegans (C. elegans) CL4176 expressing human β-amyloid peptide (Aβ) was used as a model of AD. A hexane extract of processed green tea was further fractionated into volatile and non-volatile fractions, named roasty aroma and green tea aroma fractions depending on their aroma, by microscale distillation. Both hexane extract and green tea aroma fraction were found to inhibit Aβ-induced paralysis, while only green tea aroma fraction extended lifespan in CL4176. We also found that green tea aroma fraction has antioxidant activity. This paper indicates that the green tea aroma fraction is an additional component for prevention of AD.

  2. In Depth Proteome Analysis of Ripening Muscadine Grape Berry cv. Carlos Reveals Proteins Associated with Flavor and Aroma Compounds.

    Science.gov (United States)

    Kambiranda, Devaiah; Basha, Sheikh M; Singh, Rakesh K; He, Huan; Calvin, Kate; Mercer, Roger

    2016-09-02

    Ripening in nonclimacteric fruits such as grape involves complex chemical changes that have a profound influence on the accumulation of flavor and aroma compounds distinct to a particular grape genotype. In this study, proteome characterization of wine type bronze muscadine grape (Vitis rotundifolia cv. Carlos), primarily grown in the Southeastern United States was performed during berry ripening. Stage-specific protein expression was obtained among different stages of berries. Differential analysis showed the expression of 522 proteins that regulate diverse biological processes and metabolic pathways. Of these, 30 proteins are associated with the production of key phenolic compounds, whereas 25 are associated with the production of muscadine aroma compounds. These proteins are involved in the phenylpropanoid pathway, terpene synthesis, fatty acid derived volatiles and esters that affect muscadine berry flavor and aroma characteristics. Further, gene expression analysis during ripening validated the expression pattern of 12 proteins. Catechin, epicatechin, and four stilbenes were quantified to correlate observed proteome changes. This study not only revealed biochemical changes during muscadine berry ripening but also offers indicators for marker-assisted breeding to enhance organoleptic properties of muscadine grape to improve its flavor and aroma properties.

  3. Poly(L-aspartic acid) derivative soluble in a volatile organic solvent for biomedical application.

    Science.gov (United States)

    Oh, Nam Muk; Oh, Kyung Taek; Youn, Yu Seok; Lee, Eun Seong

    2012-09-01

    In order to develop a novel functional poly(L-amino acid) that can dissolve in volatile organic solvents, we prepared poly[L-aspartic acid-g-(3-diethylaminopropyl)]-b-poly(ethylene glycol) [poly(L-Asp-g-DEAP)-b-PEG] via the conjugation of 3-diethylaminopropyl (DEAP) to carboxylate groups of poly(L-Asp) (M(n) 4 K)-b-PEG (M(n) 2 K). This poly(L-aspartic acid) derivative evidenced a relatively high solubility in volatile organic solvents such as dichloromethane, chloroform, and acetone. We fabricated a model nanostructure (i.e., polymeric micelle) using poly(L-Asp-g-DEAP)-b-PEG by the film rehydration method, which involves the simple removal of the volatile organic solvent (dichloromethane) used to dissolve polymer, reducing concerns about organic solvents remaining in a nano-sized particle. Interestingly, this micelle showed the pH-stimulated release of encapsulated model drug [i.e., doxorubicin (DOX)] due to the protonation of DEAP according to the pH of the solution. We expect that this poly(L-aspartic acid) derivative promises to provide pharmaceutical potential for constituting a new stimuli-sensitive drug carrier for various drug molecules.

  4. HS-SPME和GC-MS联用分析山西老陈醋中挥发性香味成分%Analysis of the Volatile Aroma Components in Shanxi Overmature Vinegar by HS-SPME and GC-MS

    Institute of Scientific and Technical Information of China (English)

    苗志伟; 刘玉平; 黄明泉; 陈海涛; 孙宝国

    2011-01-01

    采用顶空固相微萃取与GC-MS联用方法对山西老陈醋中挥发性成分进行提取与分析,考察萃取头、萃取时间、离子强度和萃取温度对分析结果的影响,得到优化的顶空固相微萃取条件为:黑色萃取头(75 μm Carboxen/PDMS),吸附温度40℃,萃取时间40 min,NaC1质量浓度250 g/L.在优化的最佳条件下分析,共鉴定出23种成分,占色谱流出组分总量的99.24%.其中醇类2种、酯类4种、酸类6种、醛类3种、酮类3种、杂环类化合物7种.鉴定出含量较高的物质有乙酸、糠醛、3-羟基-2-丁酮、四甲基吡嗪、丁二酮、苯甲醛、三甲基恶唑和三甲基吡嗪等.%Aroma volatile components of Shanxi overmature vinegar were extracted by head space solid phase mi-croextraction(HS-SPME) and were identified by gas chromatography and mass spectrometry(GC-MS). The operating conditions of SPME were optimized, including different fibers(100 ujn PDMS(red), 50/30 u.m DVB/CAR/PDMS(gray), 75 μm (black) Carboxen/PDMS, 85 μm(lightblue) Carboxen/PDMS), salt concentration(200,250,300,350 g/L), extraction times (30,40,50,60 min) and temperatures(30,40,50,60 t). An 75μm(black) Carboxen/PDMS, adsorption time of 40min, a temperature of 40 ℃ and NaCl concentration of 250 g /L were selected as the optimum conditions. This optimized method was applied to analyze a real sample. As a result, 23 compounds were identified, accounting for the 99.24% of the total peak areas. The relative contents of main volatiles (above 1%) were as follows: acetic acid(64.43%), furfural(11.62%), 3-hydroxy-2-butanone(6.42%), tetramethyl pyrazine(4.01%), 2,3-butanedione(2.27%), benzaldehyde(1.58%), trimethyl oxazole(1.18%) and trimethyl pyrazine(1.15%), et al.

  5. Metabolomics in melon: A new opportunity for aroma analysis

    NARCIS (Netherlands)

    Allwood, J.W.; Cheung, W.W.L.; Xu, Y.; Mumm, R.; Vos, de C.H.; Deborde, C.; Biais, B.; Maucourt, M.; Berger, Y.; Schaffer, A.; Rolin, D.; Moing, A.; Hall, R.D.; Goodacre, R.

    2014-01-01

    Cucumis melo fruit is highly valued for its sweet and refreshing flesh, however the flavour and value are also highly influenced by aroma as dictated by volatile organic compounds (VOCs). A simple and robust method of sampling VOCs on polydimethylsiloxane (PDMS) has been developed. Contrasting culti

  6. A taste of sweet pepper: Volatile and non-volatile chemical composition of fresh sweet pepper (Capsicum annuum) in relation to sensory evaluation of taste.

    Science.gov (United States)

    Eggink, P M; Maliepaard, C; Tikunov, Y; Haanstra, J P W; Bovy, A G; Visser, R G F

    2012-05-01

    In this study volatile and non-volatile compounds, as well as some breeding parameters, were measured in mature fruits of elite sweet pepper (Capsicum annuum) lines and hybrids from a commercial breeding program, several cultivated genotypes and one gene bank accession. In addition, all genotypes were evaluated for taste by a trained descriptive sensory expert panel. Metabolic contrasts between genotypes were caused by clusters of volatile and non-volatile compounds, which could be related to metabolic pathways and common biochemical precursors. Clusters of phenolic derivatives, higher alkanes, sesquiterpenes and lipid derived volatiles formed the major determinants of the genotypic differences. Flavour was described with the use of 14 taste attributes, of which the texture related attributes and the sweet-sour contrast were the most discriminatory factors. The attributes juiciness, toughness, crunchiness, stickiness, sweetness, aroma, sourness and fruity/apple taste could be significantly predicted with combined volatile and non-volatile data. Fructose and (E)-2-hexen-1-ol were highly correlated with aroma, fruity/apple taste and sweetness. New relations were found for fruity/apple taste and sweetness with the compounds p-menth-1-en-9-al, (E)-β-ocimene, (Z)-2-penten-1-ol and (E)-geranylacetone. Based on the overall biochemical and sensory results, the perspectives for flavour improvement by breeding are discussed.

  7. Characterization of the key aroma compounds in Bartlett pear brandies by means of the sensomics concept.

    Science.gov (United States)

    Willner, Bianca; Granvogl, Michael; Schieberle, Peter

    2013-10-09

    The aroma compounds in two commercial Bartlett pear brandies clearly differing in their overall aroma profiles were detected in the volatile fractions by the aroma extract dilution analysis. In brandy A eliciting the more intense pear-like, fruity aroma, ethyl (S)-2-methylbutanoate, (E)-β-damascenone, 1,1-diethoxyethane, 2- and 3-methylbutanol, (S)-2- and 3-methylbutanoic acid, and 2-phenylethanol were found with the highest Flavor Dilution (FD) factors. In brandy B judged to have a weaker overall aroma, also (E)-β-damascenone, ethyl (S)-2-methylbutanoate, and 2-phenylethanol revealed high FD factors, while many odorants showed lower FD factors. Fourty-four odor-active compounds were quantitated by stable isotope dilution assays, and the odor activity values (OAVs; ratio of concentrations to odor thresholds) confirmed (E)-β-damascenone and ethyl (S)-2-methylbutanoate as important aroma compounds in brandy A, while the OAVs of most odorants were much lower in brandy B. By aroma recombination studies, the aromas of both brandies could be matched using reference odorants in the same concentrations as they occurred in the spirits. In 15 commercial Bartlett pear brandies ethyl (E,Z)-2,4-decadienoate and (E,E)-2,4-decadienoate eliciting a pear-like aroma showed a reasonable correlation of their concentrations with the overall aroma quality.

  8. Study of the volatile compounds from plum (Prunus domestica L. cv. Horvin and estimation of their contribution to the fruit aroma Estudo de compostos voláteis de ameixa (Prunus domestica L. cv. Horvin e estimativa da sua contribuição ao aroma

    Directory of Open Access Journals (Sweden)

    Jorge Antonio Pino

    2012-03-01

    Full Text Available Simultaneous Distillation-Extraction (SDE and headspace-solid phase microextraction (HS-SPME combined with GC-FID and GC-MS were used to analyze volatile compounds from plum (Prunus domestica L. cv. Horvin and to estimate the most odor-active compounds by application of the Odor Activity Values (OAV. The analyses led to the identification of 148 components, including 58 esters, 23 terpenoids, 14 aldehydes, 11 alcohols, 10 ketones, 9 alkanes, 7 acids, 4 lactones, 3 phenols, and other 9 compounds of different structures. According to the results of SDE-GC-MS, SPME-GC-MS and OAV, ethyl 2-methylbutanoate, hexyl acetate, (E-2-nonenal, ethyl butanoate, (E-2-decenal, ethyl hexanoate, nonanal, decanal, (E-β-ionone, Γ-dodecalactone, (Z-3-hexenyl acetate, pentyl acetate, linalool, Γ-decalactone, butyl acetate, limonene, propyl acetate, Δ-decalactone, diethyl sulfide, (E-2-hexenyl acetate, ethyl heptanoate, (Z-3-hexenol, (Z-3-hexenyl hexanoate, eugenol, (E-2-hexenal, ethyl pentanoate, hexyl 2-methylbutanoate, isopentyl hexanoate, 1-hexanol, Γ-nonalactone, myrcene, octyl acetate, phenylacetaldehyde, 1-butanol, isobutyl acetate, (E-2-heptenal, octadecanal, and nerol are characteristic odor active compounds in fresh plums since they showed concentrations far above their odor thresholds.As técnicas de extração-destilação simultâneas (SDE e de headspace-microextração em fase sólida (HS-SPME combinadas com GC-FID e GC-MS foram usadas para analisar compostos voláteis da ameixa (Prunus domestica L. cv. Horvin e para estimar os compostos de aroma mais ativos, pela aplicação de valores de atividade olfativa (OAV, considerando os compostos voláteis presentes no headspace da fruta. As análises levaram à identificação de 148 componentes, incluindo 58 ésteres, 23 terpenoides, 14 aldeídos, 11 álcoois, 10 cetonas, 9 alcanos, 7 ácidos, 4 lactonas, 3 fenóis e 9 outros compostos de diferentes estruturas. De acordo om os resultados de SDE

  9. Çeşitli Sake Örneklerinde Aroma Maddeleri Üzerine Araştırmalar

    OpenAIRE

    Yavaş, İsmail; Rapp, Adolf

    1995-01-01

    With gaschromatographic and massspectrometric investigation of different sake samples, which were enriched with aroma substances, many volatile aroma components were separated and some of them were identified. Comparison of aromagrammes, as well as the quantitative evaluation of 45 components, it was found a great deal of differentiations of quantitative aroma substances, among the different sake samples. On some components between the original (from Japan) and Turkish samples, determined dif...

  10. Characterization of the key aroma compounds in Turkish olive oils from different geographic origins by application of aroma extract dilution analysis (AEDA).

    Science.gov (United States)

    Kesen, Songul; Kelebek, Hasim; Selli, Serkan

    2014-01-15

    The aroma and aroma-active compounds of olive oils obtained from Nizip Yaglik (NY) and Kilis Yaglik (KY) cultivars and the effect of the geographical area (southern Anatolian and Aegean regions) on these compounds were analyzed by gas chromatography-mass spectrometry-olfactometry (GC-MS-O). For this purpose, two oil samples were obtained from their native geographical area including NY from Nizip province and KY from Kilis province (southern Anatolian region of Turkey). Another two oils of the same cultivar, NY-Bornova (NY-B) and KY-Bornova (KY-B), were obtained from the Olive Oil Research Center-Bornova, Izmir province (Aegean region of Turkey) to compare geographical effect on aroma and aroma-active compounds. Simultaneous distillation and extraction (SDE) with dichloromethane was used for extraction of volatile components. SDE gave a highly representative aromatic extract of the studied olive oil based on the sensory analysis. Totals of 61, 48, 59, and 48 aroma compounds were identified and quantified in olive oils obtained from NY, NY-B, KY, and KY-B cultivars, respectively. The results of principal component analysis (PCA) showed that the aroma profile of native region oils was discriminately different from those of Bornova region oils. Aldehydes and alcohols were qualitatively and quantitatively the most dominant volatiles in the oil samples. Aroma extract dilution analysis (AEDA) was used for the determination of aroma-active compounds of olive oils. The number of aroma-active compounds in native region oils was higher than in Bornova region oils. Within the compounds, aldehydes and alcohols were the largest aroma-active compounds in all olive oils.

  11. Wine aroma compounds in grapes: a critical review.

    Science.gov (United States)

    González-Barreiro, Carmen; Rial-Otero, Raquel; Cancho-Grande, Beatriz; Simal-Gándara, Jesús

    2015-01-01

    Volatile organic compounds are vital to wine quality, determining their aroma and varietal characteristics. Which are present, and in what quantity, depends on the cultivar, the situation and soil of the vineyard, weather, cultivation methods, and wine-making practices. Here, we review the literature on the development of wine aroma compounds in grapes, and how it is affected by the above-named factors. Increasing understanding of these processes at the molecular level will aid vine growers in the optimal selection of harvest dates and other decisions favoring the consistent production of balanced, flavorful berries.

  12. Food aroma affects bite size

    Directory of Open Access Journals (Sweden)

    de Wijk René A

    2012-03-01

    Full Text Available Abstract Background To evaluate the effect of food aroma on bite size, a semisolid vanilla custard dessert was delivered repeatedly into the mouth of test subjects using a pump while various concentrations of cream aroma were presented retronasally to the nose. Termination of the pump, which determined bite size, was controlled by the subject via a push button. Over 30 trials with 10 subjects, the custard was presented randomly either without an aroma, or with aromas presented below or near the detection threshold. Results Results for ten subjects (four females and six males, aged between 26 and 50 years, indicated that aroma intensity affected the size of the corresponding bite as well as that of subsequent bites. Higher aroma intensities resulted in significantly smaller sizes. Conclusions These results suggest that bite size control during eating is a highly dynamic process affected by the sensations experienced during the current and previous bites.

  13. Aroma release from wines under dynamic conditions.

    Science.gov (United States)

    Tsachaki, Maroussa; Linforth, Robert S T; Taylor, Andrew J

    2009-08-12

    Aroma release from wines and model ethanolic solutions during dynamic headspace dilution was measured in real time using atmospheric pressure chemical ionization-mass spectrometry. Model ethanolic solutions maintained the headspace concentration of volatile compounds close to equilibrium values during gas phase dilution over 10 min. Wine samples (with the same ethanol content) did not maintain the headspace concentration of volatiles to the same extent. Wine components and acidity ((+)-catechin, glycerol; pH 3.6) in model ethanolic solutions (120 mL/L) had no effect on the volatile headspace concentration during dynamic headspace dilution. However, in the presence of certain proteins (beta-lactoglobulin, beta-casein, bovine serum albumin), the model ethanolic solutions failed to maintain their volatile headspace concentration upon headspace dilution, but other proteins (thaumatin, mucin, lysozyme) had no effect. Thermal imaging of the model ethanolic samples (with and without beta-casein) under dynamic headspace dilution conditions showed differences in surface temperatures. This observation suggested perturbation of the ethanol monolayer at the air-liquid interface and disruption of the Marangoni effect, which causes bulk convection within ethanolic solutions. Convection carries volatile compounds and warm liquid from the bulk phase to the air-liquid interface, thus replenishing the interfacial concentration and maintaining the gas phase concentration and interfacial surface temperature during headspace dilution. It is postulated that certain proteins may exert a similar effect in wine.

  14. Puur aroma uit de machine

    NARCIS (Netherlands)

    Didde, R.; Willemsen, J.H.A.; Togtema, K.A.

    2006-01-01

    Wageningse voedingstechnologen hebben een apparaat ontwikkeld dat geurstoffen uit bijvoorbeeld fruit isoleert. Met de zeer geconcentreerde aroma's kan de voedingsindustrie nieuwe producten ontwikkelen én energie besparen

  15. Aroma compound sorption by oak wood in a model wine.

    Science.gov (United States)

    Ramirez Ramirez, G; Lubbers, S; Charpentier, C; Feuillat, M; Voilley, A; Chassagne, D

    2001-08-01

    Oak wood used for wine barrels was immersed into a model wine containing eight aroma compounds (e.g., aromatic and terpene alcohols, ethyl esters, and aldehyde), for which activity coefficients in water and model wine were determined using the mutual solubility measurement. A mass balance of these volatiles considering their reactivity in model wine was established. For most of the studied aroma compounds, and mainly for linalool and ethyl octanoate, a sorption behavior into wood was reported for the first time. This phenomenon was selective and could not be related to the solubilities in model wine and hydrophobicities of the studied aroma compounds, suggesting that acid-base and polar characteristics of wood were more involved in this sorption mechanism. This study has also shown that the level of sorption is a function of the ratio of wood surface area/solution volume.

  16. Bioconversion of volatile fatty acids derived from waste activated sludge into lipids by Cryptococcus curvatus.

    Science.gov (United States)

    Liu, Jia; Liu, Jia-Nan; Yuan, Ming; Shen, Zi-Heng; Peng, Kai-Ming; Lu, Li-Jun; Huang, Xiang-Feng

    2016-07-01

    Pure volatile fatty acid (VFA) solution derived from waste activated sludge (WAS) was used to produce microbial lipids as culture medium in this study, which aimed to realize the resource recovery of WAS and provide low-cost feedstock for biodiesel production simultaneously. Cryptococcus curvatus was selected among three oleaginous yeast to produce lipids with VFAs derived from WAS. In batch cultivation, lipid contents increased from 10.2% to 16.8% when carbon to nitrogen ratio increased from about 3.5 to 165 after removal of ammonia nitrogen by struvite precipitation. The lipid content further increased to 39.6% and the biomass increased from 1.56g/L to 4.53g/L after cultivation for five cycles using sequencing batch culture (SBC) strategy. The lipids produced from WAS-derived VFA solution contained nearly 50% of monounsaturated fatty acids, including palmitic acid, heptadecanoic acid, ginkgolic acid, stearic acid, oleic acid, and linoleic acid, which showed the adequacy of biodiesel production.

  17. Yeast strains as potential aroma enhancers in dry fermented sausages.

    Science.gov (United States)

    Flores, Mónica; Corral, Sara; Cano-García, Liliana; Salvador, Ana; Belloch, Carmela

    2015-11-06

    Actual healthy trends produce changes in the sensory characteristics of dry fermented sausages therefore, new strategies are needed to enhance their aroma. In particular, a reduction in the aroma characteristics was observed in reduced fat and salt dry sausages. In terms of aroma enhancing, generally coagulase-negative cocci were selected as the most important group from the endogenous microbiota in the production of flavour compounds. Among the volatile compounds analysed in dry sausages, ester compounds contribute to fruity aroma notes associated with high acceptance of traditional dry sausages. However, the origin of ester compounds in traditional dry sausages can be due to other microorganisms as lactic acid bacteria, yeast and moulds. Yeast contribution in dry fermented sausages was investigated with opposite results attributed to low yeast survival or low activity during processing. Generally, they affect sausage colour and flavour by their oxygen-scavenging and lipolytic activities in addition to, their ability to catabolize fermentation products such as lactate increasing the pH and contributing to less tangy and more aromatic sausages. Recently, the isolation and characterization of yeast from traditional dry fermented sausages made possible the selection of those with ability to produce aroma active compounds. Molecular methods were used for genetic typing of the isolated yeasts whereas their ability to produce aroma compounds was tested in different systems such as in culture media, in model systems and finally on dry fermented sausages. The results revealed that the appropriate selection of yeast strains with aroma potential may be used to improve the sensory characteristics of reformulated fermented sausages.

  18. Microbial Contribution to Wine Aroma and Its Intended Use for Wine Quality Improvement

    OpenAIRE

    Ignacio Belda; Javier Ruiz; Adelaida Esteban-Fernández; Eva Navascués; Domingo Marquina; Antonio Santos; M. Victoria Moreno-Arribas

    2017-01-01

    Wine is a complex matrix that includes components with different chemical natures, the volatile compounds being responsible for wine aroma quality. The microbial ecosystem of grapes and wine, including Saccharomyces and non-Saccharomyces yeasts, as well as lactic acid bacteria, is considered by winemakers and oenologists as a decisive factor influencing wine aroma and consumer’s preferences. The challenges and opportunities emanating from the contribution of wine microbiome to the production ...

  19. Aroma improvement by repeated freeze-thaw treatment during Tuber melanosporum fermentation

    Science.gov (United States)

    Xiao, Deng-Rong; Liu, Rui-Sang; He, Long; Li, Hong-Mei; Tang, Ya-Ling; Liang, Xin-Hua; Chen, Tao; Tang, Ya-Jie

    2015-01-01

    The aroma attributes of sulfurous, mushroom and earthy are the most important characteristics of the aroma of Tuber melanosporum. However, these three aroma attributes are absent in the T. melanosporum fermentation system. To improve the quality of the aroma, repeated freeze-thaw treatment (RFTT) was adopted to affect the interplay of volatile organic compounds (VOCs). Using RFTT, not only was the score on the hedonic scale of the aroma increased from the “liked slightly” to the “liked moderately” grade, but the aroma attributes of sulfurous, mushroom and earthy could also be smelled in the T. melanosporum fermentation system for the first time. A total of 29 VOCs were identified, and 9 compounds were identified as the key discriminative volatiles affected by RFTT. Amino acid analysis revealed that methionine, valine, serine, phenylalanine, isoleucine and threonine were the key substrates associated with the biosynthesis of the 9 key discriminative VOCs. This study noted that amino acid metabolism played an important role in the regulation of the aroma of the T. melanosporum fermentation system. PMID:26607288

  20. Impact of the nonvolatile wine matrix composition on the in vivo aroma release from wines.

    Science.gov (United States)

    Muñoz-González, Carolina; Martín-Álvarez, Pedro J; Moreno-Arribas, M Victoria; Pozo-Bayón, M Ángeles

    2014-01-08

    The impact of the nonvolatile wine matrix composition on the retronasal aroma release of four volatile compounds added to different types of wines has been evaluated. For this purpose, a tailor-made retronasal aroma trapping device (RATD) was used to entrap the exhaled breath of six panelists previously trained in a specific consumption procedure. Five wines of different composition (white wine, sparkling white wine, young red wine, aged red wine, and a sweet wine) were evaluated. Prior to the evaluation, with the exception of the sweet wine, the wines were adjusted to the same ethanol content and aromatized with a mixture of four target volatile compounds. Aroma release data were submitted to multivariate statistical analysis in order to relate wine chemical composition and aroma release during wine drinking. Results showed interindividual differences and a clustering of panelists among lower and higher aroma releasers, which was in agreement to the differences in their breathing capacity. A significant influence of the matrix composition in the low aroma releasers group during wine consumption was observed. The consumption of red wines provoked a significantly higher aroma release than the consumption of white and sweet wines. From the chemical composition determined in the wine samples (pH, total acidity, total polyphenols, neutral polysaccharides, residual sugar, and nitrogenous compounds), the amount of total polyphenols was better correlated with the observed effect.

  1. Aroma improvement by repeated freeze-thaw treatment during Tuber melanosporum fermentation.

    Science.gov (United States)

    Xiao, Deng-Rong; Liu, Rui-Sang; He, Long; Li, Hong-Mei; Tang, Ya-Ling; Liang, Xin-Hua; Chen, Tao; Tang, Ya-Jie

    2015-11-26

    The aroma attributes of sulfurous, mushroom and earthy are the most important characteristics of the aroma of Tuber melanosporum. However, these three aroma attributes are absent in the T. melanosporum fermentation system. To improve the quality of the aroma, repeated freeze-thaw treatment (RFTT) was adopted to affect the interplay of volatile organic compounds (VOCs). Using RFTT, not only was the score on the hedonic scale of the aroma increased from the "liked slightly" to the "liked moderately" grade, but the aroma attributes of sulfurous, mushroom and earthy could also be smelled in the T. melanosporum fermentation system for the first time. A total of 29 VOCs were identified, and 9 compounds were identified as the key discriminative volatiles affected by RFTT. Amino acid analysis revealed that methionine, valine, serine, phenylalanine, isoleucine and threonine were the key substrates associated with the biosynthesis of the 9 key discriminative VOCs. This study noted that amino acid metabolism played an important role in the regulation of the aroma of the T. melanosporum fermentation system.

  2. Aroma Stripping under various Forms of Membrane Distillation Processes: Experiments and modeling

    DEFF Research Database (Denmark)

    Jonsson, Gunnar Eigil

    Concentration of fruit juices by membrane distillation is an interesting process as it can be done at low temperature giving a gentle concentration process with little deterioration of the juices. Since the juices contains many different aroma compounds with a wide range of chemical properties...... such as volatility, activity coefficient and vapor pressure, it is important to know how these aroma compounds will eventually pass through the membrane. Experiments have been made on an aroma model solution and on black currant juice in a lab scale membrane distillation set up which can be operated in various types...

  3. A fast and simple method for quantitative determination of fat-derived medium and low-volatile compounds in cheese

    NARCIS (Netherlands)

    Alewijn, M.; Sliwinski, E.L.; Wouters, J.T.M.

    2003-01-01

    Cheese flavour is a mixture of many (volatile) compounds, mostly formed during ripening. The current method was developed to qualify and quantify fat-derived compounds in cheese. Cheese samples were extracted with acetonitrile, which led to a concentrated solution of potential favour compounds, main

  4. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2015-09-15

    Volatile fatty acids (VFA) are organic compounds of great importance for various industries and environmental processes. Fermentation and anaerobic digestion of organic wastes are promising alternative technologies for VFA production. However, one of the major challenges is development of sustainable downstream technologies for VFA recovery. In this study, an innovative microbial bipolar electrodialysis cell (MBEDC) was developed to meet the challenge of waste-derived VFA recovery, produce hydrogen and alkali, and potentially treat wastewater. The MBEDC was operated in fed-batch mode. At an applied voltage of 1.2 V, a VFA recovery efficiency of 98.3%, H2 of 18.4 mL and alkali production presented as pH of 12.64 were obtained using synthetic fermentation broth. The applied voltage, initial VFA concentrations and composition were affecting the VFA recovery. The energy balance revealed that net energy (5.20-6.86 kWh/kg-VFA recovered) was produced at all the applied voltages (0.8-1.4 V). The coexistence of other anionic species had no negative effect on VFA transportation. The VFA concentration was increased 2.96 times after three consecutive batches. Furthermore, the applicability of MBEDC was successfully verified with digestate. These results demonstrate for the first time the possibility of a new method for waste-derived VFA recovery and valuable products production that uses wastewater as fuel and bacteria as catalyst. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Aroma exposure time and aroma concentration in relation to satiation.

    Science.gov (United States)

    Ramaekers, Mariëlle G; Luning, Pieternel A; Ruijschop, Rianne M A J; Lakemond, Catriona M M; Bult, Johannes H F; Gort, Gerrit; van Boekel, Martinus A J S

    2014-02-01

    The present study investigated the effect of aroma exposure time and aroma concentration on ad libitum intake and subjective satiation. In a within-subject study, thirty-eight unrestrained, healthy female participants (age: 18-39 years; BMI: 18·5-26·0 kg/m²) were asked to consume tomato soup during lunchtime, until they felt comfortably full. Every 30 s, the participants consumed 10 g of a bland soup base while tomato soup aroma was delivered separately through the nose via a retronasal tube that was attached to an olfactometer. This gave the impression of consuming real tomato soup. For each sip, the aroma varied in exposure time (3 and 18 s) and concentration (5 × ), resulting in four different test conditions. Ad libitum food intake and appetite profile parameters were measured. A 9% lower food intake was observed when the participants were exposed to the condition with 18 s exposure time and a high concentration than when exposed to the other three conditions. These results indicate that changing the retronasal aroma release by aroma concentration and aroma exposure time affects food intake.

  6. A study revealing the key aroma compounds of steamed bread made by Chinese traditional sourdough.

    Science.gov (United States)

    Zhang, Guo-Hua; Wu, Tao; Sadiq, Faizan A; Yang, Huan-Yi; Liu, Tong-Jie; Ruan, Hui; He, Guo-Qing

    Aroma of Chinese steamed bread (CSB) is one of the important parameters that determines the overall quality attributes and consumer acceptance. However, the aroma profile of CSB still remains poorly understood, mainly because of relying on only a single method for aroma extraction in previous studies. Therefore, the objective of this study was to determine the volatile aroma compounds of five different samples of CSB using three different aroma extraction methods, namely solid-phase microextraction (SPME), simultaneous distillation-extraction (SDE), and purge and trap (P&T). All samples showed a unique aroma profile, which could be attributed to their unique microbial consortia. (E)-2-Nonenal and (E,E)-2,4-decadienal were the most prevalent aromatic compounds revealed by SDE, which have not been reported previously, while ethanol and acetic acid proved to be the most dominant compounds by both SPME and P&T. Our approach of combining three different aroma extraction methods provided better insights into the aroma profile of CSB, which had remained largely unknown in previous studies.

  7. A study revealing the key aroma compounds of steamed bread made by Chinese traditional sourdough*

    Science.gov (United States)

    Zhang, Guo-hua; Wu, Tao; Sadiq, Faizan A.; Yang, Huan-yi; Liu, Tong-jie; Ruan, Hui; He, Guo-qing

    2016-01-01

    Aroma of Chinese steamed bread (CSB) is one of the important parameters that determines the overall quality attributes and consumer acceptance. However, the aroma profile of CSB still remains poorly understood, mainly because of relying on only a single method for aroma extraction in previous studies. Therefore, the objective of this study was to determine the volatile aroma compounds of five different samples of CSB using three different aroma extraction methods, namely solid-phase microextraction (SPME), simultaneous distillation–extraction (SDE), and purge and trap (P&T). All samples showed a unique aroma profile, which could be attributed to their unique microbial consortia. (E)-2-Nonenal and (E,E)-2,4-decadienal were the most prevalent aromatic compounds revealed by SDE, which have not been reported previously, while ethanol and acetic acid proved to be the most dominant compounds by both SPME and P&T. Our approach of combining three different aroma extraction methods provided better insights into the aroma profile of CSB, which had remained largely unknown in previous studies. PMID:27704748

  8. A discrete-time two-factor model for pricing bonds and interest rate derivatives under random volatility

    OpenAIRE

    Heston, Steven L.; Nandi, Saikat

    1999-01-01

    This paper develops a discrete-time two-factor model of interest rates with analytical solutions for bonds and many interest rate derivatives when the volatility of the short rate follows a GARCH process that can be correlated with the level of the short rate itself. Besides bond and bond futures, the model yields analytical solutions for prices of European options on discount bonds (and futures) as well as other interest rate derivatives such as caps, floors, average rate options, yield curv...

  9. Plant extracts applications to the vineyard and their impact on wine aroma

    OpenAIRE

    Martínez Gil, Ana María

    2013-01-01

    It is known that certain foliar applications to the grapevine or volatile compounds present in the environment, where grapes are grown, may modify the wine aroma. The fact that the vineyards assimilate volatile compounds and transmit them to its grapes and respective wines supposes an innovative research, which might have a huge impact on the wine sector when seeking the differentiation. There are plant extracts from the oak or aromatic plants (hydrolats) that have volatile compounds in their...

  10. Influence of eggs on the aroma composition of a sponge cake and on the aroma release in model studies on flavored sponge cakes.

    Science.gov (United States)

    Pozo-Bayón, Maria Angeles; Ruíz-Rodríguez, Alejandro; Pernin, Karine; Cayot, Nathalie

    2007-02-21

    The use of solvent-assisted flavor evaporation extraction (SAFE) and purge and trap in Tenax allowed the identification of more than 100 volatile compounds in a sponge cake (SC-e). Gas chromatography-olfactometry (GC-O) of the SAFE extracts of crumb and crust were achieved in order to determine the most potent odorants of SC-e. The change in the traditional dough formulation of SC-e in which eggs were substituted by baking powder (SC-b) as the leavening agent produced important changes in some key aroma compounds. The release curves of some aroma compounds-some of them generated during baking and others added in the dough-were followed by cumulative headspace analysis. In the flavored SC-b, the aroma release curves showed a plateau after 15 min of purge, while the release increased proportionally with the purge time in the flavored SC-e. In general, except for some of the aroma compounds with the highest log P values, the rate of release of most of the added and generated aroma compounds was significantly influenced by the changes in the cake formulation. The higher rates of release found for the aroma compounds in SC-b could contribute to explain its rapid exhaustion of aroma compounds in the purge and trap experiments and might lead to poorer sensorial characteristics of this cake during storage.

  11. Aroma components from dried sausages fermented with Staphylococcus xylosus

    DEFF Research Database (Denmark)

    Stahnke, Marie Louise Heller

    1994-01-01

    Sausages with and without Staphylococcus xylosus were manufactured with four replicates. Antibiotics and a fungicide to inhibit growth of naturally occuring microorganisms were added to the control sausages. The volatile compounds from the sausages were collected and identified by gas chromatogra...... amounts of free fatty acids, it seemed to be of no importance to aroma development. It is therefore questionable whether lipolytic activity of starter cultures has an influence on sausage flavour....

  12. Generation of aroma compounds in a fermented sausage meat model system by Debaryomyces hansenii strains.

    Science.gov (United States)

    Cano-García, Liliana; Rivera-Jiménez, Silvia; Belloch, Carmela; Flores, Mónica

    2014-05-15

    The ability of seven Debaryomyces hansenii strains to generate aroma compounds in a fermented sausage model system was evaluated. The presence of the yeast, in the inoculated models, was confirmed by PCR amplification of M13 minisatellite. Volatile compounds production was analysed using Solid Phase Micro-Extraction and gas chromatography/mass spectrometry. Forty volatile compounds were detected, quantified and their odour activity values (OAVs) calculated. All volatile compounds increased during time in the inoculated models although significant differences were found amongst them. Ester and sulphur production was strongly dependent on the strain inoculated. D. hansenii P2 and M6 strains were the highest producers of sulphur compounds where dimethyl disulphide and dimethyl trisulfide were the most prominent aroma components identified by their OAVs whereas, M4 showed the highest OAVs for ester compounds followed by the P2 strain. The meat model system has been useful to show the real ability of yeast strains to produce aroma compounds.

  13. GC-MS-olfactometric characterization of the most aroma-active components in a representative aromatic extract from Iranian saffron (Crocus sativus L.).

    Science.gov (United States)

    Amanpour, Asghar; Sonmezdag, A Salih; Kelebek, Hasim; Selli, Serkan

    2015-09-01

    Aroma and aroma-active compounds of Iranian saffron (Crocus sativus L.) were analyzed by gas chromatography-mass spectrometry-olfactometry. The saffron aromatic extracts were obtained by four different extraction techniques including solvent-assisted flavour evaporation (SAFE), liquid-liquid extraction (LLE), solid phase extraction (SPE), and simultaneous distillation extraction (SDE) and compared to achieve a representative aromatic extract from saffron. According to sensory analysis, the aromatic extract obtained by SAFE was the most representative of saffron odour. A total of 28 aroma compounds were identified in saffron. Ketones were quantitatively the most dominant volatiles in saffron, followed by aldehydes and acids. Aroma extract dilution analysis (AEDA) was used for the determination of aroma-active compounds of saffron. A total of nine aroma-active compounds were detected in the aromatic extract. On the basis of the flavour dilution (FD) factor, the most powerful aroma active compounds were safranal (FD = 512), 4-ketoisophorone (FD = 256) and dihydrooxophorone (FD = 128).

  14. A rapid column technique for trapping and collecting of volatile fungal hydrocarbons and hydrocarbon derivatives.

    Science.gov (United States)

    Booth, Eric; Strobel, Gary; Knighton, Berk; Sears, Joe; Geary, Brad; Avci, Recep

    2011-10-01

    A custom-made stainless steel column was designed to contain various materials that would trap the hydrocarbons and hydrocarbon derivatives during the processes of fungal fermentation ultimately yielding preparative amounts of volatile organic substances (VOCs). Trapping materials tested in the column were Carbotrap materials A and B (Supelco) as well as bentonite-shale from the oil bearing areas of Eastern Montana, the former allowed for the effective and efficient trapping of VOCs from purged cultures of Hypoxylon sp. Trapping efficiencies of various materials were measured by both gravimetric as well as proton transfer reaction mass spectroscopy with the Carbotraps A and B being 99% efficient when tested with known amounts of 1,8-cineole. Trapped fungal VOCs could effectively be removed and recovered via controlled heating of the stainless steel column followed by passage of the gases through a liquid nitrogen trap at a recovery rate of ca 65-70%. This method provides for the recovery of mg quantities of compounds normally present in the gas phase that may be needed for spectroscopy, bioassays and further separation and analysis and may have wide applicability for many other biological systems involving VOCs. Other available Carbotraps could be used for other applications.

  15. Detection of Volatile Metabolites Derived from Garlic (Allium sativum in Human Urine

    Directory of Open Access Journals (Sweden)

    Laura Scheffler

    2016-12-01

    Full Text Available The metabolism and excretion of flavor constituents of garlic, a common plant used in flavoring foods and attributed with several health benefits, in humans is not fully understood. Likewise, the physiologically active principles of garlic have not been fully clarified to date. It is possible that not only the parent compounds present in garlic but also its metabolites are responsible for the specific physiological properties of garlic, including its influence on the characteristic body odor signature of humans after garlic consumption. Accordingly, the aim of this study was to investigate potential garlic-derived metabolites in human urine. To this aim, 14 sets of urine samples were obtained from 12 volunteers, whereby each set comprised one sample that was collected prior to consumption of food-relevant concentrations of garlic, followed by five to eight subsequent samples after garlic consumption that covered a time interval of up to 26 h. The samples were analyzed chemo-analytically using gas chromatography-mass spectrometry/olfactometry (GC-MS/O, as well as sensorially by a trained human panel. The analyses revealed three different garlic-derived metabolites in urine, namely allyl methyl sulfide (AMS, allyl methyl sulfoxide (AMSO and allyl methyl sulfone (AMSO2, confirming our previous findings on human milk metabolite composition. The excretion rates of these metabolites into urine were strongly time-dependent with distinct inter-individual differences. These findings indicate that the volatile odorant fraction of garlic is heavily biotransformed in humans, opening up a window into substance circulation within the human body with potential wider ramifications in view of physiological effects of this aromatic plant that is appreciated by humans in their daily diet.

  16. Detection of Volatile Metabolites Derived from Garlic (Allium sativum) in Human Urine

    Science.gov (United States)

    Scheffler, Laura; Sauermann, Yvonne; Heinlein, Anja; Sharapa, Constanze; Buettner, Andrea

    2016-01-01

    The metabolism and excretion of flavor constituents of garlic, a common plant used in flavoring foods and attributed with several health benefits, in humans is not fully understood. Likewise, the physiologically active principles of garlic have not been fully clarified to date. It is possible that not only the parent compounds present in garlic but also its metabolites are responsible for the specific physiological properties of garlic, including its influence on the characteristic body odor signature of humans after garlic consumption. Accordingly, the aim of this study was to investigate potential garlic-derived metabolites in human urine. To this aim, 14 sets of urine samples were obtained from 12 volunteers, whereby each set comprised one sample that was collected prior to consumption of food-relevant concentrations of garlic, followed by five to eight subsequent samples after garlic consumption that covered a time interval of up to 26 h. The samples were analyzed chemo-analytically using gas chromatography-mass spectrometry/olfactometry (GC-MS/O), as well as sensorially by a trained human panel. The analyses revealed three different garlic-derived metabolites in urine, namely allyl methyl sulfide (AMS), allyl methyl sulfoxide (AMSO) and allyl methyl sulfone (AMSO2), confirming our previous findings on human milk metabolite composition. The excretion rates of these metabolites into urine were strongly time-dependent with distinct inter-individual differences. These findings indicate that the volatile odorant fraction of garlic is heavily biotransformed in humans, opening up a window into substance circulation within the human body with potential wider ramifications in view of physiological effects of this aromatic plant that is appreciated by humans in their daily diet. PMID:27916960

  17. Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper.

    Science.gov (United States)

    Choi, Hye Kyung; Song, Geun Cheol; Yi, Hwe-Su; Ryu, Choong-Min

    2014-08-01

    Plants are defended from attack by emission of volatile organic compounds (VOCs) that can act directly against pathogens and herbivores or indirectly by recruiting natural enemies of herbivores. However, microbial VOC have been less investigated as potential triggers of plant systemic defense responses against pathogens in the field. Bacillus amyloliquefaciens strain IN937a, a plant growth-promoting rhizobacterium that colonizes plant tissues, stimulates induced systemic resistance (ISR) via its emission of VOCs. We investigated the ISR capacity of VOCs and derivatives collected from strain IN937a against bacterial spot disease caused by Xanthomonas axonopodis pv. vesicatoria in pepper. Of 15 bacterial VOCs and their derivatives, 3-pentanol, which is a C8 amyl alcohol reported to be a component of sex pheromones in insects, was selected for further investigation. Pathogens were infiltrated into pepper leaves 10, 20, 30, and 40 days after treatment and transplantation to the field. Disease severity was assessed 7 days after transplantation. Treatment with 3-pentanol significantly reduced disease severity caused by X. axonopodis and naturally occurring Cucumber mosaic virus in field trials over 2 years. We used quantitative real-time polymerase chain analysis to examine Pathogenesis-Related genes associated with salicylic acid (SA), jasmonic acid (JA), and ethylene defense signaling. The expression of Capsicum annuum Pathogenesis-Related protein 1 (CaPR1), CaPR2, and Ca protease inhibitor2 (CaPIN2) increased in field-grown pepper plants treated with 3-pentanol. Taken together, our results show that 3-pentanol triggers induced resistance by priming SA and JA signaling in pepper under field conditions.

  18. Use of Nitrogen Isotope To Determine Fertilizer- and Soil-Derived Ammonia Volatilization in a Rice/Wheat Rotation System.

    Science.gov (United States)

    Zhao, Xu; Yan, Xiaoyuan; Xie, Yingxin; Wang, Shenqiang; Xing, Guangxi; Zhu, Zhaoliang

    2016-04-20

    The nitrogen (N) isotope method reveals that application of fertilizer N can increase crop uptake or denitrification and leaching losses of native soil N via the "added N interaction". However, there is currently little evidence of the impact of added N on soil N losses through NH3 volatilization using (15)N methodologies. In the present study, a three-year rice/wheat rotated experiment with 30% (15)N-labeled urea applied in the first rice season and unlabeled urea added in the following five crop seasons was performed to investigate volatilization of NH3 from fertilizer and soil N. We found 9.28% of NH3 loss from (15)N urea and 2.88-7.70% declines in (15)N-NH3 abundance occurred during the first rice season, whereas 0.11% of NH3 loss from (15)N urea and 0.02-0.21% enrichments in (15)N-NH3 abundance happened in the subsequent seasons. The contributions of fertilizer- and soil-derived N to NH3 volatilization from a rice/wheat rotation were 75.8-88.4 and 11.6-24.2%, respectively. These distinct variations in (15)N-NH3 and substantial soil-derived NH3 suggest that added N clearly interacts with the soil source contributing to NH3 volatilization.

  19. Aroma chemical composition of red wines from different price categories and its relationship to quality.

    Science.gov (United States)

    Juan, Felipe San; Cacho, Juan; Ferreira, Vicente; Escudero, Ana

    2012-05-23

    The aroma chemical composition of three sets of Spanish red wines belonging to three different price categories was studied by using an array of gas chromatographic methods. Significant differences were found in the levels of 72 aroma compounds. Expensive wines are richest in wood-related compounds, ethyl phenols, cysteinil-derived mercaptans, volatile sulfur compounds, ethyl esters of branched acids, methional, and phenylacetaldehyde and are poorest in linear and branched fatty acids, fusel alcohols, terpenols, norisoprenoids, fusel alcohol acetates, and ethyl esters of the linear fatty acids; inexpensive wines show exactly the opposite profile, being richest in E-2-nonenal, E-2-hexenal, Z-3-hexenol, acetoin, and ethyl lactate. Satisfactory models relating quality to odorant composition could be built exclusively for expensive and medium-price wines but not for the lower-price sample set in which in-mouth attributes had to be included. The models for quality reveal a common structure, but they are characteristic of a given sample set.

  20. 同时蒸馏萃取和动态顶空萃取法提取焙烤小麦胚芽中风味物质%Analysis of Volatile Aroma Components in Baked Wheat Germ by Simultaneous Distillation and Extraction or Dynamic Headspace Extraction Coupled with GC-MS

    Institute of Scientific and Technical Information of China (English)

    呼德; 张颖; 张甜甜; 侯建军; 任雅琳; 陈存社

    2012-01-01

    The purpose of this study was to compare the analytical results obtained for the volatile composition of baked wheat germ by simultaneous distillation extraction (SDE) and dynamic headspace extraction (DHE) coupled with GC-MS. A total of 101 volatile compounds were identified from baked wheat germ by both methods, including 15 aldehydes, 8 alcohols, 11 hydrocarbons, 12 ketones, 6 ester, 5 phenols, 10 acids, 6 ethers and 28 nitrogen-containing heterocyclic compounds. Among them, aldehydes and nitrogen-containing heterocyclic compounds were identified as dominant volatile compounds responsible for the flavor of baked wheat germ. Great differences were observed among the peak areas of the same volatile compounds measured by both methods, but almost the same types of volatile compounds were identified from baked wheat germ, especially the critical aroma-active compounds. Therefore, similar results could be obtained for the composition of aromatic compounds by SDE/GC-MS and DHE/GC-MS.%为研究焙烤小麦胚芽中的挥发性风味成分,采用动态顶空萃取(DHS)与同时蒸馏萃取(SDE)两种方法提取焙烤小麦胚芽中的风味物质,并通过气质联机(GC-MS)进行风味成分的分离与鉴定,结果共鉴定出101种化合物,包括醛类15种、醇类8种、烃类11种、酮类12种、酯类6种、酚类5种,酸类10种、醚类6种、含氮杂环类28种,其中挥发性的醛以及含氮类杂环化合物构成了焙烤小麦胚芽的风味主体。两种方法检测出的香味化合物的峰面积偏差较大,但鉴定出的化合物种类大致相同,特别是焙烤麦芽香味中的关键香味成分。从香味成分的构成考虑,DHs/GC-MS与sDE/GC-MS的分析结果较为相似。

  1. Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: II. Multivariate statistical profiling of pineapple aroma compounds based on comprehensive two-dimensional gas chromatography-mass spectrometry.

    Science.gov (United States)

    Steingass, Christof Björn; Jutzi, Manfred; Müller, Jenny; Carle, Reinhold; Schmarr, Hans-Georg

    2015-03-01

    Ripening-dependent changes of pineapple volatiles were studied in a nontargeted profiling analysis. Volatiles were isolated via headspace solid phase microextraction and analyzed by comprehensive 2D gas chromatography and mass spectrometry (HS-SPME-GC×GC-qMS). Profile patterns presented in the contour plots were evaluated applying image processing techniques and subsequent multivariate statistical data analysis. Statistical methods comprised unsupervised hierarchical cluster analysis (HCA) and principal component analysis (PCA) to classify the samples. Supervised partial least squares discriminant analysis (PLS-DA) and partial least squares (PLS) regression were applied to discriminate different ripening stages and describe the development of volatiles during postharvest storage, respectively. Hereby, substantial chemical markers allowing for class separation were revealed. The workflow permitted the rapid distinction between premature green-ripe pineapples and postharvest-ripened sea-freighted fruits. Volatile profiles of fully ripe air-freighted pineapples were similar to those of green-ripe fruits postharvest ripened for 6 days after simulated sea freight export, after PCA with only two principal components. However, PCA considering also the third principal component allowed differentiation between air-freighted fruits and the four progressing postharvest maturity stages of sea-freighted pineapples.

  2. The Development of Aromas in Ruminant Meat

    Directory of Open Access Journals (Sweden)

    María M. Campo

    2013-06-01

    Full Text Available This review provides an update on our understanding of the chemical reactions (lipid oxidation, Strecker and Maillard reactions, thiamine degradation and a discussion of the principal aroma compounds derived from those reaction or other sources in cooked meat, mainly focused on ruminant species. This knowledge is essential in order to understand, control, and improve the quality of food products. More studies are necessary to fully understand the role of each compound in the overall cooked meat flavour and their possible effect in consumer acceptability.

  3. Characterizing endogenous and oxidative low molecular weight flavor/aroma compounds in fresh squeezed/blended pomegranate juice.

    Science.gov (United States)

    Little published information exists regarding flavor and aroma compounds in pomegranate (Punica granatum) juices. Although, arils have fruity and sweet characteristics, we found no publications describing volatile and semi-volatile compounds responsible for their typical flavor. Only two reports w...

  4. Modulation of coffee aroma via the fermentation of green coffee beans with Rhizopus oligosporus: II. Effects of different roast levels.

    Science.gov (United States)

    Lee, Liang Wei; Cheong, Mun Wai; Curran, Philip; Yu, Bin; Liu, Shao Quan

    2016-11-15

    This study aims to evaluate how changes of the volatile and non-volatile profiles of green coffees induced by Rhizopus oligosporus fermentation of green coffee beans (Part I) translated to changes in the volatile and aroma profiles of light, medium and dark roasted coffees and non-volatile profile of roasted coffee where fermentation effects were most distinctive (light roast). R. oligosporus fermentation resulted in 1.7-, 1.5- and 1.3-fold increases in pyrazine, 2-methylpyrazine and 2-ethylpyrazine levels in coffees of all roast degrees, respectively. This corresponded with the greater extent of amino acids degradation in light roasted fermented coffee. Ethyl palmitate was detected exclusively in medium and dark roasted fermented coffees. The sweet attribute of light and dark roasted coffees were increased following fermentation along with other aroma profile changes that were roast degree specific. This work aims to develop a direct but novel methodology for coffee aroma modulation through green coffee beans fermentation.

  5. Analytical and sensorial characterization of the aroma of wines produced with sour rotten grapes using GC-O and GC-MS: identification of key aroma compounds.

    Science.gov (United States)

    Barata, André; Campo, Eva; Malfeito-Ferreira, Manuel; Loureiro, Virgílio; Cacho, Juan; Ferreira, Vicente

    2011-03-23

    In the present work, the aroma profiles of wines elaborated from sound and sour rot-infected grapes as raw material have been studied by sensory analysis, gas chromatography-olfactometry (GC-O), and gas chromatography-mass spectrometry (GC-MS), with the aim of determining the odor volatiles most likely associated with this disease. The effect of sour rot was tested in monovarietal wines produced with the Portuguese red grape variety Trincadeira and in blends of Cabernet Sauvignon and sour rotten Trincadeira grapes. Wines produced from damaged berries exhibited clear honey-like notes not evoked by healthy samples. Ethyl phenylacetate (EPhA) and phenylacetic acid (PAA), both exhibiting sweet honey-like aromas, emerged as key aroma compounds of sour rotten wines. Their levels were 1 order of magnitude above those found in controls and reached 304 and 1668 μg L(-1) of EPhA and PAA, respectively, well above the corresponding odor thresholds. Levels of γ-nonalactone also increased by a factor 3 in sour rot samples. Results also suggest that sour rot exerts a great effect on the secondary metabolism of yeast, decreasing the levels of volatiles related to fatty acids and amino acid synthesis. The highest levels of γ-decalactone of up to 405 μg L(-1) were also found in all of the samples, suggesting that this could be a relevant aroma compound in Trincadeira wine aroma.

  6. Comparison of the sensitivity of different aroma extraction techniques in combination with gas chromatography-mass spectrometry to detect minor aroma compounds in wine.

    Science.gov (United States)

    Gamero, Amparo; Wesselink, Wilma; de Jong, Catrienus

    2013-01-11

    MicroVinification platforms are used for screening purposes to study aroma development in wine. These high-throughput methodologies require flavor analysis techniques that allow fast detection of a high number of aroma compounds which often appear in very low concentrations (μg/l). In this work, a selection of aroma extraction techniques in combination with gas chromatography-mass spectrometry (GC-MS) were evaluated to detect minor wine aroma compounds in low sample volume. The techniques evaluated were headspace (HS), headspace solid-phase dynamic extraction (HS-SPDE), headspace solid-phase microextraction (HS-SPME), direct immersion solid-phase microextraction (DI-SPME), stir bar sorptive extraction (SBSE) and monolithic material sorptive extraction (MMSE). DI-SPME showed the highest sensitivity as expressed by detection of the highest percentage of total aroma compounds at concentrations around 0.1 μg/l. SBSE and MMSE followed DI-SPME in terms of sensitivity. HS-SPME was less sensitive but considered sensitive enough for detection of most of the volatile compounds present in highly aromatic wines. Matrix effect was shown to strongly affect aroma extraction and therefore the sensitivity of the different extraction methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Proteomic and metabolomic analyses provide insight into production of volatile and non-volatile flavor components in mandarin hybrid fruit

    Science.gov (United States)

    Although many of the volatile constituents of flavor and aroma in citrus have been identified, the molecular mechanism and regulation of volatile production is not well understood. Our aim was to understand mechanisms of flavor volatile production and regulation in mandarin fruit. To this end fruits...

  8. Selection of aroma compounds for the differentiation of wines obtained by fermenting musts with starter cultures of commercial yeast strains.

    Science.gov (United States)

    Vararu, Florin; Moreno-García, Jaime; Zamfir, Cătălin-Ioan; Cotea, Valeriu V; Moreno, Juan

    2016-04-15

    Nine wines obtained by fermenting Aligoté musts with individual starter cultures of eight Saccharomyces cerevisiae yeast strains and with the indigenous microbiota were compared in terms of their composition in minor volatile aroma compounds. An easy handle methodology Stir-Bar-Sorptive-Adsorption, Gas Chromatography-Mass Spectrometry based, permits the identification of 49 aroma compounds. The rearrangement of these aroma compounds in six chemical families permits the establishment of a finger printing for each wine. Eighteen aroma compounds that exhibit a high differentiation power (p⩽0.05) were selected for chemometric analysis. The Principal Component Analysis carried out with these aroma compounds reveal that the first two principal components explain 53.8% and 17.2% of the total variance, respectively, allowing the establishment of nine different groups, in accordance with the wine types obtained. These results reveal analytical differences among the wines that are not recognized by sensorial analysis.

  9. Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: I. Characterization of pineapple aroma compounds by comprehensive two-dimensional gas chromatography-mass spectrometry.

    Science.gov (United States)

    Steingass, Christof Björn; Carle, Reinhold; Schmarr, Hans-Georg

    2015-03-01

    Qualitative ripening-dependent changes of pineapple volatiles were studied via headspace solid-phase microextraction and analyzed by comprehensive two-dimensional gas chromatography quadrupole mass spectrometry (HS-SPME-GC×GC-qMS). Early green-ripe stage, post-harvest ripened, and green-ripe fruits at the end of their commercial shelf-life were compared to air-freighted pineapples harvested at full maturity. In total, more than 290 volatiles could be identified by mass spectrometry and their linear retention indices. The majority of compounds comprise esters (methyl and ethyl esters of saturated and unsaturated fatty acids, acetates), terpenes, alcohols, aldehydes, 2-ketones, free fatty acids, and miscellaneous γ- and δ-lactones. The structured separation space obtained by GC×GC allowed revealing various homologous series of compound classes as well as clustering of sesquiterpenes. Post-harvest ripening increased the diversity of the volatile profile compared to both early green-ripe maturity stages and on-plant ripened fruits.

  10. Characterization of the key aroma compounds in beef extract using aroma extract dilution analysis.

    Science.gov (United States)

    Takakura, Yukiko; Sakamoto, Tomohiro; Hirai, Sachi; Masuzawa, Takuya; Wakabayashi, Hidehiko; Nishimura, Toshihide

    2014-05-01

    Aroma extract dilution analysis (AEDA) of an ether extract prepared from beef extract (BE) and subsequent identification experiments led to the determination of seven aroma-active compounds in the flavor dilution (FD) factor range of 32-128. Omission experiments to select the most aroma-active compounds from the seven aroma compounds suggested that 2,3,5-trimethyl pyrazine, 1-octen-3-ol, 3-methylbutanoic acid, and 4-hydroxy-2,5-dimethyl-3(2H)-furanone were the main active compounds contributing to the aroma of BE. Aroma recombination, addition, and omission experiments of the four aroma compounds in taste-reconstituted BE showed that each compound had an individual aroma profile. A comparison of the overall aroma between this recombination mixture and BE showed a high similarity, suggesting that the key aroma compounds had been identified successfully.

  11. Partial purification and characterisation of the peptide precursors of the cocoa-specific aroma components.

    Science.gov (United States)

    Voigt, Jürgen; Janek, Katharina; Textoris-Taube, Kathrin; Niewienda, Agathe; Wöstemeyer, Johannes

    2016-02-01

    Essential precursors of the cocoa-specific aroma notes are formed during fermentation of the cocoa beans by acid-induced proteolysis. It has been shown that, in addition to free amino acids, hydrophilic peptides derived from the vicilin-class(7S) globular storage protein are required for the generation of the cocoa-specific aroma notes during the roasting process. To identify those peptides responsible for the generation of the cocoa-specific aroma components, we have developed a procedure for the fractionation of the aroma precursor extract from well-fermented cocoa beans by ligand-exchange and subsequent Sephadex-LH20 chromatography. The cocoa-specific aroma precursor fractions were characterised by matrix-assisted laser-desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF) and the determination of their amino acid sequences by electrospray ionisation mass spectrometry (ESI-MS/MS).

  12. ALGORITHM FOR GENERALIZED GARMAN EQUATION IN OPTION PRICING OF A FINANCIAL DERIVATIVES WITH STOCHASTIC VOLATILITY MODELS

    Directory of Open Access Journals (Sweden)

    Maxim Ioan

    2009-05-01

    Full Text Available In our paper we build a reccurence from generalized Garman equation and discretization of 3-dimensional domain. From reccurence we build an algorithm for computing values of an option based on time, momentan volatility of support and value of support on a

  13. Influence of mastication and saliva on aroma release in a model mouth system

    NARCIS (Netherlands)

    Ruth, van S.M.; Roozen, J.P.

    2000-01-01

    The influence of mastication, saliva composition and saliva volume on aroma release from rehydrated diced bell peppers and French beans was studied in a model mouth system. Released volatile compounds were analysed by gas chromatography combined with sniffing port and flame ionisation detection.

  14. Influence of mastication and saliva on aroma release in a model mouth system

    NARCIS (Netherlands)

    Ruth, van S.M.; Roozen, J.P.

    2000-01-01

    The influence of mastication, saliva composition and saliva volume on aroma release from rehydrated diced bell peppers and French beans was studied in a model mouth system. Released volatile compounds were analysed by gas chromatography combined with sniffing port and flame ionisation detection. Com

  15. Extraction and preparation of high-aroma and low-caffeine instant green teas by the novel column chromatographic extraction method with gradient elution.

    Science.gov (United States)

    Li, Qing-Rong; Wu, Min; Huang, Rui-Jie; Chen, Ya-Fei; Chen, Chan-Jian; Li, Hui; Ni, He; Li, Hai-Hang

    2017-06-01

    The lack of aroma and natural taste is a critical problem in production and consumption of instant green teas. A method to prepare instant green teas high in-natural-aroma and low-caffeine by the novel column chromatographic extraction with gradient elution is reported. This method simultaneously extracted aroma (or volatile) and non-aroma compounds from green tea. Green tea was loaded into columns with 2.0-fold of petroleum ether (PE): ethanol (8:2). After standing for 3 h until the aroma compounds dissolved, the column was sequentially eluted with 3.0-fold 40% ethanol and 3.5-fold water. The eluant was collected together and automatically separated into PE and ethanol aqueous phases. The aroma extracts was obtained by vacuum-evaporation of PE phase at 45 °C. The ethanol aqueous phase was vacuum-concentrated to aqueous and partially or fully decaffeinated with 4% or 9% charcoal at 70 °C. A regular instant green tea with epigallocatechin-3-gallate: caffeine of 3.5:1 and a low-caffeine instant green tea (less than 1% caffeine) with excellent aroma and taste were prepared, by combining the aroma and non-aroma extracts at a 1:10 ratio. This work provides a practical approach to solve the low-aroma and low-taste problems in the production of high quality instant green teas.

  16. Influence of composition (CO2 and sugar) on aroma release and perception of mint-flavored carbonated beverages.

    Science.gov (United States)

    Saint-Eve, Anne; Déléris, Isabelle; Aubin, Elodie; Semon, Etienne; Feron, Gilles; Rabillier, Jean-Marc; Ibarra, Dominique; Guichard, Elisabeth; Souchon, Isabelle

    2009-07-08

    The aim of the present work was to identify and quantify physical mechanisms responsible for in-nose aroma release during the consumption of mint-flavored carbonated beverages in order to better understand how they are perceived. The effect of two composition factors (sugar and CO(2)) was investigated on both the sensory and physicochemical properties of drinks by studying in vitro and in vivo aroma release. Sensory results revealed that the presence of CO(2) increased aroma perception regardless of the sugar content. In agreement with volatility parameters, in vivo measurements showed that carbonated drinks released a greater quantity of aroma compounds in the nose space than non-carbonated ones. CO(2) seemed thus to induce large modifications of the physicochemical mechanisms responsible for the aroma release and flavor perception of soft drinks. Moreover, sugar content seemed to have an impact (increase) on aroma perception only in the case of non-carbonated beverages. Sensory interactions were thus observed, in particular, between sweet and aroma perceptions. For carbonated beverages, sugar content had an impact only on aroma release, but not on their perception.

  17. Glucosylation of Smoke-Derived Volatiles in Grapevine (Vitis vinifera) is Catalyzed by a Promiscuous Resveratrol/Guaiacol Glucosyltransferase.

    Science.gov (United States)

    Härtl, Katja; Huang, Fong-Chin; Giri, Ashok P; Franz-Oberdorf, Katrin; Frotscher, Johanna; Shao, Yang; Hoffmann, Thomas; Schwab, Wilfried

    2017-07-19

    Vinification of grapes (Vitis vinifera) exposed to forest fire smoke can yield unpalatable wine due to the presence of taint compounds from smoke and the release of smoke derived volatiles from their respective glycosides during the fermentation process or in-mouth during consumption. To identify glycosyltransferases (GTs) involved in the formation of glycosidically bound smoke-derived volatiles we performed gene expression analysis of candidate GTs in different grapevine tissues. Second, substrates derived from bushfire smoke or naturally occurring in grapes were screened with the candidate recombinant GTs. A resveratrol GT (UGT72B27) gene, highly expressed in grapevine leaves and berries was identified to be responsible for the production of the phenolic glucosides. UGT72B27 converted the stilbene trans-resveratrol mainly to the 3-O-glucoside. Kinetic analyses yielded specificity constants (kcat/KM) of 114, 17, 9, 8, and 2 mM(-1) s(-1) for guaiacol, trans-resveratrol, syringol, methylsyringol, and methylguaiacol, respectively. This knowledge will help to design strategies for managing the risk of producing smoke-affected wines.

  18. Volatile flavor compounds in yogurt: a review.

    Science.gov (United States)

    Cheng, Hefa

    2010-11-01

    Considerable knowledge has been accumulated on the volatile compounds contributing to the aroma and flavor of yogurt. This review outlines the production of the major flavor compounds in yogurt fermentation and the analysis techniques, both instrumental and sensory, for quantifying the volatile compounds in yogurt. The volatile compounds that have been identified in plain yogurt are summarized, with the few key aroma compounds described in detail. Most flavor compounds in yogurt are produced from lipolysis of milkfat and microbiological transformations of lactose and citrate. More than 100 volatiles, including carbonyl compounds, alcohols, acids, esters, hydrocarbons, aromatic compounds, sulfur-containing compounds, and heterocyclic compounds, are found in yogurt at low to trace concentrations. Besides lactic acid, acetaldehyde, diacetyl, acetoin, acetone, and 2-butanone contribute most to the typical aroma and flavor of yogurt. Extended storage of yogurt causes off-flavor development, which is mainly attributed to the production of undesired aldehydes and fatty acids during lipid oxidation. Further work on studying the volatile flavor compounds-matrix interactions, flavor release mechanisms, and the synergistic effect of flavor compounds, and on correlating the sensory properties of yogurt with the compositions of volatile flavor compounds are needed to fully elucidate yogurt aroma and flavor.

  19. Light Quality Dependent Changes in Morphology, Antioxidant Capacity, and Volatile Production in Sweet Basil (Ocimum basilicum

    Directory of Open Access Journals (Sweden)

    Sofia Carvalho

    2016-09-01

    Full Text Available Narrow-bandwidth light treatments may be used to manipulate plant growth, development and metabolism. In this report LED-based light treatments were used to affect yield and metabolic content of sweet basil (Ocimum basilicum L. cv ‘Ceasar’ grown in controlled environments. This culinary herb produces an aroma highly appreciated by consumers, primarily composed of terpenes/terpenoids, phenylpropanoids, and fatty-acid- derived volatile molecules. Basil plants were grown under narrow-bandwidth light conditions, and leaf area, height, mass, antioxidant capacity and volatile emissions were measured at various time points. The results indicate reproducible significant differences in specific volatiles, and in biochemical classes of volatiles, compared to greenhouse grown plants. For example, basil plants grown under blue/red/yellow or blue/red/green wavelengths emit higher levels of a subset of monoterpenoid volatiles, while a blue/red/far-red treatment leads to higher levels of most sesquiterpenoid volatile molecules. Specific light treatments increase volatile content, mass, and antioxidant capacity. The results show that narrow-bandwidth illumination can induce discrete suites of volatile classes that affect sensory quality in commercial herbs, and may be useful tools in improving commercial production.

  20. Light Quality Dependent Changes in Morphology, Antioxidant Capacity, and Volatile Production in Sweet Basil (Ocimum basilicum).

    Science.gov (United States)

    Carvalho, Sofia D; Schwieterman, Michael L; Abrahan, Carolina E; Colquhoun, Thomas A; Folta, Kevin M

    2016-01-01

    Narrow-bandwidth light treatments may be used to manipulate plant growth, development and metabolism. In this report LED-based light treatments were used to affect yield and metabolic content of sweet basil (Ocimum basilicum L. cv "Ceasar") grown in controlled environments. This culinary herb produces an aroma highly appreciated by consumers, primarily composed of terpenes/terpenoids, phenylpropanoids, and fatty-acid- derived volatile molecules. Basil plants were grown under narrow-bandwidth light conditions, and leaf area, height, mass, antioxidant capacity and volatile emissions were measured at various time points. The results indicate reproducible significant differences in specific volatiles, and in biochemical classes of volatiles, compared to greenhouse grown plants. For example, basil plants grown under blue/red/yellow or blue/red/green wavelengths emit higher levels of a subset of monoterpenoid volatiles, while a blue/red/far-red treatment leads to higher levels of most sesquiterpenoid volatile molecules. Specific light treatments increase volatile content, mass, and antioxidant capacity. The results show that narrow-bandwidth illumination can induce discrete suites of volatile classes that affect sensory quality in commercial herbs, and may be a useful tool in improving commercial production.

  1. Light Quality Dependent Changes in Morphology, Antioxidant Capacity, and Volatile Production in Sweet Basil (Ocimum basilicum)

    Science.gov (United States)

    Carvalho, Sofia D.; Schwieterman, Michael L.; Abrahan, Carolina E.; Colquhoun, Thomas A.; Folta, Kevin M.

    2016-01-01

    Narrow-bandwidth light treatments may be used to manipulate plant growth, development and metabolism. In this report LED-based light treatments were used to affect yield and metabolic content of sweet basil (Ocimum basilicum L. cv “Ceasar”) grown in controlled environments. This culinary herb produces an aroma highly appreciated by consumers, primarily composed of terpenes/terpenoids, phenylpropanoids, and fatty-acid- derived volatile molecules. Basil plants were grown under narrow-bandwidth light conditions, and leaf area, height, mass, antioxidant capacity and volatile emissions were measured at various time points. The results indicate reproducible significant differences in specific volatiles, and in biochemical classes of volatiles, compared to greenhouse grown plants. For example, basil plants grown under blue/red/yellow or blue/red/green wavelengths emit higher levels of a subset of monoterpenoid volatiles, while a blue/red/far-red treatment leads to higher levels of most sesquiterpenoid volatile molecules. Specific light treatments increase volatile content, mass, and antioxidant capacity. The results show that narrow-bandwidth illumination can induce discrete suites of volatile classes that affect sensory quality in commercial herbs, and may be a useful tool in improving commercial production. PMID:27635127

  2. Influence of olive oil phenolic compounds on headspace aroma release by interaction with whey proteins.

    Science.gov (United States)

    Genovese, Alessandro; Caporaso, Nicola; De Luca, Lucia; Paduano, Antonello; Sacchi, Raffaele

    2015-04-22

    The release of volatile compounds in an oil-in-water model system obtained from olive oil-whey protein (WP) pairing was investigated by considering the effect of phenolic compounds. Human saliva was used to simulate mouth conditions by retronasal aroma simulator (RAS) analysis. Twelve aroma compounds were quantified in the dynamic headspace by SPME-GC/MS. The results showed significant influences of saliva on the aroma release of virgin olive oil (VOO) volatiles also in the presence of WP. The interaction between WP and saliva leads to lower headspace release of ethyl esters and hexanal. Salivary components caused lower decrease of the release of acetates and alcohols. A lower release of volatile compounds was found in the RAS essay in comparison to that in orthonasal simulation of only refined olive oil (without addition of saliva or WP), with the exception of hexanal and 1-penten-3-one, where a significantly higher release was found. Our results suggest that the extent of retronasal odor (green, pungent) of these two volatile compounds is higher than orthonasal odor. An extra VOO was used to verify the release in model systems, indicating that WP affected aroma release more than model systems, while saliva seems to exert an opposite trend. A significant increase in aroma release was found when phenolic compounds were added to the system, probably due to the contrasting effects of binding of volatile compounds caused by WP, for the polyphenol-protein interaction phenomenon. Our study could be applied to the formulation of new functional foods to enhance flavor release and modulate the presence and concentrations of phenolics and whey proteins in food emulsions/dispersions.

  3. Aroma composition changes in early season grapefruit juice produced from thermal concentration.

    Science.gov (United States)

    Lin, Jianming; Rouseff, Russell L; Barros, Sandy; Naim, Michael

    2002-02-13

    Differences in aroma components and total volatiles between a single unpasteurized Marsh grapefruit juice and its 65 Brix concentrate reconstituted to 10 Brix were examined using GC-olfactometry (GC-O) and GC-FID. Total volatiles (FID) in the reconstituted concentrate were reduced to less than 5% of initial values, but 57% of total aroma (GC-O) remained. Forty-one aroma-active compounds were observed in unpasteurized single strength juice, whereas 27 components were found in the unflavored reconstituted concentrate. Aroma-active compounds were classified into grapefruit/sulfury, sweet/fruity, fresh/citrusy, green/fatty/metallic, and cooked/meaty groups. Five of six components in the sweet/fruity and 14 of 18 green/fatty/metallic components survived thermal concentration. However, only 4-mercapto-4-methyl-2-pentanone in the grapefruit/sulfury group, and linalool and nootkatone from the fresh/citrusy group, were found in the reconstituted concentrate. Methional was the only aroma compound in the cooked/meaty category found in both juice types. beta-Damascenone and 1-p-menthen-8-thiol were found only in the reconstituted concentrate. 4-Mercapto-4-methyl-2-pentanol was found for the first time in grapefruit juice.

  4. A Butter Aroma Recombinate Activates Human Class-I Odorant Receptors.

    Science.gov (United States)

    Geithe, Christiane; Andersen, Gaby; Malki, Agne; Krautwurst, Dietmar

    2015-11-01

    With ∼400 olfactory G protein-coupled receptors (GPCR), humans sensitively perceive ∼230 key aroma compounds as best natural agonists of ∼10000 food volatiles. An understanding of odorant coding, thus, critically depends on the knowledge about interactions of key food aroma chemicals and their mixtures with their cognate receptors. Genetically designed test cell systems enable the screening, deorphaning, and characterization of single odorant receptors (OR). This study shows for the food aroma-specific and quantitative butter aroma recombinate, and its single components, specific in vitro class-I OR activity patterns, as well as the activation of selected OR in a concentration-dependent manner. Recently, chemosensory receptors, especially class-I OR, were demonstrated to be expressed on blood leukocytes, which may encounter foodborne aroma compounds postprandially. This study shows that butter aroma recombinate induced chemotaxis of isolated human neutrophils in a defined gradient, and in a concentration-dependent and pertussis toxin-sensitive manner, suggesting at least a GPCR-mediated activation of blood leukocytes by key food odorants.

  5. Verification of key odorants in rose oil by gas chromatography-olfactometry/aroma extract dilution analysis, odour activity value and aroma recombination.

    Science.gov (United States)

    Xiao, Zuobing; Li, Jing; Niu, Yunwei; Liu, Qiang; Liu, Junhua

    2017-03-28

    Rose oil is much too expensive but very popular. It's well known that the flower oil's aroma profile hasn't been intensively investigated. In order to verify the aroma profile of rose oil, the synthetic blend of odorants was prepared and then compared with the original rose oil using electronic nose analysis (ENA) combined with quantitative descriptive analysis (QDA). The odorants from rose oils were screened out by Gas Chromatography-Olfactometry/aroma extract dilution analysis (GC-O/AEDA) combined with odour activity value (OAV). Both ENA and QDA indicated the recombination model derived from OAV and GC-O/AEDA closely resembled the original rose oil. The experiment results show that rose oxide, linalool, α-pinene, β-pinene, nonanal, heptanal citronellal, phenyl ethyl alcohol, benzyl alcohol, eugenol, methyl eugenol, β-citronellol, hexyl acetate, β-ionone, nerol, etc. are very important constituent to rose oil aroma profile.

  6. Determination of volatile aroma compounds in litchi vinegar by HS-SPME-GC/MS%顶空固相微萃取-气质联用测定荔枝果醋中挥发性成分

    Institute of Scientific and Technical Information of China (English)

    李巍青; 王浩; 蒋丽婷; 李理

    2011-01-01

    采用顶空固相微萃取结合气质联用法测定了荔枝果醋中的挥发性成分,共检测出34种物质,包括酸类、醇类、醛酮类、酯类、烃类化合物以及少量其它化合物.采用面积归一法进行分析可知:主要成分为醋酸(61.6%)、乙酸乙酯(7.91%)、3-羟基-2-丁酮(6.44%)、乙酸异戊酯(2.97%)、乙酸苯乙酯(2.87%)、邻苯二甲酸二异丁酯(2.25%)、(2R,3R)-(-)-2,3-丁二醇(2.09%)、醋酸异丁酯(1.74%)、2,3-丁二醇(1.61%)、辛酸乙酯(1.42%)、乙酸-2-甲基丁酯(1.37%)、乙醇(1.25%).%The volatile compounds of Litchi vinegar were extracted by solid phase micro extraction and were identified by the analysis of gas chro-matography-mass spectrometry. About 34 different components were identified including acids, alcohols, aldehydes, ketones, esters, hydrocarbons and a few other compounds. The percentage of each component was determined by area normalization. It was indicated that the main volatile components in the Litchi vinegar were acetic acid (61.6%), ethyl acetate (7.91%), 3-hydroxy-2-butanone (6.44%), isoamyl acetate (2.97%), phenethyl acetate (2.87%), diisobutyl phthalate (2.25%), (2R,3R)-(-)-2,3-butanediol (2.09%), isobutyl acetate (1.74%), 2,3-butanediol (1.61%), octanoic acid ethyl ester (1.42%), acetic acid 2-methylbutyl ester (1.37%), ethyl alcohol (1.25%).

  7. Electronic aroma detection technology for forensic and law enforcement applications

    Energy Technology Data Exchange (ETDEWEB)

    Barshick, S.-A.; Griest, W.H.; Vass, A.A.

    1996-12-31

    A major problem hindering criminal investigations is the lack of appropriate tools for proper crime scene investigations. Often locating important pieces of evidence means relying on the ability of trained detection canines. Development of analytical technology to uncover and analyze evidence, potentially at the scene, could serve to expedite criminal investigations, searches, and court proceedings. To address this problem, a new technology based on gas sensor arrays was investigated for its applicability to forensic and law enforcement problems. The technology employs an array of sensors that respond to volatile chemical components yielding a characteristic `fingerprint` pattern representative of the vapor- phase composition of a sample. Sample aromas can be analyzed and identified using artificial neural networks that are trained on known aroma patterns. Several candidate applications based on known technological needs of the forensic and law enforcement communities have been investigated. These applications have included the detection of aromas emanating from cadavers to aid in determining time since death, drug detection for deterring the manufacture, sale, and use of drugs of abuse, and the analysis of fire debris for accelerant identification. The results to date for these applications have been extremely promising and demonstrate the potential applicability of this technology for forensic use.

  8. Electronic aroma detection technology for forensic and law enforcement applications

    Science.gov (United States)

    Barshick, Stacy-Ann; Griest, Wayne H.; Vass, Arpad A.

    1997-02-01

    A major problem hindering criminal investigations is the lack of appropriate tools for proper crime scene investigations. Often locating important pieces of evidence means relying on the ability of trained detection canines. Development of analytical technology to uncover and analyze evidence, potentially at the scene, could serve to expedite criminal investigations, searches, and court proceedings. To address this problem, a new technology based on gas sensor arrays was investigated for its applicability to forensic and law enforcement problems. The technology employs an array of sensors that respond to volatile chemical components yielding a characteristic 'fingerprint' pattern representative of the vapor-phase composition of a sample. Sample aromas can be analyzed and identified using artificial neural networks that are trained on known aroma patterns. Several candidate applications based on known technological needs of the forensic and law enforcement communities have been investigated. These applications have included the detection of aromas emanating from cadavers to aid in determining time since death, drug detection for deterring the manufacture, sale, and use of drugs of abuse, and the analysis of fire debris for accelerant identification. The result to date for these applications have been extremely promising and demonstrate the potential applicability of this technology for forensic use.

  9. HEAT TREATMENT INFLUENCE ON THE AROMA FORMATION OF WHEAT GERMS FLOUR

    Directory of Open Access Journals (Sweden)

    N. S. Rodionova

    2015-01-01

    Full Text Available Wheat germs flour is protein-rich with a full complex of amino acids. Comparison of a chemical composition of flour from wheaten germs with different nuts types shows that they don't concede on a nutrition value, and in the vitamins content of both some macro and microcells surpass nuts several times. Thus, considering preference of consumers of natural products and the maximum exception of compounding of synthetic taste-aroma maker, a problem of formation of nut aroma in the final product made with nuts replacement takes place. In our work we studied influences of heat treatment on aroma formation of wheat germs flour with application of piezo-sorption of "an electronic nose". Various content of easily volatile organic compounds in an equilibrium gas phase over tests depending on conditions of heat treatment is established: most of them in aroma of test 2, the smallest – in tests 1 and 4. On intensity of aroma or the contents of separate classes of easily volatile compounds the test differs from test standard. It is found out on responses of separate sensors that the equilibrium gas phase over samples contains hydrophilic connections and water, the content of nitrogen-containing and specific (aromatic connections, esters is essential. On intensity of aroma or the maintenance of separate classes of easily volatile compounds the tests differ from test standard. Thus for the tests 3, 4, 5 the content of high-polarity volatile compounds increases (including ketones, alcohols, the content of esters, acids decreases. On a ratio of separate classes of connections in an equilibrium gas phase noticeable influence of time of heat treatment on redistribution of connections of RGF for flour of germs of wheat is determined. Thus, the heat treatment duration influences wheat germs flour aroma. From the received results of "visual prints" of wheat germs flour of various degree of roasting, optimum time of heat treatment at which "nut" aroma appears ranges

  10. Abundance of He-3 and other solar-wind-derived volatiles in lunar soil

    Science.gov (United States)

    Swindle, Timothy D.

    Volatiles implanted into the lunar regolith by the solar wind are potentially important lunar resources. Wittenberg et al. (1986) have proposed that lunar He-3 could be used as a fuel for terrestrial nuclear fusion reactors. They argue that a fusion scheme involving D and He-3 would be cleaner and more efficient than currently-proposed schemes involving D and T. However, since the terrestrial inventory of He-3 is so small, they suggest that the lunar regolith, with concentrations of the order of parts per billion (by mass) would be an economical source of He-3. Solar-wind implantation is also the primary source of H, C, and N in lunar soil. These elements could also be important, particularly for life support and for propellant production. In a SERC study of the feasibility of obtaining the necessary amount of He-3, Swindle et al. (1990) concluded that the available amount is sufficient for early reactors, at least, but that the mining problems, while not necessarily insurmountable, are prodigious. The volatiles H, C, and N, on the other hand, come in parts per million level abundances. The differences in abundances mean that (1) a comparable amount of H, C, and/or N could be extracted with orders of magnitude smaller operations than required for He-3, and (2) if He-3 extraction ever becomes important, huge quantities of H, C, and N will be produced as by-products.

  11. Identification of major aroma compounds in the leaf of Morinda citrifolia Linn.

    Science.gov (United States)

    West, Brett J; Zhou, Bing-nan

    2008-10-01

    Morinda citrifolia, commonly named noni, has been used as food and as a folk medicine throughout the tropics. The use of the leaves to make hot water beverages is increasing in popularity, especially in Japan and the United States. To better understand the effects of processing on the content of the major aroma compounds, volatile oils were collected from samples of frozen, dried and roasted leaves by steam distillation and then analyzed by GC-MS. Drying of the leaves reduces the quantity of aroma compounds by more than half. Palmitic acid and E-phytol were identified as the major components of the volatile oil. With the exception of E-phytol, all of the known volatile compounds identified in the leaf samples were done so for the first time.

  12. 牛骨酶解物对制备牛肉香精中挥发性风味成分的影响%Effect of Addition of Enzymatic Hydrolysate of Bovine Bone into Maillard Reaction System on Volatile Aroma Composition of Beef Essence

    Institute of Scientific and Technical Information of China (English)

    成晓瑜; 李迎楠; 刘文营; 贾晓云

    2016-01-01

    This study was intended to examine the effect of adding different amounts of bovine bone collagen hydrolysate prepared with flavourzyme to the Maillard reaction system used to produce beef essence on the flavor quality of reaction products. The results showed that the volatile flavor compounds of beef essence varied significantly depending on the amount of added bovine bone collagen hydrolysate. The addition of 6 g of bovine bone collagen hydrolysate led to the generation of high amounts of volatile compounds (95.39%) in the beef essence, with the characteristic flavor compounds pyrazines, aldehydes and ketones being dominant. Electronic nose analysis suggested that the flavor compounds formed in the presence of 8 and 10 g of the hydrolysate were partly identical, and significant differences were found at other addition levels of the hydrolysate. The beef essence obtained under this condition had an outstanding roast aroma and good flavor.%以牛肉香精为研究对象,从挥发性风味物质组成和电子鼻分析角度研究不同牛骨酶解物添加量对其风味品质的影响。结果表明:不同牛骨酶解物添加量使牛肉香精在风味物质方面有较大的差异性。牛骨酶解物添加量为6 g时,牛肉香精中挥发性物质含量较高,达到95.39%,其中具有特征风味的吡嗪类、醛类、酮类化合物的含量相对较高;运用电子鼻技术分析发现,除添加量为8 g和10 g时有部分重叠,其余条件下样品存在显著性差异。在此条件下得到的牛肉香精烤香味较为明显,具有良好的风味香气。

  13. Ezine Peyniri. I. Aroma Karakterizasyonu

    OpenAIRE

    Yüceer, Yonca Karagül; İşleten, Müge; Mehmet MENDEŞ

    2009-01-01

    Bu çalışmanın amacı, bir yıllık depolama sonucu Ezine peynirinin aroma-aktif bileşenlerinde ve duyusal özelliklerinde meydana gelen değişimi belirleyerek enstrümental ve duyusal analizler sonucu elde edilen bulgular arasındaki ilişkiyi göstermektir. Peynir örneklerindeki aroma-aktif bileşenler Termal Desorpsiyon-Gaz Kromatografisi Olfaktometri sistemi (TD-GCO) kullanılarak saptanmıştır. Ayrıca tarife dayalı duyusal analiz tekniği kullanılarak lezzet özellikleri dokuz uzman panelist tarafından...

  14. Aroma therapy and medfly SIT

    Energy Technology Data Exchange (ETDEWEB)

    Shelly, Todd E., E-mail: todd.e.shelly@aphis.usda.go [U.S. Department of Agriculture (USDA-APHIS), HI (United States). Animal and Plant Health Inspection

    2006-07-01

    A summary of the main findings of the research program on the biological competence of mass-reared, sterile males of the Mediterranean fruit fly (med fly), Ceratitis capitata (Wied.) and the development and implementation of the sterile insect technique (SIT) against this pest is presented. The potential application of aroma therapy to improve the mating success of sterile med fly males is studied. The report assumes a loosely chronological framework as it documents progression along two experimental scales: the number of males simultaneously exposed to ginger root oil, starting with small groups of 25 males and ending with rooms with nearly 200 million males; the experimental arena used to test the effects of aroma therapy, progressing from standard field-cages to large field enclosures to the open field. In addition, brief comments are offered regarding the potential negative effects of GRO exposure, the mechanisms underlying GRO-mediated improvement in male mating success, and the financial costs of GRO aroma therapy. (MAC)

  15. Investigation of volatile organic biomarkers derived from Plasmodium falciparum in vitro

    Directory of Open Access Journals (Sweden)

    Wong Rina PM

    2012-09-01

    Full Text Available Abstract Background There remains a need for techniques that improve the sensitive detection of viable Plasmodium falciparum as part of diagnosis and therapeutic monitoring in clinical studies and usual-care management of malaria infections. A non-invasive breath test based on P. falciparum-associated specific volatile organic compounds (VOCs could fill this gap and provide insights into parasite metabolism and pathogenicity. The aim of this study was to determine whether VOCs are present in the headspace above in vitro P. falciparum cultures. Methods A novel, custom-designed apparatus was developed to enable efficient headspace sampling of infected and non-infected cultures. Conditions were optimized to support cultures of high parasitaemia (>20% to improve the potential detection of parasite-specific VOCs. A number of techniques for VOC analysis were investigated including solid phase micro-extraction using two different polarity fibres, and purge and trap/thermal desorption, each coupled to gas chromatography–mass spectrometry. Each experiment and analysis method was performed at least on two occasions. VOCs were identified by comparing their mass spectra against commercial mass spectral libraries. Results No unique malarial-specific VOCs could be detected relative to those in the control red blood cell cultures. This could reflect sequestration of VOCs into cell membranes and/or culture media but solvent extractions of supernatants and cell lysates using hexane, dichloromethane and ethyl acetate also showed no obvious difference compared to control non-parasitized cultures. Conclusions Future in vivo studies analysing the breath of patients with severe malaria who are harbouring a parasite biomass that is significantly greater than achievable in vitro may yet reveal specific clinically-useful volatile chemical biomarkers.

  16. Analysis of Volatile Aroma Compounds in Steamed and Roasted Whole Tartary Buckwheat Teas and Distribution of Major Chemical Components during the Production Process%蒸煮和焙炒整米苦荞茶香气成分分析及生产过程中主要化学成分的去向

    Institute of Scientific and Technical Information of China (English)

    隋秀芳; 李祥; 秦礼康; 赵宇; 林敏

    2012-01-01

    The distribution of major chemical components during the production of steamed and roasted whole tartary buckwheat tea samples was tracked to explore the effects of steaming,roasting and reconstructed granulation on the aroma and nutritional components of tartary buckwheat tea.Meanwhile,both tartary buckwheat teas were comparatively analyzed for volatile aroma components by solid-phase microwaveextraction(SPME) coupled with GC-MS.The final products obtained following different procedures showed significant differences in chemical composition(P0.05).During the production of steamed tartary buckwheat tea,proteins were mainly distributed in the yellow powder at a level of 27.51%,the reducing sugar content of 0.69% in the raw material decreased to 0.28% in the fine product,and total flavonoids were mainly distributed in the polished powder and yellow powder at levels of 4.98% and 4.63%,respectively.As a result,the total flavonoid content of the final product was as low as 1.38% compared with only 1.20% for roasted tartary buckwheat grains.The total flavonoid content of tea-containing reconstructed granules prepared from buckwheat husk powder,rich in flavonoids(4.56%),was as high as 6.87%.Roasted whole tartary buckwheat tea as a mixture of roasted tartary buckwheat grains and tea-containing reconstructed granules had considerably better quality and flavor than its steamed counterpart.The major aroma compounds of steamed tartary buckwheat tea were alkanes and alkenes,while roasted tartary buckwheat tea contained aldehydes and alkanes as major aroma compounds and was also rich in phenols,alcohols,ethers,ketones and esters,which caused better flavor in roast tartary buckwheat tea and than steamed one.%为探索焙炒、蒸煮与重组造粒加工工艺对苦荞茶香气和营养成分的影响,跟踪检测3种工艺中各组分主要营养成分的流向分布,并采用固相微萃取结合气质联用技术对苦荞茶产品的挥发性香气成分进行对比分析。

  17. Effect of Food Emulsifiers on Aroma Release

    OpenAIRE

    Jia-Jia Li; Man Dong; Yan-Long Liu; Lu-Lu Zhang; Yan Zhang; Zi-Yu Yang; Jing-Nan Ren; Si-Yi Pan; Gang Fan

    2016-01-01

    This study aimed to determine the influence of different emulsifiers or xanthan-emulsifier systems on the release of aroma compounds. Solid-phase microextraction (SPME) and GC-MS were used to study the effects of varying concentrations of xanthan gum, sucrose fatty acid ester, Tween 80 and soybean lecithin on the release of seven aroma compounds. The effects of the emulsifier systems supplemented with xanthan gum on aroma release were also studied in the same way. The results showed varying d...

  18. Effect of Food Emulsifiers on Aroma Release

    Directory of Open Access Journals (Sweden)

    Jia-Jia Li

    2016-04-01

    Full Text Available This study aimed to determine the influence of different emulsifiers or xanthan-emulsifier systems on the release of aroma compounds. Solid-phase microextraction (SPME and GC-MS were used to study the effects of varying concentrations of xanthan gum, sucrose fatty acid ester, Tween 80 and soybean lecithin on the release of seven aroma compounds. The effects of the emulsifier systems supplemented with xanthan gum on aroma release were also studied in the same way. The results showed varying degrees of influence of sucrose fatty acid ester, soybean lecithin, Tween 80 and xanthan gum on the release of aroma compounds. Compared with other aroma compounds, ethyl acetate was more likely to be conserved in the solution system, while the amount of limonene released was the highest among these seven aroma compounds. In conclusion, different emulsifiers and complexes showed different surface properties that tend to interact with different aroma molecules. The present studies showed that the composition and structure of emulsifiers and specific interactions between emulsifiers and aroma molecules have significant effects on aroma release.

  19. Effect of Food Emulsifiers on Aroma Release.

    Science.gov (United States)

    Li, Jia-Jia; Dong, Man; Liu, Yan-Long; Zhang, Lu-Lu; Zhang, Yan; Yang, Zi-Yu; Ren, Jing-Nan; Pan, Si-Yi; Fan, Gang

    2016-04-22

    This study aimed to determine the influence of different emulsifiers or xanthan-emulsifier systems on the release of aroma compounds. Solid-phase microextraction (SPME) and GC-MS were used to study the effects of varying concentrations of xanthan gum, sucrose fatty acid ester, Tween 80 and soybean lecithin on the release of seven aroma compounds. The effects of the emulsifier systems supplemented with xanthan gum on aroma release were also studied in the same way. The results showed varying degrees of influence of sucrose fatty acid ester, soybean lecithin, Tween 80 and xanthan gum on the release of aroma compounds. Compared with other aroma compounds, ethyl acetate was more likely to be conserved in the solution system, while the amount of limonene released was the highest among these seven aroma compounds. In conclusion, different emulsifiers and complexes showed different surface properties that tend to interact with different aroma molecules. The present studies showed that the composition and structure of emulsifiers and specific interactions between emulsifiers and aroma molecules have significant effects on aroma release.

  20. Aroma Characterization and Safety Assessment of a Beverage Fermented by Trametes versicolor.

    Science.gov (United States)

    Zhang, Yanyan; Fraatz, Marco Alexander; Müller, Julia; Schmitz, Hans-Joachim; Birk, Florian; Schrenk, Dieter; Zorn, Holger

    2015-08-12

    A cereal-based beverage was developed by fermentation of wort with the basidiomycete Trametes versicolor. The beverage possessed a fruity, fresh, and slightly floral aroma. The volatiles of the beverage were isolated by liquid-liquid extraction (LLE) and additionally by headspace solid phase microextraction (HS-SPME). The aroma compounds were analyzed by a gas chromatography system equipped with a tandem mass spectrometer and an olfactory detection port (GC-MS/MS-O) followed by aroma (extract) dilution analysis. Thirty-four different odor impressions were perceived, and 27 corresponding compounds were identified. Fifteen key odorants with flavor dilution (FD) factors ranging from 8 to 128 were quantitated, and their respective odor activity values (OAVs) were calculated. Six key odorants were synthesized de novo by T. versicolor. Furthermore, quantitative changes during the fermentation process were analyzed. To prepare for the market introduction of the beverage, a comprehensive safety assessment was performed.

  1. Different behavior of 3-nitrotyrosine and tyrosine toward perfluorinated reagents suitable for one-step preparation of volatile derivatives

    Directory of Open Access Journals (Sweden)

    Pavlović Radmila

    2012-01-01

    Full Text Available In view to develop a gas-chromatographic (GC determination of the 3-nitrotyrosine (NY/tyrosine (Y ratio as a marker of nitro-oxidative stress, different reagents were tested with the objective of obtaining a single volatile fluorinated product for each amino acid by a one-step derivatization procedure. The heptafluorobutyric anhydride (HFBA /heptafluorobutanol (HFBOH mixture proved unsuccessful for NY and Y simultaneous analysis. The reaction with different chloroformates [isobutyl chlorofomate (iBuCF and ethyl chloroformate (EtCF] in the presence of different perfluorinated alcohols such as trifluoroethanol (TFEOH and HFBOH was investigated. Combination EtCF/fluorinated alcohols yielded derivatives of NY and Y as single peaks suitable to the GC determination of the NY/Y ratio. The different behaviour of two amino acids in the used reaction mixtures and the parameters influencing the results were discussed.

  2. Spatial Distribution of Ozone Formation in China Derived from Emissions of Speciated Volatile Organic Compounds.

    Science.gov (United States)

    Wu, Rongrong; Xie, Shaodong

    2017-03-07

    Ozone (O3) pollution is becoming increasingly severe in China. In addition, our limited understanding of the relationship between O3 and volatile organic compounds (VOCs), is an obstacle to improving air quality. By developing an improved source-oriented speciated VOC emission inventory in 2013, we estimated the ozone formation potential (OFP) and investigated its characteristics in China. Besides, a comparison was made between our estimates and space-based observations from the ozone monitoring instrument (OMI) on the National Aeronautics and Space Administration (NASA)'s Aura satellite. According to our estimates, m-/p-xylene, ethylene, formaldehyde, toluene, and propene were the five species that had the largest potential to form ozone, and on-road vehicles, industrial processes, biofuel combustion, and surface coating were the key contributing sectors. Among different regions of China, the North China Plain, Yangtze River Delta, and Pearl River Delta had the highest OFP values. Our results suggest that O3 formation is VOC-limited in major urban areas of China. Additionally, considering the different photochemical reactivities of various VOC species and the disparate energy and industry structures in the different regions of China, more efficient OFP-based and localized VOC control measures should be implemented, instead of the current mass-based and nationally uniform policies.

  3. Characterization of the potent odorants contributing to the characteristic aroma of Chinese green tea infusions by aroma extract dilution analysis.

    Science.gov (United States)

    Baba, Ryoko; Kumazawa, Kenji

    2014-08-20

    The volatile fractions of three famous Chinese green tea cultivar infusions (Longjing, Maofeng, and Biluochun) were prepared by a combination of the adsorptive column method and the SAFE techniques. The aroma extract dilution analysis (AEDA) applied to the volatile fractions revealed 58 odor-active peaks with flavor dilution (FD) factors between 4(1) and 4(7). Forty-six of the odorants, which included six odorants that have not been reported in the literature in Chinese green tea (2-isopropyl-3-methoxypyrazine, 2-ethenyl-3,5-dimethylpyrazine, cis-4,5-epoxy-(E)-2-decenal, 4-ethylguaiacol, (E)-isoeugenol, and 3-phenylpropionic acid), were identified or tentatively identified by GC-MS and GC-O. Among the perceived odorants, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, coumarin, vanillin, geraniol, (E)-isoeugenol, and 2-methoxyphenol showed high FD factors in all of the cultivars, irrespective of the cultivar or harvesting season, suggesting that these seven odorants are essential for the aroma of Chinese green tea. On the other hand, the contents of the odorants, FD factors of which were uneven between the cultivars, were suggested to influence the characteristic aroma of each cultivar. In addition, the formation mechanism of (E)-isoeugenol, one of the odorants which have not been reported in the literature with a high FD factor common to all the cultivars, was investigated, and it was suggested that the (E)-isoeugenol content of the tea products has a close correlation with the manufacturing process of the tea leaves.

  4. Tracer aroma compound transfer from a solid and complex-flavored food matrix packed in treated papers or plastic packaging film.

    Science.gov (United States)

    Dury-Brun, Cécile; Lequin, Sonia; Chalier, Pascale; Desobry, Stéphane; Voilley, Andrée

    2007-02-21

    The objective of this work was to study the transfer of four aroma compounds (ethyl butyrate, ethyl hexanoate, cis-3-hexenol, and benzaldehyde) from a solid and complex-flavored food matrix (sponge cake) toward and through packaging films placed in indirect contact during storage in accelerated aging conditions (38 degrees C and 86% relative humidity gradient). The efficiency of treated papers relative to that of standard paper and plastic as barrier was tested. Before storage, aroma compound volatility in the sponge cake was measured, and similar values were found between aroma compounds, due to the fat content of the sponge cake. Whatever the aroma compound, permeability values during storage were similar for the same packaging film. The plastic film was the highest barrier, whereas calendering and coating treatments applied to treated papers decreased effectively their permeability. An opposite trend was observed for aroma compound sorption into packaging films during storage.

  5. Recovery of volatile bioproducts by pervaporation

    Energy Technology Data Exchange (ETDEWEB)

    Boeddeker, K.W.

    1994-01-01

    Organophilic prevaporation is linkened to steam distillation in the recovery of volatile bioproducts of fermentation or plant origin. Potential applications are to biosynthetic chemicals (e.g., EtOH; BuOH), aroma compounds (e.g., gamma-decalactone; 6-pentyl-2-pyrone), and essential oils. Unlike steam distillation, pervaporation may be combined with an active fermenter. (orig.)

  6. Optimisation of minimal media for production of aroma compounds typical for fermented milk products

    Directory of Open Access Journals (Sweden)

    Nevenka Mazić

    2008-08-01

    Full Text Available The aim of this research was to optimize the composition of minimalgrowth media containing lactose and milk, in which lactic acid bacteria (LAB would produce the maximum amount of volatile aroma compounds typical for fermented milk products. Ingredients used for the preparation of media were casein, tri-sodium-citrate, lactose, milk minerals, whey proteins and milk with 1.5% fat. The several prepared media differed mainly in the amount of citrate and whey proteins. Fermentation was carried out at room temperature until the media reached pH value of 5. Samples were evaluated for sensory characteristics using quantitative descriptive analysis (QDA. In all media the target pH was reached after 68-71 hours of fermentation, depending on citrate level. Fermentation and the production of aroma compounds were more intensive in media that contained whey proteins compared to media with only casein. Increased citrate level had a positive influence on the aroma production. Citrate increased the initial pH of the media and acted as a buffer during fermentation, which lead to longer fermentation and prolonged production of aroma compounds. At pH around 5, the desired cultured aroma was the most intensive, whereas sour taste was less dominant. The substrate with 0.25% citrate and 0.1% whey proteins, at pH 5, was rated as best regarding its sensory characteristics.

  7. Impact of Fruit Piece Structure in Yogurts on the Dynamics of Aroma Release and Sensory Perception

    Directory of Open Access Journals (Sweden)

    Isabelle Souchon

    2013-05-01

    Full Text Available The aim of this work was to gain insight into the effect of food formulation on aroma release and perception, both of which playing an important role in food appreciation. The quality and quantity of retronasal aroma released during food consumption affect the exposure time of olfactory receptors to aroma stimuli, which can influence nutritional and hedonic characteristics, as well as consumption behaviors. In yogurts, fruit preparation formulation can be a key factor to modulate aroma stimulation. In this context, the impact of size and hardness of fruit pieces in fat-free pear yogurts was studied. Proton Transfer Reaction-Mass Spectrometry (PTR-MS was used to allow sensitive and on-line monitoring of volatile odorous compound release in the breath during consumption. In parallel, a trained panel used sensory profile and Temporal Dominance of Sensations (TDS methods to characterize yogurt sensory properties and their dynamic changes during consumption. Results showed that the size of pear pieces had few effects on aroma release and perception of yogurts, whereas fruit hardness significantly influenced them. Despite the fact that yogurts presented short and similar residence times in the mouth, this study showed that fruit preparation could be an interesting formulation factor to enhance exposure time to stimuli and thus modify food consumption behaviors. These results could be taken into account to formulate new products that integrate both nutritional and sensory criteria.

  8. Effect of cooking on aroma profile of red kidney beans (Phaseolus vulgaris) and correlation with sensory quality.

    Science.gov (United States)

    Mishra, Prashant K; Tripathi, Jyoti; Gupta, Sumit; Variyar, Prasad S

    2017-01-15

    Volatile aroma compounds of three varieties of red kidney beans (Phaseolus vulgaris) namely Kashmiri red, Sharmili and Chitra were extracted in raw state using solid-phase microextraction (SPME) and cooked state using simultaneous distillation extraction (SDE). During cooking a significant (p<0.05) reduction in the content of several aldehydes, alcohols and terpene hydrocarbons while an increase in content of various sulfurous compounds, terpene alcohols, ketones and pyrazines was noted. Descriptive sensory analysis showed that the maximum intensity of 'kidney bean', 'earthy' and 'smoky' odour was observed in Kashmiri red while Sharmili variety was characterised by 'sulfurous' odour. Correlation of volatile profile data with descriptive sensory analysis and odour activity values clearly established the role of compounds, such as methanethiol, diethyl sulfide, dimethyl disulfide, methional and dimethyl trisulfide, in contributing to 'cooked kidney bean' aroma, while dimethyl sulfoxide, dimethyl sulfone and ethyl methyl sulfone were responsible for 'sulfurous' aroma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Behaviour and hormonal status in healthy rats on a diet rich in Maillard reaction products with or without solvent extractable aroma compounds.

    Science.gov (United States)

    Sebeková, Katarína; Klenovics, Kristína Simon; Boor, Peter; Celec, Peter; Behuliak, Michal; Schieberle, Peter; Heidland, August; Palkovits, Miklós; Somoza, Veronika

    2012-02-01

    Maillard reaction products (MRPs) are generated upon thermal processing of foods, modifying their colour and flavour. We asked whether aroma compounds generated via Maillard-type reactions modulate the in vivo effects of MRP-rich diets (MRPD). Male Wistar rats were fed for 3weeks either with a standard rat chow, an aroma compounds containing MRPD comprising 25% bread crust, or an aroma-extracted MRPD. In contrast to standard rat chow, consumption of MRPDs affected glucose control, induced hyper-leptinemia and hyper-adiponectinemia. Plasma adipokines were significantly higher in rats on aroma containing MRPD in comparison with those consuming aroma-extracted MRPD. Consumption of both MRPDs significantly increased the expression of the insulin receptor in the olfactory bulb, and mildly in the hypothalamus. Administration of the aroma containing MRPD significantly increased the leptin receptor expression in the olfactory bulb, and in the hypothalamus. Under both MRPDs, strong expression of c-fos indicated an increased neuronal activity in the olfactory bulb. Neuronal activity in brain areas involved in the central regulation of food intake and energy homeostasis was more pronounced in rats fed by the aroma containing MRPD. In conclusion, short-term consumption of a MRPD fortified with bread crust, particularly if containing solvent extractable volatile aroma compounds, affected the leptin-induced central signalling of anorexigenic/orexigenic hormones, and the neuronal activity in the central nervous system. Behavioural changes and altered glucose control were more evident in rats on the aroma containing MRPD. Our data suggest that volatile aroma compounds in foods might affect endocrine signalling and neuronal regulation of metabolism.

  10. Aroma of Wheat Bread Crumb

    DEFF Research Database (Denmark)

    Birch, Anja Niehues

    headspace extraction (Paper II, III and V). The compounds were evaluated according to their odour activity value (OAV). The most aroma active compounds (OAV > 6) identified in bread crumb were; (E)-2-nonanal (green, tallow), 3-methylbutanal (malty), 3-methyl-1-butanol (balsamic, alcoholic), nonanal (citrus......), hexanal (green), 2,3-butanedione (buttery, caramel), 1-octen-3-ol (mushroom) and phenylacetaldehyde (honey-like). Esters were also identified in bread crumb (e.g. ethyl acetate, ethyl hexanoate and ethyl octanoate) and they are of interest because of their fruity and pleasant odours, however the OAV...

  11. SIFAT FISIOKIMIA DAN AROMA EKSTRAK VANILI

    Directory of Open Access Journals (Sweden)

    Dwi Setyaningsih

    2007-12-01

    Full Text Available The curing process of vanilla beans from dried vanilla to vanilla extract would give added value to vanilla products. Aroma and taste in vanilla extract depend on variety of plants, cultivation methods, and curing process. Indonesian vanilla extract tend to give woody and phenolic aroma because it was harvested too early and it did not cure perfectly. This study was to identify the physicochemical and aroma characteristics of vanilla extracts from importer, exporter, and vanilla extracts from the newest experiment from our laboratory. There were seven samples, three from importers (Tahiti grade I, Tahiti grade II, Virginia Dare, two from Indonesian Vanilla exporters (Djasula Wangi, Cobra, and two from our laboratory (G11, 57. The physicochemical characteristics which were analyzed were vanillin content, ash, soluble ash, alkalinity of soluble ash, alkalinity of total ash, total acidity, and lead number, all compared with the Food and Drugs Administration (FDA standard. Sensory analysis used aroma description test consist of qualitative descriptive test (in-depth interview and focus group methods and quantitative descriptive analysis. The result showed that the laboratory's sample from modified curing process (G11 followed the FDA standard in physicochemical characters, but the aroma description was not as strong as the aroma of vanilla extract from exporters, namely Cobra with creamy, sweet, and vanilla aroma; and vanilla extract from importer, namely Virginia with smoky and spicy aroma

  12. Study of 'Redhaven' peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism

    Directory of Open Access Journals (Sweden)

    Tartarini Stefano

    2011-01-01

    Full Text Available Abstract Background Carotenoids are plant metabolites which are not only essential in photosynthesis but also important quality factors in determining the pigmentation and aroma of flowers and fruits. To investigate the regulation of carotenoid metabolism, as related to norisoprenoids and other volatile compounds in peach (Prunus persica L. Batsch., and the role of carotenoid dioxygenases in determining differences in flesh color phenotype and volatile composition, the expression patterns of relevant carotenoid genes and metabolites were studied during fruit development along with volatile compound content. Two contrasted cultivars, the yellow-fleshed 'Redhaven' (RH and its white-fleshed mutant 'Redhaven Bianca' (RHB were examined. Results The two genotypes displayed marked differences in the accumulation of carotenoid pigments in mesocarp tissues. Lower carotenoid levels and higher levels of norisoprenoid volatiles were observed in RHB, which might be explained by differential activity of carotenoid cleavage dioxygenase (CCD enzymes. In fact, the ccd4 transcript levels were dramatically higher at late ripening stages in RHB with respect to RH. The two genotypes also showed differences in the expression patterns of several carotenoid and isoprenoid transcripts, compatible with a feed-back regulation of these transcripts. Abamine SG - an inhibitor of CCD enzymes - decreased the levels of both isoprenoid and non-isoprenoid volatiles in RHB fruits, indicating a complex regulation of volatile production. Conclusions Differential expression of ccd4 is likely to be the major determinant in the accumulation of carotenoids and carotenoid-derived volatiles in peach fruit flesh. More in general, dioxygenases appear to be key factors controlling volatile composition in peach fruit, since abamine SG-treated 'Redhaven Bianca' fruits had strongly reduced levels of norisoprenoids and other volatile classes. Comparative functional studies of peach carotenoid

  13. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    was successfully verified with digestate. These results demonstrate for the first time the possibility of a new method for waste-derived VFA recovery and valuable products production that uses wastewater as fuel and bacteria as catalyst. © 2015 Elsevier Ltd. All rights reserved....... of sustainable downstream technologies for VFA recovery. In this study, an innovative microbial bipolar electrodialysis cell (MBEDC) was developed to meet the challenge of waste-derived VFA recovery, produce hydrogen and alkali, and potentially treat wastewater. The MBEDC was operated in fed-batch mode...... energy (5.20 e6.86 kWh/kg-VFA recovered) was produced at all the applied voltages (0.8e1.4 V). The coexistence of other anionic species had no negative effect on VFA transportation. The VFA concentration was increased 2.96 times after three consecutive batches. Furthermore, the applicability of MBEDC...

  14. Field Derived Emission Factors For Formaldehyde and other Volatile Organic Compounds in FEMA Temporary Housing Units

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathy, Srinandini; Maddalena, Randy L.; Russell, Marion L.; Apte, Michael G.

    2010-10-01

    Sixteen previously occupied temporary housing units (THUs) were studied to assess emissions of volatile organic compounds. The whole trailer emission factors wereevaluated for 36 VOCs including formaldehyde. Indoor sampling was carried out in the THUs located in Purvis staging yard in Mississippi, USA. Indoor temperature andrelative humidity (RH) were also measured in all the trailers during sampling. Indoor temperatures were varied (increased or decreased) in a selection of THUs using theheating, ventilation and air conditioning (HVAC) systems. Indoor temperatures during sampling ranged from 14o C to 33o C, and relative humidity (RH) varied between 35percentand 74percent. Ventilation rates were increased in some trailers using bathroom fans and vents during some of the sampling events. Ventilation rates measured during some aselection of sampling events varied from 0.14 to 4.3 h-1. Steady state indoor formaldehyde concentrations ranged from 10 mu g-m-3 to 1000 mu g-m-3. The formaldehyde concentrations in the trailers were of toxicological significance. The effects of temperature, humidity and ventilation rates were also studied. A linearregression model was built using log of percentage relative humidity, inverse of temperature (in K-1), and inverse log ACH as continuous independent variables, trailermanufacturer as a categorical independent variable, and log of the chemical emission factors as the dependent variable. The coefficients of inverse temperature, log relativehumidity, log inverse ACH with log emission factor were found to be statistically significant for all the samples at the 95percent confidence level. The regression model wasfound to explain about 84percent of the variation in the dependent variable. Most VOC concentrations measured indoors in the Purvis THUs were mostly found to be belowvalues reported in earlier studies by Maddalena et al.,1,2 Hodgson et al.,3 and Hippelein4. Emissions of TMPB-DIB (a plasticizer found in vinyl products) were found

  15. Slab-derived halogens and noble gases illuminate closed system processes controlling volatile element transport into the mantle wedge

    Science.gov (United States)

    Kobayashi, Masahiro; Sumino, Hirochika; Nagao, Keisuke; Ishimaru, Satoko; Arai, Shoji; Yoshikawa, Masako; Kawamoto, Tatsuhiko; Kumagai, Yoshitaka; Kobayashi, Tetsuo; Burgess, Ray; Ballentine, Chris J.

    2017-01-01

    Halogen and noble gas systematics are powerful tracers of volatile recycling in subduction zones. We present halogen and noble gas compositions of mantle peridotites containing H2O-rich fluid inclusions collected at volcanic fronts from two contrasting subduction zones (the Avacha volcano of Kamchatka arc and the Pinatubo volcano of Luzon arcs) and orogenic peridotites from a peridotite massif (the Horoman massif, Hokkaido, Japan) which represents an exhumed portion of the mantle wedge. The aims are to determine how volatiles are carried into the mantle wedge and how the subducted fluids modify halogen and noble gas compositions in the mantle. The halogen and noble gas signatures in the H2O-rich fluids are similar to those of marine sedimentary pore fluids and forearc and seafloor serpentinites. This suggests that marine pore fluids in deep-sea sediments are carried by serpentine and supplied to the mantle wedge, preserving their original halogen and noble gas compositions. We suggest that the sedimentary pore fluid-derived water is incorporated into serpentine through hydration in a closed system along faults at the outer rise of the oceanic, preserving Cl/H2O and 36Ar/H2O values of sedimentary pore fluids. Dehydration-hydration process within the oceanic lithospheric mantle maintains the closed system until the final stage of serpentine dehydration. The sedimentary pore fluid-like halogen and noble gas signatures in fluids released at the final stage of serpentine dehydration are preserved due to highly channelized flow, whereas the original Cl/H2O and 36Ar/H2O ratios are fractionated by the higher incompatibility of halogens and noble gases in hydrous minerals.

  16. The volatile profiles of a rare apple (Malus domestica Borkh.) honey: shikimic acid-pathway derivatives, terpenes, and others.

    Science.gov (United States)

    Kuś, Piotr Marek; Jerković, Igor; Tuberoso, Carlo Ignazio Giovanni; Šarolić, Mladenka

    2013-09-01

    The volatile profiles of rare Malus domestica Borkh. honey were investigated for the first time. Two representative samples from Poland (sample I) and Spain (sample II) were selected by pollen analysis (44-45% of Malus spp. pollen) and investigated by GC/FID/MS after headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE). The apple honey is characterized by high percentage of shikimic acid-pathway derivatives, as well as terpenes, norisoprenoids, and some other compounds such as coumaran and methyl 1H-indole-3-acetate. The main compounds of the honey headspace were (sample I; sample II): benzaldehyde (9.4%; 32.1%), benzyl alcohol (0.3%; 14.4%), hotrienol (26.0%, 6.2%), and lilac aldehyde isomers (26.3%; 1.7%), but only Spanish sample contained car-2-en-4-one (10.2%). CH2 Cl2 and pentane/Et2 O 1 : 2 (v/v) were used for USE. The most relevant compounds identified in the extracts were: benzaldehyde (0.9-3.9%), benzoic acid (2.0-11.2%), terpendiol I (0.3-7.4%), coumaran (0.0-2.8%), 2-phenylacetic acid (2.0-26.4%), methyl syringate (3.9-13.1%), vomifoliol (5.0-31.8%), and methyl 1H-indole-3-acetate (1.9-10.2%). Apple honey contained also benzyl alcohol, 2-phenylethanol, (E)-cinnamaldehyde, (E)-cinnamyl alcohol, eugenol, vanillin, and linalool that have been found previously in apple flowers, thus disclosing similarity of both volatile profiles.

  17. Analysis of volatile flavour compounds and acrylamide in roasted Malaysian tropical almond (Terminalia catappa) nuts using supercritical fluid extraction.

    Science.gov (United States)

    Lasekan, Ola; Abbas, Kassim

    2010-01-01

    Considering the importance of tropical almond nuts as a snack item, a study was conducted to identify the flavour volatiles and acrylamide generated during the roasting of the nuts. The supercritical fluid extracted flavour components revealed 74 aroma active compounds made up of 27 hydrocarbons, 12 aldehydes, 11 ketones, 7 acids, 4 esters, 3 alcohols, 5 furan derivatives a pyrazine, and 2 unknown compounds. While low levels of acrylamide (8-86 microg/kg) were obtained in the roasted nuts, significant (P0.05) concentration of acrylamide was generated with mild roasting and shorter roasting period.

  18. Chilling-Induced Changes in Aroma Volatile Profiles in Tomato

    NARCIS (Netherlands)

    Farneti, Brian; Alarcón, Alberto Algarra; Papasotiriou, F.G.; Samudrala, D.; Cristescu, S.M.; Costa, Guglielmo; Harren, F.J.M.; Woltering, E.J.

    2015-01-01

    Fruit and vegetables are regularly stored by consumers in the refrigerator at temperatures that may be well below the recommended storage temperatures. Apart from causing visible symptoms such as watery, sunken areas on the skin, chilling may also induce changes in fruit textural properties and

  19. Chilling-Induced Changes in Aroma Volatile Profiles in Tomato

    NARCIS (Netherlands)

    Farneti, Brian; Alarcón, Alberto Algarra; Papasotiriou, F.G.; Samudrala, D.; Cristescu, S.M.; Costa, Guglielmo; Harren, F.J.M.; Woltering, E.J.

    2015-01-01

    Fruit and vegetables are regularly stored by consumers in the refrigerator at temperatures that may be well below the recommended storage temperatures. Apart from causing visible symptoms such as watery, sunken areas on the skin, chilling may also induce changes in fruit textural properties and f

  20. Surreal aroma's. (Reconstructing the volatile heritage of Marcel Duchamp

    Directory of Open Access Journals (Sweden)

    Caro Verbeek

    2016-06-01

    Full Text Available No ‘visual’ artist addressed the sense of smell as often as Marcel Duchamp did. Whereas his solid objects can still be studied visually and textually, the scents he used have by now evaporated, and a vocabulary to describe them is lacking until today. What we have left are nose witness reports and the possibility to smell olfactory reconstructions. Rereading canonical text with a more sensory gaze and inhaling these historical fragrances, such as cedar, erotic perfumes and coffee,  will enable us to reconstruct the olfactory dimension of our highly ocularcentric history of art.

  1. Free and glycosidically bound aroma compounds in cherry (Prunus avium L.).

    Science.gov (United States)

    Wen, Ya-Qin; He, Fei; Zhu, Bao-Qing; Lan, Yi-Bin; Pan, Qiu-Hong; Li, Chun-You; Reeves, Malcolm J; Wang, Jun

    2014-01-01

    This paper reports the occurrence of both free and glycosidically bound aroma compounds in three sweet cherry cultivars ('Hongdeng', 'Hongyan' and 'Rainier'), with 97 compounds being identified in the three cultivars. The major free volatile compounds found were hexanal, (E)-2-hexenal, (E)-2-hexen-1-ol, benzyl alcohol and benzaldehyde. The major bound volatile compounds found were benzyl alcohol, geraniol, 2-phenylethanol. Also 4-vinylphenol was found in cherry fruit for the first time, and has a relatively high concentration of the glycosidically-bound form in 'Rainier'. Odour activity values (OAVs) were determined for both free and bound volatiles, with 18 compounds having an OAV above 1. The highest OAVs for three cultivars were (E)-β-ionone, hexanal, decanal and (E)-2-hexenal with the highest being over 800 for (E)-β-ionone in 'Honyang'. From these results, it was concluded that the aroma compounds present were similar in all three cultivars, but there was significant variation found in their levels and hence contribution to the aroma of these cultivars.

  2. Model studies on the pattern of volatiles generated in mixtures of amino acids, lipid-oxidation-derived aldehydes, and glucose.

    Science.gov (United States)

    Adams, An; Kitryté, Vaida; Venskutonis, Rimantas; De Kimpe, Norbert

    2011-02-23

    The development of flavor and browning in thermally treated foods results mainly from the Maillard reaction and lipid degradation but also from the interactions between both reaction pathways. To study these interactions, we analyzed the volatile compounds resulting from model reactions of lysine or glycine with aldehydes originating from lipid oxidation [hexanal, (E)-2-hexenal, or (2E,4E)-decadienal] in the presence and absence of glucose. The main reaction products identified in these model mixtures were carbonyl compounds, resulting essentially from amino-acid-catalyzed aldol condensation reactions. Several 2-alkylfurans were detected as well. Only a few azaheterocyclic compounds were identified, in particular 5-butyl-2-propylpyridine from (E)-2-hexenal model systems and 2-pentylpyridine from (2E,4E)-decadienal model reactions. Although few reaction products were found resulting from the condensation of an amino acid with a lipid-derived aldehyde, the amino acid plays an important role in catalyzing the degradation and further reaction of these carbonyl compounds. These results suggest that amino-acid-induced degradations and further reactions of lipid oxidation products may be of considerable importance in thermally processed foods.

  3. Volatile fatty acids derived from waste organics provide an economical carbon source for microbial lipids/biodiesel production.

    Science.gov (United States)

    Park, Gwon Woo; Fei, Qiang; Jung, Kwonsu; Chang, Ho Nam; Kim, Yeu-Chun; Kim, Nag-jong; Choi, Jin-dal-rae; Kim, Sangyong; Cho, Jaehoon

    2014-12-01

    Volatile fatty acids (VFAs) derived from organic waste, were used as a low cost carbon source for high bioreactor productivity and titer. A multi-stage continuous high cell density culture (MSC-HCDC) process was employed for economic assessment of microbial lipids for biodiesel production. In a simulation study we used a lipid yield of 0.3 g/g-VFAs, cell mass yield of 0.5 g/g-glucose or wood hydrolyzates, and employed process variables including lipid contents from 10-90% of cell mass, bioreactor productivity of 0.5-48 g/L/h, and plant capacity of 20000-1000000 metric ton (MT)/year. A production cost of USD 1.048/kg-lipid was predicted with raw material costs of USD 0.2/kg for wood hydrolyzates and USD 0.15/kg for VFAs; 9 g/L/h bioreactor productivity; 100, 000 MT/year production capacity; and 75% lipids content. The variables having the highest impact on microbial lipid production costs were the cost of VFAs and lipid yield, followed by lipid content, fermenter cost, and lipid productivity. The cost of raw materials accounted for 66.25% of total operating costs. This study shows that biodiesel from microbial lipids has the potential to become competitive with diesels from other sources.

  4. A bioassay for studying behavioural responses of the common bed bug, Cimex lectularius (Hemiptera: Cimicidae) to bed bug-derived volatiles.

    Science.gov (United States)

    Weeks, E N I; Logan, J G; Gezan, S A; Woodcock, C M; Birkett, M A; Pickett, J A; Cameron, M M

    2011-02-01

    The common bed bug, Cimex lectularius (Hemiptera: Cimicidae), has recently re-emerged in increasing numbers, distribution and intensity of infestation in many countries. Current control relies on the application of residual pesticides; but, due to the development of insecticide resistance, there is a need for new tools and techniques. Semiochemicals (behaviour and physiology modifying chemicals) could be exploited for management of bed bugs. However, in order to identify semiochemicals that can be utilised in monitoring or control, a suitable olfactometer is needed that enables the study of the responses of bed bugs to volatile chemicals. Previous studies have used olfactometers that do not separate olfactory responses from responses to physical contact. In this study, a still-air olfactometer was used to measure behavioural responses to different bed bug-derived volatiles presented in an odour pot. Bed bugs were significantly more likely to visit the area above the odour pot first, and more frequently, in the presence of volatiles from bed bug-exposed paper but not in the presence of volatiles from conspecific bed bugs. Bed bug activity was found to be dependent on the presence of the volatiles from bed bug-exposed paper, the time during the scotophase and the sex of the insect being tested. The still-air olfactometer could be used to test putative semiochemicals, which would allow an understanding of their behavioural role in bed bug ecology. Ultimately, this could lead to the identification of new semiochemical tools for bed bug monitoring and control.

  5. Correlation between volatile profiles of Italian fermented sausages and their size and starter culture.

    Science.gov (United States)

    Montanari, Chiara; Bargossi, Eleonora; Gardini, Aldo; Lanciotti, Rosalba; Magnani, Rudy; Gardini, Fausto; Tabanelli, Giulia

    2016-02-01

    The aroma profiles of 10 traditional Italian fermented sausages were evaluated. The volatile organic compounds (VOCs) obtained by solid-phase microextraction and gas chromatograph-mass spectrometry were analysed using principal component analysis (PCA) and linear discriminant analysis (LDA). PCA allowed an acceptable separation but some sausage typologies were not well separated. On the other hand, the supervised approach of LDA allowed a clear grouping of the samples in relation to sausage size and starter culture. In spite of the extreme variability of the volatile profiles of the sausage typologies, this work showed the influence of diameter on VOC profile. The differences observed can be related to the effects that some fundamental physicochemical characteristics (such as water loss kinetics and oxygen availability) have on the results of ripening processes. Differences in VOC profiles were also observed due to the lactic acid bacteria used as starter cultures, with differences mainly attributable to compounds deriving from pyruvate metabolism.

  6. Comparison of the volatile profiles of the crumb of gluten-free breads by DHE-GC/MS

    DEFF Research Database (Denmark)

    Pico, Joana; Hansen, Åse Solvej; Petersen, Mikael Agerlin

    2017-01-01

    The aroma of gluten-free bread has been considered of lower quality than that of the common wheat bread. With the aim of improving the aroma of gluten-free bread, the volatile profiles of the crumb of gluten-free breads made from rice, teff, buckwheat, amaranth and quinoa flours as well as corn...

  7. Aroma-active components of nonfat dry milk.

    Science.gov (United States)

    Karagül-Yüceer, Y; Drake, M A; Cadwallader, K R

    2001-06-01

    Application of aroma extract dilution analysis (AEDA) on the volatile components of low-, medium-, and high-heat-treated nonfat dry milks (NDM) revealed aroma-active compounds in the log(3) flavor dilution (log(3) FD) factor range of 1 to 6. The following compounds contributed the highest log(3) FD factors to overall NDM flavor: 2,5-dimethyl-4-hydroxy-3(2H)-furanone [(Furaneol), burnt sugar-like]; butanoic acid (rancid); 3-(methylthio)propanal [(methional), boiled potato-like]; o-aminoacetophenone (grape-like); delta-decalactone (sweet); (E)-4,5-epoxy-(E)-2-decenal (metallic); pentanoic acid (sweaty); 4,5-dimethyl-3-hydroxy-2(5H)-furanone [(sotolon), curry]; 3-methoxy-4-hydroxybenzaldehyde [(vanillin), vanilla]; 2-acetyl-1-pyrroline and 2-acetyl-2-thiazoline (popcorn-like); hexanoic acid (vinegar-like); phenylacetic acid (rose-like); octanoic acid (waxy); nonanal (fatty); and 1-octen-3-one (mushroom-like). The odor intensities of Furaneol, butanoic acid, methional, o-aminoacetophenone, sotolon, vanillin, (E)-4,5-epoxy-(E)-2-decenal, and phenylacetic acid were higher in high-heat-treated samples than others. However, the odor intensities of lactones, 2-acetyl-1-pyrroline, and 2-acetyl-2-thiazoline were not affected by heat treatment. Sensory evaluation results also revealed that heat-generated flavors have a major impact on the flavor profile of NDM.

  8. Aroma compounds in fresh cut pomegranate arils.

    Science.gov (United States)

    Little published information exists regarding flavor and aroma compounds in pomegranate (Punica granatum). Although arils have fruity and sweet characteristics, we found no publications describing actual compounds responsible for their typical flavor. Since most commercial usage of pomegranates in...

  9. Characterization of the key aroma compounds in pink guava (Psidium guajava L.) by means of aroma re-engineering experiments and omission tests.

    Science.gov (United States)

    Steinhaus, Martin; Sinuco, Diana; Polster, Johannes; Osorio, Coralia; Schieberle, Peter

    2009-04-08

    Seventeen aroma-active volatiles, previously identified with high flavor dilution factors in fresh, pink Colombian guavas (Psidium guajava L.), were quantified by stable isotope dilution assays. On the basis of the quantitative data and odor thresholds in water, odor activity values (OAV; ratio of concentration to odor threshold) were calculated. High OAVs were determined for the green, grassy smelling (Z)-3-hexenal and the grapefruit-like smelling 3-sulfanyl-1-hexanol followed by 3-sulfanylhexyl acetate (black currant-like), hexanal (green, grassy), ethyl butanoate (fruity), acetaldehyde (fresh, pungent), trans-4,5-epoxy-(E)-2-decenal (metallic), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel, sweet), cinnamyl alcohol (floral), methyl (2S,3S)-2-hydroxy-3-methylpentanoate (fruity), cinnamyl acetate (floral), methional (cooked potato-like), and 3-hydroxy-4,5-dimethyl-2(5H)-furanone (seasoning-like). Studies on the time course of odorant formation in guava puree or cubes, respectively, showed that (Z)-3-hexenal was hardly present in the intact fruits, but was formed very quickly during crushing. The aroma of fresh guava fruit cubes, which showed a very balanced aroma profile, was successfully mimicked in a reconstitute consisting of 13 odorants in their naturally occurring concentrations. Omission tests, in which single odorants were omitted from the entire aroma reconstitute, revealed (Z)-3-hexenal, 3-sulfanyl-1-hexanol, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, 3-sulfanylhexyl acetate, hexanal, ethyl butanoate, cinnamyl acetate, and methional as the key aroma compounds of pink guavas.

  10. A fermented meat model system for studies of microbial aroma formation

    DEFF Research Database (Denmark)

    Tjener, Karsten; Stahnke, Louise Heller; Andersen, L.

    2003-01-01

    A fermented meat model system was developed, by which microbial formation of volatiles could be examined The model was evaluated against dry, fermented sausages with respect to microbial growth, pH and volatile profiles. Fast and slowly acidified sausages and models were produced using the starter......H, microbial growth and volatile profiles was similar to sausage production. Based on these findings, the model system was considered valid for studies of aroma formation of meat cultures for fermented sausage....... for multivariate data analysis. Growth of lactic acid bacteria was comparable for model and sausages, whereas survival of S. xylosus was better in the model. Multivariate analysis of volatiles showed that differences between fast and slowly acidified samples were identical for model and sausage. For both sausage...

  11. Tracking bed bugs (Cimex lectularius): a study of the effect of physiological and extrinsic factors on the response to bed bug-derived volatiles.

    Science.gov (United States)

    Weeks, E N I; Logan, J G; Birkett, M A; Pickett, J A; Cameron, M M

    2013-02-01

    The common bed bug, Cimex lectularius, feeds on the blood of mammal and bird hosts, and is a pest of global importance. Semiochemicals are chemicals involved in animal communication that may affect behaviour and/or physiology. Attractive semiochemicals that play a role in mediating bed bug behaviour could be exploited for the development of a highly effective novel monitoring device. Tracking software was used to record the response of bed bugs to volatiles from paper previously exposed to conspecific bugs in a still-air olfactometer illuminated by infrared lights, through a variety of activity variables. The effect of time of day as an extrinsic factor, and sex, stage, mating status and nutritional status as physiological factors on the response of bed bugs to the volatiles was examined. Bed bugs of both sexes and all stages responded to the volatiles from bed bug-exposed papers, showing significant attraction and orientation towards the volatile source whether they were starved or engorged. Confirmation that the physiological factors examined do not affect the response of bed bugs to the volatiles from bed bug-exposed papers provides evidence that these bed bug-derived volatiles contain aggregation cues, as semiochemicals that promote aggregation should by definition be detected by both sexes and all life stages. A device baited with such semiochemicals could play a major role in limiting the impact of the current bed bug resurgence by enabling timely detection of infestations, along with quantitative evaluation of control and effective surveillance of the geographical distribution of the pest species.

  12. 芳香植物广陈皮和山奈中有翅桃蚜驱避物质的化学鉴定%Chemical Analysis of Active Volatile Components in Two Aroma Plants,Citrus chachiensis and Kaempferia galanga,Responsible for Repelling Alate Myzus persicae (Sulzer)

    Institute of Scientific and Technical Information of China (English)

    李为争; 庄丽; 付国需; 杨雷; 李慧玲; 原国辉

    2012-01-01

    Two aroma plants,Citrus chachiensis kneel and Kaempferia galanga root,were previously shown to repel alate Myzus persicae ( Sulzer). In this paper, the active components were identified via Soxlet extraction, condensation, column chromatography, and gas chromatography-mass spectrometry (GC-MS). Both Soxlet extracts retained the repellent effectiveness of their corresponding origins, but bioassay of the sequential binary combinations indicates that C. chachiensis extract and K. galangal extract exhibited additive or weak antagonistic interaction. The Soxlet extracts were subjected to bioassay-guided column chromatography using petroleum ether and diethyl ether as solvent system, totally 11 fractions were collected from each extract. Among C. chachiensis fractions,only one fraction (rinsed with 3: 7 volume ratio of petroleum ether and diethyl ether) showed extremely significant repellence;among K. galangal fractions,the one rinsed by equal volume of petroleum ether and diethyl ether showied the strongest repellence, whose repellent percentage reached to 45.56% ,and the 7:3 and 2:8 fractions also showed relatively low activity. GC-MS analysis indicates that the major volatile of C. chachiensis active fraction was D-limonene (39.07% ) ,and that of K. galangal were trans ethyl p-methoxy cinnamate (70.22% ) and cis ethyl p-methoxy cinnamate (19. 55% ), further bioassay confirmed the activities of D-limonene and trans ethyl p-methoxy cinnamate, and the two compounds also exhibited additive interaction as their origins.%芳香植物广陈皮和山奈的挥发物对有翅桃蚜具有较强的驱避作用,本试验采用提取、浓缩、柱层析和GC-MS等技术鉴定了其中的活性成分.生物测定结果表明,索氏提取法能够保留原始材料的驱避效果,且广陈皮和山奈的索氏提取物存在加成效应或微弱的拮抗效应.分别采用梯度混合的石油醚-乙醚混合淋洗剂对两种材料的索氏提取物进行柱

  13. Microbial Contribution to Wine Aroma and Its Intended Use for Wine Quality Improvement

    Directory of Open Access Journals (Sweden)

    Ignacio Belda

    2017-01-01

    Full Text Available Wine is a complex matrix that includes components with different chemical natures, the volatile compounds being responsible for wine aroma quality. The microbial ecosystem of grapes and wine, including Saccharomyces and non-Saccharomyces yeasts, as well as lactic acid bacteria, is considered by winemakers and oenologists as a decisive factor influencing wine aroma and consumer’s preferences. The challenges and opportunities emanating from the contribution of wine microbiome to the production of high quality wines are astounding. This review focuses on the current knowledge about the impact of microorganisms in wine aroma and flavour, and the biochemical reactions and pathways in which they participate, therefore contributing to both the quality and acceptability of wine. In this context, an overview of genetic and transcriptional studies to explain and interpret these effects is included, and new directions are proposed. It also considers the contribution of human oral microbiota to wine aroma conversion and perception during wine consumption. The potential use of wine yeasts and lactic acid bacteria as biological tools to enhance wine quality and the advent of promising advice allowed by pioneering -omics technologies on wine research are also discussed.

  14. Microbial Contribution to Wine Aroma and Its Intended Use for Wine Quality Improvement.

    Science.gov (United States)

    Belda, Ignacio; Ruiz, Javier; Esteban-Fernández, Adelaida; Navascués, Eva; Marquina, Domingo; Santos, Antonio; Moreno-Arribas, M Victoria

    2017-01-24

    Wine is a complex matrix that includes components with different chemical natures, the volatile compounds being responsible for wine aroma quality. The microbial ecosystem of grapes and wine, including Saccharomyces and non-Saccharomyces yeasts, as well as lactic acid bacteria, is considered by winemakers and oenologists as a decisive factor influencing wine aroma and consumer's preferences. The challenges and opportunities emanating from the contribution of wine microbiome to the production of high quality wines are astounding. This review focuses on the current knowledge about the impact of microorganisms in wine aroma and flavour, and the biochemical reactions and pathways in which they participate, therefore contributing to both the quality and acceptability of wine. In this context, an overview of genetic and transcriptional studies to explain and interpret these effects is included, and new directions are proposed. It also considers the contribution of human oral microbiota to wine aroma conversion and perception during wine consumption. The potential use of wine yeasts and lactic acid bacteria as biological tools to enhance wine quality and the advent of promising advice allowed by pioneering -omics technologies on wine research are also discussed.

  15. Estimation of aroma glycosides of nutmeg and their changes during radiation processing.

    Science.gov (United States)

    Ananthakumar, Arul; Variyar, Prasad S; Sharma, Arun

    2006-03-10

    Glycosidically bound volatile compounds of nutmeg were identified as glyco-conjugates of p-cymene-7-ol, eugenol, methoxyeugenol and alpha-terpineol. Using phenyl-beta-glucoside as external standard the contents of these glycosidic precursors were estimated based on the measurement of TLC spot density on a densitometer. p-Cymene-7-ol rutinoside was the major aroma glycoside (3.15 mg/100 g), followed by glucosides of methoxyeugenol (0.61 mg/100 g), eugenol (0.50 mg/100 g) and alpha-terpineol (0.51 mg/100 g). A dose-dependent breakdown of these glycosidic precursors was observed during gamma-radiation processing. Among the four glycosides, alpha-terpineol glucoside was the most sensitive to radiation while p-cymene-7-ol rutinoside was the least sensitive. A reduction in the content of total glycosides by almost 50% was noted at a dose of 5kGy. Partitioning of aroma glycoside into n-butanol from aqueous extracts was found to result in rapid isolation of aroma glycosides, avoiding time consuming pre-purification on Amberlite XAD-2 column. A routine method based on extraction into n-butanol and subsequent quantification of post-irradiation changes in aroma glycosides on a TLC plate using a densitometer is proposed.

  16. Comparison of key aroma compounds in cooked brown rice varieties based on aroma extract dilution analyses.

    Science.gov (United States)

    Jezussek, Magnus; Juliano, Bienvenido O; Schieberle, Peter

    2002-02-27

    The aroma compounds present in cooked brown rice of the three varieties Improved Malagkit Sungsong (IMS), Basmati 370 (B 370), and Khaskhani (KK), and of the variety Indica (German supermarket sample), were identified on the basis of aroma extract dilution analyses (AEDA). A total of 41 odor-active compounds were identified, of which eleven are reported for the first time as rice constituents. 2-Amino acetophenone (medicinal, phenolic), which was up to now unknown in rice aroma, exhibited the highest flavor dilution (FD) factor among the 30 to 39 odor-active compounds detected in all four varieties. 2-Acetyl-1-pyrroline, exhibiting an intense popcorn-like aroma-note, was confirmed as a further key aroma constituent in IMS, B 370, and KK, but was not important in Indica. Differences in the FD factors between the varieties were found for the previously unknown rice aroma compound 3-hydroxy-4,5-dimethyl-2(5H)-furanone (Sotolon; seasoning-like), which was higher in B 370 than in IMS and KK. In IMS, a yet unknown, spicy smelling component with a very high FD factor could be detected, which contributed with lower FD factors to the overall aromas of B 370 and KK, and was not present in Indica. The latter variety, which was available on the German market, differed most in its overall aroma from the three Asian brown rices.

  17. Characterization of the key aroma compounds in pork soup stock by using an aroma extract dilution analysis.

    Science.gov (United States)

    Takakura, Yukiko; Osanai, Hiroki; Masuzawa, Takuya; Wakabayashi, Hidehiko; Nishimura, Toshihide

    2014-01-01

    The aroma extract dilution analysis of an extract prepared from pork stock and subsequent experiments led to the identification of 15 aroma-active compounds in the flavor dilution factor range of 64-2048. Omission experiments to select the most aroma-active compounds from the 15 odor compounds suggested acetol, octanoic acid, δ-decalactone, and decanoic acid as the main active compounds contributing to the aroma of pork stock. Aroma recombination, addition, and omission experiments of these four aroma compounds in taste-reconstituted pork stock showed that each compound had an individual aroma profile. A comparison of the overall aroma between this recombined mixture and pork stock showed strong similarity, suggesting that the key aroma compounds had been successfully identified.

  18. Effect of lactobionic acid on the acidification, rheological properties and aroma release of dairy gels.

    Science.gov (United States)

    Ribeiro, Jéssica C Bigaski; Granato, Daniel; Masson, Maria Lucia; Andriot, Isabelle; Mosca, Ana Carolina; Salles, Christian; Guichard, Elisabeth

    2016-09-15

    The food industry is investigating new technological applications of lactobionic acid (LBA). In the current work, the effect of lactobionic acid on the acidification of dairy gels (pH 5.5 and 6.2), rheological properties using a double compression test, sodium mobility using (23)Na NMR technique and aroma release using headspace GC-FID were studied. Our results showed that it is possible to use LBA as an alternative to glucono-δ-lactone (GDL) for the production of dairy gels with a controlled pH value. Small differences in the rheological properties and in the amount of aroma volatile organic compounds that were released in the vapour phase, but no significant difference in the sodium ion mobility were obtained. The gels produced with LBA were less firm and released less volatile aroma compounds than the gels produced with GDL. The gels at pH 6.2 were firmer than those at pH 5.5 and had a more organised structure around the sodium ions.

  19. Profiling Taste and Aroma Compound Metabolism during Apricot Fruit Development and Ripening.

    Science.gov (United States)

    Xi, Wanpeng; Zheng, Huiwen; Zhang, Qiuyun; Li, Wenhui

    2016-06-24

    Sugars, organic acids and volatiles of apricot were determined by HPLC and GC-MS during fruit development and ripening, and the key taste and aroma components were identified by integrating flavor compound contents with consumers' evaluation. Sucrose and glucose were the major sugars in apricot fruit. The contents of all sugars increased rapidly, and the accumulation pattern of sugars converted from glucose-predominated to sucrose-predominated during fruit development and ripening. Sucrose synthase (SS), sorbitol oxidase (SO) and sorbitol dehydrogenase (SDH) are under tight developmental control and they might play important roles in sugar accumulation. Almost all organic acids identified increased during early development and then decrease rapidly. During early development, fruit mainly accumulated quinate and malate, with the increase of citrate after maturation, and quinate, malate and citrate were the predominant organic acids at the ripening stage. The odor activity values (OAV) of aroma volatiles showed that 18 aroma compounds were the characteristic components of apricot fruit. Aldehydes and terpenes decreased significantly during the whole development period, whereas lactones and apocarotenoids significantly increased with fruit ripening. The partial least squares regression (PLSR) results revealed that β-ionone, γ-decalactone, sucrose and citrate are the key characteristic flavor factors contributing to consumer acceptance. Carotenoid cleavage dioxygenases (CCD) may be involved in β-ionone formation in apricot fruit.

  20. Profiling Taste and Aroma Compound Metabolism during Apricot Fruit Development and Ripening

    Directory of Open Access Journals (Sweden)

    Wanpeng Xi

    2016-06-01

    Full Text Available Sugars, organic acids and volatiles of apricot were determined by HPLC and GC-MS during fruit development and ripening, and the key taste and aroma components were identified by integrating flavor compound contents with consumers’ evaluation. Sucrose and glucose were the major sugars in apricot fruit. The contents of all sugars increased rapidly, and the accumulation pattern of sugars converted from glucose-predominated to sucrose-predominated during fruit development and ripening. Sucrose synthase (SS, sorbitol oxidase (SO and sorbitol dehydrogenase (SDH are under tight developmental control and they might play important roles in sugar accumulation. Almost all organic acids identified increased during early development and then decrease rapidly. During early development, fruit mainly accumulated quinate and malate, with the increase of citrate after maturation, and quinate, malate and citrate were the predominant organic acids at the ripening stage. The odor activity values (OAV of aroma volatiles showed that 18 aroma compounds were the characteristic components of apricot fruit. Aldehydes and terpenes decreased significantly during the whole development period, whereas lactones and apocarotenoids significantly increased with fruit ripening. The partial least squares regression (PLSR results revealed that β-ionone, γ-decalactone, sucrose and citrate are the key characteristic flavor factors contributing to consumer acceptance. Carotenoid cleavage dioxygenases (CCD may be involved in β-ionone formation in apricot fruit.

  1. Fractionation and identification of minor and aroma-active constituents in Kangra orthodox black tea.

    Science.gov (United States)

    Joshi, Robin; Gulati, Ashu

    2015-01-15

    The aroma constituents of Kangra orthodox black tea were isolated by simultaneous distillation extraction (SDE), supercritical fluid extraction and beverage method. The aroma-active compounds were identified using gas chromatography-olfactometry-mass spectrometry. Geraniol, linalool, (Z/E)-linalool oxides, (E)-2-hexenal, phytol, β-ionone, hotrienol, methylpyrazine and methyl salicylate were major volatile constituents in all the extracts. Minor volatile compounds in all the extracts were 2-ethyl-5-methylpyrazine, ethylpyrazine, 2-6,10,14-trimethyl-2-pentadecanone, acetylfuran, hexanoic acid, dihydroactinidiolide and (E/Z)-2,6-nonadienal. The concentrated SDE extract was fractionated into acidic, basic, water-soluble and neutral fractions. The neutral fraction was further chromatographed on a packed silica gel column eluted with pentane and diethyl ether to separate minor compounds. The aroma-active compounds identified using gas chromatography-olfactometry-mass spectrometry were 2-amylfuran, (E/Z)-2,6-nonadienal, 1-pentanol, epoxylinalool, (Z)-jasmone, 2-acetylpyrrole, farnesyl acetone, geranyl acetone, cadinol, cubenol and dihydroactinidiolide. AEDA studies showed 2-hexenal, 3-hexenol, ethylpyrazine, (Z/E)-linalool oxides, linalool, (E/Z)-2,6-nonadienal, geraniol, phenylethanol, β-ionone, hotrienol and dihydroactinidiolide to be odour active components.

  2. Minor Volatile Compounds Profiles of ‘Aligoté’ Wines Fermented with Different Yeast Strains

    Directory of Open Access Journals (Sweden)

    Florin VARARU

    2015-03-01

    Full Text Available The aroma of wine can be classified accordingly to its origin, in varietal aroma, pre-fermentative aroma, fermentative aroma and post-fermentative aroma. Although a number of flavor components are found in the original grape, the dominant and major compounds contributing to white wines are formed during alcoholic fermentation, in concordance with the yeast strain used. In order to highlight the influence of the yeast strain to the aroma composition of wines, wine samples from ‘Aligoté’ grape variety made with 8 different yeast strains were subjected to stir bar sorptive extraction-gas chromatography-mass spectrometry (SBSE-GC-MS analyses. Also, a sensorial analysis of the studied wines was performed by a tasting panel consisting of 15 tasters. 38 minor volatile compounds were quantified by SBSE-GC-MS technique. Different concentration of the same compound and different aroma compounds were identified and quantified in wines obtained with different yeast strains. A wine finger printing was obtained by multivariate data analyses of aroma compounds grouped by chemical families. The analytical and sensorial analysis of the wine samples confirms that there are differences in aroma composition of the wines made with different yeast strains.

  3. Aroma Stripping under various Forms of Membrane Distillation Processes: Experiments and modeling

    DEFF Research Database (Denmark)

    Jonsson, Gunnar Eigil

    of MD configurations: Vacuum Membrane Distillation , Sweeping Gas Membrane Distillation , Direct Contact Membrane Distillation and Osmotic Membrane Distillation. The influence of feed temperature and feed flow rate on the permeate flux and concentration factor for different types of aroma compounds have...... been measured for these MD configurations. A general transport model for the flux of water and aroma compounds have been derived and compared with the experimental data. A reasonable agreement between the modelling and the experiments could be obtained. From the modelling it was possible to explain...

  4. Influence of foam structure on the release kinetics of volatiles from espresso coffee prior to consumption.

    Science.gov (United States)

    Dold, Susanne; Lindinger, Christian; Kolodziejczyk, Eric; Pollien, Philippe; Ali, Santo; Germain, Juan Carlos; Perin, Sonia Garcia; Pineau, Nicolas; Folmer, Britta; Engel, Karl-Heinz; Barron, Denis; Hartmann, Christoph

    2011-10-26

    The relationship between the physical structure of espresso coffee foam, called crema, and the above-the-cup aroma release was studied. Espresso coffee samples were produced using the Nespresso extraction system. The samples were extracted with water with different levels of mineral content, which resulted in liquid phases with similar volatile profiles but foams with different structure properties. The structure parameters foam volume, foam drainage, and lamella film thickness at the foam surface were quantified using computer-assisted microscopic image analysis and a digital caliper. The above-the-cup volatile concentration was measured online by using PTR-MS and headspace sampling. A correlation study was done between crema structure parameters and above-the-cup volatile concentration. In the first 2.5 min after the start of the coffee extraction, the presence of foam induced an increase of concentration of selected volatile markers, independently if the crema was of high or low stability. At times longer than 2.5 min, the aroma marker concentration depends on both the stability of the crema and the volatility of the specific aroma compounds. Mechanisms of above-the-cup volatile release involved gas bubble stability, evaporation, and diffusion. It was concluded that after the initial aroma burst (during the first 2-3 min after the beginning of extraction), for the present sample space a crema of high stability provides a stronger aroma barrier over several minutes.

  5. Effect on the Aroma Profile of Graciano and Tempranillo Red Wines of the Application of Two Antifungal Treatments onto Vines

    Directory of Open Access Journals (Sweden)

    Raquel Noguerol-Pato

    2014-08-01

    Full Text Available The effect of two antifungals (boscalid + kresoxim-methyl and metrafenone applied onto vines under Good Agricultural Practices (GAPs on the volatile composition of Tempranillo and Graciano red wines was studied. Changes in aroma profile in the wines were assessed from the combined odour activity values (OAVs for the volatile compounds in each of seven different odorant series (viz., ripe fruits, fresh fruits, lactic, floral, vinous, spicy and herbaceous. Graciano wines obtained from grapes treated with the antifungals exhibited markedly increased concentrations of varietal volatile compounds (monoterpenes and C13-norisoprenoids and aldehydes, and decreased concentrations of acetates and aromatic alcohols. By contrast, the concentrations of volatile compounds in Tempranillo wines showed different changes depending on the fungicide applied. Also, the aroma profiles of wines obtained from treated grapes were modified, particularly the ripe fruit nuances in Graciano wines. The OAV of this odorant series underwent an increase by more than 60% with respect to the control wine as a result of the increase of β-damascenone concentration (which imparts wine a dry plum note. The aroma profile of Tempranillo red wines containing metrafenone residues exhibited marked changes relative to those from untreated grapes.

  6. Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA)

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Weiwei; Palm, Brett B.; Day, Douglas A.; Campuzano-Jost, Pedro; Krechmer, Jordan E.; Peng, Zhe; de Sá, Suzane S.; Martin, Scot T.; Alexander, M. Lizabeth; Baumann, Karsten; Hacker, Lina; Kiendler-Scharr, Astrid; Koss, Abigail R.; de Gouw, Joost A.; Goldstein, Allen H.; Seco, Roger; Sjostedt, Steven J.; Park, Jeong-Hoo; Guenther, Alex B.; Kim, Saewung; Canonaco, Francesco; Prévôt, André S. H.; Brune, William H.; Jimenez, Jose L.

    2016-01-01

    Isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA) can contribute substantially to organic aerosol (OA) concentrations in forested areas under low NO conditions, hence significantly influencing the regional and global OA budgets, accounting, for example, for 16–36 % of the submicron OA in the southeastern United States (SE US) summer. Particle evaporation measurements from a thermodenuder show that the volatility of ambient IEPOX-SOA is lower than that of bulk OA and also much lower than that of known monomer IEPOX-SOA tracer species, indicating that IEPOX-SOA likely exists mostly as oligomers in the aerosol phase. The OH aging process of ambient IEPOX-SOA was investigated with an oxidation flow reactor (OFR). New IEPOX-SOA formation in the reactor was negligible, as the OFR does not accelerate processes such as aerosol uptake and reactions that do not scale with OH. Simulation results indicate that adding ~100 µg m-3 of pure H2SO4 to the ambient air allows IEPOX-SOA to be efficiently formed in the reactor. The heterogeneous reaction rate coefficient of ambient IEPOX-SOA with OH radical (kOH) was estimated as 4.0 ± 2.0 ×10-13 cm3 molec-1 s-1, which is equivalent to more than a 2-week lifetime. A similar kOH was found for measurements of OH oxidation of ambient Amazon forest air in an OFR. At higher OH exposures in the reactor (> 1 × 1012 molec cm-3 s), the mass loss of IEPOX-SOA due to heterogeneous reaction was mainly due to revolatilization of fragmented reaction products. We report, for the first time, OH reactive uptake coefficients (γOH = 0.59±0.33 in SE US and γOH = 0.68±0.38 in Amazon) for SOA under ambient conditions. A relative humidity dependence of kOH and γOH was observed, consistent with surface-area-limited OH uptake

  7. Characterization of the key aroma compounds in a commercial Amontillado sherry wine by means of the sensomics approach.

    Science.gov (United States)

    Marcq, Pauline; Schieberle, Peter

    2015-05-20

    An aroma extract dilution analysis (AEDA) carried out on the volatile fraction isolated by extraction/solvent-assisted flavor evaporation (SAFE) distillation from a commercial Amontillado sherry wine revealed 37 odor-active compounds with flavor dilution (FD) factors in the range of 16-4096. Among them, 2-phenylethanol (flowery, honey-like) and ethyl methylpropanoate (fruity) showed the highest FD factors, followed by ethyl (2S,3S)-2-hydroxy-3-methylpentanoate (fruity) reported for the first time in sherry wine. A total of 36 aroma-active compounds located by AEDA were then quantitated by a stable isotope dilution assay, and their odor activity values (OAVs; ratio of concentration to odor threshold) were calculated. The highest OAV was displayed by 1,1-diethoxyethane (2475; fruity), followed by 2- and 3-methylbutanals (574; malty) and methylpropanal (369; malty). Aroma reconstitution experiments and a comparative aroma profile analysis revealed that the entire orthonasal aroma profile of the Amontillado sherry wine could be closely mimicked.

  8. Metabolic Engineering of the Phenylpropanoid and Its Primary, Precursor Pathway to Enhance the Flavor of Fruits and the Aroma of Flowers

    Directory of Open Access Journals (Sweden)

    Hadas Peled-Zehavi

    2015-11-01

    Full Text Available Plants produce a diverse repertoire of specialized metabolites that have multiple roles throughout their life cycle. Some of these metabolites are essential components of the aroma and flavor of flowers and fruits. Unfortunately, attempts to increase the yield and prolong the shelf life of crops have generally been associated with reduced levels of volatile specialized metabolites and hence with decreased aroma and flavor. Thus, there is a need for the development of new varieties that will retain their desired traits while gaining enhanced scent and flavor. Metabolic engineering holds great promise as a tool for improving the profile of emitted volatiles of domesticated crops. This mini review discusses recent attempts to utilize metabolic engineering of the phenylpropanoid and its primary precursor pathway to enhance the aroma and flavor of flowers and fruits.

  9. Role of intestinal microbiota in transformation of bismuth and other metals and metalloids into volatile methyl and hydride derivatives in humans and mice.

    Science.gov (United States)

    Michalke, Klaus; Schmidt, Annette; Huber, Britta; Meyer, Jörg; Sulkowski, Margareta; Hirner, Alfred V; Boertz, Jens; Mosel, Frank; Dammann, Philip; Hilken, Gero; Hedrich, Hans J; Dorsch, Martina; Rettenmeier, Albert W; Hensel, Reinhard

    2008-05-01

    The present study shows that feces samples of 14 human volunteers and isolated gut segments of mice (small intestine, cecum, and large intestine) are able to transform metals and metalloids into volatile derivatives ex situ during anaerobic incubation at 37 degrees C and neutral pH. Human feces and the gut of mice exhibit highly productive mechanisms for the formation of the toxic volatile derivative trimethylbismuth [(CH(3))(3)Bi] at rather low concentrations of bismuth (0.2 to 1 mumol kg(-1) [dry weight]). An increase of bismuth up to 2 to 14 mmol kg(-1) (dry weight) upon a single (human volunteers) or continuous (mouse study) administration of colloidal bismuth subcitrate resulted in an average increase of the derivatization rate from approximately 4 pmol h(-1) kg(-1) (dry weight) to 2,100 pmol h(-1) kg(-1) (dry weight) in human feces samples and from approximately 5 pmol h(-1) kg(-1) (dry weight) to 120 pmol h(-1) kg(-1) (dry weight) in mouse gut samples, respectively. The upshift of the bismuth content also led to an increase of derivatives of other elements (such as arsenic, antimony, and lead in human feces or tellurium and lead in the murine large intestine). The assumption that the gut microbiota plays a dominant role for these transformation processes, as indicated by the production of volatile derivatives of various elements in feces samples, is supported by the observation that the gut segments of germfree mice are unable to transform administered bismuth to (CH(3))(3)Bi.

  10. Characterization of the Key Aroma Compounds in Two Commercial Rums by Means of the Sensomics Approach.

    Science.gov (United States)

    Franitza, Laura; Granvogl, Michael; Schieberle, Peter

    2016-01-27

    Two rums differing in their overall aroma profile and price level (rum A, high price; rum B, low price) were analyzed by means of the Sensomics approach. Application of aroma extract dilution analysis (AEDA) on a distillate of volatiles prepared from rum A revealed 40 aroma-active compounds in the flavor dilution (FD) factor range from 8 to 2048. The identification experiments indicated cis-whiskey lactone, vanillin, decanoic acid, and 2- and 3-methylbutanol with the highest FD factors. The AEDA of a distillate prepared from rum B showed only 26 aroma-active compounds in the same FD factor range. Among them, in particular, ethyl butanoate, 1,1-diethoxyethane, ethyl (S)-2-methylbutanoate, and decanoic acid appeared with the highest FD factors. Thirty-seven compounds having at least an FD factor ≥32 in one of the two rums were quantitated using stable isotope dilution assays or enzyme kits (2 compounds). The calculation of odor activity values (OAVs; ratio of concentration to respective odor threshold) indicated ethanol, vanillin, ethyl (S)-2-methylbutanoate, and (E)-β-damascenone with the highest OAVs in rum A, whereas ethanol, 2,3-butanedione, 3-methylbutanal, and ethyl butanoate revealed the highest OAVs in rum B. Most compounds were present in similar concentrations in both rums, but significant differences were determined for vanillin, cis-whiskey lactone, and 4-allyl-2-methoxyphenol (all higher in rum A) and 3-methylbutanal, 2,3-butanedione, and ethyl butanoate (all higher in rum B). Finally, the aromas of both rums were successfully simulated by a recombinate using reference odorants in the same concentrations as they naturally occurred in the spirits.

  11. Characterization of traditional Istrian dry-cured ham by means of physical and chemical analyses and volatile compounds.

    Science.gov (United States)

    Marušić, Nives; Petrović, Marinko; Vidaček, Sanja; Petrak, Tomislav; Medić, Helga

    2011-08-01

    The aroma-active compounds of Istrian dry-cured ham were investigated by using headspace-solid phase microextraction and gas chromatography-mass spectrometry (GC-MS). Samples of biceps femoris were also evaluated by measuring physical and chemical characteristics: moisture, protein, fat, ash and NaCl content, a(w) value; colour: L*, a*, b* and oxidation of fat: TBARS test. About 50 volatile compounds were identified and quantified which belonged to several classes of chemical: 5 alcohols, 8 aldehydes, 7 alkanes, 1 ketone, 2 esters, 9 monoterpenes and 15 sesquiterpenes. Except volatile compounds derived from lipolysis and proteolysis the most abundant constituents were terpenes (62.97; 41.43%) that originate from spices added in the salting phase of the production process.

  12. Difference in volatile profile between pericarp tissue and locular gel in tomato fruit

    Science.gov (United States)

    Aroma, a complex mixture of volatile compounds, plays an important role in the perception and acceptability of tomato products by consumers. Numerous studies have reported volatile profiles in tomatoes based on measurement of the whole fruit or pericarp tissue, however, little is understood regardin...

  13. Release and perception of aroma compounds during consumption

    NARCIS (Netherlands)

    Weel, K.G.C.

    2004-01-01

    Key words: MS-Nose, in vivo aroma release, aroma perception, mouth model, artificial throat, liquid protocol, sweeteners, reversible protein-aroma interactions, emulsions, oil content, droplet size distribution, gel hardness, texture, cross-modal interactions.This thesis evaluated and validated the

  14. Release and perception of aroma compounds during consumption

    NARCIS (Netherlands)

    Weel, K.G.C.

    2004-01-01

    Key words: MS-Nose, in vivo aroma release, aroma perception, mouth model, artificial throat, liquid protocol, sweeteners, reversible protein-aroma interactions, emulsions, oil content, droplet size distribution, gel hardness, texture, cross-modal interactions.This thesis evaluated and validated the

  15. Saliva from obese individuals suppresses the release of aroma compounds from wine.

    Directory of Open Access Journals (Sweden)

    Paola Piombino

    Full Text Available BACKGROUND: Recent evidence suggests that a lower extent of the retronasal aroma release correspond to a higher amount of ad libitum food intake. This has been regarded as one of the bases of behavioral choices towards food consumption in obese people. In this pilot study we investigated the hypothesis that saliva from obese individuals could be responsible for an alteration of the retro-nasal aroma release. We tested this hypothesis in vitro, by comparing the release of volatiles from a liquid food matrix (wine after its interaction with saliva from 28 obese (O and 28 normal-weight (N individuals. METHODS AND FINDINGS: Amplicon sequencing of the 16S rRNA V4 region indicated that Firmicutes and Actinobacteria were more abundant in O, while Proteobacteria and Fusobacteria dominated in N. Streptococcaceae were significantly more abundant in the O subjects and constituted 34% and 19% on average of the saliva microbiota of O and N subjects, respectively. The Total Antioxidant Capacity was higher in O vs N saliva samples. A model mouth system was used to test whether the in-mouth wine aroma release differs after the interaction with O or N saliva. In O samples, a 18% to 60% significant decrease in the mean concentration of wine volatiles was detected as a result of interaction with saliva, compared with N. This suppression was linked to biochemical differences in O and N saliva composition, which include protein content. CONCLUSION: Microbiological and biochemical differences were found in O vs N saliva samples. An impaired retronasal aroma release from white wine was detected in vitro and linked to compositional differences between saliva from obese and normal-weight subjects. Additional in vivo investigations on diverse food matrices could contribute to understanding whether a lower olfactory stimulation due to saliva composition can be a co-factor in the development/maintenance of obesity.

  16. Saliva from Obese Individuals Suppresses the Release of Aroma Compounds from Wine

    Science.gov (United States)

    Piombino, Paola; Genovese, Alessandro; Esposito, Silvia; Moio, Luigi; Cutolo, Pier Paolo; Chambery, Angela; Severino, Valeria; Moneta, Elisabetta; Smith, Daniel P.; Owens, Sarah M.; Gilbert, Jack A.; Ercolini, Danilo

    2014-01-01

    Background Recent evidence suggests that a lower extent of the retronasal aroma release correspond to a higher amount of ad libitum food intake. This has been regarded as one of the bases of behavioral choices towards food consumption in obese people. In this pilot study we investigated the hypothesis that saliva from obese individuals could be responsible for an alteration of the retro-nasal aroma release. We tested this hypothesis in vitro, by comparing the release of volatiles from a liquid food matrix (wine) after its interaction with saliva from 28 obese (O) and 28 normal-weight (N) individuals. Methods and Findings Amplicon sequencing of the 16S rRNA V4 region indicated that Firmicutes and Actinobacteria were more abundant in O, while Proteobacteria and Fusobacteria dominated in N. Streptococcaceae were significantly more abundant in the O subjects and constituted 34% and 19% on average of the saliva microbiota of O and N subjects, respectively. The Total Antioxidant Capacity was higher in O vs N saliva samples. A model mouth system was used to test whether the in-mouth wine aroma release differs after the interaction with O or N saliva. In O samples, a 18% to 60% significant decrease in the mean concentration of wine volatiles was detected as a result of interaction with saliva, compared with N. This suppression was linked to biochemical differences in O and N saliva composition, which include protein content. Conclusion Microbiological and biochemical differences were found in O vs N saliva samples. An impaired retronasal aroma release from white wine was detected in vitro and linked to compositional differences between saliva from obese and normal-weight subjects. Additional in vivo investigations on diverse food matrices could contribute to understanding whether a lower olfactory stimulation due to saliva composition can be a co-factor in the development/maintenance of obesity. PMID:24465618

  17. A fermented meat model system for studies of microbial aroma formation

    DEFF Research Database (Denmark)

    Tjener, Karsten; Stahnke, Louise Heller; Andersen, L.

    2003-01-01

    A fermented meat model system was developed, by which microbial formation of volatiles could be examined The model was evaluated against dry, fermented sausages with respect to microbial growth, pH and volatile profiles. Fast and slowly acidified sausages and models were produced using the starte......H, microbial growth and volatile profiles was similar to sausage production. Based on these findings, the model system was considered valid for studies of aroma formation of meat cultures for fermented sausage.......A fermented meat model system was developed, by which microbial formation of volatiles could be examined The model was evaluated against dry, fermented sausages with respect to microbial growth, pH and volatile profiles. Fast and slowly acidified sausages and models were produced using the starter...... cultures Pediococcus pentosaceus and Staphylococcus xylosus. Volatiles were collected and analysed by dynamic headspace sampling and GC MS. The analysis was primarily focused on volatiles arising from amino acid degradation and a total of 24 compounds, of which 19 were quantified, were used...

  18. Formation of the aroma of a raw goat milk cheese during maturation analysed by SPME-GC-MS.

    Science.gov (United States)

    Delgado, Francisco José; González-Crespo, José; Cava, Ramón; Ramírez, Rosario

    2011-12-01

    The volatile profile of the Spanish goat raw milk cheese of the protected designation of origin (PDO) "Queso Ibores" was studied at four stages of maturation (day 1, 30, 60, and 90) by the method of solid-phase micro-extraction-gas chromatography-mass spectrometry (SPME-GC-MS) to determinate the characteristic volatile compounds of this cheese and to know the changes in the volatile profile of this cheese during maturation. According to the PDO, Ibores cheese aroma varies between sweet and mild and it has a strong taste, slightly tart. A total of 64 compounds were detected: 14 acids, 18 alcohols, 13 esters, 6 ketones and 13 compounds which could not be classified in these groups. Carboxylic acids were the most abundant volatile compounds in the headspace of Ibores cheese. Content of volatile compounds was significantly modified (Pdecalactone. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Volatile organic compounds of whole grain soft winter wheat

    Science.gov (United States)

    The aroma from volatile organic compounds (VOCs) is an indicator of grain soundness and also an important quality attribute of grain foods. To identify the inherent VOCs of wheat grain unaffected by fungal infestation and other extrinsic factors, grains of nine soft wheat varieties were collected at...

  20. Volatile flavour components of grapefruit juice (Citrus paradisi Macfadyen)

    NARCIS (Netherlands)

    Nunez, A.J.; Maarse, H.; Bemelmans, J.M.H.

    1985-01-01

    The qualitative analysis of volatile flavour components in grapefruit juice (Citrus paradisi Macfadyen) was performed using a gas chromatography/mass spectro‐metry/computer system which allowed the identification of 58 components, 25 of them being reported for the first time. The aroma concentrates

  1. Volatile flavour components of grapefruit juice (Citrus paradisi Macfadyen)

    NARCIS (Netherlands)

    Nunez, A.J.; Maarse, H.; Bemelmans, J.M.H.

    1985-01-01

    The qualitative analysis of volatile flavour components in grapefruit juice (Citrus paradisi Macfadyen) was performed using a gas chromatography/mass spectro‐metry/computer system which allowed the identification of 58 components, 25 of them being reported for the first time. The aroma concentrates

  2. Simultaneous determination of five mercapturic acid derived from volatile organic compounds in human urine by LC-MS/MS and its application to relationship study.

    Science.gov (United States)

    Zhang, Xiaotao; Xiong, Wei; Shi, Longkai; Hou, Hongwei; Hu, Qingyuan

    2014-09-15

    Acrylonitrile, acrolein, 1,3-butadiene, benzene, and crotonaldehyde are hazard volatile organic compounds in tobacco smoke, which can be metabolized to mercapturic acids (MAs) excreted in urine. MAs are can be regarded as important and specific biomarkers to evaluate exposure to those carcinogenic volatile organic compounds. A simultaneous determination of N-acetyl-S-2-cyanoethyl-cysteine (CEMA), 3-hydroxypropyl)-L-cysteine (3-HPMA), N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA), N-acetyl-S-(phenyl)-L-cysteine (SPMA) and 3-hydroxy-1-methylpropylmercapturic acid (HMPMA) derived from five volatile organic compounds by column-switching LC-MS/MS has been described. MAs were concentrated and cleaned up by an online reusable pre-column packed with restricted access material. The intra- and inter-day precisions of the method ranged from 0.7% to 15.2%. The LODs was 0.013-0.053 ng/mL. The recovery of the whole analytical procedure ranged from 79.3% to 116%. After validation, this method was successfully applied to urine samples from smokers (n=246) and nonsmokers (n=58). The results showed MAs in urine from smokers were significantly higher than that in nonsmoker except for SPMA. Urinary CEMA significantly correlated with 3-HPMA (r=0.763, PCEMA, 3-HPMA and HMPMA are potential biomarkers to distinguish the differences between smokers and nonsmokers.

  3. Metabolomics in melon: A new opportunity for aroma analysis

    Science.gov (United States)

    Allwood, J. William; Cheung, William; Xu, Yun; Mumm, Roland; De Vos, Ric C.H.; Deborde, Catherine; Biais, Benoit; Maucourt, Mickael; Berger, Yosef; Schaffer, Arthur A.; Rolin, Dominique; Moing, Annick; Hall, Robert D.; Goodacre, Royston

    2014-01-01

    Cucumis melo fruit is highly valued for its sweet and refreshing flesh, however the flavour and value are also highly influenced by aroma as dictated by volatile organic compounds (VOCs). A simple and robust method of sampling VOCs on polydimethylsiloxane (PDMS) has been developed. Contrasting cultivars of C. melo subspecies melo were investigated at commercial maturity: three cultivars of var. Cantalupensis group Charentais (cv. Cézanne, Escrito, and Dalton) known to exhibit differences in ripening behaviour and shelf-life, as well as one cultivar of var. Cantalupensis group Ha’Ogan (cv. Noy Yisre’el) and one non-climacteric cultivar of var. Inodorus (cv. Tam Dew). The melon cultivar selection was based upon fruits exhibiting clear differences (cv. Noy Yisre’el and Tam Dew) and similarities (cv. Cézanne, Escrito, and Dalton) in flavour. In total, 58 VOCs were detected by thermal desorption (TD)-GC–MS which permitted the discrimination of each cultivar via Principal component analysis (PCA). PCA indicated a reduction in VOCs in the non-climacteric cv. Tam Dew compared to the four Cantalupensis cultivars. Within the group Charentais melons, the differences between the short, mid and long shelf-life cultivars were considerable. 1H NMR analysis led to the quantification of 12 core amino acids, their levels were 3–10-fold greater in the Charentais melons, although they were reduced in the highly fragrant cv. Cézanne, indicating their role as VOC precursors. This study along with comparisons to more traditional labour intensive solid phase micro-extraction (SPME) GC–MS VOC profiling data has indicated that the high-throughput PDMS method is of great potential for the assessment of melon aroma and quality. PMID:24417788

  4. Model studies on the pattern of volatiles generated in mixtures of amino acids, lipid oxidation-derived aldehydes, and glucose

    OpenAIRE

    Adams, An; Kitrytė, Vaida; Venskutonis, Rimantas; De Kimpe, Norbert

    2011-01-01

    The development of flavor and browning in thermally treated foods results mainly from the Maillard reaction and lipid degradation but also from the interactions between both reaction pathways. To study these interactions, we analyzed the volatile compounds resulting from model reactions of lysine or glycine with aldehydes originating from lipid oxidation [hexanal, (E)-2-hexenal, or (2E,4E)-decadienal] in the presence and absence of glucose. The main reaction products identified in these model...

  5. Applications of Solid-Phase Microextraction and Gas Chromatography/Mass Spectrometry (SPME-GC/MS in the Study of Grape and Wine Volatile Compounds

    Directory of Open Access Journals (Sweden)

    Annarita Panighel

    2014-12-01

    Full Text Available Volatile compounds are responsible for the wine “bouquet”, which is perceived by sniffing the headspace of a glass, and of the aroma component (palate-aroma of the overall flavor, which is perceived on drinking. Grape aroma compounds are transferred to the wine and undergo minimal alteration during fermentation (e.g., monoterpenes and methoxypyrazines; others are precursors of aroma compounds which form in winemaking and during wine aging (e.g., glycosidically-bound volatile compounds and C13-norisoprenoids. Headspace solid phase microextraction (HS-SPME is a fast and simple technique which was developed for analysis of volatile compounds. This review describes some SPME methods coupled with gas chromatography/mass spectrometry (GC/MS used to study the grape and wine volatiles.

  6. Retronasal Aroma Release and Satiation: a Review

    NARCIS (Netherlands)

    Ruijschop, R.; Boelrijk, A.E.M.; Graaf, de C.; Westerterp-Plantenga, M.S.

    2009-01-01

    In view of the epidemic of obesity, one of the aims of the food industry is to develop good-tasting food products that may induce an increased level of satiation, preventing consumers from overeating. This review focuses on the possibility of using aroma as a trigger for inducing or increasing

  7. Retronasal Aroma Release and Satiation: a Review

    NARCIS (Netherlands)

    Ruijschop, R.; Boelrijk, A.E.M.; Graaf, de C.; Westerterp-Plantenga, M.S.

    2009-01-01

    In view of the epidemic of obesity, one of the aims of the food industry is to develop good-tasting food products that may induce an increased level of satiation, preventing consumers from overeating. This review focuses on the possibility of using aroma as a trigger for inducing or increasing satia

  8. THEORY DEVELOPMENT OF ENZYMATIC AROMA RECOVERY

    Directory of Open Access Journals (Sweden)

    G. E. Dubova

    2014-01-01

    Full Text Available Summary. The fruit and vegetable pretreatment conditions and subsequent environment in which enzymatic reactions take place can be considered as potential factors in the formation of fresh flavors. The synthesis of aromatic components of fresh grass and green leaves occurs involving vegetable lipoxygenases. The molecules of a precursor-compound can withstand the processing modes, while enzymes and aromatic compounds break down frequently. Vegetable homogenates are potential sources of enzymes which produce natural aromatic substances. Formation of fresh favors is the most perceptible when it occurs as the result of the reaction between poliunsaturated fatty acids of cytoplasmic membranes and lipoxygenases and hydroperoxide lyase of plant material. Pre-treatment of samples positively influences binding energy in the complex of enzyme-substrate. The change of iodine number in treated homogenates, as compared to fresh ones, shows isomerization of flavor precursors. The minimal quantity of homogenates introduced (up to 20 g and the duration of aroma-restoring reaction (from 5 to 7 minutes were defined. Pre-cooling of homogenates activates enzymes, strengthens oxidability of the PUFA, and results in recovery of fresh aroma of plant material. Under conditions of enzyme inactivation, the synthesis of aromas is not possible. Conversely, production of aroma in food glazes and foams is possible in case of interphase activation between a substrate and enzymes.

  9. Characterization of the most odor-active compounds in an American Bourbon whisky by application of the aroma extract dilution analysis.

    Science.gov (United States)

    Poisson, Luigi; Schieberle, Peter

    2008-07-23

    Application of the aroma extract dilution analysis (AEDA) on the volatile fraction carefully isolated from an American Bourbon whisky revealed 45 odor-active areas in the flavor dilution (FD) factor range of 32-4096 among which (E)-beta-damascenone and delta-nonalactone showed the highest FD factors of 4096 and 2048, respectively. With FD factors of 1024, (3S,4S)-cis-whiskylactone, gamma-decalactone, 4-allyl-2-methoxyphenol (eugenol), and 4-hydroxy-3-methoxy-benzaldehyde (vanillin) additionally contributed to the overall vanilla-like, fruity, and smoky aroma note of the spirit. Application of GC-Olfactometry on the headspace above the whisky revealed 23 aroma-active odorants among which 3-methylbutanal, ethanol, and 2-methylbutanal were identified as additional important aroma compounds. Compared to published data on volatile constituents in whisky, besides ranking the whisky odorants on the basis of their odor potency, 13 aroma compounds were newly identified in this study: ethyl (S)-2-methylbutanoate, (E)-2-heptenal, (E,E)-2,4-nonadienal, (E)-2-decenal, (E,E)-2,4-decadienal, 2-isopropyl-3-methoxypyrazine, ethyl phenylacetate, 4-methyl acetophenone, alpha-damascone, 2-phenylethyl propanoate, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, trans-ethyl cinnamate, and (Z)-6-dodeceno-gamma-lactone.

  10. Determination of volatile marker compounds of common coffee roast defects.

    Science.gov (United States)

    Yang, Ni; Liu, Chujiao; Liu, Xingkun; Degn, Tina Kreuzfeldt; Munchow, Morten; Fisk, Ian

    2016-11-15

    Coffee beans from the same origin were roasted using six time-temperature profiles, in order to identify volatile aroma compounds associated with five common roast coffee defects (light, scorched, dark, baked and underdeveloped). Thirty-seven volatile aroma compounds were selected on the basis that they had previously been identified as potent odorants of coffee and were also identified in all coffee brew preparations; the relative abundance of these aroma compounds was then evaluated using gas chromatography mass spectrometry (GC-MS) with headspace solid phase micro extraction. Some of the 37 key aroma compounds were significantly changed in each coffee roast defect and changes in one marker compound was chosen for each defect type, that is, indole for light defect, 4-ethyl-2-methoxyphenol for scorched defect, phenol for dark defect, maltol for baked defect and 2,5-dimethylfuran for underdeveloped defect. The association of specific changes in aroma profiles for different roast defects has not been shown previously and could be incorporated into screening tools to enable the coffee industry quickly identify if roast defects occur during production.

  11. Free and bound aroma compounds characterization by GC-MS of Negroamaro wine as affected by soil management.

    Science.gov (United States)

    Toci, Aline T; Crupi, Pasquale; Gambacorta, Giuseppe; Dipalmo, Tiziana; Antonacci, Donato; Coletta, Antonio

    2012-09-01

    Negroamaro is an autochthonous wine grape variety of Southern Italy, which is becoming very important for the Italian wine market. The wine aroma is primary affected by the chemical composition of grapes, which can be influenced also by agronomic practices such as soil management. In this study, the free and bound aroma characterization was performed by gas chromatography-mass spectrometry analyses, and the influence of two soil managements (cover cropping and soil tillage) was evaluated. A total of 40 volatile compounds were observed in the wine samples. Alcohols (55.7 mg/L), fatty acids (7.0 mg/L) and esters (6.6 mg/L) were found as the main classes in Negroamaro wine. The results showed that the aroma composition of Negroamaro wine was positively affected by soil tillage probably because of the higher water stress (ψ(s)) recorded in the vines from this treatment. Indeed, among the free volatile compounds, higher contents of esters, carboxylic acids, alcohols, phenolics and acetamides together with lower contents of sulfurs compounds were found in soil tillage wine. Conversely, no difference was observed in glycoside volatile compounds.

  12. Evaluation of genotype and environment effects on taste and aroma flavor components of Spanish fresh tomato varieties.

    Science.gov (United States)

    Cebolla-Cornejo, Jaime; Roselló, Salvador; Valcárcel, Mercedes; Serrano, Elena; Beltrán, Joaquim; Nuez, Fernando

    2011-03-23

    Taste and aroma related compounds have been analyzed in a collection of four traditional varieties and two tomato hybrids, representing a wide variability in fruit shape and color, grown in different environments: screenhouse and open field. Protected cultivation tended to show lower sugar concentration (fructose and glucose) but similar acid contents (citric, malic, and glutamic acids). The decreased levels of sucrose equivalents and the similar ratios of sucrose equivalents to citric or glutamic acid contents indicated that protected cultivation, despite being useful to reduce the incidence of pests and viral diseases, reduces the organoleptic quality. Additionally, it doubles the interaccession variability and increased the level of intra-accession variability. In the case of aroma, the genotypic effect was considerably higher than the environmental component on the 12 main volatiles analyzed. Only hexanal and methyl salicylate were significantly affected by environment, while 10 out of 12 volatiles were affected by the genotype. Biplot analysis showed that, even in considerably different environments, it is possible to identify genotype-dependent main aroma profiles. In the case of 13 background volatiles, the environment showed no significant effects and the genotypic effect was lower, though it is possible to identify genotypic trends in background notes.

  13. Volatile compounds of raspberry fruit: from analytical methods to biological role and sensory impact.

    Science.gov (United States)

    Aprea, Eugenio; Biasioli, Franco; Gasperi, Flavia

    2015-01-30

    Volatile compounds play a key role in the formation of the well-recognized and widely appreciated raspberry aroma. Studies on the isolation and identification of volatile compounds in raspberry fruit (Rubus idaeus L.) are reviewed with a focus on aroma-related compounds. A table is drawn up containing a comprehensive list of the volatile compounds identified so far in raspberry along with main references and quantitative data where available. Two additional tables report the glycosidic bond and enantiomeric distributions of the volatile compounds investigated up to now in raspberry fruit. Studies on the development and evolution of volatile compounds during fruit formation, ripening and senescence, and genetic and environmental influences are also reviewed. Recent investigations showing the potential role of raspberry volatile compounds in cultivar differentiation and fruit resistance to mold disease are reported as well. Finally a summary of research done so far and our vision for future research lines are reported.

  14. Volatile Compounds of Raspberry Fruit: From Analytical Methods to Biological Role and Sensory Impact

    Directory of Open Access Journals (Sweden)

    Eugenio Aprea

    2015-01-01

    Full Text Available Volatile compounds play a key role in the formation of the well-recognized and widely appreciated raspberry aroma. Studies on the isolation and identification of volatile compounds in raspberry fruit (Rubus idaeus L. are reviewed with a focus on aroma-related compounds. A table is drawn up containing a comprehensive list of the volatile compounds identified so far in raspberry along with main references and quantitative data where available. Two additional tables report the glycosidic bond and enantiomeric distributions of the volatile compounds investigated up to now in raspberry fruit. Studies on the development and evolution of volatile compounds during fruit formation, ripening and senescence, and genetic and environmental influences are also reviewed. Recent investigations showing the potential role of raspberry volatile compounds in cultivar differentiation and fruit resistance to mold disease are reported as well. Finally a summary of research done so far and our vision for future research lines are reported.

  15. Evaluation of process parameters governing the aroma generation in three hazelnut cultivars (Corylus avellana L.) by correlating quantitative key odorant profiling with sensory evaluation.

    Science.gov (United States)

    Kiefl, Johannes; Schieberle, Peter

    2013-06-05

    The majority of the world hazelnut crop is roasted, thus developing a unique aroma that depends on the cultivar used and on the roasting conditions applied. Although several studies have investigated the volatile fraction of different cultivars and have correlated the data with overall sensory profiles, studies establishing a correlation between key odorants among the bulk of odorless volatiles and the respective aroma profiles are not yet available. On the basis of recently published stable isotope dilution assays (SIDAs) using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOF-MS), differences in concentrations of key odorants in different hazelnut cultivars roasted under defined conditions were monitored and compared with sensory data obtained by projective mapping, aroma profile analysis, and triangle tests. The results showed that the aroma-active compounds 2-acetyl-1-pyrroline, 2-propionyl-1-pyrroline, 5-methyl-(E)-2-hepten-4-one, 2,3-diethyl-5-methylpyrazine, 3,5-dimethyl-2-ethylpyrazine, and 2-furfurylthiol are appropriate marker odorants to differentiate the various nut aromas. In particular, the appreciated roasty, nutty aroma of optimally roasted hazelnuts was developed if both 5-methyl-(E)-2-hepten-4-one and 3-methyl-4-heptanone were >450 μg/kg, whereas the sum of the two 2-acyl-1-pyrrolines and two pyrazines should not exceed 400 μg/kg to avoid an over-roasted smell. Such a desired aroma can be obtained for each cultivar, but obviously specific roasting times, temperatures, and roasting techniques had to be applied.

  16. Sensory Characteristics and Volatile Components of Dry Dog Foods Manufactured with Sorghum Fractions.

    Science.gov (United States)

    Donfrancesco, Brizio Di; Koppel, Kadri

    2017-06-17

    Descriptive sensory analysis and gas chromatography-mass spectrometry (GC-MS) with a modified headspace solid-phase microextraction (SPME) method was performed on three extruded dry dog food diets manufactured with different fractions of red sorghum and a control diet containing corn, brewer's rice, and wheat as a grain source in order to determine the effect of sorghum fractions on dry dog food sensory properties. The aroma compounds and flavor profiles of samples were similar with small differences, such as higher toasted aroma notes, and musty and dusty flavor in the mill-feed sample. A total of 37 compounds were tentatively identified and semi-quantified. Aldehydes were the major group present in the samples. The total volatile concentration was low, reflecting the mild aroma of the samples. Partial least squares regression was performed to identify correlations between sensory characteristics and detected aroma compounds. Possible relationships, such as hexanal and oxidized oil, and broth aromatics were identified. Volatile compounds were also associated with earthy, musty, and meaty aromas and flavor notes. This study showed that extruded dry dog foods manufactured with different red sorghum fractions had similar aroma, flavor, and volatile profiles.

  17. Aroma Release in Wine Using Co-Immobilized Enzyme Aggregates.

    Science.gov (United States)

    Ahumada, Katherine; Martínez-Gil, Ana; Moreno-Simunovic, Yerko; Illanes, Andrés; Wilson, Lorena

    2016-11-08

    Aroma is a remarkable factor of quality and consumer preference in wine, representing a distinctive feature of the product. Most aromatic compounds in varietals are in the form of glycosidic precursors, which are constituted by a volatile aglycone moiety linked to a glucose residue by an O-glycosidic bond; glucose is often linked to another sugar (arabinose, rhamnose or apiose). The use of soluble β-glycosidases for aroma liberation implies the addition of a precipitating agent to remove it from the product and precludes its reuse after one batch. An attractive option from a technological perspective that will aid in removing such constraints is the use of immobilized glycosidases. Immobilization by aggregation and crosslinking is a simple strategy producing enzyme catalysts of very high specific activity, being an attractive option to conventional immobilization to solid inert supports. The purpose of this work was the evaluation of co-immobilized β-glycosidases crosslinked aggregates produced from the commercial preparation AR2000, which contains the enzymes involved in the release of aromatic terpenes in Muscat wine (α-l-arabinofuranosidase and β-d-glucopyranosidase). To do so, experiments were conducted with co-immobilized crosslinked enzyme aggregates (combi-CLEAs), and with the soluble enzymes, using an experiment without enzyme addition as control. Stability of the enzymes at the conditions of winemaking was assessed and the volatiles composition of wine was determined by SPE-GC-MS. Stability of enzymes in combi-CLEAs was much higher than in soluble form, 80% of the initial activity remaining after 60 days in contact with the wine; at the same conditions, the soluble enzymes had lost 80% of their initial activities after 20 days. Such higher stabilities will allow prolonged use of the enzyme catalyst reducing its impact in the cost of winemaking. Wine treated with combi-CLEAs was the one exhibiting the highest concentration of total terpenes (18% higher

  18. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion.

    Science.gov (United States)

    Nieto-Jacobo, Maria F; Steyaert, Johanna M; Salazar-Badillo, Fatima B; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T; Jimenez-Bremont, Juan F; Ohkura, Mana; Stewart, Alison; Mendoza-Mendoza, Artemio

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. "atroviride B" LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions.

  19. Effect of cold storage and packaging material on the major aroma components of sweet cream butter.

    Science.gov (United States)

    Lozano, Patricio R; Miracle, Evan R; Krause, Andrea J; Drake, Maryanne; Cadwallader, Keith R

    2007-09-19

    The major aroma compounds of commercial sweet cream AA butter quarters were analyzed by GC-olfactometry and GC-MS combined with dynamic headspace analysis (DHA) and solvent-assisted flavor evaporation (SAFE). In addition, the effect of long-term storage (0, 6, and 12 months) and type of wrapping material (wax parchment paper vs foil) on the aroma components and sensory properties of these butters kept under refrigerated (4 degrees C) and frozen (-20 degrees C) storage was evaluated. The most intense compounds in the aroma of pasteurized AA butter were butanoic acid, delta-octalactone, delta-decalactone, 1-octen-3-one, 2-acetyl-1-pyrroline, dimethyl trisulfide, and diacetyl. The intensities of lipid oxidation volatiles and methyl ketones increased as a function of storage time. Refrigerated storage caused greater flavor deterioration compared with frozen storage. The intensity and relative abundance of styrene increased as a function of time of storage at refrigeration temperature. Butter kept frozen for 12 months exhibited lower styrene levels and a flavor profile more similar to that of fresh butter compared to butter refrigerated for 12 months. Foil wrapping material performed better than wax parchment paper in preventing styrene migration into butter and in minimizing the formation of lipid oxidation and hydroxyl acid products that contribute to the loss of fresh butter flavor.

  20. Aroma changes of black tea prepared from methyl jasmonate treated tea plants.

    Science.gov (United States)

    Shi, Jiang; Wang, Li; Ma, Cheng-ying; Lv, Hai-peng; Chen, Zong-mao; Lin, Zhi

    2014-04-01

    Methyl jasmonate (MeJA) was widely applied in promoting food quality. Aroma is one of the key indicators in judging the quality of tea. This study examined the effect of exogenous MeJA treatment on tea aroma. The aroma components in black tea prepared from MeJA-treated fresh tea leaves were extracted using headspace solid-phase microextraction (HS-SPME) and were analyzed using gas chromatography-mass spectrometry (GC-MS) and GC-olfactometry (GC-O). Forty-five volatile compounds were identified. The results revealed that the MeJA-treated black tea had higher levels of terpene alcohols and hexenyl esters than the untreated tea. Moreover, several newly components, including copaene, cubenol, and indole, were induced by the MeJA treatment. The activities of polyphenol oxidase and β-glucosidase in fresh tea leaves changed after the MeJA treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the gene expression levels of polyphenol oxidase and β-primeverosidase were upregulated by two and three folds, respectively, by the MeJA treatment (Pblack tea was clearly improved.

  1. Effects of cross-linking, capsule wall thickness, and compound hydrophobicity on aroma release from complex coacervate microcapsules.

    Science.gov (United States)

    Leclercq, Segolene; Milo, Christian; Reineccius, Gary A

    2009-02-25

    Microcapsules were produced by complex coacervation with a gelatin-gum acacia wall and medium-chain-triglyceride core. Dry capsules were partially rehydrated and then loaded with model aroma compounds covering a range of volatility, hydrophobicity, and molecular structure. An experimental design was prepared to evaluate the effects of cross-linking, wall/core ratio, and volatile load level on aroma release from capsules in a hot, aqueous environment. The real-time release on rehydration was measured by monitoring the headspace of a vessel containing the capsules to proton transfer reaction mass spectrometry (PTR-MS). Data collected showed no effects of cross-linking or wall/core ratio on volatile release in hot water for any of the volatiles studied. When comparing real-time release of the prepared coacervates to a spray-dried equivalent, there was no difference in the release from hot water but the release was slower when coacervates were added to ambient-temperature water. We found volatile release to be primarily determined by compound partition coefficients (oil/water and water/air) and temperature.

  2. Volatility Discovery

    DEFF Research Database (Denmark)

    Dias, Gustavo Fruet; Scherrer, Cristina; Papailias, Fotis

    The price discovery literature investigates how homogenous securities traded on different markets incorporate information into prices. We take this literature one step further and investigate how these markets contribute to stochastic volatility (volatility discovery). We formally show...... that the realized measures from homogenous securities share a fractional stochastic trend, which is a combination of the price and volatility discovery measures. Furthermore, we show that volatility discovery is associated with the way that market participants process information arrival (market sensitivity...

  3. Exploring Blueberry Aroma Complexity by Chromatographic and Direct-Injection Spectrometric Techniques

    Directory of Open Access Journals (Sweden)

    Brian Farneti

    2017-04-01

    Full Text Available Blueberry (Vaccinium spp. fruit consumption has increased over the last 5 years, becoming the second most important soft fruit species after strawberry. Despite the possible economic and sensory impact, the blueberry volatile organic compound (VOC composition has been poorly investigated. Thus, the great impact of the aroma on fruit marketability stimulates the need to step forward in the understanding of this quality trait. Beside the strong effect of ripening, blueberry aroma profile also varies due to the broad genetic differences among Vaccinium species that have been differently introgressed in modern commercial cultivars through breeding activity. In the present study, divided into two different activities, the complexity of blueberry aroma was explored by an exhaustive untargeted VOC analysis, performed by two complementary methods: SPME-GC-MS (solid phase microextraction- gas chromatography-mass spectrometry and PTR-ToF-MS (proton transfer reaction-time of flight-mass spectrometry. The first experiment was aimed at determining the VOC modifications during blueberry ripening for five commercially representative cultivars (“Biloxi,” “Brigitta Blue,” “Centurion,” “Chandler,” and “Ozark Blue” harvested at four ripening stages (green, pink, ripe, and over-ripe to outline VOCs dynamic during fruit development. The objective of the second experiment was to confirm the analytical capability of PTR-ToF-MS to profile blueberry genotypes and to identify the most characterizing VOCs. In this case, 11 accessions belonging to different Vaccinium species were employed: V. corymbosum L. (“Brigitta,” “Chandler,” “Liberty,” and “Ozark Blue”, V. virgatum Aiton (“Centurion,” “Powder Blue,” and “Sky Blue”, V. myrtillus L. (three wild genotypes of different mountain locations, and one accession of V. cylindraceum Smith. This comprehensive characterization of blueberry aroma allowed the identification of a wide

  4. Exploring Blueberry Aroma Complexity by Chromatographic and Direct-Injection Spectrometric Techniques.

    Science.gov (United States)

    Farneti, Brian; Khomenko, Iuliia; Grisenti, Marcella; Ajelli, Matteo; Betta, Emanuela; Algarra, Alberto Alarcon; Cappellin, Luca; Aprea, Eugenio; Gasperi, Flavia; Biasioli, Franco; Giongo, Lara

    2017-01-01

    Blueberry (Vaccinium spp.) fruit consumption has increased over the last 5 years, becoming the second most important soft fruit species after strawberry. Despite the possible economic and sensory impact, the blueberry volatile organic compound (VOC) composition has been poorly investigated. Thus, the great impact of the aroma on fruit marketability stimulates the need to step forward in the understanding of this quality trait. Beside the strong effect of ripening, blueberry aroma profile also varies due to the broad genetic differences among Vaccinium species that have been differently introgressed in modern commercial cultivars through breeding activity. In the present study, divided into two different activities, the complexity of blueberry aroma was explored by an exhaustive untargeted VOC analysis, performed by two complementary methods: SPME-GC-MS (solid phase microextraction- gas chromatography-mass spectrometry) and PTR-ToF-MS (proton transfer reaction-time of flight-mass spectrometry). The first experiment was aimed at determining the VOC modifications during blueberry ripening for five commercially representative cultivars ("Biloxi," "Brigitta Blue," "Centurion," "Chandler," and "Ozark Blue") harvested at four ripening stages (green, pink, ripe, and over-ripe) to outline VOCs dynamic during fruit development. The objective of the second experiment was to confirm the analytical capability of PTR-ToF-MS to profile blueberry genotypes and to identify the most characterizing VOCs. In this case, 11 accessions belonging to different Vaccinium species were employed: V. corymbosum L. ("Brigitta," "Chandler," "Liberty," and "Ozark Blue"), V. virgatum Aiton ("Centurion," "Powder Blue," and "Sky Blue"), V. myrtillus L. (three wild genotypes of different mountain locations), and one accession of V. cylindraceum Smith. This comprehensive characterization of blueberry aroma allowed the identification of a wide pull of VOCs, for the most aldehydes, alcohols, terpenoids

  5. Volatile Metabolites

    Directory of Open Access Journals (Sweden)

    Daryl D. Rowan

    2011-11-01

    Full Text Available Volatile organic compounds (volatiles comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites.

  6. Evaluation of Aroma in Oriental Tobaccos as Based On Valeric Acid Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Dagnon S

    2014-12-01

    Full Text Available Levels of valeric acids (isovaleric and 3-methylvaleric in leaves and smoke of different tobacco types were quantified by capillary gas chromatography (GC using flame ionization detector (FID. The aroma characteristics of the smoke were scored by sensory evaluation. It was found that leaves of Oriental and burley tobaccos contain higher amounts of both valeric acid derivatives than Virginia tobaccos containing isovaleric acid but no 3-methylvaleric acid. Strong correlation between the aroma and pleasantness scores of smoke and the content of valeric acids in the leaves of Oriental tobaccos was observed, while it was not the case for leaves of Virginia and burley tobaccos. In all tobacco types no correlation between smoking characteristics and the content of valeric acids in the smoke was established. Regression models involving leaf isovaleric acid were developed that can be used to evaluate aroma and pleasantness of smoke in Oriental tobaccos. The data obtained allow the following conclusions to be drawn: a 3-methylvaleric acid may be a chemical marker to distinguish Virginia tobaccos from Oriental and burley tobaccos; b isovaleric acid content in leaves of Oriental tobaccos may be used for objective aroma evaluation that can be exploited for breeding and market purposes.

  7. Evaluation of Key Aroma Compounds in Processed Prawns (Whiteleg Shrimp) by Quantitation and Aroma Recombination Experiments.

    Science.gov (United States)

    Mall, Veronika; Schieberle, Peter

    2017-03-24

    In our previous study on the aroma compounds of heated prawn meat, the main odorants in blanched (BPM) and fried prawn meat (FPM), respectively, were characterized by means of gas chromatography-olfactometry and aroma extract dilution analysis. In this follow-up study, these aroma compounds were quantified by means of stable isotope dilution assays, and odor activity values (OAV; ratio of concentration to odor detection threshold) were calculated. Results revealed 2-acetyl-1-pyrroline and (Z)-1,5-octadien-3-one as the most potent odor-active compounds in both prawn samples. In FPM, as compared to BPM, higher OAVs were determined for 2-acetyl-1-pyrroline, 2-acetyl-2-thiazoline, 3-methylbutanal, 3-(methylthio)propanal, phenylacetaldehyde, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, 2,3-diethyl-5-methylpyrazine, and trimethylpyrazine. Aroma recombination experiments corroborated that the overall aroma of the blanched as well as the fried prawn meat, respectively, could well be mimicked by the set of key odorants quantitated in this study.

  8. Characterisation of aroma profiles of commercial sufus by odour activity value, gas chromatography-olfactometry, aroma recombination and omission studies.

    Science.gov (United States)

    Xiao, Zuobing; Shang, Yi; Chen, Feng; Niu, Yunwei; Gu, Yongbo; Liu, Shengjiang; Zhu, Jiancai

    2015-01-01

    Sufu is a solid-state fermented product made from soya beans. For the sake of quality control and regulation purposes, it is essential to be able to identify key odorants of various commercial sufus. To identify the aroma-active compounds in sufus, gas chromatography-olfactometry/aroma extract dilution analysis (GC-O/AEDA) was performed, and odour activity value (OAV) was estimated. The correlations between aroma profiles and identified aroma-active compounds were also investigated by principal component analysis. Results showed that 35 aroma-active compounds were detected through OAV calculation, while 28 compounds were identified by using GC-O/AEDA. Quantitative descriptive analysis revealed that aroma recombination model based on OAV calculation was more similar to original sufu in terms of aroma comparing to aroma recombination model based on GC-O/AEDA. Omission experiments further confirmed that the aroma compounds, such as ethyl butanoate, ethyl 2-methylbutanoate, ethyl hexanoate, (E,E)-2,4-decadienal and 2,6-dimethylpyrazine, contributed most significantly to the characteristic aroma of a commercial sufu.

  9. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion

    Science.gov (United States)

    Nieto-Jacobo, Maria F.; Steyaert, Johanna M.; Salazar-Badillo, Fatima B.; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T.; Jimenez-Bremont, Juan F.; Ohkura, Mana; Stewart, Alison

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. “atroviride B” LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions. PMID:28232840

  10. Characterization of wood plastic composites made from landfill-derived plastic and sawdust: Volatile compounds and olfactometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Félix, Juliana S., E-mail: jfelix@unizar.es [Department of Analytical Chemistry, I3A, EINA, University of Zaragoza (UNIZAR), Zaragoza 50018 (Spain); Domeño, Celia, E-mail: cdomeno@unizar.es [Department of Analytical Chemistry, I3A, EINA, University of Zaragoza (UNIZAR), Zaragoza 50018 (Spain); Nerín, Cristina, E-mail: cnerin@unizar.es [Department of Analytical Chemistry, I3A, EINA, University of Zaragoza (UNIZAR), Zaragoza 50018 (Spain)

    2013-03-15

    Graphical abstract: This work details the characterization of VOCs of WPC, produced from residual materials which would have landfills as current destination, and evaluates their odor profile. Highlights: ► More than 140 volatile compounds were identified in raw materials and WPC products. ► Markers were related to the thermal degradation, sawdust or coupling agents. ► WPC prototype showed a characteristic odor profile of burnt, sweet and wax-like. ► Aldehydes, carboxylic acids, ketones and phenols were odor descriptors of WPC. - Abstract: Application of wood plastic composites (WPCs) obtained from recycled materials initially intended for landfill is usually limited by their composition, mainly focused on release of volatile organic compounds (VOCs) which could affect quality or human safety. The study of the VOCs released by a material is a requirement for new composite materials. Characterization and quantification of VOCs of several WPC produced with low density polyethylene (LDPE) and polyethylene/ethylene vinyl acetate (PE/EVA) films and sawdust were carried out, in each stage of production, by solid phase microextraction in headspace mode (HS-SPME) and gas chromatography–mass spectrometry (GC–MS). An odor profile was also obtained by HS-SPME and GC–MS coupled with olfactometry analysis. More than 140 compounds were observed in the raw materials and WPC samples. Some quantified compounds were considered WPC markers such as furfural, 2-methoxyphenol, N-methylphthalimide and 2,4-di-tert-butylphenol. Hexanoic acid, acetic acid, 2-methoxyphenol, acetylfuran, diacetyl, and aldehydes were the most important odorants. None of the VOCs were found to affect human safety for use of the WPC.

  11. Identification of aroma active compounds of cereal coffee brew and its roasted ingredients.

    Science.gov (United States)

    Majcher, Małgorzata A; Klensporf-Pawlik, Dorota; Dziadas, Mariusz; Jeleń, Henryk H

    2013-03-20

    Cereal coffee is a coffee substitute made mainly from roasted cereals such as barley and rye (60-70%), chicory (15-20%), and sugar beets (6-10%). It is perceived by consumers as a healthy, caffeine free, non-irritating beverage suitable for those who cannot drink regular coffee made from coffee beans. In presented studies, typical Polish cereal coffee brew has been subjected to the key odorants analysis with the application of gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). In the analyzed cereal coffee extract, 30 aroma-active volatiles have been identified with FD factors ranging from 16 to 4096. This approach was also used for characterization of key odorants in ingredients used for the cereal coffee production. Comparing the main odors detected in GC-O analysis of roasted cereals brew to the odor notes of cereal coffee brew, it was evident that the aroma of cereal coffee brew is mainly influenced by roasted barley. Flavor compound identification and quantitation has been performed with application of comprehensive multidimentional gas chromatography and time-of-flight mass spectrometry (GCxGC-ToFMS). The results of the quantitative measurements followed by calculation of the odor activity values (OAV) revealed 17 aroma active compounds of the cereal coffee brew with OAV ranging from 12.5 and 2000. The most potent odorant was 2-furfurylthiol followed by the 3-mercapto-3-methylbutyl formate, 3-isobutyl-2-methoxypyrazine and 2-ethyl-3,5-dimethylpyrazine, 2-thenylthiol, 2,3-butanedione, 2-methoxy phenol and 2-methoxy-4-vinyl phenol, 3(sec-butyl)-2-methoxypyrazine, 2-acetyl-1-pyrroline, 3-(methylthio)-propanal, 2,3-pentanedione, 4-hydroxy-2,5-dimethyl-3-(2H)-furanone, (E,E)-2,4-decadienal, (Z)-4-heptenal, phenylacetaldehyde, and 1-octen-3-one.

  12. Important aroma compounds in freshly ground wholemeal and white wheat flour-identification and quantitative changes during sourdough fermentation.

    Science.gov (United States)

    Czerny, Michael; Schieberle, Peter

    2002-11-01

    An investigation on the odor-active compounds of wholemeal (WWF) and white wheat flour (WF 550) by aroma extract dilution analysis (AEDA) and by quantitative studies using stable isotope dilution assays (SIDA) revealed a significant number of odor-active compounds, such as (E)-2-nonenal, (E,Z)- and (E,E)-2,4-decadienal, (E)-4,5-epoxy-(E)-2-decenal, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, and vanillin, with high odor activities in both wheat flours. The amounts and, consequently, the aroma potencies of vanillin, (E,E)-2,4-decadienal, and 3-(methylthio)propanal were much higher in the WWF than in the WF 550 samples. Fermentation of suspensions of both flours with lactic acid bacteria did not generate new odorants; however, many compounds, such as acetic acid or 3-methylbutanal, were increased, whereas aldehydes (formed from the degradation of unsaturated fatty acids) were decreased. Comparing the odorant concentrations present before and after fermentation gave evidence that the main influence of the microorganisms on sourdough aroma is to either enhance or decrease specific volatiles already present in the flour. A comparison with literature data indicated that most of these odorants are also important for the bread crumb aroma present after baking of the dough.

  13. Comparative Aroma Extract Dilution Analysis (cAEDA) of Fat from Tainted Boars, Castrated Male Pigs, and Female Pigs.

    Science.gov (United States)

    Gerlach, Christoph; Leppert, Jan; Santiuste, Alicia Chamarro; Pfeiffer, Anne; Boeker, Peter; Wüst, Matthias

    2017-01-12

    The aroma profile of porcine fat from tainted boars, female pigs, and castrated male pigs was investigated by application of comparative aroma extract dilution analysis (cAEDA) on a SAFE distillate of volatiles prepared from porcine back fat samples. The AEDA resulted in a total of 16 aroma active compounds for boar fat with flavor dilution (FD) factors ranging from 2 to 2048, whereas 12 aroma active compounds were found in fat of female pigs and 14 in fat of castrated male pigs, both with FD factors ranging from 2 to 32. Odor activity values (OAVs) of key components for each fat were identified: In boar fat androstenone, skatole, indole, and 2-aminoacetophenone showed highest OAVs, whereas 2,5-dimethylpyrazine, 2,4-decadienal, and δ-decalactone showed highest OAVs in fat of female pigs. Fat of castrated male pigs showed highest OAVs for skatole, indole, 1-octen-3-ol and methional. Finally, the off-flavor attributes of boar fat were successfully simulated by a recombinant of all odorants at their natural concentration level in deodorized sunflower oil.

  14. Characterization of key odorants in Chinese chixiang aroma-type liquor by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission studies.

    Science.gov (United States)

    Fan, Haiyan; Fan, Wenlai; Xu, Yan

    2015-04-15

    Chixiang aroma-type liquor is extensively welcomed by consumers owing to its typical fatty aroma, particularly in southern China. To our knowledge, no comprehensive characterization of aroma and flavor from chixiang aroma-type liquor has been published. It is still a confused question which components are the most important in characterizing its unique aroma. A total of 56 odorants were identified in chixiang aroma-type liquor by aroma extract dilution analysis (AEDA), and in different quantitative measurements, 34 aroma compounds were further demonstrated as important odorants according to odor activity values (OAVs). Furthermore, this research suggested that the aroma of chixiang aroma-type finished liquor could be successfully reconstituted by mixing 34 aroma compounds in the concentrations measured. Omission experiments further confirmed (E)-2-nonenal as the key odorant and revealed the significance of (E)-2-octenal and 2-phenylethanol for the overall aroma of chixiang aroma-type liquor. 3-(Methylthio)-1-propanol (methionol), diethyl 1,7-heptanedioate (diethyl pimelate), diethyl 1,8-octanedioate (diethyl suberate), and diethyl 1,9-nonanedioate (diethyl azelate), identified as the characteristic aromas of chixiang aroma-type liquor in 1995, had no effects on aroma based on omission/addition experiments.

  15. Polyphenols and Volatiles in Fruits of Two Sour Cherry Cultivars, Some Berry Fruits and Their Jams

    Directory of Open Access Journals (Sweden)

    Branka Levaj

    2010-01-01

    Full Text Available This paper reports about the content of polyphenols and volatiles in fresh fruits of two sour cherry cultivars (Marasca and Oblačinska, some berry fruits (strawberry Maya, raspberry Willamette and wild blueberry and the corresponding low sugar jams. Phenolic compounds (hydroxybenzoic and hydroxycinnamic acids, flavan 3-ols and flavonols were determined by high-performance liquid chromatography (HPLC. Those found in the fruits were also found in the jams. Jams contained lower amounts of polyphenols than fresh fuits, but their overall retention in jams was relatively high. Among fruits, sour cherry Marasca had the highest level of polyphenols, while sour cherry Marasca jam and raspberry Willamette jam had the highest level of polyphenols among jams. The major flavonoid in all investigated fruits, except in sour cherry Oblačinska, was (–-epicatechin. Sour cherry Marasca had the highest level of (–-epicatechin (95.75 mg/kg, and it also contained very high amounts of flavonols, derivatives of quercetin and kaempferol. Hydroxybenzoic acids (HBAs were not found in sour cherries Marasca and Oblačinska, but were found in berry fruits and jams. Phenolic compound (+-gallocatechin was found only in Marasca fruit and jam. Ellagic acid was found in the highest concentration in raspberry Willamette fruit and jam. Hydroxycinnamic acids (HCAs were found in all the investigated fruits, with the exception of a derivative of ferulic acid, which was not found in strawberry. Derivatives of caffeic, p-coumaric and chlorogenic acids were found in all the investigated fruits, with chlorogenic acid being the most abundant, especially in sour cherry Marasca. Volatiles were determined by gas chromatography (GC and expressed as the peak area of the identified compounds. All investigated volatiles of fresh fruit were also determined in the related jams with relatively high retention. Sour cherries Marasca and Oblačinska contained the same volatile compounds, but

  16. Phenolic and Aroma Composition of White Wines Produced by Prolonged Maceration and Maturation in Wooden Barrels

    Directory of Open Access Journals (Sweden)

    Nikolina Jedrejčić

    2015-01-01

    Full Text Available To investigate the phenolic and aroma composition of Malvazija istarska (Vitis vinifera L. white wines produced by an unconventional technology comprising prolonged maceration followed by maturation in wooden barrels, representative samples were subjected to analysis by UV/Vis spectrometry, high-performance liquid chromatography, and gas chromatography-mass spectrometry. When compared to standard wines, the investigated samples contained higher levels of dry extract, volatile acidity, lactic acid, phenols, colour intensity, antioxidant activity, majority of monoterpenes, C13-norisoprenoids, methanol, higher alcohols, ethyl acetate, branched-chain esters and esters of hydroxy and dicarboxylic acids, ethylphenols, furans, and acetals, as well as lower levels of malic acid, β-damascenone, straight-chain fatty acids, ethyl and acetate esters. It was estimated that maceration had a stronger influence on phenols, and maturation on volatile aromas. Despite different vintages and technological details, the investigated wines showed a relative homogeneity in the composition, representing a clear and distinctive type.

  17. Aroma profile of Garnacha Tintorera-based sweet wines by chromatographic and sensorial analyses.

    Science.gov (United States)

    Noguerol-Pato, R; González-Álvarez, M; González-Barreiro, C; Cancho-Grande, B; Simal-Gándara, J

    2012-10-15

    The aroma profiles obtained of three Garnacha Tintorera-based wines were studied: a base wine, a naturally sweet wine, and a mixture of naturally sweet wine with other sweet wine obtained by fortification with spirits. The aroma fingerprint was traced by GC-MS analysis of volatile compounds and by sensorial analysis of odours and tastes. Within the volatiles compounds, sotolon (73 μg/L) and acetoin (122 μg/L) were the two main compounds found in naturally sweet wine. With regards to the odorant series, those most dominant for Garnacha Tintorera base wine were floral, fruity and spicy. Instead, the most marked odorant series affected by off-vine drying of the grapes were floral, caramelized and vegetal-wood. Finally, odorant series affected by the switch-off of alcoholic fermentation with ethanol 96% (v/v) fit for human consumption followed by oak barrel aging were caramelized and vegetal-wood. A partial least square test (PLS-2) was used to detect correlations between sets of sensory data (those obtained with mouth and nose) with the ultimate aim of improving our current understanding of the flavour of Garnacha Tintorera red wines, both base and sweet. Based on the sensory dataset analysis, the descriptors with the highest weight for separating base and sweet wines from Garnacha Tintorera were sweetness, dried fruit and caramel (for sweet wines) vs. bitterness, astringency and geranium (for base wines).

  18. Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps.

    Science.gov (United States)

    Zheng, Huiwen; Zhang, Qiuyun; Quan, Junping; Zheng, Qiao; Xi, Wanpeng

    2016-08-15

    The composition and content of sugars, organic acids, volatiles and carotenoids, in the pulps of six grapefruit cultivars, were examined by HPLC and GC-MS. The results showed that sucrose was the dominant sugar in grapefruit, making up 40.08-59.68% of the total sugars, and the ratio of fructose to glucose was almost 1:1. Citric acid was the major organic acid and represented 39.10-63.55% of the total organic acids, followed by quininic acid. The ratios of individual sugars and organic acids play an important role in grapefruit taste determination. Monoterpenes and sesquiterpenes were the predominant volatiles in grapefruit, in particular d-limonene and caryophyllene. Caryophyllene, α-humulene, humulen-(v1), β-linalool and tert-butyl 2-methylpropanoate are the characteristic aroma compounds of grapefruit. Although β-carotene is the primary carotenoid in grapefruit, the pulp color is mainly determined by the ratios of zeaxanthin, β-cryptoxanthin and lycopene. Our results provide the first complete chemical characterization of the taste, aroma and color of grapefruit.

  19. Characterization of geosmin as source of earthy odor in different aroma type Chinese liquors.

    Science.gov (United States)

    Du, Hai; Fan, Wenlai; Xu, Yan

    2011-08-10

    Earthy odor is one of the most frequent and serious causes for the aroma deterioration in Chinese liquor, which causes a dirty and dusty impression. The odor in Chinese liquor is similar to that of rice husk, one kind of auxiliary material widely used as a filler in the distillation process. So it is experientially hypothesized that such odor may derive from rice husk. In this paper, the gas chromatography-olfactometry (GC-O) technique and gas chromatography-mass spectrometry (GC-MS) were used to discover and identify the characteristic odoriferous zone of Chinese liquor marked by earthy odor. Geosmin was found to be responsible for this odor. The levels of the compound in ten bottled liquors and thirty liquors aging for different years belonging to four different aroma types were determined by the optimized headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) method. Quantitative analysis of bottled liquor revealed the presence of geosmin in all aroma type liquors with concentrations ranging from 1.10 μg/L to 9.90 μg/L, except for strong-aroma type liquor. Meanwhile in the aged liquors belonging to the same aroma type, geosmin was detected with significant concentrations and high odor activity values (OAVs) during different years of aging. However, geosmin was not detected in steamed rice husk nor in nonsteamed rice husk, which suggests that rice husk is not the origin of earthy odor in Chinese liquor, and there may be another origin of it during the brewing process.

  20. Feed-derived volatile basic nitrogen increases reactive oxygen species production of blood leukocytes in lactating dairy cows.

    Science.gov (United States)

    Tsunoda, Ei; Gross, Josef J; Kawashima, Chiho; Bruckmaier, Rupert M; Kida, Katsuya; Miyamoto, Akio

    2017-01-01

    The present study investigated over 9 months the changes of fermentative quality of total mixed rations (TMR) containing grass silage (GS) as a major component, associated with changes in the volatile basic nitrogen (VBN) levels in an experimental dairy farm. Effects of VBN levels in TMR on metabolic parameters, reactive oxygen species (ROS) production by blood polymorphonuclear leukocytes (PMNs) and conception rates for dairy cows were analyzed. According to VBN levels in TMR during survey periods, three distinct phases were identified; phase A with low VBN; phase B with high VBN; and phase C with mid-VBN. Metabolic parameters in blood were all within normal range. However, during phases B and C, nitrogen metabolic indices such as blood urea nitrogen and milk urea nitrogen showed higher levels compared to those in phase A, and a simultaneous increase in ROS production by blood PMNs and the load on hepatic function in metabolic parameters was observed in the cows with a lower conception rate. This suggests that feeding TMR with elevated VBN levels due to poor fermented GS results in stimulation of ROS production by PMNs by ammonia, and negatively affects metabolism and reproductive performance in lactating dairy cow.

  1. Nematicidal activity of essential oils and volatiles derived from Portuguese aromatic flora against the pinewood nematode, Bursaphelenchus xylophilus.

    Science.gov (United States)

    Barbosa, P; Lima, A S; Vieira, P; Dias, L S; Tinoco, M T; Barroso, J G; Pedro, L G; Figueiredo, A C; Mota, M

    2010-03-01

    Twenty seven essential oils, isolated from plants representing 11 families of Portuguese flora, were screened for their nematicidal activity against the pinewood nematode (PWN), Bursaphelenchus xylophilus. The essential oils were isolated by hydrodistillation and the volatiles by distillation-extraction, and both were analysed by GC and GC-MS. High nematicidal activity was achieved with essential oils from Chamaespartium tridentatum, Origanum vulgare, Satureja montana, Thymbra capitata, and Thymus caespititius. All of these essential oils had an estimated minimum inhibitory concentration ranging between 0.097 and 0.374 mg/ml and a lethal concentration necessary to kill 100% of the population (LC(100)) between 0.858 and 1.984 mg/ml. Good nematicidal activity was also obtained with the essential oil from Cymbopogon citratus. The dominant components of the effective oils were 1-octen-3-ol (9%), n-nonanal, and linalool (both 7%) in C. tridentatum, geranial (43%), neral (29%), and β-myrcene (25%) in C. citratus, carvacrol (36% and 39%), γ-terpinene (24% and 40%), and p-cymene (14% and 7%) in O. vulgare and S. montana, respectively, and carvacrol (75% and 65%, respectively) in T. capitata and T. caespititius. The other essential oils obtained from Portuguese flora yielded weak or no activity. Five essential oils with nematicidal activity against PWN are reported for the first time.

  2. Characterization of wood plastic composites made from landfill-derived plastic and sawdust: volatile compounds and olfactometric analysis.

    Science.gov (United States)

    Félix, Juliana S; Domeño, Celia; Nerín, Cristina

    2013-03-01

    Application of wood plastic composites (WPCs) obtained from recycled materials initially intended for landfill is usually limited by their composition, mainly focused on release of volatile organic compounds (VOCs) which could affect quality or human safety. The study of the VOCs released by a material is a requirement for new composite materials. Characterization and quantification of VOCs of several WPC produced with low density polyethylene (LDPE) and polyethylene/ethylene vinyl acetate (PE/EVA) films and sawdust were carried out, in each stage of production, by solid phase microextraction in headspace mode (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). An odor profile was also obtained by HS-SPME and GC-MS coupled with olfactometry analysis. More than 140 compounds were observed in the raw materials and WPC samples. Some quantified compounds were considered WPC markers such as furfural, 2-methoxyphenol, N-methylphthalimide and 2,4-di-tert-butylphenol. Hexanoic acid, acetic acid, 2-methoxyphenol, acetylfuran, diacetyl, and aldehydes were the most important odorants. None of the VOCs were found to affect human safety for use of the WPC.

  3. Production of medium-chain volatile flavour esters in Pichia pastoris whole-cell biocatalysts with extracellular expression of Saccharomyces cerevisiae acyl-CoA: ethanol O-acyltransferase Eht1 or Eeb1

    DEFF Research Database (Denmark)

    Zhuang, Shiwen; Fu, Junshu; Powell, Chris;

    2015-01-01

    Medium-chain volatile flavour esters are important molecules since they have extensive applications in food, fragrance, cosmetic, paint and coating industries, which determine different characteristics of aroma or taste in commercial products. Biosynthesis of these compounds by alcoholysis...

  4. Characterization of the Potent Odorants Contributing to the Characteristic Aroma of Matcha by Gas Chromatography-Olfactometry Techniques.

    Science.gov (United States)

    Baba, Ryoko; Amano, Yohei; Wada, Yoshiyuki; Kumazawa, Kenji

    2017-03-31

    The odorants contributing to the characteristic aroma of matcha were investigated by analysis of the headspace samples and the volatile fractions prepared by a combination of solvent extraction and the SAFE techniques using three matcha powders of different grades (high, medium, and low). Gas chromatography-olfactometry of the headspace samples (GCO-H) and aroma extract dilution analysis (AEDA) applied to the volatile fractions revealed 16 (FD factor ≥1) and 39 (FD factor ≥4(3)) odor-active peaks, respectively. Among them, 14 and 37 of the odorants, most of which were newly detected in matcha, were identified or tentatively identified by GC-MS and GC-O, respectively. By comparing the perceived odorants of three matcha powders, it was revealed that eight compounds with sweet, green, metallic, and floral notes showed high flavor dilution (FD) factors irrespective of the grades. In addition, some odorants were suggested to influence the characteristic aroma of each grade. Furthermore, trans-4,5-epoxy-(E)-2-decenal, one of the potent odorants of matcha, was revealed to exist as a racemic mixture in matcha. This result suggested that trans-4,5-epoxy-(E)-2-decenal is formed by a nonenzymatic reaction in matcha, different from that in black tea, and that the unique manufacturing process of matcha has a close connection with its formation.

  5. DETERMINATION AND CLASSIFICATION OF VOLATILE COMPOUNDS OF PASTIRMA USING SOLID PHASE MICROEXTRACTION/GAS CHROMATOGRAPHY/MASS SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Eda Demirok

    2013-10-01

    Full Text Available Pastırma, a traditional dry cured Turkish meat product, has a great number of specific aroma compounds, which occur as a result of lipid oxidation, protein degradation and formulation of çemen paste. These compounds give characteristic flavor to pastırma and the main objective of this study was to determine the nature of these compounds. Fifty-eight volatile compounds, grouped into nine chemical classes were identified using solid phase microextraction technique (SPME coupled to gas chromatography/mass spectrometry (GC-MS. Aldehydes, mostly lipid oxidation products, were determined as the major chemical group, representing 17.54-78.02% of total volatile compounds. The major volatile aldehyde was hexanal (2.36-55.41%, followed by 2-methyl-2-butenal (0.97-14.69% and then heptanal (0.29-4.77%. Sulfur compounds possibly derived from spices or formed by proteolysis of sulfur-containing amino acids, were the second most abundant group, with concentrations ranging between 6.04 and 50.60%. Other important volatile compounds of pastırma were aliphatic hydrocarbons, aromatic ketones, hydrocarbons, esters, alcohols, acids, terpenes, and furans.

  6. A Fractionally Integrated Wishart Stochastic Volatility Model

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2013-01-01

    textabstractThere has recently been growing interest in modeling and estimating alternative continuous time multivariate stochastic volatility models. We propose a continuous time fractionally integrated Wishart stochastic volatility (FIWSV) process. We derive the conditional Laplace transform of

  7. Oolong tea made from tea plants from different locations in Yunnan and Fujian, China showed similar aroma but different taste characteristics.

    Science.gov (United States)

    Wang, Chen; Lv, Shidong; Wu, Yuanshuang; Gao, Xuemei; Li, Jiangbing; Zhang, Wenrui; Meng, Qingxiong

    2016-01-01

    Consistent aroma characteristics are important for tea products. However, understanding the formation of tea aroma flavor and correspondingly proposing applicable protocols to control tea quality and consistency remain major challenges. Oolong tea is one of the most popular teas with a distinct flavor. Generally, oolong tea is processed with the leaves of tea trees belonging to different subspecies and grown in significantly different regions. In this study, Yunnan and Fujian oolong teas, green tea, black tea, and Pu-erh tea were collected from major tea estates across China. Their sensory evaluation, main water-soluble and volatile compounds were identified and measured. The sensory evaluation, total polysaccharide, caffeine, and catechin content of Yunnan oolong tea was found to be different from that of Fujian oolong tea, a result suggesting that the kinds of tea leaves used in Yunnan and Fujian oolong teas were naturally different. However, according to their aroma compounds, principal component analysis (PCA) and cluster analysis (CA) of the volatile compounds showed that the two types of oolong teas were similar and cannot be clearly distinguished from each other; they are also different from green, black, and Pu-erh teas, a result indicating that the same oolong tea processing technology applied to different tea leaves results in consistent aroma characteristics. The PCA analysis results also indicated that benzylalcohol, indole, safranal, linalool oxides, β-ionone, and hexadecanoic acid methyl ester highly contributed to the distinct aroma of oolong tea compared with the other three types of teas. This study proved that the use of the same processing technology on two kinds of tea leaves resulted in a highly consistent tea aroma.

  8. Enhancing safety and aroma appealing of fresh-cut fruits and vegetables using the antimicrobial and aromatic power of essential oils.

    Science.gov (United States)

    Ayala-Zavala, J Fernando; González-Aguilar, Gustavo A; del-Toro-Sánchez, L

    2009-09-01

    Microbial and aroma attributes are within the most decisive factors limiting safety and sensory appealing of fresh-cut fruits and vegetables. Alternatively, several plant essential oils (EOs) are constituted of several volatile active compounds and most of them present antimicrobial potential and had different aroma profile. Considering these premises, this hypothesis article states that safety and aroma appealing of fresh-cut produce could be improved with EO treatment. EOs could prevent fresh-cut fruit decay; however, their volatile constituents could be sorbed by the produce, and according to the aroma notes of the antimicrobial oil, sensorial appealing of odor, and flavor of the treated produce might be affected positively or negatively. Specifically, garlic oil is a natural antimicrobial constituted by sulfur compounds, which are responsible for its odor and antimicrobial properties. Besides, fresh-cut tomato is a highly perishable product that needs antimicrobial agents to preserve its quality and safety for a longer period of time. From the sensorial point of view, aroma combination of garlic and tomato is a common seasoning practice in Europe and America and well accepted by consumers. Once the right combination of flavors between the EOs and the fresh-cut produce has been selected, safety and quality of the treated fruit could be improved by adding antimicrobial protection and extra aroma. Therefore, other combinations between EOs and fresh-cut produce are discussed. This approximation could reinforce the trends of natural food preservation, accomplishing the demands of the increasing sector of consumers demanding tasty and convenient fresh-cut produce, containing only natural ingredients.

  9. Effect of the partial replacement of sodium chloride by other salts on the formation of volatile compounds during ripening of dry-cured ham.

    Science.gov (United States)

    Armenteros, Mónica; Toldrá, Fidel; Aristoy, M-Concepción; Ventanas, Jesús; Estévez, Mario

    2012-08-01

    The effect of the partial NaCl replacement by other salts (potassium, calcium, and magnesium chloride) on the formation of volatile compounds through the processing of dry-cured ham was studied using solid-phase microextraction (SPME). Three salt formulations were considered, namely, I (100% NaCl), II (50% NaCl and 50% KCl), and III (55% NaCl, 25% KCl, 15% CaCl(2), and 5% MgCl(2)). There was an intense formation of volatile compounds throughout the processing of dry-cured hams, particularly during the "hot-cellar" stage. The differences between treatments were found to be more remarkable at the end of the curing process. Hams from formulations I and II had significantly higher amounts of lipid-derived volatiles such as hexanal than hams from formulation III, whereas the latter had significantly higher amounts of Strecker aldehydes and alcohols. Plausible mechanisms by which salt replacement may affect the generation of volatile compounds include the influence of such replacement on lipid oxidation and proteolysis phenomena. The potential influence of the volatiles profile on the aroma of the products is also addressed in the present paper.

  10. Virtual volatility

    Science.gov (United States)

    Silva, A. Christian; Prange, Richard E.

    2007-03-01

    We introduce the concept of virtual volatility. This simple but new measure shows how to quantify the uncertainty in the forecast of the drift component of a random walk. The virtual volatility also is a useful tool in understanding the stochastic process for a given portfolio. In particular, and as an example, we were able to identify mean reversion effect in our portfolio. Finally, we briefly discuss the potential practical effect of the virtual volatility on an investor asset allocation strategy.

  11. Virtual volatility

    OpenAIRE

    A. Christian Silva; Prange, Richard E.

    2006-01-01

    We introduce the concept of virtual volatility. This simple but new measure shows how to quantify the uncertainty in the forecast of the drift component of a random walk. The virtual volatility also is a useful tool in understanding the stochastic process for a given portfolio. In particular, and as an example, we were able to identify mean reversion effect in our portfolio. Finally, we briefly discuss the potential practical effect of the virtual volatility on an investor asset allocation st...

  12. Componentes voláteis do café torrado. Parte II. Compostos alifáticos, alicíclicos e aromáticos Volatile components in roasted coffee. Part II. Aliphatic, alicyclic and aromatic compounds

    Directory of Open Access Journals (Sweden)

    Ricardo Felipe Alves Moreira

    2000-04-01

    Full Text Available This review is about the aliphatic, alicyclic and aromatic compounds (non-heterocyclic compounds that are present in the volatile fractions of roasted coffees. Herein, the contents, aroma precursors and the sensorial properties of volatile phenols, aldehydes, ketones, alcohols, ethers, hydrocarbons, carboxylic acids, anhydrides, esters, lactones, amines and sulphur compounds are discussed. Special attention is given to the compounds of these groups that are actually important to the final aroma of roasted coffees.

  13. Plant volatiles.

    Science.gov (United States)

    Baldwin, Ian T

    2010-05-11

    Plant volatiles are the metabolites that plants release into the air. The quantities released are not trivial. Almost one-fifth of the atmospheric CO2 fixed by land plants is released back into the air each day as volatiles. Plants are champion synthetic chemists; they take advantage of their anabolic prowess to produce volatiles, which they use to protect themselves against biotic and abiotic stresses and to provide information - and potentially disinformation - to mutualists and competitors alike. As transferors of information, volatiles have provided plants with solutions to the challenges associated with being rooted in the ground and immobile.

  14. Option Pricing using Realized Volatility

    DEFF Research Database (Denmark)

    Stentoft, Lars Peter

    In the present paper we suggest to model Realized Volatility, an estimate of daily volatility based on high frequency data, as an Inverse Gaussian distributed variable with time varying mean, and we examine the joint properties of Realized Volatility and asset returns. We derive the appropriate...... benchmark model estimated on return data alone. Hence the paper provides evidence on the value of using high frequency data for option pricing purposes....

  15. Option Pricing using Realized Volatility

    DEFF Research Database (Denmark)

    Stentoft, Lars Peter

    In the present paper we suggest to model Realized Volatility, an estimate of daily volatility based on high frequency data, as an Inverse Gaussian distributed variable with time varying mean, and we examine the joint properties of Realized Volatility and asset returns. We derive the appropriate d...... benchmark model estimated on return data alone. Hence the paper provides evidence on the value of using high frequency data for option pricing purposes....

  16. Comparative study of the whisky aroma profile based on headspace solid phase microextraction using different fibre coatings.

    Science.gov (United States)

    Câmara, J S; Marques, J C; Perestrelo, R M; Rodrigues, F; Oliveira, L; Andrade, P; Caldeira, M

    2007-05-25

    A dynamic headspace solid-phase microextraction (HS-SPME) and gas chromatography coupled to ion trap mass spectrometry (GC-(IT)MS) method was developed and applied for the qualitative determination of the volatile compounds present in commercial whisky samples which alcoholic content was previously adjusted to 13% (v/v). Headspace SPME experimental conditions, such as fibre coating, extraction temperature and extraction time, were optimized in order to improve the extraction process. Five different SPME fibres were used in this study, namely, poly(dimethylsiloxane) (PDMS), poly(acrylate) (PA), Carboxen-poly(dimethylsiloxane) (CAR/PDMS), Carbowax-divinylbenzene (CW/DVB) and Carboxen-poly(dimethylsiloxane)-divinylbenzene (CAR/PDMS/DVB). The best results were obtained using a 75 microm CAR/PDMS fibre during headspace extraction at 40 degrees C with stirring at 750 rpm for 60 min, after saturating the samples with salt. The optimised methodology was then applied to investigate the volatile composition profile of three Scotch whisky samples--Black Label, Ballantines and Highland Clan. Approximately seventy volatile compounds were identified in the these samples, pertaining at several chemical groups, mainly fatty acids ethyl esters, higher alcohols, fatty acids, carbonyl compounds, monoterpenols, C13 norisoprenoids and some volatile phenols. The ethyl esters form an essential group of aroma components in whisky, to which they confer a pleasant aroma, with "fruity" odours. Qualitatively, the isoamyl acetate, with "banana" aroma, was the most interesting. Quantitatively, significant components are ethyl esters of caprilic, capric and lauric acids. The highest concentration of fatty acids, were observed for caprilic and capric acids. From the higher alcohols the fusel oils (3-methylbutan-1-ol and 2.phenyletanol) are the most important ones.

  17. A study revealing the key aroma compounds of steamed bread made by Chinese traditional sourdough

    Institute of Scientific and Technical Information of China (English)

    Guo-hua ZHANG; Tao WU; Faizan A SADIQ; Huan-yi YANG; Tong-jie LIU; Hui RUAN; Guo-qing HE

    2016-01-01

    Aroma of Chinese steamed bread (CSB) is one of the important parameters that determines the overall quality attributes and consumer acceptance. However, the aroma profile of CSB stil remains poorly understood, mainly because of relying on only a single method for aroma extraction in previous studies. Therefore, the objective of this study was to determine the volatile aroma compounds of five different samples of CSB using three different aroma extraction methods, namely solid-phase microextraction (SPME), simultaneous distilation–extraction (SDE), and purge and trap (P&T). Al samples showed a unique aroma profile, which could be attributed to their unique microbial consortia. (E)-2-Nonenal and (E,E)-2,4-decadienal were the most prevalent aromatic compounds revealed by SDE, which have not been reported previously, while ethanol and acetic acid proved to be the most dominant compounds by both SPME and P&T. Our approach of combining three different aroma extraction methods provided better insights into the aroma profile of CSB, which had remained largely unknown in previous studies.%中文概要题目:传统酸面团制备的馒头特征风味物质的研究目的:通过同时蒸馏萃取(SDE)、顶空固相微萃取(SPME)及吹扫捕集(P&T)技术结合气相色谱-嗅闻-质谱(GC-O-MS)技术对传统酸面团制备的馒头特征风味成分进行分析,并初步探讨特征风味形成机理。创新点:首次采用不同风味物质分析技术探索传统酸面团制备的馒头关键风味成分。方法:采用同时SDE、SPME及P&T方法,对不同传统酸面团制备的馒头特征风味物质进行分析。结论:SDE结果显示,反式-2-壬烯醛和反式-2,4-癸二烯醛为传统酸面团馒头中关键风味成分。SPME和P&T 方法表明乙醇和醋酸是关键风味物质。因此,需要结合不同技术方法,全面分析传统酸面团制备的馒头中特征风味成分。

  18. Reconstitution of the flavor signature of Dornfelder red wine on the basis of the natural concentrations of its key aroma and taste compounds.

    Science.gov (United States)

    Frank, Stephanie; Wollmann, Nadine; Schieberle, Peter; Hofmann, Thomas

    2011-08-24

    By application of aroma extract dilution analysis (AEDA) on the volatile fraction isolated from a Dornfelder red wine, 31 odor-active compounds were identified by means of HRGC-MS and comparison with reference compounds. A total of 27 odorants, judged with high FD factors by means of AEDA, was quantitated by means of stable isotope dilution assays, and acetaldehyde was determined enzymatically. In addition, 36 taste-active compounds were analyzed by means of HPLC-UV, HPLC-MS/MS, and ion chromatography. The quantitative data obtained for the identified aroma and taste compounds enabled for the first time the reconstruction of the overall flavor of the red wine. Sensory evaluation of both the aroma and taste profiles of the authentic red wine and the recombinate revealed that Dornfelder red wine was closely mimicked. Moreover, it was demonstrated that the high molecular weight fraction of red wine is essential for its astringent taste impression. By comparison of the overall odor of the aroma recombinate in ethanol with that of the total flavor recombinate containing all tastants, it was shown for the first time that the nonvolatile tastants had a strong influence on the intensity of certain aroma qualities.

  19. 威代尔甜葡萄酒主要呈香物质和香气特征的鉴定%Identification of Main Aroma Components and Aroma Characteristics of Vidal Sweet Wine

    Institute of Scientific and Technical Information of China (English)

    王家梅; 张军翔; 薛洁; 刘娜; 张峰玮

    2016-01-01

    通过气相色谱-质谱联用(GC-MS)对威代尔甜葡萄酒中的呈香物质进行鉴定,准确定量出了35种挥发性香气成分,并结合各物质的感官阈值对每种物质的香气活性值(OAV)进行计算,寻找出威代尔甜葡萄酒中的主要呈香物质.同时,通过感官评鉴对4款威代尔甜葡萄酒的香气特征和轮廓进行了分析.结果表明,4种威代尔甜葡萄酒中共有18种香气成分具有气味活性,其中4-甲基-4-巯基-2-戊酮的气味活性值最高,使甜葡萄酒表现出苦味和葡萄柚的风味;辛酸乙酯、乙酸异戊酯、己酸乙酯、乙酸乙酯主要为甜葡萄酒提供水果香;丁香酚、2-苯乙醇使葡萄酒具有花香.威代尔甜葡萄酒的香气特征整体表现出蜜香、甜苹果、葡萄柚的香气特征,其中,兰月谷甜白苦杏仁味、脂肪味突出;张裕冰酒花香突出,有玫瑰和焦糖的独特味道;巴格斯冰酒果香突出,植物味明显;加拿大云惜甜白有菠萝和麦芽的香气,符合分析的结果.%In the experiments, 35 kinds of volatile aroma compounds in Vidal sweet wine were identified and quantified accurately by GC-MS. Odor activity value (OAV) of each compound was calculated in combination with its sensory threshold value. Then the main aroma compounds in Vidal sweet wine were determined. Meanwhile, the aroma characteristics of four kinds of Vidal sweet wine were analyzed through sensory evaluation and aroma profile analysis. The results showed that, 18 kinds of aroma compounds in the four kinds of Vidal sweet wine presented odor activity, among them, OAV of 4-mercapto-4-methyl-2-pentanone was the highest (it endowed the sweet wine bitter taste and grapefruit fla-vor), ethyl octanoate, isoamyl acetate, ethyl hexanoate, and ethyl acetate mainly provided the sweet wine with fruity aroma, and eugenol and 2-phenylethanol provided the sweet wine with flower smell. The four kinds of Vidal sweet wine displayed honey and grapefruit aroma, among

  20. Solid Phase Micro-extraction (SPME) with In Situ Transesterification: An Easy Method for the Detection of Non-volatile Fatty Acid Derivatives on the Insect Cuticle.

    Science.gov (United States)

    Kühbandner, Stephan; Ruther, Joachim

    2015-06-01

    Triacylglycerides (TAGs) and other non-volatile fatty acid derivatives (NFADs) occur in large amounts in the internal tissues of insects, but their presence on the insect cuticle is controversially discussed. Most studies investigating cuticular lipids of insects involve solvent extraction, which implies the risk of extracting lipids from internal tissues. Here, we present a new method that overcomes this problem. The method employs solid phase micro-extraction (SPME) to sample NFADs by rubbing the SPME fiber over the insect cuticle. Subsequently, the sampled NFADs are transesterified in situ with trimethyl sulfonium hydroxide (TMSH) into more volatile fatty acid methyl esters (FAMEs), which can be analyzed by standard GC/MS. We performed two types of control experiments to enable significant conclusions: (1) to rule out contamination of the GC/MS system with NFADs, and (2) to exclude the presence of free fatty acids on the insect cuticle, which would also furnish FAMEs after TMSH treatment, and thus might simulate the presence of NFADs. In combination with these two essential control experiments, the described SPME technique can be used to detect TAGs and/or other NFADs on the insect cuticle. We analyzed six insect species from four insect orders with our method and compared the results with conventional solvent extraction followed by ex situ transesterification. Several fatty acids typically found as constituents of TAGs were detected by the SPME method on the cuticle of all species analyzed. A comparison of the two methods revealed differences in the fatty acid compositions of the samples. Saturated fatty acids showed by trend higher relative abundances when sampled with the SPME method, while several minor FAMEs were detected only in the solvent extracts. Our study suggests that TAGs and maybe other NFADs are far more common on the insect cuticle than usually thought.

  1. Great interspecies and intraspecies diversity of dairy propionibacteria in the production of cheese aroma compounds.

    Science.gov (United States)

    Yee, Alyson L; Maillard, Marie-Bernadette; Roland, Nathalie; Chuat, Victoria; Leclerc, Aurélie; Pogačić, Tomislav; Valence, Florence; Thierry, Anne

    2014-11-17

    Flavor is an important sensory property of fermented food products, including cheese, and largely results from the production of aroma compounds by microorganisms. Propionibacterium freudenreichii is the most widely used species of dairy propionibacteria; it has been implicated in the production of a wide variety of aroma compounds through multiple metabolic pathways and is associated with the flavor of Swiss cheese. However, the ability of other dairy propionibacteria to produce aroma compounds has not been characterized. This study sought to elucidate the effect of interspecies and intraspecies diversity of dairy propionibacteria on the production of aroma compounds in a cheese context. A total of 76 strains of Propionibacterium freudenreichii, Propionibacterium jensenii, Propionibacterium thoenii, and Propionibacterium acidipropionici were grown for 15 days in pure culture in a rich medium derived from cheese curd. In addition, one strain each of two phylogenetically related non-dairy propionibacteria, Propionibacterium cyclohexanicum and Propionibacterium microaerophilum were included. Aroma compounds were analyzed using headspace trap-gas chromatography-mass spectrometry (GC-MS). An analysis of variance performed on GC-MS data showed that the abundance of 36 out of the 45 aroma compounds detected showed significant differences between the cultures. A principal component analysis (PCA) was performed for these 36 compounds. The first two axes of the PCA, accounting for 60% of the variability between cultures, separated P. freudenreichii strains from P. acidipropionici strains and also differentiated P. freudenreichii strains from each other. P. freudenreichii strains were associated with greater concentrations of a variety of compounds, including free fatty acids from lipolysis, ethyl esters derived from these acids, and branched-chain acids and alcohols from amino acid catabolism. P. acidipropionici strains produced less of these compounds but more sulfur

  2. Influence of the addition of rosemary essential oil on the volatiles pattern of porcine frankfurters.

    Science.gov (United States)

    Estévez, Mario; Ventanas, Sonia; Ramírez, Rosario; Cava, Ramón

    2005-10-19

    The effect of the addition of increasing levels of rosemary essential oil (150, 300, and 600 mg/kg) on the generation of volatile compounds in frankfurters from Iberian and white pigs was analyzed using solid-phase microextraction coupled to gas chromatography and mass spectrometry (SPME-GC-MS). Lipid-derived volatiles such as aldehydes (hexanal, octanal, nonanal) and alcohols (pentan-1-ol, hexan-1-ol, oct-1-en-3-ol) were the most abundant compounds in the headspace (HS) of porcine frankfurters. Frankfurters from different pig breeds presented different volatile profiles due to their different oxidation susceptibilities as a likely result of their fatty acid composition and vitamin E content. Rosemary essential oil showed a different effect on the generation of volatiles depending on the type of frankfurter in which they were added. In frankfurters from Iberian pigs, the antioxidant effect of the essential oil improved with increasing levels, showing the highest activity at 600 mg/kg. In contrast, 150 mg/kg of the essential oil improved the oxidative stability of frankfurters from white pigs, whereas higher levels led to no effect or a prooxidant effect. The activity of the essential oil could have been affected by the different fatty acid compositions and vitamin E contents between types of frankfurters. SPME successfully allowed the isolation and analysis of volatile terpenes from frankfurters with added rosemary essential oil including alpha-pinene, beta-myrcene, l-limonene, (E)-caryophyllene, linalool, camphor, and 1,8-cineole, which might contribute to the aroma characteristics of frankfurters.

  3. Studies on Application of Aroma Finish on Silk Fabric

    Science.gov (United States)

    Hipparagi, Sanganna Aminappa; Srinivasa, Thirumalappa; Das, Brojeswari; Naik, Subhas Venkatappa; Purushotham, Serampur Parappa

    2016-10-01

    Aromatic treatments on textiles have gained importance in the recent years. In the present article work has been done on fragrance finish application on silk material. Silk is an expensive natural fibre used for apparel purpose and known for its feel and appeal. Incorporation of fragrance material in silk product, will add more value to it. Present work focuses to impart durable aroma finish for silk products to be home washed or subjected to dry cleaning. Microencapsulated aroma chemical has been used for the treatment. Impregnation method, Exhaust method, Dip-Pad-Dry method and Spray method have been used to see the influence of application method on the uptake and performance. Evaluation of the aroma treated material has been done through subjective evaluation as per Odor Intensity Reference Scaling (OIRS). Effect of the aroma finishing on the physical properties of the fabric has also been studied. No adverse effect has been observed on the stiffness of the fabric after the aroma treatment.

  4. Unstable volatility

    DEFF Research Database (Denmark)

    Casas, Isabel; Gijbels, Irène

    2012-01-01

    The objective of this paper is to introduce the break-preserving local linear (BPLL) estimator for the estimation of unstable volatility functions for independent and asymptotically independent processes. Breaks in the structure of the conditional mean and/or the volatility functions are common i...

  5. Unstable volatility

    DEFF Research Database (Denmark)

    Casas, Isabel; Gijbels, Irène

    2012-01-01

    The objective of this paper is to introduce the break-preserving local linear (BPLL) estimator for the estimation of unstable volatility functions for independent and asymptotically independent processes. Breaks in the structure of the conditional mean and/or the volatility functions are common i...

  6. Role of the ribose-specific marker furfuryl-amine in the formation of aroma active 1-(furan-2-ylmethyl)-1H-pyrrole (or furfuryl-pyrrole) derivatives.

    Science.gov (United States)

    Nikolov, Plamen Y; Yaylayan, Varoujan A

    2012-10-10

    Furfuryl-pyrroles possess a diverse range of organoleptic properties described as roasted, chocolaty, green, horseradish-like, and mushroom-like and are detected in various foods such as coffee, chocolate, popcorn, and roasted chicken. Although their origin in food was attributed to furfuryl-amine, the latter has not been detected so far in Maillard model systems or in foods. In this study, furfuryl-amine was shown to be formed specifically from ribose through nitrogen atom transfer from the α-amino group of any amino acid. Such a transfer can be achieved through decarboxylation of the Schiff base adduct and isomerization followed by hydrolysis. Through the use of (15)Nα-lysine it was revealed that only the (15)Nα nitrogen atom was incorporated into its structure, indicating a specific role for the carboxylate moiety in the mechanism of its formation. Furthermore, isotope labeling studies have indicated that furfuryl-pyrrole derivatives can be formed by the interaction of 2 mol of furfuryl-amine with 3-deoxyribosone followed by dehydration and cyclization to form 1-(furan-2-yl)-N-{[1-(furan-2-ylmethyl)-1H-pyrrol-2-yl]methylidene}methanamine. After hydrolysis, this intermediate can generate furfuryl-formyl-pyrrole, furfuryl-pyrrole carboxylic acid, and furfuryl-pyrrole. In this study, the furfuryl-amine derivatives were also detected in different coffee beans after pyrolysis and analysis by GC-MS. The potential of these compounds to form in aqueous model systems at a temperature of 120 °C was also demonstrated.

  7. Aroma development in high pressure treated beef and chicken meat compared to raw and heat treated.

    Science.gov (United States)

    Schindler, Sabrina; Krings, Ulrich; Berger, Ralf G; Orlien, Vibeke

    2010-10-01

    Chicken breast and beef muscle were treated at 400 and 600 MPa for 15 min at 5 degrees C and compared to raw meat and a heated sample (100 degrees C for 15 min). Vacuum-packed beef meat with a smaller fraction of unsaturated fatty acids showed better oxidative stability during 14 days of cold storage, as shown by a low steady-state level of hydroperoxide values, than vacuum-packed chicken meat. Accordingly, the critical pressures of 400 MPa and 600 MPa for chicken breast and beef sirloin, respectively, were established. Volatiles released after opening of the meat bags or during storage of open meat bags, simulating consumer behaviour, were measured under conditions mimicking eating. Quantitative and olfactory analysis of pressurised meat gave a total of 46 flavour volatiles, mainly alcohols (11), aldehydes (15), and ketones (11), but all in low abundance after 14 days of storage. Overall, beef meat contained less volatiles and in lower abundance (factor of 5) compared to chicken meat. The most important odour active volatiles (GC-O) were well below the detection thresholds necessary to impart a perceivable off-flavour. Lipid oxidation was significantly accelerated during 24h of cold storage in both cooked chicken and beef when exposed to oxygen, while the pressurised and oxygen-exposed chicken and beef meat remained stable. Pressure treatment of beef and chicken did not induce severe changes of their raw aroma profiles.

  8. Analytical methods for volatile compounds in wheat bread.

    Science.gov (United States)

    Pico, Joana; Gómez, Manuel; Bernal, José; Bernal, José Luis

    2016-01-08

    Bread aroma is one of the main requirements for its acceptance by consumers, since it is one of the first attributes perceived. Sensory analysis, crucial to be correlated with human perception, presents limitations and needs to be complemented with instrumental analysis. Gas chromatography coupled to mass spectrometry is usually selected as the technique to determine bread volatile compounds, although proton-transfer reaction mass spectrometry begins also to be used to monitor aroma processes. Solvent extraction, supercritical fluid extraction and headspace analysis are the main options for the sample treatment. The present review focuses on the different sample treatments and instrumental alternatives reported in the literature to analyse volatile compounds in wheat bread, providing advantages and limitations. Usual parameters employed in these analytical methods are also described.

  9. Perfil sensorial e composição físico-química de cervejas provenientes de dois segmentos do mercado brasileiro Sensorial and physical-chemical evaluation of beers deriving from two segments of Brazilian market

    Directory of Open Access Journals (Sweden)

    F.B. Araújo

    2003-08-01

    brands were "lager" Pilsen type. Brands 1 and 2 presented high volatile acidity, and were also identified by the Quantitative Descriptive Analysis as presenting the greatest intensity of bitter flavor. It was observed that the brands deriving from small brewery presented larger intensity of sensorial attributes, so that brands 1 and 2 presented color, yeast aroma, fruit aroma, cardboard aroma, oxidized flavor, sweet taste and more intense diacetyl aroma. The brands that presented, through the chemico-physical analysis, higher concentration of ethyl acetate were the ones that had fruit aroma perceptible by the sensorial team, not being this attribute detected in brands 3, 4, 5 and 6. Solvent aroma was not detected in any of the appraised brands, suggesting that the concentration higher alcohols is below the sensorial threshold of detection. Brands 3, 4 and 5 were used to evaluate the acceptance of the product, with no significant difference (p > 0.05 among the brands, which were ranked among the hedonic terms "I liked it very much" and "I liked it slightly", which contradicts the expected, since small breweries aim a differentiated beer with greater attraction for the consumer.

  10. True cooking aroma or artefact. {sup 15}N gives the answer; Veritable arome de cuisson ou artefact. {sup 15}N fournit la reponse

    Energy Technology Data Exchange (ETDEWEB)

    Metro, F.; Boudaud, N.; Dumont, J.P. [INRA, 44 - Nantes (France)

    1994-12-31

    In order to determine the respective contributions of the various nitrous precursor families in aroma preparations, the usually added amino acids were substituted with {sup 15}N isotope labelled homologous components. Results concerning isotope ratios for the volatile fraction nitrous components collected from poultry meat aromatic preparations, are presented. Terminal product labelling appears to allow for a better determination of the substrate and functional additive contributions. 4 figs., 6 refs.

  11. Assessment of Surface Water Contamination from Coalbed Methane Fracturing-Derived Volatile Contaminants in Sullivan County, Indiana, USA.

    Science.gov (United States)

    Meszaros, Nicholas; Subedi, Bikram; Stamets, Tristan; Shifa, Naima

    2017-07-14

    There is a growing concern over the contamination of surface water and the associated environmental and public health consequences from the recent proliferation of hydraulic fracturing in the USA. Petroleum hydrocarbon-derived contaminants of concern [benzene, toluene, ethylbenzene, and xylenes (BTEX)] and various dissolved cations and anions were spatially determined in surface waters around 15 coalbed methane fracking wells in Sullivan County, IN, USA. At least one BTEX compound was detected in 69% of sampling sites (n = 13) and 23% of sampling sites were found to be contaminated with all of the BTEX compounds. Toluene was the most common BTEX compound detected across all sampling sites, both upstream and downstream from coalbed methane fracking wells. The average concentration of toluene at a reservoir and its outlet nearby the fracking wells was ~2× higher than other downstream sites. However, one of the upstream sites was found to be contaminated with BTEX at similar concentrations as in a reservoir site nearby the fracking well. Calcium (~60 ppm) and sulfates (~175 ppm) were the dominant cations and anions, respectively, in surface water around the fracking sites. This study represents the first report of BTEX contamination in surface water from coalbed methane hydraulic fracturing wells.

  12. Transport of hop aroma compounds across Caco-2 monolayers.

    Science.gov (United States)

    Heinlein, A; Metzger, M; Walles, H; Buettner, A

    2014-11-01

    Although being reported and used as a sedative remedy for several years, the bioactive principle of hop preparations is still not decisively clarified. Understanding absorption and transformation processes of potential physiologically active constituents is essential to evaluate the likeliness of biological effects on humans. Therefore, single hop aroma compounds as well as digestive transformation products thereof have been investigated in view of their human intestinal absorption, applying Caco-2 transport experiments as well as investigations on potential biotransformation processes. Selective and sensitive identification and quantification were thereby achieved by application of two-dimensional high resolution gas chromatography-mass spectrometry in conjunction with stable isotope dilution analysis, leading to the determination of apparent permeability values by different mathematical approaches considering sink and non-sink conditions. Overall, calculated permeability values ranged from 2.6 × 10(-6) to 1.8 × 10(-4) cm s(-1) with all mathematical approaches, indicating high absorption potential and almost complete bioavailability for all tested compounds with hydroxyl-functionalities. Considering this high permeability together with the high lipophilicity of these substances, a passive transcellular uptake route can be speculated. Investigated sesquiterpenes and β-myrcene showed flat absorption profiles while the investigated esters showed decreasing profiles. In view of the lipophilic and volatile nature of the investigated substances, special attention was paid to recovery and mass balance determination. Furthermore, in the course of the transport experiments of 1-octen-3-ol and 3-methyl-2-buten-1-ol, additional biotransformation products were observed, namely 3-octanone and 3-methyl-2-butenal, respectively. The absence of these additional substances in control experiments strongly indicates an intestinal first-pass metabolism of the

  13. Fermentative Aroma Compounds and Sensory Descriptors of Traditional Croatian Dessert Wine Prošek from Plavac mali cv.

    Directory of Open Access Journals (Sweden)

    Goran Zdunić

    2010-01-01

    Full Text Available Prošek is a traditional dessert wine from the coastal region of Croatia made from partially dried grapes. There is very little literature data about the chemical composition and sensory properties of Prošek, so an experimental production from the dried grapes of Plavac mali cultivar has been done using native and induced alcoholic fermentations. To determine the volatile compounds, gas chromatography with flame ionisation detector (GC/FID was used on the samples prepared with solid phase microextraction (SPME. Higher alcohols, esters, carbonyl compounds and volatile acids were determined in the wine samples. Wines were grouped according to the production method using principal component analysis (PCA. It was found that Prošek wines produced with native and induced alcoholic fermentation differ in their volatile compounds. Descriptive sensory analysis was applied to show the sensory properties of Prošek wine, whose characteristic aromas include those of dried fruit (raisins, red berries, honey, chocolate and vanilla. A significant difference depending on the type of fermentation was determined in two sensory attributes, strawberry jam aroma and fullness.

  14. A methodological approach to screen diverse cheese-related bacteria for their ability to produce aroma compounds.

    Science.gov (United States)

    Pogačić, Tomislav; Maillard, Marie-Bernadette; Leclerc, Aurélie; Hervé, Christophe; Chuat, Victoria; Yee, Alyson L; Valence, Florence; Thierry, Anne

    2015-04-01

    Microorganisms play an important role in the development of cheese flavor. The aim of this study was to develop an approach to facilitate screening of various cheese-related bacteria for their ability to produce aroma compounds. We combined i) curd-based slurry medium incubated under conditions mimicking cheese manufacturing and ripening, ii) powerful method of extraction of volatiles, headspace trap, coupled to gas chromatography-mass spectrometry (HS-trap-GC-MS), and iii) metabolomics-based method of data processing using the XCMS package of R software and multivariate analysis. This approach was applied to eleven species: five lactic acid bacteria (Leuconostoc lactis, Lactobacillus sakei, Lactobacillus paracasei, Lactobacillus fermentum, and Lactobacillus helveticus), four actinobacteria (Brachybacterium articum, Brachybacterium tyrofermentans, Brevibacterium aurantiacum, and Microbacterium gubbeenense), Propionibacterium freudenreichii, and Hafnia alvei. All the strains grew, with maximal populations ranging from 7.4 to 9.2 log (CFU/mL). In total, 52 volatile aroma compounds were identified, of which 49 varied significantly in abundance between bacteria. Principal component analysis of volatile profiles differentiated species by their ability to produce ethyl esters (associated with Brachybacteria), sulfur compounds and branched-chain alcohols (H. alvei), branched-chain acids (H. alvei, P. freudenreichii and L. paracasei), diacetyl and related carbonyl compounds (M. gubbeenense and L. paracasei), among others.

  15. Identification of characteristic aroma components of Thai fried chili paste.

    Science.gov (United States)

    Rotsatchakul, Premsiri; Chaiseri, Siree; Cadwallader, Keith R

    2008-01-23

    Three forms of Thai fried chili pastes (CP) were prepared, consisting of an unheated CP (UH-CP), a CP heated at 100 degrees C for 25 min (H25-CP, typical product), and a CP excessively heated for 50 min (H50-CP). The potent odorants in the CPs were investigated by two gas chromatography-olfactometry methods: dynamic headspace dilution analysis (DHDA) and aroma extract dilution analysis (AEDA). DHDA revealed that the predominant odorants in heated CPs were mainly sulfur-containing compounds, followed by lipid-derived compounds, Strecker aldehydes, and Maillard reaction products. Dimethyl sulfide, allyl mercaptan, 2- (or 3-) methylbutanal, ally methyl sulfide, 2,3-butanedione, 3,3'-thiobis(1-propene), and methyl propyl disulfide were among the most potent headspace odorants detected by DHDA. By AEDA, 2-vinyl-4 H-1,3-dithiin and diallyl trisulfide had the highest FD factors in H25-CP. On the basis of their high FD factors by both GCO methods, the predominant odorants in H25-CP were 3-vinyl-4 H-1,2-dithiin, allyl methyl disulfide, and allyl methyl trisulfide. Furthermore, dimethyl trisulfide and diallyl disulfide had the highest odor activity values in H25-CP, suggesting that these were also potent odorants in CP. In addition, methional, 3-methylbutanoic acid, 4-hydroxy-2,5-dimethyl-3-(2 H)-furanone, and 3-hydroxy-4,5-dimethyl-2( 5H)-furanone (sotolon) were indicated as potent thermally derived odorants of H25-CP.

  16. Volatiles produced by Staphylococcus xylosus and Staphylococcus carnosus during growth in sausage minces

    DEFF Research Database (Denmark)

    Stahnke, Marie Louise Heller

    1999-01-01

    of air. Volatiles produced by the cultures were collected during growth, identified and quantified. The data were analysed by partial least squares regression. The results showed that oxygen in general had more influence on the aroma producing capacity of Staphylococcus xylosus than of Staphylococcus...

  17. Chemometric investigation of the volatile content of young South African wines

    NARCIS (Netherlands)

    Weldegergis, B.T.; Villiers, de A.; Crouch, A.M.

    2011-01-01

    The content of major volatiles of 334 wines of six different cultivars (Sauvignon Blanc, Chardonnay, Pinotage, Shiraz, Cabernet Sauvignon and Merlot) and vintage 2005 was used to investigate the aroma content of young South African wines. Wines were sourced from six different regions and various

  18. Evaluation of noni (Morinda citrifolia) volatile profile by dynamic headspace and gas chromatography-mass spectrometry

    OpenAIRE

    Sousa, A.; M. A. SOUZA NETO; GARRUTI, D. dos S.; Sousa, J. A.; BRITO, E. S. de

    2010-01-01

    Noni is a fruit that has interested the scientific community due to its medicinal and functional activities. Different products that contain noni are already in the market, but their consumption could be impaired by their distinctive unpleasant aroma and flavor. The aim of this work was to evaluate the noni pulp volatile profile by dynamic headspace and gas chromatography-mass spectrometry. Thirty seven volatile compounds were detected, mainly alcohols (63.3%), esters (26.9%), cetones (7.4%),...

  19. Volatile profile of Madeira wines submitted to traditional accelerated ageing.

    Science.gov (United States)

    Pereira, Vanda; Cacho, Juan; Marques, José C

    2014-11-01

    The evolution of monovarietal fortified Madeira wines forced-aged by traditional thermal processing (estufagem) were studied in terms of volatiles. SPE extracts were analysed by GC-MS before and after heating at 45 °C for 3 months (standard) and at 70 °C for 1 month (overheating). One hundred and ninety volatile compounds were identified, 53 of which were only encountered in baked wines. Most chemical families increased after standard heating, especially furans and esters, up to 61 and 3-fold, respectively. On the contrary, alcohols, acetates and fatty acids decreased after heating. Varietal aromas, such as Malvasia's monoterpenic alcohols were not detected after baking. The accelerated ageing favoured the development of some volatiles previously reported as typical aromas of finest Madeira wines, particularly phenylacetaldeyde, β-damascenone and 5-ethoxymethylfurfural. Additionally, ethyl butyrate, ethyl 2-methylbutyrate, ethyl caproate, ethyl isovalerate, guaiacol, 5-hydroxymethylfurfural and γ-decalactone were also found as potential contributors to the global aroma of baked wines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Chasing volatility

    DEFF Research Database (Denmark)

    Caporin, Massimiliano; Rossi, Eduardo; Santucci de Magistris, Paolo

    The realized volatility of financial returns is characterized by persistence and occurrence of unpreditable large increments. To capture those features, we introduce the Multiplicative Error Model with jumps (MEM-J). When a jump component is included in the multiplicative specification, the condi...... models, the introduction of the jump component provides a sensible improvement in the fit, as well as for in-sample and out-of-sample volatility tail forecasts....

  1. Volatility Risk

    OpenAIRE

    Zhiguang Wang

    2009-01-01

    Classical capital asset pricing theory tells us that riskaverse investors would require higher returns to compensate for higher risk on an investment. One type of risk is price (return) risk, which reflects uncertainty in the price level and is measured by the volatility (standard deviation) of asset returns. Volatility itself is also known to be random and hence is perceived as another type of risk. Investors can bear price risk in exchange for a higher return. But are investors willing to p...

  2. Aroma transition from rosemary leaves during aromatization of olive oil

    Directory of Open Access Journals (Sweden)

    Mustafa Yılmazer

    2016-04-01

    Full Text Available The aroma profile of aromatized olive oil was determined in this study. The primary objective was to investigate the transition of major aroma compounds from rosemary and olive fruit during the kneading step of olive oil production by response surface methodology. For this purpose, temperature, time, and amount of rosemary leaves were determined as independent variables. The results indicated that temperature and time did not affect the transition of target compounds, but rosemary leaves addition had a strong influence on transition, especially for characteristic aroma compounds of this herb. Adequacies of developed models were found to be high enough to predict each aromatic component of interest.

  3. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI.

    Science.gov (United States)

    Pruim, Raimon H R; Mennes, Maarten; Buitelaar, Jan K; Beckmann, Christian F

    2015-05-15

    We proposed ICA-AROMA as a strategy for the removal of motion-related artifacts from fMRI data (Pruim et al., 2015). ICA-AROMA automatically identifies and subsequently removes data-driven derived components that represent motion-related artifacts. Here we present an extensive evaluation of ICA-AROMA by comparing our strategy to a range of alternative strategies for motion-related artifact removal: (i) no secondary motion correction, (ii) extensive nuisance regression utilizing 6 or (iii) 24 realignment parameters, (iv) spike regression (Satterthwaite et al., 2013a), (v) motion scrubbing (Power et al., 2012), (vi) aCompCor (Behzadi et al., 2007; Muschelli et al., 2014), (vii) SOCK (Bhaganagarapu et al., 2013), and (viii) ICA-FIX (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014), without re-training the classifier. Using three different functional connectivity analysis approaches and four different multi-subject resting-state fMRI datasets, we assessed all strategies regarding their potential to remove motion artifacts, ability to preserve signal of interest, and induced loss in temporal degrees of freedom (tDoF). Results demonstrated that ICA-AROMA, spike regression, scrubbing, and ICA-FIX similarly minimized the impact of motion on functional connectivity metrics. However, both ICA-AROMA and ICA-FIX resulted in significantly improved resting-state network reproducibility and decreased loss in tDoF compared to spike regression and scrubbing. In comparison to ICA-FIX, ICA-AROMA yielded improved preservation of signal of interest across all datasets. These results demonstrate that ICA-AROMA is an effective strategy for removing motion-related artifacts from rfMRI data. Our robust and generalizable strategy avoids the need for censoring fMRI data and reduces motion-induced signal variations in fMRI data, while preserving signal of interest and increasing the reproducibility of functional connectivity metrics. In addition, ICA-AROMA preserves the temporal non

  4. Analysis of volatiles in porcine liver pâtés with added sage and rosemary essential oils by using SPME-GC-MS.

    Science.gov (United States)

    Estévez, Mario; Ventanas, Sonia; Ramírez, Rosario; Cava, Ramón

    2004-08-11

    The effect of the addition of two natural antioxidant extracts (sage and rosemary essential oils) and one synthetic (BHT) on the generation of volatile compounds in liver pâtés from Iberian and white pigs was analyzed using SPME-GC-MS. Lipid-derived volatiles such as aldehydes [hexanal, octanal, nonanal, hept-(Z)-4-enal, oct-(E)-2-enal, non-(Z)-2-enal, dec-(E)-2-enal, deca-(E,Z)-2,4-dienal] and alcohols (pentan-1-ol, hexan-1-ol, oct-1-en-3-ol) were the most abundant compounds in the headspace of porcine liver pâtés. Pâtés from different pig breeds presented different volatiles profiles due to their different oxidation susceptibilities as a probable result of their fatty acid profiles and vitamin E content. Regardless of the origin of the pâtés, the addition of BHT successfully reduced the amount of volatiles derived from PUFA oxidation. Added essential oils showed a different effect on the generation of volatiles whether they were added in pâtés from Iberian or white pigs because they inhibited lipid oxidation in the former and enhanced oxidative instability in the latter. SPME successfully allowed the isolation and analysis of 41 volatile terpenes from pâtés with added sage and rosemary essential oils including alpha-pinene, beta-myrcene, 1-limonene, (E)-caryophyllene, linalool, camphor, and 1,8-cineole, which might contribute to the aroma characteristics of liver pâtés.

  5. Lactic fermentation to improve the aroma of protein extracts of sweet lupin (Lupinus angustifolius).

    Science.gov (United States)

    Schindler, Sabrina; Wittig, Maximilian; Zelena, Kateryna; Krings, Ulrich; Bez, Jürgen; Eisner, Peter; Berger, Ralf G

    2011-09-15

    Lupin protein extracts (LPE) are prone to the emission of a beany off-flavour during storage, which confines its application in foods. Fermentation of LPE using several lactic acid bacteria was conducted to reduce off-flavour formation in stored samples. The aroma profile of untreated LPE was compared to those of fermented protein extracts (LPEF). Hexanal and n-hexanol were used as indicator substances of progressing lipid oxidation. The most powerful odourants were evaluated by GC-olfactometry-flavour dilution analysis and identified according to their mass spectra, odour descriptions, and retention indices. Twenty two volatile substances with dilution factors equal to or higher than 100 were determined in both LPE and LPEF, amongst them n-pentanal, n-hexanal, 1-pyrroline, dimethyl trisulfide, 1-octen-3-one, 3-octen-2-one, 1-octen-3-ol, and β-damascenone. The aroma profile was significantly modified by the fermentation process and the off-flavours were reduced and/or masked by newly formed compounds.

  6. Glycosidically bound aroma compounds and impact odorants of four strawberry varieties.

    Science.gov (United States)

    Ubeda, Cristina; San-Juan, Felipe; Concejero, Belén; Callejón, Raquel M; Troncoso, Ana M; Morales, M Lourdes; Ferreira, Vicente; Hernández-Orte, Purificación

    2012-06-20

    This paper reports the determination of glycosidically bound aroma compounds and the olfactometric analysis in four strawberry varieties (Fuentepina, Camarosa, Candonga and Sabrina). Different hydrolytic strategies were also studied. The results showed significant differences between acid and enzymatic hydrolysis. In general terms, the greater the duration of acid hydrolysis, the higher was the content of norisoprenoids, volatile phenols, benzenes, lactones, Furaneol, and mesifurane. A total of 51 aglycones were identified, 38 of them unreported in strawberry. Olfactometric analyses revealed that the odorants with higher modified frequencies were Furaneol, γ-decalactone, ethyl butanoate, ethyl hexanoate, ethyl 3-methylbutanoate, diacetyl, hexanoic acid, and (Z)-1,5-octadien-3-one. This last compound, described as geranium/green/pepper/lettuce (linear retention index = 1378), was identified for the first time. Differences with regard to fruity, sweet, floral, and green aroma characters were observed among varieties. In Candonga and Fuentepina, the green character overpowered the sweet. In the other two strawberry varieties sweet attributes were stronger than the rest.

  7. A model explaining and predicting lamb flavour from the aroma-active chemical compounds released upon grilling light lamb loins.

    Science.gov (United States)

    Bueno, Mónica; Campo, M Mar; Cacho, Juan; Ferreira, Vicente; Escudero, Ana

    2014-12-01

    The objective of the work is to understand the role of the different aroma compounds in the perception of the local "lamb flavour" concept. For this, a set of 70 loins (Longissimus dorsi) from approximately seventy day-old Rasa Aragonesa male lambs were grilled and the aroma-active chemicals released during the grilling process were trapped and analyzed. Carbonyl compounds were derivatizated and determined by GC-NCI-MS, whereas other aromatic compounds were directly analyzed by GC-GC-MS. Odour activity values (OAVs) were calculated using their odour threshold values in air. Lamb flavour could be satisfactory explained by a partial least-squares model (74% explained variance in cross-validation) built by the OAVs of 32 aroma-active chemical compounds. The model demonstrates that the lamb flavour concept is the result of a complex balance. Its intensity critically and positively depends to the levels of volatile fatty acids and several dimethylpyrazines while is negatively influenced by the different alkenals and alkadienals. (E,E)-2,4-decadienal and (E)-2-nonenal showed top OAVs.

  8. Immobilization of Yarrowia lipolytica for aroma production from castor oil.

    Science.gov (United States)

    Braga, Adelaide; Belo, Isabel

    2013-04-01

    The main aim of this study was to compare different materials for Y. lipolytica immobilization that could be used in the production of γ-decalactone (a peach-like aroma) in order to prevent the toxic effect both of the substrate and the aroma upon the cells. Therefore, cells adsorption onto pieces of methyl polymethacrylate and of DupUM(®) was studied and further used in the biotransformation of castor oil into γ-decalactone. The highest aroma concentration was obtained with immobilized cells in DupUM(®), where reconsumption of the aroma by the cells was prevented, contrarily to what happens with free cells. This is a very promising result for γ-decalactone production, with potential to be used at an industrial level since the use of immobilized cells system will facilitate the conversion of a batch process into a continuous mode keeping high cell density and allowing easier recovery of metabolic products.

  9. Identification of Key Odorants in Withering-Flavored Green Tea by Aroma Extract Dilution Analysis

    Science.gov (United States)

    Mizukami, Yuzo; Yamaguchi, Yuichi

    This research aims to identify key odorants in withering-flavored green tea. Application of the aroma extract dilution analysis using the volatile fraction of green tea and withering-flavored green tea revealed 25 and 35 odor-active peaks with the flavor dilution factors of≥4, respectively. 4-mercapto-4-methylpentan-2-one, (E)-2-nonenal, linalool, (E,Z)-2,6-nonadienal and 3-methylnonane-2,4-dione were key odorants in green tea with the flavor dilution factor of≥16. As well as these 5 odorants, 1-octen-3-one, β-damascenone, geraniol, β-ionone, (Z)-methyljasmonate, indole and coumarine contributed to the withering flavor of green tea.

  10. Volatile compounds of commercial Milano salami.

    Science.gov (United States)

    Meynier, A; Novelli, E; Chizzolini, R; Zanardi, E; Gandemer, G

    1999-02-01

    The relationship between extracted volatiles of Milano salami, one of the main dry-cured sausages produced in Italy, and their olfactory properties was studied. Volatile compounds were extracted by a purge-and-trap method, quantified using a flame ionisation detector and identified by mass spectrometry. Olfactory analysis was performed by sniffing the gas chromatographic effluent. Nearly 80 compounds were identified and quantified: most came from spices (60.5%), 18.9% from lipid oxidation, 11.8% from amino acid catabolism and 4.9% from fermentation processes. Panellists detected 19 odours by sniffing. These odours were associated with spices, lipid oxidation or fermentation and were in agreement with the contributions of each reaction to the overall aroma of the product.

  11. Aroma components from dried sausages fermented with Staphylococcus xylosus

    DEFF Research Database (Denmark)

    Stahnke, Marie Louise Heller

    1994-01-01

    an unpleasant, rancid odour compared to sausages with Staphylococcus xylosus, indicating that the esterase activity of Staphylococcus xylosus or other microorganisms is very important in order to obtain the proper fermented sausage aroma.Although sausages with Staphylococcus xylosus contained the highest...... amounts of free fatty acids, it seemed to be of no importance to aroma development. It is therefore questionable whether lipolytic activity of starter cultures has an influence on sausage flavour....

  12. The efficacy of molecular markers analysis with integration of sensory methods in detection of aroma in rice.

    Science.gov (United States)

    Yeap, H Y; Faruq, G; Zakaria, H P; Harikrishna, J A

    2013-01-01

    Allele Specific Amplification with four primers (External Antisense Primer, External Sense Primer, Internal Nonfragrant Sense Primer, and Internal Fragrant Antisense Primer) and sensory evaluation with leaves and grains were executed to identify aromatic rice genotypes and their F1 individuals derived from different crosses of 2 Malaysian varieties with 4 popular land races and 3 advance lines. Homozygous aromatic (fgr/fgr) F1 individuals demonstrated better aroma scores compared to both heterozygous nonaromatic (FGR/fgr) and homozygous nonaromatic (FGR/FGR) individuals, while, some F1 individuals expressed aroma in both leaf and grain aromatic tests without possessing the fgr allele. Genotypic analysis of F1 individuals for the fgr gene represented homozygous aromatic, heterozygous nonaromatic and homozygous nonaromatic genotypes in the ratio 20:19:3. Genotypic and phenotypic analysis revealed that aroma in F1 individuals was successfully inherited from the parents, but either molecular analysis or sensory evaluation alone could not determine aromatic condition completely. The integration of molecular analysis with sensory methods was observed as rapid and reliable for the screening of aromatic genotypes because molecular analysis could distinguish aromatic homozygous, nonaromatic homozygous and nonaromatic heterozygous individuals, whilst the sensory method facilitated the evaluation of aroma emitted from leaf and grain during flowering to maturity stages.

  13. Influence of Fermentation Temperature, Yeast Strain, and Grape Juice on the Aroma Chemistry and Sensory Profile of Sauvignon Blanc Wines.

    Science.gov (United States)

    Deed, Rebecca C; Fedrizzi, Bruno; Gardner, Richard C

    2017-10-02

    Sauvignon blanc wine, balanced by herbaceous and tropical aromas, is fermented at low temperatures (10-15 °C). Anecdotal accounts from winemakers suggest that cold fermentations produce and retain more "fruity" aroma compounds; nonetheless, studies have not confirmed why low temperatures are optimal for Sauvignon blanc. Thirty-two aroma compounds were quantitated from two Marlborough Sauvignon blanc juices fermented at 12.5 and 25 °C, using Saccharomyces cerevisiae strains EC1118, L-1528, M2, and X5. Fourteen compounds were responsible for driving differences in aroma chemistry. The 12.5 °C-fermented wines had lower 3-mercaptohexan-1-ol (3MH) and higher alcohols but increased fruity acetate esters. However, a sensory panel did not find a significant difference between fruitiness in 75% of wine pairs based on fermentation temperature, in spite of chemical differences. For wine pairs with significant differences (25%), the 25 °C-fermented wines were fruitier than the 12.5 °C-fermented wines, with high fruitiness associated with 3MH. We propose that the benefits of low fermentation temperatures are not derived from increased fruitiness but a better balance between fruitiness and greenness. Even so, since 75% of wines showed no significant difference, higher fermentation temperatures could be utilized without detriment, lowering costs for the wine industry.

  14. Essential Oils and Non-volatile Compounds Derived from Chamaecyparis obtusa: Broad Spectrum Antimicrobial Activity against Infectious Bacteria and MDR(multidrug resistant) Strains.

    Science.gov (United States)

    Bae, Min-Suk; Park, Dae-Hun; Choi, Chul-Yung; Kim, Gye-Yeop; Yoo, Jin-Cheol; Cho, Seung-Sik

    2016-05-01

    The aim of this study was to evaluate the antibacterial activity of essential oil from Chamaecyparis obtusa against general infectious microbes and drug resistant strains of clinical origin. The results indicate that both essential oil and non-volatile residue have broad inhibitory activity against test strains. Essential oil and non-volatile residues showed antimicrobial activity not only against general infectious bacteria, but also against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains.

  15. Comparison of key aroma compounds in five different types of Japanese soy sauces by aroma extract dilution analysis (AEDA).

    Science.gov (United States)

    Kaneko, Shu; Kumazawa, Kenji; Nishimura, Osamu

    2012-04-18

    An investigation by the aroma extract dilution analysis (AEDA) technique of the aroma concentrate from five different types of Japanese soy sauces, categorized according to Japan Agricultural Standards as Koikuchi Shoyu (KS), Usukuchi Shoyu (US), Tamari Shoyu (TS), Sai-Shikomi Shoyu (SSS), and Shiro Shoyu (SS), revealed 25 key aroma compounds. Among them, 3-ethyl-1,2-cyclopentanedione and 2'-aminoacetophenone were identified in the soy sauces for the first time. Whereas 3-(methylthio)propanal (methional) and 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolon) were detected in all of the soy sauce aroma concentrates as having high flavor dilution (FD) factors, 4-ethyl-2-methoxyphenol was detected as having a high FD factor in only four of the soy sauces (KS, US, TS, and SSS). Furthermore, 5(or 2)-ethyl-4-hydroxy-2(or 5)-methyl-3(2H)-furanone (4-HEMF) and 4-hydroxy-2,5-dimethyl-3(2H)-furanone (4-HDMF), which were thought to be the key odorants in KS, were detected in KS, US, TS, and SSS, but the FD factors widely varied among them. The sensory evaluations demonstrated that the aroma descriptions of a cooked potato-like note and a caramel-like/seasoning-like note were evaluated as high scores with no significant differences among the five soy sauces. On the other hand, a burnt/spicy note was evaluated as having high scores in KS, TS, and SSS, but it was evaluated as having a low score in SS. The comparative AEDA experiments and the auxiliary sensory experiments demonstrated that the five different types of Japanese soy sauces varied in their key aroma compounds and aroma characteristics, and the key aroma compounds in KS might not always be highly contributing in the other types of Japanese soy sauces.

  16. Volatile profile and sensory quality of new varieties of Capsicum chinense pepper

    Directory of Open Access Journals (Sweden)

    Deborah dos Santos Garruti

    2013-02-01

    Full Text Available The objective of this study was to compare the sensory quality and the volatile compound profile of new varieties of Capsicum chinense pepper (CNPH 4080 a strain of'Cumari-do-Pará' and BRS Seriema with a known commercial variety (Biquinho. Volatiles were isolated from the headspace of fresh fruit by SPME and identified by GC-MS. Pickled peppers were produced for sensory evaluation. Aroma descriptors were evaluated by Check-All-That-Apply (CATA method, and the frequency data were submitted to Correspondence Analysis. Flavor acceptance was assessed by hedonic scale and analyzed by ANOVA. BRS Seriema showed the richest volatile profile, with 55 identified compounds, and up to 40% were compounds with sweet aroma notes. CNPH 4080 showed similar volatile profile to that of Biquinho pepper, but it had higher amounts of pepper-like and green-note compounds. The samples did not differ in terms of flavor acceptance, but they showed differences in aroma quality confirming the differences found in the volatile profiles. The C. chinense varieties developed by Embrapa proved to be more aromatic than Biquinho variety, and were well accepted by the judges.

  17. Effect of supercritical carbon dioxide decaffeination on volatile components of green teas.

    Science.gov (United States)

    Lee, S; Park, M K; Kim, K H; Kim, Y-S

    2007-09-01

    Volatile components in regular and decaffeinated green teas were isolated by simultaneous steam distillation and solvent extraction (SDE), and then analyzed by GC-MS. A total of 41 compounds, including 8 alcohols, 15 terpene-type compounds, 10 carbonyls, 4 N-containing compounds, and 4 miscellaneous compounds, were found in regular and decaffeinated green teas. Among them, linalool and phenylacetaldehyde were quantitatively dominant in both regular and decaffeinated green teas. By a decaffeination process using supercritical carbon dioxide, most volatile components decreased. The more caffeine was removed, the more volatile components were reduced in green teas. In particular, relatively nonpolar components such as terpene-type compounds gradually decreased according to the decaffeination process. Aroma-active compounds in regular and decaffeinated green teas were also determined and compared by aroma extract dilution analysis (AEDA). Most greenish and floral flavor compounds such as hexanal, (E)-2-hexenal, and some unknown compounds disappeared or decreased after the decaffeination process.

  18. Changes in volatiles and glycosides during fruit maturation of two contrasted tomato ( Solanum lycopersicum ) lines.

    Science.gov (United States)

    Birtić, Simona; Ginies, Christian; Causse, Mathilde; Renard, Catherine M G C; Page, David

    2009-01-28

    The relationship between fruit maturation and volatile contents was investigated in two contrasted Cervil (CER) and Levovil (LEV) tomato ( Solanum lycopersicum ) lines. As fruits ripened, their volatile contents mainly increased. Although some compounds displayed contrasting patterns, overall, volatiles were clearly more abundant and conferred stronger aromas to CER than to LEV fruits. This intervarietal difference in volatile contents yielding much lower volatile contents in LEV was further investigated to determine whether it is due to a higher capacity of volatile glycosylation within LEV as compared to CER. Again, glycosides mainly increased during fruit maturation and were more abundant within CER than within LEV. Overall glycoside findings were indicative of a superior capacity to biosynthesize rather than an inferior capacity to glycosylate volatiles of CER. Eugenol and 2-methoxyphenol volatiles were exceptional compounds as they remained at higher levels in maturing LEV than in CER. 2-Methylthioacetaldehyde was for the first time identified as putatively related to differences of aroma between lines, as it was abundant in Cervil but absent in Levovil. Considering the described odor value of these three products, they should contribute differently to the particular olfactive features of LEV and CER fruits.

  19. Effects of Six Commercial Saccharomyces cerevisiae Strains on Phenolic Attributes, Antioxidant Activity, and Aroma of Kiwifruit (Actinidia deliciosa cv.) Wine

    Science.gov (United States)

    Li, Xingchen; Cao, Lin; Li, Shaohua; Wang, Ranran; Jiang, Zijing; Che, Zhenming; Lin, Hongbin

    2017-01-01

    “Hayward” kiwifruit (Actinidia deliciosa cv.), widely planted all around the world, were fermented with six different commercial Saccharomyces cerevisiae strains (BM4×4, RA17, RC212, WLP77, JH-2, and CR476) to reveal their influence on the phenolic profiles, antioxidant activity, and aromatic components. Significant differences in the levels of caffeic acid, protocatechuate, and soluble solid content were found among wines with the six fermented strains. Wines fermented with RC212 strain exhibited the highest total phenolic acids as well as DPPH radical scavenging ability and also had the strongest ability to produce volatile esters. Wines made with S. cerevisiae BM 4×4 had the highest content of volatile acids, while the highest alcohol content was presented in CR476 wines. Scoring spots of wines with these strains were separated in different quadrants on the components of phenolics and aromas by principal component analyses. Kiwifruit wines made with S. cerevisiae RC212 were characterized by a rich fruity flavor, while CR476 strain and WLP77 strain produced floral flavors and green aromas, respectively. Altogether, the results indicated that the use of S. cerevisiae RC212 was the most suitable for the fermentation of kiwifruit wine with desirable characteristics. PMID:28251154

  20. Inhibition of the compound action potentials of frog sciatic nerves by aroma oil compounds having various chemical structures.

    Science.gov (United States)

    Ohtsubo, Sena; Fujita, Tsugumi; Matsushita, Akitomo; Kumamoto, Eiichi

    2015-03-01

    Plant-derived chemicals including aroma oil compounds have an ability to inhibit nerve conduction and modulate transient receptor potential (TRP) channels. Although applying aroma oils to the skin produces a local anesthetic effect, this has not been yet examined throughly. The aim of the present study was to know how nerve conduction inhibitions by aroma oil compounds are related to their chemical structures and whether these activities are mediated by TRP activation. Compound action potentials (CAPs) were recorded from the frog sciatic nerve by using the air-gap method. Citral (aldehyde), which activates various types of TRP channels, attenuated the peak amplitude of CAP with the half-maximal inhibitory concentration (IC50) value of 0.46 mmol/L. Another aldehyde (citronellal), alcohol (citronellol, geraniol, (±)-linalool, (-)-linalool, (+)-borneol, (-)-borneol, α-terpineol), ester (geranyl acetate, linalyl acetate, bornyl acetate), and oxide (rose oxide) compounds also reduced CAP peak amplitudes (IC50: 0.50, 0.35, 0.53, 1.7, 2.0, 1.5, 2.3, 2.7, 0.51, 0.71, 0.44, and 2.6 mmol/L, respectively). On the other hand, the amplitudes were reduced by a small extent by hydrocarbons (myrcene and p-cymene) and ketone (camphor) at high concentrations (2-5 mmol/L). The activities of citral and other TRP agonists ((+)-borneol and camphor) were resistant to TRP antagonist ruthenium red. An efficacy sequence for the CAP inhibitions was generally aldehydes ≥ esters ≥ alcohols > oxides > hydrocarbons. The CAP inhibition by the aroma oil compound was not related to its octanol-water partition coefficient. It is suggested that aroma oil compounds inhibit nerve conduction in a manner specific to their chemical structures without TRP activation.

  1. The economic value of realized volatility

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunou, Bruno; Jacobs, Kris

    2014-01-01

    Many studies have documented that daily realized volatility estimates based on intraday returns provide volatility forecasts that are superior to forecasts constructed from daily returns only. We investigate whether these forecasting improvements translate into economic value added. To do so, we...... develop a new class of affine discrete-time option valuation models that use daily returns as well as realized volatility. We derive convenient closed-form option valuation formulas, and we assess the option valuation properties using Standard & Poor’s (S&P) 500 return and option data. We find...... that realized volatility reduces the pricing errors of the benchmark model significantly across moneyness, maturity, and volatility levels....

  2. Impacto de las condiciones de beneficio sobre los compuestos precursores de aroma en granos de cacao (Theobroma cacao L del clon CCN-51.

    Directory of Open Access Journals (Sweden)

    Andrea Pallares Pallares

    2016-01-01

    Full Text Available Abstract The influence of the days of fermentation and drying in the aroma compounds (volatile fraction of cocoa beans CCN-51 was evaluated. The method used was Gas ChromatographyMass Spectrometry, coupled to Head Space Solid Phase Micro Extraction (HS-SPMEGC-GS. A multifactorial experimental design was created, containing 15 experiments per repetition. The fermentation technique was microfermentation in boxes, while drying was achieved by exposing the samples to the sun. A Principal Component Analysis (PCA allowed to explain 68% of the total variability associated with aroma characteristics (volatile compounds. Both, desirable and undesirable compounds were identified throughout the processes of fermentation and drying. The benefit process (fermentation and drying was divided in stages depending on the degree of fermentation. The desirable compounds identified were: 3-methy-1-butanol, 2-phenyl-ethanol, benzaldehyde, phenyl acetaldehyde, ethylhexanoate, ethyl benzoate, ethylphenyl acetate and 2-phenyl ethyl acetate, which are associated with odoriferous notes very nice (chocolate, candy, sweet, nutty, honey, fruity, floral. Finally, a pre-treatment of cocoa beans CCN-51 prior to fermentation was proposed to be incorporated during the benefit of the beans as it seems to enhance the formation of desirable aroma compounds.

  3. Extractive fermentation of aroma with supercritical CO2

    Science.gov (United States)

    Fabre; Condoret; Marty

    1999-08-20

    This work deals with the feasibility of achieving an extractive fermentation of 2-phenylethyl alcohol, the rose aroma, coupling fermentation with Kluyveromyces marxianus and supercritical carbon dioxide (SCCO2) extraction. The extractive process is, in this case, of special interest due to the strong yeast inhibition by 2-phenylethyl alcohol. First results confirmed that direct SCCO2 extraction is not possible, due to a drastic CO2 effect on cell viability. It is therefore necessary to perform cell separation prior to the extraction. Aroma extraction conditions from a synthetic mixture were then optimized, a pressure of 200 bar and a temperature in the range 35-45 degrees C being chosen. Under these conditions, the distribution coefficient Kd is 2 times higher than during the extraction using a conventional organic solvent, n-hexane. Using a simple model of aroma partition between aqueous and SCCO2 phases, the parameters of a continuous extraction from a synthetic broth were defined. The two substrates, glucose and phenylalanine, are not extracted whatever the conditions. As predicted by the model, more than 90% of 2-phenylethyl alcohol can be extracted, while the extraction of ethanol, the second main product, can be easily tuned with respect to operating conditions, as a function of its influence on the fermentation. Finally, the feasibility of the aroma recovery using two depressurization steps at the outflow of the extraction vessel was demonstrated; 97% of the extracted aroma was recovered, and a mass purity of 91% was achieved. Copyright 1999 John Wiley & Sons, Inc.

  4. Production of aroma compounds from whey using Wickerhamomyces pijperi.

    Science.gov (United States)

    Izawa, Naoki; Kudo, Miyuki; Nakamura, Yukako; Mizukoshi, Harumi; Kitada, Takahiro; Sone, Toshiro

    2015-01-01

    The production of aroma compounds by the microbial fermentation of whey was studied. Seven strains of the yeast Wickerhamomyces pijperi were used for the fermentation of glucose-added whey (whey-g). Twelve aroma compounds (isobutanol, isoamyl alcohol, 2-phenylethanol, acetaldehyde, ethyl acetate, propyl acetate, isobutyl acetate, isoamyl acetate, ethyl butyrate, ethyl propionate, ethyl hexanoate and ethyl benzoate) were identified in the fermented broth using headspace gas chromatography mass spectrometry analysis. The major components were ethyl acetate (several tens to hundreds ppm), acetaldehyde (several tens ppm) and isoamyl alcohol (about 10 ppm). The strong fruity odor of ethyl benzoate (about 1 ppm) was detected in the broth of W. pijperi YIT 8095 and YIT 12779. The balance of aroma compounds produced was varied depending on the media used, and ethyl benzoate was only produced when using whey-g. The variation in the production of the aroma compounds over time using W. pijperi YIT 12779 at various culture temperatures (from 15-30°C) was also studied. From the results we propose that W. pijperi could be used as a novel microorganism for production of aroma compounds from whey.

  5. Development of Volatile Oil of Mustard and Vanillin as an Effective Food Preservation System for Military Bread and Baked Goods

    Science.gov (United States)

    2006-10-01

    for this reason vanillin can be incorporated into the product of interest. Also it has a pleasant aroma , similar to vanilla. On the other hand...Rios, R. (2000) Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging

  6. Determination of Volatiles by Odor Activity Value and Phenolics of cv. Ayvalik Early-Harvest Olive Oil

    OpenAIRE

    Gamze Guclu; Onur Sevindik; Hasim Kelebek; Serkan Selli

    2016-01-01

    Ayvalik is an important olive cultivar producing high quality oils in Turkey. In the present study, volatile and phenolic compositions of early-harvest extra virgin olive oil (cv. Ayvalik) were determined. The solvent-assisted flavor evaporation (SAFE) technique was used for the extraction of volatile components. The aromatic extract obtained by SAFE was representative of the olive oil odor. A total of 32 aroma compounds, including alcohols, aldehydes, terpenes, esters, and an acid, were iden...

  7. CAM Stochastic Volatility Model for Option Pricing

    Directory of Open Access Journals (Sweden)

    Wanwan Huang

    2016-01-01

    Full Text Available The coupled additive and multiplicative (CAM noises model is a stochastic volatility model for derivative pricing. Unlike the other stochastic volatility models in the literature, the CAM model uses two Brownian motions, one multiplicative and one additive, to model the volatility process. We provide empirical evidence that suggests a nontrivial relationship between the kurtosis and skewness of asset prices and that the CAM model is able to capture this relationship, whereas the traditional stochastic volatility models cannot. We introduce a control variate method and Monte Carlo estimators for some of the sensitivities (Greeks of the model. We also derive an approximation for the characteristic function of the model.

  8. Multiple automated headspace in-tube extraction for the accurate analysis of relevant wine aroma compounds and for the estimation of their relative liquid-gas transfer rates.

    Science.gov (United States)

    Zapata, Julián; Lopez, Ricardo; Herrero, Paula; Ferreira, Vicente

    2012-11-30

    An automated headspace in-tube extraction (ITEX) method combined with multiple headspace extraction (MHE) has been developed to provide simultaneously information about the accurate wine content in 20 relevant aroma compounds and about their relative transfer rates to the headspace and hence about the relative strength of their interactions with the matrix. In the method, 5 μL (for alcohols, acetates and carbonyl alcohols) or 200 μL (for ethyl esters) of wine sample were introduced in a 2 mL vial, heated at 35°C and extracted with 32 (for alcohols, acetates and carbonyl alcohols) or 16 (for ethyl esters) 0.5 mL pumping strokes in four consecutive extraction and analysis cycles. The application of the classical theory of Multiple Extractions makes it possible to obtain a highly reliable estimate of the total amount of volatile compound present in the sample and a second parameter, β, which is simply the proportion of volatile not transferred to the trap in one extraction cycle, but that seems to be a reliable indicator of the actual volatility of the compound in that particular wine. A study with 20 wines of different types and 1 synthetic sample has revealed the existence of significant differences in the relative volatility of 15 out of 20 odorants. Differences are particularly intense for acetaldehyde and other carbonyls, but are also notable for alcohols and long chain fatty acid ethyl esters. It is expected that these differences, linked likely to sulphur dioxide and some unknown specific compositional aspects of the wine matrix, can be responsible for relevant sensory changes, and may even be the cause explaining why the same aroma composition can produce different aroma perceptions in two different wines. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Identification of the possible new odor-active compounds "12-methyltridecanal and its analogs" responsible for the characteristic aroma of ripe Gouda-type cheese.

    Science.gov (United States)

    Inagaki, Satsuki; Fujikawa, Seiji; Wada, Yoshiyuki; Kumazawa, Kenji

    2015-01-01

    The aroma concentrates of the three maturation stages of Gouda-type cheeses were prepared by combining the solvent extraction and the solvent assisted flavor evaporation techniques. The aroma extract dilution analysis applied to the volatile fraction revealed 31 odorants that were identified or tentatively identified from the 38 odor-active peaks with FD factors between 4(3) and 4(8). By comparison with the FD factors in the three maturation stages of the cheeses, 16 odorants, including 12-methyltridecanal, which is a newly identified odorant from the cheese, increased with the increasing maturation stage of the cheese. In addition, many iso- and anteiso-methyl-branched long-chain aliphatic aldehydes could be identified as the analogs of 12-methyltridecanal, which have a unique odor note. It may be then expected that these aldehydes were able to influence the flavor of the highly ripened Gouda cheese, since these compounds also increased with the increasing maturation stage.

  10. Coffee aroma: Chemometric comparison of the chemical information provided by three different samplings combined with GC-MS to describe the sensory properties in cup.

    Science.gov (United States)

    Bressanello, Davide; Liberto, Erica; Cordero, Chiara; Rubiolo, Patrizia; Pellegrino, Gloria; Ruosi, Manuela R; Bicchi, Carlo

    2017-01-01

    This study is part of a wider project aiming to correlate the chemical composition of the coffee volatile fraction to its sensory properties with the end-goal of developing an instrumental analysis approach complementary to human sensory profiling. The proposed investigation strategy compares the chemical information concerning coffee aroma and flavor obtained with HS-SPME of the ground coffee and in-solution SBSE/SPME sampling combined with GC-MS to evaluate their compatibility with the cupping evaluation for quality control purposes. Roasted coffee samples with specific sensory properties were analyzed. The chemical results obtained by the three samplings were compared through multivariate analysis, and related to the samples' sensory attributes. Despite the differences between the three sampling approaches, data processing showed that the three methods provide the same kind of chemical information useful for sample discrimination, and that they could be used interchangeably to sample the coffee aroma and flavor.

  11. Gas chromatography/olfactometry and electronic nose analyses of retronasal aroma of espresso and correlation with sensory evaluation by an artificial neural network.

    Science.gov (United States)

    Michishita, Tomomi; Akiyama, Masayuki; Hirano, Yuta; Ikeda, Michio; Sagara, Yasuyuki; Araki, Tetsuya

    2010-01-01

    To develop a method for evaluating and designing the retronasal aroma of espresso, sensory evaluation data was correlated with data obtained from gas chromatography/olfactometry (GC/O, CharmAnalysis™) and from an electronic nose system αFOX4000 (E-nose). The volatile compounds of various kinds of espresso (arabica coffee beans from 6 production countries: Brazil, Ethiopia, Guatemala, Colombia, Indonesia, and Tanzania; 3 roasting degrees for each country: L values, 18, 23, and 26) were collected with a retronasal aroma simulator (RAS) and examined by GC/O and E-nose. In addition, sensory descriptive analysis using a 7-point scale for RAS effluent gas was performed by 5 trained flavorists using sensory descriptors selected based on the frequency in use and coefficient of correlation. The charm values of 10 odor descriptions obtained from GC/O analysis exhibited the significant (P sensor resistances and factor analysis on the sensory evaluation scores showed that the differences of aroma characteristics among the roasting degrees were larger than those among the origins. Based on an artificial neural network (ANN) model applied to the data from GC/O analyses and sensory evaluations, the perceptual factor of the RAS aroma was predicted to be mainly affected by sweet-caramel, smoke-roast, and acidic odors. Also, 3 metal oxide semiconductor sensors (LY2/Gh, P30/1, and T40/1) of E-nose were selected for analyses of RAS aroma and correlated with the sensory descriptive scores by the ANN to support sensory evaluation.

  12. The Effects of Aroma Acupuncture applied on Chronic Headache Patients

    Institute of Scientific and Technical Information of China (English)

    In Tae JUNG; Su Yong KIM; Doo Ik LEE; Keon Sik KIM; Jae Dong LEE; Yun Ho LEE; Do Young CHOI

    2005-01-01

    @@ Background: Because the cause and etiology of chronic headache is not yet fully explained, the treatment of this symptom is not simple. This study compares the effects of aroma acupuncture and normal acupuncture applied on chronic headache patients, in order to establish a primary data for further studies of new treatments and developments of new practical acupuncture. Methods: 38 clinical experiment participants were gathered and through a questionnaire patients who experienced headache for more than 4 hours a day and more than 15 days per month were qualified as chronic headache patients. The qualified patients were classified into two groups, aroma acupuncture group (Aroma AT group, n=23) and normal acupuncture group (AT group, n=15).

  13. AROMA: Automatic Generation of Radio Maps for Localization Systems

    CERN Document Server

    Eleryan, Ahmed; Youssef, Moustafa

    2010-01-01

    WLAN localization has become an active research field recently. Due to the wide WLAN deployment, WLAN localization provides ubiquitous coverage and adds to the value of the wireless network by providing the location of its users without using any additional hardware. However, WLAN localization systems usually require constructing a radio map, which is a major barrier of WLAN localization systems' deployment. The radio map stores information about the signal strength from different signal strength streams at selected locations in the site of interest. Typical construction of a radio map involves measurements and calibrations making it a tedious and time-consuming operation. In this paper, we present the AROMA system that automatically constructs accurate active and passive radio maps for both device-based and device-free WLAN localization systems. AROMA has three main goals: high accuracy, low computational requirements, and minimum user overhead. To achieve high accuracy, AROMA uses 3D ray tracing enhanced wi...

  14. Determination of Favorite Wine from Comparison of Wine Aroma Attributes

    Science.gov (United States)

    Koike, Takayuki; Kamimura, Hironobu; Shimada, Kouji; Yamada, Hiroshi; Kaneki, Noriaki

    The decision to choose the appropriate product matching the preference of each individual is based on the psychological impression of the adjective and the alternatives. The preference for a product group and physical condition also affect decision-making. The purpose of this study was to investigate the influence of differences in the preference of wine and changes in hunger level on the psychological and neuro-physiological aspects of decision-making where the subjects were asked to choose their most favorite wine after sniffing the aroma of several wines. The psychological aspects of decision-making while sniffing five different kinds of wine were evaluated by the analytical hierarchal process (AHP) method, while the neuro-physiological aspects were evaluated by measuring the level of oxygenated hemoglobin concentrations (O2Hb) in the process of smelling the wine aromas within three minutes compared to when the non-odor and alcoholic solutions were presented. AHP analysis showed that the adjective “Favorite” was given the highest importance and a white wine with a sweet aroma was the most favored wine, regardless of the wine preference. The normalized mean O2Hb levels in each minute showed that, in the case of the wine lovers, the time course of the O2Hb level, decreased when they sensed the wine aroma compared to when they sensed non-odor solutions, and, in non-wine lovers, the O2Hb levels remained at higher values compared to the smell of the non-odor solution when they sensed the aroma of the alcoholic solution. The results indicate that there are differences with regard to decision-making between the psychological and physiological aspects when people are made to choose their most favorite wine by sniffing wine aromas.

  15. A protocol of measurement of In Vivo Aroma release from beverages.

    NARCIS (Netherlands)

    Weel, K.G.C.; Boelrijk, A.E.M.; Burger, J.J.; Gruppen, H.; Voragen, A.G.J.; Smit, G.

    2003-01-01

    The quality of in vivo aroma release measurements of beverages can be improved when a strict protocol is used to control variation in aroma release due to human factors. A trained panel was able to significantly discriminate between aqueous aroma solutions with a concentration difference as low as 1

  16. Analysis of Pyrazine and Volatile Compounds in Cocoa Beans Using Solid Phase Microextraction

    Directory of Open Access Journals (Sweden)

    Misnawi Jati

    2011-05-01

    Full Text Available Analisis pirazin dan senyawa volatil pada biji kakao dilakukan dengan perangkat mikroekstraksi fase padat (solid phase micro extraction, SPME, untuk mengembangkan metode ekstraksi tanpa pelarut yang efisien. Perangkat SPME dilengkapi fiber stableflex dengan polimer DVB/Carboxen/PDMS yang menjerap senyawa volatil di area headspace. Biji kakao terfermentasi disangrai dan diambil lemaknya untuk ditempatkan dalam botol bertutup septa. Sampel dipanaskan pada suhu 70OC dan serat SPME ditusukkan menembus septa untuk mengekstrak senyawa volatil dari lemak kakao selama 30 menit. Senyawa volatil lemak kakao akan dijerap oleh serat SPME dan dilepaskan kembali untuk analisis kromatografi gas. Penelitian menunjukkan pirazin dan senyawa volatil yang diekstrak oleh serat SPME dapat terdeteksi dengan baik oleh kromatografi gas. Area puncak yang dihasilkan SPME meliputi 2,83–5,35% dari area puncak yang dihasilkan syringe, kendati demikian kemampuan ekstraksi SPME dapat disetarakan dengan syringe. Lima jenis pirazin yang sering terdapat di biji kakao telah diidentifikasi, meliputi metil pirazin (2MP; 2,3 dan 2,5-dimetilpirazin (DMP; dan 2,3,5 trimetilpirazin (TrMP dan tetrametil pirazin (TMP. Senyawa lainnya juga terdeteksi meliputi alkohol, asam karboksilat, aldehida, keton, ester, pirazin, amin dan senyawa volatil lainnya, dan diketahui erat kaitannya dengan aroma khas cokelat. Keberhasilan SPME dalam ekstraksi pirazin dan senyawa volatilsemi volatil yang berperan penting dalam pembentukan aroma cokelat menandakan SPME dapat digunakan lebih lanjut untuk analisis citarasa.

  17. Comparison of volatile constituents extracted from model grape juice and model wine by stir bar sorptive extraction-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Caven-Quantrill, Darren J; Buglass, Alan J

    2011-02-18

    A stir bar sorptive extraction (SBSE) method coupled with gas chromatography-mass spectrometry was optimised for the analysis of volatile components of a model wine, based on a previously optimised method used for analysis of the same components in model grape juice. The presence of ethanol in the model wine sample matrix resulted in decreased sensitivity of the method toward most of the volatile constituents. Mean percent relative recoveries and reproducibilities (%CV) were 22.8% and 7.1%, respectively, compared with 28.4% and 8.5% for model grape juice. The mean limit of detection (LoD) ratio (juice:wine) was 0.25. Similar sensitivities for the two sample matrices using this method were achieved by changing the split ratio from 20:1 (grape juice) to 5:1 (wine), giving a mean limit of detection ratio (juice:wine) of 1.0, thus allowing direct comparison of chromatograms of volatile components in the two matrices. This enabled direct comparisons of grape juices and the wines derived from them by alcoholic yeast fermentation. The influence of ethanol concentration in the range 9-15% on method sensitivity is discussed, using an overlay of the total ion chromatograms. The use of a gas saver device for the 5:1 split ratio analysis of desorbed model wine aroma compounds is discussed in terms of preventing extraneous reaction of sorbent and stationary phases with air during analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Chilling Stress Upregulates α-Linolenic Acid-Oxidation Pathway and Induces Volatiles of C6 and C9 Aldehydes in Mango Fruit.

    Science.gov (United States)

    Sivankalyani, Velu; Maoz, Itay; Feygenberg, Oleg; Maurer, Dalia; Alkan, Noam

    2017-01-25

    Mango-fruit storage period and shelf life are prolonged by cold storage. However, chilling temperature induces physiological and molecular changes, compromising fruit quality. In our previous transcriptomic study of mango fruit, cold storage at suboptimal temperature (5 °C) activated the α-linolenic acid metabolic pathway. To evaluate changes in fruit quality during chilling, we analyzed mango "Keitt" fruit peel volatiles. GC-MS analysis revealed significant modulations in fruit volatiles during storage at suboptimal temperature. Fewer changes were seen in response to the time of storage. The mango volatiles related to aroma, such as δ-3-carene, (Z)-β-ocimene, and terpinolene, were downregulated during the storage at suboptimal temperature. In contrast, C6 and C9 aldehydes and alcohols-α-linolenic acid derivatives 1-hexanal, (Z)-3-hexenal, (Z)-3-hexenol, (E)-2-hexenal, and nonanal-were elevated during suboptimal-temperature storage, before chilling-injury symptoms appeared. Detection of those molecules before chilling symptoms could lead to a new agro-technology to avoid chilling injuries and maintain fruit quality during cold storage at the lowest possible temperature.

  19. Sensory interactions between six common aroma vectors explain four main red wine aroma nuances.

    Science.gov (United States)

    Ferreira, Vicente; Sáenz-Navajas, María-Pilar; Campo, Eva; Herrero, Paula; de la Fuente, Arancha; Fernández-Zurbano, Purificación

    2016-05-15

    This work aims at assessing the aromatic sensory dimensions linked to 6 common wine aroma vectors (N, norisoprenoids; A, branched acids; F, enolones; E, branched ethyl esters; L, fusel alcohols, M, wood compounds) varying in their natural range of occurrence. Wine models were built by adding the vectors at two levels (fractional factorial design 2(VI)) to a de-aromatised aged red wine. Twenty other different models were evaluated by descriptive analysis. Red, black and dried fruits and woody notes were satisfactorily reproduced. Individual vectors explained just 15% of the sensory space, mostly dependent on perceptual interactions. N influences dried and black fruits and suppresses red fruits. A suppresses black fruits and enhances red and dried fruits. F exerts a major role on red fruits. E suppresses dried fruits and modulates black fruits. L is revealed as a strong suppressor of red fruits and particularly of woody notes.

  20. Recovery of aroma compounds from orange essential oil

    Directory of Open Access Journals (Sweden)

    Haypek E.

    2000-01-01

    Full Text Available The objective of this work was to study the recovery of aroma compounds present in the orange essential oil using experimental data from CUTRALE (a Brazilian Industry of Concentrated Orange Juice. The intention was to reproduce the industrial unit and afterwards to optimize the recovery of aroma compounds from orange essential oil by liquid-liquid extraction. The orange oil deterpenation was simulated using the commercial software PRO/II 4.0 version 1.0. The UNIFAC model was chosen for the calculation of the activity coefficients.

  1. Kahvenin Aroma Bileşikleri ve Kahve Aromasını Etkileyen Faktörler

    OpenAIRE

    Çağlarırmak, Necla; Ünal, Kemal

    1993-01-01

    Bu derlemede, uçucu bileşikler yönünden çok zengin kompozisyona sahip olan kahvenin aroma bileşikleri incelenmiştir. Kahvenin aroma bileşiklerini; kahvenin türü, orijini, kavurma işlemi ve kavurma işlemi ile ilgili parametreler (kavurma sıcaklığı, kavurma süresi, kavurmanın yapıldığı ekipmanın türü, kahvenin çözünürlüğü, depolanması) gibi faktörlerin etkilediği belirtilmektedir. Kahvenin son aromasını daha ziyade kavurma işleminin etkilediği, ısıl işleme bağlı olarak yeni bazı bileşenlerin o...

  2. Solvent desorption dynamic headspace sampling of fermented dairy product volatiles.

    Science.gov (United States)

    Rankin, S A

    2001-01-01

    A method was developed based on solvent desorption dynamic headspace analysis for the identification and relative quantification of volatiles significant to the study of fermented dairy product aroma. Descriptions of applications of this method are presented including the measurement of diacetyl and acetoin in fermented milk, the evaluation of volatile-hydrocolloid interactions in dairy-based matrices, and the identification of volatiles in cheeses for canonical discriminative analysis. Advantages of this method include rapid analysis, minimal equipment investment, and the ability to analyze samples with traditional GC split/splitless inlet systems. Limitations of this method are that the sample must be in the liquid state and the inherent analytical limitation to those compounds that do not coelute with the solvent or solvent impurity peaks.

  3. Stochastic volatility and stochastic leverage

    DEFF Research Database (Denmark)

    Veraart, Almut; Veraart, Luitgard A. M.

    This paper proposes the new concept of stochastic leverage in stochastic volatility models. Stochastic leverage refers to a stochastic process which replaces the classical constant correlation parameter between the asset return and the stochastic volatility process. We provide a systematic...... treatment of stochastic leverage and propose to model the stochastic leverage effect explicitly, e.g. by means of a linear transformation of a Jacobi process. Such models are both analytically tractable and allow for a direct economic interpretation. In particular, we propose two new stochastic volatility...... models which allow for a stochastic leverage effect: the generalised Heston model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by option prices derived from our new...

  4. Physical Properties, Volatiles Compositions and Sensory Descriptions of the Aromatized Hazelnut Oil-Wax Organogels.

    Science.gov (United States)

    Yılmaz, Emin; Öğütcü, Mustafa; Yüceer, Yonca Karagül

    2015-09-01

    The purpose of this study was to determine the physicochemical, thermal and sensorial features of vitamin enriched and aromatized hazelnut oil-beeswax and sunflower wax organogels. Another objective was to monitor the influence of storage on textural and oxidative stability and volatile composition of the organogels. The results show that organogels with beeswax had lower levels of solid fat content, melting point and firmness than sunflower wax counterparts. The microphotographs revealed that beeswax organogels had spherical crystals while sunflower wax organogels continued need-like crystals, but both organogels continued crystallized β' polymorph. All organogels maintained their oxidative stability during storage. Quantitative descriptive analysis results were consistent with these findings that the organogel structure and properties were similar to breakfast margarine. The main volatile components of the organogels with added strawberry aroma were ethyl acetate, ethyl butanoate, ethyl-2-methyl butanoate, D-limonene, ethyl caproate; banana-aroma were isoamyl acetate, isoamyl valerianate, ethyl acetate; and butter-aroma were 2,3-butanedione, 3-hydroxy-2-butanone. These volatile components were not only detected in the fresh samples but also at the end of the storage period. Sensory definition terms were matched with the sensory descriptors of the detected volatiles. In conclusion, the new organogels were shown to be suitable for food product applications.

  5. Pricing Volatility Referenced Assets

    Directory of Open Access Journals (Sweden)

    Alan De Genaro Dario

    2006-12-01

    Full Text Available Volatility swaps are contingent claims on future realized volatility. Variance swaps are similar instruments on future realized variance, the square of future realized volatility. Unlike a plain vanilla option, whose volatility exposure is contaminated by its asset price dependence, volatility and variance swaps provide a pure exposure to volatility alone. This article discusses the risk-neutral valuation of volatility and variance swaps based on the framework outlined in the Heston (1993 stochastic volatility model. Additionally, the Heston (1993 model is calibrated for foreign currency options traded at BMF and its parameters are used to price swaps on volatility and variance of the BRL / USD exchange rate.

  6. Aroma quality assessment of Korean fermented red pepper paste (gochujang) by aroma extract dilution analysis and headspace solid-phase microextraction-gas chromatography-olfactometry.

    Science.gov (United States)

    Kang, Kyung-Mo; Baek, Hyung-Hee

    2014-02-15

    The objective of this study was to assess aroma quality of gochujang using purge and trap, simultaneous steam distillation and solvent extraction (SDE), and headspace solid-phase microextraction (HS-SPME), followed by gas chromatography-olfactometry (GC-O). Nineteen and 28 aroma-active compounds were detected by aroma extract dilution analysis of purge and trap and SDE, respectively. Diallyl disulfide and 3-isobutyl-2-methoxypyrazine played a significant role in the aroma quality of gochujang. Twelve aroma-active compounds were detected by HS-SPME-GC-O based on sample dilution analysis. Methional, diallyl disulfide, and 3-isobutyl-2-methoxypyrazine were the most intense aroma-active compounds. 3-Isobutyl-2-methoxypyrazine was identified for the first time in gochujang.

  7. Volatile and non-volatile/semi-volatile compounds and in vitro bioactive properties of Chilean Ulmo (Eucryphia cordifolia Cav.) honey.

    Science.gov (United States)

    Acevedo, Francisca; Torres, Paulina; Oomah, B Dave; de Alencar, Severino Matias; Massarioli, Adna Prado; Martín-Venegas, Raquel; Albarral-Ávila, Vicenta; Burgos-Díaz, César; Ferrer, Ruth; Rubilar, Mónica

    2017-04-01

    Ulmo honey originating from Eucryphia cordifolia tree, known locally in the Araucania region as the Ulmo tree is a natural product with valuable nutritional and medicinal qualities. It has been used in the Mapuche culture to treat infections. This study aimed to identify the volatile and non-volatile/semi-volatile compounds of Ulmo honey and elucidate its in vitro biological properties by evaluating its antioxidant, antibacterial, antiproliferative and hemolytic properties and cytotoxicity in Caco-2 cells. Headspace volatiles of Ulmo honey were isolated by solid-phase microextraction (SPME); non-volatiles/semi-volatiles were obtained by removing all saccharides with acidified water and the compounds were identified by GC/MS analysis. Ulmo honey volatiles consisted of 50 compounds predominated by 20 flavor components. Two of the volatile compounds, lyrame and anethol have never been reported before as honey compounds. The non-volatile/semi-volatile components of Ulmo honey comprised 27 compounds including 13 benzene derivatives accounting 75% of the total peak area. Ulmo honey exhibited weak antioxidant activity but strong antibacterial activity particularly against gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA), the main strain involved in wounds and skin infections. At concentrations >0.5%, Ulmo honey reduced Caco-2 cell viability, released lactate dehydrogenase (LDH) and increased reactive oxygen species (ROS) production in a dose dependent manner in the presence of foetal bovine serum (FBS). The wide array of volatile and non-volatile/semi-volatile constituents of Ulmo honey rich in benzene derivatives may partly account for its strong antibacterial and antiproliferative properties important for its therapeutic use. Our results indicate that Ulmo honey can potentially inhibit cancer growth at least partly by modulating oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Volatile profile and physical, chemical, and biochemical changes in fresh cut watermelon during storage

    Directory of Open Access Journals (Sweden)

    Andréa Luiza Ramos Pereira Xisto

    2012-03-01

    Full Text Available Existing data about the aroma of fresh-cut watermelon and the metabolic changes that occur with minimal processing are scarce. Given the close relationship that exists between aroma, texture, and quality characteristics, it is necessary to investigate the changes in the volatile profile and texture of watermelon, a fruit extensively sold in supermarket chains throughout Brazil. The objective of this work was to analyze the volatile profile using solid phase microextraction (SPME as well as texture changes in fresh-cut watermelon stored at 5 °C for ten days. Chromatography associated with sensory analysis (sniffing led us to conclude that 9-carbon (C9 alcohols and aldehydes are the major responsible for the flavor and aroma of minimally processed watermelon stored at 5 ± 1 °C/90 ± 5% RH for ten days, and also that the aroma diminishes in intensity with storage, but it does not affect the final quality of the product. It was noted that the amount of drained liquid, soluble pectin, and weight loss increased during storage concurrently with a reduction in firmness and a structural breakdown of the cells. Pectin methyl esterase activity remained constant and polygalacturonase activity was not detected.

  9. Al-Azahar aromas de leyendas como objeto de estudio

    OpenAIRE

    2014-01-01

    La base de toda la tesis es el estudio de la combinaci??n de aroma y m??sica como experiencia sin??rgica en la immersi??n perceptiva para impulsar el desarrollo en el campo cient??fico-cultural-compositivo, creando as??, un di??logo entre ciencia, tecnol??gia, innovaci??n, sociedad, cultura y m??sica.

  10. Psychophysical evaluation of interactive effects between sweeteners and aroma compounds

    NARCIS (Netherlands)

    Nahon, D.F.

    1999-01-01

    The presence of intense sweeteners in a light soft drink influences the preferences for, and the flavour profiles of these drinks to various extents, depending on the aroma and sweeteners present. In this study equisweet mixtures of sweeteners were composed at 10% Sucrose Equivalent Value. The sucro

  11. Psychophysical evaluation of interactive effects between sweeteners and aroma compounds

    NARCIS (Netherlands)

    Nahon, D.F.

    1999-01-01

    The presence of intense sweeteners in a light soft drink influences the preferences for, and the flavour profiles of these drinks to various extents, depending on the aroma and sweeteners present. In this study equisweet mixtures of sweeteners were composed at 10% Sucrose Equivalent Value.

  12. Comparison of Essential Oils Obtained from Different Extraction Techniques as an Aid in Identifying Aroma Significant Compounds of Nutmeg (Myristica fragrans).

    Science.gov (United States)

    Chatterjee, Suchandra; Gupta, Sumit; Variyar, S Prasad

    2015-08-01

    Distribution of volatile constituents in the essential oil of nutmeg obtained by simultaneous distillation extraction (SDE), high vacuum distillation (HVD) and super critical fluid extraction (SFE) was compared with reduced pressure distillation (RPD) and head space (HS) analysis. HS and RPD volatiles were characterized by a high content of sabinene, followed by α-pinene and β-pinene. Interestingly, unlike the SDE, HVD and SFE oils, distillates from HS and RPD were marked by the absence of phenolic ethers namely myristicin, elemicin and safrole. The HS and RPD volatiles possessed a pleasant nutmeg aroma indicating a significant role of terpenic constituents in contributing to the top aroma note. GC-olfactometry (GC-O) of the oils aided in establishing the role of sabinene, α-pinene and β-pinene in contributing to the distinctive note of the spice. A high odor activity value (OAV) of sabinene and α-pinene established the role of these two constituents in imparting the characteristic nutmeg odor.

  13. Contributing to interpret sensory attributes qualifying Iberian hams from the volatile profile

    Directory of Open Access Journals (Sweden)

    García-González, Diego L.

    2009-07-01

    Full Text Available The study involved the sensory assessment of 8 Iberian hams from the main producer zones and the analysis of their volatile composition by SPME-GC. The latter analysis was carried out independently on 4 well defined locations of the ham (subcutaneous fat, and biceps femoris, semitendinosus, and semimembranosus muscles in order to know their possible partial contribution to the whole ham aroma. The relation between volatile compounds and sensory attributes was established by the procedure of statistical sensory wheel (SSW, generating 4 different plots, each one of them referring to one of the ham locations. The volatile compounds explain similar information of the sensory attributes independently of the part of the ham from which they are produced although the volatiles quantified in semitendinosus muscle and subcutaneous fat seem to contribute slightly more than the other parts to the sensory profile determined by the panellists.Volatiles compounds with significance in the ham aroma were 3-methylbutanol, hexanal, octanol, nonanol, 2- heptanol, among many others, although their contribution to the aroma varies depending on the location.El estudio se ha llevado a cabo con 8 jamones ibéricos de las principales zonas productoras mediante panel sensorial y análisis de la fracción volátil con SPME-GC. Los últimos análisis fueron llevados a cabo en cuatro localizaciones independientes del jamón (grasa subcutánea, y los músculos bíceps femoris, semitendinosus y semimembranosus para conocer sus posibles contribuciones parciales al aroma completo del jamón. La relación entre compuestos volátiles y atributos sensoriales ha sido establecida mediante el procedimiento estadístico de la rueda sensorial (SSW, generando una representación gráfica por cada localización. Los compuestos volátiles explican los mismos atributos sensoriales independientemente de la parte del jamón en que se generen aunque los volátiles cuantificados en el m

  14. Volatile profile analysis and quality prediction of Longjing tea (Camellia sinensis) by HS-SPME/GC-MS

    Institute of Scientific and Technical Information of China (English)

    Jie LIN; Yi DAI; Ya-nan GUO; Hai-rong XU; Xiao-chang WANG

    2012-01-01

    This study aimed to analyze the volatile chemical profile of Longjing tea,and further develop a prediction model for aroma quality of Longjing tea based on potent odorants.A total of 21 Longjing samples were analyzed by headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS).Pearson's linear correlation analysis and partial least square (PLS) regression were applied to investigate the relationship between sensory aroma scores and the volatile compounds.Results showed that 60 volatile compounds could be commonly detected in this famous green tea.Terpenes and esters were two major groups characterized,representing 33.89% and 15.53% of the total peak area respectively.Ten compounds were determined to contribute significantly to the perceived aroma quality of Longjing tea,especially linalool (0.701),nonanal (0.738),(Z)-3-hexenyl hexanoate (-0.785),and β-ionone (-0.763).On the basis of these 10 compounds,a model (correlation coefficient of 89.4% and cross-validated correlation coefficient of 80.4%) was constructed to predict the aroma quality of Longjing tea.Summarily,this study has provided a novel option for quality prediction of green tea based on HS-SPME/GC-MS technique.

  15. Exploring the Saccharomyces cerevisiae Volatile Metabolome: Indigenous versus Commercial Strains.

    Directory of Open Access Journals (Sweden)

    Zélia Alves

    Full Text Available Winemaking is a highly industrialized process and a number of commercial Saccharomyces cerevisiae strains are used around the world, neglecting the diversity of native yeast strains that are responsible for the production of wines peculiar flavours. The aim of this study was to in-depth establish the S. cerevisiae volatile metabolome and to assess inter-strains variability. To fulfill this objective, two indigenous strains (BT2652 and BT2453 isolated from spontaneous fermentation of grapes collected in Bairrada Appellation, Portugal and two commercial strains (CSc1 and CSc2 S. cerevisiae were analysed using a methodology based on advanced multidimensional gas chromatography (HS-SPME/GC×GC-ToFMS tandem with multivariate analysis. A total of 257 volatile metabolites were identified, distributed over the chemical families of acetals, acids, alcohols, aldehydes, ketones, terpenic compounds, esters, ethers, furan-type compounds, hydrocarbons, pyrans, pyrazines and S-compounds. Some of these families are related with metabolic pathways of amino acid, carbohydrate and fatty acid metabolism as well as mono and sesquiterpenic biosynthesis. Principal Component Analysis (PCA was used with a dataset comprising all variables (257 volatile components, and a distinction was observed between commercial and indigenous strains, which suggests inter-strains variability. In a second step, a subset containing esters and terpenic compounds (C10 and C15, metabolites of particular relevance to wine aroma, was also analysed using PCA. The terpenic and ester profiles express the strains variability and their potential contribution to the wine aromas, specially the BT2453, which produced the higher terpenic content. This research contributes to understand the metabolic diversity of indigenous wine microflora versus commercial strains and achieved knowledge that may be further exploited to produce wines with peculiar aroma properties.

  16. Determination of non-volatile and volatile organic acids in Korean traditional fermented soybean paste (Doenjang).

    Science.gov (United States)

    Shukla, Shruti; Choi, Tae Bong; Park, Hae-Kyong; Kim, Myunghee; Lee, In Koo; Kim, Jong-Kyu

    2010-01-01

    Organic acids are formed in food as a result of metabolism of large molecular mass compounds. These organic acids play an important role in the taste and aroma of fermented food products. Doenjang is a traditional Korean fermented soybean paste product that provides a major source of protein. The quantitative data for volatile and non-volatile organic acid contents of 18 samples of Doenjang were determined by comparing the abundances of each peak by gas (GC) and high performance liquid chromatography (HPLC). The mean values of volatile organic acids (acetic acid, butyric acid, propionic acid and 3-methyl butanoic acid), determined in 18 Doenjang samples, were found to be 91.73, 29.54, 70.07 and 19.80 mg%, respectively, whereas the mean values of non-volatile organic acids, such as oxalic acid, citric acid, lactic acid and succinic acid, were noted to be 14.69, 5.56, 9.95 and 0.21 mg%, respectively. Malonic and glutaric acids were absent in all the tested samples of Doenjang. The findings of this study suggest that determination of organic acid contents by GC and HPLC can be considered as an affective approach to evaluate the quality characteristics of fermented food products.

  17. Retention of aroma compounds from Mentha piperita essential oil by cyclodextrins and crosslinked cyclodextrin polymers.

    Science.gov (United States)

    Ciobanu, A; Mallard, I; Landy, D; Brabie, G; Nistor, D; Fourmentin, S

    2013-05-01

    In this paper, the controlled release of aroma compounds from cyclodextrins (CDs) and CD polymers was studied by multiple headspace extraction (MHE) experiments. Mentha piperita essential oil was obtained by Soxhlet extraction and identification of the major compounds was performed by GC-MS analysis. Menthol, menthone, pulegone and eucalyptol were identified as the major components. Retention of standard compounds in the presence of different CDs and CD polymers has been realised by static headspace gas chromatography (SH-GC) at 25 °C in the aqueous or gaseous phase. Stability constants for standard compounds and for compounds in essential oil have been also determined with monomeric CD derivatives. The obtained results indicated the formation of a 1:1 inclusion complex for all the studied compounds. Molecular modelling was used to investigate the complementarities between host and guest. This study showed that β-CDs were the most versatile CDs and that β-CD polymers could perform the controlled release of aroma compounds.

  18. Identification, quantification and comparison between the chemical substances responsible for the irradiated pot still cachaca and commercial rum aromas; Identificacao, quantificacao e comparacao das substancias quimicas responsaveis pelos aromas da cachaca de alambique e do rum comercial tratados pelo processo de irradiacao

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Maria Djiliah Camargo Alvarenga de

    2006-07-01

    The irradiation process has being presented as an alternative technique in food preservation. When applied on beverages, radiation is mainly used for malt decontamination or sterilization of musts and had been proposed also to accelerate aging. Some confusion over rum and cachaca identities has arisen due to the internationalization of cachaca. This research aims to identify, quantify and compare the effect of gamma radiation on the aroma of the Brazilian spirit with rum, irradiated and non irradiated, by instrumental and sensory analysis. Results showed that the content of volatile compounds presented strong correlation with the radiation dose (0,150 and 300 Gy) for all the samples. According to Triangle Test for aroma, all the judges could distinguish among non irradiated and irradiated samples (300 Gy), aged cachaca from rum and non aged cachaca from rum, but they could not distinguish aged cachaca from non aged cachaca. Analysis of variance (ANOVA) of the results from the quantitative descriptive analysis showed that non irradiated non aged cachaca and rum were different in their alcohol, vinegar, vanilla, citrus, melon, spice, vegetal and grass except caramel and apple aroma attributes. Non irradiated cachaca and irradiated cachaca (300 Gy); and non irradiated rum and irradiated rum (300 Gy) were different in their apple, caramel, vinegar, vanilla, citrus, melon, spice, vegetal and grass except alcohol aroma attributes. According to the gas chromatography/olfactometry results, significant difference was found among non irradiated cachaca and rum; non irradiated cachaca and irradiated cachaca (300 Gy); and non irradiated rum and irradiated rum (300 Gy) when their aromas were compared. (author)

  19. Characterization of the key aroma compounds in an american bourbon whisky by quantitative measurements, aroma recombination, and omission studies.

    Science.gov (United States)

    Poisson, Luigi; Schieberle, Peter

    2008-07-23

    Thirty-one of the 45 odor-active compounds previously identified by us in an American Bourbon whisky were quantified by stable isotope dilution assays. Also for this purpose, new synthetic pathways were developed for the synthesis of the deuterium-labeled whisky lactone as well as for gamma-nona- and gamma-decalactone. To obtain the odor activity values (OAVs), the concentrations measured were divided by the odor thresholds of the odorants determined in water/ethanol (6:4 by vol.). Twenty-six aroma compounds showed OAVs >1, among which ethanol, ethyl (S)-2-methylbutanoate, 3-methylbutanal, 4-hydroxy-3-methoxybenzaldehyde, (E)-beta-damascenone, ethyl hexanoate, ethyl butanoate, ethyl octanoate, 2-methylpropanal, (3S,4S)- cis-whiskylactone, (E, E)-2,4-decadienal, 4-allyl-2-methoxyphenol, ethyl-3-methylbutanoate, and ethyl 2-methylpropanoate showed the highest values. The overall aroma of the Bourbon whisky could be mimicked by an aroma recombinate consisting of the 26 key odorants in their actual concentrations in whisky using water/ethanol (6:4 by vol.) as the matrix. Omission experiments corroborated the importance of, in particular, 4-hydroxy-3-methoxybenzaldehyde, (3S,4S)-cis-whiskylactone, ethanol, and the entire group of esters for the overall aroma of the Bourbon whisky.

  20. Evaluating the Environmental Health Effect of Bamboo-Derived Volatile Organic Compounds through Analysis the Metabolic Indices of the Disorder Animal Model

    Institute of Scientific and Technical Information of China (English)

    GUO Ming; HU Zheng Qing; STRONG P James; SMIT Anne-Marie; XU Jian Wei; FAN Jun; WANG Hai Long

    2015-01-01

    Objective To identify the bamboo VOCs (volatile organic compounds) effect on animal physiological indices, which associated with human health. Methods GC/MS was used to analyze the volatile organic compounds from Moso bamboo (Phyllostachys heterocyla cv. pubescens). The effect of VOCs on environmental health was evaluated by analyzing the metabolic indices of the type 2 diabetic mouse model. Results Spectra of VOC generated by GC/MS were blasted against an in-house MS library confirming the identification of 33 major components that were manually validated. The relative constituent compounds as a percentage of total VOCs determined were alcohols (34.63%), followed by ether (22.02%), aldehyde (15.84%), ketone (11.47%), ester (4.98%), terpenoid (4.38%), and acids (3.83%). Further experimentation established that the metabolic incidence of the disease can be improved if treated with vanillin, leaf alcohol,β-ionone and methyl salicylate. The effects of these VOCs on type 2 diabetes were evident in the blood lipid and blood glucose levels. Conclusion Our model suggests that VOCs can potentially control the metabolic indices in type 2 diabetes mice. This experiment data also provides the scientific basis for the comprehensive utilization of ornamental bamboos and some reference for other similar study of environmental plants.

  1. Identification of a new lactone contributing to overripe orange aroma in Bordeaux dessert wines via perceptual interaction phenomena.

    Science.gov (United States)

    Stamatopoulos, Panagiotis; Frérot, Eric; Tempère, Sophie; Pons, Alexandre; Darriet, Philippe

    2014-03-26

    Recent studies have demonstrated the existence of a typical sensory concept for Bordeaux dessert wines, including the world famous wines of Sauternes. Volatile compounds from several chemical families (thiols, aldehydes, and lactones) were identified and correlated with aromatic typicality in these wines. However, these studies were unable to indicate "key" aromas of overripe fruits, especially overripe orange. The alternative strategy developed in this research combined both analytical and sensory studies of fractions of dessert wine extracts obtained by semipreparative high-performance liquid chromatography (HPLC). Multidimensional gas chromatography coupled to olfactometry and mass spectrometry (MDGC-O/MS) was applied to some of the HPLC fractions recalling "overripe fruit", and a new lactone, 2-nonen-4-olide, was identified. Reconstitution and omission tests using the HPLC fractions highlighted the importance of specific compounds, particularly 2-nonen-4-olide, in the expression of overripe orange notes. Although this lactone presents minty and fruity odors, its key contribution to the typical aroma of orange in Bordeaux dessert wines was revealed through perceptual blending.

  2. Comparative Study of Oil Quality and Aroma Profiles from Tunisian Olive Cultivars Growing in Saharian Oasis Using Chemometric Analysis.

    Science.gov (United States)

    Gargouri, Olfa Dridi; Rouina, Yasmine Ben; Mansour, Amir Ben; Flamini, Guido; Rouina, Bechir Ben; Bouaziz, Mohamed

    2016-12-01

    Aroma profile, oxidative stability and quality parameters of virgin olive oil from four cultivars (Chemlali, Chetoui, Koroneiki and Rjim), grown in Rjim Maatoug oasis in southern of Tunisia, were studied for the first time. The olive oil samples were obtained during maturation from a crop season (2012-2013). The results showed the quality parameters, i.e., free fatty acid, UV absorbance at 232 and 270 nm, increases during maturation exceeding the upper limit established by the IOOC norm. Chlorophyll and carotenoid pigments tended to decrease during ripening stages. The trend of oxidative stability, total phenols and Odiphenols exhibited a reduction of antioxidant activity at more advanced stages of maturity. The marks achieved showed that oil quality degradation is due to the great drought of climate: high temperature, high light intensity and low rainfall. Studied aroma profiles of cultivars were also influenced by severe climatic conditions. Twenty-four compounds were characterized, representing 94.8-99.8% of the total volatiles. In all samples, a strong decrease was observed in aldehydes compounds.

  3. Capsicum--production, technology, chemistry, and quality. Part III. Chemistry of the color, aroma, and pungency stimuli.

    Science.gov (United States)

    Govindarajan, V S

    1986-01-01

    The spice capsicum, the fruits of the genus Capsicum (Family Solanaceae), is a very popular food additive in many parts of the world, valued for the important sensory attributes of color, pungency, and aroma. A large number of varieties are widely cultivated and traded. The characteristic carotenoids of the bright red paprika and cayenne-type chillies, the high character impact aroma stimuli, the methoxy pyrazine of green bell capsicum, the esters of ripe tabasco and the highly potent pungency stimuli, and the capsaicinoids of African and other Asian varieties of chillies, have been of great interest to chemists and biochemists. Research workers in other disciplines such as genetics and breeding, agriculture, and technology have been interested in this spice to develop new varieties with combinations of different optimal levels of the stimuli for the sensory attributes and to maximize production of storable products for specific end uses. Physiologists have been intensely studying the action of the highly potent pungency stimuli and social psychologists the curious aspect of growing acceptance and preference for the initially unacceptable pungency sensation. In the sequential review of all these aspects of the fruit spice Capsicum, the earlier two parts covered history, botany, cultivation and primary processing, and processed products, standards, world production, and trade. In Part III, the chemistry, the compositional variations, synthesis and biosynthesis of the functional components, the carotenoids, the volatiles, and the capsaicinoids are comprehensively reviewed.

  4. Analysis of aroma compounds and nutrient contents of mabolo (Diospyros blancoi A. DC., an ethnobotanical fruit of Austronesian Taiwan

    Directory of Open Access Journals (Sweden)

    Sheng-Feng Hung

    2016-01-01

    Full Text Available Diospyros blancoi A. DC. is an evergreen tree species of high-quality wood. Mabolo, the fruit of this plant, is popular among the natives in Taiwan, but its potential in economic use has not been fully explored. Mabolo has a rich aroma. Of the 39 different volatile compounds isolated, its intact fruit and peel were found to both contain 24 compounds, whereas the pulp contained 28 compounds. The most important aroma compounds were esters and α-farnesene. Our data show that mabolo is rich in dietary fiber (3.2%, and the contents of other nutrients such as malic acid, vitamin B2, vitamin B3, folic acid, pantothenic acid, and choline chloride were 227.1 mg/100 g, 0.075 mg/100 g, 0.157 mg/100 g, 0.623 mg/100 g, 0.19 mg/100 g, and 62.52 mg/100 g, respectively. Moreover, it is rich in calcium and zinc; the contents of which were found to be 42.8 mg/100 g and 3.6 mg/100 g, respectively. Our results show that D. blancoi has the potential to be bred for a novel fruit.

  5. Improving the performance of an electronic nose by wine aroma training to distinguish between drip coffee and canned coffee.

    Science.gov (United States)

    Fujioka, Kouki; Tomizawa, Yasuko; Shimizu, Nobuo; Ikeda, Keiichi; Manome, Yoshinobu

    2015-01-12

    Coffee aroma, with more than 600 components, is considered as one of the most complex food aromas. Although electronic noses have been successfully used for objective analysis and differentiation of total coffee aromas, it is difficult to use them to describe the specific features of coffee aroma (i.e., the type of smell). This is because data obtained by electronic noses are generally based on electrical resistance/current and samples are distinguished by principal component analysis. In this paper, we present an electronic nose that is capable of learning the wine related aromas using the aroma kit "Le Nez du Vin," and the potential to describe coffee aroma in a similar manner comparable to how wine experts describe wine aroma. The results of our investigation showed that the aromas of three drip coffees were more similar to those of pine and honey in the aroma kit than to the aromas of three canned coffees. Conversely, the aromas of canned coffees were more similar to the kit coffee aroma. In addition, the aromatic patterns of coffees were different from those of green tea and red wine. Although further study is required to fit the data to human olfaction, the presented method and the use of vocabularies in aroma kits promise to enhance objective discrimination and description of aromas by electronic noses.

  6. Improving the Performance of an Electronic Nose by Wine Aroma Training to Distinguish between Drip Coffee and Canned Coffee

    Directory of Open Access Journals (Sweden)

    Kouki Fujioka

    2015-01-01

    Full Text Available Coffee aroma, with more than 600 components, is considered as one of the most complex food aromas. Although electronic noses have been successfully used for objective analysis and differentiation of total coffee aromas, it is difficult to use them to describe the specific features of coffee aroma (i.e., the type of smell. This is because data obtained by electronic noses are generally based on electrical resistance/current and samples are distinguished by principal component analysis. In this paper, we present an electronic nose that is capable of learning the wine related aromas using the aroma kit “Le Nez du Vin,” and the potential to describe coffee aroma in a similar manner comparable to how wine experts describe wine aroma. The results of our investigation showed that the aromas of three drip coffees were more similar to those of pine and honey in the aroma kit than to the aromas of three canned coffees. Conversely, the aromas of canned coffees were more similar to the kit coffee aroma. In addition, the aromatic patterns of coffees were different from those of green tea and red wine. Although further study is required to fit the data to human olfaction, the presented method and the use of vocabularies in aroma kits promise to enhance objective discrimination and description of aromas by electronic noses.

  7. Variability in waxing-induced ethanol and aroma volatile production among mandarin genotypes

    Science.gov (United States)

    Mandarins often develop off-flavors during storage that impact consumer acceptance and it would be useful to develop mandarin varieties that are less susceptible to postharvest flavor loss. Ethanol has long been identified as being a compound identified with flavor loss in citrus. A range of divers...

  8. Mandarin flavor and aroma volatile composition are strongly influenced by holding temperature

    Science.gov (United States)

    Mandarin flavor quality often declines during storage but the respective contributions to the flavor disorder of warm versus cold temperature portions of the storage regime were unknown. To determine this ‘W. Murcott’ mandarins were stored for either 6 weeks at a continuous 5 ºC or held at 20 ºC fo...

  9. Impact of storage conditions and variety on quality attributes and aroma volatiles of pitahaya (Hylocereus spp.)

    Science.gov (United States)

    Pitahaya are increasing in popularity but knowledge on the effects of storage and the potential impact of variety on subsequent quality following storage is incomplete, particularly in terms of the potential effects on sensory acceptability. In this study six varieties of pitahaya, having white, pin...

  10. Effect of cultivation line and peeling on food composition, taste characteristic, aroma profile, and antioxidant activity of Shiikuwasha (Citrus depressa Hayata) juice.

    Science.gov (United States)

    Asikin, Yonathan; Fukunaga, Hibiki; Yamano, Yoshimasa; Hou, De-Xing; Maeda, Goki; Wada, Koji

    2014-09-01

    Shiikuwasha (Citrus depressa Hayata) juice from four main cultivation lines subjected to two peeling practices (with or without peeling) were discriminated in terms of quality attributes, represented by sugar and organic acid composition, taste characteristic, aroma profile, and antioxidant activity. Shiikuwasha juice from these lines had diverse food compositions; 'Izumi kugani' juice had lower acidity but contained more ascorbic acid than that of other cultivation lines. The composition of volatile aroma components was influenced by fruit cultivation line, whereas its content was affected by peeling process (20.26-53.73 mg L(-1) in whole juice versus 0.82-1.58 mg L(-1) in flesh juice). Peeling also caused Shiikuwasha juice to be less astringent and acidic bitter and to lose its antioxidant activity. Moreover, the total phenolic and ascorbic acid content of Shiikuwasha juice positively influenced its antioxidant activity. Each fruit cultivation line had a distinct food composition, taste characteristic, and aroma profile. Peeling in Shiikuwasha juice production might reduce aftertaste, and thus might improve its palatability. Comprehensive information on the effect of cultivation line and peeling on quality attributes will be useful for Shiikuwasha juice production, and can be applied to juice production of similar small citrus fruits. © 2014 Society of Chemical Industry.

  11. Emerald ash borer responses to induced plant volatiles

    Science.gov (United States)

    Cesar Rodriguez-Saona; Therese M. Poland; James Miller; Lukasz Stelinski; Linda Buchan; Gary Grant; Peter de Groot; Linda MacDonald

    2007-01-01

    Herbivore feeding and methyl jasmonate, a volatile derivative of the stress-eliciting plant hormone, jasmonic acid, induce responses in plants which include the synthesis and emission of volatiles. These induced volatiles can serve to attract or repel herbivores; therefore, they may have potential use in pest management programs. The exotic emerald ash borer (EAB),...

  12. Aroma types of flue-cured tobacco in China: spatial distribution and association with climatic factors

    Science.gov (United States)

    Yang, Chao; Wu, Wei; Wu, Shu-Cheng; Liu, Hong-Bin; Peng, Qing

    2014-02-01

    Aroma types of flue-cured tobacco (FCT) are classified into light, medium, and heavy in China. However, the spatial distribution of FCT aroma types and the relationships among aroma types, chemical parameters, and climatic variables were still unknown at national scale. In the current study, multi-year averaged chemical parameters (total sugars, reducing sugars, nicotine, total nitrogen, chloride, and K2O) of FCT samples with grade of C3F and climatic variables (mean, minimum and maximum temperatures, rainfall, relative humidity, and sunshine hours) during the growth periods were collected from main planting areas across China. Significant relationships were found between chemical parameters and climatic variables ( p aroma types were produced using support vector machine algorithms and chemical parameters. Significant differences in chemical parameters and climatic variables were observed among the three aroma types based on one-way analysis of variance ( p aroma type had significantly lower values of mean, maximum, and minimum temperatures than regions with medium and heavy aroma types ( p aroma type had significantly lower values of rainfall and relative humidity and higher values of sunshine hours than regions with light and medium aroma types ( p aroma types at national scale.

  13. Determination of hydroxycinnamic acids and volatile phenols in wort and beer by isocratic high-performance liquid chromatography using electrochemical detection.

    Science.gov (United States)

    Vanbeneden, Nele; Delvaux, Filip; Delvaux, Freddy R

    2006-12-15

    The suitability of a simple and rapid isocratic RP-HPLC method with amperometric electrochemical detection for the simultaneous detection and quantification of hydroxycinnamic acids and their corresponding aroma-active volatile phenols in wort and beer is reported. The technique gives good specificity and sensitivity, and can therefore be used for routine monitoring of hydroxycinnamic acids in wort and the development of volatile phenolic flavour compounds during the beer production process and subsequent conservation.

  14. Characterization of the key odorants in light aroma type chinese liquor by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission studies.

    Science.gov (United States)

    Gao, Wenjun; Fan, Wenlai; Xu, Yan

    2014-06-25

    The light aroma type liquor is widely welcomed by consumers due to its pleasant fruity and floral aroma, particularly in northern China. To answer the puzzling question of which key aroma compounds are responsible for the typical aroma, three typical liquors were studied in this paper. A total of 66 aroma compounds were identified in three liquors by means of gas chromatography-olfactometry (GC-O) coupled with mass spectrometry (MS), and 27 odorants were further screened out as the important odorants according to quantitative study and odor activity values (OAVs). For OAV calculation, odor thresholds of the odorants were determined in a hydroalcoholic solution at 46% ethanol by volume. The typical light type aroma dominated by fruity and floral notes was successfully simulated by dissolving these important odorants in the 46% vol hydroalcoholic solution in their natural concentrations. Omission experiments further confirmed β-damascenone and ethyl acetate as the key odorants and revealed the significance of the entire group of esters, particularly ethyl lactate, geosmin, acetic acid, and 2-methylpropanoic acid, for the overall aroma of the light aroma type Chinese liquor.

  15. Effects of sugar concentration processes in grapes and wine aging on aroma compounds of sweet wines—a review.

    Science.gov (United States)

    Reboredo-Rodríguez, Patricia; González-Barreiro, Carmen; Rial-Otero, Raquel; Cancho-Grande, Beatriz; Simal-Gándara, Jesús

    2015-01-01

    Dessert sweet wines from Europe and North America are described in this review from two points of view: both their aroma profile and also their sensorial description. There are growing literature data about the chemical composition and sensory properties of these wines. Wines were grouped according to the production method (concentration of sugars in grapes) and to the aging process of wine (oxidative, biological, or a combination of both and aging in the bottle). It was found that wines natively sweets and wines fortified with liquors differ in their volatile compounds. Sensory properties of these wines include those of dried fruit (raisins), red berries, honey, chocolate and vanilla, which is contributing to their growing sales. However, there is still a need for scientific research on the understanding of the mechanisms for wine flavor enhancement.

  16. Use of a flor velum yeast for modulating colour, ethanol and major aroma compound contents in red wine.

    Science.gov (United States)

    Moreno, Juan; Moreno-García, Jaime; López-Muñoz, Beatriz; Mauricio, Juan Carlos; García-Martínez, Teresa

    2016-12-15

    The most important and negative effect of the global warming for winemakers in warm and sunny regions is the observed lag between industrial and phenolic grape ripeness, so only it is possible to obtain an acceptable colour when the ethanol content of wine is high. By contrast, the actual market trends are to low ethanol content wines. Flor yeast growing a short time under velum conditions, decreases the ethanol and volatile acidity contents, has a favorable effect on the colour and astringency and significantly changes the wine content in 1-propanol, isobutanol, acetaldehyde, 1,1-diethoxiethane and ethyl lactate. The Principal Component Analysis of six enological parameters or five aroma compounds allows to classify the wines subjected to different velum formation conditions. The obtained results in two tasting sessions suggest that the flor yeast helps to modulate the ethanol, astringency and colour and supports a new biotechnological perspective for red winemakers.

  17. Infrared decontamination of oregano: effects on Bacillus cereus spores, water activity, color, and volatile compounds.

    Science.gov (United States)

    Eliasson, Lovisa; Libander, Patrik; Lövenklev, Maria; Isaksson, Sven; Ahrné, Lilia

    2014-12-01

    Infrared (IR) heating, a novel technology for decontaminating oregano, was evaluated by investigating the reduction of inoculated Bacillus cereus spores and the effect on water activity (a(w)), color, and headspace volatile compounds after exposure to IR treatment. Conditioned oregano (a(w) 0.88) was IR-treated in a closed heating unit at 90 and 100 °C for holding times of 2 and 10 min, respectively. The most successful reduction in B. cereus spore numbers (5.6 log units) was achieved after a holding time of 10 min at 90 °C, while treatment at 100 °C for the same time resulted in a lower reduction efficiency (4.7 log units). The lower reduction at 100 °C was probably due to a reduced aw (aw 0.76) during IR treatment or possibly to the alteration or loss of volatile compounds possessing antimicrobial properties. The green color of oregano was only slightly affected, while the composition of volatile compounds was clearly altered by IR heating. However, two of the key aroma compounds, carvacrol and thymol, were only slightly affected, compared to the effect on the other studied compounds, indicating that the typical oregano aroma can likely be preserved. In conclusion, IR heating shows potential for the successful decontamination of oregano without severe alteration of its color or the key aroma compounds, carvacrol and thymol.

  18. Elucidation of the aroma compositions of Zhenjiang aromatic vinegar using comprehensive two dimensional gas chromatography coupled to time-of-flight mass spectrometry and gas chromatography-olfactometry.

    Science.gov (United States)

    Zhou, Zhilei; Liu, Shuangping; Kong, Xiangwei; Ji, Zhongwei; Han, Xiao; Wu, Jianfeng; Mao, Jian

    2017-03-03

    In this work, a method to characterize the aroma compounds of Zhenjiang aromatic vinegar (ZAV) was developed using comprehensive two dimensional gas chromatography (GC×GC) coupled with time-of-flight mass spectrometry (TOFMS) and gas chromatography olfactometry (GC-O). The column combination was optimized and good separation was achieved. Structured chromatograms of furans and pyrazines were obtained and discussed. A total of 360 compounds were tentatively identified based on mass spectrum match factors, structured chromatogram and linear retention indices comparison. The most abundant class in number was ketones. A large number of esters, furans and derivatives, aldehydes and alcohols were also detected. The odor-active components were identified by comparison of the reported odor of the identified compounds with the odor of corresponding GC-O region. The odorants of methanethiol, 2-methyl-propanal, 2-methyl-butanal/3-methyl-butanal, octanal, 1-octen-3-one, dimethyl trisulfide, trimethyl-pyrazine, acetic acid, 3-(methylthio)-propanal, furfural, benzeneacetaldehyde, 3-methyl-butanoic acid/2-methyl-butanoic acid and phenethyl acetate were suspected to be the most potent. About half of them were identified as significant aroma constituents in ZAV for the first time. Their contribution to specific sensory attribute of ZAJ was also studied. The results indicated that the presented method is suitable for characterization of ZAV aroma constituents. This study also enriches our knowledge on the components and aroma of ZAV.

  19. 3-Hydroxy-4,5-dimethyl-2(5H)-furanone: a key odorant of the typical aroma of oxidative aged Port wine.

    Science.gov (United States)

    Silva Ferreira, A C; Barbe, Jean-Christophe; Bertrand, Alain

    2003-07-16

    Application of aroma extract dilution analysis (AEDA) on organic extracts from Port wines barrel-aged over 40 years revealed 5 odor-active compounds corresponding to descriptors used to qualify the characteristic old wine aroma. One of the compounds, described as "nutty" and "spicy-like", and present in at least 9 dilutions above the others, was perceived as particularly important. The compound responsible for this flavor was identified as 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolon). The levels ranged from 5 to 958 microg/L for wines between 1 and 60 years old. It was also observed that during oxidative aging the concentration of this compound increased with time according to a linear trend (r > 0.95). Although the presence of 2-ketobutyric acid was verified, the constant rate of formation of sotolon with aging and its high correlation with sugar derivates (HMF, furfural) suggests other mechanisms, different from those reported for other wines. The flavor threshold of sotolon was evaluated in Port wine at 19 microg/L. Sensorial tests provided valuable information concerning sotolon impact on Port wine aroma. Samples supplemented with this substance were consistently ranked as older. In view of these results it can be expected that sotolon plays a pre-eminent role in the characteristic old Port wine aroma.

  20. Aroma formation by immobilized yeast cells in fermentation processes.

    Science.gov (United States)

    Nedović, V; Gibson, B; Mantzouridou, T F; Bugarski, B; Djordjević, V; Kalušević, A; Paraskevopoulou, A; Sandell, M; Šmogrovičová, D; Yilmaztekin, M

    2015-01-01

    Immobilized cell technology has shown a significant promotional effect on the fermentation of alcoholic beverages such as beer, wine and cider. However, genetic, morphological and physiological alterations occurring in immobilized yeast cells impact on aroma formation during fermentation processes. The focus of this review is exploitation of existing knowledge on the biochemistry and the biological role of flavour production in yeast for the biotechnological production of aroma compounds of industrial importance, by means of immobilized yeast. Various types of carrier materials and immobilization methods proposed for application in beer, wine, fruit wine, cider and mead production are presented. Engineering aspects with special emphasis on immobilized cell bioreactor design, operation and scale-up potential are also discussed. Ultimately, examples of products with improved quality properties within the alcoholic beverages are addressed, together with identification and description of the future perspectives and scope for cell immobilization in fermentation processes. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Analysis of accelerants and fire debris using aroma detection technology

    Energy Technology Data Exchange (ETDEWEB)

    Barshick, S.A.

    1997-01-17

    The purpose of this work was to investigate the utility of electronic aroma detection technologies for the detection and identification of accelerant residues in suspected arson debris. Through the analysis of known accelerant residues, a trained neural network was developed for classifying suspected arson samples. Three unknown fire debris samples were classified using this neural network. The item corresponding to diesel fuel was correctly identified every time. For the other two items, wide variations in sample concentration and excessive water content, producing high sample humidities, were shown to influence the sensor response. Sorbent sampling prior to aroma detection was demonstrated to reduce these problems and to allow proper neural network classification of the remaining items corresponding to kerosene and gasoline.

  2. Model cheese aroma perception is explained not only by in vivo aroma release but also by salivary composition and oral processing parameters.

    Science.gov (United States)

    Guichard, E; Repoux, M; Qannari, E M; Laboure, H; Feron, G

    2017-02-22

    The aim of the present paper was to determine, from four model cheeses differing in fat content and firmness and consumed by fourteen well characterised subjects, the respective impacts of in vivo aroma release, bolus rheology, chewing activity, mouth coating and salivary composition on dynamic aroma perception. The originality of the approach is that it considers all the parameters together and is able to evaluate their relative contribution using multi-block partial least square (MB-PLS) regression. The fruity aroma perception of the more hydrophilic compound (ethyl propanoate) was related to its dynamic release parameters before swallowing whereas the blue cheese aroma perception of the more hydrophobic compound (nonan-2-one) was related to its dynamic release parameters after swallowing and was highly impacted by mouth coating. Moreover the MB-PLS approach made it possible to evidence the combined effects of saliva composition and cross-modal interactions to understand why in some cases dynamic aroma perception could not be explained by dynamic in vivo aroma release data. Subjects with a low sodium content in saliva perceived fruity aroma which is not congruent with saltiness as less intense and salt- congruent (blue cheese) aroma as more intense, which was explained by their higher sensitivity to salt. Subjects with high lipolysis activity perceived fruity aroma which is not congruent to fat as less intense and fat-congruent (blue cheese) aroma as more intense, which should be explained by the link between lipolysis activity and fat sensitivity. These results could be considered for the reformulation of foods towards specific populations taking into account nutritional recommendations.

  3. Aroma Constituents in Shanxi Aged Vinegar before and after Aging.

    Science.gov (United States)

    Liang, Jingjing; Xie, Jianchun; Hou, Li; Zhao, Mengyao; Zhao, Jian; Cheng, Jie; Wang, Shi; Sun, Bao-Guo

    2016-10-12

    Shanxi aged vinegar is one of the most famous Chinese traditional cereal vinegars produced by spontaneous solid-state fermentation. However, the aroma composition of Shanxi aged vinegar is still ambiguous. The Shanxi vinegars before and after aging were both analyzed by solvent-assisted flavor evaporation combined with gas chromatography-mass spectrometry (GC-MS) as well as gas chromatography-olfactometry (GC-O) in aroma extract dilution analysis. A total of 87 odor-active regions were found by GC-O, and 80 odor-active compounds were identified. By GC-MS/MS, in selected reaction monitoring mode, 30 important identifications were quantitated using authentic standards. In comparison, the aroma molecules for the vinegars before and after aging were almost the same; only their levels were altered, with mostly the esters and some compounds that produce pungent smells being lost and the levels of those from the Maillard reaction, especially the pyrazines (e.g., tetramethylpyrazine), being greatly increased. As for the aged vinegar, the compounds found to have high flavor dilution factors (>128) were 3-(methylthio)propanal, vanillin, 2,3-butanedione, tetramethylpyrazine, 3-methylbutanoic acid, γ-nonalactone, guaiacol, 3-(methylthio)propyl acetate, dimethyl trisulfide, phenylacetaldehyde, 2-ethyl-6-methylpyrazine, 2-acetylpyrazine, 2,3-dimethylpyrazine, furfural, and 3-hydroxy-2-butanone. However, the aroma compounds found at high concentrations (>25 μg/L) in the aged vinegar were acetic acid, followed by 2,3-butanedione, furfural, 3-hydroxy-2-butanone, tetramethylpyrazine, furfuryl alcohol, and 3-methylbutanoic acid.

  4. Aroma and taste perceptions with Alzheimer disease and stroke.

    Science.gov (United States)

    Aliani, Michel; Udenigwe, Chibuike C; Girgih, Abraham T; Pownall, Trisha L; Bugera, Jacqeline L; Eskin, Michael N A

    2013-01-01

    Chemosensory disorders of smell or taste in humans have been attributed to various physiological and environmental factors including aging and disease conditions. Aroma and taste greatly condition our food preference, selection and, consumption; the decreased appetite in patients with known neurodegenerative diseases may lead to dietary restrictions that could negatively impact nutritional and health status. The decline in olfactory and gustatory systems in patients with Alzheimer disease and various types of stroke are described.

  5. [Aroma and perfume allergy: anathema for some epicurean appeal?].

    Science.gov (United States)

    Goffin, V; Nikkels, A F; Cornil, F; Deleixhe-Mauhin, F; Piérard-Franchimont, C; Piérard, G E

    2002-09-01

    Aromas and fragrances are present in many cosmetics, some topical drugs, food and various hygiene, household and industrial products. They can be responsible for contact dermatitis. Multiple sensitizations can even involve in various combinations some fragrance compounds, a given degradation product or a contaminant. The diagnosis relies on clinical examination and oriented anamnesis. A histological examination is sometimes necessary. Specific path testing brings insight on the culprit chemical compounds.

  6. Transport of hop aroma compounds across Caco-2 monolayers

    OpenAIRE

    Heinlein, A.; Metzger, M.; Walles, H.; Buettner, A.

    2014-01-01

    Although being reported and used as a sedative remedy for several years, the bioactive principle of hop preparations is still not decisively clarified. Understanding absorption and transformation processes of potential physiologically active constituents is essential to evaluate the likeliness of biological effects on humans. Therefore, single hop aroma compounds as well as digestive transformation products thereof have been investigated in view of their human intestinal absorption, applying ...

  7. Consistent ranking of volatility models

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Lunde, Asger

    2006-01-01

    result in an inferior model being chosen as "best" with a probability that converges to one as the sample size increases. We document the practical relevance of this problem in an empirical application and by simulation experiments. Our results provide an additional argument for using the realized...... variance in out-of-sample evaluations rather than the squared return. We derive the theoretical results in a general framework that is not specific to the comparison of volatility models. Similar problems can arise in comparisons of forecasting models whenever the predicted variable is a latent variable.......We show that the empirical ranking of volatility models can be inconsistent for the true ranking if the evaluation is based on a proxy for the population measure of volatility. For example, the substitution of a squared return for the conditional variance in the evaluation of ARCH-type models can...

  8. Phytosterols in onion contribute to a sensation of lingering of aroma, a koku attribute.

    Science.gov (United States)

    Nishimura, Toshihide; Egusa, Ai Saiga; Nagao, Akira; Odahara, Tsutomu; Sugise, Takeshi; Mizoguchi, Noriko; Nosho, Yasuharu

    2016-02-01

    We aimed to examine the substance in a precipitate of heat-treated onion concentrate (HOC) that contributes to a sensation of lingering of aroma, a koku attribute induced by the sensing of richness and persistence in terms of taste, aroma and texture. Adding precipitate, separated from HOC, to consommé enhanced the lingering sensation of aroma in the consommé more than adding the supernatant from HOC. After the precipitate was washed with hot water and ethanol its enhancing effect disappeared. Analysis of the HOC precipitate showed that it contained phytosterols, such as beta-sitosterol and stigmasterol. Tests of binding to aroma compounds showed that both sterols, as well as the washed precipitate, were able to bind methyl propyl disulfide and N-hexanal. Thus phytosterols in the HOC precipitate seemed to bind and hold the aroma compounds and gradually release them, inducing a lingering sensation of aroma under the koku concept during consumption.

  9. Characterisation of free and glycosidically bound aroma compounds of La Mancha Verdejo white wines.

    Science.gov (United States)

    Sánchez-Palomo, E; Alonso-Villegas, R; González Viñas, M A

    2015-04-15

    The aroma of Verdejo La Mancha white wines was studied by instrumental and sensory analysis across five consecutive vintages to determine their typicity and quality. Free and glycosidically-bound aroma compounds were isolated by solid phase extraction (SPE) to later be analysed using gas chromatography-mass spectrometry (GC/MS). Seventy-four (74) free aroma compounds and thirty-six (36) bound aroma compounds were identified and quantified in La Mancha Verdejo wines oven this five year period. Based on the result, Verdejo white wines presents a complex chemical profile with a wealth of aromas in its aromatic composition. The sensory profile of Verdejo wines was evaluated by experienced wine-tasters and was characterised by fresh, citric, green apple, fruity and tropical fruit aroma descriptors. This study shows the first complete aromatic characterisation of La Mancha Verdejo white wines, also the data suggest that these wines present a great aromatic potential.

  10. Evaluation of Cytotoxicity and Genotoxicity of Acacia aroma Leaf Extracts

    Directory of Open Access Journals (Sweden)

    C. M. Mattana

    2014-01-01

    Full Text Available Acacia aroma, native plant from San Luis, Argentina, is commonly used as antiseptic and for healing of wounds. The present study was conducted to investigate the in vitro cytotoxicity and genotoxicity of hot aqueous extract (HAE and ethanolic extract (EE of A. aroma. The cytotoxic activity was assayed by neutral red uptake assay on Vero cell. Cell treatment with a range from 100 to 5000 μg/mL of HAE and EE showed that 500 μg/mL and 100 μg/mL were the maximum noncytotoxic concentrations, respectively. The CC50 was 658 μg/mL for EE and 1020 μg/mL for HAE. The genotoxicity was tested by the single-cell gel electrophoresis comet assay. The results obtained in the evaluation of DNA cellular damage exposed to varied concentrations of the HAE showed no significant genotoxic effect at range of 1–20 mg/mL. The EE at 20 mg/mL showed moderate genotoxic effect related to the increase of the DNA percentage contained in tail of the comet; DNA was classified in category 2. At concentrations below 5 mg/mL, the results of cytotoxicity and genotoxicity of aqueous and ethanolic extracts of Acacia aroma guarantee the safety at cell and genomic level. However further studies are needed for longer periods including animal models to confirm the findings.

  11. Evaluation of Cytotoxicity and Genotoxicity of Acacia aroma Leaf Extracts

    Science.gov (United States)

    Mattana, C. M.; Cangiano, M. A.; Alcaráz, L. E.; Sosa, A.; Escobar, F.; Sabini, C.; Sabini, L.; Laciar, A. L.

    2014-01-01

    Acacia aroma, native plant from San Luis, Argentina, is commonly used as antiseptic and for healing of wounds. The present study was conducted to investigate the in vitro cytotoxicity and genotoxicity of hot aqueous extract (HAE) and ethanolic extract (EE) of A. aroma. The cytotoxic activity was assayed by neutral red uptake assay on Vero cell. Cell treatment with a range from 100 to 5000 μg/mL of HAE and EE showed that 500 μg/mL and 100 μg/mL were the maximum noncytotoxic concentrations, respectively. The CC50 was 658 μg/mL for EE and 1020 μg/mL for HAE. The genotoxicity was tested by the single-cell gel electrophoresis comet assay. The results obtained in the evaluation of DNA cellular damage exposed to varied concentrations of the HAE showed no significant genotoxic effect at range of 1–20 mg/mL. The EE at 20 mg/mL showed moderate genotoxic effect related to the increase of the DNA percentage contained in tail of the comet; DNA was classified in category 2. At concentrations below 5 mg/mL, the results of cytotoxicity and genotoxicity of aqueous and ethanolic extracts of Acacia aroma guarantee the safety at cell and genomic level. However further studies are needed for longer periods including animal models to confirm the findings. PMID:25530999

  12. Use of Bayesian Estimates to determine the Volatility Parameter Input in the Black-Scholes and Binomial Option Pricing Models

    Directory of Open Access Journals (Sweden)

    Shu Wing Ho

    2011-12-01

    Full Text Available The valuation of options and many other derivative instruments requires an estimation of exante or forward looking volatility. This paper adopts a Bayesian approach to estimate stock price volatility. We find evidence that overall Bayesian volatility estimates more closely approximate the implied volatility of stocks derived from traded call and put options prices compared to historical volatility estimates sourced from IVolatility.com (“IVolatility”. Our evidence suggests use of the Bayesian approach to estimate volatility can provide a more accurate measure of ex-ante stock price volatility and will be useful in the pricing of derivative securities where the implied stock price volatility cannot be observed.

  13. Aroma peculiarities of apricot (Armeniaca vulgaris Lam. and cherry-plum (Prunus cerasifera Ehrh. flowers

    Directory of Open Access Journals (Sweden)

    В. М. Горіна

    2013-02-01

    Full Text Available In the component composition of volatile solutions determining fragrance of the flowers in apricot and cherry-plum varieties and Prunus brigantiaca Vill. x Armeniaca vulgaris Lam. hybrids there are 36 highest hydrocarbons and benzaldehyde that prevail. There are fewer amounts of the solutions which scare bees (benzaldehyde in the fragrance of cherry-plum varieties as compared to the flowers of apricot and hybrids. At the same time, the content of tricosane, pentacosane, docosane, heneycosane, eicosane, nonadecan that probably attract bees is higher in the cherry-plum flowers than in the fragrance of apricot and hybrid flowers. The average three years yield of cherry-plum plants (Nikitska Zhovta 10,7 and Salgirskaya Rumjanaya 28,5 t/ ha is higher than for apricot (Recolte de Schatene 0,3; Rodnik 2,9; Ananasniy Tsurupinsky 7,4 t/ha and hybrids (8110 – 5,2; 8098 – 6,4 t/ha that could be explained with better pollination of flowers and better fruit formation. Prevailing components of flower aroma of these plants    and their possible link with yield of the objects in questions have been analyzed.

  14. Inhibitory effect of aroma on the bitterness of branched-chain amino acid solutions.

    Science.gov (United States)

    Mukai, Junji; Tokuyama, Emi; Ishizaka, Toshihiko; Okada, Sachie; Uchida, Takahiro

    2007-11-01

    Nutritional products for patients with liver failure available on the Japanese market contain many branched-chain amino acids (BCAAs) such as L-leucine, L-isoleucine, and L-valine, which not only have a bitter taste but also strong, unpleasant odours, leading to low palatability. The palatability of these nutritional products can be significantly improved by the addition of flavoured powders containing various kinds of tastants (sucrose, citric acid, etc.) and odourants (fruit, coffee aromas, etc.). The specific effects of the aroma of flavoured powders have not yet been clearly evaluated. In the present article, the inhibitory effect of aroma on the bitterness of BCAA solutions was examined. The bitterness intensity of a BCAA solution at the same concentration as Aminoleban EN was defined as 3.5 (measured by a previously described gustatory sensation method). The bitterness threshold of a BCAA standard solution without added aroma was estimated to be 1.87, while those of BCAA solutions containing green-tea, coffee, apple, vanilla, or strawberry aromas were 2.02, 1.98, 2.35, 2.40 and 2.87, respectively, when evaluated by the probit method. This shows that the addition of an aroma can elevate the bitterness threshold in human volunteers. The green-tea and coffee aromas predominantly evoked bitterness, while the vanilla aroma predominantly evoked sweetness. Apple and strawberry aromas evoked both sweetness and sourness, with the apple aroma having stronger sourness and the strawberry aroma stronger sweetness. Thus, a 'sweet' aroma suppresses the bitterness of BCAA, with coexisting sourness also participating in the bitterness inhibition.

  15. Authenticity of aroma components Enantiomeric separation and compound specific stable isotope analysis

    OpenAIRE

    Hansen, Anne-Mette Sølvbjerg; Frandsen, Henrik Lauritz; Fromberg, Arvid

    2015-01-01

    The word “authenticity” is increasingly used in the marketing of food products. A product can be marketed claiming its authenticity such as containing only natural ingredients or originating from a special location produced using local traditional production methods. Within the area of food ingredients a problem with authenticity of aroma compounds has occurred, because natural aromas are wholly or partly replaced with synthetic ones. This is a large economic problem, since natural aromas are...

  16. PENGEMBANGAN AROMA DAN CITA RASA BAKSO DENGAN MENGGUNAKAN FLAVOR [Development of Aroma and Taste of Meat Ball Using Flavor

    Directory of Open Access Journals (Sweden)

    Aulia 2

    2001-08-01

    Full Text Available Bakso is one of the most popular meat product in Indonesia. This research studied of effect of addition of falvor to the quality of meat ball. The analysis included physical characteristics (specific gravity, hardness, shear, elasticity and color organoleptic test. The results showed that : according to consumer preference, the most like flavour that added in the meat ball were the flavour of beef Q. 1.%, beef Q 1.5%, Beef WIN 1.5% and beef Fat WIN 1.0%. the use of flavor did not cause differences in physical characteristics like specific gravity, hardness, shear, alasticity and color a-value. The use flavour in creased the price of bakso between Rp 4.5,- to Rp 18,-. According to comparison test, meat ball with beef Q 1.5% has the best score compared with Bakso Lapang Tembak (BLT in aroma, and with Bakso Pedagang Keliling (BPK has the best score in aroma, test and texture.

  17. Aroma profile and sensory characteristics of a sulfur dioxide-free mulberry (Morus nigra) wine subjected to non-thermal accelerating aging techniques.

    Science.gov (United States)

    Tchabo, William; Ma, Yongkun; Kwaw, Emmanuel; Zhang, Haining; Xiao, Lulu; Tahir, Haroon Elrasheid

    2017-10-01

    The present study was undertaken to assess accelerating aging effects of high pressure, ultrasound and manosonication on the aromatic profile and sensorial attributes of aged mulberry wines (AMW). A total of 166 volatile compounds were found amongst the AMW. The outcomes of the investigation were presented by means of geometric mean (GM), cluster analysis (CA), principal component analysis (PCA), partial least squares regressions (PLSR) and principal component regression (PCR). GM highlighted 24 organoleptic attributes responsible for the sensorial profile of the AMW. Moreover, CA revealed that the volatile composition of the non-thermal accelerated aged wines differs from that of the conventional aged wines. Besides, PCA discriminated the AMW on the basis of their main sensorial characteristics. Furthermore, PLSR identified 75 aroma compounds which were mainly responsible for the olfactory notes of the AMW. Finally, the overall quality of the AMW was noted to be better predicted by PLSR than PCR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Natural sparkling guava wine: volatile and physicochemical characterization

    Directory of Open Access Journals (Sweden)

    Silvana Maria Michelin Bertagnolli

    Full Text Available ABSTRACT: Although different tropical fruit species have been used in the development of fermented beverages, there are only few references in the literature to the production of natural sparkling wines from fruits other than grapes. In this sense, the objective of the present research was the development and physicochemical and volatile characterization of a natural sparkling guava wine produced by the champenoise method. Volatile compounds were identified by gas chromatography coupled to mass spectrometry using the headspace solid-phase microextraction (HS-SPME technique on samples. Eighty-nine volatile compounds were detected, of which 51 were identified. Esters were the predominant class of volatile compounds (a total of 26, followed by alcohols (10, terpenes (9, ketones (3, and acids (3. Volatile compounds with possible odoriferous activity were reported in the beverage, including ethyl octanoate, ethyl 5-hexenoate, phenethyl acetate, (E-β-damascenone, (E-ethyl cinnamate, 2-methyl butyl acetate, 3-methylbutanol, ethyl 3-(E-hexenoate, and methyl 5-hexenoate. Natural sparkling guava wine produced showed a complex composition of fruity and floral aromas. Furthermore, the use of the champenoise method, traditionally applied to grapes, enabled the manufacture of a natural sparkling guava wine with physicochemical characteristics equivalent to those of sparkling wines made from grapes.

  19. Nanostructure and Volatile Organic Compounds Sensing Properties of α-Fe2O3/Reduced Graphene Oxide Nanocomposite Derived by Spray Method

    Science.gov (United States)

    Zolghadr, S.; Kimiagar, S.; Khojier, K.

    2017-08-01

    This paper investigates the α-Fe2O3/reduced graphene oxide (rGO) nanocomposite as a volatile organic compounds (VOCs) sensor. The α-Fe2O3/reduced graphene oxide nanocomposites of about 370 nm thickness were synthesized by a spray method with different rGO contents (3%, 4%, and 5%) on SiO2/Si substrates. The samples were structurally and morphologically characterized by x-ray diffraction, and field emission scanning electron microscopy. These analyses showed that an increase in rGO content decreases the crystallinity of the samples. In order to study the VOCs sensing properties, the sensitivity and selectivity of the samples were tested with different VOCs vapors including ethanol, methanol, toluene, benzene, and formic acid in the temperature range of 200-400°C. The results show that the α-Fe2O3/rGO nanocomposites are more selective to ethanol than the other vapors, while an increase in rGO content decreases the sensitivity of the samples. The α-Fe2O3/rGO (3%)-based ethanol sensor also shows a good stability with respect to relative humidity in the range of 20-50% with a 1-ppm detection limit at the operating temperature of 280°C.

  20. Volatile phenols in wine: Control measures of Brettanomyces/Dekkera yeasts

    Directory of Open Access Journals (Sweden)

    Sanja Šućur

    2016-10-01

    Full Text Available This review focuses on the considerable amount of research regarding volatile phenols production by Brettanomyces and on microbiological and technological parameters that influence development of these compounds during all stages of grape processing and winemaking. Also, volatile phenols impact on wine aroma and quality and prevention methods were discussed. The yeast genus Brettanomyces is the major microorganism that has the ability to convert hydroxycinnamic acids into significant concentration of phenolic compounds, especially of 4-ethylphenol and 4-ethylguaiacol, in red wine. When volatile phenols reach concentrations above the sensory threshold in wine, it is then characterized as wine with fault. In order to control the growth of Brettanomyces and preclude volatile phenols production, it is helpful to keep good quality of grape, winery sanitation, control of oxygen and sulphite level, as well as orderly check physiochemical composition of wine.

  1. Volatile Ester Formation in Roses. Identification of an Acetyl-Coenzyme A. Geraniol/Citronellol Acetyltransferase in Developing Rose Petals1

    Science.gov (United States)

    Shalit, Moshe; Guterman, Inna; Volpin, Hanne; Bar, Einat; Tamari, Tal; Menda, Naama; Adam, Zach; Zamir, Dani; Vainstein, Alexander; Weiss, David; Pichersky, Eran; Lewinsohn, Efraim

    2003-01-01

    The aroma of roses (Rosa hybrida) is due to more than 400 volatile compounds including terpenes, esters, and phenolic derivatives. 2-Phenylethyl acetate, cis-3-hexenyl acetate, geranyl acetate, and citronellyl acetate were identified as the main volatile esters emitted by the flowers of the scented rose var. “Fragrant Cloud.” Cell-free extracts of petals acetylated several alcohols, utilizing acetyl-coenzyme A, to produce the corresponding acetate esters. Screening for genes similar to known plant alcohol acetyltransferases in a rose expressed sequence tag database yielded a cDNA (RhAAT1) encoding a protein with high similarity to several members of the BAHD family of acyltransferases. This cDNA was functionally expressed in Escherichia coli, and its gene product displayed acetyl-coenzyme A:geraniol acetyltransferase enzymatic activity in vitro. The RhAAT1 protein accepted other alcohols such as citronellol and 1-octanol as substrates, but 2-phenylethyl alcohol and cis-3-hexen-1-ol were poor substrates, suggesting that additional acetyltransferases are present in rose petals. The RhAAT1 protein is a polypeptide of 458 amino acids, with a calculated molecular mass of 51.8 kD, pI of 5.45, and is active as a monomer. The RhAAT1 gene was expressed exclusively in floral tissue with maximum transcript levels occurring at stage 4 of flower development, where scent emission is at its peak. PMID:12692346

  2. A realised volatility measurement using quadratic variation and dealing with microstructure effects

    Directory of Open Access Journals (Sweden)

    C du Toit

    2006-12-01

    Full Text Available A volatility measurement that overcomes the respective problems encountered when implementing the realised and Discrete Sine Transform volatility measurements is defined and discussed in this paper. First the shortcomings of these measurements are briefly discussed. Then a modified realised volatility measurement is defined and relevant theoretical results are derived. Finally simulation results are used to evaluate these three volatility measurements.

  3. Volatile flavor constituents in the pork broth of black-pig.

    Science.gov (United States)

    Zhao, Jian; Wang, Meng; Xie, Jianchun; Zhao, Mengyao; Hou, Li; Liang, Jingjing; Wang, Shi; Cheng, Jie

    2017-07-01

    Pork of black-pig in China is well known for its quality and preferred by consumers. However, there is a lack of research on its flavors. By solvent assisted flavor evaporation combined with GC-MS, 104 volatile compounds in the stewed pork broth of black-pig were identified with the dominant amounts of fatty acids, alcohols, and esters. By aroma extract dilution analysis-GC-O method, 27 odor-active compounds were characterized, including 2-methyl-3-furanthiol, 3-(methylthio)propanal, 2-furfurylthiol, γ-decalactone, nonanal, (E)-2-nonenal, and (E,E)-2,4-decadienal that had high FD factors. Compared to the common white-pig, the aroma compounds in both pork broths were almost the same, but the aroma profile of potent odorants for the black-pig pork broth showed less fatty and more roasted notes, which were partially attributed to the higher monounsaturated fatty acids and lower polyunsaturated fatty acids in meat. With aid of authentic chemicals and selected reaction monitoring mode of GC-MS/MS, 19 aroma compounds were quantitated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. FRUITY AROMA PRODUCTION BY Ceratocystis fimbriata IN SOLID CULTURES FROM AGRO-INDUSTRIAL WASTES

    Directory of Open Access Journals (Sweden)

    Adriana Bramorski

    1998-09-01

    Full Text Available Solid state fermentations were carried out to test the efficacy of Ceratocystis fimbriata to grow on different agro-industrial substrates and aroma production. Seven media were prepared using cassava bagasse, apple pomace, amaranth and soya bean. All the media supported fungal growth. While amaranth medium produced pineapple aroma, media containing cassava bagasse, apple pomace and soya bean produced a strong fruity aroma. The aroma production was growth dependent and the maximum aroma intensity was detected a few hours before or after the maximum respirometric activity. Sixteen compounds were separated by gas cromatography of the components present in the headspace and fifteen of them were identified as acid (1, alcohols (6, aldehyde (1, ketones (2 and esters (5.Este estudo explorou a versatilidade de Ceratocystis fimbriata de crescer e produzir aromas naturais sobre substratos de resíduos agro-industriais. Bagaço de mandioca, bagaço de maçã, amaranto e soja em diferentes proporções compuseram os sete meios utilizados, mostrando ser substratos adequados para o crescimento e produção de aroma por este fungo em fermentação no estado sólido. Todos os meios contendo bagaço de mandioca, bagaço de maçã e soja em sua composição proporcionaram um forte aroma frutal, enquanto, o meio de amaranto produziu um agradável aroma de abacaxi. A produção de aroma foi dependente do crescimento, visto que a máxima intensidade do aroma foi detectado poucas horas antes ou depois da atividade respiratória máxima. Foram detectados dezesseis compostos pela cromatografia de gás no headspace das culturas, e quinze deles foram identificados: 1 ácido, 6 alcoois, 1 aldeído, 2 cetonas e 5 ésteres.

  5. Volatile Organic Compounds (VOCs)

    Science.gov (United States)

    ... Contact Us Share Volatile Organic Compounds' Impact on Indoor Air Quality On this page: Introduction Sources Health Effects Levels in Homes Steps to Reduce Exposure Standards or Guidelines Additional Resources Introduction Volatile organic compounds ( ...

  6. Enantioselective GC-MS analysis of volatile components from rosemary (Rosmarinus officinalis L.) essential oils and hydrosols.

    Science.gov (United States)

    Tomi, Kenichi; Kitao, Makiko; Konishi, Norihiro; Murakami, Hiroshi; Matsumura, Yasuki; Hayashi, Takahiro

    2016-05-01

    Essential oils and hydrosols were extracted from rosemary harvested in different seasons, and the chemical compositions of volatile components in the two fractions were analyzed by gas chromatography-mass spectrometry (GC-MS). Enantiomers of some volatile components were also analyzed by enantioselective GC-MS. Classification of aroma components based on chemical groups revealed that essential oils contained high levels of monoterpene hydrocarbons but hydrosols did not. Furthermore, the enantiomeric ratios within some volatile components were different from each other; for example, only the (S)-form was observed for limonene and the (R)-form was dominant for verbenone. These indicate the importance of determining the enantiomer composition of volatile components for investigating the physiological and psychological effects on humans. Overall, enantiomeric ratios were determined by volatile components, with no difference between essential oils and hydrosols or between seasons.

  7. Aroma compound analysis of Piper nigrum and Piper guineense essential oils from Cameroon using solid-phase microextraction-gas chromatography, solid-phase microextraction-gas chromatography-mass spectrometry and olfactometry.

    Science.gov (United States)

    Jirovetz, Leopold; Buchbauer, Gerhard; Ngassoum, Martin Benoit; Geissler, Margit

    2002-11-08

    The investigation of aroma compounds of the essential oils of dried fruits of black pepper (Piper nigrum) and black and white "Ashanti pepper" (Piper guineense) from Cameroon by means of solid-phase microextraction (SPME) was carried out for the first time to identify the odorous target components responsible for the characteristic odor of these valuable spices and food flavoring products. By means of GC-flame ionization detection (FID) and GC-MS (using different polar columns) the main compounds (concentration >3.0%, calculated as area of GC-FID analysis using a non-polar fused-silica open tubular RSL-200 column) of the SPME headspace samples of P. nigrum (black) and P. guineense (black and white) were found to be: P. nigrum (black)--germacrene D (11.01%), limonene (10.26%), beta-pinene (10.02%), alpha-phellandrene (8.56%), beta-caryophyllene (7.29%), alpha-pinene (6.40%) and cis-beta-ocimene (3.19%); P. guineense (black)--beta-caryophyllene (57.59%), beta-elemene (5.10%), bicyclogermacrene (5.05%) and alpha-humulene (4.86%); and P. guineense (white)--beta-caryophyllene (51.75%), cis-beta-ocimene (6.61%), limonene (5.88%), beta-pinene (4.56%), linalool (3.97%) and alpha-humulene (3.29%). The most intense odor impressions of the essential oils of the various dried pepper fruits were given byprofessional perfumers as follows: P nigrum (black)--fine, pleasant black pepper note; P. guineense (black)--black pepper top-note; and P. guineense (white)--pleasant white pepper note. These analytical results for the SPME headspace samples of three different pepper species from Cameroon are in accordance with the olfactoric data of the corresponding essential oils. A GC-sniffing technique was used to correlate the single odor impression of the identified SPME headspace volatiles of the three investigated pepper samples with the following results: themain compounds such as beta-caryophyllene, germacrene D, limonene, beta-pinene, alpha-phellandrene and alpha-humulene, as well as

  8. Aroma-active ester profile of ale beer produced under different fermentation and nutritional conditions.

    Science.gov (United States)

    Hiralal, Lettisha; Olaniran, Ademola O; Pillay, Balakrishna

    2014-01-01

    A broad range of aroma-active esters produced during fermentation are vital for the complex flavour of beer. This study assessed the influence of fermentation temperature, pH, and wort nutritional supplements on the production of yeast-derived ester compounds and the overall fermentation performance. The best fermentation performance was achieved when wort was supplemented with 0.75 g/l l-leucine resulting in highest reducing sugar and FAN (free amino nitrogen) utilization and ethanol production. At optimum fermentation pH of 5, 38.27% reducing sugars and 35.28% FAN was utilized resulting in 4.07% (v/v) ethanol. Wort supplemented with zinc sulphate (0.12 g/l) resulted in 5.01% ethanol (v/v) production and 54.32% reducing sugar utilization. Increase in fermentation temperature from 18°C to room temperature (± 22.5°C) resulted in 17.03% increased ethanol production and 14.42% and 62.82% increase in total acetate ester concentration and total ethyl ester concentration, respectively. Supplementation of worth with 0.12 g/l ZnSO4 resulted in 2.46-fold increase in both isoamyl acetate and ethyl decanoate concentration, while a 7.05-fold and 1.96-fold increase in the concentration of isoamyl acetate and ethyl decanoate, respectively was obtained upon 0.75 g/l l-leucine supplementation. Wort supplemented with l-leucine (0.75 g/l) yielded the highest beer foam head stability with a rating of 2.67, while highest yeast viability was achieved when wort was supplemented with 0.12 g/l zinc sulphate. Results from this study suggest that supplementing wort with essential nutrients required for yeast growth and optimizing the fermentation conditions could be an effective way of improving fermentation performance and controlling aroma-active esters in beer.

  9. Identification and Characterization of Terpene Synthases Potentially Involved in the Formation of Volatile Terpenes in Carrot (Daucus carota L.) Roots.

    Science.gov (United States)

    Yahyaa, Mosaab; Tholl, Dorothea; Cormier, Guy; Jensen, Roderick; Simon, Philipp W; Ibdah, Mwafaq

    2015-05-20

    Plants produce an excess of volatile organic compounds, which are important in determining the quality and nutraceutical properties of fruit and root crops, including the taste and aroma of carrots (Daucus carota L.). A combined chemical, biochemical, and molecular study was conducted to evaluate the differential accumulation of volatile terpenes in a diverse collection of fresh carrots (D. carota L.). Here, we report on a transcriptome-based identification and functional characterization of two carrot terpene synthases, the sesquiterpene synthase, DcTPS1, and the monoterpene synthase, DcTPS2. Recombinant DcTPS1 protein produces mainly (E)-β-caryophyllene, the predominant sesquiterpene in carrot roots, and α-humulene, while recombinant DcTPS2 functions as a monoterpene synthase with geraniol as the main product. Both genes are differentially transcribed in different cultivars and during carrot root development. Our results suggest a role for DcTPS genes in carrot aroma biosynthesis.

  10. Effect of purified β-glucans derived from Laminaria digitata, Laminaria hyperborea and Saccharomyces cerevisiae on piglet performance, selected bacterial populations, volatile fatty acids and pro-inflammatory cytokines in the gastrointestinal tract of pigs.

    Science.gov (United States)

    Sweeney, T; Collins, C B; Reilly, P; Pierce, K M; Ryan, M; O'Doherty, J V

    2012-10-01

    β-Glucans have been identified as natural biomolecules with immunomodulatory activity. The first objective of the present study was to compare the effects of purified β-glucans derived from Laminaria digitata, L. hyperborea and Saccharomyces cerevisiae on piglet performance, selected bacterial populations and intestinal volatile fatty acid (VFA) production. The second aim was to compare the gene expression profiles of the markers of pro- and anti-inflammation in both unchallenged and lipopolysaccharide (LPS)-challenged ileal and colonic tissues. β-Glucans were included at 250 mg/kg in the diets. The β-glucans derived from L. hyperborea, L. digitata and S. cerevisiae all reduced the Enterobacteriaceae population (P0·05) in the ileum and colon. There was a significant interaction between gastrointestinal region and β-glucan source in the expression of cytokine markers, IL-1α (yeast sources reduce Enterobacteriaceae counts and pro-inflammatory markers in the colon, though the mechanisms of action may be different between the soluble and insoluble fibre sources.

  11. Volatility Forecast in Crises and Expansions

    Directory of Open Access Journals (Sweden)

    Sergii Pypko

    2015-08-01

    Full Text Available We build a discrete-time non-linear model for volatility forecasting purposes. This model belongs to the class of threshold-autoregressive models, where changes in regimes are governed by past returns. The ability to capture changes in volatility regimes and using more accurate volatility measures allow outperforming other benchmark models, such as linear heterogeneous autoregressive model and GARCH specifications. Finally, we show how to derive closed-form expression for multiple-step-ahead forecasting by exploiting information about the conditional distribution of returns.

  12. Differential effects of exposure to ambient vanilla and citris aromas on mood, arousal and food choice

    NARCIS (Netherlands)

    Wijk, de R.A.; Zijlstra, S.

    2012-01-01

    Background Aromas have been associated with physiological, psychological affective and behavioral effects. We tested whether effects of low-level exposure to two ambient food-related aromas (citrus and vanilla) could be measured with small numbers of subjects, low-cost physiological sensors and semi

  13. Understanding Aroma Release from Model Cheeses by a Statistical Multiblock Approach on Oral Processing

    Science.gov (United States)

    Feron, Gilles; Ayed, Charfedinne; Qannari, El Mostafa; Courcoux, Philippe; Laboure, Hélène; Guichard, Elisabeth

    2014-01-01

    For human beings, the mouth is the first organ to perceive food and the different signalling events associated to food breakdown. These events are very complex and as such, their description necessitates combining different data sets. This study proposed an integrated approach to understand the relative contribution of main food oral processing events involved in aroma release during cheese consumption. In vivo aroma release was monitored on forty eight subjects who were asked to eat four different model cheeses varying in fat content and firmness and flavoured with ethyl propanoate and nonan-2-one. A multiblock partial least square regression was performed to explain aroma release from the different physiological data sets (masticatory behaviour, bolus rheology, saliva composition and flux, mouth coating and bolus moistening). This statistical approach was relevant to point out that aroma release was mostly explained by masticatory behaviour whatever the cheese and the aroma, with a specific influence of mean amplitude on aroma release after swallowing. Aroma release from the firmer cheeses was explained mainly by bolus rheology. The persistence of hydrophobic compounds in the breath was mainly explained by bolus spreadability, in close relation with bolus moistening. Resting saliva poorly contributed to the analysis whereas the composition of stimulated saliva was negatively correlated with aroma release and mostly for soft cheeses, when significant. PMID:24691625

  14. Differential effects of the aromas of Salvia species on memory and mood.

    Science.gov (United States)

    Moss, Lucy; Rouse, Michelle; Wesnes, Keith A; Moss, Mark

    2010-07-01

    This study investigated the potential for the aromas of the essential oils of Salvia species to affect cognition and mood in healthy adults. Research has demonstrated that orally administered Salvia officinalis and Salvia lavandulaefolia are capable of modulating cognition and mood. The active compounds in the herbal products might also be present in the aromas and so produce similar effects. In an independent groups design, three conditions, S. officinalis aroma, S. lavandulaefolia aroma and no aroma were employed. One hundred and thirty-five healthy volunteers acted as participants, with 45 in each condition. Cognitive performance was assessed via the Cognitive Drug Research (CDR) System. Bond-Lader mood scales measured the participants' mood on three dimensions before and after the cognitive tasks. Data analysis revealed that the S. officinalis aroma group performed significantly better than the control group on the quality of memory and secondary memory primary outcome factors from the test battery. The Alert mood measure displayed significant differences between both aromas and the control condition. These findings suggest that the aromas of essential oils of Salvia species reproduce some but not all of the effects found following oral herb administration, and that interesting dissociations occur between subjective and objective responses.

  15. Combined heterogeneous distribution of salt and aroma in food enhances salt perception.

    Science.gov (United States)

    Emorine, Marion; Septier, Chantal; Andriot, Isabelle; Martin, Christophe; Salles, Christian; Thomas-Danguin, Thierry

    2015-05-01

    Aroma-taste interactions and heterogeneous spatial distribution of tastants were used as strategies for taste enhancement. This study investigated the combination of these two strategies through the effect of heterogeneous salt and aroma distribution on saltiness enhancement and consumer liking for hot snacks. Four-layered cream-based products were designed with the same total amount of sodium and ham aroma but varied in their spatial distribution. Unflavoured products containing the same amount of salt and 35% more salt were used as references. A consumer panel (n = 82) rated the intensity of salty, sweet, sour, bitter and umami tastes as well as ham and cheese aroma intensity for each product. The consumers also rated their liking for the products in a dedicated sensory session. The results showed that adding salt-associated aroma (ham) led to enhancement of salty taste perception regardless of the spatial distribution of salt and aroma. Moreover, products with a higher heterogeneity of salt distribution were perceived as saltier (p aroma distribution had only a marginal effect on both aroma and salty taste perception. Furthermore, heterogeneous products were well liked by consumers compared to the homogeneous products.

  16. Understanding aroma release from model cheeses by a statistical multiblock approach on oral processing.

    Science.gov (United States)

    Feron, Gilles; Ayed, Charfedinne; Qannari, El Mostafa; Courcoux, Philippe; Laboure, Hélène; Guichard, Elisabeth

    2014-01-01

    For human beings, the mouth is the first organ to perceive food and the different signalling events associated to food breakdown. These events are very complex and as such, their description necessitates combining different data sets. This study proposed an integrated approach to understand the relative contribution of main food oral processing events involved in aroma release during cheese consumption. In vivo aroma release was monitored on forty eight subjects who were asked to eat four different model cheeses varying in fat content and firmness and flavoured with ethyl propanoate and nonan-2-one. A multiblock partial least square regression was performed to explain aroma release from the different physiological data sets (masticatory behaviour, bolus rheology, saliva composition and flux, mouth coating and bolus moistening). This statistical approach was relevant to point out that aroma release was mostly explained by masticatory behaviour whatever the cheese and the aroma, with a specific influence of mean amplitude on aroma release after swallowing. Aroma release from the firmer cheeses was explained mainly by bolus rheology. The persistence of hydrophobic compounds in the breath was mainly explained by bolus spreadability, in close relation with bolus moistening. Resting saliva poorly contributed to the analysis whereas the composition of stimulated saliva was negatively correlated with aroma release and mostly for soft cheeses, when significant.

  17. Acute Effects of Complexity in Aroma Composition on Satiation and Food Intake

    NARCIS (Netherlands)

    Ruijschop, R.M.A.J.; Boelrijk, A.E.M.; Burgering, M.J.M.; Graaf, de C.; Westerterp-Plantenga, M.S.

    2010-01-01

    Compared to placebo, subjects felt significantly more satiated during aroma stimulation with the multicomponent strawberry aroma in the olfactometer-aided setting. Additionally, perceived satiation was significantly increased 10-15 min after consumption of the multicomponent strawberry-aromatized sw

  18. Growth and aroma contribution of Microbacterium foliorum, Proteus vulgaris and Psychrobacter sp. during ripening in a cheese model medium.

    Science.gov (United States)

    Deetae, Pawinee; Spinnler, Henry-Eric; Bonnarme, Pascal; Helinck, Sandra

    2009-02-01

    The growth and aroma contribution of Microbacterium foliorum, Proteus vulgaris and Psychrobacter sp., some common but rarely mentioned cheese bacteria, were investigated in a cheese model deacidified by Debaryomyces hansenii during the ripening process. Our results show that these bacteria had distinct growth and cheese flavour production patterns during the ripening process. P. vulgaris had the greatest capacity to produce not only the widest variety but also the highest quantities of volatile compounds with low olfactive thresholds, e.g. volatile sulphur compounds and branched-chain alcohols. Such compounds produced by P. vulgaris increased after 21 days of ripening and reached a maximum at 41 days. The three bacteria studied exhibited various degrees of caseinolytic, aminopeptidase and deaminase activities. Moreover, P. vulgaris had a greater capacity for hydrolysing casein and higher deaminase activity. Our results show that P. vulgaris, a Gram-negative bacterium naturally present on the surface of ripened cheeses, could produce high concentrations of flavour compounds from amino acid degradation during the ripening process. Its flavouring role in cheese cannot be neglected. Moreover, it could be a useful organism for producing natural flavours as dairy ingredients.

  19. Aromatic compound in different peach cultivars and effect of preservatives on the final aroma of cooked fruits

    Directory of Open Access Journals (Sweden)

    Bavcon-Kralj Mojca

    2014-01-01

    Full Text Available In our study, we were used four yellow-fleshed peach cultivars ‟Royal Glory‟, „Redhaven", 'Maria Marta' and 'Norman', during two-year period. The characterization of aromatic constituents of investigated cultivars was done using headspace solid phase micro-extraction (HS-SPME. The intention was to make implicit discrimination between cultivars by analysis of components present in all cultivars during two-year period. Also, the impact of added preservatives (Na-benzoate and citric acid on the final aroma of cooked peaches was studied. The cultivars' differences and the impact of preservatives (Na-benzoate and citric acid were statistically evaluated. Multiple discriminant analysis of peaches‟ aromatic profile was used to segregate investigated peach cultivars. Although they were very similar, the cultivars were segregated by two discriminant function, function 1 (which accounted for 56.9% of this peach model and function 2 (31.7%. The use of preservatives had also an important impact on the aromatic profile of cooked peaches. The statistical analysis indicated that from 57 identified volatiles, 40 volatiles showed statistically significant difference regarding the way of preservation. The main negative impact had Na-benzoate compared to control or samples preserved with citric acid.

  20. Effects of the origins of Botrytis cinerea on earthy aromas from grape broth media further inoculated with Penicillium expansum.

    Science.gov (United States)

    Morales-Valle, H; Silva, L C; Paterson, R R M; Venâncio, A; Lima, N

    2011-08-01

    Earthy "off" aromas from wine and grape juice are highly detrimental to the production of quality grape products. These volatile compounds are produced on grapes by Botrytis cinerea, Penicillium expansum and/or a combination of P. expansum and B. cinerea strains. B. cinerea strains were isolated from different (a) vineyards in Spain and Portugal, (b) grape varieties (c) bunches (i.e., sound and botrytized) and (d) positions in the botrytized bunch (i.e., interior or exterior). A novel Headspace-Phase Microextraction (SPME) followed by Gas Chromatrography/Mass Spectrometry (GC-MS) dedicated to analyze geosmin, methylisoborneol (MIB), 1-octen-3-ol, fenchone and fenchol in grape broth medium was used. Approximately 50% of the B. cinerea strains induced detectable geosmin. One strain accumulated significant amounts of anisoles, demonstrating that this contamination might already occur in the vineyard. Strains from the interior of Cainho grape bunches induced more geosmin and hence it may be possible to reduce this volatile in wine by avoiding using these grapes in case of B. cinerea attack.

  1. Analysis of characteristic aroma of fungal fermented Fuzhuan brick-tea by gas chromatography/mass spectrophotometry

    NARCIS (Netherlands)

    Xu, X.Q.; Mo, H.Z.; Yan, M.C.; Yang Zhu, Yang

    2007-01-01

    Fuzhuan brick-tea is a popular fermented Chinese dark tea because of its typical fungal aroma. Fungal growth during the production process is the key step in achieving the unique colour, aroma and taste of Fuzhuan brick-tea. To further understand the generation of the characteristic aroma, changes i

  2. 微萃取技术在食醋香气成分分析中的应用%Application of Microextraction Techniques for the Analysis of Aroma Components in Vinegar

    Institute of Scientific and Technical Information of China (English)

    刘婷; 孙晶; 罗秀华; 高丽华

    2014-01-01

    Due to the low concentration in foodstuffs as well as the low odor thresholds,aroma compounds create a challenge in their extraction,separation and quantitation.Food aroma volatiles are compounds with different polarity, volatility and chemical properties, which determine the extraction techniques for their isolation from food.Microextraction techniques,especially SPME and SBSE have been used for food aroma compounds analysis for two decades.This review summarizes the use of microextraction techniques in vinegar aroma compounds analysis.%香气成分在食品中的含量低、嗅觉识别阈值低的特点使得对它们的提取、分离和定量分析面临挑战。食品中不同极性、不同挥发性和不同化学性质的香气物质需要不同的萃取方法来分离。近20年来,微萃取技术,主要是固相微萃取和搅拌棒吸附萃取在香气成分分析中的应用日益广泛,而其他的萃取技术由于技术上的局限性应用很少。对近年来微萃取技术在食醋香气成分分析中的应用进行了综述。

  3. Fortification and Elevated Alcohol Concentration Affect the Concentration of Rotundone and Volatiles in Vitis vinifera cv. Shiraz Wine

    OpenAIRE

    Pangzhen Zhang; Fangping Luo; Kate Howell

    2017-01-01

    Rotundone is a key aromatic compound for cool-climate Shiraz. This compound is produced in the skin of grape berries and extracted into wine during fermentation. This project investigated the influence of fermentation techniques on the concentration of rotundone in the resultant wine. Wine was fortified with ethanol and sucrose on the 1st and 5th days of fermentation and rotundone, volatile aroma compounds and colour were assessed in the resultant wine. The relationship between the concentrat...

  4. PROFIL AROMA DAN MUTU SENSORI CITARASA PASTA KAKAO UNGGULAN DARI BEBERAPA DAERAH DI INDONESIA [Aroma and Flavor Sensory Profiles of Superior Cocoa Liquors from Different Regions in Indonesia

    Directory of Open Access Journals (Sweden)

    Intan Kusumaningrum*

    2014-06-01

    Full Text Available The objective of this research was to compare the aroma profiles and flavor sensory qualities of three cocoa liquors obtained from different regions in Indonesia, namely East Java, South Sulawesi and Bali. The Ghanaian cocoa liquor was used as the reference. The aroma of cocoa liquors was extracted by using a Solid Phase Microextraction (SPME, followed by detection with Gas Chromatography-Mass Spectrometry/Olfactometry (GC-MS/O with the Nassal Impact Frequency (NIF method. A total of 28 aroma active compounds in the cocoa liquors were identified, where in 21, 19, 22 and 18 compounds were detected in East Java, Bali, South Sulawesi and Ghana liquors, respectively. The profiles of these three liquors were not only different from one another but were also different from the reference. East Java liquor had a specific aroma of strong chocolate, enriched with creamy, caramel and coffee bean aroma, whileBali liquor was dominated by creamy, caramel and sweet, and South Sulawesi liquor was specified by its sweet green aroma. The aroma sensory characteristic was evaluated by descriptive test, presenting the aroma of nutty, acid, caramel, earthy and chocolate, while the taste sensory attributes included astringency, bitterness and acidity. The sensory profile analysis was carried out by applying a Quantitative Descriptive Analysis (QDA method. Accompired with preference and ranking tests were also conducted. Among the three cocoa liquors, the sensory profile of South Sulawesi was the most similar to that of Ghanaian cocoa liquor. However, the cocoa liquor from Bali and East Java cocoa were more preferred comparing to the liquor from South Sulawesi.

  5. Differential effects of exposure to ambient vanilla and citrus aromas on mood, arousal and food choice

    Directory of Open Access Journals (Sweden)

    de Wijk René A

    2012-12-01

    Full Text Available Abstract Background Aromas have been associated with physiological, psychological affective and behavioral effects. We tested whether effects of low-level exposure to two ambient food-related aromas (citrus and vanilla could be measured with small numbers of subjects, low-cost physiological sensors and semi-real life settings. Tests included physiological (heart rate, physical activity and response times, psychological (emotions and mood and behavioral (food choice measures in a semi-real life environment for 22 participants. Results Exposure to ambient citrus aroma increased physical activity (P P P P P Conclusions The test battery used in this study demonstrated aroma-specific physiological, psychological and behavioral effects of aromas with similar appeal and intensities, and similar food-related origins. These effects could be measured in (semi- real life environments for freely moving subjects using relatively inexpensive commercially available physiological sensors.

  6. Volatile Compounds in Dry Dog Foods and Their Influence on Sensory Aromatic Profile

    Directory of Open Access Journals (Sweden)

    Koushik Adhikari

    2013-02-01

    Full Text Available The aim of this study was to determine volatile compounds in dry dog foods and their possible influence on sensory aromatic profile. Grain-free dry dog foods were compared to dry dog foods manufactured with grain, but also with different protein sources for their aromatic volatiles. Solid-phase microextraction/gas chromatography/mass spectrometry was used to determine the aromatic compounds present in the headspace of these samples. Partial Least Squares regression was performed to correlate the instrumental aromatic data with the descriptive aroma analysis data. A total of 54 aromatic compounds were tentatively identified in the dry dog food samples, with aldehydes and ketones being the most represented organic volatiles group. Grain-added products were on the average higher in total volatiles than grain-free products. Partial Least Squares regression analysis indicated possible connections with sensory aromatic profile and grain-added samples, such as rancid aroma and aldehydes, especially hexanal. The results of this study showed that dry dog foods are products with complex odor characteristics and that grain-free products are less aromatic.

  7. Volatile compounds in dry dog foods and their influence on sensory aromatic profile.

    Science.gov (United States)

    Koppel, Kadri; Adhikari, Koushik; Di Donfrancesco, Brizio

    2013-02-27

    The aim of this study was to determine volatile compounds in dry dog foods and their possible influence on sensory aromatic profile. Grain-free dry dog foods were compared to dry dog foods manufactured with grain, but also with different protein sources for their aromatic volatiles. Solid-phase microextraction/gas chromatography/mass spectrometry was used to determine the aromatic compounds present in the headspace of these samples. Partial Least Squares regression was performed to correlate the instrumental aromatic data with the descriptive aroma analysis data. A total of 54 aromatic compounds were tentatively identified in the dry dog food samples, with aldehydes and ketones being the most represented organic volatiles group. Grain-added products were on the average higher in total volatiles than grain-free products. Partial Least Squares regression analysis indicated possible connections with sensory aromatic profile and grain-added samples, such as rancid aroma and aldehydes, especially hexanal. The results of this study showed that dry dog foods are products with complex odor characteristics and that grain-free products are less aromatic.

  8. VOLATILE COMPOUNDS IDENTIFIED IN BARBADOS CHERRY ‘BRS-366 JABURÚ’

    Directory of Open Access Journals (Sweden)

    Y. M. Garcia

    2016-07-01

    Full Text Available In foods, the flavor and aroma are very important attributes, thus the main objective of this study was to identify the volatile compounds (VC of the "BRS-366 Jaburú" acerola variety, for which we used the solid phase microextraction method (SPE. The separation and identification of volatile compounds was made using gas chromatography-mass spectrometry (GC-MS. Three fibers were evaluated, Polydimethylsiloxane / Divinylbenzene (PDMS / DVB, 65 micrometres Divinylbenzene / Carboxen / Polydimethylsiloxane (DVB / CAR / PDMS 50/30 m and polyacrylate (PA 85 uM to compare the extraction of its components. Thirty-three volatile compounds were identified and classified into eight chemical classes: carboxylic acids, alcohols, aldehydes, ketones, esters, hydrocarbons, phenylpropanoids and terpenoids. The peak areas of each of the extracted compounds were expressed as percentages to indicate the relative concentration of each, of which ethyl acetate is distinguished by being responsible for the fruity aroma notes. Thus, the fiber PDMS / DVB was the best as it enabled to extract a greater amount of volatile compounds

  9. Characterization of the Key Aroma Compounds in Chinese Vidal Icewine by Gas Chromatography-Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Tests.

    Science.gov (United States)

    Ma, Yue; Tang, Ke; Xu, Yan; Li, Ji-Ming

    2017-01-18

    The key aroma compounds of Chinese Vidal icewine were characterized by means of gas chromatography-olfactometry (GC-O) coupled with mass spectrometry (MS) on polar and nonpolar columns, and their flavor dilution (FD) factors were determined by aroma extract dilution analysis (AEDA). A total of 59 odor-active aroma compounds in three ranks of Vidal icewines were identified, and 28 odorants (FD ≥ 9) were further quantitated for aroma reconstitution and omission tests. β-Damascenone showed the highest FD value of 2187 in all icewines. Methional and furaneol were first observed as important odorants in Vidal icewine. Aroma recombination experiments revealed a good similarity containing the 28 important aromas. Omission tests corroborated the significant contribution of β-damascenone and the entire group of esters. Besides, 4-hydroxy-2,5-dimethyl-3(2H)-furanone (furaneol) and 3-(methylthio)-1-propanal (methional) also had significant effects on icewine character, especially on apricot, caramel, and tropical fruit characteristics.

  10. Reliable characterization of coffee bean aroma profiles by automated headspace solid phase microextraction-gas chromatography-mass spectrometry with the support of a dual-filter mass spectra library.

    Science.gov (United States)

    Mondello, Luigi; Costa, Rosaria; Tranchida, Peter Quinto; Dugo, Paola; Lo Presti, Maria; Festa, Saverio; Fazio, Alessia; Dugo, Giovanni

    2005-06-01

    This investigation is based on the automated solid phase microextraction GC-MS analysis of the volatile fraction of a variety of coffee bean matrices. Volatile analytes were extracted by headspace (HS)-SPME which was achieved with the support of automated instrumentation. The research was directed towards various important aspects relating to coffee aroma analysis: monitoring of the volatile fraction formation during roasting; chromatographic differentiation of the two main coffee species (Arabica and Robusta) and of a single species from different geographical origins; evaluation of the influence of specific industrial treatments prior to roasting. Reliable peak assignment was carried out through the use of a recently laboratory-constructed "flavour and fragrance" library and a dual-filter MS spectral search procedure. Further emphasis was placed on the automated SPME instrumentation and on its ability to supply highly repeatable chromatographic data.

  11. Mantle Volatiles - Distribution and Consequences

    Science.gov (United States)

    Luth, R. W.

    2003-12-01

    Volatiles in the mantle have, for many years, been the subject of intensive study from a number of perspectives. They are of interest because of their potential effects on melting relationships, on transport of major and trace elements, and on the rheological and other physical properties of the mantle. By convention, "volatiles" in this context are constituents that are liquid or gaseous at normal Earth surface conditions. This review will look at the behavior of C-O-H-S-halogen volatiles, beginning with H2O and C-O volatiles.There have been tremendous strides made recently towards understanding how volatiles in general and water in particular is transported and stored in the mantle. This progress is based on research on a number of fronts: studies of mantle-derived samples have provided insight into the nature and occurrence of hydrous phases such as amphibole, mica, and chlorite, and have provided constraints on the capacity of nominally anhydrous minerals (NAMs) such as olivine, pyroxenes, and garnet to contain "water" by a variety of substitution mechanisms. Experimental studies on mantle-derived magmas have provided constraints on volatile contents in their source regions. Other studies have constrained the pressure, temperature, and composition conditions over which hydrous phases are stable in the mantle.Fundamental questions remain about the geochemical cycling of volatiles in the mantle, and between the mantle and the surface. Much attention has focused on the capability of hydrous phases such as amphibole, mica, serpentine, chlorite, and a family of "dense hydrous magnesian silicates" (DHMSs) to act as carriers of water in subducting slabs back into the mantle. It has been clear since the work of Ito et al. (1983) that there is a discrepancy between the amount of volatiles subducted into the mantle and those returned to the surface by arc magmatism. A recent overview of volatile cycling in subduction systems by Bebout (1996) suggests that 5-15% of the H2

  12. A question of scent: lavender aroma promotes interpersonal trust

    Directory of Open Access Journals (Sweden)

    Roberta eSellaro

    2015-01-01

    Full Text Available A previous study has shown that the degree of trust into others might be biased by inducing either a more inclusive or exclusive cognitive-control mode. Here, we investigated whether the degree of interpersonal trust can be biased by environmental factors, such as odors, that are likely to impact cognitive-control states. Arousing olfactory fragrances (e.g., peppermint are supposed to induce a more exclusive, and calming olfactory fragrances (e.g., lavender a more inclusive state. Participants performed the Trust Game, which provides an index of interpersonal trust by assessing the money units one participant (the trustor transfers to another participant (the trustee, while being exposed to either peppermint or lavender aroma. All participants played the role of trustor. As expected, participants transferred significantly more money to the alleged trustee in the lavender as compared to the peppermint and no aroma conditions. This observation might have various serious implications for a broad range of situations in which interpersonal trust is an essential element, such as cooperation (e.g., mixed-motives situations, bargaining and negotiation, consumer behavior, and group performance.

  13. Impact of Australian Dekkera bruxellensis strains grown under oxygen-limited conditions on model wine composition and aroma.

    Science.gov (United States)

    Curtin, Chris D; Langhans, Geoffrey; Henschke, Paul A; Grbin, Paul R

    2013-12-01

    Spoilage of red wine by the yeast species Dekkera bruxellensis is a common problem for the global wine industry. When conditions are conducive for growth of these yeasts in wine, they efficiently convert non-volatile hydroxycinnamic acids into aroma-active ethylphenols, thereby reducing the quality of the wine. It has been demonstrated previously that dissolved oxygen is a key factor which stimulates D. bruxellensis growth in wine. We demonstrate that whereas the presence of oxygen accelerates the growth of this species, oxygen-limited conditions favour 4-ethylphenol production. Consequently, we evaluated wine spoilage potential of three D. bruxellensis strains (AWRI1499, AWRI1608 and AWRI1613) under oxygen-limited conditions. Each strain was cultured in a chemically-defined wine medium and the fermentation products were analysed using HPLC and HS-SPME-GC/MS. The strains displayed different growth characteristics but were equally capable of producing ethylphenols. On the other hand, significant differences were observed for 18 of the remaining 33 metabolites analysed and duo-trio sensory analysis indicated significant aroma differences between wines inoculated with AWRI1499 and AWRI1613. When these wines were spiked with low concentrations of 4-ethylphenol and 4-ethylguaiacol, no sensorial differences could be perceived. Together these data suggest that the three predominant D. bruxellensis strains previously isolated during a large survey of Australian wineries do not differ substantively in their capacity to grow in, and spoil, a model wine medium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Compostos voláteis em méis florais Volatile compounds in floral honeys

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Bastos De Maria

    2003-01-01

    Full Text Available A review about origin, composition and importance of volatile compounds in floral honeys is presented. Hydrocarbons, aromatic components, acids, diacids, terpenoids, ketones, aldehydes, esters and alcohols have been found in honey aroma of different botanical origin. Cis-rose oxide has been proposed as an indicator for Tilia cordata honey. Citrus honeys are known to contain methyl anthranilate, a compound which other honeys virtually lack. Linalool, phenylethylalcohol, phenylacetaldehyde, p-anisaldehyde and benzaldehyde are important contributors for the aroma of different unifloral honeys. Both isovaleric acid, gama-decalactone and benzoic acid appears to be important odourants for Anarcadium occidentale and Croton sp. honeys from Brazil. The furfurylmercaptan, benzyl alcohol, delta-octalactone, eugenol, phenylethylalcohol and guaiacol appear to be only relevant compounds for Anarcadium occidentale. The vanillin was considered an important odourant only for Croton sp..

  15. Development of a new stir bar sorptive extraction method for the determination of medium-level volatile thiols in wine.

    Science.gov (United States)

    Elpa, Decibel; Durán-Guerrero, Enrique; Castro, Remedios; Natera, Ramón; Barroso, Carmelo G

    2014-07-01

    A fast, simple, and reliable analytical method for the determination of medium-level volatile thiols in wines is presented. Stir bar sorptive extraction using ethylene glycol-silicone coated stir bars has been used in combination with thermal desorption gas chromatography with mass spectrometry for the analysis of 4-mercapto-4-methylpentan-2-one, 2-furanmethanethiol, 3-mercaptohexyl acetate, and 3-mercaptohexanol in wine. Optimization of the extraction technique was performed using a two-level fractional factorial design. For the extraction step, the optimum conditions were: Ethylene glycol and silicone coated stir bars, pH at 3.5, sample volume of 25 mL, extraction time of 90 min, NaCl content 4.0 g, and stirring speed at 500 rpm. The optimized method achieved good linearity for all studied compounds (r(2) > 0.995) and it provided detection limits of 21.52, 0.36, 0.73, and 2.55 μg/L for 4-mercapto-4-methylpentan-2-one, 2-furanmethanethiol, 3-mercaptohexyl acetate, and 3-mercaptohexanol, respectively. It was repeatable, with precisions lower than 18% relative standard deviation for both intraday and interday repeatability. The developed procedure is suitable for the determination of these kinds of compounds when they are present at medium concentration levels. It was finally applied to real wine samples with negative aroma derived from the high concentration levels of these compounds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Identification of human-derived volatile chemicals that interfere with attraction of the Scottish biting midge and their potential use as repellents.

    Science.gov (United States)

    Logan, James G; Seal, Nicola J; Cook, James I; Stanczyk, Nina M; Birkett, Michael A; Clark, Suzanne J; Gezan, Salvador A; Wadhams, Lester J; Pickett, John A; Mordue, A Jennifer

    2009-03-01

    The Scottish biting midge, Culicoides impunctatus (Diptera: Ceratopogonidae), is a major pest in Scotland, causing a significant impact to the Scottish tourist and forestry industries. C. impunctatus is a generalist feeder, preferring to feed on large mammals, and is notorious for its attacks on humans. Until now, there was anecdotal evidence for differential attraction of female host-seeking C. impunctatus to individual human hosts, and the mechanism for this phenomenon was unknown. Using extracts of human odor collected by air entrainment, electroantennogram recordings to identify the physiologically active components, followed by behavioral assays, we show, for the first time, the differential attraction of female C. impunctatus to human odors and the chemical basis for this phenomenon. Certain chemicals, found in greater amounts in extracts that cause low attractiveness to midges, elicit a repellent effect in laboratory assays and repellency trials in the field. Differences in the production of these natural human-derived compounds could help to explain differential "attractiveness" between different human hosts. A mixture of two compounds in particular, 6-methyl-5-hepten-2-one and geranylacetone [(E)-6,10-dimethylundeca-5,9-dien-2-one], showed significant repellency (87, 77.4, 74.2, and 31.6% at hours 0, 1, 2, and 3, respectively) in the field and have the potential to be developed as novel repellents.

  17. Simple approximations for option pricing under mean reversion and stochastic volatility

    NARCIS (Netherlands)

    C.M. Hafner (Christian)

    2003-01-01

    textabstractThis paper provides simple approximations for evaluating option prices and implied volatilities under stochastic volatility. Simple recursive formulae are derived that can easily be implemented in spreadsheets. The traditional random walk assumption, dominating in the analysis of

  18. Chirospecific analysis of plant volatiles

    Energy Technology Data Exchange (ETDEWEB)

    Tkachev, A V [N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2007-10-31

    Characteristic features of the analysis of plant volatiles by enantioselective gas (gas-liquid) chromatography and gas chromatography/mass spectrometry are discussed. The most recent advances in the design of enantioselective stationary phases are surveyed. Examples of the preparation of the most efficient phases based on modified cyclodextrins are given. Current knowledge on the successful analytical resolution of different types of plant volatiles (aliphatic and aromatic compounds and mono-, sesqui- and diterpene derivatives) into optical antipodes is systematically described. Chiral stationary phases used for these purposes, temperature conditions and enantiomer separation factors are summarised. Examples of the enantiomeric resolution of fragrance compounds and components of plant extracts, wines and essential oils are given.

  19. Chirospecific analysis of plant volatiles

    Science.gov (United States)

    Tkachev, A. V.

    2007-10-01

    Characteristic features of the analysis of plant volatiles by enantioselective gas (gas-liquid) chromatography and gas chromatography/mass spectrometry are discussed. The most recent advances in the design of enantioselective stationary phases are surveyed. Examples of the preparation of the most efficient phases based on modified cyclodextrins are given. Current knowledge on the successful analytical resolution of different types of plant volatiles (aliphatic and aromatic compounds and mono-, sesqui- and diterpene derivatives) into optical antipodes is systematically described. Chiral stationary phases used for these purposes, temperature conditions and enantiomer separation factors are summarised. Examples of the enantiomeric resolution of fragrance compounds and components of plant extracts, wines and essential oils are given.

  20. From wine to pepper: rotundone, an obscure sesquiterpene, is a potent spicy aroma compound.

    Science.gov (United States)

    Wood, Claudia; Siebert, Tracey E; Parker, Mango; Capone, Dimitra L; Elsey, Gordon M; Pollnitz, Alan P; Eggers, Marcus; Meier, Manfred; Vössing, Tobias; Widder, Sabine; Krammer, Gerhard; Sefton, Mark A; Herderich, Markus J

    2008-05-28

    An obscure sesquiterpene, rotundone, has been identified as a hitherto unrecognized important aroma impact compound with a strong spicy, peppercorn aroma. Excellent correlations were observed between the concentration of rotundone and the mean 'black pepper' aroma intensity rated by sensory panels for both grape and wine samples, indicating that rotundone is a major contributor to peppery characters in Shiraz grapes and wine (and to a lesser extent in wine of other varieties). Approximately 80% of a sensory panel were very sensitive to the aroma of rotundone (aroma detection threshold levels of 16 ng/L in red wine and 8 ng/L in water). Above these concentrations, these panelists described the spiked samples as more 'peppery' and 'spicy'. However, approximately 20% of panelists could not detect this compound at the highest concentration tested (4000 ng/L), even in water. Thus, the sensory experiences of two consumers enjoying the same glass of Shiraz wine might be very different. Rotundone was found in much higher amounts in other common herbs and spices, especially black and white peppercorns, where it was present at approximately 10000 times the level found in very 'peppery' wine. Rotundone is the first compound found in black or white peppercorns that has a distinctive peppery aroma. Rotundone has an odor activity value in pepper on the order of 50000-250000 and is, on this criterion, by far the most powerful aroma compound yet found in that most important spice.