Void hierarchy and cosmic structure
International Nuclear Information System (INIS)
Weygaert, Rien van de; Ravi Sheth
2004-01-01
Within the context of hierarchical scenarios of gravitational structure formation we describe how an evolving hierarchy of voids evolves on the basis of two processes, the void-in-void process and the void-in-cloud process. The related analytical formulation in terms of a two-barrier excursion problem leads to a self-similarly evolving peaked void size distribution
IAEA sodium void reactivity benchmark calculations
International Nuclear Information System (INIS)
Hill, R.N.; Finck, P.J.
1992-01-01
In this paper, the IAEA-1 992 ''Benchmark Calculation of Sodium Void Reactivity Effect in Fast Reactor Core'' problem is evaluated. The proposed design is a large axially heterogeneous oxide-fueled fast reactor as described in Section 2; the core utilizes a sodium plenum above the core to enhance leakage effects. The calculation methods used in this benchmark evaluation are described in Section 3. In Section 4, the calculated core performance results for the benchmark reactor model are presented; and in Section 5, the influence of steel and interstitial sodium heterogeneity effects is estimated
Air void structure and frost resistance
DEFF Research Database (Denmark)
Hasholt, Marianne Tange
2014-01-01
). This observation is interesting as the parameter of total surface area of air voids normally is not included in air void analysis. The following reason for the finding is suggested: In the air voids conditions are favourable for ice nucleation. When a capillary pore is connected to an air void, ice formation...... on that capillary pores are connected to air voids. The chance that a capillary pore is connected to an air void depends on the total surface area of air voids in the system, not the spacing factor.......This article compiles results from 4 independent laboratory studies. In each study, the same type of concrete is tested at least 10 times, the air void structure being the only variable. For each concrete mix both air void analysis of the hardened concrete and a salt frost scaling test...
Void coefficient of reactivity calculation for AP-600 core
International Nuclear Information System (INIS)
Suparlina, L.; Budiono, T.A.; Mardha, A.; Tukiran
1998-01-01
Void coefficient of reactivity as one of reactor kinetics parameters has been carried out. The calculation was done into two steps which is cell calculation using WIMSD/4 and core calculation using Batan-2DIFF code programs with the condition of beginning of cycle with all fresh fuels elements and all control rods withdrawn. The one dimension transport program in four neutron energy groups is used to calculate the cell generation of various core materials cell has been calculated in 1/4 fuel element with cluster model and square pitch arrange. Moderator density have been reduced until 20% for the void coefficient of reactivity calculation. Macroscopic cross-section as the out put of WIMSD/4 is being used as the input at the diffusion neutron program for core calculation. The void coefficient of reactivity of the AP-600 core can be determined with regular neutron flux and adjoint in four energy groups and X-Y geometry. The results is shown that the K eff calculation value is different 5.2% from the design data
Void fraction calculation in a channel containing boiling coolant
International Nuclear Information System (INIS)
Norelli, F.
1978-01-01
The problem of void fraction calculation was studied for a channel containing boiling coolant, when a slip ratio correlation is used. Use of fitting (e.g. polinomial or rational algebraic) for slip ratio correlation and the characteristic method are proposed in this work. In this way we are reduced to some elementary quadrature problem. Another problem discussed in the present work concerns what we must consider as ''initial condition'' in any initial value problem, in order to take into account different error distributions in steady state and in successive time-dependent calculations
Dependence of calculated void reactivity on film-boiling representation
International Nuclear Information System (INIS)
Whitlock, J.; Garland, W.
1992-01-01
Partial voiding of a fuel channel can lead to complicated neutronic analysis, because of highly nonuniform spatial distributions. An investigation of the distribution dependence of void reactivity in a Canada deuterium uranium (CANDU) lattice, specifically in the regime of film boiling, was done. Although the core is not expected to be critical at the time of sheath dryout, this study augments current knowledge of void reactivity in this type of lattice
Void porosity measurements in coastal structures
Bosma, C.; Verhagen, H.J.; D'Angremond, K.; Sint Nicolaas, W.
2002-01-01
The paper describes the use of two fundamental design parameters, the void porosity and layer thickness in rock armour constructions. These design parameters are very sensible for factors such as the boundary definition of a rock layer, rock production properties, intrinsic properties and
Structural control of void formation in dual phase steels
DEFF Research Database (Denmark)
Azuma, Masafumi
The objective of this study is to explore the void formation mechanisms and to clarify the influence of the hardness and structural parameters (volume fraction, size and morphology) of martensite particles on the void formation and mechanical properties in dual phase steels composed of ferrite...... and (iii) strain localization. The critical strain for void formation depends on hardness of the martensite, but is independent of the volume fraction, shape, size and distribution of the martensite. The strain partitioning between the martensite and ferrite depends on the volume fraction and hardness...... of the martensite accelerates the void formation in the martensite by enlarging the size of voids both in the martensite and ferrite. It is suggested that controlling the hardness and structural parameters associated with the martensite particles such as morphology, size and volume fraction are the essential...
A DRAGON-MCNP comparison of void reactivity calculations
Energy Technology Data Exchange (ETDEWEB)
Marleau, G [Ecole Polytechnique, Montreal, PQ (Canada). Inst. de Genie Nucleaire; Milgram, M S [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)
1996-12-31
The determination of the reactivity coefficients associated with coolant voiding in a CANDU reactor is a subject which has attracted a large amount of interest in the last few years both from the theoretical and experimental point of view. One expects that deterministic codes such as DRAGON and WIMS-AECL or the MCNP4 Monte Carlo code should be able to adequately simulate the cell behaviour upon coolant voiding. However, the absence of an experimental database at equilibrium and discharge burnups has not permitted the full validation of any of these lattice codes, although a partial validation through comparison of two different computer codes has been considered. Here we present a comparison between DRAGON and MCNP4 of the void reactivity evaluation for fresh fuel. (author). 16 refs., 5 tabs.
A DRAGON-MCNP comparison of void reactivity calculations
International Nuclear Information System (INIS)
Marleau, G.
1995-01-01
The determination of the reactivity coefficients associated with coolant voiding in a CANDU reactor is a subject which has attracted a large amount of interest in the last few years both from the theoretical and experimental point of view. One expects that deterministic codes such as DRAGON and WIMS-AECL or the MCNP4 Monte Carlo code should be able to adequately simulate the cell behaviour upon coolant voiding. However, the absence of an experimental database at equilibrium and discharge burnups has not permitted the full validation of any of these lattice codes, although a partial validation through comparison of two different computer codes has been considered. Here we present a comparison between DRAGON and MCNP4 of the void reactivity evaluation for fresh fuel. (author). 16 refs., 5 tabs
An assessment of methods of calculating sodium voiding reactivity in plutonium fuelled fast reactors
International Nuclear Information System (INIS)
Butland, A.T.D.; Simmons, W.N.; Stevenson, J.M.
1979-01-01
After a survey of the requirements an assessment of the accuracy of calculations of the sodium void effect using UK methods and data is made on the basis of the following work. First, the analysis of small and large sodium voids in the MOZART and Zebra 13 small (300 MW(E)) fast reactor mock-ups and the BIZET large fast reactor mock-ups, all of conventional design. The analysis was carried out using the UK FGL5 fine group nuclear data library, the MURAL cell code, whole reactor diffusion theory calculations of the neutron flux and perturbation theory methods. Exact perturbation theory was used in many cases, otherwise first order perturbation theory calculations were adjusted to give results equivalent to exact perturbation theory. Second, theoretical studies of some effects, including, the effects of extrapolating to fuel operating temperatures, fuel cycle and burn-up effects, and the heterogeneity effects of large fuelled subassemblies in pin geometry. Third, theoretical studies of approximations in the calculational methods including, the importance in the whole reactor calculation of the energy group structure and the spatial mesh, the importance of reactor material boundaries in the calculation of resonance shielding effects, and the use of neutron fluxes calculated using neutron diffusion theory rather than transport theory. (U.K.)
Monte Carlo validation of self shielding and void effect calculations
International Nuclear Information System (INIS)
Tellier, H.; Coste, M.; Raepsaet, C.; Soldevila, M.; Van der Gucht, C.
1995-01-01
The self shielding validation and the void effect are studied with Monte Carlo method. The satisfactory comparison obtained between the APOLLO 2 results of the self shielding effect and the TRIPOLI and MCNP results allows us to be confident in the multigroup transport code. (K.A.)
Calculation of Void in the Fort Saint Vrain Material
Energy Technology Data Exchange (ETDEWEB)
Potter, David Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Taylor, Craig Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Coons, James Elmer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-05-11
The percent void of the Fort Saint Vrain (FSV) material is estimated to be 21.1% based on the volume of the gap at the top of the drums, the volume of the coolant channels in the FSV fuel element, and the volume of the fuel handling channel in the FSV fuel element.
Calculation of the void reactivity of CANDU lattices using the SCALE code system
Energy Technology Data Exchange (ETDEWEB)
Valko, J. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Feher, S. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Hoogenboom, J.E. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Slobben, J. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)
1995-11-01
The reactivity effect of coolant voiding in CANDU-type fuel lattices has been calculated with different methods using the SCALE code system. The known positive void reactivity coefficient of the original lattice was correctly obtained. A modified fuel bundle containing dysprosium and slightly enriched uranium to eliminate the positive reactivity effect was also calculated. Owing to the increased heterogeneity of this modified fuel the one-dimensional cylindrical calculation with XSDRN proved to be inadequate. Code options allowing bundle geometry were successfully used for the calculation of the strongly space dependent flux and spectrum changes which determine the void reactivity. (orig.).
A FACSIMILE code for calculating void swelling, version VS1
International Nuclear Information System (INIS)
Windsor, M.; Bullough, R.; Wood, M.H.
1979-11-01
VS1 is the first of a series of FACSIMILE codes that are being made available to predict the swelling of materials under irradiation at different temperatures, using chemical rate equations for the point defect losses to voids, interstitial loops, dislocation network, grain boundaries and foil surfaces. In this report the rate equations used in the program are given together with a detailed description of the code and directions for its use. (author)
Equations for calculating interfacial drag and shear from void fraction correlations
International Nuclear Information System (INIS)
Putney, J.M.
1988-12-01
Equations are developed for calculating interfacial drag and shear coefficients for dispersed vapour flows from void fraction correlations. The equations have a sound physical basis and lead to physically correct coefficients in all flow situations. (author)
Accurate reactivity void coefficient calculation for the fast spectrum reactor FBR-IME
Energy Technology Data Exchange (ETDEWEB)
Lima, Fabiano P.C.; Vellozo, Sergio de O.; Velozo, Marta J., E-mail: fabianopetruceli@outlook.com, E-mail: vellozo@cbpf.br, E-mail: martajann@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Militar
2017-07-01
This paper aims to present an accurate calculation of the void reactivity coefficient for the FBR-IME, a fast spectrum reactor in development at the Engineering Military Institute (IME). The main design peculiarity lies in using mixed oxide [MOX - PuO{sub 2} + U(natural uranium)O{sub 2}] as fuel core. For this task, SCALE system was used to calculate the reactivity for several voids distributions generated by bubbles in the sodium beyond its boiling point. The results show that although the void reactivity coefficient is positive and location dependent, they are offset by other feedback effects, resulting in a negative overall coefficient. (author)
An assessment of methods of calculating sodium-voiding reactivity in plutonium-fuelled fast reactors
International Nuclear Information System (INIS)
Butland, A.T.D.; Simmons, W.N.; Stevenson, J.M.
1980-01-01
After a survey of the requirements an assessment of the accuracy of calculations of the sodium-void effect using UK methods and data is made on the basis of the following work: (a) The analysis of small and large sodium voids in the MOZART and Zebra 13 small (300 MW(e)) fast reactor mock-ups and the BIZET large fast reactor mock-ups, all of conventional design. The analysis was carried out using the UK FGL5 fine group nuclear data library, the MURAL cell code, whole reactor diffusion theory calculations of the neutron flux and perturbation theory methods. Exact perturbation theory was used in many cases, otherwise first-order perturbation theory calculations were adjusted to give results equivalent to exact perturbation theory. (b) Theoretical studies of some effects, including the following: (i) The effects of extrapolating to fuel operating temperature; (ii) Fuel-cycle and burnup effects, including the gradual replacement through a fuel cycle of control-rod absorption by fission product absorption, the loss of fissile material and the change in fuel nuclide relative composition; (iii) The heterogeneity effects of large fuelled subassemblies in pin geometry. (c) Theoretical studies of approximations in the calculational methods, including the following: (i) The importance in the whole reactor calculation of the energy group structure and the spatial mesh, including comparisons of calculations in two (RZ) and three-dimensional geometry; (ii) The importance of reactor material boundaries in the calculation of resonance shielding effects; (iii) The use of neutron fluxes calculated using neutron diffusion theory rather than transport theory. (author)
Controlling Interfacial Separation in Porous Structures by Void Patterning
Ghareeb, Ahmed; Elbanna, Ahmed
Manipulating interfacial response for enhanced adhesion or fracture resistance is a problem of great interest to scientists and engineers. In many natural materials and engineering applications, an interface exists between a porous structure and a substrate. A question that arises is how the void distribution in the bulk may affect the interfacial response and whether it is possible to alter the interfacial toughness without changing the surface physical chemistry. In this paper, we address this question by studying the effect of patterning voids on the interfacial-to-the overall response of an elastic plate glued to a rigid substrate by bilinear cohesive material. Different patterning categories are investigated; uniform, graded, and binary voids. Each case is subjected to upward displacement at the upper edge of the plate. We show that the peak force and maximum elongation at failure depend on the voids design and by changing the void size, alignment or gradation we may control these performance measures. We relate these changes in the measured force displacement response to energy release rate as a measure of interfacial toughness. We discuss the implications of our results on design of bulk heterogeneities for enhanced interfacial behavior.
Calculation of Dancoff correction for cylindrical cells including void
International Nuclear Information System (INIS)
Lima, C.P.B.; Martinez, A.S.
1989-01-01
This paper presents a method developed to the calculation of an analytical expression to the Dancoff Correction for fuel rods surrounded by air gaps. The Dancoff Correction has an important role in the calculation of the multigroup constants. The approximated expression obtained to the Dancoff Correction may be used in the available methods for the multigroup constants calculation, based in its simple and precise form. (author) [pt
Calculational benchmark comparisons for a low sodium void worth actinide burner core design
International Nuclear Information System (INIS)
Hill, R.N.; Kawashima, M.; Arie, K.; Suzuki, M.
1992-01-01
Recently, a number of low void worth core designs with non-conventional core geometries have been proposed. Since these designs lack a good experimental and computational database, benchmark calculations are useful for the identification of possible biases in performance characteristics predictions. In this paper, a simplified benchmark model of a metal fueled, low void worth actinide burner design is detailed; and two independent neutronic performance evaluations are compared. Calculated performance characteristics are evaluated for three spatially uniform compositions (fresh uranium/plutonium, batch-averaged uranium/transuranic, and batch-averaged uranium/transuranic with fission products) and a regional depleted distribution obtained from a benchmark depletion calculation. For each core composition, the flooded and voided multiplication factor, power peaking factor, sodium void worth (and its components), flooded Doppler coefficient and control rod worth predictions are compared. In addition, the burnup swing, average discharge burnup, peak linear power, and fresh fuel enrichment are calculated for the depletion case. In general, remarkably good agreement is observed between the evaluations. The most significant difference is predicted performance characteristics is a 0.3--0.5% Δk/(kk) bias in the sodium void worth. Significant differences in the transmutation rate of higher actinides are also observed; however, these differences do not cause discrepancies in the performing predictions
International Nuclear Information System (INIS)
Engle, W.W. Jr.; Williams, L.R.
1994-07-01
This report provides documentation of a series of calculations performed in 1991 in order to provide input for the High Flux Isotope Reactor Safety Analysis Report. In particular, temperature and void reactivity coefficients were calculated for beginning-of-life, end-of-life, and xenon equilibrium (29 h) conditions. Much of the data used to prepare the computer models for these calculations was derived from the original HFIR nuclear design study
International Nuclear Information System (INIS)
Mueller, K.; Vossebrecker, H.
The Monte Carlo Program ALBEMO calculates the distribution of neutrons and gamma rays in void volumes which are bounded by reflecting walls with x, y, z coordinates. The program is based on the albedo method. The effect of significant simplifying assumptions is investigated. Comparisons with experiments show satisfying agreement
International Nuclear Information System (INIS)
Windsor, M.E.; Matthews, J.R.
1985-06-01
The report compares measurements made by Norris and Buswell of void swelling in irradiated Type 316 steel after a temperature change from 475 to 575 C, and vice versa, with calculated swelling using the VS8 FACSIMILE code. (author)
A FACSIMILE code for calculating void swelling and creep, with vacancy loops present: version VS4
International Nuclear Information System (INIS)
Windsor, M.E.; Bullough, R.; Wood, M.H.
1981-10-01
This FACSIMILE code calculates void swelling and creep of irradiated materials, taking into account the effects of cavities, interstitial loops, vacancy loops, dislocation network and either grain boundaries or foil surfaces. The creep calculations are based on SIPA theory (stress induced preferred absorption), with no preferred nucleation. Either interactive or non-interactive options are available for the sink strength equations, but rate limitation is not incorporated. FACSIMILE is a computer program for solving simultaneous differential equations, and this VS4 code is one of a series of codes for calculating void swelling using increasingly complex theories. Other reports describing the VS1 and VS2 codes explain their use under control of the TSO system of the Harwell IBM 3033 computer, and explain the basic organization of the codes as required for use by FACSIMILE. The creep theory assumes that the material is under a constant uniaxial tensile stress during the irradiation. Three directions are considered for network parameters relative to the direction of the stress, and two directions for interstitial and vacancy loops. To give a full picture of these various contributions to the total creep, a large set of output parameter values are printed for each demanded dose value via a FORTRAN subroutine. (author)
Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions
Energy Technology Data Exchange (ETDEWEB)
Rouhani, S Z; Axelsson, E
1968-10-15
The complex problem of void calculation in the different regions of flow boiling is divided in two parts. The first part includes only the description of the mechanisms and the calculation of the rates of heat transfer for vapour and liquid. It is assumed that heat is removed by vapour generation, heating of the liquid that replaces the detached bubbles, and in some parts, by single phase heat transfer. By considering the rate of vapour condensation in liquid, an equation for the differential changes in the true steam quality throughout the boiling regions is obtained. Integration of this equation yields the vapour weight fraction at any position. The second part of the problem concerns the determination of the void fractions corresponding to the calculated steam qualities. For this purpose we use the derivations of Zuber and Findlay. This model is compared with data from different geometries including small rectangular channels and large rod bundles. The data covered pressures from 19 to 138 bars, heat fluxes from 18 to 120 W/cm{sup 2} with many different subcoolings and mass velocities. The agreement is generally very good.
Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions
International Nuclear Information System (INIS)
Rouhani, S.Z.; Axelsson, E.
1968-10-01
The complex problem of void calculation in the different regions of flow boiling is divided in two parts. The first part includes only the description of the mechanisms and the calculation of the rates of heat transfer for vapour and liquid. It is assumed that heat is removed by vapour generation, heating of the liquid that replaces the detached bubbles, and in some parts, by single phase heat transfer. By considering the rate of vapour condensation in liquid, an equation for the differential changes in the true steam quality throughout the boiling regions is obtained. Integration of this equation yields the vapour weight fraction at any position. The second part of the problem concerns the determination of the void fractions corresponding to the calculated steam qualities. For this purpose we use the derivations of Zuber and Findlay. This model is compared with data from different geometries including small rectangular channels and large rod bundles. The data covered pressures from 19 to 138 bars, heat fluxes from 18 to 120 W/cm 2 with many different subcoolings and mass velocities. The agreement is generally very good
On the difference between DRAGON and WIMS-AECL calculations of the coolant void reactivity
International Nuclear Information System (INIS)
Altiparmakov, D.; Roubtsov, D.; Irish, J.D.
2009-01-01
A difference in the shape of the burnup dependence of the coolant void reactivity (CVR) has been observed between DRAGON and WIMS-AECL calculations. This paper discusses the root cause of the difference and assesses the impact on burnup and full-core reactor calculations. A Fortran procedure has been developed to run WIMS-AECL as necessary in order to mimic DRAGON burnup calculations with leakage effects included. The comparison of standard WIMS-AECL results and simulated DRAGON results demonstrated that the difference is due to different definitions of CVR. If the same CVR definition is used, then the results of both WIMS-AECL and DRAGON analyses are essentially indistinguishable. The discrepancies in the fuel composition and cell-averaged two-group cross sections that are due to differences in WIMS-AECL and DRAGON leakage treatments are insignificant. (author)
Dominquez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne
2013-01-01
Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.
Structure-dependent behavior of stress-induced voiding in Cu interconnects
International Nuclear Information System (INIS)
Wu Zhenyu; Yang Yintang; Chai Changchun; Li Yuejin; Wang Jiayou; Li Bin; Liu Jing
2010-01-01
Stress modeling and cross-section failure analysis by focused-ion-beam have been used to investigate stress-induced voiding phenomena in Cu interconnects. The voiding mechanism and the effect of the interconnect structure on the stress migration have been studied. The results show that the most concentrated tensile stress appears and voids form at corners of vias on top surfaces of Cu M1 lines. A simple model of stress induced voiding in which vacancies arise due to the increase of the chemical potential under tensile stress and diffuse under the force of stress gradient along the main diffusing path indicates that stress gradient rather than stress itself determines the voiding rate. Cu interconnects with larger vias show less resistance to stress-induced voiding due to larger stress gradient at corners of vias.
Void structure of O+ ions in the inner magnetosphere observed by the Van Allen Probes
Nakayama, Y.; Ebihara, Y.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.; Kistler, L. M.; Tanaka, T.
2016-12-01
The Van Allen Probes Helium Oxygen Proton Electron instrument observed a new type of enhancement of O+ ions in the inner magnetosphere during substorms. As the satellite moved outward in the premidnight sector, the flux of the O+ ions with energy 10 keV appeared first in the energy-time spectrograms. Then, the enhancement of the flux spread toward high and low energies. The enhanced flux of the O+ ions with the highest energy remained, whereas the flux of the ions with lower energy vanished near apogee, forming what we call the void structure. The structure cannot be found in the H+ spectrogram. We studied the generation mechanism of this structure by using numerical simulation. We traced the trajectories of O+ ions in the electric and magnetic fields from the global magnetohydrodynamics simulation and calculated the flux of O+ ions in the inner magnetosphere in accordance with the Liouville theorem. The simulated spectrograms are well consistent with the ones observed by Van Allen Probes. We suggest the following processes. (1) When magnetic reconnection starts, an intensive equatorward and tailward plasma flow appears in the plasma lobe. (2) The flow transports plasma from the lobe to the plasma sheet where the radius of curvature of the magnetic field line is small. (3) The intensive dawn-dusk electric field transports the O+ ions earthward and accelerates them nonadiabatically to an energy threshold; (4) the void structure appears at energies below the threshold.
Languages for structural calculations
International Nuclear Information System (INIS)
Thomas, J.B.; Chambon, M.R.
1988-01-01
The differences between human and computing languages are recalled. It is argued that they are to some extent structured in antagonistic ways. Languages in structural calculation, in the past, present, and future, are considered. The contribution of artificial intelligence is stressed [fr
Dependence of calculated void reactivity on film boiling representation in a CANDU lattice
Energy Technology Data Exchange (ETDEWEB)
Whitlock, J [McMaster Univ., Hamilton, ON (Canada). Dept. of Engineering Physics
1994-12-31
The distribution dependence of void reactivity in a CANDU (CANada Deuterium Uranium) lattice is studied, specifically in the regime of film boiling. A heterogeneous model of this phenomenon predicts a 4% increase in void reactivity over a homogeneous model for fresh fuel, and 11% at discharge. An explanation for this difference is offered, with regard to differing changes in neutron mean free path upon voiding. (author). 9 refs., 4 tabs., 6 figs.
The effect of form pressure on the air void structure of SCC
DEFF Research Database (Denmark)
Jensen, Mikkel Vibæk; Hasholt, Marianne Tange; Geiker, Mette Rica
2005-01-01
The high workability of self-compacting concrete (SCC) invites to high casting rates. However, casting walls at high rate may result in large pressure at the bottom of the form and subsequently compression of the air voids. This paper deals with the influence of hydrostatic pressure during setting...... on the air void structure of hardened, air entrained SCC. The subject was examined through laboratory investigations of SCC with two different amounts of air entrainment. The condition in the form was simulated by using containers making it possible to cure concrete under various pressures corresponding...... to the bottom of castings of 0, 2, 4, and 6 meters height. The laboratory investigations were supplemented with data from two full-scale wall castings. The air void structure of the hardened concretes was determined on plane sections. The results indicate that the pressure related changes of the air void...
Ductile fracture behavior of cast structure containing voids
International Nuclear Information System (INIS)
Gilles, Ph.; Migne, C.; Chapuliot, S.
2001-01-01
In pressurized water reactors, the primary loop contains cast-piping components made of duplex stainless steel. Due to the presence of ferrite, such steels are susceptible to thermal aging embrittlement, which decrease their fracture resistance. The cast process induces shrinkage cavities, therefore all these components are submitted to liquid penetrant examination and all surface defects are repaired. EDF, CEA and Framatome have conducted experimental and analytical analysis of fatigue and fracture behavior of aged cast stainless steel structures containing shrinkage cavities. The present study considers only ductile tearing and is based on specimen test results and a fracture mechanics model of the interaction between shrinkage cavities. The experimental results presented here show that large groups of shrinkage cavities have almost no influence on the global behavior of the structure. Only for the specimen with the largest reduction of area, a significant reduction of strength has been registered. Using elementary fracture mechanics models, it has been evidenced that failure mechanism of structures containing shrinkage cavities consists in 3 phases: local initiation, macro-crack formation by coalescence and failure by crack instability or collapse depending if J resistance is low or not. No significant changes in global behavior appear in the first phase. (A.C.)
Ductile fracture behavior of cast structure containing voids
Energy Technology Data Exchange (ETDEWEB)
Gilles, Ph.; Migne, C. [FRAMATOME ANP, 92 - Paris-La-Defence (France); Chapuliot, S. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie
2001-07-01
In pressurized water reactors, the primary loop contains cast-piping components made of duplex stainless steel. Due to the presence of ferrite, such steels are susceptible to thermal aging embrittlement, which decrease their fracture resistance. The cast process induces shrinkage cavities, therefore all these components are submitted to liquid penetrant examination and all surface defects are repaired. EDF, CEA and Framatome have conducted experimental and analytical analysis of fatigue and fracture behavior of aged cast stainless steel structures containing shrinkage cavities. The present study considers only ductile tearing and is based on specimen test results and a fracture mechanics model of the interaction between shrinkage cavities. The experimental results presented here show that large groups of shrinkage cavities have almost no influence on the global behavior of the structure. Only for the specimen with the largest reduction of area, a significant reduction of strength has been registered. Using elementary fracture mechanics models, it has been evidenced that failure mechanism of structures containing shrinkage cavities consists in 3 phases: local initiation, macro-crack formation by coalescence and failure by crack instability or collapse depending if J resistance is low or not. No significant changes in global behavior appear in the first phase. (A.C.)
Energy Technology Data Exchange (ETDEWEB)
Wang, Jing, E-mail: jing.wang@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Texas A& M University, College Station, TX 77843 (United States); Toloczko, Mychailo B. [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Bailey, Nathan [University of California, Berkeley, CA 94720 (United States); Garner, Frank A.; Gigax, Jonathan; Shao, Lin [Texas A& M University, College Station, TX 77843 (United States)
2016-11-15
In radiation effects on materials utilizing self-ion irradiations, it is necessary to calculate the local displacement damage level and ion injection profile because of the short distance that self-ions travel in a material and because of the strong variation of displacement rate with depth in a specimen. The most frequently used tool for this is the software package called Stopping and Range of Ions in Matter (SRIM). A SRIM-calculated depth-dependent dose level is usually determined under the implicit assumption that the target does not undergo any significant changes in volume during the process, in particular SRIM ignores the effect of sputtering, injected ions, and void swelling on the redistribution of the dose and injected ion profiles. This approach become increasingly invalid as the ion fluence reaches ever higher levels, especially for low energy ion irradiations. The original surface is not maintained due to sputter-induced erosion, while within the irradiated region of the specimen, injected ions are adding material, and if void swelling is occurring, it is creating empty space. An iterative mathematical treatment of SRIM outputs to produce corrected dose and injected ion profiles based on these phenomenon and without regard to diffusion is presented along with examples of differences between SRIM-calculated values and corrected values over a range of typical ion energies. The intent is to provide the reader with a convenient tool for more accurately calculating dose and injected ion profiles for heavy-ion irradiations.
International Nuclear Information System (INIS)
Murakawa, Hideki; Kikura, Hiroshige; Aritomi, Masanori
2003-01-01
Microscopic structure in bubbly flows has been a topic of interest in the study of fluid dynamics. In the present paper, the ultrasonic Doppler method was applied to the measurement of bubbly. The experiments were carried out for an air-water dispersed bubbly flow in a 20 mm x 100 mm vertical rectangular channel having a void fraction smaller than 3%. Two ultrasonic transducers were installed on the outer surface of the test section with a contact angle of 45deg off the vertical axis, one facing upward and the other facing downward. By applying statistical methods to the two directional velocity profiles. Reynolds stress profiles were calculated. Furthermore, to clarify the wake effect induced by the leading bubbles, the velocity profiles were divided into two types of data. The first one is for all of the liquid data and the other is the data which did not include the wake effect. For Re m ≥ 1,593, it was observed that the bubbles suppressed the liquid turbulence. Furthermore, comparing with the Reynolds stress profiles in bubbly flow, it was found that Reynolds stress profiles varied with the amount of bubbles present in the flow and the effect of wake causes turbulence in the liquid. (author)
Void Structures in Regularly Patterned ZnO Nanorods Grown with the Hydrothermal Method
Directory of Open Access Journals (Sweden)
Yu-Feng Yao
2014-01-01
Full Text Available The void structures and related optical properties after thermal annealing with ambient oxygen in regularly patterned ZnO nanrorod (NR arrays grown with the hydrothermal method are studied. In increasing the thermal annealing temperature, void distribution starts from the bottom and extends to the top of an NR in the vertical (c-axis growth region. When the annealing temperature is higher than 400°C, void distribution spreads into the lateral (m-axis growth region. Photoluminescence measurement shows that the ZnO band-edge emission, in contrast to defect emission in the yellow-red range, is the strongest under the n-ZnO NR process conditions of 0.003 M in Ga-doping concentration and 300°C in thermal annealing temperature with ambient oxygen. Energy dispersive X-ray spectroscopy data indicate that the concentration of hydroxyl groups in the vertical growth region is significantly higher than that in the lateral growth region. During thermal annealing, hydroxyl groups are desorbed from the NR leaving anion vacancies for reacting with cation vacancies to form voids.
Calculations of nucleon structure functions
International Nuclear Information System (INIS)
Signal, A.I.
1990-01-01
We present a method of calculating deep inelastic nucleon structure functions using bag model wavefunctions. Our method uses the Peierls - Yoccoz projection to form translation invariant bag states. We obtain the correct support for the structure functions and satisfy the positivity requirements for quark and anti-quark distribution functions. (orig.)
DEFF Research Database (Denmark)
Hasholt, Marianne Tange; Jensen, Ole Mejlhede; Laustsen, Sara
2013-01-01
the difference between poor and satisfactory frost-resistance. Furthermore, the results indicate that voids created directly by SAP protect concrete against frost deterioration just like other air voids; if the concrete contains enough SAP voids, these alone can provide sufficient frost resistance. © 2013 RILEM....
Hawken, A. J.; Granett, B. R.; Iovino, A.; Guzzo, L.; Peacock, J. A.; de la Torre, S.; Garilli, B.; Bolzonella, M.; Scodeggio, M.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Fritz, A.; Franzetti, P.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; De Lucia, G.; Ilbert, O.; Moscardini, L.; Percival, W. J.
2017-11-01
We aim to develop a novel methodology for measuring thegrowth rate of structure around cosmic voids. We identified voids in the completed VIMOS Public Extragalactic Redshift Survey (VIPERS), using an algorithm based on searching for empty spheres. We measured the cross-correlation between the centres of voids and the complete galaxy catalogue. The cross-correlation function exhibits a clear anisotropy in both VIPERS fields (W1 and W4), which is characteristic of linear redshift space distortions. By measuring the projected cross-correlation and then de-projecting it we are able to estimate the un-distorted cross-correlation function. We propose that given a sufficiently well-measured cross-correlation function one should be able to measure the linear growth rate of structure by applying a simple linear Gaussian streaming model for the redshift space distortions (RSD). Our study of voids in 306 mock galaxy catalogues mimicking the VIPERS fields suggests that VIPERS is capable of measuring β, the ratio of the linear growth rate to the bias, with an error of around 25%. Applying our method to the VIPERS data, we find a value for the redshift space distortion parameter, β = 0.423-0.108+0.104 which, given the bias of the galaxy population we use, gives a linear growth rate of f σ8 = 0.296-0.078+0.075 at z = 0.727. These results are consistent with values observed in parallel VIPERS analyses that use standard techniques. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in
International Nuclear Information System (INIS)
Hou, Yuejin; Tan, Cher Ming
2009-01-01
The package level stress-induced voiding (SIV) test of Cu dual-damascene line–via structures is performed. Two different dielectrics, undoped silica glass (USG) and carbon doped oxide (CDO), are used in this work. After 1344 h of high temperature storage test, the resistance drift of USG interconnects is found to be much smaller than that of CDO interconnects and voids are located at the bottom of the via for both USG and CDO interconnects. However, horizontal voids grown along the via bottom is observed for USG interconnects, whilst voids are found to grow vertically along the via sidewall for CDO interconnects. The phenomena are explained using finite element analysis in this work, and the observed poor SIV performance for CDO interconnects is also explained. With this finite element analysis, the implications of different low-k dielectrics on SIV reliability are discussed
International Nuclear Information System (INIS)
Horiki, M.; Yoshiie, T.; Huang, S.S.; Sato, K.; Cao, X.Z.; Xu, Q.; Troev, T.D.
2013-01-01
Positron lifetime measurements were used to study the effects of alloying elements on the defect structure during the incubation period for void swelling in several fcc model alloys. Pure Ni, four model alloys (Fe–Cr–Ni, Fe–Cr–Ni–Mo–Mn, Fe–Cr–Ni–Mo–Mn–Si and Fe–Cr–Ni–Mo–Mn–Si–Ti), and four commercial alloys (SUS316LSS, SUS316SS, SUS304SS and Ti added modified SUS316SS) were irradiated with electrons and neutrons. Even at 363 and 573 K to a dose of 0.2 dpa, an effect of alloying elements was observed. At 363 K irradiation, voids were formed only in Ni and Fe–Cr–Ni. At 573 K irradiation, voids were formed in Ni and all model alloys, though the concentration depended on the alloying elements. In commercial alloys, precipitates were formed instead of vacancy clusters, which prevented void growth
Shao, Jian-Li; Wang, Pei; Zhang, Feng-Guo; He, An-Min
2018-06-01
With classic molecular dynamics simulations, we investigate the effects of temperature and void on the bcc to hcp/fcc structural transition in single crystal iron driven by 1D ([0 0 1]) and 3D (uniform) compressions. The results show that the pressure threshold does not reduce monotonously with temperature. The pressure threshold firstly increases and then decreases in the range of 60–360 K under 1D compression, while the variation trend is just opposite under 3D compression. As expected, the initial defect may lower the pressure threshold via heterogenous nucleation. This effect is found to be more distinct at lower temperature, and the heterogenous nucleation mainly results in hcp structure. Under the condition of strain constraint, the products of structural transition will respectively form flaky hcp twin structure ((1 0 0) or (0 1 0)) and lamellar structure ({1 1 0}) of mixed phases under 1D and 3D compressions. During the structural transition, we find the shear stress (1D compression) of hcp phase is always lower than that of bcc phase. The cold energy calculations indicate that the hcp phase is the most stable under high pressure. However, we observe the evident metastable state of bcc phase, whose energy will be much higher than both hcp and fcc phases, and then provides the possibility for the occurrence of fcc nucleation.
International Nuclear Information System (INIS)
Chadderton, L.T.; Johnson, E.; Wohlenberg, T.
1976-01-01
Void lattices in metals apparently owe their stability to elastically anisotropic interactions. An ordered array of voids on the anion sublattice in fluorite does not fit so neatly into this scheme of things. Crowdions may play a part in the formation of the void lattice, and stability may derive from other sources. (Auth.)
Void effects on BWR Doppler and void reactivity feedback
International Nuclear Information System (INIS)
Hsiang-Shou Cheng; Diamond, D.J.
1978-01-01
The significance of steam voids and control rods on the Doppler feedback in a gadolinia shimmed BWR is demonstrated. The importance of bypass voids when determining void feedback is also shown. Calculations were done using a point model, i.e., feedback was expressed in terms of reactivity coefficients which were determined for individual four-bundle configurations and then appropriately combined to yield reactor results. For overpower transients the inclusion of the void effect of control rods is to reduce Doppler feedback. For overpressurization transients the inclusion of the effect of bypass void wil increase the reactivity due to void collapse. (author)
STRUCTURE IN THE 3D GALAXY DISTRIBUTION. II. VOIDS AND WATERSHEDS OF LOCAL MAXIMA AND MINIMA
International Nuclear Information System (INIS)
Way, M. J.; Gazis, P. R.; Scargle, Jeffrey D.
2015-01-01
The major uncertainties in studies of the multi-scale structure of the universe arise not from observational errors but from the variety of legitimate definitions and detection methods for individual structures. To facilitate the study of these methodological dependencies, we have carried out 12 different analyses defining structures in various ways. This has been done in a purely geometrical way by utilizing the HOP algorithm as a unique parameter-free method of assigning groups of galaxies to local density maxima or minima. From three density estimation techniques (smoothing kernels, Bayesian blocks, and self-organizing maps) applied to three data sets (the Sloan Digital Sky Survey Data Release 7, the Millennium simulation, and randomly distributed points) we tabulate information that can be used to construct catalogs of structures connected to local density maxima and minima. We also introduce a void finder that utilizes a method to assemble Delaunay tetrahedra into connected structures and characterizes regions empty of galaxies in the source catalog
Sears, Nicholas C.; Harne, Ryan L.
2018-01-01
The performance, integrity, and safety of built-up structural systems are critical to their effective employment in diverse engineering applications. In conflict with these goals, harmonic or random excitations of structural panels may promote large amplitude oscillations that are particularly harmful when excitation energies are concentrated around natural frequencies. This contributes to fatigue concerns, performance degradation, and failure. While studies have considered active or passive damping treatments that adapt material characteristics and configurations for structural control, it remains to be understood how vibration properties of structural panels may be tailored via internal material transitions. Motivated to fill this knowledge gap, this research explores an idea of adapting the static and dynamic material distribution of panels through embedded microvascular channels and strategically placed voids that permit the internal movement of fluids within the panels for structural dynamic control. Finite element model and experimental investigations probe how redistributing material in the form of microscale voids influences the global vibration modes and natural frequencies of structural panels. Through parameter studies, the relationships among void shape, number, size, and location are quantified towards their contribution to the changing structural dynamics. For the panel composition and boundary conditions considered in this report, the findings reveal that transferring material between strategically placed voids may result in eigenfrequency changes as great as 10.0, 5.0, and 7.4% for the first, second, and third modes, respectively.
International Nuclear Information System (INIS)
Subbotin, A.V.
1978-01-01
Nucleation of viable voids in irradiated materials is considered. The mechanism of evaporation and absorption of interstitials and vacancies disregarding the possibility of void merging is laid down into the basis of the discussion. The effect of irradiated material structure on void nucleation is separated from the effect of the properties of supersaturated solutions of vacancies and interstitials. An analytical expression for the nucleation rate is obtained and analyzed in different cases. The interstitials are concluded to effect severely the nucleation rate of viable voids
Temperature controlled 'void' formation
International Nuclear Information System (INIS)
Dasgupta, P.; Sharma, B.D.
1975-01-01
The nucleation and growth of voids in structural materials during high temperature deformation or irradiation is essentially dependent upon the existence of 'vacancy supersaturation'. The role of temperature dependent diffusion processes in 'void' formation under varying conditions, and the mechanical property changes associated with this microstructure are briefly reviewed. (author)
2.4. Kinetics of voids structure change according to the specific properties of the concrete mix
International Nuclear Information System (INIS)
Saidov, D.Kh.
2011-01-01
This work is devoted to kinetics of voids structure changes according to the specific properties of concrete mix. The influence of concrete mix mobility on durability and watertightness of concrete was studied. The influence of cement expenditure on concrete durability was examined.
Ordering of cations in the voids of the anionic framework of the crystal structure of catapleiite
Energy Technology Data Exchange (ETDEWEB)
Yakubovich, O. V., E-mail: yakubol@geol.msu.ru [Moscow State University, Faculty of Geology (Russian Federation); Karimova, O. V. [Russian Academy of Sciences, Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (Russian Federation); Ivanova, A. G. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Yapaskurt, V. O. [Moscow State University, Faculty of Geology (Russian Federation); Chukanov, N. V. [Russian Academy of Sciences, Institute of the Problems of Chemical Physics (Russian Federation); Kartashov, P. M. [Russian Academy of Sciences, Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (Russian Federation)
2013-05-15
The pseudohexagonal crystal structure of the mineral catapleiite Na{sub 1.5}Ca{sub 0.2}[ZrSi{sub 3}(O,OH){sub 9}] {center_dot} 2(H{sub 2}O,F) from the Zhil'naya Valley in the central part of the Khibiny alkaline massif (Kola Peninsula, Russia) is studied by X-ray diffraction (XCalibur-S diffractometer, R = 0.0346): a = 20.100(4), b = 25.673(5), and c = 14.822(3) A; space group Fdd2, Z = 32, and {rho}{sub calcd} = 2.76 g/cm{sup 3}. Fluorine atoms substituting part of H{sub 2}O molecules in open channels of the crystal structure have been found for the first time in the catapleiite composition by microprobe analysis. The pattern of distribution of Na and Ca atoms over the voids of the mixed anionic framework consisting of Zr-octahedra and three-membered rings of Si-tetrahedra accounts for the pronounced pseudoperiodicity along the a and c axes of the pseudohexagonal unit cell and for the lowering of crystal symmetry to the orthorhombic one. It is shown that part of the hydrogen atoms of water molecules is statistically disordered; their distribution correlates with the pattern of the population of large eight-vertex polyhedra by Na and Ca atoms.
Global nuclear-structure calculations
International Nuclear Information System (INIS)
Moeller, P.; Nix, J.R.
1990-01-01
The revival of interest in nuclear ground-state octupole deformations that occurred in the 1980's was stimulated by observations in 1980 of particularly large deviations between calculated and experimental masses in the Ra region, in a global calculation of nuclear ground-state masses. By minimizing the total potential energy with respect to octupole shape degrees of freedom in addition to ε 2 and ε 4 used originally, a vastly improved agreement between calculated and experimental masses was obtained. To study the global behavior and interrelationships between other nuclear properties, we calculate nuclear ground-state masses, spins, pairing gaps and Β-decay and half-lives and compare the results to experimental qualities. The calculations are based on the macroscopic-microscopic approach, with the microscopic contributions calculated in a folded-Yukawa single-particle potential
The cellular approach to band structure calculations
International Nuclear Information System (INIS)
Verwoerd, W.S.
1982-01-01
A short introduction to the cellular approach in band structure calculations is given. The linear cellular approach and its potantial applicability in surface structure calculations is given some consideration in particular
International Nuclear Information System (INIS)
Diamond, D.J.
1992-09-01
This report is a review of some of the important aspects of the analysis of large loss-of-coolant accidents (LOCAs). One important aspect is the calculation of positive void reactivity. To study this subject the lattice physics codes used for void worth calculations and the coupled neutronic and thermal-hydraulic codes used for the transient analysis are reviewed. Also reviewed are the measurements used to help validate the codes. The application of these codes to large LOCAs is studied with attention focused on the uncertainty factor for the void worth used to bias the results. Another aspect of the subject dealt with in the report is the acceptance criteria that are applied. This includes the criterion for peak fuel enthalpy and the question of whether prompt criticality should also be a criterion. To study the former, fuel behavior measurements and calculations are reviewed. (Author) (49 refs., 2 figs., tab.)
Void migration in fusion materials
International Nuclear Information System (INIS)
Cottrell, G.A.
2002-01-01
Neutron irradiation in a fusion power plant will cause helium bubbles and voids to form in the armour and blanket structural materials. If sufficiently large densities of such defects accumulate on the grain boundaries of the materials, the strength and the lifetimes of the metals will be reduced by helium embrittlement and grain boundary failure. This Letter discusses void migration in metals, both by random Brownian motion and by biassed flow in temperature gradients. In the assumed five-year blanket replacement time of a fusion power plant, approximate calculations show that the metals most resilient to failure are tungsten and molybdenum, and marginally vanadium. Helium embrittlement and grain boundary failure is expected to be more severe in steel and beryllium
Void migration in fusion materials
Cottrell, G. A.
2002-04-01
Neutron irradiation in a fusion power plant will cause helium bubbles and voids to form in the armour and blanket structural materials. If sufficiently large densities of such defects accumulate on the grain boundaries of the materials, the strength and the lifetimes of the metals will be reduced by helium embrittlement and grain boundary failure. This Letter discusses void migration in metals, both by random Brownian motion and by biassed flow in temperature gradients. In the assumed five-year blanket replacement time of a fusion power plant, approximate calculations show that the metals most resilient to failure are tungsten and molybdenum, and marginally vanadium. Helium embrittlement and grain boundary failure is expected to be more severe in steel and beryllium.
Techniques of nuclear structure calculations
International Nuclear Information System (INIS)
Dyson, R.D.
1967-04-01
The quasiparticle method for identical particles interacting through pairing forces has been extended by others for use with systems of neutrons and protons. The method is to project isospin from separately considered neutron and proton quasiparticle wavefunctions. This is discussed in detail, and it seems that the projection may not be important. Therefore unprojected quasiparticle wavefunctions are tried with some success as a basis of states in which to diagonalize a realistic nuclear Hamiltonian. Brief unrelated calculations on nuclei of mass 19 and the SU(3) classification of states in the p-f shell are also presented. (author)
Effect of structure and alloying elements on void formation in austenitic steels and nickel alloys
International Nuclear Information System (INIS)
Levy, V.; Azam, N.; Le Naour, L.; Didout, G.; Delaplace, J.
1977-01-01
In the development of the fast breeder reactors the phenomenon of metal swelling due to the formation of radiation induced voids is a large problem. In the complex alloys small fluctuations in composition can have a considerable effect on swelling and a great deal of investigation on the effect of both major and minor alloying elements is needed to be able to predict swelling. To provide more insight a research program involving irradiation of both commercial or specially cast alloys by 500 keV Ni + ions or 1 MeV electrons has been developed. The major results are presented
CTF Void Drift Validation Study
Energy Technology Data Exchange (ETDEWEB)
Salko, Robert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gosdin, Chris [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gergar, Marcus [Pennsylvania State Univ., University Park, PA (United States)
2015-10-26
This milestone report is a summary of work performed in support of expansion of the validation and verification (V&V) matrix for the thermal-hydraulic subchannel code, CTF. The focus of this study is on validating the void drift modeling capabilities of CTF and verifying the supporting models that impact the void drift phenomenon. CTF uses a simple turbulent-diffusion approximation to model lateral cross-flow due to turbulent mixing and void drift. The void drift component of the model is based on the Lahey and Moody model. The models are a function of two-phase mass, momentum, and energy distribution in the system; therefore, it is necessary to correctly model the ow distribution in rod bundle geometry as a first step to correctly calculating the void distribution due to void drift.
Final disposal room structural response calculations
International Nuclear Information System (INIS)
Stone, C.M.
1997-08-01
Finite element calculations have been performed to determine the structural response of waste-filled disposal rooms at the WIPP for a period of 10,000 years after emplacement of the waste. The calculations were performed to generate the porosity surface data for the final set of compliance calculations. The most recent reference data for the stratigraphy, waste characterization, gas generation potential, and nonlinear material response have been brought together for this final set of calculations
Displacive stability of a void in a void lattice
International Nuclear Information System (INIS)
Brailsford, A.D.
1977-01-01
It has recently been suggested that the stability of the void-lattice structure in irradiated metals may be attributed to the effect of the overlapping of the point-defect diffusion fields associated with each void. It is shown here, however, that the effect is much too weak. When one void is displaced from its lattice site, the displacement is shown to relax to zero as proposed, but a conservative estimate indicates that the characteristic time is equivalent to an irradiation dose of the order of 300 displacements per atom which is generally much greater than the dose necessary for void-lattice formation
International Nuclear Information System (INIS)
Manturov, G.; Semenov, M.; Seregin, A.; Lykova, L.
2004-01-01
The BFS-62 critical experiments are currently used as 'benchmark' for verification of IPPE codes and nuclear data, which have been used in the study of loading a significant amount of Pu in fast reactors. The BFS-62 experiments have been performed at BFS-2 critical facility of IPPE (Obninsk). The experimental program has been arranged in such a way that the effect of replacement of uranium dioxied blanket by the steel reflector as well as the effect of replacing UOX by MOX on the main characteristics of the reactor model was studied. Wide experimental program, including measurements of the criticality-keff, spectral indices, radial and axial fission rate distributions, control rod mock-up worth, sodium void reactivity effect SVRE and some other important nuclear physics parameters, was fulfilled in the core. Series of 4 BFS-62 critical assemblies have been designed for studying the changes in BN-600 reactor physics from existing state to hybrid core. All the assemblies are modeling the reactor state prior to refueling, i.e. with all control rod mock-ups withdrawn from the core. The following items are chosen for the analysis in this report: Description of the critical assembly BFS-62-3A as the 3rd assembly in a series of 4 BFS critical assemblies studying BN-600 reactor with MOX-UOX hybrid zone and steel reflector; Development of a 3D homogeneous calculation model for the BFS-62-3A critical experiment as the mock-up of BN-600 reactor with hybrid zone and steel reflector; Evaluation of measured nuclear physics parameters keff and SVRE (sodium void reactivity effect); Preparation of adjusted equivalent measured values for keff and SVRE. Main series of calculations are performed using 3D HEX-Z diffusion code TRIGEX in 26 groups, with the ABBN-93 cross-section set. In addition, precise calculations are made, in 299 groups and Ps-approximation in scattering, by Monte-Carlo code MMKKENO and discrete ordinate code TWODANT. All calculations are based on the common system
Automated protein structure calculation from NMR data
International Nuclear Information System (INIS)
Williamson, Mike P.; Craven, C. Jeremy
2009-01-01
Current software is almost at the stage to permit completely automatic structure determination of small proteins of <15 kDa, from NMR spectra to structure validation with minimal user interaction. This goal is welcome, as it makes structure calculation more objective and therefore more easily validated, without any loss in the quality of the structures generated. Moreover, it releases expert spectroscopists to carry out research that cannot be automated. It should not take much further effort to extend automation to ca 20 kDa. However, there are technological barriers to further automation, of which the biggest are identified as: routines for peak picking; adoption and sharing of a common framework for structure calculation, including the assembly of an automated and trusted package for structure validation; and sample preparation, particularly for larger proteins. These barriers should be the main target for development of methodology for protein structure determination, particularly by structural genomics consortia
Broyden's method in nuclear structure calculations
International Nuclear Information System (INIS)
Baran, Andrzej; Bulgac, Aurel; Forbes, Michael McNeil; Hagen, Gaute; Nazarewicz, Witold; Schunck, Nicolas; Stoitsov, Mario V.
2008-01-01
Broyden's method, widely used in quantum chemistry electronic-structure calculations for the numerical solution of nonlinear equations in many variables, is applied in the context of the nuclear many-body problem. Examples include the unitary gas problem, the nuclear density functional theory with Skyrme functionals, and the nuclear coupled-cluster theory. The stability of the method, its ease of use, and its rapid convergence rates make Broyden's method a tool of choice for large-scale nuclear structure calculations
Benchmark calculation programme concerning typical LMFBR structures
International Nuclear Information System (INIS)
Donea, J.; Ferrari, G.; Grossetie, J.C.; Terzaghi, A.
1982-01-01
This programme, which is part of a comprehensive activity aimed at resolving difficulties encountered in using design procedures based on ASME Code Case N-47, should allow to get confidence in computer codes which are supposed to provide a realistic prediction of the LMFBR component behaviour. The calculations started on static analysis of typical structures made of non linear materials stressed by cyclic loads. The fluid structure interaction analysis is also being considered. Reasons and details of the different benchmark calculations are described, results obtained are commented and future computational exercise indicated
Total energy calculations for structural phase transformations
International Nuclear Information System (INIS)
Ye, Y.Y.; Chan, C.T.; Ho, K.M.; Harmon, B.N.
1990-01-01
The structural integrity and physical properties of crystalline solids are frequently limited or enhanced by the occurrence of phase transformations. Martensitic transformations involve the collective displacement of atoms from one ordered state to another. Modern methods to determine the microscopic electronic changes as the atoms move are now accurate enough to evaluate the very small energy differences involved. Extensive first principles calculations for the prototypical martensitic transformation from body-centered cubic (bcc) to closepacked 9R structure in sodium metal are described. The minimum energy coordinate or configuration path between the bcc and 9R structures is determined as well as paths to other competing close-packed structures. The energy barriers and important anharmonic interactions are identified and general conclusions drawn. The calculational methods used to solve the Schrodinger equation include pseudopotentials, fast Fourier transforms, efficient matrix diagnonalization, and supercells with many atoms
On the atomic shell structure calculation (1)
International Nuclear Information System (INIS)
Choe Sun Chol
1986-01-01
We have considered the problem of atomic shell structure calculation using operator technique. We introduce reduced matrix elements of annihilation operators according to eg. (4). The normalized basis function is denoted as || ...>. The reduced matrix elements of the pair annihilation operators are expressed throw one-electron matrix elements. Some numerical results are represented and the problem of sign assignment is discussed. (author)
Nuclear structure calculations for astrophysical applications
International Nuclear Information System (INIS)
Moeller, P.; Kratz, K.L.
1992-01-01
Here we present calculated results on such diverse properties as nuclear energy levels, ground-state masses and shapes, β-decay properties and fission-barrier heights. Our approach to these calculations is to use a unified theoretical framework within which the above properties can all be studied. The results are obtained in the macroscopic-microscopic approach in which a microscopic nuclear-structure single-particle model with extensions is combined with a macroscopic model, such as the liquid drop model. In this model the total potential energy of the nucleus may be calculated as a function of shape. The maxima and minima in this function correspond to such features as the ground state, fission saddle points and shape-isomeric states. Various transition rate matrix elements are determined from wave-functions calculated in the single-particle model with pairing and other relevant residual interactions taken into account
Calculating evolutionary dynamics in structured populations.
Directory of Open Access Journals (Sweden)
Charles G Nathanson
2009-12-01
Full Text Available Evolution is shaping the world around us. At the core of every evolutionary process is a population of reproducing individuals. The outcome of an evolutionary process depends on population structure. Here we provide a general formula for calculating evolutionary dynamics in a wide class of structured populations. This class includes the recently introduced "games in phenotype space" and "evolutionary set theory." There can be local interactions for determining the relative fitness of individuals, but we require global updating, which means all individuals compete uniformly for reproduction. We study the competition of two strategies in the context of an evolutionary game and determine which strategy is favored in the limit of weak selection. We derive an intuitive formula for the structure coefficient, sigma, and provide a method for efficient numerical calculation.
Electronic structure calculations of calcium silicate hydrates
International Nuclear Information System (INIS)
Sterne, P.A.; Meike, A.
1995-11-01
Many phases in the calcium-silicate-hydrate system can develop in cement exposed over long periods of time to temperatures above 25 C. As a consequence, chemical reactions involving these phases can affect the relative humidity and water chemistry of a radioactive waste repository that contains significant amounts of cement. In order to predict and simulate these chemical reactions, the authors are developing an internally consistent database of crystalline Ca-Si-hydrate structures. The results of first principles electronic structure calculations on two such phases, wollastonite (CaSiO 3 ) and xonotlite (Ca 6 Si 6 O 17 (OH) 2 ), are reported here. The calculated ground state properties are in very good agreement with experiment, providing equilibrium lattice parameters within about 1--1.4% of the experimentally reported values. The roles of the different types of oxygen atoms, which are fundamental to understanding the energetics of crystalline Ca-Si-hydrates are briefly discussed in terms of their electronic state densities. The good agreement with experiment for the lattice parameters and the consistency of the electronic density of states features for the two structures demonstrate the applicability of these electronic structure methods in calculating the fundamental properties of these phases
Modulated structure calculated for superconducting hydrogen sulfide
Energy Technology Data Exchange (ETDEWEB)
Majumdar, Arnab; Tse, John S.; Yao, Yansun [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK (Canada)
2017-09-11
Compression of hydrogen sulfide using first principles metadynamics and molecular dynamics calculations revealed a modulated structure with high proton mobility which exhibits a diffraction pattern matching well with experiment. The structure consists of a sublattice of rectangular meandering SH{sup -} chains and molecular-like H{sub 3}S{sup +} stacked alternately in tetragonal and cubic slabs forming a long-period modulation. The novel structure offers a new perspective on the possible origin of the superconductivity at very high temperatures in which the conducting electrons in the SH chains are perturbed by the fluxional motions of the H{sub 3}S resulting in strong electron-phonon coupling. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)
Determining the void fraction in draught sections of a boiling water cooled reactor
International Nuclear Information System (INIS)
Fedulin, V.N.; Barolomej, G.G.; Solodkij, V.A.; Shmelev, V.E.
1987-01-01
Consideration is being given to the problem of improving methods for calculation of the void fraction in large channels of cooling system of the boiling water cooled reactor during two-phase unsteady flow. Investigation of the structure of two-phase flow was conducted in draught section of the VK-50 reactor (diameter D=2 m, height H=3). The method for calculation of the void fraction in channels with H/D ratio close to 1 is suggested
Multilevel domain decomposition for electronic structure calculations
International Nuclear Information System (INIS)
Barrault, M.; Cances, E.; Hager, W.W.; Le Bris, C.
2007-01-01
We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-empirical and density functional theory (DFT) frameworks. This method iterates between local fine solvers and global coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully performed on several linear polymer chains containing up to 40,000 atoms and 200,000 atomic orbitals. Both the computational cost and the memory requirement scale linearly with the number of atoms. Additional speed-up can easily be obtained by parallelization. We show that this domain decomposition method outperforms the density matrix minimization (DMM) method for poor initial guesses. Our method provides an efficient preconditioner for DMM and other linear scaling methods, variational in nature, such as the orbital minimization (OM) procedure
Software quality assurance plan for void fraction instrument
International Nuclear Information System (INIS)
Gimera, M.
1994-01-01
Waste Tank SY-101 has been the focus of extensive characterization work over the past few years. The waste continually generates gases, most notably hydrogen, which are periodically released from the waste. Gas can be trapped in tank waste in three forms: as void gas (bubbles), dissolved gas, or absorbed gas. Void fraction is the volume percentage of a given sample that is comprised of void gas. The void fraction instrument (VFI) acquires the data necessary to calculate void fraction. This document covers the product, Void Fraction Data Acquisition Software. The void fraction software being developed will have the ability to control the void fraction instrument hardware and acquire data necessary to calculate the void fraction in samples. This document provides the software quality assurance plan, verification and validation plan, and configuration management plan for developing the software for the instrumentation that will be used to obtain void fraction data from Tank SY-101
Atomic Reference Data for Electronic Structure Calculations
Kotochigova, S; Shirley, E L
We have generated data for atomic electronic structure calculations, to provide a standard reference for results of specified accuracy under commonly used approximations. Results are presented here for total energies and orbital energy eigenvalues for all atoms from H to U, at microHartree accuracy in the total energy, as computed in the local-density approximation (LDA) the local-spin-density approximation (LSD); the relativistic local-density approximation (RLDA); and scalar-relativistic local-density approximation (ScRLDA).
Cobalamins uncovered by modern electronic structure calculations
DEFF Research Database (Denmark)
Kepp, Kasper Planeta; Ryde, Ulf
2009-01-01
electronic-structure calculations, in particular density functional methods, the understanding of the molecular mechanism of cobalamins has changed dramatically, going from a dominating view of trans-steric strain effects to a much more complex view involving an arsenal of catalytic strategies. Among...... these are cis-steric distortions, electrostatic stabilization of radical products, the realization that nucleotide units can serve as polar handles, and the careful design of the active sites, with polar residues in the radical enzymes and non-polar residues in the transferases. Together, these strategies...
Lattice QCD Calculation of Nucleon Structure
International Nuclear Information System (INIS)
Liu, Keh-Fei; Draper, Terrence
2016-01-01
It is emphasized in the 2015 NSAC Long Range Plan that 'understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics.' Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, ?NN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the 'quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_s meson decay constant f_D__s, the strangeness and charmness, the meson mass decomposition and the strange quark spin from the
Lattice QCD Calculation of Nucleon Structure
Energy Technology Data Exchange (ETDEWEB)
Liu, Keh-Fei [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy; Draper, Terrence [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy
2016-08-30
It is emphasized in the 2015 NSAC Long Range Plan that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, πNN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_{s} meson decay constant f_{Ds}, the strangeness and charmness, the meson mass
Structure of two-phase air-water flows. Study of average void fraction and flow patterns
International Nuclear Information System (INIS)
Roumy, R.
1969-01-01
This report deals with experimental work on a two phase air-water mixture in vertical tubes of different diameters. The average void fraction was measured in a 2 metre long test section by means of quick-closing valves. Using resistive probes and photographic techniques, we have determined the flow patterns and developed diagrams to indicate the boundaries between the various patterns: independent bubbles, agglomerated bubbles, slugs, semi-annular, annular. In the case of bubble flow and slug flow, it is shown that the relationship between the average void fraction and the superficial velocities of the phases is given by: V sg = f( ) * g(V sl ). The function g(V sl ) for the case of independent bubbles has been found to be: g(V sl ) = V sl + 20. For semi-annular and annular flow conditions; it appears that the average void fraction depends, to a first approximation only on the ratio V sg /V sl . (author) [fr
Partial discharges in spheroidal voids: Void orientation
DEFF Research Database (Denmark)
McAllister, Iain Wilson
1997-01-01
Partial discharge transients can be described in terms of the charge induced on the detecting electrode. The influence of the void parameters upon the induced charge is examined and discussed for spheroidal voids. It is shown that a quantitative interpretation of the induced charge requires...
Look, Cory
variety of activity areas that make up a site can imbue a site with an identity of purpose and shed light on how different sites may have served different purposes within a regional framework. Excavations at the site of Indian Creek identified a series of raised middens that enclosed an open space for approximately 1500 years. This research explores this open space, and questions the meaning of 'void' and 'empty' with respect to past human activities. While archaeologists recognize that areas void of material remains are certainly part of the larger site, the question remains, without an understand of these spaces; what aspects of past life are we possibly masking? The integration of anthrosols alongside archaeological excavations and spatial analysis indicate that the site of Indian Creek contained a ceremonial plaza that formed early on and was maintained until abandonment. The spatial distribution of material objects combined with anthrosol studies provided additional evidence of ritual deposits concentrated in one part of the plaza associated with a nearby creek-bed. The second site, Doigs represents one of the last intact undisturbed Early Ceramic Age site of its kind in the Eastern Caribbean. Since its discovery in the 1970's, Doig's has been partially surveyed and excavated. The identification of residential activity areas including several potential structures, bead manufacturing loci, and cooking hearths were used to help test chemical signatures with archaeologically defined activity areas. Findings from this site illustrated the uniqueness of elemental patterns associated with activity areas, and also generated new questions regarding void spaces enriched with elemental patterns associated with concentrations of plant and vegetation debris. It is the hope of this study to contribute to our general knowledge for the identification of ancient activity areas as well as the different places that give sites their identity. These assemblages of activity areas can
Pediatric Voiding Cystourethrogram
Scan for mobile link. Children's (Pediatric) Voiding Cystourethrogram A children’s (pediatric) voiding cystourethrogram uses fluoroscopy – a form of real-time x-ray – to examine a child’s bladder ...
Lares, M.; Luparello, H. E.; Garcia Lambas, D.; Ruiz, A. N.; Ceccarelli, L.; Paz, D.
2017-10-01
Cosmic voids are of great interest given their relation to the large scale distribution of mass and the way they trace cosmic flows shaping the cosmic web. Here we show that the distribution of voids has, in consonance with the distribution of mass, a characteristic scale at which void pairs are preferentially located. We identify clumps of voids with similar environments and use them to define second order underdensities. Also, we characterize its properties and analyze its impact on the cosmic microwave background.
Parquet theory in nuclear structure calculations
International Nuclear Information System (INIS)
Bergli, Elise
2010-01-01
The thesis concerns a numerical implementation of the Parquet summation of diagrams within Green's functions theory applied to calculations of nuclear systems. The main motivation has been to investigate whether it is possible to develop this approach to a level comparable in accuracy and reliability to other ab initio nuclear structure methods. The Green's functions approach is theoretically well-established in many-body theory, but to our knowledge, no actual application to nuclear systems has been previously published. It has a number of desirable properties, foremost the gently scaling with system size compared to direct diagonalization and the closeness to experimentally accessible quantities. The main drawback is the numerical instabilities due to the pole structure of the one-particle propagator, leading to convergence difficulties. This issue is one of the main focal points of the work presented in this thesis, and strategies to improve the convergence properties are described and investigated. We have applied the method both to a simple model which can be solved by exact diagonalization and to the more realistic 4 He system. The results shows that our implementation is close to the exact solution in the simple model as long as the interaction strengths are small. As the number of particles increases, convergence is increasingly hard to obtain. In the 4 He case, we obtain results in the vicinity of the results from comparable approaches. The numerical in-stabilities in the current implementation still prevents the desired accuracy and stability necessary to achieve the current benchmark standards. (Author)
Studies of void formation in pure metals
International Nuclear Information System (INIS)
Lanore, J.M.; Glowinski, L.; Risbet, A.; Regnier, P.; Flament, J.L.; Levy, V.; Adda, Y.
1975-01-01
Recent experiments on the effect of gases on the final configuration of vacancy clustering (void or loop), and on the local effects at dislocations are described. The contribution of this data to a general knowledge of void formation will be discussed, and Monte Carlo calculations of swelling induced by irradiation with different particles presented [fr
Studies of void formation in pure metals
International Nuclear Information System (INIS)
Lanore, J.M.; Glowinski, L.; Risbet, A.; Regnier, P.; Flament, J.L.
1975-01-01
Recent experiments on the effect of gases on the final configuration of vacancy clustering (void or loop), and on the local effects at dislocations are described. The contribution of this data to our general knowledge of void formation will be discussed, and Monte Carlo calculations of swelling induced by irradiation with different particles presented
Lee, Yeon-Gun; Won, Woo-Youn; Lee, Bo-An; Kim, Sin
2017-05-08
In this study, a new and improved electrical conductance sensor is proposed for application not only to a horizontal pipe, but also an inclined one. The conductance sensor was designed to have a dual layer, each consisting of a three-electrode set to obtain two instantaneous conductance signals in turns, so that the area-averaged void fraction and structure velocity could be measured simultaneously. The optimum configuration of the electrodes was determined through numerical analysis, and the calibration curves for stratified and annular flow were obtained through a series of static experiments. The fabricated conductance sensor was applied to a 45 mm inner diameter U-shaped downward inclined pipe with an inclination angle of 3° under adiabatic air-water flow conditions. In the tests, the superficial velocities ranged from 0.1 to 3.0 m/s for water and from 0.1 to 18 m/s for air. The obtained mean void fraction and the structure velocity from the conductance sensor were validated against the measurement by the wire-mesh sensor and the cross-correlation technique for the visualized images, respectively. The results of the flow regime classification and the corresponding time series of the void fraction at a variety of flow velocities were also discussed.
International Nuclear Information System (INIS)
Shimomura, Y.; Nishiguchi, R.; La Rubia, T.D. de; Guinan, M.W.
1992-01-01
In our recent experiments (1), we found that voids nucleate at vacancy clusters which trap gas atoms such as hydrogen and helium in ion- and neutron-irradiated copper. A molecular dynamics computer simulation, which implements an empirical embedded atom method to calculate forces that act on atoms in metals, suggests that a void nucleation occurs in pure copper at six and seven vacancy clusters. The structure of six and seven vacancy clusters in copper fluctuates between a stacking fault tetrahedron and a void. When a hydrogen is trapped at voids of six and seven vacancy, a void can keep their structure for appreciably long time; that is, the void do not relax to a stacking fault tetrahedron and grows to a large void. In order to explore the detailed atomics of void formation, it is emphasized that dual-beam irradiation experiments that utilize beams of gas atoms and self-ions should be carried out with residual gas atom free metal specimens. (author)
Cosmology with void-galaxy correlations.
Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S
2014-01-31
Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.
The evolution of voids in the adhesion approximation
Sahni, Varun; Sathyaprakah, B. S.; Shandarin, Sergei F.
1994-08-01
We apply the adhesion approximation to study the formation and evolution of voids in the universe. Our simulations-carried out using 1283 particles in a cubical box with side 128 Mpc-indicate that the void spectrum evolves with time and that the mean void size in the standard Cosmic Background Explorer Satellite (COBE)-normalized cold dark matter (CDM) model with H50 = 1 scals approximately as bar D(z) = bar Dzero/(1+2)1/2, where bar Dzero approximately = 10.5 Mpc. Interestingly, we find a strong correlation between the sizes of voids and the value of the primordial gravitational potential at void centers. This observation could in principle, pave the way toward reconstructing the form of the primordial potential from a knowledge of the observed void spectrum. Studying the void spectrum at different cosmological epochs, for spectra with a built in k-space cutoff we find that the number of voids in a representative volume evolves with time. The mean number of voids first increases until a maximum value is reached (indicating that the formation of cellular structure is complete), and then begins to decrease as clumps and filaments erge leading to hierarchical clustering and the subsequent elimination of small voids. The cosmological epoch characterizing the completion of cellular structure occurs when the length scale going nonlinear approaches the mean distance between peaks of the gravitaional potential. A central result of this paper is that voids can be populated by substructure such as mini-sheets and filaments, which run through voids. The number of such mini-pancakes that pass through a given void can be measured by the genus characteristic of an individual void which is an indicator of the topology of a given void in intial (Lagrangian) space. Large voids have on an average a larger measure than smaller voids indicating more substructure within larger voids relative to smaller ones. We find that the topology of individual voids is strongly epoch dependent
Effective operators in nuclear-structure calculations
International Nuclear Information System (INIS)
Barrett, Bruce R
2005-01-01
A brief review of the history of the use of many-body perturbation theory to determine effective operators for shell-model calculations, i.e., for calculations in truncated model spaces, is given, starting with the ground-breaking work of Arima and Horie for electromagnetic moments. The problems encountered in utilizing this approach are discussed. New methods based on unitary-transformation approaches are introduced and analyzed. The old problems persist, but the new methods allow us to obtain a better insight into the nature of the physics involved in these processes
The sink strengths of voids and the expected swelling for both random and ordered void distributions
International Nuclear Information System (INIS)
Quigley, T.M.; Murphy, S.M.; Bullough, R.; Wood, M.H.
1981-10-01
The sink strength of a void has been obtained when the void is a member of a random or ordered distribution of voids. The former sink strength derivation has employed the embedding model and the latter the cellular model. In each case the spatially varying size-effect interaction between the intrinsic point defects and the voids has been included together with the presence of other sink types in addition to the voids. The results are compared with previously published sink strengths that have made use of an approximate representation for the size-effect interactions, and indicate the importance of using the exact form of the interaction. In particular the bias for interstitials compared with vacancies of small voids is now much reduced and contamination of the surfaces of such voids no longer appears essential to facilitate the nucleation and growth of the voids. These new sink strengths have been used, in conjunction with recently published dislocation sink strengths, to calculate the expected swelling of materials containing network dislocations and voids. Results are presented for both the random and the void lattice situations. (author)
Block Tridiagonal Matrices in Electronic Structure Calculations
DEFF Research Database (Denmark)
Petersen, Dan Erik
in the Landauer–Büttiker ballistic transport regime. These calculations concentrate on determining the so– called Green’s function matrix, or portions thereof, which is the inverse of a block tridiagonal general complex matrix. To this end, a sequential algorithm based on Gaussian elimination named Sweeps...
Nonlocal plasticity effects on interaction of different size voids
DEFF Research Database (Denmark)
Tvergaard, Viggo; Niordson, Christian Frithiof
2004-01-01
A nonlocal elastic-plastic material model is used to show that the rate of void growth is significantly reduced when the voids are small enough to be comparable with a characteristic material length. For a very small void in the material between much larger voids the competition between...... dimensional array of spherical voids. It is shown that the high growth rate of very small voids predicted by conventional plasticity theory is not realistic when the effect of a characteristic length, dependent on the dislocation structure, is accounted for. (C) 2003 Elsevier Ltd. All rights reserved....
Void nucleation at heterogeneities
International Nuclear Information System (INIS)
Seyyedi, S.A.; Hadji-Mirzai, M.; Russell, K.C.
The energetics and kinetics of void nucleation at dislocations and interfaces are analyzed. These are potential void nucleation sites only when they are not point defect sinks. Both kinds of site are found to be excellent catalysts in the presence of inert gas
International Nuclear Information System (INIS)
Nakayama, Takenori; Yuse, Fumio; Tsubokawa, Yoshiyuki; Matsui, Junji
2003-01-01
Refraction contrast X-ray imaging experiments were conducted on acrylic resin with an artificial cylindrical hole, A7075 aluminum alloy, A6063 aluminum castings, mild steel with cracks or voids, and low alloy steel with inclusions, using a ultra-bright synchrotron radiation X-ray beam in BL24XU hutch C of SPring-8. Conventional absorption contrast X-ray imaging experiments were also done for the comparison. The X-ray beam was controlled to be monochromatic by Si double-crystals and collimated by a slit. The distance between the sample and the detector was changed from 0 to 3 m, and the X-ray energy was 15 to 25 keV. Photographs were taken by X-ray film and/or X-ray CCD camera. As a result, the refraction imaging method gave a much more distinct image of the artificial cylindrical hole in acrylic resin as compared with the absorption method. The fatigue cracks in aluminum alloy and mild steel were also distinctly observed. The X-ray imaging revealed the presence of MnS nonmetallic inclusions in low alloy steel. Void defects in aluminum castings were clearly detected by the imaging. In addition, in-situ observation of tensile fracture of aluminum alloys using a high resolution X-ray CCD camera system wa successfully conducted. The observations by use of asymmetric reflection technique for X-ray imaging experiment were also well performed. From above, the X-ray imaging method using ultra-bright synchrotron radiation is concluded to be very useful for fracture research of materials. (author)
Energy Technology Data Exchange (ETDEWEB)
Nakayama, Takenori; Yuse, Fumio [Kobe Steel, Ltd., Materials Research Laboratory, Kobe, Hyogo (Japan); Tsubokawa, Yoshiyuki [Kobelco Research Inst., Kobe, Hyogo (Japan); Matsui, Junji [Himeji Inst. of Technology, Kamigori, Hyogo (Japan)
2003-04-01
Refraction contrast X-ray imaging experiments were conducted on acrylic resin with an artificial cylindrical hole, A7075 aluminum alloy, A6063 aluminum castings, mild steel with cracks or voids, and low alloy steel with inclusions, using a ultra-bright synchrotron radiation X-ray beam in BL24XU hutch C of SPring-8. Conventional absorption contrast X-ray imaging experiments were also done for the comparison. The X-ray beam was controlled to be monochromatic by Si double-crystals and collimated by a slit. The distance between the sample and the detector was changed from 0 to 3 m, and the X-ray energy was 15 to 25 keV. Photographs were taken by X-ray film and/or X-ray CCD camera. As a result, the refraction imaging method gave a much more distinct image of the artificial cylindrical hole in acrylic resin as compared with the absorption method. The fatigue cracks in aluminum alloy and mild steel were also distinctly observed. The X-ray imaging revealed the presence of MnS nonmetallic inclusions in low alloy steel. Void defects in aluminum castings were clearly detected by the imaging. In addition, in-situ observation of tensile fracture of aluminum alloys using a high resolution X-ray CCD camera system wa successfully conducted. The observations by use of asymmetric reflection technique for X-ray imaging experiment were also well performed. From above, the X-ray imaging method using ultra-bright synchrotron radiation is concluded to be very useful for fracture research of materials. (author)
Directory of Open Access Journals (Sweden)
Withers P.J.
2013-07-01
Full Text Available X-ray computed tomography (X-ray CT has been applied to nondestructively characterise changes in the microstructure of a concrete used in the pressure vessel structure of Advanced Gas-cooled Reactors (AGR in the UK. Concrete specimens were conditioned at temperatures of 105 °C and 250 °C, to simulate the maximum thermal load expected to occur during a loss of coolant accident (LOCA. Following thermal treatment, these specimens along with an unconditioned control sample were characterised using micro-focus X-ray CT with a spatial resolution of 14.6 microns. The results indicate that the air void pore structure of the specimens experienced significant volume changes as a result of the increasing temperature. The increase in the porous volume was more prevalent at 250 °C. Alterations in air void size distributions were characterized with respect to the unconditioned control specimen. These findings appear to correlate with changes in the uni-axial compressive strength of the conditioned concrete.
Statistics and geometry of cosmic voids
International Nuclear Information System (INIS)
Gaite, José
2009-01-01
We introduce new statistical methods for the study of cosmic voids, focusing on the statistics of largest size voids. We distinguish three different types of distributions of voids, namely, Poisson-like, lognormal-like and Pareto-like distributions. The last two distributions are connected with two types of fractal geometry of the matter distribution. Scaling voids with Pareto distribution appear in fractal distributions with box-counting dimension smaller than three (its maximum value), whereas the lognormal void distribution corresponds to multifractals with box-counting dimension equal to three. Moreover, voids of the former type persist in the continuum limit, namely, as the number density of observable objects grows, giving rise to lacunar fractals, whereas voids of the latter type disappear in the continuum limit, giving rise to non-lacunar (multi)fractals. We propose both lacunar and non-lacunar multifractal models of the cosmic web structure of the Universe. A non-lacunar multifractal model is supported by current galaxy surveys as well as cosmological N-body simulations. This model suggests, in particular, that small dark matter halos and, arguably, faint galaxies are present in cosmic voids
2015-06-01
Air void clustering around coarse aggregate in concrete has been identified as a potential source of : low strengths in concrete mixes by several Departments of Transportation around the country. Research was : carried out to (1) develop a quantitati...
VIDE: The Void IDentification and Examination toolkit
Sutter, P. M.; Lavaux, G.; Hamaus, N.; Pisani, A.; Wandelt, B. D.; Warren, M.; Villaescusa-Navarro, F.; Zivick, P.; Mao, Q.; Thompson, B. B.
2015-03-01
We present VIDE, the Void IDentification and Examination toolkit, an open-source Python/C++ code for finding cosmic voids in galaxy redshift surveys and N-body simulations, characterizing their properties, and providing a platform for more detailed analysis. At its core, VIDE uses a substantially enhanced version of ZOBOV (Neyinck 2008) to calculate a Voronoi tessellation for estimating the density field and performing a watershed transform to construct voids. Additionally, VIDE provides significant functionality for both pre- and post-processing: for example, VIDE can work with volume- or magnitude-limited galaxy samples with arbitrary survey geometries, or dark matter particles or halo catalogs in a variety of common formats. It can also randomly subsample inputs and includes a Halo Occupation Distribution model for constructing mock galaxy populations. VIDE uses the watershed levels to place voids in a hierarchical tree, outputs a summary of void properties in plain ASCII, and provides a Python API to perform many analysis tasks, such as loading and manipulating void catalogs and particle members, filtering, plotting, computing clustering statistics, stacking, comparing catalogs, and fitting density profiles. While centered around ZOBOV, the toolkit is designed to be as modular as possible and accommodate other void finders. VIDE has been in development for several years and has already been used to produce a wealth of results, which we summarize in this work to highlight the capabilities of the toolkit. VIDE is publicly available at http://bitbucket.org/cosmicvoids/vide_public and http://www.cosmicvoids.net.
Soil structure interaction calculations: a comparison of methods
International Nuclear Information System (INIS)
Wight, L.; Zaslawsky, M.
1976-01-01
Two approaches for calculating soil structure interaction (SSI) are compared: finite element and lumped mass. Results indicate that the calculations with the lumped mass method are generally conservative compared to those obtained by the finite element method. They also suggest that a closer agreement between the two sets of calculations is possible, depending on the use of frequency-dependent soil springs and dashpots in the lumped mass calculations. There is a total lack of suitable guidelines for implementing the lumped mass method of calculating SSI, which leads to the conclusion that the finite element method is generally superior for calculative purposes
Soil structure interaction calculations: a comparison of methods
Energy Technology Data Exchange (ETDEWEB)
Wight, L.; Zaslawsky, M.
1976-07-22
Two approaches for calculating soil structure interaction (SSI) are compared: finite element and lumped mass. Results indicate that the calculations with the lumped mass method are generally conservative compared to those obtained by the finite element method. They also suggest that a closer agreement between the two sets of calculations is possible, depending on the use of frequency-dependent soil springs and dashpots in the lumped mass calculations. There is a total lack of suitable guidelines for implementing the lumped mass method of calculating SSI, which leads to the conclusion that the finite element method is generally superior for calculative purposes.
Sodium voiding analysis in Kalimer
International Nuclear Information System (INIS)
Chang, Won-Pyo; Jeong, Kwan-Seong; Hahn, Dohee
2001-01-01
A sodium boiling model has been developed for calculations of the void reactivity feedback as well as the fuel and cladding temperatures in the KALIMER core after onset of sodium boiling. The sodium boiling in liquid metal reactors using sodium as coolant should be modeled because of phenomenon difference observed from that in light water reactor systems. The developed model is a multiple -bubble slug ejection model. It allows a finite number of bubbles in a channel at any time. Voiding is assumed to result from formation of bubbles that fill the whole cross section of the coolant channel except for liquid film left on the cladding surface. The vapor pressure, currently, is assumed to be uniform within a bubble. The present study is focused on not only demonstration of the sodium voiding behavior predicted by the developed model, but also confirmation on qualitative acceptance for the model. In results, the model catches important phenomena for sodium boiling, while further effort should be made for the complete analysis. (author)
Calculations of optical rotation: Influence of molecular structure
Directory of Open Access Journals (Sweden)
Yu Jia
2012-01-01
Full Text Available Ab initio Hartree-Fock (HF method and Density Functional Theory (DFT were used to calculate the optical rotation of 26 chiral compounds. The effects of theory and basis sets used for calculation, solvents influence on the geometry and values of calculated optical rotation were all discussed. The polarizable continuum model, included in the calculation, did not improve the accuracy effectively, but it was superior to γs. Optical rotation of five or sixmembered of cyclic compound has been calculated and 17 pyrrolidine or piperidine derivatives which were calculated by HF and DFT methods gave acceptable predictions. The nitrogen atom affects the calculation results dramatically, and it is necessary in the molecular structure in order to get an accurate computation result. Namely, when the nitrogen atom was substituted by oxygen atom in the ring, the calculation result deteriorated.
Inductance calculation of 3D superconducting structures with ground plane
International Nuclear Information System (INIS)
Teh, C.H.; Kitagawa, M.; Okabe, Y.
1999-01-01
An inductance calculation method, which is based on calculating the current distribution of a fluxoid-trapped superconducting loop by using the expression of momentum and the Maxwell equations, is reconstructed to enable calculation of arbitrary 3D structures which have a ground plane (GP). Calculation of the mutual inductances of the superconductor system is also incorporated into the algorithm. The method of images is used to save computational resources, and the mirror plane is demonstrated to be just at the effective penetration depth below the upper boundary of the GP. The algorithm offers accurate results with reasonable calculation time. (author)
Void growth suppression by dislocation impurity atmospheres
International Nuclear Information System (INIS)
Weertman, J.; Green, W.V.
1976-01-01
A detailed calculation is given of the effect of an impurity atmosphere on void growth under irradiation damage conditions. Norris has proposed that such an atmosphere can suppress void growth. The hydrostatic stress field of a dislocation that is surrounded by an impurity atmosphere was found and used to calculate the change in the effective radius of a dislocation line as a sink for interstitials and vacancies. The calculation of the impurity concentration in a Cottrell cloud takes into account the change in hydrostatic pressure produced by the presence of the cloud itself. It is found that void growth is eliminated whenever dislocations are surrounded by a condensed atmosphere of either oversized substitutional impurity atoms or interstitial impurity atoms. A condensed atmosphere will form whenever the average impurity concentration is larger than a critical concentration
First-principle calculations of structural, electronic, optical, elastic ...
Indian Academy of Sciences (India)
S CHEDDADI
2017-11-28
Nov 28, 2017 ... First-principle calculations on the structural, electronic, optical, elastic and thermal properties of the chalcopyrite ... The Kohn–Sham equations were solved using the ... RMTKmax = 7 was used for all the investigated systems,.
Calculation of coupling factor for double-period accelerating structure
International Nuclear Information System (INIS)
Bian Xiaohao; Chen Huaibi; Zheng Shuxin
2005-01-01
In the design of the linear accelerating structure, the coupling factor between cavities is a crucial parameter. The error of coupling factor accounts for the electric or magnetic field error mainly. To accurately design the coupling iris, the accurate calculation of coupling factor is essential. The numerical simulation is widely used to calculate the coupling factor now. By using MAFIA code, two methods have been applied to calculate the dispersion characteristics of the single-period structure, one method is to simulate the traveling wave mode by the period boundary condition; another method is to simulate the standing wave mode by the electrical boundary condition. In this work, the authors develop the two methods to calculate the coupling factor of double-period accelerating structure. Compared to experiment, the results for both methods are very similar, and in agreement with measurement within 15% deviation. (authors)
Comparative study of void fraction models
International Nuclear Information System (INIS)
Borges, R.C.; Freitas, R.L.
1985-01-01
Some models for the calculation of void fraction in water in sub-cooled boiling and saturated vertical upward flow with forced convection have been selected and compared with experimental results in the pressure range of 1 to 150 bar. In order to know the void fraction axial distribution it is necessary to determine the net generation of vapour and the fluid temperature distribution in the slightly sub-cooled boiling region. It was verified that the net generation of vapour was well represented by the Saha-Zuber model. The selected models for the void fraction calculation present adequate results but with a tendency to super-estimate the experimental results, in particular the homogeneous models. The drift flux model is recommended, followed by the Armand and Smith models. (F.E.) [pt
MODY - calculation of ordered structures by symmetry-adapted functions
Białas, Franciszek; Pytlik, Lucjan; Sikora, Wiesława
2016-01-01
In this paper we focus on the new version of computer program MODY for calculations of symmetryadapted functions based on the theory of groups and representations. The choice of such a functional frame of coordinates for description of ordered structures leads to a minimal number of parameters which must be used for presentation of such structures and investigations of their properties. The aim of this work is to find those parameters, which are coefficients of a linear combination of calculated functions, leading to construction of different types of structure ordering with a given symmetry. A spreadsheet script for simplification of this work has been created and attached to the program.
Ab-initio electronic band structure calculations for beryllium chalcogenides
International Nuclear Information System (INIS)
Kalpana, G.; Pari, G.; Yousuf, Mohammad
1997-01-01
The first principle tight-binding linear muffin-tin orbital method within the local density approximation (LDA) has been used to calculate the ground state properties, structural phase transition and pressure dependence of band gap of BeS, BeSe and BeTe. We have calculated the energy-volume relations for these compounds in the B3 and B8 phases. The calculated lattice parameters, bulk modulus and the pressure-volume relation were found to be in good agreement with the recent experimental results. The calculated B3→B8 structural transition pressure for BeS, BeSe and BeTe agree well with the recent experimental results. Our calculations show that these compounds are indirect band gap (Γ-X) semiconductors at ambient conditions. The calculated band gap values are found to be underestimated by 20-30% which is due to the usage of LDA. After the structural transition to the B8 phase, BeS continues to be indirect band gap semiconductors and ultimately above 100 GPa it metallises, BeSe and BeTe are metallic at the B3→B8 structural transition. (author)
Determination of the void nucleation rate from void size distributions
International Nuclear Information System (INIS)
Brailsford, A.D.
1977-01-01
A method of estimating the void nucleation rate from one void size distribution and from observation of the maximum void radius at prior times is proposed. Implicit in the method are the assumptions that both variations in the critical radius with dose and vacancy thermal emission processes during post-nucleation quasi-steady-state growth may be neglected. (Auth.)
Void shape effects and voids starting from cracked inclusion
DEFF Research Database (Denmark)
Tvergaard, Viggo
2011-01-01
Numerical, axisymmetric cell model analyses are used to study the growth of voids in ductile metals, until the mechanism of coalescence with neighbouring voids sets in. A special feature of the present analyses is that extremely small values of the initial void volume fraction are considered, dow...
Electronic structure calculations on nitride semiconductors and their alloys
International Nuclear Information System (INIS)
Dugdale, D.
2000-09-01
Calculations of the electronic properties of AIN, GaN, InN and their alloys are presented. Initial calculations are performed using the first principles pseudopotential method to obtain accurate lattice constants. Further calculations then investigate bonding in the nitrides through population analysis and density of state calculations. The empirical pseudopotential method is also used in this work. Pseudopotentials for each of the nitrides are constructed using a functional form that allows strained material and alloys to be studied. The conventional k.p valence band parameters for both zincblende and wurtzite are obtained from the empirical band structure using two different methods. A Monte-Carlo fitting of the k.p band structure to the pseudopotential data (or an effective mass method for the zincblende structure) is used to produce one set. Another set is obtained directly from the momentum matrix elements and energy eigenvalues at the centre of the Brillouin zone. Both methods of calculating k.p parameters produce band structure in excellent agreement with the original empirical band calculations near the centre of the Brillouin zone. The advantage of the direct method is that it produces consistent sets of parameters, and can be used in studies involving a series of alloy compositions. Further empirical pseudopotential method calculations are then performed for alloys of the nitrides. In particular, the variation of the band gap with alloy composition is investigated, and good agreement with theory and experiment is found. The direct method is used to obtain k.p parameters for the alloys, and is contrasted with the fitting approach. The behaviour of the nitrides under strain is also studied. In particular. valence band offsets for nitride heterojunctions are calculated, and a strong forward- backward asymmetry in the band offset is found, in good agreement with other results in the literature. (author)
Dissociative recombination of interstellar ions: electronic structure calculations for HCO+
International Nuclear Information System (INIS)
Kraemer, W.P.; Hazi, A.U.
1985-01-01
The present study of the interstellar formyl ion HCO + is the first attempt to investigate dissociative recombination for a triatomic molecular ion using an entirely theoretical approach. We describe a number of fairly extensive electronic structure calculations that were performed to determine the reaction mechanism of the e-HCO + process. Similar calculations for the isoelectronic ions HOC + and HN 2 + are in progress. 60 refs
Atomic structure calculations of Mo XV-XL
International Nuclear Information System (INIS)
Kubo, Hirotaka; Sugie, Tatsuo; Shiho, Makoto; Suzuki, Yasuo; Ishii, Keishi; Maeda, Hikosuke.
1986-06-01
Energy levels and oscillator strengths were calculated for Mo XV - Mo XL. The computer program for atomic structure calculation, developed by Dr. Robert D. Cowan, Los Alamos National Laboratory, was used in the present work. The scaled energy parameters were empirically determined from the observed spectral data. We present wavelengths and transition probabilities of Mo XV-XL. Energy levels and spectral patterns are presented in figures that are useful for the identification of spectral lines. (author)
Calculation of coupling factor for the heterogeneous accelerating structure
International Nuclear Information System (INIS)
Bian Xiaohao; Chen Huaibi; Zheng Shuxin
2006-01-01
The converging part of electron accelerator is designed to converge the phase of injecting electrons, improving the beam quality of the accelerator. It is very crucial to calculate the coupling factor between cavities and to design the geometry structure of the coupling irises. By the E module of code MAFIA, the authors calculate the frequency of every single resonant cavity and the two eigenfrequencies of two-cavitiy line. Then we get the coupling factor between the two cavities. This method can be used to design the geometry structure of the coupling isises between every two cavities. Compared to experiment, the results of the method is very accurate. (authors)
International Nuclear Information System (INIS)
Loevvik, O.M.; Prytz, O.
2004-01-01
The crystal structure, thermodynamic stability, and electronic structure of La-, Y-, and Sc-filled CoP 3 are predicted from density-functional band-structure calculations. The size of the cubic voids in the skutterudite structure is changed much less than the difference in size between the different filling atoms, and we expect that the larger rattling amplitude of the smaller Sc and Y atoms may decrease the lattice thermal conductivity of Sc- and Y-filled structures significantly compared to La-filled structures. The solubility of La, Y, and Sc in CoP 3 is calculated to be around 5, 3-6 %, and below 1% at 0 K, respectively. Based on similar systems, this is expected to increase considerably if Fe is substituted for Co. Fe substitution is also expected to compensate the increased charge carrier concentration of the filled structures that is seen in the calculated electron density of states. In conclusion, Sc- or Y-filled (FeCo)P 3 skutterudite structures are promising materials for thermoelectric applications
Void fraction instrument software, Version 1,2, Acceptance test report
International Nuclear Information System (INIS)
Gimera, M.
1995-01-01
This provides the report for the void fraction instrument acceptance test software Version 1.2. The void fraction will collect data that will be used to calculate the quantity of gas trapped in waste tanks
Dynamic calculation of structures in seismic zones. 2. ed.
International Nuclear Information System (INIS)
Capra, Alain; Davidovici, Victor
1982-01-01
The aims of this book are both didactic and practical. It is therefore addressed to both experienced engineers and students. Some general information about earthquakes and their occurrence is first given. The problem of a simple oscillator is presented. In this way, the reader is provided with an insight into undestanding the dynamic phenomena taking place and is introduced to the concept of response spectra and to an intuitive comprehension of the behavior of structures during earthquakes. The next chapter is devoted to the cases most frequently encountered with multiple oscillator structures. Theoretical studies are based on the usual modal decomposition method. The various practical methods of calculation employed are then examined, emphasis being given to the various different stages involved and to which of them is the best suited for a particular type of structure. Advise is given on how to select the model whose behavior best describes the real structure, both manual and computer methods of calculation being envisaged [fr
Calculation of surface acoustic waves in a multilayered piezoelectric structure
International Nuclear Information System (INIS)
Zhang Zuwei; Wen Zhiyu; Hu Jing
2013-01-01
The propagation properties of the surface acoustic waves (SAWs) in a ZnO—SiO 2 —Si multilayered piezoelectric structure are calculated by using the recursive asymptotic method. The phase velocities and the electromechanical coupling coefficients for the Rayleigh wave and the Love wave in the different ZnO—SiO 2 —Si structures are calculated and analyzed. The Love mode wave is found to be predominantly generated since the c-axis of the ZnO film is generally perpendicular to the substrate. In order to prove the calculated results, a Love mode SAW device based on the ZnO—SiO 2 —Si multilayered structure is fabricated by micromachining, and its frequency responses are detected. The experimental results are found to be mainly consistent with the calculated ones, except for the slightly larger velocities induced by the residual stresses produced in the fabrication process of the films. The deviation of the experimental results from the calculated ones is reduced by thermal annealing. (semiconductor physics)
Dislocation and void segregation in copper during neutron irradiation
DEFF Research Database (Denmark)
Singh, Bachu Narain; Leffers, Torben; Horsewell, Andy
1986-01-01
); the irradiation experiments were carried out at 250 degree C. The irradiated specimens were examined by transmission electron microscopy. At both doses, the irradiation-induced structure was found to be highly segregated; the dislocation loops and segments were present in the form of irregular walls and the voids...... density, the void swelling rate was very high (approximately 2. 5% per dpa). The implications of the segregated distribution of sinks for void formation and growth are briefly discussed....
First principles calculations of structural, electronic and thermal ...
Indian Academy of Sciences (India)
Home; Journals; Bulletin of Materials Science; Volume 37; Issue 5. First principles calculations of structural, electronic and thermal properties of lead chalcogenides PbS, PbSe and PbTe compounds. N Boukhris H Meradji S Amara Korba S Drablia S Ghemid F El Haj Hassan. Volume 37 Issue 5 August 2014 pp 1159-1166 ...
First-principle calculations of the structural, electronic ...
Indian Academy of Sciences (India)
First-principle calculations were performed to study the structural, electronic, thermodynamic and thermal properties of ... functional theory (DFT) combined with the quasi-harmonic .... is consistent with Vegard's law which assumes that the lat- tice constant varies .... reflects a charge-transfer effect which is due to the different.
Inverse boundary element calculations based on structural modes
DEFF Research Database (Denmark)
Juhl, Peter Møller
2007-01-01
The inverse problem of calculating the flexural velocity of a radiating structure of a general shape from measurements in the field is often solved by combining a Boundary Element Method with the Singular Value Decomposition and a regularization technique. In their standard form these methods sol...
Calculation of forces arising from impacting projectiles upon yielding structures
International Nuclear Information System (INIS)
Drittler, K.; Gruner, P.; Krivy, J.
1977-01-01
Calculations concerning the impact of airplanes upon nuclear power plant buildings usually imply that the building [QUOTE]acts' as a rigid target. This assumption is justified for considerations concerning the structural integrity of the building being hit. However, for investigating induced vibrations of components within the structure, this approach might-in general-be too conservative. It is expected, that yielding of the structure during impact reduces the peak values of the loads and changes the temporal behaviour of the load function which is obtained for a rigid target. To calculate the changes of the load function which are due to deformations of the structure, Riera's method is extended for the case of a yielding target. The calculations are performed with a one-dimensional model for the projectile. The presented model calculations seem to verify that the motion of the target does not have much influence on the impact force for projectiles similar to the model projectile, provided the displacement of the yielding target is small in comparison with the path covered by the free-flying projectile during a time which is equivalent to the total time of impact. (Auth.)
Design guide for calculating fluid damping for circular cylindrical structures
International Nuclear Information System (INIS)
Chen, S.S.
1983-06-01
Fluid damping plays an important role for structures submerged in fluid, subjected to flow, or conveying fluid. This design guide presents a summary of calculational procedures and design data for fluid damping for circular cylinders vibrating in quiescent fluid, crossflow, and parallel flow
A sub-structure method for multidimensional integral transport calculations
International Nuclear Information System (INIS)
Kavenoky, A.; Stankovski, Z.
1983-03-01
A new method has been developed for fine structure burn-up calculations of very heterogeneous large size media. It is a generalization of the well-known surface-source method, allowing coupling actual two-dimensional heterogeneous assemblies, called sub-structures. The method has been applied to a rectangular medium, divided into sub-structures, containing rectangular and/or cylindrical fuel, moderator and structure elements. The sub-structures are divided into homogeneous zones. A zone-wise flux expansion is used to formulate a direct collision probability problem within it (linear or flat flux expansion in the rectangular zones, flat flux in the others). The coupling of the sub-structures is performed by making extra assumptions on the currents entering and leaving the interfaces. The accuracies and computing times achieved are illustrated by numerical results on two benchmark problems
Calculation of forces arising from impacting projectiles upon yielding structures
International Nuclear Information System (INIS)
Drittler, K.; Gruner, P.; Krivy, J.
1977-01-01
Calculations concerning the impact of airplanes upon nuclear power plant buildings usually imply that the building 'acts' as a rigid target. This assumption is justified for considerations concerning the structural integrity of the building being hit. However, for investigating induced vibrations of components within the structure, this approach might -in general- be too conservative. It is expected, that yielding of the structure during impact reduces the peak values of the loads and changes the temporal behavior of the load function which is obtained for a rigid target. To calculate the changes of the load function which are due to deformations of the structure, Riera's method is extended for the case of a yielding target. In view of the applications of the calculations to the impact of airplanes upon buildings which are constructed to withstand loads of this kind without serious damage and without large deformations, it is possible to simplify the calculations to some extent. That is, the investigations need not take into account in detail the behavior of the target during impact. The calculations are performed with a one-dimensional model for the projectile. The direction of impact is perpendicular to the target surface; direction of impact and projectile axis coincide. The calculations were performed for several initial velocities of the projectiles simulating a fast flying military airplane. Variations of the peak values of the load functions as compared to corresponding values for a rigid target do not exceed about 10%. The overall temporal behavior of the load curves turns out to be not very sensitive to the yielding of the target, though, in some cases displacements in time of the peak positions within a single load curve do arise
McVary, Kevin T; Peterson, Andrew; Donatucci, Craig F; Baygani, Simin; Henneges, Carsten; Clouth, Johannes; Wong, David; Oelke, Matthias
2016-09-01
Lower urinary tract symptoms associated with benign prostatic hyperplasia typically respond well to medical therapy. While changes in total I-PSS (International Prostate Symptom Score) are generally accepted as measurement for treatment response, I-PSS storage and voiding subscores may not accurately reflect the influence of symptom improvement on patient bother and quality of life. Structural equation modeling was done to evaluate physiological interrelationships measured by I-PSS storage vs voiding subscore questions and measure the magnitude of effects on bother using BII (Benign Prostatic Hyperplasia Impact Index) and quality of life on I-PSS quality of life questions. Pooled data from 4 randomized, controlled trials of tadalafil and placebo in 1,462 men with lower urinary tract symptoms/benign prostatic hyperplasia were used to investigate the relationship of storage vs voiding lower urinary tract symptoms on BII and quality of life. The final structural equation model demonstrated a sufficient fit to model interdependence of storage, voiding, bother and quality of life (probability for test of close fit <0.0001). Storage aspects had a twofold greater effect on voiding vs voiding aspects on storage (0.61 vs 0.28, each p <0.0001). The direct effect of storage on bother was twofold greater than voiding on bother (0.64 vs 0.29, each p <0.0001). Bother directly impacted quality of life by the largest magnitude of (-0.83), largely driven by storage lower urinary tract symptoms (p <0.0001). Total I-PSS is a reliable instrument to assess the therapeutic response in lower urinary tract symptoms/benign prostatic hyperplasia cases. However, an improvement in storage lower urinary tract symptoms is mainly responsible for improved bother and quality of life during treatment. Care should be taken when evaluating the accuracy of I-PSS subscores as indicators of the response to medical therapy. Copyright © 2016 American Urological Association Education and Research, Inc
Chiral nucleon-nucleon forces in nuclear structure calculations
Directory of Open Access Journals (Sweden)
Coraggio L.
2016-01-01
Full Text Available Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.
Effects of NMR spectral resolution on protein structure calculation.
Directory of Open Access Journals (Sweden)
Suhas Tikole
Full Text Available Adequate digital resolution and signal sensitivity are two critical factors for protein structure determinations by solution NMR spectroscopy. The prime objective for obtaining high digital resolution is to resolve peak overlap, especially in NOESY spectra with thousands of signals where the signal analysis needs to be performed on a large scale. Achieving maximum digital resolution is usually limited by the practically available measurement time. We developed a method utilizing non-uniform sampling for balancing digital resolution and signal sensitivity, and performed a large-scale analysis of the effect of the digital resolution on the accuracy of the resulting protein structures. Structure calculations were performed as a function of digital resolution for about 400 proteins with molecular sizes ranging between 5 and 33 kDa. The structural accuracy was assessed by atomic coordinate RMSD values from the reference structures of the proteins. In addition, we monitored also the number of assigned NOESY cross peaks, the average signal sensitivity, and the chemical shift spectral overlap. We show that high resolution is equally important for proteins of every molecular size. The chemical shift spectral overlap depends strongly on the corresponding spectral digital resolution. Thus, knowing the extent of overlap can be a predictor of the resulting structural accuracy. Our results show that for every molecular size a minimal digital resolution, corresponding to the natural linewidth, needs to be achieved for obtaining the highest accuracy possible for the given protein size using state-of-the-art automated NOESY assignment and structure calculation methods.
Evaluation of calculational and material models for concrete containment structures
International Nuclear Information System (INIS)
Dunham, R.S.; Rashid, Y.R.; Yuan, K.A.
1984-01-01
A computer code utilizing an appropriate finite element, material and constitutive model has been under development as a part of a comprehensive effort by the Electric Power Research Institute (EPRI) to develop and validate a realistic methodology for the ultimate load analysis of concrete containment structures. A preliminary evaluation of the reinforced and prestressed concrete modeling capabilities recently implemented in the ABAQUS-EPGEN code has been completed. This effort focuses on using a state-of-the-art calculational model to predict the behavior of large-scale reinforced concrete slabs tested under uniaxial and biaxial tension to simulate the wall of a typical concrete containment structure under internal pressure. This paper gives comparisons between calculations and experimental measurements for a uniaxially-loaded specimen. The calculated strains compare well with the measured strains in the reinforcing steel; however, the calculations gave diffused cracking patterns that do not agree with the discrete cracking observed in the experiments. Recommendations for improvement of the calculational models are given. (orig.)
A NEW STATISTICAL PERSPECTIVE TO THE COSMIC VOID DISTRIBUTION
International Nuclear Information System (INIS)
Pycke, J-R; Russell, E.
2016-01-01
In this study, we obtain the size distribution of voids as a three-parameter redshift-independent log-normal void probability function (VPF) directly from the Cosmic Void Catalog (CVC). Although many statistical models of void distributions are based on the counts in randomly placed cells, the log-normal VPF that we obtain here is independent of the shape of the voids due to the parameter-free void finder of the CVC. We use three void populations drawn from the CVC generated by the Halo Occupation Distribution (HOD) Mocks, which are tuned to three mock SDSS samples to investigate the void distribution statistically and to investigate the effects of the environments on the size distribution. As a result, it is shown that void size distributions obtained from the HOD Mock samples are satisfied by the three-parameter log-normal distribution. In addition, we find that there may be a relation between the hierarchical formation, skewness, and kurtosis of the log-normal distribution for each catalog. We also show that the shape of the three-parameter distribution from the samples is strikingly similar to the galaxy log-normal mass distribution obtained from numerical studies. This similarity between void size and galaxy mass distributions may possibly indicate evidence of nonlinear mechanisms affecting both voids and galaxies, such as large-scale accretion and tidal effects. Considering the fact that in this study, all voids are generated by galaxy mocks and show hierarchical structures in different levels, it may be possible that the same nonlinear mechanisms of mass distribution affect the void size distribution.
Molecular structures from density functional calculations with simulated annealing
International Nuclear Information System (INIS)
Jones, R.O.
1991-01-01
The geometrical structure of any aggregate of atoms is one of its basic properties and, in principle, straightforward to predict. One chooses a structure, determines the total energy E of the system of electrons and ions, and repeats the calculation for all possible geometries. The ground state structure is that with the lowest energy. A quantum mechanical calculation of the exact wave function Ψ would lead to the total energy, but this is practicable only in very small molecules. Furthermore, the number of local minima in the energy surface increases dramatically with increasing molecular size. While traditional ab initio methods have had many impressive successes, the difficulties have meant that they have focused on systems with relatively few local minima, or have used experiments or experience to limit the range of geometries studied. On the other hand, calculations for much larger molecules and extended systems are often forced to use simplifying assumptions about the interatomic forces that limit their predictive capability. The approach described here avoids both of these extremes: Total energies of predictive value are calculated without using semi-empirical force laws, and the problem of multiple minima in the energy surface is addressed. The density functional formalism, with a local density approximation for the exchange-correlation energy, allows one to calculate the total energy for a given geometry in an efficient, if approximate, manner. Calculations for heavier elements are not significantly more difficult than for those in the first row and provide an ideal way to study bonding trends. When coupled with finite-temperature molecular dynamics, this formalism can avoid many of the energetically unfavorable minima in the energy surface. We show here that the method leads to surprising and exciting results. (orig.)
Wavelets in self-consistent electronic structure calculations
International Nuclear Information System (INIS)
Wei, S.; Chou, M.Y.
1996-01-01
We report the first implementation of orthonormal wavelet bases in self-consistent electronic structure calculations within the local-density approximation. These local bases of different scales efficiently describe localized orbitals of interest. As an example, we studied two molecules, H 2 and O 2 , using pseudopotentials and supercells. Considerably fewer bases are needed compared with conventional plane-wave approaches, yet calculated binding properties are similar. Our implementation employs fast wavelet and Fourier transforms, avoiding evaluating any three-dimensional integral numerically. copyright 1996 The American Physical Society
Microscopic calculations of nuclear structure and nuclear correlations
International Nuclear Information System (INIS)
Wiringa, R.B.
1992-01-01
A major goal in nuclear physics is to understand how nuclear structure comes about from the underlying interactions between nucleons. This requires modelling nuclei as collections of strongly interacting particles. Using realistic nucleon-nucleon potentials, supplemented with consistent three-nucleon potentials and two-body electroweak current operators, variational Monte Carlo methods are used to calculate nuclear ground-state properties, such as the binding energy, electromagnetic form factors, and momentum distributions. Other properties such as excited states and low-energy reactions are also calculable with these methods
Void migration, coalescence and swelling in fusion materials
International Nuclear Information System (INIS)
Cottrell, G.A.
2003-01-01
A recent analysis of the migration of voids and bubbles, produced in neutron irradiated fusion materials, is outlined. The migration, brought about by thermal hopping of atoms on the surface of a void, is normally a random Brownian motion but, in a temperature gradient, can be slightly biassed up the gradient. Two effects of such migrations are the transport of voids and trapped transmutation helium atoms to grain boundaries, where embrittlement may result; and the coalescence of migrating voids, which reduces the number of non-dislocation sites available for the capture of knock-on point defects and thereby enables the dislocation bias process to maintain void swelling. A selection of candidate fusion power plant armour and structural metals have been analysed. The metals most resistant to void migration and its effects are tungsten and molybdenum. Steel and beryllium are least so and vanadium is intermediate
Breit–Pauli atomic structure calculations for Fe XI
International Nuclear Information System (INIS)
Aggarwal, Sunny; Singh, Jagjit; Mohan, Man
2013-01-01
Energy levels, oscillator strengths, and transition probabilities are calculated for the lowest-lying 165 energy levels of Fe XI using configuration-interaction wavefunctions. The calculations include all the major correlation effects. Relativistic effects are included in the Breit–Pauli approximation by adding mass-correction, Darwin, and spin–orbit interaction terms to the non-relativistic Hamiltonian. For comparison with the calculated ab initio energy levels, we have also calculated the energy levels by using the fully relativistic multiconfiguration Dirac–Fock method. The calculated results are in close agreement with the National Institute of Standards and Technology compilation and other available results. New results are predicted for many of the levels belonging to the 3s3p 4 3d and 3s3p 3 3d 2 configurations, which are very important in astrophysics, relevant, for example, to the recent observations by the Hinode spacecraft. We expect that our extensive calculations will be useful to experimentalists in identifying the fine structure levels in their future work
Development and application of advanced methods for electronic structure calculations
DEFF Research Database (Denmark)
Schmidt, Per Simmendefeldt
. For this reason, part of this thesis relates to developing and applying a new method for constructing so-called norm-conserving PAW setups, that are applicable to GW calculations by using a genetic algorithm. The effect of applying the new setups significantly affects the absolute band positions, both for bulk......This thesis relates to improvements and applications of beyond-DFT methods for electronic structure calculations that are applied in computational material science. The improvements are of both technical and principal character. The well-known GW approximation is optimized for accurate calculations...... of electronic excitations in two-dimensional materials by exploiting exact limits of the screened Coulomb potential. This approach reduces the computational time by an order of magnitude, enabling large scale applications. The GW method is further improved by including so-called vertex corrections. This turns...
Radar application in void and bar detection
International Nuclear Information System (INIS)
Amry Amin Abas; Mohamad Pauzi Ismail; Suhairy Sani
2003-01-01
Radar is one of the new non-destructive testing techniques for concrete and structures inspection. Radar is a non-ionizing electromagnetic wave that can penetrate deep into concrete or soil in about several tenths of meters. Method of inspection using radar enables us to perform high resolution detection, imaging and mapping of subsurface concrete and soil condition. This paper will discuss the use of radar for void and bar detection and sizing. The samples used in this paper are custom made samples and comparison will be made to validate the use of radar in detecting, locating and also size determination of voids and bars. (Author)
Calculation of atom displacement cross section for structure material
International Nuclear Information System (INIS)
Liu Ping; Xu Yiping
2015-01-01
The neutron radiation damage in material is an important consideration of the reactor design. The radiation damage of materials mainly comes from atom displacements of crystal structure materials. The reaction cross sections of charged particles, cross sections of displacements per atom (DPA) and KERMA are the basis of radiation damage calculation. In order to study the differences of DPA cross sections with different codes and different evaluated nuclear data libraries, the DPA cross sections for structure materials were calculated with UNF and NJOY codes, and the comparisons of results were given. The DPA cross sections from different evaluated nuclear data libraries were compared. And the comparison of DPA cross sections between NJOY and Monte Carlo codes was also done. The results show that the differences among these evaluated nuclear data libraries exist. (authors)
Calculation of hyperfine structure constants of small molecules using
Indian Academy of Sciences (India)
The Z-vector method in the relativistic coupled-cluster framework is employed to calculate the parallel and perpendicular components of the magnetic hyperfine structure constant of a few small alkaline earth hydrides (BeH, MgH, and CaH) and fluorides (MgF and CaF). We have compared our Z-vector results with the values ...
Thick-Restart Lanczos Method for Electronic Structure Calculations
International Nuclear Information System (INIS)
Simon, Horst D.; Wang, L.-W.; Wu, Kesheng
1999-01-01
This paper describes two recent innovations related to the classic Lanczos method for eigenvalue problems, namely the thick-restart technique and dynamic restarting schemes. Combining these two new techniques we are able to implement an efficient eigenvalue problem solver. This paper will demonstrate its effectiveness on one particular class of problems for which this method is well suited: linear eigenvalue problems generated from non-self-consistent electronic structure calculations
Atomic structure calculations on the CRAY X-MP
International Nuclear Information System (INIS)
Fischer, C.F.
1989-01-01
Atomic structure calculations require both radial and angular integrations, where the latter are often based on Racah algebra. With relatively minor modifications, good performance is obtained on vector machines for radial integrations. Angular integrations, however, present the bottleneck. In this paper some recent improvements in the algorithms for angular integrations are described, as well as some multitasking experiments on the CRAY X-MP and CRAY 2. These show that the workload can easily be distributed evenly among available processors with dynamic scheduling
Coucouvanis, Dimitri; Han, Jaehong; Moon, Namdoo
2002-01-16
A new class of Mo/Fe/S clusters with the MoFe(3)S(3) core has been synthesized in attempts to model the FeMo-cofactor in nitrogenase. These clusters are obtained in reactions of the (Cl(4)-cat)(2)Mo(2)Fe(6)S(8)(PR(3))(6) [R = Et (I), (n)Pr (II)] clusters with CO. The new clusters include those preliminarily reported: (Cl(4)-cat)MoFe(3)S(3)(PEt(3))(2)(CO)(6) (III), (Cl(4)-cat)(O)MoFe(3)S(3)(PEt(3))(3)(CO)(5) (IV), (Cl(4)-cat)(Pyr)MoFe(3)S(3)(PEt(3))(2)(CO)(6) (VI), and (Cl(4)-cat)(Pyr)MoFe(3)S(3)(P(n)Pr(3))(3)(CO)(4) (VIII). In addition the new (Cl(4)-cat)(O)MoFe(3)S(3)(P(n)Pr(3))(3)(CO)(5) cluster (IVa), the (Cl(4)-cat)(O)MoFe(3)S(3)(PEt(3))(2)(CO)(6)cluster (V), the (Cl(4)-cat)(O)MoFe(3)S(3)(P(n)Pr(3))(2)(CO)(6) cluster (Va), the (Cl(4)-cat)(Pyr)MoFe(3)S(3)(P(n)Pr(3))(2)(CO)(6) cluster (VIa), and the (Cl(4)-cat)(P(n)Pr(3))MoFe(3)S(3)(P(n)Pr(3))(2)(CO)(6) cluster (VII) also are reported. Clusters III-VIII have been structurally and spectroscopically characterized. EPR, zero-field (57)Fe-Mössbauer spectroscopic characterizations, and magnetic susceptibility measurements have been used for a tentative assignment of the electronic and oxidation states of the MoFe(3)S(3) sulfur-voided cuboidal clusters. A structural comparison of the clusters with the MoFe(3)S(3) subunit of the FeMo-cofactor has led to the suggestion that the storage of reducing equivalents into M-M bonds, and their use in the reduction of substrates, may occur with the FeMo-cofactor, which also appears to have M-M bonding. On the basis of this argument, a possible N(2)-binding and reduction mechanism on the FeMoco-cofactor is proposed.
Grace Sun; Rebecca E. Ibach; Meghan Faillace; Marek Gnatowski; Jessie A. Glaeser; John Haight
2016-01-01
After exposure in the field and laboratory soil block culture testing, the void content of woodâplastic composite (WPC) decking boards was compared to unexposed samples. A void volume analysis was conducted based on calculations of sample density and from micro-computed tomography (microCT) data. It was found that reference WPC contains voids of different sizes from...
Photonic band structure calculations using nonlinear eigenvalue techniques
International Nuclear Information System (INIS)
Spence, Alastair; Poulton, Chris
2005-01-01
This paper considers the numerical computation of the photonic band structure of periodic materials such as photonic crystals. This calculation involves the solution of a Hermitian nonlinear eigenvalue problem. Numerical methods for nonlinear eigenvalue problems are usually based on Newton's method or are extensions of techniques for the standard eigenvalue problem. We present a new variation on existing methods which has its derivation in methods for bifurcation problems, where bordered matrices are used to compute critical points in singular systems. This new approach has several advantages over the current methods. First, in our numerical calculations the new variation is more robust than existing techniques, having a larger domain of convergence. Second, the linear systems remain Hermitian and are nonsingular as the method converges. Third, the approach provides an elegant and efficient way of both thinking about the problem and organising the computer solution so that only one linear system needs to be factorised at each stage in the solution process. Finally, first- and higher-order derivatives are calculated as a natural extension of the basic method, and this has advantages in the electromagnetic problem discussed here, where the band structure is plotted as a set of paths in the (ω,k) plane
Three-dimensional simulations of void collapse in energetic materials
Rai, Nirmal Kumar; Udaykumar, H. S.
2018-03-01
The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.
Efficient evaluation of atom tunneling combined with electronic structure calculations.
Ásgeirsson, Vilhjálmur; Arnaldsson, Andri; Jónsson, Hannes
2018-03-14
Methodology for finding optimal tunneling paths and evaluating tunneling rates for atomic rearrangements is described. First, an optimal JWKB tunneling path for a system with fixed energy is obtained using a line integral extension of the nudged elastic band method. Then, a calculation of the dynamics along the path is used to determine the temperature at which it corresponds to an optimal Feynman path for thermally activated tunneling (instanton) and a harmonic approximation is used to estimate the transition rate. The method is illustrated with calculations for a modified two-dimensional Müller-Brown surface but is efficient enough to be used in combination with electronic structure calculations of the energy and atomic forces in systems containing many atoms. An example is presented where tunneling is the dominant mechanism well above room temperature as an H 3 BNH 3 molecule dissociates to form H 2 . Also, a solid-state example is presented where density functional theory calculations of H atom tunneling in a Ta crystal give close agreement with experimental measurements on hydrogen diffusion over a wide range in temperature.
Stability of void lattices under irradiation: a kinetic model
International Nuclear Information System (INIS)
Benoist, P.; Martin, G.
1975-01-01
Voids are imbedded in a homogeneous medium where point defects are uniformly created and annihilated. As shown by a perturbation calculation, the proportion of the defects which are lost on the cavities goes through a maximum, when the voids are arranged on a translation lattice. If a void is displaced from its lattice site, its growth rate becomes anisotropic and is larger in the direction of the vacant site. The relative efficiency of BCC versus FCC void lattices for the capture of point defects is shown to depend on the relaxation length of the point defects in the surrounding medium. It is shown that the rate of energy dissipation in the crystal under irradiation is maximum when the voids are ordered on the appropriate lattice
Stability of void lattices under irradiation: a kinetic model
International Nuclear Information System (INIS)
Benoist, P.; Martin, G.
1975-01-01
Voids are imbedded in a homogeneous medium where point defects are uniformly created and annihilated. As shown by a perturbation calculation, the proportion of the defects which are lost on the cavities goes through a maximum, when the voids are arranged on a translation lattice. If a void is displaced from its lattice site, its growth the rate becomes anisotropic and is larger in the direction of the vacant site. The relative efficiency of BCC versus FCC void lattices for the capture of point defects is shown to depend on the relaxation length of the point defects in the surrounding medium. It is shown that the rate of energy dissipation in the crystal under irradiation is maximum when the voids are ordered on the appropriate lattice [fr
Sensitivity of 238U resonance absorption to library multigroup structure as calculated by WIMS-AECL
International Nuclear Information System (INIS)
Laughton, P.J.; Donnelly, J.V.
1995-01-01
In simulations of the TRX-1 experimental lattice, WIMS-AECL overpredicts, relative to MCNP, resonance absorption in neutron-energy groups containing the three large, low-lying resonances of 238 U when a standard ENDF/B-V-based library is used. A total excess in these groups of 4.0 neutron captures by 238 U per thousand fission neutrons has been observed. Similar comparisons are made in this work for the MIT-4 experimental lattice and simplified CANDU lattice cells containing 37-element fuel, with and without heavy-water coolant. Eleven different 89-group cross-section libraries were constructed for WIMS-AECL from ENDF/B-V data: only the neutron-energy-group boundaries used in generating multigroup cross sections and the Goldstein-Cohen correction factors differ from one library to the next. The first library uses the original 89-group structure, and the other ten involve energy groups of varying widths centred on the three large, low-lying resonances of 238 U. For TRX-1, some reduction in total discrepancy in 238 U capture can be achieved by using a new structure, although the improvement is small. The discrepancies in 238 U capture are of the same order for the MIT-4 case as those observed for TRX-1 for both the original group structure and the ten new structures. The WIMS-AECL calculation of 238 U resonance absorption in the same ranges of energy for the simplified CANDU 37-element lattice are in better agreement with MCNP than they are for TRX-1 and MIT-4: when the original structure is used, WIMS-AECL underpredicts total capture rate by 238 U in the energy range of interest by only 0.56 per thousand fission neutrons (coolant present) and 0.88 per thousand fission neutrons (voided coolant channel). The discrepancies are reduced when some of the new structures are used. For almost all of the cases considered here-TRX-1, MIT-4 and CANDU with coolant-better group-by-group agreement of 238 U capture around the 6.67-eV resonance is achieved by using a new library
Calculation of hadronic part of photon structure function in QCD
International Nuclear Information System (INIS)
Gorskij, A.S.; Ioffe, B.L.; Oganesyan, A.G.; Khodzhamiryan, A.Yu.
1989-01-01
The photon structure function in QCD in the intermediate region of the Bjorken variable 0.2 2 /2pq, where q 2 is the hard photon virtuality, p is the soft photon momentum) is calculated. It is shown that without introduction of fitting parameters the experimental data can be described in the range 3GeV 2 ≤Q 2 2 /Q 2 =-q 2 /not taking account for the leading logarithmic corrections. It is demonstrated that the corrections proportional to μ ν 2 > to the hard photon scattering amplitude on the longitudinal soft photon and to the Callan-Gross relation vanish. 16 refs.; 6 figs
Comparison of optimization methods for electronic-structure calculations
International Nuclear Information System (INIS)
Garner, J.; Das, S.G.; Min, B.I.; Woodward, C.; Benedek, R.
1989-01-01
The performance of several local-optimization methods for calculating electronic structure is compared. The fictitious first-order equation of motion proposed by Williams and Soler is integrated numerically by three procedures: simple finite-difference integration, approximate analytical integration (the Williams-Soler algorithm), and the Born perturbation series. These techniques are applied to a model problem for which exact solutions are known, the Mathieu equation. The Williams-Soler algorithm and the second Born approximation converge equally rapidly, but the former involves considerably less computational effort and gives a more accurate converged solution. Application of the method of conjugate gradients to the Mathieu equation is discussed
Self-consistent electronic-structure calculations for interface geometries
International Nuclear Information System (INIS)
Sowa, E.C.; Gonis, A.; MacLaren, J.M.; Zhang, X.G.
1992-01-01
This paper describes a technique for computing self-consistent electronic structures and total energies of planar defects, such as interfaces, which are embedded in an otherwise perfect crystal. As in the Layer Korringa-Kohn-Rostoker approach, the solid is treated as a set of coupled layers of atoms, using Bloch's theorem to take advantage of the two-dimensional periodicity of the individual layers. The layers are coupled using the techniques of the Real-Space Multiple-Scattering Theory, avoiding artificial slab or supercell boundary conditions. A total-energy calculation on a Cu crystal, which has been split apart at a (111) plane, is used to illustrate the method
Design and structural calculation of nuclear power plant mechanical components
International Nuclear Information System (INIS)
Amaral, J.A.R. do
1986-01-01
The mechanical components of a nuclear power plant must show high quality and safety due to the presence of radioactivity. Besides the perfect functioning during the rigid operating conditions, some postulated loadings are foreseen, like earthquake and loss of coolant accidents, which must be also considered in the design. In this paper, it is intended to describe the design and structural calculations concept and development, the interactions with the piping and civil designs, as well as their influences in the licensing process with the authorities. (Author) [pt
Coupling structure calculations for ion cyclotron heating of Tore Supra
International Nuclear Information System (INIS)
Bannelier, P.
1986-12-01
Two structures are studied: antennas and waveguides. After some recalls on transmission lines with losses, the theory is applied to antennas with inner adaptation: the problem is to calculate the impedance necessary for complete adaptation of antenna to the power line and the generator. The Faraday screen role is detailed and studied: the per-unit length loss resistance due to ohmic losses in the screen which lower the plasma-coupled maximum power. Waveguide coupling theory is also presented. Coupling between wave guide and plasma is evaluated [fr
First principle calculations of alkali hydride electronic structures
International Nuclear Information System (INIS)
Novakovic, N; Radisavljevic, I; Colognesi, D; Ostojic, S; Ivanovic, N
2007-01-01
Electronic structure, volume optimization, bulk moduli, elastic constants, and frequencies of the transversal optical vibrations in LiH, NaH, KH, RbH, and CsH are calculated using the full potential augmented plane wave method, extended with local orbitals, and the full potential linearized augmented plane wave method. The obtained results show some common features in the electronic structure of these compounds, but also clear differences, which cannot be explained using simple empirical trends. The differences are particularly prominent in the electronic distributions and interactions in various crystallographic planes. In the light of these findings we have elaborated some selected experimental results and discussed several theoretical approaches frequently used for the description of various alkali hydride properties
International Nuclear Information System (INIS)
Won, Woo Yeon; Lee, Yeon Gun; Lee, Bo An; Ko, Min Seok; Kim, Sin
2015-01-01
The electrical signals of the electrical impedance sensor depend on the flow structure as well as the void fraction. For this reason, the electrical responses to a given void fraction differ according to the flow pattern. For reliable void fraction measurement, hence, information on the flow pattern should be given. Based on this idea, a new improved conductance sensor is proposed in this study to measure the void fraction and simultaneously determine the flow pattern of the air-water two-phase mixture in a horizontal pipe. The proposed sensor is composed of a 3-electrode set of adjacent and opposite electrodes. The opposite electrodes measures the void fraction, the adjacent electrode serves to determine the flow patterns. Prior to the real applications of the proposed approach, several numerical calculations based on the FEM are performed to optimize the electrode and insulator sizes in terms of the sensor linearity. The numerical results are assessed in comparison with the data from static experiments. The sensor system is applied for a horizontal flow loop with 40 mm in inner diameter and 5 m in length and its measurement performance for the void fraction is compared with that of a wire-mesh sensor system. In this study, an electrical sensor for measuring the void fraction and identifying flow pattern in horizontal pipes has been designed. For optimization of the sensor, numerical analysis have been performed in order to determine the geometry and verified it through static experiments. Also, the loop experiments were conducted for several flow rate conditions covering stratified and intermittent flow regimes and the experimental results for the void fractions measured by the proposed sensor were compared with those of a wire-mesh sensor. The comparison results are in overall good agreements
Void fraction prediction in saturated flow boiling
International Nuclear Information System (INIS)
Francisco J Collado
2005-01-01
Full text of publication follows: An essential element in thermal-hydraulics is the accurate prediction of the vapor void fraction, or fraction of the flow cross-sectional area occupied by steam. Recently, the author has suggested to calculate void fraction working exclusively with thermodynamic properties. It is well known that the usual 'flow' quality, merely a mass flow rate ratio, is not at all a thermodynamic property because its expression in function of thermodynamic properties includes the slip ratio, which is a parameter of the process not a function of state. By the other hand, in the classic and well known expression of the void fraction - in function of the true mass fraction of vapor (also called 'static' quality), and the vapor and liquid densities - does not appear the slip ratio. Of course, this would suggest a direct procedure for calculating the void fraction, provided we had an accurate value of the true mass fraction of vapor, clearly from the heat balance. However the classic heat balance is usually stated in function of the 'flow' quality, what sounds really contradictory because this parameter, as we have noted above, is not at all a thermodynamic property. Then we should check against real data the actual relationship between the thermodynamic properties and the applied heat. For saturated flow boiling just from the inlet of the heated tube, and not having into account the kinetic and potential terms, the uniform applied heat per unit mass of inlet water and per unit length (in short, specific linear heat) should be closely related to a (constant) slope of the mixture enthalpy. In this work, we have checked the relation between the specific linear heat and the thermodynamic enthalpy of the liquid-vapor mixture using the actual mass fraction. This true mass fraction is calculated using the accurate measurements of the outlet void fraction taken during the Cambridge project by Knights and Thom in the sixties for vertical and horizontal
Electronic structure of SnS deduced from photoelectron spectra and band-structure calculations
Ettema, A.R.H.F.; Groot, R.A. de; Haas, C.; Turner, T.S.
1992-01-01
SnS is a layer compound with a phase transition from a high-temperature β phase to a low-temperature α phase with a lower symmetry. Ab initio band-structure calculations are presented for both phases. The calculations show that the charge distributions in the two phases are very similar. However,
Quantum chemical calculations in the structural analysis of phloretin
Gómez-Zavaglia, Andrea
2009-07-01
In this work, a conformational search on the molecule of phloretin [2',4',6'-Trihydroxy-3-(4-hydroxyphenyl)-propiophenone] has been performed. The molecule of phloretin has eight dihedral angles, four of them taking part in the carbon backbone and the other four, related with the orientation of the hydroxyl groups. A systematic search involving a random variation of the dihedral angles has been used to generate input structures for the quantum chemical calculations. Calculations at the DFT(B3LYP)/6-311++G(d,p) level of theory permitted the identification of 58 local minima belonging to the C 1 symmetry point group. The molecular structures of the conformers have been analyzed using hierarchical cluster analysis. This method allowed us to group conformers according to their similarities, and thus, to correlate the conformers' stability with structural parameters. The dendrogram obtained from the hierarchical cluster analysis depicted two main clusters. Cluster I included all the conformers with relative energies lower than 25 kJ mol -1 and cluster II, the remaining conformers. The possibility of forming intramolecular hydrogen bonds resulted the main factor contributing for the stability. Accordingly, all conformers depicting intramolecular H-bonds belong to cluster I. These conformations are clearly favored when the carbon backbone is as planar as possible. The values of the νC dbnd O and νOH vibrational modes were compared among all the conformers of phloretin. The redshifts associated with intramolecular H-bonds were correlated with the H-bonds distances and energies.
"Dark energy" in the Local Void
Villata, M.
2012-05-01
The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (˜5×1015 M ⊙) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.
Three-dimensional core analysis on a super fast reactor with negative local void reactivity
International Nuclear Information System (INIS)
Cao Liangzhi; Oka, Yoshiaki; Ishiwatari, Yuki; Ikejiri, Satoshi
2009-01-01
Keeping negative void reactivity throughout the cycle life is one of the most important requirements for the design of a supercritical water-cooled fast reactor (super fast reactor). Previous conceptual design has negative overall void reactivity. But the local void reactivity, which is defined as the reactivity change when the coolant of one fuel assembly disappears, also needs to be kept negative throughout the cycle life because the super fast reactor is designed with closed fuel assemblies. The mechanism of the local void reactivity is theoretically analyzed from the neutrons balance point of view. Three-dimensional neutronics/thermal-hydraulic coupling calculation is employed to analyze the characteristics of the super fast reactor including the local void reactivity. Some configurations of the core are optimized to decrease the local void reactivity. A reference core is successfully designed with keeping both overall and local void reactivity negative. The maximum local void reactivity is less than -30 pcm
Influence of void effects on reactivity of coupled fast-thermal system HERBE
International Nuclear Information System (INIS)
Ljubenov, V.; Milovanovic, S.; Milovanovic, T.; Cuknic, O.
1997-01-01
Coupled fast-thermal system HERBE at the experimental zero power heavy water reactor RB is a system with the significant effects of the neutron leakage and neutron absorption. Presence of a coolant void introduces a new structure in an extremely heterogeneous core. In those conditions satisfactory results of the calculation are acquired only using specified space-energy homogenization procedure. In order to analyze transient appearances and accidental cases of the reactor systems, a procedure for modeling of influence of moderator and coolant loss on reactivity ('void effect') is developed. Reduction of the moderator volume fraction in some fuel channels due to air gaps or steam generation during the accidental moderator boiling, restricts validity of the diffusion approximation in the reactor calculations. In cases of high neutron flux gradients, which are consequence of high neutron absorption, application of diffusion approximation is questionable too. The problem may be solved using transport or Monte Carlo methods, but they are not acceptable in the routine applications. Applying new techniques based on space-energy core homogenization, such as the SPH method or the discontinuity factor method, diffusion calculations become acceptable. Calculations based on the described model show that loss of part of moderator medium introduce negative reactivity in the HERBE system. Calculated local void reactivity coefficients are used in safety analysis of hypothetical accidents
A void fraction model for annular two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Tandon, T.N.; Gupta, C.P.; Varma, H.K.
1985-01-01
An analytical model has been developed for predicting void fraction in two-phase annular flow. In the analysis, the Lockhart-Martinelli method has been used to calculate two-phase frictional pressure drop and von Karman's universal velocity profile is used to represent the velocity distribution in the annular liquid film. Void fractions predicted by the proposed model are generally in good agreement with a available experimental data. This model appears to be as good as Smith's correlation and better than the Wallis and Zivi correlations for computing void fraction.
Local void and slip model used in BODYFIT-2PE
International Nuclear Information System (INIS)
Chen, B.C.J.; Chien, T.H.; Kim, J.H.; Lellouche, G.S.
1983-01-01
A local void and slip model has been proposed for a two-phase flow without the need of fitting any empirical parameters. This model is based on the assumption that all bubbles have reached their terminal rise velocities in the two-phase region. This simple model seems to provide reasonable calculational results when compared with the experimental data and other void and slip models. It provides a means to account for the void and slip of a two-phase flow on a local basis. This is particularly suitable for a fine mesh thermal-hydraulic computer program such as BODYFIT-2PE
Energy Technology Data Exchange (ETDEWEB)
Tahara, Shuta; Ohno, Satoru [Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Ueno, Hiroki; Takeda, Shin' ichi [Department of Physics, Faculty of Sciences, Kyushu University 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Ohara, Koji; Kohara, Shinji [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kawakita, Yukinobu [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)
2011-06-15
High-energy x-ray diffraction measurements on molten Ag{sub 2}Se were performed. Partial structure factors and radial distribution functions were deduced by reverse Monte Carlo (RMC) structural modelling on the basis of our new x-ray and earlier published neutron diffraction data. These partial functions were compared with those of molten AgI. Both AgI and Ag{sub 2}Se have a superionic solid phase prior to melting. New RMC structural modelling for molten AgI was performed to revise our previous model with a bond-angle restriction to reduce the number of unphysical Ag triangles. The refined model of molten AgI revealed that isolated unbranched chains formed by Ag ions are the cause of the medium-range order of Ag. In contrast with molten AgI, molten Ag{sub 2}Se has 'cage-like' structures with approximately seven Ag ions surrounding a Se ion. Connectivity analysis revealed that most of the Ag ions in molten Ag{sub 2}Se are located within 2.9 A of each other and only small voids are found, which is in contrast to the wide distribution of Ag-void radii in molten AgI. It is conjectured that the collective motion of Ag ions through small voids is required to realize the well-known fast diffusion of Ag ions in molten Ag{sub 2}Se, which is comparable to that in molten AgI.
Tests and calculation of the seismic behaviour of concrete structures
International Nuclear Information System (INIS)
Gauvain, J.; Hoffman, A.; Jeandidier, C.; Livolant, M.
1979-01-01
This paper deals with the frame type buildings, which are generally the most sensible to earthquakes. Its objectives are to describe the main phenomena governing the behaviour of such structures, when the earthquake level increases up to the structure collapse, to point out what type of calculation model shall be used to obtain good results and to give an estimation of the safety factors corresponding to the usual design practice. Extended experimental research on the behaviour of reinforced concrete beams and frames submitted to monotonic or cyclic loading has been done. These tests are very useful to build constitutive laws models, but as they do not reproduce the earthquake loads, they do not simulate directly what happens to the structure during an earthquake. For that reason, since 1966, dynamics tests were performed using vibration generators or shaking-tables. As an example of that type of test and of the corresponding results, we describe here with more details the tests made at the Saclay Center, on a shaking-table called VESUVE, on simple beams and frames
PRECISION COSMOGRAPHY WITH STACKED VOIDS
International Nuclear Information System (INIS)
Lavaux, Guilhem; Wandelt, Benjamin D.
2012-01-01
We present a purely geometrical method for probing the expansion history of the universe from the observation of the shape of stacked voids in spectroscopic redshift surveys. Our method is an Alcock-Paczyński (AP) test based on the average sphericity of voids posited on the local isotropy of the universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. We establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, assuming that the void statistics that we derive from N-body simulations is preserved when considering galaxy surveys, we assess the capability of this approach to constrain dark energy parameters. We report this assessment in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed Euclid mission which is particularly suited for this technique since it is a spectroscopic survey. The FoM due to stacked voids from the Euclid wide survey may double that of all other dark energy probes derived from Euclid data alone (combined with Planck priors). In particular, voids seem to outperform baryon acoustic oscillations by an order of magnitude. This result is consistent with simple estimates based on mode counting. The AP test based on stacked voids may be a significant addition to the portfolio of major dark energy probes and its potentialities must be studied in detail.
A relativistic point coupling model for nuclear structure calculations
International Nuclear Information System (INIS)
Buervenich, T.; Maruhn, J.A.; Madland, D.G.; Reinhard, P.G.
2002-01-01
A relativistic point coupling model is discussed focusing on a variety of aspects. In addition to the coupling using various bilinear Dirac invariants, derivative terms are also included to simulate finite-range effects. The formalism is presented for nuclear structure calculations of ground state properties of nuclei in the Hartree and Hartree-Fock approximations. Different fitting strategies for the determination of the parameters have been applied and the quality of the fit obtainable in this model is discussed. The model is then compared more generally to other mean-field approaches both formally and in the context of applications to ground-state properties of known and superheavy nuclei. Perspectives for further extensions such as an exact treatment of the exchange terms using a higher-order Fierz transformation are discussed briefly. (author)
Auxiliary basis expansions for large-scale electronic structure calculations.
Jung, Yousung; Sodt, Alex; Gill, Peter M W; Head-Gordon, Martin
2005-05-10
One way to reduce the computational cost of electronic structure calculations is to use auxiliary basis expansions to approximate four-center integrals in terms of two- and three-center integrals, usually by using the variationally optimum Coulomb metric to determine the expansion coefficients. However, the long-range decay behavior of the auxiliary basis expansion coefficients has not been characterized. We find that this decay can be surprisingly slow. Numerical experiments on linear alkanes and a toy model both show that the decay can be as slow as 1/r in the distance between the auxiliary function and the fitted charge distribution. The Coulomb metric fitting equations also involve divergent matrix elements for extended systems treated with periodic boundary conditions. An attenuated Coulomb metric that is short-range can eliminate these oddities without substantially degrading calculated relative energies. The sparsity of the fit coefficients is assessed on simple hydrocarbon molecules and shows quite early onset of linear growth in the number of significant coefficients with system size using the attenuated Coulomb metric. Hence it is possible to design linear scaling auxiliary basis methods without additional approximations to treat large systems.
Cluster model calculations of the solid state materials electron structure
International Nuclear Information System (INIS)
Pelikan, P.; Biskupic, S.; Banacky, P.; Zajac, A.; Svrcek, A.; Noga, J.
1997-01-01
Materials of the general composition ACuO 2 are the parent compounds of so called infinite layer superconductors. In the paper presented the electron structure of the compounds CaCuO 2 , SrCuO2, Ca 0.86 Sr 0.14 CuO2 and Ca 0.26 Sr 0.74 CuO 2 were calculated. The cluster models consisting of 192 atoms were computed using quasi relativistic version of semiempirical INDO method. The obtained results indicate the strong ionicity of Ca/Sr-O bonds and high covalency of Cu-bonds. The width of energy gap at the Fermi level increases as follows: Ca 0.26 Sr 0.74 CuO 2 0.86 Sr 0.14 CuO2 2 . This order correlates with the fact that materials of the composition Ca x Sr 1-x CuO 2 have have the high temperatures of the superconductive transition (up to 110 K). Materials partially substituted by Sr 2+ have also the higher density of states in the close vicinity at the Fermi level that ai the additional condition for the possibility of superconductive transition. It was calculated the strong influence of the vibration motions to the energy gap at the Fermi level. (authors). 1 tabs., 2 figs., 10 refs
Measurements of void fraction by an improved multi-channel conductance void meter
International Nuclear Information System (INIS)
Song, Chul-Hwa; Chung, Moon Ki; No, Hee Cheon
1998-01-01
An improved multi-channel Conductance Void Meter (CVM) was developed to measure a void fraction. Its measuring principle is basically based upon the differences of electrical conductance of a two-phase mixture due to the variation of void fraction around a sensor. The sensor is designed to be flush-mounted to the inner wall of the test section to avoid the flow disturbances. The signal processor with three channels is specially designed so as to minimize the inherent error due to the phase difference between channels. It is emphasized that the guard electrodes are electrically shielded in order not to affect the measurements of two-phase mixture conductance, but to make the electric fields evenly distributed in a measuring volume. Void fraction is measured for bubbly and slug flow regimes in a vertical air-water loop, and statistical signal processing techniques are applied to show that CVM has a good dynamic resolution which is required to investigate the structural developments of bubbly flow and the propagation of void waves in a flow channel. (author)
QED Based Calculation of the Fine Structure Constant
Energy Technology Data Exchange (ETDEWEB)
Lestone, John Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-10-13
Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. Here, semi-classical approaches are used to obtain a more intuitive feel for what causes electrostatics, and the anomalous magnetic moment of the electron. These intuitive arguments lead to a possible answer to the question of the nature of charge. Virtual photons, with a reduced wavelength of λ, are assumed to interact with isolated electrons with a cross section of πλ^{2}. This interaction is assumed to generate time-reversed virtual photons that are capable of seeking out and interacting with other electrons. This exchange of virtual photons between particles is assumed to generate and define the strength of electromagnetism. With the inclusion of near-field effects the model presented here gives a fine structure constant of ~1/137 and an anomalous magnetic moment of the electron of ~0.00116. These calculations support the possibility that near-field corrections are the key to understanding the numerical value of the dimensionless fine structure constant.
Energy Technology Data Exchange (ETDEWEB)
Kohn, S.; Weare, J.; Ong, E.; Baden, S.
1997-05-01
We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradient with FAC multigrid preconditioning. We have parallelized our solver using an object- oriented adaptive mesh refinement framework.
Air void clustering : [technical summary].
2015-06-01
Air void clustering around coarse aggregate in concrete has been : identified as a potential source of low strengths in concrete mixes by : several Departments of Transportation around the country. Research : was carried out to (1) develop a quantita...
Void nucleation at elevated temperatures under cascade-damage irradiation
International Nuclear Information System (INIS)
Semenov, A.A.; Woo, C.H.
2002-01-01
The effects on void nucleation of fluctuations respectively due to the randomness of point-defect migratory jumps, the random generation of free point defects in discrete packages, and the fluctuating rate of vacancy emission from voids are considered. It was found that effects of the cascade-induced fluctuations are significant only at sufficiently high total sink strength. At lower sink strengths and elevated temperatures, the fluctuation in the rate of vacancy emission is the dominant factor. Application of the present theory to the void nucleation in annealed pure copper neutron-irradiated at elevated temperatures with doses of 10 -4 -10 -2 NRT dpa showed reasonable agreement between theory and experiment. This application also predicts correctly the temporal development of large-scale spatial heterogeneous microstructure during the void nucleation stage. Comparison between calculated and experimental void nucleation rates in neutron-irradiated molybdenum at temperatures where vacancy emission from voids is negligible showed reasonable agreement as well. It was clearly demonstrated that the athermal shrinkage of relatively large voids experimentally observable in molybdenum at such temperatures may be easily explained in the framework of the present theory
NUMERICAL CALCULATIONS IN GEOMECHANICS APPLICABLE TO LINEAR STRUCTURES
Directory of Open Access Journals (Sweden)
Vlasov Aleksandr Nikolaevich
2012-10-01
Full Text Available The article covers the problem of applicability of finite-element and engineering methods to the development of a model of interaction between pipeline structures and the environment in the complex conditions with a view to the simulation and projection of exogenous geological processes, trustworthy assessment of their impacts on the pipeline, and the testing of varied calculation methodologies. Pipelining in the areas that have a severe continental climate and permafrost soils is accompanied by cryogenic and exogenous processes and developments. It may also involve the development of karst and/or thermokarst. The adverse effect of the natural environment is intensified by the anthropogenic impact produced onto the natural state of the area, causing destruction of forests and other vegetation, changing the ratio of soils in the course of the site planning, changing the conditions that impact the surface and underground waters, and causing the thawing of the bedding in the course of the energy carrier pumping, etc. The aforementioned consequences are not covered by effective regulatory documents. The latter constitute general and incomplete recommendations in this respect. The appropriate mathematical description of physical processes in complex heterogeneous environments is a separate task to be addressed. The failure to consider the above consequences has repeatedly caused both minor damages (denudation of the pipeline, insulation stripping and substantial accidents; the rectification of their consequences was utterly expensive. Pipelining produces a thermal impact on the environment; it may alter the mechanical properties of soils and de-frost the clay. The stress of the pipeline is one of the principal factors that determines its strength and safety. The pipeline stress exposure caused by loads and impacts (self-weight, internal pressure, etc. may be calculated in advance, and the accuracy of these calculations is sufficient for practical
Nuclear structure effects on calculated fast neutron reaction cross sections
International Nuclear Information System (INIS)
Avrigeanu, V.
1992-01-01
The importance of accurate low-lying level schemes for reaction cross section calculation and need for microscopically calculated levels are proved with reference to fast neutron induced reactions in the A = 50 atomic mass range. The uses of the discrete levels both for normalization of phenomenological level density approaches and within Hauser-Feshbach calculations are discussed in this respect. (Author)
Alignment of voids in the cosmic web
Platen, Erwin; van de Weygaert, Rien; Jones, Bernard J. T.
2008-01-01
We investigate the shapes and mutual alignment of voids in the large-scale matter distribution of a Lambda cold dark matter (Lambda CDM) cosmology simulation. The voids are identified using the novel watershed void finder (WVF) technique. The identified voids are quite non-spherical and slightly
On cavitation instabilities with interacting voids
DEFF Research Database (Denmark)
Tvergaard, Viggo
2012-01-01
voids so far apart that the radius of the plastic zone around each void is less than 1% of the current spacing between the voids, can still affect each others at the occurrence of a cavitation instability such that one void stops growing while the other grows in an unstable manner. On the other hand...
(100) faceted anion voids in electron irradiated fluorite
International Nuclear Information System (INIS)
Johnson, E.
1979-01-01
High fluence electron irradiation of fluorite crystals in the temperature range 150 to 320 K results in formation of a simple cubic anion void superlattice. Above 320 K the damage structure changes to a random distribution of large [001] faceted anion voids. This voidage behaviour, similar to that observed in a range of irradiated metals, is discussed in terms points defect rather than conventional colour centre terminology. (Auth.)
Influence of the void fraction in the linear reactivity model
International Nuclear Information System (INIS)
Castillo, J.A.; Ramirez, J.R.; Alonso, G.
2003-01-01
The linear reactivity model allows the multicycle analysis in pressurized water reactors in a simple and quick way. In the case of the Boiling water reactors the void fraction it varies axially from 0% of voids in the inferior part of the fuel assemblies until approximately 70% of voids to the exit of the same ones. Due to this it is very important the determination of the average void fraction during different stages of the reactor operation to predict the burnt one appropriately of the same ones to inclination of the pattern of linear reactivity. In this work a pursuit is made of the profile of power for different steps of burnt of a typical operation cycle of a Boiling water reactor. Starting from these profiles it builds an algorithm that allows to determine the voids profile and this way to obtain the average value of the same one. The results are compared against those reported by the CM-PRESTO code that uses another method to carry out this calculation. Finally, the range in which is the average value of the void fraction during a typical cycle is determined and an estimate of the impact that it would have the use of this value in the prediction of the reactivity produced by the fuel assemblies is made. (Author)
Finding Brazing Voids by Holography
Galluccio, R.
1986-01-01
Vibration-induced interference fringes reveal locations of defects. Holographic apparatus used to view object while vibrated ultrasonically. Interference fringes in hologram reveal brazing defects. Holographic technique locates small voids in large brazed joints. Identifies unbrazed regions 1 in. to second power (6 cm to the second power) or less in area.
Calculation on uranium carbon oxygen system molecular structure by DFT
International Nuclear Information System (INIS)
Zhang Guangfeng; Wang Xiaolin; Zou Lexi; Sun Ying; Xue Weidong; Zhu Zhenghe; Wang Hongyan
2001-01-01
The authors study on the possible molecular structures U-C-O, U-O-C, C-U-O (angular structure C a nd linear structure C ∞υ ) of carbon monoxide interacting on uranium metal surface by Density functional theory (DFT). The uranium atom is used RECP (Relativistic Effective Core Potential) and contracted valence basis sets (6s5p2d4f)/[3s3p2d2f], and for carbon and oxygen atoms all are 6-311G basis sets. The author presents the results of energy optimum which shows that triple and quintuple state are more stable. The authors get the electronic state, geometry structure, energy, harmonic frequency, mechanical property, etc. of these twelve triple and quintuple state relative stable structures. The normal vibrational analytical figure of angular structure (C s ) and linear structure (C ∞υ ) is given at the same time. It is indicated that angular structure has lower energy than linear structure, moreover the angular structure of U-C-O( 3 A ) has the lowest energy. The bond strength between uranium atom and carbon monoxide is weak and between uranium atom and oxygen atom is slightly stronger than between uranium atom and carbon atom which the authors can know by superposition population and bond energy analysis among atoms
International Nuclear Information System (INIS)
Montalvao, Rinaldo W.; De Simone, Alfonso; Vendruscolo, Michele
2012-01-01
Residual dipolar couplings (RDCs) have the potential of providing detailed information about the conformational fluctuations of proteins. It is very challenging, however, to extract such information because of the complex relationship between RDCs and protein structures. A promising approach to decode this relationship involves structure-based calculations of the alignment tensors of protein conformations. By implementing this strategy to generate structural restraints in molecular dynamics simulations we show that it is possible to extract effectively the information provided by RDCs about the conformational fluctuations in the native states of proteins. The approach that we present can be used in a wide range of alignment media, including Pf1, charged bicelles and gels. The accuracy of the method is demonstrated by the analysis of the Q factors for RDCs not used as restraints in the calculations, which are significantly lower than those corresponding to existing high-resolution structures and structural ensembles, hence showing that we capture effectively the contributions to RDCs from conformational fluctuations.
Total Longitudinal Moment Calculation and Reliability Analysis of Yacht Structures
Zhi, Wenzheng; Lin, Shaofen
In order to check the reliability of the yacht in FRP (Fiber Reinforce Plastic) materials, in this paper, the vertical force and the calculation method of the overall longitudinal bending moment on yacht was analyzed. Specially, this paper focuses on the impact of speed on the still water bending moment on yacht. Then considering the mechanical properties of the cap type stiffeners in composite materials, the ultimate bearing capacity of the yacht has been worked out, finally the reliability of the yacht was calculated with using response surface methodology. The result can be used in yacht design and yacht driving.
Numerical calculations of effective elastic properties of two cellular structures
International Nuclear Information System (INIS)
Tuncer, Enis
2005-01-01
Young's moduli of regular two-dimensional truss-like and eye-shaped structures are simulated using the finite element method. The structures are idealizations of soft polymeric materials used in ferro-electret applications. In the simulations, the length scales of the smallest representative units are varied, which changes the dimensions of the cell walls in the structures. A power-law expression with a quadratic as the exponent term is proposed for the effective Young's moduli of the systems as a function of the solid volume fraction. The data are divided into three regions with respect to the volume fraction: low, intermediate and high. The parameters of the proposed power-law expression in each region are later represented as a function of the structural parameters, the unit-cell dimensions. The expression presented can be used to predict a structure/property relationship in materials with similar cellular structures. The contribution of the cell-wall thickness to the elastic properties becomes significant at concentrations >0.15. The cell-wall thickness is the most significant factor in predicting the effective Young's modulus of regular cellular structures at high volume fractions of solid. At lower concentrations of solid, the eye-shaped structure yields a lower Young's modulus than a truss-like structure with similar anisotropy. Comparison of the numerical results with those of experimental data for poly(propylene) show good agreement regarding the influence of cell-wall thickness on elastic properties of thin cellular films
Calculation of hybrid joints used in modern aerospace structures
Directory of Open Access Journals (Sweden)
Marcel STERE
2011-12-01
Full Text Available The state – of - the art of aeronautical structures show that parts are manufactured and subsequently assembled with the use of fasteners and/ or bonding. Adhesive bonding is a key technology to low weight, high fatigue resistance, robustness and an attractive design for cost structures.The paper results resolve significant problems for two groups of end-users:1 for the aerospace design office: a robust procedure for the design of the hybrid joint structural components;2 for the aeronautical repair centres: a useful procedure for structural design and analysis with significant cost savings.
Spectral-Product Methods for Electronic Structure Calculations (Preprint)
National Research Council Canada - National Science Library
Langhoff, P. W; Mills, J. E; Boatz, J. A
2006-01-01
.... The spectral-product approach to molecular electronic structure avoids the repeated evaluations of the one- and two-electron integrals required in construction of polyatomic Hamiltonian matrices...
Spectral-Product Methods for Electronic Structure Calculations (Postprint)
National Research Council Canada - National Science Library
Langhoff, P. W; Hinde, R. J; Mills, J. D; Boatz, J. A
2007-01-01
.... The spectral-product approach to molecular electronic structure avoids the repeated evaluations of the one- and two-electron integrals required in construction of polyatomic Hamiltonian matrices...
Energy Technology Data Exchange (ETDEWEB)
Ross, Elsie
2011-05-15
Wormholes are formed in cold heavy oil production with sand (CHOPS) operations and can lead to serious degradation of oil production. In order to better understand this phenomena BP is working on the development of a model to predict wormhole formation, this model could help for reserve estimates or operations guidance. They designed a two component model to represent wormhole network: the first one, the BP CHOPS model, uses the reservoir simulation and the wellbore network; the second one, models interaction of advanced fluid structure. This model is a good framework for wormhole modeling but it needs to be improved with more physics. A collaboration with Los Alamos National Laboratory to apply its tool to simulate the wormhole's growth showed that its development is asymmetrical.
Calculation of hyperfine structure constants of small molecules using ...
Indian Academy of Sciences (India)
SUDIP SASMALa, KAUSHIK TALUKDARb, MALAYA K NAYAKc, NAYANA VAVALa and. SOURAV PALb,∗ ... Abstract. The Z-vector method in the relativistic coupled-cluster framework is employed to calculate the parallel and perpendicular .... subscript c means only the connected terms exist in the contraction between HN ...
Atomic structure calculations using the relativistic random phase approximation
International Nuclear Information System (INIS)
Cheng, K.T.; Johnson, W.R.
1981-01-01
A brief review is given for the relativistic random phase approximation (RRPA) applied to atomic transition problems. Selected examples of RRPA calculations on discrete excitations and photoionization are given to illustrate the need of relativistic many-body theories in dealing with atomic processes where both relativity and correlation are important
Self-consistent calculation of atomic structure for mixture
International Nuclear Information System (INIS)
Meng Xujun; Bai Yun; Sun Yongsheng; Zhang Jinglin; Zong Xiaoping
2000-01-01
Based on relativistic Hartree-Fock-Slater self-consistent average atomic model, atomic structure for mixture is studied by summing up component volumes in mixture. Algorithmic procedure for solving both the group of Thomas-Fermi equations and the self-consistent atomic structure is presented in detail, and, some numerical results are discussed
Convex-based void filling method for CAD-based Monte Carlo geometry modeling
International Nuclear Information System (INIS)
Yu, Shengpeng; Cheng, Mengyun; Song, Jing; Long, Pengcheng; Hu, Liqin
2015-01-01
Highlights: • We present a new void filling method named CVF for CAD based MC geometry modeling. • We describe convex based void description based and quality-based space subdivision. • The results showed improvements provided by CVF for both modeling and MC calculation efficiency. - Abstract: CAD based automatic geometry modeling tools have been widely applied to generate Monte Carlo (MC) calculation geometry for complex systems according to CAD models. Automatic void filling is one of the main functions in the CAD based MC geometry modeling tools, because the void space between parts in CAD models is traditionally not modeled while MC codes such as MCNP need all the problem space to be described. A dedicated void filling method, named Convex-based Void Filling (CVF), is proposed in this study for efficient void filling and concise void descriptions. The method subdivides all the problem space into disjointed regions using Quality based Subdivision (QS) and describes the void space in each region with complementary descriptions of the convex volumes intersecting with that region. It has been implemented in SuperMC/MCAM, the Multiple-Physics Coupling Analysis Modeling Program, and tested on International Thermonuclear Experimental Reactor (ITER) Alite model. The results showed that the new method reduced both automatic modeling time and MC calculation time
Calculation technique of free and impurity ion electronic structures
International Nuclear Information System (INIS)
Kulagin, N.A.; Sviridov, D.T.
1986-01-01
The monograph deals with calculation technique of free and impurity ion spectra with completed nl N -shell. The principles of the theory of irreducible tensor operators, genealogical coefficients, calculation technique of angular and radial parts of matrix elements operators are stated. The correlation accounting methods in free ions are considered in detail. The principles of the theory of crystal field and ligand field, the method of self-consistent field for impurity ions are reported. The technique efficiency based on example of lanthanum and actinium group ions is shown. Experimental data by nf N -ion spectra are given. The tables of angular coefficients, energy values of X-ray lines of rare earth ions and genealogical coefficients are given in the appendix
Nuclear structure calculations in the dynamic-interaction propagator approach
International Nuclear Information System (INIS)
Engelbrecht, C.A.; Hahne, F.J.W.; Heiss, W.D.
1978-01-01
The dynamic-interaction propagator approach provides a natural method for the handling of energy-dependent effective two-body interactions induced by collective excitations of a many-body system. In this work this technique is applied to the calculation of energy spectra and two-particle strengths in mass-18 nuclei. The energy dependence is induced by the dynamic exchange of the lowest 3 - octupole phonon in O 16 , which is described within a normal static particle-hole RPA. This leads to poles in the two-body self-energy, which can be calculated if other fermion lines are restricted to particle states. The two-body interaction parameters are chosen to provide the correct phonon energy and reasonable negative-parity mass-17 and positive-parity mass-18 spectra. The fermion lines must be dressed consistently with the same exchange phonon to avoid redundant solutions or ghosts. The negative-parity states are then calculated in a parameter-free way which gives good agreement with the observed spectra [af
Towards a lattice calculation of the nucleon structure functions
International Nuclear Information System (INIS)
Goeckeler, M.; Ilgenfritz, M.; Perlt, H.; Rakow, P.; Schierholz, G.; Forschungszentrum Juelich GmbH; Schiller, A.
1994-12-01
We have initiated a programme to compute the lower moments of the unpolarised and polarised deep inelastic structure functions of the nucleon in the quenched approxiation. We review our progress to date. (orig.)
Calculation for Hull Strength Construction in Offshore Structures
African Journals Online (AJOL)
PROF. O. E. OSUAGWU
2013-09-01
Sep 1, 2013 ... of hull plating, reinforcing stiffeners, girders, and other structures. This paper therefore used the .... From these equations we derive that. Safety of. Factor. Stress ..... machineries, systems etc. of the ships or barge under design.
Dynamics of core voiding during boiloff experiments
International Nuclear Information System (INIS)
Analytis, G.T.; Aksan, S.N.; Stierli, F.; Yadigaroglu, G.
1987-01-01
A series of boiloff experiments were conducted at the EIR NEPTUN test facility with a bundle consisting of 37 PWR fuel rod simulators. The test section was filled with subcooled coolant and the power was turned on. After an initial heatup phase, coolant was expelled from the test section due to rapid vapor generation near the mid-plane where the power generation was highest. Gradual boiloff of the remaining water followed. It was found that the ''collapsed liquid level'' (CLL) and the rod temperature histories could be predicted well, provided the initial expulsion of the coolant was calculated correctly. The axial void fraction and enthalpy profiles calculated with TRAC-BD/MOD1 provided the information needed for understanding the importance of heat transfer to the coolant before the inception of vapor generation, and the sensitivity of the results to the interfacial friction correlation used
CT measurements of SAP voids in concrete
DEFF Research Database (Denmark)
Laustsen, Sara; Bentz, Dale P.; Hasholt, Marianne Tange
2010-01-01
X-ray computed tomography (CT) scanning is used to determine the SAP void distribution in hardened concrete. Three different approaches are used to analyse a binary data set created from CT measurement. One approach classifies a cluster of connected, empty voxels (volumetric pixel of a 3D image......) as one void, whereas the other two approaches are able to classify a cluster of connected, empty voxels as a number of individual voids. Superabsorbent polymers (SAP) have been used to incorporate air into concrete. An advantage of using SAP is that it enables control of the amount and size...... of the created air voids. The results indicate the presence of void clusters. To identify the individual voids, special computational approaches are needed. The addition of SAP results in a dominant peak in two of the three air void distributions. Based on the position (void diameter) of the peak, it is possible...
Analysis on void reactivity of DCA lattice
International Nuclear Information System (INIS)
Min, B. J.; Noh, K. H.; Choi, H. B.; Yang, M. K.
2001-01-01
In case of loss of coolant accident, the void reactivity of CANDU fuel provides the positive reactivity and increases the reactor power rapidly. Therefore, it is required to secure credibility of the void reactivity for the design and analysis of reactor, which motivated a study to assess the measurement data of void reactivity. The assessment of lattice code was performed with the experimental data of void reactivity at 30, 70, 87 and 100% of void fractions. The infinite multiplication factors increased in four types of fuels as the void fractions of them grow. The infinite multiplication factors of uranium fuels are almost within 1%, but those of Pu fuels are over 10% by the results of WIMS-AECL and MCNP-4B codes. Moreover, coolant void reactivity of the core loaded with plutonium fuel is more negative compared with that with uranium fuel because of spectrum hardening resulting from large void fraction
International Nuclear Information System (INIS)
M. Gross
2004-01-01
The purpose of this scientific analysis is to define the sampled values of stochastic (random) input parameters for (1) rockfall calculations in the lithophysal and nonlithophysal zones under vibratory ground motions, and (2) structural response calculations for the drip shield and waste package under vibratory ground motions. This analysis supplies: (1) Sampled values of ground motion time history and synthetic fracture pattern for analysis of rockfall in emplacement drifts in nonlithophysal rock (Section 6.3 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (2) Sampled values of ground motion time history and rock mechanical properties category for analysis of rockfall in emplacement drifts in lithophysal rock (Section 6.4 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (3) Sampled values of ground motion time history and metal to metal and metal to rock friction coefficient for analysis of waste package and drip shield damage to vibratory motion in ''Structural Calculations of Waste Package Exposed to Vibratory Ground Motion'' (BSC 2004 [DIRS 167083]) and in ''Structural Calculations of Drip Shield Exposed to Vibratory Ground Motion'' (BSC 2003 [DIRS 163425]). The sampled values are indices representing the number of ground motion time histories, number of fracture patterns and rock mass properties categories. These indices are translated into actual values within the respective analysis and model reports or calculations. This report identifies the uncertain parameters and documents the sampled values for these parameters. The sampled values are determined by GoldSim V6.04.007 [DIRS 151202] calculations using appropriate distribution types and parameter ranges. No software development or model development was required for these calculations. The calculation of the sampled values allows parameter uncertainty to be incorporated into the rockfall and structural response calculations that support development of the seismic scenario for the
Structures and Stability of Metal Amidoboranes (MAB): Density Functional Calculations
International Nuclear Information System (INIS)
Li Cailin; Wu Chaoling; Chen Yungui; Zhou Jingjing; Zheng Xin; Pang Lijuan; Deng Gang
2010-01-01
Molecule geometry structures, frequencies, and energetic stabilities of ammonia borane (AB, NH 3 BH 3 ) and metal amidoboranes (MAB, MNH 2 BH 3 ), formed by substituting H atom in AB with one of main group metal atoms, have been investigated by density-functional theory and optimized at the B3LYP levels with 6-311G++ (3df, 3pd) basic set. Their structural parameters and infrared spectrum characteristic peaks have been predicted, which should be the criterion of a successfully synthesized material. Several parameters such as binding energies, vibrational frequencies, and the energy gaps between the HOMO and the LUMO have been adopted to characterize and evaluate their structure stabilities. It is also found that the binding energies and HOMO-LUMO energy gaps of the MAB obviously change with the substitution of the atoms. MgAB has the lowest binding energy and is easier to decompose than any other substitutional structures under same conditions, while CaAB has the highest chemical activity. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Microscopic nuclear structure calculations with modern meson-exchange potentials
International Nuclear Information System (INIS)
Hjort-Jensen, M.; Osnes, E.; Muether, H.; Schmid, K.W.; Kuo, T.T.S.
1990-07-01
The report presents the results of microscopic nuclear shell-model calculations using three different nucleon-nucleon potentials. These are the phenomenological Reid-Soft-Core potential and the meson-exchange potentials of the Paris and the Bonn groups. It is found that the Bonn potential yields sd-shell matrix elements which are more attractive than those obtained with the Reid or the Paris potentials. The harmonic-oscillator matrix elements of the Bonn potential are also in better agreement with the empirically derived matrix elements of Wildenthal. The implications are discussed. 27 refs., 4 figs., 1 tab
Molecular-Field Calculation of the Magnetic Structure in Erbium
DEFF Research Database (Denmark)
Jensen, J.
1976-01-01
A molecular-field calculation of the magnetic configurations in Er is found to reproduce the neutron diffraction results of the three different magnetic phases and to give a reasonable fit to the magnetization data at 4.2K. The two-ion coupling is considered to be described by the inter......-planar coupling parameters deduced from the dispersion of the spin waves in the low temperature conical phases. The four (effective) crystal-field parameters are determined by the fit to the experimental data. Projecting the magnetic moments present in the intermediate phase of Er (18-52.4K) to a common origin...
Structure-dynamic model verification calculation of PWR 5 tests
International Nuclear Information System (INIS)
Engel, R.
1980-02-01
Within reactor safety research project RS 16 B of the German Federal Ministry of Research and Technology (BMFT), blowdown experiments are conducted at Battelle Institut e.V. Frankfurt/Main using a model reactor pressure vessel with a height of 11,2 m and internals corresponding to those in a PWR. In the present report the dynamic loading on the pressure vessel internals (upper perforated plate and barrel suspension) during the DWR 5 experiment are calculated by means of a vertical and horizontal dynamic model using the CESHOCK code. The equations of motion are resolved by direct integration. (orig./RW) [de
Quasiparticle GW calculations within the GPAW electronic structure code
DEFF Research Database (Denmark)
Hüser, Falco
The GPAW electronic structure code, developed at the physics department at the Technical University of Denmark, is used today by researchers all over the world to model the structural, electronic, optical and chemical properties of materials. They address fundamental questions in material science...... and use their knowledge to design new materials for a vast range of applications. Todays hottest topics are, amongst many others, better materials for energy conversion (e.g. solar cells), energy storage (batteries) and catalysts for the removal of environmentally dangerous exhausts. The mentioned...... properties are to a large extent governed by the physics on the atomic scale, that means pure quantum mechanics. For many decades, Density Functional Theory has been the computational method of choice, since it provides a fairly easy and yet accurate way of determining electronic structures and related...
Methodology for Structural Calculation of Gear Teeth with Unconventional Profile
Directory of Open Access Journals (Sweden)
Radicella Andrea Chiaramonte
2016-01-01
Full Text Available After having made reference to the structural analysis used in the study of gear wheel teeth, we then move on to the state of the art on the topic. We proceed to identify the boundary conditions used in the structural analysis of unconventional teeth with sides having a profile of an involute of a circle but with different pressure angles in each of the two sides. A procedure for the discretization of traditional teeth and of innovative teeth is presented and compared with the discretization obtained using current software.
An experimental and theoretical analysis of void fraction dynamics in a boiling channel
International Nuclear Information System (INIS)
Romberg, T.M.
1977-01-01
This paper describes an experimental and theoretical investigation of the void fraction dynamics at the exit of a test boiling channel which is operated near the 'instability threshold power' (the power level at which coolant flow instabilities occur). Dynamic measurements of the perturbations in channel inlet flow-rate, power input and exit void fraction are analysed using multivariate spectral analysis. The resulting experimental cross-spectral density functions between flow-rate/exit void fraction and power input/exit void fraction agree favourably with those calculated by a linearised hydrodynamic model in the frequency domain. (Author)
Experimental study of average void fraction in low-flow subcooled boiling
International Nuclear Information System (INIS)
Sun Qi; Wang Xiaojun; Xi Zhao; Zhao Hua; Yang Ruichang
2005-01-01
Low-flow subcooled void fraction in medium pressure was investigated using high-temperature high-pressure single-sensor optical probe in this paper. And then average void fraction was obtained through the integral calculation of local void fraction in the cross-section. The experimental data were compared with the void fraction model proposed in advance. The results show that the predictions of this model agree with the data quite well. The comparisons of Saha and Levy models with low-flow subcooled data show that Saha model overestimates the experimental data distinctively, and Levy model also gets relatively higher predictions although it is better than Saha model. (author)
STM-Induced Void Formation at the Al{sub 2}O{sub 3}/Ni{sub 3}Al(111) Interface
Energy Technology Data Exchange (ETDEWEB)
Magtoto, N.P.; Niu, C.; Anzaldura, M.; Kelber, J.A.; Jennison, D.R.
2000-09-21
Under UHV conditions at 300 K, the applied electric field and/or resulting current from an STM tip creates nanoscale voids at the interface between an epitaxial, 7.0 {angstrom} thick Al{sub 2}O{sub 3} film and a Ni{sub 3}Al(111) substrate. This phenomenon is independent of tip polarity. Constant current (1 nA) images obtained at +0.1 V bias and +2.0 bias voltage (sample positive) reveal that voids are within the metal at the interface and, when small, are capped by the oxide film. Void size increases with time of exposure. The rate of void growth increases with applied bias/field and tunneling current, and increases significantly for field strengths >5 MV/cm, well below the dielectric breakdown threshold of 12 {+-} 1 MV/cm. Slower rates of void growth are, however, observed at lower applied field strengths. Continued growth of voids, to {approximately}30 {angstrom} deep and {approximately}500 {angstrom} wide, leads to the eventual failure of the oxide overlayer. Density Functional Theory calculations suggest a reduction-oxidation (REDOX) mechanism: interracial metal atoms are oxidized via transport into the oxide, while oxide surface Al cations are reduced to admetal species which rapidly diffuse away. This is found to be exothermic in model calculations, regardless of the details of the oxide film structure; thus, the barriers to void formation are kinetic rather than thermodynamic. We discuss our results in terms of mechanisms for the localized pitting corrosion of aluminum, as our results suggest nanovoid formation requires just electric field and current, which are ubiquitous in environmental conditions.
Ab initio calculations and modelling of atomic cluster structure
DEFF Research Database (Denmark)
Solov'yov, Ilia; Lyalin, Andrey G.; Solov'yov, Andrey V.
2004-01-01
The optimized structure and electronic properties of small sodium and magnesium clusters have been investigated using it ab initio theoretical methods based on density-functional theory and post-Hartree-Fock many-body perturbation theory accounting for all electrons in the system. A new theoretical...
Basic concepts of Density Functional Theory: Electronic structure calculation
International Nuclear Information System (INIS)
Sharma, B. Indrajit
2016-01-01
We are looking for a material which possesses the required properties as demanded for technological applications. For this we have to repeat the preparation of the appropriate materials and its characterizations. So, before proceeding to experiments, one can study on computer generated structure and predict the properties of the desired material. To do this, a concept of Density Functional Theory comes out. (paper)
First principles calculations of structural, electronic and thermal ...
Indian Academy of Sciences (India)
Administrator
2013-07-28
Jul 28, 2013 ... The structural, electronic and thermal properties of lead chalcogenides PbS, PbSe and BeTe using .... results for all the systems are presented in table 1, along ... as interatomic bonding, equations of state and phonon spectra.
Ab initio MCHF structural calculations of Mg-like cerium
Wajid, Abdul; Jabeen, S.; Husain, Abid
2018-05-01
Energy levels and emission line wavelengths of high-Z materials are useful for impurity diagnostics in the next generation fusion devices. For this here we have calculated E1, M2 transitions, oscillator strengths, and transition probabilities for transitions among the terms belonging to the 2p63s2, 2p63s3p, 2p63p2 and 2p63s3d for the Magnesium like cerium (Ce XLVII) using the GRASP2K package based on the fully relativistic multi-configuration Dirac-Fock method. The electron correlation effects, Breit interaction and quantum electrodynamics effects to the atomic state wave functions and the corresponding energies have been taken into account.
Finite elements for the thermomechanical calculation of massive structures
International Nuclear Information System (INIS)
Argyris, J.H.; Szimmat, J.; Willam, K.J.
1978-01-01
The paper examines the fine element analysis of thermal stress and deformation problems in massive structures. To this end compatible idealizations are utilized for heat conduction and static analysis in order to minimize the data transfer. For transient behaviour due to unsteady heat flow and/or inelastics material processes the two computational parts are interwoven in form of an integrated software package for finite element analysis of thermomechanical problems in space and time. (orig.) [de
Analysis of void reactivity measurements in full MOX BWR physics experiments
International Nuclear Information System (INIS)
Ando, Yoshihira; Yamamoto, Toru; Umano, Takuya
2008-01-01
In the full MOX BWR physics experiments, FUBILA, four 9x9 test assemblies simulating BWR full MOX assemblies were located in the center of the core. Changing the in-channel moderator condition of the four assemblies from 0% void to 40% and 70% void mock-up, void reactivity was measured using Amplified Source Method (ASM) technique in the subcritical cores, in which three fission chambers were located. ASM correction factors necessary to express the consistency of the detector efficiency between measured core configurations were calculated using collision probability cell calculation and 3D-transport core calculation with the nuclear data library, JENDL-3.3. Measured reactivity worth with ASM correction factor was compared with the calculated results obtained through a diffusion, transport and continuous energy Monte Carlo calculation respectively. It was confirmed that the measured void reactivity worth was reproduced well by calculations. (author)
Principal components analysis of protein structure ensembles calculated using NMR data
International Nuclear Information System (INIS)
Howe, Peter W.A.
2001-01-01
One important problem when calculating structures of biomolecules from NMR data is distinguishing converged structures from outlier structures. This paper describes how Principal Components Analysis (PCA) has the potential to classify calculated structures automatically, according to correlated structural variation across the population. PCA analysis has the additional advantage that it highlights regions of proteins which are varying across the population. To apply PCA, protein structures have to be reduced in complexity and this paper describes two different representations of protein structures which achieve this. The calculated structures of a 28 amino acid peptide are used to demonstrate the methods. The two different representations of protein structure are shown to give equivalent results, and correct results are obtained even though the ensemble of structures used as an example contains two different protein conformations. The PCA analysis also correctly identifies the structural differences between the two conformations
Grid-based electronic structure calculations: The tensor decomposition approach
Energy Technology Data Exchange (ETDEWEB)
Rakhuba, M.V., E-mail: rakhuba.m@gmail.com [Skolkovo Institute of Science and Technology, Novaya St. 100, 143025 Skolkovo, Moscow Region (Russian Federation); Oseledets, I.V., E-mail: i.oseledets@skoltech.ru [Skolkovo Institute of Science and Technology, Novaya St. 100, 143025 Skolkovo, Moscow Region (Russian Federation); Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina St. 8, 119333 Moscow (Russian Federation)
2016-05-01
We present a fully grid-based approach for solving Hartree–Fock and all-electron Kohn–Sham equations based on low-rank approximation of three-dimensional electron orbitals. Due to the low-rank structure the total complexity of the algorithm depends linearly with respect to the one-dimensional grid size. Linear complexity allows for the usage of fine grids, e.g. 8192{sup 3} and, thus, cheap extrapolation procedure. We test the proposed approach on closed-shell atoms up to the argon, several molecules and clusters of hydrogen atoms. All tests show systematical convergence with the required accuracy.
Atomic structure calculations for F-like tungsten
Sunny, Aggarwal
2014-09-01
Energy levels, wavefunction compositions and lifetimes have been computed for all levels of 1s22s22p5, 1s22s2p6, 1s22s22p43s, 1s22s22p43p, and 1s22s22p43d configurations in highly charged F-like tungsten ion. The multiconfigurational Dirac—Fock method (MCDF) is adopted to generate the wavefunctions. We have also presented the transition wavelengths, oscillator strengths, transition probabilities, and line strengths for the electric dipole (E1) and magnetic quadrupole (M2) transition from the 1s22s22p5 ground configuration. We have performed parallel calculations with the flexible atomic code (FAC) for comparing the atomic data. The reliability of present data is assessed by comparison with other theoretical and experimental data available in the literature. Good agreement is found between our results and those obtained using different approaches confirm the quality of our results. Additionally, we have predicted some new atomic data for F-like W that were not available so far and may be important for plasma diagnostic analysis in fusion plasma.
Plane-wave electronic structure calculations on a parallel supercomputer
International Nuclear Information System (INIS)
Nelson, J.S.; Plimpton, S.J.; Sears, M.P.
1993-01-01
The development of iterative solutions of Schrodinger's equation in a plane-wave (pw) basis over the last several years has coincided with great advances in the computational power available for performing the calculations. These dual developments have enabled many new and interesting condensed matter phenomena to be studied from a first-principles approach. The authors present a detailed description of the implementation on a parallel supercomputer (hypercube) of the first-order equation-of-motion solution to Schrodinger's equation, using plane-wave basis functions and ab initio separable pseudopotentials. By distributing the plane-waves across the processors of the hypercube many of the computations can be performed in parallel, resulting in decreases in the overall computation time relative to conventional vector supercomputers. This partitioning also provides ample memory for large Fast Fourier Transform (FFT) meshes and the storage of plane-wave coefficients for many hundreds of energy bands. The usefulness of the parallel techniques is demonstrated by benchmark timings for both the FFT's and iterations of the self-consistent solution of Schrodinger's equation for different sized Si unit cells of up to 512 atoms
International Nuclear Information System (INIS)
Maeng, YoungJae; Lim, MiJoung; Kim, KyungSik; Cho, YoungKi; Yoo, ChoonSung; Kim, ByoungChul
2015-01-01
Age-related degradation mechanisms are including the irradiation-assisted stress corrosion cracking(IASCC), void swelling, stress relaxation, fatigue, and etc. A lot of Baffle Former Bolts(BFBs) was installed at the former plate ends between baffle and barrel structure. These would undergo severe experiences, which are high temperature and pressure, bypass water flow and neutron exposure and have some radioactive limitation in inspecting their integrity. The objectives of this paper is to evaluate fast neutron fluence(n/cm 2 , E>1.0MeV) for PWR internals using 3D transport calculation code, RAPTOR-M3G, and to figure out a strategy to manage the effects of aging in PWR internals. One of age-related degradation mechanisms, IASCC, which is affected by fast neutron exposure rate, has been currently issued for PWR internals and has 2 x 10 21 (n/cm 2 ) of the threshold value by MRP-175. Because a lot of BFBs was installed around the internal components, closer inspections are required. As part of an aging management for Kori unit 2, 3D transport calculation code, RAPTOR-M3G, was applied for determining fast neutron fluence at baffle, barrel and former plates regions. As a result, the fast neutron fluence exceeds the screening or threshold values of IASCC in all of baffle, barrel and former plate region. And the most significant region is the baffle because it is located closest to the core. In addition, some regions including former plate tend to be more damaged because of less moderate ability than water. In conclusion, Ice's has been progressed for PWR internals of Kori unit 2. Several regions of internal components were damaged by fast neutron exposure and increase in size as time goes by
DEFF Research Database (Denmark)
Niordson, Christian Frithiof
2005-01-01
The size-effect on ductile void growth in metals is investigated. The analysis is based on unit cell models both of arrays of cylindrical voids under plane strain deformation, as well as arrays of spherical voids using an axisymmetric model. A recent finite strain generalization of two higher order...... strain gradient plasticity models is implemented in a finite element program, which is used to study void growth numerically. The results based on the two models are compared. It is shown how gradient effects suppress void growth on the micron scale when compared to predictions based on conventional...... models. This increased resistance to void growth, due to gradient hardening, is accompanied by an increase in the overall strength for the material. Furthermore, for increasing initial void volume fraction, it is shown that the effect of gradients becomes more important to the overall response but less...
Descriptors of sensation confirm the multidimensional nature of desire to void.
Das, Rebekah; Buckley, Jonathan D; Williams, Marie T
2015-02-01
To collect and categorize descriptors of "desire to void" sensation, determine the reliability of descriptor categories and assess whether descriptor categories discriminate between people with and without symptoms of overactive bladder. This observational, repeated measures study involved 64 Australian volunteers (47 female), aged 50 years or more, with and without symptoms of overactive bladder. Descriptors of desire to void sensation were derived from a structured interview (conducted on two occasions, 1 week apart). Descriptors were recorded verbatim and categorized in a three-stage process. Overactive bladder status was determined by the Overactive Bladder Awareness Tool and the Overactive Bladder Symptom Score. McNemar's test assessed the reliability of descriptors volunteered between two occasions and Partial Least Squares Regression determined whether language categories discriminated according to overactive bladder status. Post hoc Chi squared analysis and relative risk calculation determined the size and direction of overactive bladder prediction. Thirteen language categories (Urgency, Fullness, Pressure, Tickle/tingle, Pain/ache, Heavy, Normal, Intense, Sudden, Annoying, Uncomfortable, Anxiety, and Unique somatic) encapsulated 344 descriptors of sensation. Descriptor categories were stable between two interviews. The categories "Urgency" and "Fullness" predicted overactive bladder status. Participants who volunteered "Urgency" descriptors were twice as likely to have overactive bladder and participants who volunteered "Fullness" descriptors were almost three times as likely not to have overactive bladder. The sensation of desire to void is reliably described over sessions separated by a week, the language used reflects multiple dimensions of sensation, and can predict overactive bladder status. © 2013 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Gavrilin, I.V.; Ershov, G.S.
1979-01-01
A method was developed for calculating the dynamic viscosity coefficient of liquid metals based on the assumption of the microinhomogeneity of their structure. The functions eta=f(T) were calculated accordingly using computers both for the refractory (Fe, Ni, Co, Cu) and the readily melting (Al, An, Cd) metals. The experimental and the calculated values eta=f(T) agreed satisfactorily
Accelerating VASP electronic structure calculations using graphic processing units
Hacene, Mohamed
2012-08-20
We present a way to improve the performance of the electronic structure Vienna Ab initio Simulation Package (VASP) program. We show that high-performance computers equipped with graphics processing units (GPUs) as accelerators may reduce drastically the computation time when offloading these sections to the graphic chips. The procedure consists of (i) profiling the performance of the code to isolate the time-consuming parts, (ii) rewriting these so that the algorithms become better-suited for the chosen graphic accelerator, and (iii) optimizing memory traffic between the host computer and the GPU accelerator. We chose to accelerate VASP with NVIDIA GPU using CUDA. We compare the GPU and original versions of VASP by evaluating the Davidson and RMM-DIIS algorithms on chemical systems of up to 1100 atoms. In these tests, the total time is reduced by a factor between 3 and 8 when running on n (CPU core + GPU) compared to n CPU cores only, without any accuracy loss. © 2012 Wiley Periodicals, Inc.
Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes
Energy Technology Data Exchange (ETDEWEB)
Draayer, Jerry P. [Louisiana State Univ., Baton Rouge, LA (United States)
2014-09-28
We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).
Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes
International Nuclear Information System (INIS)
Draayer, Jerry P.
2014-01-01
We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).
Accelerating VASP electronic structure calculations using graphic processing units
Hacene, Mohamed; Anciaux-Sedrakian, Ani; Rozanska, Xavier; Klahr, Diego; Guignon, Thomas; Fleurat-Lessard, Paul
2012-01-01
We present a way to improve the performance of the electronic structure Vienna Ab initio Simulation Package (VASP) program. We show that high-performance computers equipped with graphics processing units (GPUs) as accelerators may reduce drastically the computation time when offloading these sections to the graphic chips. The procedure consists of (i) profiling the performance of the code to isolate the time-consuming parts, (ii) rewriting these so that the algorithms become better-suited for the chosen graphic accelerator, and (iii) optimizing memory traffic between the host computer and the GPU accelerator. We chose to accelerate VASP with NVIDIA GPU using CUDA. We compare the GPU and original versions of VASP by evaluating the Davidson and RMM-DIIS algorithms on chemical systems of up to 1100 atoms. In these tests, the total time is reduced by a factor between 3 and 8 when running on n (CPU core + GPU) compared to n CPU cores only, without any accuracy loss. © 2012 Wiley Periodicals, Inc.
The role of ab initio electronic structure calculations in studies of the strength of materials
International Nuclear Information System (INIS)
Sob, M.; Friak, M.; Legut, D.; Fiala, J.; Vitek, V.
2004-01-01
In this paper we give an account of applications of quantum-mechanical (first-principles) electronic structure calculations to the problem of theoretical tensile strength in metals and intermetallics. First, we review previous as well as ongoing research on this subject. We then describe briefly the electronic structure calculational methods and simulation of the tensile test. This approach is then illustrated by calculations of theoretical tensile strength in iron and in the intermetallic compound Ni 3 Al. The anisotropy of calculated tensile strength is explained in terms of higher-symmetry structures encountered along the deformation paths studied. The table summarizing values of theoretical tensile strengths calculated up to now is presented and the role of ab initio electronic structure calculations in contemporary studies of the strength of material is discussed
Measurement of void fraction distribution in two-phase flow by impedance CT with neural network
International Nuclear Information System (INIS)
Hayashi, Hideaki; Sumida, Isao; Sakai, Sinji; Wakai, Kazunori
1996-01-01
This paper describes a new method for measurement of void distribution using impedance CT with a hierarchical neural network. The present method consists of four processes. First, output electric currents are calculated by simulation of various distributions of void fraction. The relationship between distribution of void fraction and electric current is called 'teaching data'. Second, the neural network learns the teaching data by the back propagation method. Third, output electric currents are measured about actual two-phase flow. Finally, distribution of void fraction is calculated by the taught neural network using the measured electric currents. In this paper, measurement and learning parameters are adjusted, experimental results obtained using the impedance CT method are compared with data obtained by the impedance probe method. The results show that our method is effective for measurement of void fraction distribution. (author)
Status and prospects for the calculation of hadron structure from lattice QCD
International Nuclear Information System (INIS)
Renner, Dru B.
2010-02-01
Lattice QCD calculations of hadron structure are a valuable complement to many experimental programs as well as an indispensable tool to understand the dynamics of QCD. I present a focused review of a few representative topics chosen to illustrate both the challenges and advances of our community: the momentum fraction, axial charge and charge radius of the nucleon. I will discuss the current status of these calculations and speculate on the prospects for accurate calculations of hadron structure from lattice QCD. (orig.)
Nocturia: The circadian voiding disorder
Directory of Open Access Journals (Sweden)
Jin Wook Kim
2016-05-01
Full Text Available Nocturia is a prevalent condition of waking to void during the night. The concept of nocturia has evolved from being a symptomatic aspect of disease associated with the prostate or bladder to a form of lower urinary tract disorder. However, recent advances in circadian biology and sleep science suggest that it might be important to consider nocturia as a form of circadian dysfunction. In the current review, nocturia is reexamined with an introduction to sleep disorders and recent findings in circadian biology in an attempt to highlight the importance of rediscovering nocturia as a problem of chronobiology.
Electronic Structure Calculation of Permanent Magnets using the KKR Green's Function Method
Doi, Shotaro; Akai, Hisazumi
2014-03-01
Electronic structure and magnetic properties of permanent magnetic materials, especially Nd2Fe14B, are investigated theoretically using the KKR Green's function method. Important physical quantities in magnetism, such as magnetic moment, Curie temperature, and anisotropy constant, which are obtained from electronics structure calculations in both cases of atomic-sphere-approximation and full-potential treatment, are compared with past band structure calculations and experiments. The site preference of heavy rare-earth impurities are also evaluated through the calculation of formation energy with the use of coherent potential approximations. Further, the development of electronic structure calculation code using the screened KKR for large super-cells, which is aimed at studying the electronic structure of realistic microstructures (e.g. grain boundary phase), is introduced with some test calculations.
International Nuclear Information System (INIS)
Schoenfelder, C.; Kellner, A.
1985-01-01
An approximated representative part of a PWR-feed-water-line was modelled and used to calculate the displacements of the piping system and the loads on it, caused by pressure pulse due to pump failure and subsequent check valve closure. The computation was performed with the code SAPHYR which contains the fluid code ROLAST and the structure code SAPIENS, calculating simultaneously and interactively. The results were compared with an uncoupled calculation without fluid/structure interaction. It was shown that neglecting the fluid/structure interaction can lead to considerable overestimations - in some cases up to a factor of 3 - of the loads on the structures. (orig.)
The dark matter of galaxy voids
Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H.; Warren, Michael S.
2014-03-01
How do observed voids relate to the underlying dark matter distribution? To examine the spatial distribution of dark matter contained within voids identified in galaxy surveys, we apply Halo Occupation Distribution models representing sparsely and densely sampled galaxy surveys to a high-resolution N-body simulation. We compare these galaxy voids to voids found in the halo distribution, low-resolution dark matter and high-resolution dark matter. We find that voids at all scales in densely sampled surveys - and medium- to large-scale voids in sparse surveys - trace the same underdensities as dark matter, but they are larger in radius by ˜20 per cent, they have somewhat shallower density profiles and they have centres offset by ˜ 0.4Rv rms. However, in void-to-void comparison we find that shape estimators are less robust to sampling, and the largest voids in sparsely sampled surveys suffer fragmentation at their edges. We find that voids in galaxy surveys always correspond to underdensities in the dark matter, though the centres may be offset. When this offset is taken into account, we recover almost identical radial density profiles between galaxies and dark matter. All mock catalogues used in this work are available at http://www.cosmicvoids.net.
Cluster-void degeneracy breaking: Modified gravity in the balance
Sahlén, Martin; Silk, Joseph
2018-05-01
Combining galaxy cluster and void abundances is a novel, powerful way to constrain deviations from general relativity and the Λ CDM model. For a flat w CDM model with growth of large-scale structure parametrized by the redshift-dependent growth index γ (z )=γ0+γ1z /(1 +z ) of linear matter perturbations, combining void and cluster abundances in future surveys with Euclid and the four-meter multiobject spectroscopic telescope could improve the figure of merit for (w ,γ0,γ1) by a factor of 20 compared to individual abundances. In an ideal case, improvement on current cosmological data is a figure of merit factor 600 or more.
Void distributions in liquid BiBr{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Maruyama, K [Faculty of Science, Niigata University, Niigata 950-2181 (Japan); Endo, H [Faculty of Science, Kyoto University, Kyoto 606-8224 (Japan); Hoshino, H [Faculty of Education, Hirosaki University, Hirosaki 036-8560 (Japan); Kawakita, Y [Faculty of Sciences, Kyushu University, Fukuoka 810-8560 (Japan); Kohara, S; Itou, M [Japan Synchrotron Radiation Research Institute(JASRI), Sayo-cho 679-5198 (Japan)
2008-02-15
The X-ray diffraction experiments and the reverse Monte Carlo analysis for liquid BiBr{sub 3} have been performed to clarify the distribution of Bi and Br ions around voids, comparing with previous results derived in the neutron diffraction experiments. The hexagonal cages involving voids are formed by the corner-sharing of the trigonal pyramidal BiBr{sub 3} blocks. The neighboring cages are linked together in highly correlated fashion. The observed pre-peak in S(Q) at 1.3A{sup -1} is related to the pre-peak of the void-based S'{sub CC} (Q) due to an intermediate chemical order in the structure. The pre-peak intensity increases with increasing temperature. This characteristic change for the pre-peak intensity is discussed by considering the modifications of the topology and stacking in the hexagonal cages.
The Beckoning Void in Moravagine
Directory of Open Access Journals (Sweden)
Stephen K. Bellstrom
1979-01-01
Full Text Available The Chapter «Mascha,» lying at the heart of Cendrars's Moravagine , contains within it a variety of images and themes suggestive of emptiness. The philosophy of nihilism is exemplified in the motivations and actions of the group of terrorists seeking to plunge Russia into revolutionary chaos. Mascha's anatomical orifice, symbolizing both a biological and a psychological fault, and the abortion of her child, paralleled by the abortion of the revolutionary ideal among her comrades, are also emblematic of the chapter's central void. Moreover, Cendrars builds the theme of hollowness by describing Moravagine with images of omission, such as «empan» (space or span, «absent,» and «étranger.» Moravagine's presence, in fact, characteristically causes an undercurrent of doubt and uncertainty about the nature of reality to become overt. It is this parodoxical presence which seems to cause the narrator (and consequently the narrative to «lose» a day at the most critical moment of the story. By plunging the reader into the narrator's lapsus memoriae , Cendrars aims at creating a feeling of the kind of mental and cosmic disorder for which Moravagine is the strategist and apologist. This technique of insufficiency is an active technique, even though it relies on the passive idea of removing explanation and connecting details. The reader is invited, or lured, into the central void of the novel and, faced with unresolvable dilemmas, becomes involved in the same disorder that was initially produced.
The cosmic web in CosmoGrid void regions
Rieder, Steven; van de Weygaert, Rien; Cautun, Marius; Beygu, Burcu; Portegies Zwart, Simon
2016-01-01
We study the formation and evolution of the cosmic web, using the high-resolution CosmoGrid ΛCDM simulation. In particular, we investigate the evolution of the large-scale structure around void halo groups, and compare this to observations of the VGS-31 galaxy group, which consists of three
Extrapolation of ZPR sodium void measurements to the power reactor
International Nuclear Information System (INIS)
Beck, C.L.; Collins, P.J.; Lineberry, M.J.; Grasseschi, G.L.
1976-01-01
Sodium-voiding measurements of ZPPR assemblies 2 and 5 are analyzed with ENDF/B Version IV data. Computations include directional diffusion coefficients to account for streaming effects resulting from the plate structure of the critical assembly. Bias factors for extrapolating critical assembly data to the CRBR design are derived from the results of this analysis
Elastic wave scattering from multiple voids (porosity)
International Nuclear Information System (INIS)
Thompson, D.O.; Rose, J.H.; Thompson, R.B.; Wormley, S.J.
1983-01-01
This paper describes the development of an ultrasonic backscatter measurement technique which provides a convenient way to determine certain characteristics of a distribution of voids (porosity) in materials. A typical ultrasonic sample prepared by placing the ''frit'' in a crucible in an RF induction heater is shown. The results of the measurements were Fourier transformed into an amplitude-frequency description, and were then deconvolved with the transducer response function. Several properties needed to characterize a void distribution are obtained from the experimental results, including average void size, the spatial extent of the voids region, the average void separation, and the volume fraction of material contained in the void distribution. A detailed comparison of values obtained from the ultrasonic measurements with visually determined results is also given
Structural system reliability calculation using a probabilistic fault tree analysis method
Torng, T. Y.; Wu, Y.-T.; Millwater, H. R.
1992-01-01
The development of a new probabilistic fault tree analysis (PFTA) method for calculating structural system reliability is summarized. The proposed PFTA procedure includes: developing a fault tree to represent the complex structural system, constructing an approximation function for each bottom event, determining a dominant sampling sequence for all bottom events, and calculating the system reliability using an adaptive importance sampling method. PFTA is suitable for complicated structural problems that require computer-intensive computer calculations. A computer program has been developed to implement the PFTA.
Simulation of the structure and calculation of the thermal conductivity of napped composites
International Nuclear Information System (INIS)
Berezko, S.N.; Zarichnyak, Yu.P.; Korenev, P.A.
1995-01-01
We propose a model of the structure of a napped composite. Characteristic trends in the structure of the material are delineated, and the effective thermal conductivity of the model structure is calculated for these trends with allowance for conduction and radiation
Hybrid functional calculation of electronic and phonon structure of BaSnO3
International Nuclear Information System (INIS)
Kim, Bog G.; Jo, J.Y.; Cheong, S.W.
2013-01-01
Barium stannate, BaSnO 3 (BSO), with a cubic perovskite structure, has been highlighted as a promising host material for the next generation transparent oxide electrodes. This study examined theoretically the electronic structure and phonon structure of BSO using hybrid density functional theory based on the HSE06 functional. The electronic structure results of BSO were corrected by extending the phonon calculations based on the hybrid density functional. The fundamental thermal properties were also predicted based on a hybrid functional calculation. Overall, a detailed understanding of the electronic structure, phonon modes and phonon dispersion of BSO will provide a theoretical starting-point for engineering applications of this material. - Graphical Abstract: (a) Crystal structure of BaSnO 3 . The center ball is Ba and small (red) ball on edge is oxygen and SnO 6 octahedrons are plotted as polyhedron. (b) Electronic band structure along the high symmetry point in the Brillouin zone using the HSE06 hybrid functional. (c) The phonon dispersion curve calculated using the HSE06 hybrid functional (d) Zone center lowest energy F 1u phonon mode. Highlights: ► We report the full hybrid functional calculation of not only the electronic structure but also the phonon structure for BaSnO 3 . ► The band gap calculation of HSE06 revealed an indirect gap with 2.48 eV. ► The effective mass at the conduction band minimum and valence band maximum was calculated. ► In addition, the phonon structure of BSO was calculated using the HSE06 functional. ► Finally, the heat capacity was calculated and compared with the recent experimental result.
Development of the impedance void meter
Energy Technology Data Exchange (ETDEWEB)
Chung, Moon Ki; Song, Chul Hwa; Won, Soon Yeon; Kim, Bok Deuk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1994-06-01
An impedance void meter is developed to measure the area-averaged void fraction. Its basic principle is based on the difference in the electrical conductivity between phases. Several methods of measuring void fraction are briefly reviewed and the reason why this type of void meter is chosen to develop is discussed. Basic principle of the measurement is thoroughly described and several design parameters to affect the overall function are discussed in detail. As example of applications is given for vertical air-water flow. It is shown that the current design has good dynamic response as well as very fine spatial resolution. (Author) 47 refs., 37 figs.
Effect of metallurgical variables on void swelling
International Nuclear Information System (INIS)
Johnston, W.G.; Lauritzen, T.; Rosolowski, J.H.; Turkalo, A.M.
1976-01-01
The mechanism of void swelling is reviewed briefly and the anticipated effects of metallurgical variables are described. Experimental results showing the effects of metallurgical variables are reviewed, most of the work being done by simulation methods employing charged particle bombardments to simulate reactor damage. Although the early emphasis was on structural variables such as grain size, cold work and precipitates to control swelling, it now seems that the practical reduction of swelling will be achieved by modifying alloy composition. Void swelling is strongly influenced by the relative amounts of Fe, Cr, and Ni in an alloy; the amount of swelling can be varied by three orders of magnitude by changing the relative amounts of the three elements in an austenitic ternary alloy. The effect of composition on swelling of a simple ferritic alloy will also be described. The swelling of a simple austenitic alloy of Fe, Cr, and Ni can be reduced by certain minor element additions. The most effective swelling inhibitors are Si, Ti, Zr, and Nb, and combinations of Si and Ti are synergetic. Swelling reductions of two orders of magnitude have been achieved with combined additions. Predictions of swelling in commercial solid solution alloys are made on the basis of the present knowledge of the effects of major composition and minor element additions. The predictions agree with experimental results. For more complex commercial alloys, predictions are made for the effects on swelling of heat treatments that cause changes in matrix composition. In some cases, heat treatment is expected to change the peak swelling by more than a factor of ten, and to shift the peak swelling temperature by almost 100 0 C. Sensitivity of swelling to detailed matrix composition places emphasis on the need for developing understanding of the stability of structure and local composition in an irradiation environment
International Nuclear Information System (INIS)
Lino, A.T.; Takahashi, E.K.; Leite, J.R.; Ferraz, A.C.
1988-01-01
The band structure of metallic sodium is calculated, using for the first time the self-consistent field variational cellular method. In order to implement the self-consistency in the variational cellular theory, the crystal electronic charge density was calculated within the muffin-tin approximation. The comparison between our results and those derived from other calculations leads to the conclusion that the proposed self-consistent version of the variational cellular method is fast and accurate. (author) [pt
First principle calculation of structure and lattice dynamics of Lu2Si2O7
Directory of Open Access Journals (Sweden)
Nazipov D.V.
2017-01-01
Full Text Available Ab initio calculations of crystal structure and Raman spectra has been performed for single crystal of lutetium pyrosilicate Lu2Si2O7. The types of fundamental vibrations, their frequencies and intensities in the Raman spectrum has been obtained for two polarizations. Calculations were made in the framework of density functional theory (DFT with hybrid functionals. The isotopic substitution was calculated for all inequivalent ions in cell. The results in a good agreement with experimental data.
Semi-empirical calculations on the structure of the uronium ion
Harkema, Sybolt
1972-01-01
Semi-empirical calculations (CNDO/2) on the structure of the uronium ion are presented. Assuming a planar ion with fixed bond lengths, the bond angles involving the heavy atoms can be calculated with fair accuracy. Changes in bond length and angles, which occur upon protonation of the urea molecule,
The shell structure effects in neutron cross section calculation by a ...
African Journals Online (AJOL)
The role of the shell structure properties of the nucleus in the calculation of neutron-induced reaction cross-section data based on nuclear reaction theory has been investigated. In this investigation, measured, evaluated and calculated (n.p) reaction cross-section data on la spherical nucleus (i.e. 112Sn) and a deformed ...
Fully local orbital-free calculation of electronic structure using pseudopotentials
Pino, R.; Markvoort, Albert. J.; Santen, van R.A.; Hilbers, P.A.J.
2003-01-01
An exactly solvable orbital-free technique is applied to the calculation of the electronic structure of polyatomic systems. The Thomas–Fermi kinetic energy, local exchange, local electrostatic energy functionals, and pseudopotentials are used. Given the potential, the cost of the calculation of the
Energy Technology Data Exchange (ETDEWEB)
Roumy, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires
1969-07-01
This report deals with experimental work on a two phase air-water mixture in vertical tubes of different diameters. The average void fraction was measured in a 2 metre long test section by means of quick-closing valves. Using resistive probes and photographic techniques, we have determined the flow patterns and developed diagrams to indicate the boundaries between the various patterns: independent bubbles, agglomerated bubbles, slugs, semi-annular, annular. In the case of bubble flow and slug flow, it is shown that the relationship between the average void fraction and the superficial velocities of the phases is given by: V{sub sg} = f(<{alpha}>) * g(V{sub sl}). The function g(V{sub sl}) for the case of independent bubbles has been found to be: g(V{sub sl}) = V{sub sl} + 20. For semi-annular and annular flow conditions; it appears that the average void fraction depends, to a first approximation only on the ratio V{sub sg}/V{sub sl}. (author) [French] Ce rapport est une etude experimentale d'un melange diphasique eau-air dans des tubes verticaux de differents diametres. Nous avons mesure la fraction de vide moyenne dans une portion de canal de longueur 2 m, au moyen d'un systeme de vannes a fermeture rapide et simultanee. Au moyen de sondes resistives et de photographies nous avons determine la configuration de l'ecoulement et trace des cartes donnant les frontieres entre les differentes configurations d'ecoulement: bulles independantes, bulles agglomerees, bouchons, semi-annulaire, annulaire. Nous montrons que pour les regimes a bulles et a bouchons, une equation de la forme V{sub sg} = f(<{alpha}>) * g(V{sub sl}) relie la fraction de vide moyenne aux vitesses superficielles de chacune des phases. Nous avons pu determiner la fonction g(V{sub sl}) dans le cas du regime a bulles independantes, et nous trouvons g(V{sub sl}) = V{sub sl} + 20. Pour les regimes semi-annulaire et annulaire, il semble qu'en premiere approximation, la fraction de vide moyenne ne depende que
Nucleation of voids and other irradiation-produced defect aggregates
International Nuclear Information System (INIS)
Wiedersich, H.; Katz, J.L.
1976-01-01
The nucleation of defect clusters in crystalline solids from radiation-produced defects is different from the usual nucleation processes in one important aspect: the condensing defects, interstitial atoms and vacancies, can mutually annihilate and are thus similar to matter and antimatter. The nucleation process is described as the simultaneous reaction of vacancies and interstitials (and gas atoms if present) with embryos of all sizes. The reaction rates for acquisition of point defects (and gas atoms) are calculated from their respective jump frequencies and concentrations in the supersaturated system. The reaction rates for emission of point defects are derived from the free energies of the defect clusters in the thermodynamic equilibrium system, i.e., the system without excess point defects. This procedure differs from that used in conventional nucleation theory and permits the inclusion of the ''antimatter'' defect into the set of reaction-rate equations in a straightforward manner. The method is applied to steady-state nucleation, during irradiation, of both dislocation loops and voids in the absence and in the presence of immobile and mobile gas. The predictions of the nucleation theory are shown to be in qualitative agreement with experimental observations, e.g., void densities increase with increasing displacement rates; gases such as helium enhance void nucleation; at low displacement rates and at high temperatures the presence of gas is essential to void formation. For quantitative predictions, the theory must be extended to include the termination of nucleation
International Nuclear Information System (INIS)
Akishina, T.P.; Ivanov, V.V.; Stepanenko, V.A.
2013-01-01
Among the key factors determining the processes of transcription and translation are the distributions of the electrostatic potentials of DNA, RNA and proteins. Calculations of electrostatic distributions and structure maps of biopolymers on computers are time consuming and require large computational resources. We developed the procedures for organization of massive calculations of electrostatic potentials and structure maps for biopolymers in a distributed computing environment (several thousands of cores).
Determination of void fraction from source range monitor and mass flow rate data
International Nuclear Information System (INIS)
McCormick, R.D.
1986-09-01
This is a report on the calculation of the TMI-2 primary coolant system local void fraction from source range neutron flux monitor data and from hot leg mass flowrate meter data during the first 100 minutes of the accident. The methods of calculation of void fraction from the two data sources is explained and the results are compared. It is indicated that the void fraction determined using the mass flowrate data contained an error of unknown magnitude due to the assumption of constant homogeneous volumetric flowrate used in the calculation and required further work. Void fraction determined from the source range monitor data is felt to be usable although an uncertainty analysis has not been performed
STRUCTURAL CALCULATION OF AN EMPLACEMENT PALLET STATICALLY LOADED BY A WASTE PACKAGE
International Nuclear Information System (INIS)
S. Mastilovic
2000-01-01
The purpose of this calculation is to determine the structural response of the emplacement pallet (EP) subjected to static load from the mounted waste package (WP). The scope of this document is limited to reporting the calculation results in terms of stress intensity magnitudes. This calculation is associated with the waste emplacement systems design; calculations are performed by the Waste Package Design group. AP-3.12Q, Revision 0, ICN 0, Calculations, is used to perform the calculation and develop the document. The finite element solutions are performed by using the commercially available ANSYS Version (V) 5.4 finite element code. The results of these calculations are provided in terms of maximum stress intensity magnitudes
A compilation of structural property data for computer impact calculation (5/5)
International Nuclear Information System (INIS)
Ikushima, Takeshi
1988-10-01
The paper describes structural property data for computer impact calculations of nuclear fuel shipping casks. Four kinds of material data, mild steel, stainless steel, lead and wood are compiled. These materials are main structural elements of shipping casks. Structural data such as, the coefficient of thermal expansion, the modulus of longitudinal elasticity, the modulus of transverse elasticity, the Poisson's ratio and stress and strain relationships, have been tabulated against temperature or strain rate. This volume 5 involve structural property data of wood. (author)
The calculation of dissipated work, elastoplastic cyclic stress and cyclic strain in a structure
International Nuclear Information System (INIS)
Wang Xucheng; Xie Yihuan.
1986-01-01
With the development of the reactor technique, there is being an increasing interest in the calculation of elastoplastic response of a structure to its complex loading. This paper introduces a constitutive relation of a material for discribing unloading property, and uses it in an analysis of a real structure under a cyclic loading. The results, which include cyclic stress, cyclic strain and dissipated work, are meaningful in the researches of the structure behavior under complex loading and of the structural safety
International Nuclear Information System (INIS)
Mizoguchi, Teruyasu
2011-01-01
In this review, following two topics are introduced: 1) experimental and theoretical electron energy loss (EEL) near edge structures (ELNES) and X-ray absorption near edge structures (XANES), and 2) atomic and electronic structure analysis of ceramic interface by combing spectroscopy, microscopy, and first principles calculation. In the ELNES/XANES calculation, it is concluded that inclusion of core-hole effect in the calculation is essential. By combining high energy resolution observation and theoretical calculation, detailed analysis of the electronic structure is achieved. In addition, overlap population (OP) diagram is used to interpret the spectrum. In the case of AlN, sharp and intense first peak of N-K edge is found to reflect narrow dispersion of the conduction band bottom. By applying ELNES and the OP diagram to Cu/Al 2 O 3 heterointerface, it is revealed that intensity of prepeak in O-K edge is inverse proportional to interface strength. The relationships between atomic structure and defect energetics at SrTiO 3 grain boundary are also investigated, and reveal that the formation behavior of Ti vacancy is sensitive to the structural distortion. In addition, by using state-of-the-art spectroscopy, microscopy, and first principles calculations, atomic scale visualization of fluorine dopant in LaFeOAs and first principles calculation of HfO 2 phase transformation are demonstrated. (author)
On grain size dependent void swelling in pure copper irradiated with fission neutrons
International Nuclear Information System (INIS)
Singh, B.N.; Eldrup, M.; Golubov, S.I.; Zinkle, S.J.
2001-03-01
The effect of grain size on void swelling has its origin in the intrinsic property of grain boundaries as neutral and unsaturable sinks for both vacancies and self-interstitial atoms (SIAs). The phenomenon was investigated already in the 1970s and it was demonstrated that the grain size dependent void swelling measured under irradiation producing only Frenkel pairs could be satisfactorily explained in terms of the standard rate theory (SRT) and dislocation bias. Experimental results reported in the 1980s demonstrated, on the other hand, that the effect of grain boundaries on void swelling under cascade damage conditions was radically different and could not be explained in terms of the SRT. In an effort to understand the source of this significant difference, the effect of grain size on void swelling under cascade damage conditions has been investigated both experimentally and theoretically in pure copper irradiated with fission neutrons at 623K to a dose level of ∼0.3 dpa (displacement per atom). The post-irradiation defect microstructure including voids was investigated using transmission electron microscopy and positron annihilation spectroscopy. The evolution of void swelling was calculated within the framework of the production bias model (PBM) and the SRT. The grain size dependent void swelling measured experimentally is in good accord with the theoretical results obtained using PMB. Implications of these results on modeling of void swelling under cascade damage conditions are discussed. (au)
Void Formation during Diffusion - Two-Dimensional Approach
Wierzba, Bartek
2016-06-01
The final set of equations defining the interdiffusion process in solid state is presented. The model is supplemented by vacancy evolution equation. The competition between the Kirkendall shift, backstress effect and vacancy migration is considered. The proper diffusion flux based on the Nernst-Planck formula is proposed. As a result, the comparison of the experimental and calculated evolution of the void formation in the Fe-Pd diffusion couple is shown.
Void Fraction Instrument operation and maintenance manual
International Nuclear Information System (INIS)
Borgonovi, G.; Stokes, T.I.; Pearce, K.L.; Martin, J.D.; Gimera, M.; Graves, D.B.
1994-09-01
This Operations and Maintenance Manual (O ampersand MM) addresses riser installation, equipment and personnel hazards, operating instructions, calibration, maintenance, removal, and other pertinent information necessary to safely operate and store the Void Fraction Instrument. Final decontamination and decommissioning of the Void Fraction Instrument are not covered in this document
Void formation in irradiated binary nickel alloys
International Nuclear Information System (INIS)
Shaikh, M.A.; Ahmed, M.; Akhter, J.I.
1994-01-01
In this work a computer program has been used to compute void radius, void density and swelling parameter for nickel and binary nickel-carbon alloys irradiated with nickel ions of 100 keV. The aim is to compare the computed results with experimental results already reported
Diameter structure modeling and the calculation of plantation volume of black poplar clones
Directory of Open Access Journals (Sweden)
Andrašev Siniša
2004-01-01
Full Text Available A method of diameter structure modeling was applied in the calculation of plantation (stand volume of two black poplar clones in the section Aigeiros (Duby: 618 (Lux and S1-8. Diameter structure modeling by Weibull function makes it possible to calculate the plantation volume by volume line. Based on the comparison of the proposed method with the existing methods, the obtained error of plantation volume was less than 2%. Diameter structure modeling and the calculation of plantation volume by diameter structure model, by the regularity of diameter distribution, enables a better analysis of the production level and assortment structure and it can be used in the construction of yield and increment tables.
Project W-320, 241-C-106 sluicing: Civil/structural calculations. Volume 6
Energy Technology Data Exchange (ETDEWEB)
Bailey, J.W.
1998-07-24
This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable. The purpose of this calculation is to conservatively estimate the weight of equipment and structures being added over Tank 241-C-106 as a result of Project W-320 and combine these weights with the estimated weights of existing structures and equipment as calculated in Attachment 1. The combined weights will be compared to the allowable live load limit to provide a preliminary assessment of loading conditions above Tank 241-C-106.
Energy Technology Data Exchange (ETDEWEB)
Yun, Tae Sup, E-mail: taesup@yonsei.ac.kr [School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Kim, Kwang Yeom, E-mail: kimky@kict.re.kr [Korea Institute of Construction Technology, 283 Goyangdae-ro, Ilsanseo-gu, Goyang, 411-712 (Korea, Republic of); Choo, Jinhyun, E-mail: jinhyun@stanford.edu [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305 (United States); Kang, Dong Hun, E-mail: timeriver@naver.com [School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of)
2012-11-15
The distribution of paste-void spacing in cement-based materials is an important feature related to the freeze-thaw durability of these materials, but its reliable estimation remains an unresolved problem. Herein, we evaluate the capability of X-ray computed tomography (CT) for reliable quantification of the distribution of paste-void spacing. Using X-ray CT images of three mortar specimens having different air-entrainment characteristics, we calculate the distributions of paste-void spacing of the specimens by applying previously suggested methods for deriving the exact spacing of air-void systems. This methodology is assessed by comparing the 95th percentile of the cumulative distribution function of the paste-void spacing with spacing factors computed by applying the linear-traverse method to 3D air-void system and reconstructing equivalent air-void distribution in 3D. Results show that the distributions of equivalent void diameter and paste-void spacing follow lognormal and normal distributions, respectively, and the ratios between the 95th percentile paste-void spacing value and the spacing factors reside within the ranges reported by previous numerical studies. This experimental finding indicates that the distribution of paste-void spacing quantified using X-ray CT has the potential to be the basis for a statistical assessment of the freeze-thaw durability of cement-based materials. - Highlights: Black-Right-Pointing-Pointer The paste-void spacing in 3D can be quantified by X-ray CT. Black-Right-Pointing-Pointer The distribution of the paste-void spacing follows normal distribution. Black-Right-Pointing-Pointer The spacing factor and 95th percentile of CDF of paste-void spacing are correlated.
Void Measurement by the ({gamma}, n) Reaction
Energy Technology Data Exchange (ETDEWEB)
Rouhani, S Zia
1962-09-15
It is proposed to use the ({gamma}, n) reaction for the measurement of the integrated void volume fraction in two phase flow of D{sub 2}O inside a duct. This method is applicable to different channel geometries, and it is shown to be insensitive to the pattern of void distribution over the cross-sectional area of the channels The method has been tested on mock-ups of voids in a round duct of 6 mm inside diameter. About 40 m.c. {sup 24}Na was used as a source of gamma-rays. The test results show that the maximum measured error in this arrangement is less than 2.5 % (net void) for a range of 2.7 % to 44.44 % actual void volume fractions.
Void Measurement by the (γ, n) Reaction
International Nuclear Information System (INIS)
Rouhani, S. Zia
1962-09-01
It is proposed to use the (γ, n) reaction for the measurement of the integrated void volume fraction in two phase flow of D 2 O inside a duct. This method is applicable to different channel geometries, and it is shown to be insensitive to the pattern of void distribution over the cross-sectional area of the channels The method has been tested on mock-ups of voids in a round duct of 6 mm inside diameter. About 40 m.c. 24 Na was used as a source of gamma-rays. The test results show that the maximum measured error in this arrangement is less than 2.5 % (net void) for a range of 2.7 % to 44.44 % actual void volume fractions
Pores and Void in Asclepiades’ Physical Theory
Leith, David
2012-01-01
This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades’ theory, and concludes that his conception of void was basically that of Epicurus; the second half focuses on the precise nature of Asclepiadean pores, and seeks to show that they represent void interstices between the primary particles of matter which are the constituents of the human body, and are thus exactly analogous to the void interstices between atoms within solid objects in Epicurus’ theory. PMID:22984299
Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules
Zheng, Haoping
2003-04-01
The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.
On the abundance of extreme voids II: a survey of void mass functions
International Nuclear Information System (INIS)
Chongchitnan, Siri; Hunt, Matthew
2017-01-01
The abundance of cosmic voids can be described by an analogue of halo mass functions for galaxy clusters. In this work, we explore a number of void mass functions: from those based on excursion-set theory to new mass functions obtained by modifying halo mass functions. We show how different void mass functions vary in their predictions for the largest void expected in an observational volume, and compare those predictions to observational data. Our extreme-value formalism is shown to be a new practical tool for testing void theories against simulation and observation.
Development of quick-response area-averaged void fraction meter
International Nuclear Information System (INIS)
Watanabe, Hironori; Iguchi, Tadashi; Kimura, Mamoru; Anoda, Yoshinari
2000-11-01
Authors are performing experiments to investigate BWR thermal-hydraulic instability under coupling of neutronics and thermal-hydraulics. To perform the experiment, it is necessary to measure instantaneously area-averaged void fraction in rod bundle under high temperature/high pressure gas-liquid two-phase flow condition. Since there were no void fraction meters suitable for these requirements, we newly developed a practical void fraction meter. The principle of the meter is based on the electrical conductance changing with void fraction in gas-liquid two-phase flow. In this meter, metal flow channel wall is used as one electrode and a L-shaped line electrode installed at the center of flow channel is used as the other electrode. This electrode arrangement makes possible instantaneous measurement of area-averaged void fraction even under the metal flow channel. We performed experiments with air/water two-phase flow to clarify the void fraction meter performance. Experimental results indicated that void fraction was approximated by α=1-I/I o , where α and I are void fraction and current (I o is current at α=0). This relation holds in the wide range of void fraction of 0∼70%. The difference between α and 1-I/I o was approximately 10% at maximum. The major reasons of the difference are a void distribution over measurement area and an electrical insulation of the center electrode by bubbles. The principle and structure of this void fraction meter are very basic and simple. Therefore, the meter can be applied to various fields on gas-liquid two-phase flow studies. (author)
Severe Embrittlement of Neutron Irradiated Austenitic Steels Arising from High Void Swelling
International Nuclear Information System (INIS)
Neustroev, V.S.; Garner, F.
2007-01-01
Full text of publication follows: Data are presented from BOR-60 irradiations showing that significant radiation-induced swelling causes severe embrittlement in austenitic stainless steels, reducing the service life of structural components. Similar loss of ductility is expected when swelling arises in fusion and light water reactor environments. Above 7-16% swelling there is complete loss of ductility, with the onset of ductility loss beginning at lower swelling in ring-pull tensile tests than for flat tensile specimens. For steels that develop extensive precipitation during irradiation, the critical swelling level is even lower. A model is presented to demonstrate the effect of voids acting alone to produce the embrittlement. Although voids are not very effective hardeners, they are very effective to generate stress concentrations between voids. The stress concentration ratio increases strongly when the void diameter exceeds ∼40% of the void-to-void separation distance. When the volume fraction of voids is rather high (about 16 % and higher), a geometric situation develops where it is possible to create an intense field of deformation glide planes residing at an angle of 45 deg. to the void-to-void axis. Significant localized flow then proceeds on these planes for specimen stress levels that are significantly lower than the yield stress. Voids also segregate nickel to their surfaces such that flow localization occurs in the low-nickel inter-void regions to produce strain-induced martensite, which is further accelerated by stress concentrations at the advancing crack tip, leading to catastrophic failure. (authors)
An approach of SFR safety study through the most penalizing sodium void reactivity - 105
International Nuclear Information System (INIS)
Tiberi, V.; Ivanov, E.; Pignet, S.
2010-01-01
Sodium void reactivity effects can affect the plant safety significantly during accidental transients. Accordingly, they have to be accurately investigated for any new sodium cooled fast reactor concept, even if a fuel with a melting point lower than the sodium boiling temperature is adopted. Thus all new reactor concepts should be compared to each - others adopting the value of the maximal possible sodium void reactivity as a discrimination parameter. However, taking into account that the sodium void worth is spatially depended, it is not evident which volume could be voided in order to obtain the maximal reactivity increase. Typically the complete active core voiding (zones initially loaded with 235 U or 239 Pu) is taken into account. This paper summarizes the extensive work carried-out in the IRSN to investigate the sodium-void reactivity spatial profiles of a fast sodium-cooled reactor core in the aim of defining a methodology to search for the area where the void contribution to the reactivity is strictly positive. Perturbation theory design approach available in the ERANOS 2.1 code has been adopted to evaluate the 'area of positive void worth'. To do that, the code has been previously validated against experimental based benchmarks (IRPhEP) and reference calculations. The evaluation of the absolute values of reactivity profiles can be improved later-on adopting more sophisticated methodologies to perform more accurate calculations of the sample with the voided area determined adopting the rough procedure described here. It has been demonstrated that even the non-reference way of ERANOS calculations could be used to provide the basis for different core concepts inter-comparison. (authors)
Influence of second phase dispersion on void formation during irradiation
International Nuclear Information System (INIS)
Sundararaman, M.; Banerjee, S.; Krishnan, R.
Irradiation-induced void formation in alloys has been found to be strongly influenced by the microstructure, the important microstructural parameters being the dislocation density and the nature, density and distribution of second-phase precipitates. The effects of various types of precipitates on void swelling have been examined using the generally-accepted model of void formation : void embryos are assumed to grow in a situation where equal numbers of vacancies and interstitials are continuously generated by the incident irradiation, the interstitials being somewhat perferentially absorbed in some sinks present in the material. The mechanism of the trapping of defects by a distribution of precipitates has been discussed and the available experimental results on the suppression of void formation in materials containing coherent precipitates have been reviewed. Experimental results on the microstructure developed in a nickel-base alloys, Inconel-718 (considered to be a candidate material for structural applications in fast reactors), have been presented. The method of determination of the coherency strain associated with the precipitates has been illustrated with the help of certain observations made on this alloy. The major difficulty in using a two-phase alloy in an irradiation environment is associated with the irradiation-induced instability of the precipitates. Several processes such as precipitate dislocation (in which the incident radiation removes the outer layer of precipitates by recoil), enhanced diffusion disordering, fragmentation of precipitates, etc. are responsible for bringinq about a significant change in the structure of a two-phase material during irradiation. The effect of these processes on the continued performance of a two-phase alloy subjected to irradiation at an elevated temperature has been discussed. (auth.)
DEFF Research Database (Denmark)
Christensen, N. Egede; Feuerbacher, B.
1974-01-01
is obtained from an ad hoc potential based on a Dirac-Slater atomic calculation for the ground-state configuration and with full Slater exchange in the atomic as well as in the crystal potential. The selection of this best potential is justified by comparing the calculated band structure to Fermi...... of states. The present work includes a crude estimate of this surface density of states, which is derived from the bulk band structure by narrowing the d bands according to an effective number of neighbors per surface atom. Estimates of surface relaxation effects are also included.......The electronic energy-band structure of tungsten has been calculated by means of the relativistic-augmented-plane-wave method. A series of mutually related potentials are constructed by varying the electronic configuration and the amount of Slater exchange included. The best band structure...
Report of a consultants meeting on the review of Bubbler condenser structural integrity calculations
International Nuclear Information System (INIS)
Andrieu, R.; Balaz, P.; Kucera, V.; Kudriashov, A.N.; Orden, A.; Strupczewski, A.; Timoshenko, V.
1995-01-01
The participants of the meeting on peer review were the experts who have already made their own strength calculations for WWER 440/213 bubbler condenser structures or who had experience in strength calculations of similar structures. The list of participants is given in Appendix 1. The results have confirmed that the weak points indicated in previous calculations should be strengthened. Some suggestions were given concerning possible ways of strengthening the bubbler condenser structure. However, as the required work is extensive, and the conditions of its realization are difficult, it was recommended to conduct site specific reviews of the actual situation in bubbler condenser structure in each plant before any final recommendations can be formulated. The results of this peer review are presented. 10 refs, figs, tab
Void fraction fluctuations in two-phase gas-liquid flow
International Nuclear Information System (INIS)
Ulbrich, R.
1987-01-01
Designs of the apparatus in which two-phase gas-liquid flow occurs are usually based on the mean value of parameters such as pressure drop and void fraction. The flow of two-phase mixtures generally presents a very complicated flow structure, both in terms of the unsteady formation on the interfacial area and in terms of the fluctuations of the velocity, pressure and other variables within the flow. When the gas void fraction is near 0 or 1 / bubble or dispersed flow regimes / then oscillations of void fraction are very small. The intermittent flow such as plug and slug/ froth is characterized by alternately flow portions of liquid and gas. It influences the change of void fractions in time. The results of experimental research of gas void fraction fluctuations in two-phase adiabatic gas-liquid flow in a vertical pipe are presented
Comparative sodium void effects for different advanced liquid metal reactor fuel and core designs
International Nuclear Information System (INIS)
Dobbin, K.D.; Kessler, S.F.; Nelson, J.V.; Gedeon, S.R.; Omberg, R.P.
1991-01-01
An analysis of metal-, oxide-, and nitride-fueled advanced liquid metal reactor cores was performed to investigate the calculated differences in sodium void reactivity, and to determine the relationship between sodium void reactivity and burnup reactivity swing using the three fuel types. The results of this analysis indicate that nitride fuel has the least positive sodium void reactivity for any given burnup reactivity swing. Thus, it appears that a good design compromise between transient overpower and loss of flow response is obtained using nitride fuel. Additional studies were made to understand these and other nitride advantages. (author)
Sloma, Michael F.; Mathews, David H.
2016-01-01
RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely to be in the known structure than the set of loops predicted in the lowest free energy structures. PMID:27852924
Comparison of void strengthening in fcc and bcc metals: Large-scale atomic-level modelling
International Nuclear Information System (INIS)
Osetsky, Yu.N.; Bacon, D.J.
2005-01-01
Strengthening due to voids can be a significant radiation effect in metals. Treatment of this by elasticity theory of dislocations is difficult when atomic structure of the obstacle and dislocation is influential. In this paper, we report results of large-scale atomic-level modelling of edge dislocation-void interaction in fcc (copper) and bcc (iron) metals. Voids of up to 5 nm diameter were studied over the temperature range from 0 to 600 K. We demonstrate that atomistic modelling is able to reveal important effects, which are beyond the continuum approach. Some arise from features of the dislocation core and crystal structure, others involve dislocation climb and temperature effects
Ab initio electronic band structure calculation of InP in the wurtzite phase
Dacal, Luis C. O.; Cantarero, Andrés
2011-05-01
We present ab initio calculations of the InP band structure in the wurtzite phase and compare it with that of the zincblende phase. In both calculations, we use the full potential linearized augmented plane wave method as implemented in the WIEN2k code and the modified Becke-Johnson exchange potential, which provides an improved value of the bandgap. The structural optimization of the wurtizte InP gives a=0.4150 nm, c=0.6912 nm, and an internal parameter u=0.371, showing the existence of a spontaneous polarization along the growth axis. As compared to the ideal wurtzite structure (that with the lattice parameter derived from the zincblende structure calculations), the actual wurtzite structure is compressed (-1.3%) in plane and expanded (0.7%) along the c-direction. The value of the calculated band gaps agrees well with recent optical experiments. The calculations are also consistent with the optical transitions found using polarized light.
Capacitance sensor for void fraction measurement in a natural circulation refrigeration circuit
International Nuclear Information System (INIS)
Rocha, Marcelo S.; Cabral, Eduardo L.L.; Simoes-Moreira, Jose R.
2009-01-01
Natural circulation is widely used in nuclear reactors for residual heat refrigeration. In this work, a conductance probe is designed and constructed to measure the instantaneous bulk void fraction in a vertical tube section. This probe is installed in a natural circulation refrigeration loop designed to simulate a nuclear reactor primary refrigeration circuit. During the operation of the natural circulation loop several gas-liquid flow patterns are observed, including oscillatory flow. The instantaneous signal generated by the capacitance probe allows the calculation of the two-phase flow void fraction. The void fraction obtained by the probe will be compared with the theoretical void fraction calculated by the computational program RELAP5/MOD3.2.2 gamma. The probe design and electronics, as well as the previous results obtained are presented and discussed. (author)
Analysis of sodium-void experiments in ZPPR-3 modified phase 3 core
International Nuclear Information System (INIS)
Yoshida, T.
1978-08-01
In this work, large-zone sodium-void effects are studied in detail in the presence of many singularities, namely, control rods (CRs) and control rod positions (CRPs). The results of measurements and calculations are compared by CIE (calculation/experiment) values, which are 1.07 when the voided core region is free of singularities. When the void region includes CPRs, which are concurrently voided, the CIE value deteriorates and varies from 0.35 to 1.58. The agreement can be improved considerably by correcting the reactivity worth of the sodium contained in the CRPs with the aid of experimental data (CIE = 1.00 +- 0.15). The heterogeneity correction for the fuel elements was performed by the plate-cell vollision probability code KAPPER. (GL) [de
International Nuclear Information System (INIS)
Park, Sung-Hyeon; Kim, Hak-Sung; Jang, Jin-Wook
2015-01-01
In this work, a terahertz time-domain spectroscopy (THz-TDS) imaging technique was used as a non-destructive inspection method for detecting voids in integrated circuit (IC) packages. Transmission and reflection modes, with an angle of incidence of 30°, were used to detect voids in IC packages. The locations of the detected voids in the IC packages could be calculated by analyzing THz waveforms. Finally, voids that are positioned at the different interfaces in the IC package samples could be successfully detected and imaged. Therefore, this THz-TDS imaging technique is expected to be a promising technique for non-destructive evaluation of IC packages. (paper)
Directory of Open Access Journals (Sweden)
Bidai K.
2017-06-01
Full Text Available First-principles density functional theory calculations have been performed to investigate the structural, elastic and thermodynamic properties of rubidium telluride in cubic anti-fluorite (anti-CaF2-type structure. The calculated ground-state properties of Rb2Te compound such as equilibrium lattice parameter and bulk moduli are investigated by generalized gradient approximation (GGA-PBE that are based on the optimization of total energy. The elastic constants, Young’s and shear modulus, Poisson ratio, have also been calculated. Our results are in reasonable agreement with the available theoretical and experimental data. The pressure dependence of elastic constant and thermodynamic quantities under high pressure are also calculated and discussed.
First-principle calculations on the structural and electronic properties of hard C11N4
International Nuclear Information System (INIS)
Li, Dongxu; Shi, Jiancheng; Lai, Mengling; Li, Rongkai; Yu, Dongli
2014-01-01
A graphite-like C 11 N 4 model was built by stacking graphene and a C 3 N 4 triazine layer and simulated by first principle calculations, which transfers to a diamond-like structure under high pressure. The structural, mechanical, and electronic properties of both materials were calculated. The elastic constants of both materials satisfy the Born-criterion. Furthermore, no imaginary frequencies were observed in phonon calculations. The diamond-like C 11 N 4 is semiconducting and consists of polyhedral and hollow C–N cages. The Vickers hardness of diamond-like C 11 N 4 was calculated to be 58 GPa. The phase transformation from graphite-like to diamond-like C 11 N 4 is proposed to occur at approximately 27.2 GPa based on the pressure-dependent enthalpy
Pressure induced structural phase transition of OsB 2: First-principles calculations
Ren, Fengzhu; Wang, Yuanxu; Lo, V. C.
2010-04-01
Orthorhombic OsB 2 was synthesized at 1000 °C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2. An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3/ mmc structure (high-pressure phase) is stable for OsB 2. We expect the phase transition can be further confirmed by the experimental work.
2017-06-01
The precast prestressed concrete voided slab structure is a popular bridge design because of its rapid construction and cost : savings in terms of eliminating formwork at the jobsite. However, the longitudinal shear transfer mechanism often fails, le...
Enthalpy and void distributions in subchannels of PHWR fuel bundles
Energy Technology Data Exchange (ETDEWEB)
Park, J W; Choi, H; Rhee, B W [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1999-12-31
Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)
Enthalpy and void distributions in subchannels of PHWR fuel bundles
Energy Technology Data Exchange (ETDEWEB)
Park, J. W.; Choi, H.; Rhee, B. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)
A finite element method for a time dependence soil-structure interactions calculations
International Nuclear Information System (INIS)
Ni, X.M.; Gantenbein, F.; Petit, M.
1989-01-01
The method which is proposed is based on a finite element modelisation for the soil and the structure and a time history calculation. It has been developed for plane and axisymmetric geometries. The principle of this method will be presented, then applications will be given, first to a linear calculation for which results will be compared to those obtained by standard methods. Then results for a non linear behavior will be described [fr
Void swelling and segregation in dilute nickel alloys
International Nuclear Information System (INIS)
Potter, D.I.; Rehn, L.E.; Okamoto, P.R.; Wiedersich, H.
1977-01-01
Five binary alloys containing 1 at.% of Al, Ti, Mo, Si and Be in nickel were irradiated at temperatures from 525 to 675 0 C with 3.5-MeV 58 Ni + ions. The resultant microstructures were examined by TEM, and void diameters, number densities and swelling are presented for each alloy over the temperature interval investigated. A systematic relation between solute misfit (size factor) and void swelling is established for these alloys. Solute concentration profiles near the irradiated surface were determined and these also exhibited a systematic behavior--undersize solutes segregated to the surface, whereas oversize solutes were depleted. The results are consistent with calculations based on strong interstitial-solute trapping by undersize solutes and vacancy-solute trapping by oversize solutes that are weak interstitial traps
Design of methyldopa structure and calculation of its properties by quantum mechanics
Directory of Open Access Journals (Sweden)
Maziar Noei
2017-05-01
Full Text Available Methyldopa, which released in 1960, is one of the most popular blood pressure lowering drugs. Taking this medicine for high blood pressure, it seems that the effect drug in blood pressure duct ions convection to alpha-methyl is nor epinephrine. Alpha-methyl nor epinephrine from thus reducing central blood pressure is. This work reports an investigation of an antihypertensive drug methyldopa with the combined density functional theory (DFT and its structure was optimized at B3LYP, BLYP and MP2(3–21G∗,6–31G,6–31G∗ levels and the molecular structure in different solvents (SCRF calculation, NMR parameters were calculated using DFT at B3LYP, BLYP and MP2(3–21G∗,6–31G,6–31G∗ basis set. And finally we calculated natural bond orbital (NBO parameters for this structure.
Structure problems in the analog computation; Problemes de structure dans le calcul analogique
Energy Technology Data Exchange (ETDEWEB)
Braffort, P L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1957-07-01
The recent mathematical development showed the importance of elementary structures (algebraic, topological, etc.) in abeyance under the great domains of classical analysis. Such structures in analog computation are put in evidence and possible development of applied mathematics are discussed. It also studied the topological structures of the standard representation of analog schemes such as additional triangles, integrators, phase inverters and functions generators. The analog method gives only the function of the variable: time, as results of its computations. But the course of computation, for systems including reactive circuits, introduces order structures which are called 'chronological'. Finally, it showed that the approximation methods of ordinary numerical and digital computation present the same structure as these analog computation. The structure analysis permits fruitful comparisons between the several domains of applied mathematics and suggests new important domains of application for analog method. (M.P.)
Structure problems in the analog computation; Problemes de structure dans le calcul analogique
Energy Technology Data Exchange (ETDEWEB)
Braffort, P.L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1957-07-01
The recent mathematical development showed the importance of elementary structures (algebraic, topological, etc.) in abeyance under the great domains of classical analysis. Such structures in analog computation are put in evidence and possible development of applied mathematics are discussed. It also studied the topological structures of the standard representation of analog schemes such as additional triangles, integrators, phase inverters and functions generators. The analog method gives only the function of the variable: time, as results of its computations. But the course of computation, for systems including reactive circuits, introduces order structures which are called 'chronological'. Finally, it showed that the approximation methods of ordinary numerical and digital computation present the same structure as these analog computation. The structure analysis permits fruitful comparisons between the several domains of applied mathematics and suggests new important domains of application for analog method. (M.P.)
Constraints on Cosmology and Gravity from the Dynamics of Voids.
Hamaus, Nico; Pisani, Alice; Sutter, P M; Lavaux, Guilhem; Escoffier, Stéphanie; Wandelt, Benjamin D; Weller, Jochen
2016-08-26
The Universe is mostly composed of large and relatively empty domains known as cosmic voids, whereas its matter content is predominantly distributed along their boundaries. The remaining material inside them, either dark or luminous matter, is attracted to these boundaries and causes voids to expand faster and to grow emptier over time. Using the distribution of galaxies centered on voids identified in the Sloan Digital Sky Survey and adopting minimal assumptions on the statistical motion of these galaxies, we constrain the average matter content Ω_{m}=0.281±0.031 in the Universe today, as well as the linear growth rate of structure f/b=0.417±0.089 at median redshift z[over ¯]=0.57, where b is the galaxy bias (68% C.L.). These values originate from a percent-level measurement of the anisotropic distortion in the void-galaxy cross-correlation function, ϵ=1.003±0.012, and are robust to consistency tests with bootstraps of the data and simulated mock catalogs within an additional systematic uncertainty of half that size. They surpass (and are complementary to) existing constraints by unlocking cosmological information on smaller scales through an accurate model of nonlinear clustering and dynamics in void environments. As such, our analysis furnishes a powerful probe of deviations from Einstein's general relativity in the low-density regime which has largely remained untested so far. We find no evidence for such deviations in the data at hand.
International Nuclear Information System (INIS)
Ehvarestov, R.A.; Panin, A.I.; Bandura, A.V.
2008-01-01
Account of relativistic effects on the properties of uranium hexafluoride is testified. Detailed comparison of single electron energies spectrum revealed in nonrelativistic (by Hartree-Fock method), relativistic (by Dirac-Fock method), and scalar-relativistic (using relativistic potential of atomic uranium frame) has been conducted. Optimization procedures of atomic basis in LCAO calculations of molecules and crystals permissive taking into account distortion of atomic orbitals when chemical bonding are discussed, and optimization effect of atomic basis on the results of scalar-relativistic calculations of UF 6 molecule properties is analyzed. Calculations of electronic structure and properties of UO 2 crystal having relativistic and nonrelativistic pseudopotentials have been realized [ru
International Nuclear Information System (INIS)
Gasco, C.; Anton, M. P.; Ampudia, J.
2003-01-01
The introduction of macros in try calculation sheets allows the automatic application of various dating models using unsupported ''210 Pb data from a data base. The calculation books the contain the models have been modified to permit the implementation of these macros. The Marine and Aquatic Radioecology group of CIEMAT (MARG) will be involved in new European Projects, thus new models have been developed. This report contains a detailed description of: a) the new implement macros b) the design of a dating Menu in the calculation sheet and c) organization and structure of the data base. (Author) 4 refs
International Nuclear Information System (INIS)
McKinnis, C.J.; Toor, P.M.
1985-01-01
In structural analysis, assimilation of material, geometry, and service history input parameters is very cumbersome. Quite often with changing service history and revised material properties and geometry, an analysis has to be repeated. To overcome the above mentioned difficulties, a computer program was developed to provide the capability to establish a computerized library of all material, geometry, and service history parameters for components. The program also has the capability to calculate the structural integrity based on the Arrhenius type equations, including the probability calculations. This unique combination of computerized input information storage and automated analysis procedure assures consistency, efficiency, and accuracy when the hardware integrity has to be reassessed
Project W-320, 241-C-106 sluicing civil/structural calculations, Volume 7
International Nuclear Information System (INIS)
Bailey, J.W.
1998-01-01
The structural skid supporting the Process Building and equipment is designed based on the criteria, codes and standards, referenced in the calculation. The final members and the associated elements satisfy the design requirements of the structure. Revision 1 incorporates vendor data for the weight of the individual equipment components. The updated information does not affect the original conclusion of the calculation, since the overall effect is a reduction in the total weight of the equipment and a nominal relocation of the center of gravity for the skid assembly
Development of the simulation package 'ELSES' for extra-large-scale electronic structure calculation
International Nuclear Information System (INIS)
Hoshi, T; Fujiwara, T
2009-01-01
An early-stage version of the simulation package 'ELSES' (extra-large-scale electronic structure calculation) is developed for simulating the electronic structure and dynamics of large systems, particularly nanometer-scale and ten-nanometer-scale systems (see www.elses.jp). Input and output files are written in the extensible markup language (XML) style for general users. Related pre-/post-simulation tools are also available. A practical workflow and an example are described. A test calculation for the GaAs bulk system is shown, to demonstrate that the present code can handle systems with more than one atom species. Several future aspects are also discussed.
Project W-320, 241-C-106 sluicing civil/structural calculations, Volume 7
Energy Technology Data Exchange (ETDEWEB)
Bailey, J.W.
1998-07-24
The structural skid supporting the Process Building and equipment is designed based on the criteria, codes and standards, referenced in the calculation. The final members and the associated elements satisfy the design requirements of the structure. Revision 1 incorporates vendor data for the weight of the individual equipment components. The updated information does not affect the original conclusion of the calculation, since the overall effect is a reduction in the total weight of the equipment and a nominal relocation of the center of gravity for the skid assembly.
Analysis of sodium-void-worths in ZPPR-3 modified phase 3 core
Energy Technology Data Exchange (ETDEWEB)
Takeda, T.; Arai, K.; Otake, I. [Osaka Univ. (JP)
1980-09-15
The sodium-void-worths in the ZPPR-3 modified phase 3 core, in which singularities such as control-rods and sodium-followers were voided, have been analyzed using a unified diffusion coefficient. The unified diffusion coefficient is obtained by applying the Benoist formula to a super-cell consisting of different drawers, and is applicable not only to fuel drawers but also to control-rod drawers or sodium-followers. Using the coefficient the interference effect of neutron streaming between different drawers can be taken into account. The applicability of the unified diffusion coefficient to sodium-void-worth calculations has been checked in a slab model and a RZ model. The sodium-void-worths in the ZPPR-3 modified phase 3 core have been analyzed by carrying out 16-group three-dimensional diffusion calculations using the unified diffusion coefficient and the results have been compared with experimental data. The comparison indicates that the unified diffusion coefficient is useful in calculating the sodium-void-worth in a region including sodium-voided singularities.
A compilation of structural property data for computer impact calculation (3/5)
International Nuclear Information System (INIS)
Ikushima, Takeshi
1988-10-01
The paper describes structural property data for computer impact calculations of nuclear fuel shipping casks. Four kinds of material data, mild steel, stainless steel, lead and wood are compiled. These materials are main structural elements of shipping casks. Structural data such as, the coefficient of thermal expansion, the modulus of longitudinal elasticity, the modulus of transverse elasticity, the Poisson's ratio and stress and strain relationships, have been tabulated against temperature or strain rate. This volume 3 involve structural property data of stainless steel. (author)
A compilation of structural property data for computer impact calculation (2/5)
International Nuclear Information System (INIS)
Ikushima, Takeshi
1988-10-01
The paper describes structural property data for computer impact calculations of nuclear fuel shipping casks. Four kinds of material data, mild steel, stainless steel, lead and wood are compiled. These materials are main structural elements of shipping casks. Structural data such as, the coefficient of thermal expansion, the modulus of longitudinal elasticity, the modulus of transverse elasticity, the Poisson's ratio and stress and strain relationships, have been tabulated against temperature or strain rate. This volume 2 involve structural property data of mild steel. (author)
A compilation of structural property data for computer impact calculation (1/5)
International Nuclear Information System (INIS)
Ikushima, Takeshi; Nagata, Norio.
1988-10-01
The paper describes structural property data for computer impact calculations of nuclear fuel shipping casks. Four kinds of material data, mild steel, stainless steel, lead and wood are compiled. These materials are main structural elements of shipping casks. Structural data such as, the coefficient of thermal expansion, the modulus of longitudinal elasticity, the modulus of transverse elasticity, the Poisson's ratio and stress and strain relationships, have been tabulated against temperature or strain rate. This volume 1 involve structural property data and data processing computer program. (author)
First-principles calculation of the structural stability of 6d transition metals
International Nuclear Information System (INIS)
Oestlin, A.; Vitos, L.
2011-01-01
The phase stability of the 6d transition metals (elements 103-111) is investigated using first-principles electronic-structure calculations. Comparison with the lighter transition metals reveals that the structural sequence trend is broken at the end of the 6d series. To account for this anomalous behavior, the effect of relativity on the lattice stability is scrutinized, taking different approximations into consideration. It is found that the mass-velocity and Darwin terms give important contributions to the electronic structure, leading to changes in the interstitial charge density and, thus, in the structural energy difference.
Energy Technology Data Exchange (ETDEWEB)
Lemonnier, H.; Nakach, R.; Favreau, C.; Selmer-Olsen, S. (CEA Centre d' Etudes Nucleaires de Grenoble, 38 (France). Service d' Etudes Thermohydrauliques)
1991-04-01
Impedance void meters are frequently used to measure the are-averaged void fraction in pipes. This is primarily for two reasons: firstly, this method is non-instrusive since the measurement can be made by electrodes flush mounted in the walls, and secondly, the signal processing equipment is simple. Impedance probes may be calibrated by using a pressure drop measurement or a quick closing valve system. In general, little attention is paid to void distribution effects. It can be proved that in annular flow, the departure from radial symmetry has a strong influence on the measured mean film thickness. This can be easily demonstrated by solving the Laplace equation for the electrical potential by simple analytical methods. When some spatial symmetry conditions are encountered, it is possible to calculate directly the conductance of the two-phase medium without a complete calculation of the potential. A solution of this problem by using the separation of variables technique is also presented. The main difficulty with this technique is the mixed nature of the boundary conditions: the boundary condition is both of Neumann and of Drichlet type on the same coordinate curve. This formulation leads to a non-separable problem, which is solved by truncating an infinite algebraic set of linear equations. The results, although strictly valid in annular flow, may give the correct trends when applied to bubbly flow. Finally, the theory provides an error estimate and a design criterion to improve the probe reliability. (orig.).
International Nuclear Information System (INIS)
Lemonnier, H.; Nakach, R.; Favreau, C.; Selmer-Olsen, S.
1991-01-01
Impedance void meters are frequently used to measure the are-averaged void fraction in pipes. This is primarily for two reasons: firstly, this method is non-instrusive since the measurement can be made by electrodes flush mounted in the walls, and secondly, the signal processing equipment is simple. Impedance probes may be calibrated by using a pressure drop measurement or a quick closing valve system. In general, little attention is paid to void distribution effects. It can be proved that in annular flow, the departure from radial symmetry has a strong influence on the measured mean film thickness. This can be easily demonstrated by solving the Laplace equation for the electrical potential by simple analytical methods. When some spatial symmetry conditions are encountered, it is possible to calculate directly the conductance of the two-phase medium without a complete calculation of the potential. A solution of this problem by using the separation of variables technique is also presented. The main difficulty with this technique is the mixed nature of the boundary conditions: the boundary condition is both of Neumann and of Drichlet type on the same coordinate curve. This formulation leads to a non-separable problem, which is solved by truncating an infinite algebraic set of linear equations. The results, although strictly valid in annular flow, may give the correct trends when applied to bubbly flow. Finally, the theory provides an error estimate and a design criterion to improve the probe reliability. (orig.)
On hydrogen-induced plastic flow localization during void growth and coalescence
Energy Technology Data Exchange (ETDEWEB)
Ahn, D.C.; Sofronis, P. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States); Dodds, R.H. Jr. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801 (United States)
2007-11-15
Hydrogen-enhanced localized plasticity (HELP) is recognized as a viable mechanism of hydrogen embrittlement. A possible way by which the HELP mechanism can bring about macroscopic material failure is through hydrogen-induced accelerated void growth and coalescence. Assuming a periodic array of spherical voids loaded axisymmetrically, we investigate the hydrogen effect on the occurrence of plastic flow localization upon void growth and its dependence on macroscopic stress triaxiality. Under a macroscopic stress triaxiality equal to 1 and prior to void coalescence, the finite element calculation results obtained with material data relevant to A533B steel indicate that a hydrogen-induced localized shear band forms at an angle of about 45 {sup circle} from the axis of symmetry. At triaxiality equal to 3, void coalescence takes place by accelerated hydrogen-induced localization of plasticity mainly in the ligament between the voids. Lastly, we discuss the numerical results within the context of experimental observations on void growth and coalescence in the presence of hydrogen. (author)
Xydou, A; Aicheler, M; Djurabekova, F
2016-01-01
By means of molecular dynamic simulations, the stability of cylindrical voids is examined with respect to the diffusion bonding procedure. To do this, the effect of grain boundaries between the grains of different crystallographic orientations on the void closing time was studied at high temperatures from 0.7 up to 0.94 of the bulk melting temperature $(T_m)$. The diameter of the voids varied from 3.5 to 6.5 nm. A thermal instability occurring at high temperatures at the surface of the void placed in a grain boundary triggered the eventual closure of the void at all examined temperatures. The closing time has an exponential dependence on the examined temperature values. A model based on the defect diffusion theory is developed to predict the closing time for voids of macroscopic size. The diffusion coefficient within the grain boundaries is found to be overall higher than the diffusion coefficient in the region around the void surface. The activation energy for the diffusion in the grain boundary is calculate...
International Nuclear Information System (INIS)
Markey, L; Stevens, G C
2003-01-01
In an effort to progress in our understanding of the ageing mechanisms of high voltage cables submitted to electrical and thermal stresses, we present a quantitative study of voids, the defects which are considered to be partly responsible for cable failure. We propose a method based on large data sets of transmission electron microscopy (TEM) observations of replicated samples allowing for the determination of void concentration distribution as a function of void size in the mesoscopic to microscopic range at any point in the cable insulation. A theory is also developed to calculate the effect of etching on the apparent size of the voids observed. We present the first results of this sort ever obtained on two industrial cables, one of which was aged in an AC field. Results clearly indicate that a much larger concentration of voids occur near the inner semiconductor compared to the bulk of the insulation, independently of ageing. An effect of ageing can also be seen near the inner semiconductor, resulting in an increase in the total void internal surface area and a slight shift of the concentration curve towards larger voids, with the peak moving from about 40 nm to about 50 nm
Evaluation of the Air Void Analyzer
2013-07-01
concrete using image analysis: Petrography of cementitious materials. ASTM STP 1215. S.M. DeHayes and D. Stark, eds. Philadelphia, PA: American...Administration (FHWA). 2006. Priority, market -ready technologies and innovations: Air Void Analyzer. Washington D.C. PDF file. Germann Instruments (GI). 2011...tests and properties of concrete and concrete-making materials. STP 169D. West Conshohocken, PA: ASTM International. Magura, D.D. 1996. Air void
International Nuclear Information System (INIS)
Rubin, Yu.V.; Belous, L.F.
2012-01-01
Self-associates of nucleic acid components (stacking trimers and tetramers of the base pairs of nucleic acids) and short fragments of nucleic acids are nanoparticles (linear sizes of these particles are more than 10 A). Modern quantum-mechanical methods and softwares allow one to perform ab initio calculations of the systems consisting of 150-200 atoms with enough large basis sets (for example, 6-31G * ). The aim of this work is to reveal the peculiarities of molecular and electronic structures, as well as the energy features of nanoparticles of nucleic acid components. We had carried out ab initio calculations of the molecular structure and interactions in the stacking dimer, trimer, and tetramer of nucleic base pairs and in the stacking (TpG)(ApC) dimer and (TpGpC) (ApCpG) trimer of nucleotides, which are small DNA fragments. The performed calculations of molecular structures of dimers and trimers of nucleotide pairs showed that the interplanar distance in the structures studied is equal to 3.2 A on average, and the helical angle in a trimer is approximately equal to 30 o : The distance between phosphor atoms in neighboring chains is 13.1 A. For dimers and trimers under study, we calculated the horizontal interaction energies. The analysis of interplanar distances and angles between nucleic bases and their pairs in the calculated short oligomers of nucleic acid base pairs (stacking dimer, trimer, and tetramer) has been carried out. Studies of interactions in the calculated short oligomers showed a considerable role of the cross interaction in the stabilization of the structures. The contribution of cross interactions to the horizontal interactions grows with the length of an oligomer. Nanoparticle components get electric charges in nanoparticles. Longwave low-intensity bands can appear in the electron spectra of nanoparticles.
International Nuclear Information System (INIS)
Karnaukhov, I.M.; Popkov, Yu.P.; Telegin, Yu.N.; Trushkin, N.A.; Dajkovskij, A.G.; Zakamskaya, L.T.; Ryabov, A.D.
1989-01-01
Comparative analysis of several types of accelerating structures at standing E 010 wave is conducted on the basis of numerical calculations performed with the use of the PRUD-0 and PRUD programs. Dispersion dependences of electromagnetic field distribution, quality and coupling impedance are calculated both for axially symmetric and axially asymmetric modes of oscillations in structures with 699.3 MHz operating frequency. It is shown that structure with a cell the form of which is optimized with respect to shunt resistance on the main mode possesses the numerical spurious impedance in higher modes. This is the main factor when choosing accelerating structure for storage ring with multi-bunch operation conditions. 12 refs.; 3 figs.; 3 tabs
Design and Strength Calculations of the Tripod Support Structure for Offshore Power Plant
Directory of Open Access Journals (Sweden)
Dymarski C.
2015-01-01
Full Text Available The support structure being the object of the analysis presented in the article is Tripod. According to the adopted assumptions, it is a foundation gravitationally set in the water region of 60 m in depth, not fixed to the seabed, which can be used for installing a 7MW wind turbine. Due to the lack of substantial information on designing and strength calculations of such types of structures in the world literature, authors have made an attempt to solve this problem within the framework of the abovementioned project. In the performed calculations all basic loads acting on the structure were taken into account, including: the self mass of the structure, the masses of the ballast, the tower and the turbine, as well as hydrostatic forces, and aero- and hydrodynamic forces acting on the entire object in extreme operating conditions.
2015-12-10
Laboratory (Ret.), private communication. 33. S. Kou, Welding Metallurgy , 2nd Ed., John Wiley & Sons, Inc., 2003. DOI: 10.1002/0471434027. 34. J. K...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--15-9665 Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds ...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple
Fekete, Tamás
2018-05-01
Structural integrity calculations play a crucial role in designing large-scale pressure vessels. Used in the electric power generation industry, these kinds of vessels undergo extensive safety analyses and certification procedures before deemed feasible for future long-term operation. The calculations are nowadays directed and supported by international standards and guides based on state-of-the-art results of applied research and technical development. However, their ability to predict a vessel's behavior under accidental circumstances after long-term operation is largely limited by the strong dependence of the analysis methodology on empirical models that are correlated to the behavior of structural materials and their changes during material aging. Recently a new scientific engineering paradigm, structural integrity has been developing that is essentially a synergistic collaboration between a number of scientific and engineering disciplines, modeling, experiments and numerics. Although the application of the structural integrity paradigm highly contributed to improving the accuracy of safety evaluations of large-scale pressure vessels, the predictive power of the analysis methodology has not yet improved significantly. This is due to the fact that already existing structural integrity calculation methodologies are based on the widespread and commonly accepted 'traditional' engineering thermal stress approach, which is essentially based on the weakly coupled model of thermomechanics and fracture mechanics. Recently, a research has been initiated in MTA EK with the aim to review and evaluate current methodologies and models applied in structural integrity calculations, including their scope of validity. The research intends to come to a better understanding of the physical problems that are inherently present in the pool of structural integrity problems of reactor pressure vessels, and to ultimately find a theoretical framework that could serve as a well
The use of Wannier function in the calculations of band structure of covalent crystals
International Nuclear Information System (INIS)
Lu Dong; Yang Guang
1985-10-01
A variational procedure has been used to build up Wannier functions to study the energy bands of diamond, silicon and α-tin. For the case of silicon the Wannier function, density of charge and band structure are calculated self-consistently and a simple method in a non-self-consistent way has been used to compute the band structure of diamond, silicon and α-tin. The method seems to be effective to describe the electronic properties of covalent crystals. (author)
Using voids to unscreen modified gravity
Falck, Bridget; Koyama, Kazuya; Zhao, Gong-Bo; Cautun, Marius
2018-04-01
The Vainshtein mechanism, present in many models of gravity, is very effective at screening dark matter haloes such that the fifth force is negligible and general relativity is recovered within their Vainshtein radii. Vainshtein screening is independent of halo mass and environment, in contrast to e.g. chameleon screening, making it difficult to test. However, our previous studies have found that the dark matter particles in filaments, walls, and voids are not screened by the Vainshtein mechanism. We therefore investigate whether cosmic voids, identified as local density minima using a watershed technique, can be used to test models of gravity that exhibit Vainshtein screening. We measure density, velocity, and screening profiles of stacked voids in cosmological N-body simulations using both dark matter particles and dark matter haloes as tracers of the density field. We find that the voids are completely unscreened, and the tangential velocity and velocity dispersion profiles of stacked voids show a clear deviation from Λ cold dark matter at all radii. Voids have the potential to provide a powerful test of gravity on cosmological scales.
Simulation of dust voids in complex plasmas
Goedheer, W. J.; Land, V.
2008-12-01
In dusty radio-frequency (RF) discharges under micro-gravity conditions often a void is observed, a dust free region in the discharge center. This void is generated by the drag of the positive ions pulled out of the discharge by the electric field. We have developed a hydrodynamic model for dusty RF discharges in argon to study the behaviour of the void and the interaction between the dust and the plasma background. The model is based on a recently developed theory for the ion drag force and the charging of the dust. With this model, we studied the plasma inside the void and obtained an understanding of the way it is sustained by heat generated in the surrounding dust cloud. When this heating mechanism is suppressed by lowering the RF power, the plasma density inside the void decreases, even below the level where the void collapses, as was recently shown in experiments on board the International Space Station. In this paper we present results of simulations of this collapse. At reduced power levels the collapsed central cloud behaves as an electronegative plasma with corresponding low time-averaged electric fields. This enables the creation of relatively homogeneous Yukawa balls, containing more than 100 000 particles. On earth, thermophoresis can be used to balance gravity and obtain similar dust distributions.
van Setten, Michiel J.; de Wijs, Gilles A.; Brocks, G.
2008-01-01
Alanates and boranates are intensively studied because of their potential use as hydrogen storage materials. In this paper, we present a first-principles study of the electronic structure and the energetics of beryllium boranate BeBH42. From total energy calculations, we show that—in contrast to the
Czech Academy of Sciences Publication Activity Database
Klein, A.; Bertagnolli, H.; Feth, M. P.; Záliš, Stanislav
-, č. 13 (2004), s. 2784-2796 ISSN 1434-1948 R&D Projects: GA MŠk OC D14.20 Institutional research plan: CEZ:AV0Z4040901 Keywords : density functional calculations * electronic structure * Raman spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.336, year: 2004
Features of the Calculation Deployment Large Transformable Structures of Different Configurations
Directory of Open Access Journals (Sweden)
V. N. Zimin
2014-01-01
Full Text Available Despite the significant progress achieved in the design of space transformable structures to ensure a smooth and reliable deployment remains an important task. This type of construction can consist of dozens, hundreds or even thousands of interconnected elements. Deployment transformable space structures in orbit to test their performance in orbital conditions are associated with high material costs. Full deploy: experimental development process transformable structures involve a number of fundamental difficulties: It is impossible to eliminate the influence of gravity and resistance forces conditions. Thus, to calculate deploy of large transformable structures of various configurations is an important stage of their creation. Simulation provides an opportunity to analyze various schemes of deploy, to reveal their advantages and possible disadvantages. For numerical analysis of deploy of such structures is necessary to use modern software modeling of the dynamics of multi-component of mechanical systems such as EULER and Adams. Simulation of deployment space transformable structures was performed taking as example folding flat antenna contours diameter of 5 m and 20 m, foldable spatial calibration reflector diameter of 3 m, deployable antenna reflector truss-type aperture 3×6 m.The results of the calculations represent following characteristics: the time of adoption of the working position structures; form intermediate positions structures during deployment; dependence of opening angles and angular velocities of the design links on the time. The parameters of these calculations can be used as input in the development of structural elements providing deployment. They can also be used to prepare stands for experimental testing of disclosure designs in ground conditions. It should be noted that the theoretical models are the only way to analyze the deployment of such structures for possible emergency situations.
Weck, Philippe F; Kim, Eunja; Wang, Yifeng; Kruichak, Jessica N; Mills, Melissa M; Matteo, Edward N; Pellenq, Roland J-M
2017-08-01
Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematically compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.
Summation of Parquet diagrams as an ab initio method in nuclear structure calculations
International Nuclear Information System (INIS)
Bergli, Elise; Hjorth-Jensen, Morten
2011-01-01
Research highlights: → We present a Green's function based approach for doing ab initio nuclear structure calculations. → In particular the sum the subset of so-called Parquet diagrams. → Applying the theory to a simple but realistic model, results in good agreement with other ab initio methods. → This opens up for ab initio calculations for medium-heavy nuclei. - Abstract: In this work we discuss the summation of the Parquet class of diagrams within Green's function theory as a possible framework for ab initio nuclear structure calculations. The theory is presented and some numerical details are discussed, in particular the approximations employed. We apply the Parquet method to a simple model, and compare our results with those from an exact solution. The main conclusion is that even at the level of approximation presented here, the results shows good agreement with other comparable ab initio approaches.
Numerical calculation models of the elastoplastic response of a structure under seismic action
International Nuclear Information System (INIS)
Edjtemai, Nima.
1982-06-01
Two digital calculation models developed in this work have made it possible to analyze the exact dynamic behaviour of ductile structures with one or several degrees of liberty, during earthquakes. With the first model, response spectra were built in the linear and non-linear fields for different absorption and ductility values and two types of seismic accelerograms. The comparative study of these spectra made it possible to check the validity of certain hypotheses suggested for the construction of elastoplastic spectra from corresponding linear spectra. A simplified method of non-linear seismic calculation based on the modal analysis and the spectra of elastoplastic response was then applied to structures with a varying number of degrees of liberty. The results obtained in this manner were compared with those provided by an exact calculation provided by the second digital model developed by us [fr
Optical properties of Nb and Mo calculated from augmented-plane-wave band structures
International Nuclear Information System (INIS)
Pickett, W.E.; Allen, P.B.
1975-01-01
Nonrelativistic band calculations of Mattheiss for Nb and Petroff and Viswanathan for Mo are used to calculate the imaginary part epsilon 2 of the dielectric function for these metals. The structure resulting from interband transitions in the frequency range 0.1--0.5 Ry is found to give fairly good agreement with experiment. The calculation indicates that structure in epsilon 2 can arise from transitions away from symmetry points and lines in the Brillouin zone. The difficulty in distinguishing between the direct and indirect transition models for epsilon 2 is shown to arise from a lack of strong optical critical points. Predictions of the rigid-band model for the optical properties of Nb-Mo alloys are presented
Ab Initio Calculations for the BaTiO3 (001) Surface Structure
Institute of Scientific and Technical Information of China (English)
XUE Xu-Yan; WANG Chun-Lei; ZHONG Wei-Lie
2004-01-01
@@ The ab initio method within the local density approximation is applied to calculate cubic BaTiO3 (001) surface relaxation and rumpling for two different terminations (BaO and TiO2). Our calculations demonstrate that cubic perovskite BaTiO3 crystals possess surface polarization, accompanied by the presence of the relevant electric field.We analyse their electronic structures (band structure, density of states and the electronic density redistribution with emphasis on the covalency effects). The results are also compared with that of the previous ab initio calculations. Considerable increases of Ti-O chemical bond covalency nearby the surface have been observed.The band gap reduces especially for the TiO2 termination.
Gulvi, Nitin R.; Patel, Priyanka; Badani, Purav M.
2018-04-01
Pathway for dissociation of multihalogenated alkyls is observed to be competitive between molecular and atomic elimination products. Factors such as molecular structure, temperature and pressure are known to influence the same. Hence present work is focussed to explore mechanism and kinetics of atomic (Br) and molecular (HBr and Br2) elimination upon pyrolysis of 1,1- and 1,2-ethyl dibromide (EDB). For this purpose, electronic structure calculations were performed at DFT and CCSD(T) level of theory. In addition to concerted mechanism, an alternate energetically efficient isomerisation pathway has been exploited for molecular elimination. Energy calculations are further complimented by detailed kinetic investigation, over wide range of temperature and pressure, using suitable models like Canonical Transition State Theory, Statistical Adiabatic Channel Model and Troe's formalism. Our calculations suggest high branching ratio for dehydrohalogentation reaction, from both isomers of EDB. Fall off curve depicts good agreement between theoretically estimated and experimentally reported values.
BLOW.MOD2: program for a vessel depressurization calculation with the contribution of structures
International Nuclear Information System (INIS)
Doval, A.
1990-01-01
The BLOW.MOD2 program developed to calculate pressure vessels' depressurization is presented, considering heat contribution of the structures. The results are opposite to those obtained from other more complex numerical models, being the comparison extremely satisfactory. BLOW.MOD2 is a software of the 'Systems Sub-Branch', INVAP S.E. (Author) [es
Miniworkshop on Methods of Electronic Structure Calculations and Working Group on Disordered Alloys
Andersen, O K; Mookerjee, A
1994-01-01
Developments in the density functional theory and the methods of electronic structure calculations have made it possible to carry out ab-initio studies of a variety of materials efficiently and at a predictable level. This book covers many of those state-of-the-art developments and their applications to ordered and disordered materials, surfaces and interfaces and clusters, etc.
Structures of cefradine dihydrate and cefaclor dihydrate from DFT-D calculations
DEFF Research Database (Denmark)
van de Streek, Jacco; Rantanen, Jukka; Bond, Andrew D
2013-01-01
in the zwitterionic form in the two dihydrate structures. A potential ambiguity concerning the orientation of the cyclohexadienyl ring in cefradine dihydrate is also clarified, and on the basis of the calculated energies it is shown that disorder should not be expected at room temperature. The DFT-D methods can...
International Nuclear Information System (INIS)
Fernandes, P.
1982-01-01
An improvement has been made to the LALA program to compute resonant frequencies and fields for all the modes of the lowest TM 01 band-pass of multicell structures. The results are compared with those calculated by another popular rf cavity code and with experimentally measured quantities. (author)
Roundtrip matrix method for calculating the leaky resonant modes of open nanophotonic structures
DEFF Research Database (Denmark)
de Lasson, Jakob Rosenkrantz; Kristensen, Philip Trøst; Mørk, Jesper
2014-01-01
We present a numerical method for calculating quasi-normal modes of open nanophotonic structures. The method is based on scattering matrices and a unity eigenvalue of the roundtrip matrix of an internal cavity, and we develop it in detail with electromagnetic fields expanded on Bloch modes...
Pressure induced structural phase transition of OsB2: First-principles calculations
International Nuclear Information System (INIS)
Ren Fengzhu; Wang Yuanxu; Lo, V.C.
2010-01-01
Orthorhombic OsB 2 was synthesized at 1000 deg. C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2 . An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3 /mmc structure (high-pressure phase) is stable for OsB 2 . We expect the phase transition can be further confirmed by the experimental work. - Abstract: Graphical Abstract Legend (TOC Figure): Table of Contents Figure Pressure induced structural phase transition from the orthorhombic structure to the hexagonal one for OsB 2 takes place under 10.8 GPa (0 K), 10.35 GPa (300, 1000 K) by the first-principles predictions.
Energetics of intrinsic point defects in uranium dioxide from electronic-structure calculations
International Nuclear Information System (INIS)
Nerikar, Pankaj; Watanabe, Taku; Tulenko, James S.; Phillpot, Simon R.; Sinnott, Susan B.
2009-01-01
The stability range of intrinsic point defects in uranium dioxide is determined as a function of temperature, oxygen partial pressure, and non-stoichiometry. The computational approach integrates high accuracy ab initio electronic-structure calculations and thermodynamic analysis supported by experimental data. In particular, the density functional theory calculations are performed at the level of the spin polarized, generalized gradient approximation and includes the Hubbard U term; as a result they predict the correct anti-ferromagnetic insulating ground state of uranium oxide. The thermodynamic calculations enable the effects of system temperature and partial pressure of oxygen on defect formation energy to be determined. The predicted equilibrium properties and defect formation energies for neutral defect complexes match trends in the experimental literature quite well. In contrast, the predicted values for charged complexes are lower than the measured values. The calculations predict that the formation of oxygen interstitials becomes increasingly difficult as higher temperatures and reducing conditions are approached
Numerical calculation of acoustic radiation from band-vibrating structures via FEM/FAQP method
Directory of Open Access Journals (Sweden)
GAO Honglin
2017-08-01
Full Text Available The Finite Element Method (FEM combined with the Frequency Averaged Quadratic Pressure method (FAQP are used to calculate the acoustic radiation of structures excited in the frequency band. The surface particle velocity of stiffened cylindrical shells under frequency band excitation is calculated using finite element software, the normal vibration velocity is converted from the surface particle velocity to calculate the average energy source (frequency averaged across intensity, frequency averaged across pressure and frequency averaged across velocity, and the FAQP method is used to calculate the average sound pressure level within the bandwidth. The average sound pressure levels are then compared with the bandwidth using finite element and boundary element software, and the results show that FEM combined with FAQP is more suitable for high frequencies and can be used to calculate the average sound pressure level in the 1/3 octave band with good stability, presenting an alternative to applying frequency-by-frequency calculation and the average frequency process. The FEM/FAQP method can be used as a prediction method for calculating acoustic radiation while taking the randomness of vibration at medium and high frequencies into consideration.
Improved reliability, accuracy and quality in automated NMR structure calculation with ARIA
Energy Technology Data Exchange (ETDEWEB)
Mareuil, Fabien [Institut Pasteur, Cellule d' Informatique pour la Biologie (France); Malliavin, Thérèse E.; Nilges, Michael; Bardiaux, Benjamin, E-mail: bardiaux@pasteur.fr [Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528 (France)
2015-08-15
In biological NMR, assignment of NOE cross-peaks and calculation of atomic conformations are critical steps in the determination of reliable high-resolution structures. ARIA is an automated approach that performs NOE assignment and structure calculation in a concomitant manner in an iterative procedure. The log-harmonic shape for distance restraint potential and the Bayesian weighting of distance restraints, recently introduced in ARIA, were shown to significantly improve the quality and the accuracy of determined structures. In this paper, we propose two modifications of the ARIA protocol: (1) the softening of the force field together with adapted hydrogen radii, which is meaningful in the context of the log-harmonic potential with Bayesian weighting, (2) a procedure that automatically adjusts the violation tolerance used in the selection of active restraints, based on the fitting of the structure to the input data sets. The new ARIA protocols were fine-tuned on a set of eight protein targets from the CASD–NMR initiative. As a result, the convergence problems previously observed for some targets was resolved and the obtained structures exhibited better quality. In addition, the new ARIA protocols were applied for the structure calculation of ten new CASD–NMR targets in a blind fashion, i.e. without knowing the actual solution. Even though optimisation of parameters and pre-filtering of unrefined NOE peak lists were necessary for half of the targets, ARIA consistently and reliably determined very precise and highly accurate structures for all cases. In the context of integrative structural biology, an increasing number of experimental methods are used that produce distance data for the determination of 3D structures of macromolecules, stressing the importance of methods that successfully make use of ambiguous and noisy distance data.
Estimation of the Void Fraction in the moderator cell of the Cold Neutron Source
International Nuclear Information System (INIS)
Choi, Jungwoon; Kim, Young-ki
2015-01-01
To estimate the average void fraction in the liquid hydrogen, the Kazimi and Chen correlation is used with its modified method suggested by R.E. Williams in NBSR. Since the multiplying number can be changed along the operation condition and working fluid, the different figure is applied to estimate the average void fraction in the different moderator cell shape. This approach is checked with the void fraction measurement results from the HANARO-CNS mock-up test. Owing to national research demands on cold neutron beam utilization, the Cold Neutron Research Facility had been and operated for neuron scientists all over the world. In HANARO, the CNS facility has been operated since 2009. The actual void fraction, which is the one of dominant factors affecting the cold neutron flux, is difficult to know without the real measurement performed at the cryogenic temperature using the same moderator medium. Accordingly, the two-phase mock-up test in the CNS-IPA (In-pool assembly) had been performed using the liquid hydrogen in terms of the fluidity check, void fraction measurement, operation procedure set-up, and so on for the development of the HANARO-CNS. This paper presents the estimated void fraction in the different operating conditions and geometrical shape in the comparison with the measurement data of the void fraction in the full-scale mockup test based on the Kazimi and Chen correlation. This approach is applied to estimate the average void fraction in the newly designed moderator cell using the liquid hydrogen as a working fluid in the two-phase thermosiphon. From this calculation result, the estimated average void fraction will be used to design the optimized cold neutron source to produce the maximum cold neutron flux within the desired wavelength
Estimation of the Void Fraction in the moderator cell of the Cold Neutron Source
Energy Technology Data Exchange (ETDEWEB)
Choi, Jungwoon; Kim, Young-ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
To estimate the average void fraction in the liquid hydrogen, the Kazimi and Chen correlation is used with its modified method suggested by R.E. Williams in NBSR. Since the multiplying number can be changed along the operation condition and working fluid, the different figure is applied to estimate the average void fraction in the different moderator cell shape. This approach is checked with the void fraction measurement results from the HANARO-CNS mock-up test. Owing to national research demands on cold neutron beam utilization, the Cold Neutron Research Facility had been and operated for neuron scientists all over the world. In HANARO, the CNS facility has been operated since 2009. The actual void fraction, which is the one of dominant factors affecting the cold neutron flux, is difficult to know without the real measurement performed at the cryogenic temperature using the same moderator medium. Accordingly, the two-phase mock-up test in the CNS-IPA (In-pool assembly) had been performed using the liquid hydrogen in terms of the fluidity check, void fraction measurement, operation procedure set-up, and so on for the development of the HANARO-CNS. This paper presents the estimated void fraction in the different operating conditions and geometrical shape in the comparison with the measurement data of the void fraction in the full-scale mockup test based on the Kazimi and Chen correlation. This approach is applied to estimate the average void fraction in the newly designed moderator cell using the liquid hydrogen as a working fluid in the two-phase thermosiphon. From this calculation result, the estimated average void fraction will be used to design the optimized cold neutron source to produce the maximum cold neutron flux within the desired wavelength.
Site-specific electronic structure analysis by channeling EELS and first-principles calculations.
Tatsumi, Kazuyoshi; Muto, Shunsuke; Yamamoto, Yu; Ikeno, Hirokazu; Yoshioka, Satoru; Tanaka, Isao
2006-01-01
Site-specific electronic structures were investigated by electron energy loss spectroscopy (EELS) under electron channeling conditions. The Al-K and Mn-L(2,3) electron energy loss near-edge structure (ELNES) of, respectively, NiAl2O4 and Mn3O4 were measured. Deconvolution of the raw spectra with the instrumental resolution function restored the blunt and hidden fine features, which allowed us to interpret the experimental spectral features by comparing with theoretical spectra obtained by first-principles calculations. The present method successfully revealed the electronic structures specific to the differently coordinated cationic sites.
Local structure information by EXAFS analysis using two algorithms for Fourier transform calculation
International Nuclear Information System (INIS)
Aldea, N; Pintea, S; Rednic, V; Matei, F; Hu Tiandou; Xie Yaning
2009-01-01
The present work is a comparison study between different algorithms of Fourier transform for obtaining very accurate local structure results using Extended X-ray Absorption Fine Structure technique. In this paper we focus on the local structural characteristics of supported nickel catalysts and Fe 3 O 4 core-shell nanocomposites. The radial distribution function could be efficiently calculated by the fast Fourier transform when the coordination shells are well separated while the Filon quadrature gave remarkable results for close-shell coordination.
Development of High Precision Tsunami Runup Calculation Method Coupled with Structure Analysis
Arikawa, Taro; Seki, Katsumi; Chida, Yu; Takagawa, Tomohiro; Shimosako, Kenichiro
2017-04-01
The 2011 Great East Japan Earthquake (GEJE) has shown that tsunami disasters are not limited to inundation damage in a specified region, but may destroy a wide area, causing a major disaster. Evaluating standing land structures and damage to them requires highly precise evaluation of three-dimensional fluid motion - an expensive process. Our research goals were thus to develop a coupling STOC-CADMAS (Arikawa and Tomita, 2016) coupling with the structure analysis (Arikawa et. al., 2009) to efficiently calculate all stages from tsunami source to runup including the deformation of structures and to verify their applicability. We also investigated the stability of breakwaters at Kamaishi Bay. Fig. 1 shows the whole of this calculation system. The STOC-ML simulator approximates pressure by hydrostatic pressure and calculates the wave profiles based on an equation of continuity, thereby lowering calculation cost, primarily calculating from a e epi center to the shallow region. As a simulator, STOC-IC solves pressure based on a Poisson equation to account for a shallower, more complex topography, but reduces computation cost slightly to calculate the area near a port by setting the water surface based on an equation of continuity. CS3D also solves a Navier-Stokes equation and sets the water surface by VOF to deal with the runup area, with its complex surfaces of overflows and bores. STR solves the structure analysis including the geo analysis based on the Biot's formula. By coupling these, it efficiently calculates the tsunami profile from the propagation to the inundation. The numerical results compared with the physical experiments done by Arikawa et. al.,2012. It was good agreement with the experimental ones. Finally, the system applied to the local situation at Kamaishi bay. The almost breakwaters were washed away, whose situation was similar to the damage at Kamaishi bay. REFERENCES T. Arikawa and T. Tomita (2016): "Development of High Precision Tsunami Runup
Tomography of integrated circuit interconnect with an electromigration void
Energy Technology Data Exchange (ETDEWEB)
Levine, Zachary H. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410 (United States); Rensselaer Polytechnic Institute, Troy, New York 12180-3590 (United States); Kalukin, Andrew R. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410 (United States); Kuhn, Markus [Intel Corporation RA1-329, 5200 Northeast Elam Young Parkway, Hillsboro, Oregon 74124 (United States); Frigo, Sean P. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); McNulty, Ian [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Retsch, Cornelia C. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Wang, Yuxin [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Arp, Uwe [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410 (United States); Lucatorto, Thomas B. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410 (United States); Ravel, Bruce D. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410 (United States)] (and others)
2000-05-01
An integrated circuit interconnect was subject to accelerated-life test conditions to induce an electromigration void. The silicon substrate was removed, leaving only the interconnect test structure encased in silica. We imaged the sample with 1750 eV photons using the 2-ID-B scanning transmission x-ray microscope at the Advanced Photon Source, a third-generation synchrotron facility. Fourteen views through the sample were obtained over a 170 degree sign range of angles (with a 40 degree sign gap) about a single rotation axis. Two sampled regions were selected for three-dimensional reconstruction: one of the ragged end of a wire depleted by the void, the other of the adjacent interlevel connection (or ''via''). We applied two reconstruction techniques: the simultaneous iterative reconstruction technique and a Bayesian reconstruction technique, the generalized Gaussian Markov random field method. The stated uncertainties are total, with one standard deviation, which resolved the sample to 200{+-}70 and 140{+-}30 nm, respectively. The tungsten via is distinguished from the aluminum wire by higher absorption. Within the void, the aluminum is entirely depleted from under the tungsten via. The reconstructed data show the applicability of this technique to three-dimensional imaging of buried defects in submicrometer structures relevant to the microelectronics industry. (c) 2000 American Institute of Physics.
Structural and electronic properties of LaPd2As2 superconductor: First-principle calculations
Singh, Birender; Kumar, Pradeep
2017-05-01
In present work we have studied electronic and structural properties of superconducting LaPd2As2 compound having collapsed tetragonal structure using first-principle calculations. The band structure calculations show that the LaPd2As2 is metallic consistent with the reported experimental observation, and the density of states plots clearly shows that at the Fermi level major contribution to density of states arises from Pd 4d and As 4p states, unlike the Fe-based superconductors where major contribution at the Fermi level comes from Fe 3d states. The estimated value of electron-phonon coupling is found to be 0.37, which gives the upper bound of superconducting transition temperature of 5K, suggesting the conventional nature of this superconductor.
Energy Technology Data Exchange (ETDEWEB)
Mokhtari, A.; Akbarzadeh, H
2003-09-01
The electronic and structural properties of beryllium nitride (alpha and beta), magnesium- and calcium-nitrides were investigated using first principle full potential-linearized augmented plane wave method within density functional theory. We used Perdew and Wang-generalized gradient approximation, which is based on exchange correlation energy optimization, to calculate the total energy and the Engel-Vosko's GGA formalism, which optimize the corresponding potential, for band structure calculations. We also optimized internal parameters by relaxing the atomic positions in the force directions. Our results including lattice parameter, bulk modulus and it's pressure derivative, cohesive energy, band structure and density of states are compared with the experimental and other theoretical (Hartree-Fock approximation with a posteriori density functional correction) data.
International Nuclear Information System (INIS)
Mokhtari, A.; Akbarzadeh, H.
2003-01-01
The electronic and structural properties of beryllium nitride (alpha and beta), magnesium- and calcium-nitrides were investigated using first principle full potential-linearized augmented plane wave method within density functional theory. We used Perdew and Wang-generalized gradient approximation, which is based on exchange correlation energy optimization, to calculate the total energy and the Engel-Vosko's GGA formalism, which optimize the corresponding potential, for band structure calculations. We also optimized internal parameters by relaxing the atomic positions in the force directions. Our results including lattice parameter, bulk modulus and it's pressure derivative, cohesive energy, band structure and density of states are compared with the experimental and other theoretical (Hartree-Fock approximation with a posteriori density functional correction) data
Levin, Alan R.; Zhang, Deyin; Polizzi, Eric
2012-11-01
In a recent article Polizzi (2009) [15], the FEAST algorithm has been presented as a general purpose eigenvalue solver which is ideally suited for addressing the numerical challenges in electronic structure calculations. Here, FEAST is presented beyond the “black-box” solver as a fundamental modeling framework which can naturally address the original numerical complexity of the electronic structure problem as formulated by Slater in 1937 [3]. The non-linear eigenvalue problem arising from the muffin-tin decomposition of the real-space domain is first derived and then reformulated to be solved exactly within the FEAST framework. This new framework is presented as a fundamental and practical solution for performing both accurate and scalable electronic structure calculations, bypassing the various issues of using traditional approaches such as linearization and pseudopotential techniques. A finite element implementation of this FEAST framework along with simulation results for various molecular systems is also presented and discussed.
Electron microscopy observations of helium bubble-void transition effects in nimonic PE16 alloys
International Nuclear Information System (INIS)
Mazey, D.J.; Nelson, R.S.
1980-01-01
High-nickel alloys based on the Nimonic PE16 composition have been injected at temperatures of 525 0 C and 625 0 C with 1000 ppm helium to produce a high gas-bubble concentration and subsequently irradiated with 36 MeV nickel ions. Extensive heterogeneous nucleation of bubbles is observed on faulted interstitial loops and dislocations. Evidence is found in standard PE16 alloy for bimodal bubble plus void distributions which persist during nickel-ion irradiation to 30 and 60 dpa at 625 0 C and result in a low void volume swelling of approximately 1%. The observations can be correlated with the critical bubble/void transition radius which is calculated from theory to be approximately 4.4 nm. Pre-injection of helium into a 'matrix' PE16 (low Si, Ti and Al) alloy produced an initial bubble population whose average size was above the calculated transition radius such that all bubbles eventually grew as voids during subsequent nickel-ion irradiation up to 60 dpa at 625 0 C where the void volume swelling reached approximately 12%. The observations are discussed briefly and related to theoretical predictions of the bubble/void transition radius. (author)
Validation uncertainty of MATRA code for subchannel void distributions
Energy Technology Data Exchange (ETDEWEB)
Hwang, Dae-Hyun; Kim, S. J.; Kwon, H.; Seo, K. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-10-15
To extend code capability to the whole core subchannel analysis, pre-conditioned Krylov matrix solvers such as BiCGSTAB and GMRES are implemented in MATRA code as well as parallel computing algorithms using MPI and OPENMP. It is coded by fortran 90, and has some user friendly features such as graphic user interface. MATRA code was approved by Korean regulation body for design calculation of integral-type PWR named SMART. The major role subchannel code is to evaluate core thermal margin through the hot channel analysis and uncertainty evaluation for CHF predictions. In addition, it is potentially used for the best estimation of core thermal hydraulic field by incorporating into multiphysics and/or multi-scale code systems. In this study we examined a validation process for the subchannel code MATRA specifically in the prediction of subchannel void distributions. The primary objective of validation is to estimate a range within which the simulation modeling error lies. The experimental data for subchannel void distributions at steady state and transient conditions was provided on the framework of OECD/NEA UAM benchmark program. The validation uncertainty of MATRA code was evaluated for a specific experimental condition by comparing the simulation result and experimental data. A validation process should be preceded by code and solution verification. However, quantification of verification uncertainty was not addressed in this study. The validation uncertainty of the MATRA code for predicting subchannel void distribution was evaluated for a single data point of void fraction measurement at a 5x5 PWR test bundle on the framework of OECD UAM benchmark program. The validation standard uncertainties were evaluated as 4.2%, 3.9%, and 2.8% with the Monte-Carlo approach at the axial levels of 2216 mm, 2669 mm, and 3177 mm, respectively. The sensitivity coefficient approach revealed similar results of uncertainties but did not account for the nonlinear effects on the
Coolant Void Reactivity Analysis of CANDU Lattice
Energy Technology Data Exchange (ETDEWEB)
Park, Jin Su; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [UNIST, Ulsan (Korea, Republic of)
2016-05-15
Models of CANDU-6 and ACR-700 fuel lattices were constructed for a single bundle and 2 by 2 checkerboard to understand the physics related to CVR. Also, a familiar four factor formula was used to predict the specific contributions to reactivity change in order to achieve an understanding of the physics issues related to the CVR. At the same time, because the situation of coolant voiding should bring about a change of neutron behavior, the spectral changes and neutron current were also analyzed. The models of the CANDU- 6 and ACR-700 fuel lattices were constructed using the Monte Carlo code MCNP6 using the ENDF/B-VII.0 continuous energy cross section library based on the specification from AECL. The CANDU fuel lattice was searched through sensitivity studies of each design parameter such as fuel enrichment, fuel pitch, and types of burnable absorber for obtaining better behavior in terms of CVR. Unlike the single channel coolant voiding, the ACR-700 bundle has a positive reactivity change upon 2x2 checkerboard coolant voiding. Because of the new path for neutron moderation, the neutrons from the voided channel move to the no-void channel where they lose energy and come back to the voided channel as thermal neutrons. This phenomenon causes the positive CVR when checkerboard voiding occurs. The sensitivity study revealed the effects of the moderator to fuel volume ratio, fuel enrichment, and burnable absorber on the CVR. A fuel bundle with low moderator to fuel volume ratio and high fuel enrichment can help achieve negative CVR.
International Nuclear Information System (INIS)
Phillips, S.J.; Carlson, R.A.; McGuire, H.E.
1981-01-01
A substantial quantity of low-level radioactive and hazardous wastes has been interred in shallow land burial structures throughout the United States. Many of these structures (trenches, pits, and landfills) have proven to be unstable. Some surface feature manifestations such as large cracks, basins, and cave-ins are caused by voids filling and physico-chemical degradation and solubilization of the buried wastes which could result in the release of contamination. The surface features represent a potential for increased contamination transport to the biosphere via water, air, biologic, and direct pathways. Engineering alternatives for the reduction of buried waste and matrix materials voids are identified and discussed. As a guideline, a reduction of the voids within the waste to 80% or more of maximum relative dry density (a measure of in situ voids within the waste) is proposed. The advantages, disadvantages, and costs of each alternative are evaluated. Falling mass and pile driving engineering alternatives were selected for further development
International Nuclear Information System (INIS)
Wills, John M.; Mattsson, Ann E.
2012-01-01
Brooks, Johansson, and Skriver, using the LMTO-ASA method and considerable insight, were able to explain many of the ground state properties of the actinides. In the many years since this work was done, electronic structure calculations of increasing sophistication have been applied to actinide elements and compounds, attempting to quantify the applicability of DFT to actinides and actinide compounds and to try to incorporate other methodologies (i.e. DMFT) into DFT calculations. Through these calculations, the limits of both available density functionals and ad hoc methodologies are starting to become clear. However, it has also become clear that approximations used to incorporate relativity are not adequate to provide rigorous tests of the underlying equations of DFT, not to mention ad hoc additions. In this talk, we describe the result of full-potential LMTO calculations for the elemental actinides, comparing results obtained with a full Dirac basis with those obtained from scalar-relativistic bases, with and without variational spin-orbit. This comparison shows that the scalar relativistic treatment of actinides does not have sufficient accuracy to provide a rigorous test of theory and that variational spin-orbit introduces uncontrolled errors in the results of electronic structure calculations on actinide elements.
Structure of thallium and lead calculated from Shaw local pseudopotential and molecular dynamics
Directory of Open Access Journals (Sweden)
Gasser J. G.
2011-05-01
Full Text Available Recently, we (Es Sbihi Phil. Mag 2010 have successfully calculated, by molecular dynamics, the static structure factor of liquid bismuth at different temperatures. Our results were in very good agreement with the Waseda experimental data. Our assumption was to consider the true density of states which presents a gap as measured by Indlekofer (J. Non-Cryst. Solids 1989 and calculated by Hafner-Jank (Phys. Rev. B 1990 for liquid bismuth. The number of electrons at the Fermi energy has been calculated with three conduction electrons for bismuth (number of p electrons. With this assumption, the structures were determined with an effective ion-ion potential constructed from the Shaw local Optimised Model Potential (OMP and the Ichimaru-Utsumi dielectric function. In the present paper, we generalize our assumptions to liquid thallium and lead which also present such a gap. Their calculated structures are also very close to the experimental ones. This confirms that the number of conduction electrons on the Fermi sphere is consistent with the number of p electrons as has been even shown for our electronic transport properties of liquid lead (A. Ben Abdellah, Phys. Rev. B 2003.
38 CFR 3.207 - Void or annulled marriage.
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled. A...
Interfacial area, velocity and void fraction in two-phase slug flow
International Nuclear Information System (INIS)
Kojasoy, G.; Riznic, J.R.
1997-01-01
The internal flow structure of air-water plug/slug flow in a 50.3 mm dia transparent pipeline has been experimentally investigated by using a four-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 0.55 to 2.20 m/s and 0.27 to 2.20 m/s, respectively, and area-averaged void fractions ranged from about 10 to 70%. The local distributions of void fractions, interfacial area concentration and interface velocity were measured. Contributions from small spherical bubbles and large elongated slug bubbles toward the total void fraction and interfacial area concentration were differentiated. It was observed that the small bubble void contribution to the overall void fraction was small indicating that the large slug bubble void fraction was a dominant factor in determining the total void fraction. However, the small bubble interfacial area contribution was significant in the lower and upper portions of the pipe cross sections
On localization and void coalescence as a precursor to ductile fracture.
Tekoğlu, C; Hutchinson, J W; Pardoen, T
2015-03-28
Two modes of plastic flow localization commonly occur in the ductile fracture of structural metals undergoing damage and failure by the mechanism involving void nucleation, growth and coalescence. The first mode consists of a macroscopic localization, usually linked to the softening effect of void nucleation and growth, in either a normal band or a shear band where the thickness of the band is comparable to void spacing. The second mode is coalescence with plastic strain localizing to the ligaments between voids by an internal necking process. The ductility of a material is tied to the strain at macroscopic localization, as this marks the limit of uniform straining at the macroscopic scale. The question addressed is whether macroscopic localization occurs prior to void coalescence or whether the two occur simultaneously. The relation between these two modes of localization is studied quantitatively in this paper using a three-dimensional elastic-plastic computational model representing a doubly periodic array of voids within a band confined between two semi-infinite outer blocks of the same material but without voids. At sufficiently high stress triaxiality, a clear separation exists between the two modes of localization. At lower stress triaxialities, the model predicts that the onset of macroscopic localization and coalescence occur simultaneously. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
A subchannel and CFD analysis of void distribution for the BWR fuel bundle test benchmark
International Nuclear Information System (INIS)
In, Wang-Kee; Hwang, Dae-Hyun; Jeong, Jae Jun
2013-01-01
Highlights: ► We analyzed subchannel void distributions using subchannel, system and CFD codes. ► The mean error and standard deviation at steady states were compared. ► The deviation of the CFD simulation was greater than those of the others. ► The large deviation of the CFD prediction is due to interface model uncertainties. -- Abstract: The subchannel grade and microscopic void distributions in the NUPEC (Nuclear Power Engineering Corporation) BFBT (BWR Full-Size Fine-Mesh Bundle Tests) facility have been evaluated with a subchannel analysis code MATRA, a system code MARS and a CFD code CFX-10. Sixteen test series from five different test bundles were selected for the analysis of the steady-state subchannel void distributions. Four test cases for a high burn-up 8 × 8 fuel bundle with a single water rod were simulated using CFX-10 for the microscopic void distribution benchmark. Two transient cases, a turbine trip without a bypass as a typical power transient and a re-circulation pump trip as a flow transient, were also chosen for this analysis. It was found that the steady-state void distributions calculated by both the MATRA and MARS codes coincided well with the measured data in the range of thermodynamic qualities from 5 to 25%. The results of the transient calculations were also similar to each other and very reasonable. The CFD simulation reproduced the overall radial void distribution trend which produces less vapor in the central part of the bundle and more vapor in the periphery. However, the predicted variation of the void distribution inside the subchannels is small, while the measured one is large showing a very high concentration in the center of the subchannels. The variations of the void distribution between the center of the subchannels and the subchannel gap are estimated to be about 5–10% for the CFD prediction and more than 20% for the experiment
Video Voiding Device for Diagnosing Lower Urinary Tract Dysfunction in Men.
Shokoueinejad, Mehdi; Alkashgari, Rayan; Mosli, Hisham A; Alothmany, Nazeeh; Levin, Jacob M; Webster, John G
2017-01-01
We introduce a novel diagnostic Visual Voiding Device (VVD), which has the ability to visually document urinary voiding events and calculate key voiding parameters such as instantaneous flow rate. The observation of the urinary voiding process along with the instantaneous flow rate can be used to diagnose symptoms of Lower Urinary Tract Dysfunction (LUTD) and improve evaluation of LUTD treatments by providing subsequent follow-up documentations of voiding events after treatments. The VVD enables a patient to have a urinary voiding event in privacy while a urologist monitors, processes, and documents the event from a distance. The VVD consists of two orthogonal cameras which are used to visualize urine leakage from the urethral meatus, urine stream trajectory, and its break-up into droplets. A third, lower back camera monitors a funnel topped cylinder where urine accumulates that contains a floater for accurate readings regardless of the urine color. Software then processes the change in level of accumulating urine in the cylinder and the visual flow properties to calculate urological parameters. Video playback allows for reexamination of the voiding process. The proposed device was tested by integrating a mass flowmeter into the setup and simultaneously measuring the instantaneous flow rate of a predetermined voided volume in order to verify the accuracy of VVD compared to the mass flowmeter. The VVD and mass flowmeter were found to have an accuracy of ±2 and ±3% relative to full scale, respectively. A VVD clinical trial was conducted on 16 healthy male volunteers ages 23-65.
Atomic structure calculation of energy levels and oscillator strengths in Ti ion, 2
International Nuclear Information System (INIS)
Ishii, Keishi
1983-10-01
Energy levels and oscillator strengths are calculated for 3s-3p and 3p-3d transition arrays in Ti X, isoelectronic to Al I. The energy levels are obtained by the Slater-Condon theory of atomic structure, including explicitly the strong configuration interactions. The results are presented both in numerical tables and in diagrams. In the tables, the observed data are included for comparison, where available. The calculated weighted oscillator strengths (gf-value) are also displayed in figures, where the weighted oscillator strengths are plotted as a function of wavelength. (author)
Calculation of the band structure of 2d conducting polymers using the network model
International Nuclear Information System (INIS)
Sabra, M. K.; Suman, H.
2007-01-01
the network model has been used to calculate the band structure the gap energy and Fermi level of conducting polymers in two dimensions. For this purpose, a geometrical classification of possible polymer chains configurations in two dimensions has been introduced leading to a classification of the unit cells based on the number of bonds in them. The model has been applied to graphite in 2D, represented by a three bonds unit cell, and, as a new case, the anti-parallel Polyacetylene chains (PA) in two dimensions, represented by a unit cell with four bons. The results are in good agreement with the first principles calculations. (author)
International Nuclear Information System (INIS)
Cabrillat, J.C.; Arnaud, G.; Calamand, D.; Manent, G.; Tavassoli, A.A.
1984-09-01
For the Super Phenix reactor, the evolution, versus the irradiation of the mechanical properties of the core diagrid steel is the object of studies and is particularly monitored. The specimens irradiated, now in PHENIX and will be later irradiated in SUPER PHENIX as soon as the first operating cycles. An important dosimetry program coupling calculation and measurement, is parallely carried out. This paper presents the reasons, the definition of the structure, of the development and of materials used in this program of dosimetry, as also the first results of a calculation-measurement comparison [fr
Self-organized voids revisited: Experimental verification of the formation mechanism
International Nuclear Information System (INIS)
Song Juan; Jiang Yan; Ye Jun-Yi; Qian Meng-Di; Lin Xian; Bian Hua-Dong; Dai Ye; Ma Guo-Hong; Luo Fang-Fang; Chen Qing-Xi; Zhao Quan-Zhong; Qiu Jian-Rong
2014-01-01
We conduct several experiments to further clarify the formation mechanism of a self-organized void array induced by a single laser beam, including energy-related experiments, refractive-index-contrast-related experiments, depth-related experiments, and effective-numerical-aperture experiment. These experiments indicate that the interface spherical aberration is indeed responsible for the formation of void arrays. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
International Nuclear Information System (INIS)
Hua Manyu; Li Yimin; Long Chunguang; Li Xia
2012-01-01
The structural, electronic and elastic properties of potassium hexatitanate (K 2 Ti 6 O 13 ) whisker were investigated using first-principles calculations. The calculated cell parameters of K 2 Ti 6 O 13 including lattice constants and atomic positions are in good agreement with the experimental data. The obtained formation enthalpy (-61.1535 eV/atom) and cohesive energy (-137.4502 eV/atom) are both negative, showing its high structural stability. Further analysis of the electronic structures shows that the potassium hexatitanate is a wide-band semiconductor. Within K 2 Ti 6 O 13 crystal, the Ti---O bonding interactions are stronger than that of K---O, while no apparent K---Ti bonding interactions can be observed. The structural stability of K 2 Ti 6 O 13 was closely associated with the covalent bond interactions between Ti (d) and O (p) orbits. Further calculations on elastic properties show that K 2 Ti 6 O 13 is a high stiffness and brittle material with small anisotropy in shear and compression.
Post-void residual urine under 150 ml does not exclude voiding dysfunction in women
DEFF Research Database (Denmark)
Khayyami, Yasmine; Klarskov, Niels; Lose, Gunnar
2016-01-01
INTRODUCTION AND HYPOTHESIS: It has been claimed that post-void residual urine (PVR) below 150 ml rules out voiding dysfunction in women with stress urinary incontinence (SUI) and provides license to perform sling surgery. The cut-off of 150 ml seems arbitrary, not evidence-based, and so we sough...
Nucleation of voids - the impurity effect
International Nuclear Information System (INIS)
Chen, I-W; Taiwo, A.
1984-01-01
Nucleation of voids under irradiation in multicomponent alloys remains an unsolved theoretical problem. Of particular interest are the effects of nonequilibrium solute segregation phenomena on the critical nucleus and the nucleation rate. The resolution of the multicomponent nucleation in a dissipative system also has broader implication to the field of irreversible thermodynamics. The present paper describes a recent study of solute segregation effects in void nucleation. We begin with a thermodynamic model for a nonequilibrium void with interfacial segregation. The thermodynamic model is coupled with kinetic considerations of solute/solvent diffusion under a bias, which is itself related to segregation by the coating effect, to assess the stability of void embryos. To determine nucleation rate, we develop a novel technique by extending the most probable path method in statistical mechanics for nonequilibrium steady state to simulate large fluctuation with nonlinear dissipation. The path of nucleation is determined by solving an analogous problem on particle trajectory in classical dynamics. The results of both the stability analysis and the fluctuation analysis establish the paramount significance of the impurity effect via the mechanism of nonequilibrium segregation. We conclude that over-segregation is probably the most general cause for the apparently low nucleation barriers that are responsible for nearly ubiquitous occurrence of void swelling in common metals
The Metallicity of Void Dwarf Galaxies
Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.
2015-01-01
The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (Mr > -16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.
Analysis on the Multiplication Factor with the Change of Corium Mass and Void Fraction
Energy Technology Data Exchange (ETDEWEB)
Jeong, Hae Sun; Park, Chang Je; Song, Jin Ho; Ha, Kwang Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2013-05-15
The neutron absorbing materials and fuel rods would be separately arranged and relocated, since the control materials in metallic structures have lower melting points than that of the oxide fuel (UO{sub 2}) rod materials. In addition, core reflood for a BWR is normally accomplished by supplying unborated water unlikely for a PWR. Therefore, a potential for a recriticality event to occur may exist, if unborated coolant injection is initiated with this configuration in the reactor core. The re-criticality in this system, however, brings into question what the uranium mass is required to achieve a critical level. Furthermore, the additional decay heat from molten fuel (corium) will produce an increase of void and eventually results in under-moderation of neutrons. The prior verification of these consequential physical variations in criticality eigenvalue (effective multiplication factor, k{sub eff}) should be greatly contributed to control and termination of re-criticality. Therefore, this study addresses what uranium mass of corium could achieve re-criticality of an accident core, and how effect the coolant void fraction has on eigenvalue (k{sub eff}) and its reactivity. To analyze the critical mass and the effect on criticality upon changing coolant density, k{sub eff} values were calculated using the MCNPX 2.5.0 code, and the reactivity change was also investigated. As a result, a large change in corium mass leads to a little change in k{sub eff} value, nevertheless, only about 60 kg of uranium is necessary to achieve a critical level. Thus, the amounts to reach a re-criticality are not fairly large, considering the actual uranium quantities loaded in the reactor core. Based on the condition with k{sub eff} greater than unity, the absolute values of k{sub eff} decrease rate and the coolant density coefficient were gradually increased due to the steady increments of coolant void (i.e., decrease in coolant density). In addition, the k{sub eff} value approaches the
DEFF Research Database (Denmark)
Nielsen, Kim Lau; Tvergaard, Viggo
2011-01-01
Failure under intense shearing at close to zero stress triaxiality is widely observed for ductile metallic materials, and is identified in experiments as smeared-out dimples on the fracture surface. Numerical cell-model studies of equal sized voids have revealed that the mechanism governing...... this shear failure mode boils down to the interaction between primary voids which rotate and elongate until coalescence occurs under severe plastic deformation of the internal ligaments. The objective of this paper is to analyze this failure mechanism of primary voids and to study the effect of smaller...... secondary damage that co-exists with or nucleation in the ligaments between larger voids that coalesce during intense shearing. A numerical cell-model study is carried out to gain a parametric understanding of the overall material response for different initial conditions of the two void populations...
DEFF Research Database (Denmark)
Pawlowski, F; Jorgensen, P; Olsen, Jeppe
2002-01-01
A detailed study is carried out of the accuracy of molecular equilibrium geometries obtained from least-squares fits involving experimental rotational constants B(0) and sums of ab initio vibration-rotation interaction constants alpha(r)(B). The vibration-rotation interaction constants have been...... calculated for 18 single-configuration dominated molecules containing hydrogen and first-row atoms at various standard levels of ab initio theory. Comparisons with the experimental data and tests for the internal consistency of the calculations show that the equilibrium structures generated using Hartree......-Fock vibration-rotation interaction constants have an accuracy similar to that obtained by a direct minimization of the CCSD(T) energy. The most accurate vibration-rotation interaction constants are those calculated at the CCSD(T)/cc-pVQZ level. The equilibrium bond distances determined from these interaction...
Prediction of void fraction in subcooled flow boiling
International Nuclear Information System (INIS)
Petelin, S.; Koncar, B.
1998-01-01
The information on heat transfer and especially on the void fraction in the reactor core under subcooled conditions is very important for the water-cooled nuclear reactors, because of its influence upon the reactivity of the systems. This paper gives a short overview of subcooled boiling phenomenon and indicates the simplifications made by the RELAP5 model of subcooled boiling. RELAP5/MOD3.2 calculations were compared with simple one-dimensional models and with high-pressure Bartolomey experiments.(author)
Guo, Xiaoyun; Chu, Wangsheng; Ma, Sixuan; Gong, Weimin; Benfatto, Maurizio; Hu, Tiandou; Xie, Yaning; Wu, ZiYu
2006-11-01
Peptide deformylase (PDF, EC 3.5.1.27) is essential for the normal growth of eubacterium but not for mammalians. Recently, PDF has been studied as a target for new antibiotics. In this paper, X-ray absorption spectroscopy was employed to determine the local structure around the zinc ion of PDF from Leptospira Interrogans in dry powder, because it is very difficult to obtain the crystallized sample of LiPDF. We performed X-ray absorption near edge structure (XANES) calculation and reconstructed successfully the local geometry of the active center, and the results from calculations show that a water molecule (Wat1) has moved towards the zinc ion and lies in the distance range to coordinate with the zinc ion weakly. In addition, the sensitivity of theoretical spectra to the different ligand bodies was evaluated in terms of goodness-of-fit.
Energy Technology Data Exchange (ETDEWEB)
Guo Xiaoyun [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); School of Life Science, Key Laboratory of Structural Biology, University of Science and Technology of China, 230026 Hefei, Anhui (China); Chu Wangsheng [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); Department of Physics, University of Science and Technology of China, 230026 Hefei, Anhui (China); Ma Sixuan [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); Gong Weimin [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing (China); Benfatto, Maurizio [Instituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, 00044 Frascati (Italy); Hu Tiandou [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); Xie Yaning [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China) and Instituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, 00044 Frascati (Italy)]. E-mail: wuzy@mail.ihep.ac.cn
2006-11-15
Peptide deformylase (PDF, EC 3.5.1.27) is essential for the normal growth of eubacterium but not for mammalians. Recently, PDF has been studied as a target for new antibiotics. In this paper, X-ray absorption spectroscopy was employed to determine the local structure around the zinc ion of PDF from Leptospira Interrogans in dry powder, because it is very difficult to obtain the crystallized sample of LiPDF. We performed X-ray absorption near edge structure (XANES) calculation and reconstructed successfully the local geometry of the active center, and the results from calculations show that a water molecule (Wat1) has moved towards the zinc ion and lies in the distance range to coordinate with the zinc ion weakly. In addition, the sensitivity of theoretical spectra to the different ligand bodies was evaluated in terms of goodness-of-fit.
International Nuclear Information System (INIS)
Guo Xiaoyun; Chu Wangsheng; Ma Sixuan; Gong Weimin; Benfatto, Maurizio; Hu Tiandou; Xie Yaning; Wu Ziyu
2006-01-01
Peptide deformylase (PDF, EC 3.5.1.27) is essential for the normal growth of eubacterium but not for mammalians. Recently, PDF has been studied as a target for new antibiotics. In this paper, X-ray absorption spectroscopy was employed to determine the local structure around the zinc ion of PDF from Leptospira Interrogans in dry powder, because it is very difficult to obtain the crystallized sample of LiPDF. We performed X-ray absorption near edge structure (XANES) calculation and reconstructed successfully the local geometry of the active center, and the results from calculations show that a water molecule (Wat1) has moved towards the zinc ion and lies in the distance range to coordinate with the zinc ion weakly. In addition, the sensitivity of theoretical spectra to the different ligand bodies was evaluated in terms of goodness-of-fit
International Nuclear Information System (INIS)
Núñez, M A; Mendoza, R
2015-01-01
Several methods to estimate the velocity field of atmospheric flows, have been proposed to the date for applications such as emergency response systems, transport calculations and for budget studies of all kinds. These applications require a wind field that satisfies the conservation of mass but, in general, estimated wind fields do not satisfy exactly the continuity equation. An approach to reduce the effect of using a divergent wind field as input in the transport-diffusion equations, was proposed in the literature. In this work, a linear local analysis of a wind field, is used to show analytically that the perturbation of a large-scale nondivergent flow can yield a divergent flow with a substantially different structure. The effects of these structural changes in transport calculations are illustrated by means of analytic solutions of the transport equation
A massively-parallel electronic-structure calculations based on real-space density functional theory
International Nuclear Information System (INIS)
Iwata, Jun-Ichi; Takahashi, Daisuke; Oshiyama, Atsushi; Boku, Taisuke; Shiraishi, Kenji; Okada, Susumu; Yabana, Kazuhiro
2010-01-01
Based on the real-space finite-difference method, we have developed a first-principles density functional program that efficiently performs large-scale calculations on massively-parallel computers. In addition to efficient parallel implementation, we also implemented several computational improvements, substantially reducing the computational costs of O(N 3 ) operations such as the Gram-Schmidt procedure and subspace diagonalization. Using the program on a massively-parallel computer cluster with a theoretical peak performance of several TFLOPS, we perform electronic-structure calculations for a system consisting of over 10,000 Si atoms, and obtain a self-consistent electronic-structure in a few hundred hours. We analyze in detail the costs of the program in terms of computation and of inter-node communications to clarify the efficiency, the applicability, and the possibility for further improvements.
SGFM applied to the calculation of surface band structure of V
International Nuclear Information System (INIS)
Baquero, R.; Velasco, V.R.; Garcia Moliner, F.
1986-07-01
The surface Green function matching (SGFM) method has been developed recently to deal with a great variety of problems in a unified way. The method was first developed for continuum systems. The recent advances for discrete structures can deal with surfaces, interfaces, quantum wells, superlattices, intercalated layered compounds, and other systems. Several applications of this formalism are being carried out. In the present note we will describe how the formalism applies to the calculation of the electronic surface band structure of vanadium which is a quite interesting transition metal with very active magnetic properties at the surface, in particular at the (100) surface. It is straightforward, on the basis of the calculation presented here, to obtain the magnetic moment on the surface, for example, through the method followed by G. Allan or the surface paramagnon density which should be particularly enhanced at this surface as compared to the bulk
Kernel polynomial method for a nonorthogonal electronic-structure calculation of amorphous diamond
International Nuclear Information System (INIS)
Roeder, H.; Silver, R.N.; Drabold, D.A.; Dong, J.J.
1997-01-01
The Kernel polynomial method (KPM) has been successfully applied to tight-binding electronic-structure calculations as an O(N) method. Here we extend this method to nonorthogonal basis sets with a sparse overlap matrix S and a sparse Hamiltonian H. Since the KPM method utilizes matrix vector multiplications it is necessary to apply S -1 H onto a vector. The multiplication of S -1 is performed using a preconditioned conjugate-gradient method and does not involve the explicit inversion of S. Hence the method scales the same way as the original KPM method, i.e., O(N), although there is an overhead due to the additional conjugate-gradient part. We apply this method to a large scale electronic-structure calculation of amorphous diamond. copyright 1997 The American Physical Society
Tight binding electronic band structure calculation of achiral boron nitride single wall nanotubes
International Nuclear Information System (INIS)
Saxena, Prapti; Sanyal, Sankar P
2006-01-01
In this paper we report the Tight-Binding method, for the electronic structure calculations of achiral single wall Boron Nitride nanotubes. We have used the contribution of π electron only to define the electronic band structure for the solid. The Zone-folding method is used for the Brillouin Zone definition. Calculation of tight binding model parameters is done by fitting them to available experimental results of two-dimensional hexagonal monolayers of Boron Nitride. It has been found that all the boron nitride nanotubes (both zigzag and armchair) are constant gap semiconductors with a band gap of 5.27eV. All zigzag BNNTs are found to be direct gap semiconductors while all armchair nanotubes are indirect gap semiconductors. (author)
A lattice calculation of the nucleon's spin-dependent structure function g2 revisited
International Nuclear Information System (INIS)
Goeckeler, M.; Rakow, P.E.L.; Schaefer, A.; Schierholz, G.
2000-11-01
Our previous calculation of the spin-dependent structure function g 2 is revisited. The interest in this structure function is to a great extent motivated by the fact that it receives contributions from twist-two as well as from twist-three operators already in leading order of 1/Q 2 thus offering the unique possibility of directly assessing higher-twist effects. In our former calculation the lattice operators were renormalized perturbatively and mixing with lower-dimensional operators was ignored. However, the twist-three operator which gives rise to the matrix element d 2 mixes non-perturbatively with an operator of lower dimension. Taking this effect into account leads to a considerably smaller value of d 2 , which is consistent with the experimental data. (orig.)
A parallel orbital-updating based plane-wave basis method for electronic structure calculations
International Nuclear Information System (INIS)
Pan, Yan; Dai, Xiaoying; Gironcoli, Stefano de; Gong, Xin-Gao; Rignanese, Gian-Marco; Zhou, Aihui
2017-01-01
Highlights: • Propose three parallel orbital-updating based plane-wave basis methods for electronic structure calculations. • These new methods can avoid the generating of large scale eigenvalue problems and then reduce the computational cost. • These new methods allow for two-level parallelization which is particularly interesting for large scale parallelization. • Numerical experiments show that these new methods are reliable and efficient for large scale calculations on modern supercomputers. - Abstract: Motivated by the recently proposed parallel orbital-updating approach in real space method , we propose a parallel orbital-updating based plane-wave basis method for electronic structure calculations, for solving the corresponding eigenvalue problems. In addition, we propose two new modified parallel orbital-updating methods. Compared to the traditional plane-wave methods, our methods allow for two-level parallelization, which is particularly interesting for large scale parallelization. Numerical experiments show that these new methods are more reliable and efficient for large scale calculations on modern supercomputers.
Seiler, Christian; Evers, Ferdinand
2016-10-01
A formalism for electronic-structure calculations is presented that is based on the functional renormalization group (FRG). The traditional FRG has been formulated for systems that exhibit a translational symmetry with an associated Fermi surface, which can provide the organization principle for the renormalization group (RG) procedure. We here advance an alternative formulation, where the RG flow is organized in the energy-domain rather than in k space. This has the advantage that it can also be applied to inhomogeneous matter lacking a band structure, such as disordered metals or molecules. The energy-domain FRG (ɛ FRG) presented here accounts for Fermi-liquid corrections to quasiparticle energies and particle-hole excitations. It goes beyond the state of the art G W -BSE , because in ɛ FRG the Bethe-Salpeter equation (BSE) is solved in a self-consistent manner. An efficient implementation of the approach that has been tested against exact diagonalization calculations and calculations based on the density matrix renormalization group is presented. Similar to the conventional FRG, also the ɛ FRG is able to signalize the vicinity of an instability of the Fermi-liquid fixed point via runaway flow of the corresponding interaction vertex. Embarking upon this fact, in an application of ɛ FRG to the spinless disordered Hubbard model we calculate its phase boundary in the plane spanned by the interaction and disorder strength. Finally, an extension of the approach to finite temperatures and spin S =1 /2 is also given.
Multipole analysis of redshift-space distortions around cosmic voids
Energy Technology Data Exchange (ETDEWEB)
Hamaus, Nico; Weller, Jochen [Universitäts-Sternwarte München, Fakultät für Physik, Ludwig-Maximilians Universität, Scheinerstr. 1, D-81679 München (Germany); Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie, E-mail: hamaus@usm.lmu.de, E-mail: cousinou@cppm.in2p3.fr, E-mail: pisani@cppm.in2p3.fr, E-mail: maubert@cppm.in2p3.fr, E-mail: escoffier@cppm.in2p3.fr, E-mail: jochen.weller@usm.lmu.de [Aix Marseille Univ., CNRS/IN2P3, CPPM, 163 avenue de Luminy, F-13288, Marseille (France)
2017-07-01
We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h {sup −1}Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β( z-bar =0.32)=0.599{sup +0.134}{sub −0.124} and β( z-bar =0.54)=0.457{sup +0.056}{sub −0.054}, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at z-bar =0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15< z <0.33.
Multipole analysis of redshift-space distortions around cosmic voids
Hamaus, Nico; Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie; Weller, Jochen
2017-07-01
We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h-1Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β(bar z=0.32)=0.599+0.134-0.124 and β(bar z=0.54)=0.457+0.056-0.054, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at bar z=0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15
Multipole analysis of redshift-space distortions around cosmic voids
International Nuclear Information System (INIS)
Hamaus, Nico; Weller, Jochen; Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie
2017-01-01
We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h −1 Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β( z-bar =0.32)=0.599 +0.134 −0.124 and β( z-bar =0.54)=0.457 +0.056 −0.054 , with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at z-bar =0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15< z <0.33.
From Voids to Yukawaballs And Back
International Nuclear Information System (INIS)
Land, V.; Goedheer, W. J.
2008-01-01
When dust particles are introduced in a radio-frequency discharge under micro-gravity conditions, usually a dust free void is formed due to the ion drag force pushing the particles away from the center. Experiments have shown that it is possible to close the void by reducing the power supplied to the discharge. This reduces the ion density and with that the ratio between the ion drag force and the opposing electric force. We have studied the behavior of a discharge with a large amount of dust particles (radius 3.4 micron) with our hydrodynamic model, and simulated the closure of the void for conditions similar to the experiment. We also approached the formation of a Yukawa ball from the other side, starting with a discharge at low power and injecting batches of dust, while increasing the power to prevent extinction of the discharge. Eventually the same situation could be reached.
Structure function of off-mass-shell pions and the calculation of the Sullivan process
International Nuclear Information System (INIS)
Shakin, C.M.; Sun, W.
1994-01-01
We construct a model for the pion (valence) structure function that fits the experimental data obtained in the study of the Drell-Yan process. The model may also be used to calculate the structure function of off-mass-shell pions. We apply our model in the study of deep-inelastic scattering from off-mass-shell pions found in the nucleon and are thus able to resolve a problem encountered in the standard analysis of such processes. The usual analysis is made using the structure function of on-mass-shell pions and requires the use of a soft πNN form factor that is inconsistent with standard nuclear physics phenomenology. The use of our off-mass-shell structure functions allows for a fit to the data for nonperturbative aspects of the nucleon ''sea'' with a pion-nucleon form factor of the standard form
Electronic structure calculations for BaSxSe1-x alloys
International Nuclear Information System (INIS)
Feng Zhenbao; Hu Haiquan; Cui Shouxin; Wang Wenjun
2009-01-01
A series of first principles calculations have been carried out to study structural, electronic properties of BaS x Se 1-x alloys. We have used the local density as well as the generalized gradient approximations for the exchange-correlation potential. The structural properties of these materials, in particular the composition dependence to the lattice constant and bulk modulus, are found to be linear. It is also found linear relationship between theoretical band gaps and 1/a 2 (where a is lattice constant).
Band structure calculation of GaSe-based nanostructures using empirical pseudopotential method
International Nuclear Information System (INIS)
Osadchy, A V; Obraztsova, E D; Volotovskiy, S G; Golovashkin, D L; Savin, V V
2016-01-01
In this paper we present the results of band structure computer simulation of GaSe- based nanostructures using the empirical pseudopotential method. Calculations were performed using a specially developed software that allows performing simulations using cluster computing. Application of this method significantly reduces the demands on computing resources compared to traditional approaches based on ab-initio techniques and provides receiving the adequate comparable results. The use of cluster computing allows to obtain information for structures that require an explicit account of a significant number of atoms, such as quantum dots and quantum pillars. (paper)
Origin of the 20-electron structure of Mg3 MnH7 : Density functional calculations
Gupta, M.; Singh, D. J.; Gupta, R.
2005-03-01
The electronic structure and stability of the 20-electron complex hydride, Mg3MnH7 is studied using density functional calculations. The heat of formation is larger in magnitude than that of MgH2 . The deviation from the 18-electron rule is explained by the predominantly ionic character of the band structure and a large crystal-field splitting of the Mn d bands. In particular, each H provides one deep band accomodating two electrons, while the Mn t2g bands hold an additional six electrons per formula unit.
Ramsdellite-structured LiTiO 2: A new phase predicted from ab initio calculations
Koudriachova, M. V.
2008-06-01
A new phase of highly lithiated titania with potential application as an anode in Li-rechargeable batteries is predicted on the basis of ab initio calculations. This phase has a composition LiTiO2 and may be accessed through electrochemical lithiation of ramsdellite-structured TiO2 at the lowest potential reported for titanium dioxide based materials. The potential remains constant over a wide range of Li-concentrations. The new phase is metastable with respect to a tetragonally distorted rock salt structure, which hitherto has been the only known polymorph of LiTiO2.
Calculation of longitudinal and transverse wake-field effects in dielectric structures
International Nuclear Information System (INIS)
Gai, W.
1989-01-01
The electro-magnetic radiation of a charged particle passing through a dielectric structure has many applications to accelerator physics. Recently a new acceleration scheme, called the dielectric wake field accelerator, has been proposed. It also can be used as a pick up system for a storage ring because of its slow wave characteristics. In order to study these effects in detail, in this paper we will calculate the wake field effects produced in a dielectric structure by a charged particle. 8 refs., 2 figs
Multi-Center Electronic Structure Calculations for Plasma Equation of State
Energy Technology Data Exchange (ETDEWEB)
Wilson, B G; Johnson, D D; Alam, A
2010-12-14
We report on an approach for computing electronic structure utilizing solid-state multi-center scattering techniques, but generalized to finite temperatures to model plasmas. This approach has the advantage of handling mixtures at a fundamental level without the imposition of ad hoc continuum lowering models, and incorporates bonding and charge exchange, as well as multi-center effects in the calculation of the continuum density of states.
Fluid and structural dynamics calculations to determine core barrel loads during blowdown (EV 3,000)
International Nuclear Information System (INIS)
Krieg, R.; Schlechtendahl, E.G.
1977-01-01
To begin with, the main physical phenomena in connection with blowdown loads on the care barrel and the computer models used are briefly described. These models have also been used in the design of the HTR test care barrel. The fluid dynamics part of the calculations was carried out using the WHAMMOD and DAPSY codes; for the structural dynamics part, the STRUDL/Dynal code was employed. (orig./RW) [de
Damianos, Konstantina; Ferrando, Riccardo
2012-02-21
The structural modifications of small supported gold clusters caused by realistic surface defects (steps) in the MgO(001) support are investigated by computational methods. The most stable gold cluster structures on a stepped MgO(001) surface are searched for in the size range up to 24 Au atoms, and locally optimized by density-functional calculations. Several structural motifs are found within energy differences of 1 eV: inclined leaflets, arched leaflets, pyramidal hollow cages and compact structures. We show that the interaction with the step clearly modifies the structures with respect to adsorption on the flat defect-free surface. We find that leaflet structures clearly dominate for smaller sizes. These leaflets are either inclined and quasi-horizontal, or arched, at variance with the case of the flat surface in which vertical leaflets prevail. With increasing cluster size pyramidal hollow cages begin to compete against leaflet structures. Cage structures become more and more favourable as size increases. The only exception is size 20, at which the tetrahedron is found as the most stable isomer. This tetrahedron is however quite distorted. The comparison of two different exchange-correlation functionals (Perdew-Burke-Ernzerhof and local density approximation) show the same qualitative trends. This journal is © The Royal Society of Chemistry 2012
A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.
Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua
2016-01-27
Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.
Unraveling the structure of the h-BN/Rh(111) nanomesh with ab initio calculations
International Nuclear Information System (INIS)
Laskowski, R; Blaha, P
2008-01-01
The properties of a single layer of h-BN on top of a Rh(111) surface are discussed in terms of an ab initio generated force field approach as well as by direct ab initio density-functional theory (DFT) calculations. A single-layer model for the h-BN/Rh(111) nanomesh, in contrast to a previously considered (incomplete) double-layer model of h-BN, can explain the experimental data. The main focus of this work is to compare a force field approach described earlier in (Laskowski et al 2007 Phys. Rev. Lett. 98 106802) with direct ab initio calculations. The calculated geometry of the h-BN layer is very similar to the structure predicted by the force field approach. The ab initio calculated density of states projected on N-p x,y of BN corresponding to 'low' and 'high' regions with respect to the Rh surface shows a 1 eV splitting and thus explains the observed σ-band splitting. Moreover, we find good agreement between calculated and experimental scanning tunneling microscope (STM) images of this system
NFAP calculation of pressure response of 1/6th scale model containment structure
International Nuclear Information System (INIS)
Costantino, C.J.; Pepper, S.; Reich, M.
1988-01-01
The details associated with the NFAP calculation of the pressure response of the 1/6th scale model containment structure are discussed in this paper. Comparisons are presented of some of the primary items of interest with those determined from the experiment. It was found from this comparison that the hoop response of the containment wall was adequately predicted by the NFAP finite element calculation, including the response in the high pressure, high strain range at which cracking of the concrete and yielding of the hoop reinforcement occurred. In the vertical or meridional direction, it was found that the model was significantly softer than predicted by the finite element calculation; that is, the vertical strains in the test were three to four times larger than computed in the NFAP calculation. These differences were noted even at low strain levels at which the concrete would not be expected to be cracked under tensile loadings. Simplified calculations for the containment indicate that the vertical stiffness of the wall is similar to that which would be determined by assuming the concrete fully cracked. Thus, the experiment indicates an anomalous behavior in the vertical direction
First-principles calculation on dilute magnetic alloys in zinc blend crystal structure
International Nuclear Information System (INIS)
Ullah, Hamid; Inayat, Kalsoom; Khan, S.A; Mohammad, S.; Ali, A.; Alahmed, Z.A.; Reshak, A.H.
2015-01-01
Ab-initio calculations are performed to investigate the structural, electronic and magnetic properties of spin-polarized diluted magnetic alloys in zinc blende structure. The first-principles study is carried out on Mn doped III–V semiconductors. The calculated band structures, electronic properties and magnetic properties of Ga 1−x Mn x X (X=P, As) compounds reveal that Ga 0.75 Mn 0.25 P is half metallic turned to be metallic with increasing x to 0.5 and 0.75, whereas substitute P by As cause to maintain the half-metallicity nature in both of Ga 0.75 Mn 0.25 As and Ga 0.5 Mn 0.5 As and tune Ga 0.25 Mn 0.75 As to be metallic. Calculated total magnetic moments and the robustness of half-metallicity of Ga 0.75 Mn 0.25 P, Ga 0.75 Mn 0.25 As and Ga 0.5 Mn 0.5 As with respect to the variation in lattice parameters are also discussed. The predicted theoretical evidence shows that some Mn-doped III–V semiconductors can be effectively used in spintronic devices
Li, Haibin; He, Yun; Nie, Xiaobo
2018-01-01
Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer-Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.
First-principles calculation on dilute magnetic alloys in zinc blend crystal structure
Energy Technology Data Exchange (ETDEWEB)
Ullah, Hamid, E-mail: hamidullah@yahoo.com [Department of Physics, Government Post Graduate Jahanzeb College, Saidu Sharif Swat (Pakistan); Inayat, Kalsoom [Department of Physics, Government Post Graduate Jahanzeb College, Saidu Sharif Swat (Pakistan); Khan, S.A; Mohammad, S. [Department of Physics, Materials Modeling Laboratory, Hazara University, Mansehra 21300 (Pakistan); Ali, A. [Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungnam-do 356-706 (Korea, Republic of); Alahmed, Z.A. [Department of Physics and Astronomy, King Saud University, Riyadh 11451 (Saudi Arabia); Reshak, A.H. [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia)
2015-07-01
Ab-initio calculations are performed to investigate the structural, electronic and magnetic properties of spin-polarized diluted magnetic alloys in zinc blende structure. The first-principles study is carried out on Mn doped III–V semiconductors. The calculated band structures, electronic properties and magnetic properties of Ga{sub 1−x}Mn{sub x}X (X=P, As) compounds reveal that Ga{sub 0.75}Mn{sub 0.25}P is half metallic turned to be metallic with increasing x to 0.5 and 0.75, whereas substitute P by As cause to maintain the half-metallicity nature in both of Ga{sub 0.75}Mn{sub 0.25}As and Ga{sub 0.5}Mn{sub 0.5}As and tune Ga{sub 0.25}Mn{sub 0.75}As to be metallic. Calculated total magnetic moments and the robustness of half-metallicity of Ga{sub 0.75}Mn{sub 0.25}P, Ga{sub 0.75}Mn{sub 0.25}As and Ga{sub 0.5}Mn{sub 0.5}As with respect to the variation in lattice parameters are also discussed. The predicted theoretical evidence shows that some Mn-doped III–V semiconductors can be effectively used in spintronic devices.
Directory of Open Access Journals (Sweden)
FANG FANG JIAN
2010-09-01
Full Text Available The main aim of this study was to investigate the relationship between mIn tA new Ni(II complex of bisglycinato-bis[p-(hydroxylmethylpy-ridine] was synthesized and characterized by elemental analysis, IR, UV–Vis spectroscopy and X-ray single crystal diffraction analysis. The thermal stability of the title complex was also determined. The complex adopts a distorted octahedral geometry and possesses inversion symmetry with the Ni(II ion as the center of inversion. Density function theory (DFT calculations of the structure, electronic absorption spectra, electron structure and natural population analysis (NPA at the B3LYP/LANL2DZ level of theory were performed. The predicted geometric parameters and electronic spectra were compared with the experimental values and they supported each other. The NPA results indicate that the electronic transitions were mainly derived from the contribution of an intra-ligand (IL transition, a ligand-to-metal charge transfer (LMCT transition and a d-d transition. The electron structure calculations suggest that the central Ni(II ion uses its 4s and 3d orbitals to form covalent bonds with coordinated N and O atoms. The calculated bond orders are also consistent with the thermal decomposition results. Based on vibrational analysis, the thermodynamic properties of the title complex were predicted and the correlative equations between these thermodynamic properties and temperature are also reported.
Compton profiles and band structure calculations of CdS and CdTe
International Nuclear Information System (INIS)
Heda, N.L.; Mathur, S.; Ahuja, B.L.; Sharma, B.K.
2007-01-01
In this paper we present the isotropic Compton profiles of zinc-blende CdS and CdTe measured at an intermediate resolution of 0.39 a.u. using our 20 Ci 137 Cs Compton spectrometer. The electronic band structure calculations for both the zinc-blende structure compounds and also wurtzite CdS have been undertaken using various schemes of ab-initio linear combination of atomic orbitals calculations implemented in CRYSTAL03 code. The band structure and Mulliken's populations are reported using density functional scheme. In case of wurtzite CdS, our theoretical anisotropies in directional Compton profiles are compared with available experimental data. In case of both the zinc-blende compounds, the isotropic experimental profiles are found to be in better agreement with the present Hartree-Fock calculations. A study of the equal-valence-electron-density experimental profiles of zinc-blende CdS and CdTe shows that the CdS is more ionic than CdTe. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Ab initio calculations of the electronic structure and bonding characteristics of LaB6
International Nuclear Information System (INIS)
Hossain, Faruque M.; Riley, Daniel P.; Murch, Graeme E.
2005-01-01
Lanthanum hexaboride (LaB 6 , NIST SRM-660a) is widely used as a standard reference material for calibrating the line position and line shape parameters of powder diffraction instruments. The accuracy of this calibration technique is highly dependent on how completely the reference material is characterized. Critical to x-ray diffraction, this understanding must include the valence of the La atomic position, which in turn will influence the x-ray form factor (f) and hence the diffracted intensities. The electronic structure and bonding properties of LaB 6 have been investigated using ab initio plane-wave pseudopotential total energy calculations. The electronic properties and atomic bonding characteristics were analyzed by estimating the energy band structure and the density of states around the Fermi energy level. The calculated energy band structure is consistent with previously reported experimental findings; de Haas-van Alphen and two-dimensional angular correlation of electron-positron annihilation radiation. In addition, the bond strengths and types of atomic bonds in the LaB 6 compound were estimated by analyzing the Mulliken charge density population. The calculated result revealed the coexistence of covalent, ionic, and metallic bonding in the LaB 6 system and partially explains its high efficiency as a thermionic emitter
First-principles calculations of BC{sub 4}N nanostructures: stability and electronic structure
Energy Technology Data Exchange (ETDEWEB)
Freitas, A.; Azevedo, S. [Universidade Federal da Paraiba, CCEN, Departamento de Fisica, Joao Pessoa, PB (Brazil); Machado, M. [Universidade Federal de Pelotas, Departamento de Fisica, Pelotas, RS (Brazil); Kaschny, J.R. [Instituto Federal da Bahia-Campus Vitoria da Conquista, Vitoria da Conquista, BA (Brazil)
2012-07-15
In this work, we apply first-principles methods to investigate the stability and electronic structure of BC{sub 4}N nanostructures which were constructed from hexagonal graphite layers where substitutional nitrogen and boron atoms are placed at specific sites. These layers were rolled up to form zigzag and armchair nanotubes, with diameters varying from 7 to 12 A, or cut and bent to form nanocones, with 60 and 120 disclination angles. The calculation results indicate that the most stable structures are the ones which maximize the number of B-N and C-C bonds. It is found that the zigzag nanotubes are more stable than the armchair ones, where the strain energy decreases with increasing tube diameter D, following a 1/D {sup 2} law. The results show that the 60 disclination nanocones are the most stable ones. Additionally, the calculated electronic properties indicate a semiconducting behavior for all calculated structures, which is intermediate to the typical behaviors found for hexagonal boron nitride and graphene. (orig.)
Partial discharges in ellipsoidal and spheroidal voids
DEFF Research Database (Denmark)
Crichton, George C; Karlsson, P. W.; Pedersen, Aage
1989-01-01
Transients associated with partial discharges in voids can be described in terms of the charges induced on the terminal electrodes of the system. The relationship between the induced charge and the properties which are usually measured is discussed. The method is illustrated by applying it to a s......Transients associated with partial discharges in voids can be described in terms of the charges induced on the terminal electrodes of the system. The relationship between the induced charge and the properties which are usually measured is discussed. The method is illustrated by applying...
Voids and overdensities of coupled Dark Energy
International Nuclear Information System (INIS)
Mainini, Roberto
2009-01-01
We investigate the clustering properties of dynamical Dark Energy even in association of a possible coupling between Dark Energy and Dark Matter. We find that within matter inhomogeneities, Dark Energy migth form voids as well as overdensity depending on how its background energy density evolves. Consequently and contrarily to what expected, Dark Energy fluctuations are found to be slightly suppressed if a coupling with Dark Matter is permitted. When considering density contrasts and scales typical of superclusters, voids and supervoids, perturbations amplitudes range from |δ φ | ∼ O(10 −6 ) to |δ φ | ∼ O(10 −4 ) indicating an almost homogeneous Dark Energy component
Measurement of void fractions by nuclear techniques
International Nuclear Information System (INIS)
Hernandez G, A.; Vazquez G, J.; Diaz H, C.; Salinas R, G.A.
1997-01-01
In this work it is done a general analysis of those techniques used to determine void fractions and it is chosen a nuclear technique to be used in the heat transfer circuit of the Physics Department of the Basic Sciences Management. The used methods for the determination of void fractions are: radioactive absorption, acoustic techniques, average velocity measurement, electromagnetic flow measurement, optical methods, oscillating absorption, nuclear magnetic resonance, relation between pressure and flow oscillation, infrared absorption methods, sound neutron analysis. For the case of this work it will be treated about the radioactive absorption method which is based in the gamma rays absorption. (Author)
A tool for calculating binding-site residues on proteins from PDB structures
Directory of Open Access Journals (Sweden)
Hu Jing
2009-08-01
Full Text Available Abstract Background In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB that consists of the protein of interest and its interacting partner(s and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. Results In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. Conclusion The developed tool is very useful for the research on protein binding site analysis and prediction.
An analytical approach to the positive reactivity void coefficient of TRIGA Mark-II reactor
International Nuclear Information System (INIS)
Edgue, Erdinc; Yarman, Tolga
1988-01-01
Previous calculations of reactivity void coefficient of I.T.U. TRIGA Mark-II Reactor was done by the second author et al. The theoretical predictions were afterwards, checked in this reactor experimentally. In this work an analytical approach is developed to evaluate rather quickly the reactivity void coefficient of I.T.U. TRIGA Mark-II, versus the size of the void inserted into the reactor. It is thus assumed that the reactor is a cylindrical, bare nuclear system. Next a belt of water of 2πrΔrH is introduced axially at a distance r from the center line of the system. r here, is the thickness of the belt, and H is the height of the reactor. The void is described by decreasing the water density in the belt region. A two group diffusion theory is adopted to determine the criticality of our configuration. The space dependency of the group fluxes are, thereby, assumed to be J 0 (2.405 r / R) cos (π Z / H), the same as that associated with the original bare reactor uniformly loaded prior to the change. A perturbation type of approach, thence, furnishes the effect of introducing a void in the belt region. The reactivity void coefficient can, rather surprisingly, be indeed positive. To our knowledge, this fact had not been established, by the supplier. The agreement of our predictions with the experimental results is good. (author)
Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Shkumat, P. N.; Myronchuk, G. L.; Khvyshchun, M.; Fedorchuk, A. O.; Parasyuk, O. V.; Khyzhun, O. Y.
2015-04-01
High-quality single crystal of cesium mercury tetraiodide, Cs2HgI4, has been synthesized by the vertical Bridgman-Stockbarger method and its crystal structure has been refined. In addition, electronic structure and optical properties of Cs2HgI4 have been studied. For the crystal under study, X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces have been measured. The present X-ray photoelectron spectroscopy (XPS) results indicate that the Cs2HgI4 single crystal surface is very sensitive with respect to Ar+ ion-irradiation. In particular, Ar+ bombardment of the single crystal surface alters the elemental stoichiometry of the Cs2HgI4 surface. To elucidate peculiarities of the energy distribution of the electronic states within the valence-band and conduction-band regions of the Cs2HgI4 compound, we have performed first-principles band-structure calculations based on density functional theory (DFT) as incorporated in the WIEN2k package. Total and partial densities of states for Cs2HgI4 have been calculated. The DFT calculations reveal that the I p states make the major contributions in the upper portion of the valence band, while the Hg d, Cs p and I s states are the dominant contributors in its lower portion. Temperature dependence of the light absorption coefficient and specific electrical conductivity has been explored for Cs2HgI4 in the temperature range of 77-300 K. Main optical characteristics of the Cs2HgI4 compound have been elucidated by the first-principles calculations.
Energy Technology Data Exchange (ETDEWEB)
Song, Xiaowei; Fagiani, Matias R. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, D-04103 Leipzig (Germany); Gewinner, Sandy; Schöllkopf, Wieland [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany); Asmis, Knut R., E-mail: knut.asmis@uni-leipzig.de, E-mail: js@chemie.hu-berlin.de [Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, D-04103 Leipzig (Germany); Bischoff, Florian A.; Berger, Fabian; Sauer, Joachim, E-mail: knut.asmis@uni-leipzig.de, E-mail: js@chemie.hu-berlin.de [Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin (Germany)
2016-06-28
We use cryogenic ion trap vibrational spectroscopy in combination with quantum chemical calculations to study the structure of mono- and dialuminum oxide anions. The infrared photodissociation spectra of D{sub 2}-tagged AlO{sub 1-4}{sup −} and Al{sub 2}O{sub 3-6}{sup −} are measured in the region from 400 to 1200 cm{sup −1}. Structures are assigned based on a comparison to simulated harmonic and anharmonic IR spectra derived from electronic structure calculations. The monoaluminum anions contain an even number of electrons and exhibit an electronic closed-shell ground state. The Al{sub 2}O{sub 3-6}{sup −} anions are oxygen-centered radicals. As a result of a delicate balance between localization and delocalization of the unpaired electron, only the BHLYP functional is able to qualitatively describe the observed IR spectra of all species with the exception of AlO{sub 3}{sup −}. Terminal Al–O stretching modes are found between 1140 and 960 cm{sup −1}. Superoxo and peroxo stretching modes are found at higher (1120-1010 cm{sup −1}) and lower energies (850-570 cm{sup −1}), respectively. Four modes in-between 910 and 530 cm{sup −1} represent the IR fingerprint of the common structural motif of dialuminum oxide anions, an asymmetric four-member Al–(O){sub 2}–Al ring.
Fischer, Michael; Angel, Ross J.
2017-05-01
Density-functional theory (DFT) calculations incorporating a pairwise dispersion correction were employed to optimize the structures of various neutral-framework compounds with zeolite topologies. The calculations used the PBE functional for solids (PBEsol) in combination with two different dispersion correction schemes, the D2 correction devised by Grimme and the TS correction of Tkatchenko and Scheffler. In the first part of the study, a benchmarking of the DFT-optimized structures against experimental crystal structure data was carried out, considering a total of 14 structures (8 all-silica zeolites, 4 aluminophosphate zeotypes, and 2 dense phases). Both PBEsol-D2 and PBEsol-TS showed an excellent performance, improving significantly over the best-performing approach identified in a previous study (PBE-TS). The temperature dependence of lattice parameters and bond lengths was assessed for those zeotypes where the available experimental data permitted such an analysis. In most instances, the agreement between DFT and experiment improved when the experimental data were corrected for the effects of thermal motion and when low-temperature structure data rather than room-temperature structure data were used as a reference. In the second part, a benchmarking against experimental enthalpies of transition (with respect to α-quartz) was carried out for 16 all-silica zeolites. Excellent agreement was obtained with the PBEsol-D2 functional, with the overall error being in the same range as the experimental uncertainty. Altogether, PBEsol-D2 can be recommended as a computationally efficient DFT approach that simultaneously delivers accurate structures and energetics of neutral-framework zeotypes.
Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng
2014-11-10
Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.
Energy Technology Data Exchange (ETDEWEB)
Pahn, T. [Pahn Ingenieure, Am Seegraben 17b 03051 Cottbus Germany; Rolfes, R. [Institut f?r Statik und Dynamik, Leibniz Universit?t Hannover, Appelstra?e 9A 30167 Hannover Germany; Jonkman, J. [National Renewable Energy Laboratory, 15013 Denver West Parkway Golden Colorado 80401 USA
2017-02-20
A significant number of wind turbines installed today have reached their designed service life of 20 years, and the number will rise continuously. Most of these turbines promise a more economical performance if they operate for more than 20 years. To assess a continued operation, we have to analyze the load-bearing capacity of the support structure with respect to site-specific conditions. Such an analysis requires the comparison of the loads used for the design of the support structure with the actual loads experienced. This publication presents the application of a so-called inverse load calculation to a 5-MW wind turbine support structure. The inverse load calculation determines external loads derived from a mechanical description of the support structure and from measured structural responses. Using numerical simulations with the software fast, we investigated the influence of wind-turbine-specific effects such as the wind turbine control or the dynamic interaction between the loads and the support structure to the presented inverse load calculation procedure. fast is used to study the inverse calculation of simultaneously acting wind and wave loads, which has not been carried out until now. Furthermore, the application of the inverse load calculation procedure to a real 5-MW wind turbine support structure is demonstrated. In terms of this practical application, setting up the mechanical system for the support structure using measurement data is discussed. The paper presents results for defined load cases and assesses the accuracy of the inversely derived dynamic loads for both the simulations and the practical application.
Benchmark calculations on fluid coupled co-axial cylinders typical to LMFBR structures
International Nuclear Information System (INIS)
Dostal, M.; Descleve, P.; Gantenbein, F.; Lazzeri, L.
1983-01-01
This paper describes a joint effort promoted and funded by the Commission of European Community under the umbrella of Fast Reactor Co-ordinating Committee and working group on Codes and Standards No. 2 with the purpose to test several programs currently used for dynamic analysis of fluid-coupled structures. The scope of the benchmark calculations is limited to beam type modes of vibration, small displacement of the structures and small pressure variation such as encountered in seismic or flow induced vibration problems. Five computer codes were used: ANSYS, AQUAMODE, NOVAX, MIAS/SAP4 and ZERO where each program employs a different structural-fluid formulation. The calculations were performed for four different geometrical configurations of concentric cylinders where the effect of gap size, water level, and support conditions were considered. The analytical work was accompanied by experiments carried out on a purpose-built rig. The test rig consisted of two concentric cylinders independently supported on flexible cantilevers. A geometrical simplicity and attention in the rig design to eliminate the structural coupling between the cylinders lead to unambiguous test results. Only the beam natural frequencies, in phase and out of phase were measured. The comparison of different analytical methods and experimental results is presented and discussed. The degree of agreement varied between very good and unacceptable. (orig./GL)
Dynamic void behavior in polymerizing polymethyl methacrylate cement.
Muller, Scott D; McCaskie, Andrew W
2006-02-01
Cement mantle voids remain controversial with respect to survival of total hip arthroplasty. Void evolution is poorly understood, and attempts at void manipulation can only be empirical. We induced voids in a cement model simulating the constraints of the proximal femur. Intravoid pressure and temperature were recorded throughout polymerization, and the initial and final void volumes were measured. Temperature-dependent peak intravoid pressures and void volume increases were observed. After solidification, subatmospheric intravoid pressures were observed. The magnitude of these observations could not be explained by the ideal gas law. Partial pressures of the void gas at peak pressures demonstrated a dominant effect of gaseous monomer, thereby suggesting that void growth is a pressure-driven phenomenon resulting from temperature-dependent evaporation of monomer into existing trapped air voids.
Friction stir welding process to repair voids in aluminum alloys
Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)
1999-01-01
The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.
Brandelik, Andreas
2009-07-01
CALCMIN, an open source Visual Basic program, was implemented in EXCEL™. The program was primarily developed to support geoscientists in their routine task of calculating structural formulae of minerals on the basis of chemical analysis mainly obtained by electron microprobe (EMP) techniques. Calculation programs for various minerals are already included in the form of sub-routines. These routines are arranged in separate modules containing a minimum of code. The architecture of CALCMIN allows the user to easily develop new calculation routines or modify existing routines with little knowledge of programming techniques. By means of a simple mouse-click, the program automatically generates a rudimentary framework of code using the object model of the Visual Basic Editor (VBE). Within this framework simple commands and functions, which are provided by the program, can be used, for example, to perform various normalization procedures or to output the results of the computations. For the clarity of the code, element symbols are used as variables initialized by the program automatically. CALCMIN does not set any boundaries in complexity of the code used, resulting in a wide range of possible applications. Thus, matrix and optimization methods can be included, for instance, to determine end member contents for subsequent thermodynamic calculations. Diverse input procedures are provided, such as the automated read-in of output files created by the EMP. Furthermore, a subsequent filter routine enables the user to extract specific analyses in order to use them for a corresponding calculation routine. An event-driven, interactive operating mode was selected for easy application of the program. CALCMIN leads the user from the beginning to the end of the calculation process.
Local structure theory: calculation on hexagonal arrays, and interaction of rule and lattice
International Nuclear Information System (INIS)
Gutowitz, H.A.; Victor, J.D.
1989-01-01
Local structure theory calculations are applied to the study of cellular automata on the two-dimensional hexagonal lattice. A particular hexagonal lattice rule denoted (3422) is considered in detail. This rule has many features in common with Conway's Life. The local structure theory captures many of the statistical properties of this rule; this supports hypotheses raised by a study of Life itself. As in Life, the state of a cell under (3422) depends only on the state of the cell itself and the sum of states in its neighborhood at the previous time step. This property implies that evolution rules which operate in the same way can be studied on different lattices. The differences between the behavior of these rules on different lattices are dramatic. The mean field theory cannot reflect these differences. However, a generalization of the mean field theory, the local structure theory, does account for the rule-lattice interaction
Seibert, Jakob; Bannwarth, Christoph; Grimme, Stefan
2017-08-30
A fully quantum mechanical (QM) treatment to calculate electronic absorption (UV-vis) and circular dichroism (CD) spectra of typical biomolecules with thousands of atoms is presented. With our highly efficient sTDA-xTB method, spectra averaged along structures from molecular dynamics (MD) simulations can be computed in a reasonable time frame on standard desktop computers. This way, nonequilibrium structure and conformational, as well as purely quantum mechanical effects like charge-transfer or exciton-coupling, are included. Different from other contemporary approaches, the entire system is treated quantum mechanically and neither fragmentation nor system-specific adjustment is necessary. Among the systems considered are a large DNA fragment, oligopeptides, and even entire proteins in an implicit solvent. We propose the method in tandem with experimental spectroscopy or X-ray studies for the elucidation of complex (bio)molecular structures including metallo-proteins like myoglobin.
Directory of Open Access Journals (Sweden)
CHORNOMORETS H. Y.
2016-02-01
Full Text Available Raising of problem. For the design and construction of tube gas heaters in building structures to need solve the problems of analysis and synthesis of such heating system. The mathematical model of this system is consists of: mathematical model of the tube gas heater, mathematical model of heat distribution in the building structure and corresponding boundary conditions. To solve the tasks of analysis and synthesis must be appropriate mathematical and information support. Purpose. The purpose of this paper is to describe the developed mathematical and information support that solve the problems of analysis and synthesis of heating systems with gas tube heaters, located in building constructions.Conclusion. Mathematical support includes the development of algorithms and software for the numerical solution of problems analysis and synthesis heating system. Information support includes all the necessary parameters characterizing the thermal properties of materials which used in the heating system, and the parameters characterizing the heat exchange between the coolant and components of the heating system. It was developed algorithms for solving problems of analysis and synthesis heating system with tube gas heater located in structures to use evolutionary search algorithm and software. It was made experimental study and was obtained results allow to calculate the heat transfer from the gas-air mixture to the boundary surface of the building structure. This results and computation will provide full information support for solving problems of analysis and synthesis of the heating system. Was developed mathematical and software support, which allows to solve the problems of analysis and synthesis heating systems with gas tube heaters, located in building structures. Tube gas heaters located in the building structures allows with small capital expenditures to provide space heating. Is necessary to solve the problems of analysis (calculation and
Hybrid functional band gap calculation of SnO6 containing perovskites and their derived structures
International Nuclear Information System (INIS)
Lee, Hyewon; Cheong, S.W.; Kim, Bog G.
2015-01-01
We have studied the properties of SnO 6 octahedra-containing perovskites and their derived structures using ab initio calculations with different density functionals. In order to predict the correct band gap of the materials, we have used B3LYP hybrid density functional, and the results of B3LYP were compared with those obtained using the local density approximation and generalized gradient approximation data. The calculations have been conducted for the orthorhombic ground state of the SnO 6 containing perovskites. We also have expended the hybrid density functional calculation to the ASnO 3 /A'SnO 3 system with different cation orderings. We propose an empirical relationship between the tolerance factor and the band gap of SnO 6 containing oxide materials based on first principles calculation. - Graphical abstract: (a) Structure of ASnO 3 for orthorhombic ground state. The green ball is A (Ba, Sr, Ca) cation and the small (red) ball on edge is oxygen. SnO 6 octahedrons are plotted as polyhedron. (b) Band gap of ASnO 3 as a function of the tolerance factor for different density functionals. The experimental values of the band gap are marked as green pentagons. (c) ASnO 3 /A'SnO 3 superlattices with two types cation arrangement: [001] layered structure and [111] rocksalt structure, respectively. (d) B3LYP hybrid functional band gaps of ASnO 3 , [001] ordered superlattices, and [111] ordered superlattices of ASnO 3 /A'SnO 3 as a function of the effective tolerance factor. Note the empirical linear relationship between the band gap and effective tolerance factor. - Highlights: • We report the hybrid functional band gap calculation of ASnO 3 and ASnO 3 /A'SnO 3 . • The band gap of ASnO 3 using B3LYP functional reproduces the experimental value. • We propose the linear relationship between the tolerance factor and the band gap
Ab initio calculations of the structure and conformations of 2,6-lutidine
International Nuclear Information System (INIS)
Porcinai, S.; Foggi, P.
1997-01-01
Ab initio molecular orbital calculations at the SCF level have been utilized to determine the structure and the electronic and vibrational properties of 2,6-lutidine (2,6-dimethyl-pyridine) in the ground electronic state. Comparative calculations have been performed on the parent molecule pyridine. Structure predictions of both molecules are in good agreement with experimental data. The most stable rotamer of 2,6-lutidine has C 2v symmetry with one of the C-H bonds of both the methyl groups lying in the plane of the aromatic ring and pointing in the opposite direction with respect to the nitrogen atom. This is the result of the minimization of competing forces deriving from steric hindrance and electronic stabilization. Vibrational frequencies and oscillator strengths of C-H stretching in the fundamental region have been calculated for both pyridine and the most stable rotamer of 2,6-lutidine and compared to IR data obtained in pure liquids. The potential energy profile of the C-H bond in and out of plane has been investigated up to five times the equilibrium distance. The trend of the potential curves confirms that the C-H bond lying in the plane has a higher dissociation energy than that of the in-plane bonds as observed in experiments on vibrational overtones
Electronic Structure of Cu(tmdt2 Studied with First-Principles Calculations
Directory of Open Access Journals (Sweden)
Kiyoyuki Terakura
2012-08-01
Full Text Available We have studied the electronic structure of Cu(tmdt2, a material related to single-component molecular conductors, by first-principles calculations. The total energy calculations for several different magnetic configurations show that there is strong antiferromagnetic (AFM exchange coupling along the crystal a-axis. The electronic structures are analyzed in terms of the molecular orbitals near the Fermi level of isolated Cu(tmdt2 molecule. This analysis reveals that the system is characterized by the half-filled pdσ(− band whose intermolecular hopping integrals have strong one-dimensionality along the crystal a-axis. As the exchange splitting of the band is larger than the band width, the basic mechanism of the AFM exchange coupling is the superexchange. It will also be shown that two more ligand orbitals which are fairly insensitive to magnetism are located near the Fermi level. Because of the presence of these orbitals, the present calculation predicts that Cu(tmdt2 is metallic even in its AFM state, being inconsistent with the available experiment. Some comments will be made on the difference between Cu(tmdt2 and Cu(dmdt2.
First-principles calculations of the electronic and structural properties of GaSb
Energy Technology Data Exchange (ETDEWEB)
Castaño-González, E.-E. [Universidad del Norte, Grupo de Investigación en Física Aplicada, Departamento de Física (Colombia); Seña, N. [Universidad Nacional de Colombia-Colombia, Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones (Colombia); Mendoza-Estrada, V.; González-Hernández, R., E-mail: rhernandezj@uninorte.edu.co [Universidad del Norte, Grupo de Investigación en Física Aplicada, Departamento de Física (Colombia); Dussan, A. [Universidad Nacional de Colombia-Colombia, Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones (Colombia); Mesa, F., E-mail: fredy.mesa@urosario.edu.co [Universidad del Rosario, Grupo NanoTech, Facultad de Ciencias Naturales y Matemáticas (Colombia)
2016-10-15
In this paper, we carried out first-principles calculations in order to investigate the structural and electronic properties of the binary compound gallium antimonide (GaSb). This theoretical study was carried out using the Density Functional Theory within the plane-wave pseudopotential method. The effects of exchange and correlation (XC) were treated using the functional Local Density Approximation (LDA), generalized gradient approximation (GGA): Perdew–Burke–Ernzerhof (PBE), Perdew-Burke-Ernzerhof revised for solids (PBEsol), Perdew-Wang91 (PW91), revised Perdew–Burke–Ernzerhof (rPBE), Armiento–Mattson 2005 (AM05) and meta-generalized gradient approximation (meta-GGA): Tao–Perdew–Staroverov–Scuseria (TPSS) and revised Tao–Perdew–Staroverov–Scuseria (RTPSS) and modified Becke-Johnson (MBJ). We calculated the densities of state (DOS) and band structure with different XC potentials identified and compared them with the theoretical and experimental results reported in the literature. It was discovered that functional: LDA, PBEsol, AM05 and RTPSS provide the best results to calculate the lattice parameters (a) and bulk modulus (B{sub 0}); while for the cohesive energy (E{sub coh}), functional: AM05, RTPSS and PW91 are closer to the values obtained experimentally. The MBJ, Rtpss and AM05 values found for the band gap energy is slightly underestimated with those values reported experimentally.
Thorwirth, Sven; Mück, Leonie Anna; Gauss, Jürgen; Tamassia, Filippo; Lattanzi, Valerio; McCarthy, Michael C
2011-06-02
Silicon oxysulfide, OSiS, and seven of its minor isotopic species have been characterized for the first time in the gas phase at high spectral resolution by means of Fourier transform microwave spectroscopy. The equilibrium structure of OSiS has been determined from the experimental data using calculated vibration-rotation interaction constants. The structural parameters (rO-Si = 1.5064 Å and rSi-S = 1.9133 Å) are in very good agreement with values from high-level quantum chemical calculations using coupled-cluster techniques together with sophisticated additivity and extrapolation schemes. The bond distances in OSiS are very short in comparison with those in SiO and SiS. This unexpected finding is explained by the partial charges calculated for OSiS via a natural population analysis. The results suggest that electrostatic effects rather than multiple bonding are the key factors in determining bonding in this triatomic molecule. The data presented provide the spectroscopic information needed for radio astronomical searches for OSiS.
The Metallicity of Void Dwarf Galaxies
Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.
The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the
Time domain calculation of connector loads of a very large floating structure
Gu, Jiayang; Wu, Jie; Qi, Enrong; Guan, Yifeng; Yuan, Yubo
2015-06-01
Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision and wave loads are considered to establish motion differential equations for a multi-body VLFS. A time domain calculation method is proposed to calculate the connector load of the VLFS in waves. The Longuet-Higgins model is employed to simulate the stochastic wave load. Fluid force and hydrodynamic coefficient are obtained with DNV Sesam software. The motion differential equation is calculated by applying the time domain method when the frequency domain hydrodynamic coefficient is converted into the memory function of the motion differential equation of the time domain. As a result of the combined action of wave and impact loads, high-frequency oscillation is observed in the time history curve of the connector load. At wave directions of 0° and 75°, the regularities of the time history curves of the connector loads in different directions are similar and the connector loads of C1 and C2 in the X direction are the largest. The oscillation load is observed in the connector in the Y direction at a wave direction of 75° and not at 0°. This paper presents a time domain calculation method of connector load to provide a certain reference function for the future development of Chinese VLFS
The discrete cones methods for two-dimensional neutral particle transport problems with voids
International Nuclear Information System (INIS)
Watanabe, Y.; Maynard, C.W.
1983-01-01
One of the most widely applied deterministic methods for time-independent, two-dimensional neutron transport calculations is the discrete ordinates method (DSN). The DSN solution, however, fails to be accurate in a void due to the ray effect. In order to circumvent this drawback, the authors have been developing a novel approximation: the discrete cones method (DCN), where a group of particles in a cone are simultaneously traced instead of particles in discrete directions for the DSN method. Programs, which apply to the DSN method in a non-vacuum region and the DCN method in a void, have been written for transport calculations in X-Y coordinates. The solutions for test problems demonstrate mitigation of the ray effect in voids without loosing the computational efficiency of the DSN method
Average void fraction measurement in a two-phase vertical flow
International Nuclear Information System (INIS)
Mello, R.E.F. de; Behar, M.R.; Martines, E.W.
1975-01-01
The utilization of the radioactive tracer technique to measure the void fraction in a two phase flow air-water is presented. The radioactive tracer used was a salt of Br-82. The water flow rate varied between 0,4 and 2,0 m 3 /h, and the air flow rate between 0,2 and 1,0 m 3 /h. The resulting measured void fraction were between 0,05 and 0,32. These void fraction values were compared with those ones calculated with the measured flow rates and by use of empirical formulas, using different methods. After a convenient choice of the radioactive isotope, the measurements didn't present any special problem. The results have shown a good accordance with the values calculated by the formulas of R. Roumy, but was not possible yet to conclude, about the convenience of application and the grade of confidence of this method
Models for coolant void reactivity evaluation in Candu Generation II and III+
International Nuclear Information System (INIS)
Popov, Alexi V.; Chambon, Richard P.; Le Tellier, Romain; Marleau, Guy; Hebert, Alain
2008-01-01
In the simulation of large-break loss-of-coolant accidents, homogenised cross-sections from trans- port calculations are used. These are usually computed in single cells or lattices representative for an infinite repeated pattern. Large coolant accidents in Candu, however, usually exhibit a checkerboard pattern of cooled and voided channels represented by lattices. It is reasonable, therefore, that homogenised cross-sections be produced in assemblies of lattices. This allows simulating the checkerboard voiding pat- tern and more realistically reproducing the lattice boundary conditions. The result is better simulation of the accident and more precise evaluation of coolant-void reactivity. For the present study, homogenised cross-sections are generated in a 2x2 heterogeneous assembly of four lattices for Generation II and III+ Candu designs. Results of reactivity calculations with the reactor code are compared to those using the traditional method. The difference is significant for Generation III+ Candu. (authors)
International Nuclear Information System (INIS)
Cao, Jun; Xie, Zhi-Zhong; Yu, Xiaodong
2016-01-01
In the present work, the combined electronic structure calculations and surface hopping simulations have been performed to investigate the excited-state decay of the parent oxazole in the gas phase. Our calculations show that the S_2 state decay of oxazole is an ultrafast process characterized by the ring-opening and ring-closure of the five-membered oxazole ring, in which the triplet contribution is minor. The ring-opening involves the O−C bond cleavage affording the nitrile ylide and airine intermediates, while the ring-closure gives rise to a bicyclic species through a 2−5 bond formation. The azirine and bicyclic intermediates in the S_0 state are very likely involved in the phototranspositions of oxazoles. This is different from the previous mechanism in which these intermediates in the T_1 state have been proposed for these phototranspositions.
The calculation of the electron structure and optical properties of TiNi martensite
International Nuclear Information System (INIS)
Kul'kova, S.E.; Beketov, K.A.; Egorushkin, V.E.; Muryzhnikova, O.N.
1995-01-01
The self-consistent calculation of NiTi B2 and B19' phases have been performed by the linear muffin-tin orbital method in atomic sphere approximation (LMTO-ASA). Two approaches for calculation of B2-phase band structure have been used and the essential differences in the Fermi surface have been pointed out. The alterations of NiTi electron characteristics at the martensitic transition have been analyzed. The optical spectra and their peculiarities in B2 and monoclinic B19' phases have been discussed. In the frames of first principles method electron-positron annihilation characteristics in B2-NiTi have been investigated too. It was shown that a rather satisfactory agreement with experimental results for NiTi was achieved. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Sunagawa, M.; Sasaki, A.; Igarashi, J.-E.; Nishimura, T. [Research Center, Sumitomo Pharmaceuticals Co., Ltd., 3-1-98 Kasugadenaka, Konohanaku, Osaka (Japan)
1998-04-01
Structural comparisons of meropenem (1), desmethyl meropenem (2) and the penem analogue (3) which contain the same side chains at both C-2 and C-6 were performed using {sup 1}H NMR measurements together with 3-21G* level of ab initio MO and molecular mechanics calculations. The ab initio MO calculations reproduced the skeletons of these strained {beta}-lactam rings in good agreement with the crystallographic data. {sup 1}H NMR measurements in aqueous solution together with molecular modeling studies indicated that there were conformational differences of the C-2 and C-6 side chains in this series of compounds. These observations suggested that the conformational differences could affect their biological activities. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)
International Nuclear Information System (INIS)
Sunagawa, M.; Sasaki, A.; Igarashi, J.-E.; Nishimura, T.
1998-01-01
Structural comparisons of meropenem (1), desmethyl meropenem (2) and the penem analogue (3) which contain the same side chains at both C-2 and C-6 were performed using 1 H NMR measurements together with 3-21G* level of ab initio MO and molecular mechanics calculations. The ab initio MO calculations reproduced the skeletons of these strained β-lactam rings in good agreement with the crystallographic data. 1 H NMR measurements in aqueous solution together with molecular modeling studies indicated that there were conformational differences of the C-2 and C-6 side chains in this series of compounds. These observations suggested that the conformational differences could affect their biological activities. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)
Calculation of Limits of Fire Resistance for Structures with Fire Retardant Coating
Directory of Open Access Journals (Sweden)
Krivtcov Artem
2016-01-01
Full Text Available This article is devoted to fireproof processing of steel structures. The main task is to consider different types of sections of rod elements and to choose the most effective section for a steel column from the point of view of fire protection. For the solution of this task the steel columns with various cross sections working in identical entry conditions were considered. All necessary calculations for all types of sections were carried out. Results of calculations were presented in the summary table according to which the comparative analysis was made. At the end of work the conclusion that the compound section from four equal corners is the most effective from the point of view of fire protection.
Nagy, Szilvia; Pipek, János
2015-12-21
In wavelet based electronic structure calculations, introducing a new, finer resolution level is usually an expensive task, this is why often a two-level approximation is used with very fine starting resolution level. This process results in large matrices to calculate with and a large number of coefficients to be stored. In our previous work we have developed an adaptively refined solution scheme that determines the indices, where the refined basis functions are to be included, and later a method for predicting the next, finer resolution coefficients in a very economic way. In the present contribution, we would like to determine whether the method can be applied for predicting not only the first, but also the other, higher resolution level coefficients. Also the energy expectation values of the predicted wave functions are studied, as well as the scaling behaviour of the coefficients in the fine resolution limit.
Energy Technology Data Exchange (ETDEWEB)
Kong, Ki-jeong [Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of)]. E-mail: kong@krict.re.kr; Choi, Youngmin [Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of); Ryu, Beyong-Hwan [Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of); Lee, Jeong-O [Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of); Chang, Hyunju [Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of)
2006-07-15
The potential of carbon-related materials, such as carbon nanotubes (CNTs) and graphite nanofibers (GNFs), supported metal catalysts as an electrode for fuel cell application was investigated using the first-principle electronic structure calculations. The stable binding geometries and energies of metal catalysts are determined on the CNT surface and the GNF edge. The catalyst metal is more tightly bound to the GNF edge than to the CNT surface because of the existence of active dangling bonds of edge carbon atoms. The diffusion barrier of metal atoms on the surface and edge is also obtained. From our calculation results, we have found that high dispersity is achievable for GNF due to high barrier against the diffusion of metal atoms, while CNT appears less suitable. The GNF with a large edge-to-wall ratio is more suitable for the high-performance electrode than perfect crystalline graphite or CNT.
International Nuclear Information System (INIS)
Kong, Ki-jeong; Choi, Youngmin; Ryu, Beyong-Hwan; Lee, Jeong-O; Chang, Hyunju
2006-01-01
The potential of carbon-related materials, such as carbon nanotubes (CNTs) and graphite nanofibers (GNFs), supported metal catalysts as an electrode for fuel cell application was investigated using the first-principle electronic structure calculations. The stable binding geometries and energies of metal catalysts are determined on the CNT surface and the GNF edge. The catalyst metal is more tightly bound to the GNF edge than to the CNT surface because of the existence of active dangling bonds of edge carbon atoms. The diffusion barrier of metal atoms on the surface and edge is also obtained. From our calculation results, we have found that high dispersity is achievable for GNF due to high barrier against the diffusion of metal atoms, while CNT appears less suitable. The GNF with a large edge-to-wall ratio is more suitable for the high-performance electrode than perfect crystalline graphite or CNT
Computer codes for the calculation of vibrations in machines and structures
International Nuclear Information System (INIS)
1989-01-01
After an introductory paper on the typical requirements to be met by vibration calculations, the first two sections of the conference papers present universal as well as specific finite-element codes tailored to solve individual problems. The calculation of dynamic processes increasingly now in addition to the finite elements applies the method of multi-component systems which takes into account rigid bodies or partial structures and linking and joining elements. This method, too, is explained referring to universal computer codes and to special versions. In mechanical engineering, rotary vibrations are a major problem, and under this topic, conference papers exclusively deal with codes that also take into account special effects such as electromechanical coupling, non-linearities in clutches, etc. (orig./HP) [de
Energy Technology Data Exchange (ETDEWEB)
Cao, Jun [Guizhou Provincial Key Laboratory of Computational Nano-material Science, Guizhou Education University, Guiyang, Guizhou 550018 (China); Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology, Guizhou Education University, Guiyang 550018 (China); Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Xie, Zhi-Zhong [Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070 (China); Yu, Xiaodong, E-mail: yuxdhy@163.com [Department of Architecture and Chemical Engineering, Tangshan Polytechnic College, Tangshan 063020 (China)
2016-08-02
In the present work, the combined electronic structure calculations and surface hopping simulations have been performed to investigate the excited-state decay of the parent oxazole in the gas phase. Our calculations show that the S{sub 2} state decay of oxazole is an ultrafast process characterized by the ring-opening and ring-closure of the five-membered oxazole ring, in which the triplet contribution is minor. The ring-opening involves the O−C bond cleavage affording the nitrile ylide and airine intermediates, while the ring-closure gives rise to a bicyclic species through a 2−5 bond formation. The azirine and bicyclic intermediates in the S{sub 0} state are very likely involved in the phototranspositions of oxazoles. This is different from the previous mechanism in which these intermediates in the T{sub 1} state have been proposed for these phototranspositions.
Is the far border of the Local Void expanding?
Iwata, I.; Chamaraux, P.
2011-07-01
Context. According to models of evolution in the hierarchical structure formation scenarios, voids of galaxies are expected to expand. The Local Void (LV) is the closest large void, and it provides a unique opportunity to test observationally such an expansion. It has been found that the Local Group, which is on the border of the LV, is running away from the void center at ~260 km s-1. Aims: In this study we investigate the motion of the galaxies at the far-side border of the LV to examine the presence of a possible expansion. Methods: We selected late-type, edge-on spiral galaxies with radial velocities between 3000 km s-1 and 5000 km s-1, and carried out HI 21 cm line and H-band imaging observations. The near-infrared Tully-Fisher relation was calibrated with a large sample of galaxies and carefully corrected for Malmquist bias. It was used to compute the distances and the peculiar velocities of the LV sample galaxies. Among the 36 sample LV galaxies with good quality HI line width measurements, only 15 galaxies were selected for measuring their distances and peculiar velocities, in order to avoid the effect of Malmquist bias. Results: The average peculiar velocity of these 15 galaxies is found to be -419+208-251 km s-1, which is not significantly different from zero. Conclusions: Due to the intrinsically large scatter of Tully-Fisher relation, we cannot conclude whether there is a systematic motion against the center of the LV for the galaxies at the far-side boundary of the void. However, our result is consistent with the hypothesis that those galaxies at the far-side boundary have an average velocity of ~260 km s-1 equivalent to what is found at the position of the Local Group. Based on data taken at Nançay radiotelescope operated by Observatoire de Paris, CNRS and Université d'Orléans, Infrared Survey Facility (IRSF) which is operated by Nagoya university under the cooperation of South African Astronomical Observatory, Kyoto University, and National
Molecular Structure of Phenytoin: NMR, UV-Vis and Quantum Chemical Calculations
Directory of Open Access Journals (Sweden)
Raluca Luchian
2015-12-01
Full Text Available Due to the presence of the carbonyl and imide groups in the structure of 5,5-diphenylhydantoin (DPH, the possibility for this compound to be involved in hydrogen bonding intermolecular interactions is obvious. Even though such interactions are presumably responsible for the mechanism of action of this drug, however, to the best of our knowledge, the self-hydrogen bonding interactions between the DPH monomers have not been addressed till now. Furthermore, studies reporting on the spectroscopic characteristics of this molecule are scarcely reported in the literature. Here we report on the possible dimers of DPH, investigated by quantum chemical calculations at B3LYP/6-31+G(2d,2p level of theory. Twelve unique DPH dimers were structurally optimized in gas-phase, as well as in ethanol and DMSO and then were used to compute the population-averaged UV-Vis and NMR spectra using Boltzmann statistics. UV-Vis and NMR techniques were employed to assess experimentally the spectroscopical response of this compound. DFT calculations are also used to investigate the structural transformations between the solid and liquid phase, as well as for describing the electronic transitions and for the assignment of NMR spectra of DPH.
Vibronic-structure tracking: A shortcut for vibrationally resolved UV/Vis-spectra calculations
Energy Technology Data Exchange (ETDEWEB)
Barton, Dennis; König, Carolin; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de [Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster (Germany)
2014-10-28
The vibrational coarse structure and the band shapes of electronic absorption spectra are often dominated by just a few molecular vibrations. By contrast, the simulation of the vibronic structure even in the simplest theoretical models usually requires the calculation of the entire set of normal modes of vibration. Here, we exploit the idea of the mode-tracking protocol [M. Reiher and J. Neugebauer, J. Chem. Phys. 118, 1634 (2003)] in order to directly target and selectively calculate those normal modes which have the largest effect on the vibronic band shape for a certain electronic excitation. This is achieved by defining a criterion for the importance of a normal mode to the vibrational progressions in the absorption band within the so-called “independent mode, displaced harmonic oscillator” (IMDHO) model. We use this approach for a vibronic-structure investigation for several small test molecules as well as for a comparison of the vibronic absorption spectra of a truncated chlorophyll a model and the full chlorophyll a molecule. We show that the method allows to go beyond the often-used strategy to simulate absorption spectra based on broadened vertical excitation peaks with just a minimum of computational effort, which in case of chlorophyll a corresponds to about 10% of the cost for a full simulation within the IMDHO approach.
International Nuclear Information System (INIS)
Hao Xianfeng; Wu Zhijian; Xu Yuanhui; Zhou Defeng; Liu Xiaojuan; Meng Jian
2007-01-01
We investigate the cohesive energy, heat of formation, elastic constant and electronic band structure of transition metal diborides TMB 2 (TM = Hf, Ta, W, Re, Os and Ir, Pt) in the Pmmn space group using the ab initio pseudopotential total energy method. Our calculations indicate that there is a relationship between elastic constant and valence electron concentration (VEC): the bulk modulus and shear modulus achieve their maximum when the VEC is in the range of 6.8-7.2. In addition, trends in the elastic constant are well explained in terms of electronic band structure analysis, e.g., occupation of valence electrons in states near the Fermi level, which determines the cohesive energy and elastic properties. The maximum in bulk modulus and shear modulus is attributed to the nearly complete filling of TM d-B p bonding states without filling the antibonding states. On the basis of the observed relationship, we predict that alloying W and Re in the orthorhombic structure OsB 2 might be harder than alloying the Ir element. Indeed, the further calculations confirmed this expectation
Energy Technology Data Exchange (ETDEWEB)
Hao Xianfeng [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Wu Zhijian [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Xu Yuanhui [School of Biological Engineering, Changchun University of Technology, Changchun 130012 (China); Zhou Defeng [School of Biological Engineering, Changchun University of Technology, Changchun 130012 (China); Liu Xiaojuan [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng Jian [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)
2007-05-16
We investigate the cohesive energy, heat of formation, elastic constant and electronic band structure of transition metal diborides TMB{sub 2} (TM = Hf, Ta, W, Re, Os and Ir, Pt) in the Pmmn space group using the ab initio pseudopotential total energy method. Our calculations indicate that there is a relationship between elastic constant and valence electron concentration (VEC): the bulk modulus and shear modulus achieve their maximum when the VEC is in the range of 6.8-7.2. In addition, trends in the elastic constant are well explained in terms of electronic band structure analysis, e.g., occupation of valence electrons in states near the Fermi level, which determines the cohesive energy and elastic properties. The maximum in bulk modulus and shear modulus is attributed to the nearly complete filling of TM d-B p bonding states without filling the antibonding states. On the basis of the observed relationship, we predict that alloying W and Re in the orthorhombic structure OsB{sub 2} might be harder than alloying the Ir element. Indeed, the further calculations confirmed this expectation.
Hou, Ling; Li, Wei-Dong; Wang, Fangwei; Eriksson, Olle; Wang, Bao-Tian
2017-12-01
We present a systematic investigation of the structural, magnetic, electronic, mechanical, and thermodynamic properties of CmO2 with the local density approximation (LDA)+U and the generalized gradient approximation (GGA)+U approaches. The strong Coulomb repulsion and the spin-orbit coupling (SOC) effects on the lattice structures, electronic density of states, and band gaps are carefully studied, and compared with other A O2 (A =U , Np, Pu, and Am). The ferromagnetic configuration with half-metallic character is predicted to be energetically stable while a charge-transfer semiconductor is predicted for the antiferromagnetic configuration. The elastic constants and phonon spectra show that the fluorite structure is mechanically and dynamically stable. Based on the first-principles phonon density of states, the lattice vibrational energy is calculated using the quasiharmonic approximation. Then, the Gibbs free energy, thermal expansion coefficient, specific heat, and entropy are obtained and compared with experimental data. The mode Grüneisen parameters are presented to analyze the anharmonic properties. The Slack relation is applied to obtain the lattice thermal conductivity in temperature range of 300-1600 K. The phonon group velocities are also calculated to investigate the heat transfer. For all these properties, if available, we compare the results of CmO2 with other A O2 .
An optimized ultra-fine energy group structure for neutron transport calculations
International Nuclear Information System (INIS)
Huria, Harish; Ouisloumen, Mohamed
2008-01-01
This paper describes an optimized energy group structure that was developed for neutron transport calculations in lattices using the Westinghouse lattice physics code PARAGON. The currently used 70-energy group structure results in significant discrepancies when the predictions are compared with those from the continuous energy Monte Carlo methods. The main source of the differences is the approximations employed in the resonance self-shielding methodology. This, in turn, leads to ambiguous adjustments in the resonance range cross-sections. The main goal of developing this group structure was to bypass the self-shielding methodology altogether thereby reducing the neutronic calculation errors. The proposed optimized energy mesh has 6064 points with 5877 points spanning the resonance range. The group boundaries in the resonance range were selected so that the micro group cross-sections matched reasonably well with those derived from reaction tallies of MCNP for a number of resonance absorbers of interest in reactor lattices. At the same time, however, the fast and thermal energy range boundaries were also adjusted to match the MCNP reaction rates in the relevant ranges. The resulting multi-group library was used to obtain eigenvalues for a wide variety of reactor lattice numerical benchmarks and also the Doppler reactivity defect benchmarks to establish its adequacy. (authors)
Directory of Open Access Journals (Sweden)
Thomas Gomez
2018-04-01
Full Text Available Atomic structure of N-electron atoms is often determined by solving the Hartree-Fock equations, which are a set of integro-differential equations. The integral part of the Hartree-Fock equations treats electron exchange, but the Hartree-Fock equations are not often treated as an integro-differential equation. The exchange term is often approximated as an inhomogeneous or an effective potential so that the Hartree-Fock equations become a set of ordinary differential equations (which can be solved using the usual shooting methods. Because the Hartree-Fock equations are an iterative-refinement method, the inhomogeneous term relies on the previous guess of the wavefunction. In addition, there are numerical complications associated with solving inhomogeneous differential equations. This work uses matrix methods to solve the Hartree-Fock equations as an integro-differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using linear-algebra packages. The integral (exchange part of the Hartree-Fock equation can be approximated as a sum and written as a matrix. The Hartree-Fock equations can be solved as a matrix that is the sum of the differential and integral matrices. We compare calculations using this method against experiment and standard atomic structure calculations. This matrix method can also be used to solve for free-electron wavefunctions, thus improving how the atoms and free electrons interact. This technique is important for spectral line broadening in two ways: it improves the atomic structure calculations, and it improves the motion of the plasma electrons that collide with the atom.
International Nuclear Information System (INIS)
Demchenko, I.N.; Chernyshova, M.; Stolte, W.C.; Speaks, D.T.; Derkachova, A.
2012-01-01
The electronic structure of cadmium dichloride has been studied by X-ray absorption near edge structure (XANES) and, for the first time, by resonant inelastic X-ray scattering (RIXS) at the Cl K edge. Good agreement was obtained between the non-resonant X-ray emission (XES) along with XANES experimental spectra and the calculated Cl 3p local partial density of states (DOS). The calculations were performed using the full-potential linearized-augmented-plane-wave with the local orbitals (FP-(L)APW l o) method utilized in the WIEN2k code. It was shown that the position of the RIXS band in CdCl 2 follows a linear dispersion according to the Raman–Stokes law if the excitation energy is tuned below the absorption threshold. The situation changes for core excitation above the photoabsorption threshold where the dispersion relation is split into two branches. The position of the resonant contribution does not depend on the excitation energy, while the excitonic sideband follows the Raman–Stoke law. Combined XANES and RIXS measurements compared to calculated band structure allowed us to determine the direct band gap of CdCl 2 to be at 5.7 ± 0.05 eV. -- Highlights: ► XANES at the K edge of Cl and related emission KV band interpreted within the ab initio DFT formalism. ► Two dominant contributions observed in RIXS data: the resonant and the excitonic ones. ► The dispersion relation below the absorption threshold follows Raman–Stokes law. ► Dispersion above the threshold splits into two qualitatively different relations. ► Overlapping of XAS spectrum with RIXS one makes possible to estimate direct band gap value to be 5.7 eV.
Getmanskii, Iliya V; Minyaev, Ruslan M; Steglenko, Dmitrii V; Koval, Vitaliy V; Zaitsev, Stanislav A; Minkin, Vladimir I
2017-08-14
With help of the DFT calculations and imposing of periodic boundary conditions the geometrical and electronic structures were investigated of two- and three-dimensional boron systems designed on the basis of graphane and diamond lattices in which carbons were replaced with boron tetrahedrons. The consequent studies of two- and three-layer systems resulted in the construction of a three-dimensional supertetrahedral borane crystal structure. The two-dimensional supertetrahedral borane structures with less than seven layers are dynamically unstable. At the same time the three-dimensional superborane systems were found to be dynamically stable. Lack of the forbidden electronic zone for the studied boron systems testifies that these structures can behave as good conductors. The low density of the supertetrahedral borane crystal structures (0.9 g cm -3 ) is close to that of water, which offers the perspective for their application as aerospace and cosmic materials. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Kolesnikova, Inna N.; Putkov, Andrei E.; Rykov, Anatolii N.; Shishkov, Igor F.
2018-06-01
The equilibrium (re) molecular structure of thiobenzamide along with rh1 structure has been determined in gas phase using gas electron-diffraction (GED) at about 127 °C and quantum-chemical calculations (QC). Rovibrational distance corrections to the thermal averaged GED structure have been computed with anharmonic force constants obtained at the MP2/cc-pVTZ level of theory. According to the results of GED and QC thiobenzamide exists as mixture of two non-planar enantiomers of C1 symmetry. The selected equilibrium geometrical parameters of thiobenzamide (re, Å and ∠e, deg) are the following: (Cdbnd S) = 1.641(4), (Csbnd N) = 1.352(2), (Csbnd C) = 1.478(9), (Cdbnd C)av = 1.395(2), CCN = 114.7(5), CCS = 123.4(5), C2C1C7S = 31(4), C6C1C7N = 29(4). The structure of thiobenzamide in the gas phase is markedly different to that in the literature for the single crystal. The differences between the gas and the solid structures are ascribed to the presence of intermolecular hydrogen bonding in the solid phase.
Topology and dark energy: testing gravity in voids.
Spolyar, Douglas; Sahlén, Martin; Silk, Joe
2013-12-13
Modified gravity has garnered interest as a backstop against dark matter and dark energy (DE). As one possible modification, the graviton can become massive, which introduces a new scalar field--here with a Galileon-type symmetry. The field can lead to a nontrivial equation of state of DE which is density and scale dependent. Tension between type Ia supernovae and Planck could be reduced. In voids, the scalar field dramatically alters the equation of state of DE, induces a soon-observable gravitational slip between the two metric potentials, and develops a topological defect (domain wall) due to a nontrivial vacuum structure for the field.
Czech Academy of Sciences Publication Activity Database
Cimrman, R.; Novák, Matyáš; Kolman, Radek; Tůma, Miroslav; Plešek, Jiří; Vackář, Jiří
2018-01-01
Roč. 319, Feb (2018), s. 138-152 ISSN 0096-3003 R&D Projects: GA ČR GA17-12925S; GA ČR(CZ) GAP108/11/0853; GA MŠk(CZ) EF15_003/0000493 Institutional support: RVO:68378271 ; RVO:61388998 ; RVO:67985807 Keywords : electronic structure calculation * density functional theory * finite element method * isogeometric analysis OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Materials engineering (UT-L); Applied mathematics (UIVT-O) Impact factor: 1.738, year: 2016
Dynamical optimization techniques for the calculation of electronic structure in solids
International Nuclear Information System (INIS)
Benedek, R.; Min, B.I.; Garner, J.
1989-01-01
The method of dynamical simulated annealing, recently introduced by Car and Parrinello, provides a new tool for electronic structure computation as well as for molecular dynamics simulation. In this paper, we explore an optimization technique that is complementary to dynamical simulated annealing, the method of steepest descents (SD). As an illustration, SD is applied to calculate the total energy of diamond-Si, a system previously treated by Car and Parrinello. The adaptation of SD to treat metallic systems is discussed and a numerical application is presented. (author) 18 refs., 3 figs
Chinnaraja, D; Rajalakshmi, R; Srinivasan, T; Velmurugan, D; Jayabharathi, J
2014-04-24
A series of biologically active N-thiocarbamoyl pyrazoline derivatives have been synthesized using anhydrous potassium carbonate as the catalyst. All the synthesized compounds were characterized by FT-IR, (1)H NMR, (13)C NMR spectral studies, LCMS, CHN Analysis and X-ray diffraction analysis (compound 7). In order to supplement the XRD parameters, molecular modelling was carried out by Gaussian 03W. From the optimized structure, the energy, dipolemoment and HOMO-LUMO energies of all the systems were calculated. Copyright © 2014 Elsevier B.V. All rights reserved.
Are the program packages for molecular structure calculations really black boxes?
Directory of Open Access Journals (Sweden)
ANA MRAKOVIC
2007-12-01
Full Text Available In this communication it is shown that the widely held opinion that compact program packages for quantum–mechanical calculations of molecular structure can safely be used as black boxes is completely wrong. In order to illustrate this, the results of computations of equilibrium bond lengths, vibrational frequencies and dissociation energies for all homonuclear diatomic molecules involving the atoms from the first two rows of the Periodic Table, performed using the Gaussian program package are presented. It is demonstrated that the sensible use of the program requires a solid knowledge of quantum chemistry.
Tang, H. T.; Hofmann, R.; Yee, G.; Vaughan, D. K.
1980-01-01
Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences.
Directory of Open Access Journals (Sweden)
István Bors
2015-09-01
Full Text Available Maize (Zea mays L. is often contaminated with Fusarium verticillioides. This harmful fungus produces fumonisins as secondary metabolites. These fumonisins can appear both free and hidden form in planta. The hidden form is usually bound covalently to cereal starch. From the hidden fumonisins, during enzymatic degradation, glycosides are formed, and the fumonisin is further decomposed during a de-esterification step. In this short communication some preliminary DFT calculated structural results which could be useful in the future to help to understand the van der Waals force controlled molecular interactions between these kinds of mycotoxin molecules and enzymes are demonstrated.
International Nuclear Information System (INIS)
Oliveira, L.E.M.C. de.
1976-01-01
The electronic structure of the interstitial hydrogen atom in alkaline-earth fluorides has been studied using the self-consistent-field multiple-scattering Xα method. In the calculations a cluster constituted by the hydrogen atom and its first anion and cation neighbors has been used. The contact parameters with the proton and the fluorine nuclei have been evaluated. The agreement obtained with the experimental results is in general good and indicates that this method is also appropriate to study defects in ionic crystals. (author) [pt
Calculation of fluid-structure interaction for reactor safety with the Cassiopee code
International Nuclear Information System (INIS)
Graveleau, J.L.; Louvet, P.D.
1979-01-01
The cassiopee code is an eulerian-lagrangian coupled code for computations where the hydrodynamic is coupled with structural domains. It is completely explicit. The fluid zones may be computed either in lagrangian or in eulerian coordinates; thin shells can be computed wih their flexural behaviour; elastic plastic zones must be calculated in a lagrangian way. This code is under development in Cadarache. Its purpose is to compute the hypothetical core disruptive accident of a LMFBR when lagrangian codes are not sufficient. This paper contains a description of the code and two examples of computations, one of which has been compared with experimental results
Measurement of the local void fraction at high pressures in a heating channel
International Nuclear Information System (INIS)
Martin, R.
1969-01-01
Void fraction measurements were made in two phase flow boiling systems at high pressures in a uniformly heated, rectangular channel with a high aspect ratio. The local void fraction values were calculated from measurements of the absorption of a thin collimated X-ray beam (2 mm x 0.05 mm). The mean void fraction in a horizontal section results from integration of the local values across the section. At a fixed measuring station the quality and- void fraction were varied by changing the heat flux, flow rate and pressure systematically. Two channels were used differing in length and thickness (150.8 cm x 5.3 cm x 0.2 cm and the significant features of this study are: -1) The void fraction measurements are among the first obtained at such high pressure (80 to 140 kg/cm 2 ); -2) In the experimental region under consideration the measurements are systematic and numerous enough to allow accurate interpolations: mass velocity from 50 to 220 g/cm 2 .s, heat flux from 40 to 170 W/cm 2 and calculated steam quality from -0.2 to 0.2; -3) Many tests were performed under local boiling conditions with the mean temperature of the fluid below the saturation temperature; and -4) These results were compared to the predictions of certain models presented in the literature and simple empirical formulae were developed to fit the experimental results. (author) [fr
Two Hop Adaptive Vector Based Quality Forwarding for Void Hole Avoidance in Underwater WSNs.
Javaid, Nadeem; Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil; Ilahi, Manzoor
2017-08-01
Underwater wireless sensor networks (UWSNs) facilitate a wide range of aquatic applications in various domains. However, the harsh underwater environment poses challenges like low bandwidth, long propagation delay, high bit error rate, high deployment cost, irregular topological structure, etc. Node mobility and the uneven distribution of sensor nodes create void holes in UWSNs. Void hole creation has become a critical issue in UWSNs, as it severely affects the network performance. Avoiding void hole creation benefits better coverage over an area, less energy consumption in the network and high throughput. For this purpose, minimization of void hole probability particularly in local sparse regions is focused on in this paper. The two-hop adaptive hop by hop vector-based forwarding (2hop-AHH-VBF) protocol aims to avoid the void hole with the help of two-hop neighbor node information. The other protocol, quality forwarding adaptive hop by hop vector-based forwarding (QF-AHH-VBF), selects an optimal forwarder based on the composite priority function. QF-AHH-VBF improves network good-put because of optimal forwarder selection. QF-AHH-VBF aims to reduce void hole probability by optimally selecting next hop forwarders. To attain better network performance, mathematical problem formulation based on linear programming is performed. Simulation results show that by opting these mechanisms, significant reduction in end-to-end delay and better throughput are achieved in the network.
Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha
Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.
X-ray Computed Tomography Assessment of Air Void Distribution in Concrete
Lu, Haizhu
Air void size and spatial distribution have long been regarded as critical parameters in the frost resistance of concrete. In cement-based materials, entrained air void systems play an important role in performance as related to durability, permeability, and heat transfer. Many efforts have been made to measure air void parameters in a more efficient and reliable manner in the past several decades. Standardized measurement techniques based on optical microscopy and stereology on flat cut and polished surfaces are widely used in research as well as in quality assurance and quality control applications. Other more automated methods using image processing have also been utilized, but still starting from flat cut and polished surfaces. The emergence of X-ray computed tomography (CT) techniques provides the capability of capturing the inner microstructure of materials at the micrometer and nanometer scale. X-ray CT's less demanding sample preparation and capability to measure 3D distributions of air voids directly provide ample prospects for its wider use in air void characterization in cement-based materials. However, due to the huge number of air voids that can exist within a limited volume, errors can easily arise in the absence of a formalized data processing procedure. In this study, air void parameters in selected types of cement-based materials (lightweight concrete, structural concrete elements, pavements, and laboratory mortars) have been measured using micro X-ray CT. The focus of this study is to propose a unified procedure for processing the data and to provide solutions to deal with common problems that arise when measuring air void parameters: primarily the reliable segmentation of objects of interest, uncertainty estimation of measured parameters, and the comparison of competing segmentation parameters.
Evangelisti, Luca; Pate, Brooks
2017-06-01
A study of the minimally exciting topic of agreement between experimental and measured rotational constants of molecules was performed on a set of large molecules with 16-18 heavy atoms (carbon and oxygen). The molecules are: nootkatone (C_{15}H_{22}O), cedrol (C_{15}H_{26}O), ambroxide (C_{16}H_{28}O), sclareolide (C_{16}H_{22}O_{2}), and dihydroartemisinic acid (C_{15}H_{24}O_{2}). For this set of molecules we obtained 13C-subsitution structures for six molecules (this includes two conformers of nootkatone). A comparison of theoretical structures and experimental substitution structures was performed in the spirit of the recent work of Grimme and Steinmetz.[1] Our analysis focused the center-of-mass distance of the carbon atoms in the molecules. Four different computational methods were studied: standard DFT (B3LYP), dispersion corrected DFT (B3LYP-D3BJ), hybrid DFT with dispersion correction (B2PLYP-D3), and MP2. A significant difference in these theories is how they handle medium range correlation of electrons that produce dispersion forces. For larger molecules, these dispersion forces produce an overall contraction of the molecule around the center-of-mass. DFT poorly treats this effect and produces structures that are too expanded. MP2 calculations overestimate the correction and produce structures that are too compact. Both dispersion corrected DFT methods produce structures in excellent agreement with experiment. The analysis shows that the difference in computational methods can be described by a linear error in the center-of-mass distance. This makes it possible to correct poorer performing calculations with a single scale factor. We also reexamine the issue of the "Costain error" in substitution structures and show that it is significantly larger in these systems than in the smaller molecules used by Costain to establish the error limits. [1] Stefan Grimme and Marc Steinmetz, "Effects of London dispersion correction in density functional theory on
Absolute Hydration Free Energy of Proton from First Principles Electronic Structure Calculations
International Nuclear Information System (INIS)
Zhan, Chang-Guo; Dixon, David A.
2001-01-01
The absolute hydration free energy of the proton, DGhyd298(H+), is one of the fundamental quantities for the thermodynamics of aqueous systems. Its exact value remains unknown despite extensive experimental and computational efforts. We report a first-principles determination of DGhyd298(H+) by using the latest developments in electronic structure theory and massively parallel computers. DGhyd298(H+) is accurately predicted to be -262.4 kcal/mol based on high-level, first-principles solvation-included electronic structure calculations. The absolute hydration free energies of other cations can be obtained by using appropriate available thermodynamic data in combination with this value. The high accuracy of the predicted absolute hydration free energy of proton is confirmed by applying the same protocol to predict DGhyd298(Li+)
Hinuma, Yoyo; Hayashi, Hiroyuki; Kumagai, Yu; Tanaka, Isao; Oba, Fumiyasu
2017-09-01
High-throughput first-principles calculations based on density functional theory (DFT) are a powerful tool in data-oriented materials research. The choice of approximation to the exchange-correlation functional is crucial as it strongly affects the accuracy of DFT calculations. This study compares performance of seven approximations, six of which are based on Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) with and without Hubbard U and van der Waals corrections (PBE, PBE+U, PBED3, PBED3+U, PBEsol, and PBEsol+U), and the strongly constrained and appropriately normed (SCAN) meta-GGA on the energetics and crystal structure of elementary substances and binary oxides. For the latter, only those with closed-shell electronic structures are considered, examples of which include C u2O , A g2O , MgO, ZnO, CdO, SnO, PbO, A l2O3 , G a2O3 , I n2O3 , L a2O3 , B i2O3 , Si O2 , Sn O2 , Pb O2 , Ti O2 , Zr O2 , Hf O2 , V2O5 , N b2O5 , T a2O5 , Mo O3 , and W O3 . Prototype crystal structures are selected from the Inorganic Crystal Structure Database (ICSD) and cation substitution is used to make a set of existing and hypothetical oxides. Two indices are proposed to quantify the extent of lattice and internal coordinate relaxation during a calculation. The former is based on the second invariant and determinant of the transformation matrix of basis vectors from before relaxation to after relaxation, and the latter is derived from shifts of internal coordinates of atoms in the unit cell. PBED3, PBEsol, and SCAN reproduce experimental lattice parameters of elementary substances and oxides well with few outliers. Notably, PBEsol and SCAN predict the lattice parameters of low dimensional structures comparably well with PBED3, even though these two functionals do not explicitly treat van der Waals interactions. SCAN gives formation enthalpies and Gibbs free energies closest to experimental data, with mean errors (MEs) of 0.01 and -0.04 eV, respectively, and root
Synthesis, Crystal Structure, and DFT Calculations of 1,3-Diisobutyl Thiourea
Directory of Open Access Journals (Sweden)
Ataf A. Altaf
2015-01-01
Full Text Available 1,3-Diisobutyl thiourea was synthesized and characterized by single crystal X-ray diffraction. It gives a monoclinic (α = γ = 90 and β ≠ 90 structure with the space group P21/c. The unit cell dimensions are a = 11.5131 (4 Å, b = 9.2355 (3 Å, c = 11.3093 (5 Å, α = 90°, β = 99.569° (2, γ = 90°, V = 1185.78 (8 Å3, and Z = 4. The crystal packing is stabilized by intermolecular (N–H⋯S hydrogen bonding in the molecules. The optimized geometry and Mullikan's charges of the said molecule calculated with the help of DFT using B3LYP-6-311G model support the crystal structure.
Experimental and calculated rf properties of the disk-and-washer structure
International Nuclear Information System (INIS)
Potter, J.M.; Schriber, S.O.; Humphry, F.J.
1979-01-01
A detailed study of the disk-and-washer structure using SUPERFISH has shown that the physical geometry can be optimized to make the structure more efficient than previously reported. The calculated ZT 2 is equal to that of an equivalent LAMPF cavity (neglecting any losses associated with the side-coupler slots) for β = 0.6 and is 30% higher for β = 1.0. Several techniques for supporting the washer were studied in addition to the conventional ''L'' supports. Two types of supports, the ''TO'' that supports two washers from every other disk with a T, and radial supports in the washer plane, improve left-right symmetry and reduce the tuning effort required to achieve a satisfactory field distribution. Effects of these supports on tuning procedures are discussed
Civil engineering: calculations of pre-stressed concrete structures using CodeAster
International Nuclear Information System (INIS)
Gerard, B.; Ulm, F.
1997-11-01
This document presents an analysis of the different calculation methods for pre-stressed concrete structure which can be performed by using finite element methods. Two methods of calculating the pre-stressing of concrete structures with finite elements have been determined. The equivalent method which consists of replacing the action of pre-stressing the concrete by equivalent forces. These method is well suited to dimensioning and studying the overall stability of a structure. It is not an easy matter to take into account the coupled or time-varying phenomena. This approach ignores the evolution of the interaction between the pre-stressing and the concrete. The explicit method which consists of including the mechanical resolution of the pre-stressed cables in that of a concrete structure. Not only does this allow a local study of the pre-stressed to be made, it also allows the coupling which developed over time to be determined, e.g. slip, deferred deformation and coupling between the steel and concrete behaviours. This method enables non-linear phenomena with varying degrees of complexity, such as fracture or yielding of the steels, drying out of the concrete, creep, etc to be described. The two methods are complementary. This document presents the mathematical and computer developments relating to each of this method. In the case of the explicit method, certain of the Code-Aster functions already make it possible to meet several EDF application requirements. Several couplings can be taken into account, such as thermomechanical, shrinkage in drying, creep, relaxation and injection of the cables. Three immediate developments of Code-Aster are proposed for the following applications: - a procedure for calculating the pre-stress losses along the pre-stressing cables; - a command to allocate these forces in the form of an initial force field in the bar elements associated with the cables; - a procedure for linking elements whose nodes do not coincide with each other
Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.
2015-04-01
A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the 13C and 1H NMR chemical shifts of Carbamazepine.
Comparison between different computational schemes for variational calculations in nuclear structure
International Nuclear Information System (INIS)
Puddu, G.
2009-01-01
We compare several iteration methods for angular-momentum- and parity-projected Hartree-Fock calculations. We used the Anderson update, the modified Broyden method, newly introduced in nuclear-structure calculations, and variants of the Broyden-Fletcher-Goldhaber-Shanno methods (BFGS). We performed ground-state calculations for 18 C and 6 Li using the two-body Hamiltonian obtained from the CDBonn-2000 potential via the Lee-Suzuki renormalization method. We found that BFGS methods are superior to both the Anderson update and to the modified Broyden method. In the case of 6 Li we found that the Anderson update and modified Broyden method do not converge to the angular-momentum- and parity-projected Hartree-Fock minimum. The reason is traced back to the lack of a mechanism that guarantees a decrease of the energy from one iteration to the next and to the fact that these methods guarantee a stationary solution rather than a minimum of the energy. (orig.)
Tank SY-101 void fraction instrument functional design criteria
International Nuclear Information System (INIS)
McWethy, L.M.
1994-01-01
This document presents the functional design criteria for design, analysis, fabrication, testing, and installation of a void fraction instrument for Tank SY-101. This instrument will measure the void fraction in the waste in Tank SY-101 at various elevations
Risk management of low air void asphalt concrete mixtures.
2013-07-01
Various forms of asphalt pavement distress, such as rutting, shoving and bleeding, can be attributed, in many cases, to low air voids in : the mixtures during production and placement. The occurrence of low air void contents during plant production m...
Time domain numerical calculations of the short electron bunch wakefields in resistive structures
Energy Technology Data Exchange (ETDEWEB)
Tsakanian, Andranik
2010-10-15
The acceleration of electron bunches with very small longitudinal and transverse phase space volume is one of the most actual challenges for the future International Linear Collider and high brightness X-Ray Free Electron Lasers. The exact knowledge on the wake fields generated by the ultra-short electron bunches during its interaction with surrounding structures is a very important issue to prevent the beam quality degradation and to optimize the facility performance. The high accuracy time domain numerical calculations play the decisive role in correct evaluation of the wake fields in advanced accelerators. The thesis is devoted to the development of a new longitudinally dispersion-free 3D hybrid numerical scheme in time domain for wake field calculation of ultra short bunches in structures with walls of finite conductivity. The basic approaches used in the thesis to solve the problem are the following. For materials with high but finite conductivity the model of the plane wave reflection from a conducting half-space is used. It is shown that in the conductive half-space the field components perpendicular to the interface can be neglected. The electric tangential component on the surface contributes to the tangential magnetic field in the lossless area just before the boundary layer. For high conducting media, the task is reduced to 1D electromagnetic problem in metal and the so-called 1D conducting line model can be applied instead of a full 3D space description. Further, a TE/TM (''transverse electric - transverse magnetic'') splitting implicit numerical scheme along with 1D conducting line model is applied to develop a new longitudinally dispersion-free hybrid numerical scheme in the time domain. The stability of the new hybrid numerical scheme in vacuum, conductor and bound cell is studied. The convergence of the new scheme is analyzed by comparison with the well-known analytical solutions. The wakefield calculations for a number of
Systematic model calculations of the hyperfine structure in light and heavy ions
Tomaselli, M; Nörtershäuser, W; Ewald, G; Sánchez, R; Fritzsche, S; Karshenboim, S G
2003-01-01
Systematic model calculations are performed for the magnetization distributions and the hyperfine structure (HFS) of light and heavy ions with a mass close to A ~ 6 208 235 to test the interplay of nuclear and atomic structure. A high-precision measurement of lithium-isotope shifts (IS) for suitable transition, combined with an accurate theoretical evaluation of the mass-shift contribution in the respective transition, can be used to determine the root-mean-square (rms) nuclear-charge radius of Li isotopes, particularly of the halo nucleus /sup 11/Li. An experiment of this type is currently underway at GSI in Darmstadt and ISOLDE at CERN. However, the field-shift contributions between the different isotopes can be evaluated using the results obtained for the charge radii, thus casting, with knowledge of the ratio of the HFS constants to the magnetic moments, new light on the IS theory. For heavy charged ions the calculated n- body magnetization distributions reproduce the HFS of hydrogen-like ions well if QED...
International Nuclear Information System (INIS)
Hanke, M.; Hennig, D.; Kaschte, A.; Koeppen, M.
1988-01-01
The energy band structure of cadmium telluride and mercury telluride materials is investigated by means of the tight-binding (TB) method considering relativistic effects and the spin-orbit interaction. Taking into account relativistic effects in the method is rather simple though the size of the Hamilton matrix doubles. Such considerations are necessary for the interesting small-interstice semiconductors, and the experimental results are reflected correctly in the band structures. The transformation behaviour of the eigenvectors within the Brillouin zone gets more complicated, but is, nevertheless, theoretically controllable. If, however, the matrix elements of the Green operator are to be calculated, one has to use formula manipulation programmes in particular for non-diagonal elements. For defect calculations by the Koster-Slater theory of scattering it is necessary to know these matrix elements. Knowledge of the transformation behaviour of eigenfunctions saves frequent diagonalization of the Hamilton matrix and thus permits a numerical solution of the problem. Corresponding results for the sp 3 basis are available
Energy Technology Data Exchange (ETDEWEB)
Niedermayer, U., E-mail: u.niedermayer@gsi.de [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstrasse 8, 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstrasse 8, 64289 Darmstadt (Germany)
2012-09-21
The resistive wall impedance is one of the main sources for beam instabilities in synchrotrons and storage rings. The fast ramped SIS18 synchrotron at GSI and the projected SIS100 synchrotron for FAIR both employ thin (0.3 mm) stainless steel beam pipes in order to reduce eddy current effects. The lowest betatron sidebands are at about 100 kHz, which demands accurate impedance predictions in the low frequency (LF) range where the beam pipe and possibly also the structures behind the pipe are the dominating impedance sources. The longitudinal and transverse resistive wall impedances of a circular multi-layer pipe are calculated analytically using the field matching technique. We compare the impedances obtained from a radial wave model, which corresponds to the setup used in bench measurements, with the axial wave model, which corresponds to an actual beam moving with relativistic velocity. For thin beam pipes the induced wall current and the corresponding shielding properties of the pipe are important. In both models the wall current is obtained analytically. The characteristic frequencies for the onset of the wall current are calculated from equivalent lumped element circuits corresponding to the radial model. For more complex structures, like the SIS100 beam pipe, we use a numerical method, in which the impedance is obtained from the total power loss. The method is validated by the analytic expressions for circular beam pipes.
Calculation of DPA in the Reactor Internal Structural Materials of Nuclear Power Plant
International Nuclear Information System (INIS)
Kim, Yong Deong; Lee, Hwan Soo
2014-01-01
The embrittlement is mainly caused by atomic displacement damage due to irradiations with neutrons, especially fast neutrons. The integrity of the reactor internal structural materials has to be ensured over the reactor life time, threatened by the irradiation induced displacement damage. Accurate modeling and prediction of the displacement damage is a first step to evaluate the integrity of the reactor internal structural materials. Traditional approaches for analyzing the displacement damage of the materials have relied on tradition model, developed initially for simple metals, Kinchin and Pease (K-P), and the standard formulation of it by Norgett et al. , often referred to as the 'NRT' model. An alternative and complementary strategy for calculating the displacement damage is to use MCNP code. MCNP uses detailed physics and continuous-energy cross-section data in its simulations. In this paper, we have performed the evaluation of the displacement damage of the reactor internal structural materials in Kori NPP unit 1 using detailed Monte Carlo modeling and compared with predictions results of displacement damage using the classical NRT model. The evaluation of the displacement damage of the reactor internal structural materials in Kori NPP unit 1 using detailed Monte Carlo modeling has been performed. The maximum value of the DPA rate was occurred at the baffle side of the reactor internal where the node has the maximum neutron flux
Directory of Open Access Journals (Sweden)
Andriy Valeriy Moltasov
2017-12-01
Full Text Available Purpose. The subject of this study is the strength of the loaded units of mobile machines for flash butt welding by refining high-strength rails. The theme of the work is related to the development of a technique for strength calculating of the insulation of the central axis of these machines. The aim of the paper is to establish the mathematical dependence of the pressure on the insulation on the magnitude of deflections of the central axis under the action of the upset force. Design/methodology/approach. Using the Mohr’s method, the displacements of the investigated sections of the central axis under the action of the upset force and the equivalent load distributed along the length of the insulation were calculated. The magnitude of the load distributed along the length of the insulation equivalent to the draft force was determined from the condition that the displacements of the same cross sections are equal under the action of this load and under the action of the upset force. Results. An analytical expression for establishing the relationship between the pressure acting on the insulation and the magnitude of the upset force and the geometric dimensions of the structural elements of the machine was obtained. Based on the condition of the strength of the insulation for crushing, an analytical expression for establishing the relationship between the length of insulation and the size of the upset force, the geometric dimensions of the structural elements of the machine, and the physical and mechanical properties of the insulation material was obtained. Originality/cost. The proposed methodology was tested in the calculation and design of the K1045 mobile rail welding machine, 4 of which is currently successfully used in the USA for welding rails in hard-to-reach places.
Atomic structure calculations and identification of EUV and SXR spectral lines in Sr XXX
International Nuclear Information System (INIS)
Goyal, Arun; Khatri, Indu; Aggarwal, Sunny; Singh, A.K.; Mohan, Man
2015-01-01
We report an extensive theoretical study of atomic data for Sr XXX in a wide range with L-shell electron excitations to the M-shell. We have calculated energy levels, wave-function compositions and lifetimes for lowest 113 fine structure levels and wavelengths of an extreme Ultraviolet (EUV) and soft X-ray (SXR) transitions. We have employed multi-configuration Dirac Fock method (MCDF) approach within the framework of Dirac–Coulomb Hamiltonian including quantum electrodynamics (QED) and Breit corrections. We have also presented the radiative data for electric and magnetic dipole (E1, M1) and quadrupole (E2, M2) transitions from the ground state. We have made comparisons with available energy levels compiled by NIST and achieve good agreement. But due to inadequate data in the literature, analogous relativistic distorted wave calculations have also been performed using flexible atomic code (FAC) to assess the reliability and accuracy of our results. Additionally, we have provided new atomic data for Sr XXX which is not published elsewhere in the literature and we believe that our results may be beneficial in fusion plasma research and astrophysical investigations and applications. - Highlights: • 113 Lowest levels for Sr XXX are calculated. • Extreme Ultraviolet (EUV) and soft-X ray (SXR) spectral lines are identified. • Wavelengths of EUV and SXR spectral lines are reported. • E1, E2, M1 and M2 transition rates, oscillator strengths and lines strengths for lowest 113 levels are presented. • Lifetimes for lowest 113 fine structure levels are provided
International Nuclear Information System (INIS)
Dacal, Luis C O; Cantarero, A
2014-01-01
Most III–V semiconductors, which acquire the zinc-blende phase as bulk materials, adopt the metastable wurtzite phase when grown in the form of nanowires. These are new semiconductors with new optical properties, in particular, a different electronic band gap when compared with that grown in the zinc-blende phase. The electronic gap of wurtzite InAs at the Γ–point of the Brillouin zone (E 0 gap) has been recently measured, E 0 =0.46 eV at low temperature. The electronic gap at the A–point of the Brillouin zone (equivalent to the L–point in the zinc-blende structure, E 1 ) has also been obtained recently based on a resonant Raman scattering experiment. In this work, we calculate the band structure of InAs in the zinc-blende and wurtzite phases, using the full potential linearized augmented plane wave method, including spin-orbit interaction. The electronic band gap has been improved through the modified Becke–Johnson exchange-correlation potential. Both the E 0 and E 1 gaps agree very well with the experiment. From the calculations, a crystal field splitting of 0.122 eV and a spin-orbit splitting of 0.312 eV (the experimental value in zinc-blende InAs is 0.4 eV) has been obtained. Finally, we calculate the dielectric function of InAs in both the zinc-blende and wurtzite phases and a comparative discussion is given. (paper)
Dacal, Luis C. O.; Cantarero, A.
2014-03-01
Most III-V semiconductors, which acquire the zinc-blende phase as bulk materials, adopt the metastable wurtzite phase when grown in the form of nanowires. These are new semiconductors with new optical properties, in particular, a different electronic band gap when compared with that grown in the zinc-blende phase. The electronic gap of wurtzite InAs at the \\Gamma -point of the Brillouin zone ({{E}_{0}} gap) has been recently measured, {{E}_{0}}=0.46 eV at low temperature. The electronic gap at the A-point of the Brillouin zone (equivalent to the L-point in the zinc-blende structure, {{E}_{1}}) has also been obtained recently based on a resonant Raman scattering experiment. In this work, we calculate the band structure of InAs in the zinc-blende and wurtzite phases, using the full potential linearized augmented plane wave method, including spin-orbit interaction. The electronic band gap has been improved through the modified Becke-Johnson exchange-correlation potential. Both the {{E}_{0}} and {{E}_{1}} gaps agree very well with the experiment. From the calculations, a crystal field splitting of 0.122 eV and a spin-orbit splitting of 0.312 eV (the experimental value in zinc-blende InAs is 0.4 eV) has been obtained. Finally, we calculate the dielectric function of InAs in both the zinc-blende and wurtzite phases and a comparative discussion is given.
International Nuclear Information System (INIS)
Leffers, T.; Singh, B.N.; Barlow, P.
1977-05-01
The formation and growth of voids during irradiation in a high-voltage electron microscope were studied in copper and Cu-Ni alloys. For each composition, the range of irradiation temperatures from 250 deg C to 550 deg C was covered. The development of the irradiation-induced dislocation structure was also studied. At irradiation temperatures up to 450 deg C, the void swelling decreased rapidly with increasing Ni content and became practically zero for Cu-10%Ni. The decrease in swelling was produced mainly by decreased void growth (and not by decreased void number density). At 550 deg C the void swelling increased with increasing Ni content up to 5%, whereas for Cu-10%Ni the swelling became practically zero; again the changes in swelling with Ni content were mainly determined by changes in void growth. The reduction in void swelling and growth due to alloying is ascribed to vacancy or interstitial trapping at submicroscopic Ni precipitates, i.e. to the precipitates acting as recombination centres. The increase in void swelling and growth with increasing Ni content, on the other hand, is ascribed to dislocation climb sources that emit loops, and hence produce a fairly high dislocation density at a temperature where there are only few dislocations in pure copper or Cu-Ni with lower Ni content. (author)
Ponomarev, Yury K.
2018-01-01
The paper gives an overview of the design of rope vibration insulators with elastic elements of the center line in the form of two rectilinear and one curved section. In the Russian-language scientific literature this type of rope vibration insulators received a stable name "Γ-shaped vibration insulators” by analogy with the shape of the letter “gamma-Γ" of the Greek alphabet and a similar letter of the Cyrillic alphabet. Despite the wide using of vibration insulators designed on this shape, its mathematical calculation model has not yet been developed. In this connection, in this article, for the first time on the basis of the “Method of Forces” and the “Mohr Method”, an analytical technique has been developed for calculating the characteristics of a vibration insulator in the directions of three mutually perpendicular axes. In addition, the article proposes a new structure of a vibration insulator consisting of several tiers of elements of this type, based on a new patented technology for manufacturing quasi-continuous woven rings, proposed by the author of this article in co-authorship with several employees of the Samara National Research University. Simple formulas are obtained for calculating the load characteristics in three mutually perpendicular directions. This makes it possible to calculate the corresponding stiffness and natural frequencies of mechanical vibration protection systems. It is established that the stiffness of the vibration insulator in the direction of the Z axis is greater than the stiffness in the X and Y axis directions, however, if a vibration insulator with equal, or close to equal characteristics, along three axes has to be designed according to the technical specification, this can be done by selecting the parameters included in the equations given in article for load characteristics.
Energy Technology Data Exchange (ETDEWEB)
Goldsmith, Zachary K.; Harshan, Aparna K.; Gerken, James B.; Vörös, Márton; Galli, Giulia; Stahl, Shannon S.; Hammes-Schiffer, Sharon
2017-03-06
NiFe oxyhydroxide materials are highly active electrocatalysts for the oxygen evolution reaction (OER), an important process for carbon-neutral energy storage. Recent spectroscopic and computational studies increasingly support iron as the site of catalytic activity but differ with respect to the relevant iron redox state. A combination of hybrid periodic density functional theory calculations and spectroelectrochemical experiments elucidate the electronic structure and redox thermodynamics of Ni-only and mixed NiFe oxyhydroxide thin-film electrocatalysts. The UV/visible light absorbance of the Ni-only catalyst depends on the applied potential as metal ions in the film are oxidized before the onset of OER activity. In contrast, absorbance changes are negligible in a 25% Fe-doped catalyst up to the onset of OER activity. First-principles calculations of proton-coupled redox potentials and magnetizations reveal that the Ni-only system features oxidation of Ni2+ to Ni3+, followed by oxidation to a mixed Ni3+/4+ state at a potential coincident with the onset of OER activity. Calculations on the 25% Fedoped system show the catalyst is redox inert before the onset of catalysis, which coincides with the formation of Fe4+ and mixed Ni oxidation states. The calculations indicate that introduction of Fe dopants changes the character of the conduction band minimum from Ni-oxide in the Ni-only to predominantly Fe-oxide in the NiFe electrocatalyst. These findings provide a unified experimental and theoretical description of the electrochemical and optical properties of Ni and NiFe oxyhydroxide electrocatalysts and serve as an important benchmark for computational characterization of mixedmetal oxidation states in heterogeneous catalysts.
International Nuclear Information System (INIS)
Wang, Lin-Wang
2006-01-01
Quantum mechanical ab initio calculation constitutes the biggest portion of the computer time in material science and chemical science simulations. As a computer center like NERSC, to better serve these communities, it will be very useful to have a prediction for the future trends of ab initio calculations in these areas. Such prediction can help us to decide what future computer architecture can be most useful for these communities, and what should be emphasized on in future supercomputer procurement. As the size of the computer and the size of the simulated physical systems increase, there is a renewed interest in using the real space grid method in electronic structure calculations. This is fueled by two factors. First, it is generally assumed that the real space grid method is more suitable for parallel computation for its limited communication requirement, compared with spectrum method where a global FFT is required. Second, as the size N of the calculated system increases together with the computer power, O(N) scaling approaches become more favorable than the traditional direct O(N 3 ) scaling methods. These O(N) methods are usually based on localized orbital in real space, which can be described more naturally by the real space basis. In this report, the author compares the real space methods versus the traditional plane wave (PW) spectrum methods, for their technical pros and cons, and the possible of future trends. For the real space method, the author focuses on the regular grid finite different (FD) method and the finite element (FE) method. These are the methods used mostly in material science simulation. As for chemical science, the predominant methods are still Gaussian basis method, and sometime the atomic orbital basis method. These two basis sets are localized in real space, and there is no indication that their roles in quantum chemical simulation will change anytime soon. The author focuses on the density functional theory (DFT), which is the
International Nuclear Information System (INIS)
Lin, Lin; Yang, Chao; Chen, Mohan; He, Lixin
2013-01-01
We describe how to apply the recently developed pole expansion and selected inversion (PEXSI) technique to Kohn–Sham density function theory (DFT) electronic structure calculations that are based on atomic orbital discretization. We give analytic expressions for evaluating the charge density, the total energy, the Helmholtz free energy and the atomic forces (including both the Hellmann–Feynman force and the Pulay force) without using the eigenvalues and eigenvectors of the Kohn–Sham Hamiltonian. We also show how to update the chemical potential without using Kohn–Sham eigenvalues. The advantage of using PEXSI is that it has a computational complexity much lower than that associated with the matrix diagonalization procedure. We demonstrate the performance gain by comparing the timing of PEXSI with that of diagonalization on insulating and metallic nanotubes. For these quasi-1D systems, the complexity of PEXSI is linear with respect to the number of atoms. This linear scaling can be observed in our computational experiments when the number of atoms in a nanotube is larger than a few hundreds. Both the wall clock time and the memory requirement of PEXSI are modest. This even makes it possible to perform Kohn–Sham DFT calculations for 10 000-atom nanotubes with a sequential implementation of the selected inversion algorithm. We also perform an accurate geometry optimization calculation on a truncated (8, 0) boron nitride nanotube system containing 1024 atoms. Numerical results indicate that the use of PEXSI does not lead to loss of the accuracy required in a practical DFT calculation. (paper)