WorldWideScience

Sample records for void fraction waves

  1. Rotational effect on Rayleigh, Love and Stoneley waves in fibre-reinforced anisotropic general viscoelastic media of higher and fraction orders with voids

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Alla, A. M.; Abo-Dahab, S. M. [Taif University, Taif (Egypt); Khan, Aftab [COMSATS, Chakshahzad (Pakistan)

    2015-10-15

    In this paper, we investigated the propagation of surface waves in a rotating fibre-reinforced viscoelastic anisotropic media of a higher order and fraction orders of nth order including time rate of strain with voids. The general surface wave speed is derived to study the effect of rotation and voids on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. In order zero our results are well agreeing with classical results. Also by neglecting the reinforced elastic parameters and voids the results reduce to well known isotropic medium. Comparison was made with the results obtained in the presence and absence of rotation and parameters for fibre-reinforced of the material medium. It is observed that Love wave remains unaffected with respect to rotation and voids. It is also observed that, surface waves cannot propagate in a fast rotating medium. Numerical results are given and illustrated graphically.

  2. Rotational effect on Rayleigh, Love and Stoneley waves in fibre-reinforced anisotropic general viscoelastic media of higher and fraction orders with voids

    International Nuclear Information System (INIS)

    Abd-Alla, A. M.; Abo-Dahab, S. M.; Khan, Aftab

    2015-01-01

    In this paper, we investigated the propagation of surface waves in a rotating fibre-reinforced viscoelastic anisotropic media of a higher order and fraction orders of nth order including time rate of strain with voids. The general surface wave speed is derived to study the effect of rotation and voids on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. In order zero our results are well agreeing with classical results. Also by neglecting the reinforced elastic parameters and voids the results reduce to well known isotropic medium. Comparison was made with the results obtained in the presence and absence of rotation and parameters for fibre-reinforced of the material medium. It is observed that Love wave remains unaffected with respect to rotation and voids. It is also observed that, surface waves cannot propagate in a fast rotating medium. Numerical results are given and illustrated graphically.

  3. Void Fraction Instrument operation and maintenance manual

    International Nuclear Information System (INIS)

    Borgonovi, G.; Stokes, T.I.; Pearce, K.L.; Martin, J.D.; Gimera, M.; Graves, D.B.

    1994-09-01

    This Operations and Maintenance Manual (O ampersand MM) addresses riser installation, equipment and personnel hazards, operating instructions, calibration, maintenance, removal, and other pertinent information necessary to safely operate and store the Void Fraction Instrument. Final decontamination and decommissioning of the Void Fraction Instrument are not covered in this document

  4. Comparative study of void fraction models

    International Nuclear Information System (INIS)

    Borges, R.C.; Freitas, R.L.

    1985-01-01

    Some models for the calculation of void fraction in water in sub-cooled boiling and saturated vertical upward flow with forced convection have been selected and compared with experimental results in the pressure range of 1 to 150 bar. In order to know the void fraction axial distribution it is necessary to determine the net generation of vapour and the fluid temperature distribution in the slightly sub-cooled boiling region. It was verified that the net generation of vapour was well represented by the Saha-Zuber model. The selected models for the void fraction calculation present adequate results but with a tendency to super-estimate the experimental results, in particular the homogeneous models. The drift flux model is recommended, followed by the Armand and Smith models. (F.E.) [pt

  5. Measurement of void fractions by nuclear techniques

    International Nuclear Information System (INIS)

    Hernandez G, A.; Vazquez G, J.; Diaz H, C.; Salinas R, G.A.

    1997-01-01

    In this work it is done a general analysis of those techniques used to determine void fractions and it is chosen a nuclear technique to be used in the heat transfer circuit of the Physics Department of the Basic Sciences Management. The used methods for the determination of void fractions are: radioactive absorption, acoustic techniques, average velocity measurement, electromagnetic flow measurement, optical methods, oscillating absorption, nuclear magnetic resonance, relation between pressure and flow oscillation, infrared absorption methods, sound neutron analysis. For the case of this work it will be treated about the radioactive absorption method which is based in the gamma rays absorption. (Author)

  6. Void fraction prediction in saturated flow boiling

    International Nuclear Information System (INIS)

    Francisco J Collado

    2005-01-01

    Full text of publication follows: An essential element in thermal-hydraulics is the accurate prediction of the vapor void fraction, or fraction of the flow cross-sectional area occupied by steam. Recently, the author has suggested to calculate void fraction working exclusively with thermodynamic properties. It is well known that the usual 'flow' quality, merely a mass flow rate ratio, is not at all a thermodynamic property because its expression in function of thermodynamic properties includes the slip ratio, which is a parameter of the process not a function of state. By the other hand, in the classic and well known expression of the void fraction - in function of the true mass fraction of vapor (also called 'static' quality), and the vapor and liquid densities - does not appear the slip ratio. Of course, this would suggest a direct procedure for calculating the void fraction, provided we had an accurate value of the true mass fraction of vapor, clearly from the heat balance. However the classic heat balance is usually stated in function of the 'flow' quality, what sounds really contradictory because this parameter, as we have noted above, is not at all a thermodynamic property. Then we should check against real data the actual relationship between the thermodynamic properties and the applied heat. For saturated flow boiling just from the inlet of the heated tube, and not having into account the kinetic and potential terms, the uniform applied heat per unit mass of inlet water and per unit length (in short, specific linear heat) should be closely related to a (constant) slope of the mixture enthalpy. In this work, we have checked the relation between the specific linear heat and the thermodynamic enthalpy of the liquid-vapor mixture using the actual mass fraction. This true mass fraction is calculated using the accurate measurements of the outlet void fraction taken during the Cambridge project by Knights and Thom in the sixties for vertical and horizontal

  7. Software quality assurance plan for void fraction instrument

    International Nuclear Information System (INIS)

    Gimera, M.

    1994-01-01

    Waste Tank SY-101 has been the focus of extensive characterization work over the past few years. The waste continually generates gases, most notably hydrogen, which are periodically released from the waste. Gas can be trapped in tank waste in three forms: as void gas (bubbles), dissolved gas, or absorbed gas. Void fraction is the volume percentage of a given sample that is comprised of void gas. The void fraction instrument (VFI) acquires the data necessary to calculate void fraction. This document covers the product, Void Fraction Data Acquisition Software. The void fraction software being developed will have the ability to control the void fraction instrument hardware and acquire data necessary to calculate the void fraction in samples. This document provides the software quality assurance plan, verification and validation plan, and configuration management plan for developing the software for the instrumentation that will be used to obtain void fraction data from Tank SY-101

  8. Measurements of void fraction by an improved multi-channel conductance void meter

    International Nuclear Information System (INIS)

    Song, Chul-Hwa; Chung, Moon Ki; No, Hee Cheon

    1998-01-01

    An improved multi-channel Conductance Void Meter (CVM) was developed to measure a void fraction. Its measuring principle is basically based upon the differences of electrical conductance of a two-phase mixture due to the variation of void fraction around a sensor. The sensor is designed to be flush-mounted to the inner wall of the test section to avoid the flow disturbances. The signal processor with three channels is specially designed so as to minimize the inherent error due to the phase difference between channels. It is emphasized that the guard electrodes are electrically shielded in order not to affect the measurements of two-phase mixture conductance, but to make the electric fields evenly distributed in a measuring volume. Void fraction is measured for bubbly and slug flow regimes in a vertical air-water loop, and statistical signal processing techniques are applied to show that CVM has a good dynamic resolution which is required to investigate the structural developments of bubbly flow and the propagation of void waves in a flow channel. (author)

  9. Void fraction measurements using neutron radiography

    International Nuclear Information System (INIS)

    Glickstein, S.S.; Vance, W.H.; Joo, H.

    1992-01-01

    Real-time neutron radiography is being evaluated for studying the dynamic behavior of two phase flow and for measuring void fraction in vertical and inclined water ducts. This technique provides a unique means of visualizing the behavior of fluid flow inside thick metal enclosures. To simulate vapor conditions encountered in a fluid flow duct, an air-water flow system was constructed. Air was injected into the bottom of the duct at flow rates up to 0.47 I/s (1 cfm). The water flow rate was varied between 0--3.78 I/m (0--1 gpm). The experiments were performed at the Pennsylvania State University nuclear reactor facility using a real-time neutron radiography camera. With a thermal neutron flux on the order of 10 6 n/cm 2 /s directed through the thin duct dimension, the dynamic behavior of the air bubbles was clearly visible through 5 cm (2 in.) thick aluminum support plates placed on both sides of the duct wall. Image analysis techniques were employed to extract void fractions from the data which was recorded on videotape. This consisted of time averaging 256 video frames and measuring the gray level distribution throughout the region. The distribution of the measured void fraction across the duct was determined for various air/water mixtures. Details of the results of experiments for a variety of air and water flow conditions are presented

  10. Tank SY-101 void fraction instrument functional design criteria

    International Nuclear Information System (INIS)

    McWethy, L.M.

    1994-01-01

    This document presents the functional design criteria for design, analysis, fabrication, testing, and installation of a void fraction instrument for Tank SY-101. This instrument will measure the void fraction in the waste in Tank SY-101 at various elevations

  11. Elastic wave scattering from multiple voids (porosity)

    International Nuclear Information System (INIS)

    Thompson, D.O.; Rose, J.H.; Thompson, R.B.; Wormley, S.J.

    1983-01-01

    This paper describes the development of an ultrasonic backscatter measurement technique which provides a convenient way to determine certain characteristics of a distribution of voids (porosity) in materials. A typical ultrasonic sample prepared by placing the ''frit'' in a crucible in an RF induction heater is shown. The results of the measurements were Fourier transformed into an amplitude-frequency description, and were then deconvolved with the transducer response function. Several properties needed to characterize a void distribution are obtained from the experimental results, including average void size, the spatial extent of the voids region, the average void separation, and the volume fraction of material contained in the void distribution. A detailed comparison of values obtained from the ultrasonic measurements with visually determined results is also given

  12. Void fraction instrument acceptance test procedure

    International Nuclear Information System (INIS)

    Stokes, T.I.; Pearce, K.L.

    1994-01-01

    This document presents the results of the acceptance test for the mechanical and electrical features (not specifically addressed by the software ATP) of the void fraction instrument (VFI). Acceptance testing of the VFI, control console, and decontamination spray assembly was conducted in the 306E building high bay and area adjacent to the facility. The VFI was tested in the horizontal position supported in multiple locations on rolling tables. The control console was located next to the VFI pneumatic control assembly. The VFI system was operated exactly as is expected in the tank farm, with the following exceptions: power was provided from a building outlet and the VFI was horizontal. The testing described in this document verifies that the mechanical and electrical features are operating as designed and that the unit is ready for field service

  13. A void fraction model for annular two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, T.N.; Gupta, C.P.; Varma, H.K.

    1985-01-01

    An analytical model has been developed for predicting void fraction in two-phase annular flow. In the analysis, the Lockhart-Martinelli method has been used to calculate two-phase frictional pressure drop and von Karman's universal velocity profile is used to represent the velocity distribution in the annular liquid film. Void fractions predicted by the proposed model are generally in good agreement with a available experimental data. This model appears to be as good as Smith's correlation and better than the Wallis and Zivi correlations for computing void fraction.

  14. Measurement of local void fraction in a ribbed annulus

    International Nuclear Information System (INIS)

    Steimke, J.L.

    1992-01-01

    The computer code FLOWTRAN-TF is used to analyze hypothetical hydraulic accidents for the nuclear reactor at the Savannah River Site. During a hypothetical Large Break Loss-of-Coolant Accident (LOCA), reactor assemblies would contain a two-phase mixture of air and water which flows downward. Reactor assemblies consist of nested, ribbed annuli. Longitudinal ribs divide each annulus into four subchannels. For accident conditions, air and water can flow past ribs from one subchannel to another. For FLOWTRAN-TF to compute the size of those flows, it is necessary to know the local void fraction in the region of the rib. Measurements have previously been made of length-average void fraction in a ribbed annulus. However, no direct measurements were available of local void fraction. Due to the lack of data, a test was designed to measure local void fraction at the rib. One question addressed by the test was whether void fraction at the rib is solely a function of azimuthal-average void fraction or a function of additional variables such as pressure boundary conditions. This report provides a discussion of this test

  15. Understanding void fraction in steady state and dynamic environments

    International Nuclear Information System (INIS)

    Chexal, B.; Maulbetsch, J.; Harrison, J.; Petersen, C.; Jensen, P.; Horowitz, J.

    1997-01-01

    Understanding void fraction behavior in steady-state and dynamic environments is important to accurately predict the thermal-hydraulic behavior of two-phase or two-component systems. The Chexal-Lellouche (C-L) void fraction mode described herein covers the full range of pressures, flows, void fractions, and fluid types (steam-water, air-water, and refrigerants). A drift flux model formulation is used which covers the complete range of concurrent and countercurrent flows. The (1996) model revises the earlier C-L void fraction correlation, improves the capability of the model in countercurrent flow based on the incorporation of additional data, and improves the characteristics of the correlation that are important in transient programs. The model has been qualified with data from a number of steady state two-phase and two-component tests, and has been incorporated into the transient analysis code RELAP5 and RETRAN-3D and evaluated with a variety of transient and steady state tests. A 'plug-in' module for the void fraction correlation has been developed and implemented in RELAP5 and RETRAN-3D. The module is available as source code for inclusion into other thermal-hydraulic programs and can be used in any program that utilizes the same interface variables

  16. Influence of the void fraction in the linear reactivity model

    International Nuclear Information System (INIS)

    Castillo, J.A.; Ramirez, J.R.; Alonso, G.

    2003-01-01

    The linear reactivity model allows the multicycle analysis in pressurized water reactors in a simple and quick way. In the case of the Boiling water reactors the void fraction it varies axially from 0% of voids in the inferior part of the fuel assemblies until approximately 70% of voids to the exit of the same ones. Due to this it is very important the determination of the average void fraction during different stages of the reactor operation to predict the burnt one appropriately of the same ones to inclination of the pattern of linear reactivity. In this work a pursuit is made of the profile of power for different steps of burnt of a typical operation cycle of a Boiling water reactor. Starting from these profiles it builds an algorithm that allows to determine the voids profile and this way to obtain the average value of the same one. The results are compared against those reported by the CM-PRESTO code that uses another method to carry out this calculation. Finally, the range in which is the average value of the void fraction during a typical cycle is determined and an estimate of the impact that it would have the use of this value in the prediction of the reactivity produced by the fuel assemblies is made. (Author)

  17. Prediction of pool void fraction by new drift flux correlation

    International Nuclear Information System (INIS)

    Kataoka, I.; Ishii, M.

    1986-06-01

    A void fraction for a bubbling or boiling pool system is one of the important parameters in analyzing heat and mass transfer processes. Using the drift flux formulation, correlations for the pool void fraction have been developed in collaboration with a large number of experimental data. It has been found that the drift velocity in a pool system depends upon vessel diameter, system pressure, gas flux and fluid physical properties. The results show that the relative velocity and void fraction can be quite different from those predicted by conventional correlations. In terms of the rise velocity, four different regimes are identified. These are bubbly, churn-turbulent, slug and cap bubble regimes. The present correlations are shown to agree with the experimental data over wide ranges of parameters such as vessel diameter, system pressure, gas flux and physical properties. 39 refs., 41 figs

  18. Transient void fraction measurements in rod bundle geometries

    International Nuclear Information System (INIS)

    Chan, A.M.C.

    1998-01-01

    A new gamma densitometer with a Ba-133 source and a Nal(TI) scintillator operated in the count mode has been designed for transient void fraction measurements in the RD-14M heated channels containing a seven-element heater bundle. The device was calibrated dynamically in the laboratory using an air-water flow loop. The void fraction measured was found to compare well with values obtained using the trapped-water method. The device was also found to follow very well the passage of air slugs in pulsating flow with slug passing frequencies of up to about 1.5 hz. (author)

  19. Experimental facility and void fraction calibration methods for impedance probes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fernando L. de; Rocha, Marcelo S., E-mail: floliveira@ipen.br, E-mail: msrocha@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    An experimental facility was designed and constructed with aims of to calibrate a capacitance probe for gas-liquid flow void fraction measurements. The facility is composed of a metallic hack with a vertical 2,300 mm high glass tube with 38 mm ID with stagnant water and compressed air bubbling system simulating the gas phase (vapor). At the lower part, a mixing section with a porous media element releases the air bubbles into the water, and the compressed air flow is measured by two calibrated rotameters. At the upper part a stagnant water tank separates the liquid and gas. Two pressure taps are located near the lower and upper sides of the glass tube for pressure difference measurement. The pressure difference is used for low void fraction values (0-15%) calibration methods, as described in the work. Two electrically controlled quick closing valves are installed between the porous media element and the upward separation tank for high void fraction values measurement (15-50%) used to calibrate the capacitance probe. The experimental facility design, construction, capacitance probe calibration methods and results, as well as flow pattern visualization, are presented. Finally, the capacitance probe will be installed on a natural circulation circuit mounted at the Nuclear Engineering Center (CEN/IPEN/CNEN-SP) for measurement of the instantaneous bulk void. Instantaneous signals generated by the capacitance probe will allow the determination of natural circulation loop global energy balance. (author)

  20. Experimental facility and void fraction calibration methods for impedance probes

    International Nuclear Information System (INIS)

    Oliveira, Fernando L. de; Rocha, Marcelo S.

    2013-01-01

    An experimental facility was designed and constructed with aims of to calibrate a capacitance probe for gas-liquid flow void fraction measurements. The facility is composed of a metallic hack with a vertical 2,300 mm high glass tube with 38 mm ID with stagnant water and compressed air bubbling system simulating the gas phase (vapor). At the lower part, a mixing section with a porous media element releases the air bubbles into the water, and the compressed air flow is measured by two calibrated rotameters. At the upper part a stagnant water tank separates the liquid and gas. Two pressure taps are located near the lower and upper sides of the glass tube for pressure difference measurement. The pressure difference is used for low void fraction values (0-15%) calibration methods, as described in the work. Two electrically controlled quick closing valves are installed between the porous media element and the upward separation tank for high void fraction values measurement (15-50%) used to calibrate the capacitance probe. The experimental facility design, construction, capacitance probe calibration methods and results, as well as flow pattern visualization, are presented. Finally, the capacitance probe will be installed on a natural circulation circuit mounted at the Nuclear Engineering Center (CEN/IPEN/CNEN-SP) for measurement of the instantaneous bulk void. Instantaneous signals generated by the capacitance probe will allow the determination of natural circulation loop global energy balance. (author)

  1. Measurement and study of amplitudes and velocities of void fraction waves in two-phase gas-liquid flow ranging from bubbly flow to slug flow

    International Nuclear Information System (INIS)

    Tournaire, Agnes

    1987-01-01

    The objective of this research thesis is to study the behaviour of waves at the vicinity of the bubble-slug transition, and to compare it with the one predicted by models. The author also addresses the bubbly regime, and particularly the evolution of wave amplitude whereas studies had been until then limited to the study of wave speed. The first part of the thesis reports the development of a system of vacuum rate measurements in cylindrical duct. The second part proposes the description of the experimental installation, and the third part reports experimental results and discusses them. Finally, the author compares these results with those predicted by using a kinematic modelling [fr

  2. Void fraction instrument software, Version 1,2, Acceptance test report

    International Nuclear Information System (INIS)

    Gimera, M.

    1995-01-01

    This provides the report for the void fraction instrument acceptance test software Version 1.2. The void fraction will collect data that will be used to calculate the quantity of gas trapped in waste tanks

  3. Fluctuation of void fraction and pressure drop during vertical two-phase flow with contraction

    International Nuclear Information System (INIS)

    Morimoto, Yuichiro; Madarame, Haruki; Okamoto, Koji

    2003-01-01

    Flow pattern and fluctuation of void fraction of two-phase flow through a vertical channel with contraction were examined experimentally. The two-phase fluid consisted of water and nitrogen gas. The pipe diameters were 0.1 [m] and 0.05 [m], which were before and after the contraction, respectively. Superficial gas and liquid velocity were changed form 0.42 to 2.55 [m/s] and from 2.26 to 4.53 [m/s]. Time series data of void fraction were measured using a single-needle void probe and flow pattern at downstream from the contraction was visualized using a high-speed video camera. Intermittent flow was observed at downstream of the contraction. The pulsation can be seen to be caused by wave of bubbles thick and thin. Frequency of fluctuation of the void fraction was almost constant when flow pattern before the contraction was bubble flow. In the case where flow pattern before the contraction was churn flow, the frequency increased with superficial liquid velocity. The frequency was also confirmed with the result of image processing using the movies captured by the high speed video camera. (author)

  4. Development of gamma-ray densitometer and measurement of void fraction in instantaneous pipe rupture under BWR LOCA condition

    International Nuclear Information System (INIS)

    Yano, Toshikazu

    1983-11-01

    In order to clarify the transient mass flow rate under the instantaneous pipe rupture condition, it is necessary to use a highly sensitive void meter. Therefore, a high-response gamma-ray densitometer was developed for the measurement of void fraction variation caused by flashing vaporization of the high-pressure and -temperature water under the instantaneous pipe rupture accident. The measurement of void fraction was performed in the pipe rupture test under the BWR LOCA condition with a 6-inch diameter pipe. Initial conditions of the water were 6.86 MPa in pressure and the saturation temperature. To prove the reliability and accuracy, a calibration test by falling acrylic void simulators and an air injection test into cold water filled in the pipe were also conducted. The following results are obtained in the pipe rupture test. (1) The cone slit method is very useful to increase the measuring accuracy. (2) It is clearly observed that the apparent increase of void fraction occurs after the rarefaction wave passes. (3) The first maximum of void fraction occurs with some delay time after break. The following minimum void fraction concurs with the maximum pressure in the pressure recovering phenomena and with the maximum blowdown thrust force. (author)

  5. Prediction of void fraction in subcooled flow boiling

    International Nuclear Information System (INIS)

    Petelin, S.; Koncar, B.

    1998-01-01

    The information on heat transfer and especially on the void fraction in the reactor core under subcooled conditions is very important for the water-cooled nuclear reactors, because of its influence upon the reactivity of the systems. This paper gives a short overview of subcooled boiling phenomenon and indicates the simplifications made by the RELAP5 model of subcooled boiling. RELAP5/MOD3.2 calculations were compared with simple one-dimensional models and with high-pressure Bartolomey experiments.(author)

  6. Void fraction calculation in a channel containing boiling coolant

    International Nuclear Information System (INIS)

    Norelli, F.

    1978-01-01

    The problem of void fraction calculation was studied for a channel containing boiling coolant, when a slip ratio correlation is used. Use of fitting (e.g. polinomial or rational algebraic) for slip ratio correlation and the characteristic method are proposed in this work. In this way we are reduced to some elementary quadrature problem. Another problem discussed in the present work concerns what we must consider as ''initial condition'' in any initial value problem, in order to take into account different error distributions in steady state and in successive time-dependent calculations

  7. Void fraction measurement system for high temperature flows

    Energy Technology Data Exchange (ETDEWEB)

    Teyssedou, A; Aube, F; Champagne, P [Montreal Univ., PQ (Canada). Institut de Genie Energetique

    1992-05-01

    A {gamma}-ray absorption technique has been developed for measuring the axial distribution of the void fraction for high-temperature and high-pressure two-phase flows. The system is mounted on a moving platform driven by a high-power stepping motor. A personal computer (IBM AT) connected to a data acquisition system is used to control the displacement of the {gamma} source and detector, and to read the response of the detector. All the measurement procedures are carried out automatically by dedicated software developed for this purpose. (Author).

  8. Measurement of local void fraction at elevated temperature and pressure

    International Nuclear Information System (INIS)

    Duncan, D.; Trabold, T.A.

    1993-03-01

    Significant advances have recently been made in analytical and computational methods for the prediction of local thermal-hydraulic conditions in gas/liquid two-phase flows. There is, however, a need for extensive experimental data, for the dual purposes of constitutive relation development and code qualification. There is especially true of systems involving complicated geometries and/or extreme flow conditions for which little, if any, applicable information exists in the open literature. For the tests described in the present paper, a novel electrical probe has been applied to measure the void fraction in atmospheric pressure air/water flows, and steam/water mixtures at high temperature and pressure. The data acquired in the latter experiments are compared with the results of a one-dimensional two-fluid computational analysis

  9. Void fraction prediction of NUPEC PSBT tests by CATHARE code

    International Nuclear Information System (INIS)

    Del Nevo, A.; Michelotti, L.; Moretti, F.; Rozzia, D.; D'Auria, F.

    2011-01-01

    The current generation of thermal-hydraulic system codes benefits of about sixty years of experiments and forty years of development and are considered mature tools to provide best estimate description of phenomena and detailed reactor system representations. However, there are continuous needs for checking the code capabilities in representing nuclear system, for drawing attention to their weak points, for identifying models which need to be refined for best-estimate calculations. Prediction of void fraction and Departure from Nucleate Boiling (DNB) in system thermal-hydraulics is currently based on empirical approaches. The database carried out by Nuclear Power Engineering Corporation (NUPEC), Japan addresses these issues. It is suitable for supporting the development of new computational tools based on more mechanistic approaches (i.e. three-field codes, two-phase CFD, etc.) as well as for validating current generation of thermal-hydraulic system codes. Selected experiments belonging to this database are used for the OECD/NRC PSBT benchmark. The paper reviews the activity carried out by CATHARE2 code on the basis of the subchannel (four test sections) and presents rod bundle (different axial power profile and test sections) experiments available in the database in steady state and transient conditions. The results demonstrate the accuracy of the code in predicting the void fraction in different thermal-hydraulic conditions. The tests are performed varying the pressure, coolant temperature, mass flow and power. Sensitivity analyses are carried out addressing nodalization effect and the influence of the initial and boundary conditions of the tests. (author)

  10. An experimental and theoretical analysis of void fraction dynamics in a boiling channel

    International Nuclear Information System (INIS)

    Romberg, T.M.

    1977-01-01

    This paper describes an experimental and theoretical investigation of the void fraction dynamics at the exit of a test boiling channel which is operated near the 'instability threshold power' (the power level at which coolant flow instabilities occur). Dynamic measurements of the perturbations in channel inlet flow-rate, power input and exit void fraction are analysed using multivariate spectral analysis. The resulting experimental cross-spectral density functions between flow-rate/exit void fraction and power input/exit void fraction agree favourably with those calculated by a linearised hydrodynamic model in the frequency domain. (Author)

  11. Experimental study of average void fraction in low-flow subcooled boiling

    International Nuclear Information System (INIS)

    Sun Qi; Wang Xiaojun; Xi Zhao; Zhao Hua; Yang Ruichang

    2005-01-01

    Low-flow subcooled void fraction in medium pressure was investigated using high-temperature high-pressure single-sensor optical probe in this paper. And then average void fraction was obtained through the integral calculation of local void fraction in the cross-section. The experimental data were compared with the void fraction model proposed in advance. The results show that the predictions of this model agree with the data quite well. The comparisons of Saha and Levy models with low-flow subcooled data show that Saha model overestimates the experimental data distinctively, and Levy model also gets relatively higher predictions although it is better than Saha model. (author)

  12. Void Fraction Measurement in Subcooled-Boiling Flow Using High-Frame-Rate Neutron Radiography

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Akimoto, Hajime; Hibiki, Takashi; Mishima, Kaichiro

    2001-01-01

    A high-frame-rate neutron radiography (NR) technique was applied to measure the void fraction distribution in forced-convective subcooled-boiling flow. The focus was experimental technique and error estimation of the high-frame-rate NR. The results of void fraction measurement in the boiling flow were described. Measurement errors on instantaneous and time-averaged void fractions were evaluated experimentally and analytically. Measurement errors were within 18 and 2% for instantaneous void fraction (measurement time is 0.89 ms), and time-averaged void fraction, respectively. The void fraction distribution of subcooled boiling was measured using atmospheric-pressure water in rectangular channels with channel width 30 mm, heated length 100 mm, channel gap 3 and 5 mm, inlet water subcooling from 10 to 30 K, and mass velocity ranging from 240 to 2000 kg/(m 2 .s). One side of the channel was heated homogeneously. Instantaneous void fraction and time-averaged void fraction distribution were measured parametrically. The effects of flow parameters on void fraction were investigated

  13. Measurements of void fraction in a heated tube in the rewetting conditions

    International Nuclear Information System (INIS)

    Freitas, R.L.

    1983-01-01

    The methods of void fraction measurements by transmission and diffusion of cold, thermal and epithermal neutrons were studied with cylindrical alluminium pieces simulating the steam. A great set of void fraction found in a wet zone was examined and a particulsar attention was given to the sensitivity effects of the method, mainly for high void fraction. Several aspects of the measurement techniques were analyzed, such as the effect of the phase radial distribution, neutron energy, water tempeture, effect of the void axial gradient. The technique of thermal neutron diffusion measurement was used to measure the axial profile of void fraction in a steady two-phase flow, where the pressure, mass velocity and heat flux are representative of the wet conditions. Experimental results are presented and compared with different void fraction models. (E.G.) [pt

  14. Critical Void Volume Fraction fc at Void Coalescence for S235JR Steel at Low Initial Stress Triaxiality

    Science.gov (United States)

    Grzegorz Kossakowski, Paweł; Wciślik, Wiktor

    2017-10-01

    The paper is concerned with the nucleation, growth and coalescence of microdefects in the form of voids in S235JR steel. The material is known to be one of the basic steel grades commonly used in the construction industry. The theory and methods of damage mechanics were applied to determine and describe the failure mechanisms that occur when the material undergoes deformation. Until now, engineers have generally employed the Gurson-Tvergaard- Needleman model. This material model based on damage mechanics is well suited to define and analyze failure processes taking place in the microstructure of S235JR steel. It is particularly important to determine the critical void volume fraction fc , which is one of the basic parameters of the Gurson-Tvergaard-Needleman material model. As the critical void volume fraction fc refers to the failure stage, it is determined from the data collected for the void coalescence phase. A case of multi-axial stresses is considered taking into account the effects of spatial stress state. In this study, the parameter of stress triaxiality η was used to describe the failure phenomena. Cylindrical tensile specimens with a circumferential notch were analysed to obtain low values of initial stress triaxiality (η = 0.556 of the range) in order to determine the critical void volume fraction fc . It is essential to emphasize how unique the method applied is and how different it is from the other more common methods involving parameter calibration, i.e. curve-fitting methods. The critical void volume fraction fc at void coalescence was established through digital image analysis of surfaces of S235JR steel, which involved studying real, physical results obtained directly from the material tested.

  15. Development of quick-response area-averaged void fraction meter

    International Nuclear Information System (INIS)

    Watanabe, Hironori; Iguchi, Tadashi; Kimura, Mamoru; Anoda, Yoshinari

    2000-11-01

    Authors are performing experiments to investigate BWR thermal-hydraulic instability under coupling of neutronics and thermal-hydraulics. To perform the experiment, it is necessary to measure instantaneously area-averaged void fraction in rod bundle under high temperature/high pressure gas-liquid two-phase flow condition. Since there were no void fraction meters suitable for these requirements, we newly developed a practical void fraction meter. The principle of the meter is based on the electrical conductance changing with void fraction in gas-liquid two-phase flow. In this meter, metal flow channel wall is used as one electrode and a L-shaped line electrode installed at the center of flow channel is used as the other electrode. This electrode arrangement makes possible instantaneous measurement of area-averaged void fraction even under the metal flow channel. We performed experiments with air/water two-phase flow to clarify the void fraction meter performance. Experimental results indicated that void fraction was approximated by α=1-I/I o , where α and I are void fraction and current (I o is current at α=0). This relation holds in the wide range of void fraction of 0∼70%. The difference between α and 1-I/I o was approximately 10% at maximum. The major reasons of the difference are a void distribution over measurement area and an electrical insulation of the center electrode by bubbles. The principle and structure of this void fraction meter are very basic and simple. Therefore, the meter can be applied to various fields on gas-liquid two-phase flow studies. (author)

  16. Void fraction distribution in a heated rod bundle under flow stagnation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, V.A.; Guido-Lavalle, G.; Clausse, A. [Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina)

    1995-09-01

    An experimental study was performed to determine the axial void fraction distribution along a heated rod bundle under flow stagnation conditions. The development of the flow pattern was investigated for different heat flow rates. It was found that in general the void fraction is overestimated by the Zuber & Findlay model while the Chexal-Lellouche correlation produces a better prediction.

  17. Void fraction fluctuations in two-phase gas-liquid flow

    International Nuclear Information System (INIS)

    Ulbrich, R.

    1987-01-01

    Designs of the apparatus in which two-phase gas-liquid flow occurs are usually based on the mean value of parameters such as pressure drop and void fraction. The flow of two-phase mixtures generally presents a very complicated flow structure, both in terms of the unsteady formation on the interfacial area and in terms of the fluctuations of the velocity, pressure and other variables within the flow. When the gas void fraction is near 0 or 1 / bubble or dispersed flow regimes / then oscillations of void fraction are very small. The intermittent flow such as plug and slug/ froth is characterized by alternately flow portions of liquid and gas. It influences the change of void fractions in time. The results of experimental research of gas void fraction fluctuations in two-phase adiabatic gas-liquid flow in a vertical pipe are presented

  18. Development of quick-response area-averaged void fraction meter. Application to BWR condition

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tadashi; Watanabe, Hironori; Kimura, Mamoru; Anoda, Yoshinari [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-05-01

    Authors have been developed a practical conductance-type void fraction meter to measure instantaneously area-averaged void fraction in rod bundle. The principle of the meter is based on the fact that the electrical conductance changes with the change of void fraction in gas-liquid two-phase flow. According to air/water two-phase flow experiment, the void fraction was approximated by {alpha}=1-I/I{sub 0}, where {alpha} and I are void fraction and current (I{sub 0} is current at {alpha}=0). Authors investigated the performance of the void fraction meter under high temperature/high pressure conditions (BWR condition; 290degC, 7MPa). The results indicated that the void fraction was approximated by {alpha}=1-I/I{sub 0} even under high temperature/high pressure condition of stem/water flow. However, it is necessary to take account of temperature dependency of water specific conductance. Therefore, authors derived a correction equation for temperature dependency. Further, for applying the void fraction meter to a large-scale facility, it was found to be necessary to reduce the capacitance of the circuit. Then, authors developed the method to reduce the capacitance effect. Finally, authors succeeded to measure the void fraction in 2 x 2 bundle flow path at the range of 0% - 70% in the error of 10% under high temperature/high pressure and mass flux of less than 133 kg/m{sup 2}s. Developed void fraction meter is theoretically not affected by flow rate. Therefore, it can be applied to the condition of oscillating flow. (author)

  19. Effects of two-phase mixing and void drift models on subchannel void fraction predictions in vertical bundles

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.H. [McMaster Univ., Hamilton, Ontario (Canada)], E-mail: leungk4@mcmaster.ca

    2009-07-01

    The evaluation of the subchannel code ASSERT against the OECD/NEA BFBT benchmark data demonstrated that at low pressures, the void fraction in the corner and side subchannels of a vertical bundle was over-predicted. Preliminary results suggest that this was due to the use of Carlucci's empirical correlation for void drift beyond its applicable range of pressure. Further examination indicates that the choice of the mixing and void drift models has a negligible effect on the error of the subchannel void fraction predictions. A single, isolated subchannel was simulated and results suggest that the root cause behind the over-prediction is inadequate mixing at the sides and corners of the bundle. Increasing the magnitude of the void drift coefficients in Carlucci's model at low pressure was found to improve the overall accuracy of the predictions. A simple correlation relating {omega} to the outlet pressure was found to increase the number of points falling within experimental error by 1.0%. (author)

  20. Effects of two-phase mixing and void drift models on subchannel void fraction predictions in vertical bundles

    International Nuclear Information System (INIS)

    Leung, K.H.

    2009-01-01

    The evaluation of the subchannel code ASSERT against the OECD/NEA BFBT benchmark data demonstrated that at low pressures, the void fraction in the corner and side subchannels of a vertical bundle was over-predicted. Preliminary results suggest that this was due to the use of Carlucci's empirical correlation for void drift beyond its applicable range of pressure. Further examination indicates that the choice of the mixing and void drift models has a negligible effect on the error of the subchannel void fraction predictions. A single, isolated subchannel was simulated and results suggest that the root cause behind the over-prediction is inadequate mixing at the sides and corners of the bundle. Increasing the magnitude of the void drift coefficients in Carlucci's model at low pressure was found to improve the overall accuracy of the predictions. A simple correlation relating Ω to the outlet pressure was found to increase the number of points falling within experimental error by 1.0%. (author)

  1. Measurement of void fraction distribution in two-phase flow by impedance CT with neural network

    International Nuclear Information System (INIS)

    Hayashi, Hideaki; Sumida, Isao; Sakai, Sinji; Wakai, Kazunori

    1996-01-01

    This paper describes a new method for measurement of void distribution using impedance CT with a hierarchical neural network. The present method consists of four processes. First, output electric currents are calculated by simulation of various distributions of void fraction. The relationship between distribution of void fraction and electric current is called 'teaching data'. Second, the neural network learns the teaching data by the back propagation method. Third, output electric currents are measured about actual two-phase flow. Finally, distribution of void fraction is calculated by the taught neural network using the measured electric currents. In this paper, measurement and learning parameters are adjusted, experimental results obtained using the impedance CT method are compared with data obtained by the impedance probe method. The results show that our method is effective for measurement of void fraction distribution. (author)

  2. Development of measurement method of void fraction distribution on subcooled flow boiling using neutron radiography

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Matsubayashi, Masahito; Akimoto, Hajime

    1999-03-01

    In relation to the development of a solid target of high intensity neutron source, plasma-facing components of fusion reactor and so forth, it is indispensable to estimate the void fraction for high-heat-load subcooled flow boiling of water. Since the existing prediction method of void fraction is based on the database for tubes, it is necessary to investigate extendibility of the existing prediction method to narrow-gap rectangular channels that is used in the high-heat-load devices. However, measurement method of void fraction in the narrow-gap rectangular channel has not been established yet because of the difficulty of measurement. The objectives of this investigation are development of a new system for bubble visualization and void fraction measurement on subcooled flow boiling in narrow-gap rectangular channels using the neutron radiography, and establishment of void fraction database by using this measurement system. This report describes the void fraction measurement method by the neutron radiography technique, and summarizes the measured void fraction data in one-side heated narrow-gap rectangular channels at subcooled boiling condition. (author)

  3. Void fraction prediction in two-phase flows independent of the liquid phase density changes

    International Nuclear Information System (INIS)

    Nazemi, E.; Feghhi, S.A.H.; Roshani, G.H.

    2014-01-01

    Gamma-ray densitometry is a frequently used non-invasive method to determine void fraction in two-phase gas liquid pipe flows. Performance of flow meters using gamma-ray attenuation depends strongly on the fluid properties. Variations of the fluid properties such as density in situations where temperature and pressure fluctuate would cause significant errors in determination of the void fraction in two-phase flows. A conventional solution overcoming such an obstacle is periodical recalibration which is a difficult task. This paper presents a method based on dual modality densitometry using Artificial Neural Network (ANN), which offers the advantage of measuring the void fraction independent of the liquid phase changes. An experimental setup was implemented to generate the required input data for training the network. ANNs were trained on the registered counts of the transmission and scattering detectors in different liquid phase densities and void fractions. Void fractions were predicted by ANNs with mean relative error of less than 0.45% in density variations range of 0.735 up to 0.98 gcm −3 . Applying this method would improve the performance of two-phase flow meters and eliminates the necessity of periodical recalibration. - Highlights: • Void fraction was predicted independent of density changes. • Recorded counts of detectors/void fraction were used as inputs/output of ANN. • ANN eliminated necessity of recalibration in changeable density of two-phase flows

  4. Estimation of the Void Fraction in the moderator cell of the Cold Neutron Source

    International Nuclear Information System (INIS)

    Choi, Jungwoon; Kim, Young-ki

    2015-01-01

    To estimate the average void fraction in the liquid hydrogen, the Kazimi and Chen correlation is used with its modified method suggested by R.E. Williams in NBSR. Since the multiplying number can be changed along the operation condition and working fluid, the different figure is applied to estimate the average void fraction in the different moderator cell shape. This approach is checked with the void fraction measurement results from the HANARO-CNS mock-up test. Owing to national research demands on cold neutron beam utilization, the Cold Neutron Research Facility had been and operated for neuron scientists all over the world. In HANARO, the CNS facility has been operated since 2009. The actual void fraction, which is the one of dominant factors affecting the cold neutron flux, is difficult to know without the real measurement performed at the cryogenic temperature using the same moderator medium. Accordingly, the two-phase mock-up test in the CNS-IPA (In-pool assembly) had been performed using the liquid hydrogen in terms of the fluidity check, void fraction measurement, operation procedure set-up, and so on for the development of the HANARO-CNS. This paper presents the estimated void fraction in the different operating conditions and geometrical shape in the comparison with the measurement data of the void fraction in the full-scale mockup test based on the Kazimi and Chen correlation. This approach is applied to estimate the average void fraction in the newly designed moderator cell using the liquid hydrogen as a working fluid in the two-phase thermosiphon. From this calculation result, the estimated average void fraction will be used to design the optimized cold neutron source to produce the maximum cold neutron flux within the desired wavelength

  5. Estimation of the Void Fraction in the moderator cell of the Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jungwoon; Kim, Young-ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To estimate the average void fraction in the liquid hydrogen, the Kazimi and Chen correlation is used with its modified method suggested by R.E. Williams in NBSR. Since the multiplying number can be changed along the operation condition and working fluid, the different figure is applied to estimate the average void fraction in the different moderator cell shape. This approach is checked with the void fraction measurement results from the HANARO-CNS mock-up test. Owing to national research demands on cold neutron beam utilization, the Cold Neutron Research Facility had been and operated for neuron scientists all over the world. In HANARO, the CNS facility has been operated since 2009. The actual void fraction, which is the one of dominant factors affecting the cold neutron flux, is difficult to know without the real measurement performed at the cryogenic temperature using the same moderator medium. Accordingly, the two-phase mock-up test in the CNS-IPA (In-pool assembly) had been performed using the liquid hydrogen in terms of the fluidity check, void fraction measurement, operation procedure set-up, and so on for the development of the HANARO-CNS. This paper presents the estimated void fraction in the different operating conditions and geometrical shape in the comparison with the measurement data of the void fraction in the full-scale mockup test based on the Kazimi and Chen correlation. This approach is applied to estimate the average void fraction in the newly designed moderator cell using the liquid hydrogen as a working fluid in the two-phase thermosiphon. From this calculation result, the estimated average void fraction will be used to design the optimized cold neutron source to produce the maximum cold neutron flux within the desired wavelength.

  6. Evaluation of void fraction measurements from DADINE experience using RELAP4/MOD5 code

    International Nuclear Information System (INIS)

    Borges, R.C.; Freitas, R.L.

    1989-01-01

    The DADINE experiment measures the axial evolution of the void fraction by neutronic diffusion in two-phase flow in the wet regions of a pressurized water reactor in accident conditions. Since the theoretical/experimental confrontation is important for code evaluation, this paper presents the simulation with the RELAP4/MOD5 Code of the void fractions results obtained in the DADINE Experiment, that showed some deviation probably associated with the existing models in Code, special attention in the way of stablishing the two-phase flow and the no characterization of the differents flow regimes related with the void fractions. (author) [pt

  7. Two-phase flow void fraction measurement using gamma ray attenuation technique

    International Nuclear Information System (INIS)

    Silva, R.D. da.

    1985-01-01

    The present work deals with experimental void fraction measurements in two-phase water-nitrogen flow, by using a gamma ray attenuation technique. Several upward two-phase flow regimes in a vertical tube were simulated. The water flow was varied from 0.13 to 0.44 m 3 /h while the nitrogen flow was varied between 0.01 and 0.1 m 3 /h. The mean volumetric void fraction was determined based on the measured linear void fraction for each flow condition. The results were compared with other authors data and showed a good agreement. (author) [pt

  8. Interfacial area, velocity and void fraction in two-phase slug flow

    International Nuclear Information System (INIS)

    Kojasoy, G.; Riznic, J.R.

    1997-01-01

    The internal flow structure of air-water plug/slug flow in a 50.3 mm dia transparent pipeline has been experimentally investigated by using a four-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 0.55 to 2.20 m/s and 0.27 to 2.20 m/s, respectively, and area-averaged void fractions ranged from about 10 to 70%. The local distributions of void fractions, interfacial area concentration and interface velocity were measured. Contributions from small spherical bubbles and large elongated slug bubbles toward the total void fraction and interfacial area concentration were differentiated. It was observed that the small bubble void contribution to the overall void fraction was small indicating that the large slug bubble void fraction was a dominant factor in determining the total void fraction. However, the small bubble interfacial area contribution was significant in the lower and upper portions of the pipe cross sections

  9. Effect of void fraction correlations on two-phase pressure drop during flow boiling in narrow rectangular channel

    International Nuclear Information System (INIS)

    Huang, Dong; Gao, Puzhen; Chen, Chong; Lan, Shu

    2013-01-01

    Highlights: • Most of the slip ratio models and the Lockhart–Martinelli parameter based models give similar results. • The drift flux void fraction models give relatively small values. • The effect of void fraction correlations on two-phase friction pressure drop is inconspicuous. • The effect of void fraction correlations on two-phase acceleration pressure drop is significant. - Abstract: The void fraction of water during flow boiling in vertical narrow rectangular channel is experimentally investigated. The void fraction is indirectly determined using the present experimental data with various void fraction correlations or models published in the open literature. The effects of mass flux, mass quality, system pressure and inlet subcooling on the void fraction and pressure drop are discussed in detail. In addition, comparison and discussion among the numerous void fraction correlations are carried out. The effect of void fraction correlations on two-phase pressure drop is presented as well. The results reveal that most of the slip ratio correlations and the Lockhart–Martinelli parameter based void fraction correlations have results close to each other at mass quality higher than 0.2. The drift flux void fraction correlations give small values which are incompatible with other models making it inapplicable for narrow rectangular channel. The alteration of void fraction correlations has an inconspicuous effect on two-phase frictional pressure drop, while an obvious effect on two-phase accelerational pressure drop during flow boiling in narrow rectangular channel

  10. Equations for calculating interfacial drag and shear from void fraction correlations

    International Nuclear Information System (INIS)

    Putney, J.M.

    1988-12-01

    Equations are developed for calculating interfacial drag and shear coefficients for dispersed vapour flows from void fraction correlations. The equations have a sound physical basis and lead to physically correct coefficients in all flow situations. (author)

  11. Capacitance sensor for void fraction measurement in a natural circulation refrigeration circuit

    International Nuclear Information System (INIS)

    Rocha, Marcelo S.; Cabral, Eduardo L.L.; Simoes-Moreira, Jose R.

    2009-01-01

    Natural circulation is widely used in nuclear reactors for residual heat refrigeration. In this work, a conductance probe is designed and constructed to measure the instantaneous bulk void fraction in a vertical tube section. This probe is installed in a natural circulation refrigeration loop designed to simulate a nuclear reactor primary refrigeration circuit. During the operation of the natural circulation loop several gas-liquid flow patterns are observed, including oscillatory flow. The instantaneous signal generated by the capacitance probe allows the calculation of the two-phase flow void fraction. The void fraction obtained by the probe will be compared with the theoretical void fraction calculated by the computational program RELAP5/MOD3.2.2 gamma. The probe design and electronics, as well as the previous results obtained are presented and discussed. (author)

  12. Determination of void fraction from source range monitor and mass flow rate data

    International Nuclear Information System (INIS)

    McCormick, R.D.

    1986-09-01

    This is a report on the calculation of the TMI-2 primary coolant system local void fraction from source range neutron flux monitor data and from hot leg mass flowrate meter data during the first 100 minutes of the accident. The methods of calculation of void fraction from the two data sources is explained and the results are compared. It is indicated that the void fraction determined using the mass flowrate data contained an error of unknown magnitude due to the assumption of constant homogeneous volumetric flowrate used in the calculation and required further work. Void fraction determined from the source range monitor data is felt to be usable although an uncertainty analysis has not been performed

  13. A mechanistic determination of horizontal flow regime bound using void wave celerity

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.W. [Ajou Univ., Suwon (Korea, Republic of)

    1995-09-01

    The two-phase flow regime boundaries in a horizontal channel has been investigated by using the behavior of the second order void wave celerities. The average two-fluid model has been constituted with closure relations for horizontally stratified and bubbly flows. A vapor phase turbulent stress model for a smooth interface geometry has been included. It is found that the second order waves (i.e., eigenvalues) propagate in opposite direction with almost the same speed when the liquid phase is stationary. Using the well-posedness limit of the two-phase system, the dispersed-stratified flow regime boundary has been modeled. Two-phase Froude number has been theoretically found to be a convenient parameter in quantifying the flow regime boundary as a function of the void fraction. It is found that interaction between void wave celerities become stronger as the two-phase Froude number is reduced. This result should be interpreted as that gravity and the relative velocity are key parameters in determining flow regime boundaries in a horizontal flow. The influence of the vapor phase turbulent stress found to stabilize the flow stratification. This study clearly shows that the average two-fluid model is very effective for a mechanistic determination of horizontal flow regimes if appropriate closure relations are developed.

  14. A mechanistic determination of horizontal flow regime bound using void wave celerity

    International Nuclear Information System (INIS)

    Park, J.W.

    1995-01-01

    The two-phase flow regime boundaries in a horizontal channel has been investigated by using the behavior of the second order void wave celerities. The average two-fluid model has been constituted with closure relations for horizontally stratified and bubbly flows. A vapor phase turbulent stress model for a smooth interface geometry has been included. It is found that the second order waves (i.e., eigenvalues) propagate in opposite direction with almost the same speed when the liquid phase is stationary. Using the well-posedness limit of the two-phase system, the dispersed-stratified flow regime boundary has been modeled. Two-phase Froude number has been theoretically found to be a convenient parameter in quantifying the flow regime boundary as a function of the void fraction. It is found that interaction between void wave celerities become stronger as the two-phase Froude number is reduced. This result should be interpreted as that gravity and the relative velocity are key parameters in determining flow regime boundaries in a horizontal flow. The influence of the vapor phase turbulent stress found to stabilize the flow stratification. This study clearly shows that the average two-fluid model is very effective for a mechanistic determination of horizontal flow regimes if appropriate closure relations are developed

  15. Determining the void fraction in draught sections of a boiling water cooled reactor

    International Nuclear Information System (INIS)

    Fedulin, V.N.; Barolomej, G.G.; Solodkij, V.A.; Shmelev, V.E.

    1987-01-01

    Consideration is being given to the problem of improving methods for calculation of the void fraction in large channels of cooling system of the boiling water cooled reactor during two-phase unsteady flow. Investigation of the structure of two-phase flow was conducted in draught section of the VK-50 reactor (diameter D=2 m, height H=3). The method for calculation of the void fraction in channels with H/D ratio close to 1 is suggested

  16. Wire-Mesh Tomography Measurements of Void Fraction in Rectangular Bubble Columns

    International Nuclear Information System (INIS)

    Reddy Vanga, B.N.; Lopez de Bertodano, M.A.; Zaruba, A.; Prasser, H.M.; Krepper, E.

    2004-01-01

    Bubble Columns are widely used in the process industry and their scale-up from laboratory scale units to industrial units have been a subject of extensive study. The void fraction distribution in the bubble column is affected by the column size, superficial velocity of the dispersed phase, height of the liquid column, size of the gas bubbles, flow regime, sparger design and geometry of the bubble column. The void fraction distribution in turn affects the interfacial momentum transfer in the bubble column. The void fraction distribution in a rectangular bubble column 10 cm wide and 2 cm deep has been measured using Wire-Mesh Tomography. Experiments were performed in an air-water system with the column operating in the dispersed bubbly flow regime. The experiments also serve the purpose of studying the performance of wire-mesh sensors in batch flows. A 'wall peak' has been observed in the measured void fraction profiles, for the higher gas flow rates. This 'wall peak' seems to be unique, as this distribution has not been previously reported in bubble column literature. Low gas flow rates yielded the conventional 'center peak' void profile. The effect of column height and superficial gas velocity on the void distribution has been investigated. Wire-mesh Tomography also facilitates the measurement of bubble size distribution in the column. This paper presents the measurement principle and the experimental results for a wide range of superficial gas velocities. (authors)

  17. Study of pressure drop, void fraction and relative permeabilities of two phase flow through porous media

    International Nuclear Information System (INIS)

    Chu, W.; Dhir, V.K.; Marshall, J.

    1983-01-01

    An experimental investigation of two phase flow through porous layers formed of non-heated glass particles (nominal diameter 1 to 6 mm) has been made. Particulate bed depths of 30 cm and 70 cm were used. The effect of particle size, particle size distribution and bed porosity on void fraction and pressure drop through a particulate bed formed in a cylindrical test section has been investigated. The superficial velocity of liquid (water) is varied from 1.83 to 18.3 mm/s while the superficial velocity of gas (air) is varied from 0 to 68.4 mm/s. These superficial velocities were chosen so that pressure drop and void fraction measurement could be made for the porous layer in fixed and fluidized states. A model based on drift flux approach has been developed for the void fraction. Using the two phase friction pressure drop data, the relative permeabilities of the two phases have been concluded with void fraction. The void fraction and two phase friction pressure gradient in beds composed of mixtures of spherical particles as well as sharps of different nominal sizes have also been examined. It is found that the models for single size particles are also applicable to mixtures of particles if a mean particle diameter for the mixture is defined

  18. Measurement of the local void fraction at high pressures in a heating channel

    International Nuclear Information System (INIS)

    Martin, R.

    1969-01-01

    Void fraction measurements were made in two phase flow boiling systems at high pressures in a uniformly heated, rectangular channel with a high aspect ratio. The local void fraction values were calculated from measurements of the absorption of a thin collimated X-ray beam (2 mm x 0.05 mm). The mean void fraction in a horizontal section results from integration of the local values across the section. At a fixed measuring station the quality and- void fraction were varied by changing the heat flux, flow rate and pressure systematically. Two channels were used differing in length and thickness (150.8 cm x 5.3 cm x 0.2 cm and the significant features of this study are: -1) The void fraction measurements are among the first obtained at such high pressure (80 to 140 kg/cm 2 ); -2) In the experimental region under consideration the measurements are systematic and numerous enough to allow accurate interpolations: mass velocity from 50 to 220 g/cm 2 .s, heat flux from 40 to 170 W/cm 2 and calculated steam quality from -0.2 to 0.2; -3) Many tests were performed under local boiling conditions with the mean temperature of the fluid below the saturation temperature; and -4) These results were compared to the predictions of certain models presented in the literature and simple empirical formulae were developed to fit the experimental results. (author) [fr

  19. Investigation of CTF void fraction prediction by ENTEK BM experiment data

    International Nuclear Information System (INIS)

    Hoang Minh Giang; Hoang Tan Hung; Nguyen Phu Khanh

    2015-01-01

    Recently, CTF, a version of COBRA-TF code is reviewed to validate its simulation models by several experiments such as Castellana 4x4 rod bundle, EPRI 5x5 bundle tests, PSBT bundle tests and TPTF experiment. These above experiments provide enthalpy, mass flux (Castellana), temperature (EPRI) and void fraction (PSBT, TPTF) at exit channel only. In order to simulate PWR rod bundle flow behavior, it is necessary to review CTF with more experiment in high pressure condition and it is found that the ENTEK BM facility is suitable for this purpose. The ENTEK BM facility is used to simulate Russia RBMK and VVER rod bundle two phase flow with pressure at 3 and 7 MPa and it gives measured void fraction distribution along the channel. This study focus on two points: (a) accuracy assessment between CTF void fraction distribution predictions versus experiment void fraction distributions and (b) investigation of void fraction prediction uncertainty from propagation of input deviations caused by measured accuracy. (author)

  20. Average void fraction measurement in a two-phase vertical flow

    International Nuclear Information System (INIS)

    Mello, R.E.F. de; Behar, M.R.; Martines, E.W.

    1975-01-01

    The utilization of the radioactive tracer technique to measure the void fraction in a two phase flow air-water is presented. The radioactive tracer used was a salt of Br-82. The water flow rate varied between 0,4 and 2,0 m 3 /h, and the air flow rate between 0,2 and 1,0 m 3 /h. The resulting measured void fraction were between 0,05 and 0,32. These void fraction values were compared with those ones calculated with the measured flow rates and by use of empirical formulas, using different methods. After a convenient choice of the radioactive isotope, the measurements didn't present any special problem. The results have shown a good accordance with the values calculated by the formulas of R. Roumy, but was not possible yet to conclude, about the convenience of application and the grade of confidence of this method

  1. Experimental study on capacitance void fraction meters for high temperature and high pressure conditions

    International Nuclear Information System (INIS)

    Watanabe, Hironori; Mitsutake, Toru; Shibata, Mitsuhiko; Takase, Kazuyuki

    2010-01-01

    The electro-void fraction meter (Capacitance type meter) was applied to higher pressure conditions of 18 MPa than BWR operating conditions of 7 MPa. The void fraction measurement system has been developed including the electrodes of void fraction measurement, instrumentation cables with mineral insulation and simplified electric circuit to provide good signal-to-noise ratio. It satisfied the performance of thermal and pressure resistance and electric insulating capacity. Calibration function for high temperature and high pressure conditions was confirmed through calibration test with 37-rod bundle against datum 19-rod bundle by the quick-shut valve method respectively under 2 MPa conditions. It was confirmed that the measured data were consistent with those measured by the quick-shut valve method. (author)

  2. Experimental study on void fraction of two-phase flow inside a micro-fin tube

    OpenAIRE

    Koyama, Shigeru; Chen, Yongchang; Kitano, Ryuji; Kuwahara, Ken

    2001-01-01

    In this paper the void fraction and flow pattern of the two-phase flow in a micro-fin tube were investigated experimentally for a pure refrigerant HFC134a. The experiment was carried out at a pressure range of 0.6 and 1.2MPa with mass velocities of 90 and 180kg/m^2 s, in which the vapor quality varied from 0 to 1. The void fraction was measured by means of simultaneously closing valves of both sides of the test tube at adiabatic condition. Experimental results for the micro-fin tube were comp...

  3. Wetting layer and void fraction nonuniformity in a liquid-metal MHD generator

    International Nuclear Information System (INIS)

    Branover, H.; Yakhot, A.

    1981-01-01

    The quetion of the effect of a liquid layer on the walls of an MHD channel in the case of uniform void fraction distribution in the flow core was first considered several years ago. More recently an analytic solution for high Hartmann numbers was obtained, which led to the conclusion that this layer does not have a significant effect on the efficiency of large generators. This paper postulates an analytic model which makes it possible to estimate the effect of a void fraction nonuniformity, in the presence of the wetting layer on the walls, on the generator performance. 3 refs

  4. Void fraction measurement in two-phase flow processes via symbolic dynamic filtering of ultrasonic signals

    International Nuclear Information System (INIS)

    Chakraborty, Subhadeep; Keller, Eric; Talley, Justin; Srivastav, Abhishek; Ray, Asok; Kim, Seungjin

    2009-01-01

    This communication introduces a non-intrusive method for void fraction measurement and identification of two-phase flow regimes, based on ultrasonic sensing. The underlying algorithm is built upon the recently reported theory of a statistical pattern recognition method called symbolic dynamic filtering (SDF). The results of experimental validation, generated on a laboratory test apparatus, show a one-to-one correspondence between the flow measure derived from SDF and the void fraction measured by a conductivity probe. A sharp change in the slope of flow measure is found to be in agreement with a transition from fully bubbly flow to cap-bubbly flow. (rapid communication)

  5. Measurements of void fraction in transparent two-phase flows by light extinction

    International Nuclear Information System (INIS)

    Shamoun, B.; El Beshbeeshy, M.; Bonazza, R.

    1998-01-01

    We report a technique for the measurement of the 2-D distribution of the line average void fraction in a two-phase flow with transparent gas and liquid components based on the Mie scattering induced by the gas bubbles on a collimated laser beam. The 2-D distribution of the line average of the interfacial area density is measured directly; the void fraction is deduced from it through an image processing algorithm. The technique is demonstrated with experiments in a pool of water injected with air and illuminated with a CW argon ion laser. (author)

  6. Measurement of void fractions by nuclear techniques; Medicion de fracciones de vacio por tecnicas nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez G, A.; Vazquez G, J.; Diaz H, C.; Salinas R, G.A. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    In this work it is done a general analysis of those techniques used to determine void fractions and it is chosen a nuclear technique to be used in the heat transfer circuit of the Physics Department of the Basic Sciences Management. The used methods for the determination of void fractions are: radioactive absorption, acoustic techniques, average velocity measurement, electromagnetic flow measurement, optical methods, oscillating absorption, nuclear magnetic resonance, relation between pressure and flow oscillation, infrared absorption methods, sound neutron analysis. For the case of this work it will be treated about the radioactive absorption method which is based in the gamma rays absorption. (Author)

  7. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    Science.gov (United States)

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  8. Void fraction measurements by means of flash x-ray radiography

    International Nuclear Information System (INIS)

    Angelini, S.; Theofanous, T.G.

    1998-01-01

    In this paper we discuss X-ray radiography as a means of obtaining quantitative space distributions of void fractions in highly-transient, multiphase flows. The technique and the calibration of the instrument are discussed in detail, and its application in the MAGICO-2000 experiments is used to illustrate its potential in providing unique information about the interactions. (author)

  9. Measurement of void fraction and bubble size distribution in two-phase flow system

    International Nuclear Information System (INIS)

    Huahun, G.

    1987-01-01

    The importance of study two phase flow parameter and microstructure has appeared increasingly, with the development of two-phase flow discipline. In the paper, the measurement methods of several important microstructure parameter in a two phase flow vertical channel have been studied. Using conductance probe the two phase flow pattern and the average void fraction have been measured previously by the authors. This paper concerns microstructure of the bubble size distribution and local void fraction. The authors studied the methods of measuring bubble velocity, size distribution and local void fraction using double conductance probes and a set of apparatus. Based on our experiments and Yoshihiro work, a formula of calculated local void fraction has been deduced by using the statistical characteristics of bubbles in two phase flow and the relation between calculated bubble size and voltage has been determined. Finally the authors checked by using photograph and fast valve, which is classical but reliable. The results are the same with what has been studied before

  10. An assessment of void fraction correlations for vertical upward steam-water flow

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Maruthi Ramesh, N.; Pilkhwal, D.S.; Saha, D.

    1997-01-01

    An assessment of sixteen void fraction correlations have been carried out using experimental void fraction data compiled from open literature for vertical upward steam-water flow. Nearly 80% of all the data pertained to natural circulation flow. This assessment showed that best prediction is obtained by Chexal et al. (1996) correlation followed by Hughmark (1965) and the Mochizuki and Ishii (1992) correlations. The Mochizuki-Ishii correlation is found to satisfy all the three limiting conditions whereas Chexal et al. (1996) correlation satisfies all the limiting conditions at moderately high mass fluxes (greater than 140 kg/m 2 s) while Hughmark correlation satisfies only one of the three limiting conditions. The available void fraction data in the open literature for steam-water two-phase flow lies predominantly in the low quality region. This is the reason why correlations like Hughmark which do not satisfy the upper limiting condition (i.e. at x=1, α=1) perform rather well in assessments. Additional work is required for the generation of high quality (greater than 40%) void fraction data. (author)

  11. An improved electrical-conductance sensor for void-fraction measurement in a horizontal pipe

    International Nuclear Information System (INIS)

    Ko, Min Seok; Jemg, Dong Wook; Kim, Sin; Lee, Bo An; Won, Woo Youn; Lee, Yeon Gun

    2015-01-01

    The electrical-impedance method has been widely used for void-fraction measurement in two-phase flow due to its many favorable features. In the impedance method, the response characteristics of the electrical signal heavily depend upon flow pattern, as well as phasic volume. Thus, information on the flow pattern should be given for reliable void-fraction measurement. This study proposes an improved electrical-conductance sensor composed of a three-electrode set of adjacent and opposite electrodes. In the proposed sensor, conductance readings are directly converted into the flow pattern through a specified criterion and are consecutively used to estimate the corresponding void fraction. Since the flow pattern and the void fraction are evaluated by reading conductance measurements, complexity of data processing can be significantly reduced and real-time information provided. Before actual applications, several numerical calculations are performed to optimize electrode and insulator sizes, and optimal design is verified by static experiments. Finally, the proposed sensor is applied for air-water two-phase flow in a horizontal loop with a 40-mm inner diameter and a 5-m length, and its measurement results are compared with those of a wire-mesh sensor

  12. Measurements of Void Fractions for Flow of Boiling Heavy Water in a Vertical Round Duct

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Z; Becker, K M

    1963-09-15

    The present report deals with measurements of void fractions for flow of boiling heavy water in a vertical round duct with 6.10 mm inner diameter and a heated length of 2500 mm. The following ranges of variables were studied and 149 void fraction measurements were obtained. Pressure 7 < p < 60 bars; Steam quality 0 < x < 0.38; Surface heat flux 38 < q/A < 120 W/cm{sup 2}; Mass velocity 650 < m'/F < 2050 kg/m/s; Void fraction 0. 24 < {alpha} < 0.88. The measurements were performed by means of a method, which is based on the ({gamma}, n) reaction, occurring when heavy water is irradiated by gamma rays. The results are presented in diagrams, where the void fractions and the slip ratios are plotted against the steam quality with the pressure as a parameter. The data have been correlated by curves, and the scatter of the data around the curves is less than {+-} 5 per cent.

  13. Void fraction in horizontal bulk flow boiling at high flow qualities

    International Nuclear Information System (INIS)

    Collado, Fancisco J.; Monne, Carlos; Pascau, Antonio

    2008-01-01

    In this work, a new thermodynamic prediction of the vapor void fraction in bulk flow boiling, which is the core process of many energy conversion systems, is analyzed. The current heat balance is based on the flow quality, which is closely related to the measured void fraction, although some correlation for the vapor-liquid velocity ratio is needed. So here, it is suggested to work with the 'static' or thermodynamic quality, which is directly connected to the void fraction through the densities of the phases. Thus, the relation between heat and the mixture enthalpy (here based on the thermodynamic quality instead of the flow one) should be analyzed in depth. The careful void fraction data taken by Thom during the 'Cambridge project' for horizontal saturated flow boiling with high flow qualities (≤0.8) have been used for this analysis. As main results, first, we have found that the applied heat and the increment of the proposed thermodynamic enthalpy mixture throughout the heated duct do not agree, and for closure, a parameter is needed. Second, it has been checked that this parameter is practically equal to the classic velocity ratio or 'slip' ratio, suggesting that it should be included in a true thermodynamic heat balance. Furthermore, it has been clearly possible to improve the 'Cambridge project' correlations for the 'slip' ratio, here based on inlet pressure and water velocity, and heat flux. The calculated void fractions compare quite well with the measured ones. Finally, the equivalence of the suggested new heat balance with the current one through the 'slip' ratio is addressed. Highlighted is the same new energetic relation for saturated flow boiling that has been recently confirmed by the authors for Knights data, also taken during the 'Cambridge project', which include not only horizontal but also vertical upwards flows with moderate outlet flow quality (≤0.2)

  14. Void fraction in horizontal bulk flow boiling at high flow qualities

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Fancisco J.; Monne, Carlos [Dpto. de Ingenieria Mecanica, Universidad de Zaragoza-CPS, Maria de Luna 3, 50018-Zaragoza (Spain); Pascau, Antonio [Dpto. de Ciencia de los Materiales y Fluidos, Universidad de Zaragoza-CPS, Maria de Luna 3, 50018-Zaragoza (Spain)

    2008-04-15

    In this work, a new thermodynamic prediction of the vapor void fraction in bulk flow boiling, which is the core process of many energy conversion systems, is analyzed. The current heat balance is based on the flow quality, which is closely related to the measured void fraction, although some correlation for the vapor-liquid velocity ratio is needed. So here, it is suggested to work with the 'static' or thermodynamic quality, which is directly connected to the void fraction through the densities of the phases. Thus, the relation between heat and the mixture enthalpy (here based on the thermodynamic quality instead of the flow one) should be analyzed in depth. The careful void fraction data taken by Thom during the 'Cambridge project' for horizontal saturated flow boiling with high flow qualities ({<=}0.8) have been used for this analysis. As main results, first, we have found that the applied heat and the increment of the proposed thermodynamic enthalpy mixture throughout the heated duct do not agree, and for closure, a parameter is needed. Second, it has been checked that this parameter is practically equal to the classic velocity ratio or 'slip' ratio, suggesting that it should be included in a true thermodynamic heat balance. Furthermore, it has been clearly possible to improve the 'Cambridge project' correlations for the 'slip' ratio, here based on inlet pressure and water velocity, and heat flux. The calculated void fractions compare quite well with the measured ones. Finally, the equivalence of the suggested new heat balance with the current one through the 'slip' ratio is addressed. Highlighted is the same new energetic relation for saturated flow boiling that has been recently confirmed by the authors for Knights data, also taken during the 'Cambridge project', which include not only horizontal but also vertical upwards flows with moderate outlet flow quality ({<=}0.2). (author)

  15. Assessment of void fraction prediction using the RETRAN-3d and CORETRAN-01/VIPRE-02 codes

    International Nuclear Information System (INIS)

    Aounallah, Y.; Coddington, P.; Gantner, U.

    2000-01-01

    A review of wide-range void fraction correlations against an extensive database has been undertaken to identify the correlations best suited for nuclear safety applications. Only those based on the drift-flux model have been considered. The survey confirmed the application range of the Chexal-Lellouche correlation, and the database was also used to obtain new parameters for the Inoue drift-flux correlation, which was also found suitable. A void fraction validation study has also been undertaken for the codes RETRAN-3D and CORETRAN-01/VIPRE-02 at the assembly and sub-assembly levels. The study showed the impact of the RETRAN-03 user options on the predicted void fraction, and the RETRAN-3D limitation at very low fluid velocity. At the sub-assembly level, CORETRAN-01/VIPRE-02 substantially underestimates the void in regions with low power-to-flow ratios. Otherwise, a generally good predictive performance was obtained with both RETRAN-3D and CORETRAN-01/VIPRE-02. (authors)

  16. Assessment of void fraction prediction using the RETRAN-3d and CORETRAN-01/VIPRE-02 codes

    Energy Technology Data Exchange (ETDEWEB)

    Aounallah, Y.; Coddington, P.; Gantner, U

    2000-07-01

    A review of wide-range void fraction correlations against an extensive database has been undertaken to identify the correlations best suited for nuclear safety applications. Only those based on the drift-flux model have been considered. The survey confirmed the application range of the Chexal-Lellouche correlation, and the database was also used to obtain new parameters for the Inoue drift-flux correlation, which was also found suitable. A void fraction validation study has also been undertaken for the codes RETRAN-3D and CORETRAN-01/VIPRE-02 at the assembly and sub-assembly levels. The study showed the impact of the RETRAN-03 user options on the predicted void fraction, and the RETRAN-3D limitation at very low fluid velocity. At the sub-assembly level, CORETRAN-01/VIPRE-02 substantially underestimates the void in regions with low power-to-flow ratios. Otherwise, a generally good predictive performance was obtained with both RETRAN-3D and CORETRAN-01/VIPRE-02. (authors)

  17. Design aspects of gamma densitometers for void fraction measurements in small scale two-phase flows

    International Nuclear Information System (INIS)

    Chan, A.M.C.; Banerjee, S.

    1981-01-01

    Design procedure for a single-beam gamma densitometer operated in the count mode is described. The design is simple, compact and is particularly suited for small scale two-phase flow experiments with thin-metal walled or non-metallic test sections. The choice of gamma sources, scintillators and signal processing systems is discussed. The procedure has been applied by the authors in the design of densitometers for two transient experiments: refilling and rewetting experiments and flow boiling experiments. Good average void measurements were obtained for relatively fast transients. It has also been shown that some useful flow parameters other than void fractions can be obtained if two or more densitometers are used, eg, the average rewetting and entrained liquid velocities in the refilling and rewetting experiments, and the average void velocity in the flow boiling experiments. (orig.)

  18. A Preliminary Design of a Wire Mesh Sensor for Measurement of Void Fraction

    International Nuclear Information System (INIS)

    Hong, Seong Ho; Kim, Jong Hwan; Song, Jin Ho; Hong, Seok Boong

    2006-01-01

    Steam explosion phenomena are accompanied with a multi-dimensional and multi-phase fluid flow and heat transfer phenomena. Void fraction is one of the major parameters, which governs the premixing behavior of melt particles in water and the explosion behavior of the pre-mixed fuel. However, efforts for the development of a reliable measurement technique for void fraction are still underway, as it deals with an interaction between a melt at a very high temperature and water in a short time scale. Hundreds of conductivity type probes installed in a test section enabled monitoring of the evolution of a melt-water interaction zone in the ECO test. A technique using a dual energy X-ray system was developed to measure gas fraction, liquid fraction, and melt fraction simultaneously for a small-scale steam explosion experiment. A high-energy X-ray system for monitoring multi-phase fractions is now being developed at CEA. Recently a measurement of multi-phase fractions by using a wire mesh system has been introduced. It has an advantage that the speed of the measurement is fast and a direct measurement is possible. As a part of a feasibility study on a wire mesh technique for a steam explosion experiment, this paper discusses the design of the wire mesh and the results of the preliminary calibration tests

  19. Application of gamma densitometer for measurement of void fraction in liquid hydrogen moderator of HANARO cold neutron source

    International Nuclear Information System (INIS)

    Kim, Myong-Seop; Choi, Jungwoon; Sun, Gwang-Min; Lee, Kye-Hong

    2009-01-01

    The void fraction in the liquid hydrogen used for the moderator of the HANARO cold neutron source (CNS) was measured by using a gamma densitometer technique. A mock-up of the HANARO CNS facility with an electric heating system as the heat source instead of radiations was constructed. The photon transmissions through the hydrogen moderator were simulated to search for an optimum experimental condition. From the simulation, it was confirmed that Am-241 was suitable for the measurement of the void fraction in the liquid hydrogen medium. A gamma densitometer using the Am-241 gamma-ray source was designed and installed at the mock-up of the CNS. The attenuation of 59.5 keV gamma-rays from the Am-241 through the hydrogen medium was measured by using an HPGe detector. The void fraction was determined using the amount of the gamma-ray attenuation. The void fractions in the hydrogen moderator were measured for stable thermo-siphon loops with several electric heat loads applied to the moderator cell of the CNS mock-up. The longitudinal distribution of the void fraction inside the moderator cell was also determined. The void fraction measured at a heat load of 720 W had values of 8-41% depending on the height from the bottom of the moderator cell. The overall void fraction was obtained by volume-weighted averaging of its longitudinal distribution. The void fraction at the nuclear heating power expected at the normal operation condition of the HANARO CNS facility was determined to be about 20%. The large uncertainty was expected in the void fraction determination by a gamma densitometer for the liquid hydrogen medium with the void fraction less than 10%. When the void fraction of the liquid hydrogen was near 20%, the uncertainty in the void fraction determination by using a gamma densitometer became relatively small, and it was regarded as an acceptable level. The measurements for the void fraction will be very useful for the design and operation of the HANARO CNS.

  20. An Experimental and analytical study on the bubble-to-slug flow regime transition based on the void wave instability

    International Nuclear Information System (INIS)

    Song, Chul Hwa

    1995-02-01

    An experimental and analytical work is performed to investigate the relation between the developing phenomena in bubble flow and the propagation phenomena of void waves. For this purpose, the structural developments in bubble flow and the propagation property of void waves are measured over a broad range of flow conditions including the bubble-to-slug flow regime transition (BSFRT) region. And a linear stability analysis is performed, based on the two-fluid model, to establish the analytical model on the wave propagation parameters, and the predictability of the model is validated by comparing analytical results with experimental observations. In the experimental work, an impedance void meter is developed to measure the void fraction, and a series of test are performed by varying the bubble size in order to investigate the bubble size effect on the bubble flow structures for various flow conditions. Statistical signal processing techniques are applied to void signals in order to objectively identify the changing modes of bubble flow structures and to estimate the wave propagation properties. The impedance void meter developed in this study showed very good temporal and spatial resolutions enough to identify the developing phenomena in bubble flow structures and to investigate the void wave propagations, and the void distribution effect could be minimized by electrically shielding the guard electrodes. It was also designed so that the inherent errors due to the phase shifts between channels be negligible. Various features occurred in the transitional process of bubble flow could be objectively identified by introducing some statistical parameters evaluated from void signals. Two distinct modes of structural development in bubble flow were observed in the transitional process, and they are found to be much influenced by the initial bubble size. And the mechanism to govern BSFRT could be characterized by two ways depending on the developing modes of bubble flow

  1. Peculiarities of void fraction measurement applied to physical installation channels cooled by forced helium flow

    International Nuclear Information System (INIS)

    Danilov, V.V.; Filippov, Yu.P.; Mamedov, I.S.

    1989-01-01

    The methods of optimizing the transducers designed for measurements of the void fraction of two-phase flows in the channels of round and annular cross section are presented. On the basis of the analysis performed concrete solution of relatively high technical characteristics are proposed. Rated and actual characteristics of signal ranges and measurement errors are given for both sensors. Influence of the mass velocity on the void fraction of adiabatic two-phase flows is theoretically analyzed. Effects of friction and of liquid-into-vapour entrainment are shown. Calculation results are compared with the obtained experimental data for helium. Special attention is given to the specific features of the processes in channels with different cross section. 17 refs.; 5 figs.; 1 tab

  2. Influence of the voids fraction in the power distribution for two different types of fuel assemblies

    International Nuclear Information System (INIS)

    Jacinto C, S.; Del Valle G, E.; Alonso V, G.; Martinez C, E.

    2017-09-01

    In this work an analysis of the influence of the voids fraction in the power distribution was carried out, in order to understand more about the fission process and the energy produced by the fuel assembly type BWR. The fast neutron flux was analyzed considering neutrons with energies between 0.625 eV and 10 MeV. Subsequently, the thermal neutron flux analysis was carried out in a range between 0.005 eV and 0.625 eV. Likewise, its possible implications in the power distribution of the fuel cell were also analyzed. These analyzes were carried out for different void fraction values: 0.2, 0.4 and 0.8. The variations in different burn steps were also studied: 20, 40 and 60 Mwd / kg. These values were studied in two different types of fuel cells: Ge-12 and SVEA-96, with an average initial enrichment of 4.11%. (Author)

  3. Point of net vapor generation and vapor void fraction in subcooled boiling

    International Nuclear Information System (INIS)

    Saha, P.; Zuber, N.

    1974-01-01

    An analysis is presented directed at predicting the point of net vapor generation and vapor void fraction in subcooled boiling. It is shown that the point of net vapor generation depends upon local conditions--thermal and fluid dynamic. Thus, at low mass flow rates the net vapor generation is determined by thermal conditions, whereas at high mass flow rates the phenomenon is hydrodynamically controlled. Simple criteria are derived which can be used to predict these local conditions for net vapor generation. These criteria are used to determine the vapor void fraction is subcooled boiling. Comparison between the results predicted by this analysis and experimental data presently available shows good agreement for wide range of operating conditions, fluids and geometries. (U.S.)

  4. Contingency plan for deployment of the void fraction instrument in Tank 241-AY-102

    International Nuclear Information System (INIS)

    CONNER, J.M.

    1999-01-01

    High-heat producing sludge from tank 241-C-106 will be sluiced and transferred to tank 241-AY-102 beginning in October 1998. Safety analyses have postulated that after retrieval, the waste in 241-AY-102 may generate and retain unsafe levels of flammable gases (Noorani 1998, Pasamebmetoglu etal. 1997). Unsafe levels of retained gas are not expected, but cannot be ruled out because of the large uncertainty in the gas generation and retention rates. The Tank Waste Remediation System Basis for Interim Operation (Noorani 1998) identifies the need for a contingency plan to add void fraction monitoring to tank 241-AY-102 within 2 weeks of the identification of flammable gas buildup that would warrant monitoring. The Tank 241-C-106 Waste Retrieval Sluicing System Process Control Plan (Carothers et al. 1998) committed to providing a contingency plan for deployment of the void fraction instrument (VFI) in tank 241-AY-102. The VFI determines the local void fraction of the waste by compressing a waste sample captured in a gas-tight test chamber. The sample chamber is mounted on the end of a 76-cm (2.5-ft) arm that can be rotated from vertical to horizontal when the instrument is deployed. Once in the waste, the arm can be positioned horizontally and rotated to sample in different areas below the riser. The VFI is deployed using a crane. The VFI has been deployed previously in 241-AW, 241-AN, and 241-SY tank farms, most recently in tank 241-SY-101 in June and July 1998. An additional test in tank 241-SY-101 is planned in September 1998. Operating instructions for the VFI are included in the Void Fraction Instrument Operation and Maintenance Manual (Pearce 1994)

  5. Study on characteristics of void fraction in vertical countercurrent two-phase flow by neutron radiography

    International Nuclear Information System (INIS)

    Matsubayashi, Masahito; Sudo, Yukio; Haga, Katsuhiro

    1996-01-01

    In order to make clear the flow mechanism and characteristics of falling water limitation under the countercurrent two-phase flow, that is, the countercurrent flow limitation (CCFL), in a vertical channel, a technique of neutron radiography (NRG) provided in the Research Nuclear Reactor JRR-3M was applied to an air-water system of vertical rectangular channels of 50 and 782 mm in length with 66 mm in channel width and 2.3 mm in channel gap under atmospheric pressure. The neutron radiography facility used in this study has a high thermal neutron flux that is suitable for visualization of fluid phenomena. A real-time electronic imaging method was used for capturing two-phase flow images in a vertical channel. It was found the technique applied was very potential to clarify the characteristics of instantaneous, local and average void fractions which were important to understand flow mechanism of the phenomena, while the measurements of void fraction had not been applied fully effectively to understanding of the flow mechanism of CCFL, because the differential pressure for determining void fraction is, in general, too small along the tested channel and is fluctuating too frequently to be measured accurately enough. From the void fraction measured by NRG as well as through direct flow observation, it was revealed that the shorter side walls of rectangular channel tested were predominantly wetted by water falling down with the longer side walls being rather dry by ascending air flow. It was strongly suggested that the analytical flow model thus obtained and proposed for the CCFL based on the flow observation was most effective

  6. Measurements of void fraction in a water-molten tin system by X-ray absorption

    International Nuclear Information System (INIS)

    Baker, Michael C.; Bonazza, Riccardo; Corradini, Michael L.

    1998-01-01

    A facility has been developed to study the explosive interactions of gas-water injection into a molten tin pool. The experimental apparatus allows for variable nitrogen gas and water injection into the base of a steel tank containing up to 25 kg of molten tin. Due to the opaque nature of the molten metal-gas-water mixture and steel tank, a visualization and measurement technique using continuous high energy x-rays had to be developed. Visualization of the multiphase mixture can be done at 220 Hz with 256x256 pixel resolution or at 30 Hz with 480x1128 pixel resolution. These images are stored digitally and subsequently processed to obtain two dimensional mappings of the chordal average void fraction in the mixture. The image processing method has been used to measure void fraction in experiments that did not include water in the injection mixture. This work includes a comparison to previous studies of integral void fraction data in pools of molten metal with gas injection. (author)

  7. Visualization and void fraction measurement of decompressed boiling flow in a capillary tube

    International Nuclear Information System (INIS)

    Asano, H.; Murakawa, H.; Takenaka, N.; Takiguchi, K.; Okamoto, M.; Tsuchiya, T.; Kitaide, Y.; Maruyama, N.

    2011-01-01

    A capillary tube is often used as a throttle for a refrigerating cycle. Subcooled refrigerant usually flows from a condenser into the capillary tube. Then, the refrigerant is decompressed along the capillary tube. When the static pressure falls below the saturation pressure for the liquid temperature, spontaneous boiling occurs. A vapor-liquid two-phase mixture is discharged from the tube. In designing a capillary tube, it is necessary to calculate the flow rate for given boundary conditions on pressure and temperature at the inlet and exit. Since total pressure loss is dominated by frictional and acceleration losses during two-phase flow, it is first necessary to specify the boiling inception point. However, there will be a delay in boiling inception during decompressed flow. This study aimed to clarify the boiling inception point and two-phase flow characteristics of refrigerant in a capillary tube. Refrigerant flows in a coiled copper capillary tube were visualized by neutron radiography. The one-dimensional distribution of volumetric average void fraction was measured from radiographs through image processing. From the void fraction distribution, the boiling inception point was determined. Moreover, a simplified CT method was successfully applied to a radiograph for cross-sectional measurements. The experimental results show the flow pattern transition from intermittent flow to annular flow that occurred at a void fraction of about 0.45.

  8. An improved electrical sensor for simultaneous measurement of the void fraction and two phase flow velocity in the inclined pipe

    International Nuclear Information System (INIS)

    Won, Woo Yeon; Lee, Yeon Gun; Lee, Bo An; Koc, Min Seok; Kim, Sin

    2016-01-01

    The information for the flow pattern is also required to measure the void fraction. In order to solve this problems, Ko et al. proposed the void fraction measurement sensor according to the flow pattern using a three-electrode. The sensor system applied for a horizontal flow loop, and its measured performance for the void fraction was evaluated. In this study, a dual sensor was suggested to improve the measurement accuracy of the void fraction and the velocity. We applied the sensor to the inclined pipe simulating the PAFS heat exchanger. In order to verify the void fraction and velocity measurements, we used the wire-mesh sensor and the high-speed camera. In this study, an improved electrical conductance sensor for void fraction and velocity in inclined pipes has been designed. For minimizing between the sensor electrode interference, the numerical analysis has been performed. The loop experiments were conducted for several flow conditions and the experimental results for the void fractions and velocity measured by the proposed sensor were compared with those of a wiremesh sensor and high-speed camera.

  9. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    Directory of Open Access Journals (Sweden)

    Huajun Li

    2016-01-01

    Full Text Available Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA. Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works.

  10. Correction for dynamic bias error in transmission measurements of void fraction

    International Nuclear Information System (INIS)

    Andersson, P.; Sundén, E. Andersson; Svärd, S. Jacobsson; Sjöstrand, H.

    2012-01-01

    Dynamic bias errors occur in transmission measurements, such as X-ray, gamma, or neutron radiography or tomography. This is observed when the properties of the object are not stationary in time and its average properties are assessed. The nonlinear measurement response to changes in transmission within the time scale of the measurement implies a bias, which can be difficult to correct for. A typical example is the tomographic or radiographic mapping of void content in dynamic two-phase flow systems. In this work, the dynamic bias error is described and a method to make a first-order correction is derived. A prerequisite for this method is variance estimates of the system dynamics, which can be obtained using high-speed, time-resolved data acquisition. However, in the absence of such acquisition, a priori knowledge might be used to substitute the time resolved data. Using synthetic data, a void fraction measurement case study has been simulated to demonstrate the performance of the suggested method. The transmission length of the radiation in the object under study and the type of fluctuation of the void fraction have been varied. Significant decreases in the dynamic bias error were achieved to the expense of marginal decreases in precision.

  11. 3D DEM simulation and analysis of void fraction distribution in a pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Yang, Xingtuan; Gui, Nan; Tu, Jiyuan; Jiang, Shengyao

    2014-01-01

    Highlights: • We show a detailed analysis of void fraction (VF) in HTR-10 of China using DEM. • Radial distribution (RD) of VF is uniform in the core and oscillated near the wall. • Axial distribution (AD) is linearly varied along height due to effect of gravity. • Steady RD of VF in the conical base is Gaussian-like, larger than packing bed. • Joint linear and normal distribution of VF is analyzed and explained. - Abstract: The current work analyzes the radial and axial distributions of void fraction of a pebble bed high temperature reactor. A three-dimensional pebble bed corresponding to our test facility of pebble bed type gas-cooled high temperature reactor (HTR-10) in Tsinghua University is simulated via discrete element method, and the radial and axial void fraction profiles are calculated. It validates the oscillating characteristics of radial void fraction near the wall. Detailed calculations show the differences of void fraction profiles between the stationary packing bed and the dynamically discharging bed. Based on the vertically and circumferentially averaged radial distribution and horizontally averaged axial distribution of void fraction, a fully three-dimensional analytical distribution of void fraction throughout the bed is established. The results show the combined effects of gravity and void variation in the pebble bed caused by the pebble discharging. It indicates the linearly increased packing effect caused by gravity in the vertical (axial) direction and the normal distribution of void in the horizontal (radial) direction by pebble drainage. These two effects coexist in the conical base of the bed whereas only the former effect exists in the cylindrical volume of the bed

  12. A hybrid method of prediction of the void fraction during depressurization of diabatic systems

    International Nuclear Information System (INIS)

    Inayatullah, G.; Nicoll, W.B.; Hancox, W.T.

    1977-01-01

    The variation in vapour volumetric fraction during transient pressure, flow and power is of considerable importance in water-cooled nuclear power-reactor safety analysis. The commonly adopted procedure to predict the transient void is to solve the conservation equations using finite differences. This present method is intermediate between numerical and analytic, hence 'hybrid'. Space and time are divided into discrete intervals. Their size, however, is dictated by the imposed heat flux and pressure variations, and not by truncation error, stability or convergence, because within an interval, the solutions applied are analytic. The relatively simple hybrid method presented here can predict the void distribution in a variety of transient, diabatic, two-phase flows with simplicity, accuracy and speed. (Auth.)

  13. Simulation study for the influences of fluid physical properties on void fraction of moderator cell of cold neutron source

    International Nuclear Information System (INIS)

    Li Xiaoming; Feng Quanke; Bi Qincheng; Chen Tingkuan; Du Shejiao

    2004-01-01

    The void fraction at different heights in the annular channel of moderator cell mockup was measured with a differential pressure transducer. The tests proved that the ratio of surface tension to density of liquid phase is the main factor that determines the physical properties on void fraction. The larger the ratio, the smaller the void fraction. The ratio of surface tension to density of Freon 113 is lower than that of liquid hydrogen. Therefore, Freon 113 can be used as working fluid to study the void fraction in the hydrogen two-phase thermo-siphon loop in the cold neutron source (CNS) of China Advanced Research Reactor (CARR), and the results are conservative

  14. Development of an electrical sensor for measurement of void fraction and identification of flow regime in a horizontal pipe

    International Nuclear Information System (INIS)

    Won, Woo Yeon; Lee, Yeon Gun; Lee, Bo An; Ko, Min Seok; Kim, Sin

    2015-01-01

    The electrical signals of the electrical impedance sensor depend on the flow structure as well as the void fraction. For this reason, the electrical responses to a given void fraction differ according to the flow pattern. For reliable void fraction measurement, hence, information on the flow pattern should be given. Based on this idea, a new improved conductance sensor is proposed in this study to measure the void fraction and simultaneously determine the flow pattern of the air-water two-phase mixture in a horizontal pipe. The proposed sensor is composed of a 3-electrode set of adjacent and opposite electrodes. The opposite electrodes measures the void fraction, the adjacent electrode serves to determine the flow patterns. Prior to the real applications of the proposed approach, several numerical calculations based on the FEM are performed to optimize the electrode and insulator sizes in terms of the sensor linearity. The numerical results are assessed in comparison with the data from static experiments. The sensor system is applied for a horizontal flow loop with 40 mm in inner diameter and 5 m in length and its measurement performance for the void fraction is compared with that of a wire-mesh sensor system. In this study, an electrical sensor for measuring the void fraction and identifying flow pattern in horizontal pipes has been designed. For optimization of the sensor, numerical analysis have been performed in order to determine the geometry and verified it through static experiments. Also, the loop experiments were conducted for several flow rate conditions covering stratified and intermittent flow regimes and the experimental results for the void fractions measured by the proposed sensor were compared with those of a wire-mesh sensor. The comparison results are in overall good agreements

  15. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography.

    Science.gov (United States)

    Saito, Y; Mishima, K; Matsubayashi, M

    2004-10-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile.

  16. Measurement of the local void fraction in two-phase air-water flow with a hot-film anemometer

    International Nuclear Information System (INIS)

    Delhaye, J.

    1968-01-01

    The experimental knowledge of the local void-fraction is basic for the derivation of the constitutive equations of two-phase flows. This report deals with measurements of the local void-fraction based on the use of a constant temperature hot-film anemometer associated with a multichannel analyser. After determining the void-fraction profile along a diameter of a vertical pipe (40 mm I.D.), in which air and water flow upwards, we compare the void-fraction averaged over the diameter with the average value measured directly by a γ-ray method. Two runs were made in bubble flow and a third in slug flow. The two methods give results in a good agreement especially for bubble flow. The void-fraction averaged over the cross-section was also calculated from the different profiles and compared in a good manner with the experimental results of R. ROUMY. For bubble flow we verified the theory of S.G. BANKOFF about the shape of the void-fraction profiles. (author) [fr

  17. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Matsubayashi, M.

    2004-01-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile

  18. The coupled effect of fiber volume fraction and void fraction on hydraulic fluid absorption of quartz/BMI laminates

    Science.gov (United States)

    Hurdelbrink, Keith R.; Anderson, Jacob P.; Siddique, Zahed; Altan, M. Cengiz

    2016-03-01

    Bismaleimide (BMI) resin with quartz (AQ581) fiber reinforcement is a composite material frequently used in aerospace applications, such as engine cowlings and radomes. Various composite components used in aircrafts are exposed to different types of hydraulic fluids, which may lead to anomalous absorption behavior over the service life of the composite. Accurate predictive models for absorption of liquid penetrants are particularly important as the composite components are often exposed to long-term degradation due to absorbed moisture, hydraulic fluids, or similar liquid penetrants. Microstructural features such as fiber volume fraction and void fraction can have a significant effect on the absorption behavior of fiber-reinforced composites. In this paper, hydraulic fluid absorption characteristics of quartz/BMI laminates fabricated from prepregs preconditioned at different relative humidity and subsequently cured at different pressures are presented. The composite samples are immersed into hydraulic fluid at room temperature, and were not subjected to any prior degradation. To generate process-induced microvoids, prepregs were conditioned in an environmental chamber at 2% or 99% relative humidity at room temperature for a period of 24 hours prior to laminate fabrication. To alter the fiber volume fraction, the laminates were fabricated at cure pressures of 68.9 kPa (10 psi) or 482.6 kPa (70 psi) via a hot-press. The laminates are shown to have different levels of microvoids and fiber volume fractions, which were observed to affect the absorption dynamics considerably and exhibited clear non-Fickian behavior. A one-dimensional hindered diffusion model (HDM) was shown to be successful in predicting the hydraulic fluid absorption. Model prediction indicates that as the fabrication pressure increased from 68.9 kPa to 482.6 kPa, the maximum fluid content (M∞) decreased from 8.0% wt. to 1.0% wt. The degree of non-Fickian behavior, measured by hindrance coefficient (

  19. An advanced ultrasonic technique for slow and void fraction measurements of two-phase flow

    International Nuclear Information System (INIS)

    Faccini, J.L.H.; Su, J.; Harvel, G.D.; Chang, J.S.

    2004-01-01

    In this paper, we present a hybrid type counterpropagating transmission ultrasonic technique (CPTU) for flow and time averaging ultrasonic transmission intensity void fraction measurements (TATIU) of air-water two-phase flow, which is tested in the new two-phase flow test section mounted recently onto an existing single phase flow rig. The circular pipe test section is made of 51.2 mm stainless steel, followed by a transparent extruded acrylic pipe aimed at flow visualization. The two-phase flow rig operates in several flow regimes: bubbly, smooth stratified, wavy stratified and slug flow. The observed flow patterns are compared with previous experimental and numerical flow regime map for horizontal two phase flows. These flow patterns will be identified by time averaging transmission intensity ultrasonic techniques which have been developed to meet this particular application. A counterpropagating transmission ultrasonic flowmeter is used to measure the flow rate of liquid phase. A pulse-echo TATIU ultrasonic technique used to measure the void fraction of the horizontal test section is presented. We can draw the following conclusions: 1) the ultrasonic system was able to characterize the 2 flow patterns simulated (stratified and plug flow); 2) the results obtained for water volumetric fraction require more experimental work to determine exactly the technique uncertainties but, a priori, they are consistent with earlier work; and 3) the experimental uncertainties can be reduced by improving the data acquisition system, changing the acquisition time interval from seconds to milliseconds

  20. Visualization and void-fraction measurements in a molten metal bath

    Science.gov (United States)

    Baker, Michael Charles

    In the experimental study of multiphase flow phenomena, including intense multiphase interactions, such as vapor explosions, the fluids are often opaque. To obtain images, suitable for quantitative analysis, of such phenomena requires the use of something other than visible light, such as x-rays or neutrons. In this study a unique flow visualization technique using a continuous high energy x-ray source to measure void fraction with good spatial and temporal resolution in pools of liquid metal has been developed. In the present experiments, 11 to 21 kg of molten tin at 360sp° C to 425sp° C is collected in a pre-heated stainless steel test section of rectangular cross section (18 x 10 cm). In the base of the test section are two injection ports for the introduction of nitrogen gas and water. Each port is composed of two coaxial tubes. Nitrogen gas flows through the annular region and either nitrogen gas or water flows through the central tube. The test section is imaged using a high energy x-ray source (Varian Linatron 3000A) with a peak energy of 9 MeV and a maximum on axis dose rate of 30 Gy/min. The transmitted x-rays are viewed with an imaging system composed of a high density silicate glass screen, a mirror, a lens coupled image intensifier, and a CCD camera. Two interchangeable CCD cameras allow for either high resolution imaging (1128 x 480 pixels) at a frame rate of 30 Hz or low resolution imaging (256 x 256 pixels) at a frame rate of 220 Hz. The collected images are digitally processed to obtain the chordal averaged local and volume integral void fractions. At the experimental conditions examined, estimated relative uncertainty using this measurement technique is 10% for worst case conditions. The upper bound on the relative systematic error due to void dynamics is estimated to be 20%. Reasonable agreement has been demonstrated between the data generated from the processed images, past integral void fraction experimental data, and a semi-empirical drift

  1. Assessment Using ANL Experiments on Void Fraction in a Vertical Tube

    Energy Technology Data Exchange (ETDEWEB)

    Han, KyuHyun; Bang, YoungSeok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    A licensing application of a safety analysis code, SPACE, was submitted and is currently under KINS' review. This code was developed to consider three fluid fields, i.e. liquid, vapor and droplet, for a realistic simulation of accident phenomena. Therefore, there may be a concern that this code could predict different behavior compared to the existing codes. To assess the important performance independently and to compare with prediction results of SPACE might be helpful to regulatory review for identifying validity of the code. The interfacial friction could largely affect prediction of thermal hydraulic phenomena during LOCA or non- LOCA. This paper provides MARS-KS prediction of void fraction experiments in a vertical tube by ANL and compares with SPACE prediction results. It was found that the similar interfacial friction model adopting the drift flux correlations were implemented in both codes. Experimental void fractions of the ANL test presented in this paper correspond to bubbly, slug and churn flow regions. Agreements in general sense between the experiment and the predicted values were identified through calculations. Thus, similar accuracy for this experiment can be expected in SPACE and MARS-KS. It was also shown that drift flux interfacial friction model for intermediate flow channel (diameter of 7cm) is valid.

  2. Void fraction for gas bubbling in shallow viscous pools-application to molten core concrete interaction

    International Nuclear Information System (INIS)

    Journeau, C.; Haquet, J.F.

    2005-01-01

    During Molten Core-Concrete Interaction, the concrete will release gases (mainly steam and carbon oxides) that will flow through the corium pool. To obtain reliable heat transfer prediction, it is necessary to model the void fraction in the pool as a function of the gas mass flow (or superficial velocity at the interface). A series of simulant-materials have been performed with water-air and sugar syrup-air in order to study how the drift model could be applied to a shallow pool (where the bubbly flow is not fully developed) and to liquids which are more viscous (with higher Morton numbers) than water. The bubble average diameter was estimated around 3 mm with spherical to ellipsoidal shapes. For all the configurations, even with the shallowest pools (6 cm height for 38 cm diameter) the experimental void fractions follow the drift-model relationship. In water, the distribution coefficient C 0 tends to the classical value of 1.2 while the drift velocity V jg tends to the 23 cm/s predicted by Ishii (1975) model for churn flows. For the more viscous syrup, the drift velocity tends to 13 cm/s which is significantly lower than the value obtained from the Ishii correlation for bubbly or churn flows (established for water). These results are then applied to MCCI experimental configurations. (authors)

  3. Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Z; Axelsson, E

    1968-10-15

    The complex problem of void calculation in the different regions of flow boiling is divided in two parts. The first part includes only the description of the mechanisms and the calculation of the rates of heat transfer for vapour and liquid. It is assumed that heat is removed by vapour generation, heating of the liquid that replaces the detached bubbles, and in some parts, by single phase heat transfer. By considering the rate of vapour condensation in liquid, an equation for the differential changes in the true steam quality throughout the boiling regions is obtained. Integration of this equation yields the vapour weight fraction at any position. The second part of the problem concerns the determination of the void fractions corresponding to the calculated steam qualities. For this purpose we use the derivations of Zuber and Findlay. This model is compared with data from different geometries including small rectangular channels and large rod bundles. The data covered pressures from 19 to 138 bars, heat fluxes from 18 to 120 W/cm{sup 2} with many different subcoolings and mass velocities. The agreement is generally very good.

  4. Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions

    International Nuclear Information System (INIS)

    Rouhani, S.Z.; Axelsson, E.

    1968-10-01

    The complex problem of void calculation in the different regions of flow boiling is divided in two parts. The first part includes only the description of the mechanisms and the calculation of the rates of heat transfer for vapour and liquid. It is assumed that heat is removed by vapour generation, heating of the liquid that replaces the detached bubbles, and in some parts, by single phase heat transfer. By considering the rate of vapour condensation in liquid, an equation for the differential changes in the true steam quality throughout the boiling regions is obtained. Integration of this equation yields the vapour weight fraction at any position. The second part of the problem concerns the determination of the void fractions corresponding to the calculated steam qualities. For this purpose we use the derivations of Zuber and Findlay. This model is compared with data from different geometries including small rectangular channels and large rod bundles. The data covered pressures from 19 to 138 bars, heat fluxes from 18 to 120 W/cm 2 with many different subcoolings and mass velocities. The agreement is generally very good

  5. A simple capacitance sensor for void fraction measurement in gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Silva, Luiz C.R.P.; Faccini, José L.H.; Farias, Marcos S.; Su, Jian

    2017-01-01

    In this work we present a simple and inexpensive capacitance sensor for time averaging void fraction measurement of gas-liquid two-phase flow, which was developed at Experimental Thermal hydraulics Laboratory in the Nuclear Engineering Institute, IEN/CNEN. The sensor is a non-invasive device causing no flow disturbances. It is formed by two parallel plates and four electronic circuits: a signal input circuit, an amplification circuit, a frequency generator, and a power supply circuit. The frequency generator applies a sinusoidal signal with appropriate frequency into the signal input circuit which converts the capacitance variation value (or void fraction) of the two-phase flow into a voltage signal that goes to the amplifier stage; the output signal of the amplifier stage will be an input to an analogic/digital converter, installed inside of a computer, and it will provide interpretation of the signal behavior. The capacitance sensor was calibrated by using a horizontal acrylic tube filled with a known volume of water. (author)

  6. A simple capacitance sensor for void fraction measurement in gas-liquid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luiz C.R.P.; Faccini, José L.H.; Farias, Marcos S., E-mail: reina@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Su, Jian, E-mail: sujian@con.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Engenharia Nuclear

    2017-07-01

    In this work we present a simple and inexpensive capacitance sensor for time averaging void fraction measurement of gas-liquid two-phase flow, which was developed at Experimental Thermal hydraulics Laboratory in the Nuclear Engineering Institute, IEN/CNEN. The sensor is a non-invasive device causing no flow disturbances. It is formed by two parallel plates and four electronic circuits: a signal input circuit, an amplification circuit, a frequency generator, and a power supply circuit. The frequency generator applies a sinusoidal signal with appropriate frequency into the signal input circuit which converts the capacitance variation value (or void fraction) of the two-phase flow into a voltage signal that goes to the amplifier stage; the output signal of the amplifier stage will be an input to an analogic/digital converter, installed inside of a computer, and it will provide interpretation of the signal behavior. The capacitance sensor was calibrated by using a horizontal acrylic tube filled with a known volume of water. (author)

  7. Application of gamma densitometer for void fraction measurement in the downcomer of DVI experimental apparatus

    International Nuclear Information System (INIS)

    Chu, In Cheol; Kim, Y. K.; Yun, B. J.; Kwon, T. S.; Chung, M. K.; Song, C. H.

    2000-11-01

    KNGR which adopts the DVI type of ECCS is expected to show different thermal hydraulic aspects from existing NPPs which use the CLI type of ECCS. Therefore, it is necessary to examine whether existing safety analysis codes could correctly predict major thermal hydraulic phenomena which are inherent in SIS operation of DVI type. Among several thermal hydraulic phenomena, it is of particular importance to examine and improve the analyzing capability of existing codes for the void fraction and flow pattern in the downcomer. In the present study, the design of gamma densitometer to measure the void fraction and flow pattern in the downcomer of DVI test apparatus has been performed. In addition, provided are the requirements of gamma source, source activity, scintillation detector, and signal processing system. Also, the design of the shielding facilities has been carried out to ensure the safety of operator from the danger of radiation exposure. And finally the applicability of gamma densitometer to the density measurement of two-phase flow has been investigated throughout the preliminary tests

  8. Analysis on the Multiplication Factor with the Change of Corium Mass and Void Fraction

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Sun; Park, Chang Je; Song, Jin Ho; Ha, Kwang Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The neutron absorbing materials and fuel rods would be separately arranged and relocated, since the control materials in metallic structures have lower melting points than that of the oxide fuel (UO{sub 2}) rod materials. In addition, core reflood for a BWR is normally accomplished by supplying unborated water unlikely for a PWR. Therefore, a potential for a recriticality event to occur may exist, if unborated coolant injection is initiated with this configuration in the reactor core. The re-criticality in this system, however, brings into question what the uranium mass is required to achieve a critical level. Furthermore, the additional decay heat from molten fuel (corium) will produce an increase of void and eventually results in under-moderation of neutrons. The prior verification of these consequential physical variations in criticality eigenvalue (effective multiplication factor, k{sub eff}) should be greatly contributed to control and termination of re-criticality. Therefore, this study addresses what uranium mass of corium could achieve re-criticality of an accident core, and how effect the coolant void fraction has on eigenvalue (k{sub eff}) and its reactivity. To analyze the critical mass and the effect on criticality upon changing coolant density, k{sub eff} values were calculated using the MCNPX 2.5.0 code, and the reactivity change was also investigated. As a result, a large change in corium mass leads to a little change in k{sub eff} value, nevertheless, only about 60 kg of uranium is necessary to achieve a critical level. Thus, the amounts to reach a re-criticality are not fairly large, considering the actual uranium quantities loaded in the reactor core. Based on the condition with k{sub eff} greater than unity, the absolute values of k{sub eff} decrease rate and the coolant density coefficient were gradually increased due to the steady increments of coolant void (i.e., decrease in coolant density). In addition, the k{sub eff} value approaches the

  9. Precise Void Fraction Measurement in Two-phase Flows Independent of the Flow Regime Using Gamma-ray Attenuation

    Directory of Open Access Journals (Sweden)

    E. Nazemi

    2016-02-01

    Full Text Available Void fraction is an important parameter in the oil industry. This quantity is necessary for volume rate measurement in multiphase flows. In this study, the void fraction percentage was estimated precisely, independent of the flow regime in gas–liquid two-phase flows by using γ-ray attenuation and a multilayer perceptron neural network. In all previous studies that implemented a multibeam γ-ray attenuation technique to determine void fraction independent of the flow regime in two-phase flows, three or more detectors were used while in this study just two NaI detectors were used. Using fewer detectors is of advantage in industrial nuclear gauges because of reduced expense and improved simplicity. In this work, an artificial neural network is also implemented to predict the void fraction percentage independent of the flow regime. To do this, a multilayer perceptron neural network is used for developing the artificial neural network model in MATLAB. The required data for training and testing the network in three different regimes (annular, stratified, and bubbly were obtained using an experimental setup. Using the technique developed in this work, void fraction percentages were predicted with mean relative error of <1.4%.

  10. Void fraction correlations analysis and their influence on heat transfer of helical double-pipe vertical evaporator

    International Nuclear Information System (INIS)

    Parrales, Arianna; Colorado, Dario; Huicochea, Armando; Díaz, Juan; Alfredo Hernández, J.

    2014-01-01

    Highlights: • 50 void fraction correlations were evaluated on heat transfer in vertical evaporators. • Two-phase flow model based on control volume formulation was used. • The drift flux parameter is common in all correlations with satisfactory results. - Abstract: An analysis of 50 void fraction correlations available in the literature was performed to describe two-phase flow mechanism inside two helical double-pipe vertical evaporators. The evaporators considered water as working fluid connected in countercurrent so the change of phase was carried out into the internal tube. The discretized equations of continuity, momentum and energy in each flow were coupled using an implicit step by step method. The selection of the void fraction correlations for the mathematical model was based on inclusion of some theoretical limits. The results of this analysis were compared with the experimental data in steady state for two different evaporators, obtaining good agreement in the evaporation process for only 7 void fraction correlations. The Armand and Massena correlation had a mean percentage error (MPE) of 3.08%, followed by Rouhanni and Axelsson I adquired MPE=3.16%, Chisholm and Armand obtained MPE=3.18%, Steiner as well as Rouhanni and Axelsson II with MPE=3.19%, Bestion reached MPE=3.20% and Flanigan presented MPE=3.21%. Furthermore, the experimental and simulated heat flux were acceptable (R 2 =0.939). Finally, the results showed that the drift flux parameter was important to evaluate the void fraction

  11. In situ determination of rheological properties and void fraction in Hanford Waste Tank 241-SY-101

    International Nuclear Information System (INIS)

    Stewart, C.W.; Shepard, C.L.; Alzheimer, J.M.; Stokes, T.I.; Terrones, G.

    1995-08-01

    This report presents the results of the operation of the void fraction instrument (VFI) and ball rheometer in Hanford Tank 241-SY-101, which contains approximately one million gallons of radioactive waste. These instruments provided the first direct assay of the waste condition in the tank after more than a year of mixer pump operation. The two instruments were deployed in the tank in late 1994 and early 1995 to gather much-needed data on the effect prolonged mixer pump operation has on gas retention in the waste. The information supplied by these instruments has filled a great gap in the quantitative knowledge of the waste condition. The results show that the solids are well-mixed by the current mixer pump to within less than a meter of the tank bottom. Undisturbed sludge remains only on the lowest 10--30 cm and contains 10--12% void. The mixed slurry above contains less than 1% void and has no measurable yield strength and a shear-thinning viscosity of approximately 6 Poise at 1 sec -1 . Estimating the gas volumes in each of the four layers based on VFI data yields a total of 221 ± 57 m 3 (7,800 ± 2,000 SCF) of gas at 1 atmosphere. Given the current waste level of 10.2 m (400 inches), the degassed waste level would be 9.8 m (386 inches). These results confirm that the mixer pump in Tank 241-SY-101 has performed the job it was installed to do--thoroughly mix the waste to release stored gas and prevent gas accumulation

  12. EFFECTS OF OXYGEN AND AIR MIXING ON VOID FRACTIONS IN A LARGE SCALE SYSTEM

    International Nuclear Information System (INIS)

    Leishear, R; Hector Guerrero, H; Michael Restivo, M

    2008-01-01

    Oxygen and air mixing with spargers was performed in a 30 foot tall by 30 inch diameter column, to investigate mass transfer as air sparged up through the column and removed saturated oxygen from solution. The mixing techniques required to support this research are the focus of this paper. The fluids tested included water, water with an antifoam agent (AFA), and a high, solids content, Bingham plastic, nuclear waste simulant with AFA, referred to as AZ01 simulant, which is non-radioactive. Mixing of fluids in the column was performed using a recirculation system and an air sparger. The re-circulation system consisted of the column, a re-circulating pump, and associated piping. The air sparger was fabricated from a two inch diameter pipe concentrically installed in the column and open near the bottom of the column. The column contents were slowly re-circulated while fluids were mixed with the air sparger. Samples were rheologically tested to ensure effective mixing, as required. Once the fluids were adequately mixed, oxygen was homogeneously added through the re-circulation loop using a sintered metal oxygen sparger followed by a static mixer. Then the air sparger was re-actuated to remove oxygen from solution as air bubbled up through solution. To monitor mixing effectiveness several variables were monitored, which included flow rates, oxygen concentration, differential pressures along the column height, fluid levels, and void fractions, which are defined as the percent of dissolved gas divided by the total volume of gas and liquid. Research showed that mixing was uniform for water and water with AFA, but mixing for the AZ101 fluid was far more complex. Although mixing of AZ101 was uniform throughout most of the column, gas entrapment and settling of solids significantly affected test results. The detailed test results presented here provide some insight into the complexities of mixing and void fractions for different fluids and how the mixing process itself

  13. EFFECTS OF OXYGEN AND AIR MIXING ON VOID FRACTIONS IN A LARGE SCALE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R; Hector Guerrero, H; Michael Restivo, M

    2008-09-11

    Oxygen and air mixing with spargers was performed in a 30 foot tall by 30 inch diameter column, to investigate mass transfer as air sparged up through the column and removed saturated oxygen from solution. The mixing techniques required to support this research are the focus of this paper. The fluids tested included water, water with an antifoam agent (AFA), and a high, solids content, Bingham plastic, nuclear waste simulant with AFA, referred to as AZ01 simulant, which is non-radioactive. Mixing of fluids in the column was performed using a recirculation system and an air sparger. The re-circulation system consisted of the column, a re-circulating pump, and associated piping. The air sparger was fabricated from a two inch diameter pipe concentrically installed in the column and open near the bottom of the column. The column contents were slowly re-circulated while fluids were mixed with the air sparger. Samples were rheologically tested to ensure effective mixing, as required. Once the fluids were adequately mixed, oxygen was homogeneously added through the re-circulation loop using a sintered metal oxygen sparger followed by a static mixer. Then the air sparger was re-actuated to remove oxygen from solution as air bubbled up through solution. To monitor mixing effectiveness several variables were monitored, which included flow rates, oxygen concentration, differential pressures along the column height, fluid levels, and void fractions, which are defined as the percent of dissolved gas divided by the total volume of gas and liquid. Research showed that mixing was uniform for water and water with AFA, but mixing for the AZ101 fluid was far more complex. Although mixing of AZ101 was uniform throughout most of the column, gas entrapment and settling of solids significantly affected test results. The detailed test results presented here provide some insight into the complexities of mixing and void fractions for different fluids and how the mixing process itself

  14. Void fraction measurement in two-phase flow with X-rays

    International Nuclear Information System (INIS)

    Hufschmidt, W.; Clercq, E. de.

    1984-01-01

    The exact knowledge of the void fraction in two-phase flow systems with water and vapour is of great importance for water-reactors. A mesurement method not disturbing the fluid flow is the absorption technique X-rays. This method has been tested for the present case of small absorption lengths (about 16mm). In collaboration with the 'Lehrstuhl fuer elektronische Schaltungen' of the Ruhruniversitaet, Bochum (FRG), a rapid measurement device has been developed using ionization chambers. At present steady-state fluid in vertical tubes with homogeneous distribution of the two-phases water-vapour are tested at pressures in the range from 70 to 150 bars and rather good agreements with calculated values are found

  15. Propagation of void fraction uncertainty measures in the RETRAN-3D simulation of the Peach Bottom turbine trip

    International Nuclear Information System (INIS)

    Vinai, Paolo; Macian-Juan, Rafael; Chawla, Rakesh

    2011-01-01

    The paper describes the propagation of void fraction uncertainty, as quantified by employing a novel methodology developed at Paul Scherrer Institut, in the RETRAN-3D simulation of the Peach Bottom turbine trip test. Since the transient considered is characterized by a strong coupling between thermal-hydraulics and neutronics, the accuracy in the void fraction model has a very important influence on the prediction of the power history and, in particular, of the maximum power reached. It has been shown that the objective measures used for the void fraction uncertainty, based on the direct comparison between experimental and predicted values extracted from a database of appropriate separate-effect tests, provides power uncertainty bands that are narrower and more realistic than those based, for example, on expert opinion. The applicability of such an approach to best estimate, nuclear power plant transient analysis has thus been demonstrated.

  16. Structure of two-phase air-water flows. Study of average void fraction and flow patterns

    International Nuclear Information System (INIS)

    Roumy, R.

    1969-01-01

    This report deals with experimental work on a two phase air-water mixture in vertical tubes of different diameters. The average void fraction was measured in a 2 metre long test section by means of quick-closing valves. Using resistive probes and photographic techniques, we have determined the flow patterns and developed diagrams to indicate the boundaries between the various patterns: independent bubbles, agglomerated bubbles, slugs, semi-annular, annular. In the case of bubble flow and slug flow, it is shown that the relationship between the average void fraction and the superficial velocities of the phases is given by: V sg = f( ) * g(V sl ). The function g(V sl ) for the case of independent bubbles has been found to be: g(V sl ) = V sl + 20. For semi-annular and annular flow conditions; it appears that the average void fraction depends, to a first approximation only on the ratio V sg /V sl . (author) [fr

  17. The use of waveguide acoustic probes for void fraction measurement in the evaporator of BN-350-Type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, V.I.; Nigmatulin, B.I.

    1995-09-01

    The present paper deals with some results of the experimental studies which have been carried out to investigate the steam generation dynamics in the Field tubes of sodium-water evaporators used in the BN-350 reactors. The void fraction measurements have been taken with the aid of waveguide acoustic transducers manufactured in accordance with a specially designed technology (waveguide acoustic transducers-WAT technology). Presented in this paper also the transducer design and calibration methods, as well as the diagram showing transducers arrengment in the evaporator. The transducers under test featured a waveguide of about 4 m in length and a 200-mm long sensitive element (probe). Besides, this paper specifies the void fraction data obtained through measurements in diverse points of the evaporator. The studies revealed that the period of observed fluctuations in the void fraction amounted to few seconds and was largely dependent on the level of water in the evaporator.

  18. Void fraction measurements in two-phase flow by transmission and scattering of a neutrons beam

    International Nuclear Information System (INIS)

    Souza, M.C.L.

    1984-01-01

    Calibration curves have been obtained which supply average values of void fraction (α) of water-steam two-phase mixtures for bubble, slug, annular and invert annular flow states. The measurements were carried out in simulated models of lucite-air for the steady-state, using the techniques of transmission and diffusion of a thermal neutrons beam. The calibration curves obtained were used for measurements of void fraction in a circuit containing two-phase water-air mixtures, in upward concurrent flow, for slug flow (P sub(max) = 1,06 bar) and annular flow (P sub(max) = 1,33 bar), using the same techniques. In both of the systems, a test section made up of an aluminium (99,9%) tube was used with internal diameter of 25,25 mm and 2,0 mm wall thichness. The beam of neutrons was obtained from a 5 Ci isotopic Am-Be source, thermalised in a cylindrical moderator of paraffin of 500 mm diameter (with H/D=1) which was covered by 2 mm thick cadmium sheets and having in its centre a parallepeliped made from high density polyethilene with the dimensions 240 x 240 x 144 mm. The neutrons escape through a rectangular collimator of 53,0 x 25,25 mm, with a length of 273 mm cut out of a single block of borated paraffin (32% of H 3 BO 3 ). The experimental results are in good agreement with theorical models in published literature. (Author) [pt

  19. Void fraction and incipient point of boiling during the subcooled nucleate flow boiling of water

    International Nuclear Information System (INIS)

    Unal, H.C.

    1977-01-01

    Void fraction has been determined with high-speed photography for subcooled nucleate flow boiling of water. The data obtained and the data of various investigators for adiabatic flow of stream-water mixtures and saturated bulk boiling of water have yielded a correlation which covers the following conditions: geometry: vertically orientated circular tubes, rectangular channels and annuli; pressure: 2 to 15.9 MN/m 2 ; mass velocity: 388 to 3500 kg/m 2 s; void fraction: 0 to 99%; hydraulic diameter: 0.0047 to 0.0343 m; heat flux: adiabatic and 0.01 to 2.0 MW/m 2 . The accuracy of the correlation is estimated to be 12.5%. The value of the so-called distribution (or flow) parameter has been experimentally determined and found to be equal to 1 for a vertical small-diameter circular tube. The incipient point of boiling for subcooled nucleate flow boiling of water has been determined with high-speed photography. The data obtained and the data available in the literature have yielded a correlation which covers the following conditions: geometry: plate, circular tube and inner tube-heated, outer tube-heated and inner - and outer tube heated annulus; pressure: 0.15 to 15.9 MN/m 2 ; mass velocity: 470 to 17355 kg/m 2 s; hydraulic diameter: 0.00239 to 0.032 m; heat flux: 0.13 to 9.8 MW/m 2 ; subcooling: 2.6 to 108 K; material of heating surface: stainless steel and nickel. The accuracy of the correlation is estimated to be 27.5%. Maximum bubble diameters have been measured at the incipient point of boiling. These data and the data from literature have been correlated for the pressure range of 0.1 to 15.9 MN/m 2 . (author)

  20. National standard and code compliance for electrical equipment installed in hazardous locations for the void fraction instrument

    International Nuclear Information System (INIS)

    Bussell, J.H.; Martin, J.D.; Stokes, T.I.

    1994-01-01

    The hazardous area classification is evaluated and defined for the void fraction instrument (VFI). The void fraction instrument is an instrument that is used to measure gas bubble concentration in tank waste. It is a 18.3 meter (60-foot) long pipe with swivel sampling head. The assembly is lowered into tank waste via an available riser and waste sample is obtained. The sample is obtained and the sample chamber is pressurized from a fixed volume chamber. The pressure is then measured and then the VFI is moved to the next sample elevation

  1. Effective void fraction for a BWR assembly with boiling in the bypass region

    International Nuclear Information System (INIS)

    Galperin, A.; Segev, M.; Knoglinger, E.

    1991-09-01

    Average BWR assembly cross-sections for nominal conditions, namely for zero bypass void, can be utilised in the analysis of transient conditions with boiling in the bypass. A model is developed to yield an effective channel void for such conditions. The use of this void in conjunction with the 'nominal conditions' cross section library approximately preserves the assembly K-infinity corresponding to the true channel and bypass voids. The effective void is an augmentation of the actual channel void. The augment is proportional to the bypass-to-channel volume ratio, to the bypass void, and to a weight W which is introduced to quantify the fact that a water molecule in the bypass has a different assembly criticality worth than one in the channel. The formula developed is superior to the practice of choosing W=1, namely a simple, non-weighted, transfer of water from channel to bypass. The use of this approximate effective channel void reproduces actual K-infinity values of assemblies to better than 5 mk, whereas the use of a simple model sometimes misspredicts the assembly K-infinity by 40 mK. The effective void model cannot handle cases in which both channel and bypass void value are high, simply because then the effective void α ch eff becomes meaningless. A method to treat the α eff >1 domain is developed by which corrections to cross sections are provided. Such corrections are synthesised as functions of the assembly parameters. (author) figs., tabs., refs

  2. Application of Electromagnetic Induction Technique to Measure the Void Fraction in Oil/Gas Two Phase Flow

    Science.gov (United States)

    Wahhab, H. A. Abdul; Aziz, A. R. A.; Al-Kayiem, H. H.; Nasif, M. S.; Reda, M. N.

    2018-03-01

    In this work, electromagnetic induction technique of measuring void fraction in liquid/gas fuel flow was utilized. In order to improve the electric properties of liquid fuel, an iron oxide Fe3O4 nanoparticles at 3% was blended to enhance the liquid fuel magnetization. Experiments have been conducted for a wide range of liquid and gas superficial velocities. From the experimental results, it was realized that there is an existing linear relationship between the void fraction and the measured electromotive force, when induction coils were connected in series for excitation coils, regardless of increase or decrease CNG bubbles distribution in liquid fuel flow. Therefore, it was revealed that the utilized method yielded quite reasonable account for measuring the void fraction, showing good agreement with the other available measurement techniques in the two-phase flow, and also with the published literature of the bubbly flow pattern. From the results of the present investigation, it has been proven that the electromagnetic induction is a feasible technique for the actual measurement of void fraction in a Diesel/CNG fuel flow.

  3. Heat Load Measurements on a Large Superconducting Magnet An Application of a Void Fraction Meter

    CERN Document Server

    Pengo, R; Junker, S; Passardi, Giorgio; ten Kate, H H J

    2004-01-01

    ATLAS is one of the two major experiments of the LHC project at CERN using cryogenics. The superconducting magnet system of ATLAS is composed of the Barrel Toroid (BT), two End Caps Toroids and the Central Solenoid. The BT is formed of 8 race-track superconducting dipoles, each one 25 m long and 5 m wide. A reduced scale prototype (named B0) of one of the 8 dipoles, about one third of the length, has been constructed and tested in a dedicated cryogenic facility at CERN. To simulate the final thermal and hydraulic operating conditions, the B0 was cooled by a forced flow of 4.5 K saturated liquid helium provided by a centrifugal pump of 80 g/s nominal capacity. Both static and dynamic heat loads, generated by the induced currents on the B0 casing during a slow dump or a ramp up, have been measured to verify the expected thermal budget of the entire BT. The instrument used for the heat load measurements was a Void Fraction Meter (VFM) installed on the magnet return line. The instrument constructed at CERN was ca...

  4. Air-Induced Drag Reduction at High Reynolds Numbers: Velocity and Void Fraction Profiles

    Science.gov (United States)

    Elbing, Brian; Mäkiharju, Simo; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    The injection of air into a turbulent boundary layer forming over a flat plate can reduce the skin friction. With sufficient volumetric fluxes an air layer can separate the solid surface from the flowing liquid, which can produce drag reduction in excess of 80%. Several large scale experiments have been conducted at the US Navy's Large Cavitation Channel on a 12.9 m long flat plate model investigating bubble drag reduction (BDR), air layer drag reduction (ALDR) and the transition between BDR and ALDR. The most recent experiment acquired phase velocities and void fraction profiles at three downstream locations (3.6, 5.9 and 10.6 m downstream from the model leading edge) for a single flow speed (˜6.4 m/s). The profiles were acquired with a combination of electrode point probes, time-of-flight sensors, Pitot tubes and an LDV system. Additional diagnostics included skin-friction sensors and flow-field image visualization. During this experiment the inlet flow was perturbed with vortex generators immediately upstream of the injection location to assess the robustness of the air layer. From these, and prior measurements, computational models can be refined to help assess the viability of ALDR for full-scale ship applications.

  5. Measurement of liquid turbulent structure in bubbly flow at low void fraction using ultrasonic doppler method

    International Nuclear Information System (INIS)

    Murakawa, Hideki; Kikura, Hiroshige; Aritomi, Masanori

    2003-01-01

    Microscopic structure in bubbly flows has been a topic of interest in the study of fluid dynamics. In the present paper, the ultrasonic Doppler method was applied to the measurement of bubbly. The experiments were carried out for an air-water dispersed bubbly flow in a 20 mm x 100 mm vertical rectangular channel having a void fraction smaller than 3%. Two ultrasonic transducers were installed on the outer surface of the test section with a contact angle of 45deg off the vertical axis, one facing upward and the other facing downward. By applying statistical methods to the two directional velocity profiles. Reynolds stress profiles were calculated. Furthermore, to clarify the wake effect induced by the leading bubbles, the velocity profiles were divided into two types of data. The first one is for all of the liquid data and the other is the data which did not include the wake effect. For Re m ≥ 1,593, it was observed that the bubbles suppressed the liquid turbulence. Furthermore, comparing with the Reynolds stress profiles in bubbly flow, it was found that Reynolds stress profiles varied with the amount of bubbles present in the flow and the effect of wake causes turbulence in the liquid. (author)

  6. Electromagnetic wave survey on voids behind waterway channel lining; Suiro kaikyo sokuheki haimen kudo no denjiha tansa

    Energy Technology Data Exchange (ETDEWEB)

    Koitabashi, H [Tokyo Electric Power Co. Inc., Tokyo (Japan); Inagaki, M

    1996-10-01

    Voids behind lining were surveyed by applying electromagnetic wave reflection method to the waterway channel of a hydraulic power plant. Since waterway channel lining is ranged from oblique to vertical direction, voids are hardly formed. However, formation of voids or cavities behind lining is supposed such as voids between ground and lining due to change with time or consolidation settlement, and voids due to soil loss. Electromagnetic radar reflection suggesting continuous void was observed behind terrace concrete lining. As the result of core boring, thin continuous void of 2-5cm thick and more than 100m long was found. This was possibly formed by consolidation settlement for a long time. In some sites, continuous void signal was observed at the upper part of side walls although this signal was smaller than that at the upper part of a terrace. This continuous cavity of 10-20cm thick and 20m long was different from voids, and unevenly distributed at the upper part of an open channel along flowing surface with large flow rate. In addition, it is necessary to clarify the relation to cracks. 2 refs., 4 figs.

  7. Development and validation of a technique of measurement of the void fraction by X-ray tomography

    International Nuclear Information System (INIS)

    Jouet, Emmanuel

    2001-01-01

    The aim of this study is to develop an instrumentation to measure the local void fraction map in an air - water flow by X-ray tomography. After an exhaustive literature survey, the selected reconstruction algorithms are compared to choose the most effective. Several improvements are added and tested to enhance the reconstruction accuracy in the vicinity of the pipe walls. An experimental parallel beam tomographic bench has been developed and its operating parameters have been optimized. The acquisition system and the reconstruction algorithm are used to map phantoms, homogeneous or non - homogeneous air - water bubbly flows and bundle flows with regular or interlaced sampling scheme. The method is validated by comparing with the void fraction maps measured with an optical probe. At the end, the method is extended to the fan-beam geometry. (author) [fr

  8. A neutron scattering device for void fraction measurement in channels of the RD-14M thermalhydraulics test facility

    Energy Technology Data Exchange (ETDEWEB)

    Han, P; Hussein, E M.A. [New Brunswick Univ., Fredericton (Canada). Dept. of Mechanical Engineering; Ingham, P J [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-31

    This paper presents a neutron scattering device designed for measuring the void fraction of two-phase flow in the channels or heated sections of the RD-14M Thermalhydraulics Test Facility, located at the AECL Whiteshell Laboratories. The results of an on-line test of the device are presented. The performance of the scatterometer is assessed and is shown to be in agreement with the results inferred from other independent process-parameter measurements. (author). 2 refs., 7 figs.

  9. Void fraction and flow regime determination by optical probe for boiling two-phase flow in a tube subchannel

    International Nuclear Information System (INIS)

    Cheng Huiping; Wu Hongtao; Ba Changxi; Yan Xiaoming; Huang Suyi

    1995-12-01

    In view of the need to determine void fraction and flow regime of vapor-liquid two-phase flow in the steam generator test model, domestic made optical probe was applied on a small-scale freon two-phase flow test rig. Optical probe signals were collected at a sampling rate up to 500 Hz and converted into digital form. Both the time signal, and the amplitude probability density function and FFT spectrum function calculated thereof were analysed in the time and frequency domains respectively. The threshold characterizing vapor or liquid contact with the probe tip was determined from the air-water two-phase flow pressure drop test results. Then, the boiling freon two-phase flow void fraction was determined by single threshold method, and compared with numerical heat transfer computation. Typical patterns which were revealed by the above-mentioned time signal and the functions were found corresponding to distinct flow regimes, as corroborated by visual observation. The experiment shows that the optical probe was a promising technique for two-phase flow void fraction measurement and flow regime identification (3 refs., 15 figs., 1 tab.)

  10. Determination of a cross-sectional void fraction in a tube bundle using a single beam gamma densitometer

    International Nuclear Information System (INIS)

    Guichard, J.; Mezoul, B.; Peturaud, P.; Thomas, B.

    1991-06-01

    In order to qualify 3-dimensional two-phase flow computer codes modelling average flows in tube bundles, cross-section average void fractions must be measured over sub-channels. On the VATICAN mockup, such void fractions(integrated on the mockup thickness) are determined using a single (narrow) beam gamma densitometer. But to avoid a refined exploration of each measurement mesh, for each test, empirical calibration curves have been developed in a regular mesh of the mockup, in axial flow conditions. These calibration curves, which evaluate the sought cross-sectional value as a function of a chordal void fraction (right in the inter-rod gap) depend only on heat flux density and pressure. The data are consistent with the ARMAND-MASSENA and LELLOUCHE-ZOLOTAR slip correlations, and they are fitted by 3rd degree polynomials, for each heat flux density investigated, with a good accuracy. Unfortunately, preliminary testing and analysis indicate that the use of these calibration curves in subcooled boiling and transverse mixing zones might result in significant uncertainties and errors

  11. Multi codes and multi-scale analysis for void fraction prediction in hot channel for VVER-1000/V392

    International Nuclear Information System (INIS)

    Hoang Minh Giang; Hoang Tan Hung; Nguyen Huu Tiep

    2015-01-01

    Recently, an approach of multi codes and multi-scale analysis is widely applied to study core thermal hydraulic behavior such as void fraction prediction. Better results are achieved by using multi codes or coupling codes such as PARCS and RELAP5. The advantage of multi-scale analysis is zooming of the interested part in the simulated domain for detail investigation. Therefore, in this study, the multi codes between MCNP5, RELAP5, CTF and also the multi-scale analysis based RELAP5 and CTF are applied to investigate void fraction in hot channel of VVER-1000/V392 reactor. Since VVER-1000/V392 reactor is a typical advanced reactor that can be considered as the base to develop later VVER-1200 reactor, then understanding core behavior in transient conditions is necessary in order to investigate VVER technology. It is shown that the item of near wall boiling, Γ w in RELAP5 proposed by Lahey mechanistic method may not give enough accuracy of void fraction prediction as smaller scale code as CTF. (author)

  12. Study of Bubble Size, Void Fraction, and Mass Transport in a Bubble Column under High Amplitude Vibration

    Directory of Open Access Journals (Sweden)

    Shahrouz Mohagheghian

    2018-04-01

    Full Text Available Vertical vibration is known to cause bubble breakup, clustering and retardation in gas-liquid systems. In a bubble column, vibration increases the mass transfer ratio by increasing the residence time and phase interfacial area through introducing kinetic buoyancy force (Bjerknes effect and bubble breakup. Previous studies have explored the effect of vibration frequency (f, but minimal effort has focused on the effect of amplitude (A on mass transfer intensification. Thus, the current work experimentally examines bubble size, void fraction, and mass transfer in a bubble column under relatively high amplitude vibration (1.5 mm < A <9.5 mm over a frequency range of 7.5–22.5 Hz. Results of the present work were compared with past studies. The maximum stable bubble size under vibration was scaled using Hinze theory for breakage. Results of this work indicate that vibration frequency exhibits local maxima in both mass transfer and void fraction. Moreover, an optimum amplitude that is independent of vibration frequency was found for mass transfer enhancements. Finally, this work suggests physics-based models to predict void fraction and mass transfer in a vibrating bubble column.

  13. Flow regime, void fraction and interfacial area transport and characteristics of co-current downward two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Lokanathan, Manojkumar [School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088 (United States); Hibiki, Takashi [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017 (United States)

    2016-10-15

    Highlights: • Downward flow regime maps and models were studied for 25.4 to 101.6 mm pipe diameters. • Effect of flow inlet on flow transition, void & interfacial area profile were studied. • Bubble void profiles were associated with the interfacial forces for downward flow. • Flow regime pressure drop and interfacial friction factor were studied. • The most applicable and accurate downward drift-flux correlation was determined. - Abstract: Downward two-phase flow is observed in light water reactor accident scenarios such as loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) due to loss of feed water or a secondary pipe break. Hence, a comprehensive literature review has been performed for the co-current downward two-phase flow with information on the flow regime transitions and flow characteristics for each regime in the downward flow. The review compares the experimental data of the flow regime map and the current available transition models. Objectivity of the data varies on the method utilized as a certain degree of subjectivity is still present in the most objective method. Nevertheless, experimental data through subjective methods such as direct visualization or analysis of a wire mesh sensor (WMS) data were still studied in this review. Despite the wide range of flow regime data for numerous pipe sizes, a consensus was not reached for the effect of pipe sizes on flow regime transition. However, it is known that a larger pipe results in greater degree of coalescence at lower gas flow rates (Hibiki et al., 2004). The introduction of a flow straightener at the inlet led to less coring and fluid rotation and inevitably, reduced bubble coalescence. This also resulted in the disappearance of the kinematic shock wave phenomenon, contrary to an inlet without a flow straightener. The effect of flow inlet, flow location, pipe diameter and bubble interfacial forces on the radial distribution as well as bubble coalescence and breakup rate

  14. Predictions of void fraction in convective subcooled boiling channels using a one-dimensional two-fluid model

    International Nuclear Information System (INIS)

    Hu, Lin-Wen; Pan, Chin

    1995-01-01

    Subcooled nucleate boiling under forced convective conditions is of considerable interest for many disciplines, such as nuclear reactor technology and other energy conversion systems, due to its high heat transfer capability. For such applications, the liquid entering the heating channel is usually in a subcooled state and nucleate boiling is initiated at some distance from the entrance. Further downstream from the boiling incipient point, the bubbles may depart from the heating wall. The point of first bubble departure is called the net vapor generation (NVG) point, because after this point, significant void is present in the subcooled liquid and the void fraction rises very rapidly even though the bulk liquid may still be in a highly subcooled state. The presence of vapor bubbles, which are at a temperature near the saturation temperature, in a subcooled liquid shows the existence of thermal nonequilibrium, which complicates the analysis of this boiling regime. 13 refs., 4 figs

  15. Evaluation analysis of correlations for predicting the void fraction and slug velocity of slug flow in an inclined narrow rectangular duct

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chaoxing, E-mail: yanchaoxing0808@163.com [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001 (China); Yan, Changqi, E-mail: Changqi_yan@163.com [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001 (China); Shen, Yunhai [Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610041 (China); Sun, Licheng; Wang, Yang [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001 (China)

    2014-07-01

    Highlights: • 46 void fraction correlations are evaluated on void fraction. • Evaluation of void fraction correlations on slug velocity is studied. • Effect of void fraction correlations on separated frictional pressure drop is studied. • Drift-flux type correlation shows best agreement with experimental data. • Evaluation is investigated in different flow regions. - Abstract: A visualized investigation was conducted on inclined upward air–water slug flow in a narrow rectangular duct with the cross section of 43 mm × 3.25 mm. The slug velocity and void fraction were obtained through image processing. 46 correlations for predicting void fraction, covering the types of slip ratio, Kβ, Lockhart and Martinelli, drift-flux and general were evaluated against the experimental data. In the experiment, four inclined conditions including 0°, 10°, 20° and 30° were investigated and the ranges of gas and liquid superficial velocity were 0.16–2.63 m/s and 0.12–3.59 m/s, respectively. The results indicate that the inclination has no significant influence on prediction error for a given correlation and the drift-flux type correlations are more competitive than the others in the prediction of slug velocity and void fraction. In addition, most of drift-flux type correlations are quite accurate in turbulent flow region, while they provide relative poor predictions in laminar flow region. As for the frictional pressure drop separated from the measured total pressure drop, the deviation arising from the calculation of the void fraction by different correlations is significant in laminar flow region, whereas is negligible in turbulent flow region.

  16. Study of void fraction and mixing of immiscible liquids in a pool configuration by an upward gas flow

    International Nuclear Information System (INIS)

    Casas, J.C.; Corradini, M.L.

    1992-01-01

    In this paper, investigations are performed to study the mixing between immiscible liquids in a pool configuration due to an upward gas flow. A water-R113 system is sued in the bubbly/churn-turbulent regimes to determine the effects of the unagitated pool depth on layer mixing. The superficial gas velocity at which full mixing is attained is observed to increase with the pool depth, although it is concluded that this is a weak dependency. Mixing in the churn-turbulent regime is studied with Wood's metal-water and Wood's metal-silicone fluid (100 cS) as pairs of fluids. Additional past mixing data from six other fluids are also included in the data base. A criterion is proposed to determine if two liquids will entrain in bubbly or churn-turbulent flow. Correlations are derived that, for a set of given conditions, allow prediction of the mixing state (mixed or segregated) of a system. Because of the indirect method of measuring the mixed layer thickness, pool void fraction experiments are also performed. For the case of water and R113, the effect of unagitated pool depth on the void fraction is studied

  17. Validation of the thermal-hydraulic system code ATHLET based on selected pressure drop and void fraction BFBT tests

    Energy Technology Data Exchange (ETDEWEB)

    Di Marcello, Valentino, E-mail: valentino.marcello@kit.edu; Escalante, Javier Jimenez; Espinoza, Victor Sanchez

    2015-07-15

    Highlights: • Simulation of BFBT-BWR steady-state and transient tests with ATHLET. • Validation of thermal-hydraulic models based on pressure drops and void fraction measurements. • TRACE system code is used for the comparative study. • Predictions result in a good agreement with the experiments. • Discrepancies are smaller or comparable with respect to the measurements uncertainty. - Abstract: Validation and qualification of thermal-hydraulic system codes based on separate effect tests are essential for the reliability of numerical tools when applied to nuclear power plant analyses. To this purpose, the Institute for Neutron Physics and Reactor Technology (INR) at the Karlsruhe Institute of Technology (KIT) is involved in various validation and qualification activities of different CFD, sub-channel and system codes. In this paper, the capabilities of the thermal-hydraulic code ATHLET are assessed based on the experimental results provided within the NUPEC BFBT benchmark related to key Boiling Water Reactors (BWR) phenomena. Void fraction and pressure drops measurements in the BFBT bundle performed under steady-state and transient conditions which are representative for e.g. turbine trip and recirculation pump trip events, are compared with the numerical results of ATHLET. The comparison of code predictions with the BFBT data has shown good agreement given the experimental uncertainty and the results are consistent with the trends obtained with similar thermal-hydraulic codes.

  18. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinquan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: sun.200@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA 24061 (United States)

    2016-12-15

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  19. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    International Nuclear Information System (INIS)

    Zhou, Xinquan; Sun, Xiaodong; Liu, Yang

    2016-01-01

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  20. THE NEW SOLUTION OF TIME FRACTIONAL WAVE EQUATION WITH CONFORMABLE FRACTIONAL DERIVATIVE DEFINITION

    OpenAIRE

    Çenesiz, Yücel; Kurt, Ali

    2015-01-01

    – In this paper, we used new fractional derivative definition, the conformable fractional derivative, for solving two and three dimensional time fractional wave equation. This definition is simple and very effective in the solution procedures of the fractional differential equations that have complicated solutions with classical fractional derivative definitions like Caputo, Riemann-Liouville and etc. The results show that conformable fractional derivative definition is usable and convenient ...

  1. A time-frequency analysis of wave packet fractional revivals

    International Nuclear Information System (INIS)

    Ghosh, Suranjana; Banerji, J

    2007-01-01

    We show that the time-frequency analysis of the autocorrelation function is, in many ways, a more appropriate tool to resolve fractional revivals of a wave packet than the usual time-domain analysis. This advantage is crucial in reconstructing the initial state of the wave packet when its coherent structure is short-lived and decays before it is fully revived. Our calculations are based on the model example of fractional revivals in a Rydberg wave packet of circular states. We end by providing an analytical investigation which fully agrees with our numerical observations on the utility of time-frequency analysis in the study of wave packet fractional revivals

  2. Influence of the void fraction in the linear reactivity model; Influencia de la fraccion de vacios en el modelo de reactividad lineal

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, J.A.; Ramirez, J.R.; Alonso, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jacm@nuclear.inin.mx

    2003-07-01

    The linear reactivity model allows the multicycle analysis in pressurized water reactors in a simple and quick way. In the case of the Boiling water reactors the void fraction it varies axially from 0% of voids in the inferior part of the fuel assemblies until approximately 70% of voids to the exit of the same ones. Due to this it is very important the determination of the average void fraction during different stages of the reactor operation to predict the burnt one appropriately of the same ones to inclination of the pattern of linear reactivity. In this work a pursuit is made of the profile of power for different steps of burnt of a typical operation cycle of a Boiling water reactor. Starting from these profiles it builds an algorithm that allows to determine the voids profile and this way to obtain the average value of the same one. The results are compared against those reported by the CM-PRESTO code that uses another method to carry out this calculation. Finally, the range in which is the average value of the void fraction during a typical cycle is determined and an estimate of the impact that it would have the use of this value in the prediction of the reactivity produced by the fuel assemblies is made. (Author)

  3. Closed form solutions of two time fractional nonlinear wave equations

    Directory of Open Access Journals (Sweden)

    M. Ali Akbar

    2018-06-01

    Full Text Available In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G′/G-expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics. Keywords: Traveling wave solution, Soliton, Generalized (G′/G-expansion method, Time fractional Duffing equation, Time fractional Riccati equation

  4. Lamb Wave Assessment of Fiber Volume Fraction in Composites

    Science.gov (United States)

    Seale, Michael D.; Smith, Barry T.; Prosser, W. H.; Zalameda, Joseph N.

    1998-01-01

    Among the various techniques available, ultrasonic Lamb waves offer a convenient method of examining composite materials. Since the Lamb wave velocity depends on the elastic properties of a material, an effective tool exists to evaluate composites by measuring the velocity of these waves. Lamb waves can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper discusses a study in which Lamb waves were used to examine fiber volume fraction variations of approximately 0.40-0.70 in composites. The Lamb wave measurements were compared to fiber volume fractions obtained from acid digestion tests. Additionally, a model to predict the fiber volume fraction from Lamb wave velocity values was evaluated.

  5. BASIC program to compute uranium density and void volume fraction in laboratory-scale uranium silicide aluminum dispersion plate-type fuel

    International Nuclear Information System (INIS)

    Ugajin, Mitsuhiro

    1991-05-01

    BASIC program simple and easy to operate has been developed to compute uranium density and void volume fraction for laboratory-scale uranium silicide aluminum dispersion plate-type fuel, so called miniplate. An example of the result of calculation is given in order to demonstrate how the calculated void fraction correlates with the microstructural distribution of the void in a miniplate prepared in our laboratory. The program is also able to constitute data base on important parameters for miniplates from experimentally-determined values of density, weight of each constituent and dimensions of miniplates. Utility programs pertinent to the development of the BASIC program are also given which run in the popular MS-DOS environment. All the source lists are attached and brief description for each program is made. (author)

  6. Linear fractional diffusion-wave equation for scientists and engineers

    CERN Document Server

    Povstenko, Yuriy

    2015-01-01

    This book systematically presents solutions to the linear time-fractional diffusion-wave equation. It introduces the integral transform technique and discusses the properties of the Mittag-Leffler, Wright, and Mainardi functions that appear in the solutions. The time-nonlocal dependence between the flux and the gradient of the transported quantity with the “long-tail” power kernel results in the time-fractional diffusion-wave equation with the Caputo fractional derivative. Time-nonlocal generalizations of classical Fourier’s, Fick’s and Darcy’s laws are considered and different kinds of boundary conditions for this equation are discussed (Dirichlet, Neumann, Robin, perfect contact). The book provides solutions to the fractional diffusion-wave equation with one, two and three space variables in Cartesian, cylindrical and spherical coordinates. The respective sections of the book can be used for university courses on fractional calculus, heat and mass transfer, transport processes in porous media and ...

  7. Design concept and testing of an in-bundle gamma densitometer for subchannel void fraction measurements in the THTF electrically heated rod bundle

    International Nuclear Information System (INIS)

    Felde, D.K.

    1982-04-01

    A design concept is presented for an in-bundle gamma densitometer system for measurement of subchannel average fluid density and void fraction in rod or tube bundles. This report describes (1) the application of the design concept to the Thermal-Hydraulic Test Facility (THTF) electrically heated rod bundle; and (2) results from tests conducted in the THTF

  8. Contribution to the knowledge of spouted beds, including in particular an experimental study on the void fraction of the dense phase

    International Nuclear Information System (INIS)

    Eljas, Yves.

    1975-10-01

    The spouted bed is a gas-solid contact technique used to replace fluidisation when the solid particles are too large and too dense. Part one gives a bibliographical study on the aerodynamic aspect of spouted beds. Part two describes an experimental study of the void fraction distribution in a two-dimensional bed [fr

  9. On the use of area-averaged void fraction and local bubble chord length entropies as two-phase flow regime indicators

    International Nuclear Information System (INIS)

    Hernandez, Leonor; Julia, J.E.; Paranjape, Sidharth; Hibiki, Takashi; Ishii, Mamoru

    2010-01-01

    In this work, the use of the area-averaged void fraction and bubble chord length entropies is introduced as flow regime indicators in two-phase flow systems. The entropy provides quantitative information about the disorder in the area-averaged void fraction or bubble chord length distributions. The CPDF (cumulative probability distribution function) of void fractions and bubble chord lengths obtained by means of impedance meters and conductivity probes are used to calculate both entropies. Entropy values for 242 flow conditions in upward two-phase flows in 25.4 and 50.8-mm pipes have been calculated. The measured conditions cover ranges from 0.13 to 5 m/s in the superficial liquid velocity j f and ranges from 0.01 to 25 m/s in the superficial gas velocity j g . The physical meaning of both entropies has been interpreted using the visual flow regime map information. The area-averaged void fraction and bubble chord length entropies capability as flow regime indicators have been checked with other statistical parameters and also with different input signals durations. The area-averaged void fraction and the bubble chord length entropies provide better or at least similar results than those obtained with other indicators that include more than one parameter. The entropy is capable to reduce the relevant information of the flow regimes in only one significant and useful parameter. In addition, the entropy computation time is shorter than the majority of the other indicators. The use of one parameter as input also represents faster predictions. (orig.)

  10. Measurement of air distribution and void fraction of an upwards air–water flow using electrical resistance tomography and a wire-mesh sensor

    International Nuclear Information System (INIS)

    Olerni, Claudio; Jia, Jiabin; Wang, Mi

    2013-01-01

    Measurements on an upwards air–water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air–water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air–water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed. (paper)

  11. Closed form solutions of two time fractional nonlinear wave equations

    Science.gov (United States)

    Akbar, M. Ali; Ali, Norhashidah Hj. Mohd.; Roy, Ripan

    2018-06-01

    In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G‧ / G) -expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics.

  12. Void fraction and interfacial velocity in gas-liquid upward two-phase flow across tube bundles

    International Nuclear Information System (INIS)

    Ueno, T.; Tomomatsu, K.; Takamatsu, H.; Nishikawa, H.

    1997-01-01

    Tube failures due to flow-induced vibration are a major problem in heat exchangers and many studies on the problem of such vibration have been carried out so far. Most studies however, have not focused on two-phase flow behavior in tube bundles, but have concentrated mainly on tube vibration behavior like fluid damping, fluid elastic instability and so on. Such studies are not satisfactory for understanding the design of heat exchangers. Tube vibration behavior is very complicated, especially in the case of gas-liquid two-phase flow, so it is necessary to investigate two-phase flow behavior as well as vibration behavior before designing heat exchangers. This paper outlines the main parameters that characterize two-phase behavior, such as void fraction and interfacial velocity. The two-phase flow analyzed here is gas-liquid upward flow across a horizontal tube bundle. The fluids tested were HCFC-123 and steam-water. HCFC-123 stands for Hydrochlorofluorocarbon. Its chemical formula is CHCl 2 CF 3 , which has liquid and gas densities of 1335 and 23.9 kg/m 3 at a pressure of 0.40 MPa and 1252 and 45.7 kg/m 3 at a pressure of 0.76 MPa. The same model tube bundle was used in the two tests covered in this paper, to examine the similarity law of two-phase flow behavior in tube bundles using HCFC-123 and steam-water two-phase flow. We also show numerical simulation results for the two fluid models in this paper. We do not deal with vibration behavior and the relationship between vibration behavior and two-phase flow behavior. (author)

  13. Empirical Correlations and CFD Simulations of Vertical Two-Phase Gas-Liquid (Newtonian and Non-Newtonian) Slug Flow Compared Against Experimental Data of Void Fraction

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Majumder, S.K.; Bentzen, Thomas Ruby

    2013-01-01

    Gas-Newtonian liquid two-phase flows (TPFs) are presented in several industrial processes (e.g. oil-gas industry). In spite of the common occurrence of these TPFs, the understanding of them is limited compared to single-phase flows. Various studies on TPF focus on developing empirical correlations...... based on large sets of experimental data for void fraction, which have proven accurate for specific conditions for which they were developed limiting their applicability. On the other hand, few studies focus on gas-non-Newtonian liquids TPFs, which are very common in chemical processes. The main reason...... is due to the characterization of the viscosity, which determines the hydraulic regime and flow behaviours of the system. The focus of this study is the analysis of the TPF (slug flow) for Newtonian and non-Newtonian liquids in a vertical pipe in terms of void fraction using computational fluid dynamics...

  14. Experimental investigations of two-phase mixture level swell and axial void fraction distribution under high pressure, low heat flux conditions in rod bundle geometry

    International Nuclear Information System (INIS)

    Anklam, T.M.; White, M.D.

    1981-01-01

    Experimental data is reported from a series of quasi-steady-state two-phase mixture level swell and void fraction distribution tests. Testing was performed at ORNL in the Thermal Hydraulic Test Facility - a large electrically heated test loop configured to produce conditions similar to those expected in a small break loss of coolant accident. Pressure was varied from 2.7 to 8.2 MPa and linear power ranged from 0.33 to 1.95 kW/m. Mixture swell was observed to vary linearly with the total volumetric vapor generation rate over the power range of primary interest in small break analysis. Void fraction data was fit by a drift-flux model and both the drift-velocity and concentration parameter were observed to decrease with increasing pressure

  15. Mockup tests of void fraction in moderator cell and two-phase thermosiphon loop of cold neutron source in China Advanced Research Reactor

    International Nuclear Information System (INIS)

    Du Shejiao; Bi Qincheng; Chen Tingkuan; Feng Quanke; Li Xiaoming

    2004-01-01

    Full-scale mockup tests were carried out using freon-113 as a working fluid to verify the design of China Advanced Research Reactor (CARR) Cold neutron Source (CNS), which is a two-phase hydrogen thermosiphon loop consisting of an annular cylindrical moderator cell, two separated hydrogen transfer tubes and a condenser. The circulation characteristics, liquid level and void fraction in the moderator cell against the variation of the heat load were studied. The density ratio and the volumetric evaporating rate of the mockup test are kept the same as those of CARR CNS. The test results show that the mockup loop can establish stable circulation and has a self-regulating characteristic. Within the moderator cell, the inner shell contains only vapor and the outer shell contains the mixture of vapor-liquid with void fraction in a certain range. (authors)

  16. Development and performance evaluation of 32-channel gamma densitometer for the measurement of flow pattern and void fraction in the downcomer of MIDAS test facility

    International Nuclear Information System (INIS)

    Chu, In Cheol; Kim, Y. K.; Yun, B. J.; Kwon, T. S.; Euh, D. J.; Song, C.

    2002-03-01

    APR 1400, which adopts DVI type of ECCS, is expected to show its unique thermal hydraulic phenomena. Therefore, it is necessary to investigate whether existing safety analysis code can correctly predict the thermal hydraulic phenomena. Among the several phenomena, void fraction and flow pattern govern the other major phenomena. Therefore, the main objective of the present study is to develop the 32-channel gamma densitometer which can measure the void fraction and flow pattern in the downcomer at various locations. The 32-channel gamma densitometer for MIDAS test apparatus has been developed. Throughout the performance evaluation test, the integrity of the 32 channel gamma densitometer has been validated. The measurement error of water film thickness is expected to be less than ±0.5mm. Also, it can correctly predict the flow patterns and the transition location of flow pattern in the downcomer of MIDAS test apparatus

  17. Void fraction development in gas-liquid flow after a U-bend in a vertically upwards serpentine-configuration large-diameter pipe

    Science.gov (United States)

    Almabrok, Almabrok A.; Aliyu, Aliyu M.; Baba, Yahaya D.; Lao, Liyun; Yeung, Hoi

    2018-01-01

    We investigate the effect of a return U-bend on flow behaviour in the vertical upward section of a large-diameter pipe. A wire mesh sensor was employed to study the void fraction distributions at axial distances of 5, 28 and 47 pipe diameters after the upstream bottom bend. The study found that, the bottom bend has considerable impacts on up-flow behaviour. In all conditions, centrifugal action causes appreciable misdistribution in the adjacent straight section. Plots from WMS measurements show that flow asymmetry significantly reduces along the axis at L/D = 47. Regime maps generated from three axial locations showed that, in addition to bubbly, intermittent and annular flows, oscillatory flow occurred particularly when gas and liquid flow rates were relatively low. At this position, mean void fractions were in agreement with those from other large-pipe studies, and comparisons were made with existing void fraction correlations. Among the correlations surveyed, drift flux-type correlations were found to give the best predictive results.

  18. Local Void Fractions and Bubble Velocity in Vertical Air-Water Two-Phase Flows Measured by Needle-Contact Capacitance Probe

    Directory of Open Access Journals (Sweden)

    Shanfang Huang

    2018-01-01

    Full Text Available Multiphase flow measurements have become increasingly important in a wide range of industrial fields. In the present study, a dual needle-contact capacitance probe was newly designed to measure local void fractions and bubble velocity in a vertical channel, which was verified by digital high-speed camera system. The theoretical analyses and experiments show that the needle-contact capacitance probe can reliably measure void fractions with the readings almost independent of temperature and salinity for the experimental conditions. In addition, the trigger-level method was chosen as the signal processing method for the void fraction measurement, with a minimum relative error of −4.59%. The bubble velocity was accurately measured within a relative error of 10%. Meanwhile, dynamic response of the dual needle-contact capacitance probe was analyzed in detail. The probe was then used to obtain raw signals for vertical pipe flow regimes, including plug flow, slug flow, churn flow, and bubbly flow. Further experiments indicate that the time series of the output signals vary as the different flow regimes and are consistent with each flow structure.

  19. A Dual Conductance Sensor for Simultaneous Measurement of Void Fraction and Structure Velocity of Downward Two-Phase Flow in a Slightly Inclined Pipe.

    Science.gov (United States)

    Lee, Yeon-Gun; Won, Woo-Youn; Lee, Bo-An; Kim, Sin

    2017-05-08

    In this study, a new and improved electrical conductance sensor is proposed for application not only to a horizontal pipe, but also an inclined one. The conductance sensor was designed to have a dual layer, each consisting of a three-electrode set to obtain two instantaneous conductance signals in turns, so that the area-averaged void fraction and structure velocity could be measured simultaneously. The optimum configuration of the electrodes was determined through numerical analysis, and the calibration curves for stratified and annular flow were obtained through a series of static experiments. The fabricated conductance sensor was applied to a 45 mm inner diameter U-shaped downward inclined pipe with an inclination angle of 3° under adiabatic air-water flow conditions. In the tests, the superficial velocities ranged from 0.1 to 3.0 m/s for water and from 0.1 to 18 m/s for air. The obtained mean void fraction and the structure velocity from the conductance sensor were validated against the measurement by the wire-mesh sensor and the cross-correlation technique for the visualized images, respectively. The results of the flow regime classification and the corresponding time series of the void fraction at a variety of flow velocities were also discussed.

  20. Propagation of Love waves in an elastic layer with void pores

    Indian Academy of Sciences (India)

    The paper presents a study of propagation of Love waves in a poroelastic layer resting over a poro-elastic half-space. Pores contain nothing of mechanical or energetic significance. The study reveals that such a medium transmits two types of love waves. The first front depends upon the modulus of rigidity of the elastic ...

  1. Six Impossible Things: Fractional Charge From Laughlin's Wave Function

    International Nuclear Information System (INIS)

    Shrivastava, Keshav N.

    2010-01-01

    The Laughlin's wave function is found to be the zero-energy ground state of a δ-function Hamiltonian. The finite negative value of the ground state energy which is 91 per cent of Wigner value, can be obtained only when Coulomb correlations are introduced. The Laughlin's wave function is of short range and it overlaps with that of the exact wave functions of small (number of electrons 2 or 5) systems. (i) It is impossible to obtain fractional charge from Laughlin's wave function. (ii) It is impossible to prove that the Laughlin's wave function gives the ground state of the Coulomb Hamiltonian. (iii) It is impossible to have particle-hole symmetry in the Laughlin's wave function. (iv) It is impossible to derive the value of m in the Laughlin's wave function. The value of m in ψ m can not be proved to be 3 or 5. (v) It is impossible to prove that the Laughlin's state is incompressible because the compressible states are also likely. (vi) It is impossible for the Laughlin's wave function to have spin. This effort is directed to explain the experimental data of quantum Hall effect in GaAs/AlGaAs.

  2. Transverse load optimization in Nb3Sn CICC design; influence of cabling, void fraction and strand stiffness

    International Nuclear Information System (INIS)

    Nijhuis, A; Ilyin, Y

    2006-01-01

    transverse load on strand crossings and line contacts, abbreviated as contact load, can locally reach 90 MPa but this occurs in the low field area of the conductor and does not play a significant role in the observed critical current degradation. The model gives an accurate description for the mechanical response of the strands to a transverse load, from layer to layer in the cable, in agreement with mechanical experiments performed on cables. It is possible to improve the ITER conductor design or the operation margin, mainly by a change in the cabling scheme. We also find that a lower cable void fraction and larger strand stiffness add to a further improvement of the conductor performance

  3. Void shape effects and voids starting from cracked inclusion

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2011-01-01

    Numerical, axisymmetric cell model analyses are used to study the growth of voids in ductile metals, until the mechanism of coalescence with neighbouring voids sets in. A special feature of the present analyses is that extremely small values of the initial void volume fraction are considered, dow...

  4. Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques

    International Nuclear Information System (INIS)

    Harvel, G.D.; Hori, K.; Kawanishi, K.

    1995-01-01

    A Real-Time Neutron Radiography (RTNR) system and a high speed X-ray Computed tomography (X-CT) system are compared for measurement of two-phase flow. Each system is used to determine the flow regime, and the void fraction distribution in a vertical annulus flow channel. A standard optical video system is also used to observe the flow regime. The annulus flow channel is operated as a bubble column and measurements obtained for gas flow rates from 0.0 to 30.01/min. The flow regimes observed by all three measurement systems through image analysis shows that the two-dimensional void fraction distribution can be obtained. The X-CT system is shown to have a superior temporal resolution capable of resolving the void fraction distribution in an (r,θ) plane in 33.0 ms. Void fraction distribution for bubbly flow and slug flow is determined

  5. Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques

    Energy Technology Data Exchange (ETDEWEB)

    Harvel, G.D. [McMaster Univ., Ontario (Canada)]|[Combustion and Heat Transfer Lab., Takasago (Japan); Hori, K.; Kawanishi, K. [Combustion and Heat Transfer Lab., Takasago (Japan)] [and others

    1995-09-01

    A Real-Time Neutron Radiography (RTNR) system and a high speed X-ray Computed tomography (X-CT) system are compared for measurement of two-phase flow. Each system is used to determine the flow regime, and the void fraction distribution in a vertical annulus flow channel. A standard optical video system is also used to observe the flow regime. The annulus flow channel is operated as a bubble column and measurements obtained for gas flow rates from 0.0 to 30.01/min. The flow regimes observed by all three measurement systems through image analysis shows that the two-dimensional void fraction distribution can be obtained. The X-CT system is shown to have a superior temporal resolution capable of resolving the void fraction distribution in an (r,{theta}) plane in 33.0 ms. Void fraction distribution for bubbly flow and slug flow is determined.

  6. Void lattices

    International Nuclear Information System (INIS)

    Chadderton, L.T.; Johnson, E.; Wohlenberg, T.

    1976-01-01

    Void lattices in metals apparently owe their stability to elastically anisotropic interactions. An ordered array of voids on the anion sublattice in fluorite does not fit so neatly into this scheme of things. Crowdions may play a part in the formation of the void lattice, and stability may derive from other sources. (Auth.)

  7. TRAVELING WAVE SOLUTIONS OF SOME FRACTIONAL DIFFERENTIAL EQUATIONS

    Directory of Open Access Journals (Sweden)

    SERIFE MUGE EGE

    2016-07-01

    Full Text Available The modified Kudryashov method is powerful, efficient and can be used as an alternative to establish new solutions of different type of fractional differential equations applied in mathematical physics. In this article, we’ve constructed new traveling wave solutions including symmetrical Fibonacci function solutions, hyperbolic function solutions and rational solutions of the space-time fractional Cahn Hillihard equation D_t^α u − γD_x^α u − 6u(D_x^α u^2 − (3u^2 − 1D_x^α (D_x^α u + D_x^α(D_x^α(D_x^α(D_x^α u = 0 and the space-time fractional symmetric regularized long wave (SRLW equation D_t^α(D_t^α u + D_x^α(D_x^α u + uD_t^α(D_x^α u + D_x^α u D_t^α u + D_t^α(D_t^α(D_x^α(D_x^α u = 0 via modified Kudryashov method. In addition, some of the solutions are described in the figures with the help of Mathematica.

  8. Flow map and measurement of void fraction and heat transfer coefficient using an image analysis technique for flow boiling of water in a silicon microchannel

    International Nuclear Information System (INIS)

    Singh, S G; Duttagupta, S P; Jain, A; Sridharan, A; Agrawal, Amit

    2009-01-01

    The present work focuses on the generation of the flow regime map for two-phase water flow in microchannels of a hydraulic diameter of 140 µm. An image analysis algorithm has been developed and utilized to obtain the local void fraction. The image processing technique is also employed to identify and estimate the percentage of different flow regimes and heat transfer coefficient, as a function of position, heat flux and mass flow rate. Both void fraction and heat transfer coefficient are found to increase monotonically along the length of the microchannel. At low heat flux and low flow rates, bubbly, slug and annular flow regimes are apparent. However, the flow is predominately annular at high heat flux and high flow rate. A breakup of the flow frequency suggests that the flow is bistable in the annular regime, in that at a fixed location, the flow periodically switches from single-phase liquid to annular and vice versa. Otherwise, the occurrence of three regimes—single-phase liquid, bubbly and slug are observed. These results provide several useful insights about two-phase flow in microchannels besides being of fundamental interest

  9. Measurement of the local void fraction at high pressures in a heating channel; Mesure du taux de vide a haute pression dans un canal chauffant

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    Void fraction measurements were made in two phase flow boiling systems at high pressures in a uniformly heated, rectangular channel with a high aspect ratio. The local void fraction values were calculated from measurements of the absorption of a thin collimated X-ray beam (2 mm x 0.05 mm). The mean void fraction in a horizontal section results from integration of the local values across the section. At a fixed measuring station the quality and- void fraction were varied by changing the heat flux, flow rate and pressure systematically. Two channels were used differing in length and thickness (150.8 cm x 5.3 cm x 0.2 cm and the significant features of this study are: -1) The void fraction measurements are among the first obtained at such high pressure (80 to 140 kg/cm{sup 2}); -2) In the experimental region under consideration the measurements are systematic and numerous enough to allow accurate interpolations: mass velocity from 50 to 220 g/cm{sup 2}.s, heat flux from 40 to 170 W/cm{sup 2} and calculated steam quality from -0.2 to 0.2; -3) Many tests were performed under local boiling conditions with the mean temperature of the fluid below the saturation temperature; and -4) These results were compared to the predictions of certain models presented in the literature and simple empirical formulae were developed to fit the experimental results. (author) [French] Des mesures de taux de vide ont ete effectuees sur un ecoulement eau-vapeur a haute pression dans un canal vertical, de section rectangulaire tres allongee et chauffe a flux uniforme. Les valeurs du taux de vide local sont obtenues a partir des mesures de l'absorption d'un faisceau de rayons X finement collimate (2 mm x 0,05 mm). La valeur du taux de vide moyen dans une section droite s'en deduit par integration. Cette section droite ou sont realisees les mesures est fixe et, a pression, debit et flux donnes, les variations du titre et du taux de vide sont obtenues par variations de l'enthalpie d'entree. Deux

  10. Analysis of Void Fraction Distribution and Departure from Nucleate Boiling in Single Subchannel and Bundle Geometries Using Subchannel, System, and Computational Fluid Dynamics Codes

    Directory of Open Access Journals (Sweden)

    Taewan Kim

    2012-01-01

    Full Text Available In order to assess the accuracy and validity of subchannel, system, and computational fluid dynamics codes, the Paul Scherrer Institut has participated in the OECD/NRC PSBT benchmark with the thermal-hydraulic system code TRACE5.0 developed by US NRC, the subchannel code FLICA4 developed by CEA, and the computational fluid dynamic code STAR-CD developed by CD-adapco. The PSBT benchmark consists of a series of void distribution exercises and departure from nucleate boiling exercises. The results reveal that the prediction by the subchannel code FLICA4 agrees with the experimental data reasonably well in both steady-state and transient conditions. The analyses of single-subchannel experiments by means of the computational fluid dynamic code STAR-CD with the CD-adapco boiling model indicate that the prediction of the void fraction has no significant discrepancy from the experiments. The analyses with TRACE point out the necessity to perform additional assessment of the subcooled boiling model and bulk condensation model of TRACE.

  11. Structure of two-phase air-water flows. Study of average void fraction and flow patterns; Structure des ecoulements diphasiques eau-air. Etude de la fraction de vide moyenne et des configurations d'ecoulement

    Energy Technology Data Exchange (ETDEWEB)

    Roumy, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    This report deals with experimental work on a two phase air-water mixture in vertical tubes of different diameters. The average void fraction was measured in a 2 metre long test section by means of quick-closing valves. Using resistive probes and photographic techniques, we have determined the flow patterns and developed diagrams to indicate the boundaries between the various patterns: independent bubbles, agglomerated bubbles, slugs, semi-annular, annular. In the case of bubble flow and slug flow, it is shown that the relationship between the average void fraction and the superficial velocities of the phases is given by: V{sub sg} = f(<{alpha}>) * g(V{sub sl}). The function g(V{sub sl}) for the case of independent bubbles has been found to be: g(V{sub sl}) = V{sub sl} + 20. For semi-annular and annular flow conditions; it appears that the average void fraction depends, to a first approximation only on the ratio V{sub sg}/V{sub sl}. (author) [French] Ce rapport est une etude experimentale d'un melange diphasique eau-air dans des tubes verticaux de differents diametres. Nous avons mesure la fraction de vide moyenne dans une portion de canal de longueur 2 m, au moyen d'un systeme de vannes a fermeture rapide et simultanee. Au moyen de sondes resistives et de photographies nous avons determine la configuration de l'ecoulement et trace des cartes donnant les frontieres entre les differentes configurations d'ecoulement: bulles independantes, bulles agglomerees, bouchons, semi-annulaire, annulaire. Nous montrons que pour les regimes a bulles et a bouchons, une equation de la forme V{sub sg} = f(<{alpha}>) * g(V{sub sl}) relie la fraction de vide moyenne aux vitesses superficielles de chacune des phases. Nous avons pu determiner la fonction g(V{sub sl}) dans le cas du regime a bulles independantes, et nous trouvons g(V{sub sl}) = V{sub sl} + 20. Pour les regimes semi-annulaire et annulaire, il semble qu'en premiere approximation, la fraction de vide moyenne ne depende que

  12. Local Fractional Variational Iteration and Decomposition Methods for Wave Equation on Cantor Sets within Local Fractional Operators

    Directory of Open Access Journals (Sweden)

    Dumitru Baleanu

    2014-01-01

    Full Text Available We perform a comparison between the fractional iteration and decomposition methods applied to the wave equation on Cantor set. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative.

  13. Fractionated Repetitive Extracorporeal Shock Wave Therapy: A New Standard in Shock Wave Therapy?

    Directory of Open Access Journals (Sweden)

    Tobias Kisch

    2015-01-01

    Full Text Available Background. ESWT has proven clinical benefit in dermatology and plastic surgery. It promotes wound healing and improves tissue regeneration, connective tissue disorders, and inflammatory skin diseases. However, a single treatment session or long intervals between sessions may reduce the therapeutic effect. The present study investigated the effects of fractionated repetitive treatment in skin microcirculation. Methods. 32 rats were randomly assigned to two groups and received either fractionated repetitive high-energy ESWT every ten minutes or placebo shock wave treatment, applied to the dorsal lower leg. Microcirculatory effects were continuously assessed by combined laser Doppler imaging and photospectrometry. Results. In experimental group, cutaneous tissue oxygen saturation was increased 1 minute after the first application and until the end of the measuring period at 80 minutes after the second treatment (P<0.05. The third ESWT application boosted the effect to its highest extent. Cutaneous capillary blood flow showed a significant increase after the second application which was sustained for 20 minutes after the third application (P<0.05. Placebo group showed no statistically significant differences. Conclusions. Fractionated repetitive extracorporeal shock wave therapy (frESWT boosts and prolongs the effects on cutaneous hemodynamics. The results indicate that frESWT may provide greater benefits in the treatment of distinct soft tissue disorders compared with single-session ESWT.

  14. Analysis on void reactivity of DCA lattice

    International Nuclear Information System (INIS)

    Min, B. J.; Noh, K. H.; Choi, H. B.; Yang, M. K.

    2001-01-01

    In case of loss of coolant accident, the void reactivity of CANDU fuel provides the positive reactivity and increases the reactor power rapidly. Therefore, it is required to secure credibility of the void reactivity for the design and analysis of reactor, which motivated a study to assess the measurement data of void reactivity. The assessment of lattice code was performed with the experimental data of void reactivity at 30, 70, 87 and 100% of void fractions. The infinite multiplication factors increased in four types of fuels as the void fractions of them grow. The infinite multiplication factors of uranium fuels are almost within 1%, but those of Pu fuels are over 10% by the results of WIMS-AECL and MCNP-4B codes. Moreover, coolant void reactivity of the core loaded with plutonium fuel is more negative compared with that with uranium fuel because of spectrum hardening resulting from large void fraction

  15. Contribution of thickness dependent void fraction and TiSixOy interlayer to the optical properties of amorphous TiO2 thin films

    International Nuclear Information System (INIS)

    Zhang, Fan; Zhang, Rong-Jun; Zheng, Yu-Xiang; Xu, Zi-Jie; Zhang, Dong-Xu; Wang, Zi-Yi; Yu, Xiang; Chen, Liang-Yao

    2013-01-01

    The optical properties of TiO 2 thin films prepared by electron beam evaporation were studied by spectroscopic ellipsometry and analyzed quantitatively using effective medium approximation theory and an effective series capacitance model. The refractive indices of TiO 2 are essentially constant and approach to those of bulk TiO 2 for films thicker than 40 nm, but drop sharply with a decrease in thickness from 40 to 5.5 nm. This phenomenon can be interpreted quantitatively by the thickness dependence of the void fraction and interfacial oxide region. The optical band gaps calculated from Tauc law increase with an increase of film thickness, and can be attributed to the contribution of disorder effect. - Highlights: • Amorphous TiO 2 thin films fabricated on Si substrate by electron beam evaporation • The refractive index and band gap are obtained from spectroscopic ellipsometry. • The refractive index decreases with decreasing film thickness. • Effective medium approximation theory and effective series capacitance model introduced • A band gap increases gradually with an increase in film thickness

  16. NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION.

    Science.gov (United States)

    Liu, F; Meerschaert, M M; McGough, R J; Zhuang, P; Liu, Q

    2013-03-01

    In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.

  17. Applications of continuity and discontinuity of a fractional derivative of the wave functions to fractional quantum mechanics

    International Nuclear Information System (INIS)

    Dong Jianping; Xu Mingyu

    2008-01-01

    The space fractional Schroedinger equation with a finite square potential, periodic potential, and delta-function potential is studied in this paper. We find that the continuity or discontinuity condition of a fractional derivative of the wave functions should be considered to solve the fractional Schroedinger equation in fractional quantum mechanics. More parity states than those given by standard quantum mechanics for the finite square potential well are obtained. The corresponding energy equations are derived and then solved by graphical methods. We show the validity of Bloch's theorem and reveal the energy band structure for the periodic potential. The jump (discontinuity) condition for the fractional derivative of the wave function of the delta-function potential is given. With the help of the jump condition, we study some delta-function potential fields. For the delta-function potential well, an alternate expression of the wave function (the H function form of it was given by Dong and Xu [J. Math. Phys. 48, 072105 (2007)]) is obtained. The problems of a particle penetrating through a delta-function potential barrier and the fractional probability current density of the particle are also discussed. We study the Dirac comb and show the energy band structure at the end of the paper

  18. Measurement of the local void fraction in two-phase air-water flow with a hot-film anemometer; Mesure du taux de vide local en ecoulement diphasique eau-air par un anemometre a film chaud

    Energy Technology Data Exchange (ETDEWEB)

    Delhaye, J. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    The experimental knowledge of the local void-fraction is basic for the derivation of the constitutive equations of two-phase flows. This report deals with measurements of the local void-fraction based on the use of a constant temperature hot-film anemometer associated with a multichannel analyser. After determining the void-fraction profile along a diameter of a vertical pipe (40 mm I.D.), in which air and water flow upwards, we compare the void-fraction averaged over the diameter with the average value measured directly by a {gamma}-ray method. Two runs were made in bubble flow and a third in slug flow. The two methods give results in a good agreement especially for bubble flow. The void-fraction averaged over the cross-section was also calculated from the different profiles and compared in a good manner with the experimental results of R. ROUMY. For bubble flow we verified the theory of S.G. BANKOFF about the shape of the void-fraction profiles. (author) [French] Nous proposons une methode de mesure du taux de vide local a en ecoulement diphasique, basee sur l'emploi d'un anemometre a film chaud a temperature constante dont on etudie la repartition du signal en amplitude dans un analyseur multicanaux. Ayant trace un profil de taux de vide local suivant un diametre d'une conduite verticale de section circulaire parcourue par un ecoulement ascendant d'eau et d'air, nous avons compare la moyenne de {alpha} sur ce diametre a la valeur obtenue par une methode d'absorption de rayons {gamma}. Les essais ont ete faits en ecoulements a bulles et a bouchons. Les deux methodes donnent des resultats concordants en particulier pour les ecoulements a bulles. Le taux de vide moyenne dans la section, calcule a partir des differents profils, a egalement ete compare avec succes aux resultats experimentaux de R. ROUMY. Dans l'etude de la structure radiale des ecoulements a bulles, nous avons verifie l'hypothese de S.G. BAJMKOFF. (auteur)

  19. Measurement of the local void fraction in two-phase air-water flow with a hot-film anemometer; Mesure du taux de vide local en ecoulement diphasique eau-air par un anemometre a film chaud

    Energy Technology Data Exchange (ETDEWEB)

    Delhaye, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    The experimental knowledge of the local void-fraction is basic for the derivation of the constitutive equations of two-phase flows. This report deals with measurements of the local void-fraction based on the use of a constant temperature hot-film anemometer associated with a multichannel analyser. After determining the void-fraction profile along a diameter of a vertical pipe (40 mm I.D.), in which air and water flow upwards, we compare the void-fraction averaged over the diameter with the average value measured directly by a {gamma}-ray method. Two runs were made in bubble flow and a third in slug flow. The two methods give results in a good agreement especially for bubble flow. The void-fraction averaged over the cross-section was also calculated from the different profiles and compared in a good manner with the experimental results of R. ROUMY. For bubble flow we verified the theory of S.G. BANKOFF about the shape of the void-fraction profiles. (author) [French] Nous proposons une methode de mesure du taux de vide local a en ecoulement diphasique, basee sur l'emploi d'un anemometre a film chaud a temperature constante dont on etudie la repartition du signal en amplitude dans un analyseur multicanaux. Ayant trace un profil de taux de vide local suivant un diametre d'une conduite verticale de section circulaire parcourue par un ecoulement ascendant d'eau et d'air, nous avons compare la moyenne de {alpha} sur ce diametre a la valeur obtenue par une methode d'absorption de rayons {gamma}. Les essais ont ete faits en ecoulements a bulles et a bouchons. Les deux methodes donnent des resultats concordants en particulier pour les ecoulements a bulles. Le taux de vide moyenne dans la section, calcule a partir des differents profils, a egalement ete compare avec succes aux resultats experimentaux de R. ROUMY. Dans l'etude de la structure radiale des ecoulements a bulles, nous avons verifie l'hypothese de S.G. BAJMKOFF. (auteur)

  20. Empirical Correlations and CFD Simulations of Vertical Two-Phase Gas-Liquid (Newtonian and Non-Newtonian) Flow Compared Against Experimental Data of Void Fraction and Pressure Drop

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Majumder, S.K.

    2012-01-01

    Gas-Newtonian liquid two-phase flows (TPFs) are presented in several industrial processes (i.e. oil-gas industry). In spite of the common occurrence of these TPFs, their understanding is limited compared to single-phase flows. Different studies on TPF have focus on developing empirical correlations...... based in large sets of experiment data for void fraction and pressure drop which have proven to be accurate for specific condition that their where developed for, which limit their applicability. On the other hand, scarce studies focus on gas-non-Newtonian liquids TPFs, which are very common in chemical...... processes. The main reason for it is due to the characterization of the viscosity, which determines the hydraulic regime and flow behaviours on the system. The focus of this study is the analysis of the TPF for Newtonian and non-Newtonian liquids in a vertical pipe in terms of void fraction and total...

  1. Influence of the voids fraction in the power distribution for two different types of fuel assemblies; Influencia de la fraccion de vacios en la distribucion de potencia para dos diferentes tipos de ensambles de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Jacinto C, S.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, 07738 Ciudad de Mexico (Mexico); Alonso V, G.; Martinez C, E., E-mail: sid.jcl@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    In this work an analysis of the influence of the voids fraction in the power distribution was carried out, in order to understand more about the fission process and the energy produced by the fuel assembly type BWR. The fast neutron flux was analyzed considering neutrons with energies between 0.625 eV and 10 MeV. Subsequently, the thermal neutron flux analysis was carried out in a range between 0.005 eV and 0.625 eV. Likewise, its possible implications in the power distribution of the fuel cell were also analyzed. These analyzes were carried out for different void fraction values: 0.2, 0.4 and 0.8. The variations in different burn steps were also studied: 20, 40 and 60 Mwd / kg. These values were studied in two different types of fuel cells: Ge-12 and SVEA-96, with an average initial enrichment of 4.11%. (Author)

  2. Effect of disintegration wave grinding on fractional protein and amino acid composition of chickpea

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2013-01-01

    Full Text Available The study of fractional changes and amino acid composition of proteins in the application of chickpea disintegration wave grinding. Comparative analysis of six varieties of chickpea before and after grinding.

  3. Effect of disintegration wave grinding on fractional protein and amino acid composition of chickpea

    OpenAIRE

    G. O. Magomedov; M. K. Sadigova; S. I. Lukina; V. Y. Kustov

    2013-01-01

    The study of fractional changes and amino acid composition of proteins in the application of chickpea disintegration wave grinding. Comparative analysis of six varieties of chickpea before and after grinding.

  4. Design of gamma radiation equipment for studying a bubbling gas fluidized bed. Determination of a radial void fraction profile and bubble velocities in a 0.40 m column

    Energy Technology Data Exchange (ETDEWEB)

    Hoogeveen, M O [Technische Univ. Delft (Netherlands). Lab. voor Fysische Technologie

    1993-12-01

    In this work the possibility of the use of gamma radiation in investigating bubbles in a large three dimensional gas-fluidised bed was examined. A measuring system was designed based upon the absorption of gamma radiation. As high energy (>100 keV) gamma radiation penetrates deeply into matter, it can be used to scan through a gas-solid fluidised bed. The attenuation of a beam of mono-energetic photons is related to the amount of solid particles in the path of the beam. With the gamma absorption technique two parameters can be determined: The void fraction and the bubble velocity. With one narrow beam of gamma radiation a chordal void fraction can be measured in the homogeneous part of the bed. An optimalisation procedure for the void fraction determination led to the choice of Cs-137 as radiation source. This optimalisation procedure concerned minimizing of the standard deviation in the determined chordal void fraction as a function of the energy of gamma radiation. With two narrow parallel beams placed at a distance of 12 cm above each other a bubble velocity can be obtained. A cross-correlation between the two detector responses gives the time shift between the two responses. The system was designed for velocity measurements in the non-homogeneous part of the column. A simulation of the two beam measurement method for an air fluidized bed, 0.40 m in diameter, of polystyrene particles led to the choice of 100 mCi for the source strength for each of the two Cs-137 sources. For a 100 mCi Cs-137 source a shielding of 8 cm of lead is necessary to comply with safety regulations, concerning the use of radioactive materials. A source holder was designed, containing two encapsulated 100 mCi Cs-137 sources, in accordance with the regulations in the licence of the Delft University of Technology for the use of encapsulated sources. (orig.).

  5. Design of gamma radiation equipment for studying a bubbling gas fluidized bed. Determination of a radial void fraction profile and bubble velocities in a 0.40 m column

    International Nuclear Information System (INIS)

    Hoogeveen, M.O.

    1993-12-01

    In this work the possibility of the use of gamma radiation in investigating bubbles in a large three dimensional gas-fluidised bed was examined. A measuring system was designed based upon the absorption of gamma radiation. As high energy (>100 keV) gamma radiation penetrates deeply into matter, it can be used to scan through a gas-solid fluidised bed. The attenuation of a beam of mono-energetic photons is related to the amount of solid particles in the path of the beam. With the gamma absorption technique two parameters can be determined: The void fraction and the bubble velocity. With one narrow beam of gamma radiation a chordal void fraction can be measured in the homogeneous part of the bed. An optimalisation procedure for the void fraction determination led to the choice of Cs-137 as radiation source. This optimalisation procedure concerned minimizing of the standard deviation in the determined chordal void fraction as a function of the energy of gamma radiation. With two narrow parallel beams placed at a distance of 12 cm above each other a bubble velocity can be obtained. A cross-correlation between the two detector responses gives the time shift between the two responses. The system was designed for velocity measurements in the non-homogeneous part of the column. A simulation of the two beam measurement method for an air fluidized bed, 0.40 m in diameter, of polystyrene particles led to the choice of 100 mCi for the source strength for each of the two Cs-137 sources. For a 100 mCi Cs-137 source a shielding of 8 cm of lead is necessary to comply with safety regulations, concerning the use of radioactive materials. A source holder was designed, containing two encapsulated 100 mCi Cs-137 sources, in accordance with the regulations in the licence of the Delft University of Technology for the use of encapsulated sources. (orig.)

  6. Experimental analysis of ultrasonic signals in air-water vertical upward for void fraction measurement using neural networks; Analise experimental dos sinais ultra-sonicos em escoamentos verticais bifasicos para medicao da fracao de vazios atraves de redes neurais

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Milton Y.; Massignan, Joao P.D.; Daciuk, Rafael J.; Neves Junior, Flavio; Arruda, Lucia V.R. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2008-07-01

    Rheology of emulsion mixtures and void fraction measurements of multiphase flows requires proper instrumentation. Sometimes it is not possible to install this instrumentation inside the pipe or view the flow. Ultrasound technology has characteristics compatible with the requirements of the oil industry. It can assist the production of heavy oil. This study provides important information for an analysis of the feasibility of developing non-intrusive equipment. These probes can be used for measurement of multiphase void fraction and detect the flow pattern using ultrasound. Experiments using simulated upward air-water vertical two-phase flow show that there is a correlation between the acoustic attenuation and the concentration of the gas phase. Experimental data were obtained through the prototype developed for ultrasonic data acquisition. This information was processed and used as input parameters for a neural network classifier. Void fractions ({proportional_to}) were analyzed between 0% - 16%, in increments of 1%. The maximum error of the neural network for the classification of the flow pattern was 6%. (author)

  7. Local Fractional Series Expansion Method for Solving Wave and Diffusion Equations on Cantor Sets

    Directory of Open Access Journals (Sweden)

    Ai-Min Yang

    2013-01-01

    Full Text Available We proposed a local fractional series expansion method to solve the wave and diffusion equations on Cantor sets. Some examples are given to illustrate the efficiency and accuracy of the proposed method to obtain analytical solutions to differential equations within the local fractional derivatives.

  8. Application of fractional derivative with exponential law to bi-fractional-order wave equation with frictional memory kernel

    Science.gov (United States)

    Cuahutenango-Barro, B.; Taneco-Hernández, M. A.; Gómez-Aguilar, J. F.

    2017-12-01

    Analytical solutions of the wave equation with bi-fractional-order and frictional memory kernel of Mittag-Leffler type are obtained via Caputo-Fabrizio fractional derivative in the Liouville-Caputo sense. Through the method of separation of variables and Laplace transform method we derive closed-form solutions and establish fundamental solutions. Special cases with homogeneous Dirichlet boundary conditions and nonhomogeneous initial conditions, as well as for the external force are considered. Numerical simulations of the special solutions were done and novel behaviors are obtained.

  9. Analytic calculations of trial wave functions of the fractional quantum Hall effect on the sphere

    Energy Technology Data Exchange (ETDEWEB)

    Souza Batista, C.L. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Dingping Li [Perugia Univ. (Italy). Dipt. di Fisica

    1996-07-01

    We present a framework for the analytic calculations of the hierarchical wave functions and the composite fermion wave functions in the fractional quantum Hall effect on the sphere by using projective coordinates. Then we calculate the overlaps between these two wave functions at various fillings and small numbers of electrons. We find that the overlaps are most equal to one. This gives a further evidence that two theories of the fractional quantum Hall effect, the hierarchical theory, are physically equivalent. (author). 31 refs., 2 tabs.

  10. Wave packet fractional revivals in a one-dimensional Rydberg atom

    International Nuclear Information System (INIS)

    Veilande, Rita; Bersons, Imants

    2007-01-01

    We investigate many characteristic features of revival and fractional revival phenomena via derived analytic expressions for an autocorrelation function of a one-dimensional Rydberg atom with weighting probabilities modelled by a Gaussian or a Lorentzian distribution. The fractional revival phenomenon in the ionization probabilities of a one-dimensional Rydberg atom irradiated by two short half-cycle pulses is also studied. When many states are involved in the formation of the wave packet, the revival is lower and broader than the initial wave packet and the fractional revivals overlap and disappear with time

  11. NUMERICAL METHODS FOR SOLVING THE MULTI-TERM TIME-FRACTIONAL WAVE-DIFFUSION EQUATION

    OpenAIRE

    Liu, F.; Meerschaert, M.M.; McGough, R.J.; Zhuang, P.; Liu, Q.

    2013-01-01

    In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and technique...

  12. Development of the impedance void meter

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Moon Ki; Song, Chul Hwa; Won, Soon Yeon; Kim, Bok Deuk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    An impedance void meter is developed to measure the area-averaged void fraction. Its basic principle is based on the difference in the electrical conductivity between phases. Several methods of measuring void fraction are briefly reviewed and the reason why this type of void meter is chosen to develop is discussed. Basic principle of the measurement is thoroughly described and several design parameters to affect the overall function are discussed in detail. As example of applications is given for vertical air-water flow. It is shown that the current design has good dynamic response as well as very fine spatial resolution. (Author) 47 refs., 37 figs.

  13. Size-Effects in Void Growth

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2005-01-01

    The size-effect on ductile void growth in metals is investigated. The analysis is based on unit cell models both of arrays of cylindrical voids under plane strain deformation, as well as arrays of spherical voids using an axisymmetric model. A recent finite strain generalization of two higher order...... strain gradient plasticity models is implemented in a finite element program, which is used to study void growth numerically. The results based on the two models are compared. It is shown how gradient effects suppress void growth on the micron scale when compared to predictions based on conventional...... models. This increased resistance to void growth, due to gradient hardening, is accompanied by an increase in the overall strength for the material. Furthermore, for increasing initial void volume fraction, it is shown that the effect of gradients becomes more important to the overall response but less...

  14. Multi-wave solutions of the space–time fractional Burgers and Sharma–Tasso–Olver equations

    Directory of Open Access Journals (Sweden)

    Emad A.-B. Abdel-Salam

    2016-03-01

    Full Text Available Based on the improved generalized exp-function method, the space–time fractional Burgers and Sharma–Tasso–Olver equations were studied. The single-wave, double-wave, three-wave and four-wave solution discussed. With the best of our knowledge, some of the results are obtained for the first time. The improved generalized exp-function method can be applied to other fractional differential equations.

  15. Multi-wave solutions of the space–time fractional Burgers and Sharma–Tasso–Olver equations

    OpenAIRE

    Emad A.-B. Abdel-Salam; Gamal F. Hassan

    2016-01-01

    Based on the improved generalized exp-function method, the space–time fractional Burgers and Sharma–Tasso–Olver equations were studied. The single-wave, double-wave, three-wave and four-wave solution discussed. With the best of our knowledge, some of the results are obtained for the first time. The improved generalized exp-function method can be applied to other fractional differential equations.

  16. An interpolation between the wave and diffusion equations through the fractional evolution equations Dirac like

    International Nuclear Information System (INIS)

    Pierantozzi, T.; Vazquez, L.

    2005-01-01

    Through fractional calculus and following the method used by Dirac to obtain his well-known equation from the Klein-Gordon equation, we analyze a possible interpolation between the Dirac and the diffusion equations in one space dimension. We study the transition between the hyperbolic and parabolic behaviors by means of the generalization of the D'Alembert formula for the classical wave equation and the invariance under space and time inversions of the interpolating fractional evolution equations Dirac like. Such invariance depends on the values of the fractional index and is related to the nonlocal property of the time fractional differential operator. For this system of fractional evolution equations, we also find an associated conserved quantity analogous to the Hamiltonian for the classical Dirac case

  17. Does the instantaneous wave-free ratio approximate the fractional flow reserve?

    NARCIS (Netherlands)

    Johnson, Nils P.; Kirkeeide, Richard L.; Asrress, Kaleab N.; Fearon, William F.; Lockie, Timothy; Marques, Koen M. J.; Pyxaras, Stylianos A.; Rolandi, M. Cristina; van 't Veer, Marcel; de Bruyne, Bernard; Piek, Jan J.; Pijls, Nico H. J.; Redwood, Simon; Siebes, Maria; Spaan, Jos A. E.; Gould, K. Lance

    2013-01-01

    This study sought to examine the clinical performance of and theoretical basis for the instantaneous wave-free ratio (iFR) approximation to the fractional flow reserve (FFR). Recent work has proposed iFR as a vasodilation-free alternative to FFR for making mechanical revascularization decisions. Its

  18. Mittag-Leffler functions as solutions of relaxation-oscillation and diffusion-wave fractional order equation

    International Nuclear Information System (INIS)

    Sandev, D. Trivche

    2010-01-01

    The fractional calculus basis, Mittag-Leffler functions, various relaxation-oscillation and diffusion-wave fractional order equation and systems of fractional order equations are considered in this thesis. To solve these fractional order equations analytical methods, such as the Laplace transform method and method of separation of variables are employed. Some applications of the fractional calculus are considered, particularly physical system with anomalous diffusive behavior. (Author)

  19. Void Measurement by the ({gamma}, n) Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Zia

    1962-09-15

    It is proposed to use the ({gamma}, n) reaction for the measurement of the integrated void volume fraction in two phase flow of D{sub 2}O inside a duct. This method is applicable to different channel geometries, and it is shown to be insensitive to the pattern of void distribution over the cross-sectional area of the channels The method has been tested on mock-ups of voids in a round duct of 6 mm inside diameter. About 40 m.c. {sup 24}Na was used as a source of gamma-rays. The test results show that the maximum measured error in this arrangement is less than 2.5 % (net void) for a range of 2.7 % to 44.44 % actual void volume fractions.

  20. Void Measurement by the (γ, n) Reaction

    International Nuclear Information System (INIS)

    Rouhani, S. Zia

    1962-09-01

    It is proposed to use the (γ, n) reaction for the measurement of the integrated void volume fraction in two phase flow of D 2 O inside a duct. This method is applicable to different channel geometries, and it is shown to be insensitive to the pattern of void distribution over the cross-sectional area of the channels The method has been tested on mock-ups of voids in a round duct of 6 mm inside diameter. About 40 m.c. 24 Na was used as a source of gamma-rays. The test results show that the maximum measured error in this arrangement is less than 2.5 % (net void) for a range of 2.7 % to 44.44 % actual void volume fractions

  1. Stability properties of solitary waves for fractional KdV and BBM equations

    Science.gov (United States)

    Angulo Pava, Jaime

    2018-03-01

    This paper sheds new light on the stability properties of solitary wave solutions associated with Korteweg-de Vries-type models when the dispersion is very low. Using a compact, analytic approach and asymptotic perturbation theory, we establish sufficient conditions for the existence of exponentially growing solutions to the linearized problem and so a criterium of spectral instability of solitary waves is obtained for both models. Moreover, the nonlinear stability and spectral instability of the ground state solutions for both models is obtained for some specific regimen of parameters. Via a Lyapunov strategy and a variational analysis, we obtain the stability of the blow-up of solitary waves for the critical fractional KdV equation. The arguments presented in this investigation show promise for use in the study of the instability of traveling wave solutions of other nonlinear evolution equations.

  2. Analysis of a time fractional wave-like equation with the homotopy analysis method

    International Nuclear Information System (INIS)

    Xu Hang; Cang Jie

    2008-01-01

    The time fractional wave-like differential equation with a variable coefficient is studied analytically. By using a simple transformation, the governing equation is reduced to two fractional ordinary differential equations. Then the homotopy analysis method is employed to derive the solutions of these equations. The accurate series solutions are obtained. Especially, when h f =h g =-1, these solutions are exactly the same as those results given by the Adomian decomposition method. The present work shows the validity and great potential of the homotopy analysis method for solving nonlinear fractional differential equations. The basic idea described in this Letter is expected to be further employed to solve other similar nonlinear problems in fractional calculus

  3. Measurements of the S-wave fraction in B-0 -> K+ pi(-) mu(+) mu(-) decays and the B-0 -> K*(892)(0) mu(+) mu(-) differential branching fraction

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Dufour, L.; Onderwater, C. J. G.; Pellegrino, A.; Tolk, S.

    2016-01-01

    A measurement of the differential branching fraction of the decay B-0 -> K* (892)(0) mu(+)mu(-) is presented together with a determination of the S-wave fraction of the K+ pi(-) system in the decay B-0 -> K+ pi-mu(+)mu(-). The analysis is based on pp-collision data corresponding to an integrated

  4. Partial discharges in spheroidal voids: Void orientation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1997-01-01

    Partial discharge transients can be described in terms of the charge induced on the detecting electrode. The influence of the void parameters upon the induced charge is examined and discussed for spheroidal voids. It is shown that a quantitative interpretation of the induced charge requires...

  5. Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method

    Directory of Open Access Journals (Sweden)

    Rahmatullah

    2018-03-01

    Full Text Available We have computed new exact traveling wave solutions, including complex solutions of fractional order Boussinesq-Like equations, occurring in physical sciences and engineering, by applying Exp-function method. The method is blended with fractional complex transformation and modified Riemann-Liouville fractional order operator. Our obtained solutions are verified by substituting back into their corresponding equations. To the best of our knowledge, no other technique has been reported to cope with the said fractional order nonlinear problems combined with variety of exact solutions. Graphically, fractional order solution curves are shown to be strongly related to each other and most importantly, tend to fixate on their integer order solution curve. Our solutions comprise high frequencies and very small amplitude of the wave responses. Keywords: Exp-function method, New exact traveling wave solutions, Modified Riemann-Liouville derivative, Fractional complex transformation, Fractional order Boussinesq-like equations, Symbolic computation

  6. Hybrid Instantaneous Wave-Free Ratio–Fractional Flow Reserve versus Fractional Flow Reserve in the Real World

    Directory of Open Access Journals (Sweden)

    Kara Shuttleworth

    2017-05-01

    Full Text Available BackgroundThe instantaneous wave-free ratio (iFR is a novel method to assess the ischemic potential of coronary artery stenoses. Clinical trial data have shown that iFR has acceptable diagnostic agreement with fractional flow reserve (FFR, the reference standard for the functional assessment of coronary stenoses. This study compares iFR measurements with FFR measurements in a real world, single-center setting.Methods and resultsInstantaneous wave-free ratio and FFR were measured in 50 coronary artery lesions in 42 patients, with FFR ≤ 0.8 classified as functionally significant. An iFR-only technique, using a treatment cut-off value, iFR ≤ 0.89, provided a classification agreement of 84% with FFR ≤ 0.80. Use of a hybrid iFR–FFR technique, incorporating FFR measurement for lesions within the iFR gray zone of 0.86–0.93, would improve classification agreement with FFR to 94%, with diagnosis achieved without the need for hyperemia in 57% patients.ConclusionThis study in a real-world setting demonstrated good classification agreement between iFR and FFR. Use of a hybrid iFR–FFR technique would achieve high diagnostic accuracy while minimizing adenosine use, compared with routine FFR.

  7. Solutions to Time-Fractional Diffusion-Wave Equation in Cylindrical Coordinates

    Directory of Open Access Journals (Sweden)

    Povstenko YZ

    2011-01-01

    Full Text Available Nonaxisymmetric solutions to time-fractional diffusion-wave equation with a source term in cylindrical coordinates are obtained for an infinite medium. The solutions are found using the Laplace transform with respect to time , the Hankel transform with respect to the radial coordinate , the finite Fourier transform with respect to the angular coordinate , and the exponential Fourier transform with respect to the spatial coordinate . Numerical results are illustrated graphically.

  8. Void growth to coalescence in a non-local material

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2008-01-01

    of different material length parameters in a multi-parameter theory is studied, and it is shown that the important length parameter is the same as under purely hydrostatic loading. It is quantified how micron scale voids grow less rapidly than larger voids, and the implications of this in the overall strength...... of the material is emphasized. The size effect on the onset of coalescence is studied, and results for the void volume fraction and the strain at the onset of coalescence are presented. It is concluded that for cracked specimens not only the void volume fraction, but also the typical void size is of importance...... to the fracture strength of ductile materials....

  9. Pediatric Voiding Cystourethrogram

    Science.gov (United States)

    Scan for mobile link. Children's (Pediatric) Voiding Cystourethrogram A children’s (pediatric) voiding cystourethrogram uses fluoroscopy – a form of real-time x-ray – to examine a child’s bladder ...

  10. Cosmic void clumps

    Science.gov (United States)

    Lares, M.; Luparello, H. E.; Garcia Lambas, D.; Ruiz, A. N.; Ceccarelli, L.; Paz, D.

    2017-10-01

    Cosmic voids are of great interest given their relation to the large scale distribution of mass and the way they trace cosmic flows shaping the cosmic web. Here we show that the distribution of voids has, in consonance with the distribution of mass, a characteristic scale at which void pairs are preferentially located. We identify clumps of voids with similar environments and use them to define second order underdensities. Also, we characterize its properties and analyze its impact on the cosmic microwave background.

  11. A Simple Mathematical Model Inspired by the Purkinje Cells: From Delayed Travelling Waves to Fractional Diffusion.

    Science.gov (United States)

    Dipierro, Serena; Valdinoci, Enrico

    2018-07-01

    Recently, several experiments have demonstrated the existence of fractional diffusion in the neuronal transmission occurring in the Purkinje cells, whose malfunctioning is known to be related to the lack of voluntary coordination and the appearance of tremors. Also, a classical mathematical feature is that (fractional) parabolic equations possess smoothing effects, in contrast with the case of hyperbolic equations, which typically exhibit shocks and discontinuities. In this paper, we show how a simple toy-model of a highly ramified structure, somehow inspired by that of the Purkinje cells, may produce a fractional diffusion via the superposition of travelling waves that solve a hyperbolic equation. This could suggest that the high ramification of the Purkinje cells might have provided an evolutionary advantage of "smoothing" the transmission of signals and avoiding shock propagations (at the price of slowing a bit such transmission). Although an experimental confirmation of the possibility of such evolutionary advantage goes well beyond the goals of this paper, we think that it is intriguing, as a mathematical counterpart, to consider the time fractional diffusion as arising from the superposition of delayed travelling waves in highly ramified transmission media. The case of a travelling concave parabola with sufficiently small curvature is explicitly computed. The new link that we propose between time fractional diffusion and hyperbolic equation also provides a novelty with respect to the usual paradigm relating time fractional diffusion with parabolic equations in the limit. This paper is written in such a way as to be of interest to both biologists and mathematician alike. In order to accomplish this aim, both complete explanations of the objects considered and detailed lists of references are provided.

  12. Qualitative Resting Coronary Pressure Wave Form Analysis to Predict Fractional Flow Reserve.

    Science.gov (United States)

    Matsumura, Mitsuaki; Maehara, Akiko; Johnson, Nils P; Fearon, William F; De Bruyne, Bernard; Oldroyd, Keith G; Pijls, Nico H J; Jenkins, Paul; Ali, Ziad A; Mintz, Gary S; Stone, Gregg W; Jeremias, Allen

    2018-03-27

    To evaluate the predictability of resting distal coronary pressure wave forms for fractional flow reserve (FFR). Resting coronary wave forms were qualitatively evaluated for the presence of (i) dicrotic notch; (ii) diastolic dipping; and (iii) ventricularization. In a development cohort (n=88) a scoring system was developed that was then applied to a validation cohort (n=428) using a multivariable linear regression model to predict FFR and receiver operating characteristics (ROC) to predict FFR ≤0.8. In the development cohort, all 3 qualitative parameters were independent predictors of FFR. However, in a multivariable linear regression model in the validation cohort, qualitative wave form analysis did not further improve the ability of resting distal coronary to aortic pressure ratio (Pd/Pa) (p=0.80) or instantaneous wave-free ratio (iFR) (p=0.26) to predict FFR. Using ROC, the area under the curve of resting Pd/Pa (0.86 versus 0.86, P=0.08) and iFR (0.86 versus 0.86, P=0.26) did not improve by adding qualitative analysis. Qualitative coronary wave form analysis showed moderate classification agreement in predicting FFR but did not add substantially to the resting pressure gradients Pd/Pa and iFR; however, when discrepancies between quantitative and qualitative analyses are observed, artifact or pressure drift should be considered.

  13. Elliott wave principle and the corresponding fractional Brownian motion in stock markets: Evidence from Nikkei 225 index

    International Nuclear Information System (INIS)

    Ilalan, Deniz

    2016-01-01

    Highlights: • Hausdorff dimension of the Elliott Wave trajectories is computed. • Linkage between Elliott Wave principle and fractional Brownian motion is proposed. • Log-normality of stock returns is discussed from a fractal point of view. - Abstract: This paper examines one of the vital technical analysis indicators known as the Elliott wave principle. Since these waves have a fractal nature with patterns that are not exact, we first determine the dimension of them. Our second aim is to find a linkage between Elliott wave principle and fractional Brownian motion via comparing their Hausdorff dimensions. Thirdly, we consider the Nikkei 225 index during Japan asset price bubble, which is a perfect example of an Elliott wave.

  14. On void nucleation

    International Nuclear Information System (INIS)

    Subbotin, A.V.

    1978-01-01

    Nucleation of viable voids in irradiated materials is considered. The mechanism of evaporation and absorption of interstitials and vacancies disregarding the possibility of void merging is laid down into the basis of the discussion. The effect of irradiated material structure on void nucleation is separated from the effect of the properties of supersaturated solutions of vacancies and interstitials. An analytical expression for the nucleation rate is obtained and analyzed in different cases. The interstitials are concluded to effect severely the nucleation rate of viable voids

  15. A fractional Fourier transform analysis of the scattering of ultrasonic waves

    Science.gov (United States)

    Tant, Katherine M.M.; Mulholland, Anthony J.; Langer, Matthias; Gachagan, Anthony

    2015-01-01

    Many safety critical structures, such as those found in nuclear plants, oil pipelines and in the aerospace industry, rely on key components that are constructed from heterogeneous materials. Ultrasonic non-destructive testing (NDT) uses high-frequency mechanical waves to inspect these parts, ensuring they operate reliably without compromising their integrity. It is possible to employ mathematical models to develop a deeper understanding of the acquired ultrasonic data and enhance defect imaging algorithms. In this paper, a model for the scattering of ultrasonic waves by a crack is derived in the time–frequency domain. The fractional Fourier transform (FrFT) is applied to an inhomogeneous wave equation where the forcing function is prescribed as a linear chirp, modulated by a Gaussian envelope. The homogeneous solution is found via the Born approximation which encapsulates information regarding the flaw geometry. The inhomogeneous solution is obtained via the inverse Fourier transform of a Gaussian-windowed linear chirp excitation. It is observed that, although the scattering profile of the flaw does not change, it is amplified. Thus, the theory demonstrates the enhanced signal-to-noise ratio permitted by the use of coded excitation, as well as establishing a time–frequency domain framework to assist in flaw identification and classification. PMID:25792967

  16. Temperature controlled 'void' formation

    International Nuclear Information System (INIS)

    Dasgupta, P.; Sharma, B.D.

    1975-01-01

    The nucleation and growth of voids in structural materials during high temperature deformation or irradiation is essentially dependent upon the existence of 'vacancy supersaturation'. The role of temperature dependent diffusion processes in 'void' formation under varying conditions, and the mechanical property changes associated with this microstructure are briefly reviewed. (author)

  17. Void nucleation at heterogeneities

    International Nuclear Information System (INIS)

    Seyyedi, S.A.; Hadji-Mirzai, M.; Russell, K.C.

    The energetics and kinetics of void nucleation at dislocations and interfaces are analyzed. These are potential void nucleation sites only when they are not point defect sinks. Both kinds of site are found to be excellent catalysts in the presence of inert gas

  18. Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method

    Science.gov (United States)

    Rahmatullah; Ellahi, Rahmat; Mohyud-Din, Syed Tauseef; Khan, Umar

    2018-03-01

    We have computed new exact traveling wave solutions, including complex solutions of fractional order Boussinesq-Like equations, occurring in physical sciences and engineering, by applying Exp-function method. The method is blended with fractional complex transformation and modified Riemann-Liouville fractional order operator. Our obtained solutions are verified by substituting back into their corresponding equations. To the best of our knowledge, no other technique has been reported to cope with the said fractional order nonlinear problems combined with variety of exact solutions. Graphically, fractional order solution curves are shown to be strongly related to each other and most importantly, tend to fixate on their integer order solution curve. Our solutions comprise high frequencies and very small amplitude of the wave responses.

  19. Structural control of void formation in dual phase steels

    DEFF Research Database (Denmark)

    Azuma, Masafumi

    The objective of this study is to explore the void formation mechanisms and to clarify the influence of the hardness and structural parameters (volume fraction, size and morphology) of martensite particles on the void formation and mechanical properties in dual phase steels composed of ferrite...... and (iii) strain localization. The critical strain for void formation depends on hardness of the martensite, but is independent of the volume fraction, shape, size and distribution of the martensite. The strain partitioning between the martensite and ferrite depends on the volume fraction and hardness...... of the martensite accelerates the void formation in the martensite by enlarging the size of voids both in the martensite and ferrite. It is suggested that controlling the hardness and structural parameters associated with the martensite particles such as morphology, size and volume fraction are the essential...

  20. Void hierarchy and cosmic structure

    International Nuclear Information System (INIS)

    Weygaert, Rien van de; Ravi Sheth

    2004-01-01

    Within the context of hierarchical scenarios of gravitational structure formation we describe how an evolving hierarchy of voids evolves on the basis of two processes, the void-in-void process and the void-in-cloud process. The related analytical formulation in terms of a two-barrier excursion problem leads to a self-similarly evolving peaked void size distribution

  1. Impacts of updated green vegetation fraction data on WRF simulations of the 2006 European heat wave

    Science.gov (United States)

    Refslund, J.; Dellwik, E.; Hahmann, A. N.; Barlage, M. J.; Boegh, E.

    2012-12-01

    Climate change studies suggest an increase in heat wave occurrences over Europe in the coming decades. Extreme events with excessive heat and associated drought will impact vegetation growth and health and lead to alterations in the partitioning of the surface energy. In this study, the atmospheric conditions during the heat wave year 2006 over Europe were simulated using the Weather Research and Forecasting (WRF) model. To account for the drought effects on the vegetation, new high-resolution green vegetation fraction (GVF) data were developed for the domain using NDVI data from MODIS satellite observations. Many empirical relationships exist to convert NDVI to GVF and both a linear and a quadratic formulation were evaluated. The new GVF product has a spatial resolution of 1 km2 and a temporal resolution of 8 days. To minimize impacts from low-quality satellite retrievals in the NDVI series, as well as for comparison with the default GVF climatology in WRF, a new background climatology using 10 recent years of observations was also developed. The annual time series of the new GVF climatology was compared to the default WRF GVF climatology at 18 km2 grid resolution for the most common land use classes in the European domain. The new climatology generally has higher GVF levels throughout the year, in particular an extended autumnal growth season. Comparison of 2006 GVF with the climatology clearly indicates vegetation stresses related to heat and drought. The GVF product based on a quadratic NDVI relationship shows the best agreement with the magnitude and annual range of the default input data, in addition to including updated seasonality for various land use classes. The new GVF products were tested in WRF and found to work well for the spring of 2006 where the difference between the default and new GVF products was small. The WRF 2006 heat wave simulations were verified by comparison with daily gridded observations of mean, minimum and maximum temperature and

  2. Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms.

    Science.gov (United States)

    Pei, Soo-Chang; Ding, Jian-Jiun

    2005-03-01

    Prolate spheroidal wave functions (PSWFs) are known to be useful for analyzing the properties of the finite-extension Fourier transform (fi-FT). We extend the theory of PSWFs for the finite-extension fractional Fourier transform, the finite-extension linear canonical transform, and the finite-extension offset linear canonical transform. These finite transforms are more flexible than the fi-FT and can model much more generalized optical systems. We also illustrate how to use the generalized prolate spheroidal functions we derive to analyze the energy-preservation ratio, the self-imaging phenomenon, and the resonance phenomenon of the finite-sized one-stage or multiple-stage optical systems.

  3. Air void clustering.

    Science.gov (United States)

    2015-06-01

    Air void clustering around coarse aggregate in concrete has been identified as a potential source of : low strengths in concrete mixes by several Departments of Transportation around the country. Research was : carried out to (1) develop a quantitati...

  4. Morphological Segregation in the Surroundings of Cosmic Voids

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardelli, Elena; Tamone, Amelie [Laboratoire d’Astrophysique, École Polytechnique Fédérale de Lausanne (EPFL), 1290 Sauverny (Switzerland); Cava, Antonio [Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, 1290 Versoix (Switzerland); Varela, Jesus, E-mail: elena.ricciardelli@epfl.ch [Centro de Estudios de Física del Cosmos de Aragón (CEFCA), Plaza San Juan 1, E-44001 Teruel (Spain)

    2017-09-01

    We explore the morphology of galaxies living in the proximity of cosmic voids, using a sample of voids identified in the Sloan Digital Sky Survey Data Release 7. At all stellar masses, void galaxies exhibit morphologies of a later type than galaxies in a control sample, which represent galaxies in an average density environment. We interpret this trend as a pure environmental effect, independent of the mass bias, due to a slower galaxy build-up in the rarefied regions of voids. We confirm previous findings about a clear segregation in galaxy morphology, with galaxies of a later type being found at smaller void-centric distances with respect to the early-type galaxies. We also show, for the first time, that the radius of the void has an impact on the evolutionary history of the galaxies that live within it or in its surroundings. In fact, an enhanced fraction of late-type galaxies is found in the proximity of voids larger than the median void radius. Likewise, an excess of early-type galaxies is observed within or around voids of a smaller size. A significant difference in galaxy properties in voids of different sizes is observed up to 2 R {sub void}, which we define as the region of influence of voids. The significance of this difference is greater than 3 σ for all the volume-complete samples considered here. The fraction of star-forming galaxies shows the same behavior as the late-type galaxies, but no significant difference in stellar mass is observed in the proximity of voids of different sizes.

  5. Void growth to coalescence in a non-local material

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    of different material length parameters in a multi-parameter theory is studied, and it is shown that the important length parameter is the same as under purely hydrostatic loading. It is quantified how micron scale voids grow less rapidly than larger voids, and the implications of this in the overall strength...... of the material is emphasized. It is concluded that for cracked specimens not only the void volume fraction, but also the typical void size is of importance to the fracture strength of ductile materials....

  6. Traveling wave solutions to some nonlinear fractional partial differential equations through the rational (G′/G-expansion method

    Directory of Open Access Journals (Sweden)

    Tarikul Islam

    2018-03-01

    Full Text Available In this article, the analytical solutions to the space-time fractional foam drainage equation and the space-time fractional symmetric regularized long wave (SRLW equation are successfully examined by the recently established rational (G′/G-expansion method. The suggested equations are reduced into the nonlinear ordinary differential equations with the aid of the fractional complex transform. Consequently, the theories of the ordinary differential equations are implemented effectively. Three types closed form traveling wave solutions, such as hyperbolic function, trigonometric function and rational, are constructed by using the suggested method in the sense of conformable fractional derivative. The obtained solutions might be significant to analyze the depth and spacing of parallel subsurface drain and small-amplitude long wave on the surface of the water in a channel. It is observed that the performance of the rational (G′/G-expansion method is reliable and will be used to establish new general closed form solutions for any other NPDEs of fractional order.

  7. Radar application in void and bar detection

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohamad Pauzi Ismail; Suhairy Sani

    2003-01-01

    Radar is one of the new non-destructive testing techniques for concrete and structures inspection. Radar is a non-ionizing electromagnetic wave that can penetrate deep into concrete or soil in about several tenths of meters. Method of inspection using radar enables us to perform high resolution detection, imaging and mapping of subsurface concrete and soil condition. This paper will discuss the use of radar for void and bar detection and sizing. The samples used in this paper are custom made samples and comparison will be made to validate the use of radar in detecting, locating and also size determination of voids and bars. (Author)

  8. Positive void reactivity

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1992-09-01

    This report is a review of some of the important aspects of the analysis of large loss-of-coolant accidents (LOCAs). One important aspect is the calculation of positive void reactivity. To study this subject the lattice physics codes used for void worth calculations and the coupled neutronic and thermal-hydraulic codes used for the transient analysis are reviewed. Also reviewed are the measurements used to help validate the codes. The application of these codes to large LOCAs is studied with attention focused on the uncertainty factor for the void worth used to bias the results. Another aspect of the subject dealt with in the report is the acceptance criteria that are applied. This includes the criterion for peak fuel enthalpy and the question of whether prompt criticality should also be a criterion. To study the former, fuel behavior measurements and calculations are reviewed. (Author) (49 refs., 2 figs., tab.)

  9. Relationship between instantaneous wave-free ratio and fractional flow reserve in patients receiving hemodialysis.

    Science.gov (United States)

    Morioka, Yuta; Arashi, Hiroyuki; Otsuki, Hisao; Yamaguchi, Junichi; Hagiwara, Nobuhisa

    2017-06-22

    Instantaneous wave-free ratio (iFR) is a vasodilator-free index and is reported to have a good correlation with fractional flow reserve (FFR). Hemodialysis patients exhibit left ventricular hypertrophy, reduced arterial compliance, and impaired microcirculation. Such a coronary flow condition in these patients may influence the relationship between iFR and FFR. This study assessed the impact of hemodialysis on the relationship between iFR and FFR. The study enrolled 196 patients with 265 stenoses who underwent assessment via iFR, FFR assessment, and right heart catheterization. A good correlation between iFR and FFR was observed in hemodialysis patients. iFR in the hemodialysis group was significantly lower than in the non-hemodialysis group (0.81 ± 0.13 vs. 0.86 ± 0.13, p = 0.005), although no significant difference was found in FFR and percentage diameter stenosis. An iFR value of 0.84 was found to be equivalent to an FFR value of 0.8 in hemodialysis patients, which was lower than the standard predictive iFR range for ischemia. Vasodilator-free assessment by iFR could be beneficial in evaluating intermediate coronary stenosis in patients receiving hemodialysis. However, the threshold for iFR abnormality needs adjustment in hemodialysis patients, and larger clinical trials are required to confirm the results in this specific subset.

  10. Void effects on BWR Doppler and void reactivity feedback

    International Nuclear Information System (INIS)

    Hsiang-Shou Cheng; Diamond, D.J.

    1978-01-01

    The significance of steam voids and control rods on the Doppler feedback in a gadolinia shimmed BWR is demonstrated. The importance of bypass voids when determining void feedback is also shown. Calculations were done using a point model, i.e., feedback was expressed in terms of reactivity coefficients which were determined for individual four-bundle configurations and then appropriately combined to yield reactor results. For overpower transients the inclusion of the void effect of control rods is to reduce Doppler feedback. For overpressurization transients the inclusion of the effect of bypass void wil increase the reactivity due to void collapse. (author)

  11. The Metallicity of Void Dwarf Galaxies

    Science.gov (United States)

    Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.

    2015-01-01

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (Mr > -16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.

  12. Size-effects at a crack-tip interacting with a number of voids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Niordson, Christian Frithiof

    2008-01-01

    A strain gradient plasticity theory is used to analyse the growth of discretely represented voids in front of a blunting crack tip, in order to study the influence of size effects on two competing mechanisms of crack growth. For a very small void volume fraction the crack tip tends to interact...... of the characteristic material length relative to the initial void radius. For a case showing the multiple void mechanism, it is found that the effect of the material length can change the behaviour towards the void by void mechanism. A material model with three characteristic length scales is compared with a one...

  13. New solitary wave solutions of the time-fractional Cahn-Allen equation via the improved (G'/G)-expansion method

    Science.gov (United States)

    Batool, Fiza; Akram, Ghazala

    2018-05-01

    An improved (G'/G)-expansion method is proposed for extracting more general solitary wave solutions of the nonlinear fractional Cahn-Allen equation. The temporal fractional derivative is taken in the sense of Jumarie's fractional derivative. The results of this article are generalized and extended version of previously reported solutions.

  14. Determination of the void nucleation rate from void size distributions

    International Nuclear Information System (INIS)

    Brailsford, A.D.

    1977-01-01

    A method of estimating the void nucleation rate from one void size distribution and from observation of the maximum void radius at prior times is proposed. Implicit in the method are the assumptions that both variations in the critical radius with dose and vacancy thermal emission processes during post-nucleation quasi-steady-state growth may be neglected. (Auth.)

  15. Effect of initial void shape on ductile failure in a shear field

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2015-01-01

    For voids in a shear field unit cell model analyses have been used to show that ductile failure is predicted even though the stress triaxiality is low or perhaps negative, so that the void volume fraction does not grow during deformation. Here, the effect of the void shape is studied by analyzing...... with circular cross-section, i.e. the voids in shear flatten out to micro-cracks, which rotate and elongate until interaction with neighboring micro-cracks gives coalescence. Even though the mechanism of ductile failure is the same, the load carrying capacity predicted, for the same initial void volume fraction...

  16. Orbital stability of standing waves of a class of fractional Schrödinger equations with Hartree-type nonlinearity

    KAUST Repository

    Cho, Yonggeun

    2016-05-04

    This paper is devoted to the mathematical analysis of a class of nonlinear fractional Schrödinger equations with a general Hartree-type integrand. We show the well-posedness of the associated Cauchy problem and prove the existence and stability of standing waves under suitable assumptions on the nonlinearity. Our proofs rely on a contraction argument in mixed functional spaces and the concentration-compactness method. © 2015 World Scientific Publishing Company

  17. Extending the D’alembert solution to space–time Modified Riemann–Liouville fractional wave equations

    International Nuclear Information System (INIS)

    Godinho, Cresus F.L.; Weberszpil, J.; Helayël-Neto, J.A.

    2012-01-01

    In the realm of complexity, it is argued that adequate modeling of TeV-physics demands an approach based on fractal operators and fractional calculus (FC). Non-local theories and memory effects are connected to complexity and the FC. The non-differentiable nature of the microscopic dynamics may be connected with time scales. Based on the Modified Riemann–Liouville definition of fractional derivatives, we have worked out explicit solutions to a fractional wave equation with suitable initial conditions to carefully understand the time evolution of classical fields with a fractional dynamics. First, by considering space–time partial fractional derivatives of the same order in time and space, a generalized fractional D’alembertian is introduced and by means of a transformation of variables to light-cone coordinates, an explicit analytical solution is obtained. To address the situation of different orders in the time and space derivatives, we adopt different approaches, as it will become clear throughout this paper. Aspects connected to Lorentz symmetry are analyzed in both approaches.

  18. Archaeology of Void Spaces

    Science.gov (United States)

    Look, Cory

    The overall goal of this research is to evaluate the efficacy of pXRF for the identification of ancient activity areas at Pre-Columbian sites in Antigua that range across time periods, geographic regions, site types with a variety of features, and various states of preservation. These findings have important implications for identifying and reconstructing places full of human activity but void of material remains. A synthesis for an archaeology of void spaces requires the construction of new ways of testing anthrosols, and identifying elemental patterns that can be used to connect people with their places and objects. This research begins with an exploration of rich middens in order to study void spaces. Midden archaeology has been a central focus in Caribbean research, and consists of an accumulation of discarded remnants from past human activities that can be tested against anthrosols. The archaeological collections visited for this research project involved creating new databases to generate a comprehensive inventory of sites, materials excavated, and assemblages available for study. Of the more than 129 Pre-Columbian sites documented in Antigua, few sites have been thoroughly surveyed or excavated. Twelve Pre-Columbian sites, consisting of thirty-six excavated units were selected for study; all of which contained complete assemblages for comparison and soil samples for testing. These excavations consisted almost entirely of midden excavations, requiring new archaeological investigations to be carried out in spaces primarily void of material remains but within the village context. Over the course of three seasons excavations, shovel test pits, and soil augers were used to obtain a variety of anthrosols and archaeological assemblages in order to generate new datasets to study Pre-Columbian activity areas. The selection of two primary case study sites were used for comparison: Indian Creek and Doigs. Findings from this research indicate that accounting for the

  19. Exact Solutions of the Space Time Fractional Symmetric Regularized Long Wave Equation Using Different Methods

    Directory of Open Access Journals (Sweden)

    Özkan Güner

    2014-01-01

    Full Text Available We apply the functional variable method, exp-function method, and (G′/G-expansion method to establish the exact solutions of the nonlinear fractional partial differential equation (NLFPDE in the sense of the modified Riemann-Liouville derivative. As a result, some new exact solutions for them are obtained. The results show that these methods are very effective and powerful mathematical tools for solving nonlinear fractional equations arising in mathematical physics. As a result, these methods can also be applied to other nonlinear fractional differential equations.

  20. Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo-Christov flux

    Science.gov (United States)

    Liu, Lin; Zheng, Liancun; Liu, Fawang; Zhang, Xinxin

    2016-09-01

    An improved Cattaneo-Christov flux model is proposed which can be used to capture the effects of the time and spatial relaxations, the time and spatial inhomogeneous diffusion and the spatial transition probability of cell transport in a highly non-homogeneous medium. Solutions are obtained by numerical discretization method where the time and spatial fractional derivative are discretized by the L1-approximation and shifted Grünwald definition, respectively. The solvability, stability and convergence of the numerical method for the special case of the Cattaneo-Christov equation are proved. Results indicate that the fractional convection diffusion-wave equation is an evolution equation which displays the coexisting characteristics of parabolicity and hyperbolicity. In other words, for α in (0, 1), the cells transport occupies the characteristics of coupling convection diffusion and wave spreading. Moreover, the effects of pertinent time parameter, time and spatial fractional derivative parameters, relaxation parameter, weight coefficient and the convection velocity on the anomalous transport of cells are shown graphically and analyzed in detail.

  1. Displacive stability of a void in a void lattice

    International Nuclear Information System (INIS)

    Brailsford, A.D.

    1977-01-01

    It has recently been suggested that the stability of the void-lattice structure in irradiated metals may be attributed to the effect of the overlapping of the point-defect diffusion fields associated with each void. It is shown here, however, that the effect is much too weak. When one void is displaced from its lattice site, the displacement is shown to relax to zero as proposed, but a conservative estimate indicates that the characteristic time is equivalent to an irradiation dose of the order of 300 displacements per atom which is generally much greater than the dose necessary for void-lattice formation

  2. CTF Void Drift Validation Study

    Energy Technology Data Exchange (ETDEWEB)

    Salko, Robert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gosdin, Chris [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gergar, Marcus [Pennsylvania State Univ., University Park, PA (United States)

    2015-10-26

    This milestone report is a summary of work performed in support of expansion of the validation and verification (V&V) matrix for the thermal-hydraulic subchannel code, CTF. The focus of this study is on validating the void drift modeling capabilities of CTF and verifying the supporting models that impact the void drift phenomenon. CTF uses a simple turbulent-diffusion approximation to model lateral cross-flow due to turbulent mixing and void drift. The void drift component of the model is based on the Lahey and Moody model. The models are a function of two-phase mass, momentum, and energy distribution in the system; therefore, it is necessary to correctly model the ow distribution in rod bundle geometry as a first step to correctly calculating the void distribution due to void drift.

  3. An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions

    Science.gov (United States)

    Macías-Díaz, J. E.

    2018-06-01

    In this work, we investigate numerically a model governed by a multidimensional nonlinear wave equation with damping and fractional diffusion. The governing partial differential equation considers the presence of Riesz space-fractional derivatives of orders in (1, 2], and homogeneous Dirichlet boundary data are imposed on a closed and bounded spatial domain. The model under investigation possesses an energy function which is preserved in the undamped regime. In the damped case, we establish the property of energy dissipation of the model using arguments from functional analysis. Motivated by these results, we propose an explicit finite-difference discretization of our fractional model based on the use of fractional centered differences. Associated to our discrete model, we also propose discretizations of the energy quantities. We establish that the discrete energy is conserved in the undamped regime, and that it dissipates in the damped scenario. Among the most important numerical features of our scheme, we show that the method has a consistency of second order, that it is stable and that it has a quadratic order of convergence. Some one- and two-dimensional simulations are shown in this work to illustrate the fact that the technique is capable of preserving the discrete energy in the undamped regime. For the sake of convenience, we provide a Matlab implementation of our method for the one-dimensional scenario.

  4. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M. I.; Borg, Ulrik; Niordson, Christian Frithiof

    singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation and strain......The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation the dislocations are all of edge character and are modelled as line...... predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model chosen to be $0.325\\mu m$ (around ten times the slip plane spacing in the discrete dislocation models)....

  5. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M.I.; Borg, Ulrik; Niordson, Christian Frithiof

    2008-01-01

    as line singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation......The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation, the dislocations are all of edge character and are modelled...... between predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model is chosen to be 0.325 mu m (about 10 times the slip plane spacing in the discrete dislocation models)....

  6. Existence of standing waves for Schrodinger equations involving the fractional Laplacian

    Directory of Open Access Journals (Sweden)

    Everaldo S. de Medeiros

    2017-03-01

    Full Text Available We study a class of fractional Schrodinger equations of the form $$ \\varepsilon^{2\\alpha}(-\\Delta^\\alpha u+ V(xu = f(x,u \\quad\\text{in } \\mathbb{R}^N, $$ where $\\varepsilon$ is a positive parameter, $0 < \\alpha < 1$, $2\\alpha < N$, $(-\\Delta^\\alpha$ is the fractional Laplacian, $V:\\mathbb{R}^{N}\\to \\mathbb{R}$ is a potential which may be bounded or unbounded and the nonlinearity $f:\\mathbb{R}^{N}\\times \\mathbb{R}\\to \\mathbb{R}$ is superlinear and behaves like $|u|^{p-2}u$ at infinity for some $2

  7. Local, zero-power void coefficient measurements in the ACPR

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, J B; Thome, F V [Sandia Laboratories (United States)

    1974-07-01

    Changes in reactivity may be stimulated in the ACPR by the local introduction of voids into the reactor coolant. The local void coefficients of reactivity which describe this effect are of interest from a reactor safety point-of-view, and their determination is the subject of this presentation. Bottled nitrogen gas was used to produce the voids. The gas was forced out of a small diameter tube which was positioned vertically in the core lattice with its open end below the fuel. The gas was passed through a pressure regulator, a valve, and a flowmeter to establish a steady flow condition, following which a delayed-critical (zero-power) reactor state was established. Correlation of the average volume of core void created by the nitrogen flow with the reactivity worth of the delayed-critical control-rod bank position produced the values of the zero-power void coefficients of reactivity. The void coefficients were determined at various core positions from {approx}6 mm to 142 mm beyond the central irradiation space and for three different flow rates. For the range of void fractions investigated, these coefficients are negative, with values ranging between -$0.02 and -$0.12. Tabular and graphical results of the measurements are presented, and details of the coefficient determination are explained. (author)

  8. Local, zero-power void coefficient measurements in the ACPR

    International Nuclear Information System (INIS)

    Rivard, J.B.; Thome, F.V.

    1974-01-01

    Changes in reactivity may be stimulated in the ACPR by the local introduction of voids into the reactor coolant. The local void coefficients of reactivity which describe this effect are of interest from a reactor safety point-of-view, and their determination is the subject of this presentation. Bottled nitrogen gas was used to produce the voids. The gas was forced out of a small diameter tube which was positioned vertically in the core lattice with its open end below the fuel. The gas was passed through a pressure regulator, a valve, and a flowmeter to establish a steady flow condition, following which a delayed-critical (zero-power) reactor state was established. Correlation of the average volume of core void created by the nitrogen flow with the reactivity worth of the delayed-critical control-rod bank position produced the values of the zero-power void coefficients of reactivity. The void coefficients were determined at various core positions from ∼6 mm to 142 mm beyond the central irradiation space and for three different flow rates. For the range of void fractions investigated, these coefficients are negative, with values ranging between -$0.02 and -$0.12. Tabular and graphical results of the measurements are presented, and details of the coefficient determination are explained. (author)

  9. A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives

    Science.gov (United States)

    Macías-Díaz, J. E.

    2017-12-01

    In this manuscript, we consider an initial-boundary-value problem governed by a (1 + 1)-dimensional hyperbolic partial differential equation with constant damping that generalizes many nonlinear wave equations from mathematical physics. The model considers the presence of a spatial Laplacian of fractional order which is defined in terms of Riesz fractional derivatives, as well as the inclusion of a generic continuously differentiable potential. It is known that the undamped regime has an associated positive energy functional, and we show here that it is preserved throughout time under suitable boundary conditions. To approximate the solutions of this model, we propose a finite-difference discretization based on fractional centered differences. Some discrete quantities are proposed in this work to estimate the energy functional, and we show that the numerical method is capable of conserving the discrete energy under the same boundary conditions for which the continuous model is conservative. Moreover, we establish suitable computational constraints under which the discrete energy of the system is positive. The method is consistent of second order, and is both stable and convergent. The numerical simulations shown here illustrate the most important features of our numerical methodology.

  10. Fractional Ablative Laser Followed by Transdermal Acoustic Pressure Wave Device to Enhance the Drug Delivery of Aminolevulinic Acid: In Vivo Fluorescence Microscopy Study.

    Science.gov (United States)

    Waibel, Jill S; Rudnick, Ashley; Nousari, Carlos; Bhanusali, Dhaval G

    2016-01-01

    Topical drug delivery is the foundation of all dermatological therapy. Laser-assisted drug delivery (LAD) using fractional ablative laser is an evolving modality that may allow for a greater precise depth of penetration by existing topical medications, as well as more efficient transcutaneous delivery of large drug molecules. Additional studies need to be performed using energy-driven methods that may enhance drug delivery in a synergistic manner. Processes such as iontophoresis, electroporation, sonophoresis, and the use of photomechanical waves aid in penetration. This study evaluated in vivo if there is increased efficacy of fractional CO2 ablative laser with immediate acoustic pressure wave device. Five patients were treated and biopsied at 4 treatment sites: 1) topically applied aminolevulinic acid (ALA) alone; 2) fractional ablative CO2 laser and topical ALA alone; 3) fractional ablative CO2 laser and transdermal acoustic pressure wave device delivery system; and 4) topical ALA with transdermal delivery system. The comparison of the difference in the magnitude of diffusion with both lateral spread of ALA and depth diffusion of ALA was measured by fluorescence microscopy. For fractional ablative CO2 laser, ALA, and transdermal acoustic pressure wave device, the protoporphyrin IX lateral fluorescence was 0.024 mm on average vs 0.0084 mm for fractional ablative CO2 laser and ALA alone. The diffusion for the acoustic pressure wave device was an order of magnitude greater. We found that our combined approach of fractional ablative CO2 laser paired with the transdermal acoustic pressure wave device increased the depth of penetration of ALA.

  11. PRECISION COSMOGRAPHY WITH STACKED VOIDS

    International Nuclear Information System (INIS)

    Lavaux, Guilhem; Wandelt, Benjamin D.

    2012-01-01

    We present a purely geometrical method for probing the expansion history of the universe from the observation of the shape of stacked voids in spectroscopic redshift surveys. Our method is an Alcock-Paczyński (AP) test based on the average sphericity of voids posited on the local isotropy of the universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. We establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, assuming that the void statistics that we derive from N-body simulations is preserved when considering galaxy surveys, we assess the capability of this approach to constrain dark energy parameters. We report this assessment in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed Euclid mission which is particularly suited for this technique since it is a spectroscopic survey. The FoM due to stacked voids from the Euclid wide survey may double that of all other dark energy probes derived from Euclid data alone (combined with Planck priors). In particular, voids seem to outperform baryon acoustic oscillations by an order of magnitude. This result is consistent with simple estimates based on mode counting. The AP test based on stacked voids may be a significant addition to the portfolio of major dark energy probes and its potentialities must be studied in detail.

  12. Effects of Void Uncertainties on Pin Power Distributions and the Void Reactivity Coefficient for a 10X10 BWR Assembly

    International Nuclear Information System (INIS)

    Jatuff, F.; Krouthen, J.; Helmersson, S.; Chawla, R.

    2004-01-01

    A significant source of uncertainty in Boiling Water Reactor physics is associated with the precise characterisation of the axially-dependent neutron moderation properties of the coolant inside the fuel assembly channel, and the corresponding effects on reactor physics parameters such as the lattice neutron multiplication, the neutron migration length, and the pin-by-pin power distribution. In this paper, the effects of particularly relevant void fraction uncertainties on reactor physics parameters have been studied for a BWR assembly of type Westinghouse SVEA-96 using the CASMO-4, HELIOS/PRESTO-2 and MCNP4C codes. The SVEA-96 geometry is characterised by the sub-division of the assembly into four different sub-bundles by means of an inner bypass with a cruciform shape. The study has covered the following issues: (a) the effects of different cross-section data libraries on the void coefficient of reactivity, for a wide range of void fractions; (b) the effects due to a heterogeneous vs. homogeneous void distribution inside the sub-bundles; and (c) the consequences of partly inserted absorber blades producing different void fractions in different sub-bundles. (author)

  13. Existence, regularity and representation of solutions of time fractional wave equations

    Directory of Open Access Journals (Sweden)

    Valentin Keyantuo

    2017-09-01

    Full Text Available We study the solvability of the fractional order inhomogeneous Cauchy problem $$ \\mathbb{D}_t^\\alpha u(t=Au(t+f(t, \\quad t>0,\\;1<\\alpha\\le 2, $$ where A is a closed linear operator in some Banach space X and $f:[0,\\infty\\to X$ a given function. Operator families associated with this problem are defined and their regularity properties are investigated. In the case where A is a generator of a $\\beta$-times integrated cosine family $(C_\\beta(t$, we derive explicit representations of mild and classical solutions of the above problem in terms of the integrated cosine family. We include applications to elliptic operators with Dirichlet, Neumann or Robin type boundary conditions on $L^p$-spaces and on the space of continuous functions.

  14. Kinematics and dynamics of green water on a fixed platform in a large wave basin in focusing wave and random wave conditions

    Science.gov (United States)

    Chuang, Wei-Liang; Chang, Kuang-An; Mercier, Richard

    2018-06-01

    Green water kinematics and dynamics due to wave impingements on a simplified geometry, fixed platform were experimentally investigated in a large, deep-water wave basin. Both plane focusing waves and random waves were employed in the generation of green water. The focusing wave condition was designed to create two consecutive plunging breaking waves with one impinging on the frontal vertical wall of the fixed platform, referred as wall impingement, and the other directly impinging on the deck surface, referred as deck impingement. The random wave condition was generated using the JONSWAP spectrum with a significant wave height approximately equal to the freeboard. A total of 179 green water events were collected in the random wave condition. By examining the green water events in random waves, three different flow types are categorized: collapse of overtopping wave, fall of bulk water, and breaking wave crest. The aerated flow velocity was measured using bubble image velocimetry, while the void fraction was measured using fiber optic reflectometry. For the plane focusing wave condition, measurements of impact pressure were synchronized with the flow velocity and void fraction measurements. The relationship between the peak pressures and the pressure rise times is examined. For the high-intensity impact in the deck impingement events, the peak pressures are observed to be proportional to the aeration levels. The maximum horizontal velocities in the green water events in random waves are well represented by the lognormal distribution. Ritter's solution is shown to quantitatively describe the green water velocity distributions under both the focusing wave condition and the random wave condition. A prediction equation for green water velocity distribution under random waves is proposed.

  15. Air void clustering : [technical summary].

    Science.gov (United States)

    2015-06-01

    Air void clustering around coarse aggregate in concrete has been : identified as a potential source of low strengths in concrete mixes by : several Departments of Transportation around the country. Research : was carried out to (1) develop a quantita...

  16. Alignment of voids in the cosmic web

    NARCIS (Netherlands)

    Platen, Erwin; van de Weygaert, Rien; Jones, Bernard J. T.

    2008-01-01

    We investigate the shapes and mutual alignment of voids in the large-scale matter distribution of a Lambda cold dark matter (Lambda CDM) cosmology simulation. The voids are identified using the novel watershed void finder (WVF) technique. The identified voids are quite non-spherical and slightly

  17. On cavitation instabilities with interacting voids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2012-01-01

    voids so far apart that the radius of the plastic zone around each void is less than 1% of the current spacing between the voids, can still affect each others at the occurrence of a cavitation instability such that one void stops growing while the other grows in an unstable manner. On the other hand...

  18. Multicenter core laboratory comparison of the instantaneous wave-free ratio and resting Pd/Pa with fractional flow reserve: The RESOLVE study

    NARCIS (Netherlands)

    Jeremias, Allen; Maehara, Akiko; Généreux, Philippe; Asrress, Kaleab N.; Berry, Colin; Bruyne, de B. (Bernard); Davies, Justin E.; Escaned, Javier; Fearon, W.F. (William); Gould, K. Lance; Johnson, Nils P.; Kirtane, Ajay J.; Koo, Bon Kwon; Marques, Koen M.; Nijjer, Sukhjinder; Oldroyd, K.G. (Keith); Petraco, Ricardo; Piek, Jan J.; Pijls, Nico H.; Redwood, Simon; Siebes, M.; Spaan, J.A.E.; van 't Veer, Marcel; Mintz, Gary S.; Stone, Gregg W.

    2014-01-01

    Objectives This study sought to examine the diagnostic accuracy of the instantaneous wave-free ratio (iFR) and resting distal coronary artery pressure/aortic pressure (Pd/Pa) with respect to hyperemic fractional flow reserve (FFR) in a core laboratory-based multicenter collaborative study.

  19. Multicenter core laboratory comparison of the instantaneous wave-free ratio and resting Pd/Pa with fractional flow reserve: the RESOLVE study

    NARCIS (Netherlands)

    Jeremias, Allen; Maehara, Akiko; Généreux, Philippe; Asrress, Kaleab N.; Berry, Colin; de Bruyne, Bernard; Davies, Justin E.; Escaned, Javier; Fearon, William F.; Gould, K. Lance; Johnson, Nils P.; Kirtane, Ajay J.; Koo, Bon-Kwon; Marques, Koen M.; Nijjer, Sukhjinder; Oldroyd, Keith G.; Petraco, Ricardo; Piek, Jan J.; Pijls, Nico H.; Redwood, Simon; Siebes, Maria; Spaan, Jos A. E.; van 't Veer, Marcel; Mintz, Gary S.; Stone, Gregg W.

    2014-01-01

    This study sought to examine the diagnostic accuracy of the instantaneous wave-free ratio (iFR) and resting distal coronary artery pressure/aortic pressure (Pd/Pa) with respect to hyperemic fractional flow reserve (FFR) in a core laboratory-based multicenter collaborative study. FFR is an index of

  20. Elliptic and solitary wave solutions for Bogoyavlenskii equations system, couple Boiti-Leon-Pempinelli equations system and Time-fractional Cahn-Allen equation

    Directory of Open Access Journals (Sweden)

    Mostafa M.A. Khater

    Full Text Available In this article and for the first time, we introduce and describe Khater method which is a new technique for solving nonlinear partial differential equations (PDEs.. We apply this method for each of the following models Bogoyavlenskii equation, couple Boiti-Leon-Pempinelli system and Time-fractional Cahn-Allen equation. Khater method is very powerful, Effective, felicitous and fabulous method to get exact and solitary wave solution of (PDEs.. Not only just like that but it considers too one of the general methods for solving that kind of equations since it involves some methods as we will see in our discuss of the results. We make a comparison between the results of this new method and another method. Keywords: Bogoyavlenskii equations system, Couple Boiti-Leon-Pempinelli equations system, Time-fractional Cahn-Allen equation, Khater method, Traveling wave solutions, Solitary wave solutions

  1. An explicit asymptotic model for the surface wave in a viscoelastic half-space based on applying Rabotnov's fractional exponential integral operators

    Science.gov (United States)

    Wilde, M. V.; Sergeeva, N. V.

    2018-05-01

    An explicit asymptotic model extracting the contribution of a surface wave to the dynamic response of a viscoelastic half-space is derived. Fractional exponential Rabotnov's integral operators are used for describing of material properties. The model is derived by extracting the principal part of the poles corresponding to the surface waves after applying Laplace and Fourier transforms. The simplified equations for the originals are written by using power series expansions. Padè approximation is constructed to unite short-time and long-time models. The form of this approximation allows to formulate the explicit model using a fractional exponential Rabotnov's integral operator with parameters depending on the properties of surface wave. The applicability of derived models is studied by comparing with the exact solutions of a model problem. It is revealed that the model based on Padè approximation is highly effective for all the possible time domains.

  2. Effect of trapped electron on the dust ion acoustic waves in dusty plasma using time fractional modified Korteweg-de Vries equation

    International Nuclear Information System (INIS)

    Nazari-Golshan, A.; Nourazar, S. S.

    2013-01-01

    The time fractional modified Korteweg-de Vries (TFMKdV) equation is solved to study the nonlinear propagation of small but finite amplitude dust ion-acoustic (DIA) solitary waves in un-magnetized dusty plasma with trapped electrons. The plasma is composed of a cold ion fluid, stationary dust grains, and hot electrons obeying a trapped electron distribution. The TFMKdV equation is derived by using the semi-inverse and Agrawal's methods and then solved by the Laplace Adomian decomposition method. Our results show that the amplitude of the DIA solitary waves increases with the increase of time fractional order β, the wave velocity v 0 , and the population of the background free electrons λ. However, it is vice-versa for the deviation from isothermality parameter b, which is in agreement with the result obtained previously

  3. Constitutive modeling of rate dependence and microinertia effects in porous-plastic materials with multi-sized voids (MSVs)

    KAUST Repository

    Liu, Jinxing

    2012-11-27

    Micro-voids of varying sizes exist in most metals and alloys. Both experiments and numerical studies have demonstrated the critical influence of initial void sizes on void growth. The classical Gurson-Tvergaard-Needleman model summarizes the influence of voids with a single parameter, namely the void-volume fraction, excluding any possible effects of the void-size distribution. We extend our newly proposed model including the multi-sized void (MSV) effect and the void-interaction effect for the capability of working for both moderate and high loading rate cases, where either rate dependence or microinertia becomes considerable or even dominant. Parametric studies show that the MSV-related competitive mechanism among void growth leads to the dependence of the void growth rate on void size, which directly influences the void\\'s contribution to the total energy composition. We finally show that the stress-strain constitutive behavior is also affected by this MSV-related competitive mechanism. The stabilizing effect due to rate sensitivity and microinertia is emphasized. © 2013 IOP Publishing Ltd.

  4. Modeling multiscale evolution of numerous voids in shocked brittle material.

    Science.gov (United States)

    Yu, Yin; Wang, Wenqiang; He, Hongliang; Lu, Tiecheng

    2014-04-01

    The influence of the evolution of numerous voids on macroscopic properties of materials is a multiscale problem that challenges computational research. A shock-wave compression model for brittle material, which can obtain both microscopic evolution and macroscopic shock properties, was developed using discrete element methods (lattice model). Using a model interaction-parameter-mapping procedure, qualitative features, as well as trends in the calculated shock-wave profiles, are shown to agree with experimental results. The shock wave splits into an elastic wave and a deformation wave in porous brittle materials, indicating significant shock plasticity. Void collapses in the deformation wave were the natural reason for volume shrinkage and deformation. However, media slippage and rotation deformations indicated by complex vortex patterns composed of relative velocity vectors were also confirmed as an important source of shock plasticity. With increasing pressure, the contribution from slippage deformation to the final plastic strain increased. Porosity was found to determine the amplitude of the elastic wave; porosity and shock stress together determine propagation speed of the deformation wave, as well as stress and strain on the final equilibrium state. Thus, shock behaviors of porous brittle material can be systematically designed for specific applications.

  5. Air void structure and frost resistance

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange

    2014-01-01

    ). This observation is interesting as the parameter of total surface area of air voids normally is not included in air void analysis. The following reason for the finding is suggested: In the air voids conditions are favourable for ice nucleation. When a capillary pore is connected to an air void, ice formation...... on that capillary pores are connected to air voids. The chance that a capillary pore is connected to an air void depends on the total surface area of air voids in the system, not the spacing factor.......This article compiles results from 4 independent laboratory studies. In each study, the same type of concrete is tested at least 10 times, the air void structure being the only variable. For each concrete mix both air void analysis of the hardened concrete and a salt frost scaling test...

  6. Finding Brazing Voids by Holography

    Science.gov (United States)

    Galluccio, R.

    1986-01-01

    Vibration-induced interference fringes reveal locations of defects. Holographic apparatus used to view object while vibrated ultrasonically. Interference fringes in hologram reveal brazing defects. Holographic technique locates small voids in large brazed joints. Identifies unbrazed regions 1 in. to second power (6 cm to the second power) or less in area.

  7. Measurements of the S-wave fraction in $B^{0}\\rightarrow K^{+}\\pi^{-}\\mu^{+}\\mu^{-}$ decays and the $B^{0}\\rightarrow K^{\\ast}(892)^{0}\\mu^{+}\\mu^{-}$ differential branching fraction

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bitadze, Alexander; Bizzeti, Andrea; Blake, Thomas; Blanc, Frederic; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chobanova, Veronika; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Déléage, Nicolas; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Färber, Christian; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, V.V.; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Göbel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hussain, Nazim; Hutchcroft, David; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kozachuk, Anastasiia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Leflat, Alexander; Lefrançois, Jacques; Lefèvre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Mussini, Manuel; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen-Mau, Chung; Niess, Valentin; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Pappenheimer, Cheryl; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vicente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Rogozhnikov, Alexey; Roiser, Stefan; Romanovskiy, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubert, Konstantin; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavorima; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valat, Sebastien; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Vázquez Sierra, Carlos; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhang, Yu; Zhelezov, Alexey; Zheng, Yangheng; Zhokhov, Anatoly; Zhukov, Valery; Zucchelli, Stefano

    2016-11-08

    A measurement of the differential branching fraction of the decay ${B^{0}\\rightarrow K^{\\ast}(892)^{0}\\mu^{+}\\mu^{-}}$ is presented together with a determination of the S-wave fraction of the $K^+\\pi^-$ system in the decay $B^{0}\\rightarrow K^{+}\\pi^{-}\\mu^{+}\\mu^{-}$. The analysis is based on $pp$-collision data corresponding to an integrated luminosity of 3\\,fb$^{-1}$ collected with the LHCb experiment. The measurements are made in bins of the invariant mass squared of the dimuon system, $q^2$. Precise theoretical predictions for the differential branching fraction of $B^{0}\\rightarrow K^{\\ast}(892)^{0}\\mu^{+}\\mu^{-}$ decays are available for the $q^2$ region $1.1wave fraction of the $K^+\\pi^-$ system in $B^{0}\\rightarrow K^{+}\\pi^{-}\\mu^{+}\\mu^{-}$ decays is found to be \\begin{equation*} F_{\\rm S} = 0.101\\pm0.017({\\rm stat})\\pm0.009 ({\\rm syst}), \\end{equation*}...

  8. Dynamics of core voiding during boiloff experiments

    International Nuclear Information System (INIS)

    Analytis, G.T.; Aksan, S.N.; Stierli, F.; Yadigaroglu, G.

    1987-01-01

    A series of boiloff experiments were conducted at the EIR NEPTUN test facility with a bundle consisting of 37 PWR fuel rod simulators. The test section was filled with subcooled coolant and the power was turned on. After an initial heatup phase, coolant was expelled from the test section due to rapid vapor generation near the mid-plane where the power generation was highest. Gradual boiloff of the remaining water followed. It was found that the ''collapsed liquid level'' (CLL) and the rod temperature histories could be predicted well, provided the initial expulsion of the coolant was calculated correctly. The axial void fraction and enthalpy profiles calculated with TRAC-BD/MOD1 provided the information needed for understanding the importance of heat transfer to the coolant before the inception of vapor generation, and the sensitivity of the results to the interfacial friction correlation used

  9. CT measurements of SAP voids in concrete

    DEFF Research Database (Denmark)

    Laustsen, Sara; Bentz, Dale P.; Hasholt, Marianne Tange

    2010-01-01

    X-ray computed tomography (CT) scanning is used to determine the SAP void distribution in hardened concrete. Three different approaches are used to analyse a binary data set created from CT measurement. One approach classifies a cluster of connected, empty voxels (volumetric pixel of a 3D image......) as one void, whereas the other two approaches are able to classify a cluster of connected, empty voxels as a number of individual voids. Superabsorbent polymers (SAP) have been used to incorporate air into concrete. An advantage of using SAP is that it enables control of the amount and size...... of the created air voids. The results indicate the presence of void clusters. To identify the individual voids, special computational approaches are needed. The addition of SAP results in a dominant peak in two of the three air void distributions. Based on the position (void diameter) of the peak, it is possible...

  10. On Some New Properties of the Fundamental Solution to the Multi-Dimensional Space- and Time-Fractional Diffusion-Wave Equation

    Directory of Open Access Journals (Sweden)

    Yuri Luchko

    2017-12-01

    Full Text Available In this paper, some new properties of the fundamental solution to the multi-dimensional space- and time-fractional diffusion-wave equation are deduced. We start with the Mellin-Barnes representation of the fundamental solution that was derived in the previous publications of the author. The Mellin-Barnes integral is used to obtain two new representations of the fundamental solution in the form of the Mellin convolution of the special functions of the Wright type. Moreover, some new closed-form formulas for particular cases of the fundamental solution are derived. In particular, we solve the open problem of the representation of the fundamental solution to the two-dimensional neutral-fractional diffusion-wave equation in terms of the known special functions.

  11. Void migration in fusion materials

    International Nuclear Information System (INIS)

    Cottrell, G.A.

    2002-01-01

    Neutron irradiation in a fusion power plant will cause helium bubbles and voids to form in the armour and blanket structural materials. If sufficiently large densities of such defects accumulate on the grain boundaries of the materials, the strength and the lifetimes of the metals will be reduced by helium embrittlement and grain boundary failure. This Letter discusses void migration in metals, both by random Brownian motion and by biassed flow in temperature gradients. In the assumed five-year blanket replacement time of a fusion power plant, approximate calculations show that the metals most resilient to failure are tungsten and molybdenum, and marginally vanadium. Helium embrittlement and grain boundary failure is expected to be more severe in steel and beryllium

  12. Void migration in fusion materials

    Science.gov (United States)

    Cottrell, G. A.

    2002-04-01

    Neutron irradiation in a fusion power plant will cause helium bubbles and voids to form in the armour and blanket structural materials. If sufficiently large densities of such defects accumulate on the grain boundaries of the materials, the strength and the lifetimes of the metals will be reduced by helium embrittlement and grain boundary failure. This Letter discusses void migration in metals, both by random Brownian motion and by biassed flow in temperature gradients. In the assumed five-year blanket replacement time of a fusion power plant, approximate calculations show that the metals most resilient to failure are tungsten and molybdenum, and marginally vanadium. Helium embrittlement and grain boundary failure is expected to be more severe in steel and beryllium.

  13. Sodium voiding analysis in Kalimer

    International Nuclear Information System (INIS)

    Chang, Won-Pyo; Jeong, Kwan-Seong; Hahn, Dohee

    2001-01-01

    A sodium boiling model has been developed for calculations of the void reactivity feedback as well as the fuel and cladding temperatures in the KALIMER core after onset of sodium boiling. The sodium boiling in liquid metal reactors using sodium as coolant should be modeled because of phenomenon difference observed from that in light water reactor systems. The developed model is a multiple -bubble slug ejection model. It allows a finite number of bubbles in a channel at any time. Voiding is assumed to result from formation of bubbles that fill the whole cross section of the coolant channel except for liquid film left on the cladding surface. The vapor pressure, currently, is assumed to be uniform within a bubble. The present study is focused on not only demonstration of the sodium voiding behavior predicted by the developed model, but also confirmation on qualitative acceptance for the model. In results, the model catches important phenomena for sodium boiling, while further effort should be made for the complete analysis. (author)

  14. Enthalpy and void distributions in subchannels of PHWR fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Park, J W; Choi, H; Rhee, B W [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)

  15. Enthalpy and void distributions in subchannels of PHWR fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. W.; Choi, H.; Rhee, B. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)

  16. Effect of main stream void distribution on cavitating hydrofoil

    International Nuclear Information System (INIS)

    Ito, J.

    1993-01-01

    For the safety analysis of a loss of coolant accident in a pressurized water reactor, it is important to establish an analytical method which predicts the pump performance under gas-liquid two-phase flow condition. J.H. Kim briefly reviewed several major two-phase flow pump models, and discussed the parameters that could significantly affect two-phase pump behavior. The parameter pointed out to be of the most importance is void distribution at the pump inlet. This says that the pipe bend near the pump inlet makes the void distribution at the pump inlet nonuniform, and this matter can have a significant effect on the impeller blade performance. This paper proposes an analytical method of solution for a partially cavitating hydrofoil placed in the main stream of incompressible homogeneous bubbly two-phase flow conditions whose void fraction is exponentially distributed normal to chordline. The paper clarifies the effect of main stream void distribution parameter on the partially cavitating hydrofoil characteristics

  17. Severe Embrittlement of Neutron Irradiated Austenitic Steels Arising from High Void Swelling

    International Nuclear Information System (INIS)

    Neustroev, V.S.; Garner, F.

    2007-01-01

    Full text of publication follows: Data are presented from BOR-60 irradiations showing that significant radiation-induced swelling causes severe embrittlement in austenitic stainless steels, reducing the service life of structural components. Similar loss of ductility is expected when swelling arises in fusion and light water reactor environments. Above 7-16% swelling there is complete loss of ductility, with the onset of ductility loss beginning at lower swelling in ring-pull tensile tests than for flat tensile specimens. For steels that develop extensive precipitation during irradiation, the critical swelling level is even lower. A model is presented to demonstrate the effect of voids acting alone to produce the embrittlement. Although voids are not very effective hardeners, they are very effective to generate stress concentrations between voids. The stress concentration ratio increases strongly when the void diameter exceeds ∼40% of the void-to-void separation distance. When the volume fraction of voids is rather high (about 16 % and higher), a geometric situation develops where it is possible to create an intense field of deformation glide planes residing at an angle of 45 deg. to the void-to-void axis. Significant localized flow then proceeds on these planes for specimen stress levels that are significantly lower than the yield stress. Voids also segregate nickel to their surfaces such that flow localization occurs in the low-nickel inter-void regions to produce strain-induced martensite, which is further accelerated by stress concentrations at the advancing crack tip, leading to catastrophic failure. (authors)

  18. Nocturia: The circadian voiding disorder

    Directory of Open Access Journals (Sweden)

    Jin Wook Kim

    2016-05-01

    Full Text Available Nocturia is a prevalent condition of waking to void during the night. The concept of nocturia has evolved from being a symptomatic aspect of disease associated with the prostate or bladder to a form of lower urinary tract disorder. However, recent advances in circadian biology and sleep science suggest that it might be important to consider nocturia as a form of circadian dysfunction. In the current review, nocturia is reexamined with an introduction to sleep disorders and recent findings in circadian biology in an attempt to highlight the importance of rediscovering nocturia as a problem of chronobiology.

  19. Impedance void-meter and neural networks for vertical two-phase flows

    International Nuclear Information System (INIS)

    Mi, Y.; Li, M.; Xiao, Z.; Tsoukalas, L.H.; Ishii, M.

    1998-01-01

    Most two-phase flow measurements, including void fraction measurements, depend on correct flow regime identification. There are two steps towards successful identification of flow regimes: one is to develop a non-intrusive instrument to demonstrate area-averaged void fluctuations, the other to develop a non-linear mapping approach to perform objective identification of flow regimes. A non-intrusive impedance void-meter provides input signals to a neural mapping approach used to identify flow regimes. After training, both supervised and self-organizing neural network learning paradigms performed flow regime identification successfully. The methodology presented holds considerable promise for multiphase flow diagnostic and measurement applications. (author)

  20. The dark matter of galaxy voids

    Science.gov (United States)

    Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H.; Warren, Michael S.

    2014-03-01

    How do observed voids relate to the underlying dark matter distribution? To examine the spatial distribution of dark matter contained within voids identified in galaxy surveys, we apply Halo Occupation Distribution models representing sparsely and densely sampled galaxy surveys to a high-resolution N-body simulation. We compare these galaxy voids to voids found in the halo distribution, low-resolution dark matter and high-resolution dark matter. We find that voids at all scales in densely sampled surveys - and medium- to large-scale voids in sparse surveys - trace the same underdensities as dark matter, but they are larger in radius by ˜20 per cent, they have somewhat shallower density profiles and they have centres offset by ˜ 0.4Rv rms. However, in void-to-void comparison we find that shape estimators are less robust to sampling, and the largest voids in sparsely sampled surveys suffer fragmentation at their edges. We find that voids in galaxy surveys always correspond to underdensities in the dark matter, though the centres may be offset. When this offset is taken into account, we recover almost identical radial density profiles between galaxies and dark matter. All mock catalogues used in this work are available at http://www.cosmicvoids.net.

  1. Development of subchannel void measurement sensor and multidimensional two-phase flow dynamics in rod bundle

    International Nuclear Information System (INIS)

    Arai, T.; Furuya, M.; Kanai, T.; Shirakawa, K.

    2011-01-01

    An accurate subchannel database is crucial for modeling the multidimensional two-phase flow in a rod bundle and for validating subchannel analysis codes. Based on available reference, it can be said that a point-measurement sensor for acquiring void fractions and bubble velocity distributions do not infer interactions of the subchannel flow dynamics, such as a cross flow and flow distribution, etc. In order to acquire multidimensional two-phase flow in a 10×10 rod bundle with an o.d. of 10 mm and 3110 mm length, a new sensor consisting of 11-wire by 11-wire and 10-rod by 10-rod electrodes was developed. Electric potential in the proximity region between two wires creates a void fraction in the center subchannel region, like a so-called wire mesh sensor. A unique aspect of the devised sensor is that the void fraction near the rod surface can be estimated from the electric potential in the proximity region between one wire and one rod. The additional 400 points of void fraction and phasic velocity in 10×10 bundle can therefore be acquired. The devised sensor exhibits the quasi three-dimensional flow structures, i.e. void fraction, phasic velocity and bubble chord length distributions. These quasi three-dimensional structures exhibit the complexity of two-phase flow dynamics, such as coalescence and the breakup of bubbles in transient phasic velocity distributions. (author)

  2. The Beckoning Void in Moravagine

    Directory of Open Access Journals (Sweden)

    Stephen K. Bellstrom

    1979-01-01

    Full Text Available The Chapter «Mascha,» lying at the heart of Cendrars's Moravagine , contains within it a variety of images and themes suggestive of emptiness. The philosophy of nihilism is exemplified in the motivations and actions of the group of terrorists seeking to plunge Russia into revolutionary chaos. Mascha's anatomical orifice, symbolizing both a biological and a psychological fault, and the abortion of her child, paralleled by the abortion of the revolutionary ideal among her comrades, are also emblematic of the chapter's central void. Moreover, Cendrars builds the theme of hollowness by describing Moravagine with images of omission, such as «empan» (space or span, «absent,» and «étranger.» Moravagine's presence, in fact, characteristically causes an undercurrent of doubt and uncertainty about the nature of reality to become overt. It is this parodoxical presence which seems to cause the narrator (and consequently the narrative to «lose» a day at the most critical moment of the story. By plunging the reader into the narrator's lapsus memoriae , Cendrars aims at creating a feeling of the kind of mental and cosmic disorder for which Moravagine is the strategist and apologist. This technique of insufficiency is an active technique, even though it relies on the passive idea of removing explanation and connecting details. The reader is invited, or lured, into the central void of the novel and, faced with unresolvable dilemmas, becomes involved in the same disorder that was initially produced.

  3. Cosmology with void-galaxy correlations.

    Science.gov (United States)

    Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S

    2014-01-31

    Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.

  4. Travelling Wave Solutions of Coupled Burger’s Equations of Time-Space Fractional Order by Novel (Gʹ/G-Expansion Method

    Directory of Open Access Journals (Sweden)

    Rashida Hussain

    2017-04-01

    Full Text Available In this paper, Novel (Gʹ/G-expansion method is used to find new generalized exact travelling wave solutions of fractional order coupled Burger’s equations in terms of trigonometric functions, rational functions and hyperbolic functions with arbitrary parameters. For the conversion of the partial differential equation to the ordinary differential equation, complex transformation method is used. Novel (Gʹ/G-expansion method is very effective and provides a powerful mathematical tool to solve nonlinear equations. Moreover, for the representation of these exact solutions we have plotted graphs for different values of parameters which were in travelling waveform.

  5. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....

  6. Production of high-brightness continuous wave proton beams with very high proton fractions (abstract)a

    International Nuclear Information System (INIS)

    Spence, D.; McMichael, G.; Lykke, K.R.; Schneider, J.D.; Sherman, J.; Stevens, R. Jr.; Hodgkins, D.

    1996-01-01

    This article demonstrates a new technique to significantly enhance the proton fraction of an ion beam extracted from a plasma ion source. We employ a magnetically confined microwave driven source, though the technique is not source specific and can probably be applied equally effectively to other plasma sources such as Penning and multicusp types. Specifically, we dope the plasma with about 1% H 2 O, which increases the proton fraction of a 45 keV 45 mA beam from 75% to 90% with 375 W 2.45 GHz power to the source and from 84% to 92% for 500 W when the source is operated under nonresonant conditions. Much of the remaining fraction of the beam comprises a heavy mass ion we believe to be N + impurity ions resulting from the conditions under which the experiments were performed. If so, this impurity can easily be removed and much higher proton fractions could be expected. Preliminary measurements show the additive has no adverse effect on the emittance of the extracted beam, and source stability is greatly improved

  7. Orbital stability of standing waves of a class of fractional Schrödinger equations with Hartree-type nonlinearity

    KAUST Repository

    Cho, Yonggeun; Fall, Mouhamed M.; Hajaiej, Hichem; Markowich, Peter A.; Trabelsi, Saber

    2016-01-01

    This paper is devoted to the mathematical analysis of a class of nonlinear fractional Schrödinger equations with a general Hartree-type integrand. We show the well-posedness of the associated Cauchy problem and prove the existence and stability

  8. Development of satellite green vegetation fraction time series for use in mesoscale modeling: application to the European heat wave 2006

    DEFF Research Database (Denmark)

    Nielsen, Joakim Refslund; Dellwik, Ebba; Hahmann, Andrea N.

    2014-01-01

    A method is presented for development of satellite green vegetation fraction (GVF) time series for use in the Weather Research and Forecasting (WRF) model. The GVF data is in the WRF model used to describe the temporal evolution of many land surface parameters, in addition to the evolution of veg...

  9. Utility of Cardiovascular Magnetic Resonance-Derived Wave Intensity Analysis As a Marker of Ventricular Function in Children with Heart Failure and Normal Ejection Fraction.

    Science.gov (United States)

    Ntsinjana, Hopewell N; Chung, Robin; Ciliberti, Paolo; Muthurangu, Vivek; Schievano, Silvia; Marek, Jan; Parker, Kim H; Taylor, Andrew M; Biglino, Giovanni

    2017-01-01

    This study sought to explore the diagnostic insight of cardiovascular magnetic resonance (CMR)-derived wave intensity analysis to better study systolic dysfunction in young patients with chronic diastolic dysfunction and preserved ejection fraction (EF), comparing it against other echocardiographic and CMR parameters. Evaluating systolic and diastolic dysfunctions in children is challenging, and a gold standard method is currently lacking. Patients with presumed diastolic dysfunction [ n  = 18; nine aortic stenosis (AS), five hypertrophic, and four restrictive cardiomyopathies] were compared with age-matched control subjects ( n  = 18). All patients had no mitral or aortic incompetence, significant AS, or reduced systolic EF. E / A ratio, E / E ' ratio, deceleration time, and isovolumetric contraction time were assessed on echocardiography, and indexed left atrial volume (LAVi), acceleration time (AT), ejection time (ET), and wave intensity analyses were calculated from CMR. The latter was performed on CMR phase-contrast flow sequences, defining a ratio of the peaks of the early systolic forward compression wave (FCW) and the end-systolic forward expansion wave (FEW). Significant differences between patients and controls were seen in the E / E ' ratio (8.7 ± 4.0 vs. 5.1 ± 1.3, p  = 0.001) and FCW/FEW ratio (2.5 ± 1.6 vs. 7.2 ± 4.2 × 10 -5 m/s, p  wave intensity-derived ratio summarizing systolic and diastolic function could provide insight into ventricular function in children, on top of CMR and echocardiography, and it was here able to identify an element of ventricular dysfunction with preserved EF in a small group of young patients.

  10. Studies of void formation in pure metals

    International Nuclear Information System (INIS)

    Lanore, J.M.; Glowinski, L.; Risbet, A.; Regnier, P.; Flament, J.L.; Levy, V.; Adda, Y.

    1975-01-01

    Recent experiments on the effect of gases on the final configuration of vacancy clustering (void or loop), and on the local effects at dislocations are described. The contribution of this data to a general knowledge of void formation will be discussed, and Monte Carlo calculations of swelling induced by irradiation with different particles presented [fr

  11. Studies of void formation in pure metals

    International Nuclear Information System (INIS)

    Lanore, J.M.; Glowinski, L.; Risbet, A.; Regnier, P.; Flament, J.L.

    1975-01-01

    Recent experiments on the effect of gases on the final configuration of vacancy clustering (void or loop), and on the local effects at dislocations are described. The contribution of this data to our general knowledge of void formation will be discussed, and Monte Carlo calculations of swelling induced by irradiation with different particles presented

  12. Statistics and geometry of cosmic voids

    International Nuclear Information System (INIS)

    Gaite, José

    2009-01-01

    We introduce new statistical methods for the study of cosmic voids, focusing on the statistics of largest size voids. We distinguish three different types of distributions of voids, namely, Poisson-like, lognormal-like and Pareto-like distributions. The last two distributions are connected with two types of fractal geometry of the matter distribution. Scaling voids with Pareto distribution appear in fractal distributions with box-counting dimension smaller than three (its maximum value), whereas the lognormal void distribution corresponds to multifractals with box-counting dimension equal to three. Moreover, voids of the former type persist in the continuum limit, namely, as the number density of observable objects grows, giving rise to lacunar fractals, whereas voids of the latter type disappear in the continuum limit, giving rise to non-lacunar (multi)fractals. We propose both lacunar and non-lacunar multifractal models of the cosmic web structure of the Universe. A non-lacunar multifractal model is supported by current galaxy surveys as well as cosmological N-body simulations. This model suggests, in particular, that small dark matter halos and, arguably, faint galaxies are present in cosmic voids

  13. Void formation in irradiated binary nickel alloys

    International Nuclear Information System (INIS)

    Shaikh, M.A.; Ahmed, M.; Akhter, J.I.

    1994-01-01

    In this work a computer program has been used to compute void radius, void density and swelling parameter for nickel and binary nickel-carbon alloys irradiated with nickel ions of 100 keV. The aim is to compare the computed results with experimental results already reported

  14. Pores and Void in Asclepiades’ Physical Theory

    Science.gov (United States)

    Leith, David

    2012-01-01

    This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades’ theory, and concludes that his conception of void was basically that of Epicurus; the second half focuses on the precise nature of Asclepiadean pores, and seeks to show that they represent void interstices between the primary particles of matter which are the constituents of the human body, and are thus exactly analogous to the void interstices between atoms within solid objects in Epicurus’ theory. PMID:22984299

  15. On the abundance of extreme voids II: a survey of void mass functions

    International Nuclear Information System (INIS)

    Chongchitnan, Siri; Hunt, Matthew

    2017-01-01

    The abundance of cosmic voids can be described by an analogue of halo mass functions for galaxy clusters. In this work, we explore a number of void mass functions: from those based on excursion-set theory to new mass functions obtained by modifying halo mass functions. We show how different void mass functions vary in their predictions for the largest void expected in an observational volume, and compare those predictions to observational data. Our extreme-value formalism is shown to be a new practical tool for testing void theories against simulation and observation.

  16. A theoretical analysis of the weak shock waves propagating through a bubbly flow

    International Nuclear Information System (INIS)

    Jun, Gu Sik; Kim, Heuy Dong; Baek, Seung Cheol

    2004-01-01

    Two-phase flow of liquid and gas through pipe lines are frequently encountered in nuclear power plant or industrial facility. Pressure waves which can be generated by a valve operation or any other cause in pipe lines propagate through the two-phase flow, often leading to severe noise and vibration problems or fatigue failure of pipe line system. It is of practical importance to predict the propagation characteristics of the pressure waves for the safety design for the pipe line. In the present study, a theoretical analysis is performed to understand the propagation characteristics of a weak shock wave in a bubbly flow. A wave equation is developed using a small perturbation method to analyze the weak shock wave through a bubbly flow with comparably low void fractions. It is known that the elasticity of pipe and void fraction significantly affect the propagation speed of shock wave, but the frequency of relaxation oscillation which is generated behind the shock wave is not strongly influenced by the elasticity of pipe. The present analytical results are in close agreement with existing experimental data

  17. Hyperuniformity, quasi-long-range correlations, and void-space constraints in maximally random jammed particle packings. I. Polydisperse spheres.

    Science.gov (United States)

    Zachary, Chase E; Jiao, Yang; Torquato, Salvatore

    2011-05-01

    Hyperuniform many-particle distributions possess a local number variance that grows more slowly than the volume of an observation window, implying that the local density is effectively homogeneous beyond a few characteristic length scales. Previous work on maximally random strictly jammed sphere packings in three dimensions has shown that these systems are hyperuniform and possess unusual quasi-long-range pair correlations decaying as r(-4), resulting in anomalous logarithmic growth in the number variance. However, recent work on maximally random jammed sphere packings with a size distribution has suggested that such quasi-long-range correlations and hyperuniformity are not universal among jammed hard-particle systems. In this paper, we show that such systems are indeed hyperuniform with signature quasi-long-range correlations by characterizing the more general local-volume-fraction fluctuations. We argue that the regularity of the void space induced by the constraints of saturation and strict jamming overcomes the local inhomogeneity of the disk centers to induce hyperuniformity in the medium with a linear small-wave-number nonanalytic behavior in the spectral density, resulting in quasi-long-range spatial correlations scaling with r(-(d+1)) in d Euclidean space dimensions. A numerical and analytical analysis of the pore-size distribution for a binary maximally random jammed system in addition to a local characterization of the n-particle loops governing the void space surrounding the inclusions is presented in support of our argument. This paper is the first part of a series of two papers considering the relationships among hyperuniformity, jamming, and regularity of the void space in hard-particle packings.

  18. A variational constitutive model for the distribution and interactions of multi-sized voids

    KAUST Repository

    Liu, Jinxing

    2013-07-29

    The evolution of defects or voids, generally recognized as the basic failure mechanism in most metals and alloys, has been intensively studied. Most investigations have been limited to spatially periodic cases with non-random distributions of the radii of the voids. In this study, we use a new form of the incompressibility of the matrix to propose the formula for the volumetric plastic energy of a void inside a porous medium. As a consequence, we are able to account for the weakening effect of the surrounding voids and to propose a general model for the distribution and interactions of multi-sized voids. We found that the single parameter in classical Gurson-type models, namely void volume fraction is not sufficient for the model. The relative growth rates of voids of different sizes, which can in principle be obtained through physical or numerical experiments, are required. To demonstrate the feasibility of the model, we analyze two cases. The first case represents exactly the same assumption hidden in the classical Gurson\\'s model, while the second embodies the competitive mechanism due to void size differences despite in a much simpler manner than the general case. Coalescence is implemented by allowing an accelerated void growth after an empirical critical porosity in a way that is the same as the Gurson-Tvergaard-Needleman model. The constitutive model presented here is validated through good agreements with experimental data. Its capacity for reproducing realistic failure patterns is shown by simulating a tensile test on a notched round bar. © 2013 The Author(s).

  19. VIDE: The Void IDentification and Examination toolkit

    Science.gov (United States)

    Sutter, P. M.; Lavaux, G.; Hamaus, N.; Pisani, A.; Wandelt, B. D.; Warren, M.; Villaescusa-Navarro, F.; Zivick, P.; Mao, Q.; Thompson, B. B.

    2015-03-01

    We present VIDE, the Void IDentification and Examination toolkit, an open-source Python/C++ code for finding cosmic voids in galaxy redshift surveys and N-body simulations, characterizing their properties, and providing a platform for more detailed analysis. At its core, VIDE uses a substantially enhanced version of ZOBOV (Neyinck 2008) to calculate a Voronoi tessellation for estimating the density field and performing a watershed transform to construct voids. Additionally, VIDE provides significant functionality for both pre- and post-processing: for example, VIDE can work with volume- or magnitude-limited galaxy samples with arbitrary survey geometries, or dark matter particles or halo catalogs in a variety of common formats. It can also randomly subsample inputs and includes a Halo Occupation Distribution model for constructing mock galaxy populations. VIDE uses the watershed levels to place voids in a hierarchical tree, outputs a summary of void properties in plain ASCII, and provides a Python API to perform many analysis tasks, such as loading and manipulating void catalogs and particle members, filtering, plotting, computing clustering statistics, stacking, comparing catalogs, and fitting density profiles. While centered around ZOBOV, the toolkit is designed to be as modular as possible and accommodate other void finders. VIDE has been in development for several years and has already been used to produce a wealth of results, which we summarize in this work to highlight the capabilities of the toolkit. VIDE is publicly available at http://bitbucket.org/cosmicvoids/vide_public and http://www.cosmicvoids.net.

  20. Validation uncertainty of MATRA code for subchannel void distributions

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae-Hyun; Kim, S. J.; Kwon, H.; Seo, K. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To extend code capability to the whole core subchannel analysis, pre-conditioned Krylov matrix solvers such as BiCGSTAB and GMRES are implemented in MATRA code as well as parallel computing algorithms using MPI and OPENMP. It is coded by fortran 90, and has some user friendly features such as graphic user interface. MATRA code was approved by Korean regulation body for design calculation of integral-type PWR named SMART. The major role subchannel code is to evaluate core thermal margin through the hot channel analysis and uncertainty evaluation for CHF predictions. In addition, it is potentially used for the best estimation of core thermal hydraulic field by incorporating into multiphysics and/or multi-scale code systems. In this study we examined a validation process for the subchannel code MATRA specifically in the prediction of subchannel void distributions. The primary objective of validation is to estimate a range within which the simulation modeling error lies. The experimental data for subchannel void distributions at steady state and transient conditions was provided on the framework of OECD/NEA UAM benchmark program. The validation uncertainty of MATRA code was evaluated for a specific experimental condition by comparing the simulation result and experimental data. A validation process should be preceded by code and solution verification. However, quantification of verification uncertainty was not addressed in this study. The validation uncertainty of the MATRA code for predicting subchannel void distribution was evaluated for a single data point of void fraction measurement at a 5x5 PWR test bundle on the framework of OECD UAM benchmark program. The validation standard uncertainties were evaluated as 4.2%, 3.9%, and 2.8% with the Monte-Carlo approach at the axial levels of 2216 mm, 2669 mm, and 3177 mm, respectively. The sensitivity coefficient approach revealed similar results of uncertainties but did not account for the nonlinear effects on the

  1. Sensitivity analysis of an impedance void meter to the void distribution in annular flow: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Lemonnier, H.; Nakach, R.; Favreau, C.; Selmer-Olsen, S. (CEA Centre d' Etudes Nucleaires de Grenoble, 38 (France). Service d' Etudes Thermohydrauliques)

    1991-04-01

    Impedance void meters are frequently used to measure the are-averaged void fraction in pipes. This is primarily for two reasons: firstly, this method is non-instrusive since the measurement can be made by electrodes flush mounted in the walls, and secondly, the signal processing equipment is simple. Impedance probes may be calibrated by using a pressure drop measurement or a quick closing valve system. In general, little attention is paid to void distribution effects. It can be proved that in annular flow, the departure from radial symmetry has a strong influence on the measured mean film thickness. This can be easily demonstrated by solving the Laplace equation for the electrical potential by simple analytical methods. When some spatial symmetry conditions are encountered, it is possible to calculate directly the conductance of the two-phase medium without a complete calculation of the potential. A solution of this problem by using the separation of variables technique is also presented. The main difficulty with this technique is the mixed nature of the boundary conditions: the boundary condition is both of Neumann and of Drichlet type on the same coordinate curve. This formulation leads to a non-separable problem, which is solved by truncating an infinite algebraic set of linear equations. The results, although strictly valid in annular flow, may give the correct trends when applied to bubbly flow. Finally, the theory provides an error estimate and a design criterion to improve the probe reliability. (orig.).

  2. Sensitivity analysis of an impedance void meter to the void distribution in annular flow: A theoretical study

    International Nuclear Information System (INIS)

    Lemonnier, H.; Nakach, R.; Favreau, C.; Selmer-Olsen, S.

    1991-01-01

    Impedance void meters are frequently used to measure the are-averaged void fraction in pipes. This is primarily for two reasons: firstly, this method is non-instrusive since the measurement can be made by electrodes flush mounted in the walls, and secondly, the signal processing equipment is simple. Impedance probes may be calibrated by using a pressure drop measurement or a quick closing valve system. In general, little attention is paid to void distribution effects. It can be proved that in annular flow, the departure from radial symmetry has a strong influence on the measured mean film thickness. This can be easily demonstrated by solving the Laplace equation for the electrical potential by simple analytical methods. When some spatial symmetry conditions are encountered, it is possible to calculate directly the conductance of the two-phase medium without a complete calculation of the potential. A solution of this problem by using the separation of variables technique is also presented. The main difficulty with this technique is the mixed nature of the boundary conditions: the boundary condition is both of Neumann and of Drichlet type on the same coordinate curve. This formulation leads to a non-separable problem, which is solved by truncating an infinite algebraic set of linear equations. The results, although strictly valid in annular flow, may give the correct trends when applied to bubbly flow. Finally, the theory provides an error estimate and a design criterion to improve the probe reliability. (orig.)

  3. Higher fractions theory of fractional hall effect

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.; Popov, V.N.

    1985-07-01

    A theory of fractional quantum Hall effect is generalized to higher fractions. N-particle model interaction is used and the gap is expressed through n-particles wave function. The excitation spectrum in general and the mean field critical behaviour are determined. The Hall conductivity is calculated from first principles. (author)

  4. The sink strengths of voids and the expected swelling for both random and ordered void distributions

    International Nuclear Information System (INIS)

    Quigley, T.M.; Murphy, S.M.; Bullough, R.; Wood, M.H.

    1981-10-01

    The sink strength of a void has been obtained when the void is a member of a random or ordered distribution of voids. The former sink strength derivation has employed the embedding model and the latter the cellular model. In each case the spatially varying size-effect interaction between the intrinsic point defects and the voids has been included together with the presence of other sink types in addition to the voids. The results are compared with previously published sink strengths that have made use of an approximate representation for the size-effect interactions, and indicate the importance of using the exact form of the interaction. In particular the bias for interstitials compared with vacancies of small voids is now much reduced and contamination of the surfaces of such voids no longer appears essential to facilitate the nucleation and growth of the voids. These new sink strengths have been used, in conjunction with recently published dislocation sink strengths, to calculate the expected swelling of materials containing network dislocations and voids. Results are presented for both the random and the void lattice situations. (author)

  5. Evaluation of the Air Void Analyzer

    Science.gov (United States)

    2013-07-01

    concrete using image analysis: Petrography of cementitious materials. ASTM STP 1215. S.M. DeHayes and D. Stark, eds. Philadelphia, PA: American...Administration (FHWA). 2006. Priority, market -ready technologies and innovations: Air Void Analyzer. Washington D.C. PDF file. Germann Instruments (GI). 2011...tests and properties of concrete and concrete-making materials. STP 169D. West Conshohocken, PA: ASTM International. Magura, D.D. 1996. Air void

  6. Using voids to unscreen modified gravity

    Science.gov (United States)

    Falck, Bridget; Koyama, Kazuya; Zhao, Gong-Bo; Cautun, Marius

    2018-04-01

    The Vainshtein mechanism, present in many models of gravity, is very effective at screening dark matter haloes such that the fifth force is negligible and general relativity is recovered within their Vainshtein radii. Vainshtein screening is independent of halo mass and environment, in contrast to e.g. chameleon screening, making it difficult to test. However, our previous studies have found that the dark matter particles in filaments, walls, and voids are not screened by the Vainshtein mechanism. We therefore investigate whether cosmic voids, identified as local density minima using a watershed technique, can be used to test models of gravity that exhibit Vainshtein screening. We measure density, velocity, and screening profiles of stacked voids in cosmological N-body simulations using both dark matter particles and dark matter haloes as tracers of the density field. We find that the voids are completely unscreened, and the tangential velocity and velocity dispersion profiles of stacked voids show a clear deviation from Λ cold dark matter at all radii. Voids have the potential to provide a powerful test of gravity on cosmological scales.

  7. Simulation of dust voids in complex plasmas

    Science.gov (United States)

    Goedheer, W. J.; Land, V.

    2008-12-01

    In dusty radio-frequency (RF) discharges under micro-gravity conditions often a void is observed, a dust free region in the discharge center. This void is generated by the drag of the positive ions pulled out of the discharge by the electric field. We have developed a hydrodynamic model for dusty RF discharges in argon to study the behaviour of the void and the interaction between the dust and the plasma background. The model is based on a recently developed theory for the ion drag force and the charging of the dust. With this model, we studied the plasma inside the void and obtained an understanding of the way it is sustained by heat generated in the surrounding dust cloud. When this heating mechanism is suppressed by lowering the RF power, the plasma density inside the void decreases, even below the level where the void collapses, as was recently shown in experiments on board the International Space Station. In this paper we present results of simulations of this collapse. At reduced power levels the collapsed central cloud behaves as an electronegative plasma with corresponding low time-averaged electric fields. This enables the creation of relatively homogeneous Yukawa balls, containing more than 100 000 particles. On earth, thermophoresis can be used to balance gravity and obtain similar dust distributions.

  8. Fractional conductance oscillations in quantum rings: wave packet picture of transport in a few-electron system

    International Nuclear Information System (INIS)

    Chwiej, T; Szafran, B

    2013-01-01

    We study electron transfer across a two-terminal quantum ring using a time-dependent description of the scattering process. For the considered scattering event the quantum ring is initially charged with one or two electrons, with another electron incident to the ring from the input channel. We study the electron transfer probability (T) as a function of the external magnetic field. We determine the periodicity of T for a varied number of electrons confined within the ring. For that purpose we develop a method to describe the wave packet dynamics for a few electrons participating in the scattering process, taking into full account the electron–electron correlations. We find that electron transfer across the quantum ring initially charged by a single electron acquires a distinct periodicity of half of the magnetic flux quantum (Φ 0 /2), corresponding to the formation of a transient two-electron state inside the ring. In the case of a three-electron scattering problem with two electrons initially occupying the ring, a period of Φ 0 /3 for T is formed in the limit of thin channels. The effect of disorder present in the confinement potential of the ring is also discussed. (paper)

  9. Fractional conductance oscillations in quantum rings: wave packet picture of transport in a few-electron system.

    Science.gov (United States)

    Chwiej, T; Szafran, B

    2013-04-17

    We study electron transfer across a two-terminal quantum ring using a time-dependent description of the scattering process. For the considered scattering event the quantum ring is initially charged with one or two electrons, with another electron incident to the ring from the input channel. We study the electron transfer probability (T) as a function of the external magnetic field. We determine the periodicity of T for a varied number of electrons confined within the ring. For that purpose we develop a method to describe the wave packet dynamics for a few electrons participating in the scattering process, taking into full account the electron-electron correlations. We find that electron transfer across the quantum ring initially charged by a single electron acquires a distinct periodicity of half of the magnetic flux quantum (Φ0/2), corresponding to the formation of a transient two-electron state inside the ring. In the case of a three-electron scattering problem with two electrons initially occupying the ring, a period of Φ0/3 for T is formed in the limit of thin channels. The effect of disorder present in the confinement potential of the ring is also discussed.

  10. Implementation of drift-flux model in artist and assessment to thetis void distribution

    International Nuclear Information System (INIS)

    Kim, H. C.; Yun, B. J.; Moon, S. K.; Jeong, J. J.; Lee, W. J.

    1998-01-01

    A system transient analysis code, ARTIST, based on the drift-flux model is being developed to enhance capability of predicting two-phase flow void distribution at low pressure and low flow conditions. The governing equations of the ARTIST code consist of three continuity equations (mixture, liquid, and noncondensibles), two energy equations (gas and mixture) and one mixture momentum euqation constituted with the drift-flux model. Area averaged one-dimensional conservation equations are established using the flow quality expressed in terms of the relative velocity. The relative velocity is obtained from the drift flux relationship. The Chexal-Lellouche void fraction correlation is used to provide the drift velocity and the concentration parameter. The implicit one-step method and the block elimination technique are employed as numerical solution scheme for the node-flowpath thermal-hydraulic network. In order to validate the ARIST code, the steady state void distributions of the THETIS boil-off tests are simulated. The axial void distributions calculated by the Chexal-Lellouche fraction correlation at low pressure and low flow are better than those of both the two-fluid model of RELAP5/MOD3 code and the homogeneous model. The drift-flux model of the ARTIST code is an efficient tool in predicting the void distribution of two-phase flow at low pressure and low flow condtions

  11. Fractional Dynamics and Control

    CERN Document Server

    Machado, José; Luo, Albert

    2012-01-01

    Fractional Dynamics and Control provides a comprehensive overview of recent advances in the areas of nonlinear dynamics, vibration and control with analytical, numerical, and experimental results. This book provides an overview of recent discoveries in fractional control, delves into fractional variational principles and differential equations, and applies advanced techniques in fractional calculus to solving complicated mathematical and physical problems.Finally, this book also discusses the role that fractional order modeling can play in complex systems for engineering and science. Discusses how fractional dynamics and control can be used to solve nonlinear science and complexity issues Shows how fractional differential equations and models can be used to solve turbulence and wave equations in mechanics and gravity theories and Schrodinger’s equation  Presents factional relaxation modeling of dielectric materials and wave equations for dielectrics  Develops new methods for control and synchronization of...

  12. Analysis of stress-strain relationship in materials containing voids by means of plastic finite element method

    International Nuclear Information System (INIS)

    Shiraishi, Haruki; Tabuchi, Masaaki

    2000-01-01

    Applying the finite element method in two dimensions, an analysis is performed to derive the stress-strain relationship of material containing voids in matrix, and which is subjected to large deformation. The conditions assumed for the analysis are applicability of continuum body mechanics, Mises yield criterion, J2 flow theory, power work-hardening, plane stress in two-dimensional system and uniform cyclically recurring void distribution. Taking as example a case of material presenting 0.3 work-hardening, it is indicated from the analysis that: With voids arrayed in square lattice, total elongation would be little affected by change in void size; With a void spacing in lattice of 10 μ m, a uniform elongation 12-14% should be obtained in a wide range of void sizes from 0.01 to 8.0 μm; Tensile strength should start to lower at a void areal fraction of around 1%; A sharply lowered uniform elongation of a level far below 1% should be presented by material of low work-hardening exponent. The severe decline of ductility seen with 316 stainless steel upon neutron irradiation at temperatures around 600 K is interpreted as resulting from a combination of low work-hardening and the presence of voids in matrix. (author)

  13. Coolant Void Reactivity Analysis of CANDU Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Su; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    Models of CANDU-6 and ACR-700 fuel lattices were constructed for a single bundle and 2 by 2 checkerboard to understand the physics related to CVR. Also, a familiar four factor formula was used to predict the specific contributions to reactivity change in order to achieve an understanding of the physics issues related to the CVR. At the same time, because the situation of coolant voiding should bring about a change of neutron behavior, the spectral changes and neutron current were also analyzed. The models of the CANDU- 6 and ACR-700 fuel lattices were constructed using the Monte Carlo code MCNP6 using the ENDF/B-VII.0 continuous energy cross section library based on the specification from AECL. The CANDU fuel lattice was searched through sensitivity studies of each design parameter such as fuel enrichment, fuel pitch, and types of burnable absorber for obtaining better behavior in terms of CVR. Unlike the single channel coolant voiding, the ACR-700 bundle has a positive reactivity change upon 2x2 checkerboard coolant voiding. Because of the new path for neutron moderation, the neutrons from the voided channel move to the no-void channel where they lose energy and come back to the voided channel as thermal neutrons. This phenomenon causes the positive CVR when checkerboard voiding occurs. The sensitivity study revealed the effects of the moderator to fuel volume ratio, fuel enrichment, and burnable absorber on the CVR. A fuel bundle with low moderator to fuel volume ratio and high fuel enrichment can help achieve negative CVR.

  14. 38 CFR 3.207 - Void or annulled marriage.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled. A...

  15. Post-void residual urine under 150 ml does not exclude voiding dysfunction in women

    DEFF Research Database (Denmark)

    Khayyami, Yasmine; Klarskov, Niels; Lose, Gunnar

    2016-01-01

    INTRODUCTION AND HYPOTHESIS: It has been claimed that post-void residual urine (PVR) below 150 ml rules out voiding dysfunction in women with stress urinary incontinence (SUI) and provides license to perform sling surgery. The cut-off of 150 ml seems arbitrary, not evidence-based, and so we sough...

  16. Nucleation of voids - the impurity effect

    International Nuclear Information System (INIS)

    Chen, I-W; Taiwo, A.

    1984-01-01

    Nucleation of voids under irradiation in multicomponent alloys remains an unsolved theoretical problem. Of particular interest are the effects of nonequilibrium solute segregation phenomena on the critical nucleus and the nucleation rate. The resolution of the multicomponent nucleation in a dissipative system also has broader implication to the field of irreversible thermodynamics. The present paper describes a recent study of solute segregation effects in void nucleation. We begin with a thermodynamic model for a nonequilibrium void with interfacial segregation. The thermodynamic model is coupled with kinetic considerations of solute/solvent diffusion under a bias, which is itself related to segregation by the coating effect, to assess the stability of void embryos. To determine nucleation rate, we develop a novel technique by extending the most probable path method in statistical mechanics for nonequilibrium steady state to simulate large fluctuation with nonlinear dissipation. The path of nucleation is determined by solving an analogous problem on particle trajectory in classical dynamics. The results of both the stability analysis and the fluctuation analysis establish the paramount significance of the impurity effect via the mechanism of nonequilibrium segregation. We conclude that over-segregation is probably the most general cause for the apparently low nucleation barriers that are responsible for nearly ubiquitous occurrence of void swelling in common metals

  17. Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Tvergaard, Viggo

    2011-01-01

    Failure under intense shearing at close to zero stress triaxiality is widely observed for ductile metallic materials, and is identified in experiments as smeared-out dimples on the fracture surface. Numerical cell-model studies of equal sized voids have revealed that the mechanism governing...... this shear failure mode boils down to the interaction between primary voids which rotate and elongate until coalescence occurs under severe plastic deformation of the internal ligaments. The objective of this paper is to analyze this failure mechanism of primary voids and to study the effect of smaller...... secondary damage that co-exists with or nucleation in the ligaments between larger voids that coalesce during intense shearing. A numerical cell-model study is carried out to gain a parametric understanding of the overall material response for different initial conditions of the two void populations...

  18. Instantaneous wave-free ratio as an alternative to fractional flow reserve in assessment of moderate coronary stenoses: A meta-analysis of diagnostic accuracy studies.

    Science.gov (United States)

    Maini, Rohit; Moscona, John; Katigbak, Paul; Fernandez, Camilo; Sidhu, Gursukhmandeep; Saleh, Qusai; Irimpen, Anand; Samson, Rohan; LeJemtel, Thierry

    2017-12-27

    Fractional flow reserve (FFR) remains underutilized due to practical concerns related to the need for hyperemic agents. These concerns have prompted the study of instantaneous wave-free ratio (iFR), a vasodilator-free index of coronary stenosis. Non-inferior cardiovascular outcomes have been demonstrated in two recent randomized clinic trials. We performed this meta-analysis to provide a necessary update of the diagnostic accuracy of iFR referenced to FFR based on the addition of eight more recent studies and 3727 more lesions. We searched the PubMed, EMBASE, Central, ProQuest, and Web of Science databases for full text articles published through May 31, 2017 to identify studies addressing the diagnostic accuracy of iFR referenced to FFR≤0.80. The following keywords were used: "instantaneous wave-free ratio" OR "iFR" AND "fractional flow reserve" OR "FFR." In total, 16 studies comprising 5756 lesions were identified. Pooled diagnostic accuracy estimates of iFR versus FFR≤0.80 were: sensitivity, 0.78 (95% CI, 0.76-0.79); specificity, 0.83 (0.81-0.84); positive likelihood ratio, 4.54 (3.85-5.35); negative likelihood ratio, 0.28 (0.24-0.32); diagnostic odds ratio, 17.38 (14.16-21.34); area under the summary receiver-operating characteristic curve, 0.87; and an overall diagnostic accuracy of 0.81 (0.78-0.84). In conclusion, iFR showed excellent agreement with FFR as a resting index of coronary stenosis severity without the undesired effects and cost of hyperemic agents. When considering along with its clinical outcome data and ease of application, the diagnostic accuracy of iFR supports its use as a suitable alternative to FFR for physiology-guided revascularization of moderate coronary stenoses. We performed a meta-analysis of the diagnostic accuracy of iFR referenced to FFR. iFR showed excellent agreement with FFR as a resting index of coronary stenosis severity without the undesired effects and cost of hyperemic agents. This supports its use as a suitable

  19. Void growth suppression by dislocation impurity atmospheres

    International Nuclear Information System (INIS)

    Weertman, J.; Green, W.V.

    1976-01-01

    A detailed calculation is given of the effect of an impurity atmosphere on void growth under irradiation damage conditions. Norris has proposed that such an atmosphere can suppress void growth. The hydrostatic stress field of a dislocation that is surrounded by an impurity atmosphere was found and used to calculate the change in the effective radius of a dislocation line as a sink for interstitials and vacancies. The calculation of the impurity concentration in a Cottrell cloud takes into account the change in hydrostatic pressure produced by the presence of the cloud itself. It is found that void growth is eliminated whenever dislocations are surrounded by a condensed atmosphere of either oversized substitutional impurity atoms or interstitial impurity atoms. A condensed atmosphere will form whenever the average impurity concentration is larger than a critical concentration

  20. From Voids to Yukawaballs And Back

    International Nuclear Information System (INIS)

    Land, V.; Goedheer, W. J.

    2008-01-01

    When dust particles are introduced in a radio-frequency discharge under micro-gravity conditions, usually a dust free void is formed due to the ion drag force pushing the particles away from the center. Experiments have shown that it is possible to close the void by reducing the power supplied to the discharge. This reduces the ion density and with that the ratio between the ion drag force and the opposing electric force. We have studied the behavior of a discharge with a large amount of dust particles (radius 3.4 micron) with our hydrodynamic model, and simulated the closure of the void for conditions similar to the experiment. We also approached the formation of a Yukawa ball from the other side, starting with a discharge at low power and injecting batches of dust, while increasing the power to prevent extinction of the discharge. Eventually the same situation could be reached.

  1. Partial discharges in ellipsoidal and spheroidal voids

    DEFF Research Database (Denmark)

    Crichton, George C; Karlsson, P. W.; Pedersen, Aage

    1989-01-01

    Transients associated with partial discharges in voids can be described in terms of the charges induced on the terminal electrodes of the system. The relationship between the induced charge and the properties which are usually measured is discussed. The method is illustrated by applying it to a s......Transients associated with partial discharges in voids can be described in terms of the charges induced on the terminal electrodes of the system. The relationship between the induced charge and the properties which are usually measured is discussed. The method is illustrated by applying...

  2. Voids and overdensities of coupled Dark Energy

    International Nuclear Information System (INIS)

    Mainini, Roberto

    2009-01-01

    We investigate the clustering properties of dynamical Dark Energy even in association of a possible coupling between Dark Energy and Dark Matter. We find that within matter inhomogeneities, Dark Energy migth form voids as well as overdensity depending on how its background energy density evolves. Consequently and contrarily to what expected, Dark Energy fluctuations are found to be slightly suppressed if a coupling with Dark Matter is permitted. When considering density contrasts and scales typical of superclusters, voids and supervoids, perturbations amplitudes range from |δ φ | ∼ O(10 −6 ) to |δ φ | ∼ O(10 −4 ) indicating an almost homogeneous Dark Energy component

  3. Stability of interfacial waves in two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W S [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    The influence of the interfacial pressure and the flow distribution in the one-dimensional two-fluid model on the stability problems of interfacial waves is discussed. With a proper formulation of the interfacial pressure, the following two-phase phenomena can be predicted from the stability and stationary criteria of the interfacial waves: onset of slug flow, stationary hydraulic jump in a stratified flow, flooding in a vertical pipe, and the critical void fraction of a bubbly flow. It can be concluded that the interfacial pressure plays an important role in the interfacial wave propagation of the two-fluid model. The flow distribution parameter may enhance the flow stability range, but only plays a minor role in the two-phase characteristics. (author). 20 refs., 3 tabs., 4 figs.

  4. Fractional vector calculus and fractional Maxwell's equations

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2008-01-01

    The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of consistent formulations of FVC by using a fractional generalization of the Fundamental Theorem of Calculus. We define the differential and integral vector operations. The fractional Green's, Stokes' and Gauss's theorems are formulated. The proofs of these theorems are realized for simplest regions. A fractional generalization of exterior differential calculus of differential forms is discussed. Fractional nonlocal Maxwell's equations and the corresponding fractional wave equations are considered

  5. The evolution of voids in the adhesion approximation

    Science.gov (United States)

    Sahni, Varun; Sathyaprakah, B. S.; Shandarin, Sergei F.

    1994-08-01

    We apply the adhesion approximation to study the formation and evolution of voids in the universe. Our simulations-carried out using 1283 particles in a cubical box with side 128 Mpc-indicate that the void spectrum evolves with time and that the mean void size in the standard Cosmic Background Explorer Satellite (COBE)-normalized cold dark matter (CDM) model with H50 = 1 scals approximately as bar D(z) = bar Dzero/(1+2)1/2, where bar Dzero approximately = 10.5 Mpc. Interestingly, we find a strong correlation between the sizes of voids and the value of the primordial gravitational potential at void centers. This observation could in principle, pave the way toward reconstructing the form of the primordial potential from a knowledge of the observed void spectrum. Studying the void spectrum at different cosmological epochs, for spectra with a built in k-space cutoff we find that the number of voids in a representative volume evolves with time. The mean number of voids first increases until a maximum value is reached (indicating that the formation of cellular structure is complete), and then begins to decrease as clumps and filaments erge leading to hierarchical clustering and the subsequent elimination of small voids. The cosmological epoch characterizing the completion of cellular structure occurs when the length scale going nonlinear approaches the mean distance between peaks of the gravitaional potential. A central result of this paper is that voids can be populated by substructure such as mini-sheets and filaments, which run through voids. The number of such mini-pancakes that pass through a given void can be measured by the genus characteristic of an individual void which is an indicator of the topology of a given void in intial (Lagrangian) space. Large voids have on an average a larger measure than smaller voids indicating more substructure within larger voids relative to smaller ones. We find that the topology of individual voids is strongly epoch dependent

  6. Dynamic void behavior in polymerizing polymethyl methacrylate cement.

    Science.gov (United States)

    Muller, Scott D; McCaskie, Andrew W

    2006-02-01

    Cement mantle voids remain controversial with respect to survival of total hip arthroplasty. Void evolution is poorly understood, and attempts at void manipulation can only be empirical. We induced voids in a cement model simulating the constraints of the proximal femur. Intravoid pressure and temperature were recorded throughout polymerization, and the initial and final void volumes were measured. Temperature-dependent peak intravoid pressures and void volume increases were observed. After solidification, subatmospheric intravoid pressures were observed. The magnitude of these observations could not be explained by the ideal gas law. Partial pressures of the void gas at peak pressures demonstrated a dominant effect of gaseous monomer, thereby suggesting that void growth is a pressure-driven phenomenon resulting from temperature-dependent evaporation of monomer into existing trapped air voids.

  7. Friction stir welding process to repair voids in aluminum alloys

    Science.gov (United States)

    Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)

    1999-01-01

    The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.

  8. The Metallicity of Void Dwarf Galaxies

    NARCIS (Netherlands)

    Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the

  9. "Dark energy" in the Local Void

    Science.gov (United States)

    Villata, M.

    2012-05-01

    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (˜5×1015 M ⊙) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.

  10. Void porosity measurements in coastal structures

    NARCIS (Netherlands)

    Bosma, C.; Verhagen, H.J.; D'Angremond, K.; Sint Nicolaas, W.

    2002-01-01

    The paper describes the use of two fundamental design parameters, the void porosity and layer thickness in rock armour constructions. These design parameters are very sensible for factors such as the boundary definition of a rock layer, rock production properties, intrinsic properties and

  11. Nonlocal plasticity effects on interaction of different size voids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Niordson, Christian Frithiof

    2004-01-01

    A nonlocal elastic-plastic material model is used to show that the rate of void growth is significantly reduced when the voids are small enough to be comparable with a characteristic material length. For a very small void in the material between much larger voids the competition between...... dimensional array of spherical voids. It is shown that the high growth rate of very small voids predicted by conventional plasticity theory is not realistic when the effect of a characteristic length, dependent on the dislocation structure, is accounted for. (C) 2003 Elsevier Ltd. All rights reserved....

  12. Mechanistic model for void distribution in flashing flow

    International Nuclear Information System (INIS)

    Riznic, J.; Ishii, M.; Afgan, N.

    1987-01-01

    A problem of discharging of an initially subcooled liquid from a high pressure condition into a low pressure environment is quite important in several industrial systems such as nuclear reactors and chemical reactors. A new model for the flashing process is proposed here based on the wall nucleation theory, bubble growth model and drift-flux bubble transport model. In order to calculate the bubble number density, the bubble number transport equation with a distributed source from the wall nucleation sites is used. The model predictions in terms of the void fraction are compared to Moby Dick and BNL experimental data. It shows that satisfactory agreements could be obtained from the present model without any floating parameter to be adjusted with data. This result indicates that, at least for the experimental conditions considered here, the mechanistic prediction of the flashing phenomenon is possible based on the present wall nucleation based model. 43 refs., 4 figs

  13. Results and applications in thermoelasticity of materials with voids

    Directory of Open Access Journals (Sweden)

    Michele Ciarletta

    1991-05-01

    Full Text Available We consider the linear theory of a thermoelastic porous solid in which the skeletal or matrix is a thermoelastic material and the interstices are void of material. We assume that the initial body is free from stresses. The concept of a distributed body asserts that the mass density at time t has the decomposition γν, where γ is the density of the matrix material and ν (0 In the first part, in order to derive some applications of the reciprocity theorem, we recall some results established by same authors in [3]. Then we obtain integral representations of the solution and prove that the solving of the boundary-initial value problem can be reduced to the solving of an associated uncoupled problem and to an integral equation for the volume fraction field.

  14. Time dependent voiding mechanisms in polyamide 6 submitted to high stress triaxiality: experimental characterisation and finite element modelling

    Science.gov (United States)

    Selles, Nathan; King, Andrew; Proudhon, Henry; Saintier, Nicolas; Laiarinandrasana, Lucien

    2017-08-01

    Double notched round bars made of semi-crystalline polymer polyamide 6 (PA6) were submitted to monotonic tensile and creep tests. The two notches had a root radius of 0.45 mm, which imposes a multiaxial stress state and a state of high triaxiality in the net (minimal) section of the specimens. Tests were carried out until the failure occurred from one of the notches. The other one, unbroken but deformed under steady strain rate or steady load, was inspected using the Synchrotron Radiation Computed Tomography (SRCT) technique. These 3D through thickness inspections allowed the study of microstructural evolution at the peak stress for the monotonic tensile test and at the beginning of the tertiary creep for the creep tests. Cavitation features were assessed with a micrometre resolution within the notched region. Spatial distributions of void volume fraction ( Vf) and void morphology were studied. Voiding mechanisms were similar under steady strain rates and steady loads. The maximum values of Vf were located between the axis of revolution of the specimens and the notch surface and voids were considered as flat cylinders with a circular basis perpendicular to the loading direction. A model, based on porous plasticity, was used to simulate the mechanical response of this PA6 material under high stress triaxiality. Both macroscopic behaviour (loading curves) and voiding micro-mechanisms (radial distributions of void volume fraction) were accurately predicted using finite element simulations.

  15. Instantaneous Wave-Free Ratio versus Fractional Flow Reserve guided intervention (iFR-SWEDEHEART): Rationale and design of a multicenter, prospective, registry-based randomized clinical trial.

    Science.gov (United States)

    Götberg, Matthias; Christiansen, Evald H; Gudmundsdottir, Ingibjörg; Sandhall, Lennart; Omerovic, Elmir; James, Stefan K; Erlinge, David; Fröbert, Ole

    2015-11-01

    Instantaneous wave-free ratio (iFR) is a new hemodynamic resting index for assessment of coronary artery stenosis severity. iFR uses high frequency sampling to calculate a gradient across a coronary lesion during a period of diastole. The index has been tested against fractional flow reserve (FFR) and found to have an overall classification agreement of 80% to 85%. Whether the level of disagreement is clinically relevant is unknown. Clinical outcome data on iFR are scarce. This study is a registry-based randomized clinical trial, which is a novel strategy using health quality registries as on-line platforms for randomization, case record forms, and follow-up. iFR-SWEDEHEART is a multicenter, prospective, randomized, controlled, clinical open-label clinical trial. Two thousand patients with stable angina or acute coronary syndrome and an indication for physiology-guided assessment of one or more coronary stenoses will be randomized 1:1 to either iFR- or FFR-guided intervention. The randomization will be conducted online in the Swedish web-based system for enhancement and development of evidence-based care in heart disease evaluated according to recommended therapies (SWEDEHEART) registry. The trial has a non-inferiority design, with a primary combined end point of all-cause death, non-fatal myocardial infarction, and unplanned revascularization at 12 months. End points will be identified through national registries and undergo central blind adjudication to ensure data quality. The iFR-SWEDEHEART trial is an registry-based randomized clinical trial evaluating the safety and efficacy of the diagnostic method iFR compared to FFR. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Risk management of low air void asphalt concrete mixtures.

    Science.gov (United States)

    2013-07-01

    Various forms of asphalt pavement distress, such as rutting, shoving and bleeding, can be attributed, in many cases, to low air voids in : the mixtures during production and placement. The occurrence of low air void contents during plant production m...

  17. Creep Damage Evaluation of Titanium Alloy Using Nonlinear Ultrasonic Lamb Waves

    International Nuclear Information System (INIS)

    Xiang Yan-Xun; Xuan Fu-Zhen; Deng Ming-Xi; Chen Hu; Chen Ding-Yue

    2012-01-01

    The creep damage in high temperature resistant titanium alloys Ti60 is measured using the nonlinear effect of an ultrasonic Lamb wave. The results show that the normalised acoustic nonlinearity of a Lamb wave exhibits a variation of the 'increase-decrease' tendency as a function of the creep damage. The influence of microstructure evolution on the nonlinear Lamb wave propagation has been analyzed based on metallographic studies, which reveal that the normalised acoustic nonlinearity increases due to a rising of the precipitation volume fraction and the dislocation density in the early stage, and it decreases as a combined result of dislocation change and micro-void initiation in the material. The nonlinear Lamb wave exhibits the potential for the assessment of the remaining creep life in metals

  18. Dependence of hotspot initiation on void distribution in high explosive crystals simulated with molecular dynamics

    Science.gov (United States)

    Herring, Stuart Davis

    Microscopic defects may dramatically affect the susceptibility of high explosives to shock initiation. Such defects redirect the shock's energy and become hotspots (concentrations of stress and heat) that can initiate chemical reactions. Sufficiently large or numerous defects may produce a self-sustaining deflagration or even detonation from a shock notably too weak to detonate defect-free samples. The effects of circular or spherical voids on the shock sensitivity of a model (two- or three-dimensional) high explosive crystal are considered. We simulate a piston impact using molecular dynamics with a Reactive Empirical Bond Order (REBO) model potential for a sub-micron, sub-ns exothermic reaction in a diatomic molecular solid. In both dimensionalities, the probability of initiating chemical reactions rises more suddenly with increasing piston velocity for larger voids that collapse more deterministically. A void of even 10 nm radius (˜39 interatomic spacings) reduces the minimum initiating velocity by a factor of 4 (8 in 3D). The transition at larger velocities to detonation is studied in micron-long samples with a single void (and its periodic images). Reactions during the shock traversal increase rapidly with velocity, then become a reliable detonation. In 2D, a void of radius 2.5 nm reduces the critical velocity by 10% from the perfect crystal; a Pop plot of the detonation delays at higher velocities shows a characteristic pressure dependence. 3D samples are more likely to react but less to detonate. In square lattices of voids, reducing the (common) void radius or increasing the porosity without changing the other parameter causes the hotspots to consume the material faster and detonation to occur sooner and at lower velocities. Early behavior is seen to follow a very simple ignition and growth model; the pressure exponents are more realistic than with single voids. The hotspots collectively develop a broad pressure wave (a sonic, diffuse deflagration front

  19. Modeling quiescent phase transport of air bubbles induced by breaking waves

    Science.gov (United States)

    Shi, Fengyan; Kirby, James T.; Ma, Gangfeng

    Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear

  20. Effect of void cluster on ductile failure evolution

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    The behavior of a non-uniform void distribution in a ductile material is investigated by using a cell model analysis to study a material with a periodic pattern of void clusters. The special clusters considered consist of a number of uniformly spaced voids located along a plane perpendicular...

  1. Void probability scaling in hadron nucleus interactions

    International Nuclear Information System (INIS)

    Ghosh, Dipak; Deb, Argha; Bhattacharyya, Swarnapratim; Ghosh, Jayita; Bandyopadhyay, Prabhat; Das, Rupa; Mukherjee, Sima

    2002-01-01

    Heygi while investigating with the rapidity gap probability (that measures the chance of finding no particle in the pseudo-rapidity interval Δη) found that a scaling behavior in the rapidity gap probability has a close correspondence with the scaling of a void probability in galaxy correlation study. The main aim in this paper is to study the scaling behavior of the rapidity gap probability

  2. Neutron gauging to detect voids in polyurethane

    International Nuclear Information System (INIS)

    Tsang, F.Y.; Alger, D.M.; Brugger, R.M.

    1978-01-01

    Thermal-neutron radiography and fast-neutron gauging measurements were made to evaluate the feasibility of detecting voids in a polyurethane block placed between steel plates. This sandwich of polyurethane and steel simulates the walls of a canister being designed to hold explosive devices. The polyurethane would act as a shock absorber in the canister. A large fabrication cost saving would result by casting the polyurethane, but a nondestructive testing (NDT) method is needed to determine the uniformity of the polyurethane fill. The radiography measurements used a beam of thermal neutrons, while the gauging used filtered beams of 24 keV and fission spectrum neutrons. For the 83-mm-thick polyurethane and 130-mm-thick steel matrix, the thermal-neutron radiography was able to detect only those voids equal to about one-half the polyurethane thickness. The gauging detected voids in the path of the neutron beam of a few millimetres thickness in seconds to minutes. The gauging is feasible as an NDT method for the canister application

  3. Transcutaneous sacral neurostimulation for irritative voiding dysfunction.

    Science.gov (United States)

    Walsh, I K; Johnston, R S; Keane, P F

    1999-01-01

    Patients with irritative voiding dysfunction are often unresponsive to standard clinical treatment. We evaluated the response of such individuals to transcutaneous electrical stimulation of the third sacral nerve. 32 patients with refractory irritative voiding dysfunction (31 female and 1 male; mean age 47 years) were recruited to the study. Ambulatory transcutaneous electrical neurostimulation was applied bilaterally to the third sacral dermatomes for 1 week. Symptoms of frequency, nocturia, urgency, and bladder pain were scored by each patient throughout and up to 6 months following treatment. The mean daytime frequency was reduced from 11.3 to 7.96 (p = 0.01). Nocturia episodes were reduced from a mean of 2.6 to 1.8 (p = 0.01). Urgency and bladder pain mean symptom scores were reduced from 5.97 to 4.89 and from 1.48 to 0.64, respectively. After stopping therapy, symptoms returned to pretreatment levels within 2 weeks in 40% of the patients and within 6 months in 100%. Three patients who continued with neurostimulation remained satisfied with this treatment modality at 6 months. Transcutaneous third sacral nerve stimulation may be an effective and noninvasive ambulatory technique for the treatment of patients with refractory irritative voiding dysfunction. Following an initial response, patients may successfully apply this treatment themselves to ensure long-term relief.

  4. Vesicoureteral reflux in children: comparison of contrast - enhanced voiding ultrasonography with radiographic voiding cystourethrography - preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Chong Hyun; Kim, Hyun Joo; Goo, Hyun Woo; Kim, Hungy; Lee, Jung Joo; Kim, Ellen Ai-Rhan; Kim, Ki Soo; Park, Young Seo; Pi, Soo Young [Ulsan Univ. College of Medicine, Seoul (Korea, Republic of)

    2001-01-01

    To compared the usefullness of contrst-enhanced voiding ultrasonogrphy (US) with that of radiogrphic voiding cystourethrography (VCUG) for the diagnosis of vesicoureteral reflux (VUR) in children. Ninety-five kidney-ureter units of 47 patients referred for investigation of VUR underwent contrast -enhanced voiding US followed by radiographic VCUG. After baseline US examination of the urinaru tract, residual urine in the bladder was drained through an inserted Foley catheter and the bladder was gravityfilled at a height of 1 m with normal saline. A galactose-based, microbubble-containning echo-enhancing agent (Lvovist; Dchering, Berlin, Germany) was then administered. The amount of this was approximately 10% of bldder capacity, and VUR was diagnosed when microbubbles appeared in the ureter or pelvocalyceal system. Using radiographic VCUG as a reference point, the accuracy with which contrst-enhanced voiding US detected VUR was calcilated. In 87 of 95 kidney-ureter units (91.6%), the two methods showed similiar results regarding the diagnosis or exclusion of VUR, which was detected by both in 12 units, but by neither in 75. VUR was shown to occcur in a total of 20 units, but in eight of these by one method only. In two units, VUR detected by contrast-enhanced voiding US was was not demostarted by radiographic VCUG; in six units, the resverse was true. In the detection of VUR, contrast-enhanced voiding us showed a sensitivity of 66.7%, a sprcificity of 97.4%, a positive predictive value of 85.7%, and a negative predictive value of 92.6%. Contrst-enhanced voiding US is highly specific and has high positive and nagative predictive values; its sensitivity, however, is not sufficiently high. The modality appears to be a useful diagnostic tool for the detection of VUR without exposure to ionizing radiation, though to be certain of its value, more experience of its use its first required.

  5. Vesicoureteral reflux in children: comparison of contrast - enhanced voiding ultrasonography with radiographic voiding cystourethrography - preliminary report

    International Nuclear Information System (INIS)

    Yoon, Chong Hyun; Kim, Hyun Joo; Goo, Hyun Woo; Kim, Hungy; Lee, Jung Joo; Kim, Ellen Ai-Rhan; Kim, Ki Soo; Park, Young Seo; Pi, Soo Young

    2001-01-01

    To compared the usefullness of contrst-enhanced voiding ultrasonogrphy (US) with that of radiogrphic voiding cystourethrography (VCUG) for the diagnosis of vesicoureteral reflux (VUR) in children. Ninety-five kidney-ureter units of 47 patients referred for investigation of VUR underwent contrast -enhanced voiding US followed by radiographic VCUG. After baseline US examination of the urinaru tract, residual urine in the bladder was drained through an inserted Foley catheter and the bladder was gravityfilled at a height of 1 m with normal saline. A galactose-based, microbubble-containning echo-enhancing agent (Lvovist; Dchering, Berlin, Germany) was then administered. The amount of this was approximately 10% of bldder capacity, and VUR was diagnosed when microbubbles appeared in the ureter or pelvocalyceal system. Using radiographic VCUG as a reference point, the accuracy with which contrst-enhanced voiding US detected VUR was calcilated. In 87 of 95 kidney-ureter units (91.6%), the two methods showed similiar results regarding the diagnosis or exclusion of VUR, which was detected by both in 12 units, but by neither in 75. VUR was shown to occcur in a total of 20 units, but in eight of these by one method only. In two units, VUR detected by contrast-enhanced voiding US was was not demostarted by radiographic VCUG; in six units, the resverse was true. In the detection of VUR, contrast-enhanced voiding us showed a sensitivity of 66.7%, a sprcificity of 97.4%, a positive predictive value of 85.7%, and a negative predictive value of 92.6%. Contrst-enhanced voiding US is highly specific and has high positive and nagative predictive values; its sensitivity, however, is not sufficiently high. The modality appears to be a useful diagnostic tool for the detection of VUR without exposure to ionizing radiation, though to be certain of its value, more experience of its use its first required

  6. Voiding dysfunction in children aged five to 15 years

    Directory of Open Access Journals (Sweden)

    Karaklajić Dragana

    2004-01-01

    Full Text Available Voiding dysfunction in children was analyzed in 91 patients in a period from January 1st to October 1st 1998. Most of the patients had functional voiding disorder (92.31%, and only 7.69% manifested monosymptomatic night enuresis. The number of girls was bigger in the group of patients with voiding dysfunction while the boys were predominant in the group with mono-symptomatic nocturnal enuresis. More than a half of children with functional voiding disorder had repeated urinal infections (58.23%, incontinence (93.49%, need for urgent voiding (68.13%, and vesicoureteral reflux (47.61%. The most common type of voiding dysfunction was urge syndrome/urge incontinence. The incidence of dysfunctional voiding disorder was more often in children with scaring changes of kidney which were diagnosed by static scintigraphy.

  7. On the observability of coupled dark energy with cosmic voids

    Science.gov (United States)

    Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander

    2015-01-01

    Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.

  8. Void growth and coalescence in metals deformed at elevated temperature

    DEFF Research Database (Denmark)

    Klöcker, H.; Tvergaard, Viggo

    2000-01-01

    For metals deformed at elevated temperatures the growth of voids to coalescence is studied numerically. The voids are assumed to be present from the beginning of deformation, and the rate of deformation considered is so high that void growth is dominated by power law creep of the material, without...... any noticeable effect of surface diffusion. Axisymmetric unit cell model computations are used to study void growth in a material containing a periodic array of voids, and the onset of the coalescence process is defined as the stage where plastic flow localizes in the ligaments between neighbouring...... voids. The focus of the study is on various relatively high stress triaxialties. In order to represent the results in terms of a porous ductile material model a set of constitutive relations are used, which have been proposed for void growth in a material undergoing power law creep....

  9. High-resolution simulations of cylindrical void collapse in energetic materials: Effect of primary and secondary collapse on initiation thresholds

    Science.gov (United States)

    Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.

    2017-04-01

    Void collapse in energetic materials leads to hot spot formation and enhanced sensitivity. Much recent work has been directed towards simulation of collapse-generated reactive hot spots. The resolution of voids in calculations to date has varied as have the resulting predictions of hot spot intensity. Here we determine the required resolution for reliable cylindrical void collapse calculations leading to initiation of chemical reactions. High-resolution simulations of collapse provide new insights into the mechanism of hot spot generation. It is found that initiation can occur in two different modes depending on the loading intensity: Either the initiation occurs due to jet impact at the first collapse instant or it can occur at secondary lobes at the periphery of the collapsed void. A key observation is that secondary lobe collapse leads to large local temperatures that initiate reactions. This is due to a combination of a strong blast wave from the site of primary void collapse and strong colliding jets and vortical flows generated during the collapse of the secondary lobes. The secondary lobe collapse results in a significant lowering of the predicted threshold for ignition of the energetic material. The results suggest that mesoscale simulations of void fields may suffer from significant uncertainty in threshold predictions because unresolved calculations cannot capture the secondary lobe collapse phenomenon. The implications of this uncertainty for mesoscale simulations are discussed in this paper.

  10. Shock loading and reactive flow modeling studies of void induced AP/AL/HTPB propellant

    Science.gov (United States)

    Miller, P. J.; Lindfors, A. J.

    1998-07-01

    The unreactive Hugoniot of a class 1.3 propellant has been investigated by shock compression experiments. The results are analyzed in terms of an ignition and growth reactive flow model using the DYNA2D hydrocode. The calculated shock ignition parameters of the model show a linear dependence on measured void volume which appears to reproduce the observed gauge records well. Shock waves were generated by impact in a 75 mm single stage powder gun. Manganin and PVDF pressure gauges provided pressure-time histories to 140 kbar. The propellants were of similar formulation differing only in AP particle size and the addition of a burn rate modifer (Fe2O3) from that of previous investigations. Results show neglible effect of AP particle size on shock response in contrast to the addition of Fe2O3 which appears to `stiffen' the unreactive Hugoniot and enhances significantly the reactive rates under shock. The unreactive Hugoniot, within experimental error, compares favorably to the solid AP Hugoniot. Shock experiments were performed on propellant samples strained to induce insitu voids. The material state was quantified by uniaxial tension dialatometry. The experimental records show a direct correlation between void volume (0 to 1.7%) and chemical reactivity behind the shock front. These results are discussed in terms of `hot spot' ignition resulting from the shock collapse of the voids.

  11. Experimental investigation and numerical simulations of void profile development in a vertical cylindrical pipe

    International Nuclear Information System (INIS)

    Grossetete, Claudie

    1995-01-01

    We present here an experimental investigation and some numerical simulations of void profile development in a vertical cylindrical pipe. This study is motivated by the lack of information dealing with the influence of entrance effects and bubble size evolution upon the multidimensional development of upward bubbly flow in pipe. The axial development of two-phase air-water upward bubbly and bubbly-to-slug transition flows in a vertical pipe is investigated experimentally first. Profiles of liquid mean velocity, liquid axial turbulent intensity, void fraction, bubble frequency, bubble velocity, mean equivalent bubble diameter and volumetric interfacial area are determined along the same test section at three axial locations. It is found that the bubbly-to-slug transition can be deduced from the simultaneous analysis of the different measured profiles. Local analysis of the studied bubbly flows shows that their development does not depend on the shape of the void distribution at the inlet. However, it is found that the bubble size evolution strongly affects the void distribution. Secondly, multidimensional numerical simulations of bubbly flows with very different gas injection modes are made with the help of the tri dimensional two-fluid ASTRID code. It is shown that the classical models used to close the transverse momentum equations of the two-fluid model (lift and dispersion forces) do not capture the physical phenomena of bubble migration in pipe flows. (author) [fr

  12. Experimental investigation and numerical simulations of void profile development in a vertical cylindrical pipe

    International Nuclear Information System (INIS)

    Grossetete, C.

    1995-12-01

    We present here an experimental investigation and some numerical simulations of void profile development in a vertical cylindrical pipe. This study is motivated by the lack of information dealing with the influence of entrance effects and bubble size evolution upon the multidimensional development of upward bubbly flow in pipe. The axial development of two-phase air-water upward bubbly and bubbly-to-slug transition flows in a vertical pipe is investigated experimentally first. Profiles of liquid mean velocity, liquid axial turbulent intensity, void fraction, bubble frequency, bubble velocity, mean equivalent bubble diameter and volumetric interfacial area are determined along the same test section at three axial locations. It is found that the bubbly-to-slug transition can be deduced from the simultaneous analysis of the different measured profiles. Local analysis of the studied bubbly flows shows that their development does not depend on the shape of the void distribution at the inlet. However, it is found that the bubble size evolution strongly affects the void distribution. Secondly, multidimensional numerical simulations of bubbly flows with very different gas injection modes are made with the help of the tridimensional two-fluid ASTRID code. It is shown that the classical models used to close the transverse momentum equations of the two-fluid model (lift and dispersion forces) do not capture the physical phenomena of bubble migration in pipe flows

  13. The Effect of Void Shape on the Mechanical Properties of Rock

    International Nuclear Information System (INIS)

    D.O. Potyondy

    2006-01-01

    The bonded-particle model for rock (Potyondy and Cundall, 2004) represents rock by a dense packing of non-uniform-sized circular or spherical particles that are bonded together at their contact points and whose mechanical behavior is simulated by the distinct-element method using the two- and three-dimensional programs PFC2D and PFC3D. A bonded-particle model of lithophysal tuff has been used to study the effect of lithophysae (hollow, bubble-like voids) on the mechanical properties (Young's modulus and unconfined compressive strength) of this rock, and to quantify the variability of these properties. The model reproduces the failure mechanisms observed in the laboratory and exhibits a reduction of strength and modulus with increasing lithophysal volume fraction. The effect of void shape on mechanical properties is studied by inserting randomly distributed voids of simple shape (circle, triangle and star) and by inserting voids corresponding with lithophysal cavities identified in panel maps of the walls of a tunnel through this material. These studies address tunnel-stability issues associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for the proposed US high-level nuclear waste repository

  14. Cine MRI of the ascending aorta in the elderly with respect to the flow signal void and aortic valve morphology

    International Nuclear Information System (INIS)

    Nakayama, Masafumi; Kyomasu, Yoshinori; Suzuki, Yasuko; Mashima, Yasuoki; Tanno, Munehiko; Endo, Kazuo; Yamada, Hideo

    1990-01-01

    Cine flow MRI was performed on a 1.5 Tesla system to observe signal intensity of blood flow within the ascending aorta in the elderly who had no aortic stenosis and to determine frequency of the flow signal void. Coronal and sagittal imaging planes of the ascending aorta were obtained in 27 aged patients with no known cardiac diseases (14 men and 13 women, mean age of 76) and 7 young volunteers (7 men, mean age of 24), utilizing ECG-gating, GRASS (gradient-recalled acquisition in steady state), and a flow compensation sequence. The young volunteers presented little or no signal void within the ascending aorta. In 26 (96%) of the 27 aged patients, on the other hand, signal void was demonstrated in the blood flow distal to the aortic valve during systole. The maximum length of the signal void that was measured at 318∼632 msec after the R wave of ECG ranged from 33 to 97 mm. Conventional and Doppler echocardiography was used to evaluate motion and morphology of the aortic valve in 19 of the 27 aged patients. Eighteen of these 19 subjects had aortic signal void on cine MRI. Echocardiography showed sclerotic changes of the aortic valve (i.e., increased echogenicity of the cusps and/or commissure fusion) in 10 (53%) of the 19 subjects. The mean maximum length of the signal void in the 10 patients with aortic valve sclerosis was significantly greater than that in the 9 patients with echocardiographically normal valve (68 vs.45 mm, p<0.01). These results suggest that signal void of blood flow in the ascending aorta, which is recognized as one of the characteristic findings in patients with aortic stenosis, is not a specific feature for this disease but rather a commom one in the elderly particularly those with sclerotic changes of the aortic valve. However, the length of the signal void may distinguish between nonstenotic and stenotic aortic valves. (author)

  15. Experiment for estimating phase velocity and power fraction of Love wave from three component microtremor array observation in Morioka area; Moriokashiiki deno bido no sanseibun array kansoku ni yoru love ha no iso sokudo oyobi power hi suitei no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H; Yakuwa, A; Saito, T [Iwate University, Iwate (Japan). Faculty of Engineering

    1997-10-22

    Three component microtremor array observations were carried out in two locations in the city of Morioka for an attempt of estimating phase velocity and power fraction of Love wave by applying the expanded three component spatial self-correlation method. The microtremors were observed by using a seismograph with a natural period of one second. The arrays were so arranged as to form an equilateral triangle consisted of seven points. The maximum radii were 100 m, 50 m, 25 m and 12.5 m for vertical movements, and 100 m and 30 m for horizontal movements at the Iwate University, and 80 m, 40 m, 20 m and 10 m for vertical movements and 90 m for horizontal movements at the Morioka Technical Highschool. The analysis has used three sections, each with relatively steady state of about 40 seconds as selected from records of observations for about 30 minutes. The result of the discussions revealed that it is possible to derive phase velocity of not only Rayleigh waves but also Love waves by applying the expanded spatial self-correlation method to the observation record. Thus, estimation of underground structures with higher accuracy has become possible by using simultaneously the Rayleigh waves and Love waves. 3 refs., 11 figs., 2 tabs.

  16. IAEA sodium void reactivity benchmark calculations

    International Nuclear Information System (INIS)

    Hill, R.N.; Finck, P.J.

    1992-01-01

    In this paper, the IAEA-1 992 ''Benchmark Calculation of Sodium Void Reactivity Effect in Fast Reactor Core'' problem is evaluated. The proposed design is a large axially heterogeneous oxide-fueled fast reactor as described in Section 2; the core utilizes a sodium plenum above the core to enhance leakage effects. The calculation methods used in this benchmark evaluation are described in Section 3. In Section 4, the calculated core performance results for the benchmark reactor model are presented; and in Section 5, the influence of steel and interstitial sodium heterogeneity effects is estimated

  17. Patient dose reduction during voiding cystourethrography

    International Nuclear Information System (INIS)

    Ward, Valerie L.

    2006-01-01

    Voiding cystourethrography (VCUG) is a commonly performed examination in a pediatric uroradiology practice. This article contains suggestions on how the radiation dose to a child from VCUG can be made ''as low as reasonably achievable'' (ALARA). The pediatric radiologist should consider the appropriateness of the clinical indication before performing VCUG and utilize radiation exposure techniques and parameters during VCUG to reduce radiation exposure to a child. The medical physicist and fluoroscope manufacturer can also work together to optimize a pulsed-fluoroscopy unit and further reduce the radiation exposure. Laboratory and clinical research is necessary to investigate methods that reduce radiation exposures during VCUG, and current research is presented here. (orig.)

  18. Treatment of two-phase turbulent mixing, void drift and diversion cross-flow in a hydraulically non-equilibrium subchannel flow

    International Nuclear Information System (INIS)

    Sadatomi, Michio; Kawahara, Akimaro; Sato, Yoshifusa

    1997-01-01

    A practical way of treating two-phase turbulent mixing, void drift and diversion cross-flow on a subchannel analysis has been studied. Experimental data on the axial variations of subchannel flow parameters, such as flow rates of both phases, pressure, void fraction and concentrations of tracers for both phases, were obtained for hydraulically non-equilibrium two-phase subchannel flows in a vertical multiple channel made up of two-identical circular subchannels. These data were analyzed on the basis of the following four assumptions: (1) the turbulent mixing is independent of both the void drift and the diversion cross-flow; (2) the turbulent mixing rates of both phases in a non-equilibrium flow are equal to those in the equilibrium flow that the flow under consideration will attain; (3) the void drift is independent of the diversion cross-flow; and (4) the lateral gas velocity due to the void drift is predictable from Lahey et al.'s void settling model even in a non-equilibrium flow with the diversion cross-flow. The validity of the assumptions (1) and (2) was assured by comparing the concentration distribution data with the calculations, and that of the assumptions (3) and (4) by analyzing the data on flow rates of both phases, pressure and void fraction (author)

  19. A NEW STATISTICAL PERSPECTIVE TO THE COSMIC VOID DISTRIBUTION

    International Nuclear Information System (INIS)

    Pycke, J-R; Russell, E.

    2016-01-01

    In this study, we obtain the size distribution of voids as a three-parameter redshift-independent log-normal void probability function (VPF) directly from the Cosmic Void Catalog (CVC). Although many statistical models of void distributions are based on the counts in randomly placed cells, the log-normal VPF that we obtain here is independent of the shape of the voids due to the parameter-free void finder of the CVC. We use three void populations drawn from the CVC generated by the Halo Occupation Distribution (HOD) Mocks, which are tuned to three mock SDSS samples to investigate the void distribution statistically and to investigate the effects of the environments on the size distribution. As a result, it is shown that void size distributions obtained from the HOD Mock samples are satisfied by the three-parameter log-normal distribution. In addition, we find that there may be a relation between the hierarchical formation, skewness, and kurtosis of the log-normal distribution for each catalog. We also show that the shape of the three-parameter distribution from the samples is strikingly similar to the galaxy log-normal mass distribution obtained from numerical studies. This similarity between void size and galaxy mass distributions may possibly indicate evidence of nonlinear mechanisms affecting both voids and galaxies, such as large-scale accretion and tidal effects. Considering the fact that in this study, all voids are generated by galaxy mocks and show hierarchical structures in different levels, it may be possible that the same nonlinear mechanisms of mass distribution affect the void size distribution.

  20. Fractional finite Fourier transform.

    Science.gov (United States)

    Khare, Kedar; George, Nicholas

    2004-07-01

    We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.

  1. Relationship between voided volume and the urge to void among patients with lower urinary tract symptoms.

    Science.gov (United States)

    Blaivas, Jerry G; Tsui, Johnson F; Amirian, Michael; Ranasinghe, Buddima; Weiss, Jeffrey P; Haukka, Jari; Tikkinen, Kari A O

    2014-12-01

    The aim of this study was to explore the relationship between voided volume (VV) and urge to void among patients with lower urinary tract symptoms. Consecutive adult patients (aged 23-90 years) were enrolled, and completed a 24 h bladder diary and the Urgency Perception Scale (UPS). Patients were categorized as urgency or non-urgency based on the Overactive Bladder Symptom Score. The relationship between UPS and VV (based on the bladder diary) was analyzed by Spearman's rho and proportional odds model. In total, 1265 micturitions were evaluated in 117 individuals (41 men, 76 women; 56 individuals in the urgency and 61 in the non-urgency group). The mean (± SD) VV and UPS were 192 ± 127 ml and 2.4 ± 1.2 ml in the urgency group and 173 ± 124 ml and 1.7 ± 1.1 ml in the non-urgency group, respectively. Spearman's rho (between UPS and VV) was 0.21 [95% confidence interval (CI) 0.13-029, p < 0.001] for the urgency group, 0.32 (95% CI 0.25-0.39, p < 0.001) for the non-urgency group, and 0.28 (95% CI 0.23-0.33, p < 0.001) for the total cohort. Urgency patients had higher UPS [odds ratio (OR) 3.1, 95% CI 2.5-3.8]. Overall, each additional 50 ml VV increased the odds of having a higher UPS with OR 1.2 (95% CI 1.2-1.3). The relationship between VV and UPS score was similar in both groups (p = 0.548 for interaction). Although urgency patients void with a higher UPS score, among both urgency and non-urgency patients there is only a weak correlation between VV and the urge to void. This suggests that there are factors other than VV that cause the urge to void.

  2. Effect of helium on void formation in nickel

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1977-01-01

    This study examines the influence of helium on void formation in self-ion irradiated nickel. Helium was injected either simultaneously with, or prior to, the self-ion bombardment. The void microstructure was characterized as a function of helium deposition rate and the total heavy-ion dose. In particular, at 575 0 C and 5 X 10 -3 displacements per atom per second the void density is found to be proportional to the helium deposition rate. The dose dependence of swelling is initially dominated by helium driven nucleation. The void density rapidly saturates after which swelling continues with increasing dose only from void growth. It is concluded that helium promotes void nucleation in nickel with either helium implantation technique, pre-injection or simultaneous injection. Qualitative differences, however, are recognized. (Auth.)

  3. Void migration, coalescence and swelling in fusion materials

    International Nuclear Information System (INIS)

    Cottrell, G.A.

    2003-01-01

    A recent analysis of the migration of voids and bubbles, produced in neutron irradiated fusion materials, is outlined. The migration, brought about by thermal hopping of atoms on the surface of a void, is normally a random Brownian motion but, in a temperature gradient, can be slightly biassed up the gradient. Two effects of such migrations are the transport of voids and trapped transmutation helium atoms to grain boundaries, where embrittlement may result; and the coalescence of migrating voids, which reduces the number of non-dislocation sites available for the capture of knock-on point defects and thereby enables the dislocation bias process to maintain void swelling. A selection of candidate fusion power plant armour and structural metals have been analysed. The metals most resistant to void migration and its effects are tungsten and molybdenum. Steel and beryllium are least so and vanadium is intermediate

  4. Modulation instability of ion thermal waves in a pair-ion plasma containing charged dust impurities

    International Nuclear Information System (INIS)

    Sabry, R.

    2008-01-01

    Modulation instability of ion thermal waves (ITWs) is investigated in a plasma composed of positive and negative ions as well as a fraction of stationary charged (positive or negative) dust impurities. For this purpose, a linear dispersion relation and a nonlinear Schroedinger equation are derived. The latter admits localized envelope solitary wave solutions of bright (pulses) and dark (holes, voids) type. The envelope soliton depends on the intrinsic plasma parameters. It is found that modulation instability of ITWs is significantly affected by the presence of positively/negatively charged dust grains. The findings of this investigation should be useful in understanding the stable electrostatic wave packet acceleration mechanisms in pair-ion plasma, and also enhances our knowledge on the occurrence of instability associated to the existence of charged dust impurities in pair-ion plasmas. Our results should be of relevance for laboratory plasmas.

  5. Dependence of calculated void reactivity on film-boiling representation

    International Nuclear Information System (INIS)

    Whitlock, J.; Garland, W.

    1992-01-01

    Partial voiding of a fuel channel can lead to complicated neutronic analysis, because of highly nonuniform spatial distributions. An investigation of the distribution dependence of void reactivity in a Canada deuterium uranium (CANDU) lattice, specifically in the regime of film boiling, was done. Although the core is not expected to be critical at the time of sheath dryout, this study augments current knowledge of void reactivity in this type of lattice

  6. Nucleation and growth of voids by radiation. Pt. 2

    International Nuclear Information System (INIS)

    Mayer, R.M.; Brown, L.M.

    1980-01-01

    The original model of Brown, Kelly and Mayer [1] for the nucleation of interstitial loops has been extended to take into account the following: (i) mobility of the vacancies, (ii) generation and migration of gas atoms during irradiation, (iii) nucleation and growth of voids, and (iv) vacancy emission from voids and clusters at high temperatures. Using chemicalrate equations, additional expressions are formulated for the nucleation and growth of vacancy loops and voids. (orig.)

  7. Dislocation and void segregation in copper during neutron irradiation

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Leffers, Torben; Horsewell, Andy

    1986-01-01

    ); the irradiation experiments were carried out at 250 degree C. The irradiated specimens were examined by transmission electron microscopy. At both doses, the irradiation-induced structure was found to be highly segregated; the dislocation loops and segments were present in the form of irregular walls and the voids...... density, the void swelling rate was very high (approximately 2. 5% per dpa). The implications of the segregated distribution of sinks for void formation and growth are briefly discussed....

  8. DETECTION OF MOLECULAR GAS IN VOID GALAXIES: IMPLICATIONS FOR STAR FORMATION IN ISOLATED ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Das, M.; Honey, M. [Indian Institute of Astrophysics, Bangalore (India); Saito, T. [Department of Astronomy, Graduate school of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-0033 (Japan); Iono, D. [Chile Observatory, NAOJ (Japan); Ramya, S., E-mail: mousumi@iiap.res.in [Shanghai Astronomical Observatory, Shanghai (China)

    2015-12-10

    We present the detection of molecular gas from galaxies located in nearby voids using the CO(1–0) line emission as a tracer. The observations were performed using the 45 m single dish radio telescope of the Nobeyama Radio Observatory. Void galaxies lie in the most underdense parts of our universe and a significant fraction of them are gas rich, late-type spiral galaxies. Although isolated, they have ongoing star formation but appear to be slowly evolving compared to galaxies in denser environments. Not much is known about their star formation properties or cold gas content. In this study, we searched for molecular gas in five void galaxies. The galaxies were selected based on their relatively high IRAS fluxes or Hα line luminosities, both of which signify ongoing star formation. All five galaxies appear to be isolated and two lie within the Bootes void. We detected CO(1–0) emission from four of the five galaxies in our sample and their molecular gas masses lie between 10{sup 8} and 10{sup 9} M{sub ⊙}. We conducted follow-up Hα imaging observations of three detected galaxies using the Himalayan Chandra Telescope and determined their star formation rates (SFRs) from their Hα fluxes. The SFR varies from 0.2 to 1 M{sub ⊙} yr{sup −1}; which is similar to that observed in local galaxies. Our study indicates that although void galaxies reside in underdense regions, their disks contain molecular gas and have SFRs similar to galaxies in denser environments. We discuss the implications of our results.

  9. Void shrinkage in stainless steel during high energy electron irradiation

    International Nuclear Information System (INIS)

    Singh, B.N.; Foreman, A.J.E.

    1976-03-01

    During irradiation of thin foils of an austenitic stainless steel in a high voltage electron microscope, steadily growing voids have been observed to suddenly shrink and disappear at the irradiation temperature of 650 0 Cthe phenomenon has been observed in specimens both with and withoutimplanted helium. Possible mechanisms for void shrinkage during irradiation are considered. It is suggested that the dislocation-pipe-diffusion of vacancies from or of self-interstitial atoms to the voids can explain the shrinkage behaviour of voids observed during our experiments. (author)

  10. How to perform the perfect voiding cystourethrogram

    International Nuclear Information System (INIS)

    Agrawalla, Seema; Pearce, Rowena; Goodman, T.Robin

    2004-01-01

    The voiding cystourethrogram (VCUG) examination is a difficult investigation to perform and is a stressful experience for patients and their parents, as well as for the radiologists, technicians and paediatric radiology nurses involved in the examination. Despite the VCUG being one of the most commonly performed fluoroscopic procedures in paediatric radiology practice, there is no general consensus as to the best way to perform this investigation. This is particularly concerning when one considers the potentially high gonadal radiation dose children may receive. Because of this, we have undertaken a comprehensive literature review of various aspects of the test in order to determine the best way to perform the VCUG in modern paediatric radiology practice. (orig.)

  11. Effect of metallurgical variables on void swelling

    International Nuclear Information System (INIS)

    Johnston, W.G.; Lauritzen, T.; Rosolowski, J.H.; Turkalo, A.M.

    1976-01-01

    The mechanism of void swelling is reviewed briefly and the anticipated effects of metallurgical variables are described. Experimental results showing the effects of metallurgical variables are reviewed, most of the work being done by simulation methods employing charged particle bombardments to simulate reactor damage. Although the early emphasis was on structural variables such as grain size, cold work and precipitates to control swelling, it now seems that the practical reduction of swelling will be achieved by modifying alloy composition. Void swelling is strongly influenced by the relative amounts of Fe, Cr, and Ni in an alloy; the amount of swelling can be varied by three orders of magnitude by changing the relative amounts of the three elements in an austenitic ternary alloy. The effect of composition on swelling of a simple ferritic alloy will also be described. The swelling of a simple austenitic alloy of Fe, Cr, and Ni can be reduced by certain minor element additions. The most effective swelling inhibitors are Si, Ti, Zr, and Nb, and combinations of Si and Ti are synergetic. Swelling reductions of two orders of magnitude have been achieved with combined additions. Predictions of swelling in commercial solid solution alloys are made on the basis of the present knowledge of the effects of major composition and minor element additions. The predictions agree with experimental results. For more complex commercial alloys, predictions are made for the effects on swelling of heat treatments that cause changes in matrix composition. In some cases, heat treatment is expected to change the peak swelling by more than a factor of ten, and to shift the peak swelling temperature by almost 100 0 C. Sensitivity of swelling to detailed matrix composition places emphasis on the need for developing understanding of the stability of structure and local composition in an irradiation environment

  12. Post Operative Voiding Efficacy after Anterior Colporrhaphy

    Directory of Open Access Journals (Sweden)

    Behnoosh Miladpoor

    2010-02-01

    Full Text Available The aim of this study was to determine the most effective and suitable time to remove the urinary catheter (Foley after anterior and posterior colporrhaphy surgery. Patients who experience anterior Colporrhaphy operation for genuine stress incontinency or pelvic organ prolapsed will have post operative voiding dysfunction. These patients need postoperative drainage. One of the methods preferred for this purpose is to apply Foley Catheter, but there is no particular regimen available for the exact time of catheter removal in these patients. We have tried to find out the best time to remove Foley catheter after which the repeated Foley catheter is not required or minimized. One hundred and eighty nine patients who have been undergone Colporrhaphy have been selected randomly and divided into three groups' as 1, 2 and 4 days of catheter removal. The number of patients in each group was 62, 63 and 64 respectively. In all three groups, before removing urinary catheter, it was clamped every 4 hrs, for 3 times. After removing of Foley, the patients were guided for urination; the voiding and residual volume was measured. In the patients with an increase of residual volume, the  repeated Foley requirement was increased. However,  5.6 % of the patients with residual volume of ≤ 33 percent and 23.9% of the patients with residual volume between 33 to 68 percent, and finally  64.8% of the patients with residual volume of ≥ 68% had repeated Foley insertion. When considering the number of days, 85, 65 and 35.7 percent of the patients needed repeated Foley after 1, 2, and 4 days of catheter removal respectively. Interestingly, in the third group ( 4 days of the catheter removal with residual volume of ≤ 33% the repeated Foley requirement was nil, with no increase risk of urinary infection. We suggest that the best time to remove the urinary Foley catheter after anterior and posterior Colporrhaphy is the day four.

  13. FRACTIONAL BANKING

    OpenAIRE

    Maria Klimikova

    2010-01-01

    Understanding the reasons of the present financial problems lies In understanding the substance of fractional reserve banking. The substance of fractional banking is in lending more money than the bankers have. Banking of partial reserves is an alternative form which links deposit banking and credit banking. Fractional banking is causing many unfavorable economic impacts in the worldwide system, specifically an inflation.

  14. Implementation of drift-flux correlations in ARTIST and its assessment in comparison with THETIS void distribution

    International Nuclear Information System (INIS)

    Yun, B. J.; Kim, H. C.; Moon, S. K.; Lee, W. J.

    1998-01-01

    Non-homogeneous, non-equilibrium drift-flux model was developed in ARTIST code to enhance capability of predicting two-phase flow void distribution at low pressure and low flow conditions. The governing equations of ARTIST code consist of three continuity equations (mixture, liquid, and noncondensibles), two energy equations (gas and mixture) and one mixture momentum equation constituted with the drift-flux model. In order to provide the Co and the Vgj of drift-flux model, four drift-flux correlations, which are Chexal-Lellouche, Ohkawa-Lahey, GE Ramp and Dix models, are implemented. In order to evaluate the accuracy of the drift flux correlations, the steady state void distributions of the THETIS boil-off tests are simulated. The results show that the drift-flux model is quite satisfactory in terms of accuracy and computational efficiency. Among the four drift-flux correlations, the Chexal-Lellouche model showed wide applicability in the prediction of void fraction from low to high pressure condition. Especially, the axial void distribution at low pressure and low flow is far better than those of both the two-fluid model of RELAP5/MOD3 code and the homogeneous model. Thus, the drift-flux model of the ARTIST code can be used as an efficient tool in predicting the void distribution of two-phase flow at low pressure and low flow conditions

  15. Determination of the equivalent intergranular void ratio - Application to the instability and the critical state of silty sand

    Directory of Open Access Journals (Sweden)

    Nguyen Trung-Kien

    2017-01-01

    Full Text Available This paper presents an experimental study of mechanical response of natural Camargue silty sand. The analysis of test results used the equivalent intergranular void ratio instead of the global void ratio. The calculation of equivalent intergranular void ratio requires the determination of parameter b which represents, physically, the fraction of active fines participating on the chain forces network, hence the strength of the soil. A new formula for determining the parameter b by using an approach based on the coordination number distribution and probability calculation is proposed. The validation of the developed relationship was done through back-analysis of published datasets in literature on the effect of fines content on silty sand behavior. It is shown that the equivalent intergranular void ratio calculated with the b value obtained by the new formula is able to provide strong correlation to not only the critical state of but also the onset of instability of various silty sands, in different terms as peak deviator stress, peak stress ratio or cyclic resistance. Therefore, it is suggested that the use of the equivalent void ratio concept and the new b calculating formula is highly desirable in predicting of the silty sand behavior.

  16. Three-dimensional simulations of void collapse in energetic materials

    Science.gov (United States)

    Rai, Nirmal Kumar; Udaykumar, H. S.

    2018-03-01

    The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.

  17. Void worths in subcritical cores cooled by lead-bismuth

    International Nuclear Information System (INIS)

    Wallenius, Janne; Tucek, Kamil; Gudowski, Waclaw

    2001-01-01

    The introduction lead-bismuth coolant in accelerator driven transmutation systems (ADS) was: good neutron economy (higher source efficiency); natural circulation possible (decay heat removal); synergy with spallation target (simplified coolant management); high temperature of boiling (larger overpower margin); smaller void worths (operation at higher k-values). This paper deals with different aspects of the void worths in JAERI ADS

  18. Voids and the Cosmic Web: cosmic depression & spatial complexity

    NARCIS (Netherlands)

    van de Weygaert, Rien; Shandarin, S.; Saar, E.; Einasto, J.

    2016-01-01

    Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe

  19. A variational void coalescence model for ductile metals

    KAUST Repository

    Siddiq, Amir; Arciniega, Roman; El Sayed, Tamer

    2011-01-01

    We present a variational void coalescence model that includes all the essential ingredients of failure in ductile porous metals. The model is an extension of the variational void growth model by Weinberg et al. (Comput Mech 37:142-152, 2006

  20. Theory of void swelling, irradiation creep and growth

    International Nuclear Information System (INIS)

    Wood, M.H.; Bullough, R.; Hayns, M.R.

    Recent progress in our understanding of the fundamental mechanisms involved in swelling, creep and growth of materials subjected to irradiation is reviewed. The topics discussed are: the sink types and their strengths in the lossy continuum; swelling and void distribution analysis, including recent work on void nucleation; and, irradiation creep and growth of zirconium and zircaloy are taken as an example

  1. Void nucleation in spheroidized steels during tensile deformation

    International Nuclear Information System (INIS)

    Fisher, J.R. Jr.

    1980-04-01

    An investigation was conducted to determine the effects of various mechanical and material parameters on void formation at cementite particles in axisymmetric tensile specimens of spheroidized plain carbon steels. Desired microstructures for each of three steel types were obtained. Observations of void morphology with respect to various microstructural features were made using optical and scanning electron microscopy

  2. Fractional thermoelasticity

    CERN Document Server

    Povstenko, Yuriy

    2015-01-01

    This book is devoted to fractional thermoelasticity, i.e. thermoelasticity based on the heat conduction equation with differential operators of fractional order. Readers will discover how time-fractional differential operators describe memory effects and space-fractional differential operators deal with the long-range interaction. Fractional calculus, generalized Fourier law, axisymmetric and central symmetric problems and many relevant equations are featured in the book. The latest developments in the field are included and the reader is brought up to date with current research.  The book contains a large number of figures, to show the characteristic features of temperature and stress distributions and to represent the whole spectrum of order of fractional operators.  This work presents a picture of the state-of-the-art of fractional thermoelasticity and is suitable for specialists in applied mathematics, physics, geophysics, elasticity, thermoelasticity and engineering sciences. Corresponding sections of ...

  3. Alignment of galaxy spins in the vicinity of voids

    International Nuclear Information System (INIS)

    Slosar, Anže; White, Martin

    2009-01-01

    We provide limits on the alignment of galaxy orientations with the direction to the void center for galaxies lying near the edges of voids. We locate spherical voids in volume limited samples of galaxies from the Sloan Digital Sky Survey using the HB inspired void finder and investigate the orientation of (color selected) spiral galaxies that are nearly edge-on or face-on. In contrast with previous literature, we find no statistical evidence for departure from random orientations. Expressed in terms of the parameter c, introduced by Lee and Pen to describe the strength of such an alignment, we find that c0.11(0.13) at 95% (99.7%) confidence limit within a context of a toy model that assumes a perfectly spherical voids with sharp boundaries

  4. Stability of void lattices under irradiation: a kinetic model

    International Nuclear Information System (INIS)

    Benoist, P.; Martin, G.

    1975-01-01

    Voids are imbedded in a homogeneous medium where point defects are uniformly created and annihilated. As shown by a perturbation calculation, the proportion of the defects which are lost on the cavities goes through a maximum, when the voids are arranged on a translation lattice. If a void is displaced from its lattice site, its growth rate becomes anisotropic and is larger in the direction of the vacant site. The relative efficiency of BCC versus FCC void lattices for the capture of point defects is shown to depend on the relaxation length of the point defects in the surrounding medium. It is shown that the rate of energy dissipation in the crystal under irradiation is maximum when the voids are ordered on the appropriate lattice

  5. Stability of void lattices under irradiation: a kinetic model

    International Nuclear Information System (INIS)

    Benoist, P.; Martin, G.

    1975-01-01

    Voids are imbedded in a homogeneous medium where point defects are uniformly created and annihilated. As shown by a perturbation calculation, the proportion of the defects which are lost on the cavities goes through a maximum, when the voids are arranged on a translation lattice. If a void is displaced from its lattice site, its growth the rate becomes anisotropic and is larger in the direction of the vacant site. The relative efficiency of BCC versus FCC void lattices for the capture of point defects is shown to depend on the relaxation length of the point defects in the surrounding medium. It is shown that the rate of energy dissipation in the crystal under irradiation is maximum when the voids are ordered on the appropriate lattice [fr

  6. International Benchmark on Pressurised Water Reactor Sub-channel and Bundle Tests. Volume II: Benchmark Results of Phase I: Void Distribution

    International Nuclear Information System (INIS)

    Rubin, Adam; Avramova, Maria; Velazquez-Lozada, Alexander

    2016-03-01

    This report summarised the first phase of the Nuclear Energy Agency (NEA) and the US Nuclear Regulatory Commission Benchmark based on NUPEC PWR Sub-channel and Bundle Tests (PSBT), which was intended to provide data for the verification of void distribution models in participants' codes. This phase was composed of four exercises; Exercise 1: steady-state single sub-channel benchmark, Exercise 2: steady-state rod bundle benchmark, Exercise 3: transient rod bundle benchmark and Exercise 4: a pressure drop benchmark. The experimental data provided to the participants of this benchmark is from a series of void measurement tests using full-size mock-up tests for both Boiling Water Reactors (BWRs) and Pressurised Water Reactors (PWRs). These tests were performed from 1987 to 1995 by the Nuclear Power Engineering Corporation (NUPEC) in Japan and made available by the Japan Nuclear Energy Safety Organisation (JNES) for the purposes of this benchmark, which was organised by Pennsylvania State University. Twenty-one institutions from nine countries participated in this benchmark. Seventeen different computer codes were used in Exercises 1, 2, 3 and 4. Among the computer codes were porous media, sub-channel, systems thermal-hydraulic code and Computational Fluid Dynamics (CFD) codes. It was observed that the codes tended to overpredict the thermal equilibrium quality at lower elevations and under predict it at higher elevations. There was also a tendency to overpredict void fraction at lower elevations and underpredict it at high elevations for the bundle test cases. The overprediction of void fraction at low elevations is likely caused by the x-ray densitometer measurement method used. Under sub-cooled boiling conditions, the voids accumulate at heated surfaces (and are therefore not seen in the centre of the sub-channel, where the measurements are being taken), so the experimentally-determined void fractions will be lower than the actual void fraction. Some of the best

  7. Measurements of the S-wave fraction in B{sup 0}→K{sup +}π{sup −}μ{sup +}μ{sup −} decays and the B{sup 0}→K{sup ∗}(892){sup 0}μ{sup +}μ{sup −} differential branching fraction

    Energy Technology Data Exchange (ETDEWEB)

    Aaij, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Adeva, B. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Adinolfi, M. [H.H. Wills Physics Laboratory, University of Bristol, Bristol (United Kingdom); Ajaltouni, Z. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand (France); Collaboration: The LHCb collaboration; and others

    2016-11-08

    A measurement of the differential branching fraction of the decay B{sup 0}→K{sup ∗}(892){sup 0}μ{sup +}μ{sup −} is presented together with a determination of the S-wave fraction of the K{sup +}π{sup −} system in the decay B{sup 0}→K{sup +}π{sup −}μ{sup +}μ{sup −}. The analysis is based on pp-collision data corresponding to an integrated luminosity of 3 fb{sup −1} collected with the LHCb experiment. The measurements are made in bins of the invariant mass squared of the dimuon system, q{sup 2}. Precise theoretical predictions for the differential branching fraction of B{sup 0}→K{sup ∗}(892){sup 0}μ{sup +}μ{sup −} decays are available for the q{sup 2} region 1.1wave fraction of the K{sup +}π{sup −} system in B{sup 0}→K{sup +}π{sup −}μ{sup +}μ{sup −} decays is found to be F{sub S}=0.101±0.017(stat)±0.009(syst), and the differential branching fraction of B{sup 0}→K{sup ∗}(892){sup 0}μ{sup +}μ{sup −} decays is determined to be dB/dq{sup 2}=(0.392 {sub −0.019} {sup +0.020}(stat)±0.010(syst)±0.027(norm))×10{sup −7}c{sup 4}/GeV{sup 2}. The differential branching fraction measurements presented are the most precise to date and are found to be in agreement with Standard Model predictions.

  8. Separation of nucleation and growth of voids during tensile deformation of a dual phase steel using synchrotron microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Requena, Guillermo, E-mail: guillermo.requena@tuwien.ac.at [INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Maire, Eric; Leguen, Claire [INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Thuillier, Sandrine [LIMATB, Université de Bretagne-Sud, rue de Saint Maudé, BP 92116, 56321 Lorient Cedex (France)

    2014-01-01

    The damage evolution in a DP980 dual phase steel is followed in situ by synchrotron microtomography during tensile deformation focusing on the effect that the triaxiality, induced by different sample geometries, exerts on damage formation and damage evolution. The growth of existing voids is separated from the voids nucleated between consecutive deformation steps using three-dimensional image analysis. The experimental results are correlated with those obtained by finite element analysis using a Gurson–Tvergaard–Needleman framework with a Chu and Needleman formulation to introduce the effect of nucleation of cavities. A relatively simple way to determine the nucleation parameters is proposed based on the volume of nucleated voids obtained from the tomographies. The evolution of the total volume fraction of cavities obtained from the calculations shows a good agreement with the experiments for the notched samples and reflects the effect of triaxiality on damage. Contrarily to experiments, the calculated accumulated volume fraction of nucleated voids does not reflect the effect of triaxiality suggesting the necessity to implement this parameter in the nucleation model.

  9. Diastolic Function in Normal Sinus Rhythm vs. Chronic Atrial Fibrillation: Comparison by Fractionation of E-wave Deceleration Time into Stiffness and Relaxation Components.

    Science.gov (United States)

    Mossahebi, Sina; Kovács, Sándor J

    2014-01-01

    Although the electrophysiologic derangement responsible for atrial fibrillation (AF) has been elucidated, how AF remodels the ventricular chamber and affects diastolic function (DF) has not been fully characterized. The previously validated Parametrized Diastolic Filling (PDF) formalism models suction-initiated filling kinematically and generates error-minimized fits to E-wave contours using unique load (x o ), relaxation (c), and stiffness (k) parameters. It predicts that E-wave deceleration time (DT) is a function of both stiffness and relaxation. Ascribing DT s to stiffness and DTr to relaxation such that DT=DT s +DT r is legitimate because of causality and their predicted and observed high correlation (r=0.82 and r=0.94) with simultaneous (diastatic) chamber stiffness (dP/dV) and isovolumic relaxation (tau), respectively. We analyzed simultaneous echocardiography-cardiac catheterization data and compared 16 age matched, chronic AF subjects to 16, normal sinus rhythm (NSR) subjects (650 beats). All subjects had diastatic intervals. Conventional DF parameters (DT, AT, E peak , E dur , E-VTI, E/E') and E-wave derived PDF parameters (c, k, DT s , DT r ) were compared. Total DT and DT s , DT r in AF were shorter than in NSR (pwave DT in AF is due to stiffness compared to NSR. By trending individual subjects, this method can elucidate and characterize the beneficial or adverse long-term effects on chamber remodeling due to alternative therapies in terms of chamber stiffness and relaxation.

  10. Determination of water-soluble and insoluble (dilute-HCl-extractable) fractions of Cd, Pb and Cu in Antarctic aerosol by square wave anodic stripping voltammetry: distribution and summer seasonal evolution at Terra Nova Bay (Victoria Land)

    Energy Technology Data Exchange (ETDEWEB)

    Annibaldi, A.; Truzzi, C.; Illuminati, S.; Bassotti, E.; Scarponi, G. [Polytechnic University of Marche - Ancona, Department of Marine Science, Ancona (Italy)

    2007-02-15

    Eight PM10 aerosol samples were collected in the vicinity of the ''Mario Zucchelli'' Italian Antarctic Station (formerly Terra Nova Bay Station) during the 2000-2001 austral summer using a high-volume sampler and precleaned cellulose filters. The aerosol mass was determined by differential weighing of filters carried out in a clean chemistry laboratory under controlled temperature and humidity. A two-step sequential extraction procedure was used to separate the water-soluble and the insoluble (dilute-HCl-extractable) fractions. Cd, Pb and Cu were determined in the two fractions using an ultrasensitive square wave anodic stripping voltammetric (SWASV) procedure set up for and applied to aerosol samples for the first time. Total extractable metals showed maxima at midsummer for Cd and Pb and a less clear trend for Cu. In particular, particulate metal concentrations ranged as follows: Cd 0.84-9.2 {mu}g g{sup -1} (average 4.7 {mu}g g{sup -1}), Pb 13.2-81 {mu}g g{sup -1} (average 33 {mu}g g{sup -1}), Cu 126-628 {mu}g g{sup -1} (average 378 {mu}g g{sup -1}). In terms of atmospheric concentration, the values were: Cd 0.55-6.3 pg m{sup -3} (average 3.4 pg m{sup -3}), Pb 8.7-48 pg m{sup -3} (average 24 pg m{sup -3}), Cu 75-365 pg m{sup -3} (average 266 pg m{sup -3}). At the beginning of the season the three metals appear widely distributed in the insoluble (HCl-extractable) fraction (higher proportions for Cd and Pb, 90-100%, and lower for Cu, 70-90%) with maxima in the second half of December. The soluble fraction then increases, and at the end of the season Cd and Pb are approximately equidistributed between the two fractions, while for Cu the soluble fraction reaches its maximum level of 36%. Practically negligible contributions are estimated for crustal and sea-spray sources. Low but significant volcanic contributions are estimated for Cd and Pb ({proportional_to}10% and {proportional_to}5%, respectively), while there is an evident although not

  11. Radionuclide voiding cystography in intrarenal reflux detection

    International Nuclear Information System (INIS)

    Rizzoni, G.; Perale, R.; Bui, F.; Pitter, M.; Pavanello, L.; Boscolo, R.; Passerini Glazel, G.; Macri, C.

    1986-01-01

    In order to evaluate the possibility of detecting intra-renal reflux (IRR) with a more sensitive procedure, 48 children with recurrent urinary tract infections underwent intravenous urography (IVU) and voiding cystourethrogram (VCU) using a solution containing contrast medium and sup(99m)Tc-sulfur colloid particles which are known to persist in the renal parenchyma for a long time. Scintigraphic images were taken at 5 and 20 hours after VCU. 18 children had no vesico-ureteral reflux, 11 showed unilateral and 19 bilateral VUR, which was therefore present in 49 renal units. Among the 49 renal refluxing units (RRUs) IRR was detected radiologically in 8; of these isotopic activity in the renal area was present in all 6 RRUs who were examined at 20 hours. Of the remaining 41 RRUs with no radiologically detectable IRR 24 were evaluated at 20 hours and 5 (21%) showed renal radioactivity. Renal scars were significantly more frequent in kidneys with radioisotopic activity at 20 hours. The results of this study indicate that radionuclide cystography using sup(99m)Tc-sulfur colloid is a reliable procedure for demonstrating IRR, and to this end is more sensitive than X-ray VCU. Radionuclide cystography with sulfur colloid particles should therefore be considered a simple and useful complementary procedure, which is more sensitive than X-ray VCU in the diagnosis and follow-up of IRR

  12. Passive monitoring for near surface void detection using traffic as a seismic source

    Science.gov (United States)

    Zhao, Y.; Kuzma, H. A.; Rector, J.; Nazari, S.

    2009-12-01

    In this poster we present preliminary results based on our several field experiments in which we study seismic detection of voids using a passive array of surface geophones. The source of seismic excitation is vehicle traffic on nearby roads, which we model as a continuous line source of seismic energy. Our passive seismic technique is based on cross-correlation of surface wave fields and studying the resulting power spectra, looking for "shadows" caused by the scattering effect of a void. High frequency noise masks this effect in the time domain, so it is difficult to see on conventional traces. Our technique does not rely on phase distortions caused by small voids because they are generally too tiny to measure. Unlike traditional impulsive seismic sources which generate highly coherent broadband signals, perfect for resolving phase but too weak for resolving amplitude, vehicle traffic affords a high power signal a frequency range which is optimal for finding shallow structures. Our technique results in clear detections of an abandoned railroad tunnel and a septic tank. The ultimate goal of this project is to develop a technology for the simultaneous imaging of shallow underground structures and traffic monitoring near these structures.

  13. Sensitivity analysis of an impedance void distribution in annular and bubbly flow: A theoretical study

    International Nuclear Information System (INIS)

    Lemonnier, H.; Nakach, R.; Favreau, C.; Selmer-Olsen, S.

    1989-01-01

    Impedance void meters are frequently used to measure area-averaged void fraction in pipes. This is primarily due to two reasons: first, this method is non-intrusive since the measurement can be done from electrodes flush mounted in the walls, and second, the signal processing equipment is simple. Impedance probes may be calibrated by using a pressure drop measurement or quick closing valves system and low attention is generally paid to void distribution effects. It can be proved that in annular flow, the departure from radial symmetry has a strong influence on the measured mean film thickness. This can be easily demonstrated by solving the Laplace equation for the electrical potential by simple analytical methods. When some spatial symmetry conditions are encountered, it is possible to calculate directly the conductance of the two-phase medium without calculating completely the potential. A solution of this problem by using the separation of variable technique is also presented. There, the main difficulty is due to the mixity of the boundary conditions: the boundary condition is both Neumann and Dirichlet type on the same coordinate curve. This formulation leads to a non-separable problem which is solved by truncating an infinite algebraic set of linear equations. (orig.)

  14. Influence of void effects on reactivity of coupled fast-thermal system HERBE

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milovanovic, S.; Milovanovic, T.; Cuknic, O.

    1997-01-01

    Coupled fast-thermal system HERBE at the experimental zero power heavy water reactor RB is a system with the significant effects of the neutron leakage and neutron absorption. Presence of a coolant void introduces a new structure in an extremely heterogeneous core. In those conditions satisfactory results of the calculation are acquired only using specified space-energy homogenization procedure. In order to analyze transient appearances and accidental cases of the reactor systems, a procedure for modeling of influence of moderator and coolant loss on reactivity ('void effect') is developed. Reduction of the moderator volume fraction in some fuel channels due to air gaps or steam generation during the accidental moderator boiling, restricts validity of the diffusion approximation in the reactor calculations. In cases of high neutron flux gradients, which are consequence of high neutron absorption, application of diffusion approximation is questionable too. The problem may be solved using transport or Monte Carlo methods, but they are not acceptable in the routine applications. Applying new techniques based on space-energy core homogenization, such as the SPH method or the discontinuity factor method, diffusion calculations become acceptable. Calculations based on the described model show that loss of part of moderator medium introduce negative reactivity in the HERBE system. Calculated local void reactivity coefficients are used in safety analysis of hypothetical accidents

  15. Partial discharges within two spherical voids in an epoxy resin

    International Nuclear Information System (INIS)

    Illias, H A; Mokhlis, H; Tunio, M A; Chen, G; Bakar, A H A

    2013-01-01

    A void in a dielectric insulation material may exist due to imperfection in the insulation manufacturing or long term stressing. Voids have been identified as one of the common sources of partial discharge (PD) activity within an insulation system, such as in cable insulation and power transformers. Therefore, it is important to study PD phenomenon within void cavities in insulation. In this work, a model of PD activity within two spherical voids in a homogeneous dielectric material has been developed using finite element analysis software to study the parameters affecting PD behaviour. The parameters that have been taken into account are the void surface conductivity, electron generation rate and the inception and extinction fields. Measurements of PD activity within two spherical voids in an epoxy resin under ac sinusoidal applied voltage have also been performed. The simulation results have been compared with the measurement data to validate the model and to identify the parameters affecting PD behaviour. Comparison between measurements of PD activity within single and two voids in a dielectric material have also been made to observe the difference of the results under both conditions. (paper)

  16. The association of age of toilet training and dysfunctional voiding

    Directory of Open Access Journals (Sweden)

    Hodges SJ

    2014-10-01

    Full Text Available Steve J Hodges, Kyle A Richards, Ilya Gorbachinsky, L Spencer KraneDepartment of Urology, Wake Forest University, Winston-Salem, NC, USAObjective: To determine whether age of toilet training is associated with dysfunctional voiding in children.Materials and methods: We compared patients referred to the urologic clinics for voiding dysfunction with age-matched controls without urinary complaints. Characteristics including age and reason for toilet training, method of training, and encopresis or constipation were compared between both groups.Results: Initiation of toilet training prior to 24 months and later than 36 months of age were associated with dysfunctional voiding. However, dysfunctional voiding due to late toilet training was also associated with constipation.Conclusion: Dysfunctional voiding may be due to delayed emptying of the bowel and bladder by children. The symptoms of dysfunctional voiding are more common when toilet training early, as immature children may be less likely to empty in a timely manner, or when training late due to (or in association with constipation.Keywords: voiding dysfunction, constipation

  17. A sharp interface model for void growth in irradiated materials

    Science.gov (United States)

    Hochrainer, Thomas; El-Azab, Anter

    2015-03-01

    A thermodynamic formalism for the interaction of point defects with free surfaces in single-component solids has been developed and applied to the problem of void growth by absorption of point defects in irradiated metals. This formalism consists of two parts, a detailed description of the dynamics of defects within the non-equilibrium thermodynamic frame, and the application of the second law of thermodynamics to provide closure relations for all kinetic equations. Enforcing the principle of non-negative entropy production showed that the description of the problem of void evolution under irradiation must include a relationship between the normal fluxes of defects into the void surface and the driving thermodynamic forces for the void surface motion; these thermodynamic forces are identified for both vacancies and interstitials and the relationships between these forces and the normal point defect fluxes are established using the concepts of transition state theory. The latter theory implies that the defect accommodation into the surface is a thermally activated process. Numerical examples are given to illustrate void growth dynamics in this new formalism and to investigate the effect of the surface energy barriers on void growth. Consequences for phase field models of void growth are discussed.

  18. On nonlinear excitation of voids in dusty plasmas

    International Nuclear Information System (INIS)

    Nebbat, E.; Annou, R.; Bharuthram, R.

    2007-01-01

    The void, which is a dust-free region inside the dust cloud in the plasma, results from a balance of the electrostatic force and the ion-drag force on a dust particulate that has numerous forms, some of which are based on models whereas others are driven from first principles. To explain the generation of voids, K. Avinash, A. Bhattacharjee, and S. Hu [Phys. Rev. Lett. 90, 075001 (2003)] proposed a time-dependent nonlinear model that describes the void as a result of an instability. We augment this model by incorporating the grain drift and reintroducing the velocity convective term as well as by replacing the modeled ion-drag force by a more accurate one. The analysis is conducted in a spherical configuration. It is revealed that the void formation is a threshold phenomenon, i.e., it depends on the grain size. Furthermore, the void possesses a sharp boundary beyond which the dust density decreases and may present a corrugated aspect. For big size grains, the use of both ion-drag forces leads to voids of the same dimension, though for grains of small sizes, the Avinash force drives voids of a higher dimension. The model shows good agreement with the experiment

  19. Void nucleation at elevated temperatures under cascade-damage irradiation

    International Nuclear Information System (INIS)

    Semenov, A.A.; Woo, C.H.

    2002-01-01

    The effects on void nucleation of fluctuations respectively due to the randomness of point-defect migratory jumps, the random generation of free point defects in discrete packages, and the fluctuating rate of vacancy emission from voids are considered. It was found that effects of the cascade-induced fluctuations are significant only at sufficiently high total sink strength. At lower sink strengths and elevated temperatures, the fluctuation in the rate of vacancy emission is the dominant factor. Application of the present theory to the void nucleation in annealed pure copper neutron-irradiated at elevated temperatures with doses of 10 -4 -10 -2 NRT dpa showed reasonable agreement between theory and experiment. This application also predicts correctly the temporal development of large-scale spatial heterogeneous microstructure during the void nucleation stage. Comparison between calculated and experimental void nucleation rates in neutron-irradiated molybdenum at temperatures where vacancy emission from voids is negligible showed reasonable agreement as well. It was clearly demonstrated that the athermal shrinkage of relatively large voids experimentally observable in molybdenum at such temperatures may be easily explained in the framework of the present theory

  20. Magnetic resonance voiding cystography in the diagnosis of vesicoureteral reflux: comparative study with voiding cystourethrography.

    Science.gov (United States)

    Lee, Sang Kwon; Chang, Yongmin; Park, Noh Hyuck; Kim, Young Hwan; Woo, Seongku

    2005-04-01

    To evaluate the feasibility of magnetic resonance voiding cystography (MRVC) compared with voiding cystourethrography (VCUG) for detecting and grading vesicoureteral reflux (VUR). MRVC was performed upon 20 children referred for investigation of reflux. Either coronal T1-weighted spin-echo (SE) or gradient-echo (GE) (fast multiplanar spoiled gradient-echo (FMPSPGR) or turbo fast low-angle-shot (FLASH)) images were obtained before and after transurethral administration of gadolinium solution, and immediately after voiding. The findings of MRVC were compared with those of VCUG and technetium-99m ((99m)Tc) dimercaptosuccinic acid (DMSA) single-photon emission computed tomography (SPECT) performed within 6 months of MRVC. VUR was detected in 23 ureterorenal units (16 VURs by both methods, 5 VURs by VCUG, and 2 VURs by MRVC). With VCUG as the standard of reference, the sensitivity of MRVC was 76.2%; the specificity, 90.0%; the positive predictive value, 88.9%; and the negative predictive value, 78.3%. There was concordance between two methods regarding the grade of reflux in all 16 ureterorenal units with VUR detected by both methods. Of 40 kidneys, MRVC detected findings of renal damage or reflux nephropathy in 13 kidneys, and (99m)Tc DMSA renal SPECT detected findings of reflux nephropathy in 17 kidneys. Although MRVC is shown to have less sensitivity for VUR than VCUG, MRVC may represent a method of choice offering a safer nonradiation test that can additionally evaluate the kidneys for changes related to reflux nephropathy. Copyright 2005 Wiley-Liss, Inc.

  1. Fractional hydrodynamic equations for fractal media

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2005-01-01

    We use the fractional integrals in order to describe dynamical processes in the fractal medium. We consider the 'fractional' continuous medium model for the fractal media and derive the fractional generalization of the equations of balance of mass density, momentum density, and internal energy. The fractional generalization of Navier-Stokes and Euler equations are considered. We derive the equilibrium equation for fractal media. The sound waves in the continuous medium model for fractional media are considered

  2. Radiation-induced void swelling in metals and alloys

    International Nuclear Information System (INIS)

    Zelinskij, V.F.; Neklyudov, I.M.; Ozhigov, L.S.; Reznichenko, Eh.A.; Rozhkov, V.V.; Chernyaeva, T.T.

    1979-01-01

    Main regularities in the development of radiation-induced void swelling are considered. Special attention is paid to consideration of a possibility to obtain information on material behaviour under conditions of reactor irradiation proceeding from the data of simulation experiments and to methods of rate control, for the processes which occur in material during irradiation and further annealing by the way of rationalized alloying, of thermomechanical treatment and programmed change of irradiation conditions under operation. Problems of initiation and growth of voids in irradiated materials are discussed as well as the ways to decrease the rate of radiation-induced void swelling

  3. Numerical simulation of void growth under dynamic loading

    International Nuclear Information System (INIS)

    Iqbal, A.

    1996-01-01

    Following a brief general review of developments in material behavior under high strain rates, a cylindrical cell surrounding a spherical void in OFHC copper is numerically simulated by Zerri-Armstrong model. This simulation results show that the plastic deformation tends to be concentrated in the vicinity of voids either in the axial or transverse direction depending upon the stress state. This event is associated with the accelerated void through accompanying coalescence causing ductile fracture. A3-node triangular mesh generation code used as input for finite element code is developed by a 'Central Generation' technique. (author)

  4. Local void and slip model used in BODYFIT-2PE

    International Nuclear Information System (INIS)

    Chen, B.C.J.; Chien, T.H.; Kim, J.H.; Lellouche, G.S.

    1983-01-01

    A local void and slip model has been proposed for a two-phase flow without the need of fitting any empirical parameters. This model is based on the assumption that all bubbles have reached their terminal rise velocities in the two-phase region. This simple model seems to provide reasonable calculational results when compared with the experimental data and other void and slip models. It provides a means to account for the void and slip of a two-phase flow on a local basis. This is particularly suitable for a fine mesh thermal-hydraulic computer program such as BODYFIT-2PE

  5. Toward lattice fractional vector calculus

    Science.gov (United States)

    Tarasov, Vasily E.

    2014-09-01

    An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.

  6. RELAXATION OF BLAZAR-INDUCED PAIR BEAMS IN COSMIC VOIDS

    Energy Technology Data Exchange (ETDEWEB)

    Miniati, Francesco [Physics Department, Wolfgang-Pauli-Strasse 27, ETH-Zuerich, CH-8093 Zuerich (Switzerland); Elyiv, Andrii, E-mail: fm@phys.ethz.ch [Institut d' Astrophysique et de Geophysique, Universite de Liege, B-4000 Liege (Belgium)

    2013-06-10

    The stability properties of a low-density ultrarelativistic pair beam produced in the intergalactic medium (IGM) by multi-TeV gamma-ray photons from blazars are analyzed. The problem is relevant for probes of magnetic field in cosmic voids through gamma-ray observations. In addition, dissipation of such beams could considerably affect the thermal history of the IGM and structure formation. We use a Monte Carlo method to quantify the properties of the blazar-induced electromagnetic shower, in particular the bulk Lorentz factor and the angular spread of the pair beam generated by the shower, as a function of distance from the blazar itself. We then use linear and nonlinear kinetic theory to study the stability of the pair beam against the growth of electrostatic plasma waves, employing the Monte Carlo results for our quantitative estimates. We find that the fastest growing mode, like any perturbation mode with even a very modest component perpendicular to the beam direction, cannot be described in the reactive regime. Due to the effect of nonlinear Landau damping, which suppresses the growth of plasma oscillations, the beam relaxation timescale is found to be significantly longer than the inverse Compton loss time. Finally, density inhomogeneities associated with cosmic structure induce loss of resonance between the beam particles and plasma oscillations, strongly inhibiting their growth. We conclude that relativistic pair beams produced by blazars in the IGM are stable on timescales that are long compared with the electromagnetic cascades. There appears to be little or no effect of pair beams on the IGM.

  7. Void consolidation during open-die forging for ultralarge rotor shafts. (1. Formulation of void-closing behavior)

    International Nuclear Information System (INIS)

    Ono, Shin-ichi; Minami, Katsuyuki; Ochiai, Tomoyuki; Iwadate, Tadao; Nakata, Shin-ichi.

    1995-01-01

    Open-die forging experiments using different die geometries under hot isothermal conditions and three-dimensional simulations using rigid-plastic finite-element method were performed to formulate a void-closing behavior using only two factors; the integral of hydrostatic stress and the equivalent strain. First, upsetting, side-upsetting and V-shape die cogging of several cylinders with a spherical void at the center are carried out and the information on the void volume reduction is obtained. Seconds, the same forgings, but without voids is treated numerically and the development of stress and strain at the location of voids is investigated. Then, by combining these results, and using regression analysis, it is found that the void volume reduction is expressed as a polynomial function of the two factors. When the polynomial function is used, various forging methods can be evaluated quantitatively in terms of void-closing behavior. Therefore it is beneficial to optimize the forging process for a large rotor shaft. (author)

  8. On a novel iterative method to compute polynomial approximations to Bessel functions of the first kind and its connection to the solution of fractional diffusion/diffusion-wave problems

    International Nuclear Information System (INIS)

    Yuste, Santos Bravo; Abad, Enrique

    2011-01-01

    We present an iterative method to obtain approximations to Bessel functions of the first kind J p (x) (p > -1) via the repeated application of an integral operator to an initial seed function f 0 (x). The class of seed functions f 0 (x) leading to sets of increasingly accurate approximations f n (x) is considerably large and includes any polynomial. When the operator is applied once to a polynomial of degree s, it yields a polynomial of degree s + 2, and so the iteration of this operator generates sets of increasingly better polynomial approximations of increasing degree. We focus on the set of polynomial approximations generated from the seed function f 0 (x) = 1. This set of polynomials is useful not only for the computation of J p (x) but also from a physical point of view, as it describes the long-time decay modes of certain fractional diffusion and diffusion-wave problems.

  9. Void formation in ODS EUROFER produced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Ortega, Y.; Monge, M.A.; Castro, V. de; Munoz, A.; Leguey, T.; Pareja, R.

    2009-01-01

    Positron annihilation experiments were performed on oxide dispersion strengthened (ODS) and non-ODS EUROFER prepared by mechanical alloying and hot isostatic pressing. The results revealed the presence of small voids in these materials in the as-HIPed conditions. Their evolution under isochronal annealing experiments was investigated. The coincidence Doppler broadening spectra of ODS EUROFER exhibited a characteristic signature attributed to positron annihilation in Ar-decorated voids at the oxide particle/matrix interfaces. The variation of the positron annihilation parameters with the annealing temperature showed three stages: up to 623 K, between 823 and 1323 K, and above 1323 K. In the temperature range 823-1323 K void coarsening had effect. Above 1323 K some voids annealed out, but others, associated to oxide particles and small precipitates, survived to annealing at 1523 K. Transmission electron microscopy observations were also performed to verify the characteristics of the surviving defects after annealing at 1523 K.

  10. Void formation in ODS EUROFER produced by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Y. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)], E-mail: yanicet@fis.ucm.es; Monge, M.A. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Castro, V. de [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Munoz, A.; Leguey, T.; Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2009-04-30

    Positron annihilation experiments were performed on oxide dispersion strengthened (ODS) and non-ODS EUROFER prepared by mechanical alloying and hot isostatic pressing. The results revealed the presence of small voids in these materials in the as-HIPed conditions. Their evolution under isochronal annealing experiments was investigated. The coincidence Doppler broadening spectra of ODS EUROFER exhibited a characteristic signature attributed to positron annihilation in Ar-decorated voids at the oxide particle/matrix interfaces. The variation of the positron annihilation parameters with the annealing temperature showed three stages: up to 623 K, between 823 and 1323 K, and above 1323 K. In the temperature range 823-1323 K void coarsening had effect. Above 1323 K some voids annealed out, but others, associated to oxide particles and small precipitates, survived to annealing at 1523 K. Transmission electron microscopy observations were also performed to verify the characteristics of the surviving defects after annealing at 1523 K.

  11. Comment on theories for helium-assisted void nucleation

    International Nuclear Information System (INIS)

    Russell, K.C.

    1976-01-01

    Voids form by agglomeration of irradiation-induced vacancies which remain after preferential absorption of self interstitials at dislocation lines. Helium which is formed by (n,α) transmutations and, in simulation studies, may be ion-implanted, often plays an important, but puzzling role. In some materials, very few voids form in the absence of helium, even after intense irradiation. In many other materials , voids form readily under a variety of irradiation conditions, even in the absence of helium. Why some materials require helium - typically in the 10 -6 apa (atom per atom) range - and others do not, and the reason for that particular level are by no means clear. The physics of void nucleation, particularly the role of helium, have been the subject of several theoretical papers. This note presents a critique of these theories, and then briefly outlines a new analysis which is not subject to their limitations. (Auth.)

  12. A variational void coalescence model for ductile metals

    KAUST Repository

    Siddiq, Amir

    2011-08-17

    We present a variational void coalescence model that includes all the essential ingredients of failure in ductile porous metals. The model is an extension of the variational void growth model by Weinberg et al. (Comput Mech 37:142-152, 2006). The extended model contains all the deformation phases in ductile porous materials, i.e. elastic deformation, plastic deformation including deviatoric and volumetric (void growth) plasticity followed by damage initiation and evolution due to void coalescence. Parametric studies have been performed to assess the model\\'s dependence on the different input parameters. The model is then validated against uniaxial loading experiments for different materials. We finally show the model\\'s ability to predict the damage mechanisms and fracture surface profile of a notched round bar under tension as observed in experiments. © Springer-Verlag 2011.

  13. Revivals of Rydberg wave packets

    International Nuclear Information System (INIS)

    Bluhm, R.; Kostelecky, V.A.; Tudose, B.

    1998-01-01

    We examine the revival structure of Rydberg wave packets. These wave packets exhibit initial classical periodic motion followed by a sequence of collapse, fractional (or full) revivals, and fractional (or full) superrevivals. The effects of quantum defects on wave packets in alkali-metal atoms and a squeezed-state description of the initial wave packets are also considered. We then examine the revival structure of Rydberg wave packets in the presence of an external electric field - that is, the revival structure of Stark wave packets. These wave packets have energies that depend on two quantum numbers and exhibit new types of interference behavior

  14. Fractional charges

    International Nuclear Information System (INIS)

    Saminadayar, L.

    2001-01-01

    20 years ago fractional charges were imagined to explain values of conductivity in some materials. Recent experiments have proved the existence of charges whose value is the third of the electron charge. This article presents the experimental facts that have led theorists to predict the existence of fractional charges from the motion of quasi-particles in a linear chain of poly-acetylene to the quantum Hall effect. According to the latest theories, fractional charges are neither bosons nor fermions but anyons, they are submitted to an exclusive principle that is less stringent than that for fermions. (A.C.)

  15. (100) faceted anion voids in electron irradiated fluorite

    International Nuclear Information System (INIS)

    Johnson, E.

    1979-01-01

    High fluence electron irradiation of fluorite crystals in the temperature range 150 to 320 K results in formation of a simple cubic anion void superlattice. Above 320 K the damage structure changes to a random distribution of large [001] faceted anion voids. This voidage behaviour, similar to that observed in a range of irradiated metals, is discussed in terms points defect rather than conventional colour centre terminology. (Auth.)

  16. Uroflowmetry in neurologically normal children with voiding disorders

    DEFF Research Database (Denmark)

    Jensen, K M; Nielsen, K.K.; Kristensen, E S

    1985-01-01

    of neurological deficits underwent a complete diagnostic program including intravenous urography, voiding cystography and cystoscopy as well as spontaneous uroflowmetry, cystometry-emg and pressure-flow-emg study. The incidence of dyssynergia was 22%. However, neither the flow curve pattern nor single flow...... variables were able to identify children with dyssynergia. Consequently uroflowmetry seems inefficient in the screening for dyssynergia in neurological normal children with voiding disorders in the absence of anatomical bladder outlet obstruction....

  17. Effect of Dark Energy Perturbation on Cosmic Voids Formation

    Science.gov (United States)

    Endo, Takao; Nishizawa, Atsushi J.; Ichiki, Kiyotomo

    2018-05-01

    In this paper, we present the effects of dark energy perturbation on the formation and abundance of cosmic voids. We consider dark energy to be a fluid with a negative pressure characterised by a constant equation of state w and speed of sound c_s^2. By solving fluid equations for two components, namely, dark matter and dark energy fluids, we quantify the effects of dark energy perturbation on the sizes of top-hat voids. We also explore the effects on the size distribution of voids based on the excursion set theory. We confirm that dark energy perturbation negligibly affects the size evolution of voids; c_s^2=0 varies the size only by 0.1% as compared to the homogeneous dark energy model. We also confirm that dark energy perturbation suppresses the void size when w -1 (Basse et al. 2011). In contrast to the negligible impact on the size, we find that the size distribution function on scales larger than 10 Mpc/h highly depends on dark energy perturbation; compared to the homogeneous dark energy model, the number of large voids of radius 30Mpc is 25% larger for the model with w = -0.9 and c_s^2=0 while they are 20% less abundant for the model with w = -1.3 and c_s^2=0.

  18. Fractional fermions

    International Nuclear Information System (INIS)

    Jackiw, R.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1984-01-01

    The theory of fermion fractionization due to topologically generated fermion ground states is presented. Applications to one-dimensional conductors, to the MIT bag, and to the Hall effect are reviewed. (author)

  19. Analysis of Differences in Void Coefficient Predictions for Mixed-Oxide-Fueled Tight-Pitch Light Water Reactor Cells

    International Nuclear Information System (INIS)

    Unesaki, Hironobu; Shiroya, Seiji; Kanda, Keiji; Cathalau, Stephane; Carre, Franck-Olivier; Aizawa, Otohiko; Takeda, Toshikazu

    2000-01-01

    Analysis of the benchmark problems on the void coefficient of mixed-oxide (MOX)-fueled tight-pitch cells has been performed using the Japanese SRAC code system with the JENDL-3.2 library and the French APOLLO-2 code with the CEA93 library based on JEF-2.2. The benchmark problems have been specified to investigate the physical phenomena occurring during the progressive voidage of MOX-fueled tight-pitch lattices, such as high conversion light water reactor lattices, and to evaluate the impact of nuclear data and calculational methods. Despite the most recently compiled nuclear data libraries and the sophisticated calculation schemes employed in both code systems, the k ∞ and void reactivity values obtained by the two code systems show considerable discrepancy especially in the highly voided state. The discrepancy of k ∞ values shows an obvious dependence on void fraction and also has been shown to be sensitive to the isotopic composition of plutonium. The observed discrepancies are analyzed by being decomposed into contributing isotopes and reactions and have been shown to be caused by a complicated balance of both negative and positive components, which are mainly attributable to differences in a limited number of isotopes including 239 Pu, 241 Pu, 16 O, and stainless steel

  20. Urinary tract infection after voiding cystourethrogram.

    Science.gov (United States)

    Johnson, E K; Malhotra, N R; Shannon, R; Jacobson, D L; Green, J; Rigsby, C K; Holl, J L; Cheng, E Y

    2017-08-01

    Reported rates of post-procedural urinary tract infection (ppUTI) after voiding cystourethrogram (VCUG) are highly variable (0-42%). This study aimed to determine the risk of ppUTI after cystogram, and evaluate predictors of ppUTI. A retrospective cohort study of children undergoing VCUG or radionuclide cystogram (henceforth 'cystogram') was conducted. Children with neurogenic bladder who underwent cystogram in the operating room and without follow-up at the study institution were excluded. Incidence of symptomatic ppUTI within 7 days after cystogram was recorded. Predictors of ppUTI were evaluated using univariate statistics. A total of 1108 children (54% female, median age 1.1 years) underwent 1203 cystograms: 51% were on periprocedural antibiotics, 75% had a pre-existing urologic diagnosis (i.e., vesicoureteral reflux (VUR) or hydronephrosis; not UTI alone), and 18% had a clinical UTI within 30 days before cystogram. Of the cystograms, 41% had an abnormal cystogram and findings included VUR (82%), ureterocele (6%), and diverticula (6%). Twelve children had a ppUTI (1.0%; four girls, five uncircumcised boys, three circumcised boys; median age 0.9 years). Factors significantly associated with diagnosis of a ppUTI (Summary fig.) included: pre-existing urologic diagnosis prior to cystogram (12/12, 100% of patients with ppUTI), abnormal cystogram results (11/12, 92%), and use of periprocedural antibiotics (11/12, 92%). All 11 children with an abnormal cystogram had VUR ≥ Grade III. However, among all children with VUR ≥ Grade III, 4% (11/254) had a ppUTI. This is the largest study to date that has examined incidence and risk factors for ppUTI after cystogram. The retrospective nature of the study limited capture of some clinical details. This study demonstrated that the risk of ppUTI after a cystogram is very low (1.0% in this cohort). Having a pre-existing urologic diagnosis such as VUR or hydronephrosis was associated with ppUTI; therefore, children with

  1. Experimental investigation of void distribution in suppression pool over the duration of a loss of coolant accident using steam–water two-phase mixture

    International Nuclear Information System (INIS)

    Rassame, Somboon; Griffiths, Matthew; Yang, Jun; Ju, Peng; Sharma, Subash; Hibiki, Takashi; Ishii, Mamoru

    2015-01-01

    Highlights: • Experiments were conducted to study void fraction distribution in SP during blowdown. • 3 Experimental phases, namely, an initial and a quasi-steady phase, chugging were observed. • The maximum void penetration depth was experienced during the initial phase. • The quasi-steady phase provided less void penetration depth with oscillations. • The chugging phase was experienced at the end of experimental phase. - Abstract: Studies are underway to determine if a large amount gas discharged through the downcomer pipes in the pressure suppression chamber during the blowdown of Loss of Coolant Accident (LOCA) can potentially be entrained into the Emergency Core Cooling System (ECCS) suction piping of BWR. This may result in degraded ECCS pumps performance which could affect the ability to maintain or recover the water inventory level in the Reactor Pressure Vessel (RPV) during a LOCA. Therefore, it is very important to understand the void behavior in the pressure suppression chamber during the blowdown period of a LOCA. To address this issue, a set of experiments is conducted using the Purdue University Multi-Dimensional Integral Test Assembly for ESBWR applications (PUMA-E) facility. The geometry of the test apparatus is determined based on the basic geometrical scaling analysis from a prototypical BWR containment (MARK I) with a consideration of downcomer size, downcomer water submergence depth and Suppression Pool (SP) water level. Several instruments are installed in the test facility to measure the required experimental data such as the steam mass flow rate, void fraction, pressure and temperature. In the experiments, sequential flows of air, steam–air mixture and pure steam-each with the various flow rate conditions are injected from the Drywell (DW) through a downcomer pipe in the SP. Eight tests with two different downcomer sizes, various initial gas volumetric fluxes at the downcomer, and two different initial non-condensable gas

  2. Reliability Impact of Stockpile Aging: Stress Voiding; TOPICAL

    International Nuclear Information System (INIS)

    ROBINSON, DAVID G.

    1999-01-01

    The objective of this research is to statistically characterize the aging of integrated circuit interconnects. This report supersedes the stress void aging characterization presented in SAND99-0975, ''Reliability Degradation Due to Stockpile Aging,'' by the same author. The physics of the stress voiding, before and after wafer processing have been recently characterized by F. G. Yost in SAND99-0601, ''Stress Voiding during Wafer Processing''. The current effort extends this research to account for uncertainties in grain size, storage temperature, void spacing and initial residual stress and their impact on interconnect failure after wafer processing. The sensitivity of the life estimates to these uncertainties is also investigated. Various methods for characterizing the probability of failure of a conductor line were investigated including: Latin hypercube sampling (LHS), quasi-Monte Carlo sampling (qMC), as well as various analytical methods such as the advanced mean value (Ah/IV) method. The comparison was aided by the use of the Cassandra uncertainty analysis library. It was found that the only viable uncertainty analysis methods were those based on either LHS or quasi-Monte Carlo sampling. Analytical methods such as AMV could not be applied due to the nature of the stress voiding problem. The qMC method was chosen since it provided smaller estimation error for a given number of samples. The preliminary results indicate that the reliability of integrated circuits due to stress voiding is very sensitive to the underlying uncertainties associated with grain size and void spacing. In particular, accurate characterization of IC reliability depends heavily on not only the frost and second moments of the uncertainty distribution, but more specifically the unique form of the underlying distribution

  3. Breaking the vicious circle: Onabotulinum toxin A in children with therapy-refractory dysfunctional voiding

    NARCIS (Netherlands)

    L.A. 't Hoen (Lisette); J. van den Hoek (Joop); K.P. Wolffenbuttel (Katja); F. van der Toorn; J.R. Scheepe (Jeroen)

    2015-01-01

    textabstractIntroduction An increased activity of the external urethral sphincter or pelvic floor muscles during voluntary voiding leads to dysfunctional voiding. Frequently reported symptoms are urinary incontinence, urinary tract infections and high post-void residuals. Dysfunctional voiding is a

  4. Automated air-void system characterization of hardened concrete: Helping computers to count air-voids like people count air-voids---Methods for flatbed scanner calibration

    Science.gov (United States)

    Peterson, Karl

    Since the discovery in the late 1930s that air entrainment can improve the durability of concrete, it has been important for people to know the quantity, spacial distribution, and size distribution of the air-voids in their concrete mixes in order to ensure a durable final product. The task of air-void system characterization has fallen on the microscopist, who, according to a standard test method laid forth by the American Society of Testing and Materials, must meticulously count or measure about a thousand air-voids per sample as exposed on a cut and polished cross-section of concrete. The equipment used to perform this task has traditionally included a stereomicroscope, a mechanical stage, and a tally counter. Over the past 30 years, with the availability of computers and digital imaging, automated methods have been introduced to perform the same task, but using the same basic equipment. The method described here replaces the microscope and mechanical stage with an ordinary flatbed desktop scanner, and replaces the microscopist and tally counter with a personal computer; two pieces of equipment much more readily available than a microscope with a mechanical stage, and certainly easier to find than a person willing to sit for extended periods of time counting air-voids. Most laboratories that perform air-void system characterization typically have cabinets full of prepared samples with corresponding results from manual operators. Proponents of automated methods often take advantage of this fact by analyzing the same samples and comparing the results. A similar iterative approach is described here where scanned images collected from a significant number of samples are analyzed, the results compared to those of the manual operator, and the settings optimized to best approximate the results of the manual operator. The results of this calibration procedure are compared to an alternative calibration procedure based on the more rigorous digital image accuracy

  5. The effect of the advanced drift-flux model of ASSERT-PV on critical heat flux, flow and void distributions in CANDU bundle subchannels

    International Nuclear Information System (INIS)

    Hammouda, N.; Rao, Y.F.

    2017-01-01

    Highlights: • Presentation of the “advanced” drift-flux model of the subchannel code ASSERT-PV. • Study the effect of the drift-flux model of ASSERT on CHF and flow distribution. • Quantify model component effects with flow, quality and dryout power measurements. - Abstract: This paper studies the effect of the drift flux model of the subchannel code ASSERT-PV on critical heat flux (CHF), void fraction and flow distribution across fuel bundles. Numerical experiments and comparison against measurements were performed to examine the trends and relative behaviour of the different components of the model under various flow conditions. The drift flux model of ASSERT-PV is composed of three components: (a) the lateral component or diversion cross-flow, caused by pressure difference between connected subchannels, (b) the turbulent diffusion component or the turbulent mixing through gaps of subchannels, caused by instantaneous turbulent fluctuations or flow oscillations, and (c) the void drift component that occurs due to the two-phase tendency toward a preferred distribution. This study shows that the drift flux model has a significant impact on CHF, void fraction and flow distribution predictions. The lateral component of the drift flux model has a stronger effect on CHF predictions than the axial component, especially for horizontal flow. Predictions of CHF, void fraction and flow distributions are most sensitive to the turbulent diffusion component of the model, followed by the void drift component. Buoyancy drift can be significant, but it does not have as much influence on CHF and flow distribution as the turbulent diffusion and void drift.

  6. Challenges in the management of gas voids in safety related systems

    International Nuclear Information System (INIS)

    Ezekoye, L.I.; Turkowski, W.M.; Ferraraccio, F.P.; Swartz, M.M.

    2009-01-01

    Gas intrusion into Safety Related Systems, such as the Emergency Core Cooling System (ECCS), Decay Heat Removal (DHR) and Containment Spray (CS) in nuclear power plants is undesirable and can lead to pump binding (depending on the void fraction and flow rate) and damaging water hammer events. Gas ingestion in pumps can result in total or momentary loss of hydraulic performance resulting in possible pump shaft seizure rendering the pumps unable to perform their safety functions or reduce the pump discharge pressure and flow capacity to the point that the system cannot perform its design function. Extreme cases of gas water hammer can result in physical damage to system piping, components and supports, and possible relief valve lifting events with consequential loss of inventory. NRC Generic Letter GL 2008 01, 'Managing Gas Accumulation in Emergency Core Cooling, Decay Heat Removal, and Containment Spray Systems,' requires US utilities to demonstrate that suitable design, operational and testing measures are in place to maintain licensing commitments. The Generic Letter (GL 2008 01) outlines a number of actions that are detailed in nature, such as establishing pump void tolerance limits; establishing limits on pump suction void fractions, assuring adequate system venting capability, identification of all possible sources of gas intrusion, preventing vortex formation in tanks, and determining acceptable limits of gas in system discharge piping.. Regarding one of these issues, GL 2008 01 indicates that the amount of gas that can be ingested without significant impact on pump design, gas dispersion and flow rate. Each US nuclear power plant licensee is required to evaluate their ECCS, DHR and CS system design, operation and test procedures to assure that gas intrusion is minimized and monitored in order to maintain system operability and compliance with the requirements of 10 CFR 50 Appendix B. Typically, gas pockets get into the safety related systems through a number

  7. Challenges in the management of gas voids in safety related systems

    Energy Technology Data Exchange (ETDEWEB)

    Ezekoye, L.I.; Turkowski, W.M.; Ferraraccio, F.P.; Swartz, M.M. [Westinghouse Electric Company LLC, Pittsburgh (United States)

    2009-04-15

    Gas intrusion into Safety Related Systems, such as the Emergency Core Cooling System (ECCS), Decay Heat Removal (DHR) and Containment Spray (CS) in nuclear power plants is undesirable and can lead to pump binding (depending on the void fraction and flow rate) and damaging water hammer events. Gas ingestion in pumps can result in total or momentary loss of hydraulic performance resulting in possible pump shaft seizure rendering the pumps unable to perform their safety functions or reduce the pump discharge pressure and flow capacity to the point that the system cannot perform its design function. Extreme cases of gas water hammer can result in physical damage to system piping, components and supports, and possible relief valve lifting events with consequential loss of inventory. NRC Generic Letter GL 2008 01, 'Managing Gas Accumulation in Emergency Core Cooling, Decay Heat Removal, and Containment Spray Systems,' requires US utilities to demonstrate that suitable design, operational and testing measures are in place to maintain licensing commitments. The Generic Letter (GL 2008 01) outlines a number of actions that are detailed in nature, such as establishing pump void tolerance limits; establishing limits on pump suction void fractions, assuring adequate system venting capability, identification of all possible sources of gas intrusion, preventing vortex formation in tanks, and determining acceptable limits of gas in system discharge piping.. Regarding one of these issues, GL 2008 01 indicates that the amount of gas that can be ingested without significant impact on pump design, gas dispersion and flow rate. Each US nuclear power plant licensee is required to evaluate their ECCS, DHR and CS system design, operation and test procedures to assure that gas intrusion is minimized and monitored in order to maintain system operability and compliance with the requirements of 10 CFR 50 Appendix B. Typically, gas pockets get into the safety related systems through

  8. ON THE STAR FORMATION PROPERTIES OF VOID GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Moorman, Crystal M.; Moreno, Jackeline; White, Amanda; Vogeley, Michael S. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Hoyle, Fiona [Pontifica Universidad Catolica de Ecuador, 12 de Octubre 1076 y Roca, Quito (Ecuador); Giovanelli, Riccardo; Haynes, Martha P., E-mail: crystal.m.moorman@drexel.edu [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University Ithaca, NY 14853 (United States)

    2016-11-10

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on timescales of 10 and 100 Myr, using H α emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable H i detections from ALFALFA. For the full H i detected sample, SSFRs do not vary systematically with large-scale environment. However, investigating only the H i detected dwarf galaxies reveals a trend toward higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit H i mass (known as the star formation efficiency; SFE) of a galaxy, as a function of environment. For the overall H i detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies still does not reveal a statistically significant difference between SFEs in voids versus walls. These results suggest that void environments, on average, provide a nurturing environment for dwarf galaxy evolution allowing for higher specific star formation rates while forming stars with similar efficiencies to those in walls.

  9. Electromigration of intergranular voids in metal films for microelectronic interconnects

    CERN Document Server

    Averbuch, A; Ravve, I

    2003-01-01

    Voids and cracks often occur in the interconnect lines of microelectronic devices. They increase the resistance of the circuits and may even lead to a fatal failure. Voids may occur inside a single grain, but often they appear on the boundary between two grains. In this work, we model and analyze numerically the migration and evolution of an intergranular void subjected to surface diffusion forces and external voltage applied to the interconnect. The grain-void interface is considered one-dimensional, and the physical formulation of the electromigration and diffusion model results in two coupled fourth-order one-dimensional time-dependent PDEs. The boundary conditions are specified at the triple points, which are common to both neighboring grains and the void. The solution of these equations uses a finite difference scheme in space and a Runge-Kutta integration scheme in time, and is also coupled to the solution of a static Laplace equation describing the voltage distribution throughout the grain. Since the v...

  10. How institutional voids influence Brazilian foreign direct investment in Angola

    Directory of Open Access Journals (Sweden)

    Renato Virches

    2017-04-01

    Full Text Available How do institutional voids influence emerging market multinationals (EMNEs foreign direct investment (FDI in developing countries? In this article we respond to this question by examining Brazilian FDI in Angola as our analytical setting. We focus on the host country’s institutions and its institutional voids as essential factors that attract the FDI of EMNES to developing countries. The research indicates that Brazilian companies fill in much of these voids within the market intermediaries, often creating a point of competitive advantage, and also creating advantages in relation to FDI from other economies that invest in Angola. The scarce literature on FDI in Africa has been largely dedicated to the analysis of Chinese investment in the region. We aim to complement recent research on the influence of the host country’s institutions on the behavior of FDI in developing countries, explaining how some EMNEs are able to use the institutional voids of developing countries as market opportunities. Our findings should provide also implications for EMNEs managers from other emerging markets by providing a better understanding of how Brazilian multinationals expand their business in less developed countries, handle institutional voids and manage relationships with local and foreign institutions in the host country.

  11. Effect of voids-controlled vacancy supersaturations on B diffusion

    International Nuclear Information System (INIS)

    Marcelot, O.; Claverie, A.; Cristiano, F.; Cayrel, F.; Alquier, D.; Lerch, W.; Paul, S.; Rubin, L.; Jaouen, H.; Armand, C.

    2007-01-01

    We present here preliminary results on boron diffusion in presence of pre-formed voids of different characteristics. The voids were fabricated by helium implantation followed by annealing allowing the desorption of He prior to boron implantation. We show that under such conditions boron diffusion is always largely reduced and can even be suppressed in some cases. Boron diffusion suppression can be observed in samples not containing nanovoids in the boron-rich region. It is suggested that direct trapping of Si(int)s by the voids is not the mechanism responsible for the reduction of boron diffusion in such layers. Alternatively, our experimental results suggest that this reduction of diffusivity is more probably due to the competition between two Ostwald ripening phenomena taking place at the same time: in the boron-rich region, the competitive growth of extrinsic defects at the origin of TED and, in the void region, the Ostwald ripening of the voids which involves large supersaturations of Vs

  12. Effect of voids-controlled vacancy supersaturations on B diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Marcelot, O. [CEMES/CNRS, 29 rue Jeanne Marvig, 31055 Toulouse (France)]. E-mail: marcelot@cemes.fr; Claverie, A. [CEMES/CNRS, 29 rue Jeanne Marvig, 31055 Toulouse (France); Cristiano, F. [LAAS/CNRS, 7 av. du Col. Roche, 31077 Toulouse (France); Cayrel, F. [LMP, Universite de Tours, 16 rue Pierre et Marie Curie, BP 7155, 37071 Tours (France); Alquier, D. [LMP, Universite de Tours, 16 rue Pierre et Marie Curie, BP 7155, 37071 Tours (France); Lerch, W. [Mattson Thermal Products GmbH, Daimlerstr. 10, D-89160 Dornstadt (Germany); Paul, S. [Mattson Thermal Products GmbH, Daimlerstr. 10, D-89160 Dornstadt (Germany); Rubin, L. [Axcelis Technologies, 108 Cherry Hill Drive, Beverly MA 01915 (United States); Jaouen, H. [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles (France); Armand, C. [LNMO/INSA, Service analyseur ionique, 135 av. de Rangueil, 31077 Toulouse (France)

    2007-04-15

    We present here preliminary results on boron diffusion in presence of pre-formed voids of different characteristics. The voids were fabricated by helium implantation followed by annealing allowing the desorption of He prior to boron implantation. We show that under such conditions boron diffusion is always largely reduced and can even be suppressed in some cases. Boron diffusion suppression can be observed in samples not containing nanovoids in the boron-rich region. It is suggested that direct trapping of Si(int)s by the voids is not the mechanism responsible for the reduction of boron diffusion in such layers. Alternatively, our experimental results suggest that this reduction of diffusivity is more probably due to the competition between two Ostwald ripening phenomena taking place at the same time: in the boron-rich region, the competitive growth of extrinsic defects at the origin of TED and, in the void region, the Ostwald ripening of the voids which involves large supersaturations of Vs.

  13. Controlling Interfacial Separation in Porous Structures by Void Patterning

    Science.gov (United States)

    Ghareeb, Ahmed; Elbanna, Ahmed

    Manipulating interfacial response for enhanced adhesion or fracture resistance is a problem of great interest to scientists and engineers. In many natural materials and engineering applications, an interface exists between a porous structure and a substrate. A question that arises is how the void distribution in the bulk may affect the interfacial response and whether it is possible to alter the interfacial toughness without changing the surface physical chemistry. In this paper, we address this question by studying the effect of patterning voids on the interfacial-to-the overall response of an elastic plate glued to a rigid substrate by bilinear cohesive material. Different patterning categories are investigated; uniform, graded, and binary voids. Each case is subjected to upward displacement at the upper edge of the plate. We show that the peak force and maximum elongation at failure depend on the voids design and by changing the void size, alignment or gradation we may control these performance measures. We relate these changes in the measured force displacement response to energy release rate as a measure of interfacial toughness. We discuss the implications of our results on design of bulk heterogeneities for enhanced interfacial behavior.

  14. Constructing General Orthogonal Fractional Factorial Split-Plot Designs

    NARCIS (Netherlands)

    Sartono, B.; Goos, P.; Schoen, E.

    2015-01-01

    While the orthogonal design of split-plot fractional factorial experiments has received much attention already, there are still major voids in the literature. First, designs with one or more factors acting at more than two levels have not yet been considered. Second, published work on nonregular

  15. Ultrasonic determination of interfacial area, void fraction and Sauter mean diameter in bubbly flow

    International Nuclear Information System (INIS)

    Bensler, Henri-Paul

    1990-01-01

    In this research thesis, the author shows that it is possible to determine, by means of a single measurement, the interface surface, the vacuum rate, and the Sauter mean diameter in a bubbly water-air flow. The developed technique relies on the measurement of the attenuation of an ultrasound beam by the two-phase medium, and on the use of broadband transducers associated with a multi-frequency screening method. Tests in standing water or in forced convection are performed in ducts with a square cross section with a side of 40, 80, or 120 mm. Values obtained with ultrasounds are compared with those determined by using photographs (interface surfaces, Sauter diameters) or by using a gauge pressure, or by using X rays (vacuum rate). This method based on ultrasound attenuation reveals to be simple and in good agreement with reference methods [fr

  16. Void fraction in steam-water mixture downward motion in tubes and intertubular spaces

    International Nuclear Information System (INIS)

    Miropol'skij, Z.L.; Shneerova, R.I.; Karamysheva, A.I.

    1978-01-01

    Experiments have been carried out with a view to determining the averaged cross-section virtual steam contents for downward steam-air mixture flows in a pipe (diameter 40 mm, length 600 mm) and in a 400 mm-long cylindrical channel, which accomodated 19 cylindrical tubes. Equivalent channel diameter was 9.2 mm. The tests were carried out both under adiabatic flow conditions and in the presence of heat transfer through pipes, which were electrically heated. The p pressure was 3 mPa, specific heat fluxes g=0-0.27 MW/m 2 , mass rates wsub(p)=110-395 kg/m 2 xs in the tube bunch and 95-345 kg/m 2 xs in the pipe. The test results indicate that: the virtual volumetric steam contents in a downward flow of a steam-air mixture are higher than those in an upward flow; x in a tube bunch is substantially smaller than that in a pipe

  17. Rolling effects on two-phase flow pattern and void fraction

    International Nuclear Information System (INIS)

    Yan Changqi; Yu Kaiqiu; Luan Feng; Cao Xiaxin

    2008-01-01

    The experimental and theoretical study was carried out for the upward gas-liquid two-phase explained reasonably through the analysis of slip ratio of two-phase flow and theoretical analysis using momentum equation of two-phase flow separating model. (authors)

  18. Void initiation from interfacial debonding of spherical silicon particles inside a silicon-copper nanocomposite: a molecular dynamics study

    Science.gov (United States)

    Cui, Yi; Chen, Zengtao

    2017-02-01

    Silicon particles with diameters from 1.9 nm to 30 nm are embedded in a face-centered-cubic copper matrix to form nanocomposite specimens for simulation. The interfacial debonding of silicon particles from the copper matrix and the subsequent growth of nucleated voids are studied via molecular dynamics (MD). The MD results are examined from several different perspectives. The overall mechanical performance is monitored by the average stress-strain response and the accumulated porosity. The ‘relatively farthest-traveled’ atoms are identified to characterize the onset of interfacial debonding. The relative displacement field is plotted to illustrate both subsequent interfacial debonding and the growth of a nucleated void facilitated by a dislocation network. Our results indicate that the initiation of interfacial debonding is due to the accumulated surface stress if the matrix is initially dislocation-free. However, pre-existing dislocations can make a considerable difference. In either case, the dislocation emission also contributes to the subsequent debonding process. As for the size effect, the debonding of relatively larger particles causes a drop in the stress-strain curve. The volume fraction of second-phase particles is found to be more influential than the size of the simulation box on the onset of interfacial debonding. The volume fraction of second-phase particles also affects the shape of the nucleated void and, therefore, influences the stress response of the composite.

  19. Mystery Fractions

    Science.gov (United States)

    Bhattacharyya, Sonalee; Namakshi, Nama; Zunker, Christina; Warshauer, Hiroko K.; Warshauer, Max

    2016-01-01

    Making math more engaging for students is a challenge that every teacher faces on a daily basis. These authors write that they are constantly searching for rich problem-solving tasks that cover the necessary content, develop critical-thinking skills, and engage student interest. The Mystery Fraction activity provided here focuses on a key number…

  20. Measurement of void swelling in thick non-uniformly irradiated 304 stainless steel blocks using nondestructive ultrasonic techniques

    International Nuclear Information System (INIS)

    Garner, F.A.; Okita, T.; Isobe, Y.; Etoh, J.; Sagisaka, M.; Matsunaga, T.; Freyer, P.D.; Huang, Y.; Wiezorek, J.M.K.; Porter, D.L.

    2015-01-01

    Void swelling is of potential importance in PWR austenitic internals, especially in components that will see higher doses during plant lives beyond 40 years. Proactive surveillance of void swelling is required to identify its emergence before swelling reaches levels that cause high levels of embrittlement and distortion. Non-destructive measurements of ultrasonic velocity can measure swelling at fractions of a percent. To demonstrate the feasibility of this technique for PWR application we have investigated five blocks of 304 stainless steel that were irradiated in the EBR-II fast reactor. These blocks were of hexagonal cross-section, with thickness of about 50 mm and lengths of about 218-245 mm. They were subjected to significant axial and radial gradients in gamma heating, temperature and dpa rate, producing complex internal distributions of swelling, reaching about 3.5% maximum at an off-center mid-core position. Swelling decreases both the density and the elastic moduli, thereby impacting the ultrasonic velocity. Concurrently, carbide precipitates form, producing increases in density and decreases in elastic moduli. Using blocks from both low and high dpa levels it was possible to separate the ultrasonic contributions of voids and carbides. Time-of-flight ultrasonic measurements were used to non-destructively measure the internal distribution of void swelling. These distributions were confirmed using non-destructive profilometry followed by destructive cutting to provide density change and electron microscopy data. It was demonstrated that the four measurement types produce remarkably consistent results. Therefore ultrasonic measurements offer great promise for in-situ surveillance of voids in PWR core internals. (authors)

  1. The relationship between temperament, gender, and childhood dysfunctional voiding.

    Science.gov (United States)

    Colaco, Marc; Dobkin, Roseanne D; Sterling, Matthew; Schneider, Dona; Barone, Joseph

    2013-08-01

    Dysfunctional voiding (DV) is an extremely common pediatric complaint. The goal of this study was to examine the relationship between DV and childhood temperament. Information about the voiding behaviors and temperaments of 50 children was examined using a case-control model. Caregivers were asked to fill out the Children's Behavior Questionnaire in order to rate their child on the dimensions of surgency, negative affect, and effortful control. The relationship between DV and these dimensions was then evaluated. Males with DV were found to have lower effortful control than males with normal voiding habits. Females with DV did not demonstrate a difference in effortful control, but did demonstrate a higher rate of surgency. The results suggest that temperament does have an association with DV. These findings are in line with temperamental associations with other externalizing trouble behaviors and may inform potential treatment strategies for DV.

  2. Nucleation from a cluster of inclusions, leading to void coalescense

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2017-01-01

    A cell model analysis is used to study the nucleation and subsequent growth of voids from a non-uniform distribution of inclusions in a ductile material. Nucleation is modeled as either stress controlled or strain controlled. The special clusters considered consist of a number of uniformly spaced...... inclusions located along a plane perpendicular to the maximum principal tensile stress. A plane strain approximation is used, where the inclusions are parallel cylinders perpendicular to the plane. Clusters with different numbers of inclusions are compared with the nucleation and growth from a single...... inclusion, such that the total initial volume of the inclusions is the same for the clusters and the single inclusion. After nucleation, local void coalescence inside the clusters is accounted for, since this makes it possible to compare the rate of growth of the single larger void that results from...

  3. Internal Nano Voids in Yttria-Stabilised Zirconia (YSZ Powder

    Directory of Open Access Journals (Sweden)

    Chen Barad

    2017-12-01

    Full Text Available Porous yttria-stabilised zirconia ceramics have been gaining popularity throughout the years in various fields, such as energy, environment, medicine, etc. Although yttria-stabilised zirconia is a well-studied material, voided yttria-stabilised zirconia powder particles have not been demonstrated yet, and might play an important role in future technology developments. A sol-gel synthesis accompanied by a freeze-drying process is currently being proposed as a method of obtaining sponge-like nano morphology of embedded faceted voids inside yttria-stabilised zirconia particles. The results rely on a freeze-drying stage as an effective and simple method for generating nano-voided yttria-stabilised zirconia particles without the use of template-assisted additives.

  4. Multiple void formation in plasmas containing multispecies charged grains

    International Nuclear Information System (INIS)

    Liu, Y. H.; Chen, Z. Y.; Bogaerts, A.; Yu, M. Y.

    2006-01-01

    Self-organized separation of charged-dust species in two-dimensional dusty plasmas is studied by means of molecular-dynamics simulation. The multispecies dust grains, interacting through a screened Coulomb potential with a long-range attractive component, are confined by an external quadratic potential and subjected to a radially outward ion drag force. It is found that, in general, the species are spatially separated by bandlike dust-free (or void) regions, and grains of the same species tend to populate a common shell. At large ion drag and/or large plasma screening, a central disklike void as well as concentric bandlike voids separating the different species appear. Because of the outward drag and the attractive component of the dust-dust interaction forces, highly asymmetrical states consisting of species-separated dust clumps can also exist despite the fact that all the forces are either radial or central

  5. A DRAGON-MCNP comparison of void reactivity calculations

    Energy Technology Data Exchange (ETDEWEB)

    Marleau, G [Ecole Polytechnique, Montreal, PQ (Canada). Inst. de Genie Nucleaire; Milgram, M S [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    The determination of the reactivity coefficients associated with coolant voiding in a CANDU reactor is a subject which has attracted a large amount of interest in the last few years both from the theoretical and experimental point of view. One expects that deterministic codes such as DRAGON and WIMS-AECL or the MCNP4 Monte Carlo code should be able to adequately simulate the cell behaviour upon coolant voiding. However, the absence of an experimental database at equilibrium and discharge burnups has not permitted the full validation of any of these lattice codes, although a partial validation through comparison of two different computer codes has been considered. Here we present a comparison between DRAGON and MCNP4 of the void reactivity evaluation for fresh fuel. (author). 16 refs., 5 tabs.

  6. Void distributions in liquid BiBr{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, K [Faculty of Science, Niigata University, Niigata 950-2181 (Japan); Endo, H [Faculty of Science, Kyoto University, Kyoto 606-8224 (Japan); Hoshino, H [Faculty of Education, Hirosaki University, Hirosaki 036-8560 (Japan); Kawakita, Y [Faculty of Sciences, Kyushu University, Fukuoka 810-8560 (Japan); Kohara, S; Itou, M [Japan Synchrotron Radiation Research Institute(JASRI), Sayo-cho 679-5198 (Japan)

    2008-02-15

    The X-ray diffraction experiments and the reverse Monte Carlo analysis for liquid BiBr{sub 3} have been performed to clarify the distribution of Bi and Br ions around voids, comparing with previous results derived in the neutron diffraction experiments. The hexagonal cages involving voids are formed by the corner-sharing of the trigonal pyramidal BiBr{sub 3} blocks. The neighboring cages are linked together in highly correlated fashion. The observed pre-peak in S(Q) at 1.3A{sup -1} is related to the pre-peak of the void-based S'{sub CC} (Q) due to an intermediate chemical order in the structure. The pre-peak intensity increases with increasing temperature. This characteristic change for the pre-peak intensity is discussed by considering the modifications of the topology and stacking in the hexagonal cages.

  7. A DRAGON-MCNP comparison of void reactivity calculations

    International Nuclear Information System (INIS)

    Marleau, G.

    1995-01-01

    The determination of the reactivity coefficients associated with coolant voiding in a CANDU reactor is a subject which has attracted a large amount of interest in the last few years both from the theoretical and experimental point of view. One expects that deterministic codes such as DRAGON and WIMS-AECL or the MCNP4 Monte Carlo code should be able to adequately simulate the cell behaviour upon coolant voiding. However, the absence of an experimental database at equilibrium and discharge burnups has not permitted the full validation of any of these lattice codes, although a partial validation through comparison of two different computer codes has been considered. Here we present a comparison between DRAGON and MCNP4 of the void reactivity evaluation for fresh fuel. (author). 16 refs., 5 tabs

  8. Two-dimensional void reconstruction by neutron transmission

    International Nuclear Information System (INIS)

    Zakaib, G.D.; Harms, A.A.; Vlachopoulos, J.

    1978-01-01

    Contemporary algebraic reconstruction methods are utilized in investigating the two-dimensional void distribution in a water analog from neutron transmission measurements. It is sought to ultimately apply these techniques to the determination of time-averaged void distribution in two-phase flow systems as well as for potential usage in neutron radiography. Initially, projection data were obtained from a digitized model of a hypothetical two-phase representation and later from neutron beam traverses across a voided methacrylate plastic model. From 10 to 15 views were incorporated, and decoupling of overlapped measurements was utilized to afford greater resolution. In general, the additive Algebraic Reconstruction Technique yielded the best reconstructions, with others showing promise for noisy data. Results indicate the need for some further development of the method in interpreting real data

  9. Voiding patterns in men evaluated by a questionnaire survey

    DEFF Research Database (Denmark)

    Sommer, P; Nielsen, K K; Bauer, T

    1990-01-01

    A questionnaire on obstructive and irritative voiding symptoms was sent to 572 men aged between 20 and 79 years, selected at random from the National Register; 337 questionnaires were completed. None of the responders had consulted a doctor because of voiding symptoms. There was a significant...... voiding symptoms in men aged 60 to 79 years without subjective prostatism was the same as in patients admitted with prostatism, although most of the men had milder symptoms. Only nocturia and urge incontinence were more prevalent in patients admitted with prostatism. About 20% of men in the oldest decades...... had symptoms equal in severity to those found in men undergoing prostatectomy; 29% and 11% of men in the eighth decade [corrected] had nocturia twice and 3 times or more respectively; 19% complained of urge incontinence. More information on possible treatment is needed....

  10. Noninvasive Medical Tools for Evaluating Voiding Pattern in Real Life

    Directory of Open Access Journals (Sweden)

    Kwonsoo Chun

    2017-04-01

    Full Text Available Voiding dysfunction is a common disease that contributes to a lower quality of life and has an increased prevalence in the elderly population. Noninvasive and objective methods such as uroflowmetry (UFM and voiding diaries (VDs are essential for exact diagnosis and effective treatment of this condition because patients with different causes of voiding dysfunction can complain of the same lower urinary tract symptoms. Further, different treatment options can be determined based on the diagnosis made from these symptoms. In order to improve the quality of UFM and VDs and to provide a convenient testing environment, several advances have been made by previous investigators. In this study, we investigate the history and technological mechanisms of UFM and VDs. We also aim to review UFM from the viewpoint of clinical and at-home uses, including the recently proposed toilet-shaped UFM and electronic VDs.

  11. Loss of urinary voiding sensation due to herpes zoster.

    Science.gov (United States)

    Hiraga, Akiyuki; Nagumo, Kiyomi; Sakakibara, Ryuji; Kojima, Shigeyuki; Fujinawa, Naoto; Hashimoto, Tasuku

    2003-01-01

    A case of sacral herpes zoster infection in a 56-year-old man with the complication of loss of urinary voiding sensation is presented. He had typical herpes zoster eruption on the left S2 dermatome, hypalgesia of the S1-S4 dermatomes, and absence of urinary voiding sensation. There was no other urinary symptom at the first medical examination. Urinary complications associated with herpes zoster are uncommon, but two types, acute cystitis and acute retention, have been recognized. No cases of loss of urinary voiding sensation due to herpes zoster have been reported. In this case, hypalgesia of the sacral dermatomes was mild compared to the marked loss of urethral sensation. This inconsistency is explained by the hypothesis that the number of urethral fibers is very small as compared to that of cutaneous fibers, therefore, urethral sensation would be more severely disturbed than cutaneous sensation. Copyright 2003 Wiley-Liss, Inc.

  12. Influence of void defects on partial discharge behavior of superconducting busbar insulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunyu; Huang, Xiongyi, E-mail: huangxy@ipp.ac.cn; Lu, Kun; Li, Guoliang; Zhu, Haisheng; Wang, Jun; Wang, Cao; Dai, Zhiheng; Fang, Linlin; Song, Yuntao

    2017-06-15

    Highlights: • PD detection method was used to check the quality of the superconducting busbar insulation. • The samples with different void fraction were manufactured for comparing. • The discharge inception voltage, PRPD pattern was tested and studied for the samples with different void content. • The PD behaviors in oil bath and air condition were compared. - Abstract: For a magnetic confinement fusion device, the superconducting magnets and busbars need to be insulated with one layer of solid insulation to isolate the high voltage potential from the ground. The insulation layer commonly consists of several interleaved layers of epoxy resin-impregnated glass fiber tapes and polyimide films. The traditional electrical inspection methods for such solidified insulation on the magnet and busbar are a DC voltage test or a Paschen test. These tests measure the quality of the insulation based on the value of leakage currents. However, even if there is a larger quantity of high dielectric strength material implemented, if there are some microcavities or delaminations in the insulation system, the leakage current may be limited to microampere levels under testing levels over dozens of kilovolts. Therefore, it is difficult to judge the insulation quality just by the magnitudes of leakage current. Under long-term operation, such imperceptible defects will worsen and finally completely break down the insulation because of partial discharge (PD) incidents. Therefore, a PD detection test is an important complement to the DC voltage and Paschen tests for magnet and busbar insulations in the field of fusion. It is known that the PD detection test is a mature technique in the electric power industry. In this paper, the PD characteristics of samples containing glass fiber-reinforced composite insulations for use with the superconducting busbar were presented and discussed. Various samples with different void contents were prepared and the PD behaviors were tested.

  13. Influence of void defects on partial discharge behavior of superconducting busbar insulation

    International Nuclear Information System (INIS)

    Wang, Chunyu; Huang, Xiongyi; Lu, Kun; Li, Guoliang; Zhu, Haisheng; Wang, Jun; Wang, Cao; Dai, Zhiheng; Fang, Linlin; Song, Yuntao

    2017-01-01

    Highlights: • PD detection method was used to check the quality of the superconducting busbar insulation. • The samples with different void fraction were manufactured for comparing. • The discharge inception voltage, PRPD pattern was tested and studied for the samples with different void content. • The PD behaviors in oil bath and air condition were compared. - Abstract: For a magnetic confinement fusion device, the superconducting magnets and busbars need to be insulated with one layer of solid insulation to isolate the high voltage potential from the ground. The insulation layer commonly consists of several interleaved layers of epoxy resin-impregnated glass fiber tapes and polyimide films. The traditional electrical inspection methods for such solidified insulation on the magnet and busbar are a DC voltage test or a Paschen test. These tests measure the quality of the insulation based on the value of leakage currents. However, even if there is a larger quantity of high dielectric strength material implemented, if there are some microcavities or delaminations in the insulation system, the leakage current may be limited to microampere levels under testing levels over dozens of kilovolts. Therefore, it is difficult to judge the insulation quality just by the magnitudes of leakage current. Under long-term operation, such imperceptible defects will worsen and finally completely break down the insulation because of partial discharge (PD) incidents. Therefore, a PD detection test is an important complement to the DC voltage and Paschen tests for magnet and busbar insulations in the field of fusion. It is known that the PD detection test is a mature technique in the electric power industry. In this paper, the PD characteristics of samples containing glass fiber-reinforced composite insulations for use with the superconducting busbar were presented and discussed. Various samples with different void contents were prepared and the PD behaviors were tested.

  14. Void Measurements in the Regions of Sub-Cooled and Low-Quality Boiling. Part 1. Low Mass Velocities

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Z

    1966-07-15

    By the application of the ({gamma}, n) reaction to boiling heavy water, void volume fractions have been measured in a vertical annular channel with 25 mm O.D. and 12 mm I.D. at a heated length of 1090 mm. The experiments covered pressures from 10 to 50 bars, mass velocities from 50 to 1450 kg/m-sec, heat fluxes from 30 to 90 W/cm{sup 2}, sub coolings from 30 to 0 C, and steam qualities from 0 to 15 %. The results indicate noticeable effects of pressure, heat flux and even mass velocity upon the variations of void with subcooling and steam quality. A novel explanation of the mechanism of their effects has been found and proved by qualitative analysis.

  15. Effects contributing to positive coolant void reactivity in CANDU

    International Nuclear Information System (INIS)

    Whitlock, J.J.; Garland, W.J.; Milgram, M.S.

    1995-01-01

    The lattice cell code WIMS-AECL (Ref. 3) is used to model a typical CANDU lattice cell, using nominal geometric bucklings, the PIJ option, and 69-group Winfrith library. The effect of cell voiding is modeled as a 100% instantaneous removal of coolant from the lattice. This is conservative because of the neglect of time dependence and partial core voiding, considered more plausible in CANDU. Results are grouped into three spectral groups: fast neutrons (0.821 to 10 MeV), epithermal neutrons (0.625 eV to 0.821 MeV), and thermal neutrons (<0.625 eV)

  16. Supernovae observations in a 'meatball' universe with a local void

    International Nuclear Information System (INIS)

    Kainulainen, Kimmo; Marra, Valerio

    2009-01-01

    We study the impact of cosmic inhomogeneities on the interpretation of observations. We build an inhomogeneous universe model without dark energy that can confront supernova data and yet is reasonably well compatible with the Copernican principle. Our model combines a relatively small local void, that gives apparent acceleration at low redshifts, with a meatball model that gives sizable lensing (dimming) at high redshifts. Together these two elements, which focus on different effects of voids on the data, allow the model to mimic the concordance model.

  17. Supernovae observations in a 'meatball' universe with a local void

    Energy Technology Data Exchange (ETDEWEB)

    Kainulainen, Kimmo; Marra, Valerio [Department of Physics, University of Jyvaeskylae, PL 35 (YFL), FIN-40014 Jyvaeskylae, Finland and Helsinki Institute of Physics, University of Helsinki, PL 64, FIN-00014 Helsinki (Finland)

    2009-12-15

    We study the impact of cosmic inhomogeneities on the interpretation of observations. We build an inhomogeneous universe model without dark energy that can confront supernova data and yet is reasonably well compatible with the Copernican principle. Our model combines a relatively small local void, that gives apparent acceleration at low redshifts, with a meatball model that gives sizable lensing (dimming) at high redshifts. Together these two elements, which focus on different effects of voids on the data, allow the model to mimic the concordance model.

  18. Supernovae observations in a ``meatball'' universe with a local void

    Science.gov (United States)

    Kainulainen, Kimmo; Marra, Valerio

    2009-12-01

    We study the impact of cosmic inhomogeneities on the interpretation of observations. We build an inhomogeneous universe model without dark energy that can confront supernova data and yet is reasonably well compatible with the Copernican principle. Our model combines a relatively small local void, that gives apparent acceleration at low redshifts, with a meatball model that gives sizable lensing (dimming) at high redshifts. Together these two elements, which focus on different effects of voids on the data, allow the model to mimic the concordance model.

  19. Cluster-void degeneracy breaking: Modified gravity in the balance

    Science.gov (United States)

    Sahlén, Martin; Silk, Joseph

    2018-05-01

    Combining galaxy cluster and void abundances is a novel, powerful way to constrain deviations from general relativity and the Λ CDM model. For a flat w CDM model with growth of large-scale structure parametrized by the redshift-dependent growth index γ (z )=γ0+γ1z /(1 +z ) of linear matter perturbations, combining void and cluster abundances in future surveys with Euclid and the four-meter multiobject spectroscopic telescope could improve the figure of merit for (w ,γ0,γ1) by a factor of 20 compared to individual abundances. In an ideal case, improvement on current cosmological data is a figure of merit factor 600 or more.

  20. Void redistribution in sand under post-earthquake loading

    International Nuclear Information System (INIS)

    Boulanger, R.W.; Truman, S.P.

    1996-01-01

    A mechanism for void redistribution in an infinite slope under post-earthquake loading conditions is described by consideration of the in situ loading paths that can occur under post-earthquake conditions and the results of triaxial tests designed to represent specific in situ post-earthquake loading paths. The mechanism is illustrated by application to an example problem. Void redistribution is shown to be a phenomena that may be more pronounced at the field scale than at the laboratory scale. (author). 12 refs., 4 figs

  1. Influence of void on image quality of industrial SPECT

    International Nuclear Information System (INIS)

    Park, J G; Jung, S H; Kim, J B; Moon, J; Kim, C H

    2013-01-01

    Industrial single photon emission computed tomography (SPECT) is a promising technique to determine the dynamic behavior of industrial process media and has been developed in the Korea Atomic Energy Research Institute. The present study evaluated the influence of a void, which is presence in multiphase reactors of industrial process, on the image quality of an industrial SPECT. The results are very encouraging; that is, the performance of the industrial SPECT system is little influenced by the presence of a void, which means that industrial SPECT is an appropriate tool to estimate the dynamic characteristics of the process media in a water-air phase bubble column with a static gas sparger

  2. Void swelling behaviour of austenitic stainless steel during electron irradiation

    International Nuclear Information System (INIS)

    Sheng Zhongqi; Xiao Hong; Peng Feng; Ti Zhongxin

    1994-04-01

    The irradiation swelling behaviour of 00Cr17Ni14Mo2 austenitic stainless steel (AISI 316L) was investigated by means of high voltage electron microscope. Results showed that in solution annealed condition almost no swelling incubation period existed, and the swelling shifted from the transition period to the steady-state one when the displacement damage was around 40 dpa. In cold rolled condition there was evidently incubation period, and when the displacement damage was up to 84 dpa the swelling still remained in the transition period. The average size and density of voids in both conditions were measured, and the factors, which influenced the void swelling, were discussed. (3 figs.)

  3. Fraction Reduction through Continued Fractions

    Science.gov (United States)

    Carley, Holly

    2011-01-01

    This article presents a method of reducing fractions without factoring. The ideas presented may be useful as a project for motivated students in an undergraduate number theory course. The discussion is related to the Euclidean Algorithm and its variations may lead to projects or early examples involving efficiency of an algorithm.

  4. The void nucleation mechanism within lead phase during spallation of leaded brass

    Science.gov (United States)

    Yang, Yang; Wang, Can; Chen, Xingzhi; Chen, Kaiguo; Hu, Haibo; Fu, Yanan

    2018-07-01

    The incipient spall behaviours of Cu-34%Zn-3%Pb leaded brass samples with annealed and cryogenic-treated conditions were loaded using one-stage light gas gun experiments. The effect of Pb-phase on dynamic damage nucleation in leaded brass specimens was investigated by means of optical microscopy, scanning electron microscopy and x-ray computer tomography. It was found that the voids of incipient spall were mainly nucleated in the interior of the lead (no tensile stress would be produced within lead according to the impact theory) instead of nucleated at the phase interface as expected by quasi-static damage fracture theory. A nucleation model is proposed in the present work that is the asymmetry high compression zones in the centre of the lead-phase were formed by the rarefaction wave convergence effects of matrix/quasi-spherical lead interface, which caused adiabatic temperature rise that exceeded melting point of lead due to severe plastic deformation, finally led to local melting and void nucleation. In addition, the spall strength and damage rate increased with the increase in the Pb-phase number.

  5. Comparison between wire mesh sensor and gamma densitometry void measurements in two-phase flows

    Science.gov (United States)

    Sharaf, S.; Da Silva, M.; Hampel, U.; Zippe, C.; Beyer, M.; Azzopardi, B.

    2011-10-01

    Wire mesh sensors (WMS) are fast imaging instruments that are used for gas-liquid and liquid-liquid two-phase flow measurements and experimental investigations. Experimental tests were conducted at Helmholtz-Zentrum Dresden-Rossendorf to test both the capacitance and conductance WMS against a gamma densitometer (GD). A small gas-liquid test facility was utilized. This consisted of a vertical round pipe approximately 1 m in length, and 50 mm internal diameter. A 16 × 16 WMS was used with high spatial and temporal resolutions. Air-deionized water was the two-phase mixture. The gas superficial velocity was varied between 0.05 m s-1 and 1.4 m s-1 at two liquid velocities of 0.2 and 0.7 m s-1. The GD consisted of a collimated source and a collimated detector. The GD was placed on a moving platform close to the plane of wires of the sensor, in order to align it accurately using a counter mechanism, with each of the wires of the WMS, and the platform could scan the full section of the pipe. The WMS was operated as a conductivity WMS for a half-plane with eight wires and as a capacitance WMS for the other half. For the cross-sectional void (time and space averaged), along each wire, there was good agreement between WMS and the GD chordal void fraction near the centre of the pipe.

  6. Comparison between wire mesh sensor and gamma densitometry void measurements in two-phase flows

    International Nuclear Information System (INIS)

    Sharaf, S; Azzopardi, B; Da Silva, M; Hampel, U; Zippe, C; Beyer, M

    2011-01-01

    Wire mesh sensors (WMS) are fast imaging instruments that are used for gas–liquid and liquid–liquid two-phase flow measurements and experimental investigations. Experimental tests were conducted at Helmholtz-Zentrum Dresden-Rossendorf to test both the capacitance and conductance WMS against a gamma densitometer (GD). A small gas–liquid test facility was utilized. This consisted of a vertical round pipe approximately 1 m in length, and 50 mm internal diameter. A 16 × 16 WMS was used with high spatial and temporal resolutions. Air–deionized water was the two-phase mixture. The gas superficial velocity was varied between 0.05 m s −1 and 1.4 m s −1 at two liquid velocities of 0.2 and 0.7 m s −1 . The GD consisted of a collimated source and a collimated detector. The GD was placed on a moving platform close to the plane of wires of the sensor, in order to align it accurately using a counter mechanism, with each of the wires of the WMS, and the platform could scan the full section of the pipe. The WMS was operated as a conductivity WMS for a half-plane with eight wires and as a capacitance WMS for the other half. For the cross-sectional void (time and space averaged), along each wire, there was good agreement between WMS and the GD chordal void fraction near the centre of the pipe

  7. Diagnostic performance of instantaneous wave-free ratio for the evaluation of coronary stenosis severity confirmed by fractional flow reserve: A PRISMA-compliant meta-analysis of randomized studies.

    Science.gov (United States)

    Man, Wanrong; Hu, Jianqiang; Zhao, Zhijing; Zhang, Mingming; Wang, Tingting; Lin, Jie; Duan, Yu; Wang, Ling; Wang, Haichang; Sun, Dongdong; Li, Yan

    2016-09-01

    The instantaneous wave-free ratio (iFR) is a new vasodilator-free index of coronary stenosis severity. The aim of this meta-analysis is to assess the diagnostic performance of iFR for the evaluation of coronary stenosis severity with fractional flow reserve as standard reference. We searched PubMed, EMBASE, CENTRAL, ProQuest, Web of Science, and International Clinical Trials Registry Platform (ICTRP) for publications concerning the diagnostic value of iFR. We used a random-effects covariate to synthesize the available data of sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR-), and diagnostic odds ratio (DOR). Overall test performance was summarized by the summary receiver operating characteristic curve (sROC) and the area under the curve (AUC). Eight studies with 1611 subjects were included in the meta-analysis. The pooled sensitivity, specificity, LR+, LR-, and DOR for iFR were respectively 73.3% (70.1-76.2%), 86.4% (84.3-88.3%), 5.71 (4.43-7.37), 0.29 (0.22-0.38), and 20.54 (16.11-26.20). The area under the summary receiver operating characteristic curves for iFR was 0.8786. No publication bias was identified. The available evidence suggests that iFR may be a new, simple, and promising technology for coronary stenosis physiological assessment.

  8. Effect of the critical size of initial voids on stress-induced migration

    International Nuclear Information System (INIS)

    Aoyagi, Minoru

    2004-01-01

    The stress-induced migration phenomenon is one of the problems related to the reliability of metal interconnections in semiconductor devices. This phenomenon causes voids and fractures in interconnections. The basic feature of this phenomenon is vacancy migration to minute initial voids. Expanding initial voids grow into larger voids and fractures. The purpose of this work is to theoretically clarify the effects of residual thermal stress and void surface stress on the behavior of the initial voids which exist immediately after a passivation process. Using a spherical metal sample with a spherical void under external stress, vacancy absorption or emission was investigated between the void surface and the sample surface. The behavior of vacancies and atoms was also investigated in interconnections under residual thermal stress. We show that the void or sample surface becomes a vacancy sink or source, depending on the mutual relationship between the surface stress due to the surface-free energy and the residual thermal stress. We also reveal that the initial voids, which exist immediately after a passivation process, grow into larger voids and fractures when the size of the initial voids exceeds the critical size. If the size of the initial void can be controlled to below the critical size, voids and fractures do not occur

  9. THE PREDICTION OF VOID VOLUME IN SUBCOOLED NUCLEATE POOL BOILING

    Energy Technology Data Exchange (ETDEWEB)

    Duke, E. E. [General Dynamics, San Diego, CA (United States)

    1963-11-15

    A three- step equation was developed that adequately describes the average volume of vapor occurring on a horizontal surface due to nucleate pool boiling of subcooled water. Since extensive bubble frequency data are lacking, the data of others were combined with experimental observations to make predictions of void volume at ambient pressure with various degrees of subcooling. (auth)

  10. Nucleation of voids and other irradiation-produced defect aggregates

    International Nuclear Information System (INIS)

    Wiedersich, H.; Katz, J.L.

    1976-01-01

    The nucleation of defect clusters in crystalline solids from radiation-produced defects is different from the usual nucleation processes in one important aspect: the condensing defects, interstitial atoms and vacancies, can mutually annihilate and are thus similar to matter and antimatter. The nucleation process is described as the simultaneous reaction of vacancies and interstitials (and gas atoms if present) with embryos of all sizes. The reaction rates for acquisition of point defects (and gas atoms) are calculated from their respective jump frequencies and concentrations in the supersaturated system. The reaction rates for emission of point defects are derived from the free energies of the defect clusters in the thermodynamic equilibrium system, i.e., the system without excess point defects. This procedure differs from that used in conventional nucleation theory and permits the inclusion of the ''antimatter'' defect into the set of reaction-rate equations in a straightforward manner. The method is applied to steady-state nucleation, during irradiation, of both dislocation loops and voids in the absence and in the presence of immobile and mobile gas. The predictions of the nucleation theory are shown to be in qualitative agreement with experimental observations, e.g., void densities increase with increasing displacement rates; gases such as helium enhance void nucleation; at low displacement rates and at high temperatures the presence of gas is essential to void formation. For quantitative predictions, the theory must be extended to include the termination of nucleation

  11. Predictive efficacy of radioisotope voiding cystography for renal outcome

    International Nuclear Information System (INIS)

    Kim, Seok Ki; Lee, Dong Soo; Kim, Kwang Myeung; Choi, Whang; Chung, June Key; Lee, Myung Chul

    2000-01-01

    As vesicoureteral reflux (VUR) could lead to renal functional deterioration when combined with urinary tract infection, we need to decide whether operative anti-reflux treatment should be performed at the time of diagnosis of VUR. Predictive value of radioisotope voiding cystography (RIVCG) for renal outcome was tested. In 35 children (18 males, 17 females), radiologic voiding cystoure-thrography (VCU), RIVCG and DMSA scan were performed. Change in renal function was evaluated using the follow-up DMSA scan, ultrasonography, and clinical information. Discriminant analysis was performed using individual or integrated variables such as reflux amount and extent at each phase of voiding on RIVCG, in addition to age, gender and cortical defect on DMSA scan at the time of diagnosis. Discriminant function was composed and its performance was examined. Reflux extent at the filling phase and reflux amount and extent at postvoiding phase had a significant prognostic value. Total reflux amount was a composite variable to predict prognosis. Discriminant function composed of reflux extent at the filling phase and reflux amount and extent at postvoiding phase showed better positive predictive value and specificity than conventional reflux grading. RIVCG could predict renal outcome by disclosing characteristic reflux pattern during various voiding phases.=20

  12. Decay of charge deposited on the wall of gaseous void

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1992-01-01

    sustained in the void. However, the absolute value of this field is reduced with an increase in bulk permittivity. It is concluded that the present choice of a point charge to simulate the wall charge has the disadvantage that such a source is associated with a field singularity, and thus it is not possible...

  13. Electric field theory and the fallacy of void capacitance

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1991-01-01

    The concept of the capacitance of a gaseous void is discussed as applied to electrical insulation science. The most pertinent aspect of the capacitance definition is that of reference to a single-valued potential difference between surfaces. This implies that these surfaces must be surfaces...

  14. The cosmic web in CosmoGrid void regions

    NARCIS (Netherlands)

    Rieder, Steven; van de Weygaert, Rien; Cautun, Marius; Beygu, Burcu; Portegies Zwart, Simon

    2016-01-01

    We study the formation and evolution of the cosmic web, using the high-resolution CosmoGrid ΛCDM simulation. In particular, we investigate the evolution of the large-scale structure around void halo groups, and compare this to observations of the VGS-31 galaxy group, which consists of three

  15. Monte Carlo validation of self shielding and void effect calculations

    International Nuclear Information System (INIS)

    Tellier, H.; Coste, M.; Raepsaet, C.; Soldevila, M.; Van der Gucht, C.

    1995-01-01

    The self shielding validation and the void effect are studied with Monte Carlo method. The satisfactory comparison obtained between the APOLLO 2 results of the self shielding effect and the TRIPOLI and MCNP results allows us to be confident in the multigroup transport code. (K.A.)

  16. Extrapolation of ZPR sodium void measurements to the power reactor

    International Nuclear Information System (INIS)

    Beck, C.L.; Collins, P.J.; Lineberry, M.J.; Grasseschi, G.L.

    1976-01-01

    Sodium-voiding measurements of ZPPR assemblies 2 and 5 are analyzed with ENDF/B Version IV data. Computations include directional diffusion coefficients to account for streaming effects resulting from the plate structure of the critical assembly. Bias factors for extrapolating critical assembly data to the CRBR design are derived from the results of this analysis

  17. Detection of Vesico-Ureteric Reflux Using Voiding Hippuran Ureterograms

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J. B.; Palser, R. [Section of Nuclear Medicine, Manitoba Cancer Treatment and Research Foundation, Winnipeg General Hospital, Winnipeg (Canada); Macpherson, R. I. [Children' s Hospital of Winnipeg, Winnipeg (Canada)

    1971-02-15

    Initial results of a technique for the demonstration of vesico-ureteric reflux in children are described. Hippuran-{sup 131}I (15 {mu}Ci) (ortho-iodohippurate) is injected intravenously. A standard renogram is obtained. Additional collimation is added to the recording probes and they are positioned to record the radioactivity from the mid-ureteric region. Recordings of normal and abnormal peristaltic activity during per-ora hydration of the patient are thus obtained. When the child is willing to void, he is placed upright on a bed pan, the probes positioned to record over the lower ureteric region and recordings are made while the child voids. All data are recorded on a 512-channel analyser operated in the multi-scaler node. Data are punched out on paper tape and, after an 11 point computer smoothing program, are displayed graphically. These recordings show different patterns in normal children and those with vesico-ureteric reflux. There are several advantages to this technique over the standard radiological and other radionuclide voiding cystoureterograms. The results are compared with contrast voiding cystourethrograms in both normal children and those with vesico-ureteric reflux. (author)

  18. 3D optical tomography in the presence of void regions

    Science.gov (United States)

    Riley, J.; Dehghani, Hamid; Schweiger, Martin; Arridge, Simon R.; Ripoll, Jorge; Nieto-Vesperinas, Manuel

    2000-12-01

    We present an investigation of the effect of a 3D non-scattering gap region on image reconstruction in diffuse optical tomography. The void gap is modelled by the Radiosity-Diffusion method and the inverse problem is solved using the adjoint field method. The case of a sphere with concentric spherical gap is used as an example.

  19. Influence of ageing, inclusions and voids on ductile fracture ...

    Indian Academy of Sciences (India)

    Unknown

    The strain hardening capacity has a marked effect on void size, and is an indicator of fracture .... a model of ductile failure based on the concept that the critical step in the .... Ashby M F, Gandhi C and Taplin D M R 1979 Acta Metal. 27. 699.

  20. Calculation of Void in the Fort Saint Vrain Material

    Energy Technology Data Exchange (ETDEWEB)

    Potter, David Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Taylor, Craig Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Coons, James Elmer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-11

    The percent void of the Fort Saint Vrain (FSV) material is estimated to be 21.1% based on the volume of the gap at the top of the drums, the volume of the coolant channels in the FSV fuel element, and the volume of the fuel handling channel in the FSV fuel element.

  1. Nucleation of voids in materials supersaturated with mobile interstitials, vacancies and divacancies

    International Nuclear Information System (INIS)

    Wolfer, W.G.; Si-Ahmed, A.

    1982-01-01

    In previous void nucleation theories, the void size has been allowed to change only by one atomic volume through vacancy or interstitial absorption or through vacancy emission. To include the absorption of divacancies, the classical nucleation theory is here extended to include double-step transitions between clusters. The new nucleation theory is applied to study the effect of divacancies on void formation. It is found that the steady-state void nucleation rate is enhanced by several orders of magnitude as compared to results with previous void nucleation theories. However, to obtain void nucleation rates comparable to measured ones, the effect of impurities, segregation and insoluble gases must still be invoked. (author)

  2. Constraints on Cosmology and Gravity from the Dynamics of Voids.

    Science.gov (United States)

    Hamaus, Nico; Pisani, Alice; Sutter, P M; Lavaux, Guilhem; Escoffier, Stéphanie; Wandelt, Benjamin D; Weller, Jochen

    2016-08-26

    The Universe is mostly composed of large and relatively empty domains known as cosmic voids, whereas its matter content is predominantly distributed along their boundaries. The remaining material inside them, either dark or luminous matter, is attracted to these boundaries and causes voids to expand faster and to grow emptier over time. Using the distribution of galaxies centered on voids identified in the Sloan Digital Sky Survey and adopting minimal assumptions on the statistical motion of these galaxies, we constrain the average matter content Ω_{m}=0.281±0.031 in the Universe today, as well as the linear growth rate of structure f/b=0.417±0.089 at median redshift z[over ¯]=0.57, where b is the galaxy bias (68% C.L.). These values originate from a percent-level measurement of the anisotropic distortion in the void-galaxy cross-correlation function, ϵ=1.003±0.012, and are robust to consistency tests with bootstraps of the data and simulated mock catalogs within an additional systematic uncertainty of half that size. They surpass (and are complementary to) existing constraints by unlocking cosmological information on smaller scales through an accurate model of nonlinear clustering and dynamics in void environments. As such, our analysis furnishes a powerful probe of deviations from Einstein's general relativity in the low-density regime which has largely remained untested so far. We find no evidence for such deviations in the data at hand.

  3. Influence of second phase dispersion on void formation during irradiation

    International Nuclear Information System (INIS)

    Sundararaman, M.; Banerjee, S.; Krishnan, R.

    Irradiation-induced void formation in alloys has been found to be strongly influenced by the microstructure, the important microstructural parameters being the dislocation density and the nature, density and distribution of second-phase precipitates. The effects of various types of precipitates on void swelling have been examined using the generally-accepted model of void formation : void embryos are assumed to grow in a situation where equal numbers of vacancies and interstitials are continuously generated by the incident irradiation, the interstitials being somewhat perferentially absorbed in some sinks present in the material. The mechanism of the trapping of defects by a distribution of precipitates has been discussed and the available experimental results on the suppression of void formation in materials containing coherent precipitates have been reviewed. Experimental results on the microstructure developed in a nickel-base alloys, Inconel-718 (considered to be a candidate material for structural applications in fast reactors), have been presented. The method of determination of the coherency strain associated with the precipitates has been illustrated with the help of certain observations made on this alloy. The major difficulty in using a two-phase alloy in an irradiation environment is associated with the irradiation-induced instability of the precipitates. Several processes such as precipitate dislocation (in which the incident radiation removes the outer layer of precipitates by recoil), enhanced diffusion disordering, fragmentation of precipitates, etc. are responsible for bringinq about a significant change in the structure of a two-phase material during irradiation. The effect of these processes on the continued performance of a two-phase alloy subjected to irradiation at an elevated temperature has been discussed. (auth.)

  4. Percolation through voids around overlapping spheres: A dynamically based finite-size scaling analysis

    Science.gov (United States)

    Priour, D. J.

    2014-01-01

    The percolation threshold for flow or conduction through voids surrounding randomly placed spheres is calculated. With large-scale Monte Carlo simulations, we give a rigorous continuum treatment to the geometry of the impenetrable spheres and the spaces between them. To properly exploit finite-size scaling, we examine multiple systems of differing sizes, with suitable averaging over disorder, and extrapolate to the thermodynamic limit. An order parameter based on the statistical sampling of stochastically driven dynamical excursions and amenable to finite-size scaling analysis is defined, calculated for various system sizes, and used to determine the critical volume fraction ϕc=0.0317±0.0004 and the correlation length exponent ν =0.92±0.05.

  5. Detecting voids in a 0. 6m coal seam, 7m deep, using seismic reflection

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.D.; Steeples, D.W. (University of Kansas, Lawrence, KS (USA). Kansas Geological Survey)

    1991-07-01

    Surface collapse over abandoned subsurface coal mines is a problem in many parts of the world. High-resolution P-wave reflection seismology was successfully used to evaluate the risk of an active sinkhole to a main north-south railroad line in an undermined area of southeastern Kansas, USA. Water-filled cavities responsible for sinkholes in this area are in a 0.6 m thick coal seam, 7 m deep. Dominant reflection frequencies in excess of 200 Hz enabled reflections from the coal seam to be discerned from the direct wave, refractions, air wave, and ground roll on unprocessed field files. Repetitive void sequences within competent coal on three seismic profiles are consistent with the 'room and pillar' mining technique practiced in this area near the turn of the century. The seismic survey showed that the apparent active sinkhole was not the result of reactivated subsidence but probably the results of erosion. 14 refs., 6 figs.

  6. Void formation and its impact on Cu−Sn intermetallic compound formation

    International Nuclear Information System (INIS)

    Ross, Glenn; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2016-01-01

    Void formation in the Cu−Sn system has been identified as a major reliability issue with small volume electronic interconnects. Voids form during the interdiffusion of electrochemically deposited Cu and Sn, with varying magnitude and density. Electroplating parameters include the electrolytic chemistry composition and the electroplating current density, all of which appear to effect the voiding characteristics of the Cu−Sn system. In addition, interfacial voiding affects the growth kinetics of the Cu_3Sn and Cu_6Sn_5 intermetallic compounds of the Cu−Sn system. The aim here is to present voiding data as a function of electroplating chemistry and current density over a duration (up to 72 h) of isothermal annealing at 423 K (150 °C). Voiding data includes the average interfacial void size and average void density. Voids sizes grew proportionally as a function of thermal annealing time, whereas the void density grew initially very quickly but tended to saturate at a fixed density. A morphological evolution analysis called the physicochemical approach is utilised to understand the processes that occur when a voided Cu/Cu_3Sn interface causes changes to the IMC phase growth. The method is used to simulate the intermetallic thickness growths' response to interfacial voiding. The Cu/Cu_3Sn interface acts as a Cu diffusion barrier disrupting the diffusion of Cu. This resulted in a reduction in the Cu_3Sn thickness and an accelerated growth rate of Cu_6Sn_5. - Highlights: • Average void size is proportional linearly to thermal annealing time. • Average void density grows initially very rapidly followed by saturation. • Voids located close to the Cu/Cu_3Sn interface affect IMC growth rates. • Voids act as a diffusion barrier inhibiting Cu diffusion towards Sn. • Voids located at the interface cause Cu_3Sn to be consumed by Cu_6Sn_5.

  7. Is abdominal wall contraction important for normal voiding in the female rat?

    Directory of Open Access Journals (Sweden)

    Boone Timothy B

    2007-03-01

    Full Text Available Abstract Background Normal voiding behavior in urethane-anesthetized rats includes contraction of the abdominal wall striated muscle, similar to the visceromotor response (VMR to noxious bladder distension. Normal rat voiding requires pulsatile release of urine from a pressurized bladder. The abdominal wall contraction accompanying urine flow may provide a necessary pressure increment for normal efficient pulsatile voiding. This study aimed to evaluate the occurrence and necessity of the voiding-associated abdominal wall activity in urethane-anesthetized female rats Methods A free-voiding model was designed to allow assessment of abdominal wall activity during voiding resulting from physiologic bladder filling, in the absence of bladder or urethral instrumentation. Physiologic diuresis was promoted by rapid intravascular hydration. Intercontraction interval (ICI, voided volumes and EMG activity of the rectus abdominis were quantified. The contribution of abdominal wall contraction to voiding was eliminated in a second group of rats by injecting botulinum-A (BTX, 5 U into each rectus abdominis to induce local paralysis. Uroflow parameters were compared between intact free-voiding and BTX-prepared animals. Results Abdominal wall response is present in free voiding. BTX preparation eliminated the voiding-associated EMG activity. Average per-void volume decreased from 1.8 ml to 1.1 ml (p Conclusion The voiding-associated abdominal wall response is a necessary component of normal voiding in urethane anesthetized female rats. As the proximal urethra may be the origin of the afferent signaling which results in the abdominal wall response, the importance of the bladder pressure increment due to this response may be in maintaining a normal duration intermittent pulsatile high frequency oscillatory (IPHFO/flow phase and thus efficient voiding. We propose the term Voiding-associated Abdominal Response (VAR for the physiologic voiding-associated EMG

  8. Voids and superstructures: correlations and induced large-scale velocity flows

    Science.gov (United States)

    Lares, Marcelo; Luparello, Heliana E.; Maldonado, Victoria; Ruiz, Andrés N.; Paz, Dante J.; Ceccarelli, Laura; Garcia Lambas, Diego

    2017-09-01

    The expanding complex pattern of filaments, walls and voids build the evolving cosmic web with material flowing from underdense on to high density regions. Here, we explore the dynamical behaviour of voids and galaxies in void shells relative to neighbouring overdense superstructures, using the Millenium simulation and the main galaxy catalogue in Sloan Digital Sky Survey data. We define a correlation measure to estimate the tendency of voids to be located at a given distance from a superstructure. We find voids-in-clouds (S-types) preferentially located closer to superstructures than voids-in-voids (R-types) although we obtain that voids within ˜40 h-1 Mpc of superstructures are infalling in a similar fashion independently of void type. Galaxies residing in void shells show infall towards the closest superstructure, along with the void global motion, with a differential velocity component depending on their relative position in the shell with respect to the direction to the superstructure. This effect is produced by void expansion and therefore is stronger for R-types. We also find that galaxies in void shells facing the superstructure flow towards the overdensities faster than galaxies elsewhere at the same relative distance to the superstructure. The results obtained for the simulation are also reproduced for the Sky Survey Data Release data with a linearized velocity field implementation.

  9. Three-dimensional core analysis on a super fast reactor with negative local void reactivity

    International Nuclear Information System (INIS)

    Cao Liangzhi; Oka, Yoshiaki; Ishiwatari, Yuki; Ikejiri, Satoshi

    2009-01-01

    Keeping negative void reactivity throughout the cycle life is one of the most important requirements for the design of a supercritical water-cooled fast reactor (super fast reactor). Previous conceptual design has negative overall void reactivity. But the local void reactivity, which is defined as the reactivity change when the coolant of one fuel assembly disappears, also needs to be kept negative throughout the cycle life because the super fast reactor is designed with closed fuel assemblies. The mechanism of the local void reactivity is theoretically analyzed from the neutrons balance point of view. Three-dimensional neutronics/thermal-hydraulic coupling calculation is employed to analyze the characteristics of the super fast reactor including the local void reactivity. Some configurations of the core are optimized to decrease the local void reactivity. A reference core is successfully designed with keeping both overall and local void reactivity negative. The maximum local void reactivity is less than -30 pcm

  10. Constitutive modeling of void-growth-based tensile ductile failures with stress triaxiality effects

    KAUST Repository

    Mora Cordova, Angel; Liu, Jinxing; El Sayed, Tamer S.

    2014-01-01

    In most metals and alloys, the evolution of voids has been generally recognized as the basic failure mechanism. Furthermore, stress triaxiality has been found to influence void growth dramatically. Besides strain intensity, it is understood

  11. Mechanism of Void Prediction in Flip Chip Packages with Molded Underfill

    Science.gov (United States)

    Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang

    2017-08-01

    Voids have always been present using the molded underfill (MUF) package process, which is a problem that needs further investigation. In this study, the process was studied using the Moldex3D numerical analysis software. The effects of gas (air vent effect) on the overall melt front were also considered. In this isothermal process containing two fluids, the gas and melt colloid interact in the mold cavity. Simulation enabled an appropriate understanding of the actual situation to be gained, and, through analysis, the void region and exact location of voids were predicted. First, the global flow end area was observed to predict the void movement trend, and then the local flow ends were observed to predict the location and size of voids. In the MUF 518 case study, simulations predicted the void region as well as the location and size of the voids. The void phenomenon in a flip chip ball grid array underfill is discussed as part of the study.

  12. Void swelling in fast reactor irradiated high purity binary iron-chromium alloys

    International Nuclear Information System (INIS)

    Little, E.A.; Stow, D.A.

    The void swelling characteristics of a series of high purity binary iron-chromium alloys containing 0 - 615 0 C. The void swelling behaviour can be qualitatively rationalized in terms of point defect trapping and precipitation processes involving chromium atoms

  13. Effect of scale size, orientation type and dispensing method on void ...

    Indian Academy of Sciences (India)

    AIZAT ABAS

    2018-04-13

    Apr 13, 2018 ... reduce the formation of void during encapsulation process. Keywords. Ball grid ... Additionally, the usage of LBM to study of void in CUF was again conducted by ... models are fabricated using clear Perspex and plastics beads.

  14. Parallel Void Thread in Long-Reach Ethernet Passive Optical Networks

    KAUST Repository

    Elrasad, Amr; Shihada, Basem

    2015-01-01

    This work investigates void filling (idle periods) in long-reach Ethernet passive optical networks. We focus on reducing grant delays and hence reducing the average packet delay. We introduce a novel approach called parallel void thread (PVT), which

  15. On the Conformable Fractional Quantum Mechanics

    Science.gov (United States)

    Mozaffari, F. S.; Hassanabadi, H.; Sobhani, H.; Chung, W. S.

    2018-05-01

    In this paper, a conformable fractional quantum mechanic has been introduced using three postulates. Then in such a formalism, Schr¨odinger equation, probability density, probability flux and continuity equation have been derived. As an application of considered formalism, a fractional-radial harmonic oscillator has been considered. After obtaining its wave function and energy spectrum, effects of the conformable fractional parameter on some quantities have been investigated and plotted for different excited states.

  16. Constitutive modeling of rate dependence and microinertia effects in porous-plastic materials with multi-sized voids (MSVs)

    KAUST Repository

    Liu, Jinxing; El Sayed, Tamer S.

    2012-01-01

    Micro-voids of varying sizes exist in most metals and alloys. Both experiments and numerical studies have demonstrated the critical influence of initial void sizes on void growth. The classical Gurson-Tvergaard-Needleman model summarizes

  17. Void swelling and segregation in dilute nickel alloys

    International Nuclear Information System (INIS)

    Potter, D.I.; Rehn, L.E.; Okamoto, P.R.; Wiedersich, H.

    1977-01-01

    Five binary alloys containing 1 at.% of Al, Ti, Mo, Si and Be in nickel were irradiated at temperatures from 525 to 675 0 C with 3.5-MeV 58 Ni + ions. The resultant microstructures were examined by TEM, and void diameters, number densities and swelling are presented for each alloy over the temperature interval investigated. A systematic relation between solute misfit (size factor) and void swelling is established for these alloys. Solute concentration profiles near the irradiated surface were determined and these also exhibited a systematic behavior--undersize solutes segregated to the surface, whereas oversize solutes were depleted. The results are consistent with calculations based on strong interstitial-solute trapping by undersize solutes and vacancy-solute trapping by oversize solutes that are weak interstitial traps

  18. 40 CFR 1065.525 - Engine starting, restarting, shutdown, and optional repeating of void discrete modes.

    Science.gov (United States)

    2010-07-01

    ..., and optional repeating of void discrete modes. 1065.525 Section 1065.525 Protection of Environment... repeating of void discrete modes. (a) Start the engine using one of the following methods: (1) Start the... during one of the modes of a discrete-mode test, you may void the results only for that individual mode...

  19. Void coalescence mechanism for combined tension and large amplitude cyclic shearing

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Andersen, Rasmus Grau; Tvergaard, Viggo

    2017-01-01

    Void coalescence at severe shear deformation has been studied intensively under monotonic loading conditions, and the sequence of micro-mechanisms that governs failure has been demonstrated to involve collapse, rotation, and elongation of existing voids. Under intense shearing, the voids are flat...

  20. Discrete modelling of ductile crack growth by void growth to coalescence

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2007-01-01

    of the ligaments between the crack-tip and a void or between voids involves the development of very large strains, which are included in the model by using remeshing at several stages of the plastic deformation. The material is here described by standard isotropic hardening Mises theory. For a very small void...