WorldWideScience

Sample records for void fraction waves

  1. The Instability of Void Fraction Waves in Vertical Gas—Liquid Two—Phase Flow

    Institute of Scientific and Technical Information of China (English)

    BaojiangSUN; DachunYAN; 等

    1999-01-01

    The measuring and analyzing results of void fraction waves in different flow regimes show that the propagating velocity of void fraction waves depends on flow regimes and mean void fraction.The disturbance at some frequencies can enhance the void fraction wave velocity.Non-linear analysis show that the instability process of bubble flow is a chaotic process.Before the bubbly flow transits to cap-bubbly flow the growth rate of void fraction waves becomes the maximum value when the disturbance frequency is around the main frequency of void fraction waves.

  2. Neutron Imaging Calibration to Measure Void Fraction

    Energy Technology Data Exchange (ETDEWEB)

    Geoghegan, Patrick J [ORNL; Bilheux, Hassina Z [ORNL; Sharma, Vishaldeep [ORNL; Fricke, Brian A [ORNL

    2015-01-01

    Void fraction is an intuitive parameter that describes the fraction of vapor in a two-phase flow. It appears as a key variable in most heat transfer and pressure drop correlations used to design evaporating and condensing heat exchangers, as well as determining charge inventory in refrigeration systems. Void fraction measurement is not straightforward, however, and assumptions on the invasiveness of the measuring technique must be made. Neutron radiography or neutron imaging has the potential to be a truly non-invasive void fraction measuring technique but has until recently only offered qualitative descriptions of two-phase flow, in terms of flow maldistributions, for example. This paper describes the calibration approach necessary to employ neutron imaging to measure steady-state void fraction. Experiments were conducted at the High Flux Isotope Reactor (HFIR) Cold Guide 1D neutron imaging facility at Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA.

  3. Void fraction instrument acceptance test procedure

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, K.L.

    1994-09-15

    This acceptance test procedure (ATP) was written to test the void fraction instrument (VFI) and verify that the unit is ready for field service. The procedure verifies that the mechanical and electrical features (not specifically addressed in the software ATP) and software alarms are operating as designed.

  4. Void fraction instrument acceptance test procedure

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, K.L.

    1994-09-15

    This acceptance test procedure (ATP) was written to test the void fraction instrument (VFI) and verify that the unit is ready for field service. The procedure verifies that the mechanical and electrical features (not specifically addressed in the software ATP) and software alarms are operating as designed.

  5. Multi-scale cross-correlation characteristics of void fraction wave propagation for gas-liquid two-phase flows in small diameter pip e%小管径气液两相流空隙率波传播的多尺度相关性∗

    Institute of Scientific and Technical Information of China (English)

    翟路生; 金宁德

    2016-01-01

    The void fraction wave is a special physical phenomenon in a gas-liquid two-phase flow system. Understanding the propagation of the void fraction wave is of great significance for uncovering the physical mechanisms in both flow pattern transition and the fluid velocity measurement. In this study, detrended cross-correlation analysis (DCCA) is used to investigate the multi-scale cross-correlation characteristics of the coupled ARFIMA processes. It is found that the DCCA can effectively reveal the multi-scale cross-correlation dynamical behaviors of complex system. Then, we carry out the experimental test in a vertical gas-liquid two-phase flow pipe with small inner diameter. The DCCA is used to detect the cross-correlation characteristics of the void fraction wave on multiple time scales, and the growth rate of the cross-correlation level for the void fraction wave is observed on low time scales. Additionally, the spatial attenuation factor (SAF) of the void fraction wave is calculated to investigate the instability of the wave propagation. The SAF is close to zero under the transitional flow patterns, which means that the void fraction wave is in a stable propagating state. For bubble flows, the void fraction wave presents the attenuation characteristics, whilst the void fraction wave shows the amplification characteristics under the slug and churn flow patterns. Interestingly, the instability behaviors of the void fraction wave are always associated with its multi-scale cross-correlation characteristics. Specifically, the increasing rate of the wave cross-correlation level on low scales is much higher for transitional flow patterns, which is corresponding to the stable propagating characteristic of the void fraction wave. However, when the void fraction wave exhibits attenuation or amplification characteristics under other flow patterns, the increasing rate of the wave cross-correlation level on low scales is much lower.

  6. Void fraction prediction in saturated flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Francisco J Collado [Dpto de Ingenieria Mecanica-Motores Termicos, CPS-B, Universidad de Zaragoza, Maria de Luna 50018-Zaragoza (Spain)

    2005-07-01

    Full text of publication follows: An essential element in thermal-hydraulics is the accurate prediction of the vapor void fraction, or fraction of the flow cross-sectional area occupied by steam. Recently, the author has suggested to calculate void fraction working exclusively with thermodynamic properties. It is well known that the usual 'flow' quality, merely a mass flow rate ratio, is not at all a thermodynamic property because its expression in function of thermodynamic properties includes the slip ratio, which is a parameter of the process not a function of state. By the other hand, in the classic and well known expression of the void fraction - in function of the true mass fraction of vapor (also called 'static' quality), and the vapor and liquid densities - does not appear the slip ratio. Of course, this would suggest a direct procedure for calculating the void fraction, provided we had an accurate value of the true mass fraction of vapor, clearly from the heat balance. However the classic heat balance is usually stated in function of the 'flow' quality, what sounds really contradictory because this parameter, as we have noted above, is not at all a thermodynamic property. Then we should check against real data the actual relationship between the thermodynamic properties and the applied heat. For saturated flow boiling just from the inlet of the heated tube, and not having into account the kinetic and potential terms, the uniform applied heat per unit mass of inlet water and per unit length (in short, specific linear heat) should be closely related to a (constant) slope of the mixture enthalpy. In this work, we have checked the relation between the specific linear heat and the thermodynamic enthalpy of the liquid-vapor mixture using the actual mass fraction. This true mass fraction is calculated using the accurate measurements of the outlet void fraction taken during the Cambridge project by Knights and Thom in the sixties for

  7. Numerical Study of Void Fraction Distribution Propagation in Gas-Liquid Two-Phase Flow

    Institute of Scientific and Technical Information of China (English)

    YANG Jianhui; LI Qing; LU Wenqiang

    2005-01-01

    A dynamic propagation model was developed for waves in two-phase flows by assuming that continuity waves and dynamic waves interact nonlinearly for certain flow conditions. The drift-flux model is solved with the one-dimensional continuity equation for gas-liquid two-phase flows as an initial-boundary value problem solved using the characteristic-curve method. The numerical results give the void fraction distribution propagation in a gas-liquid two-phase flow which shows how the flow pattern transition occurs. The numerical simulations of different flow patterns show that the void fraction distribution propagation is determined by the characteristics of the drift-flux between the liquid and gas flows and the void fraction range. Flow pattern transitions begin around a void fraction of 0.27 and end around 0.58. Flow pattern transitions do not occur for very high void concentrations.

  8. Void Reactivity Coefficient Analysis during Void Fraction Changes in Innovative BWR Assemblies

    Directory of Open Access Journals (Sweden)

    Andrius Slavickas

    2015-01-01

    Full Text Available The study of the void reactivity variation in innovative BWR fuel assemblies is presented in this paper. The innovative assemblies are loaded with high enrichment fresh UO2 and MOX fuels. UO2 fuel enrichment is increased above existing design limitations for LWR fuels (>5%. MOX fuel enrichment with fissile Pu content is established to achieve the same burnup level as that of high enrichment UO2 fuel. For the numerical analysis, the TRITON functional module of SCALE 6.1 code with the 238-group ENDF/B-VI cross section data library was applied. The investigation of the void reactivity feedback is performed in the entire 0–100% void fraction range. Higher values of void reactivity coefficient for assembly loaded with MOX fuel are found in comparison with values for assembly loaded with UO2 fuel. Moreover, coefficient values for MOX fuel are positive over 75% void fraction. The variation of the void reactivity coefficient is explained by the results of the decomposition analysis based on four-factor formula and neutron absorption reactions for main isotopes. Additionally, the impact of the moderation enhancement on the void reactivity coefficient was investigated for the innovative assembly with MOX fuel.

  9. The relationship between void waves and flow regime transition

    Energy Technology Data Exchange (ETDEWEB)

    Lahey, R.T. Jr.; Drew, D.A.; Kalkach-Navarro, S.; Park, J.W.

    1992-12-31

    The results of an extensive experimental and analytical study on the relationship between void waves and flow regime transition are presented, in particular, the bubbly/slug flow regime transition. It is shown that void wave instability signals a flow regime transition.

  10. Experimental facility and void fraction calibration methods for impedance probes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fernando L. de; Rocha, Marcelo S., E-mail: floliveira@ipen.br, E-mail: msrocha@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    An experimental facility was designed and constructed with aims of to calibrate a capacitance probe for gas-liquid flow void fraction measurements. The facility is composed of a metallic hack with a vertical 2,300 mm high glass tube with 38 mm ID with stagnant water and compressed air bubbling system simulating the gas phase (vapor). At the lower part, a mixing section with a porous media element releases the air bubbles into the water, and the compressed air flow is measured by two calibrated rotameters. At the upper part a stagnant water tank separates the liquid and gas. Two pressure taps are located near the lower and upper sides of the glass tube for pressure difference measurement. The pressure difference is used for low void fraction values (0-15%) calibration methods, as described in the work. Two electrically controlled quick closing valves are installed between the porous media element and the upward separation tank for high void fraction values measurement (15-50%) used to calibrate the capacitance probe. The experimental facility design, construction, capacitance probe calibration methods and results, as well as flow pattern visualization, are presented. Finally, the capacitance probe will be installed on a natural circulation circuit mounted at the Nuclear Engineering Center (CEN/IPEN/CNEN-SP) for measurement of the instantaneous bulk void. Instantaneous signals generated by the capacitance probe will allow the determination of natural circulation loop global energy balance. (author)

  11. In Situ Void Fraction and Gas Volume in Hanford Tank 241-SY-101 as Measured with the Void Fraction Instrument

    Energy Technology Data Exchange (ETDEWEB)

    CW Stewart; G Chen; JM Alzheimer; PA Meyer

    1998-11-10

    The void fraction instrument (WI) was deployed in Tank 241-SY-101 three times in 1998 to confm and locate the retained gas (void) postulated to be causing the accelerating waste level rise observed since 1995. The design, operation, and data reduction model of the WI are described along with validation testing and potential sources of uncertainty. The test plans, field observations and void measurements are described in detail, including the total gas volume calculations and the gas volume model. Based on 1998 data, the void fraction averaged 0.013 i 0.001 in the mixed slurry and 0.30 ~ 0.04 in the crust. This gives gas volumes (at standard pressure and temperature) of 87 t 9 scm in the slurry and 138 ~ 22 scm in the crust for a total retained gas volume of221 *25 scm. This represents an increase of about 74 scm in the crust and a decrease of about 34 scm in the slurry from 1994/95 results. The overall conclusion is that the gas retention is occurring mainly in the crust layer and there is very little gas in the mixed slurry and loosely settled layers below. New insights on crust behavior are also revealed.

  12. Design of capacitance sensor system for void fraction measurement

    Institute of Scientific and Technical Information of China (English)

    LIU Yi-ping; NIU Gang; WANG Jing

    2005-01-01

    Simulation and optimization were applied to a capacitive sensor system based on electrical tomography technology.Sensors, consisting of Morgantown Energy Technology Center (METC) axial synchro driving guard electrodes and two sets of detecting electrodes, make it possible to obtain simultaneously two groups of signals of the void fraction in oil-gas two-phase flow.The computational and experimental results showed that available sensors, charactered by high resolution and fast real-time response can be used for real-time liquid-gas two-phase flow pattern determination.

  13. Fractional Electromagnetic Waves

    CERN Document Server

    Gómez, J F; Bernal, J J; Tkach, V I; Guía, M

    2011-01-01

    In the present work we consider the electromagnetic wave equation in terms of the fractional derivative of the Caputo type. The order of the derivative being considered is 0 <\\gamma<1. A new parameter \\sigma, is introduced which characterizes the existence of the fractional components in the system. We analyze the fractional derivative with respect to time and space, for \\gamma = 1 and \\gamma = 1/2 cases.

  14. Locating voids beneath pavement using pulsed electromagnetic waves

    Science.gov (United States)

    Steinway, W. J.; Echard, J. D.; Luke, C. M.

    1981-11-01

    The feasibility of using pulsed electromagnetic wave technology for locating and sizing voids beneath reinforced and nonreinforced portland cement concrete pavements is determined. The data processing techniques developed can be implemented to provide information for void depth and sizing to + or - 1/2 in. and spatial location within + or - 6 in. A very short pulse radar directly connected to a microcomputer was chosen as the equipment necessary to obtain measurements. This equipment has the required accuracy and reliability, and is a cost effective solution for the void locating problem. The radar provides a signal return from voids that has unique characteristics that can be examined to provide information regarding the location, depth, and shape of the void. The microcomputer provides a means of real time processing to extract the information from the radar signal return and record the results. Theoretical modeling of signal returns from voids led to suitable techniques for locating and sizing voids beneath the pavement. Analysis and application of these techniques to radar measurements verified the theoretical predictions that radar can be used to determine the location, size, and shape of actual voids.

  15. Propagation of Love waves in an elastic layer with void pores

    Indian Academy of Sciences (India)

    S Dey; S Gupta; A K Gupta

    2004-08-01

    The paper presents a study of propagation of Love waves in a poroelastic layer resting over a poro-elastic half-space. Pores contain nothing of mechanical or energetic significance. The study reveals that such a medium transmits two types of love waves. The first front depends upon the modulus of rigidity of the elastic matrix of the medium and is the same as the love wave in an elastic layer over an elastic half-space. The second front depends upon the change in volume fraction of the pores. As the first front is well-known, the second front has been investigated numerically for different values of void parameters. It is observed that the second front is many times faster than the shear wave in the void medium due to change in volume fraction of the pores and is significant.

  16. Estimation of the Void Fraction in the moderator cell of the Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jungwoon; Kim, Young-ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To estimate the average void fraction in the liquid hydrogen, the Kazimi and Chen correlation is used with its modified method suggested by R.E. Williams in NBSR. Since the multiplying number can be changed along the operation condition and working fluid, the different figure is applied to estimate the average void fraction in the different moderator cell shape. This approach is checked with the void fraction measurement results from the HANARO-CNS mock-up test. Owing to national research demands on cold neutron beam utilization, the Cold Neutron Research Facility had been and operated for neuron scientists all over the world. In HANARO, the CNS facility has been operated since 2009. The actual void fraction, which is the one of dominant factors affecting the cold neutron flux, is difficult to know without the real measurement performed at the cryogenic temperature using the same moderator medium. Accordingly, the two-phase mock-up test in the CNS-IPA (In-pool assembly) had been performed using the liquid hydrogen in terms of the fluidity check, void fraction measurement, operation procedure set-up, and so on for the development of the HANARO-CNS. This paper presents the estimated void fraction in the different operating conditions and geometrical shape in the comparison with the measurement data of the void fraction in the full-scale mockup test based on the Kazimi and Chen correlation. This approach is applied to estimate the average void fraction in the newly designed moderator cell using the liquid hydrogen as a working fluid in the two-phase thermosiphon. From this calculation result, the estimated average void fraction will be used to design the optimized cold neutron source to produce the maximum cold neutron flux within the desired wavelength.

  17. Interfacial area, velocity and void fraction in two-phase slug flow

    Energy Technology Data Exchange (ETDEWEB)

    Kojasoy, G. [Univ. of Wisconsin, Milwaukee, WI (United States); Riznic, J.R. [Atomic Energy Control Board, Ottawa (Canada)

    1997-12-31

    The internal flow structure of air-water plug/slug flow in a 50.3 mm dia transparent pipeline has been experimentally investigated by using a four-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 0.55 to 2.20 m/s and 0.27 to 2.20 m/s, respectively, and area-averaged void fractions ranged from about 10 to 70%. The local distributions of void fractions, interfacial area concentration and interface velocity were measured. Contributions from small spherical bubbles and large elongated slug bubbles toward the total void fraction and interfacial area concentration were differentiated. It was observed that the small bubble void contribution to the overall void fraction was small indicating that the large slug bubble void fraction was a dominant factor in determining the total void fraction. However, the small bubble interfacial area contribution was significant in the lower and upper portions of the pipe cross sections.

  18. An Investigation on the Void Fraction for upward Gas-Liquid Slug Flow in Vertical Pipe

    Institute of Scientific and Technical Information of China (English)

    夏国栋; 周芳德; 胡明胜

    2001-01-01

    In order to investigate the influence of the entrance effect on the spatial distribution of phases, the experiments on gas-liquid two-phase slug flow in a vertical pipe of 0.03m ID were carried out by using optical probes and an EKTAPRO 1000 high speed motion analyzer. It demonstrates that the radial profile of slug flow void fraction is parabolic. Influenced by the falling liquid film, the radial profile curve of liquid slug void fraction in the wake region is also parabolic. Since fully turbulent velocity distribution is built up in the developed region,the void fraction profile in this region is the saddle type. At given superficial liquid velocity, the liquid slug void fraction increases with gas velocity. The radial profiles of liquid slug void fraction at different axial locations are all saddle curves, but void fraction is obviously high around the centerline in the entrance region. The nearer the measuring station is from the entrance, the farther the peak location is away from the wall.

  19. A mechanistic determination of horizontal flow regime bound using void wave celerity

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.W. [Ajou Univ., Suwon (Korea, Republic of)

    1995-09-01

    The two-phase flow regime boundaries in a horizontal channel has been investigated by using the behavior of the second order void wave celerities. The average two-fluid model has been constituted with closure relations for horizontally stratified and bubbly flows. A vapor phase turbulent stress model for a smooth interface geometry has been included. It is found that the second order waves (i.e., eigenvalues) propagate in opposite direction with almost the same speed when the liquid phase is stationary. Using the well-posedness limit of the two-phase system, the dispersed-stratified flow regime boundary has been modeled. Two-phase Froude number has been theoretically found to be a convenient parameter in quantifying the flow regime boundary as a function of the void fraction. It is found that interaction between void wave celerities become stronger as the two-phase Froude number is reduced. This result should be interpreted as that gravity and the relative velocity are key parameters in determining flow regime boundaries in a horizontal flow. The influence of the vapor phase turbulent stress found to stabilize the flow stratification. This study clearly shows that the average two-fluid model is very effective for a mechanistic determination of horizontal flow regimes if appropriate closure relations are developed.

  20. Full scale stability and void fraction measurements for the ATRIUM trademark 10XM BWR fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Wehle, Franz; Velten, Roger; Kronenberg, Juris; Beisiegel, Achim [AREVA NP GmbH, Erlangen (Germany); Pruitt, D.W.; Greene, K.R. [AREVA NP Inc., Lynchburg, VA (United States); Farawila, Y.M. [Farawila et al., Inc., Richland, WA (United States)

    2011-07-01

    This paper describes recent advances in BWR fuel testing at AREVA NP's KATHY loop including stability and void fraction measurements. The stability tests for the ATRIUM trademark 10XM bundle with corner PLFR's were expanded in scope compared with previous campaigns to include simulated reactivity and power feedback essentially reproducing BWR operational environment. The oscillation magnitude was allowed to grow to explore inlet flow reversal and cyclical dryout and rewetting. The void fraction measurements employed a gamma ray computed tomography technique that reveals not only the average but the detailed sub-channel void distribution, and the range of measured void fraction has been expanded to higher values than was previously attained. With the completion of the required licensing tests and stability performance demonstration, the ATRIUM trademark 10XM is available and fully qualified for reload supply. (orig.)

  1. Influences of physical properties of two-phase mixture on void fraction in an annular vessel

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Ming; BI Qin-Cheng; FENG Quan-Ke; CHEN Ting-Kuan; DU She-Jiao

    2004-01-01

    To keep the void fraction of two-phase hydrogen in the moderator cell of the cold neutron source (CNS)of China Advanced Research Reactor (CARR) to a specified range, an annular vessel with the same size as the actual moderator cell was used as test section. Deionized water and alcohol, sucrose, and sodium chloride solutions with different concentrations were used as working fluid to find out influences of physical properties, such as density, viscosity and surface tension, of the two-phase mixture on void fraction. The tests proved that the ratio of surface tension to density of liquid phase has great influence on void fraction: the larger the ratio, the smaller the void fraction.Since the ratio of surface tension to density of Freon 113 is lower than that of liquid hydrogen, Freon 113 can be used as a working fluid to study the void fraction in the two-phase hydrogen thermosiphon loop in the CNS of CARR and the results will be conservative.

  2. Investigation of oil-air two-phase mass flow rate measurement using Venturi and void fraction sensor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-jian; YUE Wei-ting; HUANG Zhi-yao

    2005-01-01

    Oil-air two-phase flow measurement was investigated with a Venturi and void fraction meters in this work. This paper proposes a new flow rate measurement correlation in which the effect of the velocity ratio between gas and liquid was considered.With the pressure drop across the Venturi and the void fraction that was measured by electrical capacitance tomography apparatus,both mixture flow rate and oil flow rate could be obtained by the correlation. Experiments included bubble-, slug-, wave and annular flow with the void fraction ranging from 15% to 83%, the oil flow rate ranging from 0.97 kg/s to 1.78 kg/s, the gas flow rate ranging up to 0.018 kg/s and quality ranging nearly up to 2.0%. The root-mean-square errors of mixture mass flow rate and that ofoil mass flow rate were less than 5%. Furthermore, coefficients of the correlation were modified based on flow regimes, with the results showing reduced root-mean-square errors.

  3. Measurement of void fractions by nuclear techniques; Medicion de fracciones de vacio por tecnicas nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez G, A.; Vazquez G, J.; Diaz H, C.; Salinas R, G.A. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    In this work it is done a general analysis of those techniques used to determine void fractions and it is chosen a nuclear technique to be used in the heat transfer circuit of the Physics Department of the Basic Sciences Management. The used methods for the determination of void fractions are: radioactive absorption, acoustic techniques, average velocity measurement, electromagnetic flow measurement, optical methods, oscillating absorption, nuclear magnetic resonance, relation between pressure and flow oscillation, infrared absorption methods, sound neutron analysis. For the case of this work it will be treated about the radioactive absorption method which is based in the gamma rays absorption. (Author)

  4. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    OpenAIRE

    Huajun Li; Haifeng Ji; Zhiyao Huang; Baoliang Wang; Haiqing Li; Guohua Wu

    2016-01-01

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Mach...

  5. Electrical impedance-based void fraction measurement and flow regime identification in microchannel flows under adiabatic conditions

    OpenAIRE

    Paranjape, Sidharth; Ritchey, Susan N; Garimella, S V

    2012-01-01

    Electrical impedance of a two-phase mixture is a function of void fraction and phase distribution. The difference in the specific electrical conductance and permittivity of the two phases is exploited to measure electrical impedance for obtaining void fraction and flow regime characteristics. An electrical impedance meter is constructed for the measurement of void fraction in microchannel two-phase flow. The experiments are conducted in air–water two-phase flow under adiabatic conditions. A t...

  6. A proposed measurement method for void fraction in lubricant oil based on the image processing technique.

    Science.gov (United States)

    Wang, Jianwen; An, Qi

    2008-02-01

    A new method for measuring void fraction in lubricating oils is presented based on the image processing technique. The problem here differs from the bubbles detection problem in two-phase fluids in that our interest lies in the gross amount of gas voids in oils. Our method is based on an observation that gas voids in oils change the color of the mixed gas-oil material. Therefore, a measurement technique was established based on the change in color. In particular, the relationship between the change in color and amount of voids was established experimentally. The experiment and testing were performed on a particular setup which consists of a pipe, oil, and air. The test result has shown that this method is effective. The method is the simplest and most accurate one among the existing methods.

  7. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    Science.gov (United States)

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  8. Experiments on Void Fraction of CO2 Flow Boiling in a Horizontal Micro-fin Tube

    Science.gov (United States)

    Kondou, Chieko; Higashiiue, Shinya; Kuwahara, Ken; Koyama, Shigeru

    This paper deals with an experimental investigation on the void fraction of CO2 flow boiling in a horizontal micro-fin tube. The mean void fraction in the insulated 400 mm length sampling section, which is located next to the test evaporator, has measured by the quick closing valve method. The experimental data have been obtained in mass flux range of 200 to 455 kg/(m2s) and the refrigerant pressure range of 3.5 to 5.0 MPa. It is confirmed that the relation between void fraction and quality is affected by both mass flux and pressure. The experimental results are also compared with two previous correlations for horizontal smooth tubes, which are proposed by Butterworth and Smith. The present data satisfactorily agreed with Butterworth's correlation in the range of quality from 0.03 to 0.99. However, Smith's correlation is found to predict slightly higher than present data. As a trial, the empirical correlation of void fraction, based on the experimental slip ratios, is proposed.

  9. A RELATION FOR THE VOID FRACTION OF RANDOMLY PACKED PARTICLE BEDS

    NARCIS (Netherlands)

    HOFFMANN, AC; FINKERS, HJ

    1995-01-01

    The void fractions of loosely packed and tapped beds of particles of continuous size distributions are correlated by means of a proposed new semi-empirical relation. In this relation four parameters describing the following particle properties are included: (i) mean particle size, (ii) spread of the

  10. Distribution of void fraction for gas-liquid slug flow in an inclined pipe

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to investigate the effect of inclination angle on the spatial distribution of phases, experiments on gas-liquid two-phase slug flow in an inclined pipe were carried out by using the optical probe and an EKTAPRO 1000 high speed motion analyzer. It has been demonstrated that the inclination angle and the mixture velocity are important parameters to influence the distribution of void fraction for upward slug flow in the inclined pipe. At high mixture velocity, the gas phase profile is axial symmetry in the cross-section of the pipe. This is similar to that for vertical slug flow. In contrast, most of the gas phase is located near the upper pipe wall at low mixture velocity. By measuring the axial variation of void fraction along the liquid slug, it can be concluded that there is a high void fraction wake region with length of 3~4D in the front of liquid slug. In the fully developed zone of liquid slug, the peak value of the void fraction is near the upper wall.

  11. Void fraction in horizontal bulk flow boiling at high flow qualities

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Fancisco J.; Monne, Carlos [Dpto. de Ingenieria Mecanica, Universidad de Zaragoza-CPS, Maria de Luna 3, 50018-Zaragoza (Spain); Pascau, Antonio [Dpto. de Ciencia de los Materiales y Fluidos, Universidad de Zaragoza-CPS, Maria de Luna 3, 50018-Zaragoza (Spain)

    2008-04-15

    In this work, a new thermodynamic prediction of the vapor void fraction in bulk flow boiling, which is the core process of many energy conversion systems, is analyzed. The current heat balance is based on the flow quality, which is closely related to the measured void fraction, although some correlation for the vapor-liquid velocity ratio is needed. So here, it is suggested to work with the 'static' or thermodynamic quality, which is directly connected to the void fraction through the densities of the phases. Thus, the relation between heat and the mixture enthalpy (here based on the thermodynamic quality instead of the flow one) should be analyzed in depth. The careful void fraction data taken by Thom during the 'Cambridge project' for horizontal saturated flow boiling with high flow qualities ({<=}0.8) have been used for this analysis. As main results, first, we have found that the applied heat and the increment of the proposed thermodynamic enthalpy mixture throughout the heated duct do not agree, and for closure, a parameter is needed. Second, it has been checked that this parameter is practically equal to the classic velocity ratio or 'slip' ratio, suggesting that it should be included in a true thermodynamic heat balance. Furthermore, it has been clearly possible to improve the 'Cambridge project' correlations for the 'slip' ratio, here based on inlet pressure and water velocity, and heat flux. The calculated void fractions compare quite well with the measured ones. Finally, the equivalence of the suggested new heat balance with the current one through the 'slip' ratio is addressed. Highlighted is the same new energetic relation for saturated flow boiling that has been recently confirmed by the authors for Knights data, also taken during the 'Cambridge project', which include not only horizontal but also vertical upwards flows with moderate outlet flow quality ({<=}0.2). (author)

  12. Two-phase flow assessment and void fraction measurement of a pilot natural circulation loop using capacitance probe

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Marcelo S.; Cabral, Eduardo L.L., E-mail: msrocha@ipen.br, E-mail: elcabral@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This article focuses the project, construction and tests of a capacitance probe for void fraction measurement and two-phase flow assessment in a natural circulation loop. Two-phase flow patterns and the associated variables are very important in natural circulation circuits and it is used in the new generation of nuclear reactors for residual heat removal during shut-off and emergency events. The capacitance probe was calibrated to measure the instantaneous bulk void fraction in a vertical tube section of a natural circulation loop. Instantaneous signals generated by the capacitance probe allow the determination of the local bulk void fraction. The probe design is presented and discussed and void fraction data obtained by the probe are compared with theoretical void fraction calculated by analytical models from literature. (author)

  13. Subchannel void-fraction measurements in a 6 by 6 rod tube bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kok, H.V.; van der Hagen, T.H.J.J.; Adams, B.T. [Interfaculty Reactor Inst., Delf Univ. of Technology, Delft (Netherlands); Mudde, R.F.

    1997-12-31

    Using gamma-absorption and tomographic reconstruction techniques the void-fraction in each subchannel of a 6 by 6 scaled BWR fuel assembly could be measured at different axial positions along the assembly. The measurements were performed on the DESIRE facility at the Interfaculty Reactor Institute, Delft. The DESIRE facility is a scaled natural circulation loop that uses Freon-12 as a coolant. The fuel assembly is scaled for correct representation of the void-fraction and flow patterns, except at the bubbly flow regime. The scaling has been verified using the MONA code. A clear transition from bubbly to annular flow was observed in the experiments. Experiments using a tilted power profile show that there is no significant lateral transport of vapour across subchannels. (author)

  14. Gas-liquid Phase Distribution and Void Fraction Measurements Using the MRI

    Science.gov (United States)

    Daidzic, N. E.; Schmidt, E.; Hasan, M. M.; Altobelli, S.

    2004-01-01

    We used a permanent-magnet MRI system to estimate the integral and spatially- and/or temporally-resolved void-fraction distributions and flow patterns in gas-liquid two-phase flows. Air was introduced at the bottom of the stagnant liquid column using an accurate and programmable syringe pump. Air flow rates were varied between 1 and 200 ml/min. The cylindrical non-conducting test tube in which two-phase flow was measured was placed in a 2.67 kGauss MRI with MRT spectrometer/imager. Roughly linear relationship has been obtained for the integral void-fraction, obtained by volume-averaging of the spatially-resolved signals, and the air flow rate in upward direction. The time-averaged spatially-resolved void fraction has also been obtained for the quasi-steady flow of air in a stagnant liquid column. No great accuracy is claimed as this was an exploratory proof-of-concept type of experiment. Preliminary results show that MRI a non-invasive and non-intrusive experimental technique can indeed provide a wealth of different qualitative and quantitative data and is especially well suited for averaged transport processes in adiabatic and diabatic multi-phase and/or multi-component flows.

  15. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    Directory of Open Access Journals (Sweden)

    Huajun Li

    2016-01-01

    Full Text Available Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA. Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works.

  16. Study on void fraction distribution in the moderator cell of Cold Neutron Source systems in China Advanced Research Reactor

    Science.gov (United States)

    Li, Liangxing; Li, Huixiong; Hu, Jinfeng; Bi, Qincheng; Chen, Tingkuan

    2007-04-01

    A physical model is developed for analyzing and evaluating the void fraction profiles in the moderator cell of the Cold Neutron Source (CNS) of the China Advanced Research Reactor (CARR), which is now constructing in the China Institute of Atomic Energy (CIAE). The results derived from the model are compared with the related experimental data and its propriety is verified. The model is then used to explore the influence of various factors, including the diameter of boiling vapor bubbles, liquid density, liquid viscosity and the total heating power acted on the moderator cell, on the void fraction profiles in the cell. The results calculated with the present model indicate that the void fraction in the moderator cell increases linearly with heating power, and increases with the liquid viscosity, but decreases as the size of bubbles increases, and increases linearly with heating power. For the case where hydrogen is being used as a moderator, calculation results show that the void fraction in the moderator cell may be less than 30%, which is the maximum void fraction permitted from the nuclear physics point of view. The model and the calculation results will help to obtain insight of the mechanism that controls the void fraction distribution in the moderator cell, and provide theoretical supports for the moderator cell design.

  17. Analysis of dispersion and absorption characteristics of shear waves in sinusoidally corrugated elastic medium with void pores

    Science.gov (United States)

    Pandit, Deepak Kr.; Kundu, Santimoy; Gupta, Shishir

    2017-02-01

    This theoretical work reports the dispersion and absorption characteristics of horizontally polarized shear wave (SH-wave) in a corrugated medium with void pores sandwiched between two dissimilar half-spaces. The dispersion and absorption equations have been derived in a closed form using the method of separation of variables. It has been established that there are two different kinds of wavefronts propagating in the proposed media. One of the wavefronts depends on the modulus of rigidity of elastic matrix of the medium and satisfies the dispersion equation of SH-waves. The second wavefront depends on the changes in volume fraction of the pores. Numerical computation of the obtained relations has been performed and the results are depicted graphically. The influence of corrugation, sandiness on the phase velocity and the damped velocity of SH-wave has been studied extensively.

  18. The coupled effect of fiber volume fraction and void fraction on hydraulic fluid absorption of quartz/BMI laminates

    Science.gov (United States)

    Hurdelbrink, Keith R.; Anderson, Jacob P.; Siddique, Zahed; Altan, M. Cengiz

    2016-03-01

    Bismaleimide (BMI) resin with quartz (AQ581) fiber reinforcement is a composite material frequently used in aerospace applications, such as engine cowlings and radomes. Various composite components used in aircrafts are exposed to different types of hydraulic fluids, which may lead to anomalous absorption behavior over the service life of the composite. Accurate predictive models for absorption of liquid penetrants are particularly important as the composite components are often exposed to long-term degradation due to absorbed moisture, hydraulic fluids, or similar liquid penetrants. Microstructural features such as fiber volume fraction and void fraction can have a significant effect on the absorption behavior of fiber-reinforced composites. In this paper, hydraulic fluid absorption characteristics of quartz/BMI laminates fabricated from prepregs preconditioned at different relative humidity and subsequently cured at different pressures are presented. The composite samples are immersed into hydraulic fluid at room temperature, and were not subjected to any prior degradation. To generate process-induced microvoids, prepregs were conditioned in an environmental chamber at 2% or 99% relative humidity at room temperature for a period of 24 hours prior to laminate fabrication. To alter the fiber volume fraction, the laminates were fabricated at cure pressures of 68.9 kPa (10 psi) or 482.6 kPa (70 psi) via a hot-press. The laminates are shown to have different levels of microvoids and fiber volume fractions, which were observed to affect the absorption dynamics considerably and exhibited clear non-Fickian behavior. A one-dimensional hindered diffusion model (HDM) was shown to be successful in predicting the hydraulic fluid absorption. Model prediction indicates that as the fabrication pressure increased from 68.9 kPa to 482.6 kPa, the maximum fluid content (M∞) decreased from 8.0% wt. to 1.0% wt. The degree of non-Fickian behavior, measured by hindrance coefficient (

  19. Magnetic resonance imaging of velocity fields, the void fraction and gas dynamics in a cavitating liquid

    Energy Technology Data Exchange (ETDEWEB)

    Mastikhin, Igor V.; Arbabi, Aidin; Newling, Benedict; Hamza, Abdelhaq; Adair, Alexander [University of New Brunswick, UNB MRI Centre, Department of Physics, Fredericton, NB (Canada)

    2012-01-15

    In acoustic cavitation, the relationship between the bubble dynamics on the microscale and the flow properties on the macroscale is critical in determining sonochemical reaction kinetics. A new technique was developed to measure the void fraction and estimate water mobility in the vicinity of cavitating bubbles using phase-encoded magnetic resonance imaging with short characteristic measurement timescales (0.1-1 ms). The exponential behavior of the NMR signal decay indicated the fast diffusion regime, with the relationship between local mechanical dispersion D{sub mix} and the average bubble radius R, D{sub mix}>>(2R{sup 2})/(10{sup -4}s), resulting in dispersion of orders of magnitude greater than diffusion in quiescent water. For two different samples (water and a surfactant solution), the independent measurements of three-dimensional void fraction and velocity fields permitted the calculation of compressibility, divergence and vorticity of the cavitating medium. The measured dynamics of the dissolved gas, compared with that of the surrounding liquid, reflected the difference in the bubble coalescence and lifetimes and correlated with the macroscopic flow parameters. (orig.)

  20. Precise Void Fraction Measurement in Two-phase Flows Independent of the Flow Regime Using Gamma-ray Attenuation

    Directory of Open Access Journals (Sweden)

    E. Nazemi

    2016-02-01

    Full Text Available Void fraction is an important parameter in the oil industry. This quantity is necessary for volume rate measurement in multiphase flows. In this study, the void fraction percentage was estimated precisely, independent of the flow regime in gas–liquid two-phase flows by using γ-ray attenuation and a multilayer perceptron neural network. In all previous studies that implemented a multibeam γ-ray attenuation technique to determine void fraction independent of the flow regime in two-phase flows, three or more detectors were used while in this study just two NaI detectors were used. Using fewer detectors is of advantage in industrial nuclear gauges because of reduced expense and improved simplicity. In this work, an artificial neural network is also implemented to predict the void fraction percentage independent of the flow regime. To do this, a multilayer perceptron neural network is used for developing the artificial neural network model in MATLAB. The required data for training and testing the network in three different regimes (annular, stratified, and bubbly were obtained using an experimental setup. Using the technique developed in this work, void fraction percentages were predicted with mean relative error of <1.4%.

  1. Gamma-ray attenuation technique for measuring void fraction in horizontal gas-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The measurement of void fraction is of importance to the oil industry and chemical industry. In this article,the principle and mathematical method of determining the void fraction of horizontal gas-liquid flow by using a single-energy γ-ray system is described. The γ-ray source is the radioactive isotope of 241Am with γ-ray energy of 59.5 keV. The time-averaged value of the void fraction in a 50.0-mm i.d. transparent horizontal pipeline is measured under various combinations of the liquid flow and gas flow. It is found that increasing the gas flow rate at a fixed liquid flow rate would increase the void fraction. Test data are compared with the predictions of the correlations and a good agreement is found. The result shows that the designed γ-ray system can be used for measuring the void fraction in a horizontal gas-liquid two-phase flow with high accuracy.

  2. The use of waveguide acoustic probes for void fraction measurement in the evaporator of BN-350-Type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, V.I.; Nigmatulin, B.I.

    1995-09-01

    The present paper deals with some results of the experimental studies which have been carried out to investigate the steam generation dynamics in the Field tubes of sodium-water evaporators used in the BN-350 reactors. The void fraction measurements have been taken with the aid of waveguide acoustic transducers manufactured in accordance with a specially designed technology (waveguide acoustic transducers-WAT technology). Presented in this paper also the transducer design and calibration methods, as well as the diagram showing transducers arrengment in the evaporator. The transducers under test featured a waveguide of about 4 m in length and a 200-mm long sensitive element (probe). Besides, this paper specifies the void fraction data obtained through measurements in diverse points of the evaporator. The studies revealed that the period of observed fluctuations in the void fraction amounted to few seconds and was largely dependent on the level of water in the evaporator.

  3. Void fraction and flow regime in adiabatic upward two-phase flow in large diameter vertical pipes

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, J.P.; Sawant, P.; Paranjape, S.; Ozar, B.; Hibiki, T. [Purdue University, School of Nuclear Engineering, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Ishii, M., E-mail: ishii@purdue.ed [Purdue University, School of Nuclear Engineering, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)

    2009-12-15

    In pipes with very large diameters, slug bubbles cannot exist. For this reason, the characteristics of two-phase flow in large pipes are much different than those in small pipes. Knowledge of these characteristics is essential for the prediction of the flow in new nuclear reactor designs which include a large chimney to promote natural circulation. Two of the key parameters in the prediction of the flow are the void fraction and flow regime. Void fraction measurements were made in a vertical tube with diameter of 0.15 m and length of 4.4 m. Superficial gas and liquid velocities ranged from 0.1 to 5.1 m/s and from 0.01 to 2.0 m/s, respectively. The measured void fractions ranged from 0.02 to 0.83. Electrical impedance void meters at four axial locations were used to measure the void fraction. This data was verified through comparison with previous data sets and models. The temporal variation in the void fraction signal was used to characterize the flow regime through use of the Cumulative Probability Density Function (CPDF). The CPDF of the signal was used with a Kohonen Self-Organized Map (SOM) to classify the flow regimes at each measurement port. The three flow regimes used were termed bubbly, cap-bubbly, and churn flow. The resulting flow regime maps matched well with the maps developed previously through other methods. Further, the flow regime maps matched well with the criteria which were proposed based on criteria.

  4. A new contactless impedance sensor for void fraction measurement of gas-liquid two-phase flow

    Science.gov (United States)

    Ji, Haifeng; Chang, Ya; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2016-12-01

    With impedance elimination principle and phase sensitive demodulation (PSD) technique, this work aims to develop a new contactless impedance sensor, which is suitable for the void fraction measurement of gas-liquid two-phase flow. The impedance elimination principle is used to overcome the unfavorable influences of the coupling capacitances, i.e. the capacitive reactances of the coupling capacitances are eliminated by the inductive reactance of an introduced inductor. PSD technique is used to implement the impedance measurement. Unlike the conventional conductance/impedance sensors which use the equivalent conductance (the real part of the impedance) or the amplitude of the impedance of gas-liquid two-phase flow, the new contactless impedance sensor makes full use of the total impedance information of gas-liquid two-phase flow (including the amplitude, the real part and the imaginary part of the impedance, especially the imaginary part) to implement the void fraction measurement. As a preliminary study, to verify the effectiveness of the new contactless impedance sensor, two prototypes (with different inner diameters of 17.0 mm and 22.0 mm) are developed and experiments are carried out. Two typical flow patterns (bubble flow and stratified flow) of gas-liquid two-phase flow are investigated. The experimental results show that the new contactless impedance sensor is successful and effective. Compared with the conventional conductance/impedance sensors, the new contactless impedance sensor can avoid polarization effect and electrochemical erosion effect. The total impedance information is used and the void fraction measurement performance of the new sensor is satisfactory. The experimental results also indicate that the imaginary part of the impedance of gas-liquid two-phase flow is very useful for the void fraction measurement. Making full use of the total impedance information of gas-liquid two-phase flow can effectively improve the void fraction measurement

  5. Heat Load Measurements on a Large Superconducting Magnet An Application of a Void Fraction Meter

    CERN Document Server

    Pengo, R; Junker, S; Passardi, Giorgio; ten Kate, H H J

    2004-01-01

    ATLAS is one of the two major experiments of the LHC project at CERN using cryogenics. The superconducting magnet system of ATLAS is composed of the Barrel Toroid (BT), two End Caps Toroids and the Central Solenoid. The BT is formed of 8 race-track superconducting dipoles, each one 25 m long and 5 m wide. A reduced scale prototype (named B0) of one of the 8 dipoles, about one third of the length, has been constructed and tested in a dedicated cryogenic facility at CERN. To simulate the final thermal and hydraulic operating conditions, the B0 was cooled by a forced flow of 4.5 K saturated liquid helium provided by a centrifugal pump of 80 g/s nominal capacity. Both static and dynamic heat loads, generated by the induced currents on the B0 casing during a slow dump or a ramp up, have been measured to verify the expected thermal budget of the entire BT. The instrument used for the heat load measurements was a Void Fraction Meter (VFM) installed on the magnet return line. The instrument constructed at CERN was ca...

  6. Fractional Calculus in Wave Propagation Problems

    CERN Document Server

    Mainardi, Francesco

    2012-01-01

    Fractional calculus, in allowing integrals and derivatives of any positive order (the term "fractional" kept only for historical reasons), can be considered a branch of mathematical physics which mainly deals with integro-differential equations, where integrals are of convolution form with weakly singular kernels of power law type. In recent decades fractional calculus has won more and more interest in applications in several fields of applied sciences. In this lecture we devote our attention to wave propagation problems in linear viscoelastic media. Our purpose is to outline the role of fractional calculus in providing simplest evolution processes which are intermediate between diffusion and wave propagation. The present treatment mainly reflects the research activity and style of the author in the related scientific areas during the last decades.

  7. OECD/NRC PSBT Benchmark: Investigating the CATHARE2 Capability to Predict Void Fraction in PWR Fuel Bundle

    Directory of Open Access Journals (Sweden)

    A. Del Nevo

    2012-01-01

    Full Text Available Accurate prediction of steam volume fraction and of the boiling crisis (either DNB or dryout occurrence is a key safety-relevant issue. Decades of experience have been built up both in experimental investigation and code development and qualification; however, there is still a large margin to improve and refine the modelling approaches. The qualification of the traditional methods (system codes can be further enhanced by validation against high-quality experimental data (e.g., including measurement of local parameters. One of these databases, related to the void fraction measurements, is the pressurized water reactor subchannel and bundle tests (PSBT conducted by the Nuclear Power Engineering Corporation (NUPEC in Japan. Selected experiments belonging to this database are used for the OECD/NRC PSBT benchmark. The activity presented in the paper is connected with the improvement of current approaches by comparing system code predictions with measured data on void production in PWR-type fuel bundles. It is aimed at contributing to the validation of the numerical models of CATHARE 2 code, particularly for the prediction of void fraction distribution both at subchannel and bundle scale, for different test bundle configurations and thermal-hydraulic conditions, both in steady-state and transient conditions.

  8. Flow regime, void fraction and interfacial area transport and characteristics of co-current downward two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Lokanathan, Manojkumar [School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088 (United States); Hibiki, Takashi [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017 (United States)

    2016-10-15

    Highlights: • Downward flow regime maps and models were studied for 25.4 to 101.6 mm pipe diameters. • Effect of flow inlet on flow transition, void & interfacial area profile were studied. • Bubble void profiles were associated with the interfacial forces for downward flow. • Flow regime pressure drop and interfacial friction factor were studied. • The most applicable and accurate downward drift-flux correlation was determined. - Abstract: Downward two-phase flow is observed in light water reactor accident scenarios such as loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) due to loss of feed water or a secondary pipe break. Hence, a comprehensive literature review has been performed for the co-current downward two-phase flow with information on the flow regime transitions and flow characteristics for each regime in the downward flow. The review compares the experimental data of the flow regime map and the current available transition models. Objectivity of the data varies on the method utilized as a certain degree of subjectivity is still present in the most objective method. Nevertheless, experimental data through subjective methods such as direct visualization or analysis of a wire mesh sensor (WMS) data were still studied in this review. Despite the wide range of flow regime data for numerous pipe sizes, a consensus was not reached for the effect of pipe sizes on flow regime transition. However, it is known that a larger pipe results in greater degree of coalescence at lower gas flow rates (Hibiki et al., 2004). The introduction of a flow straightener at the inlet led to less coring and fluid rotation and inevitably, reduced bubble coalescence. This also resulted in the disappearance of the kinematic shock wave phenomenon, contrary to an inlet without a flow straightener. The effect of flow inlet, flow location, pipe diameter and bubble interfacial forces on the radial distribution as well as bubble coalescence and breakup rate

  9. Numerical simulation of the effect of void fraction and inlet velocity on two-phase turbulence in bubble-liquid flows

    Institute of Scientific and Technical Information of China (English)

    Lixing Zhou; Rongxian Li; Ruxu Du

    2006-01-01

    There are contradicted opinions on whether bubbles enhance or reduce the liquid turbulence. In this paper, the effect of void fraction and inlet velocity on the bubble-liquid two-phase turbulence of the multiple bubble-liquid jets in a two-dimensional channel is studied by using the two-phase second-order moment turbulence model. The results confirm the phenomena observed in experiments and reported in references that at a low void fraction and low inlet velocities the bubbles enhance the liquid turbulence, whereas at a high void fraction and high inlet velocities the bubbles reduce the liquid turbulence.

  10. Plane wave propagation in a rotating anisotropic medium with voids under the action of a uniform magnetic field

    Science.gov (United States)

    Maity, Narottam; Barik, S. P.; Chaudhuri, P. K.

    2016-09-01

    In this paper, plane wave propagation in a rotating anisotropic material of general nature under the action of a magnetic field of constant magnitude has been investigated. The material is supposed to be porous in nature and contains voids. Following the concept of [Cowin S. C. and Nunziato, J. W. [1983] “Linear elastic materials with voids,” J. Elasticity 13, 125-147.] the governing equations of motion have been written in tensor notation taking account of rotation, magnetic field effect and presence of voids in the medium and the possibility of plane wave propagation has been examined. A number of particular cases have been derived from our general results to match with previously obtained results in this area. Effects of various parameters on the velocity of wave propagation have been presented graphically.

  11. Validation of the thermal-hydraulic system code ATHLET based on selected pressure drop and void fraction BFBT tests

    Energy Technology Data Exchange (ETDEWEB)

    Di Marcello, Valentino, E-mail: valentino.marcello@kit.edu; Escalante, Javier Jimenez; Espinoza, Victor Sanchez

    2015-07-15

    Highlights: • Simulation of BFBT-BWR steady-state and transient tests with ATHLET. • Validation of thermal-hydraulic models based on pressure drops and void fraction measurements. • TRACE system code is used for the comparative study. • Predictions result in a good agreement with the experiments. • Discrepancies are smaller or comparable with respect to the measurements uncertainty. - Abstract: Validation and qualification of thermal-hydraulic system codes based on separate effect tests are essential for the reliability of numerical tools when applied to nuclear power plant analyses. To this purpose, the Institute for Neutron Physics and Reactor Technology (INR) at the Karlsruhe Institute of Technology (KIT) is involved in various validation and qualification activities of different CFD, sub-channel and system codes. In this paper, the capabilities of the thermal-hydraulic code ATHLET are assessed based on the experimental results provided within the NUPEC BFBT benchmark related to key Boiling Water Reactors (BWR) phenomena. Void fraction and pressure drops measurements in the BFBT bundle performed under steady-state and transient conditions which are representative for e.g. turbine trip and recirculation pump trip events, are compared with the numerical results of ATHLET. The comparison of code predictions with the BFBT data has shown good agreement given the experimental uncertainty and the results are consistent with the trends obtained with similar thermal-hydraulic codes.

  12. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinquan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: sun.200@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA 24061 (United States)

    2016-12-15

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  13. Development of Design Technology on Thermal-hydraulic Performance in Tight-lattice Rod Bundles: V-Estimation of Void Fraction

    Science.gov (United States)

    Kureta, Masatoshi; Tamai, Hidesada; Yoshida, Hiroyuki; Ohnuki, Akira; Akimoto, Hajime

    An estimation of the void fraction in a tight-lattice rod bundle was needed for the R&D of the Innovative Water Reactor for Flexible Fuel Cycle (FLWR). For this purpose, we measured the void fraction and studied the behaviors of boiling flow. The void fraction was measured by a neutron radiography, a quick-shut-valve technique, and an electro void fraction meter. The data were taken using the 7-, 14-, 19- and 37-rod bundle test sections with the rod gap of 1.0 or 1.3 mm under from atmospheric pressure to 7.2 MPa conditions. A spacer effect test was also carried out. The following estimations were conducted: (1) a similarity of the advanced analysis codes with the 3D void fraction data, (2) the comparisons of the TRAC-BF1 code and a drift-flux model with the 1D data. Followings were made clear: (a) The void fraction becomes lower at the peripheral and higher at the rod gap part of the lower core and at the center of the subchannel of the upper core, (b) the codes calculates the similar distribution to the data, and (c) the TRAC-BF1 and the drift-flux model tends to overestimate the void fraction at the lower quality region, on the other hand at the higher quality, those methods tend to same characteristics to the data. It was confirmed that several special features were existed in the tight-lattice rod bundle but the codes were applicable.

  14. Experimental Study of Three-Dimensional Void Fraction Distribution in Heated Tight-Lattice Rod Bundles Using Three-Dimensional Neutron Tomography

    Science.gov (United States)

    Kureta, Masatoshi

    Three-dimensional (3D) void fraction distributions in a tight-lattice of heated 7- or 14-rod bundles were measured using 3D neutron tomography. The distribution was also studied parametrically from the thermal-hydraulic point of view in order to elucidate boiling phenomena in a fuel assembly of the FLWR which is being developed as an advanced BWR-type reactor. 7-rod tests were carried out to obtain high void fraction data. 14-rod tests were conducted for visualization and discussion of the 3D distribution extending from the vapor generation region to the high void fraction region at one time. Experimental data were obtained under atmospheric pressure with mass velocity, heater power and inlet quality as the test parameters. It was found from the visualization of data that the void fraction at the channel center became higher than that at the periphery, high void fraction spots appeared in narrow regions at the inlet, and a so-called 'vapor chimney' was generated at the center of a subchannel.

  15. Experimental Research and Numerical Simulation on Gas-Liquid Separation Performance at High Gas Void Fraction of Helically Coiled Tube Separator

    Directory of Open Access Journals (Sweden)

    Yongxue Zhang

    2014-01-01

    Full Text Available The industrial removal process of the light hydrocarbon and water from wet natural gas can be simulated in laboratory with the independently designed helically coiled tube gas-liquid separator. Experiment and numerical simulation are combined to analyze the influences of various inlet velocities and gas void fractions on the gas-liquid separation efficiency and pressure-drop between the inlet and outlet of the helically coiled tube. The results show that, at the inlet velocity of 4 m/s to 18 m/s and the gas void fraction of 88% to 97% for the gas-liquid mixture, the gas-liquid separation efficiency increases at the beginning and then decreases with increasing inlet velocity. Afterwards there is another increasing trend again. The gradient of pressure-drop increases slowly and then fast with the increasing inlet velocity. On the other hand, the gas-liquid separation efficiency first increases with the gas void fraction and then shows a decreasing trend while the pressure-drop keeps falling down with the gas void fraction increasing. Above all the optimal operating parameters of the helically coiled tube separator are inlet velocity of 13 m/s and gas void fraction of 93%, and the separation efficiency and pressure-drop are 95.2% and 0.3 MPa, respectively.

  16. Influence of the void fraction in the linear reactivity model; Influencia de la fraccion de vacios en el modelo de reactividad lineal

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, J.A.; Ramirez, J.R.; Alonso, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jacm@nuclear.inin.mx

    2003-07-01

    The linear reactivity model allows the multicycle analysis in pressurized water reactors in a simple and quick way. In the case of the Boiling water reactors the void fraction it varies axially from 0% of voids in the inferior part of the fuel assemblies until approximately 70% of voids to the exit of the same ones. Due to this it is very important the determination of the average void fraction during different stages of the reactor operation to predict the burnt one appropriately of the same ones to inclination of the pattern of linear reactivity. In this work a pursuit is made of the profile of power for different steps of burnt of a typical operation cycle of a Boiling water reactor. Starting from these profiles it builds an algorithm that allows to determine the voids profile and this way to obtain the average value of the same one. The results are compared against those reported by the CM-PRESTO code that uses another method to carry out this calculation. Finally, the range in which is the average value of the void fraction during a typical cycle is determined and an estimate of the impact that it would have the use of this value in the prediction of the reactivity produced by the fuel assemblies is made. (Author)

  17. An experimental study of the size effect on adiabatic gas-liquid two-phase flow patterns and void fraction in microchannels

    Science.gov (United States)

    Xiong, Renqiang; Chung, J. N.

    2007-03-01

    Adiabatic gas-liquid flow patterns and void fractions in microchannels were experimentally investigated. Using nitrogen and water, experiments were conducted in rectangular microchannels with hydraulic diameters of 0.209mm, 0.412mm and 0.622mm, respectively. Gas and liquid superficial velocities were varied from 0.06-72.3m/s and 0.02-7.13m/s, respectively. The main objective is focused on the effects of microscale channel sizes on the flow regime map and void fraction. The instability of flow patterns was observed. Four groups of flow patterns including bubbly slug flow, slug-ring flow, dispersed-churn flow, and annular flow were observed in microchannels of 0.412mm and, 0.622mm. In the microchannel of 0.209mm, the bubbly slug flow became the slug flow and the dispersed-churn flow disappeared. The current flow regime maps showed the transition lines shifted to higher gas superficial velocity due to a dominant surface tension effect as the channel size was reduced. The regime maps presented by other authors for minichannels were found to not be applicable for microchannels. Time-averaged void fractions were measured by analyzing 8000 high speed video images for each flow condition. The void fractions hold a nonlinear relationship with the homogeneous void fraction as opposed to the relatively linear trend for the minichannels. A new correlation was developed to predict the nonlinear relationship that fits most of the current experimental data and those of the 0.1mm diameter tube reported by Kawahara et al. [Int. J. Multiphase Flow 28, 1411 (2002)] within ±15%.

  18. Measurement of air distribution and void fraction of an upwards air-water flow using electrical resistance tomography and a wire-mesh sensor

    Science.gov (United States)

    Olerni, Claudio; Jia, Jiabin; Wang, Mi

    2013-03-01

    Measurements on an upwards air-water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air-water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air-water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed.

  19. On the use of area-averaged void fraction and local bubble chord length entropies as two-phase flow regime indicators

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Leonor; Julia, J.E. [Universitat Jaume I, Departamento de Ingenieria Mecanica y Construccion Campus de Riu Sec, Castellon (Spain); Paranjape, Sidharth; Hibiki, Takashi; Ishii, Mamoru [Purdue University, Nuclear Engineering Department, West Lafayette, IN (United States)

    2010-11-15

    In this work, the use of the area-averaged void fraction and bubble chord length entropies is introduced as flow regime indicators in two-phase flow systems. The entropy provides quantitative information about the disorder in the area-averaged void fraction or bubble chord length distributions. The CPDF (cumulative probability distribution function) of void fractions and bubble chord lengths obtained by means of impedance meters and conductivity probes are used to calculate both entropies. Entropy values for 242 flow conditions in upward two-phase flows in 25.4 and 50.8-mm pipes have been calculated. The measured conditions cover ranges from 0.13 to 5 m/s in the superficial liquid velocity j{sub f} and ranges from 0.01 to 25 m/s in the superficial gas velocity j{sub g}. The physical meaning of both entropies has been interpreted using the visual flow regime map information. The area-averaged void fraction and bubble chord length entropies capability as flow regime indicators have been checked with other statistical parameters and also with different input signals durations. The area-averaged void fraction and the bubble chord length entropies provide better or at least similar results than those obtained with other indicators that include more than one parameter. The entropy is capable to reduce the relevant information of the flow regimes in only one significant and useful parameter. In addition, the entropy computation time is shorter than the majority of the other indicators. The use of one parameter as input also represents faster predictions. (orig.)

  20. Electromagnetic Fields and Waves in Fractional Dimensional Space

    CERN Document Server

    Zubair, Muhammad; Naqvi, Qaisar Abbas

    2012-01-01

    This book presents the concept of fractional dimensional space applied to the use of electromagnetic fields and waves. It provides demonstrates the advantages in studying the behavior of electromagnetic fields and waves in fractal media. The book presents novel fractional space generalization of the differential electromagnetic equations is provided as well as a new form of vector differential operators is formulated in fractional space. Using these modified vector differential operators, the classical Maxwell's electromagnetic equations are worked out. The Laplace's, Poisson's and Helmholtz's

  1. Lamb Wave Assessment of Fiber Volume Fraction in Composites

    Science.gov (United States)

    Seale, Michael D.; Smith, Barry T.; Prosser, W. H.; Zalameda, Joseph N.

    1998-01-01

    Among the various techniques available, ultrasonic Lamb waves offer a convenient method of examining composite materials. Since the Lamb wave velocity depends on the elastic properties of a material, an effective tool exists to evaluate composites by measuring the velocity of these waves. Lamb waves can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper discusses a study in which Lamb waves were used to examine fiber volume fraction variations of approximately 0.40-0.70 in composites. The Lamb wave measurements were compared to fiber volume fractions obtained from acid digestion tests. Additionally, a model to predict the fiber volume fraction from Lamb wave velocity values was evaluated.

  2. Two-phase flow pattern recognition in a varying section based on void fraction and pressure measurements

    Science.gov (United States)

    de Kerret, F.; Benito, I.; Béguin, C.; Pelletier, D.; Etienne, S.

    2016-11-01

    In a hydroelectric turbine, the air injected during operation has an impact on the yield of the machine leading to important losses of energy. To understand those losses and be able to reduce them, a first step is to understand the pattern of the two-phase flows and describe their characteristics in the turbine. Those two-phase flows can be bubbly, intermittent, or annular, with different types of intermittent flow possible. Two-phase flow patterns are well defined in classical geometries such as cylinders with reliable descriptions available [5]. But, there is a critical lack of knowledge for flow patterns in other geometries. In our present work we take interest into a geometry that is a pipe with periodical changes of the section and realize a flow pattern map. To realize this map, we measure the pressure variations and void fraction fluctuations while changing the flow rates of water and air in our test section. We then use our physical understanding of the phenomena to analyze data and identify different flow patterns, characterize them, and build a new flow pattern map.

  3. Void Dynamics

    Science.gov (United States)

    Padilla, Nelson D.; Paz, Dante; Lares, Marcelo; Ceccarelli, Laura; Lambas, Diego Garcí A.; Cai, Yan-Chuan; Li, Baojiu

    2016-10-01

    Cosmic voids are becoming key players in testing the physics of our Universe.Here we concentrate on the abundances and the dynamics of voids as these are among the best candidatesto provide information on cosmological parameters. Cai, Padilla & Li (2014)use the abundance of voids to tell apart Hu & Sawicki f(R) models from General Relativity. An interestingresult is that even though, as expected, voids in the dark matter field are emptier in f(R) gravity due to the fifth force expellingaway from the void centres, this result is reversed when haloes are used to find voids. The abundance of voids in this casebecomes even lower in f(R) compared to GR for large voids. Still, the differences are significant and thisprovides a way to tell apart these models. The velocity field differences between f(R) and GR, on the other hand, arethe same for halo voids and for dark matter voids.Paz et al. (2013), concentrate on the velocity profiles around voids. First they show the necessityof four parameters to describe the density profiles around voids given two distinct voidpopulations, voids-in-voids and voids-in-clouds. This profile is used to predict peculiar velocities around voids,and the combination of the latter with void density profiles allows the construction of modelvoid-galaxy cross-correlation functions with redshift space distortions. When these modelsare tuned to fit the measured correlation functions for voids and galaxies in the SloanDigital Sky Survey, small voids are found to be of the void-in-cloud type, whereas largerones are consistent with being void-in-void. This is a novel result that is obtaineddirectly from redshift space data around voids. These profiles can be used toremove systematics on void-galaxy Alcock-Pacinsky tests coming from redshift-space distortions.

  4. Mass flow rate measurements in gas-liquid flows by means of a venturi or orifice plate coupled to a void fraction sensor

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jorge Luiz Goes; Passos, Julio Cesar [Departamento de Engenharia Mecanica-LEPTEN/Boiling-UFSC, Campus Universitario, Trindade, 88.040-900 Florianopolis-SC (Brazil); Verschaeren, Ruud; Geld, Cees van der [Eindhoven University of Technology, Faculty of Mechanical Engineering, W-hoog 2.135, P.O. Box 513, 5600 MB, Eindhoven (Netherlands)

    2009-01-15

    Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air-water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi plate is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454-457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil-air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601-606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%. (author)

  5. Development of a Neutron Radiography Three-Dimensional Computed Tomography System for Void Fraction Measurement of Boiling Flow in Tight Lattice Rod Bundles

    Science.gov (United States)

    Kureta, Masatoshi

    A neutron radiography three-dimensional computed tomography (NR3DCT) system was developed to visualize the void fraction distribution of boiling flow in tight lattice heated-rod bundles. This paper chiefly reports on the data processing and the error estimation method of NR3DCT. Practical γ-ray noise reduction and image correction techniques were studied to improve the reliability of the experimental data. Using the system and a directly heated 14-rod bundle test section, the behavior of boiling flow in a tight lattice rod bundle was clearly visualized. The effect of each data processing step on the result was also discussed. By this development, the three-dimensional vapor distribution of boiling flow in a heated bundle is made clear, and void fraction databases can be provided for verification of a thermal-hydraulic simulation code.

  6. Linear fractional diffusion-wave equation for scientists and engineers

    CERN Document Server

    Povstenko, Yuriy

    2015-01-01

    This book systematically presents solutions to the linear time-fractional diffusion-wave equation. It introduces the integral transform technique and discusses the properties of the Mittag-Leffler, Wright, and Mainardi functions that appear in the solutions. The time-nonlocal dependence between the flux and the gradient of the transported quantity with the “long-tail” power kernel results in the time-fractional diffusion-wave equation with the Caputo fractional derivative. Time-nonlocal generalizations of classical Fourier’s, Fick’s and Darcy’s laws are considered and different kinds of boundary conditions for this equation are discussed (Dirichlet, Neumann, Robin, perfect contact). The book provides solutions to the fractional diffusion-wave equation with one, two and three space variables in Cartesian, cylindrical and spherical coordinates. The respective sections of the book can be used for university courses on fractional calculus, heat and mass transfer, transport processes in porous media and ...

  7. Void fraction development in gas-liquid flow after a U-bend in a vertically upwards serpentine-configuration large-diameter pipe

    Science.gov (United States)

    Almabrok, Almabrok A.; Aliyu, Aliyu M.; Baba, Yahaya D.; Lao, Liyun; Yeung, Hoi

    2017-08-01

    We investigate the effect of a return U-bend on flow behaviour in the vertical upward section of a large-diameter pipe. A wire mesh sensor was employed to study the void fraction distributions at axial distances of 5, 28 and 47 pipe diameters after the upstream bottom bend. The study found that, the bottom bend has considerable impacts on up-flow behaviour. In all conditions, centrifugal action causes appreciable misdistribution in the adjacent straight section. Plots from WMS measurements show that flow asymmetry significantly reduces along the axis at L/D = 47. Regime maps generated from three axial locations showed that, in addition to bubbly, intermittent and annular flows, oscillatory flow occurred particularly when gas and liquid flow rates were relatively low. At this position, mean void fractions were in agreement with those from other large-pipe studies, and comparisons were made with existing void fraction correlations. Among the correlations surveyed, drift flux-type correlations were found to give the best predictive results.

  8. A Dual Conductance Sensor for Simultaneous Measurement of Void Fraction and Structure Velocity of Downward Two-Phase Flow in a Slightly Inclined Pipe

    Directory of Open Access Journals (Sweden)

    Yeon-Gun Lee

    2017-05-01

    Full Text Available In this study, a new and improved electrical conductance sensor is proposed for application not only to a horizontal pipe, but also an inclined one. The conductance sensor was designed to have a dual layer, each consisting of a three-electrode set to obtain two instantaneous conductance signals in turns, so that the area-averaged void fraction and structure velocity could be measured simultaneously. The optimum configuration of the electrodes was determined through numerical analysis, and the calibration curves for stratified and annular flow were obtained through a series of static experiments. The fabricated conductance sensor was applied to a 45 mm inner diameter U-shaped downward inclined pipe with an inclination angle of 3° under adiabatic air-water flow conditions. In the tests, the superficial velocities ranged from 0.1 to 3.0 m/s for water and from 0.1 to 18 m/s for air. The obtained mean void fraction and the structure velocity from the conductance sensor were validated against the measurement by the wire-mesh sensor and the cross-correlation technique for the visualized images, respectively. The results of the flow regime classification and the corresponding time series of the void fraction at a variety of flow velocities were also discussed.

  9. A Dual Conductance Sensor for Simultaneous Measurement of Void Fraction and Structure Velocity of Downward Two-Phase Flow in a Slightly Inclined Pipe.

    Science.gov (United States)

    Lee, Yeon-Gun; Won, Woo-Youn; Lee, Bo-An; Kim, Sin

    2017-05-08

    In this study, a new and improved electrical conductance sensor is proposed for application not only to a horizontal pipe, but also an inclined one. The conductance sensor was designed to have a dual layer, each consisting of a three-electrode set to obtain two instantaneous conductance signals in turns, so that the area-averaged void fraction and structure velocity could be measured simultaneously. The optimum configuration of the electrodes was determined through numerical analysis, and the calibration curves for stratified and annular flow were obtained through a series of static experiments. The fabricated conductance sensor was applied to a 45 mm inner diameter U-shaped downward inclined pipe with an inclination angle of 3° under adiabatic air-water flow conditions. In the tests, the superficial velocities ranged from 0.1 to 3.0 m/s for water and from 0.1 to 18 m/s for air. The obtained mean void fraction and the structure velocity from the conductance sensor were validated against the measurement by the wire-mesh sensor and the cross-correlation technique for the visualized images, respectively. The results of the flow regime classification and the corresponding time series of the void fraction at a variety of flow velocities were also discussed.

  10. Void shape effects and voids starting from cracked inclusion

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2011-01-01

    Numerical, axisymmetric cell model analyses are used to study the growth of voids in ductile metals, until the mechanism of coalescence with neighbouring voids sets in. A special feature of the present analyses is that extremely small values of the initial void volume fraction are considered, dow...

  11. Flow visualization and void fraction measurement in liquid-metal/water direct contact heat exchange by X-ray attenuation technique

    Science.gov (United States)

    Liu, Xin

    One concept being considered for steam generation in particular next generation nuclear reactor designs, involves water coming into direct contact with a circulating molten metal. To optimize the design of such direct contact heat exchange and vaporization systems, detailed knowledge is necessary of the various flow regimes, interfacial transport phenomena, heat transfer and operational stability. With the development of high performance digital detectors, radiography using X-rays or neutrons maybe a suitable technique to obtain information about that direct-contact interaction; i.e., void volume fractions, length scales and dynamic behavior. Under the basis of previous investigations, a complete methodology of the X-ray radiography for two-phase flow measurement has been developed from the facility and imaging analysis aspects. Through this developed methodology, a high energy X-ray imaging system is optimized for the direct-contact heat exchange experiment. Beside an on-line calibration procedure which practically quantifies the imaging system's performance, the extended linear system theory and Rose's model have also been used to evaluate the imaging system's performance, respectively. The bottleneck of the current imaging system and the future of system improvement direction have been pointed out. With our real-time, large-area high energy X-ray imaging system, the two-phase flow was visualized and stored digitally. An efficient image processing strategy has also been established by combining several optimal digital image processing algorithms. The approach has been implemented into a software computational tool written in MATLAB called T-XIP. Time-dependent heat transfer related variables, such as void fraction (void volume), local heat transfer coefficient, etc., were calculated using this software tool. Finally, an error analysis associated with the void fraction measurement has been given based on two procedures.

  12. Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques

    Energy Technology Data Exchange (ETDEWEB)

    Harvel, G.D. [McMaster Univ., Ontario (Canada)]|[Combustion and Heat Transfer Lab., Takasago (Japan); Hori, K.; Kawanishi, K. [Combustion and Heat Transfer Lab., Takasago (Japan)] [and others

    1995-09-01

    A Real-Time Neutron Radiography (RTNR) system and a high speed X-ray Computed tomography (X-CT) system are compared for measurement of two-phase flow. Each system is used to determine the flow regime, and the void fraction distribution in a vertical annulus flow channel. A standard optical video system is also used to observe the flow regime. The annulus flow channel is operated as a bubble column and measurements obtained for gas flow rates from 0.0 to 30.01/min. The flow regimes observed by all three measurement systems through image analysis shows that the two-dimensional void fraction distribution can be obtained. The X-CT system is shown to have a superior temporal resolution capable of resolving the void fraction distribution in an (r,{theta}) plane in 33.0 ms. Void fraction distribution for bubbly flow and slug flow is determined.

  13. A fractional calculus model of anomalous dispersion of acoustic waves.

    Science.gov (United States)

    Wharmby, Andrew W

    2016-09-01

    An empirical formula based on viscoelastic analysis techniques that employs concepts from the fractional calculus that was used to model the dielectric behavior of materials exposed to oscillating electromagnetic fields in the radiofrequency, terahertz, and infrared bands. This work adapts and applies the formula to model viscoelastic behavior of materials that show an apparent increase of phase velocity of vibration with an increase in frequency, otherwise known as anomalous dispersion. A fractional order wave equation is derived through the application of the classic elastic-viscoelastic correspondence principle whose analytical solution is used to describe absorption and dispersion of acoustic waves in the viscoelastic material displaying anomalous dispersion in a specific frequency range. A brief discussion and comparison of an alternative fractional order wave equation recently formulated is also included.

  14. Numerical modeling of the thermal-hydraulic behavior of wire-on-tube condensers operating with HFC-134a using homogeneous equilibrium model: evaluation of some void fraction correlations

    Science.gov (United States)

    Guzella, Matheus dos Santos; Cabezas-Gómez, Luben; da Silva, José Antônio; Maia, Cristiana Brasil; Hanriot, Sérgio de Morais

    2016-02-01

    This study presents a numerical evaluation of the influence of some void fraction correlations over the thermal-hydraulic behavior of wire-on-tube condensers operating with HFC-134a. The numerical model is based on finite volume method considering the homogeneous equilibrium model. Empirical correlations are applied to provide closure relations. Results show that the choice of void fraction correlation influences the refrigerant charge and pressure drop calculations, while no influences the heat transfer rate.

  15. Collapse of a nanoscopic void triggered by a spherically symmetric traveling sound wave.

    Science.gov (United States)

    Hołyst, Robert; Litniewski, Marek; Garstecki, Piotr

    2012-05-01

    Molecular-dynamics simulations of the Lennard-Jones fluid (up to 10(7) atoms) are used to analyze the collapse of a nanoscopic bubble. The collapse is triggered by a traveling sound wave that forms a shock wave at the interface. The peak temperature T(max) in the focal point of the collapse is approximately ΣR(0)(a), where Σ is the surface density of energy injected at the boundary of the container of radius R(0) and α ≈ 0.4-0.45. For Σ = 1.6 J/m(2) and R(0) = 51 nm, the shock wave velocity, which is proportional to √Σ, reaches 3400 m/s (4 times the speed of sound in the liquid); the pressure at the interface, which is proportional to Σ, reaches 10 GPa; and T(max) reaches 40,000 K. The Rayleigh-Plesset equation together with the time of the collapse can be used to estimate the pressure at the front of the shock wave.

  16. Fractionalized spin-wave continuum in kagome spin liquids

    Science.gov (United States)

    Mei, Jia-Wei; Wen, Xiao-Gang

    Motivated by spin-wave continuum (SWC) observed in recent neutron scattering experiments in Herbertsmithite, we use Gutzwiller-projected wave functions to study dynamic spin structure factor S (q , ω) of spin liquid states on the kagome lattice. Spin-1 excited states in spin liquids are represented by Gutzwiller-projected two-spinon excited wave functions. We investigate three different spin liquid candidates, spinon Fermi-surface spin liquid (FSL), Dirac spin liquid (DSL) and random-flux spin liquid (RSL). FSL and RSL have low energy peaks in S (q , ω) at K points in the extended magnetic Brillouin zone, in contrast to experiments where low energy peaks are found at M points. There is no obviuos contradiction between DSL and neutron scattering measurements. Besides a fractionalized spin (i.e. spin-1/2), spinons in DSL carry a fractionalized crystal momentum which is potentially detectable in SWC in the neutron scattering measurements.

  17. Flow pattern, void fraction and pressure drop of two-phase air-water flow in a horizontal circular micro-channel

    Energy Technology Data Exchange (ETDEWEB)

    Saisorn, Sira [Energy Division, The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut' s University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand); Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, King Mongkut' s University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

    2008-01-15

    Adiabatic two-phase air-water flow characteristics, including the two-phase flow pattern as well as the void fraction and two-phase frictional pressure drop, in a circular micro-channel are experimentally studied. A fused silica channel, 320 mm long, with an inside diameter of 0.53 mm is used as the test section. The test runs are done at superficial velocity of gas and liquid ranging between 0.37-16 and 0.005-3.04 m/s, respectively. The flow pattern map is developed from the observed flow patterns i.e. slug flow, throat-annular flow, churn flow and annular-rivulet flow. The flow pattern map is compared with those of other researchers obtained from different working fluids. The present single-phase experiments also show that there are no significant differences in the data from the use of air or nitrogen gas, and water or de-ionized water. The void fraction data obtained by image analysis tends to correspond with the homogeneous flow model. The two-phase pressure drops are also used to calculate the frictional multiplier. The multiplier data show a dependence on flow pattern as well as mass flux. A new correlation of two-phase frictional multiplier is also proposed for practical application. (author)

  18. Shock wave fractionated noble gases in the early solar system

    Science.gov (United States)

    Ustinova, G. K.

    2001-08-01

    Many processes in the active star-forming regions are accompanied by strong shock waves, in acceleration by which the nuclear-active particles form the power-law energy spectrum of high rigidity: F(> E0) ˜ Eγ , with the spectral index γ ≤ 1.5-2. It must affect the production rates of spallogenic components of the isotopes, whose excitation functions depend on the shape of the energy spectrum of radiation. Thus, the isotopic signatures formed in the conditions of the strong shock wave propagation must be different from those formed in the calm environment. The early solar system incorporated all the presumed processes of the starforming stage, so that its matter had to conserve such isotopic anomalies. In previous works [1] the shock wave effects in generation of extinct radionu-clides and light elements Li, Be and B were considered. In the report some results for their evidence in the noble gas signatures are presented. Modelling the Kr isotope generation in spallation of Rb, Sr, Y and Zr with the nuclear-active particles, the energy spectrum of which was variable in the range of γ= 1.1-6.0, shows the different pace of growth of abundances of the dif-ferent Kr isotopes with decreasing . It leads to the quite diverse behaviour of the various Kr isotope ratios: the 78,80 Kr/83 Kr ratios increase, and the 82,84,86 Kr/83 Kr ratios decrease for the smaller γ. According to such criteria, for instance, the isotopically heavier SEP-Kr in the lunar ilmenites was pro-duced with the accelerated particles of the more rigid energy spectrum (γ ˜ 2) in comparison with the SW-Kr. Another important feature of the shock wave acceleration of particles is the enrichment of their specrtum with heavier ions in proportion to A/Z. Clearly, the shock wave fractionation of the noble gases, favouring the heavier isotopes, had to be inevitable. Such a fractionation depends on timing episodes of shock wave acceleration: after the n-th act of the ion acceleration their fractionation is

  19. Fractional calculus with applications in mechanics wave propagation, impact and variational principles

    CERN Document Server

    Atanackovic, Teodor M; Stankovic, Bogoljub; Zorica, Du?an

    2014-01-01

    The books Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes and Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles contain various applications of fractional calculus to the fields of classical mechanics. Namely, the books study problems in fields such as viscoelasticity of fractional order, lateral vibrations of a rod of fractional order type, lateral vibrations of a rod positioned on fractional order viscoelastic foundations, diffusion-wave phenomena, heat conduction, wave propagation, forced oscillati

  20. Analysis of Void Fraction Distribution and Departure from Nucleate Boiling in Single Subchannel and Bundle Geometries Using Subchannel, System, and Computational Fluid Dynamics Codes

    Directory of Open Access Journals (Sweden)

    Taewan Kim

    2012-01-01

    Full Text Available In order to assess the accuracy and validity of subchannel, system, and computational fluid dynamics codes, the Paul Scherrer Institut has participated in the OECD/NRC PSBT benchmark with the thermal-hydraulic system code TRACE5.0 developed by US NRC, the subchannel code FLICA4 developed by CEA, and the computational fluid dynamic code STAR-CD developed by CD-adapco. The PSBT benchmark consists of a series of void distribution exercises and departure from nucleate boiling exercises. The results reveal that the prediction by the subchannel code FLICA4 agrees with the experimental data reasonably well in both steady-state and transient conditions. The analyses of single-subchannel experiments by means of the computational fluid dynamic code STAR-CD with the CD-adapco boiling model indicate that the prediction of the void fraction has no significant discrepancy from the experiments. The analyses with TRACE point out the necessity to perform additional assessment of the subcooled boiling model and bulk condensation model of TRACE.

  1. The effects of channel diameter on flow pattern, void fraction and pressure drop of two-phase air-water flow in circular micro-channels

    Energy Technology Data Exchange (ETDEWEB)

    Saisorn, Sira [Energy Division, The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut' s University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand); Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut' s University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

    2010-05-15

    Two-phase air-water flow characteristics are experimentally investigated in horizontal circular micro-channels. Test sections are made of fused silica. The experiments are conducted based on three different inner diameters of 0.53, 0.22 and 0.15 mm with the corresponding lengths of 320, 120 and 104 mm, respectively. The test runs are done at superficial velocities of gas and liquid ranging between 0.37-42.36 and 0.005-3.04 m/s, respectively. The flow visualisation is facilitated by systems mainly including stereozoom microscope and high-speed camera. The flow regime maps developed from the observed flow patterns are presented. The void fractions are determined based on image analysis. New correlation for two-phase frictional multiplier is also proposed for practical applications. (author)

  2. 用改进ECT技术测定油气两相流中空泡分数的测量研究%Void Fraction Measurement in Oil-Gas Transportation Pipeline Using an Improved Electrical Capacitance Tomography System

    Institute of Scientific and Technical Information of China (English)

    牛刚; 贾志海; 王经

    2004-01-01

    To measure the void fraction online in oil-gas pipeline, an improved electrical capacitance tomography(ECT) system has been designed. The capacitance sensor with new structure has twelve internal electrodes and overcomes the influence of the pipe wall. The data collection system is improved by using high performance IC(integrated circuit). Static tests of bubble flow, stratified flow and annular flow regime are carried out. Measurements are taken on bubble flow, stratified flow and slug flow. Results show that the new ECT system performs well on void fraction measurement of bubble flow and stratified flow, but the error of measurement for slug flow is more than 10%.

  3. TRAVELING WAVE SOLUTIONS OF SOME FRACTIONAL DIFFERENTIAL EQUATIONS

    Directory of Open Access Journals (Sweden)

    SERIFE MUGE EGE

    2016-07-01

    Full Text Available The modified Kudryashov method is powerful, efficient and can be used as an alternative to establish new solutions of different type of fractional differential equations applied in mathematical physics. In this article, we’ve constructed new traveling wave solutions including symmetrical Fibonacci function solutions, hyperbolic function solutions and rational solutions of the space-time fractional Cahn Hillihard equation D_t^α u − γD_x^α u − 6u(D_x^α u^2 − (3u^2 − 1D_x^α (D_x^α u + D_x^α(D_x^α(D_x^α(D_x^α u = 0 and the space-time fractional symmetric regularized long wave (SRLW equation D_t^α(D_t^α u + D_x^α(D_x^α u + uD_t^α(D_x^α u + D_x^α u D_t^α u + D_t^α(D_t^α(D_x^α(D_x^α u = 0 via modified Kudryashov method. In addition, some of the solutions are described in the figures with the help of Mathematica.

  4. Development of Criteria and Identification of Particle Cluster Size Based on Measurements of Void Fraction in Gas-Solid Systems

    Energy Technology Data Exchange (ETDEWEB)

    David Roelant; Seckin Gokaltun

    2009-06-30

    A circulating fluidized bed (CFB) built at FIU was used to study particle motion in the riser in order to simulate flow regimes in a cold gasifier. High speed imaging was used in order to capture the dynamics of the particles flowing in the riser. The imaging method used here is called the shadow sizing technique which allowed the determination of particle areas and trajectories at various flow rates in the riser. The solid volume fraction and particle velocities calculated using the images acquired during the experiments can be related to granular temperature in order to detect formations of clusters in the riser section of the CFB. The shadow sizing technique was observed to be an effective method in detecting dynamics of particles in motion and formation of clusters when supported with high-speed imaging.

  5. Responsibility voids

    NARCIS (Netherlands)

    van Hees, M.V.B.P.M; Braham, Matthew

    We present evidence for the existence of 'responsibility voids' in committee decision-making, that is, the existence of situations where no member of a committee can individually be held morally responsible for the outcome. We analyse three types of reasons (causal, normative and epistemic) for the

  6. Fractional flow reserve and instantaneous wave free ratio in 2015.

    Science.gov (United States)

    Kondareddy, S R; Singh, M; Stapleton, D; Rudzinski, W; Kaluski, E

    2015-06-01

    In the recent years it has become apparent that angiography-based assessment of coronary artery stenosis suffers from considerable inaccuracy and pitfalls. Besides interobserver variability in assessing stenosis severity, the correlation between angiographic severity and ischemia is suboptimal. Percutaneous coronary intervention (PCI) guided by the physiologic lesion assessment employing fractional flow reserve (FFR) is rendered superior to angiographic lesion assessment and proven to improve cardiovascular outcomes and reduce cost. In this manuscript we discuss the accepted and emerging clinical indications for FFR use. The correlation between FFR and symptoms, stress imaging and intravascular ultrasound are reviewed along with the inherent limitations and pitfalls of these diagnostic technologies. The data regarding the correlation between Instantaneous (vasodilator free) wave-free ratio (iFR) and conventional FFR is summarized.

  7. Connecting the grain-shearing mechanism of wave propagation in marine sediments to fractional calculus

    CERN Document Server

    Pandey, Vikash

    2015-01-01

    An analogy is drawn between the diffusion-wave equations derived from the fractional Kelvin-Voigt model and those obtained from Buckingham's grain-shearing (GS) model [J. Acoust. Soc. Am. 108, 2796-2815 (2000)] of wave propagation in saturated, unconsolidated granular materials. The material impulse response function from the GS model is found to be similar to the power-law memory kernel which is inherent in the framework of fractional calculus. The compressional wave equation and shear wave equation derived from the GS model turn out to be the Kelvin-Voigt fractional-derivative wave equation and the fractional diffusion-wave equation respectively. Also, a physical interpretation of the characteristic fractional-order present in the Kelvin-Voigt fractional derivative wave equation and time-fractional diffusion-wave equation is inferred from the GS model. The shear wave equation from the GS model predicts both diffusion and wave propagation in the fractional framework. The overall goal is intended to show that...

  8. Measurement of the local void fraction in two-phase air-water flow with a hot-film anemometer; Mesure du taux de vide local en ecoulement diphasique eau-air par un anemometre a film chaud

    Energy Technology Data Exchange (ETDEWEB)

    Delhaye, J. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    The experimental knowledge of the local void-fraction is basic for the derivation of the constitutive equations of two-phase flows. This report deals with measurements of the local void-fraction based on the use of a constant temperature hot-film anemometer associated with a multichannel analyser. After determining the void-fraction profile along a diameter of a vertical pipe (40 mm I.D.), in which air and water flow upwards, we compare the void-fraction averaged over the diameter with the average value measured directly by a {gamma}-ray method. Two runs were made in bubble flow and a third in slug flow. The two methods give results in a good agreement especially for bubble flow. The void-fraction averaged over the cross-section was also calculated from the different profiles and compared in a good manner with the experimental results of R. ROUMY. For bubble flow we verified the theory of S.G. BANKOFF about the shape of the void-fraction profiles. (author) [French] Nous proposons une methode de mesure du taux de vide local a en ecoulement diphasique, basee sur l'emploi d'un anemometre a film chaud a temperature constante dont on etudie la repartition du signal en amplitude dans un analyseur multicanaux. Ayant trace un profil de taux de vide local suivant un diametre d'une conduite verticale de section circulaire parcourue par un ecoulement ascendant d'eau et d'air, nous avons compare la moyenne de {alpha} sur ce diametre a la valeur obtenue par une methode d'absorption de rayons {gamma}. Les essais ont ete faits en ecoulements a bulles et a bouchons. Les deux methodes donnent des resultats concordants en particulier pour les ecoulements a bulles. Le taux de vide moyenne dans la section, calcule a partir des differents profils, a egalement ete compare avec succes aux resultats experimentaux de R. ROUMY. Dans l'etude de la structure radiale des ecoulements a bulles, nous avons verifie l'hypothese de S.G. BAJMKOFF. (auteur)

  9. Fractionated Repetitive Extracorporeal Shock Wave Therapy: A New Standard in Shock Wave Therapy?

    Directory of Open Access Journals (Sweden)

    Tobias Kisch

    2015-01-01

    Full Text Available Background. ESWT has proven clinical benefit in dermatology and plastic surgery. It promotes wound healing and improves tissue regeneration, connective tissue disorders, and inflammatory skin diseases. However, a single treatment session or long intervals between sessions may reduce the therapeutic effect. The present study investigated the effects of fractionated repetitive treatment in skin microcirculation. Methods. 32 rats were randomly assigned to two groups and received either fractionated repetitive high-energy ESWT every ten minutes or placebo shock wave treatment, applied to the dorsal lower leg. Microcirculatory effects were continuously assessed by combined laser Doppler imaging and photospectrometry. Results. In experimental group, cutaneous tissue oxygen saturation was increased 1 minute after the first application and until the end of the measuring period at 80 minutes after the second treatment (P<0.05. The third ESWT application boosted the effect to its highest extent. Cutaneous capillary blood flow showed a significant increase after the second application which was sustained for 20 minutes after the third application (P<0.05. Placebo group showed no statistically significant differences. Conclusions. Fractionated repetitive extracorporeal shock wave therapy (frESWT boosts and prolongs the effects on cutaneous hemodynamics. The results indicate that frESWT may provide greater benefits in the treatment of distinct soft tissue disorders compared with single-session ESWT.

  10. Near Shore Wave Processes

    Science.gov (United States)

    2016-06-07

    the alongshore current, and a full non linear bottom shear stress. Contributions from the alongshore wind stress are mostly evident offshore and over...fraction) profiles measured on a day with offshore wave height of 1.6m, and 10 ms-1 wind speed. The one hour mean void fraction profiles are measured in a...given the offshore wave conditions. OBJECTIVES We hypothesize that the wave-induced kinematic, sediment and morphologic processes are nonlinearly

  11. Experimental analysis of ultrasonic signals in air-water vertical upward for void fraction measurement using neural networks; Analise experimental dos sinais ultra-sonicos em escoamentos verticais bifasicos para medicao da fracao de vazios atraves de redes neurais

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Milton Y.; Massignan, Joao P.D.; Daciuk, Rafael J.; Neves Junior, Flavio; Arruda, Lucia V.R. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2008-07-01

    Rheology of emulsion mixtures and void fraction measurements of multiphase flows requires proper instrumentation. Sometimes it is not possible to install this instrumentation inside the pipe or view the flow. Ultrasound technology has characteristics compatible with the requirements of the oil industry. It can assist the production of heavy oil. This study provides important information for an analysis of the feasibility of developing non-intrusive equipment. These probes can be used for measurement of multiphase void fraction and detect the flow pattern using ultrasound. Experiments using simulated upward air-water vertical two-phase flow show that there is a correlation between the acoustic attenuation and the concentration of the gas phase. Experimental data were obtained through the prototype developed for ultrasonic data acquisition. This information was processed and used as input parameters for a neural network classifier. Void fractions ({proportional_to}) were analyzed between 0% - 16%, in increments of 1%. The maximum error of the neural network for the classification of the flow pattern was 6%. (author)

  12. Soliton solutions to a few fractional nonlinear evolution equations in shallow water wave dynamics

    Science.gov (United States)

    Mirzazadeh, Mohammad; Ekici, Mehmet; Sonmezoglu, Abdullah; Ortakaya, Sami; Eslami, Mostafa; Biswas, Anjan

    2016-05-01

    This paper studies a few nonlinear evolution equations that appear with fractional temporal evolution and fractional spatial derivatives. These are Benjamin-Bona-Mahoney equation, dispersive long wave equation and Nizhnik-Novikov-Veselov equation. The extended Jacobi's elliptic function expansion method is implemented to obtain soliton and other periodic singular solutions to these equations. In the limiting case, when the modulus of ellipticity approaches zero or unity, these doubly periodic functions approach solitary waves or shock waves or periodic singular solutions emerge.

  13. 基于COMSOL与MATLAB的气液两相流空隙率研究%Research on void fraction of gas-liquid two-phase flow based on COMSOL and MATLAB

    Institute of Scientific and Technical Information of China (English)

    苏亮; 宋志平; 王宝寿; 丁力

    2013-01-01

      文章利用电阻层析成像技术进行了空隙率的静态测试,并将测试数据、COMSOL计算数据与MATLAB编程数据进行了比较。在验证了所编MATLAB程序的正确性后,将其应用于气液两相流空隙率测试。为了避免电阻层析成像技术在气液两相流空隙率测试中图像处理的难题,文中针对三种典型的气液两相流流型,建立了各自流型下的空隙率与截面平均电导率之间的函数关系。具体试验时,可将试验测试数据导入所编MATLAB程序中,得到截面平均电导率,并将此值代入对应流型下的空隙率与截面平均电导率之间的函数关系式中,进而得到空隙率值。该文提出的方法能够解决气液两相流空隙率测试的难点,具有较大的工程应用价值。%The void fraction is measured by electrical resistance tomography technology and the data mea-sured by experiment is compared with calculating data by COMSOL and simulating data by MATLAB. The MATLAB program is used to measure the void fraction of gas-liquid two-phase flow after it is proved true. The functional equation between void fraction and sectional average conductivity is established according to three different types of flow pattern in order to avoid the difficulity in image processing of gas-liquid two-phase flow. For one experiment, the measured data is imported into MATLAB program to obtain the val-ue of sectional average conductivity and then plug the value of sectional average conductivity into the func-tional equation above, the value of void fraction is obtained. The method proposed in this paper can solve the problem in void fraction measurement of gas-liquid two-phase flow and is of great engineering value.

  14. Connecting the grain-shearing mechanism of wave propagation in marine sediments to fractional order wave equations.

    Science.gov (United States)

    Pandey, Vikash; Holm, Sverre

    2016-12-01

    The characteristic time-dependent viscosity of the intergranular pore-fluid in Buckingham's grain-shearing (GS) model [Buckingham, J. Acoust. Soc. Am. 108, 2796-2815 (2000)] is identified as the property of rheopecty. The property corresponds to a rare type of a non-Newtonian fluid in rheology which has largely remained unexplored. The material impulse response function from the GS model is found to be similar to the power-law memory kernel which is inherent in the framework of fractional calculus. The compressional wave equation and the shear wave equation derived from the GS model are shown to take the form of the Kelvin-Voigt fractional-derivative wave equation and the fractional diffusion-wave equation, respectively. Therefore, an analogy is drawn between the dispersion relations obtained from the fractional framework and those from the GS model to establish the equivalence of the respective wave equations. Further, a physical interpretation of the characteristic fractional order present in the wave equations is inferred from the GS model. The overall goal is to show that fractional calculus is not just a mathematical framework which can be used to curve-fit the complex behavior of materials. Rather, it can also be derived from real physical processes as illustrated in this work by the example of GS.

  15. Propagation Speed of the Maximum of the Fundamental Solution to the Fractional Diffusion-Wave Equation

    CERN Document Server

    Luchko, Yuri; Povstenko, Yuriy

    2012-01-01

    In this paper, the one-dimensional time-fractional diffusion-wave equation with the fractional derivative of order $1 \\le \\alpha \\le 2$ is revisited. This equation interpolates between the diffusion and the wave equations that behave quite differently regarding their response to a localized disturbance: whereas the diffusion equation describes a process, where a disturbance spreads infinitely fast, the propagation speed of the disturbance is a constant for the wave equation. For the time fractional diffusion-wave equation, the propagation speed of a disturbance is infinite, but its fundamental solution possesses a maximum that disperses with a finite speed. In this paper, the fundamental solution of the Cauchy problem for the time-fractional diffusion-wave equation, its maximum location, maximum value, and other important characteristics are investigated in detail. To illustrate analytical formulas, results of numerical calculations and plots are presented. Numerical algorithms and programs used to produce pl...

  16. Size-Effects in Void Growth

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2005-01-01

    The size-effect on ductile void growth in metals is investigated. The analysis is based on unit cell models both of arrays of cylindrical voids under plane strain deformation, as well as arrays of spherical voids using an axisymmetric model. A recent finite strain generalization of two higher order...... strain gradient plasticity models is implemented in a finite element program, which is used to study void growth numerically. The results based on the two models are compared. It is shown how gradient effects suppress void growth on the micron scale when compared to predictions based on conventional...... models. This increased resistance to void growth, due to gradient hardening, is accompanied by an increase in the overall strength for the material. Furthermore, for increasing initial void volume fraction, it is shown that the effect of gradients becomes more important to the overall response but less...

  17. The Fractional Power Law of Wind Wave Growth in Deep Water for Short Fetch

    Institute of Scientific and Technical Information of China (English)

    GUAN Changlong; SUN Qun; Philippe Fraunie

    2002-01-01

    Combining the 3/2 power law proposed by Toba with the significant wave energy balance equation for windwaves, wave growth in deep water for short fetch is investigated. It is found that the variations of wave height and periodwith fetch have the form of power function with fractional exponents 3/8 and 1/4 respectively. Using these exponents in thepower functions and through data fitting, the concise wind wave growth relations for short fetch are obtained.

  18. IMMUNOBIOLOGICAL characteristic of tetanus toxoid fractions before and after exposure to ultrasonic waves

    Directory of Open Access Journals (Sweden)

    Plugator TN

    2012-10-01

    Full Text Available Fractional composition of industrial tetanus toxoid before and after exposure to ultrasonic waves was determined with the use of gel filtration chromatography. It was established, that with the exception of specific antigenic structures (fraction A, tetanus toxoid contained ballast proteins (fraction B. Ultrasound treatment of tetanus toxoid resulted in ballast proteins quantity decrease. Percentage composition of tetanus toxoid fractions depended on ultrasound treatment conditions.

  19. Time fractional effect on ion acoustic shock waves in ion-pair plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abdelwahed, H. G., E-mail: hgomaa-eg@hotmail.com [Prince Sattam Bin Abdulaziz University, College of Science and Humanitarian Studies, Physics Department (Saudi Arabia); El-Shewy, E. K.; Mahmoud, A. A. [Faculty of Science, Mansoura University, Theoretical Physics Group, Physics Department (Egypt)

    2016-06-15

    The nonlinear properties of ion acoustic shock waves are studied. The Burgers equation is derived and converted into the time fractional Burgers equation by Agrawal’s method. Using the Adomian decomposition method, shock wave solutions of the time fractional Burgers equation are constructed. The effect of the time fractional parameter on the shock wave properties in ion-pair plasma is investigated. The results obtained may be important in investigating the broadband electrostatic shock noise in D- and F-regions of Earth’s ionosphere.

  20. The Fractional Statistics of Generalized Haldane Wave Function in 4D Quantum Hall Effect

    Institute of Scientific and Technical Information of China (English)

    WANGKe-Lin; WANShao-Long; CHENQing; XUFei

    2003-01-01

    Recently, a generalization of Laughlin's wave function expressed in Haldane's spherical geometry is con-structed in 4D quantum Hall effect. In fact, it is a membrane wave function in CP3 space. In this article, we use non-Abelian Berry phase to anaJyze the statistics of this membrane wave function. Our results show that the membrane wave function obeys fractional statistics. It is the rare example to realize fractional statistics in higher-dimensiona space than 2D. And, it will help to make clear the unresolved problems in 4D quantum Hall effect.

  1. From Newton's Equation to Fractional Diffusion and Wave Equations

    Directory of Open Access Journals (Sweden)

    Vázquez Luis

    2011-01-01

    Full Text Available Fractional calculus represents a natural instrument to model nonlocal (or long-range dependence phenomena either in space or time. The processes that involve different space and time scales appear in a wide range of contexts, from physics and chemistry to biology and engineering. In many of these problems, the dynamics of the system can be formulated in terms of fractional differential equations which include the nonlocal effects either in space or time. We give a brief, nonexhaustive, panoramic view of the mathematical tools associated with fractional calculus as well as a description of some fields where either it is applied or could be potentially applied.

  2. Effect of disintegration wave grinding on fractional protein and amino acid composition of chickpea

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2013-01-01

    Full Text Available The study of fractional changes and amino acid composition of proteins in the application of chickpea disintegration wave grinding. Comparative analysis of six varieties of chickpea before and after grinding.

  3. Flow pattern and void fraction distribution measurements during ebullition of weakly foaming two-hase mixtures by using conductivity probes; Ermittlung der Stroemungsform und der Dampfgehaltverteilung bei dem Aufwallen von schwach schaeumenden Zweiphasengemischen mit Hilfe von Leitfaehigkeitsonden

    Energy Technology Data Exchange (ETDEWEB)

    Friedel, L. [Technische Univ. Hamburg-Harburg (Germany); Prasser, H.M. [Forschungszentrum Rossendorf (Germany); Schecker, J. [Airbus Deutschland GmbH, Hamburg (Germany)

    2006-02-15

    On account of recalculating pressure relief experiments with foaming systems by using multiphysics codes regularly as level swell submodel bubble flow is considered since this conforms best with the impression. On the basis of measurements of the void fraction during venting of non-foaming as well as weakly foaming, isobutanolic hot water it will be demonstrated that actually a so called homogeneous bubble flow in the form as described in the level swell model bubbly flow by DIERS for use in dynamic simulations of venting establishes. (orig.)

  4. Effect of void cluster on ductile failure evolution

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    The behavior of a non-uniform void distribution in a ductile material is investigated by using a cell model analysis to study a material with a periodic pattern of void clusters. The special clusters considered consist of a number of uniformly spaced voids located along a plane perpendicular...... to the maximum principal tensile stress. A plane strain approximation is used, where the voids are parallel cylindrical holes. Clusters with different numbers of voids are compared with the growth of a single void, such that the total initial volume of the voids, and thus also the void volume fractions...... understanding, different transverse stresses on the unit cell are considered to see the influence of different levels of stress triaxiality. Also considered are different initial ratios of the void spacing to the void radius inside the clusters. And results are shown for different levels of strain hardening...

  5. Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions

    Science.gov (United States)

    Hooshmandasl, M. R.; Heydari, M. H.; Cattani, C.

    2016-08-01

    Fractional calculus has been used to model physical and engineering processes that are best described by fractional differential equations. Therefore designing efficient and reliable techniques for the solution of such equations is an important task. In this paper, we propose an efficient and accurate Galerkin method based on the fractional-order Legendre functions (FLFs) for solving the fractional sub-diffusion equation (FSDE) and the time-fractional diffusion-wave equation (FDWE). The time-fractional derivatives for FSDE are described in the Riemann-Liouville sense, while for FDWE are described in the Caputo sense. To this end, we first derive a new operational matrix of fractional integration (OMFI) in the Riemann-Liouville sense for FLFs. Next, we transform the original FSDE into an equivalent problem with fractional derivatives in the Caputo sense. Then the FLFs and their OMFI together with the Galerkin method are used to transform the problems under consideration into the corresponding linear systems of algebraic equations, which can be simply solved to achieve the numerical solutions of the problems. The proposed method is very convenient for solving such kind of problems, since the initial and boundary conditions are taken into account automatically. Furthermore, the efficiency of the proposed method is shown for some concrete examples. The results reveal that the proposed method is very accurate and efficient.

  6. Analytic calculations of trial wave functions of the fractional quantum Hall effect on the sphere

    Energy Technology Data Exchange (ETDEWEB)

    Souza Batista, C.L. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Dingping Li [Perugia Univ. (Italy). Dipt. di Fisica

    1996-07-01

    We present a framework for the analytic calculations of the hierarchical wave functions and the composite fermion wave functions in the fractional quantum Hall effect on the sphere by using projective coordinates. Then we calculate the overlaps between these two wave functions at various fillings and small numbers of electrons. We find that the overlaps are most equal to one. This gives a further evidence that two theories of the fractional quantum Hall effect, the hierarchical theory, are physically equivalent. (author). 31 refs., 2 tabs.

  7. The Fractional Statistics of Generalized Haldane Wave Function in 4D Quantum Hall Effect

    Institute of Scientific and Technical Information of China (English)

    XU Fei; WANG Ke-Lin; WAN Shao-Long; CHEN Qing

    2003-01-01

    Recently, a generalization of Laughlin's wave function expressed in Haldane's spherical geometry is con-structed in 4D quantum Hall effect. In fact, it is a membrane wave function in CP3 space. In this article, we usenon-Abelian Berry phase to analyze the statistics of this membrane wave function. Our results show that the membranewave function obeys fractional statistics. It is the rare example to realize fractional statistics in higher-dimensional spacethan 2D. And, it will help to make clear the unresolved problems in 4D quantum Hall effect.

  8. Exact solutions of multi-term fractional diffusion-wave equations with Robin type boundary conditions

    Institute of Scientific and Technical Information of China (English)

    Xiao-jing LIU; Ji-zeng WANG; Xiao-min WANG; You-he ZHOU

    2014-01-01

    General exact solutions in terms of wavelet expansion are obtained for multi-term time-fractional diffusion-wave equations with Robin type boundary conditions. By proposing a new method of integral transform for solving boundary value problems, such fractional partial differential equations are converted into time-fractional ordinary differ-ential equations, which are further reduced to algebraic equations by using the Laplace transform. Then, with a wavelet-based exact formula of Laplace inversion, the resulting exact solutions in the Laplace transform domain are reversed to the time-space domain. Three examples of wave-diffusion problems are given to validate the proposed analytical method.

  9. Computerized voiding diary.

    Science.gov (United States)

    Rabin, J M; McNett, J; Badlani, G H

    1993-01-01

    An electronic, computerized voiding diary, "Compu-Void" (patent pending) was developed in order to simplify, augment, and automate patients' recording of bladder symptomatology. A voiding diary as a tool has the potential to provide essential information for a more complete diagnostic and therefore therapeutic picture for each patient. Two major problems with the standard written voiding diary have been a lack of patient compliance and the limited amount of information it garners. Twenty-five women with various types of voiding dysfunctions were compared to twenty-five age and parity-matched control women in order to determine patient preferences of the Compu-Void when compared to the standard written voiding diary, compliance with each method, and amount and quality of information obtained with each method. Over 90% of subjects and over 70% of control group patients preferred the Compu-Void over the written diary (P Compu-Void exceeded that obtained with the written method.

  10. 拉萨地区不同空隙率的半柔性路面材料冻融试验研究%Freezing-Thawing Test Research of Semi-Flexible Pavement Materials with Different Void Fraction in Lhasa

    Institute of Scientific and Technical Information of China (English)

    李成洋; 张鹏; 王文奇; 田荣燕

    2016-01-01

    为解决现有水泥混凝土和沥青混凝土路面材料在拉萨地区推广应用中受冻融作用破坏的问题,对不同空隙率的半柔性路面材料在拉萨的应用进行研究。采用灌注式的方式将水泥胶浆灌入不同空隙率的开级配沥青混合料母体中制成试件,并根据拉萨独特的气候特征设定冻融试验的时间和温度;再进行高温稳定试验和低温抗裂试验,得出趋近于真实冻融环境的试验数据。分析试验数据可得,半柔性路面材料在受到冻融作用破坏时,低温抗裂强度随着空隙率的增大呈逐渐上升趋势,劈裂位移量随着空隙率的增大呈逐渐减小趋势;而表征高温稳定性能的动稳定度随着空隙率的增大呈先上升后下降的趋势,变形速率随着空隙率的增大呈先下降后上升的趋势。研究结果表明,半柔性路面材料采用27%的空隙率并添加塑弹性材料有利于抵抗冻融破坏,从而能够在高原地区推广和应用。%In order to solve the problem that the cement concrete and asphalt concrete pavement materi⁃al were damaged by freezing-thawing action during their popularization and application in Lhasa, a re⁃search about the application of semi-flexible pavement materials with different void fraction in Lhasa was carried out. Test specimens were made by the way of pouring cement mortar into open-graded as⁃phalt mixture matrix with different void fraction. The time and temperature of freezing-thawing test were set based on the special environment of Lhasa. Then the high-temperature stability test and low-temper⁃ature crack resistance test were carried out to obtain the test data closing to the real environment. By ana⁃lyzing the test data, it was educed that:when semi-flexible pavement material was destroyed by freezing-thawing action, with the increasing of void fraction, the low-temperature crack resistance increased grad⁃ually, and the split displacement

  11. The Development of Voiding

    DEFF Research Database (Denmark)

    Olsen, Lars Henning

    2011-01-01

    The thesis addresses some new aspeccts in the development of voiding function from midgestation into early childhood.......The thesis addresses some new aspeccts in the development of voiding function from midgestation into early childhood....

  12. The Void Galaxy Survey

    CERN Document Server

    van de Weygaert, R; Platen, E; Beygu, B; van Gorkom, J H; van der Hulst, J M; Aragon-Calvo, M A; Peebles, P J E; Jarrett, T; Rhee, G; Kovac, K; Yip, C -W

    2011-01-01

    The Void Galaxy Survey (VGS) is a multi-wavelength program to study $\\sim$60 void galaxies. Each has been selected from the deepest interior regions of identified voids in the SDSS redshift survey on the basis of a unique geometric technique, with no a prior selection of intrinsic properties of the void galaxies. The project intends to study in detail the gas content, star formation history and stellar content, as well as kinematics and dynamics of void galaxies and their companions in a broad sample of void environments. It involves the HI imaging of the gas distribution in each of the VGS galaxies. Amongst its most tantalizing findings is the possible evidence for cold gas accretion in some of the most interesting objects, amongst which are a polar ring galaxy and a filamentary configuration of void galaxies. Here we shortly describe the scope of the VGS and the results of the full analysis of the pilot sample of 15 void galaxies.

  13. Supplemental topics on voids

    Energy Technology Data Exchange (ETDEWEB)

    Rood, H.J.

    1988-09-01

    Several topics concerning voids are presented, supplementing the report of Rood (1988). The discovery of the Coma supercluster and void and the recognition of the cosmological significance of superclusters and voids are reviewed. Galaxy redshift surveys and redshift surveys for the Abell clusters and very distant objects are discussed. Solar system and extragalactic dynamics are examined. Also, topics for future observational research on voids are recommended. 50 references.

  14. 导流介质对VARTM复合材料纤维分布及空隙率的影响%Effects of Infusion Media on Fiber Volume Fraction Distribution and Void Content in Vacuum Assisted Resin Transfer Molding

    Institute of Scientific and Technical Information of China (English)

    赖家美; 陈显明; 王德盼; 鄢冬冬; 王科

    2014-01-01

    Effects of the size of infusion media on resin flow behavior,fiber volume fraction distribution and void content in vacuum assisted resin transfer molding(VARTM) were studied.The results showed that with the increase of infusion media size, the resin flow rate increased exponentially;the fiber volume fraction showed a tendency to increase after the first decrease,and the infusion media boundary was just the high and low fiber volume fraction line;the void content increased first and then decreased and increased tremendously at last,varied from 3.86% to 19.92%.%研究了导流介质尺寸对真空辅助树脂传递模塑(VARTM)工艺中树脂流动行为的影响,以及对复合材料制品中纤维分布和空隙率的影响。结果表明,随着导流介质尺寸的增加,树脂在增强体中的流动速度加快,并呈现指数加速趋势;制品中纤维体积含量呈现先减少后增大的趋势,并且以导流介质边界为纤维体积含量高低的分界线;复合材料制品的空隙率范围在3.86%~19.92%,空隙率呈现先增大后减小再加速增大的趋势。

  15. Numerical Simulations for the Space-Time Variable Order Nonlinear Fractional Wave Equation

    Directory of Open Access Journals (Sweden)

    Nasser Hassan Sweilam

    2013-01-01

    Full Text Available The explicit finite-difference method for solving variable order fractional space-time wave equation with a nonlinear source term is considered. The concept of variable order fractional derivative is considered in the sense of Caputo. The stability analysis and the truncation error of the method are discussed. To demonstrate the effectiveness of the method, some numerical test examples are presented.

  16. The Approximate Solutions of Three-Dimensional Diffusion and Wave Equations within Local Fractional Derivative Operator

    Directory of Open Access Journals (Sweden)

    Hassan Kamil Jassim

    2016-01-01

    Full Text Available We used the local fractional variational iteration transform method (LFVITM coupled by the local fractional Laplace transform and variational iteration method to solve three-dimensional diffusion and wave equations with local fractional derivative operator. This method has Lagrange multiplier equal to minus one, which makes the calculations more easily. The obtained results show that the presented method is efficient and yields a solution in a closed form. Illustrative examples are included to demonstrate the high accuracy and fast convergence of this new method.

  17. Decay estimates for fractional wave equations on H-type groups

    Directory of Open Access Journals (Sweden)

    Manli Song

    2016-10-01

    Full Text Available Abstract The aim of this paper is to establish the decay estimate for the fractional wave equation semigroup on H-type groups given by e i t Δ α $e^{it\\Delta^{\\alpha}}$ , 0 < α < 1 $0<\\alpha<1$ . Combining the dispersive estimate and a standard duality argument, we also derive the corresponding Strichartz inequalities.

  18. Wave equation for generalized Zener model containing complex order fractional derivatives

    Science.gov (United States)

    Atanacković, Teodor M.; Janev, Marko; Konjik, Sanja; Pilipović, Stevan

    2017-03-01

    We study waves in a viscoelastic rod whose constitutive equation is of generalized Zener type that contains fractional derivatives of complex order. The restrictions following from the Second Law of Thermodynamics are derived. The initial boundary value problem for such materials is formulated and solution is presented in the form of convolution. Two specific examples are analyzed.

  19. Wave equation for generalized Zener model containing complex order fractional derivatives

    Science.gov (United States)

    Atanacković, Teodor M.; Janev, Marko; Konjik, Sanja; Pilipović, Stevan

    2017-01-01

    We study waves in a viscoelastic rod whose constitutive equation is of generalized Zener type that contains fractional derivatives of complex order. The restrictions following from the Second Law of Thermodynamics are derived. The initial boundary value problem for such materials is formulated and solution is presented in the form of convolution. Two specific examples are analyzed.

  20. Structure of Ground state Wave Functions for the Fractional Quantum Hall Effect: A Variational Approach

    Science.gov (United States)

    Mukherjee, Sutirtha; Mandal, Sudhansu

    The internal structure and topology of the ground states for fractional quantum Hall effect (FQHE) are determined by the relative angular momenta between all the possible pairs of electrons. Laughlin wave function is the only known microscopic wave function for which these relative angular momenta are homogeneous (same) for any pair of electrons and depend solely on the filling factor. Without invoking any microscopic theory, considering only the relationship between number of flux quanta and particles in spherical geometry, and allowing the possibility of inhomogeneous (different) relative angular momenta between any two electrons, we develop a general method for determining a closed-form ground state wave function for any incompressible FQHE state. Our procedure provides variationally obtained very accurate wave functions, yet having simpler structure compared to any other known complex microscopic wave functions for the FQHE states. This method, thus, has potential in predicting a very accurate ground state wave function for the puzzling states such as the state at filling fraction 5/2. We acknowledge support from Department of Science and Technology, India.

  1. Measurements of the S-wave fraction in B-0 -> K+ pi(-) mu(+) mu(-) decays and the B-0 -> K*(892)(0) mu(+) mu(-) differential branching fraction

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M. -O.; van Beuzekom, M.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Perez, D. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Cheung, S. -F.; Chobanova, V.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C. -T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Dordei, F.; Dorigo, M.; Suarez, A. Dosil; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Deleage, N.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Albor, V. Fernandez; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Frei, C.; Frosini, M.; Furfaro, E.; Farber, C.; Torreira, A. Gallas; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Pardinas, J. Garcia; Tico, J. Garra; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Giani, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gorelov, I. V.; Gotti, C.; Gandara, M. Grabalosa; Diaz, R. Graciani; Granado Cardoso, L. A.; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Gruenberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Gobel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Morata, J. A. Hernando; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Kolpin, M.; Komarov, I.; Koppenburg, P.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. -P.; Leflat, A.; Lefrancois, J.; Lefevre, R.; Lemaitre, F.; Cid, E. Lemos; Leroy, O.; Lesiak, T.; Leverington, B.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Martinez, M. Lucio; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martinelli, M.; Santos, D. Martinez; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Melnychuk, D.; Merk, M.; Michielin, E.; Milanes, D. A.; Minard, M. -N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Mueller, J.; Mueller, K.; Mueller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Niess, V.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Casasus, M. Plo; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Pernas, M. Ramos; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Perez, P. Rodriguez; Rogozhnikov, A.; Roiser, S.; Romanovskiy, V.; Vidal, A. Romero; Ronayne, J. W.; Rotondo, M.; Ruf, T.; Ruiz Valls, P.; Silva, J. J. Saborido; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sedes, B. Sanmartin; Santacesaria, R.; Rios, C. Santamarina; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M. -H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Coutinho, R. Silva; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, I. T.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Stenyakin, O.; Stevenson, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valat, S.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Regueiro, P. Vazquez; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vesterinen, M.; Viaud, B.; Vieira, D.; Diaz, M. Vieites; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voneki, B.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, C.; Sierra, C. Vazquez; Waldi, R.; Wallace, C.; Wallace, R.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zarebski, K. A.; Zavertyaev, M.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhukov, V.; Zucchelli, S.

    2016-01-01

    A measurement of the differential branching fraction of the decay B-0 -> K* (892)(0) mu(+)mu(-) is presented together with a determination of the S-wave fraction of the K+ pi(-) system in the decay B-0 -> K+ pi-mu(+)mu(-). The analysis is based on pp-collision data corresponding to an integrated

  2. Rayleigh-Lamb wave propagation on a fractional order viscoelastic plate.

    Science.gov (United States)

    Meral, F Can; Royston, Thomas J; Magin, Richard L

    2011-02-01

    A previous study of the authors published in this journal focused on mechanical wave motion in a viscoelastic material representative of biological tissue [Meral et al., J. Acoust. Soc. Am. 126, 3278-3285 (2009)]. Compression, shear and surface wave motion in and on a viscoelastic halfspace excited by surface and sub-surface sources were considered. It was shown that a fractional order Voigt model, where the rate-dependent damping component that is dependent on the first derivative of time is replaced with a component that is dependent on a fractional derivative of time, resulted in closer agreement with experiment as compared with conventional (integer order) models, such as those of Voigt and Zener. In the present study, this analysis is extended to another configuration and wave type: out-of-plane response of a viscoelastic plate to harmonic anti-symmetric Lamb wave excitation. Theoretical solutions are compared with experimental measurements for a polymeric tissue mimicking phantom material. As in the previous configurations the fractional order modeling assumption improves the match between theory and experiment over a wider frequency range. Experimental complexities in the present study and the reliability of the different approaches for quantifying the shear viscoelastic properties of the material are discussed.

  3. Voiding dysfunction - A review

    Directory of Open Access Journals (Sweden)

    Sripathi V

    2005-01-01

    Full Text Available In a child who is toilet trained the sudden onset of daytime wetting with frequency or urgency is alarming to the parents. Initially this subject was subdivided into a number of descriptive clinical conditions which led to a lot of confusion in recognition and management. Subsequently, the term elimination dysfunction was coined by Stephen Koff to emphasise the association between recurrent urinary infection, wetting, constipation and bladder overactivity. From a urodynamic point of view, in voiding dysfunction, there is either detrusor overactivity during bladder filling or dyssynergic action between the detrusor and the external sphincter during voiding. Identifying a given condition as a ′filling phase dysfunction′ or ′voiding phase dysfunction′ helps to provide appropriate therapy. Objective clinical criteria should be used to define voiding dysfunction. These include bladder wall thickening, large capacity bladder and infrequent voiding, bladder trabeculation and spinning top deformity of the urethra and a clinically demonstrated Vincent′s curtsy. The recognition and treatment of constipation is central to the adequate treatment of voiding dysfunction. Transcutaneous electric nerve stimuation for the treatment of detrusor overactivity, biofeedback with uroflow EMG to correct dyssynergic voiding, and behavioral therapy all serve to correct voiding dysfunction in its early stages. In established neurogenic bladder disease the use of Botulinum Toxin A injections into the detrusor or the external sphincter may help in restoring continence especially in those refractory to drug therapy. However in those children in whom the upper tracts are threatened, augmentation of the bladder may still be needed.

  4. Modeling cosmic void statistics

    Science.gov (United States)

    Hamaus, Nico; Sutter, P. M.; Wandelt, Benjamin D.

    2016-10-01

    Understanding the internal structure and spatial distribution of cosmic voids is crucial when considering them as probes of cosmology. We present recent advances in modeling void density- and velocity-profiles in real space, as well as void two-point statistics in redshift space, by examining voids identified via the watershed transform in state-of-the-art ΛCDM n-body simulations and mock galaxy catalogs. The simple and universal characteristics that emerge from these statistics indicate the self-similarity of large-scale structure and suggest cosmic voids to be among the most pristine objects to consider for future studies on the nature of dark energy, dark matter and modified gravity.

  5. Quantifying Effects of Voids in Woven Ceramic Matrix Composites

    Science.gov (United States)

    Goldsmith, Marlana B.; Sankar, Bhavani V.; Haftka, Raphael T.; Goldberg, Robert K.

    2013-01-01

    Randomness in woven ceramic matrix composite architecture has been found to cause large variability in stiffness and strength. The inherent voids are an aspect of the architecture that may cause a significant portion of the variability. A study is undertaken to investigate the effects of many voids of random sizes and distributions. Response surface approximations were formulated based on void parameters such as area and length fractions to provide an estimate of the effective stiffness. Obtaining quantitative relationships between the properties of the voids and their effects on stiffness of ceramic matrix composites are of ultimate interest, but the exploratory study presented here starts by first modeling the effects of voids on an isotropic material. Several cases with varying void parameters were modeled which resulted in a large amount of variability of the transverse stiffness and out-of-plane shear stiffness. An investigation into a physical explanation for the stiffness degradation led to the observation that the voids need to be treated as an entity that reduces load bearing capabilities in a space larger than what the void directly occupies through a corrected length fraction or area fraction. This provides explanation as to why void volume fraction is not the only important factor to consider when computing loss of stiffness.

  6. Draining the Local Void

    CERN Document Server

    Rizzi, Luca; Shaya, Edward J; Kourkchi, Ehsan; Karachentsev, Igor D

    2016-01-01

    Two galaxies that lie deep within the Local Void provide a test of the expectation that voids expand. The modest (M_B~-14) HI bearing dwarf galaxies ALFAZOAJ1952+1428 and KK246 have been imaged with Hubble Space Telescope in order to study the stellar populations and determine distances from the luminosities of stars at the tip of the red giant branch. The mixed age systems have respective distances of 8.39 Mpc and 6.95 Mpc and inferred line-of-sight peculiar velocities of -114 km/s and -66 km/s toward us and away from the void center. These motions compound on the Milky Way motion of ~230 km/s away from the void. The orbits of the two galaxies are reasonably constrained by a numerical action model encompassing an extensive region that embraces the Local Void. It is unambiguously confirmed that these two void galaxies are moving away from the void center at several hundred km/s.

  7. Dark matter in voids

    Science.gov (United States)

    Fong, Richard; Doroshkevich, Andrei G.; Turchaninov, Victor I.

    1995-07-01

    The theory of the formation of large-scale structure in the universe through the action of gravitational instability imply the existence of substantial amounts of baryonic dark matter, of the order of 50% of the total baryon content in the universe, in the ``voids'' or under-dense regions seen in the large-scale distribution of galaxies. We discuss also the large-scale structure of dark matter expected in voids and the present and future possibilities for the observation of this baryonic dark matter in ``voids.''

  8. Dark matter in voids

    Energy Technology Data Exchange (ETDEWEB)

    Fong, R. [Department of Physics, University of Durham, Durham, DH1 3LE (United Kingdom); Doroshkevich, A.G. [Keldysh Institute of Applied Mathematics, 125047 Moscow (Russian Federation)]|[Teoretical Astrophysics Centrum, Blegsdamsvej 17, Copenhagen DK 2100 (Denmark); Turchaninov, V.I. [Keldysh Institute of Applied Mathematics, 125047 Moscow (Russian Federation)

    1995-07-01

    The theory of the formation of large-scale structure in the universe through the action of gravitational instability imply the existence of substantial amounts of baryonic dark matter, of the order of 50% of the total baryon content in the universe, in the ``voids`` or under-dense regions seen in the large-scale distribution of galaxies. We discuss also the large-scale structure of dark matter expected in voids and the present and future possibilities for the observation of this baryonic dark matter in ``voids.`` {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  9. Effects of Voids on Concrete Tensile Fracturing: A Mesoscale Study

    Directory of Open Access Journals (Sweden)

    Lei Xu

    2017-01-01

    Full Text Available A two-dimensional mesoscale modeling framework, which considers concrete as a four-phase material including voids, is developed for studying the effects of voids on concrete tensile fracturing under the plane stress condition. Aggregate is assumed to behave elastically, while a continuum damaged plasticity model is employed to describe the mechanical behaviors of mortar and ITZ. The effects of voids on the fracture mechanism of concrete under uniaxial tension are first detailed, followed by an extensive investigation of the effects of void volume fraction on concrete tensile fracturing. It is found that both the prepeak and postpeak mesoscale cracking in concrete are highly affected by voids, and there is not a straightforward relation between void volume fraction and the postpeak behavior due to the randomness of void distribution. The fracture pattern of concrete specimen with voids is controlled by both the aggregate arrangement and the distribution of voids, and two types of failure modes are identified for concrete specimens under uniaxial tension. It is suggested that voids should be explicitly modeled for the accurate fracturing simulation of concrete on the mesoscale.

  10. Design of minimum multiplier fractional order differentiator based on lattice wave digital filter.

    Science.gov (United States)

    Barsainya, Richa; Rawat, Tarun Kumar; Kumar, Manjeet

    2017-01-01

    In this paper, a novel design of fractional order differentiator (FOD) based on lattice wave digital filter (LWDF) is proposed which requires minimum number of multiplier for its structural realization. Firstly, the FOD design problem is formulated as an optimization problem using the transfer function of lattice wave digital filter. Then, three optimization algorithms, namely, genetic algorithm (GA), particle swarm optimization (PSO) and cuckoo search algorithm (CSA) are applied to determine the optimal LWDF coefficients. The realization of FOD using LWD structure increases the design accuracy, as only N number of coefficients are to be optimized for Nth order FOD. Finally, two design examples of 3rd and 5th order lattice wave digital fractional order differentiator (LWDFOD) are demonstrated to justify the design accuracy. The performance analysis of the proposed design is carried out based on magnitude response, absolute magnitude error (dB), root mean square (RMS) magnitude error, arithmetic complexity, convergence profile and computation time. Simulation results are attained to show the comparison of the proposed LWDFOD with the published works and it is observed that an improvement of 29% is obtained in the proposed design. The proposed LWDFOD approximates the ideal FOD and surpasses the existing ones reasonably well in mid and high frequency range, thereby making the proposed LWDFOD a promising technique for the design of digital FODs. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Shock-Wave Heating Model for Chondrule Formation: Prevention of Isotopic Fractionation

    CERN Document Server

    Miura, H; Miura, Hitoshi; Nakamoto, Taishi

    2006-01-01

    Chondrules are considered to have much information on dust particles and processes in the solar nebula. It is naturally expected that protoplanetary disks observed in present star forming regions have similar dust particles and processes, so study of chondrule formation may provide us great information on the formation of the planetary systems. Evaporation during chondrule melting may have resulted in depletion of volatile elements in chondrules. However, no evidence for a large degree of heavy-isotope enrichment has been reported in chondrules. In order to meet this observed constraint, the rapid heating rate at temperatures below the silicate solidus is required to suppress the isotopic fractionation. We have developed a new shock-wave heating model taking into account the radiative transfer of the dust thermal continuum emission and the line emission of gas molecules and calculated the thermal history of chondrules. We have found that optically-thin shock waves for the thermal continuum emission from dust ...

  12. Wave propagation in a fractional viscoelastic Andrade medium: diffusive approximation and numerical modeling

    CERN Document Server

    Jazia, Abderrahmin Ben; Bellis, Cédric

    2013-01-01

    This study focuses on the numerical modeling of wave propagation in fractionally-dissipative media. These viscoelastic models are such that the attenuation is frequency dependent and follows a power law with non-integer exponent. As a prototypical example, the Andrade model is chosen for its simplicity and its satisfactory fits of experimental flow laws in rocks and metals. The corresponding constitutive equation features a fractional derivative in time, a non-local term that can be expressed as a convolution product which direct implementation bears substantial memory cost. To circumvent this limitation, a diffusive representation approach is deployed, replacing the convolution product by an integral of a function satisfying a local time-domain ordinary differential equation. An associated quadrature formula yields a local-in-time system of partial differential equations, which is then proven to be well-posed. The properties of the resulting model are also compared to those of the original Andrade model. The...

  13. Shapes and Sizes of Voids in the LCDM Universe: Excursion Set Approach

    CERN Document Server

    Shandarin, S; Heitmann, K; Habib, S; Shandarin, Sergei; Feldman, Hume A.; Heitmann, Katrin

    2006-01-01

    We study the global distribution and morphology of dark matter voids in a LCDM universe using density fields generated by N-body simulations. Voids are defined as isolated regions of the low-density excursion set specified via density thresholds, the density thresholds being quantified by the corresponding filling factors, i.e., the fraction of the total volume in the excursion set. Our work encompasses a systematic investigation of the void volume function, the volume fraction in voids, and the fitting of voids to corresponding ellipsoids and spheres. We emphasize the relevance of the percolation threshold to the void volume statistics of the density field both in the high redshift, Gaussian random field regime, as well as in the present epoch. By using measures such as the Inverse Porosity, we characterize the quality of ellipsoidal fits to voids, finding that such fits are a poor representation of the larger voids that dominate the volume of the void excursion set.

  14. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M. I.; Borg, Ulrik; Niordson, Christian Frithiof;

    The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation the dislocations are all of edge character and are modelled as line...... predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model chosen to be $0.325\\mu m$ (around ten times the slip plane spacing in the discrete dislocation models)....

  15. Some properties of the fundamental solution to the signalling problem for the fractional diffusion-wave equation

    Science.gov (United States)

    Luchko, Yuri; Mainardi, Francesco

    2013-06-01

    In this paper, the one-dimensional time-fractional diffusion-wave equation with the Caputo fractional derivative of order α, 1 ≤ α ≤ 2 and with constant coefficients is revisited. It is known that the diffusion and the wave equations behave quite differently regarding their response to a localized disturbance. Whereas the diffusion equation describes a process where a disturbance spreads infinitely fast, the propagation speed of the disturbance is a constant for the wave equation. We show that the time-fractional diffusion-wave equation interpolates between these two different responses and investigate the behavior of its fundamental solution for the signalling problem in detail. In particular, the maximum location, the maximum value, and the propagation velocity of the maximum point of the fundamental solution for the signalling problem are described analytically and calculated numerically.

  16. A more fundamental approach to the derivation of nonlinear acoustic wave equations with fractional loss operators (L).

    Science.gov (United States)

    Prieur, Fabrice; Vilenskiy, Gregory; Holm, Sverre

    2012-10-01

    A corrected derivation of nonlinear wave propagation equations with fractional loss operators is presented. The fundamental approach is based on fractional formulations of the stress-strain and heat flux definitions but uses the energy equation and thermodynamic identities to link density and pressure instead of an erroneous fractional form of the entropy equation as done in Prieur and Holm ["Nonlinear acoustic wave equations with fractional loss operators," J. Acoust. Soc. Am. 130(3), 1125-1132 (2011)]. The loss operator of the obtained nonlinear wave equations differs from the previous derivations as well as the dispersion equation, but when approximating for low frequencies the expressions for the frequency dependent attenuation and velocity dispersion remain unchanged.

  17. Determination of fractional energy loss of waves in nearshore waters using an improved high-order Boussinesq-type model

    Institute of Scientific and Technical Information of China (English)

    HE Hailun; SONG Jinbao; Patrick J. Lynett; LI Shuang

    2009-01-01

    Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations. The model is first tested by the additional experimental data, and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated. Then, the model's breaking index is replaced and tested. The new breaking index, which is optimized from the several breaking indices, is not sensitive to the spatial grid length and includes the bottom slopes. Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking. Finally, the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar. Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height (normalized by water depth) dominate the fractional energy losses. It is also found that the bar slope (limited to gentle slopes that less than 1:10) and the dimensionless bar length (normalized by incident wave length) have negligible effects on the fractional energy losses.

  18. Numerical solutions and solitary wave solutions of fractional KDV equations using modified fractional reduced differential transform method

    Science.gov (United States)

    Saha Ray, S.

    2013-12-01

    In this paper, the modified fractional reduced differential transform method (MFRDTM) has been proposed and it is implemented for solving fractional KdV (Korteweg-de Vries) equations. The fractional derivatives are described in the Caputo sense. In this paper, the reduced differential transform method is modified to be easily employed to solve wide kinds of nonlinear fractional differential equations. In this new approach, the nonlinear term is replaced by its Adomian polynomials. Thus the nonlinear initial-value problem can be easily solved with less computational effort. In order to show the power and effectiveness of the present modified method and to illustrate the pertinent features of the solutions, several fractional KdV equations with different types of nonlinearities are considered. The results reveal that the proposed method is very effective and simple for obtaining approximate solutions of fractional KdV equations.

  19. Effects of ion mobility and positron fraction on solitary waves in weak relativistic electron-positron-ion plasma

    CERN Document Server

    Lu, Ding; Xie, Bai-Song

    2013-01-01

    Effects of ion mobility and positron fraction on solitary waves of envelop of laser field and potential of electrostatic field in weak relativistic electron-positron-ion plasma are investigated. The parameter region for the existence of solitary waves is obtained analytically, and the reasonable choice of parameters is clarified. Both cases of mobile and immobile ions are considered. It is found that the amplitudes of solitary waves in the former case are larger compared to the latter case. For small plasma density, the localized solitary wave solutions in terms of approximate perturbation analytical method are consistent well with that by exact numerical calculations. However as the plasma density increases the analytical method loses its validity more and more. The influence of the positron fraction on the amplitudes of solitary waves shows a monotonous increasing relation. Implication of our results to the particle acceleration is also discussed briefly.

  20. Effects of ion mobility and positron fraction on solitary waves in weak relativistic electron-positron-ion plasma

    Science.gov (United States)

    Lu, Ding; Li, Zi-Liang; Xie, Bai-Song

    2013-09-01

    The effects of ion mobility and positron fraction on the solitary waves of the laser field envelope and the potential of the electrostatic field in weak relativistic electron-positron-ion plasma are investigated. The parameter region for the existence of solitary waves is obtained analytically, and a reasonable choice of parameters is clarified. Both cases of mobile and immobile ions are considered. It is found that the amplitudes of solitary waves in the former case are larger compared to the latter case. For small plasma density, the localized solitary wave solutions in terms of the approximate perturbation analytical method are very consistent with those by exact numerical calculations. However, as the plasma density increases the analytical method loses its validity more and more. The influence of the positron fraction on the amplitudes of solitary waves shows a monotonous increasing relation. The implications of our results to particle acceleration are also discussed briefly.

  1. Study of the vibrations induced by two-phase flow in steam generator: measurement of void fraction in a two-phase flow; Etude des vibrations induites dans les tubes de generateurs de vapeur: mesure du taux de vide dans un ecoulement diphasique

    Energy Technology Data Exchange (ETDEWEB)

    Sivault, S

    1998-07-01

    Two-phase flow can trigger vibration phenomena that are not well predicted by models like the homogeneous model. Concerning the steam generator of a Candu type reactor, these vibrations may lead to the failure of tubes. The coupling between thermo-hydraulic and vibration phenomena requires models that treat sliding between liquid and vapor phases. The purpose of this work is to study a series of experiments performed in a freon loop. These experiments simulate a two-phase flow through a bundle of tubes. Most estimations of vibratory parameters are based on the assumption of a uniform distribution of the void fraction. An optic probe has been used to measure the void fraction. The first part of this study is devoted to the processing of the response spectra given by the probe. The second part presents an estimation of the void fraction given by different models, a comparison between experimental and theoretical results allows to discuss their validity range. (A.C.) 6 refs.

  2. Effect of initial void shape on ductile failure in a shear field

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2015-01-01

    For voids in a shear field unit cell model analyses have been used to show that ductile failure is predicted even though the stress triaxiality is low or perhaps negative, so that the void volume fraction does not grow during deformation. Here, the effect of the void shape is studied by analyzing...

  3. Effects of Cure Pressure Induced Voids on the Mechanical Strength of Carbon/Epoxy Laminates

    Institute of Scientific and Technical Information of China (English)

    Ling LIU; Boming ZHANG; Zhanjun WU; Dianfu WANG

    2005-01-01

    This work aims at designing a set of curing pressure routes to produce laminates with various void contents. The effects of various consolidation pressures resulting in different void contents on mechanical strength of carbon/epoxy laminates have been examined. Characterization of the voids, in terms of void volume fraction, void distribution,size, and shape, was performed by standard test, ultrasonic inspection and metallographic analysis. The interlaminar shear strength was measured by the short-beam method. An empirical model was used to predict the strength vs porosity. The predicted strengths conform well with the experimental data and voids were found to be uniformly distributed throughout the laminate.

  4. Biot-JKD model: simulation of 1D transient poroelastic waves with fractional derivatives

    CERN Document Server

    Blanc, Emilie; Lombard, Bruno

    2012-01-01

    A time-domain numerical modeling of Biot poroelastic waves is presented. The viscous dissipation occurring in the pores is described using the dynamic permeability model developed by Johnson-Koplik-Dashen (JKD). Some of the coefficients in the Biot-JKD model are proportional to the square root of the frequency: in the time-domain, these coefficients introduce order 1/2 shifted fractional derivatives involving a convolution product. Based on a diffusive representation, the convolution kernel is replaced by a finite number of memory variables that satisfy local-in-time ordinary differential equations. Thanks to the dispersion relation, the coefficients in the diffusive representation are obtained by performing an optimization procedure in the frequency range of interest. A splitting strategy is then applied numerically: the propagative part of Biot-JKD equations is discretized using a fourth-order ADER scheme on a Cartesian grid, whereas the diffusive part is solved exactly. Comparisons with analytical solution...

  5. Tensor anisotropy as a tracer of cosmic voids

    CERN Document Server

    Bustamante, Sebastian

    2015-01-01

    We present a new method to find voids in cosmological simulations based on the tidal and the velocity shear tensors definitions of the cosmic web. We use the fractional anisotropy (FA) computed from the eigenvalues of each web scheme as a void tracer. We identify voids using a watershed transform based on the local minima of the FA field without making any assumption on the shape or structure of the voids. We test the method on the Bolshoi simulation and report on the abundance and radial averaged profiles for the density, velocity and fractional anisotropy. We find that voids in the velocity shear web are smaller than voids in the tidal web, with a particular overabundance of very small voids in the inner region of filaments/sheets. We classify voids as subcompensated/overcompansated depending on the absence/presence of an overdense matter ridge in their density profile, finding that close to $65\\%$ and $35\\%$ of the total population are classified into each category, respectively. Finally, we find evidence ...

  6. Protein viscosity, mineral fraction and staggered architecture cooperatively enable the fastest stress wave decay in load-bearing biological materials.

    Science.gov (United States)

    Qwamizadeh, Mahan; Zhang, Zuoqi; Zhou, Kun; Zhang, Yong Wei

    2016-07-01

    One of the key functions of load-bearing biological materials, such as bone, dentin and sea shell, is to protect their inside fragile organs by effectively damping dynamic impact. How those materials achieve this remarkable function remains largely unknown. Using systematic finite element analyses, we study the stress wave propagation and attenuation in cortical bone at the nanoscale as a model material to examine the effects of protein viscosity, mineral fraction and staggered architecture on the elastic wave decay. It is found that the staggered arrangement, protein viscosity and mineral fraction work cooperatively to effectively attenuate the stress wave. For a typical mineral volume fraction and protein viscosity, an optimal staggered nanostructure with specific feature sizes and layouts is able to give rise to the fastest stress wave decay, and the optimal aspect ratio and thickness of mineral platelets are in excellent agreement with experimental measurements. In contrary, as the mineral volume fraction or the protein viscosity goes much higher, the structural arrangement is seen having trivial effect on the stress wave decay, suggesting that the damping properties of the composites go into the structure-insensitive regime from the structure-sensitive regime. These findings not only significantly add to our understanding of the structure-function relationship of load-bearing biological materials, and but also provide useful guidelines for the design of bio-inspired materials with superior resistance to impact loading.

  7. Neurogenic voiding dysfunction.

    Science.gov (United States)

    Georgopoulos, Petros; Apostolidis, Apostolos

    2017-05-01

    This review aims to analyze and discuss all recently published articles associated with neurogenic voiding discussion providing readers with the most updated knowledge and trigger for further research. They include the proposal of a novel classification system for the pathophysiology of neurogenic lower urinary tract dysfunction (NLUTD) which combines neurological defect in a distinct anatomic location, and data on bowel dysfunction, autonomic dysreflexia and urine biomarkers; review of patient-reported outcome measures in NLUTD; review of the criteria for the diagnosis of clinically significant urinary infections; novel research findings on the pathophysiology of NLUTD; and review of data on minimally and more invasive treatments. Despite the extended evidence base on NLUTD, there is a paucity of high-quality new research concerning voiding dysfunction as opposed to storage problems. The update aims to inform clinicians about new developments in clinical practice, as well as ignite discussion for further clinical and basic research in the aforementioned areas of NLUTD.

  8. A computerized voiding diary.

    Science.gov (United States)

    Rabin, J M; McNett, J; Badlani, G H

    1996-11-01

    To examine a group of subject and control patient's preferences and compliance with regard to the Compu-Void (CV) electronic voiding diary as compared to the written diary (WD) and to compare the two methods with respect to the type of information obtained and whether the order of use of each method influenced results in the subject group. Thirty-six women between the ages of 20 and 84 with bladder symptoms were compared to a group of 36 age-matched women. In 100% of subjects and 95% of control patients, CV entries exceeded the number made with the WD in voiding events and, in subjects, in incontinence episodes recorded (P < .005 and P < .005, respectively). Over 98% of subjects and over 80% of controls preferred the CV (P < .0005). The order of use of each method in subjects made no significant difference with regard to the volume of information obtained (P < .407), number of leakage events recorded (P < .494) or fluid intake patterns (P < .410). Patients' compliance with each method was not affected by the order of use. Our results suggest an increased volume of data and greater patient compliance in reporting bladder symptoms and events using the CV and that the order of use is not important.

  9. Comparison of instantaneous wave-free ratio (iFR) and fractional flow reserve (FFR) - First real world experience

    NARCIS (Netherlands)

    Haerle, Tobias; Bojara, Waldemar; Meyer, Sven; Elsaesser, Albrecht

    2015-01-01

    Background: The instantaneous wave-free ratio (iFR) is a new adenosine-independent index of coronary stenosis severity. Most published data have been based on off-line analyses of pressure recordings in a core laboratory. We prospectively compared real-time iFR and fractional flow reserve (FFR) meas

  10. Into the Void

    Science.gov (United States)

    2006-01-01

    17 May 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of a chain of pits on a lava- and dust-covered plain northwest of Tharsis Tholus -- one of the many volcanic constructs in the Tharsis region of Mars. Pit chains, such as this one, are associated with the collapse of surface materials into subsurface voids formed by faulting and expansion -- or extension -- of the bedrock. Location near: 16.4oN, 92.6oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  11. CTF Void Drift Validation Study

    Energy Technology Data Exchange (ETDEWEB)

    Salko, Robert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gosdin, Chris [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gergar, Marcus [Pennsylvania State Univ., University Park, PA (United States)

    2015-10-26

    This milestone report is a summary of work performed in support of expansion of the validation and verification (V&V) matrix for the thermal-hydraulic subchannel code, CTF. The focus of this study is on validating the void drift modeling capabilities of CTF and verifying the supporting models that impact the void drift phenomenon. CTF uses a simple turbulent-diffusion approximation to model lateral cross-flow due to turbulent mixing and void drift. The void drift component of the model is based on the Lahey and Moody model. The models are a function of two-phase mass, momentum, and energy distribution in the system; therefore, it is necessary to correctly model the ow distribution in rod bundle geometry as a first step to correctly calculating the void distribution due to void drift.

  12. Low and High Surface Brightness Galaxies at Void Walls

    CERN Document Server

    Ceccarelli, L; Lambas, D G; Galaz, G; Padilla, N D

    2012-01-01

    We study the relative fraction of low and high surface brightness galaxies (LSBGs and HSBGs) at void walls in the SDSS DR7. We focus on galaxies in equal local density environments. We assume that the host dark-matter halo mass (for which we use SDSS group masses) is a good indicator of local density. This analysis allows to examine the behavior of the abundance of LSBG and HSBG galaxies at a fixed local density and distinguish the large-scale environment defined by the void geometry. We compare galaxies in the field, and in the void walls; the latter are defined as the volume of void shells of radius equal to that of the void. We find a significant decrement, a factor $\\sim 4$, of the relative fraction of blue, active star-forming LSBGs in equal mass groups at the void walls and the field. This decrement is consistent with an increase of the fraction of blue, active star-forming HSBGs. By contrast, red LSBGs and HSBGs show negligible changes. We argue that these results are consistent with a scenario where L...

  13. A class of traveling wave solutions for space-time fractional biological population model in mathematical physics

    Science.gov (United States)

    Akram, Ghazala; Batool, Fiza

    2017-05-01

    The (G'/G) -expansion method is utilized for a reliable treatment of space-time fractional biological population model. The method has been applied in the sense of the Jumarie's modified Riemann-Liouville derivative. Three classes of exact traveling wave solutions, hyperbolic, trigonometric and rational solutions of the associated equation are characterized with some free parameters. A generalized fractional complex transform is applied to convert the fractional equations to ordinary differential equations which subsequently resulted in number of exact solutions. It should be mentioned that the (G'/G) -expansion method is very effective and convenient for solving nonlinear partial differential equations of fractional order whose balancing number is a negative integer.

  14. A class of traveling wave solutions for space-time fractional biological population model in mathematical physics

    Science.gov (United States)

    Akram, Ghazala; Batool, Fiza

    2017-10-01

    The (G'/G)-expansion method is utilized for a reliable treatment of space-time fractional biological population model. The method has been applied in the sense of the Jumarie's modified Riemann-Liouville derivative. Three classes of exact traveling wave solutions, hyperbolic, trigonometric and rational solutions of the associated equation are characterized with some free parameters. A generalized fractional complex transform is applied to convert the fractional equations to ordinary differential equations which subsequently resulted in number of exact solutions. It should be mentioned that the (G'/G)-expansion method is very effective and convenient for solving nonlinear partial differential equations of fractional order whose balancing number is a negative integer.

  15. Molecular dynamics study of void effect on nanoimprint of single crystal aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Ying [Center for Precision Engineering, Harbin Institute of Technology, Harbin (China); Sun Tao, E-mail: spm@hit.edu.cn [Center for Precision Engineering, Harbin Institute of Technology, Harbin (China); Zhang Junjie; Yan Yongda [Center for Precision Engineering, Harbin Institute of Technology, Harbin (China)

    2011-06-01

    Pre-existing defects can alter mechanical behavior of materials significantly under applied load. In current study molecular dynamics (MD) simulations are performed to reveal pre-existing void effect on nanoimprint of single crystal Al thin films, such as deformation mechanism and spring back phenomenon. Current simulation results show void acts as strong barrier to dislocation motion, although plastic deformation is dominantly controlled by dislocation activities. It indicates the void volume fraction has strong influence on nanoimprint: the larger the void volume fraction, the smaller the maximum force required for initial dislocation nucleation, and the stronger the interaction between extended dislocation and void. It also demonstrates that there is a critical void volume fraction for minimum spring back, which is resulted from competition between two roles affecting dislocation annihilation.

  16. Evolution of the initial box-signal for time-fractional diffusion-wave equation in a case of different spatial dimensions

    Science.gov (United States)

    Povstenko, Y. Z.

    2010-11-01

    In the case of time-fractional diffusion-wave equation considered in the spatial domain -∞Mainardi [F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals 7 (1996) 1461-1477]. In the present paper, we supplement Mainardi’s results with additional numerical calculations illustrating the behavior of the solution and solve the corresponding problems for axisymmetric and central symmetric cases. The obtained results show an unusual behavior of solutions.

  17. A constitutive model for elastoplastic solids containing primary and secondary voids

    Science.gov (United States)

    Fabrègue, D.; Pardoen, T.

    In many ductile metallic alloys, the damage process controlled by the growth and coalescence of primary voids nucleated on particles with a size varying typically between 1 and 100 μm, is affected by the growth of much smaller secondary voids nucleated on inclusions with a size varying typically between 0.1 and 3 μm. The goal of this work is first to quantify the potential effect of the growth of these secondary voids on the coalescence of primary voids using finite element (FE) unit cell calculations and second to formulate a new constitutive model incorporating this effect. The nucleation and growth of secondary voids do essentially not affect the growth of the primary voids but mainly accelerate the void coalescence process. The drop of the ductility caused by the presence of secondary voids increases if the nucleation strain decreases and/or if their volume fraction increases and/or if the primary voids are flat. A strong coupling is indeed observed between the shape of the primary voids and the growth of the second population enhancing the anisotropy of the ductility induced by void shape effects. The new micromechanics-based coalescence condition for internal necking introduces the softening induced by secondary voids growing in the ligament between two primary voids. The FE cell calculations were used to guide and assess the development of this model. The use of the coalescence condition relies on a closed-form model for estimating the evolution of the secondary voids in the vicinity of a primary cavity. This coalescence criterion is connected to an extended Gurson model for the first population including the effect of the void aspect ratio. With respect to classical models for single void population, this new constitutive model improves the predictive potential of damage constitutive models devoted to ductile metal while requiring only two new parameters, i.e. the initial porosity of second population and a void nucleation stress, without any additional

  18. Orbital stability of standing waves of a class of fractional Schrödinger equations with Hartree-type nonlinearity

    KAUST Repository

    Cho, Yonggeun

    2016-05-04

    This paper is devoted to the mathematical analysis of a class of nonlinear fractional Schrödinger equations with a general Hartree-type integrand. We show the well-posedness of the associated Cauchy problem and prove the existence and stability of standing waves under suitable assumptions on the nonlinearity. Our proofs rely on a contraction argument in mixed functional spaces and the concentration-compactness method. © 2015 World Scientific Publishing Company

  19. Instantaneous Wave-free Ratio versus Fractional Flow Reserve to Guide PCI.

    Science.gov (United States)

    Götberg, Matthias; Christiansen, Evald H; Gudmundsdottir, Ingibjörg J; Sandhall, Lennart; Danielewicz, Mikael; Jakobsen, Lars; Olsson, Sven-Erik; Öhagen, Patrik; Olsson, Hans; Omerovic, Elmir; Calais, Fredrik; Lindroos, Pontus; Maeng, Michael; Tödt, Tim; Venetsanos, Dimitrios; James, Stefan K; Kåregren, Amra; Nilsson, Margareta; Carlsson, Jörg; Hauer, Dario; Jensen, Jens; Karlsson, Ann-Charlotte; Panayi, Georgios; Erlinge, David; Fröbert, Ole

    2017-03-18

    Background The instantaneous wave-free ratio (iFR) is an index used to assess the severity of coronary-artery stenosis. The index has been tested against fractional flow reserve (FFR) in small trials, and the two measures have been found to have similar diagnostic accuracy. However, studies of clinical outcomes associated with the use of iFR are lacking. We aimed to evaluate whether iFR is noninferior to FFR with respect to the rate of subsequent major adverse cardiac events. Methods We conducted a multicenter, randomized, controlled, open-label clinical trial using the Swedish Coronary Angiography and Angioplasty Registry for enrollment. A total of 2037 participants with stable angina or an acute coronary syndrome who had an indication for physiologically guided assessment of coronary-artery stenosis were randomly assigned to undergo revascularization guided by either iFR or FFR. The primary end point was the rate of a composite of death from any cause, nonfatal myocardial infarction, or unplanned revascularization within 12 months after the procedure. Results A primary end-point event occurred in 68 of 1012 patients (6.7%) in the iFR group and in 61 of 1007 (6.1%) in the FFR group (difference in event rates, 0.7 percentage points; 95% confidence interval [CI], -1.5 to 2.8%; P=0.007 for noninferiority; hazard ratio, 1.12; 95% CI, 0.79 to 1.58; P=0.53); the upper limit of the 95% confidence interval for the difference in event rates fell within the prespecified noninferiority margin of 3.2 percentage points. The results were similar among major subgroups. The rates of myocardial infarction, target-lesion revascularization, restenosis, and stent thrombosis did not differ significantly between the two groups. A significantly higher proportion of patients in the FFR group than in the iFR group reported chest discomfort during the procedure. Conclusions Among patients with stable angina or an acute coronary syndrome, an iFR-guided revascularization strategy was

  20. Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI.

    Science.gov (United States)

    Davies, Justin E; Sen, Sayan; Dehbi, Hakim-Moulay; Al-Lamee, Rasha; Petraco, Ricardo; Nijjer, Sukhjinder S; Bhindi, Ravinay; Lehman, Sam J; Walters, Darren; Sapontis, James; Janssens, Luc; Vrints, Christiaan J; Khashaba, Ahmed; Laine, Mika; Van Belle, Eric; Krackhardt, Florian; Bojara, Waldemar; Going, Olaf; Härle, Tobias; Indolfi, Ciro; Niccoli, Giampaolo; Ribichini, Flavo; Tanaka, Nobuhiro; Yokoi, Hiroyoshi; Takashima, Hiroaki; Kikuta, Yuetsu; Erglis, Andrejs; Vinhas, Hugo; Canas Silva, Pedro; Baptista, Sérgio B; Alghamdi, Ali; Hellig, Farrel; Koo, Bon-Kwon; Nam, Chang-Wook; Shin, Eun-Seok; Doh, Joon-Hyung; Brugaletta, Salvatore; Alegria-Barrero, Eduardo; Meuwissen, Martijin; Piek, Jan J; van Royen, Niels; Sezer, Murat; Di Mario, Carlo; Gerber, Robert T; Malik, Iqbal S; Sharp, Andrew S P; Talwar, Suneel; Tang, Kare; Samady, Habib; Altman, John; Seto, Arnold H; Singh, Jasvindar; Jeremias, Allen; Matsuo, Hitoshi; Kharbanda, Rajesh K; Patel, Manesh R; Serruys, Patrick; Escaned, Javier

    2017-03-18

    Background Coronary revascularization guided by fractional flow reserve (FFR) is associated with better patient outcomes after the procedure than revascularization guided by angiography alone. It is unknown whether the instantaneous wave-free ratio (iFR), an alternative measure that does not require the administration of adenosine, will offer benefits similar to those of FFR. Methods We randomly assigned 2492 patients with coronary artery disease, in a 1:1 ratio, to undergo either iFR-guided or FFR-guided coronary revascularization. The primary end point was the 1-year risk of major adverse cardiac events, which were a composite of death from any cause, nonfatal myocardial infarction, or unplanned revascularization. The trial was designed to show the noninferiority of iFR to FFR, with a margin of 3.4 percentage points for the difference in risk. Results At 1 year, the primary end point had occurred in 78 of 1148 patients (6.8%) in the iFR group and in 83 of 1182 patients (7.0%) in the FFR group (difference in risk, -0.2 percentage points; 95% confidence interval [CI], -2.3 to 1.8; Pratio, 0.95; 95% CI, 0.68 to 1.33; P=0.78). The risk of each component of the primary end point and of death from cardiovascular or noncardiovascular causes did not differ significantly between the groups. The number of patients who had adverse procedural symptoms and clinical signs was significantly lower in the iFR group than in the FFR group (39 patients [3.1%] vs. 385 patients [30.8%], P<0.001), and the median procedural time was significantly shorter (40.5 minutes vs. 45.0 minutes, P=0.001). Conclusions Coronary revascularization guided by iFR was noninferior to revascularization guided by FFR with respect to the risk of major adverse cardiac events at 1 year. The rate of adverse procedural signs and symptoms was lower and the procedural time was shorter with iFR than with FFR. (Funded by Philips Volcano; DEFINE-FLAIR ClinicalTrials.gov number, NCT02053038 .).

  1. Molecular Gas and Star Formation in Voids

    CERN Document Server

    Das, M; Iono, D; Honey, M; Ramya, S

    2014-01-01

    We present the detection of molecular gas using CO(1-0) line emission and follow up Halpha imaging observations of galaxies located in nearby voids. The CO(1-0) observations were done using the 45m telescope of the Nobeyama Radio Observatory (NRO) and the optical observations were done using the Himalayan Chandra Telescope (HCT). Although void galaxies lie in the most under dense parts of our universe, a significant fraction of them are gas rich, spiral galaxies that show signatures of ongoing star formation. Not much is known about their cold gas content or star formation properties. In this study we searched for molecular gas in five void galaxies using the NRO. The galaxies were selected based on their relatively higher IRAS fluxes or Halpha line luminosities. CO(1--0) emission was detected in four galaxies and the derived molecular gas masses lie between (1 - 8)E+9 Msun. The H$\\alpha$ imaging observations of three galaxies detected in CO emission indicates ongoing star formation and the derived star forma...

  2. Testing Gravity using Void Profiles

    Science.gov (United States)

    Cai, Yan-Chuan; Padilla, Nelson; Li, Baojiu

    2016-10-01

    We investigate void properties in f(R) models using N-body simulations, focusing on their differences from General Relativity (GR) and their detectability. In the Hu-Sawicki f(R) modified gravity (MG) models, the halo number density profiles of voids are not distinguishable from GR. In contrast, the same f(R) voids are more empty of dark matter, and their profiles are steeper. This can in principle be observed by weak gravitational lensing of voids, for which the combination of a spectroscopic redshift and a lensing photometric redshift survey over the same sky is required. Neglecting the lensing shape noise, the f(R) model parameter amplitudes fR0=10-5 and 10-4 may be distinguished from GR using the lensing tangential shear signal around voids by 4 and 8 σ for a volume of 1 (Gpc/h)3. The line-of-sight projection of large-scale structure is the main systematics that limits the significance of this signal for the near future wide angle and deep lensing surveys. For this reason, it is challenging to distinguish fR0=10-6 from GR. We expect that this can be overcome with larger volume. The halo void abundance being smaller and the steepening of dark matter void profiles in f(R) models are unique features that can be combined to break the degeneracy between fR0 and σ8.

  3. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M. I.; Borg, Ulrik; Niordson, Christian Frithiof

    singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation and strain...... predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model chosen to be $0.325\\mu m$ (around ten times the slip plane spacing in the discrete dislocation models)....

  4. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M.I.; Borg, Ulrik; Niordson, Christian Frithiof

    2008-01-01

    as line singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation...... between predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model is chosen to be 0.325 mu m (about 10 times the slip plane spacing in the discrete dislocation models)....

  5. PRECISION COSMOGRAPHY WITH STACKED VOIDS

    Energy Technology Data Exchange (ETDEWEB)

    Lavaux, Guilhem [Department of Physics, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Wandelt, Benjamin D. [UPMC Univ Paris 06, UMR 7095, Institut d' Astrophysique de Paris, 98 bis, boulevard Arago, 75014 Paris (France)

    2012-08-01

    We present a purely geometrical method for probing the expansion history of the universe from the observation of the shape of stacked voids in spectroscopic redshift surveys. Our method is an Alcock-Paczynski (AP) test based on the average sphericity of voids posited on the local isotropy of the universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. We establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, assuming that the void statistics that we derive from N-body simulations is preserved when considering galaxy surveys, we assess the capability of this approach to constrain dark energy parameters. We report this assessment in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed Euclid mission which is particularly suited for this technique since it is a spectroscopic survey. The FoM due to stacked voids from the Euclid wide survey may double that of all other dark energy probes derived from Euclid data alone (combined with Planck priors). In particular, voids seem to outperform baryon acoustic oscillations by an order of magnitude. This result is consistent with simple estimates based on mode counting. The AP test based on stacked voids may be a significant addition to the portfolio of major dark energy probes and its potentialities must be studied in detail.

  6. Exact Solutions of the Space Time Fractional Symmetric Regularized Long Wave Equation Using Different Methods

    Directory of Open Access Journals (Sweden)

    Özkan Güner

    2014-01-01

    Full Text Available We apply the functional variable method, exp-function method, and (G′/G-expansion method to establish the exact solutions of the nonlinear fractional partial differential equation (NLFPDE in the sense of the modified Riemann-Liouville derivative. As a result, some new exact solutions for them are obtained. The results show that these methods are very effective and powerful mathematical tools for solving nonlinear fractional equations arising in mathematical physics. As a result, these methods can also be applied to other nonlinear fractional differential equations.

  7. Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo-Christov flux

    Science.gov (United States)

    Liu, Lin; Zheng, Liancun; Liu, Fawang; Zhang, Xinxin

    2016-09-01

    An improved Cattaneo-Christov flux model is proposed which can be used to capture the effects of the time and spatial relaxations, the time and spatial inhomogeneous diffusion and the spatial transition probability of cell transport in a highly non-homogeneous medium. Solutions are obtained by numerical discretization method where the time and spatial fractional derivative are discretized by the L1-approximation and shifted Grünwald definition, respectively. The solvability, stability and convergence of the numerical method for the special case of the Cattaneo-Christov equation are proved. Results indicate that the fractional convection diffusion-wave equation is an evolution equation which displays the coexisting characteristics of parabolicity and hyperbolicity. In other words, for α in (0, 1), the cells transport occupies the characteristics of coupling convection diffusion and wave spreading. Moreover, the effects of pertinent time parameter, time and spatial fractional derivative parameters, relaxation parameter, weight coefficient and the convection velocity on the anomalous transport of cells are shown graphically and analyzed in detail.

  8. Traveling wave solution of fractional KdV-Burger-Kuramoto equation describing nonlinear physical phenomena

    Science.gov (United States)

    Gupta, A. K.; Ray, S. Saha

    2014-09-01

    In this paper, KdV-Burger-Kuramoto equation involving instability, dissipation, and dispersion parameters is solved numerically. The numerical solution for the fractional order KdV-Burger-Kuramoto (KBK) equation has been presented using two-dimensional Legendre wavelet method. The approximate solutions of nonlinear fractional KBK equation thus obtained by Legendre wavelet method are compared with the exact solutions. The present scheme is very simple, effective and convenient for obtaining numerical solution of the KBK equation.

  9. Traveling wave solution of fractional KdV-Burger-Kuramoto equation describing nonlinear physical phenomena

    Directory of Open Access Journals (Sweden)

    A. K. Gupta

    2014-09-01

    Full Text Available In this paper, KdV-Burger-Kuramoto equation involving instability, dissipation, and dispersion parameters is solved numerically. The numerical solution for the fractional order KdV-Burger-Kuramoto (KBK equation has been presented using two-dimensional Legendre wavelet method. The approximate solutions of nonlinear fractional KBK equation thus obtained by Legendre wavelet method are compared with the exact solutions. The present scheme is very simple, effective and convenient for obtaining numerical solution of the KBK equation.

  10. Geometry and scaling of cosmic voids

    CERN Document Server

    Gaite, Jose

    2008-01-01

    CONTEXT: Cosmic voids are observed in the distribution of galaxies and, to some extent, in the dark matter distribution. If these distributions have fractal geometry, it must be reflected in the geometry of voids; in particular, we expect scaling sizes of voids. However, this scaling is not well demonstrated in galaxy surveys yet. AIMS: Our objective is to understand the geometry of cosmic voids in relation to a fractal structure of matter. We intend to distinguish monofractal voids from multifractal voids, regarding their scaling properties. We plan to analyse voids in the distributions of mass concentrations (halos) in a multifractal and their relation to galaxy voids. METHODS: We make a statistical analysis of point distributions based on the void probability function and correlation functions. We assume that voids are spherical and devise a simple spherical void finder. For continuous mass distributions, we employ the methods of fractal geometry. We confirm the analytical predictions with numerical simula...

  11. Reverse propagation and negative angular momentum density flux of an optical nondiffracting nonparaxial fractional Bessel vortex beam of progressive waves.

    Science.gov (United States)

    Mitri, F G

    2016-09-01

    Energy and angular momentum flux density characteristics of an optical nondiffracting nonparaxial vector Bessel vortex beam of fractional order are examined based on the dual-field method for the generation of symmetric electric and magnetic fields. Should some conditions determined by the polarization state, the half-cone angle as well as the beam-order (or topological charge) be met, the axial energy and angular momentum flux densities vanish (representing Poynting singularities), before they become negative. These negative counterintuitive properties suggest retrograde (negative) propagation as well as a rotation reversal of the angular momentum with respect to the beam handedness. These characteristics of nondiffracting nonparaxial Bessel fractional vortex beams of progressive waves open new capabilities in optical tractor beam tweezers, optical spanners, invisibility cloaks, optically engineered metamaterials, and other applications.

  12. Composite Fermion Hofstadter Problem: Partially Polarized Density Wave States in the ν = 2/5 Fractional Quantum Hall Effect

    Science.gov (United States)

    Murthy, Ganpathy

    2000-01-01

    It is well known that the ν = 2/5 state is unpolarized at zero Zeeman energy, while it is fully polarized at large Zeeman energies. A novel state with a charge/spin density wave order for composite fermions is proposed to exist at intermediate values of the Zeeman coupling for ν = 2/5. This state has half the maximum possible polarization, and can be extended to other incompressible fractions. A Hartree-Fock calculation based on the new approach for all fractional quantum Hall states developed by R. Shankar and the author is used to demonstrate the stability of this state to single-particle excitations and to compute gaps. A very recent experiment shows direct evidence for this state.

  13. Composite fermion hofstadter problem: partially polarized density wave states in the nu = 2/5 fractional quantum hall effect

    Science.gov (United States)

    Murthy

    2000-01-10

    It is well known that the nu = 2/5 state is unpolarized at zero Zeeman energy, while it is fully polarized at large Zeeman energies. A novel state with a charge/spin density wave order for composite fermions is proposed to exist at intermediate values of the Zeeman coupling for nu = 2/5. This state has half the maximum possible polarization, and can be extended to other incompressible fractions. A Hartree-Fock calculation based on the new approach for all fractional quantum Hall states developed by R. Shankar and the author is used to demonstrate the stability of this state to single-particle excitations and to compute gaps. A very recent experiment shows direct evidence for this state.

  14. Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real line

    OpenAIRE

    Choffrut, Antoine; Pocovnicu, Oana

    2016-01-01

    In this paper, we study ill-posedness of cubic fractional nonlinear Schr\\"odinger equations. First, we consider the cubic nonlinear half-wave equation (NHW) on $\\mathbb R$. In particular, we prove the following ill-posedness results: (i) failure of local uniform continuity of the solution map in $H^s(\\mathbb R)$ for $s\\in (0,\\frac 12)$, and also for $s=0$ in the focusing case; (ii) failure of $C^3$-smoothness of the solution map in $L^2(\\mathbb R)$; (iii) norm inflation and, in particular, fa...

  15. On cavitation instabilities with interacting voids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2012-01-01

    voids so far apart that the radius of the plastic zone around each void is less than 1% of the current spacing between the voids, can still affect each others at the occurrence of a cavitation instability such that one void stops growing while the other grows in an unstable manner. On the other hand...

  16. Alignment of voids in the cosmic web

    NARCIS (Netherlands)

    Platen, Erwin; van de Weygaert, Rien; Jones, Bernard J. T.

    2008-01-01

    We investigate the shapes and mutual alignment of voids in the large-scale matter distribution of a Lambda cold dark matter (Lambda CDM) cosmology simulation. The voids are identified using the novel watershed void finder (WVF) technique. The identified voids are quite non-spherical and slightly pro

  17. Alignment of voids in the cosmic web

    NARCIS (Netherlands)

    Platen, Erwin; van de Weygaert, Rien; Jones, Bernard J. T.

    2008-01-01

    We investigate the shapes and mutual alignment of voids in the large-scale matter distribution of a Lambda cold dark matter (Lambda CDM) cosmology simulation. The voids are identified using the novel watershed void finder (WVF) technique. The identified voids are quite non-spherical and slightly

  18. Extension of the gurson model accounting for the void size effect

    Institute of Scientific and Technical Information of China (English)

    Jie Wen; Keh-Chih Hwang; Yonggang Huang

    2005-01-01

    A continuum model of solids with cylindrical microvoids is proposed based on the Taylor dislocation model.The model is an extension of Gurson model in the sense that the void size effect is accounted for. Beside the void volume fraction f, the intrinsic material length l becomes a parameter representing voids since the void size comes into play in the Gurson model. Approximate yield functions in analytic forms are suggested for both solids with cylindrical microvoids and with spherical microvoids. The application to uniaxial tension curves shows a precise agreement between the approximate analytic yield function and the "exact" parametric form of integrals.

  19. Influence of ageing, inclusions and voids on ductile fracture mechanism in commercial Al-alloys

    Indian Academy of Sciences (India)

    A Chennakesava Reddy; S Sundar Rajan

    2005-02-01

    The objective of the paper is to study the effect of ageing, inclusions and voids on the mechanism of fracture and resultant toughness. It has been found that the voids are initiated at only a fraction of the larger inclusions present. The initiation of voids at small particles in the ductile fracture process appears to have little effect on fracture toughness. The strain hardening capacity has a marked effect on void size, and is an indicator of fracture toughness in the commercial Al alloy.

  20. Non-monotonic Travelling Wave Fronts in a System of Fractional Flow Equations from Porous Media

    NARCIS (Netherlands)

    Zegeling, P.A.; Hönig, O.; Doster, F.; Hilfer, R.

    2016-01-01

    Motivated by observations of saturation overshoot, this article investigates generic classes of smooth travelling wave solutions of a system of two coupled nonlinear parabolic partial differential equations resulting from a flux function of high symmetry. All boundary resp. limit value problems of t

  1. Precision cosmography with stacked voids

    CERN Document Server

    Lavaux, Guilhem

    2011-01-01

    We present a purely geometrical method for probing the expansion history of the Universe from the observation of the shape of stacked voids in spectroscopic re dshift surveys. Our method is an Alcock-Pasczinsky test based on the average sphericity of voids posited on the local isotropy of the Universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. We establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, we assess the capability of this approach to constrain dark energy parameters in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed Euclid mission which is particularly suited for this technique since it is a spectrosc...

  2. Constitutive modeling of rate dependence and microinertia effects in porous-plastic materials with multi-sized voids (MSVs)

    KAUST Repository

    Liu, Jinxing

    2012-11-27

    Micro-voids of varying sizes exist in most metals and alloys. Both experiments and numerical studies have demonstrated the critical influence of initial void sizes on void growth. The classical Gurson-Tvergaard-Needleman model summarizes the influence of voids with a single parameter, namely the void-volume fraction, excluding any possible effects of the void-size distribution. We extend our newly proposed model including the multi-sized void (MSV) effect and the void-interaction effect for the capability of working for both moderate and high loading rate cases, where either rate dependence or microinertia becomes considerable or even dominant. Parametric studies show that the MSV-related competitive mechanism among void growth leads to the dependence of the void growth rate on void size, which directly influences the void\\'s contribution to the total energy composition. We finally show that the stress-strain constitutive behavior is also affected by this MSV-related competitive mechanism. The stabilizing effect due to rate sensitivity and microinertia is emphasized. © 2013 IOP Publishing Ltd.

  3. Influence of void ratio on phase change of thermal energy storage for heat pipe receiver

    Directory of Open Access Journals (Sweden)

    Xiaohong Gui

    2015-01-01

    Full Text Available In this paper, influence of void ratio on phase change of thermal storage unit for heat pipe receiver under microgravity is numerically simulated. Accordingly, mathematical model is set up. A solidification-melting model upon the enthalpy-porosity method is specially provided to deal with phase changes. The liquid fraction distribution of thermal storage unit of heat pipe receiver is shown. The fluctuation of melting ratio in PCM canister is indicated. Numerical results are compared with experimental ones in Japan. The results show that void cavity prevents the process of phase change greatly. PCM melts slowly during sunlight periods and freezes slowly during eclipse periods as void ratio increases. The utility ratio of PCM during both sunlight periods and eclipse periods decreases obviously with the improvement of void ratio. The thermal resistance of void cavity is much higher than that of PCM canister wall. Void cavity prevents the heat transfer between PCM zone and canister wall.

  4. Existence of standing waves for Schrodinger equations involving the fractional Laplacian

    Directory of Open Access Journals (Sweden)

    Everaldo S. de Medeiros

    2017-03-01

    Full Text Available We study a class of fractional Schrodinger equations of the form $$ \\varepsilon^{2\\alpha}(-\\Delta^\\alpha u+ V(xu = f(x,u \\quad\\text{in } \\mathbb{R}^N, $$ where $\\varepsilon$ is a positive parameter, $0 < \\alpha < 1$, $2\\alpha < N$, $(-\\Delta^\\alpha$ is the fractional Laplacian, $V:\\mathbb{R}^{N}\\to \\mathbb{R}$ is a potential which may be bounded or unbounded and the nonlinearity $f:\\mathbb{R}^{N}\\times \\mathbb{R}\\to \\mathbb{R}$ is superlinear and behaves like $|u|^{p-2}u$ at infinity for some $2

  5. Compensation for air voids in photoacoustic computed tomography image reconstruction

    Science.gov (United States)

    Matthews, Thomas P.; Li, Lei; Wang, Lihong V.; Anastasio, Mark A.

    2016-03-01

    Most image reconstruction methods in photoacoustic computed tomography (PACT) assume that the acoustic properties of the object and the surrounding medium are homogeneous. This can lead to strong artifacts in the reconstructed images when there are significant variations in sound speed or density. Air voids represent a particular challenge due to the severity of the differences between the acoustic properties of air and water. In whole-body small animal imaging, the presence of air voids in the lungs, stomach, and gastrointestinal system can limit image quality over large regions of the object. Iterative reconstruction methods based on the photoacoustic wave equation can account for these acoustic variations, leading to improved resolution, improved contrast, and a reduction in the number of imaging artifacts. However, the strong acoustic heterogeneities can lead to instability or errors in the numerical wave solver. Here, the impact of air voids on PACT image reconstruction is investigated, and procedures for their compensation are proposed. The contributions of sound speed and density variations to the numerical stability of the wave solver are considered, and a novel approach for mitigating the impact of air voids while reducing the computational burden of image reconstruction is identified. These results are verified by application to an experimental phantom.

  6. Instantaneous wave-free ratio to guide coronary revascularization: physiological framework, validation and differences with fractional flow reserve.

    Science.gov (United States)

    de Waard, Guus A; Di Mario, Carlo; Lerman, Amir; Serruys, Patrick W; van Royen, Niels

    2017-02-14

    Determining the optimal treatment strategy for revascularization of coronary artery stenosis involves the use of fractional flow reserve (FFR). To improve the low clinical uptake of physiological lesion assessment to guide revascularization, the instantaneous wave-free period (iFR) was proposed as a simpler alternative to FFR that does not require adenosine administration. iFR is calculated as the ratio of blood pressure distal and proximal to a coronary artery stenosis during the diastolic wave- free period. The wave-free period is a part of the cardiac cycle where generation of new pressure wavefronts does not occur and resting microvascular resistance is relatively minimized. iFR indicates the hemodynamic severity of a stenosis, by assessing the extent to which the epicardial stenosis depletes the microcirculatory, autoregulatory reserve. The introduction of iFR and the potential to assess hemodynamic stenosis severity without the need for administration of potent vasodilators such as adenosine, sparked an interesting debate about the fundamentals of human coronary physiology. Outcomes of two randomized clinical trials investigating iFR are pending. These studies are designed to evaluate whether iFR guided revascularisation is non-inferior to an FFR guided approach. The purpose of this review article is to discuss the physiological concepts underlying iFR, examine the existing validation studies and discuss the advantages and disadvantages of iFR as compared to FFR.

  7. "Compu-Void II": the computerized voiding diary.

    Science.gov (United States)

    Rabin, J M; McNett, J; Badlani, G H

    1996-02-01

    We have previously described an electronic voiding diary, "Compu-Void" (Copyright, 1990) developed to automate recording of bladder symptoms (Rabin et al., 1993). Our objectives in this, the second phase of this study, were to examine a group of subject and control patients' preference and compliance with regard to the "Compu-Void" (CV) compared to the standard written voiding diary (WD), to compare the two methods with respect to the amount and type of information obtained and to determine whether or not the order of use of each recording method influenced results in the subject group. Thirty-six women between the ages of 20 and 84 with bladder symptomatology were compared to a group 36 age-matched women. In 100% of subjects and 95% of control patients, CV entries exceeded the number made with the WD in voiding events and in subjects, in incontinent episodes recorded (P < 0.0005 and P < 0.005, respectively). Over 98% of subjects and over 80% of control patients preferred CV over the WD (p < 0.0005). The order of use of each recording method in subjects made no significant difference with regard to the volume of information obtained (p < 0.407), number of urinary leakage events recorded (p < 0.494), and fluid intake patterns (p < 0.410). Patient impressions of, and compliance with each method were not affected by order of use. The only difference regarding order of use was that most subjects who used the CV first also found the WD to be tedious (61% vs 14%). Our results suggest increased volume of data and of patient compliance in reporting bladder symptoms and events using CV, and that order of use is not an important factor in determining patient impressions of the two methods. The majority of subject and control patients preferred CV over traditional methods. An updated version of the software and hardware is also included.

  8. Dwarf Galaxies in Voids: Dark Matter Halos and Gas Cooling

    CERN Document Server

    Hoeft, Matthias

    2010-01-01

    Galaxy surveys have shown that luminous galaxies are mainly distributed in large filaments and galaxy clusters. The remaining large volumes are virtually devoid of luminous galaxies. This is in concordance with the formation of the large-scale structure in Universe as derived from cosmological simulations. However, the numerical results indicate that cosmological voids are abundantly populated with dark matter haloes which may in principle host dwarf galaxies. Observational efforts have in contrast revealed, that voids are apparently devoid of dwarf galaxies. We investigate the formation of dwarf galaxies in voids by hydrodynamical cosmological simulations. Due to the cosmic ultra-violet background radiation low-mass haloes show generally are reduced baryon fraction. We determine the characteristic mass below which dwarf galaxies are baryon deficient. We show that the circular velocity below which the accretion of baryons is suppressed is approximately 40 km/s. The suppressed baryon accretion is caused by the...

  9. Relativistic wave equations with fractional derivatives and pseudo-differential operators

    CERN Document Server

    Závada, P

    2000-01-01

    The class of the free relativistic covariant equations generated by the fractional powers of the D'Alambertian operator $(\\Box ^{1/n})$ is studied. Meanwhile the equations corresponding to n=1 and 2 (Klein-Gordon and Dirac equations) are local in their nature, the multicomponent equations for arbitrary n>2 are non-local. It is shown, how the representation of generalized algebra of Pauli and Dirac matrices looks like and how these matrices are related to the algebra of SU(n) group. The corresponding representations of the Poincar\\'e group and further symmetry transformations on the obtained equations are discussed. The construction of the related Green functions is suggested.

  10. Wave simulation in 2D heterogeneous transversely isotropic porous media with fractional attenuation: a Cartesian grid approach

    CERN Document Server

    Blanc, Emilie; Lombard, Bruno

    2015-01-01

    A time-domain numerical modeling of transversely isotropic Biot poroelastic waves is proposed in two dimensions. The viscous dissipation occurring in the pores is described using the dynamic permeability model developed by Johnson-Koplik-Dashen (JKD). Some of the coefficients in the Biot-JKD model are proportional to the square root of the frequency. In the time-domain, these coefficients introduce shifted fractional derivatives of order 1/2, involving a convolution product. Based on a diffusive representation, the convolution kernel is replaced by a finite number of memory variables that satisfy local-in-time ordinary differential equations, resulting in the Biot-DA (diffusive approximation) model. The properties of both the Biot-JKD and the Biot-DA model are analyzed: hyperbolicity, decrease of energy, dispersion. To determine the coefficients of the diffusive approximation, two approaches are analyzed: Gaussian quadratures and optimization methods in the frequency range of interest. The nonlinear optimizat...

  11. Constitutive modeling of rate dependence and microinertia effects in porous-plastic materials with multi-sized voids (MSVs)

    Science.gov (United States)

    Liu, J. X.; El Sayed, T.

    2013-01-01

    Micro-voids of varying sizes exist in most metals and alloys. Both experiments and numerical studies have demonstrated the critical influence of initial void sizes on void growth. The classical Gurson-Tvergaard-Needleman model summarizes the influence of voids with a single parameter, namely the void-volume fraction, excluding any possible effects of the void-size distribution. We extend our newly proposed model including the multi-sized void (MSV) effect and the void-interaction effect for the capability of working for both moderate and high loading rate cases, where either rate dependence or microinertia becomes considerable or even dominant. Parametric studies show that the MSV-related competitive mechanism among void growth leads to the dependence of the void growth rate on void size, which directly influences the void's contribution to the total energy composition. We finally show that the stress-strain constitutive behavior is also affected by this MSV-related competitive mechanism. The stabilizing effect due to rate sensitivity and microinertia is emphasized.

  12. Study of void sizes and loading configurations effects on shock initiation due to void collapse in heterogeneous energetic materials

    Science.gov (United States)

    Roy, Sidhartha; Rai, Nirmal; Udaykumar, H. S.

    2015-06-01

    In heterogeneous energetic materials, presence of porosity has been seen to increase its sensitivity towards shock initiation and ignition. Under the application of shock load, the viscoplastic deformation of voids and its collapse leads to the formation of local high temperature regions known as hot spots. The chemical reaction triggers at the hot spot depending on the local temperature and grows eventually leading to ignition and formation of detonation waves in the material. The temperature of the hot spot depends on various factors such as shock strength, void size, void arrangements, loading configuration etc. Hence, to gain deeper understanding on shock initiation and ignition study due to void collapse, a parametric study involving various factors which can affect the hot spot temperature is desired. In the current work, effects of void sizes, shock strength and loading configurations has been studied for shock initiation in HMX using massively parallel Eulerian code, SCIMITAR3D. The chemical reaction and decomposition for HMX has been modeled using Henson-Smilowitz multi step mechanism. The effect of heat conduction has also been taken into consideration. Ignition threshold criterion has been established for various factors as mentioned. The critical hot spot temperature and its size which can lead to ignition has been obtained from numerical experiments.

  13. Coupling effects of void size and void shape on the growth of prolate ellipsoidal microvoid

    Institute of Scientific and Technical Information of China (English)

    Minsheng Huang; Zhenhuan Li; Cheng Wang

    2005-01-01

    The combined effects of void size and void shape on the void growth are studied by using the classical spectrum method. An infinite solid containing an isolated prolate spheroidal void is considered to depict the void shape effect and the Fleck-Hutchinson phenomenological strain gradient plasticity theory is employed to capture the size effects. It is found that the combined effects of void size and void shape are mainly controlled by the remote stress triaxiality. Based on this, a new size-dependent void growth model similar to the Rice-Tracey model is proposed and an important conclusion about the size-dependent void growth is drawn: the growth rate of the void with radius smaller than a critical radius rc may be ignored. It is interesting that rc is a material constant independent of the initial void shape and the remote stress triaxiality.

  14. Atomistic insights into dislocation-based mechanisms of void growth and coalescence

    Science.gov (United States)

    Mi, Changwen; Buttry, Daniel A.; Sharma, Pradeep; Kouris, Demitris A.

    2011-09-01

    One of the low-temperature failure mechanisms in ductile metallic alloys is the growth of voids and their coalescence. In the present work we attempt to obtain atomistic insights into the mechanisms underpinning cavitation in a representative metal, namely Aluminum. Often the pre-existing voids in metallic alloys such as Al have complex shapes (e.g. corrosion pits) and the defromation/damage mechanisms exhibit a rich size-dependent behavior across various material length scales. We focus on these two issues in this paper through large-scale calculations on specimens of sizes ranging from 18 thousand to 1.08 million atoms. In addition to the elucidation of the dislocation propagation based void growth mechanism we highlight the observed length scale effect reflected in the effective stress-strain response, stress triaxiality and void fraction evolution. Furthermore, as expected, the conventionally used Gurson's model fails to capture the observed size-effects calling for a mechanistic modification that incorporates the mechanisms observed in our (and other researchers') simulation. Finally, in our multi-void simulations, we find that, the splitting of a big void into a distribution of small ones increases the load-carrying capacity of specimens. However, no obvious dependence of the void fraction evolution on void coalescence is observed.

  15. CT measurements of SAP voids in concrete

    DEFF Research Database (Denmark)

    Laustsen, Sara; Bentz, Dale P.; Hasholt, Marianne Tange

    2010-01-01

    X-ray computed tomography (CT) scanning is used to determine the SAP void distribution in hardened concrete. Three different approaches are used to analyse a binary data set created from CT measurement. One approach classifies a cluster of connected, empty voxels (volumetric pixel of a 3D image......) as one void, whereas the other two approaches are able to classify a cluster of connected, empty voxels as a number of individual voids. Superabsorbent polymers (SAP) have been used to incorporate air into concrete. An advantage of using SAP is that it enables control of the amount and size...... of the created air voids. The results indicate the presence of void clusters. To identify the individual voids, special computational approaches are needed. The addition of SAP results in a dominant peak in two of the three air void distributions. Based on the position (void diameter) of the peak, it is possible...

  16. CT measurements of SAP voids in concrete

    DEFF Research Database (Denmark)

    Laustsen, Sara; Bentz, Dale P.; Hasholt, Marianne Tange;

    2010-01-01

    X-ray computed tomography (CT) scanning is used to determine the SAP void distribution in hardened concrete. Three different approaches are used to analyse a binary data set created from CT measurement. One approach classifies a cluster of connected, empty voxels (volumetric pixel of a 3D image......) as one void, whereas the other two approaches are able to classify a cluster of connected, empty voxels as a number of individual voids. Superabsorbent polymers (SAP) have been used to incorporate air into concrete. An advantage of using SAP is that it enables control of the amount and size...... of the created air voids. The results indicate the presence of void clusters. To identify the individual voids, special computational approaches are needed. The addition of SAP results in a dominant peak in two of the three air void distributions. Based on the position (void diameter) of the peak, it is possible...

  17. Size-Effects in Void Growth

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2005-01-01

    The size-effect on ductile void growth in metals is investigated. The analysis is based on unit cell models both of arrays of cylindrical voids under plane strain deformation, as well as arrays of spherical voids using an axisymmetric model. A recent finite strain generalization of two higher order...

  18. Sodium voiding analysis in Kalimer

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Won-Pyo; Jeong, Kwan-Seong; Hahn, Dohee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2001-07-01

    A sodium boiling model has been developed for calculations of the void reactivity feedback as well as the fuel and cladding temperatures in the KALIMER core after onset of sodium boiling. The sodium boiling in liquid metal reactors using sodium as coolant should be modeled because of phenomenon difference observed from that in light water reactor systems. The developed model is a multiple -bubble slug ejection model. It allows a finite number of bubbles in a channel at any time. Voiding is assumed to result from formation of bubbles that fill the whole cross section of the coolant channel except for liquid film left on the cladding surface. The vapor pressure, currently, is assumed to be uniform within a bubble. The present study is focused on not only demonstration of the sodium voiding behavior predicted by the developed model, but also confirmation on qualitative acceptance for the model. In results, the model catches important phenomena for sodium boiling, while further effort should be made for the complete analysis. (author)

  19. Redshift-space distortions around voids

    Science.gov (United States)

    Cai, Yan-Chuan; Taylor, Andy; Peacock, John A.; Padilla, Nelson

    2016-11-01

    We have derived estimators for the linear growth rate of density fluctuations using the cross-correlation function (CCF) of voids and haloes in redshift space. In linear theory, this CCF contains only monopole and quadrupole terms. At scales greater than the void radius, linear theory is a good match to voids traced out by haloes; small-scale random velocities are unimportant at these radii, only tending to cause small and often negligible elongation of the CCF near its origin. By extracting the monopole and quadrupole from the CCF, we measure the linear growth rate without prior knowledge of the void profile or velocity dispersion. We recover the linear growth parameter β to 9 per cent precision from an effective volume of 3( h-1Gpc)3 using voids with radius >25 h-1Mpc. Smaller voids are predominantly sub-voids, which may be more sensitive to the random velocity dispersion; they introduce noise and do not help to improve measurements. Adding velocity dispersion as a free parameter allows us to use information at radii as small as half of the void radius. The precision on β is reduced to 5 per cent. Voids show diverse shapes in redshift space, and can appear either elongated or flattened along the line of sight. This can be explained by the competing amplitudes of the local density contrast, plus the radial velocity profile and its gradient. The distortion pattern is therefore determined solely by the void profile and is different for void-in-cloud and void-in-void. This diversity of redshift-space void morphology complicates measurements of the Alcock-Paczynski effect using voids.

  20. Analytical Description of Voids in Majumdar-Papapetrou Spacetimes

    CERN Document Server

    Varela, V

    1999-01-01

    We discuss new Majumdar-Papapetrou solutions for the 3+1 Einstein-Maxwell equations, with charged dust acting as the external source of the fields. The solutions satisfy non-linear potential equations which are related to well-known wave equations of 1+1 soliton physics. Although the matter distributions are not localised, they present central structures which may be identified with voids.

  1. The life and death of cosmic voids

    CERN Document Server

    Sutter, P M; Falck, Bridget; Onions, Julian; Hamaus, Nico; Knebe, Alexander; Srisawat, Chaichalit; Schneider, Aurel

    2014-01-01

    We investigate the formation, growth, merger history, movement, and destruction of cosmic voids detected via the watershed transform in a cosmological N-body dark matter {\\Lambda}CDM simulation. By adapting a method used to construct halo merger trees, we are able to trace individual voids back to their initial appearance and record the merging and evolution of their progenitors at high redshift. For the scales of void sizes captured in our simulation, we find that the void formation rate peaks at scale factor 0.3, which coincides with a growth in the void hierarchy and the emergence of dark energy. Voids of all sizes appear at all scale factors, though the median initial void size decreases with time. When voids become detectable they have nearly their present-day volumes. Almost all voids have relatively stable growth rates and suffer only infrequent minor mergers. Dissolution of a void via merging is very rare. Instead, most voids maintain their distinct identity as annexed subvoids of a larger parent. The...

  2. The star formation activity in cosmic voids

    CERN Document Server

    Ricciardelli, Elena; Varela, Jesus; Quilis, Vicent

    2014-01-01

    Using a sample of cosmic voids identified in the Sloan Digital Sky Survey Data Release 7, we study the star formation activity of void galaxies. The properties of galaxies living in voids are compared with those of galaxies living in the void shells and with a control sample, representing the general galaxy population. Void galaxies appear to form stars more efficiently than shell galaxies and the control sample. This result can not be interpreted as a consequence of the bias towards low masses in underdense regions, as void galaxy subsamples with the same mass distribution as the control sample also show statistically different specific star formation rates. This highlights the fact that galaxy evolution in voids is slower with respect to the evolution of the general population. Nevertheless, when only the star forming galaxies are considered, we find that the star formation rate is insensitive to the environment, as the main sequence is remarkably constant in the three samples under consideration. This fact...

  3. The Persistent Percolation of Single-Stream Voids

    CERN Document Server

    Falck, Bridget

    2014-01-01

    We study the nature of voids defined as single-stream regions that have not undergone shell-crossing. We use ORIGAMI to determine the cosmic web morphology of each dark matter particle in a suite of cosmological $N$-body simulations, which explicitly calculates whether a particle has crossed paths with others along multiple sets of axes and does not depend on a parameter or smoothing scale. The theoretical picture of voids is that of expanding underdensities with borders defined by shell-crossing. We find instead that locally underdense single-stream regions are not bounded on all sides by multi-stream regions, thus they percolate, filling the simulation volume; we show that the set of multi-stream particles also percolates. This percolation persists to high resolution, where the mass fraction of single-stream voids is low, because the volume fraction remains high; we speculate on the fraction of collapsed mass in the continuum limit of infinite resolution. By introducing a volume threshold parameter to defin...

  4. Enthalpy and void distributions in subchannels of PHWR fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. W.; Choi, H.; Rhee, B. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)

  5. Wave simulation in 2D heterogeneous transversely isotropic porous media with fractional attenuation: A Cartesian grid approach

    Science.gov (United States)

    Blanc, Emilie; Chiavassa, Guillaume; Lombard, Bruno

    2014-10-01

    A time-domain numerical modeling of transversely isotropic Biot poroelastic waves is proposed in two dimensions. The viscous dissipation occurring in the pores is described using the dynamic permeability model developed by Johnson-Koplik-Dashen (JKD). Some of the coefficients in the Biot-JKD model are proportional to the square root of the frequency. In the time-domain, these coefficients introduce shifted fractional derivatives of order 1/2, involving a convolution product. Based on a diffusive representation, the convolution kernel is replaced by a finite number of memory variables that satisfy local-in-time ordinary differential equations, resulting in the Biot-DA (diffusive approximation) model. The properties of both the Biot-JKD and the Biot-DA models are analyzed: hyperbolicity, decrease of energy, dispersion. To determine the coefficients of the diffusive approximation, two approaches are analyzed: Gaussian quadratures and optimization methods in the frequency range of interest. The nonlinear optimization is shown to be the better way of determination. A splitting strategy is then applied to approximate numerically the Biot-DA equations. The propagative part is discretized using a fourth-order ADER scheme on a Cartesian grid, whereas the diffusive part is solved exactly. An immersed interface method is implemented to take into account heterogeneous media on a Cartesian grid and to discretize the jump conditions at interfaces. Numerical experiments are presented. Comparisons with analytical solutions show the efficiency and the accuracy of the approach, and some numerical experiments are performed to investigate wave phenomena in complex media, such as multiple scattering across a set of random scatterers.

  6. The Effect of Random Voids in the Modified Gurson Model

    Science.gov (United States)

    Fei, Huiyang; Yazzie, Kyle; Chawla, Nikhilesh; Jiang, Hanqing

    2012-02-01

    The porous plasticity model (usually referred to as the Gurson-Tvergaard-Needleman model or modified Gurson model) has been widely used in the study of microvoid-induced ductile fracture. In this paper, we studied the effects of random voids on the porous plasticity model. Finite-element simulations were conducted to study a copper/tin/copper joint bar under uniaxial tension using the commercial finite-element package ABAQUS. A randomly distributed initial void volume fraction with different types of distribution was introduced, and the effects of this randomness on the crack path and macroscopic stress-strain behavior were studied. It was found that consideration of the random voids is able to capture more detailed and localized deformation features, such as different crack paths and different ultimate tensile strengths, and meanwhile does not change the macroscopic stress-strain behavior. It seems that the random voids are able to qualitatively explain the scattered observations in experiments while keeping the macroscopic measurements consistent.

  7. Systemic atherosclerosis and voiding symptom.

    Science.gov (United States)

    Yeniel, A Ozgur; Ergenoglu, A Mete; Meseri, Reci; Ari, Anıl; Sancar, Ceren; Itil, Ismail Mete

    2017-03-01

    To evaluate the effect of atherosclerosis on the storage and voiding symptoms of the bladder in women with overactive bladder (OAB). We retrospectively reviewed the charts of women with OAB who were evaluated between 2013 and 2015 in our urogynecology unit. Charts were assessed for history, examination findings, urinary diary, quality of life (QOL) questionnaires, urodynamic studies (UDSs), and four main risk factors for atherosclerosis: hypertension, diabetes mellitus, smoking, and hyperlipidemia. In a previous study, these were defined as vascular risk factors. Cases were excluded for insufficient data, diabetes mellitus with dysregulated blood glucose, or prolapse greater than 1cm to avoid confusing bladder outlet obstruction. We included 167 eligible cases in this study. We evaluated storage and voiding symptoms such as frequency, nocturia, residual urine volume, and voiding difficulties and UDS findings such as maximum bladder capacity, first desire, strong desire, detrusor overactivity, and bladder contractility index. The vascular risk score was categorized as "no risk" if the woman did not have any of the four risk factors and "at risk" if she had any of the factors. Independent sample t-test and chi-square tests were performed for analyses. Among the participants (n=167), 71.9% had at least one vascular risk factor. Those who were at risk were facing significantly more wet-type OAB (p=0.003) and nocturia (p=0.023). Moreover, mean age (p=0.008) and mean gravidity (p=0.020) were significantly higher in the at-risk group, whereas mean total nocturia QOL questionnaire scores (p=0.029) were significantly lower. Our findings suggest that aging and atherosclerosis may be associated with severe OAB and poorer QOL. Nocturia and related parameters of poor quality can be explained by impaired bladder neck perfusion. Future trials need to assess vascular and molecular changes in women with OAB. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. In search of empty places: Voids in the distribution of galaxies

    Science.gov (United States)

    Bucklein, Brian K.

    2010-12-01

    We investigate several techniques to identify voids in the galaxy distribution of matter in the universe. We utilize galaxy number counts as a function of apparent magnitude and Wolf plots to search a two- or three-dimensional data set in a pencil-beam fashion to locate voids within the field of view. The technique is able to distinguish between voids that represent simply a decrease in density as well as those that show a build up of galaxies on the front or back side of the void. This method turns out to be primarily useable only at relatively short range (out to about 200 Mpc). Beyond this distance, the characteristics indicating a void become increasingly difficult to separate from the statistical background noise. We apply the technique to a very simplified model as well as to the Millennium Run dark matter simulation. We then compare results with those obtained on the Sloan Digital Sky Survey. We also created the Watershed Void Examiner (WaVE) which treats densities in a fashion similar to elevation on a topographical map, and then we allow the "terrain" to flood. The flooded low-lying regions are identified as voids, which are allowed to grow and merge as the level of flooding becomes higher (the overdensity threshold increases). Void statistics can be calculated for each void. We also determine that within the Millennium Run semi-analytic galaxy catalog, the walls that separate the voids are permeable at a scale of 4 Mpc. For each resolution that we tested, there existed a characteristic density at which the walls could be penetrated, allowing a single void to grow to dominate the volume. With WaVE, we are able to get comparable results to those previously published, but often with fewer choices of parameters that could bias the results. We are also able to determine the the density at which the number of voids peaks for different resolutions as well as the expected number of void galaxies. The number of void galaxies is amazingly consistent at an

  9. Nocturia: The circadian voiding disorder

    Directory of Open Access Journals (Sweden)

    Jin Wook Kim

    2016-05-01

    Full Text Available Nocturia is a prevalent condition of waking to void during the night. The concept of nocturia has evolved from being a symptomatic aspect of disease associated with the prostate or bladder to a form of lower urinary tract disorder. However, recent advances in circadian biology and sleep science suggest that it might be important to consider nocturia as a form of circadian dysfunction. In the current review, nocturia is reexamined with an introduction to sleep disorders and recent findings in circadian biology in an attempt to highlight the importance of rediscovering nocturia as a problem of chronobiology.

  10. Large-scale clustering of cosmic voids

    Science.gov (United States)

    Chan, Kwan Chuen; Hamaus, Nico; Desjacques, Vincent

    2014-11-01

    We study the clustering of voids using N -body simulations and simple theoretical models. The excursion-set formalism describes fairly well the abundance of voids identified with the watershed algorithm, although the void formation threshold required is quite different from the spherical collapse value. The void cross bias bc is measured and its large-scale value is found to be consistent with the peak background split results. A simple fitting formula for bc is found. We model the void auto-power spectrum taking into account the void biasing and exclusion effect. A good fit to the simulation data is obtained for voids with radii ≳30 Mpc h-1 , especially when the void biasing model is extended to 1-loop order. However, the best-fit bias parameters do not agree well with the peak-background results. Being able to fit the void auto-power spectrum is particularly important not only because it is the direct observable in galaxy surveys, but also our method enables us to treat the bias parameters as nuisance parameters, which are sensitive to the techniques used to identify voids.

  11. The dark matter of galaxy voids

    CERN Document Server

    Sutter, P M; Wandelt, Benjamin D; Weinberg, David H; Warren, Michael S

    2013-01-01

    How do observed voids relate to the underlying dark matter distribution? To examine the spatial distribution of dark matter contained within voids identified in galaxy surveys, we apply Halo Occupation Distribution models representing sparsely and densely sampled galaxy surveys to a high-resolution N-body simulation. We compare these galaxy voids to voids found in the halo distribution, low-resolution dark matter, and high-resolution dark matter. We find that voids at all scales in densely sampled surveys - and medium- to large-scale voids in sparse surveys - trace the same underdensities as dark matter, but they are larger in radius by ~20%, they have somewhat shallower density profiles, and they have centers offset by ~0.4Rv rms. However, in void-to-void comparison we find that shape estimators are less robust to sampling, and the largest voids in sparsely sampled surveys suffer fragmentation at their edges. We find that voids in galaxy surveys always correspond to underdensities in the dark matter, though ...

  12. The dark matter of galaxy voids

    Science.gov (United States)

    Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H.; Warren, Michael S.

    2014-03-01

    How do observed voids relate to the underlying dark matter distribution? To examine the spatial distribution of dark matter contained within voids identified in galaxy surveys, we apply Halo Occupation Distribution models representing sparsely and densely sampled galaxy surveys to a high-resolution N-body simulation. We compare these galaxy voids to voids found in the halo distribution, low-resolution dark matter and high-resolution dark matter. We find that voids at all scales in densely sampled surveys - and medium- to large-scale voids in sparse surveys - trace the same underdensities as dark matter, but they are larger in radius by ˜20 per cent, they have somewhat shallower density profiles and they have centres offset by ˜ 0.4Rv rms. However, in void-to-void comparison we find that shape estimators are less robust to sampling, and the largest voids in sparsely sampled surveys suffer fragmentation at their edges. We find that voids in galaxy surveys always correspond to underdensities in the dark matter, though the centres may be offset. When this offset is taken into account, we recover almost identical radial density profiles between galaxies and dark matter. All mock catalogues used in this work are available at http://www.cosmicvoids.net.

  13. Effect of Void Size on the Detonation Pressure of Emulsion Explosives

    Science.gov (United States)

    Hirosaki, Yoshikazu; Murata, Kenji; Kato, Yukio; Itoh, Shigeru

    2002-07-01

    To study the effect of void size, detonation pressure as well as detonation velocity was measured using PVDF pressure gauge for the emulsion explosives sensitized with plastic balloons of five different size ranging from 0.05mm to 2.42mm. The experimental results were compared with the detonation pressure and velocity calculated using KHT code. The experimental results showed that the detonation pressure and velocity were strongly affected by void size, and that the fraction of ammonium nitrate reacted in the reaction zone was strongly dependent on void size.

  14. The Beckoning Void in Moravagine

    Directory of Open Access Journals (Sweden)

    Stephen K. Bellstrom

    1979-01-01

    Full Text Available The Chapter «Mascha,» lying at the heart of Cendrars's Moravagine , contains within it a variety of images and themes suggestive of emptiness. The philosophy of nihilism is exemplified in the motivations and actions of the group of terrorists seeking to plunge Russia into revolutionary chaos. Mascha's anatomical orifice, symbolizing both a biological and a psychological fault, and the abortion of her child, paralleled by the abortion of the revolutionary ideal among her comrades, are also emblematic of the chapter's central void. Moreover, Cendrars builds the theme of hollowness by describing Moravagine with images of omission, such as «empan» (space or span, «absent,» and «étranger.» Moravagine's presence, in fact, characteristically causes an undercurrent of doubt and uncertainty about the nature of reality to become overt. It is this parodoxical presence which seems to cause the narrator (and consequently the narrative to «lose» a day at the most critical moment of the story. By plunging the reader into the narrator's lapsus memoriae , Cendrars aims at creating a feeling of the kind of mental and cosmic disorder for which Moravagine is the strategist and apologist. This technique of insufficiency is an active technique, even though it relies on the passive idea of removing explanation and connecting details. The reader is invited, or lured, into the central void of the novel and, faced with unresolvable dilemmas, becomes involved in the same disorder that was initially produced.

  15. Calculation Analysis of Pressure Wave Velocity in Gas and Drilling Mud Two-Phase Fluid in Annulus during Drilling Operations

    Directory of Open Access Journals (Sweden)

    Yuanhua Lin

    2013-01-01

    Full Text Available Investigation of propagation characteristics of a pressure wave is of great significance to the solution of the transient pressure problem caused by unsteady operations during management pressure drilling operations. With consideration of the important factors such as virtual mass force, drag force, angular frequency, gas influx rate, pressure, temperature, and well depth, a united wave velocity model has been proposed based on pressure gradient equations in drilling operations, gas-liquid two-fluid model, the gas-drilling mud equations of state, and small perturbation theory. Solved by adopting the Runge-Kutta method, calculation results indicate that the wave velocity and void fraction have different values with respect to well depth. In the annulus, the drop of pressure causes an increase in void fraction along the flow direction. The void fraction increases first slightly and then sharply; correspondingly the wave velocity first gradually decreases and then slightly increases. In general, the wave velocity tends to increase with the increase in back pressure and the decrease of gas influx rate and angular frequency, significantly in low range. Taking the virtual mass force into account, the dispersion characteristic of the pressure wave weakens obviously, especially at the position close to the wellhead.

  16. Measurements of the S-wave fraction in $B^{0}\\rightarrow K^{+}\\pi^{-}\\mu^{+}\\mu^{-}$ decays and the $B^{0}\\rightarrow K^{\\ast}(892)^{0}\\mu^{+}\\mu^{-}$ differential branching fraction

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bitadze, Alexander; Bizzeti, Andrea; Blake, Thomas; Blanc, Frederic; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chobanova, Veronika; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Déléage, Nicolas; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Färber, Christian; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, V.V.; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Göbel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hussain, Nazim; Hutchcroft, David; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kozachuk, Anastasiia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Leflat, Alexander; Lefrançois, Jacques; Lefèvre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Mussini, Manuel; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen-Mau, Chung; Niess, Valentin; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Pappenheimer, Cheryl; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vicente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Rogozhnikov, Alexey; Roiser, Stefan; Romanovskiy, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubert, Konstantin; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavorima; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valat, Sebastien; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Vázquez Sierra, Carlos; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhang, Yu; Zhelezov, Alexey; Zheng, Yangheng; Zhokhov, Anatoly; Zhukov, Valery; Zucchelli, Stefano

    2016-01-01

    A measurement of the differential branching fraction of the decay ${B^{0}\\rightarrow K^{\\ast}(892)^{0}\\mu^{+}\\mu^{-}}$ is presented together with a determination of the S-wave fraction of the $K^+\\pi^-$ system in the decay $B^{0}\\rightarrow K^{+}\\pi^{-}\\mu^{+}\\mu^{-}$. The analysis is based on $pp$-collision data corresponding to an integrated luminosity of 3\\,fb$^{-1}$ collected with the LHCb experiment. The measurements are made in bins of the invariant mass squared of the dimuon system, $q^2$. Precise theoretical predictions for the differential branching fraction of $B^{0}\\rightarrow K^{\\ast}(892)^{0}\\mu^{+}\\mu^{-}$ decays are available for the $q^2$ region $1.1wave fraction of the $K^+\\pi^-$ system in $B^{0}\\rightarrow K^{+}\\pi^{-}\\mu^{+}\\mu^{-}$ decays is found to be \\begin{equation*} F_{\\rm S} = 0.101\\pm0.017({\\rm stat})\\pm0.009 ({\\rm syst}), \\end{equation*}...

  17. Universal density profile for cosmic voids.

    Science.gov (United States)

    Hamaus, Nico; Sutter, P M; Wandelt, Benjamin D

    2014-06-27

    We present a simple empirical function for the average density profile of cosmic voids, identified via the watershed technique in ΛCDM N-body simulations. This function is universal across void size and redshift, accurately describing a large radial range of scales around void centers with only two free parameters. In analogy to halo density profiles, these parameters describe the scale radius and the central density of voids. While we initially start with a more general four-parameter model, we find two of its parameters to be redundant, as they follow linear trends with the scale radius in two distinct regimes of the void sample, separated by its compensation scale. Assuming linear theory, we derive an analytic formula for the velocity profile of voids and find an excellent agreement with the numerical data as well. In our companion paper [Sutter et al., arXiv:1309.5087 [Mon. Not. R. Astron. Soc. (to be published)

  18. Air void structure and frost resistance

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange

    2014-01-01

    is proportional to the product of total air content and specific surface. In all 4 cases, the conclusion is concurrent that the parameter of total surface area of air voids performs equally well or better than the spacing factor when linking air void characteristics to frost resistance (salt frost scaling...... will take place in the air void, being feed from the capillary, but without pressure build-up in the capillary. If the capillary is not connected to an air void, ice formation will take place in the capillary pore, where it can generate substantial pressure. Like this, frost resistance depends......This article compiles results from 4 independent laboratory studies. In each study, the same type of concrete is tested at least 10 times, the air void structure being the only variable. For each concrete mix both air void analysis of the hardened concrete and a salt frost scaling test...

  19. Void Profile from Planck Lensing Potential Map

    Science.gov (United States)

    Chantavat, Teeraparb; Sawangwit, Utane; Wandelt, Benjamin D.

    2017-02-01

    We use the lensing potential map from Planck CMB lensing reconstruction analysis and the “Public Cosmic Void Catalog” to measure the stacked void lensing potential. We have made an attempt to fit the HSW void profile parameters from the stacked lensing potential. In this profile, four parameters are needed to describe the shape of voids with different characteristic radii R V . However, we have found that after reducing the background noise by subtracting the average background, there is a residue lensing power left in the data. The inclusion of the environment shifting parameter, {γ }V, is necessary to get a better fit to the data with the residue lensing power. We divide the voids into two redshift bins: cmass1 (0.45Digital Sky Survey voids reside in an underdense region.

  20. Cosmology with void-galaxy correlations.

    Science.gov (United States)

    Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S

    2014-01-31

    Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.

  1. Voids in cosmological simulations over cosmic time

    Science.gov (United States)

    Wojtak, Radosław; Powell, Devon; Abel, Tom

    2016-06-01

    We study evolution of voids in cosmological simulations using a new method for tracing voids over cosmic time. The method is based on tracking watershed basins (contiguous regions around density minima) of well-developed voids at low redshift, on a regular grid of density field. It enables us to construct a robust and continuous mapping between voids at different redshifts, from initial conditions to the present time. We discuss how the new approach eliminates strong spurious effects of numerical origin when voids' evolution is traced by matching voids between successive snapshots (by analogy to halo merger trees). We apply the new method to a cosmological simulation of a standard Λ-cold-dark-matter cosmological model and study evolution of basic properties of typical voids (with effective radii 6 h-1 Mpc < Rv < 20 h-1 Mpc at redshift z = 0) such as volumes, shapes, matter density distributions and relative alignments. The final voids at low redshifts appear to retain a significant part of the configuration acquired in initial conditions. Shapes of voids evolve in a collective way which barely modifies the overall distribution of the axial ratios. The evolution appears to have a weak impact on mutual alignments of voids implying that the present state is in large part set up by the primordial density field. We present evolution of dark matter density profiles computed on isodensity surfaces which comply with the actual shapes of voids. Unlike spherical density profiles, this approach enables us to demonstrate development of theoretically predicted bucket-like shape of the final density profiles indicating a wide flat core and a sharp transition to high-density void walls.

  2. Size effects on void growth in single crystals with distributed voids

    DEFF Research Database (Denmark)

    Borg, Ulrik; Niordson, Christian Frithiof; Kysar, J.W.

    2008-01-01

    The effect of void size on void growth in single crystals with uniformly distributed cylindrical voids is studied numerically using a finite deformation strain gradient crystal plasticity theory with an intrinsic length parameter. A plane strain cell model is analyzed for a single crystal...

  3. The darkness that shaped the void: dark energy and cosmic voids

    NARCIS (Netherlands)

    Bos, E. G. Patrick; van de Weygaert, Rien; Dolag, Klaus; Pettorino, Valeria

    2012-01-01

    We assess the sensitivity of void shapes to the nature of dark energy that was pointed out in recent studies and also investigate whether or not void shapes are useable as an observational probe in galaxy redshift surveys. Our focus is on the evolution of the mean void ellipticity and its underlying

  4. The darkness that shaped the void : Dark energy and cosmic voids

    NARCIS (Netherlands)

    Bos, E. G. Patrick; van de Weygaert, Rien; Dolag, Klaus; Pettorino, Valeria

    2012-01-01

    We assess the sensitivity of void shapes to the nature of dark energy that was pointed out in recent studies and also investigate whether or not void shapes are useable as an observational probe in galaxy redshift surveys. Our focus is on the evolution of the mean void ellipticity and its underlying

  5. Voids in cosmological simulations over cosmic time

    CERN Document Server

    Wojtak, Radosław; Abel, Tom

    2016-01-01

    We study evolution of voids in cosmological simulations using a new method for tracing voids over cosmic time. The method is based on tracking watershed basins (contiguous regions around density minima) of well developed voids at low redshift, on a regular grid of density field. It enables us to construct a robust and continuous mapping between voids at different redshifts, from initial conditions to the present time. We discuss how the new approach eliminates strong spurious effects of numerical origin when voids evolution is traced by matching voids between successive snapshots (by analogy to halo merger trees). We apply the new method to a cosmological simulation of a standard LambdaCDM cosmological model and study evolution of basic properties of typical voids (with effective radii between 6Mpc/h and 20Mpc/h at redshift z=0) such as volumes, shapes, matter density distributions and relative alignments. The final voids at low redshifts appear to retain a significant part of the configuration acquired in in...

  6. A new geometrical approach to void statistics

    CERN Document Server

    Werner, M C

    2014-01-01

    Modelling cosmic voids as spheres in Euclidean space, the notion of a de-Sitter configuration space is introduced. It is shown that a uniform distribution over this configuration space yields a power-law approximating the void size distribution in an intermediate range of volumes, as well as an estimate for the fractal dimension of the large scale structure.

  7. Tracing the gravitational potential using cosmic voids

    CERN Document Server

    Nadathur, Seshadri; Crittenden, Robert

    2016-01-01

    The properties of large underdensities in the distribution of galaxies in the Universe, known as cosmic voids, are potentially sensitive probes of fundamental physics. We use data from the MultiDark suite of N-body simulations and multiple halo occupation distribution mocks to study the relationship between galaxy voids and the gravitational potential $\\Phi$. We find that the majority of galaxy voids correspond to local density minima in larger-scale overdensities, and thus lie in potential wells. However, a subset of voids can be identified that closely trace maxima of the gravitational potential and thus stationary points of the velocity field. We identify a new void observable, $\\lambda_v$, which depends on a combination of the void size and the average galaxy density contrast within the void, and show that it provides a good proxy indicator of the potential at the void location. A simple linear scaling of $\\Phi$ as a function of $\\lambda_v$ is found to hold, independent of the redshift and properties of t...

  8. Simulation of dust voids in complex plasmas

    NARCIS (Netherlands)

    W. J. Goedheer,; Land, V.

    2008-01-01

    In dusty radio-frequency (RF) discharges under micro-gravity conditions often a void is observed, a dust free region in the discharge center. This void is generated by the drag of the positive ions pulled out of the discharge by the electric field. We have developed a hydrodynamic model for dusty RF

  9. Assembly of filamentary void galaxy configurations

    NARCIS (Netherlands)

    Rieder, Steven; van de Weijgaert, Rien; Cautun, Marius; Beygu, Burcu; Zwart, Simon Portegies

    2013-01-01

    We study the formation and evolution of filamentary configurations of dark matter haloes in voids. Our investigation uses the high-resolution Lambda cold dark matter simulation CosmoGrid to look for void systems resembling the VGS_31 elongated system of three interacting galaxies that was recently

  10. The Hierarchical Structure and Dynamics of Voids

    CERN Document Server

    Aragon-Calvo, M A

    2012-01-01

    Contrary to the common view voids have very complex internal structure and dynamics. Here we show how the hierarchy of structures in the density field inside voids is reflected by a similar hierarchy of structures in the velocity field. Voids defined by dense filaments and clusters can de described as simple expanding domains with coherent flows everywhere except at their boundaries. At scales smaller that the void radius the velocity field breaks into expanding sub-domains corresponding to sub- voids. These sub-domains break into even smaller sub-sub domains at smaller scales resulting in a nesting hierarchy of locally expanding domains. The ratio between the magnitude of the velocity field responsible for the expansion of the void and the velocity field defining the sub voids is approximately one order of magnitude. The small-scale components of the velocity field play a minor role in the shaping of the voids but they define the local dynamics directly affecting the processes of galaxy formation and evoluti...

  11. A constitutive model for plastically anisotropic solids with non-spherical voids

    Science.gov (United States)

    Keralavarma, S. M.; Benzerga, A. A.

    2010-06-01

    Plastic constitutive relations are derived for a class of anisotropic porous materials consisting of coaxial spheroidal voids, arbitrarily oriented relative to the embedding orthotropic matrix. The derivations are based on nonlinear homogenization, limit analysis and micromechanics. A variational principle is formulated for the yield criterion of the effective medium and specialized to a spheroidal representative volume element containing a confocal spheroidal void and subjected to uniform boundary deformation. To obtain closed form equations for the effective yield locus, approximations are introduced in the limit-analysis based on a restricted set of admissible microscopic velocity fields. Evolution laws are also derived for the microstructure, defined in terms of void volume fraction, aspect ratio and orientation, using material incompressibility and Eshelby-like concentration tensors. The new yield criterion is an extension of the well known isotropic Gurson model. It also extends previous analyses of uncoupled effects of void shape and material anisotropy on the effective plastic behavior of solids containing voids. Preliminary comparisons with finite element calculations of voided cells show that the model captures non-trivial effects of anisotropy heretofore not picked up by void growth models.

  12. Influence of Grain Boundary Character on Creep Void Formation in Alloy 617

    Science.gov (United States)

    Lillo, Thomas; Cole, James; Frary, Megan; Schlegel, Scott

    2009-12-01

    Alloy 617, a high-temperature creep-resistant, nickel-based alloy, is being considered for the primary heat exchanger for the Next Generation Nuclear Plant (NGNP), which will operate at temperatures exceeding 760 °C and a helium pressure of approximately 7 MPa. Observations of the crept microstructure using optical microscopy indicate creep stress does not significantly influence the creep void fraction at a given creep strain over the relatively narrow set of creep conditions studied. Void formation was found to occur only after significant creep in the tertiary regime (>5 pct total creep strain) had occurred. Also, orientation imaging microscopy (OIM) was used to characterize the grain boundaries in the vicinity of creep voids that develop during high-temperature creep tests (900 °C to 1000 °C at creep stresses ranging from 20 to 40 MPa) terminated at creep strains ranging from 5 to 40 pct. Preliminary analysis of the OIM data indicates voids tend to form on grain boundaries parallel, perpendicular, or 45 deg to the tensile axis, while few voids are found at intermediate inclinations to the tensile axis. Random grain boundaries intersect most voids, while coincident site lattice (CSL)-related grain boundaries did not appear to be consistently associated with void development. Similar results were found in oxygen-free, high-conductivity (OFHC) copper, severely deformed using equal channel angular extrusion, and creep tested at 450 °C and 14 MPa.

  13. VIDE: The Void IDentification and Examination toolkit

    CERN Document Server

    Sutter, P M; Hamaus, Nico; Pisani, Alice; Wandelt, Benjamin D; Warren, Michael S; Villaescusa-Navarro, Francisco; Zivick, Paul; Mao, Qingqing; Thompson, Benjamin B

    2014-01-01

    We present VIDE, the Void IDentification and Examination toolkit, an open-source Python/C++ code for finding cosmic voids in galaxy redshift surveys and N-body simulations, characterizing their properties, and providing a platform for more detailed analysis. At its core, VIDE uses a greatly enhanced version of ZOBOV (Neyinck 2008) to calculate a Voronoi tessellation for estimating the density field and a watershed transform to construct voids. The watershed levels are used to place voids in a hierarchical tree. VIDE provides significant additional functionality for both pre- and post-processing: for example, VIDE can work with volume- or magnitude-limited galaxy samples with arbitrary survey geometries, or dark matter particles or halo catalogs in a variety of common formats. It can also randomly subsample inputs and includes a Halo Occupation Distribution model for constructing mock galaxy populations. VIDE outputs a summary of void properties in plain ASCII, and provides a Python API to perform many analysi...

  14. A comparison/validation of a fractional derivative model with an empirical model of non-linear shock waves in swelling shales

    Science.gov (United States)

    Droghei, Riccardo; Salusti, Ettore

    2013-04-01

    Control of drilling parameters, as fluid pressure, mud weight, salt concentration is essential to avoid instabilities when drilling through shale sections. To investigate shale deformation, fundamental for deep oil drilling and hydraulic fracturing for gas extraction ("fracking"), a non-linear model of mechanic and chemo-poroelastic interactions among fluid, solute and the solid matrix is here discussed. The two equations of this model describe the isothermal evolution of fluid pressure and solute density in a fluid saturated porous rock. Their solutions are quick non-linear Burger's solitary waves, potentially destructive for deep operations. In such analysis the effect of diffusion, that can play a particular role in fracking, is investigated. Then, following Civan (1998), both diffusive and shock waves are applied to fine particles filtration due to such quick transients , their effect on the adjacent rocks and the resulting time-delayed evolution. Notice how time delays in simple porous media dynamics have recently been analyzed using a fractional derivative approach. To make a tentative comparison of these two deeply different methods,in our model we insert fractional time derivatives, i.e. a kind of time-average of the fluid-rocks interactions. Then the delaying effects of fine particles filtration is compared with fractional model time delays. All this can be seen as an empirical check of these fractional models.

  15. Study on Transient Void Behavior During Reactivity Initiated Accidents Under Low Pressure Condition

    Science.gov (United States)

    Satou, Akira; Maruyama, Yu; Asaka, Hideaki; Nakamura, Hideo

    Series of out-of-pile experiments to obtain the knowledge on the transient void behavior during reactivity initiated accidents are in progress at JAEA. In the present series of experiments, the transient void behavior in a test section of 2 x 2 bundle geometry under atmospheric pressure condition was measured using an impedance technique. The measuring areas and the arrangement of electrodes for the impedance technique were defined on the basis of numerical analyses and scaled model experiments. The comparison was made between the impedance and differential pressure techniques for steady boiling experiments to estimate the accuracy of the impedance technique. The impedance technique showed a good agreement with the void fraction estimated from the differential pressure. The transient void behavior in the bundle geometry was measured using the impedance technique. The void fraction distribution in the bundle cross-section could be quantitatively obtained by the impedance technique. It could be properly confirmed that the transient void behavior depended on both the subcooling of inlet water and the heat generation rate of simulated fuel rods.

  16. Cosmic voids and void lensing in the Dark Energy Survey Science Verification data

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez, C.; Clampitt, J.; Kovacs, A.; Jain, B.; García-Bellido, J.; Nadathur, S.; Gruen, D.; Hamaus, N.; Huterer, D.; Vielzeuf, P.; Amara, A.; Bonnett, C.; DeRose, J.; Hartley, W. G.; Jarvis, M.; Lahav, O.; Miquel, R.; Rozo, E.; Rykoff, E. S.; Sheldon, E.; Wechsler, R. H.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Cunha, C. E.; D' Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Neto, A. Fausti; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Krause, E.; Kuehn, K.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Plazas, A. A.; Reil, K.; Romer, A. K.; Sanchez, E.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Walker, A. R.; Weller, J.

    2016-10-26

    Galaxies and their dark matter halos populate a complicated filamentary network around large, nearly empty regions known as cosmic voids. Cosmic voids are usually identified in spectroscopic galaxy surveys, where 3D information about the large-scale structure of the Universe is available. Although an increasing amount of photometric data is being produced, its potential for void studies is limited since photometric redshifts induce line-of-sight position errors of $\\sim50$ Mpc/$h$ or more that can render many voids undetectable. In this paper we present a new void finder designed for photometric surveys, validate it using simulations, and apply it to the high-quality photo-$z$ redMaGiC galaxy sample of the Dark Energy Survey Science Verification (DES-SV) data. The algorithm works by projecting galaxies into 2D slices and finding voids in the smoothed 2D galaxy density field of the slice. Fixing the line-of-sight size of the slices to be at least twice the photo-$z$ scatter, the number of voids found in these projected slices of simulated spectroscopic and photometric galaxy catalogs is within 20% for all transverse void sizes, and indistinguishable for the largest voids of radius $\\sim 70$ Mpc/$h$ and larger. The positions, radii, and projected galaxy profiles of photometric voids also accurately match the spectroscopic void sample. Applying the algorithm to the DES-SV data in the redshift range $0.2voids with comoving radii spanning the range 18-120 Mpc/$h$, and carry out a stacked weak lensing measurement. With a significance of $4.4\\sigma$, the lensing measurement confirms the voids are truly underdense in the matter field and hence not a product of Poisson noise, tracer density effects or systematics in the data. It also demonstrates, for the first time in real data, the viability of void lensing studies in photometric surveys.

  17. Dwarf Galaxies in Voids: Dark Matter Halos and Gas Cooling

    Directory of Open Access Journals (Sweden)

    Matthias Hoeft

    2010-01-01

    Full Text Available Galaxy surveys have shown that luminous galaxies are mainly distributed in large filaments and galaxy clusters. The remaining large volumes are virtually devoid of luminous galaxies. This is in concordance with the formation of the large-scale structure in the universe as derived from cosmological simulations. However, the numerical results indicate that cosmological voids are abundantly populated with dark matter haloes which may in principle host dwarf galaxies. Observational efforts have in contrast revealed that voids are apparently devoid of dwarf galaxies. We investigate the formation of dwarf galaxies in voids by hydrodynamical cosmological simulations. Due to the cosmic ultraviolet background radiation low-mass haloes show generally a reduced baryon fraction. We determine the characteristic mass below which dwarf galaxies are baryon deficient. We show that the circular velocity below which the accretion of baryons is suppressed is approximately 40 kms−1. The suppressed baryon accretion is caused by the photo-heating due to the UV background. We set up a spherical halo model and show that the effective equation of the state of the gas in the periphery of dwarf galaxies determines the characteristic mass. This implies that any process which heats the gas around dwarf galaxies increases the characteristic mass and thus reduces the number of observable dwarf galaxies.

  18. A variational constitutive model for the distribution and interactions of multi-sized voids

    KAUST Repository

    Liu, Jinxing

    2013-07-29

    The evolution of defects or voids, generally recognized as the basic failure mechanism in most metals and alloys, has been intensively studied. Most investigations have been limited to spatially periodic cases with non-random distributions of the radii of the voids. In this study, we use a new form of the incompressibility of the matrix to propose the formula for the volumetric plastic energy of a void inside a porous medium. As a consequence, we are able to account for the weakening effect of the surrounding voids and to propose a general model for the distribution and interactions of multi-sized voids. We found that the single parameter in classical Gurson-type models, namely void volume fraction is not sufficient for the model. The relative growth rates of voids of different sizes, which can in principle be obtained through physical or numerical experiments, are required. To demonstrate the feasibility of the model, we analyze two cases. The first case represents exactly the same assumption hidden in the classical Gurson\\'s model, while the second embodies the competitive mechanism due to void size differences despite in a much simpler manner than the general case. Coalescence is implemented by allowing an accelerated void growth after an empirical critical porosity in a way that is the same as the Gurson-Tvergaard-Needleman model. The constitutive model presented here is validated through good agreements with experimental data. Its capacity for reproducing realistic failure patterns is shown by simulating a tensile test on a notched round bar. © 2013 The Author(s).

  19. Modelling Void Abundance in Modified Gravity

    CERN Document Server

    Voivodic, Rodrigo; Llinares, Claudio; Mota, David F

    2016-01-01

    We use a spherical model and an extended excursion set formalism with drifting diffusive barriers to predict the abundance of cosmic voids in the context of general relativity as well as f(R) and symmetron models of modified gravity. We detect spherical voids from a suite of N-body simulations of these gravity theories and compare the measured void abundance to theory predictions. We find that our model correctly describes the abundance of both dark matter and galaxy voids, providing a better fit than previous proposals in the literature based on static barriers. We use the simulation abundance results to fit for the abundance model free parameters as a function of modified gravity parameters, and show that counts of dark matter voids can provide interesting constraints on modified gravity. For galaxy voids, more closely related to optical observations, we find that constraining modified gravity from void abundance alone may be significantly more challenging. In the context of current and upcoming galaxy surv...

  20. Redshift-space distortions around voids

    CERN Document Server

    Cai, Yan-Chuan; Peacock, John A; Padilla, Nelson

    2016-01-01

    We have derived estimators for the linear growth rate of density fluctuations using the cross-correlation function of voids and haloes in redshift space, both directly and in Fourier form. In linear theory, this cross-correlation contains only monopole and quadrupole terms. At scales greater than the void radius, linear theory is a good match to voids traced out by haloes in N-body simulations; small-scale random velocities are unimportant at these radii, only tending to cause small and often negligible elongation of the redshift-space cross-correlation function near its origin. By extracting the monopole and quadrupole from the cross-correlation function, we measure the linear growth rate without prior knowledge of the void profile or velocity dispersion. We recover the linear growth parameter $\\beta$ to 9% precision from an effective volume of 3(Gpc/h)^3 using voids with radius greater than 25Mpc/h. Smaller voids are predominantly sub-voids, which may be more sensitive to the random velocity dispersion; the...

  1. Experimental study of the effect of void reactivity feedback on the behavior of the scaled model boiling water reactor

    Science.gov (United States)

    Meftah, Khaled

    A Scaled Model Boiling Water Reactor (SMBWR) model uses low pressure (i.e., 0.095 MPa) water in a heated channel 0.5 meters in length with four electrically heated fuel simulator rods. The axial void profile in the channel is measured using conductivity probes and the power to the heaters is modulated according to the void fraction to simulate void reactivity feedback. The steam from the heated channel is passed through a valve that reduces the pressure to 0.012 MPa where the steam is condensed in conditions similar to those found in a conventional BWR condenser. The feedwater flow rate, heater power, and instrumentation in the facility are controlled and monitored through a Quadra 950 computer running LabVIEW software. The void fraction signals are analyzed to identify the different flow regimes and determine the vapor velocity in the SMBWR channel using features of the probability density function and power spectral density. The void coefficient of reactivity is modified in the BWR scale model through the LabVIEW interface and the effect on the behavior of the channel is directly observed. The system response is reported for abrupt stepwise pressure changes and abrupt stepwise power changes. The response is typical of that expected for a BWR. The void reactivity feedback effect is also examined by analyzing the frequency response of the channel void fraction at steady state.

  2. Voids' System in the Woven Composite Structure

    Institute of Scientific and Technical Information of China (English)

    Pavla VOZKOVA

    2006-01-01

    Composites are common material constructions for high-tech use now. Mechanical properties of woven reinforced composites are influenced by voids inside the structure.Voids could be classified to the two sections. Long and thin cracks are more dangerous than pores. It is important to find relations between preparation and place of occurrence of voids. This paper classifies defects according to rise mechanism, point of occurrence, orientation, size and affect to the properties. Image analysis was used for observing samples. Future work would be oriented not only to observing real samples, but also to calculate mechanical properties from real and ideal structures in 3D woven reinforced composites.

  3. Practical Statistics for the Voids Between Galaxies

    Directory of Open Access Journals (Sweden)

    Zaninetti, L.

    2010-12-01

    Full Text Available The voids between galaxies are identified withthe volumes of the Poisson Voronoi tessellation.Two new survival functions for the apparent radii of voids are derived. The sectional normalized area ofthe Poisson Voronoi tessellation is modelledby the Kiang function and by the exponential function. Two new survival functions with equivalent sectional radius are therefore derived; they represent an alternative to the survival function of voids between galaxies as given by the self-similar distribution. The spatial appearance of slices of the 2dF Galaxy Redshift Survey is simulated.

  4. Validation uncertainty of MATRA code for subchannel void distributions

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae-Hyun; Kim, S. J.; Kwon, H.; Seo, K. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To extend code capability to the whole core subchannel analysis, pre-conditioned Krylov matrix solvers such as BiCGSTAB and GMRES are implemented in MATRA code as well as parallel computing algorithms using MPI and OPENMP. It is coded by fortran 90, and has some user friendly features such as graphic user interface. MATRA code was approved by Korean regulation body for design calculation of integral-type PWR named SMART. The major role subchannel code is to evaluate core thermal margin through the hot channel analysis and uncertainty evaluation for CHF predictions. In addition, it is potentially used for the best estimation of core thermal hydraulic field by incorporating into multiphysics and/or multi-scale code systems. In this study we examined a validation process for the subchannel code MATRA specifically in the prediction of subchannel void distributions. The primary objective of validation is to estimate a range within which the simulation modeling error lies. The experimental data for subchannel void distributions at steady state and transient conditions was provided on the framework of OECD/NEA UAM benchmark program. The validation uncertainty of MATRA code was evaluated for a specific experimental condition by comparing the simulation result and experimental data. A validation process should be preceded by code and solution verification. However, quantification of verification uncertainty was not addressed in this study. The validation uncertainty of the MATRA code for predicting subchannel void distribution was evaluated for a single data point of void fraction measurement at a 5x5 PWR test bundle on the framework of OECD UAM benchmark program. The validation standard uncertainties were evaluated as 4.2%, 3.9%, and 2.8% with the Monte-Carlo approach at the axial levels of 2216 mm, 2669 mm, and 3177 mm, respectively. The sensitivity coefficient approach revealed similar results of uncertainties but did not account for the nonlinear effects on the

  5. The darkness that shaped the void: dark energy and cosmic voids

    CERN Document Server

    Bos, E G Patrick; Dolag, Klaus; Pettorino, Valeria

    2012-01-01

    Aims: We assess the sensitivity of void shapes to the nature of dark energy that was pointed out in recent studies. We investigate whether or not void shapes are useable as an observational probe in galaxy redshift surveys. We focus on the evolution of the mean void ellipticity and its underlying physical cause. Methods: We analyse the morphological properties of voids in five sets of cosmological N-body simulations, each with a different nature of dark energy. Comparing voids in the dark matter distribution to those in the halo population, we address the question of whether galaxy redshift surveys yield sufficiently accurate void morphologies. Voids are identified using the parameter free Watershed Void Finder. The effect of redshift distortions is investigated as well. Results: We confirm the statistically significant sensitivity of voids in the dark matter distribution. We identify the level of clustering as measured by \\sigma_8(z) as the main cause of differences in mean void shape . We find that in the h...

  6. Cosmic voids and void lensing in the Dark Energy Survey Science Verification data

    Science.gov (United States)

    Sánchez, C.; Clampitt, J.; Kovacs, A.; Jain, B.; García-Bellido, J.; Nadathur, S.; Gruen, D.; Hamaus, N.; Huterer, D.; Vielzeuf, P.; Amara, A.; Bonnett, C.; DeRose, J.; Hartley, W. G.; Jarvis, M.; Lahav, O.; Miquel, R.; Rozo, E.; Rykoff, E. S.; Sheldon, E.; Wechsler, R. H.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Neto, A. Fausti; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Krause, E.; Kuehn, K.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Plazas, A. A.; Reil, K.; Romer, A. K.; Sanchez, E.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Walker, A. R.; Weller, J.; DES Collaboration

    2017-02-01

    Cosmic voids are usually identified in spectroscopic galaxy surveys, where 3D information about the large-scale structure of the Universe is available. Although an increasing amount of photometric data is being produced, its potential for void studies is limited since photometric redshifts induce line-of-sight position errors of ≥50 Mpc h-1which can render many voids undetectable. We present a new void finder designed for photometric surveys, validate it using simulations, and apply it to the high-quality photo-z redMaGiC galaxy sample of the DES Science Verification data. The algorithm works by projecting galaxies into 2D slices and finding voids in the smoothed 2D galaxy density field of the slice. Fixing the line-of-sight size of the slices to be at least twice the photo-z scatter, the number of voids found in simulated spectroscopic and photometric galaxy catalogues is within 20 per cent for all transverse void sizes, and indistinguishable for the largest voids (Rv ≥ 70 Mpc h-1). The positions, radii, and projected galaxy profiles of photometric voids also accurately match the spectroscopic void sample. Applying the algorithm to the DES-SV data in the redshift range 0.2 < z < 0.8, we identify 87 voids with comoving radii spanning the range 18-120 Mpc h-1, and carry out a stacked weak lensing measurement. With a significance of 4.4σ, the lensing measurement confirms that the voids are truly underdense in the matter field and hence not a product of Poisson noise, tracer density effects or systematics in the data. It also demonstrates, for the first time in real data, the viability of void lensing studies in photometric surveys.

  7. Properties of Galaxies in and around Voids

    CERN Document Server

    Hopp, U

    1997-01-01

    Two surveys for intrinsically faint galaxies towards nearby voids have been conducted at the MPI für Astronomie, Heidelberg. One selected targets from a new diameter limited ($\\Phi \\ge 5''$) catalog with morphological criteria while the other used digitized objective prism Schmidt plates to select mainly HII dwarf galaxies. For some 450 galaxies, redshifts and other optical data were obtained. We studied the spatial distribution of the sample objects, their luminosity function, and their intrinsic properties. Most of the galaxies belong to already well known sheets and filaments. But we found about a dozen highly isolated galaxies in each sample (nearest neighborhood distance $\\ge 3 h_{75}^{-1} Mpc$). These tend to populate additional structures and are not distributed homogeneously throughout the voids. As our results on 'void galaxies' still suffer from small sample statistics, I also tried to combine similar existing surveys of nearby voids to get further hints on the larger structure and on the luminosit...

  8. Underground void filling by cemented mill tailings

    Institute of Scientific and Technical Information of China (English)

    Choudhary Bhanwar Singh; Kumar Santosh

    2013-01-01

    Underground mining always create voids. These voids can cause subsidence of surface. So it is always a demand to fill the void in such a manner that the effect of underground mining can be minimized. Void filling using mill tailings especially in metal mining is one of the best techniques. The tailings produced in milling process have traditionally been disposed in tailing ponds creating a waste disposal and environ-mental problems in terms of land degradation, air and water pollution, etc. This disposal practice is more acute in the metal milling industry where the fine grinding, required for value liberation, results in the production of very fine tailings in large percentage. This paper includes discussions on the effectiveness of different paste mixes with varying cement contents in paste backfilling operations. The results revealed that material composition and use of super plasticizer strongly influenced the strength of cemented backfill.

  9. Topology optimization with flexible void area

    DEFF Research Database (Denmark)

    Clausen, Anders; Aage, Niels; Sigmund, Ole

    2014-01-01

    This paper presents a methodology for including fixed-area flexible void domains into the minimum compliance topology optimization problem. As opposed to the standard passive elements approach of rigidly specifying void areas within the design domain, the suggested approach allows these areas...... to be flexibly reshaped and repositioned subject to penalization on their moments of inertia, the positions of their centers of mass, and their shapes. The flexible void areas are introduced through a second, discrete design variable field, using the same discretization as the standard field of continuous...... density variables. The formulation is based on a combined approach: The primary sub-problem is to minimize compliance, subject to a volume constraint, with a secondary sub-problem of minimizing the disturbance from the flexible void areas. The design update is performed iteratively between the two...

  10. Void growth in metals: Atomistic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Traiviratana, Sirirat [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Bringa, Eduardo M. [Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Benson, David J. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Meyers, Marc A. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); NanoEngineering, University of California, San Diego, La Jolla, CA 92093 (United States)], E-mail: mameyers@ucsd.edu

    2008-09-15

    Molecular dynamics simulations in monocrystalline and bicrystalline copper were carried out with LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) to reveal void growth mechanisms. The specimens were subjected to tensile uniaxial strains; the results confirm that the emission of (shear) loops is the primary mechanism of void growth. It is observed that many of these shear loops develop along two slip planes (and not one, as previously thought), in a heretofore unidentified mechanism of cooperative growth. The emission of dislocations from voids is the first stage, and their reaction and interaction is the second stage. These loops, forming initially on different {l_brace}1 1 1{r_brace} planes, join at the intersection, if the Burgers vector of the dislocations is parallel to the intersection of two {l_brace}1 1 1{r_brace} planes: a <1 1 0> direction. Thus, the two dislocations cancel at the intersection and a biplanar shear loop is formed. The expansion of the loops and their cross slip leads to the severely work-hardened region surrounding a growing void. Calculations were carried out on voids with different sizes, and a size dependence of the stress threshold to emit dislocations was obtained by MD, in disagreement with the Gurson model which is scale independent. This disagreement is most marked for the nanometer sized voids. The scale dependence of the stress required to grow voids is interpreted in terms of the decreasing availability of optimally oriented shear planes and increased stress required to nucleate shear loops as the void size is reduced. The growth of voids simulated by MD is compared with the Cocks-Ashby constitutive model and significant agreement is found. The density of geometrically necessary dislocations as a function of void size is calculated based on the emission of shear loops and their outward propagation. Calculations are also carried out for a void at the interface between two grains to simulate polycrystalline

  11. Zipf's law for fractal voids and a new void-finder

    CERN Document Server

    Gaite, J

    2005-01-01

    Voids are a prominent feature of fractal point distributions but there is no precise definition of what is a void (except in one dimension). Here we propose a definition of voids that uses methods of discrete stochastic geometry, in particular, Delaunay and Voronoi tessellations, and we construct a new algorithm to search for voids in a point set. We find and rank-order the voids of suitable examples of fractal point sets in one and two dimensions to test whether Zipf's power-law holds. We conclude affirmatively and, furthermore, that the rank-ordering of voids conveys similar information to the number-radius function, as regards the scaling regime and the transition to homogeneity. So it is an alternative tool in the analysis of fractal point distributions with crossover to homogeneity and, in particular, of the distribution of galaxies.

  12. Void-induced dissolution in molecular dynamics simulations of NaCl and water.

    Science.gov (United States)

    Bahadur, Ranjit; Russell, Lynn M; Alavi, Saman; Martin, Scot T; Buseck, Peter R

    2006-04-21

    To gain a better understanding of the interaction of water and NaCl at the surface during dissolution, we have used molecular dynamics to simulate the interface with two equal-sized slabs of solid NaCl and liquid water in contact. The introduction of voids in the bulk of the salt, as well as steps or pits on the surface of the NaCl slab results in a qualitative change of system structure, as defined by radial distribution functions (RDFs). As an example, the characteristic Na-Na RDF for the system changes from regularly spaced narrow peaks (corresponding to an ordered crystalline structure), to a broad primary and smaller secondary peak (corresponding to a disordered structure). The change is observed at computationally short time scales of 100 ps, in contrast with a much longer time scale of 1 mus expected for complete mixing in the absence of defects. The void fraction (which combines both bulk and surface defects) required to trigger dissolution varies between 15%-20% at 300 K and 1 atm, and has distinct characteristics for the physical breakdown of the crystal lattice. The void fraction required decreases with temperature. Sensitivity studies show a strong dependence of the critical void fraction on the quantity and distribution of voids on the surface, with systems containing a balanced number of surface defects and a rough surface showing a maximum tendency to dissolve. There is a moderate dependence on temperature, with a 5% decrease in required void fraction with a 100 K increase in temperature, and a weak dependence on water potential model used, with the SPC, SPC/E, TIP4P, and RPOL models giving qualitatively identical results. The results were insensitive to the total quantity of water available for dissolution and the duration of the simulation.

  13. Void-induced dissolution in molecular dynamics simulations of NaCl and water

    Science.gov (United States)

    Bahadur, Ranjit; Russell, Lynn M.; Alavi, Saman; Martin, Scot T.; Buseck, Peter R.

    2006-04-01

    To gain a better understanding of the interaction of water and NaCl at the surface during dissolution, we have used molecular dynamics to simulate the interface with two equal-sized slabs of solid NaCl and liquid water in contact. The introduction of voids in the bulk of the salt, as well as steps or pits on the surface of the NaCl slab results in a qualitative change of system structure, as defined by radial distribution functions (RDFs). As an example, the characteristic Na-Na RDF for the system changes from regularly spaced narrow peaks (corresponding to an ordered crystalline structure), to a broad primary and smaller secondary peak (corresponding to a disordered structure). The change is observed at computationally short time scales of 100ps, in contrast with a much longer time scale of 1μs expected for complete mixing in the absence of defects. The void fraction (which combines both bulk and surface defects) required to trigger dissolution varies between 15%-20% at 300K and 1atm, and has distinct characteristics for the physical breakdown of the crystal lattice. The void fraction required decreases with temperature. Sensitivity studies show a strong dependence of the critical void fraction on the quantity and distribution of voids on the surface, with systems containing a balanced number of surface defects and a rough surface showing a maximum tendency to dissolve. There is a moderate dependence on temperature, with a 5% decrease in required void fraction with a 100K increase in temperature, and a weak dependance on water potential model used, with the SPC, SPC/E, TIP4P, and RPOL models giving qualitatively identical results. The results were insensitive to the total quantity of water available for dissolution and the duration of the simulation.

  14. Void Statistics and Void Galaxies in the 2dFGRS

    CERN Document Server

    von Benda-Beckmann, Alexander M

    2007-01-01

    For the 2dFGRS we study the properties of voids and of fainter galaxies within voids that are defined by brighter galaxies. Our results are compared with simulated galaxy catalogues from the Millenium simulation coupled with a semianalytical galaxy formation recipe. We derive the void size distribution and discuss its dependence on the faint magnitude limit of the galaxies defining the voids. While voids among faint galaxies are typically smaller than those among bright galaxies, the ratio of the void sizes to the mean galaxy separation reaches larger values. This is well reproduced in the mock galaxy samples studied. We provide analytic fitting functions for the void size distribution. Furthermore, we study the galaxy population inside voids defined by objects with $B_J -5\\log{h}< -20$ and diameter larger than 10 \\hMpc. We find a clear bimodality of the void galaxies similar to the average comparison sample. We confirm the enhanced abundance of galaxies in the blue cloud and a depression of the number of ...

  15. Cluster-Void Degeneracy Breaking: Dark Energy, Planck and the Largest Cluster & Void

    CERN Document Server

    Sahlén, Martin; Silk, Joseph

    2015-01-01

    Combining galaxy cluster and void abundances breaks the degeneracy between mean matter density $\\Omega_{\\rm m}$ and power spectrum normalization $\\sigma_8$. In a first for voids, we constrain $\\Omega_{\\rm m} = 0.21 \\pm 0.10$ and $\\sigma_8 = 0.95 \\pm 0.21$ for a flat $\\Lambda$CDM universe, using extreme-value statistics on the claimed largest cluster and void. The Planck-consistent results detect dark energy with two objects, independently of other dark energy probes. Cluster-void studies also offer complementarity in scale, density, and non-linearity - of particular interest for testing modified-gravity models.

  16. Effects of continuous wave and fractionated diode laser on human fibroblast cancer and dermal normal cells by zinc phthalocyanine in photodynamic therapy: A comparative study.

    Science.gov (United States)

    Navaeipour, Farzaneh; Afsharan, Hadi; Tajalli, Habib; Mollabashi, Mahmood; Ranjbari, Farideh; Montaseri, Azadeh; Rashidi, Mohammad-Reza

    2016-08-01

    In this experimental study, cancer and normal cells behavior during an in vitro photodynamic therapy (PDT) under exposure of continuous wave (CW) and fractionated mode of laser with different irradiation power and time intervals was compared and investigated. At the first, human fibroblast cancer cell line (SW 872) and human dermal normal (HFFF2) cell line were incubated with different concentrations of zinc phthalocyanine (ZnPc), as a PDT drug. The cells, then, were irradiated with a 675nm diode laser and the cell viability was evaluated using MTT assay. Under optimized conditions, the viability of the cancer cells was eventually reduced to 3.23% and 13.17%, and that of normal cells was decreased to 20.83% and 36.23% using CW and fractionated diode lasers, respectively. In general, the ratio of ZnPc LD50 values for the normal cells to the cancer cells with CW laser was much higher than that of the fractionated laser. Subsequently, cancer cells in comparison with normal ones were found to be more sensitive toward the photodynamic damage induced by ZnPc. In addition, treatment with CW laser was found to be more effective against the cancer cells with a lower toxicity to the normal cells compared with the fractionated diode laser.

  17. A mathematical model and numerical simulation of pressure wave in horizontal gas-liquid bubbly flow

    Institute of Scientific and Technical Information of China (English)

    HUANG Fei; BAI Bofeng; GUO Liejin

    2004-01-01

    By using an ensemble-averaged two-fluid model,with valid closure conditions of interfacial momentum exchange due to virtual mass force,viscous shear stress and drag force,a model for pressure wave propagation in a horizontal gas-liquid bubbly flow is proposed.According to the small perturbation theory and solvable condition of one-order linear uniform equations,a dispersion equation of pressure wave is induced.The pressure wave speed calculated from the model is compared and in good agreement with existing data.According to the dispersion equation,the propagation and attenuation of pressure wave are investigated systemically.The factors affecting pressure wave,such as void fraction,pressure,wall shear stress,perturbation frequency,virtual mass force and drag force,are analyzed.The result shows that the decrease in system pressure,the increase in void fraction and the existence of wall shear stress,will cause a decrease in pressure wave speed and an increase in the attenuation coefficient in the horizontal gas-liquid bubbly flow.The effects of perturbation frequency,virtual mass and drag force on pressure wave in the horizontal gas-liquid bubbly flow at low perturbation frequency are different from that at high perturbation frequency.

  18. 38 CFR 3.207 - Void or annulled marriage.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled....

  19. Development of satellite green vegetation fraction time series for use in mesoscale modeling: application to the European heat wave 2006

    DEFF Research Database (Denmark)

    Nielsen, Joakim Refslund; Dellwik, Ebba; Hahmann, Andrea N.

    2014-01-01

    A method is presented for development of satellite green vegetation fraction (GVF) time series for use in the Weather Research and Forecasting (WRF) model. The GVF data is in the WRF model used to describe the temporal evolution of many land surface parameters, in addition to the evolution...

  20. Multiple void interaction of pipeline steel in triaxial stress fields

    Institute of Scientific and Technical Information of China (English)

    Bao-wen QIU; Ze-xi YUAN; Gui-feng ZHOU

    2008-01-01

    Three-dimensional unit cell models were developed to study the damage induced by void growth in ductile materials. Special emphasis is given to the influence of the void shape and random spatial void arrangements. The periodical void arrays of body cen-tered cubic are investigated by analyzing representative unit cells. The isotropic behavior of the matrix material is modeled using v. Mises plasticity. The cell models are analyzed by the large strain finite element method under monotonic loading while keeping the constant stress triaxiality. Results showed that when void density increased, effects of void aspects on void growth gradu-ally diminished.

  1. Universal void density profiles from simulation and SDSS

    CERN Document Server

    Nadathur, S; Diego, J M; Iliev, I T; Gottlöber, S; Watson, W A; Yepes, G

    2014-01-01

    We discuss the universality and self-similarity of void density profiles, for voids in realistic mock luminous red galaxy (LRG) catalogues from the Jubilee simulation, as well as in void catalogues constructed from the SDSS LRG and Main Galaxy samples. Voids are identified using a modified version of the ZOBOV watershed transform algorithm, with additional selection cuts. We find that voids in simulation are self-similar, meaning that their average rescaled profile does not depend on the void size, or -- within the range of the simulated catalogue -- on the redshift. Comparison of the profiles obtained from simulated and real voids shows an excellent match. The profiles of real voids also show a universal behaviour over a wide range of galaxy luminosities, number densities and redshifts. This points to a fundamental property of the voids found by the watershed algorithm, which can be exploited in future studies of voids.

  2. Universal void density profiles from simulation and SDSS

    Science.gov (United States)

    Nadathur, S.; Hotchkiss, S.; Diego, J. M.; Iliev, I. T.; Gottlöber, S.; Watson, W. A.; Yepes, G.

    2016-10-01

    We discuss the universality and self-similarity of void density profiles, for voids in realistic mock luminous red galaxy (LRG) catalogues from the Jubilee simulation, as well as in void catalogues constructed from the SDSS LRG and Main Galaxy samples. Voids are identified using a modified version of the ZOBOV watershed transform algorithm, with additional selection cuts. We find that voids in simulation are self-similar, meaning that their average rescaled profile does not depend on the void size, or - within the range of the simulated catalogue - on the redshift. Comparison of the profiles obtained from simulated and real voids shows an excellent match. The profiles of real voids also show a universal behaviour over a wide range of galaxy luminosities, number densities and redshifts. This points to a fundamental property of the voids found by the watershed algorithm, which can be exploited in future studies of voids.

  3. Post-void residual urine under 150 ml does not exclude voiding dysfunction in women

    DEFF Research Database (Denmark)

    Khayyami, Yasmine; Klarskov, Niels; Lose, Gunnar

    2016-01-01

    INTRODUCTION AND HYPOTHESIS: It has been claimed that post-void residual urine (PVR) below 150 ml rules out voiding dysfunction in women with stress urinary incontinence (SUI) and provides license to perform sling surgery. The cut-off of 150 ml seems arbitrary, not evidence-based, and so we sough...

  4. The relationship among complex fractionated electrograms, wavebreak, phase singularity, and local dominant frequency in fibrillation wave-dynamics: a modeling comparison study.

    Science.gov (United States)

    Yun, Yonghyeon; Hwang, Minki; Park, Jae Hyung; Shin, Hangsik; Shim, Eun Bo; Pak, Hui-Nam

    2014-03-01

    Although complex fractionated electrogram (CFE) is known to be a target for catheter ablation of fibrillation, its physiological meaning in fibrillation wave-dynamics remains to be clarified. We evaluated the spatiotemporal relationships among the parameters of fibrillation wave-dynamics by simulation modeling. We generated maps of CFE-cycle length (CFE-CL), local dominant frequency (LDF), wave break (WB), and phase singularity (PS) of fibrillation in 2-dimensional homogeneous bidomain cardiac modeling (1,000 × 1,000 cells ten Tusscher model). We compared spatiotemporal correlations by dichotomizing each maps into 10 × 10 lattice zones. In spatial distribution, WB and PS showed excellent correlation (R = 0.963, P CFE-CL had weak correlations with WB (R = 0.288, P CFE-CL area. Virtual ablation (5% of critical mass) of CFE-CL CFE-CL was weakly correlated with WB, PS, and LDF, spatiotemporally. PSs are mostly positioned at the periphery of low CFE-CL areas, and virtual ablation targeting low CFE-CL regions terminated fibrillation successfully.

  5. Cosmic Voids: structure, dynamics and galaxies

    CERN Document Server

    van de Weygaert, Rien

    2009-01-01

    In this review we discuss several aspects of Cosmic Voids. Voids are a major component of the large scale distribution of matter and galaxies in the Universe. They are of instrumental importance for understanding the emergence of the Cosmic Web. Their relatively simple shape and structure makes them into useful tools for extracting the value of a variety cosmic parameters, possibly including even that of the influence of dark energy. Perhaps most promising and challenging is the issue of the galaxies found within their realm. Not only does the pristine environment of voids provide a promising testing ground for assessing the role of environment on the formation and evolution of galaxies, the dearth of dwarf galaxies may even represent a serious challenge to the standard view of cosmic structure formation.

  6. Void coalescence within periodic clusters of particles

    Science.gov (United States)

    Thomson, C. I. A.; Worswick, M. J.; Pilkey, A. K.; Lloyd, D. J.

    2003-01-01

    The effect of particle clustering on void damage rates in a ductile material under triaxial loading conditions is examined using three-dimensional finite element analysis. An infinite material containing a regular distribution of clustered particles is modelled using a unit cell approach. Three discrete particles are introduced into each unit cell while a secondary population of small particles within the surrounding matrix is represented using the Gurson-Tvergaard-Needleman (GTN) constitutive equations. Deformation strain states characteristic of sheet metal forming are considered; that is, deep drawing, plane strain and biaxial stretching. Uniaxial tensile stress states with varying levels of superimposed hydrostatic tension are also examined. The orientation of a particle cluster with respect to the direction of major principal loading is shown to significantly influence failure strains. Coalescence of voids within a first-order particle cluster (consisting of three particles) is a stable event while collapse of inter-cluster ligaments leads to imminent material collapse through void-sheeting.

  7. Effectiveness of tolterodine in nonneurogenic voiding dysfunction.

    Science.gov (United States)

    Babu, Ramesh

    2006-11-01

    The efficacy of tolterodine was analysed in children with non-neurogenic voiding dysfunction, using dysfunctional voiding symptom score (DVSS). Of 44 patients (mean age 9.3 yrs; M:F = 25:19), 36 received long acting tolterodine tartrate at a dose of 2mg OD and 8 at a dose of 4mg OD. The mean (SD) DVSS before and after the treatment was 17.1 (2.8) and 12.0 (2.4). There was a significant improvement in the mean DVSS score at the end of the treatment (Students t test P tolterodine is effective in children with voiding dysfunction. The single daily dose has good compliance and minimal side effect profile.

  8. Malposition of catheters during voiding cystourethrography

    Energy Technology Data Exchange (ETDEWEB)

    Rathaus, V.; Konen, O.; Shapiro, M. [Dept. of Diagnostic Imaging Sapir Medical Center, Kfar-Saba and Sackler Medical School, Tel Aviv University (Israel); Grunebaum, M. [Veteran Pediatric Radiologist, Kfar Saba (Israel)

    2001-04-01

    The aim of this study was to report catheter malposition during voiding cystourethrography. Eight hundred forty-three voiding cystourethrography (265 males and 578 females, aged 1 week to 12 years, mean age 2 years) were performed during a period of 4 years. The conventional standard procedure was applied. In 3 cases with passed history of urinary tract infection the catheter entered directly into the ureter. In all these cases the uretero-vesical reflux was present on the same side where the catheter entered. It appears that insertion of a catheter into the ureter is possible only in the presence of an anomaly or pathology at the vesicoureteric junction. (orig.)

  9. Development of AN Intensity Based Fiber Optic Sensor and Predictive Models for in Situ Void Detection during Polymer Composite Cure.

    Science.gov (United States)

    Klosterman, Donald A.

    The use of an optic fiber as an in situ sensor for void detection in polymer composites has been investigated. The sensor is prepared from standard multimode optic fiber by removing a 1-cm length of coating and cladding to expose the core. The sensor was designed to detect entrapped bubbles of water and solvents produced during a cure cycle, or interlaminar pockets of air that have been trapped during the layup process. The sensor signal is the total transmitted light intensity through the optic fiber and is affected by the refractive index of the resin and the amount of voids that contact the exposed core. The measured void content corresponds to the fractional area of the exposed core covered with voids. A mathematical model was developed to predict the sensor signal given the inputs of resin refractive index and void content. Experiments were performed in neat resin to verify the model. Initially, the model was tuned to changes in the resin refractive index by heating in a noncuring resin with a void content of zero. Tuning was accomplished by adjusting the distribution of power among optical modes, an internal model parameter. The tuned model was then verified for the condition of a changing void content and constant refractive index. An experiment with neat resin and water droplets was used to verify the model for simultaneous changes in resin refractive index and void content. It was determined that the sensor signal is affected by the overall void content; the model was used to predict that the signal varies only 1% for different void distributions of the same overall void content. The sensor signal was collected for the void-free cure of neat Hercules 3501-6 epoxy resin. To verify the model for the cure of 3501-6 resin, it was necessary to measure the resin refractive index as a function of temperature and degree of cure. Two methods were used to obtain this calibration: ellipsometry and a direct method using the sensor model and acquired sensor signal. The

  10. Cosmic Voids and Void Lensing in the Dark Energy Survey Science Verification Data

    CERN Document Server

    Sánchez, C; Kovacs, A; Jain, B; García-Bellido, J; Nadathur, S; Gruen, D; Hamaus, N; Huterer, D; Vielzeuf, P; Amara, A; Bonnett, C; DeRose, J; Hartley, W G; Jarvis, M; Lahav, O; Miquel, R; Rozo, E; Rykoff, E S; Sheldon, E; Wechsler, R H; Zuntz, J; Abbott, T M C; Abdalla, F B; Annis, J; Benoit-Lévy, A; Bernstein, G M; Bernstein, R A; Bertin, E; Brooks, D; Buckley-Geer, E; Rosell, A Carnero; Kind, M Carrasco; Carretero, J; Crocce, M; Cunha, C E; D'Andrea, C B; da Costa, L N; Desai, S; Diehl, H T; Dietrich, J P; Doel, P; Evrard, A E; Neto, A Fausti; Flaugher, B; Fosalba, P; Frieman, J; Gaztanaga, E; Gruendl, R A; Gutierrez, G; Honscheid, K; James, D J; Krause, E; Kuehn, K; Lima, M; Maia, M A G; Marshall, J L; Melchior, P; Plazas, A A; Reil, K; Romer, A K; Sanchez, E; Schubnell, M; Sevilla-Noarbe, I; Smith, R C; Soares-Santos, M; Sobreira, F; Suchyta, E; Tarle, G; Thomas, D; Walker, A R; Weller, J

    2016-01-01

    Galaxies and their dark matter halos populate a complicated filamentary network around large, nearly empty regions known as cosmic voids. Cosmic voids are usually identified in spectroscopic galaxy surveys, where 3D information about the large-scale structure of the Universe is available. Although an increasing amount of photometric data is being produced, its potential for void studies is limited since photometric redshifts induce line-of-sight position errors of $\\sim50$ Mpc/$h$ or more that can render many voids undetectable. In this paper we present a new void finder designed for photometric surveys, validate it using simulations, and apply it to the high-quality photo-$z$ redMaGiC galaxy sample of the Dark Energy Survey Science Verification (DES-SV) data. The algorithm works by projecting galaxies into 2D slices and finding voids in the smoothed 2D galaxy density field of the slice. Fixing the line-of-sight size of the slices to be at least twice the photo-$z$ scatter, the number of voids found in these ...

  11. A model for shape memory alloys with the possibility of voids

    CERN Document Server

    Fremond, Michel

    2009-01-01

    The paper is devoted to the study of a mathematical model for the thermomechanical evolution of metallic shape memory alloys. The main novelty of our approach consists in the fact that we include the possibility for these materials to exhibit voids during the phase change process. Indeed, in the engineering paper has been recently proved that voids may appear when the mixture is produced by the aggregations of powder. Hence, the composition of the mixture varies (under either thermal or mechanical actions) in this way: the martensites and the austenite transform into one another whereas the voids volume fraction evolves. The first goal of this contribution is hence to state a PDE system capturing all these modelling aspects in order then to establish the well-posedness of the associated initial-boundary value problem.

  12. The sparkling Universe: a scenario for cosmic void motions

    Science.gov (United States)

    Ceccarelli, Laura; Ruiz, Andrés N.; Lares, Marcelo; Paz, Dante J.; Maldonado, Victoria E.; Luparello, Heliana E.; Garcia Lambas, Diego

    2016-10-01

    Cosmic voids are prominent features of the Universe, encoding relevant information of the growth and evolution of structure through their dynamics. Here, we perform a statistical study of the global motion of cosmic voids using both a numerical simulation and observational data. Their relation to large-scale mass flows and the physical effects that drive those motions. We analyse the bulk motions of voids, finding void mean bulk velocities in the range 300-400 km s-1, depending on void size and the large-scale environment. Statistically, small voids move faster, and voids in relatively higher density environments have higher bulk velocities. Also, we find large-scale overdensities (underdensities) along (opposite to) the void motion direction, suggesting that void motions respond to a pull-push mechanism. Our analysis suggests that their relative motions are generated by large-scale density fluctuations. In agreement with linear theory, voids embedded in low (high) density regions mutually recede (attract) each other, providing the general mechanism to understand the bimodal behaviour of void motions. We have also inferred void motions in the Sloan Digital Sky Survey using linear theory, finding that their estimated motions are in qualitatively agreement with the results of the simulation. Our results suggest a scenario of galaxies and galaxy systems flowing away from void centres with the additional, and more relevant, contribution of the void bulk motion to the total velocity.

  13. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many t...

  14. The mechanism and kinetics of void formation and growth in particulate filled PE composites

    Directory of Open Access Journals (Sweden)

    2007-11-01

    Full Text Available Volume strain measurements were carried out on PE/CaCO3 composites prepared with three different matrix polymers, containing various amounts of filler. The analysis of the debonding process and the various stages of void formation proved that the model developed for the prediction of the initiation of debonding is valid also for the studied PE/CaCO3 composites. Debonding stress is determined by the strength of interfacial adhesion, particle size and the stiffness of the matrix. In thermoplastic matrices usually two competitive processes take place: debonding and the plastic deformation of the polymer. The relative magnitude of the two processes strongly influences the number and size of the voids formed. Because of this competition and due to the wide particle size distribution of commercial fillers, only a certain fraction of the particles initiate the formation of voids. The number of voids formed is inversely proportional to the stiffness of the matrix polymer. In stiff matrices almost the entire amount of filler separates from the matrix under the effect of external load, while less than 30% debond in a PE which has an initial modulus of 0.4 GPa. Further decrease of matrix stiffness may lead to the complete absence of debonding and the composite would deform exclusively by shear yielding. Voids initiated by debonding grow during the further deformation of the composite. The size of the voids also depends on the modulus of the matrix. The rate of volume increase considerably exceeds the value predicted for cross-linked rubbers. At the same deformation and filler content the number of voids is smaller and their size is larger in soft matrices than in polymers with larger inherent modulus.

  15. Measurement of post-void residual urine

    NARCIS (Netherlands)

    Asimakopoulos, Anastasios D.; De Nunzio, Cosimo; Kocjancic, Ervin; Tubaro, Andrea; Rosier, Peter F.; Finazzi-Agrò, Enrico

    2016-01-01

    Aims To present the teaching module "Measurement of Post-void residual urine." Methods This module has been prepared by a Working Group of the ICS Urodynamics Committee. The methodology used included comprehensive literature review, consensus formation by the members of the Working Group, and review

  16. Halo abundances and shear in void models

    DEFF Research Database (Denmark)

    Alonso, David; García-Bellido, Juan; Haugbølle, Troels

    2012-01-01

    We study the non-linear gravitational collapse of dark matter into halos through numerical N-body simulations of Lemaitre-Tolman-Bondi void models. We extend the halo mass function formalism to these models in a consistent way. This extension not only compares well with the simulated data at all ...

  17. Halo abundances and shear in void models

    DEFF Research Database (Denmark)

    Alonso, David; García-Bellido, Juan; Haugbølle, Troels;

    2012-01-01

    We study the non-linear gravitational collapse of dark matter into halos through numerical N-body simulations of Lemaitre-Tolman-Bondi void models. We extend the halo mass function formalism to these models in a consistent way. This extension not only compares well with the simulated data at all...

  18. "Dark energy" in the Local Void

    Science.gov (United States)

    Villata, M.

    2012-05-01

    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (˜5×1015 M ⊙) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.

  19. The Metallicity of Void Dwarf Galaxies

    NARCIS (Netherlands)

    Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.

    2015-01-01

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumptio

  20. Partial discharges in ellipsoidal and spheroidal voids

    DEFF Research Database (Denmark)

    Crichton, George C; Karlsson, P. W.; Pedersen, Aage

    1989-01-01

    Transients associated with partial discharges in voids can be described in terms of the charges induced on the terminal electrodes of the system. The relationship between the induced charge and the properties which are usually measured is discussed. The method is illustrated by applying it to a s...

  1. Atomistic modeling of shock-induced void collapse in copper

    Energy Technology Data Exchange (ETDEWEB)

    Davila, L P; Erhart, P; Bringa, E M; Meyers, M A; Lubarda, V A; Schneider, M S; Becker, R; Kumar, M

    2005-03-09

    Nonequilibrium molecular dynamics (MD) simulations show that shock-induced void collapse in copper occurs by emission of shear loops. These loops carry away the vacancies which comprise the void. The growth of the loops continues even after they collide and form sessile junctions, creating a hardened region around the collapsing void. The scenario seen in our simulations differs from current models that assume that prismatic loop emission is responsible for void collapse. We propose a new dislocation-based model that gives excellent agreement with the stress threshold found in the MD simulations for void collapse as a function of void radius.

  2. Luminosity distance in Swiss cheese cosmology with randomized voids. II. Magnification probability distributions

    CERN Document Server

    Flanagan, Éanna É; Wasserman, Ira; Vanderveld, R Ali

    2011-01-01

    We study the fluctuations in luminosity distances due to gravitational lensing by large scale (> 35 Mpc) structures, specifically voids and sheets. We use a simplified "Swiss cheese" model consisting of a \\Lambda -CDM Friedman-Robertson-Walker background in which a number of randomly distributed non-overlapping spherical regions are replaced by mass compensating comoving voids, each with a uniform density interior and a thin shell of matter on the surface. We compute the distribution of magnitude shifts using a variant of the method of Holz & Wald (1998), which includes the effect of lensing shear. The standard deviation of this distribution is ~ 0.027 magnitudes and the mean is ~ 0.003 magnitudes for voids of radius 35 Mpc, sources at redshift z_s=1.0, with the voids chosen so that 90% of the mass is on the shell today. The standard deviation varies from 0.005 to 0.06 magnitudes as we vary the void size, source redshift, and fraction of mass on the shells today. If the shell walls are given a finite thic...

  3. [Fractional flow reserve and instantaneous wave-free ratio for the physiological assessment of coronary artery stenosis in the catheterization laboratory: Practical tips].

    Science.gov (United States)

    Picard, F; Tadros, V X; Pighi, M; Spagnoli, V; De Hemptinne, Q; Ly, H Q

    2017-02-01

    In recent years, a large body of evidence has revealed the limitations of angiographic evaluation in determining the physiological significance of coronary stenosis, particularly when these are intermediate lesions. Percutaneous coronary interventions (PCI) guided by physiological assessment using fractional flow reserve (FFR) have been shown to reduce cardiovascular events when compared to angiography alone. Recently, another coronary physiologic parameter has been introduced: the "instantaneous wave-free ratio" (iFR). In this review, we will discuss the FFR, the iFR, and their use in the functional assessment of coronary stenosis in the cardiac catheterization laboratory. This review will cover theoretical aspects for non-interventional cardiologists, as well as practice points and common pitfalls related to coronary physiological assessment for interventional cardiologists.

  4. Effect of stress-triaxiality on void growth in dynamic fracture of metals: a molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Seppala, E T; Belak, J; Rudd, R E

    2003-10-07

    The effect of stress-triaxiality on growth of a void in a three dimensional single-crystal face-centered-cubic (FCC) lattice has been studied. Molecular dynamics (MD) simulations using an embedded-atom (EAM) potential for copper have been performed at room temperature and using strain controlling with high strain rates ranging from 10{sup 7}/sec to 10{sup 10}/sec. Strain-rates of these magnitudes can be studied experimentally, e.g. using shock waves induced by laser ablation. Void growth has been simulated in three different conditions, namely uniaxial, biaxial, and triaxial expansion. The response of the system in the three cases have been compared in terms of the void growth rate, the detailed void shape evolution, and the stress-strain behavior including the development of plastic strain. Also macroscopic observables as plastic work and porosity have been computed from the atomistic level. The stress thresholds for void growth are found to be comparable with spall strength values determined by dynamic fracture experiments. The conventional macroscopic assumption that the mean plastic strain results from the growth of the void is validated. The evolution of the system in the uniaxial case is found to exhibit four different regimes: elastic expansion; plastic yielding, when the mean stress is nearly constant, but the stress-triaxiality increases rapidly together with exponential growth of the void; saturation of the stress-triaxiality; and finally the failure.

  5. Time dependent voiding mechanisms in polyamide 6 submitted to high stress triaxiality: experimental characterisation and finite element modelling

    Science.gov (United States)

    Selles, Nathan; King, Andrew; Proudhon, Henry; Saintier, Nicolas; Laiarinandrasana, Lucien

    2017-08-01

    Double notched round bars made of semi-crystalline polymer polyamide 6 (PA6) were submitted to monotonic tensile and creep tests. The two notches had a root radius of 0.45 mm, which imposes a multiaxial stress state and a state of high triaxiality in the net (minimal) section of the specimens. Tests were carried out until the failure occurred from one of the notches. The other one, unbroken but deformed under steady strain rate or steady load, was inspected using the Synchrotron Radiation Computed Tomography (SRCT) technique. These 3D through thickness inspections allowed the study of microstructural evolution at the peak stress for the monotonic tensile test and at the beginning of the tertiary creep for the creep tests. Cavitation features were assessed with a micrometre resolution within the notched region. Spatial distributions of void volume fraction ( Vf) and void morphology were studied. Voiding mechanisms were similar under steady strain rates and steady loads. The maximum values of Vf were located between the axis of revolution of the specimens and the notch surface and voids were considered as flat cylinders with a circular basis perpendicular to the loading direction. A model, based on porous plasticity, was used to simulate the mechanical response of this PA6 material under high stress triaxiality. Both macroscopic behaviour (loading curves) and voiding micro-mechanisms (radial distributions of void volume fraction) were accurately predicted using finite element simulations.

  6. Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Tvergaard, Viggo

    2011-01-01

    , subject to shear dominated loading. To account for both length scales involved in this study, a continuum model that includes the softening effect of damage evolution in shear is used to represent the matrix material surrounding the primary voids. Here, a recently extended Gurson-type model is used, which......Failure under intense shearing at close to zero stress triaxiality is widely observed for ductile metallic materials, and is identified in experiments as smeared-out dimples on the fracture surface. Numerical cell-model studies of equal sized voids have revealed that the mechanism governing...... secondary damage that co-exists with or nucleation in the ligaments between larger voids that coalesce during intense shearing. A numerical cell-model study is carried out to gain a parametric understanding of the overall material response for different initial conditions of the two void populations...

  7. Results and applications in thermoelasticity of materials with voids

    Directory of Open Access Journals (Sweden)

    Michele Ciarletta

    1991-05-01

    Full Text Available We consider the linear theory of a thermoelastic porous solid in which the skeletal or matrix is a thermoelastic material and the interstices are void of material. We assume that the initial body is free from stresses. The concept of a distributed body asserts that the mass density at time t has the decomposition γν, where γ is the density of the matrix material and ν (0 In the first part, in order to derive some applications of the reciprocity theorem, we recall some results established by same authors in [3]. Then we obtain integral representations of the solution and prove that the solving of the boundary-initial value problem can be reduced to the solving of an associated uncoupled problem and to an integral equation for the volume fraction field.

  8. Finite-Layer Thickness Stabilizes the Pfaffian State for the 5/2 Fractional Quantum Hall Effect: Wave Function Overlap and Topological Degeneracy

    Science.gov (United States)

    Peterson, Michael

    2009-03-01

    The fractional quantum Hall effect (FQHE) in the second orbital Landau level at even-denominator filling factor 5/2 remains mysterious and is currently motivating many scientists not only because of its connection to a possible implementation of a fault tolerant topological quantum computer (Das Sarma et al., PRL 94, 166802(2005)). In this work, we theoretically consider the effect of the quasi-two-dimensional nature of the experimental fractional quantum Hall systems on a number of FQHE states in the lowest three orbital Landau levels. Our primary result is that the finite width of the quasi-two-dimensional systems produce a physical environment sufficient to stabilize the Moore-Read Pfaffian state thought to describe the FQHE at filling factor 5/2. This conclusion is based on exact calculations performed in the spherical and torus geometries, studying wave function overlap and ground state degeneracy. Furthermore, our results open the possibility of creating optimal experimental systems where the 5/2 FQHE state would more likely be described by the Moore-Read Pfaffian. We also discuss the role of the three-body interaction Hamiltonian that produces the Moore-Read Pfaffian as an exact ground state and particle-hole symmetry in the FQHE at 5/2. We acknowledge support from Microsoft Project Q. Work done in collaboration with Sankar Das Sarma, Thierry Jolicoeur, and Kwon Park.

  9. Fractional Dynamics and Control

    CERN Document Server

    Machado, José; Luo, Albert

    2012-01-01

    Fractional Dynamics and Control provides a comprehensive overview of recent advances in the areas of nonlinear dynamics, vibration and control with analytical, numerical, and experimental results. This book provides an overview of recent discoveries in fractional control, delves into fractional variational principles and differential equations, and applies advanced techniques in fractional calculus to solving complicated mathematical and physical problems.Finally, this book also discusses the role that fractional order modeling can play in complex systems for engineering and science. Discusses how fractional dynamics and control can be used to solve nonlinear science and complexity issues Shows how fractional differential equations and models can be used to solve turbulence and wave equations in mechanics and gravity theories and Schrodinger’s equation  Presents factional relaxation modeling of dielectric materials and wave equations for dielectrics  Develops new methods for control and synchronization of...

  10. A Cosmic Watershed: the WVF Void Detection Technique

    CERN Document Server

    Platen, Erwin; Jones, Bernard J T

    2007-01-01

    On megaparsec scales the Universe is permeated by an intricate filigree of clusters, filaments, sheets and voids, the Cosmic Web. For the understanding of its dynamical and hierarchical history it is crucial to identify objectively its complex morphological components. One of the most characteristic aspects is that of the dominant underdense Voids, the product of a hierarchical process driven by the collapse of minor voids in addition to the merging of large ones. In this study we present an objective void finder technique which involves a minimum of assumptions about the scale, structure and shape of voids. Our void finding method, the Watershed Void Finder (WVF), is based upon the Watershed Transform, a well-known technique for the segmentation of images. Importantly, the technique has the potential to trace the existing manifestations of a void hierarchy. The basic watershed transform is augmented by a variety of correction procedures to remove spurious structure resulting from sampling noise. This study c...

  11. POLAR DISK GALAXY FOUND IN WALL BETWEEN VOIDS

    NARCIS (Netherlands)

    Stanonik, K.; Platen, E.; Aragon-Calvo, M. A.; van Gorkom, J. H.; van de Weygaert, R.; van der Hulst, J. M.; Peebles, P. J. E.

    2009-01-01

    We have found an isolated polar disk galaxy in what appears to be a cosmological wall situated between two voids. This void galaxy is unique as its polar disk was discovered serendipitously in an Hi survey of SDSS void galaxies, with no optical counterpart to the Hi polar disk. Yet the Hi mass in th

  12. Void Coalescence Processes Quantified Through Atomistic and Multiscale Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, R E; Seppala, E T; Dupuy, L M; Belak, J

    2007-01-12

    Simulation of ductile fracture at the atomic scale reveals many aspects of the fracture process including specific mechanisms associated with void nucleation and growth as a precursor to fracture and the plastic deformation of the material surrounding the voids and cracks. Recently we have studied void coalescence in ductile metals using large-scale atomistic and continuum simulations. Here we review that work and present some related investigations. The atomistic simulations involve three-dimensional strain-controlled multi-million atom molecular dynamics simulations of copper. The correlated growth of two voids during the coalescence process leading to fracture is investigated, both in terms of its onset and the ensuing dynamical interactions. Void interactions are quantified through the rate of reduction of the distance between the voids, through the correlated directional growth of the voids, and through correlated shape evolution of the voids. The critical inter-void ligament distance marking the onset of coalescence is shown to be approximately one void radius based on the quantification measurements used, independent of the initial separation distance between the voids and the strain-rate of the expansion of the system. No pronounced shear flow is found in the coalescence process. We also discuss a technique for optimizing the calculation of fine-scale information on the fly for use in a coarse-scale simulation, and discuss the specific case of a fine-scale model that calculates void growth explicitly feeding into a coarse-scale mechanics model to study damage localization.

  13. POLAR DISK GALAXY FOUND IN WALL BETWEEN VOIDS

    NARCIS (Netherlands)

    Stanonik, K.; Platen, E.; Aragon-Calvo, M. A.; van Gorkom, J. H.; van de Weygaert, R.; van der Hulst, J. M.; Peebles, P. J. E.

    2009-01-01

    We have found an isolated polar disk galaxy in what appears to be a cosmological wall situated between two voids. This void galaxy is unique as its polar disk was discovered serendipitously in an Hi survey of SDSS void galaxies, with no optical counterpart to the Hi polar disk. Yet the Hi mass in th

  14. "Dark energy" in the Local Void

    CERN Document Server

    Villata, M

    2012-01-01

    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter ($\\sim5\\times10^{15}\\,M_\\odot$) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require vo...

  15. Design and performance prediction of an impedance void meter applied to the petroleum industry

    Science.gov (United States)

    Rosa, E. S.; Flora, B. F.; Souza, M. A. S. F.

    2012-05-01

    A novel methodology based on numerical simulation is developed for designing a gas-liquid void fraction meter operating on the principle of electrical impedance. The numerical simulations employ software based on the finite volume method. The analysis allowed heuristic optimization of the electrodes’ geometry and also the establishment of the calibration curve according to the electrical properties of the fluids in question. Using dimensional analysis it is possible to reduce the electrical impedance estimates into simple algebraic expressions relating the void fraction to the dimensionless voltage output. Dynamic tests are performed using air and water in order to validate the computational study and verify the performance of the sensor operating at different flow patterns.

  16. Nonlocal plasticity effects on interaction of different size voids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Niordson, Christian Frithiof

    2004-01-01

    A nonlocal elastic-plastic material model is used to show that the rate of void growth is significantly reduced when the voids are small enough to be comparable with a characteristic material length. For a very small void in the material between much larger voids the competition between...... an increased growth rate due to the stress concentrations around the larger voids and a reduced growth rate due to the nonlocal effects is studied. The analyses are based on an axisymmetric unit cell model with special boundary conditions, which allow for a relatively simple investigation of a full three...

  17. The Mechanism of Hydrogen-facilitating Initiation of Voids

    Institute of Scientific and Technical Information of China (English)

    褚武扬; 蒋兴钢; 肖纪美

    1994-01-01

    By combining the hydrogen-induced local plastic deformation theory with the decohesive theory and the hydrogen pressure theory, a new mechanism of hydrogen-facilitating initiation of voids has been proposed. Through facilitating the local plastic deformation and reducing the cohesive strength, hydrogen promotes both initiating a nanocrack and blunting the nanocrack into a void, resulting in hydrogen-promoting initiation of the void. On the other hand, hydrogen can enhance the stability of the void through reducing the cohesive strength and forming a hydrogen pressure in the void.

  18. The Void Galaxy Survey: Photometry, structure and identity of void galaxies

    CERN Document Server

    Beygu, B; van der Hulst, J M; Jarrett, T H; Kreckel, K; van de Weygaert, R; van Gorkom, J H; Aragon-Calvo, M A

    2016-01-01

    We analyze photometry from deep B-band images of 59 void galaxies in the Void Galaxy Survey (VGS), together with their near-infrared 3.6$\\mu$m and 4.5$\\mu$m Spitzer photometry. The VGS galaxies constitute a sample of void galaxies that were selected by a geometric-topological procedure from the SDSS DR7 data release, and which populate the deep interior of voids. Our void galaxies span a range of absolute B-magnitude from $\\rm{M_B=-15.5}$ to $\\rm{M_B=-20}$, while at the 3.6$\\mu$m band their magnitudes range from $\\rm{M_{3.6}=-18}$ to $\\rm{M_{3.6}=-24}$. Their B-[3.6] colour and structural parameters indicate these are star forming galaxies. A good reflection of the old stellar population, the near-infrared band photometry also provide a robust estimate of the stellar mass, which for the VGS galaxies we confirm to be smaller than $3 \\times 10^{10}$ M$_\\odot$. In terms of the structural parameters and morphology, our findings align with other studies in that our VGS galaxy sample consists mostly of small late-t...

  19. Void Coalescence Processes Quantified through Atomistic and Multiscale Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, R E; Seppala, E T; Dupuy, L M; Belak, J

    2005-12-31

    Simulation of ductile fracture at the atomic scale reveals many aspects of the fracture process including specific mechanisms associated with void nucleation and growth as a precursor to fracture and the plastic deformation of the material surrounding the voids and cracks. Recently we have studied void coalescence in ductile metals using large-scale atomistic and continuum simulations. Here we review that work and present some related investigations. The atomistic simulations involve three-dimensional strain-controlled multi-million atom molecular dynamics simulations of copper. The correlated growth of two voids during the coalescence process leading to fracture is investigated, both in terms of its onset and the ensuing dynamical interactions. Void interactions are quantified through the rate of reduction of the distance between the voids, through the correlated directional growth of the voids, and through correlated shape evolution of the voids. The critical inter-void ligament distance marking the onset of coalescence is shown to be approximately one void radius based on the quantification measurements used, independent of the initial separation distance between the voids and the strain-rate of the expansion of the system. No pronounced shear flow is found in the coalescence process.

  20. A Cosmic Void Catalog of SDSS DR12 BOSS Galaxies

    Science.gov (United States)

    Mao, Qingqing; Berlind, Andreas A.; Scherrer, Robert J.; Neyrinck, Mark C.; Scoccimarro, Román; Tinker, Jeremy L.; McBride, Cameron K.; Schneider, Donald P.; Pan, Kaike; Bizyaev, Dmitry; Malanushenko, Elena; Malanushenko, Viktor

    2017-02-01

    We present a cosmic void catalog using the large-scale structure galaxy catalog from the Baryon Oscillation Spectroscopic Survey (BOSS). This galaxy catalog is part of the Sloan Digital Sky Survey (SDSS) Data Release 12 and is the final catalog of SDSS-III. We take into account the survey boundaries, masks, and angular and radial selection functions, and apply the ZOBOV void finding algorithm to the Galaxy catalog. We identify a total of 10,643 voids. After making quality cuts to ensure that the voids represent real underdense regions, we obtain 1,228 voids with effective radii spanning the range 20–100 {h}-1 {Mpc} and with central densities that are, on average, 30% of the mean sample density. We release versions of the catalogs both with and without quality cuts. We discuss the basic statistics of voids, such as their size and redshift distributions, and measure the radial density profile of the voids via a stacking technique. In addition, we construct mock void catalogs from 1000 mock galaxy catalogs, and find that the properties of BOSS voids are in good agreement with those in the mock catalogs. We compare the stellar mass distribution of galaxies living inside and outside of the voids, and find no large difference. These BOSS and mock void catalogs are useful for a number of cosmological and galaxy environment studies.

  1. Voiding dysfunction in children aged five to 15 years

    Directory of Open Access Journals (Sweden)

    Karaklajić Dragana

    2004-01-01

    Full Text Available Voiding dysfunction in children was analyzed in 91 patients in a period from January 1st to October 1st 1998. Most of the patients had functional voiding disorder (92.31%, and only 7.69% manifested monosymptomatic night enuresis. The number of girls was bigger in the group of patients with voiding dysfunction while the boys were predominant in the group with mono-symptomatic nocturnal enuresis. More than a half of children with functional voiding disorder had repeated urinal infections (58.23%, incontinence (93.49%, need for urgent voiding (68.13%, and vesicoureteral reflux (47.61%. The most common type of voiding dysfunction was urge syndrome/urge incontinence. The incidence of dysfunctional voiding disorder was more often in children with scaring changes of kidney which were diagnosed by static scintigraphy.

  2. The void galaxy survey: photometry, structure and identity of void galaxies

    Science.gov (United States)

    Beygu, B.; Peletier, R. F.; van der Hulst, J. M.; Jarrett, T. H.; Kreckel, K.; van de Weygaert, R.; van Gorkom, J. H.; Aragon-Calvo, M. A.

    2017-01-01

    We analyse photometry from deep B-band images of 59 void galaxies in the Void Galaxy Survey (VGS), together with their near-infrared 3.6 μm and 4.5 μm Spitzer photometry. The VGS galaxies constitute a sample of void galaxies that were selected by a geometric-topological procedure from the Sloan Digital Sky Survey Data Release 7 data release, and which populate the deep interior of voids. Our void galaxies span a range of absolute B-magnitude from MB = -15.5 to -20, while at the 3.6 μm band their magnitudes range from M3.6 = -18 to -24. Their B-[3.6] colour and structural parameters indicate these are star-forming galaxies. A good reflection of the old stellar population, the near-infrared band photometry also provide a robust estimate of the stellar mass, which for the VGS galaxies we confirm to be smaller than 3 × 1010 M⊙. In terms of the structural parameters and morphology, our findings align with other studies in that our VGS galaxy sample consists mostly of small late-type galaxies. Most of them are similar to Sd-Sm galaxies, although a few are irregularly shaped galaxies. The sample even includes two early-type galaxies, one of which is an AGN. Their Sérsic indices are nearly all smaller than n = 2 in both bands and they also have small half-light radii. In all, we conclude that the principal impact of the void environment on the galaxies populating them mostly concerns their low stellar mass and small size.

  3. The Void Galaxy Survey: Galaxy Evolution and Gas Accretion in Voids

    Science.gov (United States)

    Kreckel, Kathryn; van Gorkom, Jacqueline H.; Beygu, Burcu; van de Weygaert, Rien; van der Hulst, J. M.; Aragon-Calvo, Miguel A.; Peletier, Reynier F.

    2016-10-01

    Voids represent a unique environment for the study of galaxy evolution, as the lower density environment is expected to result in shorter merger histories and slower evolution of galaxies. This provides an ideal opportunity to test theories of galaxy formation and evolution. Imaging of the neutral hydrogen, central in both driving and regulating star formation, directly traces the gas reservoir and can reveal interactions and signs of cold gas accretion. For a new Void Galaxy Survey (VGS), we have carefully selected a sample of 59 galaxies that reside in the deepest underdensities of geometrically identified voids within the SDSS at distances of ~100 Mpc, and pursued deep UV, optical, Hα, IR, and HI imaging to study in detail the morphology and kinematics of both the stellar and gaseous components. This sample allows us to not only examine the global statistical properties of void galaxies, but also to explore the details of the dynamical properties. We present an overview of the VGS, and highlight key results on the HI content and individually interesting systems. In general, we find that the void galaxies are gas rich, low luminosity, blue disk galaxies, with optical and HI properties that are not unusual for their luminosity and morphology. We see evidence of both ongoing assembly, through the gas dynamics between interacting systems, and significant gas accretion, seen in extended gas disks and kinematic misalignments. The VGS establishes a local reference sample to be used in future HI surveys (CHILES, DINGO, LADUMA) that will directly observe the HI evolution of void galaxies over cosmic time.

  4. Collapse of elongated voids in porous energetic materials: Effects of void orientation and aspect ratio on initiation

    Science.gov (United States)

    Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.

    2017-04-01

    The sensitivity of porous energetic materials depends on mesostructural heterogeneities such as voids, defects, cracks, and grain boundaries. The mesostructure of pressed explosives contains voids of arbitrary shapes including elongated voids of various orientations and aspect ratios. Mesoscale simulations to date have analyzed the effect of void morphology on the sensitivity of energetic materials for idealized shapes such as cylindrical, conical, and elliptical. This work analyzes the sensitivity behavior of elongated voids in an HMX matrix subject to shock loading. Simulations show that sensitivity of elongated voids depends strongly on orientation as well as aspect ratio. Ranges of orientations and aspects ratios are identified that enhance or inhibit initiation. Insights obtained from single elongated void analyses are used to identify sensitive locations in an imaged mesostructure of a pressed explosive sample.

  5. Detection of Molecular Gas in Void Galaxies : Implications for Star Formation in Isolated Environments

    CERN Document Server

    Das, M; Iono, D; Honey, M; Ramya, S

    2015-01-01

    We present the detection of molecular gas from galaxies located in nearby voids using the CO line emission as a tracer. The observations were done using the 45m Nobeyama Radio Telescope. Void galaxies lie in the most under dense parts of our universe and a significant fraction of them are gas rich, late type spiral galaxies. Although isolated, they have ongoing star formation but appear to be slowly evolving compared to galaxies in denser environments. Not much is known about their star formation properties or cold gas content. In this study we searched for molecular gas in five void galaxies. The galaxies were selected based on their relatively high IRAS fluxes or Ha line luminosities, both of which signify ongoing star formation. All five galaxies appear to be isolated and two lie within the Bootes void. We detected CO line emission from four of the five galaxies in our sample and the molecular gas masses lie between 10^8 to 10^9 Msolar. We did follow-up Ha imaging observations of three detected galaxies us...

  6. The view from the boundary: a new void stacking method

    CERN Document Server

    Cautun, Marius; Frenk, Carlos S

    2015-01-01

    We introduce a new method for stacking voids and deriving their profile that greatly increases the potential of voids as a tool for precision cosmology. Given that voids are highly non-spherical and have most of their mass at their edge, voids are better described relative to their boundary rather than relative to their centre, as in the conventional spherical stacking approach. The boundary profile is obtained by computing the distance of each volume element from the void boundary. Voids can then be stacked and their profiles computed as a function of this boundary distance. This approach enhances the weak lensing signal of voids, both shear and convergence, by a factor of two when compared to the spherical stacking method. It also results in steeper void density profiles that are characterised by a very slow rise inside the void and a pronounced density ridge at the void boundary, in qualitative agreement with theoretical models of expanding spherical underdensities. The resulting boundary density profile i...

  7. Voids in Ly{\\alpha} Forest Tomographic Maps

    CERN Document Server

    Stark, Casey W; White, Martin; Lee, Khee-Gan

    2015-01-01

    We present a new method of finding cosmic voids using tomographic maps of Ly{\\alpha} forest flux. We identify cosmological voids with radii of 2 - 12 $h^{-1}$Mpc in a large N-body simulation at $z = 2.5$, and characterize the signal of the high-redshift voids in density and Ly{\\alpha} forest flux. The void properties are similar to what has been found at lower redshifts, but they are smaller and have steeper radial density profiles. Similarly to what has been found for low-redshift voids, the radial velocity profiles have little scatter and agree very well with the linear theory prediction. We run the same void finder on an ideal Ly{\\alpha} flux field and tomographic reconstructions at various spatial samplings. We compare the tomographic map void catalogs to the density void catalog and find good agreement even with modest-sized voids ($r > 6 \\, h^{-1}$Mpc). Using our simple void-finding method, the configuration of the ongoing CLAMATO survey covering 1 deg$^2$ would provide a sample of about 100 high-redshi...

  8. The sparkling Universe: the coherent motions of cosmic voids

    CERN Document Server

    Lambas, Diego G; Ceccarelli, Laura; Ruiz, Andrés N; Paz, Dante J; Maldonado, Victoria E; Luparello, Heliana E

    2015-01-01

    We compute the bulk motions of cosmic voids, using a $\\Lambda$CDM numerical simulation considering the mean velocities of the dark matter inside the void itself and that of the haloes in the surrounding shell. We find coincident values of these two measures in the range $\\sim$ 300-400 km/s, not far from the expected mean peculiar velocities of groups and galaxy clusters. When analysing the distribution of the pairwise relative velocities of voids, we find a remarkable bimodal behaviour consistent with an excess of both systematically approaching and receding voids. We determine that the origin of this bimodality resides in the void large scale environment, since once voids are classified into void-in-void (R-type) or void-in-cloud (S-type), R-types are found mutually receding away, while S-types approach each other. The magnitude of these systematic relative velocities account for more than 100 km/s, reaching large coherence lengths of up to 200 h$^{-1}$ Mpc . We have used samples of voids from the Sloan Digi...

  9. Packing fraction of particles with a Weibull size distribution

    Science.gov (United States)

    Brouwers, H. J. H.

    2016-07-01

    This paper addresses the void fraction of polydisperse particles with a Weibull (or Rosin-Rammler) size distribution. It is demonstrated that the governing parameters of this distribution can be uniquely related to those of the lognormal distribution. Hence, an existing closed-form expression that predicts the void fraction of particles with a lognormal size distribution can be transformed into an expression for Weibull distributions. Both expressions contain the contraction coefficient β. Likewise the monosized void fraction φ1, it is a physical parameter which depends on the particles' shape and their state of compaction only. Based on a consideration of the scaled binary void contraction, a linear relation for (1 - φ1)β as function of φ1 is proposed, with proportionality constant B, depending on the state of compaction only. This is validated using computational and experimental packing data concerning random close and random loose packing arrangements. Finally, using this β, the closed-form analytical expression governing the void fraction of Weibull distributions is thoroughly compared with empirical data reported in the literature, and good agreement is found. Furthermore, the present analysis yields an algebraic equation relating the void fraction of monosized particles at different compaction states. This expression appears to be in good agreement with a broad collection of random close and random loose packing data.

  10. Baryon effects on void statistics in the EAGLE simulation

    Science.gov (United States)

    Paillas, Enrique; Lagos, Claudia D. P.; Padilla, Nelson; Tissera, Patricia; Helly, John; Schaller, Matthieu

    2017-10-01

    Cosmic voids are promising tools for cosmological tests due to their sensitivity to dark energy, modified gravity and alternative cosmological scenarios. Most previous studies in the literature of void properties use cosmological N-body simulations of dark matter (DM) particles that ignore the potential effect of baryonic physics. Using a spherical underdensity finder, we analyse voids using the mass field and subhalo tracers in the Evolution and Assembly of Galaxies and their Environment (EAGLE) simulations, which follow the evolution of galaxies in a Λ cold dark matter universe with state-of-the-art subgrid models for baryonic processes in a (100 cMpc)3 volume. We study the effect of baryons on void statistics by comparing results with DM-only simulations that use the same initial conditions as EAGLE. When identifying voids in the mass field, we find that a DM-only simulation produces 24 per cent more voids than a hydrodynamical one due to the action of galaxy feedback polluting void regions with hot gas, specially for small voids with rvoid ≤ 10 Mpc. We find that the way in which galaxy tracers are selected has a strong impact on the inferred void properties. Voids identified using galaxies selected by their stellar mass are larger and have cuspier density profiles than those identified by galaxies selected by their total mass. Overall, baryons have minimal effects on void statistics, as void properties are well captured by DM-only simulations, but it is important to account for how galaxies populate DM haloes to estimate the observational effect of different cosmological models on the statistics of voids.

  11. The Void Galaxy Survey: Galaxy Evolution and Gas Accretion in Voids

    NARCIS (Netherlands)

    Kreckel, Kathryn; van Gorkom, Jacqueline H.; Beygu, Burcu; van de Weijgaert, Marinus; van der Hulst, J. M.; Aragon-Calvo, Miguel A.; Peletier, Reynier F.

    2014-01-01

    Voids represent a unique environment for the study of galaxy evolution, as the lower density environment is expected to result in shorter merger histories and slower evolution of galaxies. This provides an ideal opportunity to test theories of galaxy formation and evolution. Imaging of the neutral h

  12. The Void Galaxy Survey: Galaxy Evolution and Gas Accretion in Voids

    CERN Document Server

    Kreckel, Kathryn; Beygu, Burcu; van de Weygaert, Rien; van der Hulst, J M; Aragon-Calvo, Miguel A; Peletier, Reynier F

    2014-01-01

    Voids represent a unique environment for the study of galaxy evolution, as the lower density environment is expected to result in shorter merger histories and slower evolution of galaxies. This provides an ideal opportunity to test theories of galaxy formation and evolution. Imaging of the neutral hydrogen, central in both driving and regulating star formation, directly traces the gas reservoir and can reveal interactions and signs of cold gas accretion. For a new Void Galaxy Survey (VGS), we have carefully selected a sample of 59 galaxies that reside in the deepest underdensities of geometrically identified voids within the SDSS at distances of ~100 Mpc, and pursued deep UV, optical, Halpha, IR, and HI imaging to study in detail the morphology and kinematics of both the stellar and gaseous components. This sample allows us to not only examine the global statistical properties of void galaxies, but also to explore the details of the dynamical properties. We present an overview of the VGS, and highlight key re...

  13. The Void Galaxy Survey: Morphology and Star Formation Properties of Void Galaxies

    CERN Document Server

    Beygu, B; van der Hulst, J M; Peletier, R; Jarrett, T; van de Weygaert, R; van Gorkom, J H; Aragón-Calvo, M

    2015-01-01

    We present the structural and star formation properties of 59 void galaxies as part of the Void Galaxy Survey (VGS). Our aim is to study in detail the physical properties of these void galaxies and study the effect of the void environment on galaxy properties. We use Spitzer 3.6 $\\rm{\\mu m}$ and B-band imaging to study the morphology and color of the VGS galaxies. For their star formation properties, we use Halpha and GALEX near-UV imaging. We compare our results to a range of galaxies of different morphologies in higher density environments. We find that the VGS galaxies are in general disk dominated and star forming galaxies. Their star formation rates are, however, often less than 1 $\\rm{M_{\\odot}}$ $\\rm{yr^{-1}}$. There are two early-type galaxies in our sample as well. In $\\rm{r_{e}}$ versus $\\rm{M_{B}}$ parameter space, VGS galaxies occupy the same space as dwarf irregulars and spirals.

  14. The Void Galaxy Survey: Star Formation Properties

    CERN Document Server

    Beygu, B; van der Hulst, J M; Jarrett, T H; Peletier, R; van de Weygaert, R; van Gorkom, J H; Aragon-Calvo, M A

    2016-01-01

    We study the star formation properties of 59 void galaxies as part of the Void Galaxy Survey (VGS). Current star formation rates are derived from $\\rm{H\\alpha}$ and recent star formation rates from near-UV imaging. In addition, infrared 3.4 $\\rm{\\mu m}$, 4.6 $\\rm{\\mu m}$, 12 $\\rm{\\mu m}$ and 22 $\\rm{\\mu m}$ WISE emission is used as star formation and mass indicator. Infrared and optical colours show that the VGS sample displays a wide range of dust and metallicity properties. We combine these measurements with stellar and HI masses to measure the specific SFRs ($\\rm{SFR/M_{*}}$) and star formation efficiencies ($\\rm{SFR/M_{HI}}$). We compare the star formation properties of our sample with galaxies in the more moderate density regions of the cosmic web, 'the field'. We find that specific SFRs of the VGS galaxies as a function of stellar and HI mass are similar to those of the galaxies in these field regions. Their $\\rm{SFR\\alpha}$ is slightly elevated than the galaxies in the field for a given total HI mass. ...

  15. Ductile damage of porous materials with two populations of voids

    Science.gov (United States)

    Vincent, Pierre-Guy; Monerie, Yann; Suquet, Pierre

    2008-01-01

    This study is devoted to the modelling of ductile damage in uranium dioxide. This polycrystalline material contains two populations of voids of well separated size. The problem addressed here is the prediction of the effective flow surface of a Gurson material containing randomly oriented oblate voids. The case of spherical voids is considered first and the variational approach of Gurson is generalized by adding a compressible component to his original velocity field. The case of aligned oblate voids is then considered and a suitable generalization of a velocity field due to Gologanu et al. (ASME J. Engrg. Mater. Technol. 116 (1994) 290-297) is proposed. The extension to randomly oriented voids is achieved by averaging over all orientations. In each case, rigorous upper bounds and approximate estimates are derived and compared (in the case of spherical voids) with Finite Element simulations. To cite this article: P.-G. Vincent et al., C. R. Mecanique 336 (2008).

  16. Voids and the Cosmic Web: cosmic depressions & spatial complexity

    CERN Document Server

    van de Weygaert, Rien

    2016-01-01

    Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do they represent a key constituent of the Cosmic Web, they also are one of the cleanest probes and measures of global cosmological parameters. The shape and evolution of voids are highly sensitive to the nature of dark energy, while their substructure and galaxy population provides a direct key to the nature of dark matter. Also, the pristine environment of void interiors is an important testing ground for our understanding of environmental influences on galaxy formation and evolution. In this paper, we review the key aspects of the structure and dynamics of voids, with a particular focus on the hierarchical evolution of the void population. We demonstrate how the rich structural pattern of the Cosmic Web is related to the complex evolution and buildup of voids.

  17. Void alignment and density profile applied to measuring cosmological parameters

    CERN Document Server

    Dai, De-Chang

    2015-01-01

    We study the orientation and density profiles of the cosmological voids with SDSS10 data. Using voids to test Alcock-Paczynski effect has been proposed and tested in both simulations and actual SDSS data. Previous observations imply that there exist an empirical stretching factor which plays an important role in the voids' orientation. Simulations indicate that this empirical stretching factor is caused by the void galaxies' peculiar velocities. Recently Hamaus et al. found that voids' density profiles are universal and their average velocities satisfy linear theory very well. In this article we first confirm that the stretching effect exists using independent analysis. We then apply the universal density profile to measure the cosmological parameters. We find that the void density profile can be a tool to measure the cosmological parameters.

  18. Assessment of left anterior descending artery stenosis of intermediate severity by fractional flow reserve, instantaneous wave-free ratio, and non-invasive coronary flow reserve.

    Science.gov (United States)

    Meimoun, P; Clerc, J; Ardourel, D; Djou, U; Martis, S; Botoro, T; Elmkies, F; Zemir, H; Luycx-Bore, A; Boulanger, J

    2016-10-17

    To test the usefulness of non-invasive coronary flow reserve (CFR) by transthoracic Doppler echocardiography by comparison to invasive fractional flow reserve (FFR) and instantaneous wave-free ratio (IFR), a new vasodilator-free index of coronary stenosis severity, in patients with left anterior descending artery (LAD) stenosis of intermediate severity (IS) and stable coronary artery disease. 94 consecutive patients (mean age 68 ± 10 years) with angiographic LAD stenosis of IS (50-70 % diameter stenosis), were prospectively studied. IFR was calculated as a trans-lesion pressure ratio during the wave-free period in diastole; FFR as distal pressure divided by mean aortic pressure during maximal hyperemia (using 180 μg intracoronary adenosine); and CFR as hyperemic peak LAD flow velocity divided by baseline flow velocity using intravenous adenosine (140 μg/kg/min over 2 min). The mean values of IFR, FFR, and CFR were 0.88 ± 0.07, 0.81 ± 0.09, and 2.4 ± 0.6 respectively. A significant correlation was found between CFR and FFR (r = 0. 68), FFR and IFR (r = 0.6), and between CFR and IFR (r = 0.5) (all, p < 0.01). Using a ROC curve analysis, the best cut-off to detect a significant lesion based on FFR assessment (FFR ≤ 0.8, n = 31) was IFR ≤ 0.88 with a sensitivity (Se) of 74 %, specificity (Sp) of 73 %, AUC 0.81 ± 0.04, accuracy 72 %; and CFR ≤ 2 with a Se = 77 %, Sp = 89 %, AUC 0.88 ± 0.04, accuracy 85 % (all, p < 0.001). In stable patients with LAD stenosis of IS, non-invasive CFR is a useful tool to detect a significant lesion based on FFR. Furthermore, there was a better correlation between CFR and FFR than between CFR and IFR, and a trend to a better diagnostic performance for CFR versus IFR.

  19. DETECTION OF MOLECULAR GAS IN VOID GALAXIES: IMPLICATIONS FOR STAR FORMATION IN ISOLATED ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Das, M.; Honey, M. [Indian Institute of Astrophysics, Bangalore (India); Saito, T. [Department of Astronomy, Graduate school of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-0033 (Japan); Iono, D. [Chile Observatory, NAOJ (Japan); Ramya, S., E-mail: mousumi@iiap.res.in [Shanghai Astronomical Observatory, Shanghai (China)

    2015-12-10

    We present the detection of molecular gas from galaxies located in nearby voids using the CO(1–0) line emission as a tracer. The observations were performed using the 45 m single dish radio telescope of the Nobeyama Radio Observatory. Void galaxies lie in the most underdense parts of our universe and a significant fraction of them are gas rich, late-type spiral galaxies. Although isolated, they have ongoing star formation but appear to be slowly evolving compared to galaxies in denser environments. Not much is known about their star formation properties or cold gas content. In this study, we searched for molecular gas in five void galaxies. The galaxies were selected based on their relatively high IRAS fluxes or Hα line luminosities, both of which signify ongoing star formation. All five galaxies appear to be isolated and two lie within the Bootes void. We detected CO(1–0) emission from four of the five galaxies in our sample and their molecular gas masses lie between 10{sup 8} and 10{sup 9} M{sub ⊙}. We conducted follow-up Hα imaging observations of three detected galaxies using the Himalayan Chandra Telescope and determined their star formation rates (SFRs) from their Hα fluxes. The SFR varies from 0.2 to 1 M{sub ⊙} yr{sup −1}; which is similar to that observed in local galaxies. Our study indicates that although void galaxies reside in underdense regions, their disks contain molecular gas and have SFRs similar to galaxies in denser environments. We discuss the implications of our results.

  20. An observational detection of the bridge effect of void filaments

    CERN Document Server

    Shim, Junsup; Hoyle, Fiona

    2015-01-01

    The bridge effect of void filaments is a phrase coined by Park & Lee (2009b) to explain the correlations found in a numerical experiment between the luminosity of the void galaxies and the degree of the straightness of their host filaments. Their numerical finding implies that a straight void filament provides a narrow channel for the efficient transportation of gas and matter particles from the surroundings into the void galaxies. To observationally confirm the presence of the bridge effect of void filaments, we identify the filamentary structures from the Sloan void catalog and determine the specific size of each void filament as a measure of its straightness. Using both classical and Bayesian statistics, we indeed detect a strong tendency that the void galaxies located in the more straight filaments are on average more luminous, which is in agreement with the numerical prediction. It is also shown that the strength of correlation increases with the spatial extent of the void filaments, which can be phy...

  1. On de-Sitter Geometry in Cosmic Void Statistics

    CERN Document Server

    Gibbons, Gary W; Yoshida, Naoki; Chon, Sunmyon

    2013-01-01

    Starting from the geometrical concept of a 4-dimensional de-Sitter configuration of spheres in Euclidean 3-space and modelling voids in the Universe as spheres, we show that a uniform distribution over this configuration space implies a power-law for the void number density which is consistent with results from the excursion set formalism and from data, for an intermediate range of void volumes. We also discuss the effect of restricting the survey geometry on the void statistics. This work is a new application of de-Sitter geometry to cosmology and also provides a new geometrical perspective on self-similarity in cosmology.

  2. The sparkling Universe: a scenario for cosmic void motions

    CERN Document Server

    Ceccarelli, Laura; Lares, Marcelo; Paz, Dante J; Maldonado, Victoria E; Luparello, Heliana E; Lambas, Diego Garcia

    2015-01-01

    We perform a statistical study of the global motion of cosmic voids using both a numerical simulation and observational data. We analyse their relation to large--scale mass flows and the physical effects that drive those motions. We analyse the bulk motions of voids, defined by the mean velocity of haloes in the surrounding shells in the numerical simulation, and by galaxies in the Sloan Digital Sky Survey Data Release 7. We find void mean bulk velocities close to 400 km/s, comparable to those of haloes (~ 500-600 km/s), depending on void size and the large--scale environment. Statistically, small voids move faster than large ones, and voids in relatively higher density environments have higher bulk velocities than those placed in large underdense regions. Also, we analyze the mean mass density around voids finding, as expected, large--scale overdensities (underdensities) along (opposite to) the void motion direction, suggesting that void motions respond to a pull--push mechanism. This contrasts with massive ...

  3. New Statistical Perspective to The Cosmic Void Distribution

    CERN Document Server

    Pycke, Jean-Renaud

    2016-01-01

    In this study, we obtain the size distribution of voids as a 3-parameter redshift independent log-normal void probability function (VPF) directly from the Cosmic Void Catalog (CVC). Although many statistical models of void distributions are based on the counts in randomly placed cells, the log-normal VPF that we here obtain is independent of the shape of the voids due to the parameter-free void finder of the CVC. We use three void populations drawn from the CVC generated by the Halo Occupation Distribution (HOD) Mocks which are tuned to three mock SDSS samples to investigate the void distribution statistically and the effects of the environments on the size distribution. As a result, it is shown that void size distributions obtained from the HOD Mock samples are satisfied by the 3-parameter log-normal distribution. In addition, we find that there may be a relation between hierarchical formation, skewness and kurtosis of the log-normal distribution for each catalog. We also show that the shape of the 3-paramet...

  4. A study of process induced voids in resistance welding of thermoplastic composites

    OpenAIRE

    Shi, H.; Fernandez Villegas, I.; Bersee, H.E.N.

    2015-01-01

    Void formation in resistance welding of woven fabric reinforced thermoplastic composites was investigated. Void contents were measured using optical microscopy and digital image process. Un-even void distributions were observed in the joints, and more voids were found in the middle of the joints than the edges. A higher welding pressure was shown to help reduce the void generation. The mechanisms of void formation, in particular fibre de-compaction induced voids and residual moisture induced ...

  5. Effects of voids on delamination behavior under static and fatigue mode I and mode II

    Science.gov (United States)

    Abdelal, Nisrin Rizek

    Composite materials have become materials of choice for wind turbine blade manufacturing due to their high specific stiffness, strength and fatigue life. Glass fiber composites are used extensively in light-weight structural components for wind turbines, aircrafts, marine craft and high performance automobile because glass fiber is inexpensive and usually provides high strength to weight ratio and good in-plane mechanical properties. The high cycle fatigue resistance of composite materials used in wind turbine blades has been recognized as a major uncertainty in predicting the reliability of wind turbines over their design lifetime. Blades are expected to experience 108 to 109 fatigue cycles over a 20 to 30 year lifetime. Delamination or interlaminar failure is a serious failure mode observed in composite structures. Even partial delamination will lead to a loss of local stiffness, which can preclude buckling failure. Manufacturing process defects such as voids and fiber waviness degrade the fatigue life and delamination resistance of the blade's composite. This research describes the effect of voids on static and fatigue interlaminar fracture behavior under mode I and mode II loading of wind turbine glass fiber composites. Samples with different void volume fractions in the 0.5%-7% range were successfully obtained by varying the vacuum in the hand layup vacuum bagging manufacturing process. Void content was characterized using four different methods; ultrasonic scanning, epoxy burn off, serial sectioning and X-Ray computed tomography. The effect of voids on both mode I and mode II interlaminar fracture toughness under static and fatigue loading was investigated. Finally, fractographic analysis (using optical and scanning electron microscopy) was conducted. The results showed that voids leads to slight reduction in static modes I and II interlaminar fracture toughness. In addition, voids lead to a decrease in modes I and II maximum cyclic strain energy release

  6. Behaviour of voids in a shear field

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2009-01-01

    to a plane connecting the ends of the micro-crack is used as an approximate representation of contact stresses during frictionless sliding. In a previous study of the same problem the author applied hydrostatic pressure inside the nearly closed micro-crack to approximate contact conditions. The transverse...... surface loads used in the present analyses avoid the tendency to unrealistically elongate the voids. It is found that even though the model applied here gives significantly later occurrence of a maximum overall shear stress than that found by using hydrostatic pressure, the present model does predict...... a maximum in all the cases analyzed and thus illustrates the micro-mechanism leading to failure of the material by localization of plastic flow....

  7. Formation of Voids from Negative Density Perturbations

    Science.gov (United States)

    de Araujo, J. C. N.; Opher, R.

    1990-11-01

    RESUMEN. Se estudia la formaci6n de huecos a partir de un espectro negativo de perturbaciones, tomando en cuenta la expansi6n del Universo, arrastre por fotones, enfriamiento por fotones, fotoionizaci6n, ioniza- ci6n colisional, enfriamiento Lyman a y la formaci6n y enfriamiento de moleculas H2. Nuestros resultados predicen la existencia de regiones 1/10 de Ia densidad promedio para regiones de masa lO - 1O10M . ABSTRACT. In the present paer we study the formation of voids from a negative spectrum of perturbations taking into account the expansion of the Universe, photon-drag, photon-cooling, photoionization, collisional ionization, Lyman a cooling and the formation and cooling of 112 molecules. Our results predict the existence of regions 1/10 the average density for regions of mass 1O - 1O10M@ : CLUSTERS-GALAXIES - COSMOLOGY

  8. a Study of the Effect of Potting Voids on the Fragmentation of AN Explosively Driven Nitinol Shell

    Science.gov (United States)

    Mukerji, R. J.; Myers, S. A.; Whiteman, G.

    2007-12-01

    An experiment was assembled to observe the effect of potting voids on the fragmentation of a Nitinol shell. The Nitinol shell was subjected to shock loading using a high explosive (HE) drive such that it would experience a near biaxial expansion. In between the HE and Nitinol was positioned a 0.5 mm thick layer of potting (Sylgard 184), in which two circular voids were sectioned, (⌀ 11.1 mm and ⌀ 19.1 mm). It was observed that as the shock wave sweeps across the coupon from the centre to the edge, the potting voids cause premature fracture of the Nitinol on the outer most point from detonation. The coupon then proceeds to fracture around the void from this point. It is believed that this was due to the build up of detonation products on the outer edge of the void. In addition, a strong effect on the orientation of the fragments was also noticed. This is believed to be due to the directional rolling of the material prior to it being pressed into the coupon imposing an anisotropy on the micro-structure of the material.

  9. Determination of the equivalent intergranular void ratio - Application to the instability and the critical state of silty sand

    Science.gov (United States)

    Nguyen, Trung-Kien; Benahmed, Nadia; Hicher, Pierre-Yves

    2017-06-01

    This paper presents an experimental study of mechanical response of natural Camargue silty sand. The analysis of test results used the equivalent intergranular void ratio instead of the global void ratio. The calculation of equivalent intergranular void ratio requires the determination of parameter b which represents, physically, the fraction of active fines participating on the chain forces network, hence the strength of the soil. A new formula for determining the parameter b by using an approach based on the coordination number distribution and probability calculation is proposed. The validation of the developed relationship was done through back-analysis of published datasets in literature on the effect of fines content on silty sand behavior. It is shown that the equivalent intergranular void ratio calculated with the b value obtained by the new formula is able to provide strong correlation to not only the critical state of but also the onset of instability of various silty sands, in different terms as peak deviator stress, peak stress ratio or cyclic resistance. Therefore, it is suggested that the use of the equivalent void ratio concept and the new b calculating formula is highly desirable in predicting of the silty sand behavior.

  10. Determination of the equivalent intergranular void ratio - Application to the instability and the critical state of silty sand

    Directory of Open Access Journals (Sweden)

    Nguyen Trung-Kien

    2017-01-01

    Full Text Available This paper presents an experimental study of mechanical response of natural Camargue silty sand. The analysis of test results used the equivalent intergranular void ratio instead of the global void ratio. The calculation of equivalent intergranular void ratio requires the determination of parameter b which represents, physically, the fraction of active fines participating on the chain forces network, hence the strength of the soil. A new formula for determining the parameter b by using an approach based on the coordination number distribution and probability calculation is proposed. The validation of the developed relationship was done through back-analysis of published datasets in literature on the effect of fines content on silty sand behavior. It is shown that the equivalent intergranular void ratio calculated with the b value obtained by the new formula is able to provide strong correlation to not only the critical state of but also the onset of instability of various silty sands, in different terms as peak deviator stress, peak stress ratio or cyclic resistance. Therefore, it is suggested that the use of the equivalent void ratio concept and the new b calculating formula is highly desirable in predicting of the silty sand behavior.

  11. Measuring the growth rate of structure around cosmic voids

    Science.gov (United States)

    Hawken, A. J.; Michelett, D.; Granett, B.; Iovino, A.; Guzzo, L.

    2016-10-01

    Using an algorithm based on searching for empty spheres we identified 245 voids in the VIMOS Public Extragalactic Redshift Survey (VIPERS). We show how by modelling the anisotropic void-galaxy cross correlation function we can probe the growth rate of structure.

  12. An Interacting Galaxy System along a Filament in a Void

    NARCIS (Netherlands)

    Beygu, B.; Kreckel, K.; van de Weijgaert, R.; van der Hulst, J. M.; van Gorkom, J. H.

    2013-01-01

    Cosmological voids provide a unique environment for the study of galaxy formation and evolution. The galaxy population in their interiors has properties significantly different from average field galaxies. As part of our Void Galaxy Survey (VGS), we have found a system of three interacting galaxies

  13. A Cosmic Void Catalog of SDSS DR12 BOSS Galaxies

    CERN Document Server

    Mao, Qingqing; Scherrer, Robert J; Scoccimarro, Roman; Tinker, Jeremy L; McBride, Cameron K; Neyrinck, Mark C; Schneider, Donald P; Pan, Kaike; Bizyaev, Dmitry; Malanushenko, Elena; Malanushenko, Viktor

    2016-01-01

    We present a cosmic void catalog using the large-scale structure galaxy catalog from the Baryon Oscillation Spectroscopic Survey (BOSS). This galaxy catalog is part of the Sloan Digital Sky Survey (SDSS) Data Release 12 and is the final catalog of SDSS-III. We take into account the survey boundaries, masks, and angular and radial selection functions, and apply the ZOBOV void finding algorithm to the galaxy catalog. After making quality cuts to ensure that the voids represent real underdense regions, we identify 1228 voids with effective radii spanning the range 20-100Mpc/h and with central densities that are, on average, 30% of the mean sample density. We discuss the basic statistics of voids, such as their size and redshift distributions, and measure the radial density profile of the voids via a stacking technique. In addition, we construct mock void catalogs from 1000 mock galaxy catalogs, and find that the properties of BOSS voids are in good agreement with those in the mock catalogs. We compare the stella...

  14. Voided stain on paper method for analysis of mouse urination.

    Science.gov (United States)

    Sugino, Y; Kanematsu, A; Hayashi, Y; Haga, H; Yoshimura, N; Yoshimura, K; Ogawa, O

    2008-01-01

    To evaluate the usefulness of a quantification method using filter paper for analyzing minute voided urine of the mouse. Voided stain on paper (VSOP) method; the correlation between area of stained spot on a filter paper and amount of applied liquid was calculated. Voiding behavior of the mice was analyzed by placing the animal above the same filter paper and recording voided time and area over 2 hr. The usefulness of the VSOP method was tested in analysis of the voiding behavior of five female 7-week-old ddY mice treated with cyclophosphamide (CPM, 150 mg/kg, intraperitoneally) and five control ones, in comparison with the histology of CPM-induced cystitis. Further, the voided volume of male and female ddY mouse ranging from 2 to 13 weeks was assessed. There was a linear correlation between liquid volume and stained area on the filter paper (y = 16.472x - 22.411, R(2) = 0.9981). Between control mice and those with histologically proven CPM cystitis, there was a significant difference in voided volume (362.7 +/- 51.9 and 127.8 +/- 100.0 microl, VSOP method is a useful tool for evaluating voiding behavior of the mouse, including those with small bladder capacity.

  15. Voids and the Cosmic Web: cosmic depression & spatial complexity

    NARCIS (Netherlands)

    van de Weygaert, Rien; Shandarin, S.; Saar, E.; Einasto, J.

    2016-01-01

    Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe natu

  16. STRESS CONCENTRATION DUE TO A SPHERICAL VOID UNDER HERTZIAN CONTACT

    Directory of Open Access Journals (Sweden)

    Stelian ALACI,

    2010-06-01

    Full Text Available The present paper presents the method of estimating the stress concentrator effect of a spherical void from an elastic half-space. An essential part consists in estimation of FEM error by finding the contact pressure from half-plane using an analytical method. Next, the stress concentrator effect of the same void, except for placed into elastic space, is found.

  17. High gain durable anti-reflective coating with oblate voids

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze' ev

    2016-06-28

    Disclosed herein are single layer transparent coatings with an anti-reflective property, a hydrophobic property, and that are highly abrasion resistant. The single layer transparent coatings contain a plurality of oblate voids. At least 1% of the oblate voids are open to a surface of the single layer transparent coatings.

  18. The Aspen-Amsterdam void finder comparison project

    NARCIS (Netherlands)

    Colberg, Joerg M.; Pearce, Frazer; Foster, Caroline; Platen, Erwin; Brunino, Riccardo; Neyrinck, Mark; Basilakos, Spyros; Fairall, Anthony; Feldman, Hume; Gottloeber, Stefan; Hahn, Oliver; Hoyle, Fiona; Mueller, Volker; Nelson, Lorne; Plionis, Manolis; Porciani, Cristiano; Shandarin, Sergei; Vogeley, Michael S.; van de Weygaert, Rien

    2008-01-01

    Despite a history that dates back at least a quarter of a century, studies of voids in the large-scale structure of the Universe are bedevilled by a major problem: there exist a large number of quite different void-finding algorithms, a fact that has so far got in the way of groups comparing their

  19. Warmth Elevating the Depths: Shallower Voids with Warm Dark Matter

    CERN Document Server

    Yang, Lin F; Aragon-Calvo, Miguel A; Silk, Joseph

    2014-01-01

    Warm dark matter (WDM) has been proposed as an alternative to cold dark matter (CDM), to resolve issues such as the apparent lack of satellites around the Milky Way. Even if WDM is not the answer to observational issues, it is essential to constrain the nature of the dark matter. The effect of WDM on haloes has been extensively studied, but the small-scale initial smoothing in WDM also affects the present-day cosmic web and voids. It suppresses the cosmic "sub-web" inside voids, and the formation of both void haloes and subvoids. In N-body simulations run with different assumed WDM masses, we identify voids with the zobov algorithm, and cosmic-web components with the origami algorithm. As dark-matter warmth increases, the initial-conditions smoothing increases, and the number of voids and subvoids is suppressed. Also, void density profiles change, their shapes become flatter inside the void radius, while edges of the voids remain unchanged. Also, filaments and walls become cleaner, as the sub-structures in be...

  20. Dislocation and void segregation in copper during neutron irradiation

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Leffers, Torben; Horsewell, Andy

    1986-01-01

    High-purity (99. 999%) and fully annealed copper specimens have been irradiated in the DR-3 reactor at Riso to doses of 1 multiplied by 10**2**2 and 5 multiplied by 10**2**2 neutrons (fast)m** minus **2(2 multiplied by 10** minus **3 dpa and 1 multiplied by 10** minus **2 dpa, respectively...... were distributed between these walls. The dislocation walls were practically free of voids and generally had a void-denuded zone along them. The density of dislocations (loops and segments) was very low in the region containing voids (i. e. between the dislocation walls). Even with this low dislocation...... density, the void swelling rate was very high (approximately 2. 5% per dpa). The implications of the segregated distribution of sinks for void formation and growth are briefly discussed....

  1. Alignment of galaxy spins in the vicinity of voids

    CERN Document Server

    Slosar, Anze

    2008-01-01

    We provide limits on the alignment of galaxy orientations with the direction to the void center for galaxies lying near the edges of voids. We locate spherical voids in volume limited samples of galaxies from the Sloan Digital Sky Survey using the HB inspired void finder and investigate the orientation of (color selected) spiral galaxies that are nearly edge-on or face-on. In contrast with previous literature, we find no statistical evidence for departure from random orientations. Expressed in terms of the parameter c, introduced by Lee & Pen to describe the strength of such an alignment, we find that c<0.11(0.13) at 95% (99.7%) confidence limit within a context of a toy model that assumes a perfectly spherical voids with sharp boundaries.

  2. Two new methods to detect cosmic voids without density measurements

    CERN Document Server

    Elyiv, Andrii; Pollina, Giorgia; Baldi, Marco; Branchini, Enzo; Cimatti, Andrea; Moscardini, Lauro

    2014-01-01

    Cosmic voids are effective cosmological probes to discriminate among competing world models. Their precise and unbiased identification is a prerequisite to perform accurate observational tests. The identification is generally based on density or geometry criteria that, because of their very nature, are prone to shot noise errors. In this work we propose two new void finders that are based on dynamical and clustering criteria to select voids in the Lagrangian coordinates and minimise the impact of sparse sampling. The first approach exploits the Zeldovich approximation to trace back in time the orbits of galaxies located in the voids and their surroundings, whereas the second uses the observed galaxy-galaxy correlation function to relax the objects' spatial distribution to homogeneity and isotropy. In both cases voids are defined as regions of the negative velocity divergence in Lagrangian coordinates, that can be regarded as sinks of the back-in-time streamlines of the mass tracers. To assess the performance ...

  3. The cosmic web in CosmoGrid void regions

    Science.gov (United States)

    Rieder, Steven; van de Weygaert, Rien; Cautun, Marius; Beygu, Burcu; Portegies Zwart, Simon

    2016-10-01

    We study the formation and evolution of the cosmic web, using the high-resolution CosmoGrid ΛCDM simulation. In particular, we investigate the evolution of the large-scale structure around void halo groups, and compare this to observations of the VGS-31 galaxy group, which consists of three interacting galaxies inside a large void. The structure around such haloes shows a great deal of tenuous structure, with most of such systems being embedded in intra-void filaments and walls. We use the Nexus+} algorithm to detect walls and filaments in CosmoGrid, and find them to be present and detectable at every scale. The void regions embed tenuous walls, which in turn embed tenuous filaments. We hypothesize that the void galaxy group of VGS-31 formed in such an environment.

  4. Voids and the Cosmic Web: cosmic depression & spatial complexity

    Science.gov (United States)

    van de Weygaert, Rien

    2016-10-01

    Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe nature of dark energy, while their substructure and galaxy population provides a direct key to thenature of dark matter. Also, the pristine environment of void interiors is an important testing groundfor our understanding of environmental influences on galaxy formation and evolution. In this paper, we reviewthe key aspects of the structure and dynamics ofvoids, with a particular focus on the hierarchical evolution of the void population. We demonstratehow the rich structural pattern of the Cosmic Web is related to the complex evolution and buildupof voids.

  5. Separation of nucleation and growth of voids during tensile deformation of a dual phase steel using synchrotron microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Requena, Guillermo, E-mail: guillermo.requena@tuwien.ac.at [INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Maire, Eric; Leguen, Claire [INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Thuillier, Sandrine [LIMATB, Université de Bretagne-Sud, rue de Saint Maudé, BP 92116, 56321 Lorient Cedex (France)

    2014-01-01

    The damage evolution in a DP980 dual phase steel is followed in situ by synchrotron microtomography during tensile deformation focusing on the effect that the triaxiality, induced by different sample geometries, exerts on damage formation and damage evolution. The growth of existing voids is separated from the voids nucleated between consecutive deformation steps using three-dimensional image analysis. The experimental results are correlated with those obtained by finite element analysis using a Gurson–Tvergaard–Needleman framework with a Chu and Needleman formulation to introduce the effect of nucleation of cavities. A relatively simple way to determine the nucleation parameters is proposed based on the volume of nucleated voids obtained from the tomographies. The evolution of the total volume fraction of cavities obtained from the calculations shows a good agreement with the experiments for the notched samples and reflects the effect of triaxiality on damage. Contrarily to experiments, the calculated accumulated volume fraction of nucleated voids does not reflect the effect of triaxiality suggesting the necessity to implement this parameter in the nucleation model.

  6. New exact solutions of time fractional modified Kawahara equations in modelling surface tension in shallow-water and capillary gravity water waves

    Science.gov (United States)

    Saha Ray, S.; Sahoo, S.

    2017-01-01

    In the present paper, we construct the analytical exact solutions of some nonlinear evolution equations in mathematical physics; namely time fractional modified Kawahara equations by using the ( G^'/G)-expansion method via fractional complex transform. As a result, new types of exact analytical solutions are obtained.

  7. Properties of hydrogen induced voids in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J; Fischer, T; Hieckmann, E; Hiller, M; Lavrov, E V [Institute for Applied Physics/Semiconductor Physics, TU Dresden, 01062 Dresden (Germany)

    2005-06-08

    After heat treatment, silicon samples implanted with high doses of hydrogen exhibit blistering and defoliation of thin silicon layers. The process is used commercially in the fabrication of thin silicon-on-insulator layers (Smart Cut(registered)). In the present study we investigate the behaviour of hydrogen after different processing steps, which lead to thin Si layers bonded to glass substrates. A set of hydrogen implanted samples is studied by means of low temperature photoluminescence, Raman spectroscopy, x-ray diffraction and optical microscopy (visible and infrared). The formation of Si-H bonds is detected after implantation together with a build-up of internal strain. After annealing, the relaxation of the implanted layers is found to be connected with the formation of hydrogen saturated vacancies and the formation of H{sub 2} molecules filling up larger voids. A comparison is made with hydrogen plasma treated samples, where well defined platelets on {l_brace}111{r_brace} planes are found to trap hydrogen molecules. No direct evidence of the role of {l_brace}111{r_brace} and {l_brace}100{r_brace} platelets in the blistering process is found in the implanted layers from our study. We determine considerable compressive stresses in the bonded Si layers on glass substrates. The photoluminescence is strongly enhanced in these bonded layers but red-shifted due to a strain reduced band gap.

  8. Radionuclide voiding cystography in intrarenal reflux detection

    Energy Technology Data Exchange (ETDEWEB)

    Rizzoni, G.; Perale, R.; Bui, F.; Pitter, M.; Pavanello, L.; Boscolo, R.; Passerini Glazel, G.; Macri, C.

    1986-01-01

    In order to evaluate the possibility of detecting intra-renal reflux (IRR) with a more sensitive procedure, 48 children with recurrent urinary tract infections underwent intravenous urography (IVU) and voiding cystourethrogram (VCU) using a solution containing contrast medium and sup(99m)Tc-sulfur colloid particles which are known to persist in the renal parenchyma for a long time. Scintigraphic images were taken at 5 and 20 hours after VCU. 18 children had no vesico-ureteral reflux, 11 showed unilateral and 19 bilateral VUR, which was therefore present in 49 renal units. Among the 49 renal refluxing units (RRUs) IRR was detected radiologically in 8; of these isotopic activity in the renal area was present in all 6 RRUs who were examined at 20 hours. Of the remaining 41 RRUs with no radiologically detectable IRR 24 were evaluated at 20 hours and 5 (21%) showed renal radioactivity. Renal scars were significantly more frequent in kidneys with radioisotopic activity at 20 hours. The results of this study indicate that radionuclide cystography using sup(99m)Tc-sulfur colloid is a reliable procedure for demonstrating IRR, and to this end is more sensitive than X-ray VCU. Radionuclide cystography with sulfur colloid particles should therefore be considered a simple and useful complementary procedure, which is more sensitive than X-ray VCU in the diagnosis and follow-up of IRR.

  9. Experiment for estimating phase velocity and power fraction of Love wave from three component microtremor array observation in Morioka area; Moriokashiiki deno bido no sanseibun array kansoku ni yoru love ha no iso sokudo oyobi power hi suitei no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Yakuwa, A.; Saito, T. [Iwate University, Iwate (Japan). Faculty of Engineering

    1997-10-22

    Three component microtremor array observations were carried out in two locations in the city of Morioka for an attempt of estimating phase velocity and power fraction of Love wave by applying the expanded three component spatial self-correlation method. The microtremors were observed by using a seismograph with a natural period of one second. The arrays were so arranged as to form an equilateral triangle consisted of seven points. The maximum radii were 100 m, 50 m, 25 m and 12.5 m for vertical movements, and 100 m and 30 m for horizontal movements at the Iwate University, and 80 m, 40 m, 20 m and 10 m for vertical movements and 90 m for horizontal movements at the Morioka Technical Highschool. The analysis has used three sections, each with relatively steady state of about 40 seconds as selected from records of observations for about 30 minutes. The result of the discussions revealed that it is possible to derive phase velocity of not only Rayleigh waves but also Love waves by applying the expanded spatial self-correlation method to the observation record. Thus, estimation of underground structures with higher accuracy has become possible by using simultaneously the Rayleigh waves and Love waves. 3 refs., 11 figs., 2 tabs.

  10. Sensitivity effects of void density and arrangements in a REBO high explosive

    Energy Technology Data Exchange (ETDEWEB)

    Herring, Stuart Davis [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Gronbech - Jensen, Niels [Los Alamos National Laboratory

    2010-09-28

    The shock response of two-dimensional model, high explosive crystals with various arrangements of circular voids is explored. We simulate a piston impact using molecular dynamics simulations with a Reactive Empirical Bond Order (REBO) model potential for a sub-micron, sub-ns exothermic reaction in a diatomic molecular solid. In square lattices of voids all of one size, reducing that size or increasing the porosity while holding the other parameter fixed causes the hotspots to consume the material more quickly and detonation to occur sooner and at lower piston velocities. The early time behavior is seen to follow a very simple ignition and growth model. The hotspots are seen to collectively develop a broad pressure wave (a sonic, diffuse deflagration front) that, upon merging with the lead shock, transforms it into a detonation. The reaction yields produced by triangular lattices are not significantly different. With random void arrangements, the mean time to detonation is 15.5% larger than with the square lattice; the standard deviation of detonation delays is just 5.1%.

  11. Passive monitoring for near surface void detection using traffic as a seismic source

    Science.gov (United States)

    Zhao, Y.; Kuzma, H. A.; Rector, J.; Nazari, S.

    2009-12-01

    In this poster we present preliminary results based on our several field experiments in which we study seismic detection of voids using a passive array of surface geophones. The source of seismic excitation is vehicle traffic on nearby roads, which we model as a continuous line source of seismic energy. Our passive seismic technique is based on cross-correlation of surface wave fields and studying the resulting power spectra, looking for "shadows" caused by the scattering effect of a void. High frequency noise masks this effect in the time domain, so it is difficult to see on conventional traces. Our technique does not rely on phase distortions caused by small voids because they are generally too tiny to measure. Unlike traditional impulsive seismic sources which generate highly coherent broadband signals, perfect for resolving phase but too weak for resolving amplitude, vehicle traffic affords a high power signal a frequency range which is optimal for finding shallow structures. Our technique results in clear detections of an abandoned railroad tunnel and a septic tank. The ultimate goal of this project is to develop a technology for the simultaneous imaging of shallow underground structures and traffic monitoring near these structures.

  12. Scaling of voids and fractality in the galaxy distribution

    CERN Document Server

    Gaite, J; Gaite, Jose; Manrubia, Susanna C.

    2002-01-01

    We study here, from first principles, what properties of voids are to be expected in a fractal point distribution and how the void distribution is related to its morphology. We show this relation in various examples and apply our results to the distribution of galaxies. If the distribution of galaxies forms a fractal set, then this property results in a number of scaling laws to be fulfilled by voids. Consider a fractal set of dimension $D$ and its set of voids. If voids are ordered according to decreasing sizes (largest void has rank R=1, second largest R=2 and so on), then a relation between size $\\Lambda$ and rank of the form $\\Lambda (R) \\propto R^{-z}$ must hold, with $z = d/D$, and where $d$ is the euclidean dimension of the space where the fractal is embedded. The physical restriction $D 1$ in a fractal set. The average size $\\bar \\Lambda$ of voids depends on the upper ($\\Lambda_u$) and the lower ($\\Lambda_l$) cut-off as ${\\bar \\Lambda} \\propto \\Lambda_u^{1-D/d} \\Lambda_l^{D/d}$. Current analysis of v...

  13. Partial discharges within two spherical voids in an epoxy resin

    Science.gov (United States)

    Illias, H. A.; Chen, G.; Bakar, A. H. A.; Mokhlis, H.; Tunio, M. A.

    2013-08-01

    A void in a dielectric insulation material may exist due to imperfection in the insulation manufacturing or long term stressing. Voids have been identified as one of the common sources of partial discharge (PD) activity within an insulation system, such as in cable insulation and power transformers. Therefore, it is important to study PD phenomenon within void cavities in insulation. In this work, a model of PD activity within two spherical voids in a homogeneous dielectric material has been developed using finite element analysis software to study the parameters affecting PD behaviour. The parameters that have been taken into account are the void surface conductivity, electron generation rate and the inception and extinction fields. Measurements of PD activity within two spherical voids in an epoxy resin under ac sinusoidal applied voltage have also been performed. The simulation results have been compared with the measurement data to validate the model and to identify the parameters affecting PD behaviour. Comparison between measurements of PD activity within single and two voids in a dielectric material have also been made to observe the difference of the results under both conditions.

  14. Measuring Baryon Acoustic Oscillations from the clustering of voids

    CERN Document Server

    Liang, Yu; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Tao, Charling

    2015-01-01

    We investigate the necessary methodology to optimally measure the baryon acoustic oscillation (BAO) signal, from voids based on galaxy redshift catalogues. To this end, we study the dependency of the BAO signal on the population of voids classified by their sizes. We find for the first time the characteristic features of the correlation function of voids including the first robust detection of BAOs in mock galaxy catalogues. These show an anti-correlation around the scale corresponding to the smallest size of voids in the sample (the void exclusion effect), and dips at both sides of the BAO peak, which can be used to determine the significance of the BAO signal without any priori model. Furthermore, our analysis demonstrates that there is a scale dependent bias for different populations of voids depending on the radius, with the peculiar property that the void population with the largest BAO significance corresponds to tracers with approximately zero bias on the largest scales. We further investigate the meth...

  15. Baryon effects on void statistics in the EAGLE simulation

    CERN Document Server

    Paillas, Enrique; Padilla, Nelson; Tissera, Patricia; Helly, John; Schaller, Matthieu

    2016-01-01

    Cosmic voids are promising tools for cosmological tests due to their sensitivity to dark energy, modified gravity and alternative cosmological scenarios. Most previous studies in the literature of void properties use cosmological N-body simulations of dark matter (DM) particles that ignore the potential effect of baryonic physics. We analyse voids in the mass and subhalo density field in the EAGLE simulations, which follow the evolution of galaxies in a Lambda cold dark matter Universe with state-of-the-art subgrid models for baryonic processes. We study the effect of baryons on void statistics by comparing results with simulations that only follow the evolution of DM, but use the same initial conditions as EAGLE. When using the mass in the simulation, we find that a DM-only simulation produces 24 per cent more voids than a hydrodynamical one, but this difference comes mainly from voids with radii smaller than 5 Mpc. We do not find significant differences in the density profiles between voids in EAGLE and its...

  16. Decay of charge deposited on the wall of gaseous void

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1992-01-01

    After partial discharge activity within a gaseous void, charges accumulate on the wall of the void. The decay of such charges due to surface currents at the void wall is studied analytically, and the factors affecting this decay are indicated. The results show that in terms of the basic time...... constant, the decay can take a considerable amount of time. The decay rate is significantly reduced by an increase in the permittivity of the bulk medium. The dominating influence of this permittivity is likewise reflected in the increased duration and thereby prolonged inhomogeneity of the electric field...

  17. Fractional Echoes

    CERN Document Server

    Karras, G; Billard, F; Lavorel, B; Siour, G; Hartmann, J -M; Faucher, O; Gershnabel, Erez; Prior, Yehiam; Averbukh, Ilya Sh

    2016-01-01

    We report the observation of fractional echoes in a double-pulse excited nonlinear system. Unlike standard echoes which appear periodically at delays which are integer multiple of the delay between the two exciting pulses, the fractional echoes appear at rational fractions of this delay. We discuss the mechanism leading to this phenomenon, and provide the first experimental demonstration of fractional echoes by measuring third harmonic generation in a thermal gas of CO2 molecules excited by a pair of femtosecond laser pulses.

  18. FRACTIONAL BANKING

    OpenAIRE

    Maria Klimikova

    2010-01-01

    Understanding the reasons of the present financial problems lies In understanding the substance of fractional reserve banking. The substance of fractional banking is in lending more money than the bankers have. Banking of partial reserves is an alternative form which links deposit banking and credit banking. Fractional banking is causing many unfavorable economic impacts in the worldwide system, specifically an inflation.

  19. FRACTIONAL BANKING

    OpenAIRE

    Maria Klimikova

    2010-01-01

    Understanding the reasons of the present financial problems lies In understanding the substance of fractional reserve banking. The substance of fractional banking is in lending more money than the bankers have. Banking of partial reserves is an alternative form which links deposit banking and credit banking. Fractional banking is causing many unfavorable economic impacts in the worldwide system, specifically an inflation.

  20. Fractional randomness

    Science.gov (United States)

    Tapiero, Charles S.; Vallois, Pierre

    2016-11-01

    The premise of this paper is that a fractional probability distribution is based on fractional operators and the fractional (Hurst) index used that alters the classical setting of random variables. For example, a random variable defined by its density function might not have a fractional density function defined in its conventional sense. Practically, it implies that a distribution's granularity defined by a fractional kernel may have properties that differ due to the fractional index used and the fractional calculus applied to define it. The purpose of this paper is to consider an application of fractional calculus to define the fractional density function of a random variable. In addition, we provide and prove a number of results, defining the functional forms of these distributions as well as their existence. In particular, we define fractional probability distributions for increasing and decreasing functions that are right continuous. Examples are used to motivate the usefulness of a statistical approach to fractional calculus and its application to economic and financial problems. In conclusion, this paper is a preliminary attempt to construct statistical fractional models. Due to the breadth and the extent of such problems, this paper may be considered as an initial attempt to do so.

  1. Comparative Analysis of CTF and Trace Thermal-Hydraulic Codes Using OECD/NRC PSBT Benchmark Void Distribution Database

    OpenAIRE

    2013-01-01

    The international OECD/NRC PSBT benchmark has been established to provide a test bed for assessing the capabilities of thermal-hydraulic codes and to encourage advancement in the analysis of fluid flow in rod bundles. The benchmark was based on one of the most valuable databases identified for the thermal-hydraulics modeling developed by NUPEC, Japan. The database includes void fraction and departure from nucleate boiling measurements in a representative PWR fuel assembly. On behalf of the be...

  2. A variational void coalescence model for ductile metals

    KAUST Repository

    Siddiq, Amir

    2011-08-17

    We present a variational void coalescence model that includes all the essential ingredients of failure in ductile porous metals. The model is an extension of the variational void growth model by Weinberg et al. (Comput Mech 37:142-152, 2006). The extended model contains all the deformation phases in ductile porous materials, i.e. elastic deformation, plastic deformation including deviatoric and volumetric (void growth) plasticity followed by damage initiation and evolution due to void coalescence. Parametric studies have been performed to assess the model\\'s dependence on the different input parameters. The model is then validated against uniaxial loading experiments for different materials. We finally show the model\\'s ability to predict the damage mechanisms and fracture surface profile of a notched round bar under tension as observed in experiments. © Springer-Verlag 2011.

  3. Void formation in ODS EUROFER produced by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Y. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)], E-mail: yanicet@fis.ucm.es; Monge, M.A. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Castro, V. de [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Munoz, A.; Leguey, T.; Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2009-04-30

    Positron annihilation experiments were performed on oxide dispersion strengthened (ODS) and non-ODS EUROFER prepared by mechanical alloying and hot isostatic pressing. The results revealed the presence of small voids in these materials in the as-HIPed conditions. Their evolution under isochronal annealing experiments was investigated. The coincidence Doppler broadening spectra of ODS EUROFER exhibited a characteristic signature attributed to positron annihilation in Ar-decorated voids at the oxide particle/matrix interfaces. The variation of the positron annihilation parameters with the annealing temperature showed three stages: up to 623 K, between 823 and 1323 K, and above 1323 K. In the temperature range 823-1323 K void coarsening had effect. Above 1323 K some voids annealed out, but others, associated to oxide particles and small precipitates, survived to annealing at 1523 K. Transmission electron microscopy observations were also performed to verify the characteristics of the surviving defects after annealing at 1523 K.

  4. Evolution of shock through a void in foam

    Science.gov (United States)

    Kim, Y.; Smidt, J. M.; Murphy, T. J.; Douglass, M. R.; Devolder, B. G.; Fincke, J. R.; Schmidt, D. W.; Cardenas, T.; Newman, S. G.; Hamilton, C. E.; Sedillo, T. J.; Los Alamos, NM 87544 Team

    2016-10-01

    Marble implosion is an experimental campaign intended to study the effects of heterogeneous mix on fusion burn. A spherical capsule is composed of deuterated plastic foam of controlled pore (or void) size with tritium fill in pores. As capsule implosion evolves, the initially separated deuterium and tritium will mix, producing DT yields. Void evolution during implosion is of interest for the Marble campaign. A shock tube, driven by the laser at Omega, was designed to study the evolution of a shock through a foam-filled ``void'' and subsequent void evolution. Targets were comprised of a 100 mg/cc CH foam tube containing a 200-µm diameter, lower density doped foam sphere. High-quality, radiographic images were obtained from both 2% iodine-doped in plastic foam and 15% tin-doped in aerogel foam. These experiments will be used to inform simulations.

  5. Measurement and Analysis of Sodium Void Reactivity Effect in CEFR

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The sodium void reactivity effect (SVRE) is one of the important parameters in the design and safety analysis of sodium-cooled fast reactors. In some serious accident conditions, for example the total instantaneous blockage (TIB) accident,

  6. Uroflowmetry in neurologically normal children with voiding disorders

    DEFF Research Database (Denmark)

    Jensen, K M; Nielsen, K.K.; Kristensen, E S

    1985-01-01

    of neurological deficits underwent a complete diagnostic program including intravenous urography, voiding cystography and cystoscopy as well as spontaneous uroflowmetry, cystometry-emg and pressure-flow-emg study. The incidence of dyssynergia was 22%. However, neither the flow curve pattern nor single flow...... variables were able to identify children with dyssynergia. Consequently uroflowmetry seems inefficient in the screening for dyssynergia in neurological normal children with voiding disorders in the absence of anatomical bladder outlet obstruction....

  7. Fractional thermoelasticity

    CERN Document Server

    Povstenko, Yuriy

    2015-01-01

    This book is devoted to fractional thermoelasticity, i.e. thermoelasticity based on the heat conduction equation with differential operators of fractional order. Readers will discover how time-fractional differential operators describe memory effects and space-fractional differential operators deal with the long-range interaction. Fractional calculus, generalized Fourier law, axisymmetric and central symmetric problems and many relevant equations are featured in the book. The latest developments in the field are included and the reader is brought up to date with current research.  The book contains a large number of figures, to show the characteristic features of temperature and stress distributions and to represent the whole spectrum of order of fractional operators.  This work presents a picture of the state-of-the-art of fractional thermoelasticity and is suitable for specialists in applied mathematics, physics, geophysics, elasticity, thermoelasticity and engineering sciences. Corresponding sections of ...

  8. Void Growth in Single and Bicrystalline Metals: Atomistic Calculations

    Science.gov (United States)

    Traiviratana, Sirirat; Bringa, Eduardo M.; Benson, David J.; Meyers, Marc A.

    2007-12-01

    MD simulations in monocrystalline and bicrystalline copper were carried out with LAMMPS to reveal void growth mechanisms. The specimens were subjected to both tensile uniaxial and hydrostatic strains; the results confirm that the emission of (shear) loops is the primary mechanism of void growth. However, these shear loops develop along two slip planes (and not one, as previously thought), in a heretofore unidentified mechanism of cooperative growth. The emission of dislocations from voids is the first stage, and their reaction and interaction is the second stage. These loops, forming initially on different {111} planes, join at the intersection, the Burgers vector of the dislocations being parallel to the intersection of two {111} planes: a direction. Thus, the two dislocations cancel at the intersection and a biplanar shear loop is formed. The expansion of the loops and their cross slip leads to the severely work hardened layer surrounding a growing void. Calculations were carried out on voids with different sizes, and a size dependence of the stress response to emitted dislocations was observed, in disagreement with the Gurson model[1] which is scale independent. Calculations were also carried out for a void at the interface between two grains.

  9. The Effect of Nearby Voids on Galaxy Number Counts

    CERN Document Server

    Bucklein, Brian K; Hintz, Eric G

    2016-01-01

    The size, shape and degree of emptiness of void interiors sheds light on the details of galaxy formation. A particularly interesting question is whether void interiors are completely empty or contain a dwarf population. However the nearby voids that are most conducive for dwarf searches have large angular diameters, on the order of a steradian, making it difficult to redshift-map a statistically significant portion of their volume to the magnitude limit of dwarf galaxies. As part of addressing this problem, we investigate here the usefulness of number counts in establishing the best locations to search inside nearby (d < 300 Mpc) galaxy voids, utilizing Wolf plots of log(n < m) vs. m as the basic diagnostic. To illustrate expected signatures, we consider the signature of three void profiles, "cut out", "built up", and "universal profile" carved into Monte-Carlo Schechter function models. We then investigate the signatures of voids in the Millennium Run dark matter simulation and the Sloan Digital Sky Su...

  10. ACK filling void first algorithm and performance for asynchronous OPS

    Science.gov (United States)

    Liu, Huanlin; Shi, Yonghe; Chen, Qianbin; Pan, Yingjun

    2007-11-01

    OPS with feedback shared FDL buffer produce large voids due to FDL buffers only supplying discrete step delay and causing FDL queue virtually occupation. By analyzing the TCP traffic and ACK packets feature, the ACK packet void filling first scheduling is presented to decrease packet loss rate and to reduce the FDL voids. When the FDL buffer void size is fit for the ACK packet, the ACK packet is scheduled to FDL immediately. An ACK and non-ACK packets difference and process flow is designed according the TCP packet frame structure. Compared with the conventional FIFO scheduling and smallest FDL void first scheduling, the algorithm reduces greatly the number of ACK occupying the FDL buffer and eliminates large numbers of ACK's bad influence on efficiency of IP data transmission under different FDL buffer depth and traffic load. The results of simulation show that the proposed scheduling makes use of ACK packets first void filling scheduling mechanism to reduce FDL excess load, increases output utilization and reduce packet loss ratio for asynchronous optical network. This approach is shown to minimize the FDL numbers with the feature of high stabilization and photonic integration and to improve real time TCP traffic performance for Internet network.

  11. Role of void space geometry in permeability evolution in crustal rocks at elevated pressure

    Science.gov (United States)

    Benson, Philip M.; Meredith, Philip G.; Schubnel, Alexandre

    2006-12-01

    A key consequence of the presence of void space within rock is their significant influence upon fluid transport properties. In this study, we measure changes in elastic wave velocities (P and S) contemporaneously with changes in permeability and porosity at elevated pressure for three rock types with widely different void space geometries: a high-porosity sandstone (Bentheim), a tight sandstone (Crab Orchard), and a microcracked granodiorite (Takidani). Laboratory data are then used with the permeability models of Guéguen and Dienes and Kozeny-Carman to investigate the characteristics that different void space geometries impart to measured permeabilities. Using the Kachanov effective medium theory, elastic wave velocities are inverted, permitting the recovery of crack density evolution with increasing effective pressure. The crack densities are then used as input to the microcrack permeability model of Guéguen and Dienes. The classic Kozeny-Carman approach of Walsh and Brace is also applied to the measured permeability data via a least squares fit in order to extract tortuosity data. We successfully predict the evolution of permeability with increasing effective pressure, as directly measured in experiments, and report the contrast between permeability changes observed in rock where microcracks or equant pores dominate the microstructure. Additionally, we show how these properties are affected by anisotropy of the rock types via the measured anisotropic fabrics in each rock. The combined experimental and modeling results illustrate the importance of understanding the details of how rock microstructure changes in response to an external stimulus in predicting the simultaneous evolution of different rock physical properties.

  12. Effects of void size and gas content on electrical breakdown in lightweight, mechanically compliant, void-filled dielectrics

    Science.gov (United States)

    Anderson, R. A.; Lagasse, R. R.; Russick, E. M.; Schroeder, J. L.

    2002-03-01

    Dielectric potting materials (encapsulants) are used to prevent air breakdown in high-voltage electrical devices. We report breakdown strengths in void-filled encapsulants, stressed with unipolar voltage pulses of the order of 10 μs duration. High strengths, on the order of 100 kV mm-1, are measured under these test conditions. The materials studied include low-density open celled gel-derived foams with cell sizes of 4 μm or less, closed celled CO2-blown polystyrene and urethane foams, and epoxies containing 48 vol % of hollow glass microballoon (GMB) fillers. These last specimens varied the void gas (N2 or SO2) and also the void diameters (tens to hundreds of μm). Our measurements are thought to be directly sensitive to the rate of field-induced ionization events in the void gas; however, the breakdown strengths of the materials tested appeared to vary in direct proportion with the conventional Paschen-law gas-discharge inception threshold, the electric stress at which gas-ionization avalanches become possible. The GMB-epoxy specimens displayed this type of dependence of breakdown strength on the void-gas density and void size, but the measurements were an order of magnitude above the conventional predictions. Small-celled foams also showed increased breakdown strengths with decreased cell size, although their irregular void geometry prevented a direct comparison with the more uniformly structured microballoon-filled encapsulants. The experimental observations are consistent with a breakdown mechanism in which the discharge of a few voids can launch a full breakdown in the composite material.

  13. Isolation and control of voids and void-hillocks during molecular beam epitaxial growth of HgCdTe

    Science.gov (United States)

    Chandra, D.; Aqariden, F.; Frazier, J.; Gutzler, S.; Orent, T.; Shih, H. D.

    2000-06-01

    Formation of small voids and defect complexes involving small voids during the molecular beam epitaxial growth of mercury cadmium telluride on cadmium zinc telluride was investigated. Some of these defects were demonstrated to form away from the substrate-epi interface. Other defects were demonstrated to close before reaching the top surface without leaving any perturbations on the surface, thus remaining completely hidden. The voids, which formed away from the substrate-epifilm fixed interface, nucleated on defects introduced into the film already grown, leading to the formation of defect complexes, unlike the voids which nucleated at the substrate-epifilm fixed interface. These defect complexes are decorated with high density dislocation nests. The voids which closed before reaching the film surface usually also nucleated slightly away from the film-substrate interface, continued to replicate for a while as the growth progressed, but then relatively rapidly closed off at a significant depth from the film surface. These voids also appeared to form defect complexes with other kinds of defects. Correlations between these materials defects and performance of individual vertically integrated photodiode (VIP) devices were demonstrated, where the relative location of these defects with respect to the junction boundary appears to be particularly important. Elimination or reduction of fluctuations in relative flux magnitudes or substrate temperature, more likely during multi-composition layer growth, yielded films with significantly lower defect concentrations.

  14. Comparative Analysis of CTF and Trace Thermal-Hydraulic Codes Using OECD/NRC PSBT Benchmark Void Distribution Database

    Directory of Open Access Journals (Sweden)

    M. Avramova

    2013-01-01

    Full Text Available The international OECD/NRC PSBT benchmark has been established to provide a test bed for assessing the capabilities of thermal-hydraulic codes and to encourage advancement in the analysis of fluid flow in rod bundles. The benchmark was based on one of the most valuable databases identified for the thermal-hydraulics modeling developed by NUPEC, Japan. The database includes void fraction and departure from nucleate boiling measurements in a representative PWR fuel assembly. On behalf of the benchmark team, PSU in collaboration with US NRC has performed supporting calculations using the PSU in-house advanced thermal-hydraulic subchannel code CTF and the US NRC system code TRACE. CTF is a version of COBRA-TF whose models have been continuously improved and validated by the RDFMG group at PSU. TRACE is a reactor systems code developed by US NRC to analyze transient and steady-state thermal-hydraulic behavior in LWRs and it has been designed to perform best-estimate analyses of LOCA, operational transients, and other accident scenarios in PWRs and BWRs. The paper presents CTF and TRACE models for the PSBT void distribution exercises. Code-to-code and code-to-data comparisons are provided along with a discussion of the void generation and void distribution models available in the two codes.

  15. Breaking the vicious circle: Onabotulinum toxin A in children with therapy-refractory dysfunctional voiding

    NARCIS (Netherlands)

    L.A. 't Hoen (Lisette); J. van den Hoek (Joop); K.P. Wolffenbuttel (Katja); F. van der Toorn; J.R. Scheepe (Jeroen)

    2015-01-01

    textabstractIntroduction An increased activity of the external urethral sphincter or pelvic floor muscles during voluntary voiding leads to dysfunctional voiding. Frequently reported symptoms are urinary incontinence, urinary tract infections and high post-void residuals. Dysfunctional voiding is a

  16. Size-effects at a crack-tip interacting with a number of voids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Niordson, Christian Frithiof

    2008-01-01

    of the characteristic material length relative to the initial void radius. For a case showing the multiple void mechanism, it is found that the effect of the material length can change the behaviour towards the void by void mechanism. A material model with three characteristic length scales is compared with a one...

  17. A study of process induced voids in resistance welding of thermoplastic composites

    NARCIS (Netherlands)

    Shi, H.; Fernandez Villegas, I.; Bersee, H.E.N.

    2015-01-01

    Void formation in resistance welding of woven fabric reinforced thermoplastic composites was investigated. Void contents were measured using optical microscopy and digital image process. Un-even void distributions were observed in the joints, and more voids were found in the middle of the joints tha

  18. Irradiation creep relaxation of void swelling-driven stresses

    Energy Technology Data Exchange (ETDEWEB)

    Hall, M.M., E-mail: hallmm63@comcast.net [MacRay Consulting, 1366 Hillsdale Drive, Monroeville, PA (United States)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Irradiation void swelling can cause distortion of reactor core components. Black-Right-Pointing-Pointer Constrained swelling can drive stresses beyond acceptable levels. Black-Right-Pointing-Pointer Compressive stresses decrease irradiation swelling rates. Black-Right-Pointing-Pointer Irradiation creep relaxes swelling-driven stresses and core restraint forces. Black-Right-Pointing-Pointer Swelling-driven creep stresses are consistent with predictions of a proposed model. - Abstract: Swelling-driven-creep test specimens are used to measure the compressive stresses that develop due to constraint of irradiation void swelling. These specimens use a previously non-irradiated 20% CW Type 316 stainless steel holder to axially restrain two Type 304 stainless steel tubular specimens that were previously irradiated in the US Experimental Breeder Reactor (EBR-II) at 490 Degree-Sign C. One specimen was previously irradiated to fluence levels in the void nucleation regime (9 dpa) and the other in the quasi-steady void growth regime (28 dpa). A lift-off compliance measurement technique was used post-irradiation to determine compressive stresses developed during reirradiation of the two specimen assemblies in Row 7 of EBR-II at temperatures of 547 Degree-Sign C and 504 Degree-Sign C, respectively, to additional damage levels each of about 5 dpa. Results obtained on the higher fluence swelling-driven-creep specimen show that compressive stress due to constraint of swelling retards void swelling to a degree that is consistent with active load uniaxial compression specimens that were irradiated as part of a previously reported multiaxial in-reactor creep experiment. Swelling results obtained on the lower fluence swelling-driven creep specimen show a much larger effect of compressive stress in reducing swelling, demonstrating that the larger effect of stress on swelling is on void nucleation as compared to void growth. Test results are

  19. Cause Analysis on the Void under Slabs of Cement Concrete Pavement

    Science.gov (United States)

    Wen, Li; Zhu, Guo Xin; Baozhu

    2017-06-01

    This paper made a systematic analysis on the influence of the construction, environment, water and loads on the void beneath road slabs, and also introduced the formation process of structural void and pumping void, and summarizes the deep reasons for the bottom of the cement concrete pavement. Based on the analysis above, this paper has found out the evolution law of the void under slabs which claimed that the void usually appeared in the slab corners and then the cross joint, resulting void in the four sides with the void area under the front slab larger than the rear one.

  20. THE INSTABILITY OF THE DIFFUSION-CONTROLLED GRAIN-BOUNDARY VOID IN STRESSED SOLID

    Institute of Scientific and Technical Information of China (English)

    王华; 李中华

    2003-01-01

    As atoms migrate along a void surface and grain-boundary, driven by various thermodynamic forces, the grain-boundary void changes its shape and volume. When the void changes its configuration, the free energy of the system also changes. In this article, the free energy is calculated for an evolving grain-boundary void filled with gas in a stressed solid. Then the instability conditions and the equilibrium shape of the void are determined as a function of the grain-boundary and surface energies, the void volume, the externally applied stresses, as well as the internal pressure built up by the gas filled in the void.

  1. Autonomous robot for detecting subsurface voids and tunnels using microgravity

    Science.gov (United States)

    Wilson, Stacy S.; Crawford, Nicholas C.; Croft, Leigh Ann; Howard, Michael; Miller, Stephen; Rippy, Thomas

    2006-05-01

    Tunnels have been used to evade security of defensive positions both during times of war and peace for hundreds of years. Tunnels are presently being built under the Mexican Border by drug smugglers and possibly terrorists. Several have been discovered at the border crossing at Nogales near Tucson, Arizona, along with others at other border towns. During this war on terror, tunnels under the Mexican Border pose a significant threat for the security of the United States. It is also possible that terrorists will attempt to tunnel under strategic buildings and possibly discharge explosives. The Center for Cave and Karst Study (CCKS) at Western Kentucky University has a long and successful history of determining the location of caves and subsurface voids using microgravity technology. Currently, the CCKS is developing a remotely controlled robot which will be used to locate voids underground. The robot will be a remotely controlled vehicle that will use microgravity and GPS to accurately detect and measure voids below the surface. It is hoped that this robot will also be used in military applications to locate other types of voids underground such as tunnels and bunkers. It is anticipated that the robot will be able to function up to a mile from the operator. This paper will describe the construction of the robot and the use of microgravity technology to locate subsurface voids with the robot.

  2. The Aspen--Amsterdam Void Finder Comparison Project

    CERN Document Server

    Colberg, Joerg M; Foster, Caroline; Platen, Erwin; Brunino, Riccardo; Neyrinck, Mark; Basilakos, Spyros; Fairall, Anthony; Feldman, Hume; Gottloeber, Stefan; Hahn, Oliver; Hoyle, Fiona; Mueller, Volker; Nelson, Lorne; Plionis, Manolis; Porciaini, Cristiano; Shandarin, Sergei; Vogeley, Michael S; van de Weygaert, Rien

    2008-01-01

    Despite a history that dates back at least a quarter of a century studies of voids in the large--scale structure of the Universe are bedevilled by a major problem: there exist a large number of quite different void--finding algorithms, a fact that has so far got in the way of groups comparing their results without worrying about whether such a comparison in fact makes sense. Because of the recent increased interest in voids, both in very large galaxy surveys and in detailed simulations of cosmic structure formation, this situation is very unfortunate. We here present the first systematic comparison study of thirteen different void finders constructed using particles, haloes, and semi--analytical model galaxies extracted from a subvolume of the Millennium simulation. The study includes many groups that have studied voids over the past decade. We show their results and discuss their differences and agreements. As it turns out, the basic results of the various methods agree very well with each other in that they...

  3. An analytical model for porous single crystals with ellipsoidal voids

    Science.gov (United States)

    Mbiakop, A.; Constantinescu, A.; Danas, K.

    2015-11-01

    A rate-(in)dependent constitutive model for porous single crystals with arbitrary crystal anisotropy (e.g., FCC, BCC, HCP, etc.) containing general ellipsoidal voids is developed. The proposed model, denoted as modified variational model (MVAR), is based on the nonlinear variational homogenization method, which makes use of a linear comparison porous material to estimate the response of the nonlinear porous single crystal. Periodic multi-void finite element simulations are used in order to validate the MVAR for a large number of parameters including cubic (FCC, BCC) and hexagonal (HCP) crystal anisotropy, various creep exponents (i.e., nonlinearity), several stress triaxiality ratios, general void shapes and orientations and various porosity levels. The MVAR model, which involves a priori no calibration parameters, is found to be in good agreement with the finite element results for all cases considered in the rate-dependent context. The model is then used in a predictive manner to investigate the complex response of porous single crystals in several cases with strong coupling between the anisotropy of the crystal and the (morphological) anisotropy induced by the shape and orientation of the voids. Finally, a simple way of calibrating the MVAR with just two adjustable parameters is depicted in the rate-independent context so that an excellent agreement with the FE simulation results is obtained. In this last case, this proposed model can be thought as a generalization of the Gurson model in the context of porous single crystals and general ellipsoidal void shapes and orientations.

  4. 3D Property Modeling of Void Ratio by Cokriging

    Institute of Scientific and Technical Information of China (English)

    Yao Lingqing; Pan Mao; Cheng Qiuming

    2008-01-01

    Void ratio measures compactness of ground soil in geotechnical engineering. When samples are collected in certain area for mapping void ratios, other relevant types of properties such as water content may be also analyzed. To map the spatial distribution of void ratio in the area based on these types of point, observation data interpolation is often needed. Owing to the variance of sampling density along the horizontal and vertical directions, special consideration is required to handle anisotropy of estimator. 3D property modeling aims at predicting the overall distribution of property values from limited samples, and geostatistical method can he employed naturally here because they help to minimize the mean square error of estimation. To construct 3D property model of void ratio, cokriging was used considering its mutual correlation with water content, which is another important soil parameter. Moreover, K-D tree was adopted to organize the samples to accelerate neighbor query in 3D space during the above modeling process. At last, spatial configuration of void ratio distribution in an engineering body was modeled through 3D visualization, which provides important information for civil engineering purpose.

  5. Only the Lonely: H I Imaging of Void Galaxies

    CERN Document Server

    Kreckel, K; Aragón-Calvo, M A; van Gorkom, J H; van de Weygaert, R; van der Hulst, J M; Kovač, K; Yip, C -W; Peebles, P J E

    2010-01-01

    Void galaxies, residing within the deepest underdensities of the Cosmic Web, present an ideal population for the study of galaxy formation and evolution in an environment undisturbed by the complex processes modifying galaxies in clusters and groups, as well as provide an observational test for theories of cosmological structure formation. We have completed a pilot survey for the HI imaging aspects of a new Void Galaxy Survey (VGS), imaging 15 void galaxies in HI in local (d < 100 Mpc) voids. HI masses range from 3.5 x 10^8 to 3.8 x 10^9 M_sun, with one nondetection with an upper limit of 2.1 x 10^8 M_sun. Our galaxies were selected using a structural and geometric technique to produce a sample that is purely environmentally selected and uniformly represents the void galaxy population. In addition, we use a powerful new backend of the Westerbork Synthesis Radio Telescope that allows us to probe a large volume around each targeted galaxy, simultaneously providing an environmentally constrained sample of for...

  6. Electromigration of intergranular voids in metal films for microelectronic interconnects

    CERN Document Server

    Averbuch, A; Ravve, I

    2003-01-01

    Voids and cracks often occur in the interconnect lines of microelectronic devices. They increase the resistance of the circuits and may even lead to a fatal failure. Voids may occur inside a single grain, but often they appear on the boundary between two grains. In this work, we model and analyze numerically the migration and evolution of an intergranular void subjected to surface diffusion forces and external voltage applied to the interconnect. The grain-void interface is considered one-dimensional, and the physical formulation of the electromigration and diffusion model results in two coupled fourth-order one-dimensional time-dependent PDEs. The boundary conditions are specified at the triple points, which are common to both neighboring grains and the void. The solution of these equations uses a finite difference scheme in space and a Runge-Kutta integration scheme in time, and is also coupled to the solution of a static Laplace equation describing the voltage distribution throughout the grain. Since the v...

  7. Constraints on Cosmology and Gravity from the Dynamics of Voids

    Science.gov (United States)

    Hamaus, Nico; Pisani, Alice; Sutter, P. M.; Lavaux, Guilhem; Escoffier, Stéphanie; Wandelt, Benjamin D.; Weller, Jochen

    2016-08-01

    The Universe is mostly composed of large and relatively empty domains known as cosmic voids, whereas its matter content is predominantly distributed along their boundaries. The remaining material inside them, either dark or luminous matter, is attracted to these boundaries and causes voids to expand faster and to grow emptier over time. Using the distribution of galaxies centered on voids identified in the Sloan Digital Sky Survey and adopting minimal assumptions on the statistical motion of these galaxies, we constrain the average matter content Ωm=0.281 ±0.031 in the Universe today, as well as the linear growth rate of structure f /b =0.417 ±0.089 at median redshift z ¯=0.57 , where b is the galaxy bias (68% C.L.). These values originate from a percent-level measurement of the anisotropic distortion in the void-galaxy cross-correlation function, ɛ =1.003 ±0.012 , and are robust to consistency tests with bootstraps of the data and simulated mock catalogs within an additional systematic uncertainty of half that size. They surpass (and are complementary to) existing constraints by unlocking cosmological information on smaller scales through an accurate model of nonlinear clustering and dynamics in void environments. As such, our analysis furnishes a powerful probe of deviations from Einstein's general relativity in the low-density regime which has largely remained untested so far. We find no evidence for such deviations in the data at hand.

  8. Magnetic pattern at supergranulation scale: the Void Size Distribution

    CERN Document Server

    Berrilli, Francesco; Del Moro, Dario

    2014-01-01

    The large-scale magnetic pattern of the quiet sun is dominated by the magnetic network. This network, created by photospheric magnetic fields swept into convective downflows, delineates the boundaries of large scale cells of overturning plasma and exhibits voids in magnetic organization. Such voids include internetwork fields, a mixed-polarity sparse field that populate the inner part of network cells. To single out voids and to quantify their intrinsic pattern a fast circle packing based algorithm is applied to 511 SOHO/MDI high resolution magnetograms acquired during the outstanding solar activity minimum between 23 and 24 cycles. The computed Void Distribution Function shows a quasi-exponential decay behavior in the range 10-60 Mm. The lack of distinct flow scales in such a range corroborates the hypothesis of multi-scale motion flows at the solar surface. In addition to the quasi-exponential decay we have found that the voids reveal departure from a simple exponential decay around 35 Mm.

  9. Determination of water-soluble and insoluble (dilute-HCl-extractable) fractions of Cd, Pb and Cu in Antarctic aerosol by square wave anodic stripping voltammetry: distribution and summer seasonal evolution at Terra Nova Bay (Victoria Land)

    Energy Technology Data Exchange (ETDEWEB)

    Annibaldi, A.; Truzzi, C.; Illuminati, S.; Bassotti, E.; Scarponi, G. [Polytechnic University of Marche - Ancona, Department of Marine Science, Ancona (Italy)

    2007-02-15

    Eight PM10 aerosol samples were collected in the vicinity of the ''Mario Zucchelli'' Italian Antarctic Station (formerly Terra Nova Bay Station) during the 2000-2001 austral summer using a high-volume sampler and precleaned cellulose filters. The aerosol mass was determined by differential weighing of filters carried out in a clean chemistry laboratory under controlled temperature and humidity. A two-step sequential extraction procedure was used to separate the water-soluble and the insoluble (dilute-HCl-extractable) fractions. Cd, Pb and Cu were determined in the two fractions using an ultrasensitive square wave anodic stripping voltammetric (SWASV) procedure set up for and applied to aerosol samples for the first time. Total extractable metals showed maxima at midsummer for Cd and Pb and a less clear trend for Cu. In particular, particulate metal concentrations ranged as follows: Cd 0.84-9.2 {mu}g g{sup -1} (average 4.7 {mu}g g{sup -1}), Pb 13.2-81 {mu}g g{sup -1} (average 33 {mu}g g{sup -1}), Cu 126-628 {mu}g g{sup -1} (average 378 {mu}g g{sup -1}). In terms of atmospheric concentration, the values were: Cd 0.55-6.3 pg m{sup -3} (average 3.4 pg m{sup -3}), Pb 8.7-48 pg m{sup -3} (average 24 pg m{sup -3}), Cu 75-365 pg m{sup -3} (average 266 pg m{sup -3}). At the beginning of the season the three metals appear widely distributed in the insoluble (HCl-extractable) fraction (higher proportions for Cd and Pb, 90-100%, and lower for Cu, 70-90%) with maxima in the second half of December. The soluble fraction then increases, and at the end of the season Cd and Pb are approximately equidistributed between the two fractions, while for Cu the soluble fraction reaches its maximum level of 36%. Practically negligible contributions are estimated for crustal and sea-spray sources. Low but significant volcanic contributions are estimated for Cd and Pb ({proportional_to}10% and {proportional_to}5%, respectively), while there is an evident although not

  10. Void initiation from interfacial debonding of spherical silicon particles inside a silicon-copper nanocomposite: a molecular dynamics study

    Science.gov (United States)

    Cui, Yi; Chen, Zengtao

    2017-02-01

    Silicon particles with diameters from 1.9 nm to 30 nm are embedded in a face-centered-cubic copper matrix to form nanocomposite specimens for simulation. The interfacial debonding of silicon particles from the copper matrix and the subsequent growth of nucleated voids are studied via molecular dynamics (MD). The MD results are examined from several different perspectives. The overall mechanical performance is monitored by the average stress-strain response and the accumulated porosity. The ‘relatively farthest-traveled’ atoms are identified to characterize the onset of interfacial debonding. The relative displacement field is plotted to illustrate both subsequent interfacial debonding and the growth of a nucleated void facilitated by a dislocation network. Our results indicate that the initiation of interfacial debonding is due to the accumulated surface stress if the matrix is initially dislocation-free. However, pre-existing dislocations can make a considerable difference. In either case, the dislocation emission also contributes to the subsequent debonding process. As for the size effect, the debonding of relatively larger particles causes a drop in the stress-strain curve. The volume fraction of second-phase particles is found to be more influential than the size of the simulation box on the onset of interfacial debonding. The volume fraction of second-phase particles also affects the shape of the nucleated void and, therefore, influences the stress response of the composite.

  11. A New Fractional Subequation Method and Its Applications for Space-Time Fractional Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Fanwei Meng

    2013-01-01

    Full Text Available A new fractional subequation method is proposed for finding exact solutions for fractional partial differential equations (FPDEs. The fractional derivative is defined in the sense of modified Riemann-Liouville derivative. As applications, abundant exact solutions including solitary wave solutions as well as periodic wave solutions for the space-time fractional generalized Hirota-Satsuma coupled KdV equations are obtained by using this method.

  12. [Development of remote wireless mobile voiding diary and a report of its objective voiding in 20 young people].

    Science.gov (United States)

    Guan, Zhi-chen; Wei, Ben-lin; Meng, Zuo-wei

    2010-08-18

    To find out the data of the micturitions in healthy young people with the remote & mobile voiding diary monitoring system. Twenty healthy young people were studied and ten of them were female. The ages ranged from 22 to 35 years (the mean age: 27.4 years). The females were 22-33 years old (the mean age: 26.4 years ) and the males 24-35 years old (the mean age: 28.4 years). With the remote & mobile voiding diary monitoring system, their voiding information was collected. Through bluetooth, the voiding information was sent to the patient's intelligent cell phone from the collector, then stored directly by intelligent cell phone and wirelessly transmitted to the workstation in the hospital. All of them completed the voiding diaries for 7 days and the data were analyzed. The average micturition of the young healthy people was 5.6 times (3.4-7.4) per 24 hours,in which 5.3 (3.4-7.3) times were in the daytime and 0.3 (0-1.3)times in the night. The functional voiding volume was 318 mL (66-642 mL). The mean voiding volume in 24 hours was 1 724 mL (1152-2 415 mL), in which 1 289 mL (786-2 039 mL) was in the daytime and 435 mL (292-805 mL) in the night. The mean drinking volume was 1 022 mL (453-1 721 mL) in the daytime and 7 mL (0-43 mL) in the night. The nocturia index (Ni) was 1.03, the nocturnal polyuria index (NPi) 26%, and the nocturnal bladder capacity index (NBCi) 0.27. The remote & mobile voiding diary monitoring system can help us get the objective voiding information from young health people for the first time. It is reliable, maneuverable and can be widely used in clinical diagnosis.

  13. Cosmological Black Holes as Seeds of Voids in Galaxy Distribution

    CERN Document Server

    Capozziello, S; Stornaiolo, C; Capozziello, Salvatore; Funaro, Maria; Stornaiolo, Cosimo

    2004-01-01

    Deep surveys indicate a bubbly structure of cosmological large scale which should be the result of evolution of primordial density perturbations. Several models have been proposed to explain origin and dynamics of such features but, till now, no exhaustive and fully consistent theory has been found. We discuss a model where cosmological black holes, deriving from primordial perturbations, are the seeds for large-scale-structure voids. We give details of dynamics and accretion of the system voids-cosmological black holes from the epochs $(z\\simeq10^{3})$ till now finding that void of $40h^{-1}Mpc$ of diameter and under-density of -0.9 will fits the observations without conflicting with the homogeneity and isotropy of cosmic microwave background radiation.

  14. Avoid a Void: The Eradication of Null Dereferencing

    Science.gov (United States)

    Meyer, Bertrand; Kogtenkov, Alexander; Stapf, Emmanuel

    All object-oriented programs, but also those in C or Pascal as soon as they use pointers, are subject to the risk of run-time crash due to "null pointer dereferencing". Until recently this was the case even in statically typed languages. Tony Hoare has called this problem his "billion-dollar mistake". In the type system of ISO-standard Eiffel, the risk no longer exists: void safety (the absence of null pointer dereferencing) has become a property guaranteed by the type system and enforced by the compiler. The mechanism is fully implemented and major libraries and applications have been made void-safe. This presentation describes the principles of Eiffel's void safety, their implementation and the lessons gained.

  15. On the void explanations of the Cold Spot

    CERN Document Server

    Marcos-Caballero, A; Martínez-González, E; Vielva, P

    2015-01-01

    The integrated Sachs-Wolfe (ISW) contribution induced on the cosmic microwave background by the presence of a supervoid as the one detected by Szapudi et al. (2015) is reviewed in this letter in order to check whether it could explain the Cold Spot (CS) anomaly. Two different models, previously used for the same purpose, are considered to describe the matter density profile of the void: a top hat function and a compensated profile produced by a Gaussian potential. The analysis shows that, even enabling ellipticity changes or different values for the dark-energy equation of state parameter $\\omega$, the ISW contribution due to the presence of the void does not reproduce the properties of the CS. Finally, the probability of alignment between the void and the CS is also questioned as an argument in favor of a physical connection between these two phenomena.

  16. Fractional motions

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo I., E-mail: eliazar@post.tau.ac.il [Holon Institute of Technology, P.O. Box 305, Holon 58102 (Israel); Shlesinger, Michael F., E-mail: mike.shlesinger@navy.mil [Office of Naval Research, Code 30, 875 N. Randolph St., Arlington, VA 22203 (United States)

    2013-06-10

    Brownian motion is the archetypal model for random transport processes in science and engineering. Brownian motion displays neither wild fluctuations (the “Noah effect”), nor long-range correlations (the “Joseph effect”). The quintessential model for processes displaying the Noah effect is Lévy motion, the quintessential model for processes displaying the Joseph effect is fractional Brownian motion, and the prototypical model for processes displaying both the Noah and Joseph effects is fractional Lévy motion. In this paper we review these four random-motion models–henceforth termed “fractional motions” –via a unified physical setting that is based on Langevin’s equation, the Einstein–Smoluchowski paradigm, and stochastic scaling limits. The unified setting explains the universal macroscopic emergence of fractional motions, and predicts–according to microscopic-level details–which of the four fractional motions will emerge on the macroscopic level. The statistical properties of fractional motions are classified and parametrized by two exponents—a “Noah exponent” governing their fluctuations, and a “Joseph exponent” governing their dispersions and correlations. This self-contained review provides a concise and cohesive introduction to fractional motions.

  17. Voiding trial outcome following pelvic floor repair without incontinence procedures

    Science.gov (United States)

    Wang, Rui; Won, Sara; Haviland, Miriam J.; Bargen, Emily Von; Hacker, Michele R.; Li, Janet

    2016-01-01

    Introduction and hypothesis Our aim was to identify predictors of postoperative voiding trial failure among patients who had a pelvic floor repair without a concurrent incontinence procedure in order to identify low-risk patients in whom postoperative voiding trials may be modified. Methods We conducted a retrospective cohort study of women who underwent pelvic floor repair without concurrent incontinence procedures at two institutions from 1 November 2011 through 13 October 2013 after abstracting demographic and clinical data from medical records. The primary outcome was postoperative retrograde voiding trial failure. We used modified Poisson regression to calculate the risk ratio (RR) and 95 % confidence interval (CI). Results Of the 371 women who met eligibility criteria, 294 (79.2 %) had complete data on the variables of interest. Forty nine (16.7%) failed the trial, and those women were less likely to be white (p = 0.04), more likely to have had an anterior colporrhaphy (p = 0.001), and more likely to have had a preoperative postvoid residual (PVR) ≥150 ml (p = 0.001). After adjusting for race, women were more likely to fail their voiding trial if they had a preoperative PVR of ≥150 ml (RR: 1.9; 95 % CI: 1.1–3.2); institution also was associated with voiding trial failure (RR: 3.0; 95 % CI: 1.6–5.4). Conclusions Among our cohort, postoperative voiding trial failure was associated with a PVR of ≥150 ml and institution at which the surgery was performed. PMID:26886553

  18. Experimental and numerical investigation of voids distribution in VPI for ITER correction coil

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juping, E-mail: ljping@ipp.ac.cn; Wu, Jiefeng; Yu, Xiaowu

    2015-06-15

    Highlights: • A sample of correction coil was treated by vacuum pressure impregnation. • The voids in sample were observed by computed tomography. • The voids distributions were simulated in 2-D and 3-D model. • The calculated voids locations had a good agreement with experiment. • The simulation was not accurate in calculating the voids content. - Abstract: The experimental and numerical investigations were conducted to study the voids distribution in VPI (Vacuum Pressure Impregnation) process for correction coil. A sample of correction coil was manufactured by VPI. The voids in sample were observed with computed tomography and the average voids content was tested. The voids content is closely related to infiltration velocity and fluid properties. In former researches, the parameters affecting voids content were combined into a single parameter, namely capillary number. By calculating the capillary numbers in different areas of the sample, the voids distribution could be acquired. The corresponding numerical analyses based on Darcy law were conducted in 2-D and 3-D models. The 2-D case was used to simulate the voids distribution on the section as a simplified model, while the 3-D case demonstrated the spatial distribution of voids. The voids locations were similar in 2-D and 3-D cases, but the voids contents were different. The numerical results were compared with the actual voids distribution in sample. It was found the voids locations were close in numerical and experimental results, but the voids content did not match. The numerical simulations are available for predicting the voids locations in VPI, but not accurate in calculating the voids content.

  19. Voiding patterns in men evaluated by a questionnaire survey

    DEFF Research Database (Denmark)

    Sommer, P; Nielsen, K K; Bauer, T;

    1990-01-01

    A questionnaire on obstructive and irritative voiding symptoms was sent to 572 men aged between 20 and 79 years, selected at random from the National Register; 337 questionnaires were completed. None of the responders had consulted a doctor because of voiding symptoms. There was a significant...... had symptoms equal in severity to those found in men undergoing prostatectomy; 29% and 11% of men in the eighth decade [corrected] had nocturia twice and 3 times or more respectively; 19% complained of urge incontinence. More information on possible treatment is needed....

  20. Effects of Heterogeneous Sink Distribution on Void Swelling

    DEFF Research Database (Denmark)

    Leffers, Torben; Volobuyev, A. V.; Gann, V. V.

    1986-01-01

    Swelling rates are calculated for two types of material with heterogeneous distributions of dislocations and voids, namely copper irradiated with neutrons to low dose at 250 degree C and heavily cold-worked copper irradiated with 1 MeV electrons in a HVEM at 250 degree C. Both materials...... are considered to consist of non-interacting spherical components with a wall and an inner cell with different dislocation and/or void densities. We subdivide the sphere (wall plus cell) in a number of concentric shells and find a quasi-static solution for the interstitial and vacancy concentrations...

  1. Void Measurements in the Regions of Sub-Cooled and Low-Quality Boiling. Part 1. Low Mass Velocities

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S.Z.

    1966-07-15

    By the application of the ({gamma}, n) reaction to boiling heavy water, void volume fractions have been measured in a vertical annular channel with 25 mm O.D. and 12 mm I.D. at a heated length of 1090 mm. The experiments covered pressures from 10 to 50 bars, mass velocities from 50 to 1450 kg/m-sec, heat fluxes from 30 to 90 W/cm{sup 2}, sub coolings from 30 to 0 C, and steam qualities from 0 to 15 %. The results indicate noticeable effects of pressure, heat flux and even mass velocity upon the variations of void with subcooling and steam quality. A novel explanation of the mechanism of their effects has been found and proved by qualitative analysis.

  2. Polymer fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Hadermann, A. F.

    1985-04-09

    Soluble polymers are fractionated according to molecular weight by cryogenically comminuting the polymer and introducing the polymer particles, while still in the active state induced by cryogenic grinding, into a liquid having a solvent power selected to produce a coacervate fraction containing high molecular weight polymer species and a dilute polymer solution containing lower molecular weight polymer species. The coacervate may be physically separated from the solution and finds use in the production of antimisting jet fuels and the like.

  3. Measurement of the Velocity Field and Void Fraction in a Planar Plunging Jet

    Science.gov (United States)

    1993-01-01

    plunging liquid jet entrains small bubbles from the air in the Taylor bubble. These bubbles follow the Taylor bubble in the liquid slug and...effect of any changes due to surface tension variation were too small to be detected. When the liquid jet impacts the pool surface, air entrainment ... Plunging Laminar Liquid Jets ," AIChE Journal, Vol. 12, No. 3, 563, 1966. McKeogh, E.J. and Elsaway, E., " Air Retained in

  4. TRANSVERSELY ISOTROPIC HYPER-ELASTIC MATERIAL RECTANGULAR PLATE WITH VOIDS UNDER A UNIAXIAL EXTENSION

    Institute of Scientific and Technical Information of China (English)

    程昌钧; 任九生

    2003-01-01

    The finite deformation and stress analyses for a transversely isotropic rectangularplate with voids and made of hyper-elastic material with the generalized neo-Hookean strainenergy function under a uniaxial extension are studied. The deformation functions of plateswith voids that are symmetrically distributed in a certain manner are given and the functionsare expressed by two parameters by solving the differential equations. The solution may beapproximately obtained from the minimum potential energy principle. Thus, the analyticsolutions of the deformation and stress of the plate are obtained. The growth of the void.s andthe distribution of stresses along the voids are analyzed and the influences of the degree ofanisotropy, the size of the voids and the distance between the voids are discussed. Thecharacteristics of the growth of the voids and the distribution of stresses of the plates with onevoid, three or five voids are obtained and compared.

  5. SURFACE EFFECT ON NANOSIZED VOID GROWTH IN A RIGID-PERFECTLY PLASTIC MATERIAL

    Institute of Scientific and Technical Information of China (English)

    Tong Hui; Yiheng Chen

    2008-01-01

    The influence of the surface effect on the nanosized spherical void growth in a rigid-perfectly plastic material is analyzed and the mechanism of the nanosized void growth with high triaxiality is given. Based on the Rice and Tracey model for a macro void growth, the present model is proposed to account for the nanosized void growth under a uniform remote strain rate field with consideration on the surface effect. It is concluded that the surface effect yields an evident resistant influence on the nanosized void growth. That is, this influence decays as the void radius increases. With high triaxiality, the nanosized void growth is divided into two stages:the initial stage and the mature stage. At the first stage, the void grows slowly and the influence of surface effect is relatively weak, whereas at the second stage, the influene is significant and the void grows drastically.

  6. Acoustic characterization of void distributions across carbon-fiber composite layers

    Science.gov (United States)

    Tayong, Rostand B.; Smith, Robert A.; Pinfield, Valerie J.

    2016-02-01

    Carbon Fiber Reinforced Polymer (CFRP) composites are often used as aircraft structural components, mostly due to their superior mechanical properties. In order to improve the efficiency of these structures, it is important to detect and characterize any defects occurring during the manufacturing process, removing the need to mitigate the risk of defects through increased thicknesses of structure. Such defects include porosity, which is well-known to reduce the mechanical performance of composite structures, particularly the inter-laminar shear strength. Previous work by the authors has considered the determination of porosity distributions in a fiber-metal laminate structure [1]. This paper investigates the use of wave-propagation modeling to invert the ultrasonic response and characterize the void distribution within the plies of a CFRP structure. Finite Element (FE) simulations are used to simulate the ultrasonic response of a porous composite laminate to a typical transducer signal. This simulated response is then applied as input data to an inversion method to calculate the distribution of porosity across the layers. The inversion method is a multi-dimensional optimization utilizing an analytical model based on a normal-incidence plane-wave recursive method and appropriate mixture rules to estimate the acoustical properties of the structure, including the effects of plies and porosity. The effect of porosity is defined through an effective wave-number obtained from a scattering model description. Although a single-scattering approach is applied in this initial study, the limitations of the method in terms of the considered porous layer, percentage porosity and void radius are discussed in relation to single- and multiple-scattering methods. A comparison between the properties of the modeled structure and the void distribution obtained from the inversion is discussed. This work supports the general study of the use of ultrasound methods with inversion to

  7. Constructing General Orthogonal Fractional Factorial Split-Plot Designs

    NARCIS (Netherlands)

    Sartono, B.; Goos, P.; Schoen, E.

    2015-01-01

    While the orthogonal design of split-plot fractional factorial experiments has received much attention already, there are still major voids in the literature. First, designs with one or more factors acting at more than two levels have not yet been considered. Second, published work on nonregular fra

  8. Image analysis of aggregate,mastic and air void phases for asphalt mixture%Image analysis of aggregate, mastic and air void phases for asphalt mixture

    Institute of Scientific and Technical Information of China (English)

    ADHIKARI Sanjeev; YOU Zhan-ping; HAO Pei-wen; WANG Hai-nian

    2013-01-01

    The shape characterization and spatial distribution of aggregate,mastic and air void phases for asphalt mixture were analyzed.Three air void percentage asphalt mixtures,4%,7% and 8%,respectively,were cut into cross sections and polished.X-ray scanning microscope was used to capture aggregate,mastic,air void phase by the image.The average of polygon diameter was chosen as a threshold to determine which aggregates would be retained on a given sieve.The aggregate morphological image from scanned image was utilized by digital image processing method to calculate the gradation of aggregate and simulate the real gradation.Analysis result shows that the air void of asphalt mixture has influence on the correlation between calculation gradation and actual gradation.When comparing 4.75 mm sieve size of 4%,7% and 8% air void asphalt mixtures,7% air void asphalt mixture has 55% higher than actual size gradation,8% air void asphalt mixture has 8% higher than actual size gradation,and 4% air void asphalt mixture has 3.71% lower than actual size gradation.4% air void asphalt mixture has the best correlation between calculation gradation and actual gradation comparing to other specimens.The air void percentage of asphalt mixture has no obvious influence on the air void orientation,and three asphalt mixtures show the similar air orientation along the same direction.4 tabs,7 figs,17 refs.

  9. Understanding Multiplication of Fractions.

    Science.gov (United States)

    Sweetland, Robert D.

    1984-01-01

    Discussed the use of Cuisenaire rods in teaching the multiplication of fractions. Considers whole number times proper fraction, proper fraction multiplied by proper fraction, mixed number times proper fraction, and mixed fraction multiplied by mixed fractions. (JN)

  10. Impact on liquids : void collapse and jet formation

    NARCIS (Netherlands)

    Gekle, Stephan

    2009-01-01

    A spectacular example of free surface flow is the impact of a solid object on a liquid: At impact a “crown” splash is created and a surface cavity (void) emerges which immediately starts to collapse due to the hydrostatic pressure of the surrounding liquid. Eventually the cavity closes in a single

  11. Void growth to coalescence in a non-local material

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    The size-effect in metals containing distributed spherical voids is analyzed numerically using a finite strain generalization of a length scale dependent plasticity theory. Results are obtained for stress-triaxialities relevant in front of a crack tip in an elastic-plastic metal. The influence...

  12. Void growth to coalescence in a non-local material

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2008-01-01

    The size-effect in metals containing distributed spherical voids is analyzed numerically using a finite strain generalization of a length scale dependent plasticity theory. Results are obtained for stress-triaxialities relevant in front of a crack tip in an elastic-plastic metal. The influence...

  13. Kinetic Monte Carlo simulations of void lattice formation during irradiation

    Science.gov (United States)

    Heinisch, H. L.; Singh, B. N.

    2003-11-01

    Over the last decade, molecular dynamics simulations of displacement cascades have revealed that glissile clusters of self-interstitial crowdions are formed directly in cascades and that they migrate one-dimensionally along close-packed directions with extremely low activation energies. Occasionally, under various conditions, a crowdion cluster can change its Burgers vector and glide along a different close-packed direction. The recently developed production bias model (PBM) of microstructure evolution under irradiation has been structured specifically to take into account the unique properties of the vacancy and interstitial clusters produced in the cascades. Atomic-scale kinetic Monte Carlo (KMC) simulations have played a useful role in understanding the defect reaction kinetics of one-dimensionally migrating crowdion clusters as a function of the frequency of direction changes. This has made it possible to incorporate the migration properties of crowdion clusters and changes in reaction kinetics into the PBM. In the present paper we utilize similar KMC simulations to investigate the significant role that crowdion clusters can play in the formation and stability of void lattices. The creation of stable void lattices, starting from a random distribution of voids, is simulated by a KMC model in which vacancies migrate three-dimensionally and self-interstitial atom (SIA) clusters migrate one-dimensionally, interrupted by directional changes. The necessity of both one-dimensional migration and Burgers vectors changes of SIA clusters for the production of stable void lattices is demonstrated, and the effects of the frequency of Burgers vector changes are described.

  14. A cosmic watershed : the WVF void detection technique

    NARCIS (Netherlands)

    Platen, Erwin; van de Weygaert, Rien; Jones, Bernard J. T.

    2007-01-01

    On megaparsec scales the Universe is permeated by an intricate filigree of clusters, filaments, sheets and voids, the cosmic web. For the understanding of its dynamical and hierarchical history it is crucial to identify objectively its complex morphological components. One of the most characteristic

  15. Structural control of void formation in dual phase steels

    DEFF Research Database (Denmark)

    Azuma, Masafumi

    measurements, tensile tests and hole-expansion tests. The initial microstructure and the deformed microstructure were characterized by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In situ tensile tests in a SEM were applied for direct observation of the void formation...

  16. Impact on liquids : void collapse and jet formation

    NARCIS (Netherlands)

    Gekle, Stephan

    2009-01-01

    A spectacular example of free surface flow is the impact of a solid object on a liquid: At impact a “crown” splash is created and a surface cavity (void) emerges which immediately starts to collapse due to the hydrostatic pressure of the surrounding liquid. Eventually the cavity closes in a single p

  17. Predictive efficacy of radioisotope voiding cystography for renal outcome

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seok Ki; Lee, Dong Soo; Kim, Kwang Myeung; Choi, Whang; Chung, June Key; Lee, Myung Chul [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2000-04-01

    As vesicoureteral reflux (VUR) could lead to renal functional deterioration when combined with urinary tract infection, we need to decide whether operative anti-reflux treatment should be performed at the time of diagnosis of VUR. Predictive value of radioisotope voiding cystography (RIVCG) for renal outcome was tested. In 35 children (18 males, 17 females), radiologic voiding cystoure-thrography (VCU), RIVCG and DMSA scan were performed. Change in renal function was evaluated using the follow-up DMSA scan, ultrasonography, and clinical information. Discriminant analysis was performed using individual or integrated variables such as reflux amount and extent at each phase of voiding on RIVCG, in addition to age, gender and cortical defect on DMSA scan at the time of diagnosis. Discriminant function was composed and its performance was examined. Reflux extent at the filling phase and reflux amount and extent at postvoiding phase had a significant prognostic value. Total reflux amount was a composite variable to predict prognosis. Discriminant function composed of reflux extent at the filling phase and reflux amount and extent at postvoiding phase showed better positive predictive value and specificity than conventional reflux grading. RIVCG could predict renal outcome by disclosing characteristic reflux pattern during various voiding phases.

  18. A halo bias function measured deeply into voids without stochasticity

    CERN Document Server

    Neyrinck, Mark C; Jeong, Donghui; Wang, Xin

    2013-01-01

    We study the relationship between dark-matter haloes and matter in the MIP N-body simulation ensemble, which allows precision measurements of this relationship, even deeply into voids. What enables this is a lack of discreteness, stochasticity, and exclusion, achieved by averaging over hundreds of possible sets of initial small-scale modes, while holding fixed large-scale modes that give the cosmic web. We find (i) that dark-matter-halo formation is greatly suppressed in voids; there is an exponential downturn at low densities in the otherwise power-law matter-to-halo density bias function. Thus, the rarity of haloes in voids is akin to the rarity of the largest clusters, and their abundance is quite sensitive to cosmological parameters. The exponential downturn appears both in an excursion-set model, and in a new model in which fluctuations evolve in voids as in an open universe with an effective Omega_m proportional to a large-scale density. We also find that (ii) haloes typically populate the average halo-...

  19. Electric field theory and the fallacy of void capacitance

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1991-01-01

    The concept of the capacitance of a gaseous void is discussed as applied to electrical insulation science. The most pertinent aspect of the capacitance definition is that of reference to a single-valued potential difference between surfaces. This implies that these surfaces must be surfaces...

  20. Excursion Sets and Non-Gaussian Void Statistics

    CERN Document Server

    D'Amico, Guido; Noreña, Jorge; Paranjape, Aseem

    2010-01-01

    Primordial non-Gaussianity (NG) affects the large scale structure (LSS) of the universe by leaving an imprint on the distribution of matter at late times. Much attention has been focused on using the distribution of collapsed objects (i.e. dark matter halos and the galaxies and galaxy clusters that reside in them) to probe primordial NG. An equally interesting and complementary probe however is the abundance of extended underdense regions or voids in the LSS. The calculation of the abundance of voids using the excursion set formalism in the presence of primordial NG is subject to the same technical issues as the one for halos, which were discussed e.g. in arXiv:1005.1203. However, unlike the excursion set problem for halos which involved random walks in the presence of one barrier $\\delta_c$, the void excursion set problem involves two barriers $\\delta_v$ and $\\delta_c$. This leads to a new complication introduced by what is called the "void-in-cloud" effect discussed in the literature, which is unique to the...

  1. Impact on liquids : void collapse and jet formation

    NARCIS (Netherlands)

    Gekle, Stephan

    2009-01-01

    A spectacular example of free surface flow is the impact of a solid object on a liquid: At impact a “crown” splash is created and a surface cavity (void) emerges which immediately starts to collapse due to the hydrostatic pressure of the surrounding liquid. Eventually the cavity closes in a single p

  2. Effect of void structure of photocatalyst paper on VOC decomposition.

    Science.gov (United States)

    Fukahori, Shuji; Iguchi, Yumi; Ichiura, Hideaki; Kitaoka, Takuya; Tanaka, Hiroo; Wariishi, Hiroyuki

    2007-02-01

    TiO2 powder-containing paper composites, called TiO2 paper, were prepared by a papermaking technique, and their photocatalytic efficiency was investigated. The TiO2 paper has a porous structure originating from the layered pulp fiber network, with TiO2 powders scattered on the fiber matrix. Under UV irradiation, the TiO2 paper decomposed gaseous acetaldehyde more effectively than powdery TiO2 and a pulp/TiO2 mixture not in paper form. Scanning electron microscopy and mercury intrusion analysis revealed that the TiO2 paper had characteristic unique voids ca. 10 microm in diameter, which might have contributed to the improved photocatalytic performance. TiO2 paper composites having different void structures were prepared by using beaten pulp fibers with different degrees of freeness and/or ceramic fibers. The photodecomposition efficiency was affected by the void structure of the photocatalyst paper, and the initial degradation rate of acetaldehyde increased with an increase in the total pore volume of TiO2 paper. The paper voids presumably provided suitable conditions for TiO2 catalysis, resulting in higher photocatalytic performance by TiO2 paper than by TiO2 powder and a pulp/TiO2 mixture not in paper form.

  3. The cosmic web in CosmoGrid void regions

    NARCIS (Netherlands)

    Rieder, Steven; van de Weygaert, Rien; Cautun, Marius; Beygu, Burcu; Portegies Zwart, Simon

    2016-01-01

    We study the formation and evolution of the cosmic web, using the high-resolution CosmoGrid ΛCDM simulation. In particular, we investigate the evolution of the large-scale structure around void halo groups, and compare this to observations of the VGS-31 galaxy group, which consists of three interact

  4. Calculation of Void in the Fort Saint Vrain Material

    Energy Technology Data Exchange (ETDEWEB)

    Potter, David Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Taylor, Craig Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Coons, James Elmer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-11

    The percent void of the Fort Saint Vrain (FSV) material is estimated to be 21.1% based on the volume of the gap at the top of the drums, the volume of the coolant channels in the FSV fuel element, and the volume of the fuel handling channel in the FSV fuel element.

  5. An HI survey of the bootes void; 2, the analysis

    CERN Document Server

    Szomoru, A; Gregg, M D; Strauss, M A

    1995-01-01

    We discuss the results of a VLA HI survey of the Bootes void and compare the distribution and HI properties of the void galaxies to those of galaxies found in a survey of regions of mean cosmic density. The Bootes survey covers 1100 Mpc^{3}, or \\sim 1\\% of the volume of the void and consists of 24 cubes of typically 2 Mpc * 2 Mpc * 1280 km/s, centered on optically known galaxies. Sixteen targets were detected in HI; 18 previously uncataloged objects were discovered directly in HI. The control sample consists of 12 cubes centered on IRAS selected galaxies with FIR luminosities similar to those of the Bootes targets and located in regions of 1 to 2 times the cosmic mean density. In addition to the 12 targets 29 companions were detected in HI. We find that the number of galaxies within 1 Mpc of the targets is the same to within a factor of two for void and control samples, and thus that the small scale clustering of galaxies is the same in regions that differ by a factor of \\sim 6 in density on larger scales. A ...

  6. The Aspen–Amsterdam Void Finder Comparison Project

    NARCIS (Netherlands)

    Colberg, J¨org M.; Pearce, Frazer; Foster, Caroline; Platen, Erwin; Brunino, Riccardo; Neyrinck, Mark; Basilakos, Spyros; Faira, Anthony; Feldman, Hume; Gottlöber, Stefan; Hahn, Oliver; Hoyle, Fiona; M¨uller, V.; Nelson, Lorne; Plionis, Manolis; Porciani, Cristiano; Shandarin, Sergei; Vogeley, Michael S.; Weygaert, Rien van de

    2008-01-01

    Despite a history that dates back at least a quarter of a century studies of voids in the large–scale structure of the Universe are bedevilled by a major problem: there exist a large number of quite different void–finding algorithms, a fact that has so far got in the way of groups comparing their

  7. Low-void polyimide resins for autoclave processing

    Science.gov (United States)

    Jones, R. J.; Vaughan, R. W.

    1972-01-01

    Development of an advanced A-type polyimide, which can be used to produce autoclave molded, low-void content composites suitable for use at temperatures up to 316 C is reported. It consists of a mixture of methyl nadic anhydride, an 80:20 molar ratio of methylene dianaline and thiodianilene, and pyromellitic dianhydride.

  8. Answers from the Void: VIDE and its Applications

    Science.gov (United States)

    Sutter, P. M.; Hamaus, N.; Pisani, A.; Lavaux, G.; Wandelt, B. D.

    2016-10-01

    We discuss various applications ofvide, the Void IDentification and Examination toolkit, anopen-source Python/C++ code for finding cosmic voids in galaxy redshift surveysand $N$-body simulations.Based on a substantially enhanced version of ZOBOV, vide not only finds voids, but alsosummarizes their properties, extracts statisticalinformation, and providesa Python-based platform for more detailed analysis, such asmanipulating void catalogs and particle members, filtering, plotting,computing clustering statistics, stacking, comparing catalogs, andfitting density profiles.vide also provides significant additional functionality forpre-processing inputs: for example, vide can work with volume- ormagnitude-limited galaxy samples with arbitrary survey geometries,or darkmatter particles or halo catalogs in a variety of common formats.It can also randomly subsample inputsand includes a Halo Occupation Distribution model forconstructing mock galaxy populations.vide has been used for a wide variety of applications, fromdiscovering a universal density profile to estimatingprimordial magnetic fields, andis publicly available athttp://bitbucket.org/cosmicvoids/vide\\_publicandhttp://www.cosmicvoids.net.

  9. On the linearity of tracer bias around voids

    Science.gov (United States)

    Pollina, Giorgia; Hamaus, Nico; Dolag, Klaus; Weller, Jochen; Baldi, Marco; Moscardini, Lauro

    2017-07-01

    The large-scale structure of the Universe can be observed only via luminous tracers of the dark matter. However, the clustering statistics of tracers are biased and depend on various properties, such as their host-halo mass and assembly history. On very large scales, this tracer bias results in a constant offset in the clustering amplitude, known as linear bias. Towards smaller non-linear scales, this is no longer the case and tracer bias becomes a complicated function of scale and time. We focus on tracer bias centred on cosmic voids, i.e. depressions of the density field that spatially dominate the Universe. We consider three types of tracers: galaxies, galaxy clusters and active galactic nuclei, extracted from the hydrodynamical simulation Magneticum Pathfinder. In contrast to common clustering statistics that focus on auto-correlations of tracers, we find that void-tracer cross-correlations are successfully described by a linear bias relation. The tracer-density profile of voids can thus be related to their matter-density profile by a single number. We show that it coincides with the linear tracer bias extracted from the large-scale auto-correlation function and expectations from theory, if sufficiently large voids are considered. For smaller voids we observe a shift towards higher values. This has important consequences on cosmological parameter inference, as the problem of unknown tracer bias is alleviated up to a constant number. The smallest scales in existing data sets become accessible to simpler models, providing numerous modes of the density field that have been disregarded so far, but may help to further reduce statistical errors in constraining cosmology.

  10. Three-Dimensional Molecular Dynamics Simulations of Void Coalescence during Dynamic Fracture of Ductile Metals

    Energy Technology Data Exchange (ETDEWEB)

    Seppala, E T; Belak, J; Rudd, R E

    2004-09-02

    Void coalescence and interaction in dynamic fracture of ductile metals have been investigated using three-dimensional strain-controlled multi-million atom molecular dynamics simulations of copper. The correlated growth of two voids during the coalescence process leading to fracture is investigated, both in terms of its onset and the ensuing dynamical interactions. Void interactions are quantified through the rate of reduction of the distance between the voids, through the correlated directional growth of the voids, and through correlated shape evolution of the voids. The critical inter-void ligament distance marking the onset of coalescence is shown to be approximately one void radius based on the quantification measurements used, independent of the initial separation distance between the voids and the strain-rate of the expansion of the system. The interaction of the voids is not reflected in the volumetric asymptotic growth rate of the voids, as demonstrated here. Finally, the practice of using a single void and periodic boundary conditions to study coalescence is examined critically and shown to produce results markedly different than the coalescence of a pair of isolated voids.

  11. Voids and superstructures: correlations and induced large-scale velocity flows

    Science.gov (United States)

    Lares, Marcelo; Luparello, Heliana E.; Maldonado, Victoria; Ruiz, Andrés N.; Paz, Dante J.; Ceccarelli, Laura; Garcia Lambas, Diego

    2017-09-01

    The expanding complex pattern of filaments, walls and voids build the evolving cosmic web with material flowing from underdense on to high density regions. Here, we explore the dynamical behaviour of voids and galaxies in void shells relative to neighbouring overdense superstructures, using the Millenium simulation and the main galaxy catalogue in Sloan Digital Sky Survey data. We define a correlation measure to estimate the tendency of voids to be located at a given distance from a superstructure. We find voids-in-clouds (S-types) preferentially located closer to superstructures than voids-in-voids (R-types) although we obtain that voids within ∼40 h-1 Mpc of superstructures are infalling in a similar fashion independently of void type. Galaxies residing in void shells show infall towards the closest superstructure, along with the void global motion, with a differential velocity component depending on their relative position in the shell with respect to the direction to the superstructure. This effect is produced by void expansion and therefore is stronger for R-types. We also find that galaxies in void shells facing the superstructure flow towards the overdensities faster than galaxies elsewhere at the same relative distance to the superstructure. The results obtained for the simulation are also reproduced for the Sky Survey Data Release data with a linearized velocity field implementation.

  12. Comparison of voiding cystourethrography and urosonography with second-generation contrast agents in simultaneous prospective study

    Science.gov (United States)

    Świętoń, Dominik; Rybczyńska, Dorota; Czarniak, Piotr; Szarmach, Arkadiusz; Kaszubowski, Mariusz; Szurowska, Edyta

    2016-01-01

    Background The invasiveness and exposure to radiation in voiding cystourethrography led to the introduction of alternative methods of diagnosis of vesicoureteral reflux, including contrast enhanced voiding urosonography. While there is a limited number of studies comparing these methods using new generation ultrasound contrast agents, none of them compared both methods simultaneously. This study is aimed at assessing agreement between contrast enhanced voiding urosonography with second-generation ultrasound contrast agents and voiding cystourethrography. Methods From April 2013 to May 2014, 83 children (37 female and 46 male), mean age 3.5 years, age range from 1 month to 17.5 years, underwent prospective simultaneous assessment by contrast enhanced voiding urosonography and voiding cystourethrography, with a total of 166 uretero-renal units evaluated. Results The sensitivity of voiding cystourethrography and contrast enhanced voiding urosonography were comparable, amounting to 88%, however, neither reached 100% for the entire studied population. The negative predictive value of voiding urosonography and voiding cystourethrography was 97%, and there was no difference between both methods. Conclusion Voiding cystourethrography and contrast enhanced voiding urosonography are comparable methods in diagnosis of vesicoureteral reflux, and can be performed alternatively. However, some limitations of contrast enhanced voiding urosonography must be remembered.

  13. Refractometric discrimination of void-space filling and swelling during vapour sorption in polymer films.

    Science.gov (United States)

    Cross, G H; Ren, Y; Swann, M J

    2000-12-01

    Thin polymeric films have been deposited as upper cladding layers on a new integrated optical interferometer fabricated from layers of silicon oxynitride on a silicon wafer. The evanescent field of the probing waveguide mode transduces refractive index changes in the polymer layer into the measured phase changes in the device. Real-time measurement of index change and its sign is obtained. Upon exposure to humid air, we record water sorption by films of poly(vinyl pyrrolidone) by a rapid positive index change for void-space filling followed by a slow negative index change for swelling. Sorption of water vapor into a thin film of the viscous liquid polymer polyethylenimine shows only swelling mode behaviour and a simple constitutive model can be applied to give the fractional water occupied volume.

  14. Mystery Fractions

    Science.gov (United States)

    Bhattacharyya, Sonalee; Namakshi, Nama; Zunker, Christina; Warshauer, Hiroko K.; Warshauer, Max

    2016-01-01

    Making math more engaging for students is a challenge that every teacher faces on a daily basis. These authors write that they are constantly searching for rich problem-solving tasks that cover the necessary content, develop critical-thinking skills, and engage student interest. The Mystery Fraction activity provided here focuses on a key number…

  15. Mystery Fractions

    Science.gov (United States)

    Bhattacharyya, Sonalee; Namakshi, Nama; Zunker, Christina; Warshauer, Hiroko K.; Warshauer, Max

    2016-01-01

    Making math more engaging for students is a challenge that every teacher faces on a daily basis. These authors write that they are constantly searching for rich problem-solving tasks that cover the necessary content, develop critical-thinking skills, and engage student interest. The Mystery Fraction activity provided here focuses on a key number…

  16. Mechanical Stress Effects on Electromigration Voiding in a Meandering Test Stripe

    Science.gov (United States)

    Lowry, L. E.; Tai, B. H.; Mattila, J.; Walsh, L. H.

    1993-01-01

    Earlier experimental findings concluded that electromigratin voids in these meandering stripe test structures were not randomly distributed and that void nucleation frequenly occurred sub-surface at the metal/thermal oxide interface.

  17. Idiopathic detrusor sphincter dyssynergia in neurologically normal patients with voiding abnormalities

    DEFF Research Database (Denmark)

    Jørgensen, T M; Djurhuus, J C; Schrøder, H D

    1982-01-01

    Symptomatology and clinical manifestations of detrusor sphincter dyssynergia are described in 23 patients without neurological disease. Their cardinal symptoms were recurrent cystitis, enuresis, frequent voiding, back pain during voiding and anal discomfort. The major objective finding was vesico...

  18. Particle-size distribution and packing fraction of geometric random packings

    NARCIS (Netherlands)

    Brouwers, H.J.H.

    2006-01-01

    This paper addresses the geometric random packing and void fraction of polydisperse particles. It is demonstrated that the bimodal packing can be transformed into a continuous particle-size distribution of the power law type. It follows that a maximum packing fraction of particles is obtained when t

  19. Discovery of an extremely gas-rich dwarf triplet near the center of the Lynx-Cancer void

    CERN Document Server

    Chengalur, Jayaram N

    2012-01-01

    Giant Metrewave Radio Telescope (GMRT) HI observations, done as part of an ongoing study of dwarf galaxies in the Lynx-Cancer void, resulted in the discovery of a triplet of extremely gas rich galaxies located near the centre of the void.The triplet members SDSS J0723+3621, J0723+3622 and J0723+3624 have absolute magnitudes M_B of -14.2, -11.9 and -9.7 and M(HI)/L_B of \\sim 2.9, ~10 and ~25, respectively. The gas mass fractions, as derived from the SDSS photometry and the GMRT data are 0.93, 0.997, 0.997 respectively. The faintest member of this triplet SDSS J0723+3624 is one of the most gas rich galaxies known. We find that all three galaxies deviate significantly from the Tully-Fisher relation, but follow the baryonic Tully-Fisher relation. All three galaxies also have a baryon fraction that is significantly smaller than the cosmic baryon fraction. For the largest galaxy in the triplet, this is in contradiction to numerical simulations. The discovery of this very unique dwarf triplet lends support to the id...

  20. Void structure of concrete with superabsorbent polymers and its relation to frost resistance of concrete

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jensen, Ole Mejlhede; Laustsen, Sara

    2013-01-01

    the difference between poor and satisfactory frost-resistance. Furthermore, the results indicate that voids created directly by SAP protect concrete against frost deterioration just like other air voids; if the concrete contains enough SAP voids, these alone can provide sufficient frost resistance. © 2013 RILEM....

  1. Elastic–plastic void expansion in near-self-similar shapes

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2011-01-01

    For void growth in an elastic–plastic strain hardening material the preferred shape of the void is calculated, dependent on the macroscopic stress state. Axisymmetric cell model analyses are carried out with a very small initial void size relative to the cell dimensions. Large deformations of the...

  2. 42 CFR 457.216 - Treatment of uncashed or canceled (voided) CHIP checks.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Treatment of uncashed or canceled (voided) CHIP... canceled (voided) CHIP checks. (a) Purpose. This section provides rules to ensure that States refund the... section— Canceled (voided) check means an CHIP check issued by a State or fiscal agent that prior to...

  3. The Influence of the Presence of Multiple Voids on the Discharge Patterns in Solid Epoxy Insulation

    DEFF Research Database (Denmark)

    Holbøll, Joachim T.; Henriksen, Mogens; Larsen, Esben

    1996-01-01

    In this paper, partial discharge test results from initial long term testing on samples which contain more voids, when exposed to a high electric stress will be presented. The influence on the discharge patterns, phase- and height-analyses, of such parameter as the number of voids and the void di...

  4. Perineal surface electromyography does not typically demonstrate expected relaxation during normal voiding.

    Science.gov (United States)

    Kirby, Anna C; Nager, Charles W; Litman, Heather J; Fitzgerald, Mary P; Kraus, Stephen; Norton, Peggy; Sirls, Larry; Rickey, Leslie; Wilson, Tracey; Dandreo, Kimberly J; Shepherd, Jonathan; Zimmern, Philippe

    2011-11-01

    To describe perineal surface patch electromyography (EMG) activity during urodynamics (UDS) and compare activity between filling and voiding phases and to assess for a relationship between preoperative EMG activity and postoperative voiding symptoms. 655 women underwent standardized preoperative UDS that included perineal surface EMG prior to undergoing surgery for stress urinary incontinence. Pressure-flow studies were evaluated for abdominal straining and interrupted flow. Quantitative EMG values were extracted from 10 predetermined time-points and compared between fill and void. Qualitative EMG activity was assessed for the percent of time EMG was active during fill and void and for the average amplitude of EMG during fill compared to void. Postoperative voiding dysfunction was defined as surgical revision or catheterization more than 6 weeks after surgery. Fisher's exact test with a 5% two-sided significance level was used to assess differences in EMG activity and postoperative voiding dysfunction. 321 UDS had interpretable EMG studies, of which 131 (41%) had EMG values at all 10 predetermined and annotated time-points. Quantitative and qualitative EMG signals during flow were usually greater than during fill. The prevalence of postoperative voiding dysfunction in subjects with higher preoperative EMG activity during void was not significantly different. Results were similar in the 42 subjects who had neither abdominal straining during void nor interrupted flow. Perineal surface patch EMG did not measure expected pelvic floor and urethral sphincter relaxation during voiding. Preoperative EMG did not predict patients at risk for postoperative voiding dysfunction. Copyright © 2011 Wiley Periodicals, Inc.

  5. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  6. Fraction Reduction through Continued Fractions

    Science.gov (United States)

    Carley, Holly

    2011-01-01

    This article presents a method of reducing fractions without factoring. The ideas presented may be useful as a project for motivated students in an undergraduate number theory course. The discussion is related to the Euclidean Algorithm and its variations may lead to projects or early examples involving efficiency of an algorithm.

  7. Constraining CMB-consistent primordial voids with cluster evolution

    CERN Document Server

    Mathis, H; Griffiths, L M; Kunz, M

    2004-01-01

    Using cosmological simulations, we make predictions for the distribution of clusters in a plausible non-gaussian model where primordial voids nucleated during inflation act together with scale-invariant adiabatic gaussian fluctuations as seeds for the formation of large-scale structure. This model agrees with most recent observations of the anisotropies of the cosmic microwave background (CMB) and can account for the excess of power measured on cluster scales by the Cosmic Background Imager (CBI), the large empty regions apparent in nearby galaxy redshift surveys and the number of giant arcs measured in deep cluster lensing surveys. We show that the z=0 cluster mass function differs from predictions for a standard LCDM cosmology with the same sigma_8. Moreover, as massive clusters also form much earlier in the "void" scenario, we show that integrated number counts of SZ sources and simple statistics of strong lensing can easily falsify this model.

  8. On the void explanation of the Cold Spot

    Science.gov (United States)

    Marcos-Caballero, A.; Fernández-Cobos, R.; Martínez-González, E.; Vielva, P.

    2016-07-01

    The integrated Sachs-Wolfe (ISW) contribution induced on the cosmic microwave background by the presence of a supervoid as the one detected by Szapudi et al. (2015) is reviewed in this letter in order to check whether it could explain the Cold Spot (CS) anomaly. Two different models, previously used for the same purpose, are considered to describe the matter density profile of the void: a top hat function and a compensated profile produced by a Gaussian potential. The analysis shows that, even enabling ellipticity changes or different values for the dark-energy equation of state parameter ω, the ISW contribution due to the presence of the void does not reproduce the properties of the CS.

  9. The ISW imprints of voids and superclusters on the CMB

    Science.gov (United States)

    Hotchkiss, S.; Nadathur, S.; Gottlöber, S.; Iliev, I. T.; Knebe, A.; Watson, W. A.; Yepes, G.

    2016-10-01

    We examine the stacked integrated Sachs-Wolfe (ISW) imprints on the CMB along the lines of sight of voids and superclusters in galaxy surveys, using the Jubilee ISW simulation and mock luminous red galaxy (LRG) catalogues. We show that the expected signal in the concordance \\Lam CDM model is much smaller than the primary anisotropies arising at the last scattering surface and therefore any currently claimed detections of such an imprint cannot be caused by the ISW effect in \\Lam CDM. We look for the existence of such a signal in the Planck CMB using a catalogue of voids and superclusters from the Sloan Digital Sky Survey (SDSS), but find a result completely consistent with \\Lam CDM - i.e., a null detection.

  10. Study on voids of epoxy matrix composites sandwich structure parts

    Science.gov (United States)

    He, Simin; Wen, Youyi; Yu, Wenjun; Liu, Hong; Yue, Cheng; Bao, Jing

    2017-03-01

    Void is the most common tiny defect of composite materials. Porosity is closely related to composite structure property. The voids forming behaviour in the composites sandwich structural parts with the carbon fiber reinforced epoxy resin skins was researched by adjusting the manufacturing process parameters. The composites laminate with different porosities were prepared with the different process parameter. The ultrasonic non-destructive measurement method for the porosity was developed and verified through microscopic examination. The analysis results show that compaction pressure during the manufacturing process had influence on the porosity in the laminate area. Increasing the compaction pressure and compaction time will reduce the porosity of the laminates. The bond-line between honeycomb core and carbon fiber reinforced epoxy resin skins were also analyzed through microscopic examination. The mechanical properties of sandwich structure composites were studied. The optimization process parameters and porosity ultrasonic measurement method for composites sandwich structure have been applied to the production of the composite parts.

  11. Radiating subdispersive fractional optical solitons

    Energy Technology Data Exchange (ETDEWEB)

    Fujioka, J., E-mail: fujioka@fisica.unam.mx; Espinosa, A.; Rodríguez, R. F. [Departamento de Física Química, Instituto de Física, Universidad Nacional Autónoma de México, Mexico, DF 04510 (Mexico); Malomed, B. A. [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-09-01

    It was recently found [Fujioka et al., Phys. Lett. A 374, 1126 (2010)] that the propagation of solitary waves can be described by a fractional extension of the nonlinear Schrödinger (NLS) equation which involves a temporal fractional derivative (TFD) of order α > 2. In the present paper, we show that there is also another fractional extension of the NLS equation which contains a TFD with α < 2, and in this case, the new equation describes the propagation of radiating solitons. We show that the emission of the radiation (when α < 2) is explained by resonances at various frequencies between the pulses and the linear modes of the system. It is found that the new fractional NLS equation can be derived from a suitable Lagrangian density, and a fractional Noether's theorem can be applied to it, thus predicting the conservation of the Hamiltonian, momentum and energy.

  12. Multipole analysis of redshift-space distortions around cosmic voids

    Science.gov (United States)

    Hamaus, Nico; Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie; Weller, Jochen

    2017-07-01

    We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h-1Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β(bar z=0.32)=0.599+0.134-0.124 and β(bar z=0.54)=0.457+0.056-0.054, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at bar z=0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15

  13. Piezoelectric performance of fluor polymer sandwiches with different void structures

    Science.gov (United States)

    Lou, Kexing; Zhang, Xiaoqing; Xia, Zhongfu

    2012-06-01

    Film sandwiches, consisting of two outer layers of fluoroethylenepropylene and one middle layer of patterned porous polytetrafluoroethylene, were prepared by patterning and fusion bonding. Contact charging was conducted to render the films piezoelectric. The critical voltage to trigger air breakdown in the inner voids in the fabricated films was investigated. The piezoelectric d 33 coefficients were measured employing the quasistatic method and dielectric resonance spectrum. The results show that the critical voltage for air breakdown in the inner voids is associated with the void microstructure of the films. For the films with patterning factors of 0%, 25% and 44%, the critical values are 300, 230 and 230 kV/cm, respectively. With an increase in the patterning factor, both the piezoelectric d 33 coefficients determined from the dielectric resonance spectra and those determined from quasistatic measurements increase, which might be due to a decrease in Young's modulus for the films. The nonlinearity of d 33 becomes increasingly obvious as the patterning factor increases.

  14. Pulsed electrical breakdown of a void-filled dielectric

    Science.gov (United States)

    Anderson, R. A.; Lagasse, R. R.; Schroeder, J. L.

    2002-05-01

    We report breakdown strengths in a void-filled dielectric material, epoxy containing 48 vol % hollow glass microballoon filler, which is stressed with unipolar voltage pulses of the order of 10 μs duration. The microballoon voids had mean diameters of approximately 40 μm and contained SO2 gas at roughly 30% atmospheric pressure. This void-filled material displays good dielectric strength (of the order of 100 kV mm-1) under these short-pulse test conditions. Results from a variety of electrode geometries are reported, including arrangements in which the electric stress is highly nonuniform. Conventional breakdown criteria based on mean or peak electric stress do not account for these data. A statistics-based predictive breakdown model is developed, in which the dielectric is divided into independent, microballoon-sized "discharge cells" and the spontaneous discharge of a single cell is presumed to launch full breakdown of the composite. We obtain two empirical parameters, the mean and standard deviation of the spontaneous discharge field, by fitting breakdown data from two electrode geometries having roughly uniform fields but with greatly differing volumes of electrically stressed material. This model accounts for many aspects of our data, including the inherent statistical scatter and the dependence on the stressed volume, and it provides informative predictions with electrode geometries giving highly nonuniform fields. Issues related to computational spatial resolution and cutoff distance are also discussed.

  15. Tomography of integrated circuit interconnect with an electromigration void

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Zachary H. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410 (United States); Rensselaer Polytechnic Institute, Troy, New York 12180-3590 (United States); Kalukin, Andrew R. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410 (United States); Kuhn, Markus [Intel Corporation RA1-329, 5200 Northeast Elam Young Parkway, Hillsboro, Oregon 74124 (United States); Frigo, Sean P. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); McNulty, Ian [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Retsch, Cornelia C. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Wang, Yuxin [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Arp, Uwe [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410 (United States); Lucatorto, Thomas B. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410 (United States); Ravel, Bruce D. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410 (United States)] (and others)

    2000-05-01

    An integrated circuit interconnect was subject to accelerated-life test conditions to induce an electromigration void. The silicon substrate was removed, leaving only the interconnect test structure encased in silica. We imaged the sample with 1750 eV photons using the 2-ID-B scanning transmission x-ray microscope at the Advanced Photon Source, a third-generation synchrotron facility. Fourteen views through the sample were obtained over a 170 degree sign range of angles (with a 40 degree sign gap) about a single rotation axis. Two sampled regions were selected for three-dimensional reconstruction: one of the ragged end of a wire depleted by the void, the other of the adjacent interlevel connection (or ''via''). We applied two reconstruction techniques: the simultaneous iterative reconstruction technique and a Bayesian reconstruction technique, the generalized Gaussian Markov random field method. The stated uncertainties are total, with one standard deviation, which resolved the sample to 200{+-}70 and 140{+-}30 nm, respectively. The tungsten via is distinguished from the aluminum wire by higher absorption. Within the void, the aluminum is entirely depleted from under the tungsten via. The reconstructed data show the applicability of this technique to three-dimensional imaging of buried defects in submicrometer structures relevant to the microelectronics industry. (c) 2000 American Institute of Physics.

  16. On the Star Formation Properties of Void Galaxies

    CERN Document Server

    Moorman, Crystal M; White, Amanda; Vogeley, Michael S; Hoyle, Fiona; Giovanelli, Riccardo; Haynes, Martha P

    2016-01-01

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on time scales of 10 Myr and 100 Myr, using H$\\alpha$ emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable HI detections from ALFALFA. For the full HI detected sample, SSFRs do not vary systematically with large-scale environment. However, investigating only the HI detected dwarf galaxies reveals a trend towards higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit HI mass (known as the star formation efficiency; SFE) of a galaxy, as a function of environment. For the overall HI detected population, we notice n...

  17. VOID GROWTH AND CAVITATION IN NONLINEAR VISCOELASTIC SOLIDS

    Institute of Scientific and Technical Information of China (English)

    张赟; 黄筑平

    2003-01-01

    This paper discusses the growth of a pre-existing void in a nonlinear viscoelastic material subjected to remote hydrostatic tensions with different loading rates. The constitutive relation of this viscoelastic material is the one recently proposed by the present authors, which may be considered as a generalization of the non-Gaussian statistical theory in rubber elasticity. As the first order approximation, the above constitutive relation can be reduced to the "neo-Hookean" type viscoelastic one.Investigations of the influences of the material viscosity and the loading rate on the void growth, or on the cavitation are carried out. It is found that: (1) for generalized "inverse Langevin approximation"nonlinear viscoelastic materials, the cavitation limit does not exist, but there is a certain (remote)stress level at which the void will grow rapidly; (2) for generalized "Gaussian statistics" (neo-Hookean type) viscoelastic materials, the cavitation limit exists, and is an increasing function of the loading rate.The present discussions may be of importance in understanding the material failure process under high triaxial stress.

  18. Confirmation of sublunarean voids and thin layering in mare deposits

    Science.gov (United States)

    Robinson, M. S.; Ashley, J. W.; Boyd, A. K.; Wagner, R. V.; Speyerer, E. J.; Ray Hawke, B.; Hiesinger, H.; van der Bogert, C. H.

    2012-08-01

    Typical flow thicknesses of lunar mare basalts were not well constrained in the past, because as craters and rilles age, downslope movement of loose material tends to mix and bury stratigraphy, obscuring the three dimensional nature of the maria. New Lunar Reconnaissance Orbiter Camera high resolution images unambiguously reveal thicknesses of mare basalt layers exposed in impact craters, rilles, and steep-walled pits. Pits up to one hundred meters deep present relatively unmodified, near-vertical sections of mare in three cases, and many young impact craters also expose well preserved sections of mare. Oblique views of each pit and many of these craters reveal multiple layers, 3 to 14 m thick, indicating that eruptions typically produced a series of ˜10 m thick flows (or flow lobes) rather than flows many tens to hundreds of meters thick. Additionally, these images unambiguously show that the floors of two pits extend beneath the mare surfaces, thus revealing sublunarean voids of unknown lateral extent. We also document the occurrence of pits that may be expressions of collapse into subsurface voids in non-mare impact melt deposits. These voids are compelling targets for future human and robotic exploration, with potential as temporary shelters, habitations, or geologic museums.

  19. Measurements of gas pressure in voids in epoxy castings for high voltage equipment

    DEFF Research Database (Denmark)

    Larsen, Esben; Henriksen, Mogens; Nielsen, E

    1988-01-01

    the partial-discharge inception voltage. Data show that gas pressure in voids in epoxy castings can be determined by use of an ultrasound test method. A relationship between the void gas pressure and the epoxy curing pressure is also found. This investigation is part of an effort to predict the inception......An investigation of samples of epoxy each containing one void, which were produced at different pressures, is reported. The samples were of the disk type with the void located in the center. The gas in the voids has a pressure somewhat related to the curing pressure, thereby directly influencing...

  20. Modelling the void deformation and closure by hot forging of ingot castings

    DEFF Research Database (Denmark)

    Christiansen, Peter; Hattel, Jesper Henri; Kotas, Petr;

    2012-01-01

    After solidification and cooling cast ingots contain voids due to improper feeding and volume shrinkage. Such voids are normally unwanted, so besides of forming the ingot to the desired shape, one of the purposes of the post processing of the ingot by hot forging is to close such voids by mechani......After solidification and cooling cast ingots contain voids due to improper feeding and volume shrinkage. Such voids are normally unwanted, so besides of forming the ingot to the desired shape, one of the purposes of the post processing of the ingot by hot forging is to close such voids...... and focuses on how the voids deform depending on their size and distribution in the ingot as well ashow the forging forces are applied....

  1. Effect of Temperature on the Void Growth in Pure Aluminium at High Strain-Rate Loading

    Institute of Scientific and Technical Information of China (English)

    QI Mei-Lan; HE Hong-Liang; YAN Shi-Lin

    2007-01-01

    @@ With the environment temperature varying from 273K to 773K, the dynamic process of void growth in pure aluminium at high strain-rate loading is calculated based on the dynamic growth equation of a void with internal pressure. The result shows that the effect of temperature on the growth of void should be emphasized. Because the initial pressure of void with gas will increase and the viscosity of materials will decrease with the rising of temperature, the growth of void is accelerated. Furthermore, material inertia restrains the growth of void evidently when the diameter exceeds 10μm. The effect of surface tension is very weak in the whole process of void growth.

  2. Self-similarity and universality of void density profiles in simulation and SDSS data

    CERN Document Server

    Nadathur, S; Diego, J M; Iliev, I T; Gottlöber, S; Watson, W A; Yepes, G

    2014-01-01

    The stacked density profile of cosmic voids in the galaxy distribution provides an important tool for the use of voids for precision cosmology. We study the density profiles of voids identified using the ZOBOV watershed transform algorithm in realistic mock luminous red galaxy (LRG) catalogues from the Jubilee simulation, as well as in void catalogues constructed from the SDSS LRG and Main Galaxy samples. We compare different methods for reconstructing density profiles scaled by the void radius and show that the most commonly used method based on counts in shells and simple averaging is statistically flawed as it underestimates the density in void interiors. We provide two alternative methods that do not suffer from this effect; one based on Voronoi tessellations is also easily able to account from artefacts due to finite survey boundaries and so is more suitable when comparing simulation data to observation. Using this method we show that voids in simulation are exactly self-similar, meaning that their avera...

  3. On the formation of voids in internal tin Nb3Sn superconductors

    CERN Document Server

    Scheuerlein, C; Haibel, A

    2007-01-01

    In this article we describe three void growth mechanisms in Nb3Sn strands of the internal tin design on the basis of combined synchrotron micro-tomography and x-ray diffraction measurements during in-situ heating cycles. Initially void growth is driven by a reduction of void surface area by void agglomeration. The main void volume increase is caused by density changes during the formation of Cu3Sn in the strand. Subsequent transformation of Cu-Sn intermetallics into the lower density a-bronze reduces the void volume again. Long lasting temperature ramps and isothermal holding steps can neither reduce the void volume nor improve the chemical strand homogeneity prior to the superconducting A15 phase nucleation and growth.

  4. Fragmentation Wave in Viscoelastic Medium Containing Bubbles and Crystals

    Science.gov (United States)

    Ichihara, M.; Nakamura, K.; Takayama, K.

    2007-12-01

    We conducted fragmentation experiment using viscoelastic silicone compound with various pressure, vesicularity, crystallinity and permeability to understand the magma fragmentation in an explosive volcanic eruption. We used a vertical shock tube to generate rapid decompression. The specimen was pressurized with nitrogen very slowly so that the pores are filled with the high-pressure gas. Then the membranes separating the high- pressure part from the atmospheric pressure part are artificially ruptured, and the specimen is rapidly decompressed. The fragmentation behavior of the specimen is photographed by a high-speed video camera. The fragmentation wave velocity is measured from the video images. After each experiment, the fragments are taken out of the chamber on top of the shock tube carefully and the structures are observed. We obtained the following results from the observation of the fragmentation speed. The fragmentation speed is in the range of 20-40 m/s. Its dependence on the void fraction is not clear in the present experimental conditions with void fraction ranging from 0.33 to 0.44. It tends to be decreased by existence of crystals and increase of permeability. The larger it is, the larger is the acceleration of the fragments. We have noticed significant cavitation in the viscoelastic compound after rapid decompression. The bubbles are generated homogeneously within the compound. The cavitation occurred regardless of the initial gas-saturation condition of the compound. It was not observed with slow decompression, though the decompression amplitude is the same. The bubble nucleation depending on the decompression rate might be significant also in the volcanic processes with rapid decompression and magma fragmentation.

  5. A Novel Dynamic Model for Predicting Pressure Wave Velocity in Four-Phase Fluid Flowing along the Drilling Annulus

    Directory of Open Access Journals (Sweden)

    Xiangwei Kong

    2015-01-01

    Full Text Available A dynamic pressure wave velocity model is presented based on momentum equation, mass-balance equation, equation of state, and small perturbation theory. Simultaneously, the drift model was used to analyze the flow characteristics of oil, gas, water, and drilling fluid multiphase flow. In addition, the dynamic model considers the gas dissolution, virtual mass force, drag force, and relative motion of the interphase as well. Finite difference and Newton-Raphson iterative are introduced to the numerical simulation of the dynamic model. The calculation results indicate that the wave velocity is more sensitive to the increase of gas influx rate than the increase of oil/water influx rate. Wave velocity decreases significantly with the increase of gas influx. Influenced by the pressure drop of four-phase fluid flowing along the annulus, wave velocity tends to increase with respect to well depth, contrary to the gradual reduction of gas void fraction at different depths with the increase of backpressure (BP. Analysis also found that the growth of angular frequency will lead to an increase of wave velocity at low range. Comparison with the calculation results without considering virtual mass force demonstrates that the calculated wave velocity is relatively bigger by using the presented model.

  6. Diagnostic performance of instantaneous wave-free ratio for the evaluation of coronary stenosis severity confirmed by fractional flow reserve: A PRISMA-compliant meta-analysis of randomized studies.

    Science.gov (United States)

    Man, Wanrong; Hu, Jianqiang; Zhao, Zhijing; Zhang, Mingming; Wang, Tingting; Lin, Jie; Duan, Yu; Wang, Ling; Wang, Haichang; Sun, Dongdong; Li, Yan

    2016-09-01

    The instantaneous wave-free ratio (iFR) is a new vasodilator-free index of coronary stenosis severity. The aim of this meta-analysis is to assess the diagnostic performance of iFR for the evaluation of coronary stenosis severity with fractional flow reserve as standard reference. We searched PubMed, EMBASE, CENTRAL, ProQuest, Web of Science, and International Clinical Trials Registry Platform (ICTRP) for publications concerning the diagnostic value of iFR. We used a random-effects covariate to synthesize the available data of sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR-), and diagnostic odds ratio (DOR). Overall test performance was summarized by the summary receiver operating characteristic curve (sROC) and the area under the curve (AUC). Eight studies with 1611 subjects were included in the meta-analysis. The pooled sensitivity, specificity, LR+, LR-, and DOR for iFR were respectively 73.3% (70.1-76.2%), 86.4% (84.3-88.3%), 5.71 (4.43-7.37), 0.29 (0.22-0.38), and 20.54 (16.11-26.20). The area under the summary receiver operating characteristic curves for iFR was 0.8786. No publication bias was identified. The available evidence suggests that iFR may be a new, simple, and promising technology for coronary stenosis physiological assessment.

  7. Improved irritative voiding symptoms three years after stereotactic body radiation therapy for prostate cancer.

    Directory of Open Access Journals (Sweden)

    Zakie eRana

    2014-10-01

    Full Text Available Background: Irritative voiding symptoms are common in elderly men and following prostate radiotherapy. The impact of hypofractionated treatment on irritative voiding symptoms has not been determined. This study sought to evaluate urgency, frequency and nocturia following SBRT for prostate cancer. Methods: Patients treated with SBRT monotherapy for localized prostate cancer from August 2007 to July 2011 at Georgetown University Hospital were included in this study. Treatment was delivered using the CyberKnife® with doses of 35 Gy-36.25 Gy in 5 fractions. Patient-reported urinary symptoms were assessed using the International Prostate Symptom Score (IPSS before treatment and at 1, 3, 6, 9, 12 months post-treatment and every 6 months thereafter.Results: 204 patients at a median age of 69 years received SBRT with a median follow-up of 4.8 years. Prior to treatment, 50.0% of patients reported moderate to severe lower urinary track symptoms and 17.7% felt that urinary frequency was a moderate to big problem. The mean prostate volume was 39 cc and 8% had prior procedures for benign prostatic hyperplasia (BPH. A mean baseline IPSS-irritative score of 4.8 significantly increased to 6.5 at 1 month (p 8 at baseline, the mean IPSS-I decreased from a baseline score of 6.8 to 4.9 at three years post-SBRT. This decrease was both statistically (p < 0.0001 and clinically significant (MID = 1.45. Only 14.6% of patients felt that urinary frequency was a moderate to big problem at three years post-SBRT (p = 0.23.Conclusions: Treatment of prostate cancer

  8. Observation On Void Formed In Oxide Scale Of Fe-Cr-Ni Alloy At 1073k In Dry And Humid Environments

    Directory of Open Access Journals (Sweden)

    Akbar Kaderi

    2012-01-01

    Full Text Available Void formation in oxide scale during high temperature oxidation is a common phenomenon. Over a long period of time voids will affect the mechanical property of scales by influencing the cracking and spalling. Voids formed in dry environment are different than that of formed in humid environment. With the presence of water vapor in humid environment the formation of void will increase, thus greater number of void compared to that in dry environment. Fe-Cr-Ni alloy samples were exposed isothermally at 1073 K in air (P_(O_2 = 0.21atm = 2.1×?10?^(5 Pa and  humid (air + steam environments. XRD analysis done to all samples confirms that Fe2O3, Fe3O4, NiCr2O4, FeCr2O4, Cr2O3 and NiO phases exist in the scale. EDX analysis done shows varying compositions of Fe,Cr,Ni and O in outer and inner oxide scale, oxide scale/metal interface and metal. Field emission scanning electron microscope (FE-SEM was used to investigate voids formed in the cross sections of the oxidized samples. Volume fraction of voids in the oxide scale was calculated in accordance to the cross sectional area fraction of voids in the scale. It shows that Fe-Cr-Ni alloy samples exposed in humid environment has as high as 71% more voids than that exposed in dry environment. It is concluded that the humid environment increased the number of void formed in the oxide scale, thus facilitates the exfoliation of protective scale during the high temperature oxidation. ABSTRAK: Pembentukan gelembung udara di dalam lapisan oksida ketika proses pengoksidaan di suhu tinggi merupakan satu fenomena biasa. Pada satu jangka masa yang panjang gelembung-gelembung ini akan memberi kesan kepada sifat mekanikal oksida dengan mempengaruhi pembentukan keretakan dan pengelupasan oksida. Gelembung udara yang terbentuk di dalam persekitaran kering berbeza daripada yang terbentuk di dalam persekitaran lembap. Dengan adanya wap air, pembentukan gelembung akan bertambah berbanding yang terbentuk di dalam

  9. Analytical solution of nonlinear space–time fractional differential equations using the improved fractional Riccati expansion method

    Directory of Open Access Journals (Sweden)

    Emad A-B. Abdel-Salam

    2015-06-01

    Full Text Available In this paper, the improved fractional Riccati expansion method is proposed to solve fractional differential equations. The method is applied to solve space–time fractional modified Korteweg–de Vries equation, space–time fractional modified regularized long-wave equation, time fractional biological population model, and space–time fractional Klein–Gordon equation. The obtained solutions include generalized trigonometric and hyperbolic functions solutions. Among these solutions, some are found for the first time.

  10. Urethane foam void filling. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Under the decontamination and decommissioning (D and D) Implementation Plan of the United States Department of Energy`s (DOE`s) Fernald Environmental Management Project (FEMP), non-recyclable process components and debris that are removed from buildings undergoing D and D are disposed of in an on-site disposal facility (OSDF). Critical to the design and operation of the FEMP`s OSDF are provisions to protect against subsidence of the OSDF`s cap. Subsidence of the cap could occur if void spaces within the OSDF were to collapse under the overburden of debris and the OSDF cap. Subsidence may create depressions in the OSDF`s cap in which rainwater could collect and eventually seep into the OSDF. To minimize voids in the FEMP`s OSDF, large metallic components are cut into smaller segments that can be arranged more compactly when placed in the OSDF. Component segmentation using an oxy-acetylene torch was the baseline approach used by the FEMP`s D and D contractor on Plant 1, B and W Services, Inc., for the dismantlement and size-reduction of large metal components. Although this technology has performed satisfactorily, it is time-consuming, labor-intensive and costly. Use of the oxy-acetylene torch exposes workers to health and safety hazards including the risk of burns, carbon monoxide, and airborne contamination of residual lead-based paints and other contaminants on the surface of the components being segmented. In addition, solvents used to remove paint from the components before segmenting them emit flammable, noxious fumes. This demonstration investigated the feasibility of placing large vessels intact in the OSDF without segmenting them. To prevent the walls of the vessels from collapsing under the overburden or from degradation, an innovative approach was employed which involved filling the voids in the vessels with a fluid material that hardened on standing. The hardened filling would support the walls of the vessels, and prevent them from collapsing. This report

  11. Void formation in ODS EUROFER produced by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Y.; Monge, M.A.; Munoz, A.; Leguey, T.; Pareja, R. [Madrid Univ. Carlos-3, Dept. de Fisica (Spain); Castro, V. de [Oxford Univ., Dept. of Materials (United Kingdom)

    2007-07-01

    for positrons trapped in voids. Unmilled EUROFER and the EUROFER plate did not show this behavior attributed to the formation of voids induced by annealing. The results indicate that the milling damage retained in the HIPed material has the capability to cluster into voids and growth by heating. These voids appear to be stable upon annealing 1323 K. (authors)

  12. Evaluation and Targeted Therapy of Voiding Dysfunction in Children.

    Science.gov (United States)

    Palmer, Lane S

    2016-06-01

    Significant strides have been made over the past two decades in more precisely evaluating and managing children with voiding complaints. A thorough history should offer insight into the possible causes for the presenting complaints and this should be supplemented by physical examination, urine studies, and select imaging. Uroflowmetry and external sphincter electromyography with measurement of postvoid residual urine should allow for accurate diagnosis using categories offered by the International Children's Continence Society. This ability to make an accurate diagnosis should naturally lead to the use of treatment options (urotherapy, pharmacotherapy, biofeedback, and neuromodulation) that specifically target the responsible cause of the complaints rather than simply their symptoms.

  13. Dependence on supernovae light-curve processing in void models

    Energy Technology Data Exchange (ETDEWEB)

    Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); De Rossi, Maria E., E-mail: derossi@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2014-06-02

    In this work, we show that when supernova Ia (SN Ia) data sets are used to put constraints on the free parameters of inhomogeneous models, certain extra information regarding the light-curve fitter used in the supernovae Ia luminosity fluxes processing should be taken into account. We found that the size of the void as well as other parameters of these models might be suffering extra degenerations or additional systematic errors due to the fitter. A recent proposal to relieve the tension between the results from Planck satellite and SNe Ia is re-analyzed in the framework of these subjects.

  14. Large Voids in the Universe are Really Empty

    Science.gov (United States)

    1996-07-01

    Motions of Nearby Galaxies Reveal No Invisible Matter Using telescopes in Chile, Europe, Australia and the USA, an international team of astronomers [1] has discovered large empty regions (`holes') in what they refer to as the `local Universe'. These regions, as well as others with excess mass density are revealed by a study of the motions in space of more than 2000 galaxies. They are among the largest structures ever seen in the Universe and have diameters of up to 100 million light years. Large empty regions in the nearby Universe Astronomers have known for a number of years that there are regions in the Universe where no galaxies, stars or gas can be seen by optical telescopes. In professional language, such `holes' are commonly referred to as `voids' . For some time, astronomers around the world have tried to detect at least some galaxies in these voids by using larger and more sensitive telescopes. Amazingly, only few such galaxies have ever been found, even by use of the best available equipment. The failure to detect anything in these voids has led to speculations about the nature of the matter in voids. Could it be that it is there, but not in the form astronomers are best familiar with, namely stars and galaxies which can be detected with modern telescopes? Is it perhaps in some kind of exotic, invisible state? The new study now gives a surprisingly simple answer to that question: There just is no matter in the voids! How to detect the `voids' Astronomers can easily detect normal galaxies at very large distances with the help of technologically advanced optical telescopes, like the ones operated by the European Southern Observatory at La Silla in Chile. It was during such investigations in the 1980's, at ESO and elsewhere, that some `voids' were first found as regions of space where few galaxies could be seen. However, it is very difficult to prove that there is `nothing', i.e. absence of visible as well as invisible matter, in some region of the Universe

  15. Resin flow and void formation in an autoclave cure cycle

    Science.gov (United States)

    Lionetto, Francesca; Lucia, Massimo; Dell'Anna, Riccardo; Maffezzoli, Alfonso

    2016-05-01

    A finite element (FE) model able to evaluate both the evolution of resin flow, degree of reaction and void formation during autoclave cure cycles was developed. The model was implemented using a commercial epoxy matrix widely used in aeronautic field. The FE model also included a kinetic and rheological model whose input parameters were experimentally determined by Differential Scanning Calorimetry and rheological analysis. The FE model was able to predict the evolution of degree of reaction with very good agreement with the experimental data. Moreover, the predicted resin losses were lower than 3% of the overall composite resin content.

  16. Testing the imprint of nonstandard cosmologies on void profiles using Monte Carlo random walks

    Science.gov (United States)

    Achitouv, Ixandra

    2016-11-01

    Using Monte Carlo random walks of a log-normal distribution, we show how to qualitatively study void properties for nonstandard cosmologies. We apply this method to an f (R ) modified gravity model and recover the N -body simulation results of [1 I. Achitouv, M. Baldi, E. Puchwein, and J. Weller, Phys. Rev. D 93, 103522 (2016).] for the void profiles and their deviation from GR. This method can potentially be extended to study other properties of the large scale structures such as the abundance of voids or overdense environments. We also introduce a new way to identify voids in the cosmic web, using only a few measurements of the density fluctuations around random positions. This algorithm allows us to select voids with specific profiles and radii. As a consequence, we can target classes of voids with higher differences between f (R ) and standard gravity void profiles. Finally, we apply our void criteria to galaxy mock catalogues and discuss how the flexibility of our void finder can be used to reduce systematic errors when probing the growth rate in the galaxy-void correlation function.

  17. Testing the imprint of non-standard cosmologies on void profiles using Monte Carlo random walks

    CERN Document Server

    Achitouv, Ixandra

    2016-01-01

    Using a Monte Carlo random walks of a log-normal distribution, we show how to qualitatively study void properties for non-standard cosmologies. We apply this method to an f(R) modified gravity model and recover the N-body simulation results of (Achitouv et al. 2016) for the void profiles and their deviation from GR. This method can potentially be extended to study other properties of the large scale structures such as the abundance of voids or overdense environments. We also introduce a new way to identify voids in the cosmic web, using only a few measurements of the density fluctuations around random positions. This algorithm allows to select voids with specific profiles and radii. As a consequence, we can target classes of voids with higher differences between f(R) and standard gravity void profiles. Finally we apply our void criteria to galaxy mock catalogues and discuss how the flexibility of our void finder can be used to reduce systematics errors when probing the growth rate in the galaxy-void correlati...

  18. Nanovoid growth in BCC α-Fe: influences of initial void geometry

    Science.gov (United States)

    Xu, Shuozhi; Su, Yanqing

    2016-12-01

    The growth of voids has a great impact on the mechanical properties of ductile materials by altering their microstructures. Exploring the process of void growth at the nanoscale helps in understanding the dynamic fracture of metals. While some very recent studies looked into the effects of the initial geometry of an elliptic void on the plastic deformation of face-centered cubic metals, a systematic study of the initial void ellipticity and orientation angle in body-centered cubic (BCC) metals is still lacking. In this paper, large scale molecular dynamics simulations with millions of atoms are conducted, investigating the void growth process during tensile loading of metallic thin films in BCC α-Fe. Our simulations elucidate the intertwined influences on void growth of the initial ellipticity and initial orientation angle of the void. It is shown that these two geometric parameters play an important role in the stress-strain response, the nucleation and evolution of defects, as well as the void size/outline evolution in α-Fe thin films. Results suggest that, together with void size, different initial void geometries should be taken into account if a continuum model is to be applied to nanoscale damage progression.

  19. Fractional complex transforms for fractional differential equations

    National Research Council Canada - National Science Library

    Ibrahim, Rabha W

    2012-01-01

    The fractional complex transform is employed to convert fractional differential equations analytically in the sense of the Srivastava-Owa fractional operator and its generalization in the unit disk...

  20. Statistical geometry of lattice chain polymers with voids of defined shapes: Sampling with strong constraints

    Science.gov (United States)

    Lin, Ming; Chen, Rong; Liang, Jie

    2008-02-01

    Proteins contain many voids, which are unfilled spaces enclosed in the interior. A few of them have shapes compatible to ligands and substrates and are important for protein functions. An important general question is how the need for maintaining functional voids is influenced by, and affects other aspects of proteins structures and properties (e.g., protein folding stability, kinetic accessibility, and evolution selection pressure). In this paper, we examine in detail the effects of maintaining voids of different shapes and sizes using two-dimensional lattice models. We study the propensity for conformations to form a void of specific shape, which is related to the entropic cost of void maintenance. We also study the location that voids of a specific shape and size tend to form, and the influence of compactness on the formation of such voids. As enumeration is infeasible for long chain polymer, a key development in this work is the design of a novel sequential Monte Carlo strategy for generating large number of sample conformations under very constraining restrictions. Our method is validated by comparing results obtained from sampling and from enumeration for short polymer chains. We succeeded in accurate estimation of entropic cost of void maintenance, with and without an increasing number of restrictive conditions, such as loops forming the wall of void with fixed length, with additionally fixed starting position in the sequence. Additionally, we have identified the key structural properties of voids that are important in determining the entropic cost of void formation. We have further developed a parametric model to predict quantitatively void entropy. Our model is highly effective, and these results indicate that voids representing functional sites can be used as an improved model for studying the evolution of protein functions and how protein function relates to protein stability.

  1. Fractional complex transform for fractional differential equations

    National Research Council Canada - National Science Library

    Lİ, Zheng Biao; HE, Ji Huan

    2010-01-01

    Fractional complex transform is proposed to convert fractional differential equations into ordinary differential equations, so that all analytical methods devoted to advanced calculus can be easily...

  2. One-Group Perturbation Theory Applied to Measurements with Void

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Rolf

    1966-09-15

    Formulas suitable for evaluating progressive as well as single rod substitution measurements are derived by means of one-group perturbation theory. The diffusion coefficient may depend on direction and position. By using the buckling concept one can derive expressions which are quite simple and the perturbed flux can be taken into account in a comparatively simple way. By using an unconventional definition of cells a transition region is introduced quite logically. Experiments with voids around metal rods, diam. 3.05 cm, have been analysed. The agreement between extrapolated and directly measured buckling values is excellent, the buckling difference between lattices with water-filled and voided shrouds being 0. 263 {+-} 0.015/m{sup 2} and 0.267 {+-} 0.005/m{sup 2} resp. From single-rod experiments differences between diffusion coefficients are determined to {delta}D{sub r}/D = 0.083 {+-} 0.004 and {delta}D{sub z}/D = 0.120 {+-} 0.018. With air-filled shrouds there is consequently anisotropy in the neutron diffusion and we have (D{sub z}/D{sub r}){sub air} = 1.034 {+-} 0.020.

  3. Properties of galaxy halos in Clusters and Voids

    CERN Document Server

    Antonuccio-Delogu, V; Pagliaro, A; Van Kampen, E; Colafrancesco, Sergio; Germaná, A; Gambera, M

    2000-01-01

    We use the results of a high resolution N-body simulation to investigate the role of the environment on the formation and evolution of galaxy-sized halos. Starting from a set of constrained initial conditions, we have produced a final configuration hosting a double cluster in one octant and a large void extending over two octants of the simulation box. In this paper we concentrate on {\\em gravitationally bound} galaxy-sized halos extracted from the two regions. Exploiting the high mass resolution of our simulation ($m_{body} = 2.1\\times 10^{9} h^{-1} M_{\\odot}$), we focus on halos with a relatively small mass: $5\\times 10^{10} \\leq M \\leq 2\\times 10^{12} M_{\\odot}$. We present results for two statistics: the relationship between 1-D velocity dispersion and mass and the probability distribution of the spin parameter $P(\\lambda)$. We do find a clear difference between halos lying in overdense regions and in voids. The \\svm relationship is well described by the Truncated Isothermal Sphere (TIS) model introduced ...

  4. Modeling the Void H I Column Density Spectrum

    CERN Document Server

    Manning, C V

    2003-01-01

    The equivalent width distribution function (EWDF) of \\hone absorbers specific to the void environment has been recently derived (Manning 2002), revealing a large line density of clouds (dN/dz ~500 per unit z for Log (N_HI)> 12.4). I show that the void absorbers cannot be diffuse (or so-called filamentary) clouds, expanding with the Hubble flow, as suggested by N-body/hydro simulations. Absorbers are here modeled as the baryonic remnants of sub-galactic perturbations that have expanded away from their dark halos in response to reionization at z ~ 6.5. A 1-D Lagrangian hydro/gravity code is used to follow the dynamic evolution and ionization structure of the baryonic clouds for a range of halo circular velocities. The simulation products at z=0 can be combined according to various models of the halo velocity distribution function to form a column density spectrum that can be compared with the observed. I find that such clouds may explain the observed EWDF if the halo velocity distribution function is as steep a...

  5. On the linearity of tracer bias around voids

    CERN Document Server

    Pollina, Giorgia; Dolag, Klaus; Weller, Jochen; Baldi, Marco; Moscardini, Lauro

    2016-01-01

    The large-scale structure of the universe can only be observed directly via luminous tracers of the underlying distribution of dark matter. However, the clustering statistics of tracers are biased and depend on various properties of the tracers themselves, such as their host-halo mass and formation and assembly history. On very large scales, where density fluctuations are within the linear regime, this tracer bias results in a constant offset in the clustering amplitude, which is known as linear bias. Towards smaller non-linear scales, this is no longer the case and tracer bias becomes a complicated function of scale and time. We focus on tracer bias centered on cosmic voids, depressions of the density field that spatially dominate the universe. We consider three different types of tracers: galaxies, galaxy clusters and AGNs, extracted from the hydrodynamical simulation suite Magneticum Pathfinder. In contrast to common clustering statistics that focus on the auto-correlation of tracers, we find that void-tra...

  6. Are we living near the center of a local void?

    CERN Document Server

    Cusin, Giulia; Uzan, Jean-Philippe

    2016-01-01

    The properties of the cosmic microwave background (CMB) temperature and polarisation anisotropies measured by a static, off-centered observer located in a local spherically symmetric void, are described. In particular in this paper we compute, together with the standard 2- point angular correlation functions, the off-diagonal correlators, which are no more vanishing by symmetry. While the energy shift induced by the off-centered position of the observer can be suppressed by a proper choice of the observer velocity, a lensing-like effect on the CMB emission point remains. This latter effect is genuinely geometrical (e.g. non-degenerate with a boost) and reflects in the structure of the off-diagonal correlators. At lowest order in this effect, the temperature and polarisation correlation matrices have non-vanishing diagonal elements, as usual, and all the off-diagonal terms are excited. This particular signature of a local void model allows one, in principle, to disentangle geometrical effects from local kinema...

  7. Conversion of stacking fault tetrahedra to voids in electron irradiated Fe-Cr-Ni

    Science.gov (United States)

    Kojima, S.; Sano, Y.; Yoshiie, T.; Yoshida, N.; Kiritani, M.

    1986-11-01

    Electron irradiations of the austenitic Fe-13Cr-14Ni alloy were performed with a high voltage electron microscope at temperatures between room temperature and 650 K. Formation of stacking fault tetrahedra, voids and dislocation loops was observed as vacancy clusters. At the lower temperatures, the dominant vacancy clusters were tetrahedra and at the higher temperatures, voids were dominant. In the temperature range at which both tetrahedra and voids were coexistent, conversion of tetrahedra to voids were observed. These results are interpreted as the preferable nucleation of voids at the site of tetrahedra. Local effects of dilatation field at the corner of tetrahedra and the segregation of solute atoms are considered to enhance the nucleation. Clustered defects which are considered to be stacking fault tetrahedra that are formed with D-T fusion neutrons in SUS 316 stainless steel are suggested as the preferable site for void nucleation.

  8. Three-dimensional investigation of grain orientation effects on void growth in commercially pure titanium

    Energy Technology Data Exchange (ETDEWEB)

    Pushkareva, Marina [Department of Mechanical Engineering, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Adrien, Jérôme; Maire, Eric [Université de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, 7 Avenue Jean Capelle, F-69621 Villeurbanne (France); Segurado, Javier; Llorca, Javier [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid (Spain); Weck, Arnaud, E-mail: aweck@uottawa.ca [Department of Mechanical Engineering, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Centre for Research in Photonics at the University of Ottawa, 800 King Edward Ave., Ottawa, ON, Canada K1N 6N5 (Canada)

    2016-08-01

    The fracture process of commercially pure titanium was visualized in model materials containing artificial holes. These model materials were fabricated using a femtosecond laser coupled with a diffusion bonding technique to obtain voids in the interior of titanium samples. Changes in void dimensions during in-situ straining were recorded in three dimensions using x-ray computed tomography. Void growth obtained experimentally was compared with the Rice and Tracey model which predicted well the average void growth. A large scatter in void growth data was explained by differences in grain orientation which was confirmed by crystal plasticity simulations. It was also shown that grain orientation has a stronger effect on void growth than intervoid spacing and material strength. Intervoid spacing, however, appears to control whether the intervoid ligament failure is ductile or brittle.

  9. Voiding generation in copper interconnect under room temperature storage in 12 years

    Science.gov (United States)

    Matsuyama, Hideya; Suzuki, Takashi; Nakamura, Tomoji; Shiozu, Motoki; Ehara, Hideo; Oshima, Masao; Soeda, Takeshi; Hosoi, Hirokazu; Yamabe, Kikuo

    2017-07-01

    We measured the internal residual stress change of ULSI copper interconnects at room temperature for 12 years to confirm the stress migration phenomenon. The residual stress decreased and voids were generated. Furthermore, we investigated the stress change results and void features obtained through physical analyses. The voids had the same features as those in the high-temperature storage. The estimated volume shrinkage agreed with the total volume of the observed voids, suggesting that void generation causes the decrease in stress. From the obtained result, we conclude that the stress migration degradation phenomenon occurs even at room temperature in the long-term storage, and that the void feature is almost identical to that in the high-temperature acceleration test.

  10. Structure-dependent behavior of stress-induced voiding in Cu interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Wu Zhenyu, E-mail: wuzhenyu@xidian.edu.c [Key Laboratory of Ministry of Education for Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China); Yang Yintang; Chai Changchun; Li Yuejin; Wang Jiayou; Li Bin; Liu Jing [Key Laboratory of Ministry of Education for Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2010-05-03

    Stress modeling and cross-section failure analysis by focused-ion-beam have been used to investigate stress-induced voiding phenomena in Cu interconnects. The voiding mechanism and the effect of the interconnect structure on the stress migration have been studied. The results show that the most concentrated tensile stress appears and voids form at corners of vias on top surfaces of Cu M1 lines. A simple model of stress induced voiding in which vacancies arise due to the increase of the chemical potential under tensile stress and diffuse under the force of stress gradient along the main diffusing path indicates that stress gradient rather than stress itself determines the voiding rate. Cu interconnects with larger vias show less resistance to stress-induced voiding due to larger stress gradient at corners of vias.

  11. Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void

    Science.gov (United States)

    Shan, Tzu-Ray; Thompson, Aidan P.

    2014-05-01

    We present results of reactive molecular dynamics simulations of hotspot formation and chemical reaction initiation in shock-induced compression of pentaerythritol tetranitrate (PETN) with the ReaxFF reactive force field. A supported shockwave is driven through a PETN crystal containing a 20 nm spherical void at a sub-threshold impact velocity of 2 km/s. Formation of a hotspot due to shock-induced void collapse is observed. During void collapse, NO2 is the dominant species ejected from the upstream void surface. Once the ejecta collide with the downstream void surface and the hotspot develops, formation of final products such as N2 and H2O is observed. The simulation provides a detailed picture of how void collapse and hotspot formation leads to initiation at sub-threshold impact velocities.

  12. Benchmark of Subchannel Code VIPRE-W with PSBT Void and Temperature Test Data

    Directory of Open Access Journals (Sweden)

    Y. Sung

    2012-01-01

    Full Text Available This paper summarizes comparisons of VIPRE-W thermal-hydraulic subchannel code predictions with measurements of fluid temperature and void from pressurized water reactor subchannel and bundle tests. Using an existing turbulent mixing model, the empirical coefficient derived from code predictions in comparison to the fluid temperature measurement is similar to those from previous mixing tests of similar bundle configurations. The predicted steady-state axial void distributions and time-dependent void profiles based on the Lellouche and Zolotar model generally agree well with the test data. The void model tends to predict lower void at the upper elevation under bulk boiling. The void predictions are in closer agreement with the measurements from the power increase, temperature increase, and flow reduction transients than the depressurization transient. Additional model sensitivity studies showed no significant improvement in the code predictions as compared to the published test data.

  13. The Influence of the Presence of Multiple Voids on the Discharge Patterns in Solid Epoxy Insulation

    DEFF Research Database (Denmark)

    Holbøll, Joachim T.; Henriksen, Mogens; Larsen, Esben

    1996-01-01

    In this paper, partial discharge test results from initial long term testing on samples which contain more voids, when exposed to a high electric stress will be presented. The influence on the discharge patterns, phase- and height-analyses, of such parameter as the number of voids and the void di...... diameters will be given. A first evaluation/opinion of the impact this could have on the estimation of the insulation condition of electrical equipment, based on the identification of PD-patterns, will also be given.......In this paper, partial discharge test results from initial long term testing on samples which contain more voids, when exposed to a high electric stress will be presented. The influence on the discharge patterns, phase- and height-analyses, of such parameter as the number of voids and the void...

  14. Geometric and Chemical Composition Effects on Healing Kinetics of Voids in Mg-bearing Al Alloys

    Science.gov (United States)

    Song, Miao; Du, Kui; Wang, Chunyang; Wen, Shengping; Huang, Hui; Nie, Zuoren; Ye, Hengqiang

    2016-05-01

    The healing kinetics of nanometer-scale voids in Al-Mg-Er and Al-Mg-Zn-Er alloy systems were investigated with a combination of in situ transmission electron microscopy and electron tomography at different temperatures. Mg was observed completely healing the voids, which were then rejuvenated to the alloy composition with further aging, in the Al-Mg-Er alloy. On the contrary, Mg51Zn20 intermetallic compound was formed in voids in the Al-Mg-Zn-Er alloy, which leads to complete filling of the voids but not rejuvenation for the material. For voids with different geometrical aspects, different evolution processes were observed, which are related to the competition between bulk and surface diffusion of the alloys. For voids with a large size difference in their two ends, a viscous flow of surface atoms can be directly observed with in situ electron microscopy, when the size of one end becomes less than tens of nanometers.

  15. VIPRE-W benchmark with PSBT void and temperature test data

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Y.; Oelrich, R.L.; Lee, C.C., E-mail: sungy@westinghouse.com, E-mail: oelricrl@westinghouse.com, E-mail: leecc@westinghouse.com [Westinghouse Electric Co. LLC, Pittsburgh, Pennsylvania (United States); Ruiz-Esquide, N.; Gambetta, M.; Mazufri, C.M., E-mail: nruiz@invap.com.ar, E-mail: gambetta@invap.com.ar, E-mail: mazufri@invap.com.ar [INVAP, San Carlos de Bariloche (Argentina)

    2011-07-01

    This paper summarizes comparisons of VIPRE-W thermal-hydraulic subchannel code predictions with measurements of fluid temperature and void from Pressurized Water Reactor subchannel and bundle tests. Using an existing turbulent mixing model, the empirical coefficient derived from code predictions in comparison to the fluid temperature measurement is similar to those from previous mixing tests of similar bundle configurations. The predicted steady state axial void distributions and time-dependent void profiles based on the Lellouche and Zolotar model generally agree well with the test data. The void model tends to predict lower void at the upper elevation under bulk boiling. The void predictions are in closer agreement with the measurements from the power increase, temperature increase and flow reduction transients than the depressurization transient. (author)

  16. Fuzzy Reasoning to More Accurately Determine Void Areas on Optical Micrographs of Composite Structures

    Science.gov (United States)

    Dominguez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne

    2013-12-01

    Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.

  17. Characterisation of Partial Discharge Pulses in Artificial Voids in Polypropylene Films Used in Capacitors

    OpenAIRE

    B. Ramachandra; Nema, RS

    1996-01-01

    Partial discharges in voids may cause deterioration of solid insulating materials. They often start in voids enclosed in insulation and or at the interface defects. A method of measuring fast discharge pulses with rise times below 1 ns is reported. Characterisation of partial discharge pulses in artificial voids in polypropylene films at atmospheric pressure is analysed that incorporates inception voltage, apparent and real charge, drift velocity and mobility of electrons.

  18. Risk Factors of Voiding Dysfunction and Patient Satisfaction After Tension-free Vaginal Tape Procedure

    OpenAIRE

    2005-01-01

    This study was undertaken to identify risk factors for postoperative voiding dysfunction and factors having impact on patient global satisfaction after a tension-free vaginal tape (TVT) procedure. Two hundred and eighty-five women who underwent the TVT procedure for stress urinary incontinence were analyzed to identify risk factors predictive of voiding dysfunction. Postoperative voiding dysfunction was defined as a peak urinary flow rate (PFR) 30% of bladder capacity (incomplete emptying, n=...

  19. Fuzzy Reasoning to More Accurately Determine Void Areas on Optical Micrographs of Composite Structures

    Science.gov (United States)

    Dominquez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne

    2013-01-01

    Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.

  20. Glass composition and process for sealing void spaces in electrochemical devices

    Science.gov (United States)

    Meinhardt, Kerry D.; Kirby, Brent W.

    2012-05-01

    A glass foaming material and method are disclosed for filling void spaces in electrochemical devices. The glass material includes a reagent that foams at a temperature above the softening point of the glass. Expansion of the glass fills void spaces including by-pass and tolerance channels of electrochemical devices. In addition, cassette to cassette seals can also be formed while channels and other void spaces are filled, reducing the number of processing steps needed.