WorldWideScience

Sample records for vocs volatile organic

  1. The fight against Volatile Organic Compounds (VOC)

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This paper strikes the balance of the fight against organic volatile compounds emissions in France and in Europe. The first part describes the influence of VOC on production of Ozone in troposphere and gives numerical data on permissive emission values in atmosphere. The second part describes french and european policy and regulations. The third part gives the principle methods and devices for COV measurement in the atmosphere. In the last part, effluents treatment is given: thermal incineration, catalytic incineration, adsorption on active carbon, biologic purification, condensation and separative processes on membrane

  2. 688 AMBIENT VOLATILE ORGANIC COMPOUNDS (VOCS ...

    African Journals Online (AJOL)

    Osondu

    using Gas Chromatography (GC) fitted with Flame Ionization Detector (FID). ... and Industrial emission were identified as sources of VOCs in the studied .... Wax, IIasamaja Market, Chesebrough way, ... A validation processes for diffusive.

  3. Novel collection method for volatile organic compounds (VOCs) from dogs

    Science.gov (United States)

    Host derived chemical cues are an important aspect of arthropod attraction to potential hosts. Host cues that act over longer distances include CO2, heat, and water vapor, while cues such as volatile organic compounds (VOCs) act over closer distances. Domestic dogs are important hosts for disease cy...

  4. Volatile organic compound (VOC) emissions during malting and beer manufacture

    Science.gov (United States)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  5. Ionic liquid technology to recover volatile organic compounds (VOCs).

    Science.gov (United States)

    Salar-García, M J; Ortiz-Martínez, V M; Hernández-Fernández, F J; de Los Ríos, A P; Quesada-Medina, J

    2017-01-05

    Volatile organic compounds (VOCs) comprise a wide variety of carbon-based materials which are volatile at relatively low temperatures. Most of VOCs pose a hazard to both human health and the environment. For this reason, in the last years, big efforts have been made to develop efficient techniques for the recovery of VOCs produced from industry. The use of ionic liquids (ILs) is among the most promising separation technologies in this field. This article offers a critical overview on the use of ionic liquids for the separation of VOCs both in bulk and in immobilized form. It covers the most relevant works within this field and provides a global outlook on the limitations and future prospects of this technology. The extraction processes of VOCs by using different IL-based assemblies are described in detail and compared with conventional methods This review also underlines the advantages and limitations posed by ionic liquids according to the nature of the cation and the anions present in their structure and the stability of the membrane configurations in which ILs are used as liquid phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Biogenic volatile organic compound (VOC) emissions from forests in Finland

    International Nuclear Information System (INIS)

    Lindfors, V.; Laurila, T.

    2000-01-01

    We present model estimates of biogenic volatile organic compound (VOC) emissions from the forests in Finland. The emissions were calculated for the years 1995-1997 using the measured isoprene and monoterpene emission factors of boreal tree species together with detailed satellite land cover information and meteorological data. The three-year average emission is 319 kilotonnes per annum, which is significantly higher than the estimated annual anthropogenic VOC emissions of 193 kilotonnes. The biogenic emissions of the Finnish forests are dominated by monoterpenes, which contribute approximately 45% of the annual total. The main isoprene emitter is the Norway spruce (Picea abies) due to its high foliar biomass density. Compared to the monoterpenes, however, the total isoprene emissions are very low, contributing only about 7% of the annual forest VOC emissions. The isoprene emissions are more sensitive to the meteorological conditions than the monoterpene emissions, but the progress of the thermal growing season is clearly reflected in all biogenic emission fluxes. The biogenic emission densities in northern Finland are approximately half of the emissions in the southern parts of the country. (orig.)

  7. Volatile organic compound (VOC) determination in working atmospheres; Determinacion de compuestos organicos volatiles (VOC) en ambiente laboral

    Energy Technology Data Exchange (ETDEWEB)

    Blass A, Georgina; Panama T, Luz A; Corrales C, Deyanira [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The present work describes, in a synthesized way, the implementation and application of procedures based on the normativity related to the subject of the volatile organic compounds (Volatile Organic Compounds VOC), that allow to sample, quantify and evaluate the present contamination in the working atmosphere of a refinery due to the fugitive emissions of VOC and other substances. In accordance with the corresponding normativity, more than 189 organic compounds denominated dangerous air polluting agents (Hazardous Air Pollutants, HAP) can be found in a working atmosphere, but they are the 11 main HAP that can be found in a refinery. In the present article the work made for the sampling and quantification of 5 of the 11 dangerous polluting agents of the air: benzene, toluene, xylene, iso-octane and naphthalene. [Spanish] El presente trabajo describe, de manera sintetizada, la implementacion y aplicacion de procedimientos basados en la normatividad relacionada al tema de los compuestos organicos volatiles (Volatil Organic Compounds, VOC), que permiten muestrear, cuantificar y evaluar la contaminacion presente en el ambiente laboral de una refineria debido a las emisiones fugitivas de VOC y otras sustancias. De acuerdo con la normatividad correspondiente, mas de 189 compuestos organicos denominados contaminantes peligrosos del aire (Hazardous Air Pollutants, HAP), pueden ser encontrados en un ambiente laboral, pero son 11 los principales HAP que pueden ser hallados en una refineria. En el presente articulo se informa el trabajo realizado para el muestreo y cuantificacion de 5 de los 11 contaminantes peligrosos del aire: benceno, tolueno, xileno, iso-octano y naftaleno.

  8. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Science.gov (United States)

    2010-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a...

  9. Ambient Volatile Organic Compounds (VOCs) pollution in Isolo ...

    African Journals Online (AJOL)

    The adsorbed VOCs were desorbed with carbondisulphide (CS2) and the solution analysed using Gas Chromatography (GC) fitted with Flame Ionization Detector (FID). The results from analysis of the air samples collected showed that twenty-six (26) VOCs were captured in Isolo Industrial area. The VOCs were classified ...

  10. Major reactive species of ambient volatile organic compounds (VOCs) and their sources in Beijing

    Institute of Scientific and Technical Information of China (English)

    SHAO; Min; FU; Linlin; LIU; Ying; LU; Sihua; ZHANG; Yuanhan

    2005-01-01

    Volatile organic compounds (VOCs) are important precursors of atmospheric chemical processes. As a whole mixture, the ambient VOCs show very strong chemical reactivity. Based on OH radical loss rates in the air, the chemical reactivity of VOCs in Beijing was calculated. The results revealed that alkenes, accounting for only about 15% in the mixing ratio of VOCs, provide nearly 75% of the reactivity of ambient VOCs and the C4 to C5 alkenes were the major reactive species among the alkenes. The study of emission characteristics of various VOCs sources indicated that these alkenes are mainly from vehicle exhaust and gasoline evaporation. The reduction of alkene species in these two sources will be effective in photochemical pollution control in Beijing.

  11. Volatile Organic Compound (VOC) measurements in the Pearl River Delta (PRD) region, China

    Science.gov (United States)

    Liu, Ying; Shao, Min; Lu, Sihua; Chang, Chih-Chung; Wang, Jia-Lin; Chen, Gao

    2008-03-01

    We measured levels of ambient volatile organic compounds (VOCs) at seven sites in the Pearl River Delta (PRD) region of China during the Air Quality Monitoring Campaign spanning 4 October to 3 November 2004. Two of the sites, Guangzhou (GZ) and Xinken (XK), were intensive sites at which we collected multiple daily canister samples. The observations reported here provide a look at the VOC distribution, speciation, and photochemical implications in the PRD region. Alkanes constituted the largest percentage (>40%) in mixing ratios of the quantified VOCs at six sites; the exception was one major industrial site that was dominated by aromatics (about 52%). Highly elevated VOC levels occurred at GZ during two pollution episodes; however, the chemical composition of VOCs did not exhibit noticeable changes during these episodes. We calculated the OH loss rate to estimate the chemical reactivity of all VOCs. Of the anthropogenic VOCs, alkenes played a predominant role in VOC reactivity at GZ, whereas the contributions of reactive aromatics were more important at XK. Our preliminary analysis of the VOC correlations suggests that the ambient VOCs at GZ came directly from local sources (i.e., automobiles); those at XK were influenced by both local emissions and transportation of air mass from upwind areas.

  12. Volatile Organic Compound (VOC measurements in the Pearl River Delta (PRD region, China

    Directory of Open Access Journals (Sweden)

    Chih-chung Chang

    2008-03-01

    Full Text Available We measured levels of ambient volatile organic compounds (VOCs at seven sites in the Pearl River Delta (PRD region of China during the Air Quality Monitoring Campaign spanning 4 October to 3 November 2004. Two of the sites, Guangzhou (GZ and Xinken (XK, were intensive sites at which we collected multiple daily canister samples. The observations reported here provide a look at the VOC distribution, speciation, and photochemical implications in the PRD region. Alkanes constituted the largest percentage (>40% in mixing ratios of the quantified VOCs at six sites; the exception was one major industrial site that was dominated by aromatics (about 52%. Highly elevated VOC levels occurred at GZ during two pollution episodes; however, the chemical composition of VOCs did not exhibit noticeable changes during these episodes. We calculated the OH loss rate to estimate the chemical reactivity of all VOCs. Of the anthropogenic VOCs, alkenes played a predominant role in VOC reactivity at GZ, whereas the contributions of reactive aromatics were more important at XK. Our preliminary analysis of the VOC correlations suggests that the ambient VOCs at GZ came directly from local sources (i.e., automobiles; those at XK were influenced by both local emissions and transportation of air mass from upwind areas.

  13. Extended Research on Detection of Deception Using Volatile Organic Compound (VOC) Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Center for Human Reliability Studies

    2006-06-01

    A system that captures and analyzes volatile organic compound (VOC) emissions from skin surfaces may offer a viable alternative method to the polygraph instrument currently in use for detecting deception in U.S. government settings. Like the involuntary autonomic central nervous system response data gathered during polygraph testing, VOC emissions from the skin may provide data that can be used to detect stress caused by deception. Detecting VOCs, then, may present a noninvasive, non-intrusive method for observing, recording, and quantifying evidence of stress or emotional change.

  14. Concentrations and flux measurements of volatile organic compounds (VOC) in boreal forest soil

    Science.gov (United States)

    Mäki, Mari; Aaltonen, Hermanni; Heinonsalo, Jussi; Hellén, Heidi; Pumpanen, Jukka; Bäck, Jaana

    2017-04-01

    Volatile organic compounds (VOC) impact soil processes as VOCs transmit signals between roots and rhizosphere (Ditengou et al., 2015), VOCs can regulate microbial activity (Asensio et al., 2012), and VOCs can also promote root growth (Hung et al., 2012). Belowground concentrations of VOCs have not been measured in situ and for this reason, knowledge of how different soil organisms such as roots, rhizosphere and decomposers contribute to VOC production is limited. The aim of this study was to determine and quantify VOC fluxes and concentrations of different horizons from boreal forest soil. The VOC concentrations and fluxes were measured from Scots pine (Pinus sylvestris) forest soil at the SMEAR II station in southern Finland from 21th of April to 2nd of December in 2016. VOC fluxes were measured using dynamic (flow-through) chambers from five soil collars placed on five different locations. VOC concentrations were also measured in each location from four different soil horizons with the measurement depth 1-107 cm. VOCs were collected from underground gas collectors into the Tenax-Carbopack-B adsorbent tubes using portable pumps ( 100 ml min-1). The VOC concentrations and fluxes of isoprene, 11 monoterpenes, 13 sesquiterpenes and different oxygenated VOCs were measured. Sample tubes were analyzed using thermal desorption-gas chromatograph-mass spectrometry (TD-GC-MS). Soil temperature and soil water content were continuously monitored for each soil horizon. Our preliminary results show that the primary source of VOCs is organic soil layer and the contribution of mineral soil to the VOC formation is minor. VOC fluxes and concentrations were dominated by monoterpenes such as α-pinene, camphene, β-pinene, and Δ3-carene. Monoterpene concentration is almost 10-fold in organic soil compared to the deeper soil layers. However, the highest VOC fluxes on the soil surface were measured in October, whereas the monoterpene concentrations in organic soil were highest in July

  15. Development of a novel biofilter for aerobic biodegradation of volatile organic compounds (VOCs)

    International Nuclear Information System (INIS)

    Govind, R.; Utgikar, V.; Shan, Y.; Zhao, Wang; Sayles, G.D.; Bishop, D.F.; Safferman, S.I.

    1992-01-01

    In recent years, the emission into the atmosphere of volatile organic compounds (VOCs) has undergone increased regulation by EPA, OSHA and other government agencies due to potential human health hazards. The sources of these VOCs include releases during industrial production and use, from contaminated wastewaters in collection systems and treatment plants, and from hazardous wastes in landfills and contaminated ground water. Conventional methods for treating VOC emissions include adsorption on solids, absorption in solvents, incineration and catalytic oxidation. One alternative to these conventional treatment methods is the biological destruction of the VOCs in gas phase biofilters. This method has the advantage of pollution destruction (as compared to transfer to another medium) at lower operation and maintenance costs. The biofilter method also can be combined with various stripping or vapor extraction separation processes which effectively transfer VOCs from liquid or solid matrices into the gas phase entering biofilters

  16. Characteristics of Ambient Volatile Organic Compounds (VOCs) Measured in Shanghai, China

    Science.gov (United States)

    Cai, Chang-Jie; Geng, Fu-Hai; Tie, Xue-Xi; Yu, Qiong; Peng, Li; Zhou, Guang-Qiang

    2010-01-01

    To better understand the characteristics of ambient abundance of volatile organic compounds (VOCs) in Shanghai, one of the biggest metropolis of China, VOCs were measured with a gas chromatography system equipped with a mass-selective detector (GC/MSD) from July 2006 to February 2010. An intensive measurement campaign was conducted (eight samples per day with a 3 hour interval) during May 2009. The comparison of ambient VOCs collected in different regions of Shanghai shows that the concentrations are slightly higher in the busy commercial area (28.9 ppbv at Xujiaui) than in the urban administrative area (24.3 ppbv at Pudong). However, during the intensive measurement period, the concentrations in the large steel industrial area (28.7 ppbv at Baoshan) were much higher than in the urban administrative area (18 ppbv at Pudong), especially for alkanes, alkenes, and toluene. The seasonal variations of ambient VOC concentrations measured at the Xujiahui sampling site indicate that the VOC concentrations are significantly affected by meteorological conditions (such as wind direction and precipitation). In addition, although alkanes are the most abundant VOCs at the Xujiahui measurement site, the most important VOCs contributing to ozone formation potential (OFP) are aromatics, accounting for 57% of the total OFP. The diurnal variations of VOC concentrations show that VOC concentrations are higher on weekdays than in weekends at the Xujiahui sampling site, suggesting that traffic condition and human activities have important impacts on VOC emissions in Shanghai. The evidence also shows that the major sources of isoprene are mainly resulted from gasoline evaporation at a particular time (06:00–09:00) in the busy commercial area. The results gained from this study provide useful information for better understanding the characteristics of ambient VOCs and the sources of VOCs in Shanghai. PMID:22163629

  17. Characteristics of Ambient Volatile Organic Compounds (VOCs Measured in Shanghai, China

    Directory of Open Access Journals (Sweden)

    Guang-Qiang Zhou

    2010-08-01

    Full Text Available To better understand the characteristics of ambient abundance of volatile organic compounds (VOCs in Shanghai, one of the biggest metropolis of China, VOCs were measured with a gas chromatography system equipped with a mass-selective detector (GC/MSD from July 2006 to February 2010. An intensive measurement campaign was conducted (eight samples per day with a 3 hour interval during May 2009. The comparison of ambient VOCs collected in different regions of Shanghai shows that the concentrations are slightly higher in the busy commercial area (28.9 ppbv at Xujiaui than in the urban administrative area (24.3 ppbv at Pudong. However, during the intensive measurement period, the concentrations in the large steel industrial area (28.7 ppbv at Baoshan were much higher than in the urban administrative area (18 ppbv at Pudong, especially for alkanes, alkenes, and toluene. The seasonal variations of ambient VOC concentrations measured at the Xujiahui sampling site indicate that the VOC concentrations are significantly affected by meteorological conditions (such as wind direction and precipitation. In addition, although alkanes are the most abundant VOCs at the Xujiahui measurement site, the most important VOCs contributing to ozone formation potential (OFP are aromatics, accounting for 57% of the total OFP. The diurnal variations of VOC concentrations show that VOC concentrations are higher on weekdays than in weekends at the Xujiahui sampling site, suggesting that traffic condition and human activities have important impacts on VOC emissions in Shanghai. The evidence also shows that the major sources of isoprene are mainly resulted from gasoline evaporation at a particular time (06:00–09:00 in the busy commercial area. The results gained from this study provide useful information for better understanding the characteristics of ambient VOCs and the sources of VOCs in Shanghai.

  18. ECOS E-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database

    Energy Technology Data Exchange (ETDEWEB)

    Parisien, Lia [The Environmental Council Of The States, Washington, DC (United States)

    2016-01-31

    This final scientific/technical report on the ECOS e-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database provides a disclaimer and acknowledgement, table of contents, executive summary, description of project activities, and briefing/technical presentation link.

  19. Field observations of volatile organic compound (VOC) exchange in red oaks

    Science.gov (United States)

    Cappellin, Luca; Algarra Alarcon, Alberto; Herdlinger-Blatt, Irina; Sanchez, Juaquin; Biasioli, Franco; Martin, Scot T.; Loreto, Francesco; McKinney, Karena A.

    2017-03-01

    Volatile organic compounds (VOCs) emitted by forests strongly affect the chemical composition of the atmosphere. While the emission of isoprenoids has been largely characterized, forests also exchange many oxygenated VOCs (oVOCs), including methanol, acetone, methyl ethyl ketone (MEK), and acetaldehyde, which are less well understood. We monitored total branch-level exchange of VOCs of a strong isoprene emitter (Quercus rubra L.) in a mixed forest in New England, where canopy-level fluxes of VOCs had been previously measured. We report daily exchange of several oVOCs and investigated unknown sources and sinks, finding several novel insights. In particular, we found that emission of MEK is linked to uptake of methyl vinyl ketone (MVK), a product of isoprene oxidation. The link was confirmed by corollary experiments proving in vivo detoxification of MVK, which is harmful to plants. Comparison of MEK, MVK, and isoprene fluxes provided an indirect indication of within-plant isoprene oxidation. Furthermore, besides confirming bidirectional exchange of acetaldehyde, we also report for the first time direct evidence of benzaldehyde bidirectional exchange in forest plants. Net emission or deposition of benzaldehyde was found in different periods of measurements, indicating an unknown foliar sink that may influence atmospheric concentrations. Other VOCs, including methanol, acetone, and monoterpenes, showed clear daily emission trends but no deposition. Measured VOC emission and deposition rates were generally consistent with their ecosystem-scale flux measurements at a nearby site.

  20. Nematicidal effect of volatile organic compounds (VOCs on the plant-parasitic nematode Meloidogyne javanica

    Directory of Open Access Journals (Sweden)

    Mauricio Batista Fialho

    2012-06-01

    Full Text Available Previous studies have demonstrated that volatile organic compounds (VOCs, produced by the yeast Saccharomyces cerevisiae, were able to inhibit the development of phytopathogenic fungi. In this context, the nematicidal potential of the synthetic mixture of VOCs, constituted of alcohols and esters, was evaluated for the control of the root-knot nematode Meloidogyne javanica, which causes losses to crops of high economic value. The fumigation of substrate containing second-stage juveniles with VOCs exhibited nematicidal effect higher than 30% for the lowest concentration tested (33.3 µL g-1 substrate, whereas at 66.6 and 133.3 µL g-1 substrate, the nematode mortality was 100%. The present results stimulate other studies on VOCs for nematode management.

  1. Solid phase microextraction: measurement of volatile organic compounds (VOCs) in Dhaka City air pollution.

    Science.gov (United States)

    Hussam, A; Alauddin, M; Khan, A H; Chowdhury, D; Bibi, H; Bhattacharjee, M; Sultana, S

    2002-08-01

    A solid phase microextraction (SPME) technique was applied for the sampling of volatile organic compounds (VOCs) in ambient air polluted by two stroke autorickshaw engines and automobile exhausts in Dhaka city, Bangladesh. Analysis was carried out by capillary gas chromatography (GC) and GC-mass spectrometry (MS). The methodology was tested by insitu sampling of an aromatic hydrocarbon mixture gas standard with a precision of +/-5% and an average accuracy of 1-20%. The accuracy for total VOCs concentration measurement was about 7%. VOC's in ambient air were collected by exposing the SPME fiber at four locations in Dhaka city. The chromatograms showed signature similar to that of unburned gasoline (petrol) and weathered diesel containing more than 200 organic compounds; some of these compounds were positively identified. These are normal hydrocarbons pentane (n-C5H2) through nonacosane (n-C29H60), aromatic hydrocarbons: benzene, toluene, ethylbenzene, n-propylbenzene, n-butylbenzene, 1,3,5-trimethylbenzene, xylenes, and 1-isocyanato-3-methoxybenzene. Two samples collected near an autorickshaw station contained 783000 and 1479000 microg/m3 of VOCs. In particular, the concentration of toluene was 50-100 times higher than the threshold limiting value of 2000 microg/m3. Two other samples collected on street median showed 135000 microg/m3 and 180000 microg/m3 of total VOCs. The method detection limit of the technique for most semi-volatile organic compounds was 1 microg/m3.

  2. Volatile organic compounds (VOCs) source profiles of on-road vehicle emissions in China.

    Science.gov (United States)

    Hong-Li, Wang; Sheng-Ao, Jing; Sheng-Rong, Lou; Qing-Yao, Hu; Li, Li; Shi-Kang, Tao; Cheng, Huang; Li-Ping, Qiao; Chang-Hong, Chen

    2017-12-31

    Volatile Organic Compounds (VOCs) source profiles of on-road vehicles were widely studied as their critical roles in VOCs source apportionment and abatement measures in megacities. Studies of VOCs source profiles from on-road motor vehicles from 2001 to 2016 were summarized in this study, with a focus on the comparisons among different studies and the potential impact of different factors. Generally, non-methane hydrocarbons dominated the source profile of on-road vehicle emissions. Carbonyls, potential important components of vehicle emission, were seldom considered in VOCs emissions of vehicles in the past and should be paid more attention to in further study. VOCs source profiles showed some variations among different studies, and 6 factors were extracted and studied due to their impact to VOCs source profile of on-road vehicles. Vehicle types, being dependent on engine types, and fuel types were two dominant factors impacting VOCs sources profiles of vehicles. In comparison, impacts of ignitions, driving conditions and accumulated mileage were mainly due to their influence on the combustion efficiency. An opening and interactive database of VOCs from vehicle emissions was critically essential in future, and mechanisms of sharing and inputting relative research results should be formed to encourage researchers join the database establishment. Correspondingly, detailed quality assurance and quality control procedures were also very important, which included the information of test vehicles and test methods as detailed as possible. Based on the community above, a better uncertainty analysis could be carried out for the VOCs emissions profiles, which was critically important to understand the VOCs emission characteristics of the vehicle emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Volatile Organic Compounds (VOCs in Conventional and High Performance School Buildings in the U.S.

    Directory of Open Access Journals (Sweden)

    Lexuan Zhong

    2017-01-01

    Full Text Available Exposure to volatile organic compounds (VOCs has been an indoor environmental quality (IEQ concern in schools and other buildings for many years. Newer designs, construction practices and building materials for “green” buildings and the use of “environmentally friendly” products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m3, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ by limiting emissions from building-related sources and by increasing ventilation rates.

  4. Volatile Organic Compounds (VOCs) in Conventional and High Performance School Buildings in the U.S.

    Science.gov (United States)

    Zhong, Lexuan; Su, Feng-Chiao; Batterman, Stuart

    2017-01-21

    Exposure to volatile organic compounds (VOCs) has been an indoor environmental quality (IEQ) concern in schools and other buildings for many years. Newer designs, construction practices and building materials for "green" buildings and the use of "environmentally friendly" products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED)-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m³, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ) by limiting emissions from building-related sources and by increasing ventilation rates.

  5. Adsorptive performance of chromium-containing ordered mesoporous silica on volatile organic compounds (VOCs

    Directory of Open Access Journals (Sweden)

    Jianwei Fan

    2017-09-01

    Full Text Available Volatile organic compounds (VOCs are the primary poisonous emissions into the atmosphere in natural gas exploitation and disposing process. The adsorption method has been widely applied in actual production because of its good features such as low cost, low energy consumption, flexible devices needed, etc. The commonly used adsorbents like activated carbon, silicon molecular sieves and so on are not only susceptible to plugging or spontaneous combustion but difficult to be recycled. In view of this, a new adsorbent (CrSBA15 was made by the co-assembly method to synthesize the ordered mesoporous silica materials with different amounts of chromium to eliminate VOCs. This new adsorbent was characterized by small-angle-X-ray scattering (SAXS, nitrogen adsorption/desorption, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. Its adsorption performance to eliminate VOCs (toluene, benzene, cyclohexane and ethyl acetate used as typical pollutants was also tested systematically. Research results indicate that this new adsorbent of CrSBA-15(30, with the silicon/chromium ration being 30, owns the maximum micropore volume, and shows a higher adsorption performance in eliminating toluene, benzene, cyclohexane and ethyl acetate. Besides, it is cost-effective and much easier to be recycled than the activated carbon. In conclusion, CrSBA-15(30 is a good adsorbent to eliminate VOCs with broad application prospects. Keywords: Mesoporous materials, Silicon dioxide, Synthesis, Adsorption, Volatile organic compounds (VOCs, Recyclability, Energy saving

  6. Sesquiterpene volatile organic compounds (VOCs are markers of elicitation by sulfated laminarine in grapevine

    Directory of Open Access Journals (Sweden)

    Malik eChalal

    2015-05-01

    Full Text Available Inducing resistance in plants by application of elicitors of defense reactions is an attractive plant protection strategy, especially for grapevine (Vitis vinifera which is susceptible to severe fungal diseases. Though induced resistance (IR can be successful in controlled conditions, under outdoor conditions IR is in most cases not effective enough for practical disease control. Progress in the application of IR requires a better understanding of grapevine defense mechanisms and the ability to monitor defense markers in order to identify factors (physiological, environmental… that can impact IR in the vineyard.Volatile organic compounds (VOCs are well-known plant defenses compounds that have only received little or no attention in the case of grape-pathogen interactions to date. This prompted us to investigate whether an elicitor, the sulfated laminarin (PS3, actually induces the production of VOCs in grapevine. Online analysis (PTR-QMS of VOC emissions in dynamic cuvettes and passive sampling in gas tight bags with solid phase micro extraction (SPME-GC-MS under greenhouse conditions showed that PS3 elicited emission of VOCs. Some of them (as (E,E-α-farnesene might be good candidates as biomarkers of elicitor-IR whereas methyl salicylate appears to be rather a biomarker of downy mildew infection. A negative correlation between VOC emission and disease severity suggests a positive role of VOCs in grape defense against diseases.

  7. Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms.

    Science.gov (United States)

    Werner, Stephanie; Polle, Andrea; Brinkmann, Nicole

    2016-10-01

    We reviewed the impact of fungal volatile organic compounds (VOCs) on soil-inhabiting organisms and their physiological and molecular consequences for their targets. Because fungi can only move by growth to distinct directions, a main mechanism to protect themselves from enemies or to manipulate their surroundings is the secretion of exudates or VOCs. The importance of VOCs in this regard has been significantly underestimated. VOCs not only can be means of communication, but also signals that are able to specifically manipulate the recipient. VOCs can reprogram root architecture of symbiotic partner plants or increase plant growth leading to enlarged colonization surfaces. VOCs are also able to enhance plant resistance against pathogens by activating phytohormone-dependent signaling pathways. In some cases, they were phytotoxic. Because the response was specific to distinct species, fungal VOCs may contribute to regulate the competition of plant communities. Additionally, VOCs are used by the producing fungus to attack rivaling fungi or bacteria, thereby protecting the emitter or its nutrient sources. In addition, animals, like springtails, nematodes, and earthworms, which are important components of the soil food web, respond to fungal VOCs. Some VOCs are effective repellents for nematodes and, therefore, have applications as biocontrol agents. In conclusion, this review shows that fungal VOCs have a huge impact on soil fauna and flora, but the underlying mechanisms, how VOCs are perceived by the recipients, how they manipulate their targets and the resulting ecological consequences of VOCs in inter-kingdom signaling is only partly understood. These knowledge gaps are left to be filled by future studies.

  8. Volatile Organic Compound (VOC Removal by Vapor Permeation at Low VOC Concentrations: Laboratory Scale Results and Modeling for Scale Up

    Directory of Open Access Journals (Sweden)

    Philippe Moulin

    2011-03-01

    Full Text Available Petroleum transformation industries have applied membrane processes for solvent and hydrocarbon recovery as an economic alternative to reduce their emissions and reuse evaporated components. Separation of the volatile organic compounds (VOCs (toluene-propylene-butadiene from air was performed using a poly dimethyl siloxane (PDMS/α-alumina membrane. The experimental set-up followed the constant pressure/variable flow set-up and was operated at ~21 °C. The membrane is held in a stainless steel module and has a separation area of 55 × 10−4 m². Feed stream was set to atmospheric pressure and permeate side to vacuum between 3 and 5 mbar. To determine the performance of the module, the removed fraction of VOC was analyzed by Gas Chromatography/Flame Ionization Detector (GC/FID. The separation of the binary, ternary and quaternary hydrocarbon mixtures from air was performed at different flow rates and more especially at low concentrations. The permeate flux, permeance, enrichment factor, separation efficiency and the recovery extent of the membrane were determined as a function of these operating conditions. The permeability coefficients and the permeate flux through the composite PDMS-alumina membrane follow the order given by the Hildebrand parameter: toluene > 1,3-butadiene > propylene. The simulated data for the binary VOC/air mixtures showed fairly good agreement with the experimental results in the case of 1,3-butadiene and propylene. The discrepancies observed for toluene permeation could be minimized by taking into account the effects of the porous support and an influence of the concentration polarization. Finally, the installation of a 0.02 m2 membrane module would reduce 95% of the VOC content introduced at real concentration conditions used in the oil industry.

  9. Experimental and statistical characterization of Volatile Organic Compounds (VOC) within the ile-de-France region

    International Nuclear Information System (INIS)

    Baudic, Alexia

    2016-01-01

    Volatile organic compounds (VOCs) play a key role within the atmospheric system acting as precursors of ground-level ozone and secondary organic aerosols (causing health and climatic impacts); hence the growing interest of better characterizing them. Significant uncertainties are still associated with compounds speciation, quantification and respective contributions from the different emission sources. This thesis proposes, through several laboratory and intensive field campaigns, a detailed characterization of VOCs and their main emissions sources within the Ile-de-France region. We used methods based on the determination of speciation profiles indicative of road traffic, wood burning and natural gas sources obtained from near-field investigations (inside a tunnel, at a fireplace and from a domestic gas flue). These different source profiles were used as chemical fingerprints for the identification of the main VOC emission sources, which respective contributions were estimated using the Positive Matrix Factorization (PMF) source-receptor model applied to one-year VOCs (including NMHC+OVOC) measurements in Paris. This thesis allowed, for the first time, to evaluate the seasonal variability of VOCs and their main emission sources. Road traffic-related emissions are major VOC local/regional sources in Paris (contributing to a quarter of total annual emissions). The important impact of wood burning in winter (50 % of the VOC total mass) was observed. Results obtained from this approach were compared with the regional emissions inventory provided by the air quality monitoring network Airparif. Finally, a good agreement was found between our observations and the inventory for road traffic and wood burning-related sources. This independent assessment of inventories is of great interest because they are currently used as input data within air quality prediction models. (author) [fr

  10. Chlorinated and Non chlorinated-Volatile Organic Compounds (Vocs) in Drinking Water of Peninsular Malaysia

    International Nuclear Information System (INIS)

    Mohd Pauzi Abdullah; Chian, S.S.

    2011-01-01

    A survey undertaken in Peninsular Malaysia has shown that volatile organic compounds (VOCs), both chlorinated and non-chlorinated, are present in selected drinking water samples. In this study, analyses of VOCs were performed by means of solid phase micro extraction (SPME) with a 100 μm polydimethylsiloxane (PDMS) fibre followed by gas chromatography - mass spectrometry detector (GC-MSD). Samples from different points of the distribution system networks were taken and analysed for 54 VOCs of different chemical families. The results of the study indicated that chloroform constituted the major portion of the VOCs in all samples analysed. In addition to trihalo methanes (THMs), other abundant compounds detected were cis and trans-1,2-dichloroethylene, trichloroethylene, 1,2-dibromoethane, benzene, toluene, ethylbenzene, chlorobenzene, 1,4-dichlorobenzene and 1,2-dichlorobenzene. However, the measured concentrations did not exceed the National Guideline for Drinking Water Quality 2000 in any case. No clear relationship between the status of development of a state in Malaysia to the levels and types of VOCs detected in its drinking water was noted. Nevertheless, the finding of anthropogenic chemicals, even at low concentrations, gave credibility to the viewpoint that improper development and disposal practices threatened the purity of the drinking water. (author)

  11. Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants

    Science.gov (United States)

    Bracho-Nunez, A.; Knothe, , N. M.; Welter, S.; Staudt, M.; Costa, W. R.; Liberato, M. A. R.; Piedade, M. T. F.; Kesselmeier, J.

    2013-09-01

    Emission inventories defining regional and global biogenic volatile organic compounds (VOC) emission strengths are needed to determine the impact of VOC on atmospheric chemistry (oxidative capacity) and physics (secondary organic aerosol formation and effects). The aim of this work was to contribute with measurements of tree species from the poorly described tropical vegetation in direct comparison with the quite well-investigated, highly heterogeneous emissions from Mediterranean vegetation. VOC emission from sixteen plant species from the Mediterranean area were compared with twelve plant species from different environments of the Amazon basin by an emission screening at leaf level using branch enclosures. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS) and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was the most dominant compound emitted followed by monoterpenes, methanol and acetone. The average loss rates of VOC carbon in relation to the net CO2 assimilation were found below 4% and indicating normal unstressed plant behavior. Most of the Mediterranean species emitted a large variety of monoterpenes, whereas only five tropical species were identified as monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene plants showed additional emissions of sesquiterpenes. In the case of Amazonian plants no sesquiterpenes were detected. However, missing of sesquiterpenes may also be due to a lack of sensitivity of the measuring systems. Furthermore, our screening activities cover only 1% of tree species of such tropical areas as estimated based on recent biodiversity reports. Methanol emissions, an indicator of growth, were found to be common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed heterogeneous emissions, including reactive VOC species which are not

  12. Leaf level emissions of volatile organic compounds (VOC from some Amazonian and Mediterranean plants

    Directory of Open Access Journals (Sweden)

    A. Bracho-Nunez

    2013-09-01

    Full Text Available Emission inventories defining regional and global biogenic volatile organic compounds (VOC emission strengths are needed to determine the impact of VOC on atmospheric chemistry (oxidative capacity and physics (secondary organic aerosol formation and effects. The aim of this work was to contribute with measurements of tree species from the poorly described tropical vegetation in direct comparison with the quite well-investigated, highly heterogeneous emissions from Mediterranean vegetation. VOC emission from sixteen plant species from the Mediterranean area were compared with twelve plant species from different environments of the Amazon basin by an emission screening at leaf level using branch enclosures. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was the most dominant compound emitted followed by monoterpenes, methanol and acetone. The average loss rates of VOC carbon in relation to the net CO2 assimilation were found below 4% and indicating normal unstressed plant behavior. Most of the Mediterranean species emitted a large variety of monoterpenes, whereas only five tropical species were identified as monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene < limonene < sabinene < ß-pinene. Mediterranean plants showed additional emissions of sesquiterpenes. In the case of Amazonian plants no sesquiterpenes were detected. However, missing of sesquiterpenes may also be due to a lack of sensitivity of the measuring systems. Furthermore, our screening activities cover only 1% of tree species of such tropical areas as estimated based on recent biodiversity reports. Methanol emissions, an indicator of growth, were found to be common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed

  13. Rapid detection of pathogenic bacteria by volatile organic compound (VOC) analysis

    Science.gov (United States)

    Senecal, Andre G.; Magnone, Joshua; Yeomans, Walter; Powers, Edmund M.

    2002-02-01

    Developments in rapid detection technologies have made countless improvements over the years. However, because of the limited sample that these technologies can process in a single run, the chance of capturing and identifying a small amount of pathogens is difficult. The problem is further magnified by the natural random distribution of pathogens in foods. Methods to simplify pathogenic detection through the identification of bacteria specific VOC were studied. E. coli O157:H7 and Salmonella typhimurium were grown on selected agar medium to model protein, and carbohydrate based foods. Pathogenic and common spoilage bacteria (Pseudomonas and Morexella) were screened for unique VOC production. Bacteria were grown on agar slants in closed vials. Headspace sampling was performed at intervals up to 24 hours using Solid Phase Micro-Extraction (SPME) techniques followed by GC/MS analysis. Development of unique volatiles was followed to establish sensitivity of detection. E. coli produced VOC not found in either Trypticase Soy Yeast (TSY) agar blanks or spoilage organism samples were - indole, 1-decanol, and 2-nonanone. Salmonella specific VOC grown on TSY were 3-methyl-1-butanol, dimethyl sulfide, 2-undecanol, 2-pentadecanol and 1-octanol. Trials on potato dextrose agar (PDA) slants indicated VOC specific for E. coli and Salmonella when compared to PDA blanks and Pseudomonas samples. However, these VOC peaks were similar for both pathogens. Morexella did not grow on PDA slants. Work will continue with model growth mediums at various temperatures, and mixed flora inoculums. As well as, VOC production based on the dynamics of bacterial growth.

  14. Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment.

    Science.gov (United States)

    Bari, Md Aynul; Kindzierski, Warren B

    2018-08-01

    Exposure to ambient volatile organic compound (VOCs) in urban areas is of interest because of their potential chronic and acute adverse effects to public health. Limited information is available about VOC sources in urban areas in Canada. An investigation of ambient VOCs levels, their potential sources and associated risks to public health was undertaken for the urban core of Alberta's largest city (downtown Calgary) for the period 2010-2015. Twenty-four hour arithmetic and geometric mean concentrations of total VOCs were 42μg/m 3 and 39μg/m 3 , respectively and ranged from 16 to 160μg/m 3 , with winter levels about two-fold higher than summer. Alkanes (58%) were the most dominant compounds followed by halogenated VOCs (22%) and aromatics (11%). Mean and maximum 24h ambient concentrations of selected VOCs of public health concern were below chronic and acute health risk screening criteria of the United States regulatory agencies and a cancer screening benchmark used in Alberta equivalent to 1 in 100,000 lifetime risk. The Positive matrix factorization (PMF) model revealed nine VOC sources at downtown Calgary, where oil/natural gas extraction/combustion (26%), fuel combustion (20%), traffic sources including gasoline exhaust, diesel exhaust, mixed fugitive emissions (10-15%), and industrial coatings/solvents (12%) were predominant. Other sources included dry cleaning (3.3%), biogenic (3.5%) and a background source (18%). Source-specific health risk values were also estimated. Estimated cancer risks for all sources were below the Alberta cancer screening benchmark, and estimated non-cancer risks for all sources were well below a safe level. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection using plasmonic bimetallic nanogap substrate

    DEFF Research Database (Denmark)

    Wong, Chi Lok; Dinish, U. S.; Buddharaju, Kavitha Devi

    2014-01-01

    In this paper, we present surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection with bimetallic nanogap structure substrate. Deep UV photolithography at the wavelength of 250 nm is used to pattern circular shape nanostructures. The nanogap between adjacent cir......-based VOCs detection platform for point-of-care breath analysis, homeland security, chemical sensing and environmental monitoring....

  16. Productions of Volatile Organic Compounds (VOCs) in Surface Waters from Reactions with Atmospheric Ozone

    Science.gov (United States)

    Hopkins, Frances; Bell, Thomas; Yang, Mingxi

    2017-04-01

    Ozone (O3) is a key atmospheric oxidant, greenhouse gas and air pollutant. In marine environments, some atmospheric ozone is lost by reactions with aqueous compounds (e.g. dissolved organic material, DOM, dimethyl sulfide, DMS, and iodide) near the sea surface. These reactions also lead to formations of volatile organic compounds (VOCs). Removal of O3 by the ocean remains a large uncertainty in global and regional chemical transport models, hampering coastal air quality forecasts. To better understand the role of the ocean in controlling O3 concentrations in the coastal marine atmosphere, we designed and implemented a series of laboratory experiments whereby ambient surface seawater was bubbled with O3-enriched, VOC-free air in a custom-made glass bubble equilibration system. Gas phase concentrations of a range of VOCs were monitored continuously over the mass range m/z 33 - 137 at the outflow of the bubble equilibrator by a proton transfer reaction - mass spectrometer (PTR-MS). Gas phase O3 was also measured at the input and output of the equilibrator to monitor the uptake due to reactions with dissolved compounds in seawater. We observed consistent productions of a variety of VOCs upon reaction with O3, notably isoprene, aldehydes, and ketones. Aqueous DMS is rapidly removed from the reactions with O3. To test the importance of dissolved organic matter precursors, we added increasing (milliliter) volumes of Emiliania huxleyi culture to the equilibrator filled with aged seawater, and observed significant linear increases in gas phase concentrations of a number of VOCs. Reactions between DOM and O3 at the sea-air interface represent a potentially significant source of VOCs in marine air and a sink of atmospheric O3.

  17. Source profiles of volatile organic compounds (VOCs) measured in China: Part I

    Science.gov (United States)

    Liu, Ying; Shao, Min; Fu, Linlin; Lu, Sihua; Zeng, Limin; Tang, Dagang

    The profiles of major volatile organic compound (VOC) sources in China, including vehicle exhaust, gasoline vapor, paint, asphalt, industrial and residential coal burning, biomass burning, and the petrochemical industry, were experimentally determined. Source samples were taken using a dilution chamber for mobile and stationary sources, biomass burning in an actual Chinese farmer's house, and ambient air in a petrochemical industrial area. The concentrations of 92 VOC species were quantified using canister sampling and a gas chromatography-flame ionization detection/mass spectrometry system, and VOC source profiles were developed for source apportionment of VOCs in the Pearl River Delta region. Based on the measurement of source profiles, possible tracers for various emission sources were identified; e.g., 2-methylpentane and 1,3-butadiene could be used as tracers for vehicle exhaust; the characteristic compounds of architectural coating were aromatics such as toluene and m, p-xylene; the light hydrocarbons, namely n-butane, trans-2-butene, and n-pentane, dominated the composition of gasoline vapor; and n-nonane, n-decane, and n-undecane were found to be typical of diesel vapor and asphalt application processes. As different emission sources are characterized by overlapping VOC species, the ratio of possible VOC tracers could be used to assess the contribution of various sources. The ratios between n-butane and isobutane, 1,3-butadiene and isoprene, and the ratios of aromatics (e.g., toluene to benzene and ethylbenzene to m, p-xylene) in the measured sources were compared.

  18. Technology projects for characterization--monitoring of volatile organic compounds (VOCs)

    Energy Technology Data Exchange (ETDEWEB)

    Junk, G.A.; Haas, W.J. Jr.

    1992-07-01

    One hundred thirty technology project titles related to the characterization of volatile organic compounds (VOCs) at an arid site are listed alphabetically by first contact person in a master compilation that includes phone numbers, addresses, keywords, and short descriptions. Separate tables are presented for 62 field-demonstrated, 36 laboratory-demonstrated, and 35 developing technology projects. The technology projects in each of these three categories are also prioritized in separate summary tables. Additional tables are presented for a number of other categorizations of the technology projects: In Situ; Fiberoptic; Mass Spectrometer; Optical Spectroscopy; Raman or SERS; Ion Mobility or Acoustic; Associated; and Commercial. Four lists of contact person names are provided so details concerning the projects that deal with sampling, and VOCs in gases, waters, and soils (sediments) can be obtained. Finally, seven wide-ranging conclusions based on observations and experiences during this work are presented.

  19. A Novel Wireless Wearable Volatile Organic Compound (VOC Monitoring Device with Disposable Sensors

    Directory of Open Access Journals (Sweden)

    Yue Deng

    2016-12-01

    Full Text Available A novel portable wireless volatile organic compound (VOC monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the device and its sensors. The device was compared to a commercial photo-ionization detector, gas chromatography-mass spectrometry, and carbon monoxide detector. In addition, environmental operational conditions, such as barometric change, temperature change and wind conditions were also tested to evaluate the device performance. The multiple comparisons and tests indicate that the proposed VOC device is adequate to characterize personal exposure in many real-world scenarios and is applicable for personal daily use.

  20. Volatile Organic Compound (VOC) Air Monitoring Program design for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Frank, L.

    1991-01-01

    The Waste Isolation Pilot Plant (WIPP) Volatile Organic Compound (VOC) Monitoring Program has been developed as part of the Department of Energy's (DOE's) No-Migration Variance petition submitted to the Environmental Protection Agency (EPA). The program is designed to demonstrate that there will be no migration of hazardous chemicals past the unit boundary in concentrations which exceed any health-based standards. The monitoring program will use EPA compendium Method TO-14. Both air and carbon sorption media samples will be collected as part of the program. Eleven separate monitoring sites have been selected where both 24-hour integrated and 1-hour grab samples will be collected and analyzed for five target compounds. The bin-scale experimental test rooms will be configured with a gas collection manifold and an activated carbon sorption bed to remove VOCs before they can be emitted into the WIPP underground atmosphere. 10 refs., 4 figs., 7 tabs

  1. Technology projects for characterization--monitoring of volatile organic compounds (VOCs)

    International Nuclear Information System (INIS)

    Junk, G.A.; Haas, W.J. Jr.

    1992-07-01

    One hundred thirty technology project titles related to the characterization of volatile organic compounds (VOCs) at an arid site are listed alphabetically by first contact person in a master compilation that includes phone numbers, addresses, keywords, and short descriptions. Separate tables are presented for 62 field-demonstrated, 36 laboratory-demonstrated, and 35 developing technology projects. The technology projects in each of these three categories are also prioritized in separate summary tables. Additional tables are presented for a number of other categorizations of the technology projects: In Situ; Fiberoptic; Mass Spectrometer; Optical Spectroscopy; Raman or SERS; Ion Mobility or Acoustic; Associated; and Commercial. Four lists of contact person names are provided so details concerning the projects that deal with sampling, and VOCs in gases, waters, and soils (sediments) can be obtained. Finally, seven wide-ranging conclusions based on observations and experiences during this work are presented

  2. Monitoring Volatile Organic Compounds (VOCs) in real-time on oil and natural gas production sites

    Science.gov (United States)

    Lupardus, R.; Franklin, S. B.

    2017-12-01

    Oil and Natural Gas (O&NG) development, production, infrastructure, and associated processing activities can be a substantial source of air pollution, yet relevant data and real-time quantification methods are lacking. In the current study, O&NG fugitive emissions of Volatile Organic Compounds (VOCs) were quantified in real-time and used to determine the spatial and temporal windows of exposure for proximate flora and fauna. Eleven O&NG sites on the Pawnee National Grassland in Northeastern Colorado were randomly selected and grouped according to production along with 13 control sites from three geographical locations. At each site, samples were collected 25 m from the wellhead in NE, SE, and W directions. In each direction, two samples were collected with a Gasmet DX4040 gas analyzer every hour from 8:00 am to 2:00 pm (6 hours total), July to October, 2016 (N=864). VOC concentrations generally increased during the 6 hr. day with the exception of N2O and were predominately the result of O&NG production and not vehicle exhaust. Thirteen of 24 VOCs had significantly different levels between production groups, frequently above reference standards and at biologically relevant levels for flora and fauna. The most biologically relevant VOCs, found at concentrations exceeding time weighted average permissible exposure limits (TWA PELs), were benzene and acrolein. Generalized Estimating Equations (GEEs) measured the relative quality of statistical models predicting benzene concentrations on sites. The data not only confirms that O&NG emissions are impacting the region, but also that this influence is present at all sites, including controls. Increased real-time VOC monitoring on O&NG sites is required to identify and contain fugitive emissions and to protect human and environmental health.

  3. Occurrence and removal of volatile organic compounds (VOC) relative to water treatment plants in Malaysia

    International Nuclear Information System (INIS)

    Soh Shiau Chian

    2005-01-01

    A solid phase micro extraction technique with determination analysis by gas chromatography and mass spectrometry detector (SPME-GC-MSD) to determine 54 volatile organic compounds (VOC) in drinking water was successfully developed. The optimal conditions lead to mean recoveries of 85 % with the relative standard deviation below 13 %. Limit of detection was ranged from 0.005 μg/ l to 1.121 μg/ l for all VOC. Upon consideration of the complete procedure from sample preparation to instrumental determination, the expanded uncertainty for all VOC under study was in the range of 1.056 to 2.952 μg/ l. The optimised SPME-GC-MSD method was used to determine distributions and occurence of VOC in drinking water for Peninsular Malaysia for one year and a specific study carried out in Semenyih Catchment and Semenyih River Water Treatment Plant. Results from the monitoring programme showed that concentration of VOC ranged from undetectable to 190.9 μg/ l. Chloroform has the highest concentration and was detected in all drinking water samples. Apart from trihalomethanes (THM), other abundant compounds detected were 1,2-dibromoethane, cis and trans-1,3-dichloropropene, 1,2,3-trichloropropane and benzene. This indicated the presence of VOC in drinking water and thus is required to be frequently monitored in order to ensure and maintain drinking water quality. Based on exposure risks assessment, results from this study showed that total cancer risks was the greatest for benzene, followed by 1,2-dibromo-3-chloropropane, 1,2-dibromomethane, chloroform and dichlorobromomethane. Nevertheless, after considering the frequency of detection factor and alteration of cancer risks that has been done, chloroform contributed the highest cancer risks among other VOC compounds. On a specific study in Semenyih Catchment, the declination of water quality in Semenyih River between 1990 and 2004 to a perturbing stage was due to urbanisation process and industrial growth. Apart from raw water

  4. [Pollution characteristics and health risk assessment of atmospheric volatile organic compounds (VOCs) in pesticide factory].

    Science.gov (United States)

    Tan, Bing; Wang, Tie-Yu; Pang, Bo; Zhu, Zhao-Yun; Wang, Dao-Han; Lü, Yong-Long

    2013-12-01

    A method for determining volatile organic compounds (VOCs) in air by summa canister collecting and gas chromatography/ mass spectroscopy detecting was adopted. Pollution condition and characteristics of VOCs were discussed in three representative pesticide factories in Zhangjiakou City, Hebei Province. Meanwhile, an internationally recognized four-step evaluation model of health risk assessment was applied to preliminarily assess the health risk caused by atmospheric VOCs in different exposure ways, inhalation and dermal exposure. Results showed that serious total VOCs pollution existed in all factories. Concentrations of n-hexane (6161.90-6910.00 microg x m(-3)), benzene (126.00-179.30 microg x m(-3)) and 1,3-butadiene (115.00-177.30 microg x m(-3)) exceeded the Chronic Inhalation Reference Concentrations recommended by USEPA, corresponding to 700, 30 and 2 microg x m(-3), respectively. Concentration of dichloromethane (724.00 microg x m(-3)) in factory B was also higher than the reference concentration (600 microg x m(-3)). Results of health risk assessment indicated that non-carcinogenic risk indexes of VOCs ranged from 1.00E-04 to 1.00E + 00 by inhalation exposure, and 1.00E-09 to 1.00E-05 by dermal exposure. Risk indexes of n-hexane and dichloromethane by inhalation exposure in all factories exceeded 1, and risk index of benzene by inhalation in factory B was also higher than 1. Carcinogenic risk indexes exposed to VOCs ranged from 1.00E-08 to 1.00E-03 by inhalation exposure and 1. oo00E -13 to 1.00E-08 by dermal exposure. Cancer risk of 1,3-butadiene by inhalation exceeded 1.0E-04, which lead to definite risk, and those of benzene by inhalation also exceeded the maximum allowable level recommended by International Commission on Radiological Protection (5.0E-05). The risks of dermal exposure presented the same trend as inhalation exposure, but the level was much lower than that of inhalation exposure. Thus, inhalation exposure of atmospheric VOCs was the

  5. The Amazonian Floodplains, an ecotype with challenging questions on volatile organic compound (VOC) emissions

    Science.gov (United States)

    Kesselmeier, J.

    2012-12-01

    Volatile organic compound (VOC) emissions are affected by a variety of biotic and abiotic factors such as light intensity, temperature, CO2 and drought. Another factor usually overlooked but very important for the tropical rainforest in Amazonia is regular flooding. According to recent estimates, the total Amazonian floodplain area easily ranges up to 700,000 km^2, including whitewater river floodplains (várzea) blackwater regions (igapó) and further clearwater regions. Regarding the total Amazonian wetlands the area sums up to more than 2.000.000 km^2, i.e. 30% of Amazonia. To survive the flooding periods causing anoxic conditions for the root system of up to several months, vegetation has developed several morphological, anatomical and physiological strategies. One is to switch over the root metabolism to fermentation, thus producing ethanol as one of the main products. Ethanol is a toxic metabolite which is transported into the leaves by the transpiration stream. From there it can either be directly emitted into the atmosphere, or can be re-metabolized to acetaldehyde and/or acetate. All of these compounds are volatile enough to be partly released into the atmosphere. We observed emissions of ethanol, acetaldehyde and acetic acid under root anoxia. Furthermore, plant stress induced by flooding also affected leaf primary physiological processes as well as other VOC emissions such as the release of isoprenoids and other volatiles. For example, Hevea spruceana could be identified as a monoterpene emitting tree species behaving differently upon anoxia depending on the origin, with increasing emissions of the species from igapó and decreasing with the corresponding species from várzea. Contrasting such short term inundations, studies of VOC emissions under long term conditions (2-3 months) did not confirm the ethanol/acetaldehyde emissions, whereas emissions of other VOC species decreased considerably. These results demonstrate that the transfer of our knowledge

  6. Seasonal variability and source apportionment of volatile organic compounds (VOCs in the Paris megacity (France

    Directory of Open Access Journals (Sweden)

    A. Baudic

    2016-09-01

    Full Text Available Within the framework of air quality studies at the megacity scale, highly time-resolved volatile organic compound (C2–C8 measurements were performed in downtown Paris (urban background sites from January to November 2010. This unique dataset included non-methane hydrocarbons (NMHCs and aromatic/oxygenated species (OVOCs measured by a GC-FID (gas chromatograph with a flame ionization detector and a PTR-MS (proton transfer reaction – mass spectrometer, respectively. This study presents the seasonal variability of atmospheric VOCs being monitored in the French megacity and their various associated emission sources. Clear seasonal and diurnal patterns differed from one VOC to another as the result of their different origins and the influence of environmental parameters (solar radiation, temperature. Source apportionment (SA was comprehensively conducted using a multivariate mathematical receptor modeling. The United States Environmental Protection Agency's positive matrix factorization tool (US EPA, PMF was used to apportion and quantify ambient VOC concentrations into six different sources. The modeled source profiles were identified from near-field observations (measurements from three distinct emission sources: inside a highway tunnel, at a fireplace and from a domestic gas flue, hence with a specific focus on road traffic, wood-burning activities and natural gas emissions and hydrocarbon profiles reported in the literature. The reconstructed VOC sources were cross validated using independent tracers such as inorganic gases (NO, NO2, CO, black carbon (BC and meteorological data (temperature. The largest contributors to the predicted VOC concentrations were traffic-related activities (including motor vehicle exhaust, 15 % of the total mass on the annual average, and evaporative sources, 10 %, with the remaining emissions from natural gas and background (23 %, solvent use (20 %, wood-burning (18 % and a biogenic source (15 %. An

  7. New device for time-averaged measurement of volatile organic compounds (VOCs)

    Energy Technology Data Exchange (ETDEWEB)

    Santiago Sánchez, Noemí; Tejada Alarcón, Sergio; Tortajada Santonja, Rafael; Llorca-Pórcel, Julio, E-mail: julio.llorca@aqualogy.net

    2014-07-01

    Contamination by volatile organic compounds (VOCs) in the environment is an increasing concern since these compounds are harmful to ecosystems and even to human health. Actually, many of them are considered toxic and/or carcinogenic. The main sources of pollution come from very diffuse focal points such as industrial discharges, urban water and accidental spills as these compounds may be present in many products and processes (i.e., paints, fuels, petroleum products, raw materials, solvents, etc.) making their control difficult. The presence of these compounds in groundwater, influenced by discharges, leachate or effluents of WWTPs is especially problematic. In recent years, law has been increasingly restrictive with the emissions of these compounds. From an environmental point of view, the European Water Framework Directive (2000/60/EC) sets out some VOCs as priority substances. This binding directive sets guidelines to control compounds such as benzene, chloroform, and carbon tetrachloride to be at a very low level of concentration and with a very high frequency of analysis. The presence of VOCs in the various effluents is often highly variable and discontinuous since it depends on the variability of the sources of contamination. Therefore, in order to have complete information of the presence of these contaminants and to effectively take preventive measures, it is important to continuously control, requiring the development of new devices which obtain average concentrations over time. As of today, due to technical limitations, there are no devices on the market that allow continuous sampling of these compounds in an efficient way and to facilitate sufficient detection limits to meet the legal requirements which are capable of detecting very sporadic and of short duration discharges. LABAQUA has developed a device which consists of a small peristaltic pump controlled by an electronic board that governs its operation by pre-programming. A constant flow passes

  8. Biomass burning contribution to ambient volatile organic compounds (VOCs) in the Chengdu-Chongqing Region (CCR), China

    Science.gov (United States)

    Li, Lingyu; Chen, Yuan; Zeng, Limin; Shao, Min; Xie, Shaodong; Chen, Wentai; Lu, Sihua; Wu, Yusheng; Cao, Wei

    2014-12-01

    Ambient volatile organic compounds (VOCs) were measured intensively using an online gas chromatography-mass spectrometry/flame ionization detector (GC-MS/FID) at Ziyang in the Chengdu-Chongqing Region (CCR) from 6 December 2012 to 4 January 2013. Alkanes contributed the most (59%) to mixing ratios of measured non-methane hydrocarbons (NMHCs), while aromatics contributed the least (7%). Methanol was the most abundant oxygenated VOC (OVOC), contributing 42% to the total amount of OVOCs. Significantly elevated VOC levels occurred during three pollution events, but the chemical composition of VOCs did not differ between polluted and clean days. The OH loss rates of VOCs were calculated to estimate their chemical reactivity. Alkenes played a predominant role in VOC reactivity, among which ethylene and propene were the largest contributors; the contributions of formaldehyde and acetaldehyde were also considerable. Biomass burning had a significant influence on ambient VOCs during our study. We chose acetonitrile as a tracer and used enhancement ratio to estimate the contribution of biomass burning to ambient VOCs. Biomass burning contributed 9.4%-36.8% to the mixing ratios of selected VOC species, and contributed most (>30% each) to aromatics, formaldehyde, and acetaldehyde.

  9. New device for time-averaged measurement of volatile organic compounds (VOCs).

    Science.gov (United States)

    Santiago Sánchez, Noemí; Tejada Alarcón, Sergio; Tortajada Santonja, Rafael; Llorca-Pórcel, Julio

    2014-07-01

    Contamination by volatile organic compounds (VOCs) in the environment is an increasing concern since these compounds are harmful to ecosystems and even to human health. Actually, many of them are considered toxic and/or carcinogenic. The main sources of pollution come from very diffuse focal points such as industrial discharges, urban water and accidental spills as these compounds may be present in many products and processes (i.e., paints, fuels, petroleum products, raw materials, solvents, etc.) making their control difficult. The presence of these compounds in groundwater, influenced by discharges, leachate or effluents of WWTPs is especially problematic. In recent years, law has been increasingly restrictive with the emissions of these compounds. From an environmental point of view, the European Water Framework Directive (2000/60/EC) sets out some VOCs as priority substances. This binding directive sets guidelines to control compounds such as benzene, chloroform, and carbon tetrachloride to be at a very low level of concentration and with a very high frequency of analysis. The presence of VOCs in the various effluents is often highly variable and discontinuous since it depends on the variability of the sources of contamination. Therefore, in order to have complete information of the presence of these contaminants and to effectively take preventive measures, it is important to continuously control, requiring the development of new devices which obtain average concentrations over time. As of today, due to technical limitations, there are no devices on the market that allow continuous sampling of these compounds in an efficient way and to facilitate sufficient detection limits to meet the legal requirements which are capable of detecting very sporadic and of short duration discharges. LABAQUA has developed a device which consists of a small peristaltic pump controlled by an electronic board that governs its operation by pre-programming. A constant flow passes

  10. Monitoring of volatile organic compounds (VOCs) from an oil and gas station in northwest China for 1 year

    Science.gov (United States)

    Zheng, Huang; Kong, Shaofei; Xing, Xinli; Mao, Yao; Hu, Tianpeng; Ding, Yang; Li, Gang; Liu, Dantong; Li, Shuanglin; Qi, Shihua

    2018-04-01

    Oil and natural gas are important for energy supply around the world. The exploring, drilling, transportation and processing in oil and gas regions can release a lot of volatile organic compounds (VOCs). To understand the VOC levels, compositions and sources in such regions, an oil and gas station in northwest China was chosen as the research site and 57 VOCs designated as the photochemical precursors were continuously measured for an entire year (September 2014-August 2015) using an online monitoring system. The average concentration of total VOCs was 297 ± 372 ppbv and the main contributor was alkanes, accounting for 87.5 % of the total VOCs. According to the propylene-equivalent concentration and maximum incremental reactivity methods, alkanes were identified as the most important VOC groups for the ozone formation potential. Positive matrix factorization (PMF) analysis showed that the annual average contributions from natural gas, fuel evaporation, combustion sources, oil refining processes and asphalt (anthropogenic and natural sources) to the total VOCs were 62.6 ± 3.04, 21.5 ± .99, 10.9 ± 1.57, 3.8 ± 0.50 and 1.3 ± 0.69 %, respectively. The five identified VOC sources exhibited various diurnal patterns due to their different emission patterns and the impact of meteorological parameters. Potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) models based on backward trajectory analysis indicated that the five identified sources had similar geographic origins. Raster analysis based on CWT analysis indicated that the local emissions contributed 48.4-74.6 % to the total VOCs. Based on the high-resolution observation data, this study clearly described and analyzed the temporal variation in VOC emission characteristics at a typical oil and gas field, which exhibited different VOC levels, compositions and origins compared with those in urban and industrial areas.

  11. Release of volatile organic compounds (VOCs from the lung cancer cell line CALU-1 in vitro

    Directory of Open Access Journals (Sweden)

    Schubert Jochen

    2008-11-01

    Full Text Available Abstract Background The aim of this work was to confirm the existence of volatile organic compounds (VOCs specifically released or consumed by lung cancer cells. Methods 50 million cells of the human non-small cell lung cancer (NSCLC cell line CALU-1 were incubated in a sealed fermenter for 4 h or over night (18 hours. Then air samples from the headspace of the culture vessel were collected and preconcentrated by adsorption on solid sorbents with subsequent thermodesorption and analysis by means of gas chromatography mass spectrometry (GC-MS. Identification of altogether 60 compounds in GCMS measurement was done not only by spectral library match, but also by determination of retention times established with calibration mixtures of the respective pure compounds. Results The results showed a significant increase in the concentrations of 2,3,3-trimethylpentane, 2,3,5-trimethylhexane, 2,4-dimethylheptane and 4-methyloctane in the headspace of CALU-1 cell culture as compared to medium controls after 18 h. Decreased concentrations after 18 h of incubation were found for acetaldehyde, 3-methylbutanal, butyl acetate, acetonitrile, acrolein, methacrolein, 2-methylpropanal, 2-butanone, 2-methoxy-2-methylpropane, 2-ethoxy-2-methylpropane, and hexanal. Conclusion Our findings demonstrate that certain volatile compounds can be cancer-cell derived and thus indicative of the presence of a tumor, whereas other compounds are not released but seem to be consumed by CALU-1 cells.

  12. Emissions of Volatile Organic Compounds (VOCs) from Animal Husbandry: Chemical Compositions, Separation of Sources and Animal Types

    Science.gov (United States)

    Yuan, B.; Coggon, M.; Koss, A.; Warneke, C.; Eilerman, S. J.; Neuman, J. A.; Peischl, J.; Aikin, K. C.; Ryerson, T. B.; De Gouw, J. A.

    2016-12-01

    Concentrated animal feeding operations (CAFOs) are important sources of volatile organic compounds (VOCs) in the atmosphere. We used a hydronium ion time-of-flight chemical ionization mass spectrometer (H3O+ ToF-CIMS) to measure VOC emissions from CAFOs in the Northern Front Range of Colorado during an aircraft campaign (SONGNEX) for regional contributions and from a mobile laboratory sampling for chemical characterizations of individual animal feedlots. The main VOCs emitted from CAFOs include carboxylic acids, alcohols, carbonyls, phenolic species, sulfur- and nitrogen-containing species. Alcohols and carboxylic acids dominate VOC concentrations. Sulfur-containing and phenolic species become more important in terms of odor activity values and NO3 reactivity, respectively. The high time-resolution mobile measurements allow the separation of the sources of VOCs from different parts of the operations occurring within the facilities. We show that the increase of ethanol concentrations were primarily associated with feed storage and handling. We apply a multivariate regression analysis using NH3 and ethanol as tracers to attribute the relative importance of animal-related emissions (animal exhalation and waste) and feed-related emissions (feed storage and handling) for different VOC species. Feed storage and handling contribute significantly to emissions of alcohols, carbonyls and carboxylic acids. Phenolic species and nitrogen-containing species are predominantly associated with animals and their waste. VOC ratios can be potentially used as indicators for the separation of emissions from dairy and beef cattle from the regional aircraft measurements.

  13. Antennal olfactory responses of adult meadow spittlebug, Philaenus spumarius, to volatile organic compounds (VOCs.

    Directory of Open Access Journals (Sweden)

    Giacinto Salvatore Germinara

    Full Text Available The meadow spittlebug, Philaenus spumarius L. (Hemiptera, Aphrophoridae is a commonly found vector of Xylella fastidiosa Wells et al. (1987 strain subspecies pauca associated with the "Olive Quick Decline Syndrome" in Italy. To contribute to the knowledge of the adult P. spumarius chemoreceptivity, electroantennographic (EAG responses of both sexes to 50 volatile organic compounds (VOCs including aliphatic aldehydes, alcohols, esters, and ketones, terpenoids, and aromatics were recorded. Measurable EAG responses were elicited by all compounds tested. In both sexes, octanal, 2-octanol, 2-decanone, (E-2-hexenyl acetate, and vanillin elicited the strongest antennal amplitude within the chemical groups of aliphatic saturated aldehydes, aliphatic alcohols, aliphatic acetates and aromatics, respectively. Male and female EAG responses to sulcatol, (±linalool, and sulcatone were higher than those to other terpenoinds. In both sexes, the weakest antennal stimulants were phenethyl alcohol and 2-pentanone. Sexual differences in the EAG amplitude were found only for four of test compounds suggesting a general similarity between males and females in antennal sensitivity. The olfactory system of both sexes proved to be sensitive to changes in stimulus concentration, carbon chain length, and compound structure. Compounds with short carbon chain length (C5-C6 elicited lower EAG amplitudes than compounds with higher carbon chain length (C9-C10 in all classes of aliphatic hydrocarbons with different functional groups. The elucidation of the sensitivity profile of P. spumarius to a variety of VOCs provides a basis for future identification of behaviorally-active compounds useful for developing semiochemical-based control strategies of this pest.

  14. TECHNICAL JUSTIFICATION FOR CHOOSING PROPANE AS A CALIBRATION AGENT FOR TOTAL FLAMMABLE VOLATILE ORGANIC COMPOUND (VOC) DETERMINATIONS

    International Nuclear Information System (INIS)

    DOUGLAS, J.G.

    2006-01-01

    This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desires a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected calibrating

  15. Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China.

    Science.gov (United States)

    Wang, Hongli; Xiang, Zhiyuan; Wang, Lina; Jing, Shengao; Lou, Shengrong; Tao, Shikang; Liu, Jing; Yu, Mingzhou; Li, Li; Lin, Li; Chen, Ying; Wiedensohler, Alfred; Chen, Changhong

    2018-04-15

    Cooking emission is one of sources for ambient volatile organic compounds (VOCs), which is deleterious to air quality, climate and human health. These emissions are especially of great interest in large cities of East and Southeast Asia. We conducted a case study in which VOC emissions from kitchen extraction stacks have been sampled in total 57 times in the Megacity Shanghai. To obtain representative data, we sampled VOC emissions from kitchens, including restaurants of seven common cuisine types, canteens, and family kitchens. VOC species profiles and their chemical reactivities have been determined. The results showed that 51.26%±23.87% of alkane and 24.33±11.69% of oxygenated VOCs (O-VOCs) dominate the VOC cooking emissions. Yet, the VOCs with the largest ozone formation potential (OFP) and secondary organic aerosol potential (SOAP) were from the alkene and aromatic categories, accounting for 6.8-97.0% and 73.8-98.0%, respectively. Barbequing has the most potential of harming people's heath due to its significant higher emissions of acetaldehyde, hexanal, and acrolein. Methodologies for calculating VOC emission factors (EF) for restaurants that take into account VOCs emitted per person (EF person ), per kitchen stove (EF kitchen stove ) and per hour (EF hour ) are developed and discussed. Methodologies for deriving VOC emission inventories (S) from restaurants are further defined and discussed based on two categories: cuisine types (S type ) and restaurant scales (S scale ). The range of S type and S scale are 4124.33-7818.04t/year and 1355.11-2402.21t/year, respectively. We also found that S type and S scale for 100,000 people are 17.07-32.36t/year and 5.61-9.95t/year, respectively. Based on Environmental Kuznets Curve, the annual total amount of VOCs emissions from catering industry in different provinces in China was estimated, which was 5680.53t/year, 6122.43t/year, and 66,244.59t/year for Shangdong and Guangdong provinces and whole China, respectively

  16. Emissions of volatile organic compounds (VOCs) from concentrated animal feeding operations (CAFOs): chemical compositions and separation of sources

    Science.gov (United States)

    Yuan, Bin; Coggon, Matthew M.; Koss, Abigail R.; Warneke, Carsten; Eilerman, Scott; Peischl, Jeff; Aikin, Kenneth C.; Ryerson, Thomas B.; de Gouw, Joost A.

    2017-04-01

    Concentrated animal feeding operations (CAFOs) emit a large number of volatile organic compounds (VOCs) to the atmosphere. In this study, we conducted mobile laboratory measurements of VOCs, methane (CH4) and ammonia (NH3) downwind of dairy cattle, beef cattle, sheep and chicken CAFO facilities in northeastern Colorado using a hydronium ion time-of-flight chemical-ionization mass spectrometer (H3O+ ToF-CIMS), which can detect numerous VOCs. Regional measurements of CAFO emissions in northeastern Colorado were also performed using the NOAA WP-3D aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX) campaign. Alcohols and carboxylic acids dominate VOC concentrations and the reactivity of the VOCs with hydroxyl (OH) radicals. Sulfur-containing and phenolic species provide the largest contributions to the odor activity values and the nitrate radical (NO3) reactivity of VOC emissions, respectively. VOC compositions determined from mobile laboratory and aircraft measurements generally agree well with each other. The high time-resolution mobile measurements allow for the separation of the sources of VOCs from different parts of the operations occurring within the facilities. We show that the emissions of ethanol are primarily associated with feed storage and handling. Based on mobile laboratory measurements, we apply a multivariate regression analysis using NH3 and ethanol as tracers to determine the relative importance of animal-related emissions (animal exhalation and waste) and feed-related emissions (feed storage and handling) for different VOC species. Feed storage and handling contribute significantly to emissions of alcohols, carbonyls, carboxylic acids and sulfur-containing species. Emissions of phenolic species and nitrogen-containing species are predominantly associated with animals and their waste.

  17. Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies.

    Science.gov (United States)

    Huang, Binbin; Lei, Chao; Wei, Chaohai; Zeng, Guangming

    2014-10-01

    Chlorinated volatile organic compounds (Cl-VOCs), including polychloromethanes, polychloroethanes and polychloroethylenes, are widely used as solvents, degreasing agents and a variety of commercial products. These compounds belong to a group of ubiquitous contaminants that can be found in contaminated soil, air and any kind of fluvial mediums such as groundwater, rivers and lakes. This review presents a summary of the research concerning the production levels and sources of Cl-VOCs, their potential impacts on human health as well as state-of-the-art remediation technologies. Important sources of Cl-VOCs principally include the emissions from industrial processes, the consumption of Cl-VOC-containing products, the disinfection process, as well as improper storage and disposal methods. Human exposure to Cl-VOCs can occur through different routes, including ingestion, inhalation and dermal contact. The toxicological impacts of these compounds have been carefully assessed, and the results demonstrate the potential associations of cancer incidence with exposure to Cl-VOCs. Most Cl-VOCs thus have been listed as priority pollutants by the Ministry of Environmental Protection (MEP) of China, Environmental Protection Agency of the U.S. (U.S. EPA) and European Commission (EC), and are under close monitor and strict control. Yet, more efforts will be put into the epidemiological studies for the risk of human exposure to Cl-VOCs and the exposure level measurements in contaminated sites in the future. State-of-the-art remediation technologies for Cl-VOCs employ non-destructive methods and destructive methods (e.g. thermal incineration, phytoremediation, biodegradation, advanced oxidation processes (AOPs) and reductive dechlorination), whose advantages, drawbacks and future developments are thoroughly discussed in the later sections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. [Characteristics of volatile organic compounds (VOCs) emission from electronic products processing and manufacturing factory].

    Science.gov (United States)

    Cui, Ru; Ma, Yong-Liang

    2013-12-01

    Based on the EPA method T0-11 and 14/15 for measurement of toxic organics in air samples, fast VOCs detector, Summa canister and DNPH absorbent were used to determine the VOCs concentrations and the compositions in the ambient air of the workshops for different processes as well as the emission concentration in the exhaust gas. In all processes that involved VOCs release, concentrations of total VOCs in the workshops were 0.1-0.5 mg x m(-3), 1.5-2.5 mg x m(-3) and 20-200 mg x m(-3) for casting, cutting and painting respectively. Main compositions of VOCs in those workshops were alkanes, eneynes, aromatics, ketones, esters and ethers, totally over 20 different species. The main compositions in painting workshop were aromatics and ketones, among which the concentration of benzene was 0.02-0.34 mg x m(-3), toluene was 0.24-3.35 mg x m(-3), ethyl benzene was 0.04-1.33 mg x m(-3), p-xylene was 0.13-0.96 mg x m(-3), m-xylene was 0.02-1.18 mg x m(-3), acetone was 0.29-15.77 mg x m(-3), 2-butanone was 0.06-22.88 mg x m(-3), cyclohexene was 0.02-25.79 mg x m(-3), and methyl isobutyl ketone was 0-21.29 mg x m(-3). The VOCs emission from painting process was about 14 t x a(-1) for one single manufacturing line, and 840 t x a(-1) for the whole factory. According to the work flows and product processes, the solvent used during painting process was the main source of VOCs emission, and the exhaust gas was the main emission point.

  19. Identification of volatile organic compounds (VOCs) in different colour carrot (Daucus carota L.) cultivars using static headspace/gas chromatography/mass spectrometry

    OpenAIRE

    Zehra Güler; Fatih Karaca; Halit Yetisir

    2015-01-01

    Volatile organic compounds (VOCs) as well as sugar and acid contents affect carrot flavour. This study compared VOCs in 11 carrot cultivars. Gas chromatography/mass spectrometry using static headspace technique was applied to analyse the VOCs. The number of VOCs per sample ranged from 17 to 31. The primarily VOCs identified in raw carrots with the exception of “Yellow Stone” were terpenes, ranging from 65 to 95%. The monoterpenes with values ranging from 31 to 89% were higher than those (from...

  20. Volatile organic compounds (VOCs) in photochemically aged air from the eastern and western Mediterranean

    Science.gov (United States)

    Derstroff, Bettina; Hüser, Imke; Bourtsoukidis, Efstratios; Crowley, John N.; Fischer, Horst; Gromov, Sergey; Harder, Hartwig; Janssen, Ruud H. H.; Kesselmeier, Jürgen; Lelieveld, Jos; Mallik, Chinmay; Martinez, Monica; Novelli, Anna; Parchatka, Uwe; Phillips, Gavin J.; Sander, Rolf; Sauvage, Carina; Schuladen, Jan; Stönner, Christof; Tomsche, Laura; Williams, Jonathan

    2017-08-01

    During the summertime CYPHEX campaign (CYprus PHotochemical EXperiment 2014) in the eastern Mediterranean, multiple volatile organic compounds (VOCs) were measured from a 650 m hilltop site in western Cyprus (34° 57' N/32° 23' E). Periodic shifts in the northerly Etesian winds resulted in the site being alternately impacted by photochemically processed emissions from western (Spain, France, Italy) and eastern (Turkey, Greece) Europe. Furthermore, the site was situated within the residual layer/free troposphere during some nights which were characterized by high ozone and low relative humidity levels. In this study we examine the temporal variation of VOCs at the site. The sparse Mediterranean scrub vegetation generated diel cycles in the reactive biogenic hydrocarbon isoprene, from very low values at night to a diurnal median level of 80-100 pptv. In contrast, the oxygenated volatile organic compounds (OVOCs) methanol and acetone exhibited weak diel cycles and were approximately an order of magnitude higher in mixing ratio (ca. 2.5-3 ppbv median level by day, range: ca. 1-8 ppbv) than the locally emitted isoprene and aromatic compounds such as benzene and toluene. Acetic acid was present at mixing ratios between 0.05 and 4 ppbv with a median level of ca. 1.2 ppbv during the daytime. When data points directly affected by the residual layer/free troposphere were excluded, the acid followed a pronounced diel cycle, which was influenced by various local effects including photochemical production and loss, direct emission, dry deposition and scavenging from advecting air in fog banks. The Lagrangian model FLEXPART was used to determine transport patterns and photochemical processing times (between 12 h and several days) of air masses originating from eastern and western Europe. Ozone and many OVOC levels were ˜ 20 and ˜ 30-60 % higher, respectively, in air arriving from the east. Using the FLEXPART calculated transport time, the contribution of photochemical

  1. Volatile organic compounds (VOCs in photochemically aged air from the eastern and western Mediterranean

    Directory of Open Access Journals (Sweden)

    B. Derstroff

    2017-08-01

    Full Text Available During the summertime CYPHEX campaign (CYprus PHotochemical EXperiment 2014 in the eastern Mediterranean, multiple volatile organic compounds (VOCs were measured from a 650 m hilltop site in western Cyprus (34° 57′ N/32° 23′ E. Periodic shifts in the northerly Etesian winds resulted in the site being alternately impacted by photochemically processed emissions from western (Spain, France, Italy and eastern (Turkey, Greece Europe. Furthermore, the site was situated within the residual layer/free troposphere during some nights which were characterized by high ozone and low relative humidity levels. In this study we examine the temporal variation of VOCs at the site. The sparse Mediterranean scrub vegetation generated diel cycles in the reactive biogenic hydrocarbon isoprene, from very low values at night to a diurnal median level of 80–100 pptv. In contrast, the oxygenated volatile organic compounds (OVOCs methanol and acetone exhibited weak diel cycles and were approximately an order of magnitude higher in mixing ratio (ca. 2.5–3 ppbv median level by day, range: ca. 1–8 ppbv than the locally emitted isoprene and aromatic compounds such as benzene and toluene. Acetic acid was present at mixing ratios between 0.05 and 4 ppbv with a median level of ca. 1.2 ppbv during the daytime. When data points directly affected by the residual layer/free troposphere were excluded, the acid followed a pronounced diel cycle, which was influenced by various local effects including photochemical production and loss, direct emission, dry deposition and scavenging from advecting air in fog banks. The Lagrangian model FLEXPART was used to determine transport patterns and photochemical processing times (between 12 h and several days of air masses originating from eastern and western Europe. Ozone and many OVOC levels were  ∼  20 and  ∼  30–60 % higher, respectively, in air arriving from the east. Using the FLEXPART

  2. Emissions of volatile organic compounds (VOCs) from the food and drink industries of the European community

    Science.gov (United States)

    Passant, Neil R.; Richardson, Stephen J.; Swannell, Richard P. J.; Gibson, N.; Woodfield, M. J.; van der Lugt, Jan Pieter; Wolsink, Johan H.; Hesselink, Paul G. M.

    Estimates were made of the amounts of volatile organic compounds (VOCs) released into the atmosphere as a result of the industrial manufacture and processing of food and drink in the European Community. The estimates were based on a review of literature sources, industrial and government contacts and recent measurements. Data were found on seven food manufacturing sectors (baking, vegetable oil extraction, solid fat processing, animal rendering, fish meal processing, coffee production and sugar beet processing) and three drink manufacturing sectors (brewing, spirit production and wine making). The principle of a data quality label is advocated to illustrate the authors' confidence in the data, and to highlight areas for further research. Emissions of ethanol from bread baking and spirit maturation were found to be the principle sources. However, significant losses of hexane and large quantities of an ill-defined mixture of partially oxidized hydrocarbons were noted principally from seed oil extraction and the drying of plant material, respectively. This latter mixture included low molecular weight aldehydes, carboxylic acids, ketones, amines and esters. However, the precise composition of many emissions were found to be poorly understood. The total emission from the food and drink industry in the EC was calculated as 260 kt yr -1. However, many processes within the target industry were found to be completely uncharacterized and therefore not included in the overall estimate (e.g. soft drink manufacture, production of animal food, flavourings, vinegar, tea, crisps and other fried snacks). Moreover, the use of data quality labels illustrated the fact that many of our estimates were based on limited data. Hence, further emissions monitoring is recommended from identified sources (e.g. processing of sugar beet, solid fat and fish meal) and from uncharacterized sources.

  3. Volatile Organic Compound (VOC) Emissions from Dairy Cows and Their Waste

    Science.gov (United States)

    Shaw, S.; Holzinger, R.; Mitloehner, F.; Goldstein, A.

    2005-12-01

    Biogenic VOCs are typically defined as those directly emitted from plants, but approximately 6% of global net primary production is consumed by cattle that carry out enteric fermentation and then emit VOCs that could also be considered biogenic. Current regulatory estimates suggest that dairy cattle in central California emit VOCs at rates comparable to those from passenger vehicles in the region, and thus contribute significantly to the extreme non-attainment of ozone standards there. We report PTR-MS measurements of ammonia and VOCs, and cavity-enhanced-absorption gas analyzer (Los Gatos Research, Inc.) measurements of CH4, emitted from dairy cattle in various stages of pregnancy/lactation and their waste. Experiments were conducted in chambers at UC Davis that simulate freestall cow housing conditions. CH4 fluxes ranged from 125-374 lb/cow/year. The compounds with the highest fluxes from '3 cows+waste' treatments were: ammonia (1-18), methanol (0-2.3), acetone+propanal (0.2-0.7), dimethylsulfide (0-0.4), and mass 109 (likely ID = p-cresol; 0-0.3) in lb/cow/year. Mass 60 (likely ID = trimethylamine) and acetic acid were also abundant. There were 10s of additional compounds with detectable, but small, emissions. A few compounds that were likely emitted (i.e. ethanol, formaldehyde, and dimethylamine) were not quantified by the PTR-MS. The total flux for all measured organic gases (TOG = CH4 + PTR-MS VOCs(including acetone+propanal)) averaged 246±45 lb/cow/year for '3 cows+waste' treatments, and was dominated by methane (>98%). TOG flux for 'waste only' treatments averaged 1.1±0.1 lb/cow/year, and was instead dominated by VOC (>84%). The PTR-MS VOCs as a percent of TOG (0.6±0.2%) emitted from '3 cows+waste' treatments in chamber conditions was a factor of 10 smaller than that currently estimated by the California Air Resources Board. In addition, the ozone forming potentials of the most abundant VOCs are only about 10% those of typical combustion or plant

  4. Blood miRNAs as sensitive and specific biological indicators of environmental and occupational exposure to volatile organic compound (VOC).

    Science.gov (United States)

    Song, Mi-Kyung; Ryu, Jae-Chun

    2015-10-01

    To date, there is still shortage of highly sensitive and specific minimally invasive biomarkers for assessment of environmental toxicants exposure. Because of the significance of microRNA (miRNA) in various diseases, circulating miRNAs in blood may be unique biomarkers for minimally invasive prediction of toxicants exposure. We identified and validated characteristic miRNA expression profiles of human whole blood in workers exposed to volatile organic compounds (VOCs) and compared the usefulness of miRNA indicator of VOCs with the effectiveness of the already used urinary biomarkers of occupational exposure. Using a microarray based approach we screened and detected deregulated miRNAs in their expression in workers exposed to VOCs (toluene [TOL], xylene [XYL] and ethylbenzene [EBZ]). Total 169 workers from four dockyards were enrolled in current study, and 50 subjects of them were used for miRNA microarray analysis. We identified 467 miRNAs for TOL, 211 miRNAs for XYL, and 695 miRNAs for XYL as characteristic discernible exposure indicator, which could discerned each VOC from the control group with higher accuracy, sensitivity, and specificity than urinary biomarkers. Current observations from this study point out that the altered levels of circulating miRNAs can be a reliable novel, minimally invasive biological indicator of occupational exposure to VOCs. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices.

    Science.gov (United States)

    Schiavon, Marco; Martini, Luca Matteo; Corrà, Cesare; Scapinello, Marco; Coller, Graziano; Tosi, Paolo; Ragazzi, Marco

    2017-12-01

    The complaints arising from the problem of odorants released by composting plants may impede the construction of new composting facilities, preclude the proper activity of existing facilities or even lead to their closure, with negative implications for waste management and local economy. Improving the knowledge on VOC emissions from composting processes is of particular importance since different VOCs imply different odour impacts. To this purpose, three different organic matrices were studied in this work: dewatered sewage sludge (M1), digested organic fraction of municipal solid waste (M2) and untreated food waste (M3). The three matrices were aerobically biodegraded in a bench-scale bioreactor simulating composting conditions. A homemade device sampled the process air from each treatment at defined time intervals. The samples were analysed for VOC detection. The information on the concentrations of the detected VOCs was combined with the VOC-specific odour thresholds to estimate the relative weight of each biodegraded matrix in terms of odour impact. When the odour formation was at its maximum, the waste gas from the composting of M3 showed a total odour concentration about 60 and 15,000 times higher than those resulting from the composting of M1 and M2, respectively. Ethyl isovalerate showed the highest contribution to the total odour concentration (>99%). Terpenes (α-pinene, β-pinene, p-cymene and limonene) were abundantly present in M2 and M3, while sulphides (dimethyl sulphide and dimethyl disulphide) were the dominant components of M1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. An Analysis of Air Pollution Control Technologies for Shipyard Emitted Volatile Organic Compounds (VOCS)

    National Research Council Canada - National Science Library

    Snider, Thomas J

    1993-01-01

    ...) emissions from industrial operations. One approach to VOC reduction is through air pollution control technology to remove the contaminants from the exhaust airstream of VOC generating processes...

  7. Toxic Volatile Organic Compounds (VOCs in the Atmospheric Environment: Regulatory Aspects and Monitoring in Japan and Korea

    Directory of Open Access Journals (Sweden)

    Wen-Tien Tsai

    2016-09-01

    Full Text Available In the past decades, hazardous air pollutants (HAPs, so-called air toxics or toxic air pollutants, have been detected in the atmospheric air at low concentration levels, causing public concern about the adverse effect of long-term exposure to HAPs on human health. Most HAPs belong to volatile organic compounds (VOCs. More seriously, most of them are known carcinogens or probably carcinogenic to humans. The objectives of this paper were to report the regulatory aspects and environmental monitoring management of toxic VOCs designated by Japan and Korea under the Air Pollution Control Act, and the Clean Air Conservation Act, respectively. It can be found that the environmental quality standards and environmental monitoring of priority VOCs (i.e., benzene, trichloroethylene, tetrachloroethylene, and dichloromethane have been set and taken by the state and local governments of Japan since the early 2000, but not completely established in Korea. On the other hand, the significant progress in reducing the emissions of some toxic VOCs, including acrylonitrile, benzene, 1,3-butadiene, 1,2-dichloroethane, dichloromethane, chloroform, tetrachloroethylene, and trichloroethylene in Japan was also described as a case study in the brief report paper.

  8. The European wool-carder bee (Anthidium manicatum) eavesdrops on plant volatile organic compounds (VOCs) during trichome collection.

    Science.gov (United States)

    Graham, Kelsey K; Brown, Steve; Clarke, Stephanie; Röse, Ursula S R; Starks, Philip T

    2017-11-01

    The plant-pollinator relationship is generally considered mutualistic. This relationship is less clear, however, when pollinators also cause tissue damage. Some Megachilidae bees collect plant material for nests from the plants they pollinate. In this study, we examined the relationship between Anthidium manicatum, the European wool-carder bee, and the source of its preferred nesting material - Stachys byzantina, lamb's ear. Female A. manicatum use their mandibles to trim trichomes from plants for nesting material (a behaviour dubbed "carding"). Using volatile organic compound (VOC) headspace analysis and behavioural observations, we explored (a) how carding effects S. byzantina and (b) how A. manicatum may choose specific S. byzantina plants. We found that removal of trichomes leads to a dissimilar VOC bouquet compared to intact leaves, with a significant increase in VOC detection following damage. A. manicatum also visit S. byzantina plants with trichomes removed at a greater frequency compared to plants with trichomes intact. Our data suggest that A. manicatum eavesdrop on VOCs produced by damaged plants, leading to more carding damage for individual plants due to increased detectability by A. manicatum. Accordingly, visitation by A. manicatum to S. byzantina may incur both a benefit (pollination) and cost (tissue damage) to the plant. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A comparison of sample preparation methods for extracting volatile organic compounds (VOCs) from equine faeces using HS-SPME.

    Science.gov (United States)

    Hough, Rachael; Archer, Debra; Probert, Christopher

    2018-01-01

    Disturbance to the hindgut microbiota can be detrimental to equine health. Metabolomics provides a robust approach to studying the functional aspect of hindgut microorganisms. Sample preparation is an important step towards achieving optimal results in the later stages of analysis. The preparation of samples is unique depending on the technique employed and the sample matrix to be analysed. Gas chromatography mass spectrometry (GCMS) is one of the most widely used platforms for the study of metabolomics and until now an optimised method has not been developed for equine faeces. To compare a sample preparation method for extracting volatile organic compounds (VOCs) from equine faeces. Volatile organic compounds were determined by headspace solid phase microextraction gas chromatography mass spectrometry (HS-SPME-GCMS). Factors investigated were the mass of equine faeces, type of SPME fibre coating, vial volume and storage conditions. The resultant method was unique to those developed for other species. Aliquots of 1000 or 2000 mg in 10 ml or 20 ml SPME headspace were optimal. From those tested, the extraction of VOCs should ideally be performed using a divinylbenzene-carboxen-polydimethysiloxane (DVB-CAR-PDMS) SPME fibre. Storage of faeces for up to 12 months at - 80 °C shared a greater percentage of VOCs with a fresh sample than the equivalent stored at - 20 °C. An optimised method for extracting VOCs from equine faeces using HS-SPME-GCMS has been developed and will act as a standard to enable comparisons between studies. This work has also highlighted storage conditions as an important factor to consider in experimental design for faecal metabolomics studies.

  10. Screening the Emission Sources of Volatile Organic Compounds (VOCs) in China Based on Multi-effect Evaluation

    Science.gov (United States)

    Niu, H., Jr.

    2015-12-01

    Volatile organic compounds (VOCs) in the atmosphere have adverse impacts via three main pathways: photochemical ozone formation, secondary organic aerosol production, and direct toxicity to humans. Few studies have integrated these effects to prioritize control measures for VOCs sources. In this study, we developed a multi-effect evaluation methodology based on updated emission inventories and source profiles, which was combined with ozone formation potential (OFP), secondary organic aerosol potential (SOAP), and VOC toxicity data to identify important emission sources and key species. We derived species-specific emission inventories for 152 sources. The OFPs, SOAPs, and toxicity of each source were determined, and the contribution and share of each source to each of these adverse effects was calculated. Weightings were given to the three adverse effects by expert scoring, and the integrated impact was determined. Using 2012 as the base year, solvent usage and industrial process were found to be the most important anthropogenic sources, accounting for 24.2 and 23.1% of the integrated environmental effect, respectively. This was followed by biomass burning, transportation, and fossil fuel combustion, all of which had a similar contribution ranging from 16.7 to 18.6%. The top five industrial sources, including plastic products, rubber products, chemical fiber products, the chemical industry, and oil refining, accounted for nearly 70.0% of industrial emissions. In China, emissions reductions are required for styrene, toluene, ethylene, benzene, and m/p-xylene. The 10 most abundant chemical species contributed 76.5% of the integrated impact. Beijing, Chongqing, Shanghai, Jiangsu, and Guangdong were the five leading provinces when considering the integrated effects. Besides, the chemical mass balance model (CMB) was used to verify the VOCs inventories of 47 cities in China, so as to optimize our evaluation results. We suggest that multi-effect evaluation is necessary to

  11. Source Signature of Volatile Organic Compounds (VOCs) associated with oil and natural gas operations in Utah and Colorado

    Science.gov (United States)

    Gilman, J.; Lerner, B. M.; Warneke, C.; Holloway, J. S.; Peischl, J.; Ryerson, T. B.; Young, C. J.; Edwards, P.; Brown, S. S.; Wolfe, D. E.; Williams, E. J.; De Gouw, J. A.

    2012-12-01

    The U.S. Energy Information Administration has reported a sharp increase in domestic oil and natural gas production from "unconventional" reserves (e.g., shale and tight sands) between 2005 and 2012. The recent growth in drilling and fossil fuel production has led to environmental concerns regarding local air quality. Severe wintertime ozone events (greater than 100 ppb ozone) have been observed in Utah's Uintah Basin and Wyoming's Upper Green River Basin, both of which contain large natural gas fields. Raw natural gas is a mixture of approximately 60-95 mole percent methane while the remaining fraction is composed of volatile organic compounds (VOCs) and other non-hydrocarbon gases. We measured an extensive set of VOCs and other trace gases near two highly active areas of oil and natural gas production in Utah's Uintah Basin and Colorado's Denver-Julesburg Basin in order to characterize primary emissions of VOCs associated with these industrial operations and identify the key VOCs that are precursors for potential ozone formation. UBWOS (Uintah Basin Winter Ozone Study) was conducted in Uintah County located in northeastern Utah in January-February 2012. Two Colorado studies were conducted at NOAA's Boulder Atmospheric Observatory in Weld County in northeastern Colorado in February-March 2011 and July-August 2012 as part of the NACHTT (Nitrogen, Aerosol Composition, and Halogens on a Tall Tower) and SONNE (Summer Ozone Near Natural gas Emissions) field experiments, respectively. The C2-C6 hydrocarbons were greatly enhanced for all of these studies. For example, the average propane mixing ratio observed during the Utah study was 58 ppb (median = 35 ppb, minimum = 0.8, maximum = 520 ppb propane) compared to urban averages which range between 0.3 and 6.0 ppb propane. We compare the ambient air composition from these studies to urban measurements in order to show that the VOC source signature from oil and natural gas operations is distinct and can be clearly

  12. Contribution of low vapor pressure-volatile organic compounds (LVP-VOCs) from consumer products to ozone formation in urban atmospheres

    Science.gov (United States)

    Shin, Hyeong-Moo; McKone, Thomas E.; Bennett, Deborah H.

    2015-05-01

    Because recent laboratory testing indicates that some low vapor pressure-volatile organic compounds (LVP-VOC) solvents readily evaporate at ambient conditions, LVP-VOCs used in some consumer product formulations may contribute to ozone formation. The goal of this study is to determine the fraction of LVP-VOCs available for ozone formation from the use of consumer products for two hypothetical emissions. This study calculates and compares the fraction of consumed product available for ozone formation as a result of (a) volatilization to air during use and (b) down-the-drain disposal. The study also investigates the impact of different modes of releases on the overall fraction available in ambient air for ozone formation. For the portion of the LVP-VOCs volatilized to air during use, we applied a multi-compartment mass-balance model to track the fate of emitted LVP-VOCs in a multimedia urban environment. For the portion of the LVP-VOCs disposed down the drain, we used a wastewater treatment plant (WWTP) fate model to predict the emission rates of LVP-VOCs to ambient air at WWTPs or at the discharge zone of the facilities and then used these results as emissions in the multimedia urban environment model. In a WWTP, the LVP-VOCs selected in this study are primarily either biodegraded or removed via sorption to sludge depending on the magnitude of the biodegradation half-life and the octanol-water partition coefficient. Less than 0.2% of the LVP-VOCs disposed down the drain are available for ozone formation. In contrast, when the LVP-VOC in a consumer product is volatilized from the surface to which it has been applied, greater than 90% is available for photochemical reactions either at the source location or in the downwind areas. Comparing results from these two modes of releases allows us to understand the importance of determining the fraction of LVP-VOCs volatilized versus disposed down the drain when the product is used by consumers. The results from this study

  13. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva.

    Science.gov (United States)

    Amann, Anton; Costello, Ben de Lacy; Miekisch, Wolfram; Schubert, Jochen; Buszewski, Bogusław; Pleil, Joachim; Ratcliffe, Norman; Risby, Terence

    2014-09-01

    Breath analysis is a young field of research with its roots in antiquity. Antoine Lavoisier discovered carbon dioxide in exhaled breath during the period 1777-1783, Wilhelm (Vilém) Petters discovered acetone in breath in 1857 and Johannes Müller reported the first quantitative measurements of acetone in 1898. A recent review reported 1765 volatile compounds appearing in exhaled breath, skin emanations, urine, saliva, human breast milk, blood and feces. For a large number of compounds, real-time analysis of exhaled breath or skin emanations has been performed, e.g., during exertion of effort on a stationary bicycle or during sleep. Volatile compounds in exhaled breath, which record historical exposure, are called the 'exposome'. Changes in biogenic volatile organic compound concentrations can be used to mirror metabolic or (patho)physiological processes in the whole body or blood concentrations of drugs (e.g. propofol) in clinical settings-even during artificial ventilation or during surgery. Also compounds released by bacterial strains like Pseudomonas aeruginosa or Streptococcus pneumonia could be very interesting. Methyl methacrylate (CAS 80-62-6), for example, was observed in the headspace of Streptococcus pneumonia in concentrations up to 1420 ppb. Fecal volatiles have been implicated in differentiating certain infectious bowel diseases such as Clostridium difficile, Campylobacter, Salmonella and Cholera. They have also been used to differentiate other non-infectious conditions such as irritable bowel syndrome and inflammatory bowel disease. In addition, alterations in urine volatiles have been used to detect urinary tract infections, bladder, prostate and other cancers. Peroxidation of lipids and other biomolecules by reactive oxygen species produce volatile compounds like ethane and 1-pentane. Noninvasive detection and therapeutic monitoring of oxidative stress would be highly desirable in autoimmunological, neurological, inflammatory diseases and cancer

  14. Occupational hygiene in terms of volatile organic compounds (VOCs) and bioaerosols at two solid waste management plants in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, Jenni, E-mail: jenni.k.lehtinen@jyu.fi [University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, 40014 Jyväskylä (Finland); Tolvanen, Outi; Nivukoski, Ulla; Veijanen, Anja; Hänninen, Kari [University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, 40014 Jyväskylä (Finland)

    2013-04-15

    Highlights: ► Odorous VOCs: acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene. ► VOC concentrations did not exceed occupational exposure limit concentrations. ► 2,3-Butanedione as the health effecting compound is discussed. ► Endotoxin concentrations may cause health problems in waste treatment. - Abstract: Factors affecting occupational hygiene were measured at the solid waste transferring plant at Hyvinkää and at the optic separation plant in Hämeenlinna. Measurements consisted of volatile organic compounds (VOCs) and bioaerosols including microbes, dust and endotoxins. The most abundant compounds in both of the plants were aliphatic and aromatic hydrocarbons, esters of carboxylic acids, ketones and terpenes. In terms of odour generation, the most important emissions were acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene due to their low threshold odour concentrations. At the optic waste separation plant, limonene occurred at the highest concentration of all single compounds of identified VOCs. The concentration of any single volatile organic compound did not exceed the occupational exposure limit (OEL) concentration. However, 2,3-butanedione as a health risk compound is discussed based on recent scientific findings linking it to lung disease. Microbe and dust concentrations were low at the waste transferring plant. Only endotoxin concentrations may cause health problems; the average concentration inside the plant was 425 EU/m{sup 3} which clearly exceeded the threshold value of 90 EU/m{sup 3}. In the wheel loader cabin the endotoxin concentrations were below 1 EU/m{sup 3}. High microbial and endotoxin concentrations were measured in the processing hall at the optic waste separation plant. The average concentration of endotoxins was found to be 10,980 EU/m{sup 3}, a concentration which may cause health risks. Concentrations of viable fungi were quite high in few measurements in the control room. The most

  15. Occupational hygiene in terms of volatile organic compounds (VOCs) and bioaerosols at two solid waste management plants in Finland

    International Nuclear Information System (INIS)

    Lehtinen, Jenni; Tolvanen, Outi; Nivukoski, Ulla; Veijanen, Anja; Hänninen, Kari

    2013-01-01

    Highlights: ► Odorous VOCs: acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene. ► VOC concentrations did not exceed occupational exposure limit concentrations. ► 2,3-Butanedione as the health effecting compound is discussed. ► Endotoxin concentrations may cause health problems in waste treatment. - Abstract: Factors affecting occupational hygiene were measured at the solid waste transferring plant at Hyvinkää and at the optic separation plant in Hämeenlinna. Measurements consisted of volatile organic compounds (VOCs) and bioaerosols including microbes, dust and endotoxins. The most abundant compounds in both of the plants were aliphatic and aromatic hydrocarbons, esters of carboxylic acids, ketones and terpenes. In terms of odour generation, the most important emissions were acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene due to their low threshold odour concentrations. At the optic waste separation plant, limonene occurred at the highest concentration of all single compounds of identified VOCs. The concentration of any single volatile organic compound did not exceed the occupational exposure limit (OEL) concentration. However, 2,3-butanedione as a health risk compound is discussed based on recent scientific findings linking it to lung disease. Microbe and dust concentrations were low at the waste transferring plant. Only endotoxin concentrations may cause health problems; the average concentration inside the plant was 425 EU/m 3 which clearly exceeded the threshold value of 90 EU/m 3 . In the wheel loader cabin the endotoxin concentrations were below 1 EU/m 3 . High microbial and endotoxin concentrations were measured in the processing hall at the optic waste separation plant. The average concentration of endotoxins was found to be 10,980 EU/m 3 , a concentration which may cause health risks. Concentrations of viable fungi were quite high in few measurements in the control room. The most problematic factor was

  16. Louisiana SIP: LAC 33:III Ch 21 Subchap J, 2147--Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 1998-02-02 (LAc74) to more..

    Science.gov (United States)

    Louisiana SIP: LAC 33:III Ch 21 Subchap J, 2147--Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 1998-02-02 (LAc74) more...

  17. Louisiana SIP: LAC 33:III Ch 2147. Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 2011-08-04 (LAd34) to 2017-09-27

    Science.gov (United States)

    Louisiana SIP: LAC 33:III Ch 2147. Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 2011-08-04 (LAd34) to 2017-09-27

  18. Volatile organic compounds (VOCs) in air from Nisyros Island (Dodecanese Archipelago, Greece): Natural versus anthropogenic sources

    International Nuclear Information System (INIS)

    Tassi, F.; Capecchiacci, F.; Giannini, L.; Vougioukalakis, G.E.; Vaselli, O.

    2013-01-01

    This study presents the chemical composition of VOCs in air and gas discharges collected at Nisyros Island (Dodecanese Archipelago, Greece). The main goals are i) to discriminate between natural and anthropogenic VOC sources and ii) to evaluate their impact on local air quality. Up to 63 different VOCs were recognized and quantitatively determined in 6 fumaroles and 19 air samples collected in the Lakki caldera, where fumarolic emissions are located, and the outer ring of the island, including the Mandraki village and the main harbor. Air samples from the crater area show significant concentrations of alkanes, alkenes, cyclic, aromatics, and S- and O-bearing heterocycles directly deriving from the hydrothermal system, as well as secondary O-bearing compounds from oxidation of primary VOCs. At Mandraki village, C 6 H 6 /Σ(methylated aromatics) and Σ(linear)/Σ(branched) alkanes ratios 2 O–CO 2 –H 2 S rich and discharge a large variety of VOC species. •Benzene/toluene ratios identify anthropogenic and natural sources of VOCs in air. •Aldehydes in air are produced by oxidation of alkanes and alkenes. •Geogenic furans and hydrogenated halocarbons in air are recalcitrant. -- Anthropogenic and natural VOCs in air are distinguished on the basis of aromatic, O-substituted, S-substituted and halogenated compounds

  19. Supercritical fluid extraction-gas chromatography of volatile organic compounds (VOC) from Tenax devices. Final report, November 1985-September 1986

    International Nuclear Information System (INIS)

    Wright, B.W.; Kopriva, A.J.; Smith, R.D.

    1987-11-01

    This report describes the development and evaluation of on-line supercritical-fluid extraction - gas-chromatography instrumentation and methodology for the analysis of volatile organic compounds (VOC) from adsorbent sampling devices. Supercritical fluid extraction offers potential advantages for the removal and transport of organic components from adsorbent matrices including rapid and efficient extraction at mild temperatures. Extraction at mild temperatures eliminates potential problems such as analyte decomposition that can be encountered with the high temperatures needed for thermal desorption analysis. Since a major objective of the study was to develop viable instrumentation and methodology, a relatively detailed description of the instrumentation design requirements and present limitations are discussed. The results of several series of methodology validation studies are also presented. These studies included recovery studies of model VOC spiked on three types of Tenax sampling devices including authentic actively pumped (VOST) and passive (EPA) devices. Replicate devices spiked in an exposure chamber were also subjected to parallel analyses using the new methodology and traditional thermal-desorption gas chromatography

  20. Non-labeling multiplex surface enhanced Raman scattering (SERS) detection of volatile organic compounds (VOCs)

    DEFF Research Database (Denmark)

    Wong, Chi Lok; Dinish, U. S.; Schmidt, Michael Stenbæk

    2014-01-01

    chemical sensing layer for the enrichment of gas molecules on sensor surface. The leaning nano-pillar substrate also showed highly reproducible SERS signal in cyclic VOCs detection, which can reduce the detection cost in practical applications. Further, multiplex SERS detection on different combination...... device for multiplex, specific and highly sensitive detection of complex VOCs samples that can find potential applications in exhaled breath analysis, hazardous gas analysis, homeland security and environmental monitoring....

  1. Volatile Organic Compound (VOC) Analysis For Disease Detection: Proof Of Principle For Field Studies Detecting Paratuberculosis And Brucellosis

    Science.gov (United States)

    Knobloch, Henri; Köhler, Heike; Nicola, Commander; Reinhold, Petra; Turner, Claire; Chambers, Mark

    2009-05-01

    A proof of concept investigation was performed to demonstrate that two independent infectious diseases of cattle result in different patterns of volatile organic compounds (VOC) in the headspace of serum samples detectable using an electronic nose (e-nose). A total of 117 sera from cattle naturally infected with Mycobacterium avium subsp. paratuberculosis (paraTB, n = 43) or Brucella sp. (n = 26) and sera from corresponding control animals (n = 48) were randomly and analysed blind to infection status using a ST214 e-nose (Scensive Ltd, Leeds, UK). Samples were collected under non-standardised conditions on different farms from the UK (brucellosis) and Germany (paraTB). The e-nose could differentiate the sera from brucellosis infected, paraTB infected and healthy animals at the population level, but the technology used was not suitable for determination of the disease status of individual animals. Nevertheless, the data indicate that there are differences in the sensor responses depending on the disease status, and therefore, it shows the potential of VOC analysis from serum headspace samples for disease detection.

  2. Nanotechnology in environmental remediation: degradation of volatile organic compounds (VOCs) over visible-light-active nanostructured materials.

    Science.gov (United States)

    Selvaraj, Rengaraj; Al-Kindy, Salma M Z; Silanpaa, Mika; Kim, Younghun

    2014-01-01

    Volatile organic compounds (VOCs) are major pollutants and are considered to be one of the most important contaminants generated by human beings living in urban and industrial areas. Methyl tert-butyl ether (MTBE) is a VOC that has been widely used as a gasoline additive to reduce VOC emissions from motor vehicles. However, new gasoline additives like MTBE are having negative environmental impacts. Recent survey reports clearly show that groundwater is often polluted owing to leakage of petroleum products from underground storage tanks. MTBE is highly soluble in water (e.g., 0.35-0.71 M) and has been detected at high concentrations in groundwater. The presence of MTBE in groundwater poses a potential health problem. The documented effects of MTBE exposure are headaches, vomiting, diarrhea, fever, cough, muscle aches, sleepiness, disorientation, dizziness, and skin and eye irritation. To address these problems, photocatalytic treatment is the preferred treatment for polluted water. In the present work, a simple and template-free solution phase synthesis method has been developed for the preparation of novel cadmium sulfide (CdS) hollow microspheres using cadmium nitrate and thioacetamide precursors. The synthesized products have been characterized by a variety of methods, including X-ray powder diffraction, high-resolution scanning electron microscopy (HR-SEM), X-ray photoelectron spectroscopy, and UV-visible diffused reflectance spectroscopy. The HR-SEM measurements revealed the spherical morphology of the CdS microspheres, which evolved by the oriented aggregation of the primary CdS nanocrystals. Furthermore, studies of photocatalytic activity revealed that the synthesized CdS hollow microspheres exhibit an excellent photocatalytic performance in rapidly degrading MTBE in aqueous solution under visible light illumination. These results suggest that CdS microspheres will be an interesting candidate for photocatalytic detoxification studies under visible light

  3. Dynamic permeation sources for volatile organic compounds (VOCS): 'a standards test environment' nuclear track detector

    International Nuclear Information System (INIS)

    Hussain, A.; Marr, I.

    2000-01-01

    The generation of a test environment for trace VOCs in urban air or work place has never been easy. This investigation is concerned with the loss rates of VOCs through polythene membrane of different thickness. Permeation glass sample bottles were suspended in the chamber with water jacket at 24 deg. C -+ 0.5 deg. temperature. The condenser was connected with a stream of nitrogen gas at a flow rate of 75-ml min/sup -1 and further diluted with air 500-ml min/sup -1/. The loss in weight of VOCs in each bottle was determined regularly, every 24 hours, with a good agreement. The loss rate depends upon temperature of the bath, thickness of the polythene, internal diameter of the permeation bottle opening. However the loss rate from permeation tubes also depends upon the solubility of the VOCs in the polymer. It is generally believed that the vapors of VOCs in the permeation bottle are dissolved in the polythene sheet (making some sort of solution) and are eventually evaporated out of it. It was observed that the loss rate per minute for benzene > toluene. This simple technique described 'generation of test environment through dynamic permeation source' could be suitable for preparing mixture of benzene, toluene and xylene in atmosphere at ppm levels or lower, with good stability, reliability and also for other compounds of atmospheric interest. (author)

  4. Removal of Volatile Organic Contaminants (VOCs) from the Groundwater Sources of Drinking Water via Granular Activated Carbon Treatment (WaterRF Report 4440)

    Science.gov (United States)

    The overall goal of this project was to assess the feasibility of granular activated carbon (GAC) for the treatment of selected carcinogenic volatile organic compounds (cVOC) to sub-μg/L levels. The project consisted of three tasks. The task objectives are: Task I - determine c...

  5. Volatile Organic Compounds (VOCs) measurements onboard the HALO research aircraft during OMO-ASIA

    Science.gov (United States)

    Safadi, Layal; Neumaier, Marco; Fischbeck, Garlich; Geiger, Felix; Förster, Eric; Tomsche, Laura; Zahn, Andreas

    2017-04-01

    The objective of the OMO-Asia campaign that took place in summer 2015 was to study the free-radical chemistry at higher altitudes during the Asian summer monsoon taken over a wide area of Asia. VOC measurements (e.g. acetone, acetonitrile, benzene, and toluene) were conducted using a strongly modified instrument based on a commercial Proton-Transfer-Reaction Mass Spectrometer (PTRMS) from Ionicon. The PTRMS data are generally in good agreement with VOC measurements taken by the GC instrument from Max Planck Institute for Chemistry. In the outflow of the Monsoon plume acetone and acetonitrile volume mixing ratios (VMR) up to 1500 pptV and 180 pptV have been measured, respectively, pointing to a small contribution from biomass burning sources of which acetonitrile is an important tracer. Comparison with VOCs simulated in the atmospheric chemistry model EMAC model exhibits an underestimation (factor of 3 for acetone). The measured data were analyzed with the help of 10 days back trajectories to distinguish air mass origins. For air masses originating from North America (NA) an enhancement of 500 pptV acetone relative to the atmospheric background ( 500 pptV) can be traced back to active biogenic acetone sources in the NA boreal summer. An average enhancement of 400 pptV acetone comes from the Asian summer monsoon. Acetone - CO correlations in the monsoon relative to background air is being analyzed for further characterization and estimation of the sources.

  6. Identification of volatile organic compounds (VOCs in different colour carrot (Daucus carota L. cultivars using static headspace/gas chromatography/mass spectrometry

    Directory of Open Access Journals (Sweden)

    Zehra Güler

    2015-12-01

    Full Text Available Volatile organic compounds (VOCs as well as sugar and acid contents affect carrot flavour. This study compared VOCs in 11 carrot cultivars. Gas chromatography/mass spectrometry using static headspace technique was applied to analyse the VOCs. The number of VOCs per sample ranged from 17 to 31. The primarily VOCs identified in raw carrots with the exception of “Yellow Stone” were terpenes, ranging from 65 to 95%. The monoterpenes with values ranging from 31 to 89% were higher than those (from 2 to 15% of sesquiterpenes. Monoterpene α-terpinolene (with ranging from 23 to 63% and (--α-pinene (26%, and alcohol ethanol (35% was the main VOC in extracts from the nine carrot cultivars, “Purple” and “Yellow Stone”, respectively. As a result, among 16 identified monoterpenes, 7 monoterpenes (--α-pinene, (--β-pinene, β-myrcene, d-limonene, γ-terpinene, α-terpinolene and p-cymene constituted more than 60% of total VOCs identified in carrots including “Atomic Red”, “Nantes”, “Cosmic Purple”, “Red Samurai”, “Eregli Black”, “White Satin”, “Parmex” and “Baby Carrot”. Thus, these cultivars may advise to carrot breeders due to the beneficial effects of terpenes, especially monoterpenes on health.

  7. Indoor air quality (IAQ) assessment in a multistorey shopping mall by high-spatial-resolution monitoring of volatile organic compounds (VOC).

    Science.gov (United States)

    Amodio, M; Dambruoso, P R; de Gennaro, Gianluigi; de Gennaro, L; Loiotile, A Demarinis; Marzocca, A; Stasi, F; Trizio, L; Tutino, M

    2014-12-01

    In order to assess indoor air quality (IAQ), two 1-week monitoring campaigns of volatile organic compounds (VOC) were performed in different areas of a multistorey shopping mall. High-spatial-resolution monitoring was conducted at 32 indoor sites located in two storehouses and in different departments of a supermarket. At the same time, VOC concentrations were monitored in the mall and parking lot area as well as outdoors. VOC were sampled at 48-h periods using diffusive samplers suitable for thermal desorption. The samples were then analyzed with gas chromatography-mass spectrometry (GC-MS). The data analysis and chromatic maps indicated that the two storehouses had the highest VOC concentrations consisting principally of terpenes. These higher TVOC concentrations could be a result of the low efficiency of the air exchange and intake systems, as well as the large quantity of articles stored in these small spaces. Instead, inside the supermarket, the food department was the most critical area for VOC concentrations. To identify potential emission sources in this department, a continuous VOC analyzer was used. The findings indicated that the highest total VOC concentrations were present during cleaning activities and that these activities were carried out frequently in the food department. The study highlights the importance of conducting both high-spatial-resolution monitoring and high-temporal-resolution monitoring. The former was able to identify critical issues in environments with a complex emission scenario while the latter was useful in interpreting the dynamics of each emission source.

  8. Evaporation of a volatile organic compound in a hygroscopic soil - influence of the airflow and its VOC vapour saturation

    OpenAIRE

    Naon , Bétaboalé; Benet , Jean-Claude; Cousin , Bruno; Cherblanc , Fabien; Chammari , Ali

    2013-01-01

    International audience; This article presents an experimental and theoretical study of VOC volatilization in soil during a decontamination process by vapour extraction or venting. A phase change law is proposed in the case of a sandy-silty soil when the convective gaseous phase is vapour-charged. A simple experimental method for analyzing the phase change is presented. Finally, an efficiency coefficient is introduced to quantify the contribution of airflow velocity on venting.

  9. Emissions of volatile organic compounds (VOCs) from oil and natural gas activities: compositional comparison of 13 major shale basins via NOAA airborne measurements

    Science.gov (United States)

    Gilman, J.; Lerner, B. M.; Aikin, K. C.; De Gouw, J. A.; Koss, A.; Yuan, B.; Warneke, C.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Graus, M.; Tokarek, T. W.; Isaacman-VanWertz, G. A.; Sueper, D.; Worsnop, D. R.

    2015-12-01

    The recent and unprecedented increase in natural gas production from shale formations is associated with a rise in the production of non-methane volatile organic compounds (VOCs) including natural gas plant liquids (e.g., ethane, propane, and butanes) and liquid lease condensate (e.g., pentanes, hexanes, aromatics and cycloalkanes). Since 2010, the production of natural gas liquids and the amount of natural gas vented/flared has increased by factors of ~1.28 and 1.57, respectively (U.S. Energy and Information Administration), indicating an increasingly large potential source of hydrocarbons to the atmosphere. Emission of VOCs may affect local and regional air quality due to the potential to form tropospheric ozone and organic particles as well as from the release of toxic species such as benzene and toluene. The 2015 Shale Oil and Natural Gas Nexus (SONGNex) campaign studied emissions from oil and natural gas activities across the central United States in order to better understand their potential air quality and climate impacts. Here we present VOC measurements from 19 research flights aboard the NOAA WP-3D over 11 shale basins across 8 states. Non-methane hydrocarbons were measured using an improved whole air sampler (iWAS) with post-flight analysis via a custom-built gas chromatograph-mass spectrometer (GC-MS). The whole air samples are complimented by higher-time resolution measurements of methane (Picarro spectrometer), ethane (Aerodyne spectrometer), and VOCs (H3O+ chemical ionization mass spectrometer). Preliminary analysis show that the Permian Basin on the New Mexico/Texas border had the highest observed VOC mixing ratios for all basins studied. We will utilize VOC enhancement ratios to compare the composition of methane and VOC emissions for each basin and the associated reactivities of these gases with the hydroxyl radical, OH, as a proxy for potential ozone formation.

  10. Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC

    Directory of Open Access Journals (Sweden)

    Mojca Rangus

    2014-05-01

    Full Text Available Iron-functionalized disordered mesoporous silica (FeKIL-2 is a promising, environmentally friendly, cost-effective and highly efficient catalyst for the elimination of volatile organic compounds (VOCs from polluted air via catalytic oxidation. In this study, we investigated the type of catalytically active iron sites for different iron concentrations in FeKIL-2 catalysts using advanced characterization of the local environment of iron atoms by a combination of X-ray Absorption Spectroscopy Techniques (XANES, EXAFS and Atomic-Resolution Scanning Transmission Electron Microscopy (AR STEM. We found that the molar ratio Fe/Si ≤ 0.01 leads to the formation of stable, mostly isolated Fe3+ sites in the silica matrix, while higher iron content Fe/Si > 0.01 leads to the formation of oligonuclear iron clusters. STEM imaging and EELS techniques confirmed the existence of these clusters. Their size ranges from one to a few nanometers, and they are unevenly distributed throughout the material. The size of the clusters was also found to be similar, regardless of the nominal concentration of iron (Fe/Si = 0.02 and Fe/Si = 0.05. From the results obtained from sample characterization and model catalytic tests, we established that the enhanced activity of FeKIL-2 with the optimal Fe/Si = 0.01 ratio can be attributed to: (1 the optimal concentration of stable isolated Fe3+ in the silica support; and (2 accelerated diffusion of the reactants in disordered mesoporous silica (FeKIL-2 when compared to ordered mesoporous silica materials (FeSBA-15, FeMCM-41.

  11. Low-Hazardous Air Pollutant (HAP)/Volatile Organic Compound (VOC) - Compliant Resins for Military Applications

    Science.gov (United States)

    2012-07-01

    catalyst, Akzo Nobel Trigonox 239A anti-foaming organic peroxide as an initiator, and EMD N,N – dimethylaniline and Avocado Research Chemicals Ltd...from the spectrometer was exported as a CVS text file that can be opened in excel® in order to create the symmetrical data on the other half of the...acts as an promoter and speeds the reaction significantly and also aids in fiber wetting  2,4-pentanedione (2,4-P) (Alfa Aesar Avocado ) is a

  12. Volatile organic compounds

    International Nuclear Information System (INIS)

    Silseth, May Liss

    1998-01-01

    The goal is: Not more emission of volatile organic compounds (VOCs) than necessary. The items discussed in this presentation are the VOCs, how to calculate emission of VOCs, how to reduce or avoid them, and different recovery processes. The largest source of Norwegian emissions of non methane VOCs (NMVOCs) is offshore loading of raw petroleum. Emissions of VOCs should be reduced mainly for two reasons: (1) on sunny days NMVOCs may react with NOx to form ozon and smog close to the surface, (2) ozone and smog close to the surface may be harmful to plants and animals, and they are hazardous to human health. As for the calculation of VOC emissions, the VOCON project will release the calculation program HCGASS in 1999. This project is a cooperative project headed by SINTEF/Marintek

  13. Volatile Organic Compounds (VOCs)

    Science.gov (United States)

    ... sponsors special days for the collection of toxic household wastes. If such days are available, use them to ... Environmental Information by Location Greener Living Health Land, Waste, and ... Laws & Regulations By Business Sector By Topic Compliance Enforcement Laws ...

  14. Multiple internal standard normalization for improving HS-SPME-GC-MS quantitation in virgin olive oil volatile organic compounds (VOO-VOCs) profile.

    Science.gov (United States)

    Fortini, Martina; Migliorini, Marzia; Cherubini, Chiara; Cecchi, Lorenzo; Calamai, Luca

    2017-04-01

    The commercial value of virgin olive oils (VOOs) strongly depends on their classification, also based on the aroma of the oils, usually evaluated by a panel test. Nowadays, a reliable analytical method is still needed to evaluate the volatile organic compounds (VOCs) and support the standard panel test method. To date, the use of HS-SPME sampling coupled to GC-MS is generally accepted for the analysis of VOCs in VOOs. However, VOO is a challenging matrix due to the simultaneous presence of: i) compounds at ppm and ppb concentrations; ii) molecules belonging to different chemical classes and iii) analytes with a wide range of molecular mass. Therefore, HS-SPME-GC-MS quantitation based upon the use of external standard method or of only a single internal standard (ISTD) for data normalization in an internal standard method, may be troublesome. In this work a multiple internal standard normalization is proposed to overcome these problems and improving quantitation of VOO-VOCs. As many as 11 ISTDs were used for quantitation of 71 VOCs. For each of them the most suitable ISTD was selected and a good linearity in a wide range of calibration was obtained. Except for E-2-hexenal, without ISTD or with an unsuitable ISTD, the linear range of calibration was narrower with respect to that obtained by a suitable ISTD, confirming the usefulness of multiple internal standard normalization for the correct quantitation of VOCs profile in VOOs. The method was validated for 71 VOCs, and then applied to a series of lampante virgin olive oils and extra virgin olive oils. In light of our results, we propose the application of this analytical approach for routine quantitative analyses and to support sensorial analysis for the evaluation of positive and negative VOOs attributes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Nonvolatile, semivolatile, or volatile: redefining volatile for volatile organic compounds.

    Science.gov (United States)

    Võ, Uyên-Uyén T; Morris, Michael P

    2014-06-01

    Although widely used in air quality regulatory frameworks, the term "volatile organic compound" (VOC) is poorly defined. Numerous standardized tests are currently used in regulations to determine VOC content (and thus volatility), but in many cases the tests do not agree with each other, nor do they always accurately represent actual evaporation rates under ambient conditions. The parameters (time, temperature, reference material, column polarity, etc.) used in the definitions and the associated test methods were created without a significant evaluation of volatilization characteristics in real world settings. Not only do these differences lead to varying VOC content results, but occasionally they conflict with one another. An ambient evaporation study of selected compounds and a few formulated products was conducted and the results were compared to several current VOC test methodologies: SCAQMD Method 313 (M313), ASTM Standard Test Method E 1868-10 (E1868), and US. EPA Reference Method 24 (M24). The ambient evaporation study showed a definite distinction between nonvolatile, semivolatile, and volatile compounds. Some low vapor pressure (LVP) solvents, currently considered exempt as VOCs by some methods, volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents they are meant to replace. Conversely, bio-based and heavy hydrocarbons did not readily volatilize, though they often are calculated as VOCs in some traditional test methods. The study suggests that regulatory standards should be reevaluated to more accurately reflect real-world emission from the use of VOC containing products. The definition of VOC in current test methods may lead to regulations that exclude otherwise viable alternatives or allow substitutions of chemicals that may limit the environmental benefits sought in the regulation. A study was conducted to examine volatility of several compounds and a few formulated products under several current VOC test

  16. Mineralization of volatile organic compounds (VOCs) over the catalyst CuO-Co3O4-CeO2 and its applications in industrial odor control

    KAUST Repository

    Somekawa, Shouichi

    2011-12-01

    Volatile organic compounds (VOCs) present at ppm levels were decomposed over the catalyst CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45 in mol) in an attempt to scale up for industrial odor control. In addition to enhancing the catalytic activity, CuO-Co3O4 and CeO2 helped, respectively, to maintain the strength of the pelleted catalysts and inhibit their sintering. Using toluene as a VOC model compound, kinetic analysis of the total oxidation to carbon dioxide was conducted. The odor emitted from paint-drying processes could be eliminated effectively using CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45) pelleted catalysts (188 ml) in a large-scale system. © 2011 Elsevier B.V. All rights reserved.

  17. Mineralization of volatile organic compounds (VOCs) over the catalyst CuO-Co3O4-CeO2 and its applications in industrial odor control

    KAUST Repository

    Somekawa, Shouichi; Hagiwara, Toshiya; Fujii, Kyoko; Kojima, Masayuki; Shinoda, Tsutomu; Takanabe, Kazuhiro; Domen, Kazunari

    2011-01-01

    Volatile organic compounds (VOCs) present at ppm levels were decomposed over the catalyst CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45 in mol) in an attempt to scale up for industrial odor control. In addition to enhancing the catalytic activity, CuO-Co3O4 and CeO2 helped, respectively, to maintain the strength of the pelleted catalysts and inhibit their sintering. Using toluene as a VOC model compound, kinetic analysis of the total oxidation to carbon dioxide was conducted. The odor emitted from paint-drying processes could be eliminated effectively using CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45) pelleted catalysts (188 ml) in a large-scale system. © 2011 Elsevier B.V. All rights reserved.

  18. Volatile Organic Compounds (VOCs) in the Ambient Air Of Concentration Unit of Sar-Cheshmeh Copper Complex

    International Nuclear Information System (INIS)

    Faghihi-Zrandi, A.; Akhgar, M. R.

    2016-01-01

    Air pollutants including gases, vapors and particles, are emitted from different sources. Volatile organic compounds are the most important pollutants in the ambient air of industries. The present study was carried out to identify and measurement of volatile organic compounds in concentration unit of Sar-Cheshmeh Copper Complex. In this study, sampling of the volatile organic compounds was done by using activated charcoal tube. To identify and measure these compounds gas chromatography/mass spectroscopy were used. Thirteen volatile organic compounds were identified in the ambient air of concentration unit. Among these compounds, the mean value and maximum concentration of isopropyl alcohol and nonane were 255, 640 μg/m3 and 1577, 14400 μg/m3, respectively. By using SPSS software and independent sample t- test, showed that there were no significant difference between mean value concentration of isopropyl alcohol and nonane in the ambient air and TLV values of these compounds (isopropyl alcohol; 200 ppm and nonane; 200 ppm) (P >0.05).

  19. Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) mitigation in the pyrolysis process of waste tires using CO₂ as a reaction medium.

    Science.gov (United States)

    Kwon, Eilhann E; Oh, Jeong-Ik; Kim, Ki-Hyun

    2015-09-01

    Our work reported the CO2-assisted mitigation of PAHs and VOCs in the thermo-chemical process (i.e., pyrolysis). To investigate the pyrolysis of used tires to recover energy and chemical products, the experiments were conducted using a laboratory-scale batch-type reactor. In particular, to examine the influence of the CO2 in pyrolysis of a tire, the pyrolytic products including C1-5-hydrocarbons (HCs), volatile organic carbons (VOCs), and polycyclic aromatic hydrocarbons (PAHs) were evaluated qualitatively by gas chromatography (GC) with mass spectroscopy (MS) as well as with a thermal conductivity detector (TCD). The mass balance of the pyrolytic products under various pyrolytic conditions was established on the basis of their weight fractions of the pyrolytic products. Our experimental work experimentally validated that the amount of gaseous pyrolytic products increased when using CO2 as a pyrolysis medium, while substantially altering the production of pyrolytic oil in absolute content (7.3-17.2%) and in relative composition (including PAHs and VOCs). Thus, the co-feeding of CO2 in the pyrolysis process can be considered an environmentally benign and energy efficient process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Short-Term Intra-Subject Variation in Exhaled Volatile Organic Compounds (VOCs in COPD Patients and Healthy Controls and Its Effect on Disease Classification

    Directory of Open Access Journals (Sweden)

    Christopher Phillips

    2014-05-01

    Full Text Available Exhaled volatile organic compounds (VOCs are of interest for their potential to diagnose disease non-invasively. However, most breath VOC studies have analyzed single breath samples from an individual and assumed them to be wholly consistent representative of the person. This provided the motivation for an investigation of the variability of breath profiles when three breath samples are taken over a short time period (two minute intervals between samples for 118 stable patients with Chronic Obstructive Pulmonary Disease (COPD and 63 healthy controls and analyzed by gas chromatography and mass spectroscopy (GC/MS. The extent of the variation in VOC levels differed between COPD and healthy subjects and the patterns of variation differed for isoprene versus the bulk of other VOCs. In addition, machine learning approaches were applied to the breath data to establish whether these samples differed in their ability to discriminate COPD from healthy states and whether aggregation of multiple samples, into single data sets, could offer improved discrimination. The three breath samples gave similar classification accuracy to one another when evaluated separately (66.5% to 68.3% subjects classified correctly depending on the breath repetition used. Combining multiple breath samples into single data sets gave better discrimination (73.4% subjects classified correctly. Although accuracy is not sufficient for COPD diagnosis in a clinical setting, enhanced sampling and analysis may improve accuracy further. Variability in samples, and short-term effects of practice or exertion, need to be considered in any breath testing program to improve reliability and optimize discrimination.

  1. Ambient air/near-field measurements of methane and Volatile Organic Compounds (VOCs) from a natural gas facility in Northern Europe

    Science.gov (United States)

    Baudic, Alexia; Gros, Valérie; Bonsang, Bernard; Baisnee, Dominique; Vogel, Félix; Yver Kwok, Camille; Ars, Sébastien; Finlayson, Andrew; Innocenti, Fabrizio; Robinson, Rod

    2015-04-01

    Since the 1970's, the natural gas consumption saw a rapid growth in large urban centers, thus becoming an important energy resource to meet continuous needs of factories and inhabitants. Nevertheless, it can be a substantial source of methane (CH4) and pollutants in urban areas. For instance, we have determined that about 20% of Volatile Organic Compounds (VOCs) in downtown Paris are originating from this emission source (Baudic, Gros et al., in preparation). Within the framework of the "Fugitive Methane Emissions" (FuME) project (Climate-KIC, EIT); 2-weeks gas measurements were conducted at a gas compressor station in Northern Europe. Continuous ambient air measurements of methane and VOCs concentrations were performed using a cavity ring-down spectrometer (model G2201, Picarro Inc., Santa Clara, USA) and two portable GC-FID (Chromatotec, Saint-Antoine, France), respectively. On-site near-field samplings were also carried out at the source of two pipelines using stainless steel flasks (later analyzed with a laboratory GC-FID). The objective of this study aims to use VOCs as additional tracers in order to better characterize the fugitive methane emissions in a complex environment, which can be affected by several urban sources (road-traffic, others industries, etc.). Moreover, these measurements have allowed determining the chemical composition of this specific source. Our results revealed that the variability of methane and some VOCs was (rather) well correlated, especially for alkanes (ethane, propane, etc.). An analysis of selected events with strong concentrations enhancement was performed using ambient air measurements; thus allowing the preliminary identification of different emission sources. In addition, some flasks were also sampled in Paris to determine the local natural gas composition. A comparison between both was then performed. Preliminary results from these experiments will be presented here.

  2. Volatile organic compounds (VOCs) emission characteristics and control strategies for a petrochemical industrial area in middle Taiwan.

    Science.gov (United States)

    Yen, Chia-Hsien; Horng, Jao-Jia

    2009-11-01

    This study investigated VOC emissions from the largest petrochemical industrial district in Taiwan and recommended some control measures to reduce VOC emissions. In addition to the petrochemical industry, the district encompasses a chemical and fiber industry, a plastics industry and a harbor, which together produce more than 95% of the VOC emissions in the area. The sequence of VOC emission was as follows: components (e.g., valves, flanges, and pumps) (47%) > tanks (29%) > stacks (15%) > wastewater treatment facility (6%) > loading (2%) > flares (1%). Other plants producing high-density polyethylene (HDPE), styrene, ethylene glycol (EG), gas oil, and iso-nonyl-alchol (INA) were measured to determine the VOC leaching in the district. The VOC emissions of these 35 plants (90% of all plants) were less than 100 tons/year. About 74% of the tanks were fixed-roof tanks that leached more VOCs than the other types of tanks. To reduce leaching, the components should be checked periodically, and companies should be required to follow the Taiwan EPA regulations. A VOC emission management system was developed in state implementation plans (SIPs) to inspect and reduce emissions in the industrial district.

  3. Determination of concentration of radon, volatile organic compounds (VOC) and water chemistry in springs near to Popocatepetl volcano

    International Nuclear Information System (INIS)

    Pena, P.; Segovia, N.; Lopez M, B.E.; Cisniega, G.; Valdes, C.; Armienta, M.A.; Mena, M.

    2004-01-01

    Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs is analysed as a function of the 2002-2003 volcanic activity. Soil radon indicated fluctuations related both the meteorological parameters and sporadic explosive events. Groundwater radon showed essentially differences in concentration due to the specific characteristics of the studied springs. Water chemistry showed stability along the monitoring period indicating also differences between springs. No anthropogenic pollution from volatile organic compounds was observed. (Author)

  4. Chemical-specific screening criteria for interpretation of biomonitoring data for volatile organic compounds (VOCs)--application of steady-state PBPK model solutions.

    Science.gov (United States)

    Aylward, Lesa L; Kirman, Chris R; Blount, Ben C; Hays, Sean M

    2010-10-01

    The National Health and Nutrition Examination Survey (NHANES) generates population-representative biomonitoring data for many chemicals including volatile organic compounds (VOCs) in blood. However, no health or risk-based screening values are available to evaluate these data from a health safety perspective or to use in prioritizing among chemicals for possible risk management actions. We gathered existing risk assessment-based chronic exposure reference values such as reference doses (RfDs), reference concentrations (RfCs), tolerable daily intakes (TDIs), cancer slope factors, etc. and key pharmacokinetic model parameters for 47 VOCs. Using steady-state solutions to a generic physiologically-based pharmacokinetic (PBPK) model structure, we estimated chemical-specific steady-state venous blood concentrations across chemicals associated with unit oral and inhalation exposure rates and with chronic exposure at the identified exposure reference values. The geometric means of the slopes relating modeled steady-state blood concentrations to steady-state exposure to a unit oral dose or unit inhalation concentration among 38 compounds with available pharmacokinetic parameters were 12.0 microg/L per mg/kg-d (geometric standard deviation [GSD] of 3.2) and 3.2 microg/L per mg/m(3) (GSD=1.7), respectively. Chemical-specific blood concentration screening values based on non-cancer reference values for both oral and inhalation exposure range from 0.0005 to 100 microg/L; blood concentrations associated with cancer risk-specific doses at the 1E-05 risk level ranged from 5E-06 to 6E-02 microg/L. The distribution of modeled steady-state blood concentrations associated with unit exposure levels across VOCs may provide a basis for estimating blood concentration screening values for VOCs that lack chemical-specific pharmacokinetic data. The screening blood concentrations presented here provide a tool for risk assessment-based evaluation of population biomonitoring data for VOCs and

  5. Evaluation of an on-line methodology for measuring volatile organic compounds (VOC) fluxes by eddy-covariance with a PTR-TOF-Qi-MS

    Science.gov (United States)

    Loubet, Benjamin; Buysse, Pauline; Lafouge, Florence; Ciuraru, Raluca; Decuq, Céline; Zurfluh, Olivier

    2017-04-01

    Field scale flux measurements of volatile organic compounds (VOC) are essential for improving our knowledge of VOC emissions from ecosystems. Many VOCs are emitted from and deposited to ecosystems. Especially less known, are crops which represent more than 50% of French terrestrial surfaces. In this study, we evaluate a new on-line methodology for measuring VOC fluxes by Eddy Covariance with a PTR-Qi-TOF-MS. Measurements were performed at the ICOS FR-GRI site over a crop using a 30 m long high flow rate sampling line and an ultrasonic anemometer. A Labview program was specially designed for acquisition and on-line covariance calculation: Whole mass spectra ( 240000 channels) were acquired on-line at 10 Hz and stored in a temporary memory. Every 5 minutes, the spectra were mass-calibrated and normalized by the primary ion peak integral at 10 Hz. The mass spectra peaks were then retrieved from the 5-min averaged spectra by withdrawing the baseline, determining the resolution and using a multiple-peak detection algorithm. In order to optimize the peak detection algorithm for the covariance, we determined the covariances as the integrals of the peaks of the vertical-air-velocity-fluctuation weighed-averaged-spectra. In other terms, we calculate , were w is the vertical component of the air velocity, Sp is the spectra, t is time, lag is the decorrelation lag time and denotes an average. The lag time was determined as the decorrelation time between w and the primary ion (at mass 21.022) which integrates the contribution of all reactions of VOC and water with the primary ion. Our algorithm was evaluated by comparing the exchange velocity of water vapor measured by an open path absorption spectroscopy instrument and the water cluster measured with the PTRQi-TOF-MS. The influence of the algorithm parameters and lag determination is discussed. This study was supported by the ADEME-CORTEA COV3ER project (http://www6.inra.fr/cov3er).

  6. Impact of cigarette smoking on volatile organic compound (VOC) blood levels in the U.S. population: NHANES 2003-2004.

    Science.gov (United States)

    Chambers, David M; Ocariz, Jessica M; McGuirk, Maureen F; Blount, Benjamin C

    2011-11-01

    The impact of cigarette smoking on volatile organic compound (VOC) blood levels is studied using 2003-2004 National Health and Nutrition Examination Survey (NHANES) data. Cigarette smoke exposure is shown to be a predominant source of benzene, toluene, ethylbenzene, xylenes and styrene (BTEXS) measured in blood as determined by (1) differences in central tendency and interquartile VOC blood levels between daily smokers [≥1 cigarette per day (CPD)] and less-than-daily smokers, (2) correlation among BTEXS and the 2,5-dimethylfuran (2,5-DMF) smoking biomarker in the blood of daily smokers, and (3) regression modeling of BTEXS blood levels versus categorized CPD. Smoking status was determined by 2,5-DMF blood level using a cutpoint of 0.014 ng/ml estimated by regression modeling of the weighted data and confirmed with receiver operator curve (ROC) analysis. The BTEXS blood levels among daily smokers were moderately-to-strongly correlated with 2,5-DMF blood levels (correlation coefficient, r, ranging from 0.46 to 0.92). Linear regression of the geometric mean BTEXS blood levels versus categorized CPD showed clear dose-response relationship (correlation of determination, R(2), ranging from 0.81 to 0.98). Furthermore, the pattern of VOCs in blood of smokers is similar to that reported in mainstream cigarette smoke. These results show that cigarette smoking is a primary source of benzene, toluene and styrene and an important source of ethylbenzene and xylene exposure for the U.S. population, as well as the necessity of determining smoking status and factors affecting dose (e.g., CPD, time since last cigarette) in assessments involving BTEXS exposure. Published by Elsevier Ltd.

  7. Mass transfer study between soil, atmosphere, groundwater and building in a contaminated area; volatile organic compounds (VOC)

    International Nuclear Information System (INIS)

    Cotel, S.

    2008-10-01

    A bibliography review led to detail the mechanisms of exchange between phases and transport of volatile organic compounds in the vadose zone, to put in equations their transfer, to set experimental devices and to define relevant tests. The pollutant in question is trichloroethylene, the porous media is a medium sand and the experiments were implemented in column. Once, an analytical method was available to quantify aqueous, gaseous and sorb TCE, predominant transfers mechanisms were quantified separately especially with diffusion experiments through a sand at three different water contents (dry, residual saturation and saturated). Then, these mechanisms have been coupled in a TCE transfer experiment in sand with a hydrostatic water content profile. Each type of test was dimensioned, if it's possible duplicated and interpreted with the multiphasic software Comsol whose flow equation was changed to consider the gravity driven convection. By strictly controlling external factors and boundary conditions, it was possible to carry out transfer experiments reproducible and interpretable with a volatile and reactive compound in a very permeable porous medium. A good reproducibility of experimental results by simulation was achieved with minor changes in basic parameters: report permeability on viscosity, tortuosity (Millington, 1959) and aerodynamics conductivity curve setting parameter (Thomson et al., 1997). This work has resulted in a fine understanding of gas transfers in the vadose zone, especially in the capillarity fringe. (author)

  8. Modeling explicit tropospheric oxidation through identifying volatile organic compound (VOC) sources, their impact on air quality and their signatures in South China

    Science.gov (United States)

    Cheng, Hairong

    Photochemical smog, characterized by high concentrations of ozone (O 3) and fine particles, is of great concern in the urban areas like the Pearl River Delta (PRD). Ambient O3 and its precursors were simultaneously measured for the first time at a site within the inland PRD region (WQS) and a site in Hong Kong (TC) from 22 October to 01 December 2007, in order to improve our understanding of the interplay of O3 pollution between Hong Kong and the inland PRD region, to explore the relationships between O3 and its precursors, and to identify the key volatile organic compound (VOC) species and emission source categories contributing to the O3 formation. Ratio analyses for trace gases and VOCs and back trajectory calculation revealed that the air masses arriving at WQS were more aged due to regional influence, whereas the air masses at TC were mainly affected by local emissions and/or regional transport. An observation-Based Model (OBM) was employed to determine the O 3-precursor relationship. At both sites, O3 production was found to be VOC-limited. Anthropogenic hydrocarbons played a key role in O 3 production, while reducing NO emissions aided the build up of O 3 concentrations. The contribution of carbonyls to O3 formation was firstly input in the OBM by using measured data, the results showed that the net O3 production derived from the OBM agreed better with the observed O3 increment after hourly carbonyl concentrations were included. A photochemical trajectory model was developed and used for the first time to simulate the formation of photochemical pollutants at WQS, Guangzhou during photochemical pollution episodes between 12 and 17 November, 2007. Calculated photochemical ozone creation potential (POCP) indices indicated that alkanes and oxygenated organic compounds had relatively low reactivity, while alkenes and aromatics presented high reactivity. Analysis of the emission inventory found that the sum of 60 of the 139 VOC species accounted for 91% of the

  9. Probability of Elevated Volatile Organic Compound (VOC) Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of elevated volatile organic compound (VOC) concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  10. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China.

    Science.gov (United States)

    Zheng, Junyu; Yu, Yufan; Mo, Ziwei; Zhang, Zhou; Wang, Xinming; Yin, Shasha; Peng, Kang; Yang, Yang; Feng, Xiaoqiong; Cai, Huihua

    2013-07-01

    Industrial sector-based VOC source profiles are reported for the Pearl River Delta (PRD) region, China, based source samples (stack emissions and fugitive emissions) analyzed from sources operating under normal conditions. The industrial sectors considered are printing (letterpress, offset and gravure printing processes), wood furniture coating, shoemaking, paint manufacturing and metal surface coating. More than 250 VOC species were detected following US EPA methods TO-14 and TO-15. The results indicated that benzene and toluene were the major species associated with letterpress printing, while ethyl acetate and isopropyl alcohol were the most abundant compounds of other two printing processes. Acetone and 2-butanone were the major species observed in the shoemaking sector. The source profile patterns were found to be similar for the paint manufacturing, wood furniture coating, and metal surface coating sectors, with aromatics being the most abundant group and oxygenated VOCs (OVOCs) as the second largest contributor in the profiles. While OVOCs were one of the most significant VOC groups detected in these five industrial sectors in the PRD region, they have not been reported in most other source profile studies. Such comparisons with other studies show that there are differences in source profiles for different regions or countries, indicating the importance of developing local source profiles. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  11. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: A study in Shuozhou, China.

    Science.gov (United States)

    Yan, Yulong; Peng, Lin; Li, Rumei; Li, Yinghui; Li, Lijuan; Bai, Huiling

    2017-04-01

    Volatile organic compounds (VOCs) from two sampling sites (HB and XB) in a power station centralized area, in Shuozhou city, China, were sampled by stainless steel canisters and measured by gas chromatography-mass selective detection/flame ionization detection (GC-MSD/FID) in the spring and autumn of 2014. The concentration of VOCs was higher in the autumn (HB, 96.87 μg/m 3 ; XB, 58.94 μg/m 3 ) than in the spring (HB, 41.49 μg/m 3 ; XB, 43.46 μg/m 3 ), as lower wind speed in the autumn could lead to pollutant accumulation, especially at HB, which is a new urban area surrounded by residential areas and a transportation hub. Alkanes were the dominant group at both HB and XB in both sampling periods, but the contribution of aromatic pollutants at HB in the autumn was much higher than that of the other alkanes (11.16-19.55%). Compared to other cities, BTEX pollution in Shuozhou was among the lowest levels in the world. Because of the high levels of aromatic pollutants, the ozone formation potential increased significantly at HB in the autumn. Using the ratio analyses to identify the age of the air masses and analyze the sources, the results showed that the atmospheric VOCs at XB were strongly influenced by the remote sources of coal combustion, while at HB in the spring and autumn were affected by the remote sources of coal combustion and local sources of vehicle emission, respectively. Source analysis conducted using the Positive Matrix Factorization (PMF) model at Shuozhou showed that coal combustion and vehicle emissions made the two largest contributions (29.98% and 21.25%, respectively) to atmospheric VOCs. With further economic restructuring, the influence of vehicle emissions on the air quality should become more significant, indicating that controlling vehicle emissions is key to reducing the air pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Degradation products of citrus volatile organic compounds (VOCs) acting as phagostimulants that increase probing behavior of Asian citrus psyllid

    Science.gov (United States)

    Volatile phytochemicals play a role in orientation by phytophagous insects. We studied antennal and behavioral responses of the Asian citrus psyllid, Diaphorina citri Kuwayama, vector of the citrus greening disease pathogen. Little or no response to citrus leaf volatiles was detected by electroanten...

  13. Identification of volatile organic compounds (VOCs in plastic products using gas chromatography and mass spectrometry (GC/MS

    Directory of Open Access Journals (Sweden)

    Nerlis Pajaro-Castro

    2014-10-01

    Full Text Available Plastic materials are widely used in daily life. They contain a wide range of compounds with low molecular mass, including monomeric and oligomeric residues of polymerization, solvent-related chemicals residues, and various additives. Plastic products made of expanded polystyrene (EPS are currently employed as food containers. This study therefore sought to identify volatile organic compounds released by EPS from food packages and utensils used in Cartagena, Colombia. EPS-based plates, food and soup containers were subjected to various temperatures and released chemicals captured by solid phase microextraction, followed by on-column thermal desorption and gas chromatography/mass spectrometry analysis. The results revealed the presence of at least 30 different compounds in the EPS-based products examined; the most frequently found were benzaldehyde, styrene, ethylbenzene and tetradecane. The release of these molecules was temperature-dependent. It is therefore advisable to regulate the use of EPS products which may be subjected to heating in order to protect human health by decreasing the exposure to these chemicals.

  14. Volatile organic compound (VOC) emissions characterization during the flow-back phase of a hydraulically refractured well in the Uintah Basin, Utah using mobile PTR-MS measurements

    Science.gov (United States)

    Geiger, F.; Warneke, C.; Brown, S. S.; De Gouw, J. A.; Dube, W. P.; Edwards, P.; Gilman, J.; Graus, M.; Helleis, F.; Kofler, J.; Lerner, B. M.; Orphal, J.; Petron, G.; Roberts, J. M.; Zahn, A.

    2014-12-01

    Ongoing improvements in advanced technologies for crude oil and natural gas extraction from unconventional reserves, such as directional drilling and hydraulic fracturing, have greatly increased the production of fossil fuels within recent years. The latest forecasts even estimate an enhancement of 56% in total natural gas production due to increased development of shale gas, tight gas and offshore natural gas resources from 2012 to 2040 with the largest contribution from shale formations [US EIA: Annual Energy Outlook 2014]. During the field intensive 'Energy and Environment - Uintah Basin Winter Ozone Study (UBWOS)', measurements of volatile organic compounds (VOCs) were made using proton-transfer-reactions mass spectrometry (PTR-MS) at the ground site Horse Pool and using a mobile laboratory in the Uintah Basin, Utah, which is a region well known for intense fossil fuel production. A reworked gas well in the Red Wash fields was sampled regularly within two weeks performing mobile laboratory measurements downwind of the well site. The well had been recently hydraulically refractured at that time and waste water was collected into an open flow-back pond. Very high mixing ratios of aromatic hydrocarbons (C6-C13) up to the ppm range were observed coming from condensate and flow-back reservoirs. The measurements are used to determine sources of specific VOC emissions originating from the different parts of the well site and mass spectra are used to classify the air composition in contrast to samples taken at the Horse Pool field site and crude oil samples from South Louisiana. Enhancement ratios and time series of measured peak values for aromatics showed no clear trend, which indicates changes in emissions with operations at the site.

  15. Characterization of Volatile Organic Compound (VOC) Emissions at Sites of Oil Sands Extraction and Upgrading in northern Alberta

    Science.gov (United States)

    Marrero, J.; Simpson, I. J.; Meinardi, S.; Blake, D. R.

    2011-12-01

    The crude oil reserves in Canada's oil sands are second only to Saudi Arabia, holding roughly 173 billion barrels of oil in the form of bitumen, an unconventional crude oil which does not flow and cannot be pumped without heating or dilution. Oil sands deposits are ultimately used to make the same petroleum products as conventional forms of crude oil, though more processing is required. Hydrocarbons are the basis of oil, coal and natural gas and are an important class of gases emitted into the atmosphere during oil production, particularly because of their effects on air quality and human health. However, they have only recently begun to be independently assessed in the oil sands regions. As part of the 2008 ARCTAS airborne mission, whole air samples were collected in the boundary layer above the surface mining operations of northern Alberta. Gas chromatography analysis revealed enhanced concentrations of 53 VOCs (C2 to C10) over the mining region. When compared to local background levels, the measured concentrations were enhanced up to 1.1-400 times for these compounds. To more fully characterize emissions, ground-based studies were conducted in summer 2010 and winter 2011 in the oil sands mining and upgrading areas. The data from the 200 ground-based samples revealed enhancements in the concentration of 65 VOCs. These compounds were elevated up to 1.1-3000 times above background concentrations and include C2-C8 alkanes, C1-C5 alkyl nitrates, C2-C4 alkenes and potentially toxic aromatic compounds such as benzene, toluene, and xylenes.

  16. Volatile Organic Compounds (VOCs) Measurements in Karachi, Pakistan (2006): a Comparison With Previous Urban Sampling Campaigns Worldwide.

    Science.gov (United States)

    Barletta, B.; Meinardi, S.; Khwaja, H. A.; Beyersdorf, A. J.; Baker, A. K.; Zou, S.; Rowland, F.; Blake, D. R.

    2008-12-01

    Mixing ratios of carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and 47 nonmethane hydrocarbons - NMHCs - (19 alkanes, 13 alkenes, ethyne, and 14 aromatics) were determined for ground level whole air samples collected during the winter of 2006 in Karachi, Pakistan. Pakistan is among the fastest growing economies in Asia, and Karachi is one of the largest cities in the world with a rapidly expanding population of over 14 million in the whole metropolitan area, and a large industrial base. Samples were collected in January 2006 throughout the urban area to characterize the overall air composition of the city, and along the busiest road to determine the traffic signature of Karachi. This sampling campaign follows a previous study carried out in the winter of 1998-1999 in the same city, when elevated concentrations of many NMHCs were observed. Exceptionally high levels of methane were still observed in 2006 with an average mixing ratio of 5.0 ppmv (6.3 ppmv were observed in 1999). The overall air composition of the Karachi urban environment characterized during this 2006 sampling is compared to 1999 aiming to highlight any possible change in the main VOC sources present throughout the city. In particular, we want to evaluate the impact of the heavy usage of natural gas on the overall air quality of Karachi and the recently increased use of liquefied petroleum gas (LPG) as alternative source of energy. We also compare the composition of the urban troposphere of Karachi to other major urban centers worldwide such as Guangzhou (China), Mexico City (Mexico), and Milan (Italy).

  17. A comparative study of Cu, Ag and Au doped CeO{sub 2} in the total oxidation of volatile organic compounds (VOCs)

    Energy Technology Data Exchange (ETDEWEB)

    Aboukaïs, Antoine, E-mail: aboukais@univ-littoral.fr [Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, ULCO, Equipe de Catalyse-UCEIV, MREI, 59140, Dunkerque (France); Skaf, Mira, E-mail: miraskaf@hotmail.com [Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, ULCO, Equipe de Catalyse-UCEIV, MREI, 59140, Dunkerque (France); Department of Chemistry, Faculty of Sciences, University of Balamand, P.O. Box 100, Deir El Balamand, Kelhat-Tripoli (Lebanon); Hany, Sara, E-mail: sarahani@hotmail.com [Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, ULCO, Equipe de Catalyse-UCEIV, MREI, 59140, Dunkerque (France); Cousin, Renaud, E-mail: Renaud.Cousin@univ-littoral.fr [Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, ULCO, Equipe de Catalyse-UCEIV, MREI, 59140, Dunkerque (France); Aouad, Samer, E-mail: Samer.Aouad@balamand.edu.lb [Department of Chemistry, Faculty of Sciences, University of Balamand, P.O. Box 100, Deir El Balamand, Kelhat-Tripoli (Lebanon); Labaki, Madona, E-mail: mlabaki@ul.edu.lb [Laboratory of Physical Chemistry of Materials (LCPM)/PR2N, Faculty of Sciences, Lebanese University, Fanar, PO Box 90656, Jdeidet El Metn (Lebanon); Abi-Aad, Edmond, E-mail: abiaad@univ-littoral.fr [Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, ULCO, Equipe de Catalyse-UCEIV, MREI, 59140, Dunkerque (France)

    2016-07-01

    Total oxidation of two Volatile Organic Compounds (VOCs), propylene and toluene, was investigated over M/CeO{sub 2} catalysts, where M is a metal from IB group (i.e. Au, Ag, Cu), prepared by two different methods: the conventional wet impregnation and the deposition-precipitation. The catalysts have been characterized by means of total surface area (BET), X-ray diffraction (XRD), electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), diffuse reflectance ultra-violet-visible spectroscopy (DR-UV/Vis), and temperature-programmed reduction (TPR), in order to explain the differences observed in their catalytic activity towards the studied reactions. By comparing the two different preparation methods, the presence of metal in high oxidation state for gold and silver, and the presence of clusters for copper were the main factors responsible for the high catalytic activity. This latter was also found to be related, when comparing the different IB metals, to the values of the oxidation/reduction potential of the redox couples of the different metals. - Highlights: • IB metals (Au, Ag and Cu) were supported on ceria (CeO{sub 2}) by two different methods. • The solids were tested as catalysts for total oxidation of propylene and toluene. • The deposition-precipitation is better for Au whereas for Ag and Cu it is the impregnation. • High oxidation states of gold and silver and clusters of copper enhanced catalytic behavior. • Catalytic activity is linked to the oxidation/reduction potential of the redox IB couples.

  18. A comparative study of Cu, Ag and Au doped CeO_2 in the total oxidation of volatile organic compounds (VOCs)

    International Nuclear Information System (INIS)

    Aboukaïs, Antoine; Skaf, Mira; Hany, Sara; Cousin, Renaud; Aouad, Samer; Labaki, Madona; Abi-Aad, Edmond

    2016-01-01

    Total oxidation of two Volatile Organic Compounds (VOCs), propylene and toluene, was investigated over M/CeO_2 catalysts, where M is a metal from IB group (i.e. Au, Ag, Cu), prepared by two different methods: the conventional wet impregnation and the deposition-precipitation. The catalysts have been characterized by means of total surface area (BET), X-ray diffraction (XRD), electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), diffuse reflectance ultra-violet-visible spectroscopy (DR-UV/Vis), and temperature-programmed reduction (TPR), in order to explain the differences observed in their catalytic activity towards the studied reactions. By comparing the two different preparation methods, the presence of metal in high oxidation state for gold and silver, and the presence of clusters for copper were the main factors responsible for the high catalytic activity. This latter was also found to be related, when comparing the different IB metals, to the values of the oxidation/reduction potential of the redox couples of the different metals. - Highlights: • IB metals (Au, Ag and Cu) were supported on ceria (CeO_2) by two different methods. • The solids were tested as catalysts for total oxidation of propylene and toluene. • The deposition-precipitation is better for Au whereas for Ag and Cu it is the impregnation. • High oxidation states of gold and silver and clusters of copper enhanced catalytic behavior. • Catalytic activity is linked to the oxidation/reduction potential of the redox IB couples.

  19. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  20. Relationship between selected indoor volatile organic compounds, so-called microbial VOC, and the prevalence of mucous membrane symptoms in single family homes

    International Nuclear Information System (INIS)

    Araki, Atsuko; Kawai, Toshio; Eitaki, Yoko; Kanazawa, Ayako; Morimoto, Kanehisa; Nakayama, Kunio; Shibata, Eiji; Tanaka, Masatoshi; Takigawa, Tomoko; Yoshimura, Takesumi; Chikara, Hisao; Saijo, Yasuaki; Kishi, Reiko

    2010-01-01

    Microorganisms are known to produce a range of volatile organic compounds, so-called microbial VOC (MVOC). Chamber studies where humans were exposed to MVOC addressed the acute effects of objective and/or subjective signs of mucosal irritation. However, the effect of MVOC on inhabitants due to household exposure is still unclear. The purpose of this epidemiological study was to measure indoor MVOC levels in single family homes and to evaluate the relationship between exposure to them and sick building syndrome (SBS). All inhabitants of the dwellings were given a self-administered questionnaire with standardized questions to assess their symptoms. Air samples were collected and the concentrations of eight selected compounds in indoor air were analyzed by gas chromatography/mass spectrometry - selective ion monitoring mode (GC/MS-SIM). The most frequently detected MVOC was 1-pentanol at a detection rate of 78.6% and geometric mean of 0.60 μg/m 3 . Among 620 participants, 120 (19.4%) reported one or more mucous symptoms; irritation of the eyes, nose, airway, or coughing every week (weekly symptoms), and 30 (4.8%) reported that the symptoms were home-related (home-related symptoms). Weekly symptoms were not associated with any of MVOC, whereas significant associations between home-related mucous symptoms and 1-octen-3-ol (per log 10 -unit: odds ratio (OR) 5.6, 95% confidence interval (CI): 2.1 to 14.8) and 2-pentanol (per log 10 -unit: OR 2.3, 95% CI: 1.0 to 4.9) were obtained after adjustment for gender, age, and smoking. Associations between home-related symptoms and 1-octen-3-ol remained after mutual adjustment. However, concentrations of the selected compounds in indoors were lower than the estimated safety level in animal studies. Thus, the statistically significant association between 1-octen-3-ol may be due to a direct effect of the compounds or the associations may be being associated with other offending compounds. Additional studies are needed to evaluate

  1. Leaf ontogeny dominates the seasonal exchange of volatile organic compounds (VOC) in a SRC-poplar plantation during an entire growing season

    Science.gov (United States)

    Brilli, Federico; Gioli, Beniamino; Fares, Silvano; Zenone, Terenzio; Zona, Donatella; Gielen, Bert; Loreto, Francesco; Janssens, Ivan; Ceulemans, Reinhart

    2015-04-01

    The declining cost of many renewable energy technologies and changes in the prices of fossil fuels have recently encouraged governments policies to subsidize the use of biomass as a sustainable source of energy. Deciduous poplars (Populus spp.) trees are often selected for biomass production in short rotation coppiced (SRC) for their high CO2 photosynthetic assimilation rates and their capacity to develop dense canopies with high values of leaf area index (LAI). So far, observations and projections of seasonal variations of many VOC fluxes has been limited to strong isoprenoids emitting evergreen ecosystems such tropical and Mediterranean forests as well as Citrus and oil palm plantation, all having constant values of LAI. We run a long-term field campaign where the exchange of VOC, together with CO2 and water vapor was monitored during an entire growing season (June - November, 2012) above a SRC-based poplar plantation. Our results confirmed that isoprene and methanol were the most abundant fluxes emitted, accounting for more than 90% of the total carbon released in form of VOC. However, Northern climates characterized by fresh summertime temperatures and recurring precipitations favored poplar growth while inhibiting the development of isoprene emission that resulted in only 0.7% of the net ecosystem carbon exchange (NEE). Besides, measurements of a multitude of VOC fluxes by PTR-TOF-MS showed bi-directional exchange of oxygenated-VOC (OVOC) such as: formaldehyde, acetaldehyde, acetone, isoprene oxidation products (iox, namely MVK, MAC and MEK) as well as ethanol and formic acid. The application of Self Organizing Maps to visualize the relationship between the full time-series of many VOC fluxes and the observed seasonal variations of environmental, physiological and structural parameters proved the most abundant isoprene ad methanol fluxes to occur mainly on the hottest days under mid-high light intensities when also NEE and evapotraspiration reached the highest

  2. Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN

    Science.gov (United States)

    I. J. Simpson; S. K. Akagi; B. Barletta; N. J. Blake; Y. Choi; G. S. Diskin; A. Fried; H. E. Fuelberg; S. Meinardi; F. S. Rowland; S. A. Vay; A. J. Weinheimer; P. O. Wennberg; P. Wiebring; A. Wisthaler; M. Yang; R. J. Yokelson; D. R. Blake

    2011-01-01

    Boreal regions comprise about 17% of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic...

  3. 湿建筑材料VOCs散发特性的实验研究%Experimental Research on the Emissions of Volatile Organic Compounds(VOCs) from Wet Building Materials

    Institute of Scientific and Technical Information of China (English)

    李慧星; 耿耿; 李贝妮; 肖玮

    2012-01-01

    目的 分析湿建筑材料VOCs散发的规律及其影响因素,以更好地控制由室内污染源产生的VOCs污染.方法 在自制的模拟环境实验舱内,利用PGM-7240手持式VOC检测议和气相色谱仪对湿建筑材料VOCs的散发行为进行试验测试.结果 表明环境温度升高使得材料内VOCs分子热运动加剧,湿材料散发VOCs的速率加快;较高的相对湿度延长了湿材料的干燥时间,正向促进湿材料内部有机化合物的水解反应及VOCs的释放;湿材料涂层越厚,材料内部VOCs总量越多,材料干燥时间越长;较高的换气次数能缩短湿建筑材料的干燥时间.结论 湿材料释放VOCs的速率随环境温度升高而加快;增加相对湿度有助于湿材料VOCs的散发;湿材料涂层厚度与舱内VOCs质量浓度呈正比关系;提高舱内换气次数能有效促进VOCs的衰减.%This paper mainly researches the emissions of volatile organic compounds (VOCs) from wet building materials in order to control the VOCs pollution caused by indoor pollution source more efficiently. The author did a series of tests to the emission using handheld VOC detector PGM-7240 in an environmental test chamber and gas chromatograph. The results show that the ambient temperature, relative humidity, coating thickness of the material and air change rate of the chamber can all have a certain influence on the VOCs e-missions of the wet building materials. This paper draws the following conclusions;the rise of ambient temperature as well as the increase of relative humidity can accelerate the emission of VOCs; the thicker the coating of the material is,the higher VOCs concentration becomes inside the chamber;increasing air change rate of the chamber can improve the decay rate of the VOCs.

  4. Determination of volatile organic compounds (VOCs) using tedlar bag/solid-phase microextraction/gas chromatography/mass spectrometry (SPME/GC/MS) in ambient and workplace air

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hwan; Lee, Dai Woon [Yonsei Univ., Seoul (Korea, Republic of); Hwang, Seung Man; Heo, Gwi Suk [Korea Research Institute of Standards and Science, Taejon (Korea, Republic of)

    2002-03-01

    SPME techniques have proven to be very useful tools in the analysis of wide VOCs in the air. In this study, we estimated VOCs in ambient and workplace air using a Tedlar ba/SPME/GC/MS system. The calibration curve was set to be linear over the range of 1-30 ppbv. The detection limits ranged from 10 pptv 0.93 ppbv for all VOCs. Reproducibility of TO-14 target gas mixtures by SPME/GC/MS averaged at 8.8 R.S.D (%). Air toxic VOCs (hazardous air pollutants, HAPs) containing a total of forty halohydrocarbons, aromatics, and haloaro-matic carbons could be analyzed with significant accuracy, detection limit and linearity at low ppbv level. Only reactive VOCs with low molecular weight, such as chloromethane, vinylchloride, ethylchloride and 1,2-dichloro-ethane, yielded relatively poor results using this technique. In ambient air samples, ten VOCs were identified and quantified after external calibration. VOC concentration in ambient and workplace air ranged from 0.04 to 1.85 ppbv. The overall process was successfully applied to identify and quantify VOCs in ambient/workplace air.

  5. Determination of volatile organic compounds (VOCs) using tedlar bag/solid-phase microextraction/gas chromatography/mass spectrometry (SPME/GC/MS) in ambient and workplace air

    International Nuclear Information System (INIS)

    Lee, Jae Hwan; Lee, Dai Woon; Hwang, Seung Man; Heo, Gwi Suk

    2002-01-01

    SPME techniques have proven to be very useful tools in the analysis of wide VOCs in the air. In this study, we estimated VOCs in ambient and workplace air using a Tedlar ba/SPME/GC/MS system. The calibration curve was set to be linear over the range of 1-30 ppbv. The detection limits ranged from 10 pptv 0.93 ppbv for all VOCs. Reproducibility of TO-14 target gas mixtures by SPME/GC/MS averaged at 8.8 R.S.D (%). Air toxic VOCs (hazardous air pollutants, HAPs) containing a total of forty halohydrocarbons, aromatics, and haloaro-matic carbons could be analyzed with significant accuracy, detection limit and linearity at low ppbv level. Only reactive VOCs with low molecular weight, such as chloromethane, vinylchloride, ethylchloride and 1,2-dichloro-ethane, yielded relatively poor results using this technique. In ambient air samples, ten VOCs were identified and quantified after external calibration. VOC concentration in ambient and workplace air ranged from 0.04 to 1.85 ppbv. The overall process was successfully applied to identify and quantify VOCs in ambient/workplace air

  6. CO2 sensor versus Volatile Organic Compounds (VOC) sensor – analysis of field measurement data and implications for demand controlled ventilation

    DEFF Research Database (Denmark)

    Kolarik, Jakub

    2014-01-01

    The study investigated performance of two commercially available non-selective metal oxide semiconductor VOC sensors and two commercially available non dispersive infrared CO2 sensors installed in one person office. The office was equipped with demand controlled ventilation. The signals from VOC...

  7. Determination of concentration of radon, volatile organic compounds (VOC) and water chemistry in springs near to Popocatepetl volcano; Determinacion de la concentracion de radon, VOCs y Quimica del agua en manantiales cercanos al volcan Popocatepetl

    Energy Technology Data Exchange (ETDEWEB)

    Pena, P.; Segovia, N.; Lopez M, B.E.; Cisniega, G. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Valdes, C.; Armienta, M.A.; Mena, M. [Instituto de Geofisica, UNAM, 04510 Mexico D.F. (Mexico)

    2004-07-01

    Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs is analysed as a function of the 2002-2003 volcanic activity. Soil radon indicated fluctuations related both the meteorological parameters and sporadic explosive events. Groundwater radon showed essentially differences in concentration due to the specific characteristics of the studied springs. Water chemistry showed stability along the monitoring period indicating also differences between springs. No anthropogenic pollution from volatile organic compounds was observed. (Author)

  8. Evaluation of volatile organic compound (VOC) blank data and application of study reporting levels to groundwater data collected for the California GAMA Priority Basin Project, May 2004 through September 2010

    Science.gov (United States)

    Fram, Miranda S.; Olsen, Lisa D.; Belitz, Kenneth

    2012-01-01

    Volatile organic compounds (VOCs) were analyzed in quality-control samples collected for the California Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. From May 2004 through September 2010, a total of 2,026 groundwater samples, 211 field blanks, and 109 source-solution blanks were collected and analyzed for concentrations of 85 VOCs. Results from analyses of these field and source-solution blanks and of 2,411 laboratory instrument blanks during the same time period were used to assess the quality of data for the 2,026 groundwater samples. Eighteen VOCs were detected in field blanks or source-solution blanks: acetone, benzene, bromodichloromethane, 2-butanone, carbon disulfide, chloroform, 1,1-dichloroethene, dichloromethane, ethylbenzene, tetrachloroethene, styrene, tetrahydrofuran, toluene, trichloroethene, trichlorofluoromethane, 1,2,4-trimethylbenzene, m- and p-xylenes, and o-xylene. The objective of the evaluation of the VOC-blank data was to determine if study reporting levels (SRLs) were needed for any of the VOCs detected in blanks to ensure the quality of the data from groundwater samples. An SRL is equivalent to a raised reporting level that is used in place of the reporting level used by the analyzing laboratory [long‑term method detection level (LT-MDL) or laboratory reporting level (LRL)] to reduce the probability of reporting false-positive detections. Evaluation of VOC-blank data was done in three stages: (1) identification of a set of representative quality‑control field blanks (QCFBs) to be used for calculation of SRLs and identification of VOCs amenable to the SRL approach, (2) evaluation of potential sources of contamination to blanks and groundwater samples by VOCs detected in field blanks, and (3) selection of appropriate SRLs from among four potential SRLs for VOCs detected in field blanks and application of those SRLs to the groundwater data. An important conclusion from this study is that to ensure the

  9. Modeling effects of moisture content and advection on odor causing VOCs volatilization from stored swine manure.

    Science.gov (United States)

    Liao, C M; Liang, H M

    2000-05-01

    Two models for evaluating the contents and advection of manure moisture on odor causing volatile organic compounds (VOC-odor) volatilization from stored swine manure were studied for their ability to predict the volatilization rate (indoor air concentration) and cumulative exposure dose: a MJ-I model and a MJ-II model. Both models simulating depletion of source contaminant via volatilization and degradation based on an analytical model adapted from the behavior assessment model of Jury et al. In the MJ-I model, manure moisture movement was negligible, whereas in the MJ-II model, time-dependent indoor air concentrations was a function of constant manure moisture contents and steady-state moisture advection. Predicted indoor air concentrations and inhaled doses for the study VOC-odors of p-cresol, toluene, and p-xylene varied by up to two to three orders of magnitude depending on the manure moisture conditions. The sensitivity analysis of both models suggests that when manure moisture movement exists, simply MJ-I model is inherently not sufficient to represent a more generally volatilization process, which can even become stringent as moisture content increases. The conclusion illustrates how one needs to include a wide variety of manure moisture values in order to fully assess the complex volatilization mechanisms that are present in a real situation.

  10. Surface emission determination of volatile organic compounds (VOC) from a closed industrial waste landfill using a self-designed static flux chamber.

    Science.gov (United States)

    Gallego, E; Perales, J F; Roca, F J; Guardino, X

    2014-02-01

    Closed landfills can be a source of VOC and odorous nuisances to their atmospheric surroundings. A self-designed cylindrical air flux chamber was used to measure VOC surface emissions in a closed industrial landfill located in Cerdanyola del Vallès, Catalonia, Spain. The two main objectives of the study were the evaluation of the performance of the chamber setup in typical measurement conditions and the determination of the emission rates of 60 different VOC from that industrial landfill, generating a valuable database that can be useful in future studies related to industrial landfill management. Triplicate samples were taken in five selected sampling points. VOC were sampled dynamically using multi-sorbent bed tubes (Carbotrap, Carbopack X, Carboxen 569) connected to SKC AirCheck 2000 pumps. The analysis was performed by automatic thermal desorption coupled with a capillary gas chromatograph/mass spectrometry detector. The emission rates of sixty VOC were calculated for each sampling point in an effort to characterize surface emissions. To calculate average, minimum and maximum emission values for each VOC, the results were analyzed by three different methods: Global, Kriging and Tributary area. Global and Tributary area methodologies presented similar values, with total VOC emissions of 237 ± 48 and 222 ± 46 g day(-1), respectively; however, Kriging values were lower, 77 ± 17 gd ay(-1). The main contributors to the total emission rate were aldehydes (nonanal and decanal), acetic acid, ketones (acetone), aromatic hydrocarbons and alcohols. Most aromatic hydrocarbon (except benzene, naphthalene and methylnaphthalenes) and aldehyde emission rates exhibited strong correlations with the rest of VOC of their family, indicating a possible common source of these compounds. B:T ratio obtained from the emission rates of the studied landfill suggested that the factors that regulate aromatic hydrocarbon distributions in the landfill emissions are different from the ones

  11. Determination of Volatile Organic Compounds (VOCs from Wrapping Films and Wrapped PDO Italian Cheeses by Using HS-SPME and GC/MS

    Directory of Open Access Journals (Sweden)

    Sara Panseri

    2014-06-01

    Full Text Available Nowadays food wrapping assures attractive presentation and simplifies self-service shopping. Polyvinylchloride (PVC- and polyethylene (PE-based cling-films are widely used worldwide for wrapping cheeses. For this purpose, films used in retail possess suitable technical properties such as clinginess and unrolling capacity, that are achieved by using specific plasticizers during their manufacturing process. In the present study, the main VOCs of three cling-films (either PVC-based or PE-based for retail use were characterized by means of Solid-Phase Micro-Extraction and GC/MS. In addition, the effects of cling film type and contact time on the migration of VOCs from the films to four different PDO Italian cheeses during cold storage under light or dark were also investigated. Among the VOCs isolated from cling-films, PVC released 2-ethylhexanol and triacetin. These compounds can likely be considered as a “non-intentionally added substance”. These same compounds were also detected in cheeses wrapped in PVC films with the highest concentration found after 20 days storage. The PE cling-film was shown to possess a simpler VOC profile, lacking some molecules peculiar to PVC films. The same conclusions can be drawn for cheeses wrapped in the PE cling-film. Other VOCs found in wrapped cheeses were likely to have been released either by direct transfer from the materials used for the manufacture of cling-films or from contamination of the films. Overall, HS-SPME is shown to be a rapid and solvent free technique to screen the VOCs profile of cling-films, and to detect VOCs migration from cling-films to cheese under real retail storage conditions.

  12. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani Jr.; Theresa M. Bomstad

    2002-06-01

    Western Research Institute (WRI) initiated exploratory work towards the development of new field screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of carbon-halogen bonds. Commercially available heated diode and corona discharge leak detectors were procured and evaluated for halogenated VOC response. The units were modified to provide a digital readout of signal related to VOC concentration. Sensor response was evaluated with carbon tetrachloride and tetrachloroethylene (perchloroethylene, PCE), which represent halogenated VOCs with and without double bonds. The response characteristics were determined for the VOCs directly in headspace in Tedlar bag containers. Quantitation limits in air were estimated. Potential interferences from volatile hydrocarbons, such as toluene and heptane, were evaluated. The effect of humidity was studied also. The performance of the new devices was evaluated in the laboratory by spiking soil samples and monitoring headspace for halogenated VOCs. A draft concept of the steps for a new analytical method was outlined. The results of the first year effort show that both devices show potential utility for future analytical method development work towards the goal of developing a portable test kit for screening halogenated VOCs in the field.

  13. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds

    NARCIS (Netherlands)

    Park, Yong-Soon; Dutta, Swarnalee; Ann, Mina; Raaijmakers, Jos M.; Park, Kyungseok

    2015-01-01

    Abstract Volatile organic compounds (VOCs) from plant growth-promoting rhizobacteria (PGPR) play key roles in modulating plant growth and induced systemic resistance (ISR) to pathogens. Despite their significance, the physiological functions of the specific VOCs produced by Pseudomonas fluorescens

  14. Factors that influence the volatile organic compound content in human breath

    NARCIS (Netherlands)

    Blanchet, L.; Smolinska, Agnieszka; Baranska, Agnieszka; Tigchelaar-Feenstra, E.; Swertz, M.; Zhernakova, A.; Dallinga, J. W.; Wijmenga, C.; van Schooten, Frederik J.

    Background. Thousands of endogenous and exogenous volatile organic compounds (VOCs) are excreted in each breath. Inflammatory and deviant metabolic processes affect the level of endogeneous VOCs, which can serve as specific biomarkers for clinical diagnosis and disease monitoring. Important issues

  15. PERTURBATION OF VOLTAGE-SENSITIVE Ca2+ CHANNEL FUNCTION BY VOLATILE ORGANIC SOLVENTS.

    Science.gov (United States)

    The mechanisms underlying the acute neurophysiological and behavioral effects of volatile organic compounds (VOCs) remain to be elucidated. However, the function of neuronal ion channels is perturbed by VOCs. The present study examined effects of toluene (TOL), trichloroethylene ...

  16. Effect of traffic restriction on reducing ambient volatile organic compounds (VOCs): Observation-based evaluation during a traffic restriction drill in Guangzhou, China

    Science.gov (United States)

    Huang, Xinyu; Zhang, Yanli; Yang, Weiqiang; Huang, Zuzhao; Wang, Yujun; Zhang, Zhou; He, Quanfu; Lü, Sujun; Huang, Zhonghui; Bi, Xinhui; Wang, Xinming

    2017-07-01

    Traffic restriction (TR) is a widely adopted control measure in case of heavy air pollution particularly in urban areas, yet it is hard to evaluate the effect of TR on reducing VOC emissions based on monitoring data since ambient VOC mixing ratios are influenced not only by source emissions but also by meteorological conditions and atmospheric degradation. Here we collected air samples for analysis of VOCs before, during and after a TR drill carried out in Guangzhou in September 2010 at both a roadside and a rooftop (∼50 m above the ground) site. TR measures mainly included the "odd-even license" rule and banning high-emitting "yellow label" vehicles. The mixing ratios of non-methane hydrocarbons (NMHCs) did not show significant changes at the roadside site with total NMHCs of 39.0 ± 11.8 ppbv during non-TR period and 39.1 ± 14.8 ppbv during TR period, whereas total NMHCs decreased from 30.4 ± 14.3 ppbv during the non-TR period to 22.1 ± 10.6 ppbv during the TR period at rooftop site. However, the ratios of methyl tert-butyl ether (MTBE), benzene and toluene against carbon monoxide (MTBE/CO, T/CO and B/CO) at the both sampling sites dropped significantly. The ratios of toluene to benzene (T/B) instead increased significantly. Changes in these ratios all consistently indicated reduced input from traffic emissions particularly gasoline vehicles. Source attribution by positive matrix factorization (PMF) confirmed that during the TR period gasoline vehicles contributed less VOCs in percentages while industrial sources, biomass burning and LPG shared larger percentages. Assuming that emissions from industrial sources remained unchanged during the TR and non-TR periods, we further used the PMF-retrieved contribution percentages to deduce the reduction rate of traffic-related VOC emissions, and obtained a reduction rate of 31% based on monitoring data at the roadside site and of 34% based on the monitoring data at the rooftop site. Considering VOC emissions from all

  17. International protocol on volatile organic compounds

    International Nuclear Information System (INIS)

    Gauthier, J.-P.

    1992-01-01

    In August 1991, negotiations between Canada, the USA, and 33 European countries led to an international protocol on reducing the emissions of volatile organic compounds (VOC), which are responsible for serious ozone pollution problems. This was the third transborder pollution agreement developed under the auspices of the United Nations Economic Commission for Europe. Certain aspects of negotiations related to an earlier protocol developed for SO 2 and nitrogen oxide emissions had reappeared during the VOC negotiations, and these aspects are discussed. The VOC protocol proposes three approaches to satisfy basic obligations: reducing VOC emissions of a country by 30%, reducing VOC emissions by 30% in certain regions, and ensuring a freeze in VOC emissions in a country starting on a specified date. The protocol also introduces a new concept, that of zones of tropospheric ozone management. In Canada, plans for management of nitrogen oxides and VOC have been adapted to the ozone problem, and the management plan has been developed by a consultation process involving all sectors of society including industry, environmental groups, and governments. In Canada, it will be sufficient to reduce total VOC emissions by 16% during a first phase and to increase these reductions slightly in the second phase. Special ozone management zones in the Quebec City/Windsor corridor and the Fraser River valley have been established

  18. VOC emissions chambers

    Data.gov (United States)

    Federal Laboratory Consortium — In order to support the development of test methods and reference materials for volatile organic compounds (VOC) emissions from building materials and furnishings,...

  19. Total volatile organic compounds (TVOC) in indoor air quality investigations

    DEFF Research Database (Denmark)

    Mølhave, L.; Clausen, Geo; Berglund, B.

    1997-01-01

    The amount of volatile organic compounds (VOCs) in indoor air, usually called TVOC (total volatile organic compounds), has been measured using different definitions and techniques which yield different results. This report recommends a definition of TVOC referring to a specified range of VOCs...... for characterizing indoor pollution and for improving source control as required from the points of view of health, comfort, energy efficiency and sustainability. (C) Indoor Air (1997)....

  20. Secondary organic aerosol formation through cloud processing of aromatic VOCs

    Science.gov (United States)

    Herckes, P.; Hutchings, J. W.; Ervens, B.

    2010-12-01

    Field observations have shown substantial concentrations (20-5,500 ng L-1) of aromatic volatile organic compounds (VOC) in cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric laboratory conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction rates decreased with increasing organic carbon content. Kinetic data derived from these experiments were used as input to a multiphase box model in order to evaluate the secondary organic aerosol (SOA) mass formation potential of cloud processing of BTEX. Model results will be presented that quantify the SOA amounts from these aqueous phase pathways. The efficiency of this multiphase SOA source will be compared to SOA yields from the same aromatics as treated in traditional SOA models that are restricted to gas phase oxidation and subsequent condensation on particles.

  1. ambient volatile organic compounds pollution and ozone formation

    African Journals Online (AJOL)

    OLUMAYEDE

    2013-08-01

    Aug 1, 2013 ... Volatile organic compound (VOC) species react at different rate and exhibit differences in reactivity with respect to ozone formation in polluted urban atmosphere. To assess this, the variations pattern, reactivity relative to OH radical and ozone creation potential of ambient VOCs were investigated in field.

  2. Transport and Fate of Volatile Organic Chemical in Soils

    DEFF Research Database (Denmark)

    Petersen, Lis Wollesen

    Recently much attention has been paid to the behavior of volatile organic chemicals (VOCs) in the environment. This is due to the fact that the environmental pollution with these hazardous chemicals has drastically increased during the last decades. The present study is limited to consider...... the transport and fate of VOCs in the gaseous phase, thus contributing to the overall understanding of VOCs behavior in soil, which eventually will facilitate future cleanup....

  3. Beyond the network of plants volatile organic compounds

    OpenAIRE

    Vivaldo, Gianna; Masi, Elisa; Taiti, Cosimo; Caldarelli, Guido; Mancuso, Stefano

    2017-01-01

    Plants emission of volatile organic compounds (VOCs) is involved in a wide class of ecological functions, as VOCs play a crucial role in plants interactions with biotic and abiotic factors. Accordingly, they vary widely across species and underpin differences in ecological strategy. In this paper, VOCs spontaneously emitted by 109 plant species (belonging to 56 different families) have been qualitatively and quantitatively analysed in order to classify plants species. By using bipartite netwo...

  4. Technical Note: A fully automated purge and trap GC-MS system for quantification of volatile organic compound (VOC fluxes between the ocean and atmosphere

    Directory of Open Access Journals (Sweden)

    S. J. Andrews

    2015-04-01

    Full Text Available The oceans are a key source of a number of atmospherically important volatile gases. The accurate and robust determination of trace gases in seawater is a significant analytical challenge, requiring reproducible and ideally automated sample handling, a high efficiency of seawater–air transfer, removal of water vapour from the sample stream, and high sensitivity and selectivity of the analysis. Here we describe a system that was developed for the fully automated analysis of dissolved very short-lived halogenated species (VSLS sampled from an under-way seawater supply. The system can also be used for semi-automated batch sampling from Niskin bottles filled during CTD (conductivity, temperature, depth profiles. The essential components comprise a bespoke, automated purge and trap (AutoP & T unit coupled to a commercial thermal desorption and gas chromatograph mass spectrometer (TD-GC-MS. The AutoP & T system has completed five research cruises, from the tropics to the poles, and collected over 2500 oceanic samples to date. It is able to quantify >25 species over a boiling point range of 34–180 °C with Henry's law coefficients of 0.018 and greater (CH22l, kHcc dimensionless gas/aqueous and has been used to measure organic sulfurs, hydrocarbons, halocarbons and terpenes. In the eastern tropical Pacific, the high sensitivity and sampling frequency provided new information regarding the distribution of VSLS, including novel measurements of a photolytically driven diurnal cycle of CH22l within the surface ocean water.

  5. Secondary organic aerosol formation through fog processing of VOCs

    Science.gov (United States)

    Herckes, P.; Hutchings, J. W.

    2010-07-01

    Volatile Organic Compounds (VOCs) including benzene, toluene, ethylbenzene and xylenes (BTEX) have been determined in highly concentrated amounts (>1 ug/L) in intercepted clouds in northern Arizona (USA). These VOCs are found in concentrations much higher than predicted by partitioning alone. The reactivity of BTEX in the fog/cloud aqueous phase was investigated through laboratory studies. BTEX species showed fast degradation in the aqueous phase in the presence of peroxides and light. Observed half-lives ranged from three and six hours, substantially shorter than the respective gas phase half-lives (several days). The observed reaction rates were on the order of 1 ppb/min but decreased substantially with increasing concentrations of organic matter (TOC). The products of BTEX oxidation reactions were analyzed using HPLC-UV and LCMS. The first generation of products identified included phenol and cresols which correspond to the hydroxyl-addition reaction to benzene and toluene. Upon investigating of multi-generational products, smaller, less volatile species are predominant although a large variety of products is found. Most reaction products have substantially lower vapor pressure and will remain in the particle phase upon droplet evaporation. The SOA generation potential of cloud and fog processing of BTEX was evaluated using simple calculations and showed that in ideal situations these reactions could add up to 9% of the ambient aerosol mass. In more conservative scenarios, the contribution of the processing of BTEX was around 1% of ambient aerosol concentrations. Overall, cloud processing of VOC has the potential to contribute to the atmospheric aerosol mass. However, the contribution will depend upon many factors such as the irradiation, organic matter content in the droplets and droplet lifetime.

  6. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2

    Science.gov (United States)

    Simpson, I. J.; Blake, N. J.; Barletta, B.; Diskin, G. S.; Fuelberg, H. E.; Gorham, K.; Huey, L. G.; Meinardi, S.; Rowland, F. S.; Vay, S. A.; Weinheimer, A. J.; Yang, M.; Blake, D. R.

    2010-12-01

    Oil sands comprise 30% of the world's oil reserves and the crude oil reserves in Canada's oil sands deposits are second only to Saudi Arabia. The extraction and processing of oil sands is much more challenging than for light sweet crude oils because of the high viscosity of the bitumen contained within the oil sands and because the bitumen is mixed with sand and contains chemical impurities such as sulphur. Despite these challenges, the importance of oil sands is increasing in the energy market. To our best knowledge this is the first peer-reviewed study to characterize volatile organic compounds (VOCs) emitted from Alberta's oil sands mining sites. We present high-precision gas chromatography measurements of 76 speciated C2-C10 VOCs (alkanes, alkenes, alkynes, cycloalkanes, aromatics, monoterpenes, oxygenated hydrocarbons, halocarbons and sulphur compounds) in 17 boundary layer air samples collected over surface mining operations in northeast Alberta on 10 July 2008, using the NASA DC-8 airborne laboratory as a research platform. In addition to the VOCs, we present simultaneous measurements of CO2, CH4, CO, NO, NO2, NOy, O3 and SO2, which were measured in situ aboard the DC-8. Carbon dioxide, CH4, CO, NO, NO2, NOy, SO2 and 53 VOCs (e.g., non-methane hydrocarbons, halocarbons, sulphur species) showed clear statistical enhancements (1.1-397×) over the oil sands compared to local background values and, with the exception of CO, were greater over the oil sands than at any other time during the flight. Twenty halocarbons (e.g., CFCs, HFCs, halons, brominated species) either were not enhanced or were minimally enhanced (industry fell into two groups: (1) evaporative emissions from the oil sands and its products and/or from the diluent used to lower the viscosity of the extracted bitumen (i.e., C4-C9 alkanes, C5-C6 cycloalkanes, C6-C8 aromatics), together with CO; and (2) emissions associated with the mining effort, such as upgraders (i.e., CO2, CO, CH4, NO, NO2, NOy

  7. Economical incineration of volatile organic compounds (VOC) using oxide catalysts with optimized superficial properties; Incineration economique de composes organiques volatils (COV) a l'aide des catalyseurs d'oxydes aux proprietes superficielles optimisees

    Energy Technology Data Exchange (ETDEWEB)

    Evstratov, A. [Ecole Nationale Superieure des Techniques Industrielles et des Mines d' Ales, ENSTIMA, Centre LGEI, 30 - Ales (France)

    2001-07-01

    This study aims at presenting the existing possibilities of improvement of the technological parameters of the incineration processes for VOC-bearing industrial gases. Two different approaches are considered. One is based on the preliminary accumulation of the compounds to be degraded on catalytic surfaces having important acid-base and redox capabilities; the formation of the deposits is followed by the in situ catalytic incineration. The other is based on the application of catalysts with optimized acidities in order to limit the acid-base interactions and to maintain the catalytic surfaces in a stationary state at reduced temperatures. The first approach is applied to reactive VOC (unsaturated and polar compounds), while the other can be useful for the economical treatment of any type of VOC-bearing effluent. (J.S.)

  8. TMVOC, simulator for multiple volatile organic chemicals

    International Nuclear Information System (INIS)

    Pruess, Karsten; Battistelli, Alfredo

    2003-01-01

    TMVOC is a numerical simulator for three-phase non-isothermal flow of water, soil gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. It is an extension of the TOUGH2 general-purpose simulation program developed at the Lawrence Berkeley National Laboratory. TMVOC is designed for applications to contamination problems that involve hydrocarbon fuel or organic solvent spills in saturated and unsaturated zones. It can model contaminant behavior under ''natural'' environmental conditions, as well as for engineered systems, such as soil vapor extraction, groundwater pumping, or steam-assisted source remediation. TMVOC is upwards compatible with T2VOC (Falta et al., 1995) and can be initialized from T2VOC-style initial conditions. The main enhancements in TMVOC relative to T2VOC are as follows: a multicomponent mixture of volatile organic chemicals can be modeled; any and all combinations of the three phases water-oil-gas are treated; several non-condensible gases may be present; diffusion is treated in all phases in a manner that is fully coupled with phase partitioning. This paper gives a brief summary of the methodology used in TMVOC as well as highlighting some implementation issues. Simulation of a NAPL spill and subsequent remediation is discussed for a 2-D vertical section of a saturated-unsaturated flow problem

  9. Prediction of ambient concentration of volatile organic compounds (VOCs) from the Sea Empress oil spill using vapour and oil property models

    International Nuclear Information System (INIS)

    Carruthers, D.J.; Ellis, K.L.

    1997-09-01

    Modelling has been used to estimate concentrations of benzene, toluene, ethyl benzene and xylene (BTEX), 1,3 butadiene and total hydrocarbons due to evaporation of volatiles from the Sea Empress oil spill. This involved estimating the release rates of oil during each tidal cycle, calculating the spread and evaporation rate of the oil and then using the dispersion model ADMS to determine concentrations in air of the species. The calculations generally show that the highest concentrations occur directly above recently released oil (released within the last 12 hours). Concentrations on land were generally small as the predominant wind directions were seaward throughout the period when the oil spill would have been evaporating. However, total hydrocarbon concentrations measured at various land sites were significant during the spill period even when the wind was blowing away from the monitoring sites. The measured concentrations were also high for a further period after the spill when evaporation of the spilled oil would have decreased to small levels. This suggests that much of the measured hydrocarbons were emitted from other sources (e.g. the oil refineries). (author)

  10. The scent of colorectal cancer: detection by volatile organic compound analysis

    NARCIS (Netherlands)

    de Boer, Nanne K. H.; de Meij, Tim G. J.; Oort, Frank A.; Ben Larbi, Ilhame; Mulder, Chris J. J.; van Bodegraven, Adriaan A.; van der Schee, Marc P.

    2014-01-01

    The overall metabolic state of an individual is reflected by emitted volatile organic compounds (VOCs), which are gaseous carbon-based chemicals. In this review, we will describe the potential of VOCs as fully noninvasive markers for the detection of neoplastic lesions of the colon. VOCs are

  11. Signals of speciation: Volatile organic compounds resolve closely related sagebrush taxa, suggesting their importance in evolution

    Science.gov (United States)

    Deidre M. Jaeger; Justin B. Runyon; Bryce A. Richardson

    2016-01-01

    Volatile organic compounds (VOCs) play important roles in the environmental adaptation and fitness of plants. Comparison of the qualitative and quantitative differences in VOCs among closely related taxa and assessing the effects of environment on their emissions are important steps to deducing VOC function and evolutionary importance.

  12. Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions.

    Science.gov (United States)

    Yoshikawa, Miho; Zhang, Ming; Toyota, Koki

    2017-09-27

    Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degrading enzymes is available. However, the biodegradation of multiple VOCs remains a challenging issue. Practical sites, such as chemical factories, research facilities, and illegal dumping sites, are often contaminated with multiple VOCs. In order to investigate the potential of biodegrading multiple VOCs, we initially reviewed the biodegradation of individual VOCs. VOCs include chlorinated ethenes (tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride), BTEX (benzene, toluene, ethylbenzene, and xylene), and chlorinated methanes (carbon tetrachloride, chloroform, and dichloromethane). We also summarized essential information on the biodegradation of each kind of VOC under aerobic and anaerobic conditions, together with the microorganisms that are involved in VOC-degrading pathways. Interactions among multiple VOCs were then discussed based on concrete examples. Under conditions in which multiple VOCs co-exist, the biodegradation of a VOC may be constrained, enhanced, and/or unaffected by other compounds. Co-metabolism may enhance the degradation of other VOCs. In contrast, constraints are imposed by the toxicity of co-existing VOCs and their by-products, catabolite repression, or competition between VOC-degrading enzymes. This review provides fundamental, but systematic information for designing strategies for the bioremediation of multiple VOCs, as well as information on the role of key microorganisms that degrade VOCs.

  13. Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions

    Science.gov (United States)

    Yoshikawa, Miho; Zhang, Ming; Toyota, Koki

    2017-01-01

    Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degrading enzymes is available. However, the biodegradation of multiple VOCs remains a challenging issue. Practical sites, such as chemical factories, research facilities, and illegal dumping sites, are often contaminated with multiple VOCs. In order to investigate the potential of biodegrading multiple VOCs, we initially reviewed the biodegradation of individual VOCs. VOCs include chlorinated ethenes (tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride), BTEX (benzene, toluene, ethylbenzene, and xylene), and chlorinated methanes (carbon tetrachloride, chloroform, and dichloromethane). We also summarized essential information on the biodegradation of each kind of VOC under aerobic and anaerobic conditions, together with the microorganisms that are involved in VOC-degrading pathways. Interactions among multiple VOCs were then discussed based on concrete examples. Under conditions in which multiple VOCs co-exist, the biodegradation of a VOC may be constrained, enhanced, and/or unaffected by other compounds. Co-metabolism may enhance the degradation of other VOCs. In contrast, constraints are imposed by the toxicity of co-existing VOCs and their by-products, catabolite repression, or competition between VOC-degrading enzymes. This review provides fundamental, but systematic information for designing strategies for the bioremediation of multiple VOCs, as well as information on the role of key microorganisms that degrade VOCs. PMID:28904262

  14. Volatile organic compounds in the atmosphere of Mexico City

    Science.gov (United States)

    Garzón, Jessica P.; Huertas, José I.; Magaña, Miguel; Huertas, María E.; Cárdenas, Beatriz; Watanabe, Takuro; Maeda, Tsuneaki; Wakamatsu, Shinji; Blanco, Salvador

    2015-10-01

    The Mexico City Metropolitan Area (MCMA) is one of the most polluted megacities in North America. Therefore, it is an excellent benchmark city to understand atmospheric chemistry and to implement pilot countermeasures. Air quality in the MCMA is not within acceptable levels, mainly due to high ground levels of ozone (O3). Tropospheric O3 is a secondary pollutant formed from the oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides and sunlight. To gain a better understanding of O3 formation in megacities, evaluate the effectiveness of already-implemented countermeasures, and identify new cost-effective alternatives to reduce tropospheric O3 concentrations, researchers and environmental authorities require updated concentrations for a broader range of VOCs. Moreover, in an effort to protect human health and the environment, it is important to understand which VOCs exceed reference safe values or most contribute to O3 formation, as well as to identify the most probable emission sources of those VOCs. In this work, 64 VOCs, including 36 toxic VOCs, were measured at four sites in the MCMA during 2011-2012. VOCs related to liquefied petroleum gas leakages exhibited the highest concentrations. Toxic VOCs with the highest average concentrations were acetone and ethanol. The toxic VOC benzene represented the highest risk to Mexican citizens, and toluene contributed the most to O3 formation. Correlation analysis indicated that the measured VOCs come from vehicular emissions and solvent-related industrial sources.

  15. Decadal changes in emissions of volatile organic compounds (VOCs) from on-road vehicles with intensified automobile pollution control: Case study in a busy urban tunnel in south China.

    Science.gov (United States)

    Zhang, Yanli; Yang, Weiqiang; Simpson, Isobel; Huang, Xinyu; Yu, Jianzhen; Huang, Zhonghui; Wang, Zhaoyi; Zhang, Zhou; Liu, Di; Huang, Zuzhao; Wang, Yujun; Pei, Chenglei; Shao, Min; Blake, Donald R; Zheng, Junyu; Huang, Zhijiong; Wang, Xinming

    2018-02-01

    In the efforts at controlling automobile emissions, it is important to know in what extent air pollutants from on-road vehicles could be truly reduced. In 2014 we conducted tests in a heavily trafficked tunnel in south China to characterize emissions of volatile organic compounds (VOC) from on-road vehicle fleet and compared our results with those obtained in the same tunnel in 2004. Alkanes, aromatics, and alkenes had average emission factors (EFs) of 338, 63, and 42 mg km -1 in 2014 against that of 194, 129, and 160 mg km -1 in 2004, respectively. In 2014, LPG-related propane, n-butane and i-butane were the top three non-methane hydrocarbons (NMHCs) with EFs of 184 ± 21, 53 ± 6 and 31 ± 3 mg km -1 ; the gasoline evaporation marker i-pentane had an average EF of 17 ± 3 mg km -1 ; ethylene and propene were the top two alkenes with average EFs of 16 ± 1 and 9.7 ± 0.9 mg km -1 , respectively; isoprene had no direct emission from vehicles; toluene showed the highest EF of 11 ± 2 mg km -1 among the aromatics; and acetylene had an average EF of 7 ± 1 mg km -1 . While EFs of total NMHCs decreased only 9% from 493 ± 120 mg km -1 in 2004 to 449 ± 40 mg km -1 in 2014, their total ozone formation potential (OFP) decreased by 57% from 2.50 × 10 3  mg km -1 in 2004 to 1.10 × 10 3  mg km -1 in 2014, and their total secondary organic aerosol formation potential (SOAFP) decreased by 50% from 50 mg km -1 in 2004 to 25 mg km -1 in 2014. The large drop in ozone and SOA formation potentials could be explained by reduced emissions of reactive alkenes and aromatics, due largely to fuel transition from gasoline/diesel to LPG for taxis/buses and upgraded vehicle emission standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Surface microlayer enrichment of volatile organic compounds and semi-volatile organic compounds in drinking water source.

    Science.gov (United States)

    Huang, Zhi; Zhou, Wen; Yu, Ya-juan; Zhang, Ai-qian; Han, Shuo-kui; Wang, Lian-sheng

    2004-01-01

    Enrichment of volatile organic compounds(VOC) and semi-volatility organic compounds(SVOC) in surface microlayer(SM) of three drinking water sources were studied. The enrichment factor(EFs) were 0.67 to 13.37 and 0.16 to 136, respectively. The results showed some VOC and most SVOC could enrich in SM. Some EFs of SVOC was quite high. Suspension and temperature could affect EFs of SVOC, slim wind and water movement do not destroy enrichment of organic in SM.

  17. Volatile organic compounds in the unsaturated zone from radioactive wastes

    Science.gov (United States)

    Baker, Ronald J.; Andraski, Brian J.; Stonestrom, David A.; Luo, Wentai

    2012-01-01

    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0–2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m-2 yr-1. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.

  18. Control of volatile organic compound emissions: the issues

    Energy Technology Data Exchange (ETDEWEB)

    Woodfield, M.; Marlowe, I.

    1989-11-01

    This review paper outlines the problems caused by the emissions of volatile organic compounds (VOC) which are causing increasing concern because of their part in the formation of photochemical oxidation that causes damage to crops and vegetation and because of the toxic and climatic effects. It briefly summarises current knowledge of VOC emissions and their effects and then suggests options for abatement of VOC emissions in the UK and the EEC. A comparison of anthropogenic VOC emission in the UK and the EEC from various sources is given. Further information is needed on current emissions, on the costs and efficiencies of control technologies and on the effects of control on industry before decisions can be made on the suitability, extent and strategy to control VOC emissions in the UK. The report was prepared for the UK Department of Trade and Industry (Headquarters).

  19. Volatile organic monitor for industrial effluents

    International Nuclear Information System (INIS)

    Laguna, G.R.; Peter, F.J.; Stuart, A.D.; Loyola, V.M.

    1993-07-01

    1990 amendments to the Clean Air Act have created the need for instruments capable of monitoring volatile organic compounds (VOCS) in public air space in an unattended and low cost manner. The purpose of the study was to develop and demonstrate the capability to do long term automatic and unattended ambient air monitoring using an inexpensive portable analytic system at a commercial manufacturing plant site. A gas chromatograph system personal computer hardware, meteorology tower ampersand instruments, and custom designed hardware and software were developed. Comparison with an EPA approved method was performed. The system was sited at an aircraft engines manufacturing site and operated in a completely unattended mode for 60 days. Two VOCs were monitored every 30 minutes during the 24hr day. Large variation in the concentration from 800ppb to the limits of detection of about 10ppb were observed. Work to increase the capabilities of the system is ongoing

  20. A large source of low-volatility secondary organic aerosol

    DEFF Research Database (Denmark)

    Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard

    2014-01-01

    radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed...... particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate...... the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form...

  1. Literature review of stabilization/solidification of volatile organic compounds and the implications for Hanford grouts

    International Nuclear Information System (INIS)

    Spence, R.D.; Osborne, S.C.

    1993-09-01

    A literature review was conducted on the stabilization/solidification of volatile organic compounds (VOCs). Based on this literature, it is likely that the limestone-containing grout will not permanently immobilize VOCs and that no presently available additives can guarantee permanent immobilization. The Westinghouse hanford company grout may be fairly effective at retarding aqueous leaching of VOCs, and commercial additives can improve this performance. Significant VOC losses do occur during stabilization/solidification, and the high temperatures of the Westinghouse Hanford Company waste and grout should exacerbate this problem. In fact, these high temperatures raise doubts about the presence of VOCs in the double-shell tanks supernates

  2. Utilization of Volatile Organic Compounds as an Alternative for Destructive Abatement

    Directory of Open Access Journals (Sweden)

    Satu Ojala

    2015-07-01

    Full Text Available The treatment of volatile organic compounds (VOC emissions is a necessity of today. The catalytic treatment has already proven to be environmentally and economically sound technology for the total oxidation of the VOCs. However, in certain cases, it may also become economical to utilize these emissions in some profitable way. Currently, the most common way to utilize the VOC emissions is their use in energy production. However, interesting possibilities are arising from the usage of VOCs in hydrogen and syngas production. Production of chemicals from VOC emissions is still mainly at the research stage. However, few commercial examples exist. This review will summarize the commercially existing VOC utilization possibilities, present the utilization applications that are in the research stage and introduce some novel ideas related to the catalytic utilization possibilities of the VOC emissions. In general, there exist a vast number of possibilities for VOC utilization via different catalytic processes, which creates also a good research potential for the future.

  3. Neurotoxicity of fungal volatile organic compounds in Drosophila melanogaster.

    Science.gov (United States)

    Inamdar, Arati A; Masurekar, Prakash; Bennett, Joan Wennstrom

    2010-10-01

    Many volatile organic compounds (VOCs) are found in indoor environment as products of microbial metabolism. In damp indoor environments, fungi are associated with poor air quality. Some epidemiological studies have suggested that microbial VOCs have a negative impact on human health. Our study was designed to provide a reductionist approach toward studying fungal VOC-mediated toxicity using the inexpensive model organism, Drosophila melanogaster, and pure chemical standards of several important fungal VOCs. Low concentrations of the following known fungal VOCs, 0.1% of 1-octen-3-ol and 0.5% of 2-octanone; 2,5 dimethylfuran; 3-octanol; and trans-2-octenal, caused locomotory defects and changes in green fluorescent protein (GFP)- and antigen-labeled dopaminergic neurons in adult D. melanogaster. Locomotory defects could be partially rescued with L-DOPA. Ingestion of the antioxidant, vitamin E, improved the survival span and delayed the VOC-mediated changes in dopaminergic neurons, indicating that the VOC-mediated toxicity was due, in part, to generation of reactive oxygen species.

  4. Effects of trace volatile organic compounds on methane oxidation

    Directory of Open Access Journals (Sweden)

    Chiemchaisri Wilai

    2001-01-01

    Full Text Available The effects of volatile organic compounds (VOCs on methane oxidation in landfill cover soils were examined. The batch experiments were conducted using single and mixed VOCs, such as, dichloromethane (DCM, trichloroethylene (TCE, tetrachloroethylene (PCE, and benzene. The results from all combinations showed a decrease in methane oxidation rate with increase in VOC concentrations. Moreover, inhibition effects of TCE and DCM were found higher than benzene and PCE. The reduction of methane oxidation by benzene and PCE could be attributed to the toxicity effect, whereas TCE and DCM were found to exhibit the competitive-inhibition effect. When the soil was mixed with DCM, no methane oxidation was found. Damage to the cell's internal membrane was found in a methanotrophic culture exposed to VOC gases which is the attachment site of a key enzyme needed for methane oxidation

  5. Volatile organic compound emmission rates from mixed deciduous and coniferous foest in Northern Wisconsin, USA

    Science.gov (United States)

    J. G. Isebrands; A. B. Guenther; P. Harley; D. Helmig; L. Klinger; L. Vierling; P. Zimmerman; C. Geron

    1999-01-01

    Biogenic emissions of volatile organic compounds {VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regions of the world to understand regional and global impacts and to implement possible...

  6. Electrospun Polyurethane Fibers for Absorption of Volatile Organic Compounds from Air

    NARCIS (Netherlands)

    Scholten, E.; Bromberg, L.; Rutledge, G.C.; Hatton, T.A.

    2011-01-01

    Electrospun polyurethane fibers for removal of volatile organic compounds (VOC) from air with rapid VOC absorption and desorption have been developed. Polyurethanes based on 4,4-methylenebis(phenylisocyanate) (MDI) and aliphatic isophorone diisocyanate as the hard segments and butanediol and

  7. Profiling of volatile organic compounds produced by clinical Aspergillus isolates using gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Gerritsen, M G; Brinkman, P; Escobar Salazar, Natalia; Bos, L D; de Heer, K; Meijer, M; Janssen, H-G; de Cock, H; Wösten, H A B; Visser, C.E.; van Oers, M H J; Sterk, P J

    Volatile organic compounds (VOCs) in exhaled breath may identify the presence of invasive pulmonary aspergillosis. We aimed to detect VOC profiles emitted by in vitro cultured, clinical Aspergillus isolates using gas chromatography-mass spectrometry (GC-MS). Three clinical Aspergillus isolates and a

  8. Profiling of volatile organic compounds produced by clinical Aspergillus isolates using gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Gerritsen, M. G.; Brinkman, P.; Escobar, N.; Bos, L. D.; de Heer, K.; Meijer, M.; Janssen, H.-G.; de Cock, H.; Wösten, H. A. B.; Visser, C. E.; van Oers, M. H. J.; Sterk, P. J.

    2018-01-01

    Volatile organic compounds (VOCs) in exhaled breath may identify the presence of invasive pulmonary aspergillosis. We aimed to detect VOC profiles emitted by in vitro cultured, clinical Aspergillus isolates using gas chromatography-mass spectrometry (GC-MS). Three clinical Aspergillus isolates and a

  9. 75 FR 57390 - Approval and Promulgation of Implementation Plans; Alabama: Volatile Organic Compounds

    Science.gov (United States)

    2010-09-21

    ... Environmental Management (ADEM) on March 3, 2010. The revision modifies the definition of ``volatile organic... the VOC definition on the basis that these compounds make a negligible contribution to tropospheric..., 2009, which excludes these compounds from the regulatory VOC definition. This action is being taken...

  10. Oxidation of volatile organic vapours in air by solid potassium permanganate

    NARCIS (Netherlands)

    Mahmoodlu, M.G.; Hartog, N.; Hassanizadeh, S.M.; Raoof, A.

    2013-01-01

    Volatile organic compounds (VOCs) may frequently contaminate groundwater and pose threat to human health when migrating into the unsaturated soil zone and upward to the indoor air. The kinetic of chemical oxidation has been investigated widely for dissolved VOCs in the saturated zone. But, so far

  11. ISOTOPIC (14C) AND CHEMICAL COMPOSITION OF ATMOSPHERIC VOLATILE ORGANIC COMPOUND FRACTIONS - PRECURSORS TO OZONE FORMATION

    Science.gov (United States)

    Atmospheric volatile organic compounds (VOCs) are an important factor in the production of ozone near ground level [3]. Many hydrocarbons originate from auto exhaust. However, a number of VOCs, e.g., isoprene, are known to be natural in origin. To develop reliable models for un...

  12. The influence of surfactant on mass transfer coefficients in evaporation of volatile organic compound from water basin

    OpenAIRE

    Bunyakan, C.; Malakarn, S.; Tongurai, C.

    2002-01-01

    Volatile organic compounds (VOCs) have been found in wastewater of many chemical industries. Evaporation of VOCs from open water basin in waste treatment facilities causes air-pollution and has been regulated in many countries. Reduction or prevention of VOCs evaporation from open water basin is then necessary. The aim of this research was to investigate the influence of surface film generated by an insoluble surfactant on the mass transfer coefficient of VOCs evaporating from water. Hexadeca...

  13. Volatile and intermediate volatility organic compounds in suburban Paris: variability, origin and importance for SOA formation

    International Nuclear Information System (INIS)

    Ait-Helal, W.; Borbon, A.; Beekmann, M.; Doussin, J.F.; Durand-Jolibois, R.; Grand, N.; Michoud, V.; Miet, K.; Perrier, S.; Siour, G.; Zapf, P.; Sauvage, S.; Fronval, I.; Leonardis, T.; Locoge, N.; Gouw, J.A. de; Colomb, A.; Gros, V.; Lopez, M.

    2014-01-01

    Measurements of gaseous and particulate organic carbon were performed during the MEGAPOLI experiments, in July 2009 and January-February 2010, at the SIRTA observatory in suburban Paris. Measurements comprise primary and secondary volatile organic compounds (VOCs), of both anthropogenic and biogenic origins, including C12-C16 n-alkanes of intermediate volatility (IVOCs), suspected to be efficient precursors of secondary organic aerosol (SOA). The time series of gaseous carbon are generally consistent with times series of particulate organic carbon at regional scale, and are clearly affected by meteorology and air mass origin. Concentration levels of anthropogenic VOCs in urban and suburban Paris were surprisingly low (2-963 ppt) compared to other mega-cities worldwide and to rural continental sites. Urban enhancement ratios of anthropogenic VOC pairs agree well between the urban and suburban Paris sites, showing the regional extent of anthropogenic sources of similar composition. Contrary to other primary anthropogenic VOCs (aromatics and alkanes), IVOCs showed lower concentrations in winter (≤ 5 ppt) compared to summer (13-27 ppt), which cannot be explained by the gas-particle partitioning theory. Higher concentrations of most oxygenated VOCs in winter (18-5984 ppt) suggest their dominant primary anthropogenic origin. The respective role of primary anthropogenic gaseous compounds in regional SOA formation was investigated by estimating the SOA mass concentration expected from the anthropogenic VOCs and IVOCs (I/VOCs) measured at SIRTA. From an integrated approach based on emission ratios and SOA yields, 38% of the SOA measured at SIRTA is explained by the measured concentrations of I/VOCs, with a 2% contribution by C12-C16 n-alkane IVOCs. From the results of an alternative time-resolved approach, the average IVOC contribution to SOA formation is estimated to be 7 %, which is half of the average contribution of the traditional aromatic compounds (15 %). Both

  14. Volatile organic emissions from the distillation and pyrolysis of vegetation

    Directory of Open Access Journals (Sweden)

    J. P. Greenberg

    2006-01-01

    Full Text Available Leaf and woody plant tissue (Pinus ponderosa, Eucalyptus saligna, Quercus gambelli, Saccharum officinarum and Oriza sativa were heated from 30 to 300°C and volatile organic compound (VOC emissions were identified and quantified. Major VOC emissions were mostly oxygenated and included acetic acid, furylaldehyde, acetol, pyrazine, terpenes, 2,3-butadione, phenol and methanol, as well as smaller emissions of furan, acetone, acetaldehyde, acetonitrile and benzaldehyde. Total VOC emissions from distillation and pyrolysis were on the order of 10 gC/kgC dry weight of vegetation, as much as 33% and 44% of CO2 emissions (gC(VOC/gC(CO2 measured during the same experiments, in air and nitrogen atmospheres, respectively. The emissions are similar in identity and quantity to those from smoldering combustion of woody tissue and of different character than those evolved during flaming combustion. VOC emissions from the distillation of pools and endothermic pyrolysis under low turbulence conditions may produce flammable concentrations near leaves and may facilitate the propagation of wildfires. VOC emissions from charcoal production are also related to distillation and pyrolysis; the emissions of the highly reactive VOCs from production are as large as the carbon monoxide emissions.

  15. Verification of T2VOC using an analytical solution for VOC transport in vadose zone

    Energy Technology Data Exchange (ETDEWEB)

    Shan, C. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    T2VOC represents an adaption of the STMVOC to the TOUGH2 environment. In may contaminated sites, transport of volatile organic chemicals (VOC) is a serious problem which can be simulated by T2VOC. To demonstrate the accuracy and robustness of the code, we chose a practical problem of VOC transport as the test case, conducted T2VOC simulations, and compared the results of T2VOC with those of an analytical solution. The agreements between T2VOC and the analytical solutions are excellent. In addition, the numerical results of T2VOC are less sensitive to grid size and time step to a certain extent.

  16. Secondary organic aerosol from VOC mixtures in an oxidation flow reactor

    Science.gov (United States)

    Ahlberg, Erik; Falk, John; Eriksson, Axel; Holst, Thomas; Brune, William H.; Kristensson, Adam; Roldin, Pontus; Svenningsson, Birgitta

    2017-07-01

    The atmospheric organic aerosol is a tremendously complex system in terms of chemical content. Models generally treat the mixtures as ideal, something which has been questioned owing to model-measurement discrepancies. We used an oxidation flow reactor to produce secondary organic aerosol (SOA) mixtures containing oxidation products of biogenic (α-pinene, myrcene and isoprene) and anthropogenic (m-xylene) volatile organic compounds (VOCs). The resulting volume concentration and chemical composition was measured using a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), respectively. The SOA mass yield of the mixtures was compared to a partitioning model constructed from single VOC experiments. The single VOC SOA mass yields with no wall-loss correction applied are comparable to previous experiments. In the mixtures containing myrcene a higher yield than expected was produced. We attribute this to an increased condensation sink, arising from myrcene producing a significantly higher number of nucleation particles compared to the other precursors. Isoprene did not produce much mass in single VOC experiments but contributed to the mass of the mixtures. The effect of high concentrations of isoprene on the OH exposure was found to be small, even at OH reactivities that previously have been reported to significantly suppress OH exposures in oxidation flow reactors. Furthermore, isoprene shifted the particle size distribution of mixtures towards larger sizes, which could be due to a change in oxidant dynamics inside the reactor.

  17. 40 CFR Table 2 to Subpart II of... - Volatile Organic HAP (VOHAP) Limits for Marine Coatings

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Volatile Organic HAP (VOHAP) Limits... (Surface Coating) Pt. 63, Subpt. II, Table 2 Table 2 to Subpart II of Part 63—Volatile Organic HAP (VOHAP...) through (4). b VOC (including exempt compounds listed as HAP) shall be used as a surrogate for VOHAP for...

  18. Volatile Organic Compounds: Characteristics, distribution and sources in urban schools

    Science.gov (United States)

    Mishra, Nitika; Bartsch, Jennifer; Ayoko, Godwin A.; Salthammer, Tunga; Morawska, Lidia

    2015-04-01

    Long term exposure to organic pollutants, both inside and outside school buildings may affect children's health and influence their learning performance. Since children spend significant amount of time in school, air quality, especially in classrooms plays a key role in determining the health risks associated with exposure at schools. Within this context, the present study investigated the ambient concentrations of Volatile Organic Compounds (VOCs) in 25 primary schools in Brisbane with the aim to quantify the indoor and outdoor VOCs concentrations, identify VOCs sources and their contribution, and based on these; propose mitigation measures to reduce VOCs exposure in schools. One of the most important findings is the occurrence of indoor sources, indicated by the I/O ratio >1 in 19 schools. Principal Component Analysis with Varimax rotation was used to identify common sources of VOCs and source contribution was calculated using an Absolute Principal Component Scores technique. The result showed that outdoor 47% of VOCs were contributed by petrol vehicle exhaust but the overall cleaning products had the highest contribution of 41% indoors followed by air fresheners and art and craft activities. These findings point to the need for a range of basic precautions during the selection, use and storage of cleaning products and materials to reduce the risk from these sources.

  19. Influence of Sensory Stimulation on Exhaled Volatile Organic Compounds.

    Science.gov (United States)

    Mazzatenta, A; Pokorski, M; Di Tano, A; Cacchio, M; Di Giulio, C

    2016-01-01

    The real-time exhaled volatile organic compounds (VOCs) have been suggested as a new biomarker to detect and monitor physiological processes in the respiratory system. The VOCs profile in exhaled breath reflects the biochemical alterations related to metabolic changes, organ failure, and neuronal activity, which are, at least in part, transmitted via the lungs to the alveolar exhaled breath. Breath analysis has been applied to investigate cancer, lung failure, and neurodegenerative diseases. There are by far no studies on the real-time monitoring of VOCs in sensory stimulation in healthy subjects. Therefore, in this study we investigated the breath parameters and exhaled VOCs in humans during sensory stimulation: smell, hearing, sight, and touch. Responses sensory stimulations were recorded in 12 volunteers using an iAQ-2000 sensor. We found significant effects of sensory stimulation. In particular, olfactory stimulation was the most effective stimulus that elicited the greatest VOCs variations in the exhaled breath. Since the olfactory pathway is distinctly driven by the hypothalamic and limbic circuitry, while other senses project first to the thalamic area and then re-project to other brain areas, the findings suggest the importance of olfaction and chemoreception in the regulation lung gas exchange. VOCs variations during sensory activation may become putative indicators of neural activity.

  20. Development and validation of a portable gas phase standard generation and calibration system for volatile organic compounds

    Science.gov (United States)

    P. Veres; J. B. Gilman; J. M. Roberts; W. C. Kuster; C. Warneke; I. R. Burling; J. de Gouw

    2010-01-01

    We report on the development of an accurate, portable, dynamic calibration system for volatile organic compounds (VOCs). The Mobile Organic Carbon Calibration System (MOCCS) combines the production of gas-phase VOC standards using permeation or diffusion sources with quantitative total organic carbon (TOC) conversion on a palladium surface to CO2 in the presence of...

  1. Variations in amounts and potential sources of volatile organic chemicals in new cars

    International Nuclear Information System (INIS)

    Chien, Y.-C.

    2007-01-01

    This study examines inter-brand, intra-brand and intra-model variations in volatile organic chemical (VOC) levels inside new cars. The effect of temperature on interior VOC levels was examined using model automobiles with and without the air-conditioning running. Potential sources of VOC were assessed by comparing VOC levels with two interior trims (leather and fabric) and by analyzing VOC emissions from various interior components. Five brands of new car, both domestic and imported, were tested. Twelve targeted VOCs were collected on solid sorbents and analyzed using thermal desorption and GC/FID. VOCs from interior parts and adhesives were identified using solid phase micro-extraction (SPME) coupled with GC/MS. The VOC concentrations varied markedly among brands and within models, and individual VOC levels ranged from below the detection limit (a few μg per cubic meter) to thousands of μg per cubic meter. The intra-model variability (mean, 47%) in the VOC levels was approximately 50% that within each brand (mean, 95%). Although interior trim levels affected VOC levels, the effects differed among brands. Reduction of the cabin temperature reduced most VOC levels, but the impact was not statistically significant. Screening tests for VOCs from interior parts revealed that butylated hydroxytoluene (BHT), a common anti-oxidant, was the most common chemical. Long-chain aliphatic hydrocarbons, particularly C14-C17, were identified in most grease (lubricant) samples, and toluene and xylenes were ubiquitously present in adhesive samples. Process-related compounds, such as plasticizer, were also identified in interior parts. In-cabin VOC levels varied significantly among makes/models and interior trims. Concerned consumers should purchase older new cars from manufacturers since VOC levels inside car cabins normally declines over time. Improved processes or materials with lower VOC emission potential should be used to minimize in-cabin VOC sources for new cars

  2. [Indoor volatile organic compounds: concentrations, sources, variation factors].

    Science.gov (United States)

    Palot, A; Charpin-Kadouch, C; Ercoli, J; Charpin, D

    2008-06-01

    Volatile organic compounds (V.O.C.) are part of urban air pollution and are also generated indoors from cleaning and maintenance products. VOC measurements are, on average, 10 times higher within homes than outside. Results of the national survey led by the Observatoire National de la Qualité de l'Air Intérieur demonstrated that up to 25% of French homes have very high or high concentrations of VOC. Indoor levels depend mainly on indoor sources. Aldehydes are included in many everyday life products. VOC originate from various household decorating and cleaning products. Some products are less detrimental to the environment and health and have special labelling. Indoor VOC levels also depend on the rate of air exchange and on household characteristics such as indoor temperature and humidity, age of the building, presence of smokers, and communication with a garage. The public may participate in maintaining good indoor air quality and the authorities should also improve regulations. VOC are part of everyday air pollution. Their sources and concentrations should be better monitored.

  3. Characterization of volatile organic compounds from different cooking emissions

    Science.gov (United States)

    Cheng, Shuiyuan; Wang, Gang; Lang, Jianlei; Wen, Wei; Wang, Xiaoqi; Yao, Sen

    2016-11-01

    Cooking fume is regarded as one of the main sources of urban atmospheric volatile organic compounds (VOCs) and its chemical characteristics would be different among various cooking styles. In this study, VOCs emitted from four different Chinese cooking styles were collected. VOCs concentrations and emission characteristics were analyzed. The results demonstrated that Barbecue gave the highest VOCs concentrations (3494 ± 1042 μg/m3), followed by Hunan cuisine (494.3 ± 288.8 μg/m3), Home cooking (487.2 ± 139.5 μg/m3), and Shandong cuisine (257.5 ± 98.0 μg/m3). The volume of air drawn through the collection hood over the stove would have a large impact on VOCs concentration in the exhaust. Therefore, VOCs emission rates (ER) and emission factors (EF) were also estimated. Home cooking had the highest ER levels (12.2 kg/a) and Barbecue had the highest EF levels (0.041 g/kg). The abundance of alkanes was higher in Home cooking, Shandong cuisine and Hunan cuisine with the value of 59.4%-63.8%, while Barbecue was mainly composed of alkanes (34.7%) and alkenes (39.9%). The sensitivity species of Home cooking and Hunan cuisine were alkanes, and that of Shandong cuisine and Barbecue were alkenes. The degree of stench pollution from cooking fume was lighter.

  4. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

    2003-07-01

    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward

  5. Volatile organic pollutants in iron and steel industry

    International Nuclear Information System (INIS)

    Manea, D.; Dorina, S.; Popescu, L.; Stoian, P.

    2009-01-01

    It is a well known fact that iron and steel units generate about 25% from total gaseous emissions, and a significant part of these are diffuse emissions, which appear during technological stages. so that, apart from other types of pollutants, appear volatile organic compounds (VOCs) that contain a considerable number of diverse and complex substances that, even in small amounts, affect all environmental factors: air, water, soil. (Author)

  6. Diagnosing Tibetan pollutant sources via volatile organic compound observations

    Science.gov (United States)

    Li, Hongyan; He, Qiusheng; Song, Qi; Chen, Laiguo; Song, Yongjia; Wang, Yuhang; Lin, Kui; Xu, Zhencheng; Shao, Min

    2017-10-01

    Atmospheric transport of black carbon (BC) from surrounding areas has been shown to impact the Tibetan environment, and clarifying the geographical source and receptor regions is crucial for providing guidance for mitigation actions. In this study, 10 trace volatile organic compounds (VOCs) sampled across Tibet are chosen as proxies to diagnose source regions and related transport of pollutants to Tibet. The levels of these VOCs in Tibet are higher than those in the Arctic and Antarctic regions but much lower than those observed at many remote and background sites in Asia. The highest VOC level is observed in the eastern region, followed by the southern region and the northern region. A positive matrix factorization (PMF) model found that three factors-industry, biomass burning, and traffic-present different spatial distributions, which indicates that different zones of Tibet are influenced by different VOC sources. The average age of the air masses in the northern and eastern regions is estimated to be 3.5 and 2.8 days using the ratio of toluene to benzene, respectively, which indicates the foreign transport of VOC species to those regions. Back-trajectory analyses show that the Afghanistan-Pakistan-Tajikistan region, Indo-Gangetic Plain (IGP), and Meghalaya-Myanmar region could transport industrial VOCs to different zones of Tibet from west to east. The agricultural bases in northern India could transport biomass burning-related VOCs to the middle-northern and eastern zones of Tibet. High traffic along the unique national roads in Tibet is associated with emissions from local sources and neighboring areas. Our study proposes international joint-control efforts and targeted actions to mitigate the climatic changes and effects associated with VOCs in Tibet, which is a climate sensitive region and an important source of global water.

  7. Real-time and online screening method for materials emitting volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Changhyuk [University of Minnesota, Department of Mechanical Engineering (United States); Sul, Yong Tae [Hoseo University (Korea, Republic of); Pui, David Y. H., E-mail: dyhpui@umn.edu [University of Minnesota, Department of Mechanical Engineering (United States)

    2016-09-15

    In the semiconductor industry, volatile organic compounds (VOCs) in the cleanroom air work as airborne molecular contamination, which reduce the production yield of semiconductor chips by forming nanoparticles and haze on silicon wafers and photomasks under ultraviolet irradiation during photolithography processes. Even though VOCs in outdoor air are removed by gas filters, VOCs can be emitted from many kinds of materials used in cleanrooms, such as organic solvents and construction materials (e.g., adhesives, flame retardants and sealants), threatening the production of semiconductors. Therefore, finding new replacements that emit lower VOCs is now essential in the semiconductor industry. In this study, we developed a real-time and online method to screen materials for developing the replacements by converting VOCs into nanoparticles under soft X-ray irradiation. This screening method was applied to measure VOCs emitted from different kinds of organic solvents and adhesives. Our results showed good repeatability and high sensitivity for VOCs, which come from aromatic compounds, some alcohols and all tested adhesives (Super glue and cleanroom-use adhesives). In addition, the overall trend of measured VOCs from cleanroom-use adhesives was well matched with those measured by a commercial thermal desorption–gas chromatography–mass spectrometry, which is a widely used off-line method for analyzing VOCs. Based on the results, this screening method can help accelerate the developing process for reducing VOCs in cleanrooms.

  8. A portion of plant airborne communication is endorsed by uptake and metabolism of volatile organic compounds.

    Science.gov (United States)

    Matsui, Kenji

    2016-08-01

    Plants have the ability to sense volatile organic compounds (VOCs) so as to efficiently adapt to their environment. The mechanisms underlying such plant 'olfactory' systems are largely unknown. Here I would like to propose that the metabolism of VOCs in plant tissues is one of the mechanisms by which plants sense VOCs. During the gas-exchange that is essential for photosynthesis, VOCs in the atmosphere are taken into the intercellular spaces of leaves. Each VOC is partitioned between the gas phase (intercellular space) and liquid phase (cell wall) at a certain ratio determined by Henry's law. The VOCs in the cell wall diffuse through the plasma membrane to the cytosol depending on their oil/water partition coefficients. Plants detoxify some VOCs, especially those that are oxidized, through glycosylation, glutathionylation, and reduction. These metabolic processes lower the concentration of VOCs in the cytosol, which facilitates further cytosolic uptake. As a result, vigorous metabolism of VOCs in the cytosol can lead to a substantial accumulation of VOC metabolites and the depletion of glutathione or NADPH. One such metabolite (a VOC glycoside) is known to mount a direct defense against herbivores, whilst deprivation of glutathione and NADPH can fortify plants with responses similar to the oxidative stress response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors

    Directory of Open Access Journals (Sweden)

    Milena Šetka

    2017-03-01

    Full Text Available The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols.

  10. Holographic detection of hydrocarbon gases and other volatile organic compounds.

    Science.gov (United States)

    Martínez-Hurtado, J L; Davidson, C A B; Blyth, J; Lowe, C R

    2010-10-05

    There is a need to develop sensors for real-time monitoring of volatile organic compounds (VOCs) and hydrocarbon gases in both external and indoor environments, since these compounds are of growing concern in human health and welfare. Current measurement technology for VOCs requires sophisticated equipment and lacks the prospect for rapid real-time monitoring. Holographic sensors can give a direct reading of the analyte concentration as a color change. We report a technique for recording holographic sensors by laser ablation of silver particles formed in situ by diffusion. This technique allows a readily available hydrophobic silicone elastomer to be transformed into an effective sensor for hydrocarbon gases and other volatile compounds. The intermolecular interactions present between the polymer and molecules are used to predict the sensor performance. The hydrophobicity of this material allows the sensor to operate without interference from water and other atmospheric gases and thus makes the sensor suitable for biomedical, industrial, or environmental analysis.

  11. The development of a volatile organics concentrator for use in monitoring Space Station water quality

    Science.gov (United States)

    Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Valentine, James R.; Trabanino, Rudy; Webb, Johanna V.; Sauer, Richard L.

    1991-01-01

    A breadboard concept of a volatile organics concentrator (VOC) is manufactured and tested for optimized water-quality analysis in a space environment. The VOC system is attached to a gas chromatograph/mass spectrometer to analyze the volatile chemicals relevant to the operation of Space Station Freedom. The preliminary tests include: (1) comparisons with analyses based on direct on-column injections of standards; (2) analyses of iodinated volatile organics; (3) comparisons of nitrogen vs helium as the chromatography carrier gas; and (4) measurements of collection efficiency. The VOC can analyze EPA method-624 analytes at comparable detection using flame-ionization detection and can analyze volatile iodinated compounds. The breadboard has good reproducibility and can use nitrogen as a carrier gas; good results are noted for the collection and concentration levels and for water removal.

  12. A volatile organics concentrator for use in monitoring Space Station water quality

    Science.gov (United States)

    Ehntholt, Daniel J.; Bodek, Itamar; Valentine, James R.; Trabanino, Rudy; Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    The process used to identify, select, and design an approach to the isolation and concentration of volatile organic compounds from a water sample prior to chemical analysis in a microgravity environment is discerned. The trade analysis leading to the recommended volatile organics concentrator (VOC) concept to be tested in a breadboard device is presented. The system covers the areas of gases, volatile separation from water, and water removal/gas chromatograph/mass spectrometer interface. Five options for potential use in the VOC and GC/MS system are identified and ranked, and also nine options are presented for separation of volatiles from the water phase. Seven options for use in the water removal/GC column and MS interface are also identified and included in the overall considerations. A final overall recommendation for breadboard VOC testing is given.

  13. Photonic-Crystal-Based Thin Film Sensor for Detecting Volatile Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyung Kwan; Park, Jung Yul [Sogang Univ., Seoul (Korea, Republic of)

    2016-03-15

    Early detection of toxic gases, such as volatile organic compounds (VOCs), is important for safety and environmental protection. However, the conventional detection methods require long-term measurement times and expensive equipment. In this study, we propose a thin-film-type chemical sensor for VOCs, which consists of self assembled monosize nanoparticles for 3-D photonic crystal structures and polydimthylsiloxane (PDMS) film. It is operated without any external power source, is truly portable, and has a fast response time. The structure color of the sensor changes when it is exposed to VOCs, because VOCs induce a swelling of the PDMS. Therefore, using this principle of color change, we can create a thin-film sensor for immediate detection of various types of VOCs. The proposed device evidences that a fast response time of just seconds, along with a clear color change, are successfully observed when the sensor is exposed to gas-phase VOCs.

  14. Calixarene Langmuir-Blodgett Thin Films For Volatile Organic Compounds

    International Nuclear Information System (INIS)

    Capan, R.

    2010-01-01

    Volatile Organic Compounds (VOC's) such as benzene, toluene, chloroform are chemicals that evaporate easily at room temperature and create many health effects on young children, elderly and a person with heightened sensitivity to chemicals. Concentrations of many VOC's are consistently higher indoors (up to ten times higher) than outdoors because many household products (for example paints, varnishes, many cleaning, disinfecting, cosmetic, degreasing, hobby products etc.) contains VOC's. Some effects of VOC's for human beings can be followed as the eye, nose, and throat irritations; headaches, loss of coordination, nausea; damage to liver, kidneys, and central nervous system. These are big incentives for the development of portable, user-friendly VOC's sensors and for the investigation of the sensing properties of new materials to be prepared as a thin film sensing element. Langmuir-Blodgett (LB) ultra-thin film technique allows us to produce monolayer or multilayer organic thin films that can be used as chemical sensing elements.In this work, materials known as the calix[n]arene are investigated for the production of sensing material against several VOC's such as the chloroform, benzene, ethylbenzene and toluene by using LB thin film techniques. UV-visible, Quartz Crystal Microbalance (QCM) system and Surface Plasmon Resonance (SPR) measurement techniques are used to check the quality of the deposition process onto a solid substrate. Surface morphology and sensing properties of the final sensing layers are then studied by Atomic Force Microscopy (AFM) and SPR techniques. Our results indicated that selected calixarene materials are sensitive enough and quite suitable to fabricate a highly ordered, reproducible and uniform LB film that can be used as a very thin sensing layer against VOC's.

  15. Volatile organic compounds at swine facilities: a critical review.

    Science.gov (United States)

    Ni, Ji-Qin; Robarge, Wayne P; Xiao, Changhe; Heber, Albert J

    2012-10-01

    Volatile organic compounds (VOCs) are regulated aerial pollutants that have environmental and health concerns. Swine operations produce and emit a complex mixture of VOCs with a wide range of molecular weights and a variety of physicochemical properties. Significant progress has been made in this area since the first experiment on VOCs at a swine facility in the early 1960s. A total of 47 research institutions in 15 North American, European, and Asian countries contributed to an increasing number of scientific publications. Nearly half of the research papers were published by U.S. institutions. Investigated major VOC sources included air inside swine barns, in headspaces of manure storages and composts, in open atmosphere above swine wastewater, and surrounding swine farms. They also included liquid swine manure and wastewater, and dusts inside and outside swine barns. Most of the sample analyses have been focusing on identification of VOC compounds and their relationship with odors. More than 500 VOCs have been identified. About 60% and 10% of the studies contributed to the quantification of VOC concentrations and emissions, respectively. The largest numbers of VOC compounds with reported concentrations in a single experimental study were 82 in air, 36 in manure, and 34 in dust samples. The relatively abundant VOC compounds that were quantified in at least two independent studies included acetic acid, butanoic acid (butyric acid), dimethyl disulfide, dimethyl sulfide, iso-valeric, p-cresol, propionic acid, skatole, trimethyl amine, and valeric acid in air. They included acetic acid, p-cresol, iso-butyric acid, butyric acid, indole, phenol, propionic acid, iso-valeric acid, and skatole in manure. In dust samples, they were acetic acid, propionic acid, butyric acid, valeric acid, p-cresol, hexanal, and decanal. Swine facility VOCs were preferentially bound to smaller-size dusts. Identification and quantification of VOCs were restricted by using instruments based on

  16. Volatile organic compound emissions from Larrea tridentata (creosotebush

    Directory of Open Access Journals (Sweden)

    A. Guenther

    2010-12-01

    Full Text Available We present results from the CREosote ATmosphere Interactions through Volatile Emissions (CREATIVE 2009 field study in southern Arizona aimed at quantifying emission rates of VOCs from creosotebush (Larrea tridentata during the summer 2009 monsoon season. This species was chosen because of its vast distribution in North and South American deserts and because its resins have been reported to contain a rich set of volatile organic compounds (VOC. While a variety of ecosystems have been investigated for VOC emissions, deserts remain essentially unstudied, partially because of their low biomass densities and water limitations. However, during the North American monsoon, a pronounced increase in rainfall from an extremely dry June (80 mm occurs over large areas of the Sonoran desert in the southwestern United States and northwestern Mexico. We observed a strong diurnal pattern of branch emissions and ambient concentrations of an extensive suite of VOCs with maxima in early afternoon. These include VOCs typically observed in forest sites (oxygenated VOCs and volatile isoprenoids as well as a large number of other compounds, some of which have not been previously described from any plant including 1-chloro-2-methoxy-benzene and isobutyronitrile. Although generally considered to be derived from anthropogenic sources, we observed emissions of aromatic compounds including benzene, and a broad range of phenolics. Dimethyl sulfide emissions from creosotebush were higher than reported from any previously studied plant suggesting that terrestrial ecosystems should be reconsidered as an important source of this climatically important gas. We also present direct, primary emission measurements of isoprene and its apparent oxidation products methyl vinyl ketone, methacrolein, and 3-methyl furan (the later three compounds are typically assumed to form from secondary reactions within the atmosphere, as well as a group of compounds considered to be fatty acid

  17. Advanced heat pump for the recovery of volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total US VOC emissions. The Toxic-Release Inventory'' of The US Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing,refrigerant production, and wood products production. The US Department of Energy's (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase I report documents 3M's work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient and economically priced.

  18. Biogenic volatile organic compounds - small is beautiful

    Science.gov (United States)

    Owen, S. M.; Asensio, D.; Li, Q.; Penuelas, J.

    2012-12-01

    While canopy and regional scale flux measurements of biogenic volatile organic compounds (bVOCs) are essential to obtain an integrated picture of total compound reaching the atmosphere, many fascinating and important emission details are waiting to be discovered at smaller scales, in different ecological and functional compartments. We concentrate on bVOCs below ground to plant species, and can be extracted from decaying litter. Naturally occurring monoterpenes in the rhizosphere provide a specialised carbon source for micro-organisms, helping to define the micro-organism community structure, and impacting on nutrient cycles which are partly controlled by microorganisms. Naturally occurring monoterpenes in the soil system could also affect the aboveground structure of ecosystems because of their role in plant defence strategies and as mediating chemicals in allelopathy. A gradient of monoterpene concentration was found in soil around Pinus sylvestris and Pinus halepensis, decreasing with distance from the tree. Some compounds (α-pinene, sabinene, humulene and caryophyllene) in mineral soil were linearly correlated with the total amount of each compound in the overlying litter, indicating that litter might be the dominant source of these compounds. However, α-pinene did not fall within the correlation, indicating a source other than litter, probably root exudates. We also show that rhizosphere bVOCs can be a carbon source for soil microbes. In a horizontal gradient from Populus tremula trees, microbes closest to the tree trunk were better enzymatically equipped to metabolise labeled monoterpene substrate. Monoterpenes can also increase the degradation rate in soil of the persistant organic pollutants, likely acting as analogues for the cometabo-lism of polychlorinated biphenyls (PCBs) Flowers of a ginger species (Alpinia kwangsiensis) and a fig species (Ficus hispida) showed different bVOC signals pre- and post pollination. For Ficus hispida, there are three

  19. Film mass transfer coefficient for the prediction of volatile organic compound evaporation rate from open water basin

    OpenAIRE

    Charun Bunyakan; Preyaporn Tongsoi; Chakrit Tongurai

    2001-01-01

    The evaporation of volatile organic compounds(VOCs) from treatment, storage, disposal facility(TSDF) is an important air pollution issue because of the evaporation quantity and toxicity and/or carcinogenicity. This paper concerns VOC evaporation from open water basins such as the equalization basin and nonaerate surface impoundments in a wastewater treatment plant. The amount of VOCs evaporation from open water basins can be predicted by using the two-film model that requires two mass transfe...

  20. The Effect of Golden Pothos in Reducing the Level of Volatile Organic Compounds in a Simulated Spacecraft Cabin

    Science.gov (United States)

    Ursprung, Matthew; Amiri, Azita; Kayatin, Matthew; Perry, Jay

    2016-01-01

    The impact of Golden Pothos on indoor air quality was studied against a simulated spacecraft trace contaminant load model, consistent with the International Space Station (ISS), containing volatile organic compounds (VOCs) and formaldehyde. Previous research provides inconclusive results on the efficacy of plant VOC removal which this projects seeks to rectify through a better experimental design. This work develops a passive system for removing common VOC's from spacecraft and household indoor air and decreasing the necessity for active cabin trace contaminant removal systems.

  1. Biodegradation of volatile organic compounds by five fungal species

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B.; Moe, W.M. [Dept. of Civil and Environmental Engineering, Louisiana State Univ., Baton Rouge, LA (United States); Kinney, K.A. [Dept. of Civil Engineering, Univ. of Texas, Austin (United States)

    2002-07-01

    Five fungal species, Cladosporium resinae (ATCC 34066), Cladosporium sphaerospermum (ATCC 200384), Exophiala lecanii-corni (CBS 102400), Mucor rouxii (ATCC 44260), and Phanerochaete chrysosporium (ATCC 24725), were tested for their ability to degrade nine compounds commonly found in industrial off-gas emissions. Fungal cultures inoculated on ceramic support media were provided with volatile organic compounds (VOCs) via the vapor phase as their sole carbon and energy sources. Compounds tested included aromatic hydrocarbons (benzene, ethylbenzene, toluene, and styrene), ketones (methyl ethyl ketone, methyl isobutyl ketone, and methyl propyl ketone), and organic acids (n-butyl acetate, ethyl 3-ethoxypropionate). Experiments were conducted using three pH values ranging from 3.5 to 6.5. Fungal ability to degrade each VOC was determined by observing the presence or absence of visible growth on the ceramic support medium during a 30-day test period. Results indicate that E. lecanii-corni and C. sphaerospermum can readily utilize each of the nine VOCs as a sole carbon and energy source. P. chrysosporium was able to degrade all VOCs tested except for styrene under the conditions imposed. C. resinae was able to degrade both organic acids, all of the ketones, and some of the aromatic compounds (ethylbenzene and toluene); however, it was not able to grow utilizing benzene or styrene under the conditions tested. With the VOCs tested, M. rouxii produced visible growth only when supplied with n-butyl acetate or ethyl 3-ethoxypropionate. Maximum growth for most fungi was observed at a pH of approximately 5.0. The experimental protocol utilized in these studies is a useful tool for assessing the ability of different fungal species to degrade gas-phase VOCs under conditions expected in a biofilter application. (orig.)

  2. Modeling Human Exposure Levels to Airborne Volatile Organic Compounds by the Hebei Spirit Oil Spill

    OpenAIRE

    Kim, Jong Ho; Kwak, Byoung Kyu; Ha, Mina; Cheong, Hae-Kwan; Yi, Jongheop

    2012-01-01

    Objectives The goal was to model and quantify the atmospheric concentrations of volatile organic compounds (VOCs) as the result of the Hebei Spirit oil spill, and to predict whether the exposure levels were abnormally high or not. Methods We developed a model for calculating the airborne concentration of VOCs that are produced in an oil spill accident. The model was applied to a practical situation, namely the Hebei Spirit oil spill. The accuracy of the model was verified by comparing the res...

  3. VOC emissions control systems

    International Nuclear Information System (INIS)

    Spessard, J.E.

    1993-01-01

    The air pollution control equipment marketplace offers many competing technologies for controlling emissions of volatile organic compounds (VOC) in air. If any technology was economically and technically superior under all conditions, it would be the only one on the market. In fact, each technology used to control VOCs is superior under some set of conditions. The reasons for choosing one control technology over another are situation-specific. Some general guidelines to VOC control technologies and the situations where each may be appropriate are presented in this article. The control technologies and applications are summarized in a table

  4. The development and testing of a volatile organics concentrator for use in monitoring Space Station water quality

    Science.gov (United States)

    Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Trabanino, Rudy; Hinsdale, Lloyd; Webb, Johanna; Sauer, Richard L.

    1992-01-01

    The Volatile Organics Concentrator (VOC) system, designed to attach to a gas chromatograph/mass spectrometer (GC/MS) for the analyses of volatile organic compounds in water on Space Station Freedom, is described. Organic volatiles are collected and concentrated in the VOC by means of two primary solid sorbent tubes and desorbed into the GC/MS system. The paper describes the results of testing the VOC breadboard using a GC/MS system. Evaluations performed on 39 organic compounds recovered from water samples were compared with data for these compounds using direct injection/GC/MS and purge and trap/GC/MS procedures. The results demonstrate that the VOC/GC/MS system's detection limits for the 39 compounds analyzed are comparable to those of the EPA Method 524.2, and for many compounds reaching a factor of 5 lower.

  5. Evaluation of non-enteric sources of non-methane volatile organic compound (NMVOC) emissions from dairies

    Science.gov (United States)

    Chung, Myeong Y.; Beene, Matt; Ashkan, Shawn; Krauter, Charles; Hasson, Alam S.

    2010-02-01

    Dairies are believed to be a major source of volatile organic compounds (VOC) in Central California, but few studies have characterized VOC emissions from these facilities. In this work, samples were collected from six sources of VOCs (Silage, Total Mixed Rations, Lagoons, Flushing Lanes, Open Lots and Bedding) at six dairies in Central California during 2006-2007 using emission isolation flux chambers and polished stainless steel canisters. Samples were analyzed by gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. Forty-eight VOCs were identified and quantified in the samples, including alcohols, carbonyls, alkanes and aromatics. Silage and Total Mixed Rations are the dominant sources of VOCs tested, with ethanol as the major VOC present. Emissions from the remaining sources are two to three orders of magnitude smaller, with carbonyls and aromatics as the main components. The data suggest that animal feed rather than animal waste are the main source of non-enteric VOC emissions from dairies.

  6. Can ornamental potted plants remove volatile organic compounds from indoor air? - a review

    DEFF Research Database (Denmark)

    Dela Cruz, Majbrit; Christensen, Jan H.; Thomsen, Jane Dyrhauge

    2014-01-01

    Volatile organic compounds (VOCs) are found in indoor air, and many of these can affect human health (e.g. formaldehyde and benzene are carcinogenic). Plants affect the levels of VOCs in indoor environments, thus they represent a potential green solution for improving indoor air quality that at t...... concentration. For instance, an increase in light intensity has in some studies been shown to lead to an increase in removal of a pollutant. Studies conducted in real-life settings such as offices and homes are few and show mixed results....... that plant induced removal of VOCs is a combination of direct (e.g. absorption) and indirect (e.g. biotransformation by microorganisms) mechanisms. They also demonstrate that plants' rate of reducing the level of VOCs is influenced by a number of factors such as plant species, light intensity and VOC...

  7. Rapid recognition of volatile organic compounds with colorimetric sensor arrays for lung cancer screening.

    Science.gov (United States)

    Zhong, Xianhua; Li, Dan; Du, Wei; Yan, Mengqiu; Wang, You; Huo, Danqun; Hou, Changjun

    2018-06-01

    Volatile organic compounds (VOCs) in breath can be used as biomarkers to identify early stages of lung cancer. Herein, we report a disposable colorimetric array that has been constructed from diverse chemo-responsive colorants. Distinguishable difference maps were plotted within 4 min for specifically targeted VOCs. Through the consideration of various chemical interactions with VOCs, the arrays successfully discriminate between 20 different volatile organic compounds in breath that are related to lung cancer. VOCs were identified either with the visualized difference maps or through pattern recognition with an accuracy of at least 90%. No uncertainties or errors were observed in the hierarchical cluster analysis (HCA). Finally, good reproducibility and stability of the array was achieved against changes in humidity. Generally, this work provides fundamental support for construction of simple and rapid VOC sensors. More importantly, this approach provides a hypothesis-free array method for breath testing via VOC profiling. Therefore, this small, rapid, non-invasive, inexpensive, and visualized sensor array is a powerful and promising tool for early screening of lung cancer. Graphical abstract A disposable colorimetric array has been developed with broadly chemo-responsive dyes to incorporate various chemical interactions, through which the arrays successfully discriminate 20 VOCs that are related to lung cancer via difference maps alone or chemometrics within 4 min. The hydrophobic porous matrix provides good stability against changes in humidity.

  8. Environment and Pollution Management of Pollution Volatile Organic Compounds in Cluj-Napoca

    Directory of Open Access Journals (Sweden)

    Carmen Florean

    2016-10-01

    Full Text Available Pollution negative influences the environmental, human health, buildings and increase the production of waste. We are currently witnessing pollution and degradation in some cases irreversible, of the environment. Environmental issues are extremely complex and cover all sectors. Worldwide, industrial pollution strategies necessary to reduce emissions to the atmosphere hydrocarbons, volatile organic compounds (VOCs and other polluants in urban areas. The highest concentrations of volatile organic compounds of more than 80 mg/m3 occur in densely populated areas. The latest data reported in the residential area of Cluj-Napoca values did not exceed 20 m /m3. However peaks reported VOC concentrations, depending on the season, exceeding the upper limit that according to Law. 104/2011 is 75 μ/m3. It was identified due to increase annual mean concentration of VOCs as, in particular, road traffic exceeding sanitary standards on the main traffic routes within the city. In this paper the results obtained after carrying out an analysis of the average VOC concentration recorded in the city Cluj-Napoca as a result of car traffic. They were pursued average concentrations of VOCs resulting from the combustion of liquid fuels, petrol and diesel type. Analyzing the results obtained are proposed solutions for reducing VOC emissions. The rule under which these solutions have been proposed to reduce the concentration of VOCs took into account the possibility implementation and maintenance costs thereof.

  9. UNMIX Methods Applied to Characterize Sources of Volatile Organic Compounds in Toronto, Ontario

    Directory of Open Access Journals (Sweden)

    Eugeniusz Porada

    2016-06-01

    Full Text Available UNMIX, a sensor modeling routine from the U.S. Environmental Protection Agency (EPA, was used to model volatile organic compound (VOC receptors in four urban sites in Toronto, Ontario. VOC ambient concentration data acquired in 2000–2009 for 175 VOC species in four air quality monitoring stations were analyzed. UNMIX, by performing multiple modeling attempts upon varying VOC menus—while rejecting the results that were not reliable—allowed for discriminating sources by their most consistent chemical characteristics. The method assessed occurrences of VOCs in sources typical of the urban environment (traffic, evaporative emissions of fuels, banks of fugitive inert gases, industrial point sources (plastic-, polymer-, and metalworking manufactures, and in secondary sources (releases from water, sediments, and contaminated urban soil. The remote sensing and robust modeling used here produces chemical profiles of putative VOC sources that, if combined with known environmental fates of VOCs, can be used to assign physical sources’ shares of VOCs emissions into the atmosphere. This in turn provides a means of assessing the impact of environmental policies on one hand, and industrial activities on the other hand, on VOC air pollution.

  10. Production of volatile organic compounds by cyanobacteria Synechococcus sp.

    Science.gov (United States)

    Hiraiwa, M.; Abe, M.; Hashimoto, S.

    2014-12-01

    Phytoplankton are known to produce volatile organic compounds (VOCs), which contribute to environmental problems such as global warming and decomposition of stratospheric ozone. For example, picophytoplankton, such as Prochlorococcus and Synechococcus, are distributed in freshwater and oceans worldwide, accounting for a large proportion of biomass and primary production in the open ocean. However, to date, little is known about the production of VOCs by picophytoplankton. In this study, VOCs production by cyanobacteria Synechococcus sp. (NIES-981) was investigated. Synechococcus sp. was obtained from the National Institute for Environmental Studies (NIES), Japan, and cultured at 24°C in autoclaved f/2-Si medium under 54 ± 3 µE m-2 s-1 (1 E = 1 mol of photons) with a 12-h light and 12-h dark cycle. VOCs concentrations were determined using a purge-and-trap gas chromatograph-mass spectrometer (Agilent 5973). The concentrations of chlorophyll a (Chl a) were also determined using a fluorometer (Turner TD-700). Bromomethane (CH3Br) and isoprene were produced by Synechococcus sp. Isoprene production was similar to those of other phytoplankton species reported earlier. Isoprene was produced when Chl a was increasing in the early stage of the incubation period (5-15 days of incubation time, exponential phase), but CH3Br was produced when Chl a was reduced in the late stage of the incubation period (30-40 days of incubation time, death phase).

  11. Electron beam treatment of toxic volatile organic compounds and dioxins

    International Nuclear Information System (INIS)

    Kojima, Takuji

    2006-01-01

    Considerations of wastes based on the reduction, reuse and recycle in daily life are primary measures to conserve our environment, but the control technology is necessary to support these measures. The electron beam (EB) process is promising as an advanced purification process having advantages such as a quick treatment of big volume gas, applicability even for very low concentration pollutants as the further purification at the downstream of existing process, and decomposition of pollutants into non-toxic substances by one process. The EB technology has been developed for treatment of toxic volatile organic compounds (VOCs) in ventilation gas and dioxins in solid waste incineration flue gas. (author)

  12. Measurement of VOC permeability of polymer bags and VOC solubility in polyethylene drum liner

    International Nuclear Information System (INIS)

    Liekhus, K.J.; Peterson, E.S.

    1995-03-01

    A test program conducted at the Idaho National Engineering Laboratory (INEL) investigated the use of a transport model to estimate the volatile organic compound (VOC) concentration in the void volume of a waste drum. Unsteady-state VOC transport model equations account for VOC permeation of polymer bags, VOC diffusion across openings in layers of confinement, and VOC solubility in a polyethylene drum liner. In support of this program, the VOC permeability of polymer bags and VOC equilibrium concentration in a polyethylene drum liner were measured for nine VOCs. The VOCs used in experiments were dichloromethane, carbon tetrachloride, cyclohexane, toluene, 1,1,1-trichloroethane, methanol, 1,1,2-trichloro-1,2,2-trifluoroethane (Freon-113), trichloroethylene, and p-xylene. The experimental results of these measurements as well as a method of estimating both parameters in the absence of experimental data are described in this report

  13. Emission index for evaluation of volatile organic compounds emitted from tomato plants in greenhouses

    NARCIS (Netherlands)

    Takayama, K.; Jansen, R.M.C.; Henten, van E.J.; Verstappen, F.W.A.; Bouwmeester, H.J.; Nishina, H.

    2012-01-01

    Measurement of volatile organic compounds (VOCs) emitted by plants allows us to monitor plant health status without touching the plant. To bring this technique a step further towards a practical plant diagnosis technique for greenhouse crop production, we have defined a numerical index named

  14. Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: A review

    Science.gov (United States)

    Residual pollutants including polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and carbon(aceous) nanoparticles are inevitably generated during the pyrolysis of waste biomass, and remain on the solid co-product called biochar. Such pollutants could have adverse effects on ...

  15. A POLYMER-CERAMIC COMPOSITE MEMBRANE FOR RECOVERING VOLATILE ORGANIC COMPOUNDS FROM WASTEWATERS BY PERVAPORATION

    Science.gov (United States)

    A composite membrane was constructed on a porous ceramic support from a block copolymer of styrene and butadiene (SBS). It was tested in a laboratory pervaporation apparatus for recovering volatile organic compounds (VOCs) such a 1,1,1-trichloroethane (TCA) and trichloroethylene ...

  16. Urinary Volatile Organic Compounds for the Detection of Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Tanzeela Khalid

    Full Text Available The aim of this work was to investigate volatile organic compounds (VOCs emanating from urine samples to determine whether they can be used to classify samples into those from prostate cancer and non-cancer groups. Participants were men referred for a trans-rectal ultrasound-guided prostate biopsy because of an elevated prostate specific antigen (PSA level or abnormal findings on digital rectal examination. Urine samples were collected from patients with prostate cancer (n = 59 and cancer-free controls (n = 43, on the day of their biopsy, prior to their procedure. VOCs from the headspace of basified urine samples were extracted using solid-phase micro-extraction and analysed by gas chromatography/mass spectrometry. Classifiers were developed using Random Forest (RF and Linear Discriminant Analysis (LDA classification techniques. PSA alone had an accuracy of 62-64% in these samples. A model based on 4 VOCs, 2,6-dimethyl-7-octen-2-ol, pentanal, 3-octanone, and 2-octanone, was marginally more accurate 63-65%. When combined, PSA level and these four VOCs had mean accuracies of 74% and 65%, using RF and LDA, respectively. With repeated double cross-validation, the mean accuracies fell to 71% and 65%, using RF and LDA, respectively. Results from VOC profiling of urine headspace are encouraging and suggest that there are other metabolomic avenues worth exploring which could help improve the stratification of men at risk of prostate cancer. This study also adds to our knowledge on the profile of compounds found in basified urine, from controls and cancer patients, which is useful information for future studies comparing the urine from patients with other disease states.

  17. Volatile organic compounds in urban rivers and their estuaries in Osaka, Japan.

    Science.gov (United States)

    Yamamoto, K; Fukushima, M; Kakutani, N; Kuroda, K

    1997-01-01

    The levels and distribution of 55 volatile organic compounds (VOCs) were determined by purge and trap GC-MS on water samples from 30 sites within the urban rivers and estuaries of Osaka, a populated industrialized city of Japan. Forty of 55 target VOCs listed in the US EPA Method 524.2 were detected. Dichloromethane (DCM) was found at higher levels at all of the sampling sites. The distribution of dominant VOCs followed four different patterns. First, the most common VOCs (DCM, toluene, trichloroethene and tetrachloroethene) showed concentration maxima in the river segments, and the sites of maximum concentration fluctuated due to irregular large spills and/or loadings. Second, one VOC (cis-1,2-dichloroethene) was evenly distributed in particular rivers due to fixed loadings. Both of these patterns were found in the upper and middle reaches. Third, some of VOCs (1,2,3-trichloropropane and benzene) were specific to a single industrial site and truceable to those sources. Finally, some VOCs showed no concentration maxima along the rivers and entered from multiple sources (chloroform and bromodichloromethane). Diurnal variations of VOCs at the border of the city area, receiving domestic and industrial discharges, provided information to interpret their observed downstream distribution and possible sources.

  18. Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation

    Science.gov (United States)

    Bracho-Nunez, Araceli; Welter, Saskia; Staudt, Michael; Kesselmeier, Jürgen

    2011-08-01

    The seasonality of vegetation, i.e., developmental stages and phenological processes, affects the emission of volatile organic compounds (VOCs). Despite the potential significance, the contributions of seasonality to VOC emission quality and quantity are not well understood and are therefore often ignored in emission simulations. We investigated the VOC emission patterns of young and mature leaves of several Mediterranean plant species in relation to their physiological and developmental changes during the growing period and estimated Es. Foliar emissions of isoprenoids and oxygenated VOCs like methanol and acetone were measured online by means of a proton transfer reaction mass spectrometer (PTR-MS) and offline with gas chromatography coupled with a mass spectrometer and flame ionization detector. The results suggest that VOC emission is a developmentally regulated process and that quantitative and qualitative variability is plant species specific. Leaf ontogeny clearly influenced both the VOC Es and the relative importance of different VOCs. Methanol was the major compound contributing to the sum of target VOC emissions in young leaves (11.8 ± 10.4 μg g-1 h-1), while its contribution was minor in mature leaves (4.1 ± 4.1 μg g-1 h-1). Several plant species showed a decrease or complete subsidence of monoterpene, sesquiterpene, and acetone emissions upon maturity, perhaps indicating a potential response to the higher defense demands of young emerging leaves.

  19. Impacts of environmental conditions on the sorption of volatile organic compounds onto tire powder

    International Nuclear Information System (INIS)

    Oh, Dong I.; Nam, Kyongphile; Park, Jae W.; Khim, Jee H.; Kim, Yong K.; Kim, Jae Y.

    2008-01-01

    A series of batch tests were performed and the impacts of environmental conditions and phase change on the sorption of volatile organic compounds (VOCs) were investigated. Benzene, trichloroethylene, tetrachloroethylene, and ethylbenzene were selected as target VOCs. Sorption of VOCs onto tire powder was well demonstrated by a linear-partitioning model. Water-tire partition coefficients of VOCs (not tested in this study) could be estimated using a logarithmic relationship between observed water-tire partition coefficients and octanol-water partition coefficients of the VOCs tested. The target VOCs did not seem to compete with other VOCs significantly when sorbed onto the tire powder for the range of concentrations tested. The influence of environmental conditions, such as pH and ionic strength also did not seem to be significant. Water-tire partition coefficients of benzene, trichloroethylene, tetrachloroethylene, and ethylbenzene decreased as the sorbent dosage increased. However, they showed stable values when the sorbent dosage was greater than 10 g/L. Air-tire partition coefficient could be extrapolated from Henry's law constants and water-tire partition coefficient of VOCs

  20. Estimation of biogenic volatile organic compounds emissions in subtropical island--Taiwan.

    Science.gov (United States)

    Chang, Ken-Hui; Chen, Tu-Fu; Huang, Ho-Chun

    2005-06-15

    Elevated tropospheric ozone is harmful to human health and plants. It is formed through the photochemical reactions involving volatile organic compounds (VOCs) and nitrogen oxides (NO(x)). The elevated ozone episodes occur mainly in summer months in the United States, while the high-ozone episodes frequently occur during the fall in Taiwan. The unique landscape of Taiwan produces tremendous amounts of biogenic VOCs in the mountain regions that are adjacent to concentrated urban areas. The urban areas, in turn, generate prodigious amounts of anthropogenic emissions. Biogenic VOC emissions have direct influence on tropospheric ozone formation. To explore the air quality problems in Taiwan, this study attempts to develop a biogenic VOC emission model suitable for air quality applications in Taiwan. The emission model is based on the Biogenic Emissions Inventory System Version 2 and coupled with a detailed Taiwan land use database. The 1999 total Taiwan biogenic VOC emissions were estimated at 214,000 metric tons. The emissions of isoprene, monoterpenes, and other VOCs were about 37.2%, 30.4%, and 32.4% of total biogenic VOC emissions, respectively. The annual total biogenic VOC emission per unit area was more than two times the value of that in any European country, implying that detailed emissions estimates in any size of region will benefit the global biogenic emission inventories.

  1. Impacts of environmental conditions on the sorption of volatile organic compounds onto tire powder

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dong I. [Division of R and D Planning and Management, Korea Institute of Environmental Science and Technology, Seoul (Korea, Republic of); Nam, Kyongphile [School of Civil, Urban and Geosystem Engineering, College of Engineering, Seoul National University, Gwanak-Ku, 151-742 Seoul (Korea, Republic of); Park, Jae W. [Department of Civil Engineering, Hanyang University, Seoul (Korea, Republic of); Khim, Jee H. [Department of Civil and Environmental Engineering, Korea University, Seoul (Korea, Republic of); Kim, Yong K. [School of Civil, Urban and Geosystem Engineering, College of Engineering, Seoul National University, Gwanak-Ku, 151-742 Seoul (Korea, Republic of); Kim, Jae Y. [School of Civil, Urban and Geosystem Engineering, College of Engineering, Seoul National University, Gwanak-Ku, 151-742 Seoul (Korea, Republic of)], E-mail: jaeykim@snu.ac.kr

    2008-05-01

    A series of batch tests were performed and the impacts of environmental conditions and phase change on the sorption of volatile organic compounds (VOCs) were investigated. Benzene, trichloroethylene, tetrachloroethylene, and ethylbenzene were selected as target VOCs. Sorption of VOCs onto tire powder was well demonstrated by a linear-partitioning model. Water-tire partition coefficients of VOCs (not tested in this study) could be estimated using a logarithmic relationship between observed water-tire partition coefficients and octanol-water partition coefficients of the VOCs tested. The target VOCs did not seem to compete with other VOCs significantly when sorbed onto the tire powder for the range of concentrations tested. The influence of environmental conditions, such as pH and ionic strength also did not seem to be significant. Water-tire partition coefficients of benzene, trichloroethylene, tetrachloroethylene, and ethylbenzene decreased as the sorbent dosage increased. However, they showed stable values when the sorbent dosage was greater than 10 g/L. Air-tire partition coefficient could be extrapolated from Henry's law constants and water-tire partition coefficient of VOCs.

  2. Sensory and Physiological Effects on Humans of Combined Exposures to Air Temperatures and Volatile Organic Compounds

    DEFF Research Database (Denmark)

    Mølhave, Lars; Liu, Zunyong; Jørgensen, Anne Hempel

    1993-01-01

    Ten healthy humans were exposed to combinations of volatile organic compounds (VOCs) and air temperature (0 mg/m3 and 10 mg/m3 of a mixture of 22 volatile organic compounds and 18, 22 and 26° C). Previously demonstrated effects of VOCs and thermal exposures were replicated. For the first time nasal...... cross-sectional areas and nasal volumes, as measured by acoustic rhinometry, were shown to decrease with decreasing temperature and increasing VOC exposure. Temperature and pollutant exposures affected air quality, the need for more ventilation, skin humidity on the forehead, sweating, acute sensory...... irritation and possibly watering eyes in an additive way. Interactions were found for odor intensity (p = 0.1), perceived facial skin temperature and dryness, general well-being, tear film stability, and nasal cavity dimension. The presence of interactions implies that in the future guidelines for acceptable...

  3. Native Fluorescence Detection Methods and Detectors for Naphthalene and/or Other Volatile Organic Compound Vapors

    Science.gov (United States)

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor)

    2014-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds have been identified as serious health hazards. This is especially true for personnel working with JP8 jet fuel and other fuels containing naphthalene as well as other hazardous volatile organic compounds (VOCs). Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to naphthalene or other hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined. The badges employ a new native fluorescence based detection method to identify and differentiate VOCs. The particular focus of some embodiments are the detection and identification of naphthalene while other embodiments are directed to detection and identification of other VOCs like aromatic hydrocarbons such as benzene, toluene, and xylene.

  4. A portable and inexpensive method for quantifying ambient intermediate volatility organic compounds

    Science.gov (United States)

    Bouvier-Brown, Nicole C.; Carrasco, Erica; Karz, James; Chang, Kylee; Nguyen, Theodore; Ruiz, Daniel; Okonta, Vivian; Gilman, Jessica B.; Kuster, William C.; de Gouw, Joost A.

    2014-09-01

    Volatile organic compounds (VOCs) and intermediate volatility VOCs (IVOCs) are gas-phase organic compounds which may participate in chemical reactions affecting air quality and climate. The development of an inexpensive, field-portable quantification method for higher molecular weight VOCs and IVOCs utilizing commercially available components could be used as a tool to survey aerosol precursors or identify and monitor air quality in various communities. We characterized the performance characteristics for the HayeSep-Q adsorbent with a representative selection of anthropogenic and biogenic VOC standards and optimized experimental conditions and procedures for field collections followed by laboratory analysis. All VOCs were analyzed using gas chromatography coupled with mass spectrometry. Precision (average 22%) and accuracy were reasonable and the limit of detection ranged from 10 to 80 pmol/mol (ppt) for the studied compounds. The method was employed at the Los Angeles site during the CalNex campaign in summer 2010 and ambient mixing ratios agreed well (slope 0.69-1.06, R2 0.67-0.71) with measurements made using an in-situ GC-MS - a distinctly different sampling and quantification method. This new technique can be applied to quantify ambient biogenic and anthropogenic C8-C15 VOCs and IVOCs.

  5. What to do with volatile organic matter in the next century?

    International Nuclear Information System (INIS)

    Hofmeijer, P.L.

    1999-01-01

    Until the year 2001 the emission of volatile organic carbons in the Netherlands from stationary sources and products will be dealt with by the KWS 2000-covenant. In this covenant the Dutch authorities and industry agreed upon taking about 100 VOC-reducing measures. This approach was successful; we expect to reach our 2001-target: a VOC-reduction of about 50% (against 1981). However, in the future, the Netherlands has to realize more VOC-emission reduction in order to reduce exposure to high concentrations of tropospheric ozone. The Netherlands are still facing large emissions of VOC due to its population density, traffic and industrial activity, and because its neighbouring countries are facing similar problems. On top of that, there is new research indicating that long, direct exposure to VOC can cause health problems, e.g. neuro-toxic disease, infertility and hearing problems. Reasons enough to start a VOC-reduction possibility study in cooperation with the Dutch industry. After it is clear which VOC-reduction measures can be taken under what conditions and at which costs, we will try to reach an agreement on a new, post-2000 VOC-policy. It is clear however, that a large part of the VOC-emission in the Netherlands (excluding mobile sources and incineration) is from solvents in a limited number of products, e.g. paint, hair sprays and cleaning agents. That's why the Netherlands insists on guidelines of the European Committee for VOC-containing products, in order to limit the amount of VOC per product drastically

  6. MEMBRANE BIOTREATMENT OF VOC-LADEN AIR

    Science.gov (United States)

    The paper discusses membrane biotreatment of air laden with volatile organic compounds (VOCs). Microporous flat-sheet and hollow-fiber membrane contactors were used to support air-liquid mass transfer interfaces. These modules were used in a two-step process to transfer VOCs fr...

  7. MEMBRANE SYSTEM FOR RECOVERY OF VOLATILE ORGANIC COMPOUNDS FROM REMEDIATION OFF-GASES

    International Nuclear Information System (INIS)

    Wijmans, J.G.

    2003-01-01

    In situ vacuum extraction, air or steam sparging, and vitrification are widely used to remediate soil contaminated with volatile organic compounds (VOCs). All of these processes produce a VOC-laden air stream from which the VOC must be removed before the air can be discharged or recycled to the generating process. Treatment of these off-gases is often a major portion of the cost of the remediation project. Currently, carbon adsorption and catalytic incineration are the most common methods of treating these gas streams. Membrane Technology and Research, Inc. (MTR) proposed an alternative treatment technology based on selective membranes that separate the organic components from the gas stream, producing a VOC-free air stream. This technology can be applied to off-gases produced by various remediation activities and the systems can be skid-mounted and automated for easy transportation and unattended operation. The target performance for the membrane systems is to produce clean air (less than 10 ppmv VOC) for discharge or recycle, dischargeable water (less than 1 ppmw VOC), and a concentrated liquid VOC phase. This report contains the results obtained during Phase II of a two-phase project. In Phase I, laboratory experiments were carried out to demonstrate the feasibility of the proposed approach. In the subsequent Phase II project, a demonstration system was built and operated at the McClellan Air Force Base near Sacramento, California. The membrane system was fed with off-gas from a Soil Vacuum Extraction (SVE) system. The work performed in Phase II demonstrated that the membrane system can reduce the VOC concentration in remediation off-gas to 10 ppmv, while producing a concentrated VOC phase and dischargeable water containing less than 1 ppmw VOC. However, the tests showed that the presence of 1 to 3% carbon dioxide in the SVE off-gas reduced the treatment capacity of the system by a factor of three to four. In an economic analysis, treatment costs of the membrane

  8. Non-microbial sources of microbial volatile organic compounds.

    Science.gov (United States)

    Choi, Hyunok; Schmidbauer, Norbert; Bornehag, Carl-Gustaf

    2016-07-01

    The question regarding the true sources of the purported microbial volatile organic compounds (MVOCs) remains unanswered. To identify microbial, as well as non-microbial sources of 28 compounds, which are commonly accepted as microbial VOCs (i.e. primary outcome of interest is Σ 28 VOCs). In a cross-sectional investigation of 390 homes, six building inspectors assessed water/mold damage, took air and dust samples, and measured environmental conditions (i.e., absolute humidity (AH, g/m(3)), temperature (°C), ventilation rate (ACH)). The air sample was analyzed for volatile organic compounds (μg/m(3)) and; dust samples were analyzed for total viable fungal concentration (CFU/g) and six phthalates (mg/g dust). Four benchmark variables of the underlying sources were defined as highest quartile categories of: 1) the total concentration of 17 propylene glycol and propylene glycol ethers (Σ17 PGEs) in the air sample; 2) 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (TMPD-MIB) in the air sample; 3) semi-quantitative mold index; and 4) total fungal load (CFU/g). Within severely damp homes, co-occurrence of the highest quartile concentration of either Σ17 PGEs or TMPD-MIB were respectively associated with a significantly higher median concentration of Σ 28 VOCs (8.05 and 13.38μg/m(3), respectively) compared to the reference homes (4.30 and 4.86μg/m(3), respectively, both Ps ≤0.002). Furthermore, the homes within the highest quartile range for Σ fungal load as well as AH were associated with a significantly increased median Σ 28 VOCs compared to the reference group (8.74 vs. 4.32μg/m(3), P=0.001). Within the final model of multiple indoor sources on Σ 28 VOCs, one natural log-unit increase in summed concentration of Σ17 PGEs, plus TMPD-MIB (Σ 17 PGEs + TMPD-MIB) was associated with 1.8-times (95% CI, 1.3-2.5), greater likelihood of having a highest quartile of Σ 28 VOCs, after adjusting for absolute humidity, history of repainting at least one room

  9. Origin and variability in volatile organic compounds observed at an Eastern Mediterranean background site (Cyprus)

    Science.gov (United States)

    Debevec, Cécile; Sauvage, Stéphane; Gros, Valérie; Sciare, Jean; Pikridas, Michael; Stavroulas, Iasonas; Salameh, Thérèse; Leonardis, Thierry; Gaudion, Vincent; Depelchin, Laurence; Fronval, Isabelle; Sarda-Esteve, Roland; Baisnée, Dominique; Bonsang, Bernard; Savvides, Chrysanthos; Vrekoussis, Mihalis; Locoge, Nadine

    2017-09-01

    More than 7000 atmospheric measurements of over 60 C2 - C16 volatile organic compounds (VOCs) were conducted at a background site in Cyprus during a 1-month intensive field campaign held in March 2015. This exhaustive dataset consisted of primary anthropogenic and biogenic VOCs, including a wide range of source-specific tracers, and oxygenated VOCs (with various origins) that were measured online by flame ionization detection-gas chromatography and proton transfer mass spectrometry. Online submicron aerosol chemical composition was performed in parallel using an aerosol mass spectrometer. This study presents the high temporal variability in VOCs and their associated sources. A preliminary analysis of their time series was performed on the basis of independent tracers (NO, CO, black carbon), meteorological data and the clustering of air mass trajectories. Biogenic compounds were mainly attributed to a local origin and showed compound-specific diurnal cycles such as a daily maximum for isoprene and a nighttime maximum for monoterpenes. Anthropogenic VOCs as well as oxygenated VOCs displayed higher mixing ratios under the influence of continental air masses (i.e., western Asia), indicating that long-range transport significantly contributed to the VOC levels in the area. Source apportionment was then conducted on a database of 20 VOCs (or grouped VOCs) using a source receptor model. The positive matrix factorization and concentration field analyses were hence conducted to identify and characterize covariation factors of VOCs that were representative of primary emissions as well as chemical transformation processes. A six-factor PMF solution was selected, namely two primary biogenic factors (relative contribution of 43 % to the total mass of VOCs) for different types of emitting vegetation; three anthropogenic factors (short-lived combustion source, evaporative sources, industrial and evaporative sources; 21 % all together), identified as being either of local origin

  10. Advances in Biodegradation of Multiple Volatile Organic Compounds

    Science.gov (United States)

    Zhang, M.; Yoshikawa, M.

    2017-12-01

    Bioremediation of soil and groundwater containing multiple contaminants remains a challenge in environmental science and engineering because complete biodegradation of all components is necessary but very difficult to accomplish in practice. This presentation provides a brief overview on advances in biodegradation of multiple volatile organic compounds (VOCs) including chlorinated ethylenes, benzene, toluene and dichloromethane (DCM). Case studies on aerobic biodegradation of benzene, toluene and DCM, and integrated anaerobic-aerobic biodegradation of 7 contaminants, specifically, tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), vinyl chloride (VC), DCM, benzene and toluene will be provided. Recent findings based on systematic laboratory experiments indicated that aerobic toluene degradation can be enhanced by co-existence of benzene. Propioniferax, not a known benzene, toluene and DCM degrader can be a key microorganism that involves in biodegradation when the three contaminants co-exist. Integrated anaerobic-aerobic biodegradation is capable of completely degrading the seven VOCs with initial concentrations less than 30 mg/L. Dehalococcoides sp., generally considered sensitive to oxygen, can survive aerobic conditions for at least 28 days, and can be activated during the subsequent anaerobic biodegradation. This presentation may provide a systematic information about biodegradation of multiple VOCs, and a scientific basis for the complete bioremediation of multiple contaminants in situ.

  11. Processing of volatile organic compounds by microwave plasmas

    International Nuclear Information System (INIS)

    Mizeraczyk, J.; Jasinski, M.; Dors, M.; Zakrzewski, Z.

    2011-01-01

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the nonthermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguidebased surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguidebased nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzletype MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented. (author)

  12. Processing of volatile organic compounds by microwave plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mizeraczyk, J. [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk (Poland); Department of Marine Electronics, Gdynia Martime University, Gdynia (Poland); Jasinski, M.; Dors, M.; Zakrzewski, Z. [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk (Poland)

    2011-07-01

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the nonthermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguidebased surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguidebased nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzletype MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented. (author)

  13. Volatile organic compounds discrimination based on dual mode detection

    Science.gov (United States)

    Yu, Yuanyuan; Wu, Enxiu; Chen, Yan; Feng, Zhihong; Zheng, Shijun; Zhang, Hao; Pang, Wei; Liu, Jing; Zhang, Daihua

    2018-06-01

    We report on a volatile organic compound (VOC) sensor that can provide concentration-independent signals toward target gases. The device is based on a dual-mode detection mechanism that can simultaneously record the mechanical (resonant frequency, f r) and electrical (current, I) responses of the same gas adsorption event. The two independent signals form a unique I–f r trace for each target VOC as the concentration varies. The mechanical response (frequency shift, Δf r) resulting from mass load on the device is directly related to the amount of surface adsorptions, while the electrical response (current variation, ΔI) is associated with charge transfer across the sensing interface and changes in carrier mobility. The two responses resulting from independent physical processes reflect intrinsic physical properties of each target gas. The ΔI–Δf r trace combined with the concentration dependent frequency (or current) signals can therefore be used to achieve target both recognition and quantification. The dual-mode device is designed and fabricated using standard complementary metal oxide semiconductor (CMOS) compatible processes. It exhibits consistent and stable performance in our tests with six different VOCs including ethanol, methanol, acetone, formaldehyde, benzene and hexane.

  14. Assessing Emissions of Volatile Organic Componds from Landfills Gas

    Directory of Open Access Journals (Sweden)

    Fahime Khademi

    2016-01-01

    Full Text Available Background: Biogas is obtained by anaerobic decomposition of organic wastes buried materials used to produce electricity, heat and biofuels. Biogas is at the second place for power generation after hydropower and in 2000 about 6% of the world power generation was allocated to biogas. Biogas is composed of 40–45 vol% CO2, 55–65 vol% CH4, and about 1% non-methaneVOCs, and non-methane volatile organic compounds. Emission rates are used to evaluate the compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA. BTEX comounds affect the air quality and may be harmful to human health. Benzene, toluene, ethylbenzene and xylene isomers that are generally called BTEX compounds are the most abundant VOCs in biogas. Methods: Sampling of VOCs in biogas vents was operated passively or with Tedlar bags. 20 samples were collected from 40 wells of old and new biogas sites of Shiraz’ landfill. Immediately after sampling, the samples were transferred to the laboratory. Analysis of the samples was performed with GC-MS. Results: The results showed that in the collection of the old and new biogas sites, the highest concentration of VOCs was observed in toluene (0.85ppm followed by benzene (0.81ppm, ethylbenzene (0.13ppm and xylene (0.08ppm. Conclusion: The results of the study showed that in all samples, most available compounds in biogas vents were aromatic hydrocarbon compounds.These compounds’ constituents originate from household hazardous waste materials deposited in the landfill or from biological/chemical decomposition processes within the landfill.

  15. Mesoporous thin films of ``molecular squares'' as sensors for volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, M.H.; Slone, R.V.; Hupp, J.T.; Czaplewski, K.F.; Snurr, R.Q.; Stern, C.L.

    2000-04-18

    Mesoporous thin films of rhenium-based molecular squares, [Re(CO){sub 3}Cl(L)]{sub 4} (L = pyrazine, 4,4{prime}-bipyridine), have been utilized as sensors for volatile organic compounds (VOCs). The sensing was conducted using a quartz crystal microbalance with the target compounds present in the gas phase at concentrations ranging from 0.05 to 1 mM. Quartz crystal microbalance studies with these materials allowed for distinction between the following VOCs: (1) small aromatic versus aliphatic molecules of almost identical size and volatility and (2) an array of benzene molecules derivatized with electron donating/withdrawing substituents. The experiments suggest that the mesoporous host materials interact with VOC guest molecules through both van der Waals and weak charge-transfer interactions. In addition, size selectivity is shown by exposure of the molecular squares to cyclic ethers of differing size.

  16. Emissions of volatile hydrocarbons (VOC) during drying of sawdust; Utslaepp av laettflyktiga kolvaeten vid torkning av biobraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Granstroem, Karin

    2001-08-01

    In the project 'Emissions of volatile hydrocarbons (VOC) during drying of sawdust' the identity, amount and composition of monoterpenes found in the drying medium of a fluidized bed drier drying sawdust from Norwegian spruce and Scotch pine has been determined. The energy efficiency of the drier has also been measured. The aim of this project was to reduce both emissions and energy required for drying, to minimize environmental and health hazards, and make drying more competitive. This would help our primary target group - small scale saw mills - to make use of the sawdust produced as a by- product by making pellets and briquettes. If the VOC remains in the sawdust its energy content will improve and therefore also its value as a fuel. The sawdust was dried to different moisture levels in a spouted bed drier at atmospheric pressure, using either recirculating or not recirculating drying medium with temperatures 140, 170 or 200 deg C. The emissions of VOC were measured using a flame ionization detector (FID) and the nature of the emissions analyzed with a gas chromatograph with mass spectrometric detector (GC-MS). The GC-MS data is reported as emitted substance per oven dry weight (odw). Experiments show that terpenes do not leave the sawdust in great amounts until it is dried to a moisture content (water/total weight) below 10%. When sawdust is dried to a predetermined moisture level, the terpene emissions increase when warmer incoming drying medium is used. The monoterpenes found in greatest amount are a-pinene, b-pinene, 3-carene, limonene and myrcene. y-terpinene was detected in emissions from pine but not from spruce. The relative amounts of different monoterpenes did not vary significantly with post-drying moisture content, but drying medium of higher temperature caused an increase in the relative amount of less volatile monoterpenes. The FID data is reported as concentration of VOC in the drying medium, and as weight VOC per odw. The concentration

  17. Characteristics of the volatile organic compounds -- Arid Integrated Demonstration Site

    International Nuclear Information System (INIS)

    Last, G.V.; Lenhard, R.J.; Bjornstad, B.N.; Evans, J.C.; Roberson, K.R.; Spane, F.A.; Amonette, J.E.; Rockhold, M.L.

    1991-10-01

    The Volatile Organic Compounds -- Arid Integrated Demonstration Program (VOC-Arid ID) is targeted at demonstration and testing of technologies for the evaluation and cleanup of volatile organic compounds and associated contaminants at arid DOE sites. The initial demonstration site is an area of carbon tetrachloride (CCl 4 ) contamination located near the center of the Hanford Site. The movement of CCl 4 and other volatile organic contaminants in the subsurface is very complex. The problem at the Hanford Site is further complicated by the concurrent discharge of other waste constituents including acids, lard oil, organic phosphates, and transuranic radionuclides. In addition, the subsurface environment is very complex, with large spatial variabilities in hydraulic properties. A thorough understanding of the problem is essential to the selection of appropriate containment, retrieval, and/or in situ remedial technologies. The effectiveness of remedial technologies depends on knowing where the contaminants are, how they are held up in a given physical and chemical subsurface environment; and knowing the physical, chemical, and microbiological changes that are induced by the various remedial technologies

  18. Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China: Part II

    Science.gov (United States)

    Liu, Ying; Shao, Min; Lu, Sihua; Chang, Chih-Chung; Wang, Jia-Lin; Fu, Linlin

    The chemical mass balance receptor model was applied to the source apportionment of 58 hydrocarbons measured at seven sites in a field campaign that examined regional air quality in the Pearl River Delta (PRD) region in the fall of 2004. A total of 12 volatile organic compound (VOC) emission sources were considered, including gasoline- and diesel-powered vehicle exhausts, headspace vapors of gasoline and diesel fuel, vehicle evaporative emissions, liquid petroleum gas (LPG) leakage, paint vapors, asphalt emissions from paved roads, biomass combustion, coal combustion, the chemical industry, and petroleum refineries. Vehicle exhaust was the largest source of VOCs, contributing to >50% of ambient VOCs at the three urban sites (Guangzhou, Foshan, and Zhongshan). LPG leakage played an important role, representing 8-16% of emissions at most sites in the PRD. Solvent usage was the biggest emitter of VOCs at Dongguan, an industrial site, contributing 33% of ambient VOCs. Similarly, at Xinken, a non-urban site, the evaporation of solvents and coatings was the largest emission source, accounting for 31% of emissions, probably because it was downwind of Dongguan. Local biomass combustion was a noticeable source of VOCs at Xinken; although its contribution was estimated at 14.3%, biomass combustion was the third largest VOC source at this site.

  19. Snowpack concentrations and estimated fluxes of volatile organic compounds in a boreal forest

    Directory of Open Access Journals (Sweden)

    H. Aaltonen

    2012-06-01

    Full Text Available Soil provides an important source of volatile organic compounds (VOCs to atmosphere, but in boreal forests these fluxes and their seasonal variations have not been characterized in detail. Especially wintertime fluxes are almost completely unstudied. In this study, we measured the VOC concentrations inside the snowpack in a boreal Scots pine (Pinus sylvestris L. forest in southern Finland, using adsorbent tubes and air samplers installed permanently in the snow profile. Based on the VOC concentrations at three heights inside the snowpack, we estimated the fluxes of these gases. We measured 20 VOCs from the snowpack, monoterpenes being the most abundant group with concentrations varying from 0.11 to 16 μg m−3. Sesquiterpenes and oxygen-containing monoterpenes were also detected. Inside the pristine snowpack, the concentrations of terpenoids decreased from soil surface towards the surface of the snow, suggesting soil as the source for terpenoids. Forest damages (i.e. broken treetops and branches, fallen trees resulting from heavy snow loading during the measurement period increased the terpenoid concentrations dramatically, especially in the upper part of the snowpack. The results show that soil processes are active and efficient VOC sources also during winter, and that natural or human disturbance can increase forest floor VOC concentrations substantially. Our results stress the importance of soil as a source of VOCs during the season when other biological sources, such as plants, have lower activity.

  20. Source profiles of volatile organic compounds associated with solvent use in Beijing, China

    Science.gov (United States)

    Yuan, Bin; Shao, Min; Lu, Sihua; Wang, Bin

    2010-05-01

    Compositions of volatile organic compound (VOC) emissions from painting applications and printing processes were sampled and measured by gas chromatography-mass spectrometry/flame ionization detection (GC-MS/FID) in Beijing. Toluene and C8 aromatics were the most abundant species, accounting for 76% of the total VOCs emitted from paint applications. The major species in printing emissions included heavier alkanes and aromatics, such as n-nonane, n-decane, n-undecane, toluene, and m/p-xylene. Measurements of VOCs obtained from furniture paint emissions in 2003 and 2007 suggest a quick decline in benzene levels associated with formulation changes in furniture paints during these years. A comparison of VOC source profiles for painting and printing between Beijing and other parts of the world showed significant region-specific discrepancies, probably because of different market demands and environmental standards. We conducted the evaluation of the source reactivities for various VOC emission sources. The ozone formation potential (OFP) for unit mass of VOCs source emissions is the highest for paint applications. Substituting solvent-based paints by water-based in Beijing will lead to an OFP reduction of 152,000 tons per year, which is more than 1/4 of the OFPs for VOCs emissions from vehicle exhaust in the city.

  1. Source signature of volatile organic compounds from oil and natural gas operations in northeastern Colorado.

    Science.gov (United States)

    Gilman, J B; Lerner, B M; Kuster, W C; de Gouw, J A

    2013-02-05

    An extensive set of volatile organic compounds (VOCs) was measured at the Boulder Atmospheric Observatory (BAO) in winter 2011 in order to investigate the composition and influence of VOC emissions from oil and natural gas (O&NG) operations in northeastern Colorado. BAO is 30 km north of Denver and is in the southwestern section of Wattenberg Field, one of Colorado's most productive O&NG fields. We compare VOC concentrations at BAO to those of other U.S. cities and summertime measurements at two additional sites in northeastern Colorado, as well as the composition of raw natural gas from Wattenberg Field. These comparisons show that (i) the VOC source signature associated with O&NG operations can be clearly differentiated from urban sources dominated by vehicular exhaust, and (ii) VOCs emitted from O&NG operations are evident at all three measurement sites in northeastern Colorado. At BAO, the reactivity of VOCs with the hydroxyl radical (OH) was dominated by C(2)-C(6) alkanes due to their remarkably large abundances (e.g., mean propane = 27.2 ppbv). Through statistical regression analysis, we estimate that on average 55 ± 18% of the VOC-OH reactivity was attributable to emissions from O&NG operations indicating that these emissions are a significant source of ozone precursors.

  2. Inhibition of Pseudogymnoascus destructans growth from conidia and mycelial extension by bacterially produced volatile organic compounds.

    Science.gov (United States)

    Cornelison, Christopher T; Gabriel, Kyle T; Barlament, Courtney; Crow, Sidney A

    2014-02-01

    The recently identified causative agent of white-nose syndrome (WNS), Pseudogymnoascus destructans, has been implicated in the mortality of an estimated 5.5 million North American bats since its initial documentation in 2006 (Frick et al. in Science 329:679-682, 2010). In an effort to identify potential biological and chemical control options for WNS, 6 previously described bacterially produced volatile organic compounds (VOCs) were screened for anti-P. destructans activity. The compounds include decanal; 2-ethyl-1-hexanol; nonanal; benzothiazole; benzaldehyde; andN,N-dimethyloctylamine. P. destructans conidia and mycelial plugs were exposed to the VOCs in a closed air space at 15 and 4 °C and then evaluated for growth inhibition. All VOCs inhibited growth from conidia as well as inhibiting radial mycelial extension, with the greatest effect at 4 °C. Studies of the ecology of fungistatic soils and the natural abundance of the fungistatic VOCs present in these environments suggest a synergistic activity of select VOCs may occur. The evaluation of formulations of two or three VOCs at equivalent concentrations was supportive of synergistic activity in several cases. The identification of bacterially produced VOCs with anti-P. destructans activity indicates disease-suppressive and fungistatic soils as a potentially significant reservoir of biological and chemical control options for WNS and provides wildlife management personnel with tools to combat this devastating disease.

  3. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth

    Energy Technology Data Exchange (ETDEWEB)

    Son, H.K. [Department of Health and Environment, Kosin University, Dong Sam Dong, Young Do Gu, Busan (Korea, Republic of); Sivakumar, S., E-mail: ssivaphd@yahoo.com [Department of Bioenvironmental Energy, College of Natural Resource and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do 627-706 (Korea, Republic of); Rood, M.J. [Department of Civil and Environmental Engineering, University of Illinois, Urbana, IL (United States); Kim, B.J. [Construction Engineering Research Laboratory, U.S. Army Engineer Research and Development Center (ERDC-CERL), Champaign, IL (United States)

    2016-01-15

    Highlights: • We study the adsorption and desorption of VOCs by an activated carbon fiber cloth. • Desorption concentration was controlled via electrothermal heating. • The desorption rate was successfully equalized and controlled by this system. - Abstract: Adsorption is an effective means to selectively remove volatile organic compounds (VOCs) from industrial gas streams and is particularly of use for gas streams that exhibit highly variable daily concentrations of VOCs. Adsorption of such gas streams by activated carbon fiber cloths (ACFCs) and subsequent controlled desorption can provide gas streams of well-defined concentration that can then be more efficiently treated by biofiltration than streams exhibiting large variability in concentration. In this study, we passed VOC-containing gas through an ACFC vessel for adsorption and then desorption in a concentration-controlled manner via electrothermal heating. Set-point concentrations (40–900 ppm{sub v}) and superficial gas velocity (6.3–9.9 m/s) were controlled by a data acquisition and control system. The results of the average VOC desorption, desorption factor and VOC in-and-out ratio were calculated and compared for various gas set-point concentrations and superficial gas velocities. Our results reveal that desorption is strongly dependent on the set-point concentration and that the VOC desorption rate can be successfully equalized and controlled via an electrothermal adsorption system.

  4. Diurnally resolved particulate and VOC measurements at a rural site: indication of significant biogenic secondary organic aerosol formation

    Science.gov (United States)

    Sjostedt, S. J.; Slowik, J. G.; Brook, J. R.; Chang, R. Y.-W.; Mihele, C.; Stroud, C. A.; Vlasenko, A.; Abbatt, J. P. D.

    2011-06-01

    We report simultaneous measurements of volatile organic compound (VOC) mixing ratios including C6 to C8 aromatics, isoprene, monoterpenes, acetone and organic aerosol mass loadings at a rural location in southwestern Ontario, Canada by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and Aerosol Mass Spectrometry (AMS), respectively. During the three-week-long Border Air Quality and Meteorology Study in June-July 2007, air was sampled from a range of sources, including aged air from the polluted US Midwest, direct outflow from Detroit 50 km away, and clean air with higher biogenic input. After normalization to the diurnal profile of CO, a long-lived tracer, diurnal analyses show clear photochemical loss of reactive aromatics and production of oxygenated VOCs and secondary organic aerosol (SOA) during the daytime. Biogenic VOC mixing ratios increase during the daytime in accord with their light- and temperature-dependent sources. Long-lived species, such as hydrocarbon-like organic aerosol and benzene show little to no photochemical reactivity on this timescale. From the normalized diurnal profiles of VOCs, an estimate of OH concentrations during the daytime, measured O3 concentrations, and laboratory SOA yields, we calculate integrated local organic aerosol production amounts associated with each measured SOA precursor. Under the assumption that biogenic precursors are uniformly distributed across the southwestern Ontario location, we conclude that such precursors contribute significantly to the total amount of SOA formation, even during the period of Detroit outflow. The importance of aromatic precursors is more difficult to assess given that their sources are likely to be localized and thus of variable impact at the sampling location.

  5. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air

    OpenAIRE

    Bartosz Szulczyński; Jacek Gębicki

    2017-01-01

    The paper presents principle of operation and design of the most popular chemical sensors for measurement of volatile organic compounds (VOCs) in outdoor and indoor air. It describes the sensors for evaluation of explosion risk including pellistors and IR-absorption sensors as well as the sensors for detection of toxic compounds such as electrochemical (amperometric), photoionization and semiconductor with solid electrolyte ones. Commercially available sensors for detection of VOCs and their ...

  6. Volatile organic compounds in pesticide formulations: Methods to estimate ozone formation potential

    Science.gov (United States)

    Zeinali, Mazyar; McConnell, Laura L.; Hapeman, Cathleen J.; Nguyen, Anh; Schmidt, Walter F.; Howard, Cody J.

    2011-05-01

    The environmental fate and toxicity of active ingredients in pesticide formulations has been investigated for many decades, but relatively little research has been conducted on the fate of pesticide co-formulants or inerts. Some co-formulants are volatile organic compounds (VOCs) and can contribute to ground-level ozone pollution. Effective product assessment methods are required to reduce emissions of the most reactive VOCs. Six emulsifiable concentrate pesticide products were characterized for percent VOC by thermogravimetric analysis (TGA) and gas chromatography-mass spectrometry (GC-MS). TGA estimates exceeded GC-MS by 10-50% in all but one product, indicating that for some products a fraction of active ingredient is released during TGA or that VOC contribution was underestimated by GC-MS. VOC profiles were examined using TGA-Fourier transform infrared (FTIR) evolved gas analysis and were compared to GC-MS results. The TGA-FTIR method worked best for products with the simplest and most volatile formulations, but could be developed into an effective product screening tool. An ozone formation potential ( OFP) for each product was calculated using the chemical composition from GC-MS and published maximum incremental reactivity ( MIR) values. OFP values ranged from 0.1 to 3.1 g ozone g -1 product. A 24-h VOC emission simulation was developed for each product assuming a constant emission rate calculated from an equation relating maximum flux rate to vapor pressure. Results indicate 100% VOC loss for some products within a few hours, while other products containing less volatile components will remain in the field for several days after application. An alternate method to calculate a product OFP was investigated utilizing the fraction of the total mass of each chemical emitted at the end of the 24-h simulation. The ideal assessment approach will include: 1) unambiguous chemical composition information; 2) flexible simulation models to estimate emissions under

  7. Levels and source apportionment of volatile organic compounds in southwestern area of Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Rodolfo Sosa, E. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico); Humberto Bravo, A. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico)], E-mail: hbravo@servidor.unam.mx; Violeta Mugica, A. [Universidad Autonoma Metropolitana, Azcapotzalco, D.F. (Mexico); Pablo Sanchez, A. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico); Emma Bueno, L. [Centro Nacional de Investigacion y Capacitacion Ambiental, Instituto Nacional de Ecologia (Mexico); Krupa, Sagar [Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108 (United States)

    2009-03-15

    Thirteen volatile organic compounds (VOCs) were quantified at three sites in southwestern Mexico City from July 2000 to February 2001. High concentrations of different VOCs were found at a Gasoline refueling station (GS), a Condominium area (CA), and at University Center for Atmospheric Sciences (CAS). The most abundant VOCs at CA and CAS were propane, n-butane, toluene, acetylene and pentane. In comparison, at GS the most abundant were toluene, pentane, propane, n-butane, and acetylene. Benzene, a known carcinogenic compound had average levels of 28, 35 and 250 ppbC at CAS, CA, and GS respectively. The main contributing sources of the measured VOCs at CA and CAS were the handling and management of LP (Liquid Propane) gas, vehicle exhaust, asphalt works, and use of solvents. At GS almost all of the VOCs came from vehicle exhaust and fuel evaporation, although components of LP gas were also present. Based on the overall results possible abatement strategies are discussed. - Volatile organic compounds were quantified in order to perform their source apportionment in southwestern area of Mexico City.

  8. Levels and source apportionment of volatile organic compounds in southwestern area of Mexico City

    International Nuclear Information System (INIS)

    Rodolfo Sosa, E.; Humberto Bravo, A.; Violeta Mugica, A.; Pablo Sanchez, A.; Emma Bueno, L.; Krupa, Sagar

    2009-01-01

    Thirteen volatile organic compounds (VOCs) were quantified at three sites in southwestern Mexico City from July 2000 to February 2001. High concentrations of different VOCs were found at a Gasoline refueling station (GS), a Condominium area (CA), and at University Center for Atmospheric Sciences (CAS). The most abundant VOCs at CA and CAS were propane, n-butane, toluene, acetylene and pentane. In comparison, at GS the most abundant were toluene, pentane, propane, n-butane, and acetylene. Benzene, a known carcinogenic compound had average levels of 28, 35 and 250 ppbC at CAS, CA, and GS respectively. The main contributing sources of the measured VOCs at CA and CAS were the handling and management of LP (Liquid Propane) gas, vehicle exhaust, asphalt works, and use of solvents. At GS almost all of the VOCs came from vehicle exhaust and fuel evaporation, although components of LP gas were also present. Based on the overall results possible abatement strategies are discussed. - Volatile organic compounds were quantified in order to perform their source apportionment in southwestern area of Mexico City

  9. Distribution of volatile organic compounds over a semiconductor Industrial Park in Taiwan.

    Science.gov (United States)

    Chiu, Kong-Hwa; Wu, Ben-Zen; Chang, Chih-Chung; Sree, Usha; Lo, Jiunn-Guang

    2005-02-15

    This study examined volatile organic compounds (VOC) concentration in ambient air collected during the years 2000--2003 at several different locations of Hsinchu Science-based Industrial Park (HSIP) in Taiwan. A canister automated GC-MS system analyzed the volatile organics in ambient air grasp samples according to T0-15 method. Oxygenated volatiles were the most abundant VOC detected in HSIP followed by aromatics that are commonly used as solvents in the semiconductor industries. The major components measured in the ambient air are 2-propanol (29-135 ppbv), acetone (12-164 ppbv), benzene (0.7-1.7 ppbv), and toluene (13-20 ppbv). At some of the sampling locations, odorous compounds such as carbon disulfide and dimethyl sulfide levels exceed threshold values. The estimated toluene/benzene ratio is very high at most of the sites. However, the total amount of VOC is reduced over the years from 2000 to 2003 due to strict implementation on use and discharge of solvents in industries. There exists no definite seasonal pattern for sporadic occurrence of high levels of some of the volatile organics. Stagnant weather conditions with low wind speeds aid accumulation of toxic species at ground level. The results entail that hi-tech semiconductor industries are still a potential source for harmful organic substances to surrounding microenvironment.

  10. Gas-shell-encapsulation of activated carbon to reduce fouling and increase the efficacy of volatile organic compound removal

    NARCIS (Netherlands)

    Poortinga, A.T.; van Rijn, C.J.M.

    2017-01-01

    A method to encapsulate activated carbon particles is presented that reduces fouling of these particles with Natural Organic Matter (NOM) to preserve their adsorption capacity for Volatile Organic Compounds (VOCs) from water in the presence of NOM. The encapsulation method uses an oil-in-water

  11. Gas-shell-encapsulation of Activated Carbon to Reduce Fouling and Increase the Efficacy of Volatile Organic Compound Removal

    NARCIS (Netherlands)

    Poortinga, Albert T.; Rijn, van Cees J.M.

    2017-01-01

    A method to encapsulate activated carbon particles is presented that reduces fouling of these particles with Natural Organic Matter (NOM) to preserve their adsorption capacity for Volatile Organic Compounds (VOCs) from water in the presence of NOM. The encapsulation method uses an oil-in-water

  12. Oceanic Emissions and Atmospheric Depositions of Volatile Organic Compounds

    Science.gov (United States)

    Yang, M.; Blomquist, B.; Beale, R.; Nightingale, P. D.; Liss, P. S.

    2015-12-01

    Atmospheric volatile organic compounds (VOCs) affect the tropospheric oxidative capacity due to their ubiquitous abundance and relatively high reactivity towards the hydroxyal radical. Over the ocean and away from terrestrial emission sources, oxygenated volatile organic compounds (OVOCs) make up a large fraction of VOCs as airmasses age and become more oxidized. In addition to being produced or destroyed in the marine atmosphere, OVOCs can also be emitted from or deposited to the surface ocean. Here we first present direct air-sea flux measurements of three of the most abundant OVOCs - methanol, acetone, and acetaldehyde, by the eddy covariance technique from two cruises in the Atlantic: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The OVOC mixing ratios were quantified by a high resolution proton-reaction-transfer mass spectrometer with isotopically labeled standards and their air-sea (net) fluxes were derived from the eddy covariance technique. Net methanol flux was consistently from the atmosphere to the surface ocean, while acetone varied from supersaturation (emission) in the subtropics to undersaturation (deposition) in the higher latitudes of the North Atlantic. The net air-sea flux of acetaldehyde is near zero through out the Atlantic despite the apparent supersaturation of this compound in the surface ocean. Knowing the dissolved concentrations and in situ production rates of these compounds in seawater, we then estimate their bulk atmospheric depositions and oceanic emissions. Lastly, we summarize the state of knowledge on the air-sea transport of a number of organic gasses, and postulate the magnitude and environmental impact of total organic carbon transfer between the ocean and the atmosphere.

  13. Quantifying commuter exposures to volatile organic compounds

    Science.gov (United States)

    Kayne, Ashleigh

    Motor-vehicles can be a predominant source of air pollution in cities. Traffic-related air pollution is often unavoidable for people who live in populous areas. Commuters may have high exposures to traffic-related air pollution as they are close to vehicle tailpipes. Volatile organic compounds (VOCs) are one class of air pollutants of concern because exposure to VOCs carries risk for adverse health effects. Specific VOCs of interest for this work include benzene, toluene, ethylbenzene, and xylenes (BTEX), which are often found in gasoline and combustion products. Although methods exist to measure time-integrated personal exposures to BTEX, there are few practical methods to measure a commuter's time-resolved BTEX exposure which could identify peak exposures that could be concealed with a time-integrated measurement. This study evaluated the ability of a photoionization detector (PID) to measure commuters' exposure to BTEX using Tenax TA samples as a reference and quantified the difference in BTEX exposure between cyclists and drivers with windows open and closed. To determine the suitability of two measurement methods (PID and Tenax TA) for use in this study, the precision, linearity, and limits of detection (LODs) for both the PID and Tenax TA measurement methods were determined in the laboratory with standard BTEX calibration gases. Volunteers commuted from their homes to their work places by cycling or driving while wearing a personal exposure backpack containing a collocated PID and Tenax TA sampler. Volunteers completed a survey and indicated if the windows in their vehicle were open or closed. Comparing pairs of exposure data from the Tenax TA and PID sampling methods determined the suitability of the PID to measure the BTEX exposures of commuters. The difference between BTEX exposures of cyclists and drivers with windows open and closed in Fort Collins was determined. Both the PID and Tenax TA measurement methods were precise and linear when evaluated in the

  14. A genetically-based latitudinal cline in the emission of herbivore-induced plant volatile organic compounds.

    Science.gov (United States)

    Wason, Elizabeth L; Agrawal, Anurag A; Hunter, Mark D

    2013-08-01

    The existence of predictable latitudinal variation in plant defense against herbivores remains controversial. A prevailing view holds that higher levels of plant defense evolve at low latitudes compared to high latitudes as an adaptive plant response to higher herbivore pressure on low-latitude plants. To date, this prediction has not been examined with respect to volatile organic compounds (VOCs) that many plants emit, often thus attracting the natural enemies of herbivores. Here, we compared genetically-based constitutive and herbivore-induced aboveground vegetative VOC emissions from plants originating across a gradient of more than 10° of latitude (>1,500 km). We collected headspace VOCs from Asclepias syriaca (common milkweed) originating from 20 populations across its natural range and grown in a common garden near the range center. Feeding by specialist Danaus plexippus (monarch) larvae induced VOCs, and field environmental conditions (temperature, light, and humidity) also influenced emissions. Monarch damage increased plant VOC concentrations and altered VOC blends. We found that genetically-based induced VOC emissions varied with the latitude of plant population origin, although the pattern followed the reverse of that predicted-induced VOC concentration increased with increasing latitude. This pattern appeared to be driven by a greater induction of sesquiterpenoids at higher latitudes. In contrast, constitutive VOC emission did not vary systematically with latitude, and the induction of green leafy volatiles declined with latitude. Our results do not support the prevailing view that plant defense is greater at lower than at higher latitudes. That the pattern holds only for herbivore-induced VOC emission, and not constitutive emission, suggests that latitudinal variation in VOCs is not a simple adaptive response to climatic factors.

  15. Driver exposure to volatile organic compounds, CO, ozone, and NO2 under different driving conditions

    International Nuclear Information System (INIS)

    Changchuan Chan; Oezkaynak, H.; Spengler, J.D.; Sheldon, L.

    1991-01-01

    The in-vehicle concentrations of 24 gasoline-related volatile organic compounds (VOCs) and three criteria air pollutants, ozone, carbon monoxide, and nitrogen dioxide, were measured in the summer of 1988, in Raleigh, NC. Two four-door sedan of different ages were used to evaluate in-vehicle concentrations of these compounds under different driving conditions. Factors that could influence driver exposure, such as different traffic patterns, car model, vehicle ventilation conditions, and driving periods, were evaluated. Isopentane was the most abundant aliphatic hydrocarbon and toluene was the most abundant aromatic VOC measured inside the vehicles. In-vehicle VOC and CO concentrations were highest for the urban roadway, second highest for the interstate highway, and lowest for the rural road. The median concentration ratio of urban/interstate/rural for each VOC was about 10/6/1. No differences in in-vehicle VOC concentrations were found between morning and afternoon rush hour driving, but higher in-vehicle ozone and NO 2 concentrations were found during afternoon driving. In-vehicle VOC levels were lowest with the air conditioner on and highest when the vent was open with the fan on. The in-vehicle/car exterior concentration ratio for VOCs, CO, and NO 2 was slightly higher than 1. The VOC concentration measured by a pedestrian on the urban sidewalk was lower than the in-vehicle measurements but higher than the fixed-site measurements but higher than the fixed-site measurements on urban roadways 50 m from streets. The VOC measurements were positively correlated with the CO measurement and negatively correlated with the ozone measurement

  16. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil.

    Science.gov (United States)

    Cordovez, Viviane; Carrion, Victor J; Etalo, Desalegn W; Mumm, Roland; Zhu, Hua; van Wezel, Gilles P; Raaijmakers, Jos M

    2015-01-01

    In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to the fungal root pathogen Rhizoctonia solani. Here we isolated and characterized 300 isolates of rhizospheric Actinobacteria from the Rhizoctonia-suppressive soil. Streptomyces species were the most abundant, representing approximately 70% of the isolates. Streptomyces are renowned for the production of an exceptionally large number of secondary metabolites, including volatile organic compounds (VOCs). VOC profiling of 12 representative Streptomyces isolates by SPME-GC-MS allowed a more refined phylogenetic delineation of the Streptomyces isolates than the sequencing of 16S rRNA and the house-keeping genes atpD and recA only. VOCs of several Streptomyces isolates inhibited hyphal growth of R. solani and significantly enhanced plant shoot and root biomass. Coupling of Streptomyces VOC profiles with their effects on fungal growth, pointed to VOCs potentially involved in antifungal activity. Subsequent assays with five synthetic analogs of the identified VOCs showed that methyl 2-methylpentanoate, 1,3,5-trichloro-2-methoxy benzene and the VOCs mixture have antifungal activity. In conclusion, our results point to a potential role of VOC-producing Streptomyces in disease suppressive soils and show that VOC profiling of rhizospheric Streptomyces can be used as a complementary identification tool to construct strain-specific metabolic signatures.

  17. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil

    Directory of Open Access Journals (Sweden)

    Viviane eCordovez

    2015-10-01

    Full Text Available In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to the fungal root pathogen Rhizoctonia solani. Here we isolated and characterized 300 isolates of rhizospheric Actinobacteria from the Rhizoctonia-suppressive soil. Streptomyces species were the most abundant, representing approximately 70% of the isolates. Streptomyces are renowned for the production of an exceptionally large number of secondary metabolites, including volatile organic compounds (VOCs. VOC profiling of 12 representative Streptomyces isolates by SPME-GC-MS allowed a more refined phylogenetic delineation of the Streptomyces isolates than the sequencing of 16S rRNA and the house-keeping genes atpD and recA only. VOCs of several Streptomyces isolates inhibited hyphal growth of R. solani and significantly enhanced plant shoot and root biomass. Coupling of Streptomyces VOC profiles with their effects on fungal growth, pointed to VOCs potentially involved in antifungal activity. Subsequent assays with five synthetic analogues of the identified VOCs showed that methyl 2-methylpentanoate, 1,3,5-trichloro-2-methoxy benzene and the VOCs mixture have antifungal activity. In conclusion, our results point to a potential role of VOC-producing Streptomyces in disease suppressive soils and show that VOC profiling of rhizospheric Streptomyces can be used as a complementary identification tool to construct strain-specific metabolic signatures.

  18. Diagnosis by Volatile Organic Compounds in Exhaled Breath from Lung Cancer Patients Using Support Vector Machine Algorithm.

    Science.gov (United States)

    Sakumura, Yuichi; Koyama, Yutaro; Tokutake, Hiroaki; Hida, Toyoaki; Sato, Kazuo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2017-02-04

    Monitoring exhaled breath is a very attractive, noninvasive screening technique for early diagnosis of diseases, especially lung cancer. However, the technique provides insufficient accuracy because the exhaled air has many crucial volatile organic compounds (VOCs) at very low concentrations (ppb level). We analyzed the breath exhaled by lung cancer patients and healthy subjects (controls) using gas chromatography/mass spectrometry (GC/MS), and performed a subsequent statistical analysis to diagnose lung cancer based on the combination of multiple lung cancer-related VOCs. We detected 68 VOCs as marker species using GC/MS analysis. We reduced the number of VOCs and used support vector machine (SVM) algorithm to classify the samples. We observed that a combination of five VOCs (CHN, methanol, CH₃CN, isoprene, 1-propanol) is sufficient for 89.0% screening accuracy, and hence, it can be used for the design and development of a desktop GC-sensor analysis system for lung cancer.

  19. Recent Development of Catalysts for Removal of Volatile Organic Compounds in Flue Gas by Combustion: A Review

    Directory of Open Access Journals (Sweden)

    Marco Tomatis

    2016-01-01

    Full Text Available Volatile organic compounds (VOCs emitted from anthropogenic sources pose direct and indirect hazards to both atmospheric environment and human health due to their contribution to the formation of photochemical smog and potential toxicity including carcinogenicity. Therefore, to abate VOCs emission, the catalytic oxidation process has been extensively studied in laboratories and widely applied in various industries. This report is mainly focused on the benzene, toluene, ethylbenzene, and xylene (BTEX with additional discussion about chlorinated VOCs. This review covers the recent developments in catalytic combustion of VOCs over noble metal catalysts, nonnoble metal catalysts, perovskite catalysts, spinel catalysts, and dual functional adsorbent-catalysts. In addition, the effects of supports, coke formation, and water effects have also been discussed. To develop efficient and cost-effective catalysts for VOCs removal, further research in catalytic oxidation might need to be carried out to strengthen the understanding of catalytic mechanisms involved.

  20. Diagnosis by Volatile Organic Compounds in Exhaled Breath from Lung Cancer Patients Using Support Vector Machine Algorithm

    Directory of Open Access Journals (Sweden)

    Yuichi Sakumura

    2017-02-01

    Full Text Available Monitoring exhaled breath is a very attractive, noninvasive screening technique for early diagnosis of diseases, especially lung cancer. However, the technique provides insufficient accuracy because the exhaled air has many crucial volatile organic compounds (VOCs at very low concentrations (ppb level. We analyzed the breath exhaled by lung cancer patients and healthy subjects (controls using gas chromatography/mass spectrometry (GC/MS, and performed a subsequent statistical analysis to diagnose lung cancer based on the combination of multiple lung cancer-related VOCs. We detected 68 VOCs as marker species using GC/MS analysis. We reduced the number of VOCs and used support vector machine (SVM algorithm to classify the samples. We observed that a combination of five VOCs (CHN, methanol, CH3CN, isoprene, 1-propanol is sufficient for 89.0% screening accuracy, and hence, it can be used for the design and development of a desktop GC-sensor analysis system for lung cancer.

  1. Assessment of control strategies for reducing volatile organic compound emissions from the polyvinyl chloride wallpaper production industry in Taiwan.

    Science.gov (United States)

    Chang, Chang-Tang; Chiou, Chyow-Shan

    2006-05-01

    This study attempts to assess the effectiveness of control strategies for reducing volatile organic compound (VOC) emission from the polyvinyl chloride (PVC) wallpaper production industry. In Taiwan, methyl ethyl ketone, TOL, and cyclohexanone have comprised the major content of solvents, accounting for approximately 113,000 t/yr to avoid excessive viscosity of plasticizer dioctyl phthalate (DOP) and to increase facility in working. Emissions of these VOCs from solvents have caused serious odor and worse air quality problems. In this study, 80 stacks in five factories were tested to evaluate emission characteristics at each VOC source. After examining the VOC concentrations in the flue gases and contents, the VOC emission rate before treatment and from fugitive sources was 93,000 and 800 t/yr, respectively. In this study, the semiwet electrostatic precipitator is recommended for use as cost-effective control equipment.

  2. Volatile metabolites from some gram-negative bacteria

    DEFF Research Database (Denmark)

    Schöller, Charlotte; Molin, Søren; Wilkins, Ken

    1997-01-01

    A survey of volatile organic compounds (VOCs) excreted from various Gram-negative bacteria (Pseudomonas spp., Serratia spp. and Enterobacter spp.) was carried out. Compounds were identified by gas chromatography-mass spectrometry. VOCs identified included dimethyl disulphide, dimethyl trisulphide...

  3. VOC emission control by circulating fluidized bed adsorption; Controle de l'emission de composes organiques volatils par adsorption en lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Song, W.

    2003-12-15

    This work deals with the circulating fluidized bed technology, applied to the elimination by adsorption of volatile organic compounds (VOCs), like toluene, in a gas flow. In the process, the adsorbent (millimetric spherical grains of micro-porous carbon) is moved by a strong flow rate of gas inside a vertical tube without lining. Mass and heat transfers are very important and important volumes of compounds can be processed. This work presents the determination of the adsorption equilibrium, the description of the experimental facility and of the results of experiments, the development of an original model of the process which combines a flow model and a mass transfer model, a parametric study of this model, and finally, some extensions of the process principle to staged operations with pressure variation or temperature variation cycles. (J.S.)

  4. Gas-liquid partitioning of halogenated volatile organic compounds in aqueous cyclodextrin solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ondo, Daniel; Barankova, Eva [Department of Physical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Dohnal, Vladimir, E-mail: dohnalv@vscht.cz [Department of Physical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2011-08-15

    Highlights: > Binding of halogenated VOCs with cyclodextrins examined through g-l partitioning. > Complex stabilities reflect host-guest size matching and hydrophobic interaction. > Presence of halogens in the guest molecule stabilizes the binding. > Thermodynamic origin of the binding varies greatly among the systems studied. > Results obey the guest-CD global enthalpy-entropy compensation relationship. - Abstract: Gas-liquid partitioning coefficients (K{sub GL}) were measured for halogenated volatile organic compounds (VOCs), namely 1-chlorobutane, methoxyflurane, pentafluoropropan-1-ol, heptafluorobutan-1-ol, {alpha},{alpha},{alpha}-trifluorotoluene, and toluene in aqueous solutions of natural {alpha}-, {beta}-, and {gamma}-cyclodextrins (CDs) at temperatures from (273.35 to 326.35) K employing the techniques of headspace gas chromatography and inert gas stripping. The binding constants of the 1:1 inclusion complex formation between the VOCs and CDs were evaluated from the depression of the VOCs volatility as a function of CD concentration. The host-guest size matching and the hydrophobic interaction concept were used to rationalize the observed widely different affinity of the VOC-CD pairs to form the inclusion complex. The enthalpic and entropic component of the standard Gibbs free energy of complex formation as derived from the temperature dependence of the binding constant indicate the thermodynamic origin of the binding to vary greatly among the systems studied, but follow the global enthalpy-entropy compensation relationships reported previously in the literature.

  5. Volatile organic components migrating from plastic pipes (HDPE, PEX and PVC) into drinking water.

    Science.gov (United States)

    Skjevrak, Ingun; Due, Anne; Gjerstad, Karl Olav; Herikstad, Hallgeir

    2003-04-01

    High-density polyethylene pipes (HDPE), crossbonded polyethylene pipes (PEX) and polyvinyl chloride (PVC) pipes for drinking water were tested with respect to migration of volatile organic components (VOC) to water. The odour of water in contact with plastic pipes was assessed according to the quantitative threshold odour number (TON) concept. A major migrating component from HDPE pipes was 2,4-di-tert-butyl-phenol (2,4-DTBP) which is a known degradation product from antioxidants such as Irgafos 168(R). In addition, a range of esters, aldehydes, ketones, aromatic hydrocarbons and terpenoids were identified as migration products from HDPE pipes. Water in contact with HDPE pipes was assessed with respect to TON, and values > or =4 were determined for five out of seven brands of HDPE pipes. The total amount of VOC released to water during three successive test periods were fairly constant for the HDPE pipes. Corresponding migration tests carried out for PEX pipes showed that VOC migrated in significant amounts into the test water, and TON >/=5 of the test water were observed in all tests. Several of the migrated VOC were not identified. Oxygenates predominated the identified VOC in the test water from PEX pipes. Migration tests of PVC pipes revealed few volatile migrants in the test samples and no significant odour of the test water.

  6. Air ionization as a control technology for off-gas emissions of volatile organic compounds.

    Science.gov (United States)

    Kim, Ki-Hyun; Szulejko, Jan E; Kumar, Pawan; Kwon, Eilhann E; Adelodun, Adedeji A; Reddy, Police Anil Kumar

    2017-06-01

    High energy electron-impact ionizers have found applications mainly in industry to reduce off-gas emissions from waste gas streams at low cost and high efficiency because of their ability to oxidize many airborne organic pollutants (e.g., volatile organic compounds (VOCs)) to CO 2 and H 2 O. Applications of air ionizers in indoor air quality management are limited due to poor removal efficiency and production of noxious side products, e.g., ozone (O 3 ). In this paper, we provide a critical evaluation of the pollutant removal performance of air ionizing system through comprehensive review of the literature. In particular, we focus on removal of VOCs and odorants. We also discuss the generation of unwanted air ionization byproducts such as O 3 , NOx, and VOC oxidation intermediates that limit the use of air-ionizers in indoor air quality management. Copyright © 2017. Published by Elsevier Ltd.

  7. Biogenic volatile organic compound emissions from vegetation fires.

    Science.gov (United States)

    Ciccioli, Paolo; Centritto, Mauro; Loreto, Francesco

    2014-08-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  8. Source characteristics of volatile organic compounds during high ozone episodes in Hong Kong, Southern China

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2008-08-01

    Full Text Available Measurements of Volatile Organic Compounds (VOC are analyzed to characterize the sources impacting the Hong Kong area. The ratios of different VOC species, m,p-xylenes-to-ethylbenzene, C6H14-to-toluene and p-xylene-to-total xylenes are used for diagnostic analyses. Photochemical age analysis shows that the sources of reactive aromatics, the most important contributor to the photochemical reactivity, do not appear to be preferentially located in downtown Hong Kong. In addition, they do not appear to be dominated by mobile emissions based on the analyses of speciated VOC data from an earlier study, but related to industrial, waterfront, and fuel-storage activities. The ratios, p-xylene-to-total xylenes and dSO2/dNOy, suggest that the anomalously high pollutant concentrations in western Hong Kong in the early morning hours of two episode days appear to have come from transport of urban-type emissions. Comparison of observed ambient ratios of selected VOC and their ratios in the speciated VOC emission inventories for Hong Kong and adjacent Pearl River Delta (PRD Region gives mixed results. The observed ratio C6H14-to-toluene is consistent with the speciated version of the VOC emission inventory. The ratios of selected alkanes are not. This may be caused by the inaccuracies in the inventory and/or the speciation method.

  9. Field monitoring of volatile organic compounds using passive air samplers in an industrial city in Japan

    International Nuclear Information System (INIS)

    Kume, Kazunari; Ohura, Takeshi; Amagai, Takashi; Fusaya, Masahiro

    2008-01-01

    Highly portable, sensitive, and selective passive air samplers were used to investigate ambient volatile organic compound (VOC) levels at multiple sampling sites in an industrial city, Fuji, Japan. We determined the spatial distributions of 27 species of VOCs in three campaigns: Mar (cold season), May (warm season), and Nov (mild season) of 2004. In all campaigns, toluene (geometric mean concentration, 14.0 μg/m 3 ) was the most abundant VOC, followed by acetaldehyde (4.76 μg/m 3 ), and formaldehyde (2.58 μg/m 3 ). The spatial distributions for certain VOCs showed characteristic patterns: high concentrations of benzene and formaldehyde were typically found along major roads, whereas high concentrations of toluene and tetrachloroethylene (PCE) were usually found near factories. The spatial distribution of PCE observed was extremely consistent with the diffusion pattern calculated from Pollutant Release and Transfer Register data and meteorological data, indicated that passive air samplers are useful for determining the sources and distributions of ambient VOCs. - Passive air samplings with hood are useful for determining the identities, sources, and distributions of ambient VOC pollutants

  10. Volatile organic compounds in the nation's ground water and drinking-water supply wells

    Science.gov (United States)

    Zogorski, John S.; Carter, Janet M.; Ivahnenko, Tamara; Lapham, Wayne W.; Moran, Michael J.; Rowe, Barbara L.; Squillace, Paul J.; Toccalino, Patricia L.

    2006-01-01

    This national assessment of 55 volatile organic compounds (VOCs) in ground water gives emphasis to the occurrence of VOCs in aquifers that are used as an important supply of drinking water. In contrast to the monitoring of VOC contamination of ground water at point-source release sites, such as landfills and leaking underground storage tanks (LUSTs), our investigations of aquifers are designed as large-scale resource assessments that provide a general characterization of water-quality conditions. Nearly all of the aquifers included in this assessment have been identified as regionally extensive aquifers or aquifer systems. The assessment of ground water (Chapter 3) included analyses of about 3,500 water samples collected during 1985-2001 from various types of wells, representing almost 100 different aquifer studies. This is the first national assessment of the occurrence of a large number of VOCs with different uses, and the assessment addresses key questions about VOCs in aquifers. The assessment also provides a foundation for subsequent decadal assessments of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program to ascertain long-term trends of VOC occurrence in these aquifers.

  11. [Emission characteristics and safety evaluation of volatile organic compounds in manufacturing processes of automotive coatings].

    Science.gov (United States)

    Zeng, Pei-Yuan; Li, Jian-Jun; Liao, Dong-Qi; Tu, Xiang; Xu, Mei-Ying; Sun, Guo-Ping

    2013-12-01

    Emission characteristics of volatile organic compounds (VOCs) were investigated in an automotive coating manufacturing enterprise. Air samples were taken from eight different manufacturing areas in three workshops, and the species of VOCs and their concentrations were measured by gas chromatography-mass spectrometry (GC-MS). Safety evaluation was also conducted by comparing the concentration of VOCs with the permissible concentration-short term exposure limit (PC-STEL) regulated by the Ministry of Health. The results showed that fifteen VOCs were detected in the indoor air of the automotive coatings workshop, including benzene, toluene, ethylbenzene, xylene, ethyl acetate, butyl acetate, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, trimethylbenzene and ethylene glycol monobutyl ether, Their concentrations widely ranged from 0.51 to 593.14 mg x m(-3). The concentrations of TVOCs were significantly different among different manufacturing processes. Even in the same manufacturing process, the concentrations of each component measured at different times were also greatly different. The predominant VOCs of indoor air in the workshop were identified to be ethylbenzene and butyl acetate. The concentrations of most VOCs exceeded the occupational exposure limits, so the corresponding control measures should be taken to protect the health of the workers.

  12. Imaging subsurface geology and volatile organic compound plumes

    International Nuclear Information System (INIS)

    Qualheim, B.J.; Daley, P.F.; Johnson, V.; McPherrin, R.V.; Laguna, G.

    1992-03-01

    Lawrence Livermore National Laboratory (LLNL) (Fig. 1) is in the final stages of the Superfund decisionmaking process for site remediation and restoration. In the process of characterizing the subsurface of the LLNL site, we have developed unique methods of collecting, storing, retrieving, and imaging geologic and chemical data from more than 350 drill holes. The lateral and vertical continuity of subsurface paleostream channels were mapped for the entire LLNL site using geologic descriptions from core samples, cuttings, and interpretations from geophysical logs. A computer-aided design and drafting program, SLICE, written at LLNL, was used to create two-dimensional maps of subsurface sediments, and state-of-the-art software produced three-dimensional images of the volatile organic compound (VOC) plumes using data from water and core fluid analyses

  13. Investigation of volatile organic biomarkers derived from Plasmodium falciparum in vitro

    Directory of Open Access Journals (Sweden)

    Wong Rina PM

    2012-09-01

    Full Text Available Abstract Background There remains a need for techniques that improve the sensitive detection of viable Plasmodium falciparum as part of diagnosis and therapeutic monitoring in clinical studies and usual-care management of malaria infections. A non-invasive breath test based on P. falciparum-associated specific volatile organic compounds (VOCs could fill this gap and provide insights into parasite metabolism and pathogenicity. The aim of this study was to determine whether VOCs are present in the headspace above in vitro P. falciparum cultures. Methods A novel, custom-designed apparatus was developed to enable efficient headspace sampling of infected and non-infected cultures. Conditions were optimized to support cultures of high parasitaemia (>20% to improve the potential detection of parasite-specific VOCs. A number of techniques for VOC analysis were investigated including solid phase micro-extraction using two different polarity fibres, and purge and trap/thermal desorption, each coupled to gas chromatography–mass spectrometry. Each experiment and analysis method was performed at least on two occasions. VOCs were identified by comparing their mass spectra against commercial mass spectral libraries. Results No unique malarial-specific VOCs could be detected relative to those in the control red blood cell cultures. This could reflect sequestration of VOCs into cell membranes and/or culture media but solvent extractions of supernatants and cell lysates using hexane, dichloromethane and ethyl acetate also showed no obvious difference compared to control non-parasitized cultures. Conclusions Future in vivo studies analysing the breath of patients with severe malaria who are harbouring a parasite biomass that is significantly greater than achievable in vitro may yet reveal specific clinically-useful volatile chemical biomarkers.

  14. Volatile chemical products emerging as largest petrochemical source of urban organic emissions

    Science.gov (United States)

    McDonald, Brian C.; de Gouw, Joost A.; Gilman, Jessica B.; Jathar, Shantanu H.; Akherati, Ali; Cappa, Christopher D.; Jimenez, Jose L.; Lee-Taylor, Julia; Hayes, Patrick L.; McKeen, Stuart A.; Cui, Yu Yan; Kim, Si-Wan; Gentner, Drew R.; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Harley, Robert A.; Frost, Gregory J.; Roberts, James M.; Ryerson, Thomas B.; Trainer, Michael

    2018-02-01

    A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)—including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products—now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols.

  15. Emission of the main biogenic volatile organic compounds in France

    International Nuclear Information System (INIS)

    Luchetta, L.; Simon, V.; Torres, L.

    2000-01-01

    An estimation of biogenic emissions of the main non-methanic Volatile Organic Compounds (VOCs) due to the forest cover in France has been realized. 32 species representing 98% of French forest have been considered for the estimation. The latter dealt on a net made of 93 irregular spatial grids (Departments) with an average size of 75 km x 75 km. We assigned emission rates and foliar biomass densities specific to each of the 32 species. The environmental variables (temperature, light intensity) have been collected for the whole of French Departments. A special effort was extended so as to use ''Guenther's'' calculation algorithms, and specific emitting factors to species growing in France or in bordering countries. Along the way of the five years (1994-1998) of the study we have calculated the yearly mean of isoprene, mono-terpenes and Other Volatile Organic Compounds (OVOCs) emissions on the scale of the French Departments. At the national level isoprene emission is reckoned at 457 kt yr -1 and represents nearly 49% of the total emission, whereas mono-terpenes with 350 kt yr -1 and OVOCs with 129 kt yr -1 represent respectively 37% and 14% of the total. The yearly biogenic emission of VOCs in France represents virtually half the anthropic source. However in some regions (Mediterranean area) natural emissions can widely exceed anthropic emissions during certain periods. Let's note the whole of our results remains tinged with a great uncertainty because the estimations carried out are presented with correction factors that can reach values comprised between 4 and 7. (author)

  16. Remediation of ground water containing volatile organic compounds and tritium

    International Nuclear Information System (INIS)

    Shukla, S.N.; Folsom, E.N.

    1994-03-01

    The Trailer 5475 (T-5475) East Taxi Strip Area at Lawrence Livermore National Laboratory (LLNL), Livermore, California was used as a taxi strip by the US Navy to taxi airplanes to the runway from 1942 to 1947. Solvents were used in some unpaved areas adjacent to the East Taxi Strip for cleaning airplanes. From 1953 through 1976, the area was used to store and treat liquid waste. From 1962 to 1976 ponds were constructed and used for evaporation of liquid waste. As a result, the ground water in this area contains volatile organic compounds (VOCs) and tritium. The ground water in this area is also known to contain hexavalent chromium that is probably naturally occurring. Therefore, LLNL has proposed ''pump-and-treat'' technology above grade in a completely closed loop system. The facility will be designed to remove the VOCs and hexavalent chromium, if any, from the ground water, and the treated ground water containing tritium will be reinjected where it will decay naturally in the subsurface. Ground water containing tritium will be reinjected into areas with equal or higher tritium concentrations to comply with California regulations

  17. Occurrence and potential human-health relevance of volatile organic compounds in drinking water from domestic wells in the United States

    Science.gov (United States)

    Rowe, B.L.; Toccalino, P.L.; Moran, M.J.; Zogorski, J.S.; Price, C.V.

    2011-01-01

    BACKGROUND: As the population and demand for safe drinking water from domestic wells increase, it is important to examine water quality and contaminant occurrence. A national assessment in 2006 by the U.S. Geological Survey reported findings for 55 volatile organic compounds (VOCs) based on 2,401 domestic wells sampled during 1985-2002. OBJECTIVES: We examined the occurrence of individual and multiple VOCs and assessed the potential human-health relevance of VOC concentrations. We also identified hydrogeologic and anthropogenic variables that influence the probability of VOC occurrence. METHODS: The domestic well samples were collected at the wellhead before treatment of water and analyzed for 55 VOCs. Results were used to examine VOC occurrence and identify associations of multiple explanatory variables using logistic regression analyses. We used a screening-level assessment to compare VOC concentrations to U.S. Environmental Protection Agency maximum contaminant levels (MCLs) and health-based screening levels. RESULTS: We detected VOCs in 65% of the samples; about one-half of these samples contained VOC mixtures. Frequently detected VOCs included chloroform, toluene, 1,2,4-trimethylbenzene, and perchloroethene. VOC concentrations generally were < 1 ??g/L. One or more VOC concentrations were greater than MCLs in 1.2% of samples, including dibromochloropropane, 1,2-dichloropropane, and ethylene dibromide (fumigants); perchloroethene and trichloroethene (solvents); and 1,1-dichloroethene (organic synthesis compound). CONCLUSIONS: Drinking water supplied by domestic wells is vulnerable to low-level VOC contamination. About 1% of samples had concentrations of potential human-health concern. Identifying factors associated with VOC occurrence may aid in understanding the sources, transport, and fate of VOCs in groundwater.

  18. Leaf, branch, stand and landscape scale measurements of volatile organic compound fluxes from U. S. woodlands

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, A.; Greenberg, J.; Harley, P.; Helmig, D.; Klinger, L.; Vierling, L.; Zimmerman, P. [National Center for Atmospheric Research, Boulder, CO (United States). Atmospheric Chemistry Div.; Geron, C. [Environmental Protection Agency, Research Triangle Park, NC (United States)

    1996-01-01

    Natural volatile organic compound (VOC) fluxes were measured in three U.S. woodlands. Fluxes from individual leaves and branches were estimated with enclosure techniques and used to initialize and evaluate VOC emission model estimates. Ambient measurements were used to estimate above canopy fluxes for entire stands. A total of 78 VOCs were identified, with hexenol derivatives being the most commonly observed oxygenated compounds. There was also evidence of high rates of isoprene emission and high rates of monoterpenes in some genera of trees. Model predictions of diurnal variations were within + or - 35 per cent of observed flux variations. Fluxes predicted by a recent version of a biogenic emission model were within 10 per cent to 50 per cent of observed fluxes, leading to the conclusion that existing databases can provide isoprene and monoterpene emission rate potentials within acceptable limits for the dominant plant species at these three woodland sites. 21 refs., 5 tabs., 2 figs.

  19. Volatile organic compounds in indoor air: A review ofconcentrations measured in North America since 1990

    Energy Technology Data Exchange (ETDEWEB)

    ATHodgson@lbl.gov

    2003-04-01

    Central tendency and upper limit concentrations of volatile organic compounds (VOCs) measured in indoor air are summarized and reviewed. Data were obtained from published cross-sectional studies of residential and office buildings conducted in North America from 1990through the present. VOC concentrations in existing residences reported in 12 studies comprise the majority of the data set. Central tendency and maximum concentrations are compared between new and existing residences and between existing residences and office buildings. Historical changes in indoor VOC concentrations since the Clean Air Act Amendments of 1990 are explored by comparing the current data set with two published reviews of previous data obtained primarily in the 1980s. These historical comparisons suggest average indoor concentrations of some toxic air contaminants, such as 1,1,1-trichloroethane have decreased.

  20. Identification of volatile organic compounds in suburban Bangkok, Thailand and their potential for ozone formation

    Science.gov (United States)

    Suthawaree, Jeeranut; Tajima, Yosuke; Khunchornyakong, Alisa; Kato, Shungo; Sharp, Alice; Kajii, Yoshizumi

    2012-02-01

    Measurement of Volatile Organic Compound (VOC) was carried out in suburban Bangkok during July 2-8, 2008. Analysis was performed using GC-FID and GC-MS. High mixing ratios of VOCs detected during the morning and evening are most likely due to vehicular emissions. Averaged VOC mixing ratios revealed distinct difference between mixing ratios of weekdays and weekend, which the latter were found to be lower. The most abundance species were propane and toluene. Ratios of benzene over toluene suggested that additional toluene mixing ratios was owing to industrial emission, which was particularly larger during weekdays. Comparison between C2Cl4 and CH3Cl mixing ratios obtained for suburban Tokyo reveal a relatively lower influence of biomass burning than suburban Bangkok. Elucidating by Ozone Formation Potential, toluene was found to contribute the most to O3 production followed by ethylene, m-,p-xylene, and propylene.

  1. Field screening procedures for determining the presence of volatile organic compounds in soil

    International Nuclear Information System (INIS)

    Crockett, A.B.; DeHaan, M.S.

    1991-01-01

    Many field screening procedures have been used to detect the presence of volatile organic compounds (VOC) in soils but almost none have been documented and verified. Users of these procedures have not really known whether their objectives in screening were met. A reliable VOC screening procedure could significantly reduce the number of samples currently being submitted to laboratories, thereby reducing costs and improving site characterization. The Environmental Protection Agency's Environmental Monitoring Systems Laboratory in Las Vegas (EMSL-LV) has therefore sponsored a research effort to evaluate and improve headspace methods for screening soils for VOC in the field. The research involved comparing several extraction procedures using soils from actual waste sites, and determining the agitation and mixing necessary to achieve equilibrium. Headspace was analyzed using a relatively simple portable gas chromatograph with a short column. The results were variable and show that several procedures should be attempted and the results evaluated before selecting a screening procedure. 10 refs., 6 tabs

  2. Chemical intermediate detection following corona discharge on volatile organic compounds: general method using molecular beam techniques

    International Nuclear Information System (INIS)

    He Luning; Sulkes, Mark

    2011-01-01

    Nonthermal plasma (NTP)-based treatments of volatile organic compounds (VOCs) have potential for effective environmental remediation. Theory and experiment that consider the basic science pertaining to discharge events have helped improve NTP remediation outcomes. If direct information on early post-discharge chemical intermediates were also available, it would likely lead to additional improvement in NTP remediation outcomes. To this point, however, experiments yielding direct information on post-NTP VOC intermediates have been limited. An approach using supersonic expansion molecular beam methods offers general promise for detection of post-discharge VOC intermediates. To illustrate the potential utility of these methods, we present mass spectra showing the growth of early products formed when pulsed corona discharges were carried out on toluene in He and then in He with added O 2 . Good general detection of neutral post-discharge species was obtained using 800 nm 150 fs photoionization pulses.

  3. Emission of intermediate, semi and low volatile organic compounds from traffic and their impact on secondary organic aerosol concentrations over Greater Paris

    Science.gov (United States)

    Sartelet, K.; Zhu, S.; Moukhtar, S.; André, M.; André, J. M.; Gros, V.; Favez, O.; Brasseur, A.; Redaelli, M.

    2018-05-01

    Exhaust particle emissions are mostly made of black carbon and/or organic compounds, with some of these organic compounds existing in both the gas and particle phases. Although emissions of volatile organic compounds (VOC) are usually measured at the exhaust, emissions in the gas phase of lower volatility compounds (POAvapor) are not. However, these gas-phase emissions may be oxidised after emission and enhance the formation of secondary organic aerosols (SOA). They are shown here to contribute to most of the SOA formation in Central Paris. POAvapor emissions are usually estimated from primary organic aerosol emissions in the particle phase (POA). However, they could also be estimated from VOC emissions for both gasoline and diesel vehicles using previously published measurements from chamber measurements. Estimating POAvapor from VOC emissions and ageing exhaust emissions with a simple model included in the Polyphemus air-quality platform compare well to measurements of SOA formation performed in chamber experiments. Over Greater Paris, POAvapor emissions estimated using POA and VOC emissions are compared using the HEAVEN bottom-up traffic emissions model. The impact on the simulated atmospheric concentrations is then assessed using the Polyphemus/Polair3D chemistry-transport model. Estimating POAvapor emissions from VOC emissions rather than POA emissions lead to lower emissions along motorway axes (between -50% and -70%) and larger emissions in urban areas (up to between +120% and +140% in Central Paris). The impact on total organic aerosol concentrations (gas plus particle) is lower than the impact on emissions: between -8% and 25% along motorway axes and in urban areas respectively. Particle-phase organic concentrations are lower when POAvapor emissions are estimated from VOC than POA emissions, even in Central Paris where the total organic aerosol concentration is higher, because of different assumptions on the emission volatility distribution, stressing the

  4. A DFT study of volatile organic compounds adsorption on transition metal deposited graphene

    International Nuclear Information System (INIS)

    Kunaseth, Manaschai; Poldorn, Preeyaporn; Junkeaw, Anchalee; Meeprasert, Jittima; Rungnim, Chompoonut; Namuangruk, Supawadee; Kungwan, Nawee; Inntam, Chan; Jungsuttiwong, Siriporn

    2017-01-01

    Highlights: • VOCs removal via modified carbon-based adsorbent using density functional theory. • The single-vacancy defective graphene (SDG) with metal-deposited significantly increase the adsorption efficiency. • TM-doped SDG is a suitable adsorbent material for VOC removal. • Electron in hybridized sp"2-orbitals of heteroatoms has an effect on mode of adsorption. - Abstract: Recently, elevated global emission of volatile organic compounds (VOCs) was associated to the acceleration and increasing severity of climate change worldwide. In this work, we investigated the performance of VOCs removal via modified carbon-based adsorbent using density functional theory. Here, four transition metals (TMs) including Pd, Pt, Ag, and Au were deposited onto single-vacancy defective graphene (SDG) surface to increase the adsorption efficiency. Five prototypical VOCs including benzene, furan, pyrrole, pyridine, and thiophene were used to study the adsorption capability of metal-deposited graphene adsorbent. Calculation results revealed that Pd, Pt, Au, and Ag atoms and nanoclusters bind strongly onto the SDG surface. In this study, benzene, furan and pyrrole bind in the π-interaction mode using delocalized π-electron in aromatic ring, while pyridine and thiophene favor X- interaction mode, donating lone pair electron from heteroatom. In terms of adsorption, pyridine VOC adsorption strengths to the TM-cluster doped SDG surfaces are Pt_4 (−2.11 eV) > Pd_4 (−2.05 eV) > Ag_4 (−1.53 eV) > Au_4 (−1.87 eV). Our findings indicate that TM-doped SDG is a suitable adsorbent material for VOC removal. In addition, partial density of states analysis suggests that benzene, furan, and pyrrole interactions with TM cluster are based on p-orbitals of carbon atoms, while pyridine and thiophene interactions are facilitated by hybridized sp"2-orbitals of heteroatoms. This work provides a key insight into the fundamentals of VOCs adsorption on carbon-based adsorbent.

  5. Operation of a catalytic reverse flow reactor for the purification of air contamined with volatile organic compounds

    NARCIS (Netherlands)

    van de Beld, L.; van de Beld, L.; Westerterp, K.R.

    1997-01-01

    Catalytic oxidation in a reverse flow reactor is an attractive process for the decontamination of air polluted with volatile organic compounds (VOCs). In this paper several aspects of operating this type of reactor for air purification under strongly varying conditions will be discussed. For a

  6. The influence of temperature on the emission of volatile organic compounds from PVC flooring, carpet, and paint

    NARCIS (Netherlands)

    Wal, J.F. van der; Hoogeveen, A.W.; Wouda, P.

    1997-01-01

    The influence of temperature on the emission rate of volatile organic compounds (VOC) from four indoor materials was investigated in a small dynamic test chamber. The materials investigated were two carpets, a PVC flooring and a paint; the temperature range investigated was 23-50°C. The general

  7. Impact of production location, production system, and variety on the volatile organic compounds fingerprints and sensory characteristics of tomatoes

    NARCIS (Netherlands)

    Muilwijk, Mirthe; Heenan, Samuel; Koot, Alex; Ruth, Van Saskia M.

    2015-01-01

    Consumers have more and more interest in where and how their foods are produced. However, it is often challenging to discriminate products from different production locations and systems. The objective of this study was to examine fingerprinting of volatile organic compounds (VOCs) as an approach

  8. Profile of volatile organic compounds in exhaled breath changes as a result of gluten-free diet

    NARCIS (Netherlands)

    Baranska, Agnieszka; Tigchelaar, Ettje; Smolinska, Agnieszka; Dallinga, Jan W.; Moonen, Edwin J. C.; Dekens, Jackie A. M.; Wijmenga, Cisca; Zhernakova, Alexandra; van Schooten, Frederik J.

    In the present longitudinal study, we followed volatile organic compounds (VOCs) excreted in exhaled breath of 20 healthy individuals over time, while adhering to a gluten-free diet for 4 weeks prior to adherence to a normal diet. We used gas chromatography coupled with mass spectrometry

  9. Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Oulema spp.), or fungal infection (Fusarium spp.)

    Science.gov (United States)

    Herbivory, mechanical injury or pathogen infestation to vegetative tissues can induce volatile organic compounds (VOCs) production, which can provide defensive functions to injured and uninjured plants. In our studies with ‘McNeal’ wheat, ‘Otana’ oat, and ‘Harrington’ barley, plants that were mechan...

  10. Proton transfer reaction-mass spectrometry volatile organic compound fingerprinting for monovarietal extra virgin olive oil identification

    NARCIS (Netherlands)

    Ruiz-Samblas, C.; Tres, A.; Koot, A.H.; Ruth, van S.M.; Gonzalez-Casado, A.; Cuadros-Rodriguez, L.

    2012-01-01

    Proton transfer reaction-mass spectrometry (PTR-MS) is a relatively new technique that allows the fast and accurate qualification of the volatile organic compound (VOC) fingerprint. This paper describes the analysis of thirty samples of extra virgin olive oil, of five different varieties of olive

  11. The prey’s scent – Volatile organic compound mediated interactions between soil bacteria and their protist predators

    NARCIS (Netherlands)

    Schulz, K.B.; Geisen, Stefan; Wubs, E.R.J.; Song, C.; Boer, de W.; Garbeva, Paolina

    2017-01-01

    Protists are major predators of bacteria in soils. However, it remains unknown how protists sense their prey in this highly complex environment. Here, we investigated whether volatile organic compounds (VOCs) of six phylogenetic distinct soil bacteria affect the performance of three different soil

  12. Research on release rate of volatile organic compounds in typical vessel cabin

    Directory of Open Access Journals (Sweden)

    ZHANG Jinlan

    2018-02-01

    Full Text Available [Objectives] Volatile Organic Compounds (VOC should be efficiently controlled in vessel cabins to ensure the crew's health and navigation safety. As an important parameter, research on release rate of VOCs in cabins is required. [Methods] This paper develops a method to investigate this parameter of a ship's cabin based on methods used in other closed indoor environments. A typical vessel cabin is sampled with Tenax TA tubes and analyzed by Automated Thermal Desorption-Gas Chromatography-Mass Spectrometry (ATD-GC/MS. The lumped mode is used and the release rate of Benzene, Toluene, Ethylbenzene and Xylene (BTEX, the typical representatives of VOCs, is obtained both in closed and ventilated conditions. [Results] The results show that the content of xylene and Total Volatile Organic Compounds (TVOC exceed the indoor environment standards in ventilated conditions. The BTEX release rate is similar in both conditions except for the benzene. [Conclusions] This research builds a method to measure the release rate of VOCs, providing references for pollution character evaluation and ventilation and purification system design.

  13. The Venus flytrap attracts insects by the release of volatile organic compounds.

    Science.gov (United States)

    Kreuzwieser, Jürgen; Scheerer, Ursel; Kruse, Jörg; Burzlaff, Tim; Honsel, Anne; Alfarraj, Saleh; Georgiev, Plamen; Schnitzler, Jörg-Peter; Ghirardo, Andrea; Kreuzer, Ines; Hedrich, Rainer; Rennenberg, Heinz

    2014-02-01

    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap.

  14. Measurement of in-vehicle volatile organic compounds under static conditions.

    Science.gov (United States)

    You, Ke-wei; Ge, Yun-shan; Hu, Bin; Ning, Zhan-wu; Zhao, Shou-tang; Zhang, Yan-ni; Xie, Peng

    2007-01-01

    The types and quantities of volatile organic compounds (VOCs) inside vehicles have been determined in one new vehicle and two old vehicles under static conditions using the Thermodesorber-Gas Chromatograph/Mass Spectrometer (TD-GC/MS). Air sampling and analysis was conducted under the requirement of USEPA Method TO-17. A room-size, environment test chamber was utilized to provide stable and accurate control of the required environmental conditions (temperature, humidity, horizontal and vertical airflow velocity, and background VOCs concentration). Static vehicle testing demonstrated that although the amount of total volatile organic compounds (TVOC) detected within each vehicle was relatively distinct (4940 microg/m3 in the new vehicle A, 1240 microg/m3 in used vehicle B, and 132 microg/m3 in used vehicle C), toluene, xylene, some aromatic compounds, and various C7-C12 alkanes were among the predominant VOC species in all three vehicles tested. In addition, tetramethyl succinonitrile, possibly derived from foam cushions was detected in vehicle B. The types and quantities of VOCs varied considerably according to various kinds of factors, such as, vehicle age, vehicle model, temperature, air exchange rate, and environment airflow velocity. For example, if the airflow velocity increases from 0.1 m/s to 0.7 m/s, the vehicle's air exchange rate increases from 0.15 h(-1) to 0.67 h(-1), and in-vehicle TVOC concentration decreases from 1780 to 1201 microg/m3.

  15. Tropospheric VOC measurements by PTR-MS

    International Nuclear Information System (INIS)

    Hansel, A.; Wisthaler, A.; Graus, M.; Grabmer, W.

    2002-01-01

    Full text: O 3 is formed photochemically from the photolysis of NO 2 , and because O 3 reacts rapidly with NO these reactions result in a photoequilibrium between NO, NO 2 with no net formation or loss of O 3 , However, in the presence of volatile organic compounds (VOCs), the degradation reactions of VOCs lead to the formation of intermediate peroxy radicals which react with NO, converting NO to NO 2 , which then photolyze to form O 3 . Thus, in order to understand quantitatively tropospheric ozone chemistry, it is necessary to know the VOC distribution within the troposphere as well as VOC fluxes from individual sources. Examples will be presented how the use of Proton Transfer Reaction Mass Spectrometry (PTR-MS) has enhanced our understanding of anthropogenic VOC emissions, biosphere-atmosphere exchange processes, and photochemical processing of both anthropogenic and biogenic VOCs in the troposphere. (author)

  16. Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops.

    Science.gov (United States)

    He, Zhigui; Li, Guiying; Chen, Jiangyao; Huang, Yong; An, Taicheng; Zhang, Chaosheng

    2015-04-01

    The pollution profiles of volatile organic compounds (VOCs) emitted from different recycling workshops processing different types of plastic solid waste (PSW) and their health risks were investigated. A total of 64 VOCs including alkanes, alkenes, monoaromatics, oxygenated VOCs (OVOCs), chlorinated VOCs (ClVOCs) and acrylonitrile during the melting extrusion procedure were identified and quantified. The highest concentration of total VOCs (TVOC) occurred in the poly(acrylonitrile-butadiene styrene) (ABS) recycling workshop, followed by the polystyrene (PS), polypropylene (PP), polyamide (PA), polyvinyl chloride (PVC), polyethylene (PE) and polycarbonate (PC) workshops. Monoaromatics were found as the major component emitted from the ABS and PS recycling workshops, while alkanes were mainly emitted from the PE and PP recycling processes, and OVOCs from the PVC and PA recycling workshops. According to the occupational exposure limits' (OEL) assessment, the workers suffered acute and chronic health risks in the ABS and PS recycling workshops. Meanwhile, it was found that most VOCs in the indoor microenvironments were originated from the melting extrusion process, while the highest TVOC concentration was observed in the PS rather than in the ABS recycling workshop. Non-cancer hazard indices (HIs) of all individual VOCs were <1.0, whereas the total HI in the PS recycling workshop was 1.9, posing an adverse chronic health threat. Lifetime cancer risk assessment suggested that the residents also suffered from definite cancer risk in the PS, PA, ABS and PVC recycling workshops. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China

    International Nuclear Information System (INIS)

    Song Yu; Dai Wei; Shao Min; Liu Ying; Lu Sihua; Kuster, William; Goldan, Paul

    2008-01-01

    Identifying the sources of volatile organic compounds (VOCs) is key to reducing ground-level ozone and secondary organic aerosols (SOAs). Several receptor models have been developed to apportion sources, but an intercomparison of these models had not been performed for VOCs in China. In the present study, we compared VOC sources based on chemical mass balance (CMB), UNMIX, and positive matrix factorization (PMF) models. Gasoline-related sources, petrochemical production, and liquefied petroleum gas (LPG) were identified by all three models as the major contributors, with UNMIX and PMF producing quite similar results. The contributions of gasoline-related sources and LPG estimated by the CMB model were higher, and petrochemical emissions were lower than in the UNMIX and PMF results, possibly because the VOC profiles used in the CMB model were for fresh emissions and the profiles extracted from ambient measurements by the two-factor analysis models were 'aged'. - VOCs sources were similar for three models with CMB showing a higher estimate for vehicles

  18. Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Song Yu; Dai Wei [Department of Environmental Sciences, Peking University, Beijing 100871 (China); Shao Min [State Joint Key Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing 100871 (China)], E-mail: mshao@pku.edu.cn; Liu Ying; Lu Sihua [State Joint Key Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing 100871 (China); Kuster, William; Goldan, Paul [Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO 80305 (United States)

    2008-11-15

    Identifying the sources of volatile organic compounds (VOCs) is key to reducing ground-level ozone and secondary organic aerosols (SOAs). Several receptor models have been developed to apportion sources, but an intercomparison of these models had not been performed for VOCs in China. In the present study, we compared VOC sources based on chemical mass balance (CMB), UNMIX, and positive matrix factorization (PMF) models. Gasoline-related sources, petrochemical production, and liquefied petroleum gas (LPG) were identified by all three models as the major contributors, with UNMIX and PMF producing quite similar results. The contributions of gasoline-related sources and LPG estimated by the CMB model were higher, and petrochemical emissions were lower than in the UNMIX and PMF results, possibly because the VOC profiles used in the CMB model were for fresh emissions and the profiles extracted from ambient measurements by the two-factor analysis models were 'aged'. - VOCs sources were similar for three models with CMB showing a higher estimate for vehicles.

  19. Effects of airborne volatile organic compounds on plants

    International Nuclear Information System (INIS)

    Cape, J.N.

    2003-01-01

    Possible adverse effects of VOCs on vegetation in urban areas cannot be rejected. - Routine measurements of volatile organic compounds (VOCs) in air have shown that average concentrations are very much smaller than those used in laboratory experiments designed to study the effects of VOCs on plants. However, maximum hourly concentrations of some VOCs can be 100 times larger than the average, even in rural air. Experimental studies have rarely extended for longer than a few days, so there is little information on potential long-term effects of exposure to small concentrations. This review considers the available evidence for long-term effects, based on laboratory and field data. Previous reviews of the literature from Germany and the USA are cited, prior to an assessment of the effects of individual VOCs. Although hydrocarbons from vehicle exhausts have been implicated in the observed effects on roadside vegetation, the evidence suggests that it is the nitrogen oxides in the exhaust gases that are mostly responsible. There is evidence that aromatic hydrocarbons can be metabolised in plants, although the fate of the metabolites is not known. There is a large literature on the effects of ethylene, because of its role as a plant hormone. Effects have been reported in the field, in response to industrial emissions, and dose-response experiments over several weeks in laboratory studies have clearly identified the potential for effects at ambient concentrations. The main responses are morphological (e.g. epinasty), which may be reversible, and on the development of flowers and fruit. Effects on seed production may be positive or negative, depending on the exposure concentration. Chlorinated hydrocarbons have been identified as potentially harmful to vegetation, but only one long-term experiment has studied dose-response relationships. As for ethylene, the most sensitive indication of effect was on seed production, although long-term accumulation of trichloroacetic acid in

  20. Equipment Leaks of Volatile Organic Compounds From Onshore Natural Gas Processing Plants for Which Construction, Reconstruction, or Modification Commenced After January 20, 1984, and on or Before August 23, 2011: New Source Performance Standards (NSPS)

    Science.gov (United States)

    Learn about the NSPS regulation for equipment leaks of Volatile Organic Compounds (VOC) from onshore natural gas processing plants by reading the rule summary, rule history, federal register citations, and the code of federal regulations

  1. Volatile organic compound mixing ratios above Beijing in November and December 2016

    Science.gov (United States)

    Acton, William; Shaw, Marvin; Huang, Zhonghui; Wang, Zhaoyi; Wang, Xinming; Zhang, Yanli; Davison, Brian; Langford, Ben; Mullinger, Neil; Nemitz, Eiko; Fu, Pingqing; Squires, Freya; Carpenter, Lucy; Lewis, Alastair; Hewitt, Nick

    2017-04-01

    Volatile organic compounds (VOCs) are emitted into the atmosphere from vegetation and anthropogenic sources such as fossil fuel combustion, biomass burning and the evaporation of petroleum products. These compounds play an important role in the chemistry of the lower atmosphere through secondary organic aerosol (SOA) formation and facilitating the formation of tropospheric ozone. As well as their indirect impact on human health via the formation of ozone and SOA, some VOCs, including benzene, directly affect human health adversely. Here we report VOC mixing ratios measured in Beijing during a 5 week intensive field campaign from the 7th November to the 10th December 2016. This work was carried out as part of the Sources and Emissions of Air Pollutants in Beijing (AIRPOLL-Beijing) work project within the Air Pollution and Human Health in a Developing Megacity (APHH-Beijing) research programme. APHH is a large multi-institutional study which aims to record the concentrations and identify the sources of urban air pollutants in Beijing, determine exposure, understand their effects on human health, and to identify solutions. VOC mixing ratios were recorded using a Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS, Ionicon Analytik) and a Selected Ion Flow Tube-Mass Spectrometer (SIFT-MS, SYFT Technologies). During the measurement period Beijing was subject to multiple pollution events that alternated with periods of relatively good air quality, allowing the VOCs within the polluted air masses to be identified and quantified. VOCs were sampled at 102 m with additional gradient measurements made at 3, 15, 32 and 64 m providing a vertical profile of VOC mixing ratios. Mixing ratios of methanol, acetonitrile, acetaldehyde, acetone, isoprene and aromatics species will be reported together with a discussion of potential sources. Comparisons will then be drawn with other large cities.

  2. Volatile organic compounds in alpine valleys: sources, evolutions and transformations; Les composes organiques volatils dans les vallees alpines: sources, evolutions et transformations

    Energy Technology Data Exchange (ETDEWEB)

    Colomb, A.

    2002-12-01

    Dynamic and chemical specificity in alpine valleys was the principal goal during the POVA project (Pollution des Vallees Alpines). Volatile Organic Compounds emissions in troposphere have important impacts on animal lives and environment. Then, the aim of this work was the improvement of the biogenic or anthropogenic VOC sources determination, of VOC transformation and evolution in mountain areas. During this project, the realisation of a daily continuous measurements campaign of a few chemical compounds allowed the understanding of the seasonal variations of these compounds. The goals of intensive field campaigns, realised in August 2000 and January 2001, were to understand photochemical process in a temporal and geographic small scale and to follow diurnal variation of different pollutants in summer and winter. Moreover, the VOC data would be used to develop and validate coupled atmospheric dynamic/chemical model. Therefore, these VOC measures give answer to two lacks of knowledge in alpine valleys about: - Biogenic and anthropogenic VOC respective part, and their main sources, - VOC photochemical reactions in alpine valleys, according to seasonal and diurnal cycles. Finally, we presented two atypical days results, in Maurienne valley during a Saharan episode in August 2000. This episode permitted to understand mass air transport mechanism in mountain region. (author)

  3. Exposure to volatile organic compounds: Comparison among different transportation modes

    Science.gov (United States)

    Do, Duc Hoai; Van Langenhove, Herman; Chigbo, Stephen Izuchukwu; Amare, Abebech Nuguse; Demeestere, Kristof; Walgraeve, Christophe

    2014-09-01

    The increasing trend of promoting public transportation (bus tram, metro, train) and more environmental friendly and sustainable non fossil-fuel alternatives (walking, cycling etc) as substitutes for auto vehicles brings forward new questions with regard to pollutant levels to which commuters are exposed. In this study, three transportation modes (tram, auto vehicle and bicycle) are studied and concentration levels of 84 volatile organic compounds (VOCs) (hydrocarbons, aromatic hydrocarbons, oxygen containing hydrocarbons, terpenes and halogenated compounds) are measured along a route in the city of Ghent, Belgium. The concentration levels are obtained by active sampling on Tenax TA sorbent tubes followed by thermal desorption gas chromatography mass spectrometry (TD-GC-MS) using deuterated toluene as an internal standard. The median total VOC concentrations for the tram mode (33 μg/m³) is 1.7 times higher than that of the bicycle mode (20 μg/m³) and 1.5 times higher than for the car mode (22 μg/m³). It is found that aromatic hydrocarbons account for a significant proportion in the total VOCs concentration (TVOCs) being as high as 41-57%, 59-72% and 58-72% for the tram, car and bicycle respectively. In all transportation modes, there was a high (r > 0.6) degree of correlation between BTEX compounds, isopropylbenzene, n-propylbenzene, 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene. When comparing time weighed average concentrations along a fixed route in Ghent, it is found that commuters using the tram mode experience the highest TVOCs concentration levels. However, next to the concentration level to which commuters are exposed, the physical activity level involving the mode of transportation is important to assess the exposure to toxic VOCs. It is proven that the commuter using a bicycle (4.3 ± 1.5 μg) inhales seven and nine times more benzene compared to the commuter using the car and tram respectively, when the same route is followed.

  4. Urinary volatile organic compounds as potential biomarkers for renal cell carcinoma

    Science.gov (United States)

    WANG, DONGCHUN; WANG, CHANGSONG; PI, XIN; GUO, LEI; WANG, YUE; LI, MINGJUAN; FENG, YUE; LIN, ZIWEI; HOU, WEI; LI, ENYOU

    2016-01-01

    Currently, there is no adequate, sensitive, reproducible, specific and noninvasive biomarker that can reliably be used to detect renal cell carcinoma (RCC). Previous studies have elucidated the urinary non-volatile metabolic profile of RCC. However, whether urinary volatile organic compound (VOC) profiles are able to identify RCC remains to be elucidated. In the present study, urine was collected from 22 patients with RCC and 25 healthy subjects. Principal component analysis and orthogonal partial least square discriminant analysis were used to compare the data of patients and healthy subjects, and preoperative and postoperative patients undergoing radical nephrectomy. In total, 11 VOC biomarkers were elevated in the RCC patients compared to the healthy subjects, which were phenol; decanal; 1,6-dioxacyclododecane-7,12-dione; 1-bromo-1-(3-methyl-1-pentenylidene)-2,2,3,3-tetramethyl-cyclopropane; nonanal; 3-ethyl-3-methylheptane; isolongifolene-5-ol; 2,5-cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethylethyl); tetradecane; aniline; and 2,6,10,14-tetramethyl-pentadecane. Three biomarkers were decreased in RCC patients: styrene, 4-heptanone and dimethylsilanediol. In preoperative patients, 2-ethyl-1-hexanol and cyclohexanone were elevated, while 6-t-butyl-2,2,9,9-tetramethyl-3,5-decadien-7-yne were decreased when compared to postoperative patients. Compared with the healthy subjects, RCC has a unique VOC profile, suggesting that VOC profiles may be a useful diagnostic assay for RCC. PMID:27347408

  5. FORMULATING ULTRA-LOW-VOC WOOD FURNITURE COATINGS

    Science.gov (United States)

    The article discusses the formulation of ultra-low volatile organic compound (VOC) wood furniture coatings. The annual U.S. market for wood coatings is about 240, 000 cu m (63 million gal). In this basis, between 57 and 91 million kg (125 and 200 million lb) of VOCs are emitted i...

  6. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species.

    Science.gov (United States)

    Fincheira, Paola; Venthur, Herbert; Mutis, Ana; Parada, Maribel; Quiroz, Andrés

    2016-12-01

    Agrochemicals are currently used in horticulture to increase crop production. Nevertheless, their indiscriminate use is a relevant issue for environmental and legal aspects. Alternative tools for reducing fertilizers and synthetic phytohormones are being investigated, such as the use of volatile organic compounds (VOCs) as growth inducers. Some soil bacteria, such as Pseudomonas and Bacillus, stimulate Arabidopsis and tobacco growth by releasing VOCs, but their effects on vegetables have not been investigated. Lactuca sativa was used as model vegetable to investigate bacterial VOCs as growth inducers. We selected 10 bacteria strains, belonging to Bacillus, Staphylococcus and Serratia genera that are able to produce 3-hydroxy-2-butanone (acetoin), a compound with proven growth promoting activity. Two-day old-seedlings of L. sativa were exposed to VOCs emitted by the selected bacteria grown in different media cultures for 7 days. The results showed that the VOCs released from the bacteria elicited an increase in the number of lateral roots, dry weight, root growth and shoot length, depending on the media used. Three Bacillus strains, BCT53, BCT9 and BCT4, were selected according to its their growth inducing capacity. The BCT9 strain elicited the greatest increases in dry weight and primary root length when L. sativa seedlings were subjected to a 10-day experiment. Finally, because acetoin only stimulated root growth, we suggest that other volatiles could be responsible for the growth promotion of L. sativa. In conclusion, our results strongly suggest that bacteria volatiles can be used as growth-inducers as alternative or complementary strategies for application in horticulture species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Simultaneous Microwave Extraction and Separation of Volatile and Non-Volatile Organic Compounds of Boldo Leaves. From Lab to Industrial Scale

    Directory of Open Access Journals (Sweden)

    Loïc Petigny

    2014-04-01

    Full Text Available Microwave extraction and separation has been used to increase the concentration of the extract compared to the conventional method with the same solid/liquid ratio, reducing extraction time and separate at the same time Volatile Organic Compounds (VOC from non-Volatile Organic Compounds (NVOC of boldo leaves. As preliminary study, a response surface method has been used to optimize the extraction of soluble material and the separation of VOC from the plant in laboratory scale. The results from the statistical analysis revealed that the optimized conditions were: microwave power 200 W, extraction time 56 min and solid liquid ratio of 7.5% of plants in water. Lab scale optimized microwave method is compared to conventional distillation, and requires a power/mass ratio of 0.4 W/g of water engaged. This power/mass ratio is kept in order to upscale from lab to pilot plant.

  8. Development of Solid Ceramic Dosimeters for the Time-Integrative Passive Sampling of Volatile Organic Compounds in Waters.

    Science.gov (United States)

    Bonifacio, Riza Gabriela; Nam, Go-Un; Eom, In-Yong; Hong, Yong-Seok

    2017-11-07

    Time-integrative passive sampling of volatile organic compounds (VOCs) in water can now be accomplished using a solid ceramic dosimeter. A nonporous ceramic, which excludes the permeation of water, allowing only gas-phase diffusion of VOCs into the resin inside the dosimeter, effectively captured the VOCs. The mass accumulation of 11 VOCs linearly increased with time over a wide range of aqueous-phase concentrations (16.9 to 1100 μg L -1 ), and the linearity was dependent upon the Henry's constant (H). The average diffusivity of the VOCs in the solid ceramic was 1.46 × 10 -10 m 2 s -1 at 25 °C, which was 4 orders of magnitude lower than that in air (8.09 × 10 -6 m 2 s -1 ). This value was 60% greater than that in the water-permeable porous ceramic (0.92 × 10 -10 m 2 s -1 ), suggesting that its mass accumulation could be more effective than that of porous ceramic dosimeters. The mass accumulation of the VOCs in the solid ceramic dosimeter increased in the presence of salt (≥0.1 M) and with increasing temperature (4 to 40 °C) but varied only slightly with dissolved organic matter concentration. The solid ceramic dosimeter was suitable for the field testing and measurement of time-weighted average concentrations of VOC-contaminated waters.

  9. Modeling VOC transport in simulated waste drums

    International Nuclear Information System (INIS)

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1993-06-01

    A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the VOC permeability had been measured. Permeabilities for five VOCs [methylene chloride, 1,1,2-trichloro-1,2,2-trifluoroethane (Freon-113), 1,1,1-trichloroethane, carbon tetrachloride, and trichloroethylene] were measured across a polyethylene bag. Comparison of model and experimental results of VOC concentration as a function of time indicate that model accurately accounts for significant VOC transport mechanisms in a lab-scale waste drum

  10. Aromatic volatile organic compounds and their role in ground-level ozone formation in Russia

    Science.gov (United States)

    Berezina, E. V.; Moiseenko, K. B.; Skorokhod, A. I.; Elansky, N. F.; Belikov, I. B.

    2017-05-01

    This paper reports proton mass spectrometry data on aromatic volatile organic compounds (VOCs) (benzene, toluene, phenol, styrene, xylene, and propylbenzene) obtained in different Russian regions along the Trans-Siberian Railway from Moscow to Vladivostok, based on expedition data retrieved using the TRO-ICA-12 mobile laboratory in the summer of 2008. The contribution of aromatic VOCs to ozone formation in the cities and regions along the measurement route has been estimated quantitatively. The greatest contribution of aromatic VOCs to ozone formation is characteristic of large cities along the Trans-Siberian Railway (up to 7.5 ppbv O3) specified by the highest concentrations of aromatic VOCs (1-1.7 ppbv) and nitrogen oxides (>20 ppbv). The results obtained are indicative of a considerable contribution (30-50%) of anthropogenic emissions of VOCs to photochemical ozone generation in the large cities along the Trans-Siberian Railway in hot and dry weather against the background of a powerful natural factor such as isoprene emissions controlling the regional balance of ground-level ozone in warm seasons.

  11. Biological elimination of volatile, organic compounds from waste gases in a biofilter

    Energy Technology Data Exchange (ETDEWEB)

    Wu, G.; Chabot, J.C.; Caron, J.J.; Heitz, M. [Universite de Sherbrooke, Sherbrooke, PQ (Canada). Dept. de Genie Chimique

    1998-01-01

    A great deal of research has been directed towards the problem of reduction and control of volatile organic compounds (VOCs). The aim of this research is to find a process that is both efficient and inexpensive in comparison with traditional air treatment technologies. The biofilter used, a one stage system, 2 m in height, is an aerobic system for waste gases containing VOC`s using the degradation properties of microbial flora (assorted cultures of Bacillus, Micrococcus, Acinetobacter and yeast). In this process, polluted gas diffuses across a filter bed into which a microbial culture has previously been introduced. Peat is the medium of choice for inoculation with microorganisms because of its adsorption and absorption properties, ability to retain moisture, and buffering capacity. Furthermore, the peat utilized is spherical in shape; thus, it is possible to avoid problems related to compacting. The objective of this study was to eliminate VOCs emitted from a rotogravure process. The team was able to achieve promising results from biofiltration of two types of VOCs (a mixed solvent containing isopropyl acetate and 1-nitropropane, and the solvent: 1-nitropropane). The results obtained indicate that the elimination of nitropropane and the mixed solvent in the biofilter are considered to follow zero-order kinetics with reaction rate limitation and diffusion rate limitation, respectively. 8 refs., 5 figs.

  12. Migration rates of volatile organic compounds in an unconsolidated sand and gravel aquifer system

    International Nuclear Information System (INIS)

    Naidu, J.R.; Paquette, D.E.; Porcelli, D.R.

    1993-01-01

    The movement of volatile organic compounds (VOCs) in an aquifer is dictated by its solubility, attenuation characteristics, recharge volume, and ground-water movement (velocity and direction). At Brookhaven National Laboratory, past handling and disposal practices at the Hazardous Waste Management Facility and current landfill have resulted in the release of VOCs and the radioisotope tritium to the underlying upper glacial aquifer which characterized by unconsolidated sands and gravel. The rate of VOC migration from these source areas was examined using the following parameters: (1) distribution of VOCs and tritium; (2) tritium/helium ratios, which provide an estimate of the age of the water, and hence the rate of ground-water movement; (3) ground-water flow velocities within the upper glacial aquifer utilizing conductivity, porosity, and gradient data. Preliminary results indicate that whereas the comparison of the calculated ground-water flow gradient to tritium/helium age determinations are fairly consistent, application to VOC movement is inconclusive, and will require additional monitoring which would also focus on the vertical component as well

  13. Compositions of volatile organic compounds emitted from melted virgin and waste plastic pellets.

    Science.gov (United States)

    Yamashita, Kyoko; Yamamoto, Naomichi; Mizukoshi, Atsushi; Noguchi, Miyuki; Ni, Yueyong; Yanagisawa, Yukio

    2009-03-01

    To characterize potential air pollution issues related to recycling facilities of waste plastics, volatile organic compounds (VOCs) emitted from melted virgin and waste plastics pellets were analyzed. In this study, laboratory experiments were performed to melt virgin and waste plastic pellets under various temperatures (150, 200, and 250 degrees C) and atmospheres (air and nitrogen [N2]). In the study presented here, low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS) and the recycled waste plastic pellets were used. The VOCs generated from each plastic pellets were collected by Tenax/Carboxen adsorbent tubes and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). The result showed the higher temperatures generated larger amounts of total VOCs (TVOCs). The VOCs emitted from the virgin plastic pellets likely originated from polymer degradation. Smaller TVOC emissions were observed in N2 atmosphere than in air atmosphere. In particular, larger amounts of the oxygenated compounds, which are generally hazardous and malodorous, were detected in air than in N2. In addition to the compounds originating from polymer degradation, the compounds originating from the plastic additives were also detected from LDPE and PS. Furthermore, various species of VOCs likely originating from contaminant inseparate polyvinyl chloride (PVC), food residues, cleaning agents, degreasers, and so on were detected from the waste plastic. Thus, melting waste plastics, as is conducted in recycling facilities, might generate larger amounts of potentially toxic compounds than producing virgin plastics.

  14. Fluxes and concentrations of volatile organic compounds above central London, UK

    Directory of Open Access Journals (Sweden)

    B. Langford

    2010-01-01

    Full Text Available Concentrations and fluxes of eight volatile organic compounds (VOCs were measured during October 2006 from a high telecom tower above central London, as part of the CityFlux contribution to the REPARTEE I campaign. A continuous flow disjunct eddy covariance technique with analysis by proton transfer reaction mass spectrometry was used. Daily averaged VOC mixing ratios were within the range 1–19 ppb for the oxygenated compounds (methanol, acetaldehyde and acetone and 0.2–1.3 ppb for the aromatics (benzene, toluene and C2-benzenes. Typical VOC fluxes were in the range 0.1–1.0 mg m−2 h−1. There was a non-linear relationship between VOC fluxes and traffic density for most of the measured compounds. Traffic activity was estimated to account for approximately 70% of the aromatic compound fluxes, whereas non-traffic related sources were found to be more important for methanol and isoprene fluxes. The measured fluxes were comparable to the estimates of the UK national atmospheric emission inventory for the aromatic VOCs and CO. In contrast, fluxes of the oxygenated compounds were about three times larger than inventory estimates. For isoprene and acetonitrile this difference was many times larger. At temperatures over 25° C it is estimated that more than half the isoprene observed in central London is of biogenic origin.

  15. Disjunct eddy covariance measurements of volatile organic compound fluxes using proton transfer reaction mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Taipale, R.

    2011-07-01

    Volatile organic compounds (VOCs) are emitted into the atmosphere from natural and anthropogenic sources, vegetation being the dominant source on a global scale. Some of these reactive compounds are deemed major contributors or inhibitors to aerosol particle formation and growth, thus making VOC measurements essential for current climate change research. This thesis discusses ecosystem scale VOC fluxes measured above a boreal Scots pine dominated forest in southern Finland. The flux measurements were performed using the micrometeorological disjunct eddy covariance (DEC) method combined with proton transfer reaction mass spectrometry (PTR-MS), which is an online technique for measuring VOC concentrations. The measurement, calibration, and calculation procedures developed in this work proved to be well suited to long-term VOC concentration and flux measurements with PTR-MS. A new averaging approach based on running averaged covariance functions improved the determination of the lag time between wind and concentration measurements, which is a common challenge in DEC when measuring fluxes near the detection limit. The ecosystem scale emissions of methanol, acetaldehyde, and acetone were substantial. These three oxygenated VOCs made up about half of the total emissions, with the rest comprised of monoterpenes. Contrary to the traditional assumption that monoterpene emissions from Scots pine originate mainly as evaporation from specialized storage pools, the DEC measurements indicated a significant contribution from de novo biosynthesis to the ecosystem scale monoterpene emissions. This thesis offers practical guidelines for long-term DEC measurements with PTR-MS. In particular, the new averaging approach to the lag time determination seems useful in the automation of DEC flux calculations. Seasonal variation in the monoterpene biosynthesis and the detailed structure of a revised hybrid algorithm, describing both de novo and pool emissions, should be determined in

  16. Quartz tuning fork based sensor for detection of volatile organic compounds: towards breath analysis

    Science.gov (United States)

    Sampson, Abraham; Panchal, Suresh; Phadke, Apoorva; Kashyap, A.; Suman, Jilma; Unnikrishnan, G.; Datar, Suwarna

    2018-04-01

    Several volatile organic compounds (VOCs) are present in the exhaled human breath whose concentration can vary depending on the physiological changes occurring within a human being. These changes in the concentration or the occurrence of a particular VOC can be used as signature of a particular disease in a person. In the present work, a sensor has been developed to detect VOCs such as 1,4-dimethoxy-2,3-butanediol (BD), and cyclohexanone (CH), acetone, methanol and ethanol. Except for BD and CH, the rest of the VOCs are present in a healthy person in ppm levels. CH and BD have been reported to be present in the exhaled human breath of breast cancer patients in ppm levels and can be used to distinguish between a healthy person and a person with breast cancer. The selectivity of the sensor towards these two compounds in the presence of other VOCs commonly present in human breath like acetone, ethanol and methanol has been studied. The sensor has been developed using modified Quartz Tuning Forks (QTFs) with the intent of developing an array of such sensors identifying different VOCs present in a healthy human’s breath. Two differently modified QTFs have been used to detect 1 ppm of 1,4-dimethoxy-2,3-butanediol and 20 ppm of cyclohexanone. Linear Discriminants Analysis (LDA) has been used to classify seven different VOCs. For this purpose, features extracted from sensor responses -shift in resonant frequency, response time and recovery time of the sensors- have been used as features in the model. Differently modified array of QTFs along with the use of LDA can be a useful pathway towards development of a QTF based sensor array for human breath analysis.

  17. Estimation of indoor and outdoor ratios of selected volatile organic compounds in Canada

    Science.gov (United States)

    Xu, Jing; Szyszkowicz, Mieczyslaw; Jovic, Branka; Cakmak, Sabit; Austin, Claire C.; Zhu, Jiping

    2016-09-01

    Indoor air and outdoor air concentration (I/O) ratio can be used to identify the origins of volatile organic compounds (VOCs). I/O ratios of 25 VOCs in Canada were estimated based on the data collected in various areas in Canada between September 2009 and December 2011. The indoor VOC data were extracted from the Canadian Health Measures Survey (CHMS). Outdoor VOC data were obtained from Canada's National Air Pollution Surveillance (NAPS) Network. The sampling locations covered nine areas in six provinces in Canada. Indoor air concentrations were found higher than outdoor air for all studied VOCs, except for carbon tetrachloride. Two different approaches were employed to estimate the I/O ratios; both approaches produced similar I/O values. The I/O ratios obtained from this study were similar to two other Canadian studies where indoor air and outdoor air of individual dwellings were measured. However, the I/O ratios found in Canada were higher than those in European cities and in two large USA cities, possibly due to the fact that the outdoor air concentrations recorded in the Canadian studies were lower. Possible source origins identified for the studied VOCs based on their I/O ratios were similar to those reported by others. In general, chlorinated hydrocarbons, short-chain (C5, C6) n-alkanes and benzene had significant outdoor sources, while long-chain (C10sbnd C12) n-alkanes, terpenes, naphthalene and styrene had significant indoor sources. The remaining VOCs had mixed indoor and outdoor sources.

  18. Source Apportionment of Volatile Organic Compounds in an Urban Environment at the Yangtze River Delta, China.

    Science.gov (United States)

    An, Junlin; Wang, Junxiu; Zhang, Yuxin; Zhu, Bin

    2017-04-01

    Volatile organic compounds (VOCs) were collected continuously during June-August 2013 and December 2013-February 2014 at an urban site in Nanjing in the Yangtze River Delta. The positive matrix factorization receptor model was used to analyse the sources of VOCs in different seasons. Eight and seven sources were identified in summer and winter, respectively. In summer and winter, the dominant sources of VOCs were vehicular emissions, liquefied petroleum gas/natural gas (LPG/NG) usage, solvent usage, biomass/biofuel burning, and industrial production. In summer, vehicular emissions made the most significant contribution to ambient VOCs (38%), followed by LPG/NG usage (20%), solvent usage (19%), biomass/biofuel burning (13%), and industrial production (10%). In winter, LPG/NG usage accounted for 36% of ambient VOCs, whereas vehicular emissions, biomass/biofuel burning, industrial production and solvent usage contributed 30, 18, 9, and 6%, respectively. The contribution of LPG/NG usage in winter was approximately four times that in summer, whereas the contribution from biomass/biofuel burning in winter was more than twice that in summer. The sources related to vehicular emissions and LPG/NG usages were important. Using conditional probability function analysis, the VOC sources were mainly associated with easterly, northeasterly and southeasterly directions, pointing towards the major expressway and industrial area. Using the propylene-equivalent method, paint and varnish (23%) was the highest source of VOCs in summer and biomass/biofuel burning (36%) in winter. Using the ozone formation potential method, the most important source was biomass/biofuel burning (32% in summer and 47% in winter). The result suggests that the biomass/biofuel burning and paint and varnish play important roles in controlling ozone chemical formation in Nanjing.

  19. The influence of model resolution on ozone in industrial volatile organic compound plumes.

    Science.gov (United States)

    Henderson, Barron H; Jeffries, Harvey E; Kim, Byeong-Uk; Vizuete, William G

    2010-09-01

    Regions with concentrated petrochemical industrial activity (e.g., Houston or Baton Rouge) frequently experience large, localized releases of volatile organic compounds (VOCs). Aircraft measurements suggest these released VOCs create plumes with ozone (O3) production rates 2-5 times higher than typical urban conditions. Modeling studies found that simulating high O3 productions requires superfine (1-km) horizontal grid cell size. Compared with fine modeling (4-kmin), the superfine resolution increases the peak O3 concentration by as much as 46%. To understand this drastic O3 change, this study quantifies model processes for O3 and "odd oxygen" (Ox) in both resolutions. For the entire plume, the superfine resolution increases the maximum O3 concentration 3% but only decreases the maximum Ox concentration 0.2%. The two grid sizes produce approximately equal Ox mass but by different reaction pathways. Derived sensitivity to oxides of nitrogen (NOx) and VOC emissions suggests resolution-specific sensitivity to NOx and VOC emissions. Different sensitivity to emissions will result in different O3 responses to subsequently encountered emissions (within the city or downwind). Sensitivity of O3 to emission changes also results in different simulated O3 responses to the same control strategies. Sensitivity of O3 to NOx and VOC emission changes is attributed to finer resolved Eulerian grid and finer resolved NOx emissions. Urban NOx concentration gradients are often caused by roadway mobile sources that would not typically be addressed with Plume-in-Grid models. This study shows that grid cell size (an artifact of modeling) influences simulated control strategies and could bias regulatory decisions. Understanding the dynamics of VOC plume dependence on grid size is the first step toward providing more detailed guidance for resolution. These results underscore VOC and NOx resolution interdependencies best addressed by finer resolution. On the basis of these results, the

  20. Fundamental mass transfer modeling of emission of volatile organic compounds from building materials

    Science.gov (United States)

    Bodalal, Awad Saad

    In this study, a mass transfer theory based model is presented for characterizing the VOC emissions from building materials. A 3-D diffusion model is developed to describe the emissions of volatile organic compounds (VOCs) from individual sources. Then the formulation is extended to include the emissions from composite sources (system comprising an assemblage of individual sources). The key parameters for the model (The diffusion coefficient of the VOC in the source material D, and the equilibrium partition coefficient k e) were determined independently (model parameters are determined without the use of chamber emission data). This procedure eliminated to a large extent the need for emission testing using environmental chambers, which is costly, time consuming, and may be subject to confounding sink effects. An experimental method is developed and implemented to measure directly the internal diffusion (D) and partition coefficients ( ke). The use of the method is illustrated for three types of VOC's: (i) Aliphatic Hydrocarbons, (ii) Aromatic Hydrocarbons and ( iii) Aldehydes, through typical dry building materials (carpet, plywood, particleboard, vinyl floor tile, gypsum board, sub-floor tile and OSB). Then correlations for predicting D and ke based solely on commonly available properties such as molecular weight and vapour pressure were proposed for each product and type of VOC. These correlations can be used to estimate the D and ke when direct measurement data are not available, and thus facilitate the prediction of VOC emissions from the building materials using mass transfer theory. The VOC emissions from a sub-floor material (made of the recycled automobile tires), and a particleboard are measured and predicted. Finally, a mathematical model to predict the diffusion coefficient through complex sources (floor adhesive) as a function of time was developed. Then this model (for diffusion coefficient in complex sources) was used to predict the emission rate from

  1. The effect of warming and enhanced ultraviolet radiation on gender-specific emissions of volatile organic compounds from European aspen

    Energy Technology Data Exchange (ETDEWEB)

    Maja, Mengistu M., E-mail: mengistu.maja@uef.fi [University of Eastern Finland, Department of Environmental Science, P.O.Box 1627, 70211 Kuopio (Finland); Kasurinen, Anne; Holopainen, Toini [University of Eastern Finland, Department of Environmental Science, P.O.Box 1627, 70211 Kuopio (Finland); Julkunen-Tiitto, Riitta [University of Eastern Finland, Department of Biology, P.O. Box 111, 80101 Joensuu (Finland); Holopainen, Jarmo K. [University of Eastern Finland, Department of Environmental Science, P.O.Box 1627, 70211 Kuopio (Finland)

    2016-03-15

    Different environmental stress factors often occur together but their combined effects on plant secondary metabolism are seldom considered. We studied the effect of enhanced ultraviolet (UV-B) (31% increase) radiation and temperature (ambient + 2 °C) singly and in combination on gender-specific emissions of volatile organic compounds (VOCs) from 2-year-old clones of European aspen (Populus tremula L.). Plants grew in 36 experimental plots (6 replicates for Control, UV-A, UV-B, T, UV-A + T and UV-B + T treatments), in an experimental field. VOCs emitted from shoots were sampled from two (1 male and 1 female) randomly selected saplings (total of 72 saplings), per plot on two sampling occasions (June and July) in 2014. There was a significant UV-B × temperature interaction effect on emission rates of different VOCs. Isoprene emission rate was increased due to warming, but warming also modified VOC responses to both UV-A and UV-B radiation. Thus, UV-A increased isoprene emissions without warming, whereas UV-B increased emissions only in combination with warming. Warming-modified UV-A and UV-B responses were also seen in monoterpenes (MTs), sesquiterpenes (SQTs) and green leaf volatiles (GLVs). MTs showed also a UV × gender interaction effect as females had higher emission rates under UV-A and UV-B than males. UV × gender and T × gender interactions caused significant differences in VOC blend as there was more variation (more GLVs and trans-β-caryophyllene) in VOCs from female saplings compared to male saplings. VOCs from the rhizosphere were also collected from each plot in two exposure seasons, but no significant treatment effects were observed. Our results suggest that simultaneous warming and elevated-UV-radiation increase the emission of VOCs from aspen. Thus the contribution of combined environmental factors on VOC emissions may have a greater impact to the photochemical reactions in the atmosphere compared to the impact of individual factors acting alone

  2. The effect of warming and enhanced ultraviolet radiation on gender-specific emissions of volatile organic compounds from European aspen

    International Nuclear Information System (INIS)

    Maja, Mengistu M.; Kasurinen, Anne; Holopainen, Toini; Julkunen-Tiitto, Riitta; Holopainen, Jarmo K.

    2016-01-01

    Different environmental stress factors often occur together but their combined effects on plant secondary metabolism are seldom considered. We studied the effect of enhanced ultraviolet (UV-B) (31% increase) radiation and temperature (ambient + 2 °C) singly and in combination on gender-specific emissions of volatile organic compounds (VOCs) from 2-year-old clones of European aspen (Populus tremula L.). Plants grew in 36 experimental plots (6 replicates for Control, UV-A, UV-B, T, UV-A + T and UV-B + T treatments), in an experimental field. VOCs emitted from shoots were sampled from two (1 male and 1 female) randomly selected saplings (total of 72 saplings), per plot on two sampling occasions (June and July) in 2014. There was a significant UV-B × temperature interaction effect on emission rates of different VOCs. Isoprene emission rate was increased due to warming, but warming also modified VOC responses to both UV-A and UV-B radiation. Thus, UV-A increased isoprene emissions without warming, whereas UV-B increased emissions only in combination with warming. Warming-modified UV-A and UV-B responses were also seen in monoterpenes (MTs), sesquiterpenes (SQTs) and green leaf volatiles (GLVs). MTs showed also a UV × gender interaction effect as females had higher emission rates under UV-A and UV-B than males. UV × gender and T × gender interactions caused significant differences in VOC blend as there was more variation (more GLVs and trans-β-caryophyllene) in VOCs from female saplings compared to male saplings. VOCs from the rhizosphere were also collected from each plot in two exposure seasons, but no significant treatment effects were observed. Our results suggest that simultaneous warming and elevated-UV-radiation increase the emission of VOCs from aspen. Thus the contribution of combined environmental factors on VOC emissions may have a greater impact to the photochemical reactions in the atmosphere compared to the impact of individual factors acting alone

  3. Volatile Organic Compounds from Logwood Combustion: Emissions and Transformation under Dark and Photochemical Aging Conditions in a Smog Chamber.

    Science.gov (United States)

    Hartikainen, Anni; Yli-Pirilä, Pasi; Tiitta, Petri; Leskinen, Ari; Kortelainen, Miika; Orasche, Jürgen; Schnelle-Kreis, Jürgen; Lehtinen, Kari E J; Zimmermann, Ralf; Jokiniemi, Jorma; Sippula, Olli

    2018-04-17

    Residential wood combustion (RWC) emits high amounts of volatile organic compounds (VOCs) into ambient air, leading to formation of secondary organic aerosol (SOA), and various health and climate effects. In this study, the emission factors of VOCs from a logwood-fired modern masonry heater were measured using a Proton-Transfer-Reactor Time-of-Flight Mass Spectrometer. Next, the VOCs were aged in a 29 m 3 Teflon chamber equipped with UV black lights, where dark and photochemical atmospheric conditions were simulated. The main constituents of the VOC emissions were carbonyls and aromatic compounds, which accounted for 50%-52% and 30%-46% of the detected VOC emission, respectively. Emissions were highly susceptible to different combustion conditions, which caused a 2.4-fold variation in emission factors. The overall VOC concentrations declined considerably during both dark and photochemical aging, with simultaneous increase in particulate organic aerosol mass. Especially furanoic and phenolic compounds decreased, and they are suggested to be the major precursors of RWC-originated SOA in all aging conditions. On the other hand, dark aging produced relatively high amounts of nitrogen-containing organic compounds in both gas and particulate phase, while photochemical aging increased especially the concentrations of certain gaseous carbonyls, particularly acid anhydrides.

  4. Evaluation of the correlation between concentration of volatile organic compounds and temperature of the exhaust gases in motor vehicles

    Science.gov (United States)

    Skrętowicz, Maria; Wróbel, Radosław; Andrych-Zalewska, Monika

    2017-11-01

    Volatile organic compounds (VOCs) are the group of organic compounds which are one of the most important air pollutants. One of the main sources of VOCs are combustion processes including fuel combustion is internal combustion engines. Volatile organic compounds are very dangerous pollution, because even in very low concentrations they have significant harmful effect on human health. A lot of that compounds are mutagenic and carcinogenic, in addition they could cause asthma, intoxication or allergy. The measurements of VOCs are quite problematic, because it is required using the specialist analytical apparatus, ex. chromatograph. However, not always it is need to measure the content of that compounds in engine exhaust with high precision and sometimes it is enough only to estimate the level of the concentration. Emission of the VOCs mainly depends on the combustion process in the engine and this determines the temperature of the exhaust gases. In this paper authors tried to determine if the correlation between temperature of exhaust gases and VOCs' concentration exist and is able to determine.

  5. A Novel Method for Analyzing Microbially Affiliated Volatile Organic Compounds in Soil Environments

    Science.gov (United States)

    Ruhs, C. V.; McNeal, K. S.

    2010-12-01

    A concerted, international effort by citizens, governments, industries and educational systems is necessary to address the myriad environmental issues that face us today. The authors of this paper concentrate on soil environments and, specifically, the methods currently used to characterize them. The ability to efficiently and effectively monitor and characterize various soils is desired, allows for the study, supervision, and protection of natural and cultivated ecosystems, and may assist stakeholders in meeting governmentally-imposed environmental standards. This research addresses soil characterization by a comparison of four methods that emphasize a combination of microbial community and metabolic measures: BIOLOG, fatty acid methyl-ester analysis (FAME), descriptive physical and chemical analysis (moisture content, pH, carbon content, nutrient content, and grain size), and the novel soil-microbe volatile organic compound analysis (SMVOC) presented in this work. In order to achieve the method comparison, soils were collected from three climatic regions (Bahamas, Michigan, and Mississippi), with three samples taken from niche ecosystems found at each climatic region (a total of nine sites). Of interest to the authors is whether or not an investigation of microbial communities and the volatile organic compounds (VOCs) produced by microbial communities from nine separate soil ecosystems provides useful information about soil dynamics. In essence, is analysis of soil-derived VOCs using gas chromatography-mass spectrometry (GC-MS) an effective method for characterizing microbial communities and their metabolic activity of soils rapidly and accurately compared with the other three traditional characterization methods? Preliminary results suggest that VOCs in each of these locales differ with changes in soil types, soil moisture, and bacterial community. Each niche site shows distinct patterns in both VOCs and BIOLOG readings. Results will be presented to show the

  6. A cohort study of intra-urban variations in volatile organic compounds and mortality, Toronto, Canada

    International Nuclear Information System (INIS)

    Villeneuve, Paul J.; Jerrett, Michael; Su, Jason; Burnett, Richard T.; Chen, Hong; Brook, Jeffrey; Wheeler, Amanda J.; Cakmak, Sabit; Goldberg, Mark S.

    2013-01-01

    This study investigated associations between long-term exposure to ambient volatile organic compounds (VOCs) and mortality. 58,760 Toronto residents (≥35 years of age) were selected from tax filings and followed from 1982 to 2004. Death information was extracted using record linkage to national mortality data. Land-use regression surfaces for benzene, n-hexane, and total hydrocarbons were generated from sampling campaigns in 2002 and 2004 and assigned to residential addresses in 1982. Cox regression was used to estimate relationships between each VOC and non-accidental, cardiovascular, and cancer mortality. Positive associations were observed for each VOC. In multi-pollutant models the benzene and total hydrocarbon signals were strongest for cancer. The hazard ratio for cancer that corresponded to an increase in the interquartile range of benzene (0.13 μg/m 3 ) was 1.06 (95% CI = 1.02–1.11). Our findings suggest ambient concentrations of VOCs were associated with cancer mortality, and that these exposures did not confound our previously reported associations between NO 2 and cardiovascular mortality. -- Highlights: ► We studied associations between long-term exposure to volatile organic compounds and mortality. ► The study was a population-based cohort of Toronto adults followed for up to 22 years. ► We used land-use regression estimates of benzene, total hydrocarbons and n-hexane. ► Benzene and total hydrocarbons were positively associated with cancer mortality. ► VOCs did not confound associations between NO 2 and cardiovascular mortality. -- Long-term exposure to ambient benzene was associated with non-accidental and cancer causes of death, and did not attenuate associations between NO 2 and cardiovascular mortality

  7. A Prototype Sensor for In Situ Sensing of Fine Particulate Matter and Volatile Organic Compounds.

    Science.gov (United States)

    Ng, Chee-Loon; Kai, Fuu-Ming; Tee, Ming-Hui; Tan, Nicholas; Hemond, Harold F

    2018-01-18

    Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic) capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5) and volatile organic compounds (VOCs). For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds.

  8. A Prototype Sensor for In Situ Sensing of Fine Particulate Matter and Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Chee-Loon Ng

    2018-01-01

    Full Text Available Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5 and volatile organic compounds (VOCs. For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds.

  9. Dynamic collection and analysis of volatile organic compounds from the headspace of cell cultures.

    Science.gov (United States)

    Baranska, A; Smolinska, A; Boots, A W; Dallinga, J W; van Schooten, F J

    2015-10-15

    Exhaled breath has proven to be a valuable source of information about human bodies. Subtle differences between volatile organic compounds (VOCs) formed endogenously can be detected and become a base for a potential monitoring tool for health and disease. Until now, there has been a lack of biological and mechanistic knowledge of the processes involved in the production of relevant VOCs. Among the possible sources of health-related and disease-related VOCs are microorganisms found in the respiratory tract and in the gut. Other VOCs in the body are produced by cells that are influenced by the disease, for instance, due to metabolic disorders and/or inflammation. To gain insight into the in vivo production of VOCs by human cells and thus the exhaled breath composition, in vitro experiments involving relevant cells should be studied because they may provide valuable information on the production of VOCs by the affected cells. To this aim we developed and validated a system for dynamically (continuously) collecting headspace air in vitro using a Caco-2 cell line. The system allows the application of different cell lines as well as different experimental setups, including varying exposure times and treatment options while preserving cell viability. Significant correlation (p  ⩽  0.0001) between collection outputs within each studied group confirmed high reproducibility of the collection system. An example of such an application is presented here. We studied the influence of oxidative stress on the VOC composition of the headspace air of Caco-2 cells. By comparing the VOC composition of air flushed through empty culture flasks (n  =  35), flasks with culture medium (n  =  35), flasks with medium and cells (n  =  20), flasks with medium and an oxidative stressor (H2O2) (n  =  20), and flasks with medium, stressor, and cells (n  =  20), we were able to separate the effects from the stressor on the cells from all other

  10. Origin and variability in volatile organic compounds observed at an Eastern Mediterranean background site (Cyprus

    Directory of Open Access Journals (Sweden)

    C. Debevec

    2017-09-01

    Full Text Available More than 7000 atmospheric measurements of over 60 C2 − C16 volatile organic compounds (VOCs were conducted at a background site in Cyprus during a 1-month intensive field campaign held in March 2015. This exhaustive dataset consisted of primary anthropogenic and biogenic VOCs, including a wide range of source-specific tracers, and oxygenated VOCs (with various origins that were measured online by flame ionization detection–gas chromatography and proton transfer mass spectrometry. Online submicron aerosol chemical composition was performed in parallel using an aerosol mass spectrometer. This study presents the high temporal variability in VOCs and their associated sources. A preliminary analysis of their time series was performed on the basis of independent tracers (NO, CO, black carbon, meteorological data and the clustering of air mass trajectories. Biogenic compounds were mainly attributed to a local origin and showed compound-specific diurnal cycles such as a daily maximum for isoprene and a nighttime maximum for monoterpenes. Anthropogenic VOCs as well as oxygenated VOCs displayed higher mixing ratios under the influence of continental air masses (i.e., western Asia, indicating that long-range transport significantly contributed to the VOC levels in the area. Source apportionment was then conducted on a database of 20 VOCs (or grouped VOCs using a source receptor model. The positive matrix factorization and concentration field analyses were hence conducted to identify and characterize covariation factors of VOCs that were representative of primary emissions as well as chemical transformation processes. A six-factor PMF solution was selected, namely two primary biogenic factors (relative contribution of 43 % to the total mass of VOCs for different types of emitting vegetation; three anthropogenic factors (short-lived combustion source, evaporative sources, industrial and evaporative sources; 21 % all together, identified

  11. Tracing the link between plant volatile organic compound emissions and CO2 fluxes and by stable isotopes

    Science.gov (United States)

    Werner, Christiane; Wegener, Frederik; Jardine, Kolby

    2015-04-01

    The vegetation exerts a large influence on the atmosphere through the emission of volatile organic compounds (VOCs) and the emission and uptake of the greenhouse gas CO2. Despite the enormous importance, processes controlling plant carbon allocation into primary and secondary metabolism, such as photosynthetic carbon uptake, respiratory CO2 emission and VOC synthesis, remains unclear. Moreover, vegetation-atmosphere CO2 exchange is associated with a large isotopic imprint due to photosynthetic carbon isotope discrimination and 13C-fractionation during respiratory CO2 release1. The latter has been proposed to be related to carbon partitioning in the metabolic branching points of the respiratory pathways and secondary metabolism, which are linked via a number of interfaces including the central metabolite pyruvate. Notably, it is a known substrate in a large array of secondary pathways leading to the biosynthesis of many volatile organic compounds (VOCs), such as volatile isoprenoids, oxygenated VOCs, aromatics, fatty acid oxidation products, which can be emitted by plants. Here we investigate the linkage between VOC emissions, CO2 fluxes and associated isotope effects based on simultaneous real-time measurements of stable carbon isotope composition of branch respired CO2 (CRDS) and VOC fluxes (PTR-MS). We utilized positionally specific 13C-labeled pyruvate branch feeding experiments in the mediterranean shrub (Halimium halimifolium) to trace the partitioning of C1, C2, and C3 carbon atoms of pyruvate into VOCs versus CO2 emissions in the light and in the dark. In the light, we found high emission rates of a large array of VOC including volatile isoprenoids, oxygenated VOCs, green leaf volatiles, aromatics, sulfides, and nitrogen containing VOCs. These observations suggest that in the light, H. halimifolium dedicates a high carbon flux through secondary biosynthetic pathways including the pyruvate dehydrogenase bypass, mevalonic acid, MEP/DOXP, shikimic acid, and

  12. Removal of gasoline volatile organic compounds via air biofiltration

    International Nuclear Information System (INIS)

    Miller, R.S.; Saberiyan, A.G.; Esler, C.T.; DeSantis, P.; Andrilenas, J.S.

    1995-01-01

    Volatile organic compounds (VOCs) generated by vapor extraction and air-stripping systems can be biologically treated in an air biofiltration unit. An air biofilter consists of one or more beds of packing material inoculated with heterotrophic microorganisms capable of degrading the organic contaminant of concern. Waste gases and oxygen are passed through the inoculated packing material, where the microorganisms will degrade the contaminant and release CO 2 + H 2 O. Based on data obtained from a treatability study, a full-scale unit was designed and constructed to be used for treating gasoline vapors generated by a vapor-extraction and groundwater-treatment system at a site in California. The unit is composed of two cylindrical reactors with a total packing volume of 3 m 3 . Both reactors are packed with sphagnum moss and inoculated with hydrocarbon-degrading microorganisms of Pseudomonas and Arthrobacter spp. The two reactors are connected in series for air-flow passage. Parallel lines are used for injection of water, nutrients, and buffer to each reactor. Data collected during the startup program have demonstrated an air biofiltration unit with high organic-vapor-removal efficiency

  13. Effect of organic fertilizers prepared from organic waste materials on the production of antibacterial volatile organic compounds by two biocontrol Bacillus amyloliquefaciens strains.

    Science.gov (United States)

    Raza, Waseem; Wei, Zhong; Ling, Ning; Huang, Qiwei; Shen, Qirong

    2016-06-10

    Three organic fertilizers made of different animal and plant waste materials (BOFs) were evaluated for their effects on the production of antibacterial volatile organic compounds (VOCs) by two Bacillus amyloliquefaciens strains SQR-9 and T-5 against the tomato wilt pathogen Ralstonia solanacearum (RS). Both strains could produce VOCs that inhibited the growth and virulence traits of RS; however, in the presence of BOFs, the production of antibacterial VOCs was significantly increased. The maximum inhibition of growth and virulence traits of RS by VOCs of T-5 and SQR-9 was determined at 1.5% BOF2 and 2% BOF3, respectively. In case of strain T-5, 2-nonanone, nonanal, xylene, benzothiazole, and butylated hydroxy toluene and in case of strain SQR-9, 2-nonanone, nonanal, xylene and 2-undecanone were the main antibacterial VOCs whose production was increased in the presence of BOFs. The results of this study reveal another significance of using organic fertilizers to improve the antagonistic activity of biocontrol agents against phytopathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Volatile organic compound emissions from the oil and natural gas industry in the Uinta Basin, Utah: point sources compared to ambient air composition

    OpenAIRE

    C. Warneke; F. Geiger; P. M. Edwards; W. Dube; G. Pétron; J. Kofler; A. Zahn; S. S. Brown; M. Graus; J. Gilman; B. Lerner; J. Peischl; T. B. Ryerson; J. A. de Gouw; J. M. Roberts

    2014-01-01

    The emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uinta Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aroma...

  15. SITE TECHNOLOGY CAPSULE: SUBSURFACE VOLATILIZATION AND VENTILATION SYSTEM (SVVS)

    Science.gov (United States)

    The Subsurface Volatilization and Ventilation System is an integrated technology used for attacking all phases of volatile organic compound (VOC) contamination in soil and groundwater. The SVVS technology promotes insitu remediation of soil and groundwater contaminated with or-ga...

  16. Detection of Volatile Organic Compound Gas Using Localized Surface Plasmon Resonance of Gold Nanoparticles

    International Nuclear Information System (INIS)

    Sri Nengsih; Akrajas Ali Umar; Muhamad Mat Salleh; Muhammad Yahaya

    2011-01-01

    This paper reports on the detection of several organic vapors using the unique characteristic of localized surface plasmon resonance (LSPR) gold nanoparticles. Gold nanoparticles on quartz substrate were prepared using seed mediated growth method. In a typical process, gold nanoparticles with average size ca. 36 nm were obtained to densely grown on the substrate. Detection of gas was based on the change in the LSPR of the gold nanoparticles film upon the exposure to the gas sample. It was found that gold nanoparticles were sensitive to the presence of volatile organic compound (VOC) gas from the change in the surface plasmon resonance (SPR) intensity. The mechanism for the detection of VOCs gas will be discussed. (author)

  17. Improved quantification of livestock associated odorous volatile organic compounds in a standard flow-through system using solid-phase microextraction and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Yang, Xiuyan; Zhu, Wenda; Koziel, Jacek A; Cai, Lingshuang; Jenks, William S; Laor, Yael; Leeuwen, J Hans van; Hoff, Steven J

    2015-10-02

    Aerial emissions of odorous volatile organic compounds (VOCs) are an important nuisance factor from livestock production systems. Reliable air sampling and analysis methods are needed to develop and test odor mitigation technologies. Quantification of VOCs responsible for livestock odor remains an analytical challenge due to physicochemical properties of VOCs and the requirement for low detection thresholds. A new air sampling and analysis method was developed for testing of odor/VOCs mitigation in simulated livestock emissions system. A flow-through standard gas generating system simulating odorous VOCs in livestock barn emissions was built on laboratory scale and tested to continuously generate ten odorous VOCs commonly defining livestock odor. Standard VOCs included sulfur VOCs (S-VOCs), volatile fatty acids (VFAs), and p-cresol. Solid-phase microextraction (SPME) was optimized for sampling of diluted odorous gas mixtures in the moving air followed by gas chromatography-mass spectrometry (GC-MS) analysis. CAR/PDMS 85μm fiber was shown to have the best sensitivity for the target odorous VOCs. A practical 5-min sampling time was selected to ensure optimal extraction of VFAs and p-cresol, as well as minimum displacement of S-VOCs. Method detection limits ranged from 0.39 to 2.64ppbv for S-VOCs, 0.23 to 0.77ppbv for VFAs, and 0.31ppbv for p-cresol. The method developed was applied to quantify VOCs and odorous VOC mitigation with UV light treatment. The measured concentrations ranged from 20.1 to 815ppbv for S-VOCs, 10.3 to 315ppbv for VFAs, and 4.73 to 417ppbv for p-cresol. Relative standard deviations between replicates ranged from 0.67% to 12.9%, 0.50% to 11.4%, 0.83% to 5.14% for S-VOCs, VFAs, and p-cresol, respectively. This research shows that a simple manual SPME sampler could be used successfully for quantification of important classes of odorous VOCs at concentrations relevant for real aerial emissions from livestock operations. Copyright © 2015 Elsevier B

  18. Distribution of Total Volatile Organic Compounds at taxi drivers in Tehran

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Javad Golhosseini

    2015-06-01

    Full Text Available Air pollution is currently the most serious environmental health threat worldwide. Volatile Organic Compounds (VOC are considered as the main effective factors in causing air pollution. Vehicles are among the major sources which emit these compounds, so it seems that automobiles’ microenvironment is one of the places where people are exposed to high concentration of VOC. Evaluating the exposure amount of Total Volatile Organic Compounds (TVOC can indeed be used as an indicator to estimate the amount of exposure to every individual VOC. This study was conducted on the concentration of TVOC inside Tehran taxies for a period of one year. For this purpose, a real time instrument equipped with photo-ionization detector (PID was used. Consequently, the highest and the lowest measured TVOC in taxies equaled 3.33 ppm and 0.72 ppm, respectively. In addition, the arithmetic mean of TVOC concentration was 1.77±0.53 ppm inside the examined taxies. In this study, the parameters like measurement time, climate and vehicle conditions were found to have significant effect on the amount of exposure to TVOC.

  19. Volatile Organic Compound Investigation Results, 300 Area, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Robert E.; Williams, Bruce A.; Smith, Ronald M.

    2008-07-07

    Unexpectedly high concentrations of volatile organic compounds (VOC) were discovered while drilling in the unconfined aquifer beneath the Hanford Site’s 300 Area during 2006. The discovery involved an interval of relatively finer-grained sediment within the unconfined aquifer, an interval that is not sampled by routine groundwater monitoring. Although VOC contamination in the unconfined aquifer has been identified and monitored, the concentrations of newly discovered contamination are much higher than encountered previously, with some new results significantly higher than the drinking water standards. The primary contaminant is trichloroethene, with lesser amounts of tetrachloroethene. Both chemicals were used extensively as degreasing agents during the fuels fabrication process. A biological degradation product of these chemicals, 1,2-dichloroethene, was also detected. To further define the nature and extent of this contamination, additional characterization drilling was undertaken during 2007. Four locations were drilled to supplement the information obtained at four locations drilled during the earlier investigation in 2006. The results of the combined drilling indicate that the newly discovered contamination is limited to a relatively finer-grained interval of Ringold Formation sediment within the unconfined aquifer. The extent of this contamination appears to be the area immediately east and south of the former South Process Pond. Samples collected from the finer-grained sediment at locations along the shoreline confirm the presence of the contamination near the groundwater/river interface. Contamination was not detected in river water that flows over the area where the river channel potentially incises the finer-grained interval of aquifer sediment. The source for this contamination is not readily apparent. A search of historical documents and the Hanford Waste Information Data System did not provide definitive clues as to waste disposal operations and

  20. An Analysis of Descriptors of Volatile Organic Compounds and Their Impact on Rate Constant for Reaction with Hydroxyl Radicals

    Science.gov (United States)

    2018-05-01

    5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Excet, Inc.; 2108 Emmorton Park Road , Suite 201...SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Defense Threat Reduction Agency, 8725 John J. Kingman Road , MSC 6201, Fort Belvoir, VA 22060...bond descriptors may be useful for the construction of predictive modeling. 15. SUBJECT TERMS Volatile organic compound (VOC) Chemical descriptors

  1. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air

    Directory of Open Access Journals (Sweden)

    Bartosz Szulczyński

    2017-03-01

    Full Text Available The paper presents principle of operation and design of the most popular chemical sensors for measurement of volatile organic compounds (VOCs in outdoor and indoor air. It describes the sensors for evaluation of explosion risk including pellistors and IR-absorption sensors as well as the sensors for detection of toxic compounds such as electrochemical (amperometric, photoionization and semiconductor with solid electrolyte ones. Commercially available sensors for detection of VOCs and their metrological parameters—measurement range, limit of detection, measurement resolution, sensitivity and response time—were presented. Moreover, development trends and prospects of improvement of the metrological parameters of these sensors were highlighted.

  2. Simultaneous counter-flow of chlorinated volatile organic compounds across the saturated-unsaturated interface region of an aquifer.

    Science.gov (United States)

    Ronen, Daniel; Lev-Wiener, Hagit; Graber, Ellen R; Dahan, Ofer; Weisbrod, Noam

    2010-04-01

    Concentrations of chlorinated volatile organic compounds (Cl-VOCs) at the saturated-unsaturated interface region (SUIR; depth of approximately 18m) of a sandy phreatic aquifer were measured in two monitoring wells located 25m apart. The concentrations of the Cl-VOCs obtained above and below the water table along a 413-day period are interpreted to depict variable, simultaneous and independent movement of trichlorothene, tetrachloroethene, 1,1-dichloroethene, cis-1,2-dichloroethene, 1,1,1-trichloroethane, chloroform and 1,1-dichloroethane vapors in opposite directions across the SUIR. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  3. Gas-sensing properties of SnO2-TiO2-based sensor for volatile organic compound gas and its sensing mechanism

    International Nuclear Information System (INIS)

    Zeng Wen; Liu Tianmo

    2010-01-01

    We report the microstructure and gas-sensing properties of the SnO 2 -TiO 2 composite oxide dope with Ag ion prepared by the sol-gel method. Of all various volatile organic compounds (VOCs) such as ethanol, methanol, acetone and formaldehyde were examined, the sensor exhibits remarkable selectivity to each VOCs at different operating temperature. Further investigations based on quantum chemistry calculation show that difference orbital energy of VOCs molecule may be a qualitative factor to affect the selectivity of the sensor.

  4. Health Risk Assessment and DNA Damage of Volatile Organic Compounds in Car Painting Houses

    Directory of Open Access Journals (Sweden)

    Patpida Siripongpokin

    2014-06-01

    Full Text Available Car painters who work near volatile organic compounds (VOCs sources, including paints, solvents and painting processes may be exposed to highly elevated VOCs levels. This study investigates air samples from car painting houses in Thailand to evaluate the health risks following inhalation exposure. Personal air samplings were obtained at nine garages in Phitsanulok, Thailand from June to September 2012. The concentrations of benzene, toluene, ethylbenzene, xylenes, and styrene in the air workplaces were significantly higher than in a control group of office workers (p < 0.05. Toluene, xylene and ethylbenzene were the most abundant species. However, all VOCs in these air samples were lower than TWA limit of Thailand and the OSHA standard. The lifetime cancer and non-cancer risks for the workers exposed to VOCs were also assessed. The average lifetime cancer risk was 41.0 (38.2-47.2 per million, which is in the acceptable risk. The average lifetime non-cancer risk, the HI, was 0.962 (0.643-1.397, which is well below the reference hazard level. Urine samples, collected after 8-h work periods which were analyzed for VOCs metabolites, including t,t muconic acid, hippuric acid, mandelic acid and m-hippuric acid, demonstrate that the average levels of metabolites in car painters and in controls were close. All VOCs metabolites in urine samples were lower than BEI of ACGIH standard. Blood samples, collected after 8-h work periods which were analyzed by single cell gel electrophoresis (comet assay. The DNA damage, assessed by tail moment, demonstrates that the average of tail moment in car painters were significantly higher than in the controls (p < 0.05.

  5. Volatile organic compounds in Tijuana during the Cal-Mex 2010 campaign: Measurements and source apportionment

    Science.gov (United States)

    Zheng, Jun; Garzón, Jessica P.; Huertas, María E.; Zhang, Renyi; Levy, Misti; Ma, Yan; Huertas, José I.; Jardón, Ricardo T.; Ruíz, Luis G.; Tan, Haobo; Molina, Luisa T.

    2013-05-01

    As part of the Cal-Mex 2010 air quality study, a proton transfer reaction-mass spectrometer (PTR-MS) was deployed at the San Diego-Tijuana border area to measure volatile organic compounds (VOCs) from 15 May to 30 June 2010. The major VOCs identified during the study included oxygenated VOCs (e.g., methanol, acetaldehyde, acetone, and methyl ethyl ketone) and aromatics (e.g., benzene, toluene, C8- and C9-aromatics). Biogenic VOCs (e.g., isoprene) were scarce in this region because of the lack of vegetation in this arid area. Using an U.S. EPA positive matrix factorization model, VOCs together with other trace gases (NOx, NOz and SO2) observed in this border region were attributed to four types of sources, i.e., local industrial solvent usage (58% in ppbC), gasoline vehicle exhaust (19% in ppbC), diesel vehicle exhaust (14% in ppbC), and aged plume (9% in ppbC) due to regional background and/or long-range transport. Diesel vehicle emission contributed to 87% of SO2 and 75% of NOx, and aged plume contributed to 92% of NOz. An independent conditional probability function analysis of VOCs, wind direction, and wind speed indicated that the industrial source did not show a significant tendency with wind direction. Both gasoline and diesel engine emissions were associated with air masses passing through two busy cross-border ports. Aged plumes were strongly associated with NW wind, which likely brought in aged air masses from the populated San Diego area.

  6. Estimation of volatile organic compound emissions for Europe using data assimilation

    Directory of Open Access Journals (Sweden)

    M. R. Koohkan

    2013-06-01

    Full Text Available The emissions of non-methane volatile organic compounds (VOCs over western Europe for the year 2005 are estimated via inverse modelling by assimilation of in situ observations of concentration and then subsequently compared to a standard emission inventory. The study focuses on 15 VOC species: five aromatics, six alkanes, two alkenes, one alkyne and one biogenic diene. The inversion relies on a validated fast adjoint of the chemical transport model used to simulate the fate and transport of these VOCs. The assimilated ground-based measurements over Europe are provided by the European Monitoring and Evaluation Programme (EMEP network. The background emission errors and the prior observational errors are estimated by maximum-likelihood approaches. The positivity assumption on the VOC emission fluxes is pivotal for a successful inversion, and this maximum-likelihood approach consistently accounts for the positivity of the fluxes. For most species, the retrieved emissions lead to a significant reduction of the bias, which underlines the misfit between the standard inventories and the observed concentrations. The results are validated through a forecast test and a cross-validation test. An estimation of the posterior uncertainty is also provided. It is shown that the statistically consistent non-Gaussian approach based on a reliable estimation of the errors offers the best performance. The efficiency in correcting the inventory depends on the lifetime of the VOCs and the accuracy of the boundary conditions. In particular, it is shown that the use of in situ observations using a sparse monitoring network to estimate emissions of isoprene is inadequate because its short chemical lifetime significantly limits the spatial radius of influence of the monitoring data. For species with a longer lifetime (a few days, successful, albeit partial, emission corrections can reach regions hundreds of kilometres away from the stations. Domain-wide corrections of the

  7. Nonhuman primate breath volatile organic compounds associate with developmental programming and cardio-metabolic status.

    Science.gov (United States)

    Bishop, Andrew C; Libardoni, Mark; Choudary, Ahsan; Misra, Biswapriya Biswavas; Lange, Kenneth; Bernal, John; Nijland, Mark; Li, Cun; Olivier, Michael; Nathanielsz, Peter W; Cox, Laura A

    2018-03-29

    Rodent and nonhuman primate (NHP) studies indicate that developmental programming by reduced perinatal nutrition negatively impacts life course cardio-metabolic health. We have developed a baboon model in which we feed control mothers (CON) ad libitum while nutrient restricted mothers are fed 70% of ad libitum global feed in pregnancy and lactation. Offspring of nutrient restricted mothers are intrauterine growth restricted (IUGR) at term. By 3.5 years IUGR baboons showed signs of insulin resistance, indicating a pre-diabetic phenotype, in contrast to healthy CON offspring. We hypothesized that a novel breath analysis approach would provide markers of the altered cardio-metabolic state in a non-invasive manner. Here we assess whether exhaled breath volatile organic compounds (VOCs) collected from this unique cohort of juvenile baboons with documented cardio-metabolic dysfunction resulting from in utero programming can be detected from their breath signatures. Breath was collected from male and female CON and IUGR baboons at 4.8±0.2 years (human equivalent ~13 years). Breath VOCs were quantified using a two-dimensional gas chromatography mass spectrometer (2D GC-MS). Two-way ANOVA, on 76 biologically relevant VOCs identified 27 VOCs (p<0.05) with altered abundances between groups (sex, birthweight, and sex x birthweight). The 27 VOCs included 2-pentanone, 2-octanone, 2,5,5 trimethyl-1-hexene and 2,2-dimethyl-undecane, which have not previously been associated with cardio-metabolic disease. Unsupervised principal component analysis of these VOCs could discriminate the four defined clusters defining males, females, CON and IUGR. This study, which is the first to assess quantifiable breath signatures associated with cardio-metabolic programing for any model of IUGR, demonstrates the translational value of this unique model to identify metabolites of programmed cardio-metabolic dysfunction in breath signatures. Future studies are required to validate the

  8. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Apel, Eric; Emmons, L.; Karl, Thomas G.; Flocke, Frank M.; Hills, A. J.; Madronich, Sasha; Lee-Taylor, J.; Fried, Alan; Weibring, P.; Walega, J.; Richter, Dirk; Tie, X.; Mauldin, L.; Campos, Teresa; Weinheimer, Andrew J.; Knapp, David; Sive, B.; Kleinman, Lawrence I.; Springston, S.; Zaveri, Rahul A.; Ortega, John V.; Voss, Paul B.; Blake, D. R.; Baker, Angela K.; Warneke, Carsten; Welsh-Bon, Daniel; de Gouw, Joost A.; Zheng, J.; Zhang, Renyi; Rudolph, Jochen; Junkermann, W.; Riemer, D.

    2010-01-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on March 18 and the NCAR C130 one day later on March 19. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the March 19 plume and to help interpret the OH

  9. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Apel, E.; Springston, S.; Karl, T.; Emmons, L.; Flocke, F.; Hills, A. J.; Madronich, S.; Lee-Taylor, J.; Fried, A.; Weibring, P.; Walega, J.; Richter, D., Tie, X.; Mauldin, L.; Campos, T.; Sive, B.; Kleinman, L.; Springston, S., Zaveri, R.; deGouw, J.; Zheng, J.; Zhang, R.; Rudolph, J.; Junkermann, W.; Riemer, D. D.

    2009-11-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on 18 March and the NCAR C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the 19 March plume and to help interpret the OH

  10. Volatile organic compounds released from Microcystis flos-aquae under nitrogen sources and their toxic effects on Chlorella vulgaris.

    Science.gov (United States)

    Xu, Qinghuan; Yang, Lin; Yang, Wangting; Bai, Yan; Hou, Ping; Zhao, Jingxian; Zhou, Lv; Zuo, Zhaojiang

    2017-01-01

    Eutrophication promotes massive growth of cyanobacteria and algal blooms, which can poison other algae and reduce biodiversity. To investigate the differences in multiple nitrogen (N) sources in eutrophicated water on the emission of volatile organic compounds (VOCs) from cyanobacteria, and their toxic effects on other algal growth, we analyzed VOCs emitted from Microcystis flos-aquae with different types and concentrations of nitrogen, and determined the effects under Normal-N and Non-N conditions on Chlorella vulgaris. M. flos-aquae released 27, 22, 20, 27, 19, 25 and 17 compounds, respectively, with NaNO 3 , NaNO 2 , NH 4 Cl, urea, Ser, Lys and Arg as the sole N source. With the reduction in N amount, the emission of VOCs was increased markedly, and the most VOCs were found under Non-N condition. C. vulgaris cell propagation, photosynthetic pigment and Fv/Fm declined significantly following exposure to M. flos-aquae VOCs under Non-N condition, but not under Normal-N condition. When C. vulgaris cells were treated with two terpenoids, eucalyptol and limonene, the inhibitory effects were enhanced with increasing concentrations. Therefore, multiple N sources in eutrophicated water induce different VOC emissions from cyanobacteria, and reduction in N can cause nutrient competition, which can result in emissions of more VOCs. Those VOCs released from M. flos-aquae cells under Non-N for nutrient competition can inhibit other algal growth. Among those VOCs, eucalyptol and limonene are the major toxic agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Factors associated with sources, transport, and fate of volatile organic compounds and their mixtures in aquifers of the United States

    Science.gov (United States)

    Squillace, P.J.; Moran, M.J.

    2007-01-01

    Factors associated with sources, transport, and fate of volatile organic compounds (VOCs) in groundwater from aquifers throughout the United States were evaluated using statistical methods. Samples were collected from 1631 wells throughout the conterminous United States between 1996 and 2002 as part of the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey. Water samples from wells completed in aquifers used to supply drinking water were analyzed for more than 50 VOCs. Wells were primarily rural domestic water supplies (1184), followed by public water supplies (216); the remaining wells (231) supplied a variety of uses. The median well depth was 50 meters. Age-date information shows that about 60% of the samples had a fraction of water recharged after 1953. Chloroform, toluene, 1,2,4-trimethylbenzene, and perchloroethene were some of the frequently detected VOCs. Concentrations generally were less than 1 ??g/L. Source factors include, in order of importance, general land-use activity, septic/sewer density, and sites where large concentrations of VOCs are potentially released, such as leaking underground storage tanks. About 10% of all samples had VOC mixtures that were associated with concentrated sources; 20% were associated with dispersed sources. Important transport factors included well/screen depth, precipitation/groundwater recharge, air temperature, and various soil characteristics. Dissolved oxygen was strongly associated with VOCs and represents the fate of many VOCs in groundwater. Well type (domestic or public water supply) was also an important explanatory factor. Results of multiple analyses show the importance of (1) accounting for both dispersed and concentrated sources of VOCs, (2) measuring dissolved oxygen when sampling wells to help explain the fate of VOCs, and (3) limiting the type of wells sampled in monitoring networks to avoid unnecessary variance in the data, or controlling for this variance during data analysis.

  12. A predictive method for crude oil volatile organic compounds emission from soil: evaporation and diffusion behavior investigation of binary gas mixtures.

    Science.gov (United States)

    Wang, Haijing; Fischer, Thomas; Wieprecht, Wolfgang; Möller, Detlev

    2015-05-01

    Due to their mobility and toxicity, crude oil volatile organic compounds (VOCs) are representative components for oil pipeline contaminated sites detection. Therefore, contaminated location risk assessment, with airborne light detection and ranging (LIDAR) survey, in particular, requires ground-based determinative methods for oil VOCs, the interaction between oil VOCs and soil, and information on how they diffuse from underground into atmosphere. First, we developed a method for determination of crude oil VOC binary mixtures (take n-pentane and n-hexane as examples), taking synergistic effects of VOC mixtures on polydimethylsiloxane (PDMS) solid-phase microextraction (SPME) fibers into consideration. Using this method, we further aim to extract VOCs from small volumes, for example, from soil pores, using a custom-made sampling device for nondestructive SPME fiber intrusion, and to study VOC transport through heterogeneous porous media. Second, specific surface Brunauer-Emmett-Teller (BET) analysis was conducted and used for estimation of VOC isotherm parameters in soil. Finally, two models were fitted for VOC emission prediction, and the results were compared to the experimental emission results. It was found that free diffusion mode worked well, and an empirical correction factor seems to be needed for the other model to adapt to our condition for single and binary systems.

  13. Volatile metabolites from actinomycetes

    DEFF Research Database (Denmark)

    Scholler, C.E.G.; Gurtler, H.; Pedersen, R.

    2002-01-01

    Twenty-six Streptomyces spp. were screened for their volatile production capacity on yeast starch agar. The volatile organic compounds (VOCs) were concentrated on a porous polymer throughout an 8-day growth period. VOCs were analyzed by gas chromatography with flame ionization detection...... and identified or characterized by gas chromatography-mass spectrometry. A total of 120 VOCs were characterized by retention index and mass spectra. Fifty-three compounds were characterized as terpenoid compounds, among which 18 could be identified. Among the VOCs were alkanes, alkenes, alcohols, esters, ketones....... The relationship between the excretion of geosmin and the production of spores was examined for one isolate. A good correlation between headspace geosmin and the number of spores was observed, suggesting that VOCs could be used to indicate the activity of these microorganisms in heterogeneous substrates....

  14. Herbivory by an Outbreaking Moth Increases Emissions of Biogenic Volatiles and Leads to Enhanced Secondary Organic Aerosol Formation Capacity.

    Science.gov (United States)

    Yli-Pirilä, Pasi; Copolovici, Lucian; Kännaste, Astrid; Noe, Steffen; Blande, James D; Mikkonen, Santtu; Klemola, Tero; Pulkkinen, Juha; Virtanen, Annele; Laaksonen, Ari; Joutsensaari, Jorma; Niinemets, Ülo; Holopainen, Jarmo K

    2016-11-01

    In addition to climate warming, greater herbivore pressure is anticipated to enhance the emissions of climate-relevant biogenic volatile organic compounds (VOCs) from boreal and subarctic forests and promote the formation of secondary aerosols (SOA) in the atmosphere. We evaluated the effects of Epirrita autumnata, an outbreaking geometrid moth, feeding and larval density on herbivore-induced VOC emissions from mountain birch in laboratory experiments and assessed the impact of these emissions on SOA formation via ozonolysis in chamber experiments. The results show that herbivore-induced VOC emissions were strongly dependent on larval density. Compared to controls without larval feeding, clear new particle formation by nucleation in the reaction chamber was observed, and the SOA mass loadings in the insect-infested samples were significantly higher (up to 150-fold). To our knowledge, this study provides the first controlled documentation of SOA formation from direct VOC emission of deciduous trees damaged by known defoliating herbivores and suggests that chewing damage on mountain birch foliage could significantly increase reactive VOC emissions that can importantly contribute to SOA formation in subarctic forests. Additional feeding experiments on related silver birch confirmed the SOA results. Thus, herbivory-driven volatiles are likely to play a major role in future biosphere-vegetation feedbacks such as sun-screening under daily 24 h sunshine in the subarctic.

  15. Possible stakeholder concerns regarding volatile organic compound in arid soils integrated demonstration technologies not evaluated in the stakeholder involvement program

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    The Volatile Organic Compounds in Arid Soils Integrated Demonstration (VOC-Arid ID) supported the demonstration of a number of innovative technologies, not all of which were evaluated in the integrated demonstration's stakeholder involvement program. These technologies have been organized into two categories and the first category ranked in order of priority according to interest in the evaluation of the technology. The purpose of this report is to present issues stakeholders would likely raise concerning each of the technologies in light of commentary, insights, data requirements, concerns, and recommendations offered during the VOC-Arid ID's three-year stakeholder involvement, technology evaluation program. A secondary purpose is to provide a closeout status for each of the technologies associated with the VOC-Arid ID. This report concludes with a summary of concerns and requirements that stakeholders have for all innovative technologies

  16. Investigation of atmospheric pressure capillary non-thermal plasmas and their applications to the degradation of volatile organic compounds

    Science.gov (United States)

    Yin, Shu-Min

    Atmospheric pressure capillary non-thermal plasma (AP-CNTP) has been investigated as a potential technology far the removal of volatile organic compounds (VOCs) in Advanced Life Support Systems (ALS). AP-CNTP is a destructive technology far the removal of VOCs from air streams by active plasma species, such as electrons, ions, and excited molecules. Complete VOC destruction ideally results in the formation of water, carbon dioxide (CO2), and other by-product's may also form, including ozone (O3), nitrous oxide (N2O), nitrogen dioxide (NO2), and decomposed hydrocarbons. Several organic compounds, such as BTEX, ethylene, n-heptane, isooctane, methanol and NH3, were tested in an AP-CNTP system. Parametric experiments were carried out by varying plasma discharge power, flowrates, and initial concentrations. The degradation efficiency varied depending on the chemical nature of the compounds. A plasmochemical kinetic model was derived for toluene, ethylbenzene, and m-xylene and n-heptane.

  17. Detection of colorectal cancer (CRC) by urinary volatile organic compound analysis.

    Science.gov (United States)

    Arasaradnam, Ramesh P; McFarlane, Michael J; Ryan-Fisher, Courtenay; Westenbrink, Erik; Hodges, Phoebe; Hodges, Paula; Thomas, Matthew G; Chambers, Samantha; O'Connell, Nicola; Bailey, Catherine; Harmston, Christopher; Nwokolo, Chuka U; Bardhan, Karna D; Covington, James A

    2014-01-01

    Colorectal cancer (CRC) is a leading cause of cancer related death in Europe and the USA. There is no universally accepted effective non-invasive screening test for CRC. Guaiac based faecal occult blood (gFOB) testing has largely been superseded by Faecal Immunochemical testing (FIT), but sensitivity still remains poor. The uptake of population based FOBt testing in the UK is also low at around 50%. The detection of volatile organic compounds (VOCs) signature(s) for many cancer subtypes is receiving increasing interest using a variety of gas phase analytical instruments. One such example is FAIMS (Field Asymmetric Ion Mobility Spectrometer). FAIMS is able to identify Inflammatory Bowel disease (IBD) patients by analysing shifts in VOCs patterns in both urine and faeces. This study extends this concept to determine whether CRC patients can be identified through non-invasive analysis of urine, using FAIMS. 133 patients were recruited; 83 CRC patients and 50 healthy controls. Urine was collected at the time of CRC diagnosis and headspace analysis undertaken using a FAIMS instrument (Owlstone, Lonestar, UK). Data was processed using Fisher Discriminant Analysis (FDA) after feature extraction from the raw data. FAIMS analyses demonstrated that the VOC profiles of CRC patients were tightly clustered and could be distinguished from healthy controls. Sensitivity and specificity for CRC detection with FAIMS were 88% and 60% respectively. This study suggests that VOC signatures emanating from urine can be detected in patients with CRC using ion mobility spectroscopy technology (FAIMS) with potential as a novel screening tool.

  18. Atomic and molecular physics of plasma-based environmental technologies for abatement of volatile organic compounds

    International Nuclear Information System (INIS)

    Penetrante, B.M.; Hsiao, M.C.; Bardsley, J.N.; Merrit, B.T.; Vogtlin, G.E.; Kuthi, A.; Burkhart, C.P.; Bayless, J.R.

    1996-01-01

    Non-thermal plasma techniques represent a new generation of air emission control technology that potentially could treat large-volume emissions containing dilute concentrations of volatile organic compounds (VOCs). In order to apply non-thermal in an industrial scale, it is important to establish the electrical power requirements and byproducts of the process. There is a need for reliable data concerning the primary decomposition mechanisms and subsequent chemical kinetics associated with non-thermal plasma processing of VOCs. There are many basic atomic and molecular physics issues that are essential in evaluating the economic performance of non-thermal plasma reactor. These studies are important in understanding how the input electrical power is dissipated in the plasma and how efficiency it is converted to the production of the plasma species (radicals, ions or electrons) responsible for the decomposition of the VOCs. This paper presents results from basic experimental and theoretical studied aimed at identifying the reaction mechanisms responsible for the primary decomposition of various types of VOCs. (Authors)

  19. Leaf enclosure measurement for determining marijuana volatile organic compound emission factors

    Science.gov (United States)

    Wang, C. T.; Vizuete, W.; Wiedinmyer, C.; Ashworth, K.; Harley, P. C.; Ortega, J. V.

    2017-12-01

    In 2014, Colorado became the first US state to legalize the industrial-scale cultivation of marijuana plants. There are now more than 700 marijuana cultivation facilities (MCFs) in operation in the greater Denver area. High concentrations of biogenic volatile organic compounds (VOCs), predominantly monoterpenes (C10H16) such as alpha-pinene, myrcene, and limonene have been observed in the grow rooms of MCFs, suggesting MCFs have the potential to release a significant amount of reactive VOCs into the atmosphere. Further, many MCFs are located in the urban core, where other urban emission sources are concentrated, resulting in interactions which can lead to the formation of ozone, impacting air quality. The little research done on marijuana has focused on indoor air quality and occupational exposure, or identification of the compounds associated with the characteristic smells of marijuana plants. We know of no previous studies that have identified or quantified the monoterpene emission rates from marijuana. Here, we collected air samples from leaf enclosures from different marijuana clones at different growth stages onto sorbent cartridges. These samples were analyzed using GC-MS/-FID to identify and quantify the VOCs emitted by growing marijuana plants. These results were then used to estimate basal emission rates at standard conditions (T=30 C, PPFD = 1000 umol/m2/s) using standard algorithms. We discuss the potential impact on air quality from these VOCs emitted into the atmosphere using air quality models.

  20. Graphene and poly(methyl methacrylate) composite laminates on flexible substrates for volatile organic compound detection

    Science.gov (United States)

    Rattanabut, Chanoknan; Wongwiriyapan, Winadda; Muangrat, Worawut; Bunjongpru, Win; Phonyiem, Mayuree; Song, Young Jae

    2018-04-01

    In this paper, we present a gas sensor for volatile organic compound (VOC) detection based on graphene and poly(methyl methacrylate) (GR/PMMA) composite laminates fabricated using CVD-grown graphene. Graphene was transferred to a poly(ethylene terephthalate) (PET) substrate by PMMA-supported wet transfer process without PMMA removal in order to achieve the deposition of GR/PMMA composite laminates on PET. The GR/PMMA and graphene sensors show completely different sensitivities to VOC vapors. The GR/PMMA and graphene sensors showed the highest sensitivities to dichloromethane (DCM). The response of the GR/PMMA sensor to DCM was 3 times higher than that of the graphene sensor but the GR/PMMA sensor hardly responded to acetone, chloroform, or benzene. The sensing mechanism of the graphene sensor can be based on the dielectric constant of VOCs, the size of VOC molecule, and electron hopping effects on defect graphene, while that of the GR/PMMA sensor can be explained in terms of the polymer swelling owing to the Hansen solubility parameter.

  1. Measurement of personal exposure to volatile organic compounds and particle associated PAH in three UK regions.

    Science.gov (United States)

    Saborit, Juana Mari Delgado; Aquilina, Noel J; Meddings, Claire; Baker, Stephen; Vardoulakis, Sotiris; Harrison, Roy M

    2009-06-15

    Personal exposures to 15 volatile organic compounds (VOC) and 16 polycyclic aromatic hydrocarbons (PAH) of 100 adult nonsmokers living in three UK areas, namely London, West Midlands, and rural South Wales, were measured using an actively pumped sampler carried around by the volunteers for 5/1 (VOC/PAH) consecutive 24-h periods, following their normal lifestyle. Results from personal exposure measurements categorized by geographical location, type of dwelling, and exposure to environmental tobacco smoke (ETS) are presented. The average personal exposure concentration to benzene, 1,3-butadiene, and benzo(a)pyrene representing the main carcinogenic components of the VOC and PAH mixture were 2.2 +/- 2.5 microg/m3, 0.4 +/- 0.7 microg/m3, and 0.3 +/- 0.7 ng/m3 respectively. The association of a number of generic factors with personal exposure concentrations was investigated, including first-line property, traffic, the presence of an integral garage, and ETS. Only living in houses with integral garages and being exposed to ETS were identified as unequivocal contributors to VOC personal exposure, while only ETS had a clear effect upon PAH personal exposures. The measurements of personal exposures were compared with health-based European and UK air quality guidelines, with some exceedences occurring. Activities contributing to high personal exposures included the use of a fireplace in the home, ETS exposure, DIY (i.e., construction and craftwork activities), and photocopying, among others.

  2. A cohort study of intra-urban variations in volatile organic compounds and mortality, Toronto, Canada.

    Science.gov (United States)

    Villeneuve, Paul J; Jerrett, Michael; Su, Jason; Burnett, Richard T; Chen, Hong; Brook, Jeffrey; Wheeler, Amanda J; Cakmak, Sabit; Goldberg, Mark S

    2013-12-01

    This study investigated associations between long-term exposure to ambient volatile organic compounds (VOCs) and mortality. 58,760 Toronto residents (≥35 years of age) were selected from tax filings and followed from 1982 to 2004. Death information was extracted using record linkage to national mortality data. Land-use regression surfaces for benzene, n-hexane, and total hydrocarbons were generated from sampling campaigns in 2002 and 2004 and assigned to residential addresses in 1982. Cox regression was used to estimate relationships between each VOC and non-accidental, cardiovascular, and cancer mortality. Positive associations were observed for each VOC. In multi-pollutant models the benzene and total hydrocarbon signals were strongest for cancer. The hazard ratio for cancer that corresponded to an increase in the interquartile range of benzene (0.13 μg/m(3)) was 1.06 (95% CI = 1.02-1.11). Our findings suggest ambient concentrations of VOCs were associated with cancer mortality, and that these exposures did not confound our previously reported associations between NO2 and cardiovascular mortality. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Determination of volatile organic compounds pollution sources in malaysian drinking water using multivariate analysis.

    Science.gov (United States)

    Soh, Shiau-Chian; Abdullah, Md Pauzi

    2007-01-01

    A field investigation was conducted at all water treatment plants throughout 11 states and Federal Territory in Peninsular Malaysia. The sampling points in this study include treatment plant operation, service reservoir outlet and auxiliary outlet point at the water pipelines. Analysis was performed by solid phase micro-extraction technique with a 100 microm polydimethylsiloxane fibre using gas chromatography with mass spectrometry detection to analyse 54 volatile organic compounds (VOCs) of different chemical families in drinking water. The concentration of VOCs ranged from undetectable to 230.2 microg/l. Among all of the VOCs species, chloroform has the highest concentration and was detected in all drinking water samples. Average concentrations of total trihalomethanes (THMs) were almost similar among all states which were in the range of 28.4--33.0 microg/l. Apart from THMs, other abundant compounds detected were cis and trans-1,2-dichloroethylene, trichloroethylene, 1,2-dibromoethane, benzene, toluene, ethylbenzene, chlorobenzene, 1,4-dichlorobenzene and 1,2-dichloro - benzene. Principal component analysis (PCA) with the aid of varimax rotation, and parallel factor analysis (PARAFAC) method were used to statistically verify the correlation between VOCs and the source of pollution. The multivariate analysis pointed out that the maintenance of auxiliary pipelines in the distribution systems is vital as it can become significant point source pollution to Malaysian drinking water.

  4. Assessment of volatile organic compound removal by indoor plants-a novel experimental setup

    DEFF Research Database (Denmark)

    Dela Cruz, Majbrit; Müller, Renate; Svensmark, Bo

    2014-01-01

    plants which allows for an improved real-life simulation. Parameters such as relative humidity, air exchange rate and VOC concentration are controlled and can be varied to simulate different real-life settings. For example, toluene diffusion through a needle gave concentrations in the range of 0......Indoor plants can remove volatile organic compounds (VOCs) from the air. The majority of knowledge comes from laboratory studies where results cannot directly be transferred to real-life settings. The aim of this study was to develop an experimental test system to assess VOC removal by indoor.......10-2.35 μg/L with deviations from theoretical values of 3.2-10.5 %. Overall, the system proved to be functional for the assessment of VOC removal by indoor plants with Hedera helix reaching a toluene removal rate of up to 66.5 μg/m2/h. The mode of toluene exposure (semi-dynamic or dynamic) had a significant...

  5. Volatile organic compounds in the western Mediterranean basin: urban and rural winter measurements during the DAURE campaign

    Directory of Open Access Journals (Sweden)

    R. Seco

    2013-04-01

    Full Text Available Atmospheric volatile organic compounds (VOCs have key environmental and biological roles, but little is known about the daily VOC mixing ratios in Mediterranean urban and natural environments. We measured VOC mixing ratios concurrently at an urban and a rural site during the winter DAURE campaign in the northeastern Iberian Peninsula, by means of PTR-MS at both locations: a PTR-Quad-MS at the urban site and a PTR-ToF-MS at the rural site. All VOC mixing ratios measured were higher at the urban site (e.g. acetaldehyde, isoprene, benzene, and toluene with averages up to 1.68, 0.31, 0.58 and 2.71 ppbv, respectively, with the exception of some short-chain oxygenated VOCs such as acetone (with similar averages of 0.7–1.6 ppbv at both sites. The average diurnal pattern also differed between the sites. Most of the VOCs at the urban location showed their highest mixing ratios in the morning and evening. These peaks coincided with traffic during rush hour, the main origin of most of the VOCs analyzed. Between these two peaks, the sea breeze transported the urban air inland, thus helping to lower the VOC loading at the urban site. At the rural site, most of the measured VOCs were advected by the midday sea breeze, yielding the highest daily VOC mixing ratios (e.g. acetaldehyde, isoprene, benzene, and toluene with averages up to 0.65, 0.07, 0.19, and 0.41 ppbv, respectively. Only biogenic monoterpenes showed a clear local origin at this site. In addition, the concentrations of fine particulate matter observed at both sites, together with the synoptic meteorological conditions and radio-sounding data, allowed the identification of different atmospheric scenarios that had a clear influence on the measured VOC mixing ratios. These results highlight the differences and relationships in VOC mixing ratios between nearby urban and rural areas in Mediterranean regions. Further research in other urban-rural areas is warranted to better understand the urban

  6. Volatile organic compounds adsorption using different types of adsorbent

    Directory of Open Access Journals (Sweden)

    Pimanmes Chanayotha

    2014-09-01

    Full Text Available Adsorbents were synthesized from coconut shell, coal and coke by pyrolysis followed by chemical activation process. These synthesized materials were used as adsorbents in adsorption test to determine the amount of volatile organic compounds (VOCs namely, 2-Hydroxyethyl methacrylate (HEMA, Octamethylcyclotetrasiloxane and Alkanes standard solution (C8-C20. The adsorption capacities of both synthesized adsorbents and commercial grade adsorbents (Carbotrap™ B and Carbotrap™ C were also compared. It was found that adsorbent A402, which was produced from coconut shell, activated with 40% (wt. potassium hydroxide and at activating temperature of 800°C for 1 hr, could adsorb higher amount of both HEMA and Octamethylcyclotetrasiloxane than other synthesized adsorbents. The maximum adsorption capacity of adsorbent A402 in adsorbing HEMA and Octamethylcyclotetrasiloxane were 77.87% and 50.82% respectively. These adsorption capabilities were 79.73% and 70.07% of the adsorption capacity of the commercial adsorbent Carbotrap™ B respectively. All three types of the synthesized adsorbent (A402, C302, C402 showed the capability to adsorb alkanes standard solution through the range of C8-C20 . However, their adsorption capacities were high in a specific range of C10-C11. The result from the isotherm plot was indicated that surface adsorption of synthesized adsorbent was isotherm type I while the surface adsorption of commercial adsorbent was isotherm type III.

  7. Resonance Raman spectroscopy of volatile organics -- Carbon tetrachloride

    International Nuclear Information System (INIS)

    Barletta, R.E.; Veligdan, J.T.

    1994-09-01

    Volatile organic chemicals are a class of pollutants which are regulated at very low levels by the EPA. Consequently a need exists as a part of site remediation efforts within DOE to develop technologies which will allow for the in situ monitoring of these chemicals. Resonance Raman spectroscopy is a potential technique to accomplish this if the resonance enhancement is sufficiently high. Carbon tetrachloride was selected as a test case. Measurements under resonance conditions at 248 nm showed an enhancement factor of 2 x 10 4 . Using this value an estimate of the sensitivity for both in situ and remote monitoring of CCl 4 was made. It was concluded that resonance Raman could be used to detect these chemicals at levels of regulatory interest. Future effort directed towards the development of a suitable probe as well as a field-portable system would be desirable. Such effort could be directed towards the solution of a particular monitoring problem within a DOE waste remediation project. Once developed, however, it should be easily generalized to the analysis of other VOC's in other environments

  8. Personal exposure to volatile organic compounds in the Czech Republic.

    Science.gov (United States)

    Svecova, Vlasta; Topinka, Jan; Solansky, Ivo; Sram, Radim J

    2012-09-01

    Personal exposures to volatile organic compounds (VOCs) were measured in the three industrial cities in the Czech Republic, Ostrava, Karvina and Havirov, while the city of Prague served as a control in a large-scale molecular epidemiological study identifying the impacts of air pollution on human health. Office workers from Ostrava and city policemen from Karvina, Havirov and Prague were monitored in the winter and summer of 2009. Only adult non-smokers participated in the study (N=160). Radiello-diffusive passive samplers were used to measure the exposure to benzene, toluene, ethylbenzene, meta- plus para-xylene and ortho-xylene (BTEX). All participants completed a personal questionnaire and a time-location-activity diary (TLAD). The average personal BTEX exposure levels in both seasons were 7.2/34.3/4.4/16.1 μg/m(3), respectively. The benzene levels were highest in winter in Karvina, Ostrava and Prague: 8.5, 7.2 and 5.3 μg/m(3), respectively. The personal exposures to BTEX were higher than the corresponding stationary monitoring levels detected in the individual localities (Pfireplace or gas stove, automobile use and being in a restaurant were important predictors for benzene personal exposure. Ostrava's outdoor benzene pollution was a significant factor increasing the exposure of the Ostrava study participants in winter (P<0.05).

  9. Analysis of Sidestream Smoke VOCs and Characterization of their Odor Profiles by VOC Preconcentrator-GC-O Techniques

    Directory of Open Access Journals (Sweden)

    Higashi N

    2014-12-01

    Full Text Available Various techniques have been employed in the analysis of volatile organic compounds (VOCs. However, these techniques are insufficient for the precise analysis of tobacco smoke VOCs because of the complexity of the operating system, system instability, or poor sensitivity. To overcome these problems, a combined system of VOC preconcentrator, gas chromatograph, and olfactometer has been developed. The performance of this new system was evaluated in the analysis of VOCs in tobacco smoke and applied to the odor profiling of sidestream smoke (SSS that has not been sufficiently investigated in the past.

  10. Bacteriostatics of volatile organic compounds of Crimean pine and environmental meteorological conditions

    Science.gov (United States)

    Chalaya, Elena; Slepykh, Victor; Efimenko, Natalia; Povolotckaia, Nina

    2015-04-01

    Sanitary and hygienic properties of air saturated with volatile organic compounds of plants (VOC) have a fundamental importance for the biosphere. In particular, they make such a feature as the freshness of the air. The energy contained in VOC and made by Earth vegetation can be compared with the energy of lightning discharges in the atmosphere during the year [1]. The influence of natural environment on the dynamics of VOC developed by plants is also of current interest and is, in particular, important for resort study because VOC produced by the vegetation of the resort regions can be seen as a self-contained resort resource [2]. Dynamics of VOC evolution by Crimean pine (Pinus Pallasiana D.Don.) that is the forest forming breed of the resort region Caucasus Mineral Waters (Russia) has been studied by a microbiological method [1]. Dynamics of bacteriostatics was qualified by the extent of oppression of the VOC test- culture (Staphylococcus aureus 209p) of the pine in % in comparison with control. The needles for the experience were selected at noon in the middle of the summer. At the time of the needle selection meteorological indicators were fixed. As the result of the researches we got an empirical equation of dynamics of VOC bacteriostatics of the Crimean pine under the influence of total solar radiation (kW/m2) and relative air humidity (%). The coefficient of the multiple correlation of the VOC bacteriostatics of the Crimean pine, total solar radiation and relative air humidity makes: R=0,83 at the importance of F=7,53>F0 05=3,49. The coefficient of the multiple determination is R2=0,69. The equation is: y = - 35,1020 + 1,7193x + 175,6638p- 0,0181x2 + 0,6054 (xp) - 191,1319p2, where Y - is bacteriostatics (%); x - is relative humidity (%); p - is total solar radiation (kW/m2). The fixed parameters of the equation are: air humidity - 90-30%; total solar radiation - 0.20-1.0 kW/m2; bacteriostatics - 0-61%. The obtained results can be used in the resort study

  11. Predicting personal exposure of Windsor, Ontario residents to volatile organic compounds using indoor measurements and survey data

    Science.gov (United States)

    Stocco, Corinne; MacNeill, Morgan; Wang, Daniel; Xu, Xiaohong; Guay, Mireille; Brook, Jeff; Wheeler, Amanda J.

    As part of a multi-year personal exposure monitoring campaign, we collected personal, indoor, and outdoor levels of 188 volatile organic compounds (VOCs). In 2005, data were obtained for 48 non-smoking adults from Windsor, Ontario in order to assess their exposure to VOCs based on their daily routines and characteristics of their homes. During the 8-week winter and summer sampling sessions, five repeated 24-h measurements were obtained for each home. This paper focuses on the analysis of 18 VOCs: 11 have been declared toxic as defined under the Canadian Environmental Protection Act, [1999. Statutes of Canada. Act assented to September 14, 1999. Ottawa: Queen's Printer. Available at Canada Gazette (Part III) 22(3): (Chapter 33). http://canadagazette.gc.ca/partIII/1999/g3-02203.pdf], and seven are commonly found in household and personal care products. Results of mixed effects models indicate that personal exposure to these VOCs can be largely predicted by indoor concentrations, with models including indoor concentrations found to have an r2 value for the fixed effects ranging from 58.4% to 87.2% for the CEPA toxic VOCs and from 41.7% to 90.1% for the commonly found VOCs. Given that people spend the majority of their time inside their home, characteristics of the home such as air exchange rates, type of garage, and type of stove have a greater potential to impact personal exposures.

  12. Reactivity-based industrial volatile organic compounds emission inventory and its implications for ozone control strategies in China

    Science.gov (United States)

    Liang, Xiaoming; Chen, Xiaofang; Zhang, Jiani; Shi, Tianli; Sun, Xibo; Fan, Liya; Wang, Liming; Ye, Daiqi

    2017-08-01

    Increasingly serious ozone (O3) pollution, along with decreasing NOx emission, is creating a big challenge in the control of volatile organic compounds (VOCs) in China. More efficient and effective measures are assuredly needed for controlling VOCs. In this study, a reactivity-based industrial VOCs emission inventory was established in China based on the concept of ozone formation potential (OFP). Key VOCs species, major VOCs sources, and dominant regions with high reactivity were identified. Our results show that the top 15 OFP-based species, including m/p-xylene, toluene, propene, o-xylene, and ethyl benzene, contribute 69% of the total OFP but only 30% of the total emission. The architectural decoration industry, oil refinery industry, storage and transport, and seven other sources constituted the top 10 OFP subsectors, together contributing a total of 85%. The provincial and spatial characteristics of OFP are generally consistent with those of mass-based inventory. The implications for O3 control strategies in China are discussed. We propose a reactivity-based national definition of VOCs and low-reactive substitution strategies, combined with evaluations of health risks. Priority should be given to the top 15 or more species with high reactivity through their major emission sources. Reactivity-based policies should be flexibly applied for O3 mitigation based on the sensitivity of O3 formation conditions.

  13. A compact PTR-ToF-MS instrument for airborne measurements of volatile organic compounds at high spatiotemporal resolution

    Directory of Open Access Journals (Sweden)

    M. Müller

    2014-11-01

    Full Text Available Herein, we report on the development of a compact proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS for airborne measurements of volatile organic compounds (VOCs. The new instrument resolves isobaric ions with a mass resolving power (m/Δm of ~1000, provides accurate m/z measurements (Δm < 3 mDa, records full mass spectra at 1 Hz and thus overcomes some of the major analytical deficiencies of quadrupole-MS-based airborne instruments. 1 Hz detection limits for biogenic VOCs (isoprene, α total monoterpenes, aromatic VOCs (benzene, toluene, xylenes and ketones (acetone, methyl ethyl ketone range from 0.05 to 0.12 ppbV, making the instrument well-suited for fast measurements of abundant VOCs in the continental boundary layer. The instrument detects and quantifies VOCs in locally confined plumes (< 1 km, which improves our capability of characterizing emission sources and atmospheric processing within plumes. A deployment during the NASA 2013 DISCOVER-AQ mission generated high vertical- and horizontal-resolution in situ data of VOCs and ammonia for the validation of satellite retrievals and chemistry transport models.

  14. Personal Exposure to Mixtures of Volatile Organic Compounds: Modeling and Further Analysis of the RIOPA Data

    Science.gov (United States)

    Batterman, Stuart; Su, Feng-Chiao; Li, Shi; Mukherjee, Bhramar; Jia, Chunrong

    2015-01-01

    INTRODUCTION Emission sources of volatile organic compounds (VOCs) are numerous and widespread in both indoor and outdoor environments. Concentrations of VOCs indoors typically exceed outdoor levels, and most people spend nearly 90% of their time indoors. Thus, indoor sources generally contribute the majority of VOC exposures for most people. VOC exposure has been associated with a wide range of acute and chronic health effects; for example, asthma, respiratory diseases, liver and kidney dysfunction, neurologic impairment, and cancer. Although exposures to most VOCs for most persons fall below health-based guidelines, and long-term trends show decreases in ambient emissions and concentrations, a subset of individuals experience much higher exposures that exceed guidelines. Thus, exposure to VOCs remains an important environmental health concern. The present understanding of VOC exposures is incomplete. With the exception of a few compounds, concentration and especially exposure data are limited; and like other environmental data, VOC exposure data can show multiple modes, low and high extreme values, and sometimes a large portion of data below method detection limits (MDLs). Field data also show considerable spatial or interpersonal variability, and although evidence is limited, temporal variability seems high. These characteristics can complicate modeling and other analyses aimed at risk assessment, policy actions, and exposure management. In addition to these analytic and statistical issues, exposure typically occurs as a mixture, and mixture components may interact or jointly contribute to adverse effects. However most pollutant regulations, guidelines, and studies remain focused on single compounds, and thus may underestimate cumulative exposures and risks arising from coexposures. In addition, the composition of VOC mixtures has not been thoroughly investigated, and mixture components show varying and complex dependencies. Finally, although many factors are

  15. Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station

    Science.gov (United States)

    Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.

    Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.

  16. Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons.

    Science.gov (United States)

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-11-01

    The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.

  17. Exhaled human breath measurement method for assessing exposure to halogenated volatile organic compounds.

    Science.gov (United States)

    Pleil, J D; Lindstrom, A B

    1997-05-01

    The organic constituents of exhaled human breath are representative of blood-borne concentrations through gas exchange in the blood/breath interface in the lungs. The presence of specific compounds can be an indicator of recent exposure or represent a biological response of the subject. For volatile organic compounds (VOCs), sampling and analysis of breath is preferred to direct measurement from blood samples because breath collection is noninvasive, potentially infectious waste is avoided, and the measurement of gas-phase analytes is much simpler in a gas matrix rather than in a complex biological tissue such as blood. To exploit these advantages, we have developed the "single breath canister" (SBC) technique, a simple direct collection method for individual alveolar breath samples, and adapted conventional gas chromatography-mass spectrometry analytical methods for trace-concentration VOC analysis. The focus of this paper is to describe briefly the techniques for making VOC measurements in breath, to present some specific applications for which these methods are relevant, and to demonstrate how to estimate exposure to example VOCs on the basis of breath elimination. We present data from three different exposure scenarios: (a) vinyl chloride and cis-1,2-dichloroethene from showering with contaminated water from a private well, (b) chloroform and bromodichloromethane from high-intensity swimming in chlorinated pool water, and (c) trichloroethene from a controlled exposure chamber experiment. In all cases, for all subjects, the experiment is the same: preexposure breath measurement, exposure to halogenated VOC, and a postexposure time-dependent series of breath measurements. Data are presented only to demonstrate the use of the method and how to interpret the analytical results.

  18. Identification of Systemic Acquired Resistance–Related Volatile Organic Compounds and their Role in Plant Immunity

    OpenAIRE

    Bichlmeier, Marlies

    2017-01-01

    Systemic acquired resistance (SAR) is an inducible immune response that depends on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), which is essential for SAR signalling. In contrast to SAR, local resistance remains intact in Arabidopsis (Arabidopsis thaliana) eds1-2 mutant plants in response to Pseudomonas syringae delivering the effector protein AvrRpm1. I utilized the SAR-specific phenotype of the eds1-2 mutant to identify volatile organic compounds (VOCs) related to SAR. To this end, SAR was indu...

  19. Process engineering versus product engineering - A case study on volatile organic compounds removal

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Vilela, T.; Pereira, P.

    2005-01-01

    Three solutions for removing the dangerous volatile organic compound (VOC) xylene from an industrial coating process are presented and compared. Two of them are based on classical process engineering principles, i.e., development of separation-cleaning methods such as incineration and adsorption...... to the problem-need specified in the beginning of the project, but producing a novel formulation (chemical product design) represents a method that results to a completely xylene-free process which is environmentally and economically more interesting than those generated via the more traditional process...

  20. Hybrid Photonic Cavity with Metal-Organic Framework Coatings for the Ultra-Sensitive Detection of Volatile Organic Compounds with High Immunity to Humidity

    Science.gov (United States)

    Tao, Jifang; Wang, Xuerui; Sun, Tao; Cai, Hong; Wang, Yuxiang; Lin, Tong; Fu, Dongliang; Ting, Lennon Lee Yao; Gu, Yuandong; Zhao, Dan

    2017-01-01

    Detection of volatile organic compounds (VOCs) at parts-per-billion (ppb) level is one of the most challenging tasks for miniature gas sensors because of the high requirement on sensitivity and the possible interference from moisture. Herein, for the first time, we present a novel platform based on a hybrid photonic cavity with metal-organic framework (MOF) coatings for VOCs detection. We have fabricated a compact gas sensor with detection limitation ranging from 29 to 99 ppb for various VOCs including styrene, toluene, benzene, propylene and methanol. Compared to the photonic cavity without coating, the MOF-coated solution exhibits a sensitivity enhancement factor up to 1000. The present results have demonstrated great potential of MOF-coated photonic resonators in miniaturized gas sensing applications.

  1. Substitution of Organic Solvents in Selected Industrial Cleaning Processes

    DEFF Research Database (Denmark)

    Jacobsen, Thomas; Rasmussen, Pia Brunn

    1997-01-01

    Volatile organic solvents (VOC)are becoming increasingly unwanted in industrial processes. Substitution of VOC with non-volatile, low-toxic compounds is a possibility to reduce VOC-use. It has been successfully demonstrated, that organic solvents used in cleaning processes in sheet offset printing...

  2. The SOA/VOC/NOx system: an explicit model of secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    S. Madronich

    2007-11-01

    Full Text Available Our current understanding of secondary organic aerosol (SOA formation is limited by our knowledge of gaseous secondary organics involved in gas/particle partitioning. The objective of this study is to explore (i the potential for products of multiple oxidation steps contributing to SOA, and (ii the evolution of the SOA/VOC/NOx system. We developed an explicit model based on the coupling of detailed gas-phase oxidation schemes with a thermodynamic condensation module. Such a model allows prediction of SOA mass and speciation on the basis of first principles. The SOA/VOC/NOx system is studied for the oxidation of 1-octene under atmospherically relevant concentrations. In this study, gaseous oxidation of octene is simulated to lead to SOA formation. Contributors to SOA formation are shown to be formed via multiple oxidation steps of the parent hydrocarbon. The behaviour of the SOA/VOC/NOx system simulated using the explicit model agrees with general tendencies observed during laboratory chamber experiments. This explicit modelling of SOA formation appears as a useful exploratory tool to (i support interpretations of SOA formation observed in laboratory chamber experiments, (ii give some insights on SOA formation under atmospherically relevant conditions and (iii investigate implications for the regional/global lifetimes of the SOA.

  3. Determination of volatile organic compounds from biowaste and co-fermentation biogas plants by single-sorbent adsorption.

    Science.gov (United States)

    Salazar Gómez, J I; Lohmann, H; Krassowski, J

    2016-06-01

    Characterisation of biogases is normally dedicated to the online monitoring of the major components methane and carbon dioxide and, to a lesser extent, to the determination of ammonia and hydrogen sulphide. For the case of Volatile Organic Compounds (VOCs), much less attention is usually paid, since such compounds are normally removed during gas conditioning and with exception of sulphur compounds and siloxanes represent a rather low risk to conventional downstream devices but could be a hindrance for fuel cells. However, there is very little information in the literature about the type of substances found in biogases generated from biowaste or co-fermentation plants and their concentration fluctuations. The main aim of this study was to provide information about the time dependencies of the VOCs in three biogas plants spread out through Germany from autumn until summer, which have different process control, in order to assess their potential as biofuels. Additionally, this study was an attempt to establish a correlation between the nature of the substrates used in the biogas plants and the composition of the VOCs present in the gas phase. Significant time-dependent variations in concentration were observed for most VOCs but only small changes in composition were observed. In general, terpenes and ketones appeared as the predominant VOCs in biogas. Although for substances such as esters, sulphur-organic compounds and siloxanes the average concentrations observed were rather low, they exhibited significant concentration peaks. The second biogas plant which operates with dry fermentation was found to contain the highest levels of VOCs. The amount of total volatile organic compounds (TVOCs) for the first, second and third biogas plants ranged from 35 to 259 mg Nm(-3), 291-1731 mg Nm(-3) and 84-528 mg Nm(-3), respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Biogenic volatile emissions from the soil.

    Science.gov (United States)

    Peñuelas, J; Asensio, D; Tholl, D; Wenke, K; Rosenkranz, M; Piechulla, B; Schnitzler, J P

    2014-08-01

    Volatile compounds are usually associated with an appearance/presence in the atmosphere. Recent advances, however, indicated that the soil is a huge reservoir and source of biogenic volatile organic compounds (bVOCs), which are formed from decomposing litter and dead organic material or are synthesized by underground living organism or organs and tissues of plants. This review summarizes the scarce available data on the exchange of VOCs between soil and atmosphere and the features of the soil and particle structure allowing diffusion of volatiles in the soil, which is the prerequisite for biological VOC-based interactions. In fact, soil may function either as a sink or as a source of bVOCs. Soil VOC emissions to the atmosphere are often 1-2 (0-3) orders of magnitude lower than those from aboveground vegetation. Microorganisms and the plant root system are the major sources for bVOCs. The current methodology to detect belowground volatiles is described as well as the metabolic capabilities resulting in the wealth of microbial and root VOC emissions. Furthermore, VOC profiles are discussed as non-destructive fingerprints for the detection of organisms. In the last chapter, belowground volatile-based bi- and multi-trophic interactions between microorganisms, plants and invertebrates in the soil are discussed. © 2014 John Wiley & Sons Ltd.

  5. Measurement of volatile organic compounds emitted in libraries and archives: an inferential indicator of paper decay?

    Directory of Open Access Journals (Sweden)

    Gibson Lorraine T

    2012-05-01

    Full Text Available Abstract Background A sampling campaign of indoor air was conducted to assess the typical concentration of indoor air pollutants in 8 National Libraries and Archives across the U.K. and Ireland. At each site, two locations were chosen that contained various objects in the collection (paper, parchment, microfilm, photographic material etc. and one location was chosen to act as a sampling reference location (placed in a corridor or entrance hallway. Results Of the locations surveyed, no measurable levels of sulfur dioxide were detected and low formaldehyde vapour (-3 was measured throughout. Acetic and formic acids were measured in all locations with, for the most part, higher acetic acid levels in areas with objects compared to reference locations. A large variety of volatile organic compounds (VOCs was measured in all locations, in variable concentrations, however furfural was the only VOC to be identified consistently at higher concentration in locations with paper-based collections, compared to those locations without objects. To cross-reference the sampling data with VOCs emitted directly from books, further studies were conducted to assess emissions from paper using solid phase microextraction (SPME fibres and a newly developed method of analysis; collection of VOCs onto a polydimethylsiloxane (PDMS elastomer strip. Conclusions In this study acetic acid and furfural levels were consistently higher in concentration when measured in locations which contained paper-based items. It is therefore suggested that both acetic acid and furfural (possibly also trimethylbenzenes, ethyltoluene, decane and camphor may be present in the indoor atmosphere as a result of cellulose degradation and together may act as an inferential non-invasive marker for the deterioration of paper. Direct VOC sampling was successfully achieved using SPME fibres and analytes found in the indoor air were also identified as emissive by-products from paper. Finally a new non

  6. A DFT study of volatile organic compounds adsorption on transition metal deposited graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kunaseth, Manaschai, E-mail: manaschai@nanotec.or.th [Nanoscale Simulation Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120 (Thailand); Poldorn, Preeyaporn [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand); Junkeaw, Anchalee; Meeprasert, Jittima; Rungnim, Chompoonut; Namuangruk, Supawadee [Nanoscale Simulation Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120 (Thailand); Kungwan, Nawee [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Inntam, Chan [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand); Jungsuttiwong, Siriporn, E-mail: siriporn.j@ubu.ac.th [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190 (Thailand)

    2017-02-28

    Highlights: • VOCs removal via modified carbon-based adsorbent using density functional theory. • The single-vacancy defective graphene (SDG) with metal-deposited significantly increase the adsorption efficiency. • TM-doped SDG is a suitable adsorbent material for VOC removal. • Electron in hybridized sp{sup 2}-orbitals of heteroatoms has an effect on mode of adsorption. - Abstract: Recently, elevated global emission of volatile organic compounds (VOCs) was associated to the acceleration and increasing severity of climate change worldwide. In this work, we investigated the performance of VOCs removal via modified carbon-based adsorbent using density functional theory. Here, four transition metals (TMs) including Pd, Pt, Ag, and Au were deposited onto single-vacancy defective graphene (SDG) surface to increase the adsorption efficiency. Five prototypical VOCs including benzene, furan, pyrrole, pyridine, and thiophene were used to study the adsorption capability of metal-deposited graphene adsorbent. Calculation results revealed that Pd, Pt, Au, and Ag atoms and nanoclusters bind strongly onto the SDG surface. In this study, benzene, furan and pyrrole bind in the π-interaction mode using delocalized π-electron in aromatic ring, while pyridine and thiophene favor X- interaction mode, donating lone pair electron from heteroatom. In terms of adsorption, pyridine VOC adsorption strengths to the TM-cluster doped SDG surfaces are Pt{sub 4} (−2.11 eV) > Pd{sub 4} (−2.05 eV) > Ag{sub 4} (−1.53 eV) > Au{sub 4} (−1.87 eV). Our findings indicate that TM-doped SDG is a suitable adsorbent material for VOC removal. In addition, partial density of states analysis suggests that benzene, furan, and pyrrole interactions with TM cluster are based on p-orbitals of carbon atoms, while pyridine and thiophene interactions are facilitated by hybridized sp{sup 2}-orbitals of heteroatoms. This work provides a key insight into the fundamentals of VOCs adsorption on carbon

  7. OH reactivity and potential SOA yields from volatile organic compounds and other trace gases measured in controlled laboratory biomass burns

    Science.gov (United States)

    J. B. Gilman; C. Warneke; W. C. Kuster; P. D. Goldan; P. R. Veres; J. M. Roberts; J. A. de Gouw; I. R. Burling; R. J. Yokelson

    2010-01-01

    A comprehensive suite of instruments were used to characterize volatile organic compounds (VOCs) and other trace gases (e.g., CO, CH4, NO2, etc.) emitted from controlled burns of various fuel types common to the Southeastern and Southwestern United States. These laboratory-based measurements were conducted in February 2009 at the U.S. Department of Agriculture’s Fire...

  8. Potential of select intermediate-volatility organic compounds and consumer products for secondary organic aerosol and ozone formation under relevant urban conditions

    Science.gov (United States)

    Li, Weihua; Li, Lijie; Chen, Chia-li; Kacarab, Mary; Peng, Weihan; Price, Derek; Xu, Jin; Cocker, David R.

    2018-04-01

    Emissions of certain low vapor pressure-volatile organic compounds (LVP-VOCs) are considered exempt to volatile organic compounds (VOC) regulations due to their low evaporation rates. However, these compounds may still play a role in ambient secondary organic aerosol (SOA) and ozone formation. The LVP-VOCs selected for this work are categorized as intermediate-volatility organic compounds (IVOCs) according to their vapor pressures and molecular formulas. In this study, the evaporation rates of 14 select IVOCs are investigated with half of them losing more than 95% of their mass in less than one month. Further, SOA and ozone formation are presented from 11 select IVOCs and 5 IVOC-containing generic consumer products under atmospherically relevant conditions using varying radical sources (NOx and/or H2O2) and a surrogate reactive organic gas (ROG) mixture. Benzyl alcohol (0.41), n-heptadecane (0.38), and diethylene glycol monobutyl ether (0.16) are determined to have SOA yields greater than 0.1 in the presence of NOx and a surrogate urban hydrocarbon mixture. IVOCs also influence ozone formation from the surrogate urban mixture by impacting radical levels and NOx availability. The addition of lab created generic consumer products has a weak influence on ozone formation from the surrogate mixture but strongly affects SOA formation. The overall SOA and ozone formation of the generic consumer products could not be explained solely by the results of the pure IVOC experiments.

  9. Modeling unsteady-state VOC transport in simulated waste drums

    International Nuclear Information System (INIS)

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1994-01-01

    This report is a revision of an EG ampersand G Idaho informal report originally titled Modeling VOC Transport in Simulated Waste Drums. A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the permeability had been measured

  10. [Composition characteristics of atmospheric volatile organic compounds in the urban area of Beibei District, Chongqing].

    Science.gov (United States)

    Qi, Xin; Hao, Qing-ju; Ji, Dong-sheng; Zhang, Jun-ke; Liu, Zi-rui; Hu, Bo; Wang, Yue-si; Jiang, Chang-sheng

    2014-09-01

    In order to study the composition and distribution of VOCs (Volatile Organic Compounds) in the atmosphere in the urban area of Beibei district, Chongqing, atmospheric samples were collected from March 2012 to February 2013 with special stainless steel cylinders, and analyzed with a three-stage preconcentration method coupled with GC-MS. 78 species of VOCs were detected in this study, of which there were 25 species of alkanes, 15 species of olefins, 28 species of aromatic hydrocarbons and 10 species of halogenated hydrocarbons. The results showed that the top seven species of VOCs according to the order of annual average concentration in the atmosphere of Beibei were: Dichloromethane (3. 08 x 10(-9) ) , Benzene (2. 09 x 10-9) , Isopentane (1. 85 x 10 -9) , Toluene (1. 51 x 10(-9)) , Propane (1. 51 x 10(-9)), m/p-xylene (1.43 x 10(-9)) and Styrene (1. 39 x 10-9). The concentration of TVOCs (Total Volatile Organic Compounds) in the atmosphere of Beibei was 33. 89 x 10 -9 during the measuring period, and the seasonal variation was obvious with the order of spring (42. 57 x 10 -9) > autumn (33.89 x 10-9) > winter (31.91 x 10 -9) > summer (27.04 x 10(-9)). In the composition of TVOCs, alkanes and aromatic hydrocarbons provided the largest contribution to TVOCs (31.5% and 30.7% ) , followed by halogenated hydrocarbon, accounting for 27.4% , and the last one was olefins, with only 10.4%. By means of ozone formation potential, the analysis results showed that olefins and aromatic hydrocarbon compounds were the two important materials which made the biggest contribution to the formation of ozone in the atmosphere of Beibei. We further analyzed the sources of VOCs in atmosphere of Beibei by the method of Principal Component Analysis (PCA). Vehicle exhaust was the biggest source and its contribution to VOCs was 50. 41%. The calculated results with T/B value also confirmed that traffic was the biggest source contributing to the VOCs in atmosphere of Beibei.

  11. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Directory of Open Access Journals (Sweden)

    E. C. Apel

    2010-03-01

    Full Text Available The volatile organic compound (VOC distribution in the Mexico City Metropolitan Area (MCMA and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs but with a substantial contribution from oxygenated volatile organic compounds (OVOCs, predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry model and MOZART (Model for Ozone and Related chemical Tracers were able to approximate the observed MCMA daytime patterns and absolute values of the VOC OH reactivity. The MOZART model is also in agreement with observations showing that NMHCs dominate the reactivity distribution except in the afternoon hours. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height.

    A northeast transport event was studied in which air originating in the MCMA was intercepted aloft with the Department of Energy (DOE G1 on 18 March and downwind with the National Center for Atmospheric Research (NCAR C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind; ozone was shown to be photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial extent and temporal evolution of the plume

  12. Volatile organic compounds in urban atmospheres: Long-term measurements of ambient air concentrations in differently loaded regions of Leipzig

    Energy Technology Data Exchange (ETDEWEB)

    Knobloch, T.; Asperger, A.; Engewald, W. [University of Leipzig, Institute of Analytical Chemistry, Leipzig (Germany)

    1997-09-01

    For the comprehensive characterization of ambient air concentrations of a broad spectrum of volatile organic compounds (VOCs) an analytical method is described, consisting of adsorptive enrichment, thermal desorption without cryofocusing, and capillary gas chromatographic separation. The method was applied during two-week measuring campaigns in winter and summer 1995, and in the winter of 1996. Long-term sampling was carried out at sampling points in residential areas in the suburbs and near the city center of Leipzig. About 70 VOCs - mainly hydrocarbons from propene to hexadecane - were identified both by GC-MS and chromatographic retention data and quantified after external calibration. Mean values of VOC concentrations obtained during the sampling periods are reported and discussed with regard to the topographical location of the sampling points in the Leipzig area, seasonal variations, and possible emission sources. (orig.) With 7 figs., 3 tabs., 18 refs.

  13. Volatile organic carbon/air separation test using gas membranes

    International Nuclear Information System (INIS)

    King, C.V.; Kaschemekat, J.

    1993-08-01

    An estimated 900 metric tons of carbon tetrachloride were discharged to soil columns during the Plutonium Finishing Plant Operations at the Hanford Site. The largest percentage of this volatile organic compound was found in the vadose region of the 200 West Area. Using a Vacuum Extraction System, the volatile organic compound was drawn from the soil in an air mixture at a concentration of about 1,000 parts per million. The volatile organic compounds were absorbed from the air stream using granulated activated carbon canisters. A gas membrane separation system, developed by Membrane Technology and Research, Inc., was tested at the Vacuum Extraction System site to determine if the volatile organic compound load on the granulated activated carbon could be reduced. The Vacuum Extraction System condensed most of the volatile organic compound into liquid carbon tetrachloride and vented the residual gas stream into the granulated activated carbon. This system reduced the cost of operation about $5/kilogram of volatile organic compound removed

  14. Biochemical and volatile organic compound profile of European flat oyster (Ostrea edulis) and Pacific cupped oyster (Crassostrea gigas) cultivated in the Eastern Scheldt and Lake Grevelingen, the Netherlands

    NARCIS (Netherlands)

    Houcke, van Jasper; Medina, Isabel; Linssen, Jozef; Luten, Joop

    2016-01-01

    The aim of this study was to evaluate the effect of two important different geographical cultivation areas in the Netherlands (Eastern Scheldt and Lake Grevelingen) on the volatile organic compound (VOC) profile of European flat oyster (Ostrea edulis) and Pacific cupped oyster (Crassostrea

  15. Volatile organic compound emissions during hot-pressing of southern pine particleboard : panel size effects and trade-off between press time and temperature

    Science.gov (United States)

    Wenlong Wang; Douglas J. Gardner; Melissa G.D. Baumann

    2002-01-01

    In previous research, it was shown that decreasing either press temperature or press time generally resulted in decreased volatile organic compound (VOC) emissions during the hot-pressing of southern pine particleboard. However, because it is impossible to reduce both pressing time and temperature while maintaining panel physical and mechanical properties, this study...

  16. Odorous volatile organic compounds, Escherichia coli, and nutrient concentrations when kiln-dried pine chips and corn stover bedding are used in beef bedded manure packs

    Science.gov (United States)

    Pine (Pinus spp.) bedding has been shown to lower the concentration of odorous volatile organic compounds (VOCs) and pathogenic bacteria compared with corn (Zea mays L.) stover bedding, but availability and cost limit the use of pine bedding in cattle confinement facilities. The objectives of this s...

  17. Direct measurement of VOC diffusivities in tree tissues

    DEFF Research Database (Denmark)

    Baduru, K.K.; Trapp, Stefan; Burken, Joel G.

    2008-01-01

    Recent discoveries in the phytoremediation of volatile organic compounds (VOCs) show that vapor-phase transport into roots leads to VOC removal from the vadose zone and diffusion and volatilization out of plants is an important fate following uptake. Volatilization to the atmosphere constitutes one...... in numerous vegetation−VOC interactions, including the phytoremediation of soil vapors and dissolved aqueous-phase contaminants. The diffusion of VOCs through freshly excised tree tissue was directly measured for common groundwater contaminants, chlorinated compounds such as trichloroethylene, perchloroethene......, and tetrachloroethane and aromatic hydrocarbons such as benzene, toluene, and methyl tert-butyl ether. All compounds tested are currently being treated at full scale with tree-based phytoremediation. Diffusivities were determined by modeling the diffusive transport data with a one-dimensional diffusive flux model...

  18. SAFARI 2000 Leaf-Level VOC Emissions, Maun, Botswana, Wet Season 2001

    Data.gov (United States)

    National Aeronautics and Space Administration — Biogenic volatile organic compounds (VOCs) comprise a significant proportion of trace gases in the atmospheric environment and play an important role in the...

  19. SAFARI 2000 Leaf-Level VOC Emissions, Maun, Botswana, Wet Season 2001

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Biogenic volatile organic compounds (VOCs) comprise a significant proportion of trace gases in the atmospheric environment and play an important role in...

  20. EVALUATION AND PERFORMANCE ASSESSMENT OF INNOVATIVE LOW-VOC CONTACT ADHESIVES IN WOOD LAMINATING OPERATIONS

    Science.gov (United States)

    The report gives results of an evaluation and assessment of the perfor-mance, economics, and emission reduction potential upon application of low-volatile organic compound (VOC) waterborne contact adhesive formulations specifically ina manual laminating operation for assembling s...

  1. GROUND WATER SAMPLING OF VOCS IN THE WATER/CAPILLARY FRINGE AREA FOR VAPOR INTRUSION ASSESSMENT

    Science.gov (United States)

    Vapor intrusion has recently been considered a major pathway for increased indoor air contamination from certain volatile organic contaminants (VOCs). The recent Draft EPA Subsurface Vapor Intrusion Guidance Document states that ground water samples should be obtained from the u...

  2. California; Antelope Valley Air Quality Management District; VOCs from Motor Vehicle Assembly Coating Operations

    Science.gov (United States)

    EPA is proposing to approve a revision to the Antelope Valley Air Quality Management District portion of the California SIP concerning emissions of volatile organic compounds (VOCs) from motor vehicle assembly coating operations.

  3. A Review of Semivolatile and Volatile Organic Compounds in Highway Runoff and Urban Stormwater

    Science.gov (United States)

    Lopes, Thomas J.; Dionne, Shannon G.

    1998-01-01

    Many studies have been conducted since 1970 to characterize concentrations of semivolatile organic compounds (SVOCs) in highway runoff and urban stormwater. To a lesser extent, studies also have characterized concentrations of volatile organic compounds (VOCs), estimated loads of SVOCs, and assessed potential impacts of these contaminants on receiving streams. This review evaluates the quality of existing data on SVOCs and VOCs in highway runoff and urban storm- water and summarizes significant findings. Studies related to highways are emphasized when possible. The review included 44 articles and reports that focused primarily on SVOCs and VOCs. Only 17 of these publications are related to highways, and 5 of these 17 are themselves review papers. SVOCs in urban stormwater and sediments during the late 1970's to mid-1980's were the subject of most studies. Criteria used to evaluate data quality included documentation of sampling protocols, analytical methods, minimum reporting limit (MRL) or method detection limit (MDL), qualityassurance protocols, and quality-control samples. The largest deficiency in documenting data quality was that only 10 percent of the studies described where water samples were collected in the stream cross section. About 80 percent of SVOCs in runoff are in the suspended solids. Because suspended solids can vary significantly even in narrow channels, concentrations from discrete point samples and contaminant loads estimated from those samples are questionable without information on sample location or how well streamflow was mixed. Thirty percent or fewer of the studies documented the MRL, MDL, cleaning of samplers, or use of field quality-control samples. Comparing results of different studies and evaluating the quality of environmental data, especially for samples with low concentrations, is difficult without this information. The most significant factor affecting SVOC concentrations in water is suspended solids concentration. In sediment

  4. Characterisation of selected volatile organic compounds in ...

    African Journals Online (AJOL)

    GCMS), was used to identify volatile compounds at three different temperatures. Fifty volatile compounds, inclusive of 14 acids, 14 alcohols, and 22 esters were identified and quantified in the two brands of indigenous banana beer samples. Only 12 ...

  5. Fighting against VOC emissions; Lutter contre les emissions de COV

    Energy Technology Data Exchange (ETDEWEB)

    Fanlo, J.L. [Ecole des Mines d' Ales, 30 (France); Puech, G. [APAVE, 75 - Paris (France); Patoux, R. [Rhodia Rhoditech (France)] [and others

    2001-12-01

    This document brings together 15 testimonies of experts about the processes used in the industry for the abatement of volatile organic compound (VOC) emissions. The different points approached concern: the first industrial experiments of fight against VOC emissions, how to audit the facilities, how to make a diagnosis, to hierarchized and to measure continuously VOC emissions, how to anticipate the explosion risks linked with VOC treatment processes, the techniques of VOC abatement at the source implemented by industrialists, the implementation of an emission mastery scheme by Crow Cork and Seal company, the implementation of a solvent management plan by Turbomeca company and of a paints strategy by Renault car-making company, the combination of VOC abatement techniques implemented by industrialists, the classification of destruction and recovery processes: the experience feedback of Sanofi Synthelabo and of Air Liquide companies, the combination of upstream and downstream techniques implemented by Pechiney Rhenalu, Ashland Polyester and Quebecor companies. (J.S.)

  6. Risk of breast cancer among enlisted Army women occupationally exposed to volatile organic compounds.

    Science.gov (United States)

    Rennix, Christopher P; Quinn, Margaret M; Amoroso, Paul J; Eisen, Ellen A; Wegman, David H

    2005-09-01

    The military presents a unique opportunity to study the incidence of disease in a population with complete knowledge of person-time and occupation. Women in the Army are employed more frequently in non-traditional, industrial jobs such as auto mechanic and motor transport operators than in the general US population, increasing the probability of exposure to industrial chemicals. A cohort to investigate the risk of breast cancer among active duty Army women occupationally exposed to volatile organic chemicals (VOCs) was constructed. Age-adjusted incidence rates for breast cancer were calculated for more than 270,000 enlisted women who served between 1980-1996. Twenty-one VOCs, described in previously published literature as having a potential risk of breast cancer, were identified in an Army industrial hygiene survey database. Job title histories were linked to workplace chemical evaluations conducted by Army industrial hygienists, which included a subjective exposure potential rating (high, medium, low, and none) for each VOC. Poisson regression analysis was used to evaluate the association between the exposure rating by job title and breast cancer. The incidence of breast cancer in the cohort was significantly elevated in women younger than 35 years of age, especially among black women, when compared to the age-specific rates in the general population. Women who worked in occupations with a moderate to high exposure potential to at least one VOC had a 48% increased risk (P women with low to no exposure potential. This study provides preliminary evidence that exposure to one or more of the study VOCs is associated with an increased risk of breast cancer. Further substance-specific, quantitative analyses are warranted.

  7. Risk assessment of exposure to volatile organic compounds in groundwater in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Fan Chihhao [Department of Safety, Health, and Environmental Engineering, Mingchi University of Technology, Taipei County, Taiwan (China); Wang, G.-S. [Department of Public Health, National Taiwan University, Taipei, Taiwan (China); Chen, Y.-C. [Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu County, Taiwan (China); Ko, C.-H. [School of Forest and Resources Conservation, National Taiwan University, Taipei, Taiwan (China)], E-mail: chunhank@ntu.edu.tw

    2009-03-15

    The purpose of this study is to assess the risks from exposure to 14 volatile organic compounds (VOCs) in selected groundwater sites in Taiwan. The study employs the multimedia environment pollutant assessment system (MEPAS) model to calculate the specific non-cancer and cancer risks at an exposure level of 1 {mu}g/L of each VOC for a variety of exposure pathways. The results show that the highest specific non-cancer risk is associated with water ingestion of vinyl chloride (VC) and that the highest specific cancer risk is associated with indoor breathing of VC. The three most important exposure pathways for risk assessment for both non-cancer and cancer risks are identified as water ingestion, dermal absorption when showering, and indoor breathing. Excess tetrachloroethylene (PCE), trichloroethylene (TCE), dichloroethylene (DCE), and VC are detected in the groundwater aquifers of one dump site and one factory. However, the study suggests that the pollutants in the contaminated groundwater aquifers do not travel extensively with groundwater flow and that the resulting VOC concentrations are below detectable levels for most of the sampled drinking-water treatment plants. Nevertheless, the non-cancer and cancer risks resulting from use of the contaminated groundwater are found to be hundred times higher than the general risk guidance values. To ensure safe groundwater utilisation, remediation initiatives for soil and groundwater are required. Finally, the study suggests that the current criteria for VOCs in drinking water might not be capable of ensuring public safety when groundwater is used as the primary water supply; more stringent quality criteria for drinking water are proposed for selected VOCs.

  8. Characterization and Health Risk Assessment of Volatile Organic Compounds in Gas Service Station Workers

    Directory of Open Access Journals (Sweden)

    Duangduan Yimrungruang

    2008-07-01

    Full Text Available Gas service station workers who work near volatile organic compounds (VOCs sources, such as gasoline vapor emissions, and motor vehicle exhausts, may be exposed to highly elevated VOCs levels. This study investigates air samples from gas service stations in Thailand to evaluate the health risks following inhalation exposure. Personal air samplings were obtained at nine gas service stations in Chonburi, Thailand from October to December 2007. The concentrations of benzene, toluene, ethylbenzene, xylenes, and hexane in the air from the workplaces were significantly higher than in a control group of office workers (p<0.05. However, all VOCs in these air samples were lower than TWA limit of Thailand and the OSHA standard. Samples of urine, collected after 8-h work periods which were analyzed for VOCs metabolites, including t,t muconic acid, hippuric acid, mandelic acid and m-hippuric acid, demonstrate that the average levels of metabolites in gas service station workers and in controls were close, except for t,t muconic acid of gas service station workers which displayed higher levels than the in the controls. The lifetime cancer and noncancer risks for the workers exposed to VOCs were also assessed. Results show that all nine gas service stations in this study had a elevated lifetime cancer risk ranging from 53 to 630 per million, thus exceeding the normal risk of 1 per million. For noncancer risks, the levels in all gas stations ranged between 0.03 and 0.4, which is well below the reference hazard level of 1.0. Benzene may the most important cause of both cancer and noncancer risk followed by 1,3 butadiene.

  9. Volatile organic compounds and risk of asthma and allergy: a systematic review

    Directory of Open Access Journals (Sweden)

    Ulugbek B. Nurmatov

    2015-03-01

    Full Text Available Volatile organic compounds (VOCs are ubiquitous domestic pollutants. Their role in asthma/allergy development and exacerbations is uncertain. This systematic review investigated whether domestic VOC exposure increases the risk of developing and/or exacerbating asthma and allergic disorders. We systematically searched 11 databases and three trial repositories, and contacted an international panel of experts to identify published and unpublished experimental and epidemiological studies. 8455 potentially relevant studies were identified; 852 papers were removed after de-duplication, leaving 7603 unique papers that were screened. Of these, 278 were reviewed in detail and 53 satisfied the inclusion criteria. Critical appraisal of the included studies indicated an overall lack of high-quality evidence and substantial risk of bias in this body of knowledge. Aromatics (i.e. benzenes, toluenes and xylenes and formaldehyde were the main VOC classes studied, both in relation to the development and exacerbations of asthma and allergy. Approximately equal numbers of studies reported that exposure increased risks and that exposure was not associated with any detrimental effects. The available evidence implicating domestic VOC exposure in the risk of developing and/or exacerbating asthma and allergy is of poor quality and inconsistent. Prospective, preferably experimental studies, investigating the impact of reducing/eliminating exposure to VOC, are now needed in order to generate a more definitive evidence base to inform policy and clinical deliberations in relation to the management of the now substantial sections of the population who are either at risk of developing asthma/allergy or living with established disease.

  10. Characterization of volatile organic compounds emissions from municipal landfill and their dispersion in the environment; Caracterisation des emissions de composes organiques volatils issus des centre de stockage de dechets menagers et assimiles et de leur dispersion dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, R.E.

    2004-12-15

    A municipal landfill causes atmospheric pollution by the emission of trace volatile organic compounds (VOCs) that are harmful for health and environment. Beyond the adsorption technique on sorbent tubes followed by solvent extraction and GC/MS analysis in the laboratory, a pre-concentrator-thermodesorption /micro-gas chromatograph coupling was developed for on-site monitoring of trace VOCs. To evaluate the environmental impact of this traces various studies were realized: 'Study of the emission of VOCs from landfill cells in use', 'Study of the formation of VOCs from a pilot-scale municipal landfill', 'Study of the dispersion of VOCs from a municipal landfill'. All the results permitted a closer appraisal of the emission and dispersion phenomena of VOCs from a municipal landfill. (author)

  11. Characterization of volatile organic compound adsorption on multiwall carbon nanotubes under different levels of relative humidity using linear solvation energy relationship

    International Nuclear Information System (INIS)

    Li, Mei-syue; Wu, Siang Chen; Shih, Yang-hsin

    2016-01-01

    Highlights: • LSER equations successfully predicted VOC sorption on MCNT at different humidity. • The five parameters in LSER could be narrowed down to three ones. • Main interaction is dispersion and partly dipolarity as well as hydrogen-bonds. • With increasing RH, it changes to cavity formation and hydrogen-bond basicity. • This approach can facilitate the VOC control design and the fate prediction. - Abstract: Multiwall carbon nanotubes (MWCNTs) have been used as an adsorbent for evaluating the gas/solid partitioning of selected volatile organic compounds (VOCs). In this study, 15 VOCs were probed to determine their gas/solid partitioning coefficient (Log K d ) using inverse gas chromatography at different relative humidity (RH) levels. Interactions between MWCNTs and VOCs were analyzed by regressing the observed Log K d with the linear solvation energy relationship (LSER). The results demonstrate that the MWCNT carbonyl and carboxyl groups provide high adsorption capacity for the VOCs (Log K d 3.72–5.24 g/kg/g/L) because of the π-/n-electron pair interactions and hydrogen-bond acidity. The increasing RH gradually decreased the Log K d and shifted the interactions to dipolarity/polarizability, hydrogen-bond basicity, and cavity formation. The derived LSER equations provided adequate fits of Log K d , which is useful for VOC-removal processes and fate prediction of VOC contaminants by MWCNT adsorption in the environment.

  12. Characterization of volatile organic compound adsorption on multiwall carbon nanotubes under different levels of relative humidity using linear solvation energy relationship

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mei-syue; Wu, Siang Chen; Shih, Yang-hsin, E-mail: yhs@ntu.edu.tw

    2016-09-05

    Highlights: • LSER equations successfully predicted VOC sorption on MCNT at different humidity. • The five parameters in LSER could be narrowed down to three ones. • Main interaction is dispersion and partly dipolarity as well as hydrogen-bonds. • With increasing RH, it changes to cavity formation and hydrogen-bond basicity. • This approach can facilitate the VOC control design and the fate prediction. - Abstract: Multiwall carbon nanotubes (MWCNTs) have been used as an adsorbent for evaluating the gas/solid partitioning of selected volatile organic compounds (VOCs). In this study, 15 VOCs were probed to determine their gas/solid partitioning coefficient (Log K{sub d}) using inverse gas chromatography at different relative humidity (RH) levels. Interactions between MWCNTs and VOCs were analyzed by regressing the observed Log K{sub d} with the linear solvation energy relationship (LSER). The results demonstrate that the MWCNT carbonyl and carboxyl groups provide high adsorption capacity for the VOCs (Log K{sub d} 3.72–5.24 g/kg/g/L) because of the π-/n-electron pair interactions and hydrogen-bond acidity. The increasing RH gradually decreased the Log K{sub d} and shifted the interactions to dipolarity/polarizability, hydrogen-bond basicity, and cavity formation. The derived LSER equations provided adequate fits of Log K{sub d}, which is useful for VOC-removal processes and fate prediction of VOC contaminants by MWCNT adsorption in the environment.

  13. Influence of adhesive bonding on quantity of emissions VOCs

    Directory of Open Access Journals (Sweden)

    Petr Čech

    2008-01-01

    Full Text Available The study deals with the influence of urea-formaldehyde glue and veneered bolstering on technological operation veneering on quantity of emission VOCs (volatile organic compounds.The so-called Volatile Organic Compounds (VOC are among the largest pollution sources of both the internal and external environments.VOC is defined as emission of any organic compound or a mixture thereof, with the exception of methane, whereby the compound exerts the pressure of 0.01 kPa or more at the temperature of 20 °C (293.15 K and reaches the corresponding volatility under the specific conditions of its use and can undergo photochemical reactions with nitrogen oxides when exposed to solar radiation.The effects of VOC upon environment can be described by equation:VOC + NOx + UV radiation + heat = tropospheric ozone (O3.In this work there were tested background working environment in various parts of multi-storeyed press, next was judged emissive charge of veneered device and used glue. We used surface material such as chipboard. We used urea-formaldehyde glue KRONOCOL U300 on technological operation veneering.The VOC emissions from the wooden surfaces with or without finishing were tested in the Equipment for VOC Measuring with a small-space chamber. This equipment was installed in and made available by the Institute of Furniture, Design and Habitation. The small-space chamber is suitable for testing small parts of wood products. The device equipped with small-chamber satisfies all conditions mandated in the standard ENV 13 419 DIN -V-ENV 13 419 ”Determination of the emissions of Volatile organic compounds”.The VOC emissions were collected in columns with sorbent Tenax TA. We analyzed the columns with the VOC emissions by: the gas chromatography in conjunction with mass spectrometer and Direct Thermal Desorption.

  14. Temperature-dependent release of volatile organic compounds of eucalypts by direct analysis in real time (DART) mass spectrometry.

    Science.gov (United States)

    Maleknia, Simin D; Vail, Teresa M; Cody, Robert B; Sparkman, David O; Bell, Tina L; Adams, Mark A

    2009-08-01

    A method is described for the rapid identification of biogenic, volatile organic compounds (VOCs) emitted by plants, including the analysis of the temperature dependence of those emissions. Direct analysis in real time (DART) enabled ionization of VOCs from stem and leaf of several eucalyptus species including E. cinerea, E. citriodora, E. nicholii and E. sideroxylon. Plant tissues were placed directly in the gap between the DART ionization source skimmer and the capillary inlet of the time-of-flight (TOF) mass spectrometer. Temperature-dependent emission of VOCs was achieved by adjusting the temperature of the helium gas into the DART ionization source at 50, 100, 200 and 300 degrees C, which enabled direct evaporation of compounds, up to the onset of pyrolysis of plant fibres (i.e. cellulose and lignin). Accurate mass measurements facilitated by TOF mass spectrometry provided elemental compositions for the VOCs. A wide range of compounds was detected from simple organic compounds (i.e. methanol and acetone) to a series of monoterpenes (i.e. pinene, camphene, cymene, eucalyptol) common to many plant species, as well as several less abundant sesquiterpenes and flavonoids (i.e. naringenin, spathulenol, eucalyptin) with antioxidant and antimicrobial properties. The leaf and stem tissues for all four eucalypt species showed similar compounds. The relative abundances of methanol and ethanol were greater in stem wood than in leaf tissue suggesting that DART could be used to investigate the tissue-specific transport and emissions of VOCs. Copyright (c) 2009 John Wiley & Sons, Ltd.

  15. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Hushna Ara Naznin

    Full Text Available Volatile organic compounds (VOC were extracted and identified from plant growth-promoting fungi (PGPF, Phoma sp., Cladosporium sp. and Ampelomyces sp., using gas chromatography-mass spectrometry (GC-MS. Among the three VOC extracted, two VOC blends (emitted from Ampelomyces sp. and Cladosporium sp. significantly reduced disease severity in Arabidopsis plants against Pseudomonas syringae pv. tomato DC3000 (Pst. Subsequently, m-cresol and methyl benzoate (MeBA were identified as major active volatile compounds from Ampelomyces sp. and Cladosporium sp., respectively, and found to elicit induced systemic resistance (ISR against the pathogen. Molecular signaling for disease suppression by the VOC were investigated by treating different mutants and transgenic Arabidopsis plants impaired in salicylic acid (SA or Jasmonic acid (JA/ethylene (ET signaling pathways with m-cresol and MeBA followed by challenge inoculation with Pst. Results show that the level of protection was significantly lower when JA/ET-impaired mutants were treated with MeBA, and in SA-, and JA/ET-disrupted mutants after m-cresol treatment, indicating the involvement of these signal transduction pathways in the ISR primed by the volatiles. Analysis of defense-related genes by real-time qRT-PCR showed that both the SA-and JA-signaling pathways combine in the m-cresol signaling of ISR, whereas MeBA is mainly involved in the JA-signaling pathway with partial recruitment of SA-signals. The ET-signaling pathway was not employed in ISR by the volatiles. Therefore, this study identified two novel volatile components capable of eliciting ISR that may be promising candidates in biological control strategy to protect plants from diseases.

  16. Nitrate radicals and biogenic volatile organic compounds ...

    Science.gov (United States)

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in

  17. Volatile Organic Compounds Sensing Using Optical Fibre Long Period Grating with Mesoporous Nano-Scale Coating

    Directory of Open Access Journals (Sweden)

    Jiri Hromadka

    2017-02-01

    Full Text Available A long period grating (LPG modified with a mesoporous film infused with a calixarene as a functional compound was employed for the detection of individual volatile organic compounds (VOCs and their mixtures. The mesoporous film consisted of an inorganic part, SiO2 nanoparticles (NPs, along with an organic moiety of poly(allylamine hydrochloride polycation PAH, which was finally infused with the functional compound, p-sulphanato calix[4]arene (CA[4] or p-sulphanato calix[8]arene (CA[8]. The LPG sensor was designed to operate at the phase matching turning point to provide the highest sensitivity. The sensing mechanism is based on the measurement of the refractive index (RI change induced by a complex of the VOCs with calixarene. The LPG, modified with a coating of 5 cycles of (SiO2 NPs/PAH and infused with CA[4] or CA[8], was exposed to chloroform, benzene, toluene and acetone vapours. The British Standards test of the VOCs emissions from material (BS EN ISO 16000-9:2006 was used to test the LPG sensor performance.

  18. The micro-environmental impact of volatile organic compound emissions from large-scale assemblies of people in a confined space

    International Nuclear Information System (INIS)

    Dutta, Tanushree; Kim, Ki-Hyun; Uchimiya, Minori; Kumar, Pawan; Das, Subhasish; Bhattacharya, Satya Sundar; Szulejko, Jan

    2016-01-01

    Large-scale assemblies of people in a confined space can exert significant impacts on the local air chemistry due to human emissions of volatile organics. Variations of air-quality in such small scale can be studied by quantifying fingerprint volatile organic compounds (VOCs) such as acetone, toluene, and isoprene produced during concerts, movie screenings, and sport events (like the Olympics and the World Cup). This review summarizes the extent of VOC accumulation resulting from a large population in a confined area or in a small open area during sporting and other recreational activities. Apart from VOCs emitted directly from human bodies (e.g., perspiration and exhaled breath), those released indirectly from other related sources (e.g., smoking, waste disposal, discharge of food-waste, and use of personal-care products) are also discussed. Although direct and indirect emissions of VOCs from human may constitute <1% of the global atmospheric VOCs budget, unique spatiotemporal variations in VOCs species within a confined space can have unforeseen impacts on the local atmosphere to lead to acute human exposure to harmful pollutants.

  19. The micro-environmental impact of volatile organic compound emissions from large-scale assemblies of people in a confined space

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Tanushree [Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763 (Korea, Republic of); Kim, Ki-Hyun, E-mail: kkim61@hanyang.ac.kr [Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763 (Korea, Republic of); Uchimiya, Minori [USDA-ARS Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124 (United States); Kumar, Pawan [Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 11016 (India); Das, Subhasish; Bhattacharya, Satya Sundar [Soil & Agro-Bioengineering Lab, Department of Environmental Science, Tezpur University, Napaam 784028 (India); Szulejko, Jan [Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763 (Korea, Republic of)

    2016-11-15

    Large-scale assemblies of people in a confined space can exert significant impacts on the local air chemistry due to human emissions of volatile organics. Variations of air-quality in such small scale can be studied by quantifying fingerprint volatile organic compounds (VOCs) such as acetone, toluene, and isoprene produced during concerts, movie screenings, and sport events (like the Olympics and the World Cup). This review summarizes the extent of VOC accumulation resulting from a large population in a confined area or in a small open area during sporting and other recreational activities. Apart from VOCs emitted directly from human bodies (e.g., perspiration and exhaled breath), those released indirectly from other related sources (e.g., smoking, waste disposal, discharge of food-waste, and use of personal-care products) are also discussed. Although direct and indirect emissions of VOCs from human may constitute <1% of the global atmospheric VOCs budget, unique spatiotemporal variations in VOCs species within a confined space can have unforeseen impacts on the local atmosphere to lead to acute human exposure to harmful pollutants.

  20. Personal exposure to mixtures of volatile organic compounds: modeling and further analysis of the RIOPA data.

    Science.gov (United States)

    Batterman, Stuart; Su, Feng-Chiao; Li, Shi; Mukherjee, Bhramar; Jia, Chunrong

    2014-06-01

    Emission sources of volatile organic compounds (VOCs*) are numerous and widespread in both indoor and outdoor environments. Concentrations of VOCs indoors typically exceed outdoor levels, and most people spend nearly 90% of their time indoors. Thus, indoor sources generally contribute the majority of VOC exposures for most people. VOC exposure has been associated with a wide range of acute and chronic health effects; for example, asthma, respiratory diseases, liver and kidney dysfunction, neurologic impairment, and cancer. Although exposures to most VOCs for most persons fall below health-based guidelines, and long-term trends show decreases in ambient emissions and concentrations, a subset of individuals experience much higher exposures that exceed guidelines. Thus, exposure to VOCs remains an important environmental health concern. The present understanding of VOC exposures is incomplete. With the exception of a few compounds, concentration and especially exposure data are limited; and like other environmental data, VOC exposure data can show multiple modes, low and high extreme values, and sometimes a large portion of data below method detection limits (MDLs). Field data also show considerable spatial or interpersonal variability, and although evidence is limited, temporal variability seems high. These characteristics can complicate modeling and other analyses aimed at risk assessment, policy actions, and exposure management. In addition to these analytic and statistical issues, exposure typically occurs as a mixture, and mixture components may interact or jointly contribute to adverse effects. However most pollutant regulations, guidelines, and studies remain focused on single compounds, and thus may underestimate cumulative exposures and risks arising from coexposures. In addition, the composition of VOC mixtures has not been thoroughly investigated, and mixture components show varying and complex dependencies. Finally, although many factors are known to

  1. Two Volatile Organic Compounds Trigger Plant Self-Defense against a Bacterial Pathogen and a Sucking Insect in Cucumber under Open Field Conditions

    Directory of Open Access Journals (Sweden)

    Choong-Min Ryu

    2013-05-01

    Full Text Available Systemic acquired resistance (SAR is a plant self-defense mechanism against a broad-range of pathogens and insect pests. Among chemical SAR triggers, plant and bacterial volatiles are promising candidates for use in pest management, as these volatiles are highly effective, inexpensive, and can be employed at relatively low concentrations compared with agrochemicals. However, such volatiles have some drawbacks, including the high evaporation rate of these compounds after application in the open field, their negative effects on plant growth, and their inconsistent levels of effectiveness. Here, we demonstrate the effectiveness of volatile organic compound (VOC-mediated induced resistance against both the bacterial angular leaf spot pathogen, Pseudononas syringae pv. lachrymans, and the sucking insect aphid, Myzus persicae, in the open field. Using the VOCs 3-pentanol and 2-butanone where fruit yields increased gave unexpectedly, a significant increase in the number of ladybird beetles, Coccinella septempunctata, a natural enemy of aphids. The defense-related gene CsLOX was induced by VOC treatment, indicating that triggering the oxylipin pathway in response to the emission of green leaf volatiles can recruit the natural enemy of aphids. These results demonstrate that VOCs may help prevent plant disease and insect damage by eliciting induced resistance, even in open fields.

  2. Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba.

    Science.gov (United States)

    Macías-Rubalcava, Martha L; Hernández-Bautista, Blanca E; Oropeza, Fabiola; Duarte, Georgina; González, María C; Glenn, Anthony E; Hanlin, Richard T; Anaya, Ana Luisa

    2010-10-01

    Muscodor yucatanensis, an endophytic fungus, was isolated from the leaves of Bursera simaruba (Burseraceae) in a dry, semideciduous tropical forest in the Ecological Reserve El Eden, Quintana Roo, Mexico. We tested the mixture of volatile organic compounds (VOCs) produced by M. yucatanensis for allelochemical effects against other endophytic fungi, phytopathogenic fungi and fungoids, and plants. VOCs were lethal to Guignardia mangifera, Colletotrichum sp., Phomopsis sp., Alternaria solani, Rhizoctonia sp., Phytophthora capsici, and P. parasitica, but had no effect on Fusarium oxysporum, Xylaria sp., the endophytic isolate 120, or M. yucatanensis. VOCs inhibited root elongation in amaranth, tomato, and barnyard grass, particularly those produced during the first 15 days of fungal growth. VOCs were identified by gas chromatography/mass spectrometry and included compounds not previously reported from other Muscodor species and the previously reported compounds octane, 2-methyl butyl acetate, 2-pentyl furan, caryophyllene, and aromadendrene. We also evaluated organic extracts from the culture medium and mycelium of M. yucatanensis on the same endophytes, phytopathogens, and plants. In general, extracts inhibited plants more than endophytic or phytopathogens fungi. G. mangifera was the only organism that was significantly stimulated by both extracts regardless of concentration. Compounds in both organic extracts were identified by gas chromatography/mass spectrometry. We discuss the possible allelopathic role that metabolites of M. yucatanensis play in its ecological interactions with its host plant and other organisms.

  3. Advanced heat pump for the recovery of volatile organic compounds. Phase 1, Conceptual design of an advanced Brayton cycle heat pump for the recovery of volatile organic compounds: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total US VOC emissions. The ``Toxic-Release Inventory`` of The US Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing,refrigerant production, and wood products production. The US Department of Energy`s (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase I report documents 3M`s work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient and economically priced.

  4. VOCs and odors: key factors in selecting `green` building materials?

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, C. [Steven Winter Associates Inc., Norwalk, CT and Washington DC (United States)

    1998-12-01

    The current state of knowledge available for selecting building materials on the basis of emissions of volatile organic compounds (VOCs) and odors is reviewed. The significance of VOCs and odors in building materials is related to their role in influencing indoor air quality. As far as toxicity is concerned, many of the VOCs detected in indoor air are relatively inert when considered singly. They are not however, unimportant because in actual fact they are invariably found in mixtures some of which can be toxic. Although knowledge of VOCs is incomplete, it is important to specify ozone-resistant polymeric building products, i.e. those that are chemically stable and inert to oxidation. In addition to VOCs, attention should also be focused on semi-volatile organic compounds (SVOCs) since they are even more persistent than VOCs and tend to offgas for prolonged periods of time. Similarly, it is reasonable to specify low-odor materials. Inclusion of issues related to complex indoor chemistry, less volatile emissions, in addition to VOCs and odor, should in time result in expanded choices of building materials that promote indoor air quality. 16 refs.,2 tabs.

  5. Health risk assessment of volatile organic compounds exposure near Daegu dyeing industrial complex in South Korea.

    Science.gov (United States)

    Shuai, Jianfei; Kim, Sunshin; Ryu, Hyeonsu; Park, Jinhyeon; Lee, Chae Kwan; Kim, Geun-Bae; Ultra, Venecio U; Yang, Wonho

    2018-04-20

    Studying human health in areas with industrial contamination is a serious and complex issue. In recent years, attention has increasingly focused on the health implications of large industrial complexes. A variety of potential toxic chemicals have been produced during manufacturing processes and activities in industrial complexes in South Korea. A large number of dyeing industries gathered together in Daegu dyeing industrial complex. The residents near the industrial complex could be often exposed to volatile organic compounds. This study aimed to evaluate VOCs levels in the ambient air of DDIC, to assess the impact on human health risks, and to find more convincing evidences to prove these VOCs emitted from DDIC. According to deterministic risk assessment, inhalation was the most important route. Residential indoor, outdoor and personal exposure air VOCs were measured by passive samplers in exposed area and controlled area in different seasons. Satisfaction with ambient environments and self-reported diseases were also obtained by questionnaire survey. The VOCs concentrations in exposed area and controlled area was compared by t-test. The relationships among every VOC were tested by correlation. The values of hazard quotient (HQ) and life cancer risk were estimated. The concentrations of measured VOCs were presented, moreover, the variety of concentrations according the distances from the residential settings to the industrial complex site in exposed area. The residential indoor, outdoor, and personal exposure concentrations of toluene, DMF and chloroform in exposed area were significantly higher than the corresponding concentrations in controlled area both in summer and autumn. Toluene, DMF, chloroform and MEK had significantly positive correlations with each other in indoor and outdoor, and even in personal exposure. The HQ for DMF exceeded 1, and the life cancer risk of chloroform was greater than 10 - 4 in exposed area. The prevalence of respiratory diseases

  6. An Estimate of Biogenic Emissions of Volatile Organic Compounds during Summertime in China (7 pp).

    Science.gov (United States)

    Heinrich, Almut

    2007-01-01

    and Aim. An accurate estimation of biogenic emissions of VOC (volatile organic compounds) is necessary for better understanding a series of current environmental problems such as summertime smog and global climate change. However, very limited studies have been reported on such emissions in China. The aim of this paper is to present an estimate of biogenic VOC emissions during summertime in China, and discuss its uncertainties and potential areas for further investigations. This study was mainly based on field data and related research available so far in China and abroad, including distributions of land use and vegetations, biomass densities and emission potentials. VOC were grouped into isoprene, monoterpenes and other VOC (OVOC). Emission potentials of forests were determined for 22 genera or species, and then assigned to 33 forest ecosystems. The NCEP/NCAR reanalysis database was used as standard environmental conditions. A typical summertime of July 1999 was chosen for detailed calculations. The biogenic VOC emissions in China in July were estimated to be 2.3×1012gC, with 42% as isoprene, 19% as monoterpenes and 39% as OVOC. About 77.3% of the emissions are generated from forests and woodlands. The averaged emission intensity was 4.11 mgC m-2 hr-1 for forests and 1.12 mgC m-2 hr-1 for all types of vegetations in China during the summertime. The uncertainty in the results arose from both the data and the assumptions used in the extrapolations. Generally, uncertainty in the field measurements is relatively small. A large part of the uncertainty mainly comes from the taxonomic method to assign emission potentials to unmeasured species, while the ARGR method serves to estimate leaf biomass and the emission algorithms to describe light and temperature dependence. This study describes a picture of the biogenic VOC emissions during summertime in China. Due to the uneven spatial and temporal distributions, biogenic VOC emissions may play an important role in the

  7. Sources and Seasonality of Volatile Organic Compounds in the Northern Front Range Metropolitan Area

    Science.gov (United States)

    Abeleira, A.; Pollack, I. B.; Sive, B. C.; Zaragoza, J.; Lindaas, J.; Fischer, E. V.; Farmer, D.

    2016-12-01

    The Northern Front Range Metropolitan Area (NFRMA) of Colorado, with a growing population of over 3 million, was deemed an ozone (O3) nonattainment area (NAA) in 2008 despite continued work on NOx reductions. Ground-level O3 is produced from photochemical catalytic cycles initiated by the OH oxidation of volatile organic compounds (VOCs), and propagated through reactions involving peroxy (HO2+RO2) and NOx (NO + NO2) radicals. We measured a suite of speciated VOCs during two 8-week deployments (March-May 2015, July-September 2015) at the Boulder Atmospheric Observatory in Erie, CO. The spring deployment overlapped with the NOAA SONGNEX (Shale Oil and Natural Gas Nexus) campaign. The BAO site lies at an urban-rural interface in the NFRMA with multiple urban centers surrounding the site, a major interstate highway within 2 miles, local suburban development in Erie, agricultural operations in the surrounding counties, and recent rapid expansion of oil and gas development in adjacent Weld County. VOCs were measured hourly with a custom-built online gas chromatography system along with measurements of O3, NOx, PAN, CO, and CH4. VOC measurements included C2-C8 hydrocarbons (NMHCs), C1-C5 alkyl nitrates, C1-C2 halocarbons, and several oxygenated species (OVOCs: methyl ethyl ketone, acetone, acetaldehyde). Using Positive Matrix Factorization (PMF) we have identified four distinct VOC sources in the spring and five in the summer: 1) Oil and Natural Gas (ONG, e.g. C2 - C5 alkanes), 2) Traffic (e.g. ethyne & aromatics), 3) Background species (e.g. long-lived halogenated species), 4) Secondary production (e.g. C3-C5 alkyl nitrates & OVOCs), and for summer 5) Biogenic (e.g. isoprene). Using the source factors generated from the PMF analysis we calculated the VOC reactivity (VOCr) of each source. For both seasons, the ONG factor dominates VOCr in the mornings. In spring afternoons, a combination of background species and secondary products make up a large percentage of VOCr as

  8. Plan for assessment of the occurrence, status, and distribution of volatile organic compounds in aquifers of the United States

    Science.gov (United States)

    Lapham, W.W.; Tadayon, Saeid

    1996-01-01

    The occurrence of volatile organic compounds (VOCs) in water is of national concern because of their relatively high aqueous solubility, mobility, and persistence, because many are known or suspected carcinogens, because of their widespread use, and because they have been found in drinking-water supplies. Because of this national concern, VOCs were selected for National investigation (hereafter termed "National Synthesis") by the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program in 1994. The broad goals of this National Synthesis are to: (1) describe current water- quality conditions with respect to VOCs; (2) define trends, or lack of trends, in VOCs in surface and ground water; and (3) identify, describe, and explain causal relations among the occurrence and distribution of VOCs in surface water and ground water, and natural and human factors. The National Synthesis of VOCs in ground water has three objectives: (1) to describe their occurrence, status, and distribution; (2) to determine relations among VOCs in shallow ground water and natural and human factors; and (3) to determine, compare, and contrast the occurrence, transformation, transport, and fate of selected VOCs in the hydrologic cycle for several regionally or nationally important aquifer systems. The description of VOC occurrence, status, and distribution in ground water focuses on major aquifers of the United States. Occurrence describes the presence or absence of VOCs, their frequency of occurrence, and their ranges of concentrations. Status compares the concentrations of VOCs detected in relation to water-quality regulations or advisories, such as Maximum Contaminant Levels, Proposed Maximum Contaminant Levels, Maximum Contaminant Level Goals, and Health Advisories. Distribution describes the variability of VOCs in ground water, areally and by depth. This report describes the study design for conducting such an assessment. The assessment focuses on aquifers, or parts of

  9. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants

    Science.gov (United States)

    Kegge, Wouter; Ninkovic, Velemir; Glinwood, Robert; Welschen, Rob A. M.; Voesenek, Laurentius A. C. J.; Pierik, Ronald

    2015-01-01

    Background and Aims Volatile organic compounds (VOCs) play various roles in plant–plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar ‘Alva’ cause changes in biomass allocation in plants of the cultivar ‘Kara’. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant–plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant–plant signalling between ‘Alva’ and ‘Kara’. Methods The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by ‘Alva’ under control and far-red light-enriched conditions were analysed using gas chromatography–mass spectrometry (GC-MS). ‘Kara’ plants were exposed to the VOC blend emitted by the ‘Alva’ plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for ‘Kara’ plants exposed to ‘Alva’ VOCs, and also for ‘Alva’ plants exposed to either control or far-red-enriched light treatments. Key Results Total VOC emissions by ‘Alva’ were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by ‘Alva’ plants exposed to low R:FR was found to affect carbon allocation in receiver plants of ‘Kara’. Conclusions The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions

  10. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants.

    Science.gov (United States)

    Kegge, Wouter; Ninkovic, Velemir; Glinwood, Robert; Welschen, Rob A M; Voesenek, Laurentius A C J; Pierik, Ronald

    2015-05-01

    Volatile organic compounds (VOCs) play various roles in plant-plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar 'Alva' cause changes in biomass allocation in plants of the cultivar 'Kara'. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant-plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant-plant signalling between 'Alva' and 'Kara'. The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by 'Alva' under control and far-red light-enriched conditions were analysed using gas chromatography-mass spectrometry (GC-MS). 'Kara' plants were exposed to the VOC blend emitted by the 'Alva' plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for 'Kara' plants exposed to 'Alva' VOCs, and also for 'Alva' plants exposed to either control or far-red-enriched light treatments. Total VOC emissions by 'Alva' were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by 'Alva' plants exposed to low R:FR was found to affect carbon allocation in receiver plants of 'Kara'. The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions affect VOC-mediated plant-plant interactions. © The Author 2015. Published by Oxford University Press on

  11. Status and Needs Research for On-line Monitoring of VOCs Emissions from Stationary Sources

    Science.gov (United States)

    Zhou, Gang; Wang, Qiang; Zhong, Qi; Zhao, Jinbao; Yang, Kai

    2018-01-01

    Based on atmospheric volatile organic compounds (VOCs) pollution control requirements during the twelfth-five year plan and the current status of monitoring and management at home and abroad, instrumental architecture and technical characteristics of continuous emission monitoring systems (CEMS) for VOCs emission from stationary sources are investigated and researched. Technological development needs of VOCs emission on-line monitoring techniques for stationary sources in china are proposed from the system sampling pretreatment technology and analytical measurement techniques.

  12. Volatile Organic Compounds in the Atmosphere of the Botanical Garden of the City of Rio de Janeiro: A Preliminary Study.

    Science.gov (United States)

    da Silva, Cleyton Martins; Souza, Elaine Cesar C A; da Silva, Luane Lima; Oliveira, Rafael Lopes; Corrêa, Sergio Machado; Arbilla, Graciela

    2016-11-01

    Volatile organic compounds (VOCs) play a central role in atmospheric chemistry. In this work, VOCs in the Botanical Garden of Rio de Janeiro were determined using the TO-15 Method. The park occupies 1,370,000 m 2 in the southern area of the city and is next to the Tijuca Forest, which is considered the largest secondary urban forest in the world. The total VOC concentrations ranged from 43.52 to 168.75 µg m -3 , depending on the sampling site and dates. In terms of concentration isoprene represented 4 %-14 % of the total VOC masses. The results suggested that the differences in biomass, distance from the street and activities within the park affected the concentrations of VOCs. The ratios of isoprene/aromatic compounds were higher than those determined in other areas of the city, confirming that the atmosphere of this green area has the contribution of other sources. Kinetic and mechanistic reactivities were also evaluated.

  13. Selective Detection of Target Volatile Organic Compounds in Contaminated Humid Air Using a Sensor Array with Principal Component Analysis

    Science.gov (United States)

    Itoh, Toshio; Akamatsu, Takafumi; Tsuruta, Akihiro; Shin, Woosuck

    2017-01-01

    We investigated selective detection of the target volatile organic compounds (VOCs) nonanal, n-decane, and acetoin for lung cancer-related VOCs, and acetone and methyl i-butyl ketone for diabetes-related VOCs, in humid air with simulated VOC contamination (total concentration: 300 μg/m3). We used six “grain boundary-response type” sensors, including four commercially available sensors (TGS 2600, 2610, 2610, and 2620) and two Pt, Pd, and Au-loaded SnO2 sensors (Pt, Pd, Au/SnO2), and two “bulk-response type” sensors, including Zr-doped CeO2 (CeZr10), i.e., eight sensors in total. We then analyzed their sensor signals using principal component analysis (PCA). Although the six “grain boundary-response type” sensors were found to be insufficient for selective detection of the target gases in humid air, the addition of two “bulk-response type” sensors improved the selectivity, even with simulated VOC contamination. To further improve the discrimination, we selected appropriate sensors from the eight sensors based on the PCA results. The selectivity to each target gas was maintained and was not affected by contamination. PMID:28753948

  14. Volatile organic compounds in exhaled breath in a healthy population: effect of tobacco smoking.

    Science.gov (United States)

    Jareño-Esteban, José Javier; Muñoz-Lucas, M Ángeles; Carrillo-Aranda, Belén; Maldonado-Sanz, José Ángel; de Granda-Orive, Ignacio; Aguilar-Ros, Antonio; Civera-Tejuca, Concepción; Gutiérrez-Ortega, Carlos; Callol-Sánchez, Luis Miguel

    2013-11-01

    Tobacco smoke is a source of free radicals and reactive oxygen and nitrogen species, which are the main causes of oxidative stress. The analysis of volatile organic compounds (VOC) in exhaled breath is an indirect method of measuring the level of oxidative stress that occurs in the airways caused by tobacco consumption. The aim of this study was to determine whether smoking influences the production of VOC, in a clinically healthy population. Exhaled breath from 89 healthy volunteers, divided into three groups (non-smokers, ex-smokers and smokers) was analysed. Samples were collected using Bio-VOC® devices and transferred to universal desorption tubes. Chemical compounds were analysed by thermal desorption, gas chromatography and mass spectrometry. We analysed hexanal, heptanal, octanal, nonanal, nonanoic acid and propanoic acid, all identified by retention time and mass spectra referenced in the NIST 08 mass spectral library; confirmation was carried out using reference standards of the pure chemical compound. These VOC were found in very low concentrations. Only nonanal showed significant quantitative and qualitative statistical differences among the study groups. Nonanal concentration is dependent on smoking, but is independent of the amount of tobacco consumed, age and gender. Nonanal in exhaled breath is associated with tobacco consumption, current or previous. Nonanal is a sub-product of the destruction of the cell membrane, and its finding may be indicative of cell damage in smokers. This result appears in many farmers who smoke. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  15. Toxicity assessment of volatile organic compounds and polycyclic aromatic hydrocarbons in motorcycle exhaust

    International Nuclear Information System (INIS)

    Chang, C.-T.; Chen, B.-Y.

    2008-01-01

    This study investigates the toxicity of various pollutant species from motorcycle exhaust via dose-response analysis and margin of safety using Escherichia coli DH5α. The toxicity evaluation of the major components of motorcycle exhaust volatile organic compounds (VOCs), collected with impinger, and polycyclic aromatic hydrocarbons (PAHs), collected with filter and XAD-2, is essential to determine emission standards for motorcycles. The toxicity of benzene (B), toluene (T), ethyl benzene (E) and xylene (X) was selected for comparison as standard VOCs emitted from motorcycles. In addition, three types of reformulated gasoline (high oxygenate and high benzene content (No. 1), low oxygen and high benzene (No. 2), and low oxygen and low benzene (No. 3) were prepared to reveal combined toxicity of individual compositions. Motorcycle exhaust is significantly more toxic than BTEX due to the highly toxic VOCs generated from incomplete combustion. Overall toxicity evaluation showed that the toxicity, indicated as EC 50 , was approximately as follows: PAHs > two-stroke engines > four-stroke engines > BTEX

  16. Measurements and receptor modeling of volatile organic compounds in Southeastern Mexico City, 2000–2007

    Directory of Open Access Journals (Sweden)

    H. Wöhrnschimmel

    2010-09-01

    Full Text Available Ambient samples of volatile organic compounds (VOCs were measured between 2000 and 2007 in Southeastern Mexico City, quantifying 13 species (ethane, propane, propylene, butane, acetylene, pentane, hexane, heptane, benzene, octane, toluene, nonane, o-xylene. These time series were analyzed for long-term trends, using linear regression models. A main finding was that the concentrations for several VOC species were decreasing during this period. A receptor model was applied to identify possible VOC sources, as well as temporal patterns in their respective contributions. Domestic use of liquefied petroleum gas (LPG and vehicle exhaust are suggested to be the principal emission sources, contributing together between 70% and 80% to the total of quantified species. Both diurnal and seasonal patterns, as well as a weekend effect were recognized in the modelled source contributions. Furthermore, decreasing trends over time were found for LPG and hot soak (−7.8% and −12.7% per year, respectively, p < 0.01, whereas for vehicle exhaust no significant trend was found.

  17. Investigation of sensitivity and selectivity of ZnO thin film to volatile organic compounds

    Science.gov (United States)

    Teimoori, F.; Khojier, K.; Dehnavi, N. Z.

    2017-06-01

    This research addresses a detailed study on the sensitivity and selectivity of ZnO thin film to volatile organic compound (VOC) vapors that can be used for the development of VOC sensors. The ZnO thin film of 100 nm thickness was prepared by post-annealing of e-beam evaporated Zn thin film. The sample was structurally, morphologically, and chemically characterized by X-ray diffraction and field emission scanning electron microscopy analyses. The sensitivity, selectivity, and detection limit of the sample were tested with respect to a wide range of common VOC vapors, including acetone, formaldehyde, acetic acid, formic acid, acetylene, toluene, benzene, ethanol, methanol, and isopropanol in the temperature range of 200-400 °C. The results show that the best sensitivity and detection limit of the sample are related to acetone vapor in the studied temperature range. The ZnO thin film-based acetone sensor also shows a good reproducibility and stability at the operating temperature of 280 °C.

  18. Toxicity assessment of volatile organic compounds and polycyclic aromatic hydrocarbons in motorcycle exhaust.

    Science.gov (United States)

    Chang, Chang-Tang; Chen, Bor-Yann

    2008-05-30

    This study investigates the toxicity of various pollutant species from motorcycle exhaust via dose-response analysis and margin of safety using Escherichia coli DH5 alpha. The toxicity evaluation of the major components of motorcycle exhaust volatile organic compounds (VOCs), collected with impinger, and polycyclic aromatic hydrocarbons (PAHs), collected with filter and XAD-2, is essential to determine emission standards for motorcycles. The toxicity of benzene (B), toluene (T), ethyl benzene (E) and xylene (X) was selected for comparison as standard VOCs emitted from motorcycles. In addition, three types of reformulated gasoline (high oxygenate and high benzene content (No. 1), low oxygen and high benzene (No. 2), and low oxygen and low benzene (No. 3) were prepared to reveal combined toxicity of individual compositions. Motorcycle exhaust is significantly more toxic than BTEX due to the highly toxic VOCs generated from incomplete combustion. Overall toxicity evaluation showed that the toxicity, indicated as EC50, was approximately as follows: PAHs>two-stroke engines>four-stroke engines>BTEX.

  19. Volatile organic compounds in a multi-storey shopping mall in guangzhou, South China

    Science.gov (United States)

    Tang, Jianhui; Chan, C. Y.; Wang, Xinming; Chan, L. Y.; Sheng, Guoying; Fu, Jiamo

    Volatile organic compounds (VOCs) specified in the USEPA TO-14 list were analysed in microenvironments of a multi-storey shopping mall in Guangzhou city, South China. The microenvironments studied include both indoor (department store, supermarket, fast-food court, electronic games room, children's playground, gallery and book store) and outdoor ones (rooftop and ground level entrance). The characteristics and concentration of VOCs varied widely in differing microenvironments. The average concentrations of the total VOCs in the indoor microenvironments ranged from 178.5 to 457.7 μg m -3 with a maximum of 596.8 μg m -3. The fast-food court and a leather products department store had the highest concentrations of benzene, toluene, ethylbenzene, xylenes and chlorinated hydrocarbons. A high level of 1,4-dichlorobenzene was found in all indoor microenvironments with an average of 12.3 μg m -3 and a maximum of 44.3 μg m -3. The ratios of average indoor to outdoor concentrations (I/O ratio) in all indoor microenvironments fell between 1 and 3, except an average of 24.6 and a maximum of 77.8 in the fashion department store for 1,4-dichlorobenzene. Indoor emission sources of monocyclic aromatic hydrocarbons in the shopping mall might include cooking stoves, leather products and building materials. Chlorinated hydrocarbons, however, were possibly connected with their use as cleaning agents or deodorizers.

  20. Oxidation of volatile organic vapours in air by solid potassium permanganate.

    Science.gov (United States)

    Mahmoodlu, Mojtaba Ghareh; Hartog, Niels; Majid Hassanizadeh, S; Raoof, Amir

    2013-06-01

    Volatile organic compounds (VOCs) may frequently contaminate groundwater and pose threat to human health when migrating into the unsaturated soil zone and upward to the indoor air. The kinetic of chemical oxidation has been investigated widely for dissolved VOCs in the saturated zone. But, so far there have been few studies on the use of in situ chemical oxidation (ISCO) of vapour phase contaminants. In this study, batch experiments were carried out to evaluate the oxidation of trichloroethylene (TCE), ethanol, and toluene vapours by solid potassium permanganate. Results revealed that solid potassium permanganate is able to transform the vapour of these compounds into harmless oxidation products. The degradation rates for TCE and ethanol were higher than for toluene. The degradation process was modelled using a kinetic model, linear in the gas concentration of VOC [ML(-3)] and relative surface area of potassium permanganate grains (surface area of potassium permanganate divided by gas volume) [L(-1)]. The second-order reaction rate constants for TCE, ethanol, and toluene were found to be equal to 2.0×10(-6) cm s(-1), 1.7×10(-7) cm s(-1), and 7.0×10(-8) cm s(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Studies on volatile organic compounds of some truffles and false truffles.

    Science.gov (United States)

    D'Auria, Maurizio; Racioppi, Rocco; Rana, Gian Luigi; Laurita, Alessandro

    2014-01-01

    Results of solid phase micro-extraction coupled to gas chromatography and mass spectrometry analyses, accomplished on sporophores of 11 species of truffles and false truffles, are reported. Volatile organic compounds (VOCs) found in Gautieria morchelliformis were dimethyl sulphide, 1,3-octadiene, 3,7-dimethyl-1,6-octadien-3-ol, amorphadiene, isoledene and cis-muurola-3,5-diene. In Hymenogaster luteus var. luteus, presence of 1,3-octadiene, 1-octen-3-ol, 3-octanone, 3-octanol and 4-acetylanisole was revealed. Two VOCs, 4-acetylanisole and β-farnesene, constituted aroma of Hymenogaster olivaceus.Melanogaster broomeanus exhibited as components of its aroma 2-methyl-1,3-butadiene, 2-methylpropanal, 2-methylpropanol, isobutyl acetate, 3,7-dimethyl-1,6-octadien-3-ol, 3-octanone and β-curcumene. VOC profile of Octavianina asterosperma was characterised by the presence of dimethyl sulphide, ethyl 2-methylpropanoate, methyl 2-methylbutanoate and 3-octanone. Tuber rufum var. rufum and Pachyphloeus conglomeratus showed the presence of dimethyl sulphide only.

  2. [Impact of air fresheners and deodorizers on the indoor total volatile organic compounds].

    Science.gov (United States)

    Jinno, Hideto; Tanaka-Kagawa, Toshiko; Obama, Tomoko; Miyagawa, Makoto; Yoshikawa, Jun; Komatsu, Kazuhiro; Tokunaga, Hiroshi

    2007-01-01

    Indoor air quality is a growing health concern because of the increased incidence of the building-related illness, such as sick-building syndrome and multiple chemical sensitivity/idiopathic environmental intolerance. In order to effectively reduce the unnecessary chemical exposure in the indoor environment, it would be important to quantitatively compare the emissions from many types of sources. Besides the chemical emissions from the building materials, daily use of household products may contribute at significant levels to the indoor volatile organic compounds (VOCs). In this study, we investigated the emission rate of VOCs and carbonyl compounds for 30 air fresheners and deodorizers by the standard small chamber test method (JIS A 1901). The total VOC (TVOC) emission rates of these household products ranged from the undetectable level (fragrances in the products account for the major part of the TVOC emissions. Based on the emission rates, the impacts on the indoor TVOC were estimated by the simple model with a volume of 17.4 m3 and a ventilation frequency of 0.5 times/h. The mean of the TVOC increment for the indoor air fresheners was 170 microg/m3, accounting for 40% of the current provisional target value, 400 microg/m3. These results suggest that daily use of household products can significantly influence the indoor air quality.

  3. Analysis of breath volatile organic compounds in children with chronic liver disease compared to healthy controls.

    Science.gov (United States)

    Eng, Katharine; Alkhouri, Naim; Cikach, Frank; Patel, Nishaben; Yan, Chen; Grove, David; Lopez, Rocio; Rome, Ellen; Dweik, Raed A

    2015-04-20

    Breath testing is increasingly being used as a non-invasive diagnostic tool for disease states across medicine. The purpose of this study was to compare the levels of volatile organic compounds (VOCs) as measured by mass spectrometry in healthy children and children with chronic liver disease (CLD). Patients between the ages of 6 and 21 were recruited for the study. Control subjects were recruited from a general pediatric population during well-child visits, while patients with CLD were recruited from pediatric gastroenterology clinic visits. The diagnosis of CLD was confirmed by clinical, laboratory, and/or histologic data. A single exhaled breath was collected and analyzed by means of selected-ion flow-tube mass spectrometry per protocol. A total of 104 patients were included in the study (49 with CLD and 55 healthy controls). Of the patients with CLD, 20 had advanced liver fibrosis (F3-F4). In the CLD cohort, levels of exhaled 1-decene, 1-heptene, 1-octene and 3 methylhexane were found to be significantly higher when compared to the control population (p CLD patients when compared to controls (p CLD was excellent (AUROC = 0.97). Our study demonstrates that children with CLD have a unique pattern of exhaled VOCs. Utilization of a combination of these VOCs represents a promising non-invasive diagnostic tool and may provide further insight into the pathophysiologic processes and pathways leading to pediatric liver disease. Further analysis of these compounds in external cohorts are needed to validate our findings.

  4. Improving the Sustainability of Office Partition Manufacturing: Balancing Options for Reducing Emissions of Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2009-06-01

    Full Text Available Options are examined to improve the sustainability of office partition manufacturing by reducing volatile organic compounds (VOC emissions. Base VOC emissions for a typical plant are estimated using a mass balance approach. Pollution prevention and sustainability measures are assessed using realistic criteria and weightings. Sustainability has been considered from an industry perspective, considering factors like economics, environmental impact, quality, health and safety. Through a case study, it is demonstrated that several advantageous options are available for reducing VOC emissions in manufacturing office furniture partitions, and thereby enhancing the sustainability of that industrial operation. The measures deemed most viable include implementing several best management practices, not painting of non-visible parts, switching gluing processes, recycling solvent and modifying attachments. The results are intended to be balanced so as to improve their acceptability and adoptability by industry. It appears that it would be advantageous for manufacturers of office panels to evaluate the feasibility of these measures and to implement the most appropriate. The results are likely extendable to other operations in the wood furniture industry, and would improve their sustainability.

  5. Volatile organic compound analysis in wood combustion and meat cooking emissions

    International Nuclear Information System (INIS)

    Zielinska, B.; McDonald, J.

    1999-01-01

    Residential wood combustion and meat cooking emissions were each analyzed for volatile organic compounds (VOC). Emissions were diluted 60--100 times, cooled to ambient temperature, and allowed 80 seconds for condensation prior to collection with the aid of a DRI-constructed dilution stack sampler. Fireplace and wood-stove emissions testing was conducted at the DRI facilities. Wood type, wood moisture, burn rate, and fuel load were varied for different experiments. Meat emissions testing was conducted at the CE-CERT stationary emissions lab, University of California, Riverside. Meat type, fat content, and cooking appliance were changed in different tests. VOCs were collected using stainless-steel 6 L canisters and Tenax cartridges, whereas for carbonyl compound collection 2,4-dinitrophenylhydrazine (DNPH)-impregnated C 18 SepPack cartridges were used. Analysis of VOC collected with canisters and Tenax cartridges was conducted by Gas Chromatography/Mass Spectrometry (GC/MS) and by GC/FID/ECD (flame ionization detection/electron capture detection). DNPH-impregnated cartridges were analyzed for fourteen C 1 --C 7 carbonyl compounds, using the HPLC method. The results of these measurements are discussed

  6. Analysis of Volatile Organic Compounds in the Ambient Air of a Paper Mill- A Case Study

    Directory of Open Access Journals (Sweden)

    Xin Tong

    2015-11-01

    Full Text Available In this work, volatile organic compounds (VOCs in the ambient air of a secondary fiber paper mill were analyzed. For the sake of studying pollution comprehensively, four sites in the paper mill were analyzed and active sampling methods were used. Desorption was carried out with two solvents, carbon disulfide and dichloromethane. The compositions of VOCs were determined by gas chromat