WorldWideScience

Sample records for vocal-tract resonance signals

  1. Vocal tract resonances in singing: The soprano voice

    Science.gov (United States)

    Joliveau, Elodie; Smith, John; Wolfe, Joe

    2004-10-01

    The vocal tract resonances of trained soprano singers were measured while they sang a range of vowels softly at different pitches. The measurements were made by broad band acoustic excitation at the mouth, which allowed the resonances of the tract to be measured simultaneously with and independently from the harmonics of the voice. At low pitch, when the lowest resonance frequency R1 exceeded f0, the values of the first two resonances R1 and R2 varied little with frequency and had values consistent with normal speech. At higher pitches, however, when f0 exceeded the value of R1 observed at low pitch, R1 increased with f0 so that R1 was approximately equal to f0. R2 also increased over this high pitch range, probably as an incidental consequence of the tuning of R1. R3 increased slightly but systematically, across the whole pitch range measured. There was no evidence that any resonances are tuned close to harmonics of the pitch frequency except for R1 at high pitch. The variations in R1 and R2 at high pitch mean that vowels move, converge, and overlap their positions on the vocal plane (R2,R1) to an extent that implies loss of intelligibility. .

  2. ON THE RELATION BETWEEN THE DIMENSIONS AND RESONANCE CHARACTERISTICS OF THE VOCAL-TRACT - A STUDY WITH MRI

    NARCIS (Netherlands)

    SULTER, AM; MILLER, DG; WOLF, RF; SCHUTTE, HK; WIT, HP; MOOYAART, EL

    1992-01-01

    The relation between the spatial configuration of the vocal tract as determined by magnetic resonance imaging (MRI) and the acoustical signal produced was investigated. A male subject carried out a set of phonatory tasks, comprising the utterance of the sustained vowels /i/ and /a/, each in a single

  3. Vocal tract resonances in oscine bird sound production: evidence from birdsongs in a helium atmosphere.

    Science.gov (United States)

    Nowicki, S

    The complexity and dependence on learning of many bird sounds have suggested parallels between birdsong and human speech, but the mechanisms by which each is produced have been supposed to differ markedly. In human speech, resonances of the vocal tract are thought to modulate in complex ways the sound produced by vibration of the vocal folds. The current theory of birdsong production holds that all variation in sound quality arises from the primary sound-producing organ, the syrinx, and that resonances of the vocal tract play no part. Here I present evidence, obtained from acoustic analyses of birdsongs recorded in a helium atmosphere, which contradicts this hypothesis. Not only does the songbird's vocal tract act as an acoustic filter, but its filter characteristics are actively coordinated with the output of the syrinx. Songbird and human phonation are thus more analogous than previously thought, in that both require coordination of an array of diverse motor systems.

  4. The Vocal Tract Organ: A New Musical Instrument Using 3-D Printed Vocal Tracts.

    Science.gov (United States)

    Howard, David M

    2017-10-27

    The advent and now increasingly widespread availability of 3-D printers is transforming our understanding of the natural world by enabling observations to be made in a tangible manner. This paper describes the use of 3-D printed models of the vocal tract for different vowels that are used to create an acoustic output when stimulated with an appropriate sound source in a new musical instrument: the Vocal Tract Organ. The shape of each printed vocal tract is recovered from magnetic resonance imaging. It sits atop a loudspeaker to which is provided an acoustic L-F model larynx input signal that is controlled by the notes played on a musical instrument digital interface device such as a keyboard. The larynx input is subject to vibrato with extent and frequency adjustable as desired within the ranges usually found for human singing. Polyphonic inputs for choral singing textures can be applied via a single loudspeaker and vocal tract, invoking the approximation of linearity in the voice production system, thereby making multiple vowel stops a possibility while keeping the complexity of the instrument in reasonable check. The Vocal Tract Organ offers a much more human and natural sounding result than the traditional Vox Humana stops found in larger pipe organs, offering the possibility of enhancing pipe organs of the future as well as becoming the basis for a "multi-vowel" chamber organ in its own right. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  5. Low frequency mechanical resonance of the vocal tract in vocal exercises that apply tubes

    Czech Academy of Sciences Publication Activity Database

    Horáček, Jaromír; Radolf, Vojtěch; Laukkanen, A. M.

    2017-01-01

    Roč. 37, August (2017), s. 39-49 ISSN 1746-8094 R&D Projects: GA ČR(CZ) GA16-01246S Institutional support: RVO:61388998 Keywords : biomechanics of voice * vocal tract acoustics * phonation into tubes * water resistance voice therapy * bubbling frequency * formant frequencies Subject RIV: BI - Acoustics Impact factor: 2.214, year: 2016

  6. An acoustic glottal source for vocal tract physical models

    Science.gov (United States)

    Hannukainen, Antti; Kuortti, Juha; Malinen, Jarmo; Ojalammi, Antti

    2017-11-01

    A sound source is proposed for the acoustic measurement of physical models of the human vocal tract. The physical models are produced by fast prototyping, based on magnetic resonance imaging during prolonged vowel production. The sound source, accompanied by custom signal processing algorithms, is used for two kinds of measurements from physical models of the vocal tract: (i) amplitude frequency response and resonant frequency measurements, and (ii) signal reconstructions at the source output according to a target pressure waveform with measurements at the mouth position. The proposed source and the software are validated by computational acoustics experiments and measurements on a physical model of the vocal tract corresponding to the vowels [] of a male speaker.

  7. Magnetic resonance imaging of the brain and vocal tract: Applications to the study of speech production and language learning.

    Science.gov (United States)

    Carey, Daniel; McGettigan, Carolyn

    2017-04-01

    The human vocal system is highly plastic, allowing for the flexible expression of language, mood and intentions. However, this plasticity is not stable throughout the life span, and it is well documented that adult learners encounter greater difficulty than children in acquiring the sounds of foreign languages. Researchers have used magnetic resonance imaging (MRI) to interrogate the neural substrates of vocal imitation and learning, and the correlates of individual differences in phonetic "talent". In parallel, a growing body of work using MR technology to directly image the vocal tract in real time during speech has offered primarily descriptive accounts of phonetic variation within and across languages. In this paper, we review the contribution of neural MRI to our understanding of vocal learning, and give an overview of vocal tract imaging and its potential to inform the field. We propose methods by which our understanding of speech production and learning could be advanced through the combined measurement of articulation and brain activity using MRI - specifically, we describe a novel paradigm, developed in our laboratory, that uses both MRI techniques to for the first time map directly between neural, articulatory and acoustic data in the investigation of vocalisation. This non-invasive, multimodal imaging method could be used to track central and peripheral correlates of spoken language learning, and speech recovery in clinical settings, as well as provide insights into potential sites for targeted neural interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The effect of vocal tract impedance on the vocal folds

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Selamtzis, Andreas

    2011-01-01

    The importance of the interaction between the acoustic impedance of the vocal tract with the flow across the vocal cords is well established. In this paper we are investigating the changes in vocal tract impedance when using the different modes of phonation according to Sadolin [1], going from......) . The results show changes in the resonance frequencies of the vocal tract with increasing pitch, whereas the changes between the modes are less clear due to the measurement signal being weak in comparison to the louder modes, especially at high pitches. The electroglottograph shows a very different waveform...... to different density and speed of sound in Helium. The electroglottograph shows a change in waveform when the singer inhales helium. The percentage of the glottal cycle when the vocal cords are open, the so-called open quotient, increases from 40 to 55%. When inhaling helium the male singer was able reach Eb5...

  9. Acoustic Vocal Tract Model of One-year-old Children

    OpenAIRE

    M. Vojnović; I. Bogavac; L. Dobrijević

    2014-01-01

    The physical shape of vocal tract and its formant (resonant) frequencies are directly related. The study of this functional connectivity is essential in speech therapy practice with children. Most of the perceived children’s speech anomalies can be explained on a physical level: malfunctioning movement of articulation organs. The current problem is that there is no enough data on the anatomical shape of children’s vocal tract to create its acoustic model. Classical techniques for vocal tract...

  10. Acoustic Vocal Tract Model of One-year-old Children

    Directory of Open Access Journals (Sweden)

    M. Vojnović

    2014-11-01

    Full Text Available The physical shape of vocal tract and its formant (resonant frequencies are directly related. The study of this functional connectivity is essential in speech therapy practice with children. Most of the perceived children’s speech anomalies can be explained on a physical level: malfunctioning movement of articulation organs. The current problem is that there is no enough data on the anatomical shape of children’s vocal tract to create its acoustic model. Classical techniques for vocal tract shape imaging (X-ray, magnetic resonance, etc. are not appropriate for children. One possibility is to start from the shape of the adult vocal tract and correct it based on anatomical, morphological and articulatory differences between children and adults. This paper presents a method for vocal tract shape estimation of the child aged one year. The initial shapes of the vocal tract refer to the Russian vowels spoken by an adult male. All the relevant anatomical and articulation parameters, that influence the formant frequencies, are analyzed. Finally, the hypothetical configurations of the children’s vocal tract, for the five vowels, are presented.

  11. Study of the effects of vocal tract constriction on glottal vibration.

    Science.gov (United States)

    Mittal, Vinay Kumar; Yegnanarayana, B; Bhaskararao, Peri

    2014-10-01

    Characteristics of glottal vibration are affected by the obstruction to the flow of air through the vocal tract system. The obstruction to the airflow is determined by the nature, location, and extent of constriction in the vocal tract during production of voiced sounds. The effects of constriction on glottal vibration are examined for six different categories of speech sounds having varying degree of constriction. The effects are examined in terms of source and system features derived from the speech and electroglottograph signals. It is observed that a high degree of constriction causing obstruction to the flow of air results in large changes in these features, relative to the adjacent steady vowel regions, as in the case of apical trill and alveolar fricative sounds. These changes are insignificant when the obstruction to the airflow is less, as in the case of velar fricative and lateral approximant sounds. There are no changes in the excitation features when there is a free flow of air along the auxiliary tract, despite constriction in the vocal tract, as in the case of nasals. These studies show that effects of constriction can indeed be observed in the features of glottal vibration as well as vocal tract resonances.

  12. Vocal Tract Adjustments of Dysphonic and Non-Dysphonic Women Pre- and Post-Flexible Resonance Tube in Water Exercise: A Quantitative MRI Study.

    Science.gov (United States)

    Yamasaki, Rosiane; Murano, Emi Z; Gebrim, Eloisa; Hachiya, Adriana; Montagnoli, Arlindo; Behlau, Mara; Tsuji, Domingos

    2017-07-01

    To compare vocal tract (VT) adjustments of dysphonic and non-dysphonic women before and after flexible resonance tube in water exercise (FRTWE) at rest and during phonation using magnetic resonance imaging. Prospective study. Twenty women, aged 20-40 years, 10 dysphonic with vocal nodules (VNG) and 10 controls (CG), underwent four sets of sagittal VT MRI: two pre-FRTWE, at rest and during phonation, and two post-FRTWE, during phonation and at rest. The subjects performed 3 minutes of exercise. Nine parameters at rest and 21 during phonation were performed. Pre-FRTWE, eight significant differences were found, three at rest and five during phonation: at rest - laryngeal vestibule area, distance from epiglottis to pharyngeal posterior wall (PPW) and interarytenoid complex length were smaller in the VNG; during phonation - laryngeal vestibule area, angle between PPW and vocal fold (VF), epiglottis to PPW, and anterior commissure of the larynx to laryngeal posterior wall were smaller in the VNG; tongue area was larger in the VNG. Post-FRTWE, only three significant differences were found, two during phonation and one at rest: during phonation - angle between PPW and VF and the membranous portion of the VF length were smaller in the VNG; at rest - distance from epiglottis to PPW was smaller in the VNG. Results suggest that the habitual VT adjustments of dysphonic and non-dysphonic women are different at rest and during phonation. The FRTWE promoted positive VT changes in the VNG, reducing the intergroup differences. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  13. Modal locking between vocal fold and vocal tract oscillations: Simulations in time domain

    CERN Document Server

    Aalto, Atte; Malinen, Jarmo; Aalto, Daniel; Vainio, Martti

    2015-01-01

    It is well known that during voiced speech, the human vocal folds interact with the vocal tract acoustics. The resulting source-filter coupling has been observed using mathematical and physical models as well as in in vivo phonation. We propose a computational time-domain model of the full speech apparatus that, in particular, contains a feedback mechanism from the vocal tract acoustics to the vocal fold oscillations. It is based on numerical solution of ordinary and partial differential equations defined on vocal tract geometries that have been obtained by Magnetic Resonance Imaging. The model is used to simulate rising and falling pitch glides of [a, i] in the fundamental frequency (f_0) interval [180 Hz, 360 Hz]. The interval contains the first formant F1 of [i] as well as the subformants F1/4 and F1/3 of [a]. The simulations reveal a locking pattern of the f_0-trajectory at F1 of [i] in falling and rising glides. The subformants of [a] produce perturbations in the waveforms of glottal signals but no locki...

  14. Short-Term Effect of Two Semi-Occluded Vocal Tract Training Programs on the Vocal Quality of Future Occupational Voice Users: "Resonant Voice Training Using Nasal Consonants" Versus "Straw Phonation".

    Science.gov (United States)

    Meerschman, Iris; Van Lierde, Kristiane; Peeters, Karen; Meersman, Eline; Claeys, Sofie; D'haeseleer, Evelien

    2017-09-18

    The purpose of this study was to determine the short-term effect of 2 semi-occluded vocal tract training programs, "resonant voice training using nasal consonants" versus "straw phonation," on the vocal quality of vocally healthy future occupational voice users. A multigroup pretest-posttest randomized control group design was used. Thirty healthy speech-language pathology students with a mean age of 19 years (range: 17-22 years) were randomly assigned into a resonant voice training group (practicing resonant exercises across 6 weeks, n = 10), a straw phonation group (practicing straw phonation across 6 weeks, n = 10), or a control group (receiving no voice training, n = 10). A voice assessment protocol consisting of both subjective (questionnaire, participant's self-report, auditory-perceptual evaluation) and objective (maximum performance task, aerodynamic assessment, voice range profile, acoustic analysis, acoustic voice quality index, dysphonia severity index) measurements and determinations was used to evaluate the participants' voice pre- and posttraining. Groups were compared over time using linear mixed models and generalized linear mixed models. Within-group effects of time were determined using post hoc pairwise comparisons. No significant time × group interactions were found for any of the outcome measures, indicating no differences in evolution over time among the 3 groups. Within-group effects of time showed a significant improvement in dysphonia severity index in the resonant voice training group, and a significant improvement in the intensity range in the straw phonation group. Results suggest that the semi-occluded vocal tract training programs using resonant voice training and straw phonation may have a positive impact on the vocal quality and vocal capacities of future occupational voice users. The resonant voice training caused an improved dysphonia severity index, and the straw phonation training caused an expansion of the intensity range in

  15. Dynamic 3-D visualization of vocal tract shaping during speech.

    Science.gov (United States)

    Zhu, Yinghua; Kim, Yoon-Chul; Proctor, Michael I; Narayanan, Shrikanth S; Nayak, Krishna S

    2013-05-01

    Noninvasive imaging is widely used in speech research as a means to investigate the shaping and dynamics of the vocal tract during speech production. 3-D dynamic MRI would be a major advance, as it would provide 3-D dynamic visualization of the entire vocal tract. We present a novel method for the creation of 3-D dynamic movies of vocal tract shaping based on the acquisition of 2-D dynamic data from parallel slices and temporal alignment of the image sequences using audio information. Multiple sagittal 2-D real-time movies with synchronized audio recordings are acquired for English vowel-consonant-vowel stimuli /ala/, /a.ιa/, /asa/, and /a∫a/. Audio data are aligned using mel-frequency cepstral coefficients (MFCC) extracted from windowed intervals of the speech signal. Sagittal image sequences acquired from all slices are then aligned using dynamic time warping (DTW). The aligned image sequences enable dynamic 3-D visualization by creating synthesized movies of the moving airway in the coronal planes, visualizing desired tissue surfaces and tube-shaped vocal tract airway after manual segmentation of targeted articulators and smoothing. The resulting volumes allow for dynamic 3-D visualization of salient aspects of lingual articulation, including the formation of tongue grooves and sublingual cavities, with a temporal resolution of 78 ms.

  16. Dynamic 3D Visualization of Vocal Tract Shaping During Speech

    Science.gov (United States)

    Zhu, Yinghua; Kim, Yoon-Chul; Proctor, Michael I.; Narayanan, Shrikanth S.; Nayak, Krishna S.

    2014-01-01

    Noninvasive imaging is widely used in speech research as a means to investigate the shaping and dynamics of the vocal tract during speech production. 3D dynamic MRI would be a major advance, as it would provide 3D dynamic visualization of the entire vocal tract. We present a novel method for the creation of 3D dynamic movies of vocal tract shaping based on the acquisition of 2D dynamic data from parallel slices and temporal alignment of the image sequences using audio information. Multiple sagittal 2D real-time movies with synchronized audio recordings are acquired for English vowel-consonant-vowel stimuli /ala/, /aɹa/, /asa/ and /aʃa/. Audio data are aligned using mel-frequency cepstral coefficients (MFCC) extracted from windowed intervals of the speech signal. Sagittal image sequences acquired from all slices are then aligned using dynamic time warping (DTW). The aligned image sequences enable dynamic 3D visualization by creating synthesized movies of the moving airway in the coronal planes, visualizing desired tissue surfaces and tube-shaped vocal tract airway after manual segmentation of targeted articulators and smoothing. The resulting volumes allow for dynamic 3D visualization of salient aspects of lingual articulation, including the formation of tongue grooves and sublingual cavities, with a temporal resolution of 78 ms. PMID:23204279

  17. Modal locking between vocal fold and vocal tract oscillations

    CERN Document Server

    Aalto, Atte; Malinen, Jarmo; Vainio, Martti

    2012-01-01

    The human vocal folds are known to interact with the vocal tract acoustics during voiced speech production; namely a nonlinear source-filter coupling has been observed both by using models and in \\emph{in vivo} phonation. These phenomena are approached from two directions in this article. We first present a computational dynamical model of the speech apparatus that contains an explicit filter-source feedback mechanism from the vocal tract acoustics back to the vocal folds oscillations. The model was used to simulate vocal pitch glideswhere the trajectory was forced to cross the lowest vocal tract resonance, i.e., the lowest formant $F_1$. Similar patterns produced by human participants were then studied. Both the simulations and the experimental results reveal an effect when the glides cross the first formant (as may happen in \\textipa{[i]}). Conversely, this effect is not observed if there is no formant within the glide range (as is the case in \\textipa{[\\textscripta]}). The experiments show smaller effect c...

  18. Synergistic modes of vocal tract articulation for American English vowels.

    Science.gov (United States)

    Story, Brad H

    2005-12-01

    The purpose of this study was to investigate the spatial similarity of vocal tract shaping patterns across speakers and the similarity of their acoustic effects. Vocal tract area functions for 11 American English vowels were obtained from six speakers, three female and three male, using magnetic resonance imaging (MRI). Each speaker's set of area functions was then decomposed into mean area vectors and representative modes (eigenvectors) using principal components analysis (PCA). Three modes accounted for more than 90% of the variance in the original data sets for each speaker. The general shapes of the first two modes were found to be highly correlated across all six speakers. To demonstrate the acoustic effects of each mode, both in isolation and combined, a mapping between the mode scaling coefficients and [F1, F2] pairs was generated for each speaker. The mappings were unique for all six speakers in terms of the exact shape of the [F1, F2] vowel space, but the general effect of the modes was the same in each case. The results support the idea that the modes provide a common system for perturbing a unique underlying neutral vocal tract shape.

  19. Articulation and vocal tract acoustics at soprano subject's high fundamental frequencies.

    Science.gov (United States)

    Echternach, Matthias; Birkholz, Peter; Traser, Louisa; Flügge, Tabea V; Kamberger, Robert; Burk, Fabian; Burdumy, Michael; Richter, Bernhard

    2015-05-01

    The role of the vocal tract for phonation at very high soprano fundamental frequencies (F0s) is not yet understood in detail. In this investigation, two experiments were carried out with a single professional high soprano subject. First, using two dimensional (2D) dynamic real-time magnetic resonance imaging (MRI) (24 fps) midsagittal and coronal vocal tract shapes were analyzed while the subject sang a scale from Bb5 (932 Hz) to G6 (1568 Hz). In a second experiment, volumetric vocal tract MRI data were recorded from sustained phonations (13 s) for the pitches C6 (1047 Hz) and G6 (1568 Hz). Formant frequencies were measured in physical models created by 3D printing, and calculated from area functions obtained from the 3D vocal tract shapes. The data showed that there were only minor modifications of the vocal tract shape. These changes involved a decrease of the piriform sinus as well as small changes of tongue position. Formant frequencies did not exhibit major differences between C6 and G6 for F1 and F3, respectively. Only F2 was slightly raised for G6. For G6, however, F2 is not excited by any voice source partial. Therefore, this investigation was not able to confirm that the analyzed professional soprano subject adjusted formants to voice source partials for the analyzed F0s.

  20. Lower Vocal Tract Morphologic Adjustments Are Relevant for Voice Timbre in Singing.

    Directory of Open Access Journals (Sweden)

    Alexander Mainka

    Full Text Available The vocal tract shape is crucial to voice production. Its lower part seems particularly relevant for voice timbre. This study analyzes the detailed morphology of parts of the epilaryngeal tube and the hypopharynx for the sustained German vowels /a/, /e/, /i/, /o/, and /u/ by thirteen male singer subjects who were at the beginning of their academic singing studies. Analysis was based on two different phonatory conditions: a natural, speech-like phonation and a singing phonation, like in classical singing. 3D models of the vocal tract were derived from magnetic resonance imaging and compared with long-term average spectrum analysis of audio recordings from the same subjects. Comparison of singing to the speech-like phonation, which served as reference, showed significant adjustments of the lower vocal tract: an average lowering of the larynx by 8 mm and an increase of the hypopharyngeal cross-sectional area (+ 21:9% and volume (+ 16:8%. Changes in the analyzed epilaryngeal portion of the vocal tract were not significant. Consequently, lower larynx-to-hypopharynx area and volume ratios were found in singing compared to the speech-like phonation. All evaluated measures of the lower vocal tract varied significantly with vowel quality. Acoustically, an increase of high frequency energy in singing correlated with a wider hypopharyngeal area. The findings offer an explanation how classical male singers might succeed in producing a voice timbre with increased high frequency energy, creating a singer`s formant cluster.

  1. Lower Vocal Tract Morphologic Adjustments Are Relevant for Voice Timbre in Singing

    Science.gov (United States)

    Mainka, Alexander; Poznyakovskiy, Anton; Platzek, Ivan; Fleischer, Mario; Sundberg, Johan; Mürbe, Dirk

    2015-01-01

    The vocal tract shape is crucial to voice production. Its lower part seems particularly relevant for voice timbre. This study analyzes the detailed morphology of parts of the epilaryngeal tube and the hypopharynx for the sustained German vowels /a/, /e/, /i/, /o/, and /u/ by thirteen male singer subjects who were at the beginning of their academic singing studies. Analysis was based on two different phonatory conditions: a natural, speech-like phonation and a singing phonation, like in classical singing. 3D models of the vocal tract were derived from magnetic resonance imaging and compared with long-term average spectrum analysis of audio recordings from the same subjects. Comparison of singing to the speech-like phonation, which served as reference, showed significant adjustments of the lower vocal tract: an average lowering of the larynx by 8 mm and an increase of the hypopharyngeal cross-sectional area (+ 21.9%) and volume (+ 16.8%). Changes in the analyzed epilaryngeal portion of the vocal tract were not significant. Consequently, lower larynx-to-hypopharynx area and volume ratios were found in singing compared to the speech-like phonation. All evaluated measures of the lower vocal tract varied significantly with vowel quality. Acoustically, an increase of high frequency energy in singing correlated with a wider hypopharyngeal area. The findings offer an explanation how classical male singers might succeed in producing a voice timbre with increased high frequency energy, creating a singer‘s formant cluster. PMID:26186691

  2. Determining the shape of a human vocal tract from pressure measurements at the lips

    Science.gov (United States)

    Aktosun, Tuncay; Machuca, Alicia; Sacks, Paul

    2017-11-01

    The inverse problem of determining the cross-sectional area of a human vocal tract during the utterance of a vowel is considered in terms of the data consisting of the absolute value of sound pressure at the lips. If the upper lip is curved downward during the utterance, it is shown that there may be up to an M-fold nonuniqueness in the determination, where M is the maximal number of eligible resonances associated with a related Schrödinger operator. Each of the M such distinct candidates for the vocal-tract area corresponding to the same absolute pressure is uniquely determined. The mathematical theory is presented for the recovery of each candidate for the vocal-tract area, and the admissibility criterion for each of the M candidates to be a vocal-tract radius is specified. On the other hand, if the upper lip is horizontal or curved upward during the utterance, then the inverse problem has a unique solution. The theory developed is illustrated with some examples.

  3. Vocal tract dynamics in an adult stutterer

    Directory of Open Access Journals (Sweden)

    Lesley Wolk

    1981-08-01

    Full Text Available The present study was motivated by the clinical observation of "laryngeal spasms" during dysfluency in an adult female  stutterer. The flexible fiberoptic nasolaryngoscope was employed in an attempt to assess this phenomenon objectively. Findings from fiberscopic and spectrographic investigations provided evidence for a disturbance in laryngeal behaviour, and in turn served to determine the nature of the treatment programme. Asymmetry of the vocal folds  and partial abductory laryngeal behaviour, reflecting  a conflict between adductory and abductory forces, characterized the dysfluency  in this patient. A subjective evaluation after treatment revealed a reduction in both severity and frequency of stuttering behaviour. Furthermore, fiberscopic examination carried out after treatment revealed an absence of the laryngeal disturbances noted previously. Results are considered in terms of vocal tract dynamics in stuttering and its clinical applicability.

  4. Vocal tract dynamics in an adult stutterer

    Directory of Open Access Journals (Sweden)

    Lesley Wolk

    1981-11-01

    Full Text Available The present study was motivated by the clinical observation of "laryngeal spasms" during dysfluency in an adult female  stutterer. The flexible fiberoptic nasolaryngoscope was employed in an attempt to assess this phenomenon objectively. Findings from fiberscopic and spectrographic investigations provided evidence for a disturbance in laryngeal behaviour, and in turn served to determine the nature of the treatment programme. Asymmetry of the vocal folds  and partial abductory laryngeal behaviour, reflecting  a conflict between adductory and abductory forces, characterized the dysfluency  in this patient. A subjective evaluation after treatment revealed a reduction in both severity and frequency of stuttering behaviour. Furthermore, fiberscopic examination carried out after treatment revealed an absence of the laryngeal disturbances noted previously. Results are considered in terms of vocal tract dynamics in stuttering and its clinical applicability.

  5. Design, Realization and Experiments with a new RF Head Probe Coil for Human Vocal Tract Imaging in an NMR device

    Science.gov (United States)

    Přibil, J.; Gogola, D.; Dermek, T.; Frollo, I.

    2012-01-01

    Magnetic resonance imaging (MRI) is nowadays widely used in medicine for diagnostic imaging and in research studies. The modeling of the human vocal tract acoustics has recently attracted considerable interest. This paper describes the design, realization and first MR scan experiments with a new head probe coil for vocal tract imaging in the open-air MRI equipment working in a weak magnetic field up to 0.2 T. The paper also describes an experimental setting for sound recording during the MR imaging.

  6. Estimation and Statistical Analysis of Human Voice Parameters to Investigate the Influence of Psychological Stress and to Determine the Vocal Tract Transfer Function of an Individual

    Directory of Open Access Journals (Sweden)

    Puneet Kumar Mongia

    2014-01-01

    Full Text Available In this study the principal focus is to examine the influence of psychological stress (both positive and negative stress on the human articulation and to determine the vocal tract transfer function of an individual using inverse filtering technique. Both of these analyses are carried out by estimating various voice parameters. The outcomes of the analysis of psychological stress indicate that all the voice parameters are affected due to the influence of stress on humans. About 35 out of 51 parameters follow a unique course of variation from normal to positive and negative stress in 32% of the total analyzed signals. The upshot of the analysis is to determine the vocal tract transfer function for each vowel for an individual. The analysis indicates that it can be computed by estimating the mean of the pole zero plots of that individual’s vocal tract estimated for the whole day. Besides this, an analysis is presented to find the relationship between the LPC coefficients of the vocal tract and the vocal tract cavities. The results of the analysis indicate that all the LPC coefficients of the vocal tract are affected due to change in the position of any cavity.

  7. Vocal Tract Representation in the Recognition of Cerebral Palsied Speech

    Science.gov (United States)

    Rudzicz, Frank; Hirst, Graeme; van Lieshout, Pascal

    2012-01-01

    Purpose: In this study, the authors explored articulatory information as a means of improving the recognition of dysarthric speech by machine. Method: Data were derived chiefly from the TORGO database of dysarthric articulation (Rudzicz, Namasivayam, & Wolff, 2011) in which motions of various points in the vocal tract are measured during speech.…

  8. Control of vocal-tract length in speech

    Energy Technology Data Exchange (ETDEWEB)

    Riordan, C.J.

    1977-10-01

    Essential for the correct production of vowels is the accurate control of vocal-tract length. Perkell (Psychology of Speech Production (MIT, Cambridge, MA, 1969)) has suggested that two important determinants of vocal-tract length are vertical larynx position and lip spreading/protrusion, often acting together. The present study was designed to determine whether constraining lip spreading/protrusion induces compensatory vertical larynx displacements, particularly on rounded vowels. Upper lip and larynx movement were monitored photoelectrically while French and Mandarin native speakers produced the vowels /i,y,u/ first under normal-speech conditions and then with lip activity constrained. Significant differences were found in upper-lip protrusion and larynx position depending on the vowel uttered. Moreover, the generally low-larynx position of rounded vowels became even lower when lip protrusion was constrained. These results imply that compensatory articulations contribute to a contrast-preserving strategy in speech production.

  9. Vocal tract discomfort in teachers after teaching activity.

    Science.gov (United States)

    Amaral, Amanda Corrêa do; Zambon, Fabiana; Moreti, Felipe; Behlau, Mara

    2017-01-01

    Purpose To evaluate the vocal tract discomfort (VTD) reported by teachers, comparing their vocal self-assessment at three different times: before teaching, after four hours of teaching, and after eight hours of teaching. Methods The study sample was composed of 50 teachers: 42 women and eight men. The participating teachers were divided into two groups according to the cutoff value of the Voice Symptom Scale (VoiSS): Vocal Risk Group (VRG) and Vocally Healthy Group (VHG). The List of Vocal Signs and Symptoms (LVSS) was used to identify the number of vocal symptoms in each group. The groups were evaluated at three specific moments (before (BT) and after four (4HT) and eight (8HT) hours of teaching) by means of the Vocal Tract Discomfort Scale (VTD scale) and vocal self-assessment. Results The VRG presented more vocal signs and symptoms of the LVSS than the VHG (total: VHG=0.56/VRG=1.60, pBT=0.67; 4HT=0.96; 8HT=0.96, p=0.007). However, the VRG presented vocal tract discomfort after four and eight hours of teaching for both frequency (BT=1.60; 4HT=2.49; 8HT=2.95, pBT=1.79; 4HT=2.52; 8HT=3.12, pBT=2.00; 4HT=2.42; 8HT=3.00, p<0.001). Conclusion Teachers at vocal risk present worse vocal self-assessment and increased vocal tract discomfort throughout the teaching working day.

  10. Anticipatory Posturing of the Vocal Tract Reveals Dissociation of Speech Movement Plans from Linguistic Units.

    Science.gov (United States)

    Tilsen, Sam; Spincemaille, Pascal; Xu, Bo; Doerschuk, Peter; Luh, Wen-Ming; Feldman, Elana; Wang, Yi

    2016-01-01

    Models of speech production typically assume that control over the timing of speech movements is governed by the selection of higher-level linguistic units, such as segments or syllables. This study used real-time magnetic resonance imaging of the vocal tract to investigate the anticipatory movements speakers make prior to producing a vocal response. Two factors were varied: preparation (whether or not speakers had foreknowledge of the target response) and pre-response constraint (whether or not speakers were required to maintain a specific vocal tract posture prior to the response). In prepared responses, many speakers were observed to produce pre-response anticipatory movements with a variety of articulators, showing that that speech movements can be readily dissociated from higher-level linguistic units. Substantial variation was observed across speakers with regard to the articulators used for anticipatory posturing and the contexts in which anticipatory movements occurred. The findings of this study have important consequences for models of speech production and for our understanding of the normal range of variation in anticipatory speech behaviors.

  11. Morphometric Differences of Vocal Tract Articulators in Different Loudness Conditions in Singing.

    Directory of Open Access Journals (Sweden)

    Matthias Echternach

    Full Text Available Dynamic MRI analysis of phonation has gathered interest in voice and speech physiology. However, there are limited data addressing the extent to which articulation is dependent on loudness.12 professional singer subjects of different voice classifications were analysed concerning the vocal tract profiles recorded with dynamic real-time MRI with 25fps in different pitch and loudness conditions. The subjects were asked to sing ascending scales on the vowel /a/ in three loudness conditions (comfortable=mf, very soft=pp, very loud=ff, respectively. Furthermore, fundamental frequency and sound pressure level were analysed from the simultaneously recorded optical audio signal after noise cancellation.The data show articulatory differences with respect to changes of both pitch and loudness. Here, lip opening and pharynx width were increased. While the vertical larynx position was rising with pitch it was lower for greater loudness. Especially, the lip opening and pharynx width were more strongly correlated with the sound pressure level than with pitch.For the vowel /a/ loudness has an effect on articulation during singing which should be considered when articulatory vocal tract data are interpreted.

  12. Morphometric Differences of Vocal Tract Articulators in Different Loudness Conditions in Singing

    Science.gov (United States)

    Echternach, Matthias; Burk, Fabian; Burdumy, Michael; Traser, Louisa; Richter, Bernhard

    2016-01-01

    Introduction Dynamic MRI analysis of phonation has gathered interest in voice and speech physiology. However, there are limited data addressing the extent to which articulation is dependent on loudness. Material and Methods 12 professional singer subjects of different voice classifications were analysed concerning the vocal tract profiles recorded with dynamic real-time MRI with 25fps in different pitch and loudness conditions. The subjects were asked to sing ascending scales on the vowel /a/ in three loudness conditions (comfortable = mf, very soft = pp, very loud = ff, respectively). Furthermore, fundamental frequency and sound pressure level were analysed from the simultaneously recorded optical audio signal after noise cancellation. Results The data show articulatory differences with respect to changes of both pitch and loudness. Here, lip opening and pharynx width were increased. While the vertical larynx position was rising with pitch it was lower for greater loudness. Especially, the lip opening and pharynx width were more strongly correlated with the sound pressure level than with pitch. Conclusion For the vowel /a/ loudness has an effect on articulation during singing which should be considered when articulatory vocal tract data are interpreted. PMID:27096935

  13. A High-resolution Atlas and Statistical Model of the Vocal Tract from Structural MRI.

    Science.gov (United States)

    Woo, Jonghye; Lee, Junghoon; Murano, Emi Z; Xing, Fangxu; Al-Talib, Meena; Stone, Maureen; Prince, Jerry L

    Magnetic resonance imaging (MRI) is an essential tool in the study of muscle anatomy and functional activity in the tongue. Objective assessment of similarities and differences in tongue structure and function has been performed using unnormalized data, but this is biased by the differences in size, shape, and orientation of the structures. To remedy this, we propose a methodology to build a 3D vocal tract atlas based on structural MRI volumes from twenty normal subjects. We first constructed high-resolution volumes from three orthogonal stacks. We then removed extraneous data so that all 3D volumes contained the same anatomy. We used an unbiased diffeomorphic groupwise registration using a cross-correlation similarity metric. Principal component analysis was applied to the deformation fields to create a statistical model from the atlas. Various evaluations and applications were carried out to show the behaviour and utility of the atlas.

  14. Correlation between vocal tract symptoms and modern singing handicap index in church gospel singers.

    Science.gov (United States)

    Pinheiro, Joel; Silverio, Kelly Cristina Alves; Siqueira, Larissa Thaís Donalonso; Ramos, Janine Santos; Brasolotto, Alcione Ghedini; Zambon, Fabiana; Behlau, Mara

    2017-08-24

    To verify the correlation between vocal tract discomfort symptoms and perceived voice handicaps in gospel singers, analyzing possible differences according to gender. 100 gospel singers volunteered, 50 male and 50 female. All participants answered two questionnaires: Vocal Tract Discomfort (VTD) scale and the Modern Singing Handicap Index (MSHI) that investigates the vocal handicap perceived by singers, linking the results of both instruments (phandicaps and also more frequent and higher intensity vocal tract discomfort. Furthermore, the more frequent and intense the vocal tract symptoms, the higher the vocal handicap for singing. Female gospel singers present higher frequency and intensity of vocal tract discomfort symptoms, as well as higher voice handicap for singing than male gospel singers. The higher the frequency and intensity of the laryngeal symptoms, the higher the vocal handicap will be.

  15. A Fast Semiautomatic Algorithm for Centerline-Based Vocal Tract Segmentation

    Directory of Open Access Journals (Sweden)

    Anton A. Poznyakovskiy

    2015-01-01

    Full Text Available Vocal tract morphology is an important factor in voice production. Its analysis has potential implications for educational matters as well as medical issues like voice therapy. The knowledge of the complex adjustments in the spatial geometry of the vocal tract during phonation is still limited. For a major part, this is due to difficulties in acquiring geometry data of the vocal tract in the process of voice production. In this study, a centerline-based segmentation method using active contours was introduced to extract the geometry data of the vocal tract obtained with MRI during sustained vowel phonation. The applied semiautomatic algorithm was found to be time- and interaction-efficient and allowed performing various three-dimensional measurements on the resulting model. The method is suitable for an improved detailed analysis of the vocal tract morphology during speech or singing which might give some insights into the underlying mechanical processes.

  16. Numerical simulation of deformation of dynamic mesh in the human vocal tract model

    Directory of Open Access Journals (Sweden)

    Řidký Václav

    2015-01-01

    Full Text Available Numerical simulation of the acoustic signal generation in the human vocal tract is a very complex problem. The computational mesh is not static; it is deformed due to vibration of vocal folds. Movement of vocal folds is in this case prescribed as function of translation and rotation. A new boundary condition for the 2DOF motion of the vocal folds was implemented in OpenFOAM, an open-source software package based on finite volume method Work is focused on the dynamic mesh and deformation of structured meshes in the computation a package OpenFOAM. These methods are compared with focus onquality of the mesh (non-orthogonality, aspect ratio and skewness.

  17. Numerical simulation of deformation of dynamic mesh in the human vocal tract model

    Science.gov (United States)

    Řidký, Václav; Šidlof, Petr

    2015-05-01

    Numerical simulation of the acoustic signal generation in the human vocal tract is a very complex problem. The computational mesh is not static; it is deformed due to vibration of vocal folds. Movement of vocal folds is in this case prescribed as function of translation and rotation. A new boundary condition for the 2DOF motion of the vocal folds was implemented in OpenFOAM, an open-source software package based on finite volume method Work is focused on the dynamic mesh and deformation of structured meshes in the computation a package OpenFOAM. These methods are compared with focus onquality of the mesh (non-orthogonality, aspect ratio and skewness).

  18. Education in acoustics and speech science using vocal-tract models.

    Science.gov (United States)

    Arai, Takayuki

    2012-03-01

    Several vocal-tract models were reviewed, with special focus given to the sliding vocal-tract model [T. Arai, Acoust. Sci. Technol. 27(6), 384-388 (2006)]. All of the models have been shown to be excellent tools for teaching acoustics and speech science to elementary through university level students. The sliding three-tube model is based on Fant's three-tube model [G. Fant, Acoustic Theory of Speech Production (Mouton, The Hague, The Netherlands, 2006)] and consists of a long tube with a slider simulating tongue constriction. In this article, the design of the sliding vocal-tract model was reviewed. Then a science workshop was discussed where children were asked to make their own sliding vocal-tract models using simple materials. It was also discussed how the sliding vocal-tract model compares to our other vocal-tract models, emphasizing how the model can be used to instruct students at higher levels, such as undergraduate and graduate education in acoustics and speech science. Through this discussion the vocal-tract models were shown to be a powerful tool for education in acoustics and speech science for all ages of students. © 2012 Acoustical Society of America

  19. An Investigation of Vocal Tract Characteristics for Acoustic Discrimination of Pathological Voices

    Directory of Open Access Journals (Sweden)

    Jung-Won Lee

    2013-01-01

    Full Text Available This paper investigates the effectiveness of measures related to vocal tract characteristics in classifying normal and pathological speech. Unlike conventional approaches that mainly focus on features related to the vocal source, vocal tract characteristics are examined to determine if interaction effects between vocal folds and the vocal tract can be used to detect pathological speech. Especially, this paper examines features related to formant frequencies to see if vocal tract characteristics are affected by the nature of the vocal fold-related pathology. To test this hypothesis, stationary fragments of vowel /aa/ produced by 223 normal subjects, 472 vocal fold polyp subjects, and 195 unilateral vocal cord paralysis subjects are analyzed. Based on the acoustic-articulatory relationships, phonation for pathological subjects is found to be associated with measures correlated with a raised tongue body or an advanced tongue root. Vocal tract-related features are also found to be statistically significant from the Kruskal-Wallis test in distinguishing normal and pathological speech. Classification results demonstrate that combining the formant measurements with vocal fold-related features results in improved performance in differentiating vocal pathologies including vocal polyps and unilateral vocal cord paralysis, which suggests that measures related to vocal tract characteristics may provide additional information in diagnosing vocal disorders.

  20. Language-specific vocal tract configurations during nonspeech

    Science.gov (United States)

    Gick, Bryan; Cook, Clare

    2003-04-01

    Previous work has been found to be surprisingly low within-speaker variability in baseline articulator positions during inter-utterance nonspeech [Gick, Phonetica (2002)], raising the question of whether these baseline positions may in fact be active in speech production. If so, then they should be specified and should vary systematically across languages. A study was conducted to test for cross-language differences in inter-utterance articulator positions. Individual video frames were extracted at the midpoint of interutterance pauses in x-ray films of 5 French and 5 English speakers. Measures were made of articulator positions relative to fixed bone points, and values normalized to jaw size. Frames with potentially confounding surrounding phonetic contexts were omitted. Results for lip measures indicate that French speakers have significantly greater protrusion of the lower lip, but significantly less upper lip protrusion, than English speakers. Additional results will be presented for lingual articulators. Thus these baseline vocal tract configurations do appear to be specified differently for different languages. Additional implications will be discussed, such as possible roles these configurations may play in phonology, potential influence on vowel systems (especially schwa), and cross-language vowel normalization. [Research supported by NSERC and NIH.

  1. Utterance-based proposed spot diagnostic system of vocal tract malfunction.

    Science.gov (United States)

    Fayed, Z T

    2001-01-01

    It is not surprising that speech recognition by machine, has received a great deal of attention through the techniques of artificial intelligence (AI), like expert systems to support decisions in various intended fields. One proposal that is based on the expert system paradigm is to diagnose a malfunction of the vocal tract during uttering recommended utterances for this purpose. The choice of these utterances is achieved according to the position and the manner of articulation. Four important features of acoustic analysis of speech are, fundamental frequency, F0, Formants, (F1-F5), amplitude, and the harmonic structure (tone vs. noise). The most Candidate features in the proposed diagnostic system are both fundamental frequency and/or the formants. These are considered to be the Core of the intended work. The throat, mouth and nose as the resonating champers will support this attitude and will affect, negatively, the range of the mentioned frequencies when they are out of the anatomical and/or physical functions. The discrete speech (isolated words) as the most recognizable utterances. Will be considered to put aside the difficulties of both connected and continuous word-based recognition. In a diagnostic systems, the generality is an essential issue, that is to consider "Speaker independent" recognizer which needs more efforts during the system training phase. The paper presents a rough (initial) spotting diagnostic system to be the base for a future detailed system for specific defects of precised organs belonging to the vocal tract. Arabic Vowels as well as some Consonants would be the target, taking into account the age range, that is (20-25) years-aged matures. Different recommended utterances, Arabic segmented alphabetic, focused on various points through the vocal apparatus. Speech related waveforms, as well as the associated fundamental frequencies and formants have been considered in the normal and the Corresponding abnormal Cases. The deviations that

  2. Common neural substrates support speech and non-speech vocal tract gestures.

    Science.gov (United States)

    Chang, Soo-Eun; Kenney, Mary Kay; Loucks, Torrey M J; Poletto, Christopher J; Ludlow, Christy L

    2009-08-01

    The issue of whether speech is supported by the same neural substrates as non-speech vocal tract gestures has been contentious. In this fMRI study we tested whether producing non-speech vocal tract gestures in humans shares the same functional neuroanatomy as non-sense speech syllables. Production of non-speech vocal tract gestures, devoid of phonological content but similar to speech in that they had familiar acoustic and somatosensory targets, was compared to the production of speech syllables without meaning. Brain activation related to overt production was captured with BOLD fMRI using a sparse sampling design for both conditions. Speech and non-speech were compared using voxel-wise whole brain analyses, and ROI analyses focused on frontal and temporoparietal structures previously reported to support speech production. Results showed substantial activation overlap between speech and non-speech function in regions. Although non-speech gesture production showed greater extent and amplitude of activation in the regions examined, both speech and non-speech showed comparable left laterality in activation for both target perception and production. These findings posit a more general role of the previously proposed "auditory dorsal stream" in the left hemisphere--to support the production of vocal tract gestures that are not limited to speech processing.

  3. Prevalence of Vocal Tract Discomfort in the Flemish Population Without Self-Perceived Voice Disorders.

    NARCIS (Netherlands)

    Anke Luyten; E. D'haeseleer; I. Meerschman; K. van Lierde; L. Bruneel

    2016-01-01

    OBJECTIVES: The main aim of this study was to assess the prevalence of Vocal Tract Discomfort (VTD) in the Flemish population without self-perceived voice disorders using the VTD scale and to examine the relationship between vocal load and VTD symptoms. In addition, consistency between the VTD scale

  4. Voice Training and Therapy with a Semi-Occluded Vocal Tract: Rationale and Scientific Underpinnings

    Science.gov (United States)

    Titze, Ingo R.

    2006-01-01

    Purpose: Voice therapy with a semi-occluded vocal tract has a long history. The use of lip trills, tongue trills, bilabial fricatives, humming, and phonation into tubes or straws has been hailed by clinicians, singing teachers, and voice coaches as efficacious for training and rehabilitation. Little has been done, however, to provide the…

  5. Effects of Class III malocclusion on young male adults' vocal tract development: a pilot study.

    Science.gov (United States)

    Xue, Steve An; Lam, Connie W-Y; Whitehill, Tara L; Samman, Nabil

    2011-03-01

    To compare the vocal tract configuration between male speakers with Class III malocclusion and their normally developing counterparts and to investigate the concomitant acoustic changes caused by the alterations in vocal tract configuration. Eight young male patients with Class III malocclusion and 8 normally developing counterparts participated in this study. Acoustic reflection technology was used to measure vocal tract dimensions in the 2 groups. A continuous speech sample and 4 sustained vowels (/a/, /æ/, /i/, and /u/) were recorded from each participant to obtain the fundamental frequency and the first 3 formant frequencies (F1, F2, and F3). The results showed significantly greater oral length and oral volume for young male patients with Class III malocclusion than their cohorts. The F1 of vowel /u/ was found to be significantly higher in male patients with Class III malocclusion than their cohorts. The vowel space of the 4 recorded vowels was reduced and the F1-F2 formant map for /u/ was relatively more scattered in male patients with Class III malocclusion than in the control speakers. This study has provided preliminary information on the effects of Class III malocclusion on vocal tract configuration and concomitant acoustic changes in young male patients. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  6. A Vowel-Based Method for Vocal Tract Control in Clarinet Pedagogy

    Science.gov (United States)

    González, Darleny; Payri, Blas

    2017-01-01

    Our review of scientific literature shows that the activity inside the clarinetist's vocal tract (VT) affects pitch and timbre, while also facilitating technical exercises. Clarinetists adapt their VT intuitively and, in some cases, may compensate an inadequate VT configuration through unnecessary pressure, resulting in technical blockage,…

  7. The Fricative Sound Source Spectrum Derived from a Vocal Tract Analog.

    Science.gov (United States)

    Zagar, Lawrence Edward

    The applications of speech synthesis for computer voice response and speech analysis present the need for highly intelligible and natural synthesized speech. In order to improve the synthesis of fricative and related sounds, the use of simple models for the source spectrum of fricative sounds is investigated. The investigation is based on the use of a vocal tract analog and experimental measurements. Measurements of the sound pressure spectra of fricative consonants are made. Simple sound pressure measurements and measurements based on the technique for measuring intensity are utilized. The fricatives studied are /f/, /th/, /s/, /sh/, and /h/. Fricative sound source spectra are determined by applying an inverse filter to the measured fricative sound pressure spectra. The inverse filtering function is derived from a vocal tract analog. The resulting fricative source spectra are fit to a truncated Fourier series. The results show that structure is evident in all the source spectra except /f/. The presence of structure was related to turbulent flows. The structure of turbulent flows is relevant since fricative sound production is induced by turbulence. The structure of turbulent flows with Reynolds number near the critical Reynolds number is dependent on the initial conditions, the boundary conditions, and on the nonlinearity of the Navier Stokes equations. These three factors are tied together by bifurcation theory which is used to explain the structure present in the fricative source spectra. Also, the possibility that the structure is a by-product of the vocal tract analog is allowed. In any case, the structure evident in the source spectra indicates the use of simple models for the source spectra of fricative sounds is in error or the vocal tract analog requires revision. The fricative source spectra determined in this study can be used in future speech synthesizers. Also, the same procedure employed in this study can be used for speech analysis of speech impaired

  8. Anatomy and control of the developing human vocal tract: A response to Lieberman

    OpenAIRE

    Boë, Louis-Jean; Badin, Pierre; Ménard, Lucie; Captier, Guillaume; Davis, Barbara; Macneilage, Peter; Sawallis, Thomas,; Schwartz, Jean-Luc

    2013-01-01

    International audience; Since Lieberman and Crelin (1971), the question of vocal tract abilities and the link between anatomy and control has been the object of a number of conflicting papers. Part of the debate concerns the acoustic possibilities of the Variable Linear Articulatory Model (VLAM), an articulatory model that has provided the foundation of our own work for many years. VLAM is considered by Lieberman and some others as misleading because of its supposed overestimation of phonetic...

  9. Vocal tract analysis in patients with vocal fold nodules, clefts and cysts.

    Science.gov (United States)

    Nunes, Raquel Buzelin; Souza, Andrea Moreira Veiga de; Duprat, Andre de Campos; Silva, Marta Assumpção de Andrade E; Costa, Rejane Cardoso; Paulino, Juliana Gomes

    2009-01-01

    The supraglottic plan represents an important dimension in vocal production, and its characterization is very important in the evaluation and treatment approach of dysphonic individuals. To check if certain glottic configurations are related to specific adjustments in the vocal tract. To use nasal and laryngeal fibroscopy to assess the frequency of supraglottic vocal tract adjustments in dysphonic women with nodules, clefts and cysts. We assessed 31 dysphonic women, with age ranging between 18 and 45 years, with vocal alteration and a diagnosis of nodules, middle-posterior cleft and cyst, and we carried out a summarized evaluation of the sensory-motor and oral systems and the patients were submitted to video-laryngostroboscopy and nasal and laryngeal fibroscopy. Three distinct groups were selected: patients with bilateral nodules, clefts and cysts, with similar glottic configuration. Their vocal tracts were visually analyzed through exams of nasal and laryngeal fibroscopy, by speech and hearing therapists and otorhinolaryngologists, checking the following parameters: supraglottic constriction, larynx vertical mobility, pharyngeal constriction and tongue mobility. The data was statistically described and treated. During visual analysis we did not find statistically significant differences which would separate the glottic alterations groups. There was no correlation between supraglottic tract adjustments with any particular type of glottic alteration. These are individual behaviors that generate adjustments and justify the different vocal qualities in patients with the same type of laryngeal alteration.

  10. Computer models of vocal tract evolution: an overview and critique

    NARCIS (Netherlands)

    de Boer, B.; Fitch, W. T.

    2010-01-01

    Human speech has been investigated with computer models since the invention of digital computers, and models of the evolution of speech first appeared in the late 1960s and early 1970s. Speech science and computer models have a long shared history because speech is a physical signal and can be

  11. Thermal Resonance in Signal Transmission

    OpenAIRE

    Reigada Sanz, Ramon; Sarmiento, Antonio; Lindenberg, Katja

    2001-01-01

    We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance obse...

  12. Finite element computation of elliptical vocal tract impedances using the two-microphone transfer function method.

    Science.gov (United States)

    Arnela, Marc; Guasch, Oriol

    2013-06-01

    A two-microphone transfer function (TMTF) method is adapted to a numerical framework to compute the radiation and input impedances of three-dimensional vocal tracts of elliptical cross-section. In its simplest version, the TMTF method only requires measuring the acoustic pressure at two points in an impedance duct and the postprocessing of the corresponding transfer function. However, some considerations are to be taken into account when using the TMTF method in the numerical context, which constitute the main objective of this paper. In particular, the importance of including absorption at the impedance duct walls to avoid lengthy numerical simulations is discussed and analytical complex axial wave numbers for elliptical ducts are derived for this purpose. It is also shown how the direct impedance of plane wave propagation can be computed beyond the TMTF maximum threshold frequency by appropriate location of the virtual microphones. Virtual microphone spacing is also discussed on the basis of the so-called singularity factor. Numerical examples include the computation of the radiation impedance of vowels /a/, /i/, and /u/ and the input impedance of vowel /a/, for simplified vocal tracts of circular and elliptical cross-sections.

  13. Factors limiting vocal-tract length discrimination in cochlear implant simulations.

    Science.gov (United States)

    Gaudrain, Etienne; Başkent, Deniz

    2015-03-01

    Perception of voice characteristics allows normal hearing listeners to identify the gender of a speaker, and to better segregate speakers from each other in cocktail party situations. This benefit is largely driven by the perception of two vocal characteristics of the speaker: The fundamental frequency (F0) and the vocal-tract length (VTL). Previous studies have suggested that cochlear implant (CI) users have difficulties in perceiving these cues. The aim of the present study was to investigate possible causes for limited sensitivity to VTL differences in CI users. Different acoustic simulations of CI stimulation were implemented to characterize the role of spectral resolution on VTL, both in terms of number of channels and amount of channel interaction. The results indicate that with 12 channels, channel interaction caused by current spread is likely to prevent CI users from perceiving VTL differences typically found between male and female speakers.

  14. Semi-occluded vocal tract exercises: aerodynamic and electroglottographic measurements in singers.

    Science.gov (United States)

    Dargin, Troy Clifford; Searl, Jeff

    2015-03-01

    The purpose of this study was to describe changes in aerodynamic and electroglottographic (EGG) measures immediately after completing three semi-occluded vocal tract (SOVT) exercises. Prospective case series. Aerodynamic and EGG measurements were obtained before and immediately after performing three SOVTs (straw phonation, lip trill, and tongue trill) in four singers for prepost comparisons to evaluate laryngeal changes persisting beyond the execution of SOVTs. Mean air flow, sound pressure level, and EGG closed quotient tended to increase after completing SOVTs. The magnitude of change and consistency of change in measures across the SOVTs varied from subject-to-subject. Aerodynamic and EGG changes did occur during and immediately after completing SOVTs. However, there was marked variability within and across participants. Further investigation is needed to better understand which SOVTs are likely to benefit a particular individual. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  15. [Voice classification in professional singers: the influence of vocal fold length, vocal tract length and body measurements].

    Science.gov (United States)

    Mürbe, D; Roers, F; Sundberg, J

    2011-06-01

    Professional voice performance is strongly affected by the functional adjustments of the structures involved in voice production. Generally, these functional skills are required by means of intensive training. On the other hand, the individual morphology of the larynx and vocal tract limits this functional variability. Thus, to neglect morphological conditions might result in voice problems. The present paper summarizes investigations on the influence of morphological measurements on the voice classification of professional singers. Vocal fold length, vocal tract length and body height have been found to differ systematically between sopranos, mezzosopranos, altos, tenors, baritones and basses. Although the knowledge of morphological measures does not permit a definite assignment or prediction of the individual voice classification, the data are valuable for counseling by voice teachers and phoniatricians. This might contribute to the prevention of voice disorders.

  16. Effect of Changing the Vocal Tract Shape on the Sound Production of the Recorder: An Experimental and Theoretical Study

    CERN Document Server

    Auvray, R; Terrien, S; Fabre, B; Vergez, C

    2016-01-01

    Changing the vocal tract shape is one of the techniques which can be used by the players of wind instruments to modify the quality of the sound. It has been intensely studied in the case of reed instruments but has received only little attention in the case of air-jet instruments. This paper presents a first study focused on changes in the vocal tract shape in recorder playing techniques. Measurements carried out with recorder players allow to identify techniques involving changes of the mouth shape as well as consequences on the sound. A second experiment performed in laboratory mimics the coupling with the vocal tract on an artificial mouth. The phase of the transfer function between the instrument and the mouth of the player is identified to be the relevant parameter of the coupling. It is shown to have consequences on the spectral content in terms of energy distribution among the even and odd harmonics, as well as on the stability of the first two oscillating regimes. The results gathered from the two exp...

  17. Finite element analysis of airflow in the vocal tract with lateral channels

    Science.gov (United States)

    Zhang, Zhaoyan; Espy-Wilson, Carol Y.

    2003-10-01

    Lateral channels are airflow paths around the tongue produced by the laterally inward movement of the tongue toward the midsagittal plane during American English /l/ sound production. If contact is made with the palate, a closure is formed in the flow path along the midsagittal line. The closure is normally formed in the anterior part of the oral cavity and is about 1-1.5 cm long. However, it is speculated that the flow may split at a location posterior to the closure, thereby giving a longer length of the lateral channels up to 3-4 cm. Lateral channels of length around 3 cm have been shown to have significant effects on the resulting sound spectrum. To investigate the flow and acoustic field involved, finite element analysis was performed on a simplified model of the vocal tract during lateral sound production. The tongue was modeled as a rectangular constriction with a tapering slope on the upstream side and two flow channels on its two sides. The results show that the rising up of the tongue causes the flow to split into three regions of different flow amplitude and phase: one main region above the tongue surface and two regions around the tongue. This flow splitting occurs at the point where the tongue first begins rising up, well before the actual constriction location. The effective length of the lateral channels is therefore much longer than the length of the lingual constriction.

  18. Discrimination of Voice Pitch and Vocal-Tract Length in Cochlear Implant Users.

    Science.gov (United States)

    Gaudrain, Etienne; Başkent, Deniz

    2017-08-09

    When listening to two competing speakers, normal-hearing (NH) listeners can take advantage of voice differences between the speakers. Users of cochlear implants (CIs) have difficulty in perceiving speech on speech. Previous literature has indicated sensitivity to voice pitch (related to fundamental frequency, F0) to be poor among implant users, while sensitivity to vocal-tract length (VTL; related to the height of the speaker and formant frequencies), the other principal voice characteristic, has not been directly investigated in CIs. A few recent studies evaluated F0 and VTL perception indirectly, through voice gender categorization, which relies on perception of both voice cues. These studies revealed that, contrary to prior literature, CI users seem to rely exclusively on F0 while not utilizing VTL to perform this task. The objective of the present study was to directly and systematically assess raw sensitivity to F0 and VTL differences in CI users to define the extent of the deficit in voice perception. The just-noticeable differences (JNDs) for F0 and VTL were measured in 11 CI listeners using triplets of consonant-vowel syllables in an adaptive three-alternative forced choice method. The results showed that while NH listeners had average JNDs of 1.95 and 1.73 semitones (st) for F0 and VTL, respectively, CI listeners showed JNDs of 9.19 and 7.19 st. These JNDs correspond to differences of 70% in F0 and 52% in VTL. For comparison to the natural range of voices in the population, the F0 JND in CIs remains smaller than the typical male-female F0 difference. However, the average VTL JND in CIs is about twice as large as the typical male-female VTL difference. These findings, thus, directly confirm that CI listeners do not seem to have sufficient access to VTL cues, likely as a result of limited spectral resolution, and, hence, that CI listeners' voice perception deficit goes beyond poor perception of F0. These results provide a potential common explanation not

  19. A Parietal-Temporal Sensory-Motor Integration Area for the Human Vocal Tract: Evidence from an fMRI Study of Skilled Musicians

    Science.gov (United States)

    Pa, Judy; Hickok, Gregory

    2008-01-01

    Several sensory-motor integration regions have been identified in parietal cortex, which appear to be organized around motor-effectors (e.g., eyes, hands). We investigated whether a sensory-motor integration area might exist for the human vocal tract. Speech requires extensive sensory-motor integration, as does other abilities such as vocal…

  20. Immediate effects of the semi-occluded vocal tract exercise with LaxVox® tube in singers.

    Science.gov (United States)

    Fadel, Congeta Bruniere Xavier; Dassie-Leite, Ana Paula; Santos, Rosane Sampaio; Santos, Celso Gonçalves Dos; Dias, Cláudio Antônio Sorondo; Sartori, Denise Jussara

    The purpose of this study was to analyze the immediate effects of the semi-occluded vocal tract exercise (SOVTE) using the LaxVox® tube in singers. Participants were 23 singers, classical singing students, aged 18 to 47 years (mean age = 27.2 years). First, data was collected through the application of a demographic questionnaire and the recording of sustained emission - vowel /ε/, counting 1-10, and a music section from the participants' current repertoire. After that, the participants were instructed and performed the SOVTE using the LaxVox® tube for three minutes. Finally, the same vocal samples were collected immediately after SOVTE performance and the singers responded to a questionnaire on their perception regarding vocal changes after the exercise. The vocal samples were analyzed by referees (speech-language pathologists and singing teachers) and by means of acoustic analysis. Most of the singers reported improved voice post-exercise in both tasks - speech and singing. Regarding the perceptual assessment (sustained vowel, speech, and singing), the referees found no difference between pre- and post-exercise emissions. The acoustic analysis of the sustained vowel showed increased Fundamental Frequency (F0) and reduction of the Glottal to Noise Excitation (GNE) ratio post-exercise. The semi-occluded vocal tract exercise with LaxVox® tube promotes immediate positive effects on the self-assessment and acoustic analysis of voice in professional singers without vocal complains. No immediate significant changes were observed with respect to auditory-perceptual evaluation of speech and singing.

  1. Two Methods of Automatic Evaluation of Speech Signal Enhancement Recorded in the Open-Air MRI Environment

    Science.gov (United States)

    Přibil, Jiří; Přibilová, Anna; Frollo, Ivan

    2017-12-01

    The paper focuses on two methods of evaluation of successfulness of speech signal enhancement recorded in the open-air magnetic resonance imager during phonation for the 3D human vocal tract modeling. The first approach enables to obtain a comparison based on statistical analysis by ANOVA and hypothesis tests. The second method is based on classification by Gaussian mixture models (GMM). The performed experiments have confirmed that the proposed ANOVA and GMM classifiers for automatic evaluation of the speech quality are functional and produce fully comparable results with the standard evaluation based on the listening test method.

  2. A New Method to Explore the Spectral Impact of the Piriform Fossae on the Singing Voice: Benchmarking Using MRI-Based 3D-Printed Vocal Tracts

    Science.gov (United States)

    Delvaux, Bertrand; Howard, David

    2014-01-01

    The piriform fossae are the 2 pear-shaped cavities lateral to the laryngeal vestibule at the lower end of the vocal tract. They act acoustically as side-branches to the main tract, resulting in a spectral zero in the output of the human voice. This study investigates their spectral role by comparing numerical and experimental results of MRI-based 3D printed Vocal Tracts, for which a new experimental method (based on room acoustics) is introduced. The findings support results in the literature: the piriform fossae create a spectral trough in the region 4–5 kHz and act as formants repellents. Moreover, this study extends those results by demonstrating numerically and perceptually the impact of having large piriform fossae on the sung output. PMID:25048199

  3. A new method to explore the spectral impact of the piriform fossae on the singing voice: benchmarking using MRI-based 3D-printed vocal tracts.

    Directory of Open Access Journals (Sweden)

    Bertrand Delvaux

    Full Text Available The piriform fossae are the 2 pear-shaped cavities lateral to the laryngeal vestibule at the lower end of the vocal tract. They act acoustically as side-branches to the main tract, resulting in a spectral zero in the output of the human voice. This study investigates their spectral role by comparing numerical and experimental results of MRI-based 3D printed Vocal Tracts, for which a new experimental method (based on room acoustics is introduced. The findings support results in the literature: the piriform fossae create a spectral trough in the region 4-5 kHz and act as formants repellents. Moreover, this study extends those results by demonstrating numerically and perceptually the impact of having large piriform fossae on the sung output.

  4. The effect of phonation into a straw on the vocal tract adjustments and formant frequencies. A preliminary MRI study on a single subject completed with acoustic results

    Czech Academy of Sciences Publication Activity Database

    Laukkanen, A. M.; Horáček, Jaromír; Krupa, P.; Švec, J. G.

    2012-01-01

    Roč. 7, č. 1 (2012), s. 50-57 ISSN 1746-8094 R&D Projects: GA ČR GA101/08/1155 Institutional research plan: CEZ:AV0Z20760514 Keywords : vocal exercises * semi-occlusions * vocal tract setting Subject RIV: BI - Acoustics Impact factor: 1.074, year: 2012 http://www.sciencedirect.com/science/article/pii/S1746809411000097

  5. Role of vocal tract morphology in speech development: perceptual targets and sensorimotor maps for synthesized French vowels from birth to adulthood.

    Science.gov (United States)

    Ménard, Lucie; Schwartz, Jean-Luc; Boë, Louis-Jean

    2004-10-01

    The development of speech from infancy to adulthood results from the interaction of neurocognitive factors, by which phonological representations and motor control abilities are gradually acquired, and physical factors, involving the complex changes in the morphology of the articulatory system. In this article, an articulatory-to-acoustic model, integrating nonuniform vocal tract growth, is used to describe the effect of morphology in the acoustic and perceptual domains. While simulating mature control abilities of the articulators (freezing neurocognitive factors), the size and shape of the vocal apparatus are varied, to represent typical values of speakers from birth to adulthood. The results show that anatomy does not prevent even the youngest speaker from producing vowels perceived as the 10 French oral vowels /i y u e phi o epsilon oe [symbol: see text] a/. However, the specific configuration of the vocal tract for the newborn seems to favor the production of those vowels perceived as low and front. An examination of the acoustic effects of articulatory variation for different growth stages led to the proposed variable sensorimotor maps for newbornlike, childlike, and adultlike vocal tracts. These maps could be used by transcribers of infant speech, to complete existing systems and to provide some hints about underlying articulatory gestures recruited during growth to reach perceptual vowel targets in French.

  6. Effects of an artificially lengthened vocal tract on the glottal closed quotient in untrained male voices

    Science.gov (United States)

    Gaskill, Christopher Somers

    The use of hard-walled narrow tubes, often called resonance tubes, for the purpose of voice therapy and voice training has a historical precedent and some theoretical support, but the mechanism of any potential benefit from the application of this technique has remained poorly understood. Fifteen vocally untrained male participants produced a series of spoken /a / vowels at a modal pitch and constant loudness, followed by a minute of repeated phonation into a hard-walled glass tube at the same pitch and loudness targets. The tube parameters and tube phonation task criteria were selected according to theoretical calculations predicting an increase in the acoustic load such that phonation would occur under conditions of near-maximum inertive reactance. Following tube phonation, each participant repeated a similar series of spoken /a/ vowels. Electroglottography (EGG) was used to measure the glottal closed quotient (CQ) during each phase of the experiment. A single-subject, multiple-baseline design with direct replication across subjects was used to identify any changes in CQ across the phases of the experiment. Single-subject analysis using the method of Statistical Process Control (SPC) revealed statistically significant changes in CQ during tube phonation, but with no discernable pattern across the 15 participants. These results indicate that the use of resonance tubes can have a distinct effect on glottal closure, but the mechanism behind this change remains unclear. The implication is that vocal loading techniques such as this need to be studied further with specific attention paid to the underlying mechanism of any measured changes in glottal behavior, and especially to the role of instruction and feedback in the therapeutic and pedagogical application of these techniques.

  7. Simultaneous electrical and mechanical resonance drive for large signal amplification of micro resonators

    KAUST Repository

    Hasan, M. H.

    2018-01-12

    Achieving large signal-noise ratio using low levels of excitation signal is key requirement for practical applications of micro and nano electromechanical resonators. In this work, we introduce the double electromechanical resonance drive concept to achieve an order-of-magnitude dynamic signal amplification in micro resonators. The concept relies on simultaneously activating the micro-resonator mechanical and electrical resonance frequencies. We report an input voltage amplification up to 15 times for a micro-resonator when its electrical resonance is tuned to match the mechanical resonance that leads to dynamic signal amplification in air (Quality factor enhancement). Furthermore, using a multi-frequency excitation technique, input voltage and vibrational amplification of up to 30 times were shown for the same micro-resonator while relaxing the need to match its mechanical and electrical resonances.

  8. Resonance strategies revealed in recorded tenor high notes

    NARCIS (Netherlands)

    Schutte, HK; Miller, DG; Duijnstee, M

    2005-01-01

    With careers that depend to a large extent on the amplitude and sonorous beauty of their voices, opera singers must pay special attention to high notes, where the wide spacing of the harmonics of the voice source intensifies the critical importance of the tuning of the resonances of the vocal tract.

  9. Temporal differentiation of optical signals using resonant gratings.

    Science.gov (United States)

    Bykov, Dmitry A; Doskolovich, Leonid L; Soifer, Viktor A

    2011-09-01

    We study theoretically the possibility of performing temporal differentiation of optical signals using a resonant diffraction grating. We demonstrate that the resonant grating allows the calculation of the first-order derivative of an optical signal envelope in the vicinity of waveguide resonant frequencies in the zeroth transmitted diffraction order. The grating is shown to allow the calculation of the fractional derivative of order 1/2 in the vicinity of Rayleigh-Wood anomalies. Numerical simulations based on the rigorous coupled-wave analysis of Maxwell's equations demonstrate the high-quality differentiation of optical signals with temporal features in the picosecond range.

  10. Analysis of 3-D Tongue Motion from Tagged and Cine Magnetic Resonance Images

    Science.gov (United States)

    Xing, Fangxu; Woo, Jonghye; Lee, Junghoon; Murano, Emi Z.; Stone, Maureen; Prince, Jerry L.

    2016-01-01

    Purpose: Measuring tongue deformation and internal muscle motion during speech has been a challenging task because the tongue deforms in 3 dimensions, contains interdigitated muscles, and is largely hidden within the vocal tract. In this article, a new method is proposed to analyze tagged and cine magnetic resonance images of the tongue during…

  11. Signal-flow graphs in coupled laser resonator analysis

    DEFF Research Database (Denmark)

    Pedersen, Christian; Skettrup, Torben

    1997-01-01

    Signal-flow graph analysis of coupled linear systems is introduced in order to find a simple method to treat systems of coupled optical resonators. The proposed method turns out to be well suited for this purpose, and the reflectance and transmittance of coupled resonator systems are easily found...

  12. Linear signal processing using silicon micro-ring resonators

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Ding, Yunhong; Ou, Haiyan

    2012-01-01

    We review our recent achievements on the use of silicon micro-ring resonators for linear optical signal processing applications, including modulation format conversion, phase-to-intensity modulation conversion and waveform shaping.......We review our recent achievements on the use of silicon micro-ring resonators for linear optical signal processing applications, including modulation format conversion, phase-to-intensity modulation conversion and waveform shaping....

  13. Didactic discussion of stochastic resonance effects and weak signals.

    Science.gov (United States)

    Adair, R K

    1996-01-01

    A simple, paradigmatic, model is used to illustrate some general properties of effects subsumed under the label "stochastic resonance." In particular, analyses of the transparent model show that 1) a small amount of noise added to a much larger signal can greatly increase the response to the signal, but 2) a weak signal added to much larger noise will not generate a substantial added response. The conclusions drawn from the model illustrate the general result that stochastic resonance effects do not provide an avenue for signals that are much smaller than noise to affect biology. A further analysis demonstrates the effects of small signals in the shifting of biologically important chemical equilibria under conditions where stochastic resonance effects are significant.

  14. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.

  15. Vocal Tract Morphology in Inhaling Singing: Characteristics During Vowel Production-A Case Study in a Professional Singer.

    Science.gov (United States)

    Moerman, Mieke; Vanhecke, Françoise; Van Assche, Lieven; Vercruysse, Johan

    2017-09-05

    A professional singer produced various vowels on a comfortable loudness and pitch in an inspiratory and expiratory phonation manner. The present study investigates the morphological differences and tries to find a link with the acoustical characteristics. We hypothesize that features, constantly present over all vowels, characterize inhaling phonation and that the formant frequencies reflect the morphological findings. A prospective case study was carried out. A female singer uttered the vowels /a/, /e/, /i/, /o/, and /u/ in a supine position under magnetic resonance imaging, on a comfortable loudness and pitch, in both inhaling and exhaling manner. The exact same parameters as in previous reports were measured (1-3). Acoustical analysis was performed with Praat. Wilcoxon directional testing demonstrates a statistically significant difference in (1) the distance between the lips, (2) the antero-posterior tongue diameter, (3) the distance between the lips and the tip of the tongue, (4) the distance between the epiglottis and the posterior pharyngeal wall, (5) the narrowing of the subglottic space, and (6) the oropharyngeal and the hypopharyngeal areas. Acoustical analysis reveals slightly more noise and irregularity during reverse phonation. The central frequency of F0 and F1 is identical, whereas that of F2 and F3 increases, and that of F4 varies. A smaller mouth opening, a narrowing of the subglottic space, a larger supralaryngeal inlet, and a smaller antero-posterior tongue diameter can be considered as morphological characteristics for reverse phonation. Acoustically, reverse phonation discretely contains more noise and perturbation. The formant frequency distribution concurs with a mouth narrowing and pharyngeal widening during inhaling. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  16. Task-related signal decrease on functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Yoshie; Nakamura, Mitsugu; Tamaki, Norihiko; Tamura, Shogo [Kobe Univ. (Japan). School of Medicine; Kitamura, Junji

    2001-10-01

    An atypical pattern of signal change was identified on functional magnetic resonance (fMR) imaging in pathologic patients. Three normal volunteers and 34 patients with pathologic lesions near the primary motor cortex underwent fMR imaging with echo-planar imaging while performing a hand motor task. Signal intensities were evaluated with the z-score method, and the time course and changes of the signal intensity were calculated. Nine of the 34 patients with pathologic lesions displayed a significant task-related signal reduction in motor-related areas. They also presented a conventional task-related signal increase in other motor-related areas. The time courses of the increase and decrease were the inverse of each other. There was no significant difference between rates of signal increase and decrease. Our findings suggest that this atypical signal decrease is clinically significant, and that impaired vascular reactivity and altered oxygen metabolism could contribute to the task-related signal reduction. Brain areas showing such task-related signal decrease should be preserved at surgery. (author)

  17. Stochastic resonance with colored noise for neural signal detection.

    Science.gov (United States)

    Duan, Fabing; Chapeau-Blondeau, François; Abbott, Derek

    2014-01-01

    We analyze signal detection with nonlinear test statistics in the presence of colored noise. In the limits of small signal and weak noise correlation, the optimal test statistic and its performance are derived under general conditions, especially concerning the type of noise. We also analyze, for a threshold nonlinearity-a key component of a neural model, the conditions for noise-enhanced performance, establishing that colored noise is superior to white noise for detection. For a parallel array of nonlinear elements, approximating neurons, we demonstrate even broader conditions allowing noise-enhanced detection, via a form of suprathreshold stochastic resonance.

  18. Signal processing in magnetic resonance spectroscopy with biomedical applications

    CERN Document Server

    Belkic, Dzevad

    2010-01-01

    ""a useful addition to the fields of both magnetic resonance (MR) as well as signal processing. … immensely useful as a practical resource handbook to dip into from time to time and to find specific advice on issues faced during the course of work in MR techniques for cancer research. … the best feature of this book is how it positions the very practical area of digital signal processing in the contextual framework of a much more esoteric and fundamental field-that of quantum mechanics. The direct link between quantum-mechanical spectral analysis and rational response functions and the gene

  19. Adaptive stochastic resonance for unknown and variable input signals.

    Science.gov (United States)

    Krauss, Patrick; Metzner, Claus; Schilling, Achim; Schütz, Christian; Tziridis, Konstantin; Fabry, Ben; Schulze, Holger

    2017-05-26

    All sensors have a threshold, defined by the smallest signal amplitude that can be detected. The detection of sub-threshold signals, however, is possible by using the principle of stochastic resonance, where noise is added to the input signal so that it randomly exceeds the sensor threshold. The choice of an optimal noise level that maximizes the mutual information between sensor input and output, however, requires knowledge of the input signal, which is not available in most practical applications. Here we demonstrate that the autocorrelation of the sensor output alone is sufficient to find this optimal noise level. Furthermore, we demonstrate numerically and analytically the equivalence of the traditional mutual information approach and our autocorrelation approach for a range of model systems. We furthermore show how the level of added noise can be continuously adapted even to highly variable, unknown input signals via a feedback loop. Finally, we present evidence that adaptive stochastic resonance based on the autocorrelation of the sensor output may be a fundamental principle in neuronal systems.

  20. Quantitative in vivo magnetic resonance spectroscopy using synthetic signal injection.

    Science.gov (United States)

    Marro, Kenneth I; Lee, Donghoon; Shankland, Eric G; Mathis, C Mark; Hayes, Cecil E; Friedman, Seth D; Kushmerick, Martin J

    2010-12-28

    Accurate conversion of magnetic resonance spectra to quantitative units of concentration generally requires compensation for differences in coil loading conditions, the gains of the various receiver amplifiers, and rescaling that occurs during post-processing manipulations. This can be efficiently achieved by injecting a precalibrated, artificial reference signal, or pseudo-signal into the data. We have previously demonstrated, using in vitro measurements, that robust pseudo-signal injection can be accomplished using a second coil, called the injector coil, properly designed and oriented so that it couples inductively with the receive coil used to acquire the data. In this work, we acquired nonlocalized phosphorous magnetic resonance spectroscopy measurements from resting human tibialis anterior muscles and used pseudo-signal injection to calculate the Pi, PCr, and ATP concentrations. We compared these results to parallel estimates of concentrations obtained using the more established phantom replacement method. Our results demonstrate that pseudo-signal injection using inductive coupling provides a robust calibration factor that is immune to coil loading conditions and suitable for use in human measurements. Having benefits in terms of ease of use and quantitative accuracy, this method is feasible for clinical use. The protocol we describe could be readily translated for use in patients with mitochondrial disease, where sensitive assessment of metabolite content could improve diagnosis and treatment.

  1. Quantitative in vivo magnetic resonance spectroscopy using synthetic signal injection.

    Directory of Open Access Journals (Sweden)

    Kenneth I Marro

    Full Text Available Accurate conversion of magnetic resonance spectra to quantitative units of concentration generally requires compensation for differences in coil loading conditions, the gains of the various receiver amplifiers, and rescaling that occurs during post-processing manipulations. This can be efficiently achieved by injecting a precalibrated, artificial reference signal, or pseudo-signal into the data. We have previously demonstrated, using in vitro measurements, that robust pseudo-signal injection can be accomplished using a second coil, called the injector coil, properly designed and oriented so that it couples inductively with the receive coil used to acquire the data. In this work, we acquired nonlocalized phosphorous magnetic resonance spectroscopy measurements from resting human tibialis anterior muscles and used pseudo-signal injection to calculate the Pi, PCr, and ATP concentrations. We compared these results to parallel estimates of concentrations obtained using the more established phantom replacement method. Our results demonstrate that pseudo-signal injection using inductive coupling provides a robust calibration factor that is immune to coil loading conditions and suitable for use in human measurements. Having benefits in terms of ease of use and quantitative accuracy, this method is feasible for clinical use. The protocol we describe could be readily translated for use in patients with mitochondrial disease, where sensitive assessment of metabolite content could improve diagnosis and treatment.

  2. Noise estimation in voice signals using short-term cepstral analysis.

    Science.gov (United States)

    Murphy, Peter J; Akande, Olatunji O

    2007-03-01

    Cepstral-based estimation is used to provide a baseline estimate of the noise level in the logarithmic spectrum for voiced speech. A theoretical description of cepstral processing of voiced speech containing aspiration noise, together with supporting empirical data, is provided in order to illustrate the nature of the noise baseline estimation process. Taking the Fourier transform of the liftered (filtered in the cepstral domain) cepstrum produces a noise baseline estimate. It is shown that Fourier transforming the low-pass liftered cepstrum is comparable to applying a moving average (MA) filter to the logarithmic spectrum and hence the baseline receives contributions from the glottal source excited vocal tract and the noise excited vocal tract. Because the estimation process resembles the action of a MA filter, the resulting noise baseline is determined by the harmonic resolution (as determined by the temporal analysis window length) and the glottal source spectral tilt. On selecting an appropriate temporal analysis window length the estimated baseline is shown to lie halfway between the glottal excited vocal tract and the noise excited vocal tract. This information is employed in a new harmonics-to-noise (HNR) estimation technique, which is shown to provide accurate HNR estimates when tested on synthetically generated voice signals.

  3. Parametric roll resonance monitoring using signal-based detection

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Falkenberg, Thomas

    2015-01-01

    Extreme roll motion of ships can be caused by several phenomena, one of which is parametric roll resonance. Several incidents occurred unexpectedly around the millennium and caused vast fiscal losses on large container vessels. The phenomenon is now well understood and some consider parametric roll...... algorithms in real conditions, and to evaluate the frequency of parametric roll events on the selected vessels. Detection performance is scrutinised through the validation of the detected events using owners’ standard methods, and supported by available wave radar data. Further, a bivariate statistical...... analysis of the outcome of the signal-based detectors is performed to assess the real life false alarm probability. It is shown that detection robustness and very low false warning rates are obtained. The study concludes that small parametric roll events are occurring, and that the proposed signal...

  4. Improved stochastic resonance algorithm for enhancement of signal-to-noise ratio of high-performance liquid chromatographic signal

    Energy Technology Data Exchange (ETDEWEB)

    Xie Shaofei [Center for Instrumental Analysis, China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China); Xiang Bingren [Center for Instrumental Analysis, China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China)]. E-mail: cpuxsf@hotmail.com; Deng Haishan [Center for Instrumental Analysis, China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China); Xiang Suyun [Center for Instrumental Analysis, China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China); Lu Jun [Center for Instrumental Analysis, China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China)

    2007-02-28

    Based on the theory of stochastic resonance, an improved stochastic resonance algorithm with a new criterion for optimizing system parameters to enhance signal-to-noise ratio (SNR) of HPLC/UV chromatographic signal for trace analysis was presented in this study. Compared with the conventional criterion in stochastic resonance, the proposed one can ensure satisfactory SNR as well as good peak shape of chromatographic peak in output signal. Application of the criterion to experimental weak signals of HPLC/UV was investigated and the results showed an excellent quantitative relationship between different concentrations and responses.

  5. Magnetic Resonance Signal Intensity Ratio Measurement Before Uterine Artery Embolization

    DEFF Research Database (Denmark)

    Duvnjak, Stevo; Ravn, Pernille; Green, Anders

    2017-01-01

    PURPOSE: To evaluate whether the magnetic resonance imaging (MRI) signal intensity (SI) ratio between the dominant fibroid and the periphery striated muscle can predict fibroid volume reduction >50% after uterine fibroid embolization (UFE). MATERIALS AND METHODS: From October 2013 until May 2016......, 52 patients were included in this prospective study. The SI ratio before UFE was calculated using circular region of interests placed on the dominant fibroid and the iliac muscle. The SI fibroid-to-iliac muscle ratio was calculated as SI of the dominant fibroid/SI of the iliac muscle on T1-, T2......-, and T1 post-contrast-weighted sequences. The dominant fibroid volume was measured and analyzed before and after UFE. RESULTS: In all, 46 patients who completed the three-month follow-up MRI were available for analysis. The correlation between SI fibroid-to-muscle ratio at the T2-weighted sequence...

  6. Infrared-microwave double resonance: signal dependence on microwave radiation strength

    NARCIS (Netherlands)

    Vreede, J.P.M. de; Dijkerman, H.A.

    1980-01-01

    The influence of MW radiation on the magnitude of double resonance signals is studied in the case of steady-state 3-level IR-MW double resonance, using IR or MW radiation as probe field. The measurements reveal a strong signal dependence on the microwave power level. Changes in the absorption factor

  7. Análise do trato vocal em pacientes com nódulos, fendas e cisto de prega vocal Vocal tract analysis in patients with vocal fold nodules, clefts and cysts

    Directory of Open Access Journals (Sweden)

    Raquel Buzelin Nunes

    2009-04-01

    Full Text Available O plano supraglótico representa uma importante dimensão na produção vocal, sendo de grande relevância sua caracterização na avaliação e conduta terapêutica de indivíduos disfônicos. OBJETIVO: Verificar se determinadas configurações glóticas se relacionam com ajustes específicos de trato vocal. Avaliar por meio da nasofibrolaringoscopia a freqüência dos ajustes do trato vocal supraglótico em mulheres disfônicas com nódulos, fendas e cistos. MÉTODO: Foram avaliadas 31 mulheres disfônicas, faixa etária entre 18 e 45 anos, com alteração vocal e diagnóstico de nódulos, fenda médioposterior e cisto e realizada avaliação resumida do sistema sensório-motor e oral e exames de videolaringoestroboscopia e nasofibrolaringoscopia. Três grupos distintos foram selecionados: pacientes com nódulos bilaterais, com fenda e com cisto, com configurações glóticas semelhantes. Foi realizada, por fonoaudiólogas e otorrinolaringologistas, a análise visual do trato vocal dos exames de nasofibrolaringoscopia, verificando os parâmetros de: constrição supraglótica, mobilidade vertical da laringe, constrição faríngea e mobilidade de língua. Os dados foram descritos e tratados estatisticamente. RESULTADOS: Na análise visual não foi encontrada diferença estatística significante que separasse os grupos das alterações glóticas. CONCLUSÃO: Não houve correlação dos ajustes do trato supraglótico com determinado tipo de alteração glótica. São comportamentos individuais que geram os ajustes e justificam as diferentes qualidades vocais em pacientes com mesmo tipo de alteração laríngea.The supraglottic plan represents an important dimension in vocal production, and its characterization is very important in the evaluation and treatment approach of dysphonic individuals. AIM: to check if certain glottic configurations are related to specific adjustments in the vocal tract. To use nasal and laryngeal fibroscopy to assess

  8. Ship Radiated Noise Recognition Using Resonance-Based Sparse Signal Decomposition

    Directory of Open Access Journals (Sweden)

    Jiaquan Yan

    2017-01-01

    Full Text Available Under the complex oceanic environment, robust and effective feature extraction is the key issue of ship radiated noise recognition. Since traditional feature extraction methods are susceptible to the inevitable environmental noise, the type of vessels, and the speed of ships, the recognition accuracy will degrade significantly. Hence, we propose a robust time-frequency analysis method which combines resonance-based sparse signal decomposition (RSSD and Hilbert marginal spectrum (HMS analysis. First, the observed signals are decomposed into high resonance component, low resonance component, and residual component by RSSD, which is a nonlinear signal analysis method based not on frequency or scale but on resonance. High resonance component is multiple simultaneous sustained oscillations, low resonance component is nonoscillatory transients, and residual component is white Gaussian noises. According to the low-frequency periodic oscillatory characteristic of ship radiated noise, high resonance component is the purified ship radiated noise. RSSD is suited to noise suppression for low-frequency oscillation signals. Second, HMS of high resonance component is extracted by Hilbert-Huang transform (HHT as the feature vector. Finally, support vector machine (SVM is adopted as a classifier. Real audio recordings are employed in the experiments under different signal-to-noise ratios (SNRs. The experimental results indicate that the proposed method has a better recognition performance than the traditional method under different SNRs.

  9. Measurement of acoustic and anatomic changes in oral and maxillofacial surgery patients

    CERN Document Server

    Aalto, Daniel; Happonen, Risto-Pekka; Jääsaari, Päivi; Kivelä, Atle; Kuortti, Juha; Luukinen, Jean-Marc; Malinen, Jarmo; Murtola, Tiina; Parkkola, Riitta; Saunavaara, Jani; Soukka, Tero; Vainio, Martti

    2013-01-01

    We describe an arrangement for simultaneous recording of speech and geometry of vocal tract in patients undergoing surgery involving this area. Experimental design is considered from an articulatory phonetic point of view. The speech and noise signals are recorded with an acoustic-electrical arrangement. The vocal tract is simultaneously imaged with MRI. A MATLAB-based system controls the timing of speech recording and MR image acquisition. The speech signals are cleaned from acoustic MRI noise by a non-linear signal processing algorithm. Finally, a vowel data set from pilot experiments is compared with validation data from anechoic chamber as well as with Helmholtz resonances of the vocal tract volume.

  10. Cascadability of Silicon Microring Resonators for40-Gbit/s OOK and DPSK Optical Signals

    DEFF Research Database (Denmark)

    Ozolins, Oskars; An, Yi; Lali-Dastjerdi, Zohreh

    2012-01-01

    The cascadability of a single silicon micro-ring resonator for CSRZ-OOK and CSRZ-DPSK signals is experimentally demonstrated at 40 Gbit/s for the first time. Error-free performance is obtained for both modulation formats after 5 cascaded resonators....

  11. Absent Vascular Signal on Time-of-Flight Magnetic Resonance Angiography Due to Recent Ferumoxytol Infusion.

    Science.gov (United States)

    Singhal, Aparna; Curé, Joel K

    Time-of-flight magnetic resonance angiography is used for craniocervical arterial evaluation. Absent flow-related signal may be the result of slow flow, complex flow, or focal susceptibility effects. We report a case with complete absence of flow-related signal in the intracranial and cervical vessels due to ferumoxytol infusion given 5 days before magnetic resonance angiography. Ferumoxytol is a newly approved parenteral therapy for iron-deficiency anemia in patients with renal failure and awareness of this drug-magnetic resonance imaging interaction is needed.

  12. Effect of ion clouds micromotion on measured signal in Fourier transform ion cyclotron resonance: Computer simulation.

    Science.gov (United States)

    Vladimirov, Gleb; Kostyukevich, Yury; Kharybin, Oleg; Nikolaev, Eugene

    2017-08-01

    Particle-in-cell-based realistic simulation of Fourier transform ion cyclotron resonance experiments could be used to generate ion trajectories and a signal induced on the detection electrodes. It has been shown recently that there is a modulation of "reduced" cyclotron frequencies in ion cyclotron resonance signal caused by Coulomb interaction of ion clouds. In this work it was proposed to use this modulation in order to determine frequency difference between an ion of known m/z and all other ions generating signal in ion cyclotron resonance cell. It is shown that with an increase of number of ions in ion cyclotron resonance trap, the modulation index increases, which lead to a decrease in the accuracy of determination of peak intensities by super Fourier transform resolution methods such as filter diagonalization method.

  13. Aperiodic signals processing via parameter-tuning stochastic resonance in a photorefractive ring cavity

    Directory of Open Access Journals (Sweden)

    Xuefeng Li

    2014-04-01

    Full Text Available Based on solving numerically the generalized nonlinear Langevin equation describing the nonlinear dynamics of stochastic resonance by Fourth-order Runge-Kutta method, an aperiodic stochastic resonance based on an optical bistable system is numerically investigated. The numerical results show that a parameter-tuning stochastic resonance system can be realized by choosing the appropriate optical bistable parameters, which performs well in reconstructing aperiodic signals from a very high level of noise background. The influences of optical bistable parameters on the stochastic resonance effect are numerically analyzed via cross-correlation, and a maximum cross-correlation gain of 8 is obtained by optimizing optical bistable parameters. This provides a prospective method for reconstructing noise-hidden weak signals in all-optical signal processing systems.

  14. Ultrafast all-optical switching using signal flow graph for PANDA resonator.

    Science.gov (United States)

    Bahadoran, Mahdi; Ali, Jalil; Yupapin, Preecha P

    2013-04-20

    In this paper, the bifurcation behavior of light in the PANDA ring resonator is investigated using the signal flow graph (SFG) method, where the optical transfer function for the through and drop ports of the PANDA Vernier system are derived. The optical nonlinear phenomena, such as bistability, Ikeda instability, and dynamics of light in the silicon-on-insulator (SOI) PANDA ring resonator with four couplers are studied. The transmission curves for bistability and instability as a function of the resonant mode numbers and coupling coefficients for the coupler are derived by the SFG method and simulated. The proposed system has an advantage as no optical pumping component is required. Simulated results show that closed-loop bistable switching can be generated and achieved by varying mode resonant numbers in the SOI-PANDA Vernier resonator, where a smooth and closed-loop bistable switching with low relative output/input power can be obtained and realized. The minimum through-port switching time of 1.1 ps for resonant mode numbers of 5;4;4 and minimum drop port switching time of 1.96 ps for resonant mode numbers of 9;7;7 of the PANDA Vernier resonator are achieved, which makes the PANDA Vernier resonator an operative component for optical applications, such as optical signal processing and a fast switching key in photonics integrated circuits.

  15. Signal denoising using stochastic resonance and bistable circuit for acoustic emission-based structural health monitoring

    Science.gov (United States)

    Kim, Jinki; Harne, Ryan L.; Wang, K. W.

    2017-04-01

    Noise is unavoidable and ever-present in measurements. As a result, signal denoising is a necessity for many scientific and engineering disciplines. In particular, structural health monitoring applications aim to detect often weak anomaly responses generated by incipient damage (such as acoustic emission signals) from background noise that contaminates the signals. Among various approaches, stochastic resonance has been widely studied and adopted for denoising and weak signal detection to enhance the reliability of structural heath monitoring. On the other hand, many of the advancements have been focused on detecting useful information from the frequency domain generally in a postprocessing environment, such as identifying damage-induced frequency changes that become more prominent by utilizing stochastic resonance in bistable systems, rather than recovering the original time domain responses. In this study, a new adaptive signal conditioning strategy is presented for on-line signal denoising and recovery, via utilizing the stochastic resonance in a bistable circuit sensor. The input amplitude to the bistable system is adaptively adjusted to favorably activate the stochastic resonance based on the noise level of the given signal, which is one of the few quantities that can be readily assessed from noise contaminated signals in practical situations. Numerical investigations conducted by employing a theoretical model of a double-well Duffing analog circuit demonstrate the operational principle and confirm the denoising performance of the new method. This study exemplifies the promising potential of implementing the new denoising strategy for enhancing on-line acoustic emission-based structural health monitoring.

  16. Harvesting wind energy to detect weak signals using mechanical stochastic resonance

    Science.gov (United States)

    Breen, Barbara J.; Rix, Jillian G.; Ross, Samuel J.; Yu, Yue; Lindner, John F.; Mathewson, Nathan; Wainwright, Elliot R.; Wilson, Ian

    2016-12-01

    Wind is free and ubiquitous and can be harnessed in multiple ways. We demonstrate mechanical stochastic resonance in a tabletop experiment in which wind energy is harvested to amplify weak periodic signals detected via the movement of an inverted pendulum. Unlike earlier mechanical stochastic resonance experiments, where noise was added via electrically driven vibrations, our broad-spectrum noise source is a single flapping flag. The regime of the experiment is readily accessible, with wind speeds ˜20 m/s and signal frequencies ˜1 Hz. We readily obtain signal-to-noise ratios on the order of 10 dB.

  17. Stochastic resonance in multi-stable coupled systems driven by two driving signals

    Science.gov (United States)

    Xu, Pengfei; Jin, Yanfei

    2018-02-01

    The stochastic resonance (SR) in multi-stable coupled systems subjected to Gaussian white noises and two different driving signals is investigated in this paper. Using the adiabatic approximation and the perturbation method, the coupled systems with four-well potential are transformed into the master equations and the amplitude of the response is obtained. The signal-to-noise ratio (SNR) is calculated numerically to demonstrate the occurrence of SR. For the case of two driving signals with different amplitudes, the interwell resonance between two wells S1 and S3 emerges for strong coupling. The SR can appear in the subsystem with weaker signal amplitude or even without driving signal with the help of coupling. For the case of two driving signals with different frequencies, the effects of SR in two subsystems driven by high and low frequency signals are both weakened with an increase in coupling strength. The stochastic multi-resonance phenomenon is observed in the subsystem subjected to the low frequency signal. Moreover, an effective scheme for phase suppressing SR is proposed by using a relative phase between two driving signals.

  18. 14N Nuclear Quadrupole Resonance Signals in Paranitrotoluene and Trinitrotoluene. Spin-Lock Spin-Echo Off-Resonance Effects

    Science.gov (United States)

    Gregorovič, Alan; Apih, Tomaž; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvone

    A simple, yet effective technique to enhance the 14N NQR trinitrotoluene notoriously low sensitivity is the use of multipulse sequences. Here we investigate the off-resonance effects of the Spin-Lock Spin-Echo multipulse sequence, a predecessor of many advanced pulse sequences used for the same enhancement. Two samples have been used: paranitrotoluene, with a single 14N site as a model compound for trinitrotoluene, and trinitrotoluene itself, with six 14N sites. Our main focus has been the irradiation frequency dependence of the NQR signal, which is important when 14N NQR is used for remote detection of explosives. The two related principal issues are: the target temperature uncertainty and the existence of multiplets with several closely spaced resonance frequencies. The first applies to any explosive, since in remote detection the temperature is only approximately known, whereas the second applies mainly to trinitrotoluene, with 12 resonance frequencies between 837 and 871 kHz. Our frequency dependent investigation shows that the signal intensity as well as the effective spinspin relaxation time varies substantially with irradiation frequency in both samples. We provide a theoretical explanation of this variation which describes very well the observations and can be useful for increasing the reliability of remote detection signal processing.

  19. A low noise photoelectric signal acquisition system applying in nuclear magnetic resonance gyroscope

    Science.gov (United States)

    Lu, Qilin; Zhang, Xian; Zhao, Xinghua; Yang, Dan; Zhou, Binquan; Hu, Zhaohui

    2017-10-01

    The nuclear magnetic resonance gyroscope serves as a new generation of strong support for the development of high-tech weapons, it solves the core problem that limits the development of the long-playing seamless navigation and positioning. In the NMR gyroscope, the output signal with atomic precession frequency is detected by the probe light, the final crucial photoelectric signal of the probe light directly decides the quality of the gyro signal. But the output signal has high sensitivity, resolution and measurement accuracy for the photoelectric detection system. In order to detect the measured signal better, this paper proposed a weak photoelectric signal rapid acquisition system, which has high SNR and the frequency of responded signal is up to 100 KHz to let the weak output signal with high frequency of the NMR gyroscope can be detected better.

  20. All-optical clock recovery from 40 Gbit/s RZ signal based on microring resonators.

    Science.gov (United States)

    Xiong, Meng; Ding, Yunhong; Zhang, Qiang; Zhang, Xinliang

    2011-10-01

    A scheme for high-speed clock recovery from return-to-zero (RZ) signal with microring resonators is presented. By using a silicon microring resonator (MRR) for clock extraction and a 3-order nonlinear series-coupled microring resonator (SCMR) for amplitude equalization, clock pulses with amplitude modulation less than 1 dB can be obtained. The proposed scheme is also designed and numerically studied by 3D full vectorial film mode matching method (FMM) and coupled mode theory (CMT). Simulation results show that clock can be recovered at 40 Gbit/s with short rise- and fall- times.

  1. Solid-state Raman quantum memory in whispering gallery mode resonators: signal-to-noise ratio

    Science.gov (United States)

    Berezhnoi, Alexander; Kalachev, Alexey

    2017-10-01

    The possibility of implementation of optical quantum memory via off-resonant Raman absorption and emission of single-photon pulses in rare-earth-ion-doped crystals is theoretically analysed taking into account signal-to-noise ratio at the output of the memory device. The crystal 143Nd3+:Y7LiF4 is considered as an example. It is shown that the signal-to-noise ratio can exceed unity for single-photon input pulses provided that storage and retrieval of them is performed in the doped crystals forming a microcavity such as whispering gallery mode resonator.

  2. Solid-state Raman quantum memory in whispering gallery mode resonators: signal-to-noise ratio

    Directory of Open Access Journals (Sweden)

    Berezhnoi Alexander

    2017-01-01

    Full Text Available The possibility of implementation of optical quantum memory via off-resonant Raman absorption and emission of single-photon pulses in rare-earth-ion-doped crystals is theoretically analysed taking into account signal-to-noise ratio at the output of the memory device. The crystal 143Nd3+:Y7LiF4 is considered as an example. It is shown that the signal-to-noise ratio can exceed unity for single-photon input pulses provided that storage and retrieval of them is performed in the doped crystals forming a microcavity such as whispering gallery mode resonator.

  3. Transmission Property of Directly Modulated Signals Enhanced by a Micro-ring Resonator

    DEFF Research Database (Denmark)

    An, Yi; Lorences Riesgo, Abel; Seoane, Jorge

    2012-01-01

    A silicon micro-ring resonator is used to enhance the modulation speed of a 10-Gbit/s directly modulated laser to 40 Gbit/s. The generated signal is transmitted error free over 4.5 km SSMF. Dispersion tolerance is also studied.......A silicon micro-ring resonator is used to enhance the modulation speed of a 10-Gbit/s directly modulated laser to 40 Gbit/s. The generated signal is transmitted error free over 4.5 km SSMF. Dispersion tolerance is also studied....

  4. Signal Quality Enhancement of Directly- Modulated VCSELs Using a Micro-Ring Resonator Transfer Function

    DEFF Research Database (Denmark)

    An, Yi; Muller, M.; Estaran Tolosa, Jose Manuel

    2013-01-01

    A micro-ring resonator transfer function is used to enhance the quality of signals generated using directly modulated VCSELs. The scheme is demonstrated up to 25 Gbit/s with a 17.6-GHz VCSEL, with up to 10 dB sensitivity improvement.......A micro-ring resonator transfer function is used to enhance the quality of signals generated using directly modulated VCSELs. The scheme is demonstrated up to 25 Gbit/s with a 17.6-GHz VCSEL, with up to 10 dB sensitivity improvement....

  5. M-ary suprathreshold stochastic resonance in multilevel threshold systems with signal-dependent noise

    Science.gov (United States)

    Cheng, Chaojun; Zhou, Bingchang; Gao, Xiao; McDonnell, Mark D.

    2017-08-01

    We investigate multilevel threshold systems with signal-dependent noise that transmit a common random input signal. We demonstrate the occurrence of M-ary suprathreshold stochastic resonance caused by the signal-dependent noise, and quantify the information enhancement that results relative to the absence of noise. We also find that in the case of M-ary threshold systems, the values of mutual information and signal-to-quantization-noise ratio are larger than the corresponding values in the case of binary threshold systems. These results are potentially useful for understanding the encoding mechanism of inner-ear hair cells and other biological sensory systems.

  6. Fisher-information condition for enhanced signal detection via stochastic resonance.

    Science.gov (United States)

    Duan, Fabing; Chapeau-Blondeau, François; Abbott, Derek

    2011-11-01

    Various situations where a signal is enhanced by noise through stochastic resonance are now known. This paper contributes to determining general conditions under which improvement by noise can be a priori decided as feasible or not. We focus on the detection of a known signal in additive white noise. Under the assumptions of a weak signal and a sufficiently large sample size, it is proved, with an inequality based on the Fisher information, that improvement by adding noise is never possible, generically, in these conditions. However, under less restrictive conditions, an example of signal detection is shown with favorable action of adding noise.

  7. Coronary artery stent mimicking intracardiac thrombus on cardiac magnetic resonance imaging due to signal loss

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Vejlstrup, Niels Grove; Ahtarovski, Kiril Aleksov

    2012-01-01

    Since the introduction of percutaneous coronary intervention for coronary artery disease, thousands of patients have been treated with the implantation of coronary stents. Moreover, several of the patients with coronary stent undergo cardiac magnetic resonance (CMR) imaging every year. This case ...... the signal loss on MRI associated with implanted metallic devices is known, we report a case where an implanted coronary stent in the left circumflex artery led to an intracardiac signal loss mimicking intracardiac thrombus/tumor....

  8. Linear all-optical signal processing using silicon micro-ring resonators

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Xu, Jing

    2016-01-01

    Silicon micro-ring resonators (MRRs) are compact and versatile devices whose periodic frequency response can be exploited for a wide range of applications. In this paper, we review our recent work on linear all-optical signal processing applications using silicon MRRs as passive filters. We focus...

  9. Stochastic resonance can enhance information transmission of supra-threshold neural signals.

    Science.gov (United States)

    Kawaguchi, Minato; Mino, Hiroyuki; Momose, Keiko; Durand, Dominique M

    2009-01-01

    Stochastic resonance (SR) has been shown to improve detection of sub-threshold signals with additive uncor-related background noise, not only in a single hippocampal CA1 neuron model, but in a population of hippocampal CA1 neuron models (Array-Enhanced Stochastic Resonance; AESR). However, most of the information in the CNS is transmitted through supra-threshold signals and the effect of stochastic resonance in neurons on these signals is unknown. Therefore, we investigate through computer simulations whether information transmission of supra-threshold input signal can be improved by uncorrelated noise in a population of hippocampal CA1 neuron models by supra-threshold stochastic resonance (SSR). The mutual information was estimated as an index of information transmission via total and noise entropies from the inter-spike interval (ISI) histograms of the spike trains generated by gathering each of spike trains in a population of hippocampal CA1 neuron models at N = 1, 2, 4, 10, 20 and 50. It was shown that the mutual information was maximized at a specific amplitude of uncorrelated noise, i.e., a typical curve of SR was observed when the number of neurons was greater than 10 with SSR. However, SSR did not affect the information transfer with a small number of neurons. In conclusion, SSR may play an important role in processing information such as memory formation in a population of hippocampal neurons.

  10. Generation of a 640 Gbit/s NRZ OTDM signal using a silicon microring resonator

    DEFF Research Database (Denmark)

    Ding, Yunhong; Hu, Hao; Galili, Michael

    2011-01-01

    in a highly nonlinear fiber. Second, RZ-to-NRZ format conversion is achieved in a specially designed silicon microring resonator with FSR of 1280 GHz, Q value of 638, high extinction ratio and low coupling loss to optical fiber. A 640 Gbit/s NRZ OTDM signal with very clear eye-diagram and narrower bandwidth...

  11. Signal transmission by vibrational resonance in one-way coupled bistable systems.

    Science.gov (United States)

    Yao, Chenggui; Zhan, Meng

    2010-06-01

    Low-frequency signal transmission in one-way coupled bistable systems subject to a high-frequency force is studied. Two cases including the high-frequency force on all sites (case 1) and only on the first site (case 2) are considered. In these two cases, vibrational resonance induced by the high-frequency force can play an active role to effectively improve the signal transmission, and undamped signal transmission can be found in a broad parameter region. The combinative action of injected low-frequency signal, high-frequency driving, and coupling is of importance. Our findings suggest that high-frequency signal could be properly used in low-frequency signal transmission, and especially the implementation of high-frequency force simply on the first site for case 2 is meaningful for its simplicity and high efficiency.

  12. The design of photoelectric signal processing system for a nuclear magnetic resonance gyroscope based on FPGA

    Science.gov (United States)

    Zhang, Xian; Zhou, Binquan; Li, Hong; Zhao, Xinghua; Mu, Weiwei; Wu, Wenfeng

    2017-10-01

    Navigation technology is crucial to the national defense and military, which can realize the measurement of orientation, positioning, attitude and speed for moving object. Inertial navigation is not only autonomous, real-time, continuous, hidden, undisturbed but also no time-limited and environment-limited. The gyroscope is the core component of the inertial navigation system, whose precision and size are the bottleneck of the performance. However, nuclear magnetic resonance gyroscope is characteristic of the advantage of high precision and small size. Nuclear magnetic resonance gyroscope can meet the urgent needs of high-tech weapons and equipment development of new generation. This paper mainly designs a set of photoelectric signal processing system for nuclear magnetic resonance gyroscope based on FPGA, which process and control the information of detecting laser .The photoelectric signal with high frequency carrier is demodulated by in-phase and quadrature demodulation method. Finally, the processing system of photoelectric signal can compensate the residual magnetism of the shielding barrel and provide the information of nuclear magnetic resonance gyroscope angular velocity.

  13. Extracting nanosecond pulse signals via stochastic resonance generated by surface plasmon bistability.

    Science.gov (United States)

    Han, Jing; Liu, Hongjun; Sun, Qibing; Huang, Nan; Wang, Zhaolu; Li, Shaopeng

    2015-11-15

    A technology is investigated to extract nanosecond pulse noise hidden signals via stochastic resonance, which is based on surface plasmon bistability. A theoretical model for recovering nanosecond pulse signals is derived to describe the nonlinear process. It is found that the incident angle, polarization state, medium properties, and input noise intensity all determine the efficiency and fidelity of the output signal. The bistable behavior of the output intensity can be accurately controlled to obtain a cross-correlation gain larger than 6 in a wide range of input signal-to-noise ratio from 1∶5 to 1∶30. Meanwhile, the distortion in the time domain induced by phase shift can be reduced to a negligible level. This work provides a potential method for detecting low-level or hidden pulse signals in various communication fields.

  14. Nanosecond pulse signals restoration via stochastic resonance in the Fabry-Perot cavity with graphene

    Science.gov (United States)

    Chang, Zheng; Liu, Hongjun; Huang, Nan; Wang, Zhaolu; Han, Jing

    2017-07-01

    We investigate a technology for reconstructing nanosecond pulse noise hidden signals via stochastic resonance, which is based on optical bistability in the Fabry-Perot (F-P) cavity with graphene. The bistable properties are analyzed with different initial wavelengths and Fermi energies. The system is tunable and the bistable behavior of the output intensity can be accurately controlled to obtain a cross-correlation gain larger than 10 in a wide range of input signal-to-noise (SNR) ratio from 1:8 to 1:45. Meanwhile, the distortion of the output signal and the pulse tailing caused by the phase delay can be reduced to a negligible level. This work provides a potential method for detecting low-level or hidden pulse signals in various communication fields.

  15. Theory and method for weak signal detection in engineering practice based on stochastic resonance

    Science.gov (United States)

    Zhao, Wenli; Wang, Linze; Fan, Jian

    2017-11-01

    In this paper, the Kramers rate was derived using the Fokker-Planck (FP) equation with the condition of adiabatic approximation (the amplitude and frequency of signal detected are small ≪ 1) and the signal-to-noise ratio (SNR) was proved by means of Fourier transform and the power spectrum in bistable system. This is a concise and superior method to demonstrate the Kramers rate and SNR compared to the past methods. It is convenient for readers to understand. The SNR of the bistable system obtained shows that stochastic resonance (SR) can be used to realize energy transition from noise to a periodic signal under the adiabatic approximation condition. Therefore, SR could enhance the SNR of the output signal. The signal modulation technique was employed to transform the large frequency components into a small parameter signal to meet the adiabatic approximation requirement. Furthermore, we have designed the model of modulator. The simulation results show that the modulation method can generate SR in a bistable system and detect weak signals with large parameters from strong noise background.

  16. Amplification of the Signal Intensity of Fluorescence-Based Fiber-Optic Biosensors Using a Fabry-Perot Resonator Structure

    Directory of Open Access Journals (Sweden)

    Meng-Chang Hsieh

    2015-02-01

    Full Text Available Fluorescent biosensors have been widely used in biomedical applications. To amplify the intensity of fluorescence signals, this study developed a novel structure for an evanescent wave fiber-optic biosensor by using a Fabry-Perot resonator structure. An excitation light was coupled into the optical fiber through a laser-drilled hole on the proximal end of the resonator. After entering the resonator, the excitation light was reflected back and forth inside the resonator, thereby amplifying the intensity of the light in the fiber. Subsequently, the light was used to excite the fluorescent molecules in the reactive region of the sensor. The experimental results showed that the biosensor signal was amplified eight-fold when the resonator reflector was formed using a 92% reflective coating. Furthermore, in a simulation, the biosensor signal could be amplified 20-fold by using a 99% reflector.

  17. Determination of nanograms of proteins based on the amplified resonance light scattering signals of Tichromine

    Science.gov (United States)

    Cai, Changqun; Chen, Xiaoming

    2010-03-01

    A new high-sensitivity detection of protein assay at the nanogram level is developed based on the amplified resonance light scattering signals (RLS) of Tichromine (TCM). In Walpole (NaAc-HCl) buffer (pH 4.05), TCM reacts with proteins to form large particles, which results in remarkable enhanced RLS signals characterized by three peaks at 293 nm, 399 nm and 553 nm. Mechanistic studies showed that the enhanced RLS stems from a large complex of TCM-BSA formed for the electrostatic effect between TCM and BSA. With the enhanced RLS signals at the three wavelengths, the enhanced RLS intensity is proportional to the concentration of proteins in an appropriate range. The lowest limit of determination was 7.4 ng mL -1. The proposed method was successfully applied to determine total protein in human serum samples.

  18. An Optimal Dimensionality Sampling Scheme on the Sphere for Antipodal Signals In Diffusion Magnetic Resonance Imaging

    CERN Document Server

    Bates, Alice P; Kennedy, Rodney A

    2015-01-01

    We propose a sampling scheme on the sphere and develop a corresponding spherical harmonic transform (SHT) for the accurate reconstruction of the diffusion signal in diffusion magnetic resonance imaging (dMRI). By exploiting the antipodal symmetry, we design a sampling scheme that requires the optimal number of samples on the sphere, equal to the degrees of freedom required to represent the antipodally symmetric band-limited diffusion signal in the spectral (spherical harmonic) domain. Compared with existing sampling schemes on the sphere that allow for the accurate reconstruction of the diffusion signal, the proposed sampling scheme reduces the number of samples required by a factor of two or more. We analyse the numerical accuracy of the proposed SHT and show through experiments that the proposed sampling allows for the accurate and rotationally invariant computation of the SHT to near machine precision accuracy.

  19. Automatic detection of obstructive sleep apnea using speech signals.

    Science.gov (United States)

    Goldshtein, Evgenia; Tarasiuk, Ariel; Zigel, Yaniv

    2011-05-01

    Obstructive sleep apnea (OSA) is a common disorder associated with anatomical abnormalities of the upper airways that affects 5% of the population. Acoustic parameters may be influenced by the vocal tract structure and soft tissue properties. We hypothesize that speech signal properties of OSA patients will be different than those of control subjects not having OSA. Using speech signal processing techniques, we explored acoustic speech features of 93 subjects who were recorded using a text-dependent speech protocol and a digital audio recorder immediately prior to polysomnography study. Following analysis of the study, subjects were divided into OSA (n=67) and non-OSA (n=26) groups. A Gaussian mixture model-based system was developed to model and classify between the groups; discriminative features such as vocal tract length and linear prediction coefficients were selected using feature selection technique. Specificity and sensitivity of 83% and 79% were achieved for the male OSA and 86% and 84% for the female OSA patients, respectively. We conclude that acoustic features from speech signals during wakefulness can detect OSA patients with good specificity and sensitivity. Such a system can be used as a basis for future development of a tool for OSA screening. © 2011 IEEE

  20. Coupling Influence on Signal Readout of a Dual-Parameter LC Resonant System

    Directory of Open Access Journals (Sweden)

    Jijun Xiong

    2015-01-01

    Full Text Available Dual-parameter inductive-capacitive (LC resonant sensor is gradually becoming the measurement trend in complex harsh environments; however, the coupling between inductors greatly affects the readout signal, which becomes very difficult to resolve by means of simple mathematical tools. By changing the values of specific variables in a MATLAB code, the influence of coupling between coils on the readout signal is analyzed. Our preliminary conclusions underline that changing the coupling to antenna greatly affects the readout signal, but it simultaneously influences the other signal. When f01=f02, it is better to broaden the difference between the two coupling coefficients k1 and k2. On the other side, when f01 is smaller than f02, it is better to decrease the coupling between sensor inductors k12, in order to obtain two readout signals averaged in strength. Finally, a test system including a discrete capacitor soldered to a printed circuit board (PCB based planar spiral coil is built, and the readout signals under different relative inductors positions are analyzed. All experimental results are in good agreement with the results of the MATLAB simulation.

  1. Changes in gadolinium-DTPA enhanced magnetic resonance signal intensity ratio in hypertrophic cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Tsukihashi, Hironori; Ishibashi, Yutaka; Shimada, Toshio; Hatano, Jun; Tanabe, Kazuaki; Ooyake, Nobuyuki; Morioka, Shigefumi; Moriyama, Katsutoshi (Shimane Medical Univ., Izumo (Japan))

    Serial gadolinium-diethylene-triamine-pentaacetic acid (Gd-DTPA) enhanced magnetic resonance (MR) signal intensity ratios were measured in 6 normal subjects and 20 hypertrophic cardiomyopathy (HCM) patients to try to differentiate normal from disorganized myocardial tissue. Images were obtained at 10-minute intervals 5-60 minutes after Gd-DTPA (0.1 mmol/kg) injection. The signal intensity ratio (myocardial signal intensity/skeletal muscle signal intensity) was measured at both hypertrophic and non-hypertrophic regions in each image at the apex and mid-ventricular levels. The signal intensity ratio was standardized to compare each case. Hypertrophic myocardium was classified into two types. Type I in 11 of 20 patients was visualized as a homogeneous image, while type II in the other 9 patients was revealed as a mixed isointensity and high intensity area. The peak value of the standardized signal intensity ratio at the apex level was 1.28[+-]0.09 in HCM patients and 1.23[+-]0.06 in normal subjects, and at the mid ventricular level was 1.26[+-]0.07 in hypertrophic regions, 1.17[+-]0.12 in non-hypertrophic regions, and 1.16[+-]0.07 in normal subjects. Thirty minutes after Gd injection, the standardized signal intensity ratio at the apex level was 1.21[+-]0.08 in HCM patients and 1.07[+-]0.08 in normal subjects, and those at the mid ventricular level was 1.20[+-]0.09 in hypertrophic regions, 1.11[+-]0.11 in non-hypertrophic regions, and 1.04[+-]0.06 in normal subjects. The delayed decay of the signal intensity ratio and high signal intensity ratio in Gd-DTPA enhanced MR images are useful in myocardial tissue characterization in hypertrophic cardiomyopathy. (author).

  2. Magnetic resonance imaging with nonlinear gradient fields signal encoding and image reconstruction

    CERN Document Server

    Schultz, Gerrit

    2013-01-01

    Within the past few decades magnetic resonance imaging has become one of the most important imaging modalities in medicine. For a reliable diagnosis of pathologies further technological improvements are of primary importance. This text deals with a radically new approach of image encoding: The fundamental principle of gradient linearity is challenged by investigating the possibilities of acquiring anatomical images with the help of nonlinear gradient fields. Besides a thorough theoretical analysis with a focus on signal encoding and image reconstruction, initial hardware implementations are tested using phantom as well as in-vivo measurements. Several applications are presented that give an impression about the implications that this technological advancement may have for future medical diagnostics.   Contents n  Image Reconstruction in MRI n  Nonlinear Gradient Encoding: PatLoc Imaging n  Presentation of Initial Hardware Designs n  Basics of Signal Encoding and Image Reconstruction in PatLoc Imaging n ...

  3. Integration of Resonant Coil for Wireless Power Transfer and Implantable Antenna for Signal Transfer

    Directory of Open Access Journals (Sweden)

    Dong-Wook Seo

    2016-01-01

    Full Text Available We propose the integration of the resonant coil for wireless power transfer (WPT and the implantable antenna for physiological signal transfer. The integration allows for a compact biomedical implantable system such as electrocardiogram (ECG recorder and pacemaker. While the resonant coils resonate at the frequency of 13.56 MHz for the WPT, the implantable antenna works in the medical implant communications service (MICS band of 402–405 MHz for wireless communications. They share the narrow substrate area of a bar-type shape; the coil has the current path on the outer part of the substrate and the meandered planar inverted-F antenna (PIFA occupies the inside of the coil. To verify the potentials of the proposed structure, a prototype is fabricated and tested in vitro. The power transfer efficiency (PTE of about 20% is obtained at a distance of 15 mm and the antenna gain of roughly −40 dBi is achieved.

  4. A digital magnetic resonance imaging spectrometer using digital signal processor and field programmable gate array.

    Science.gov (United States)

    Liang, Xiao; Binghe, Sun; Yueping, Ma; Ruyan, Zhao

    2013-05-01

    A digital spectrometer for low-field magnetic resonance imaging is described. A digital signal processor (DSP) is utilized as the pulse programmer on which a pulse sequence is executed as a subroutine. Field programmable gate array (FPGA) devices that are logically mapped into the external addressing space of the DSP work as auxiliary controllers of gradient control, radio frequency (rf) generation, and rf receiving separately. The pulse programmer triggers an event by setting the 32-bit control register of the corresponding FPGA, and then the FPGA automatically carries out the event function according to preset configurations in cooperation with other devices; accordingly, event control of the spectrometer is flexible and efficient. Digital techniques are in widespread use: gradient control is implemented in real-time by a FPGA; rf source is constructed using direct digital synthesis technique, and rf receiver is constructed using digital quadrature detection technique. Well-designed performance is achieved, including 1 μs time resolution of the gradient waveform, 1 μs time resolution of the soft pulse, and 2 MHz signal receiving bandwidth. Both rf synthesis and rf digitalization operate at the same 60 MHz clock, therefore, the frequency range of transmitting and receiving is from DC to ~27 MHz. A majority of pulse sequences have been developed, and the imaging performance of the spectrometer has been validated through a large number of experiments. Furthermore, the spectrometer is also suitable for relaxation measurement in nuclear magnetic resonance field.

  5. Resonance-Based Sparse Signal Decomposition and its Application in Mechanical Fault Diagnosis: A Review.

    Science.gov (United States)

    Huang, Wentao; Sun, Hongjian; Wang, Weijie

    2017-06-03

    Mechanical equipment is the heart of industry. For this reason, mechanical fault diagnosis has drawn considerable attention. In terms of the rich information hidden in fault vibration signals, the processing and analysis techniques of vibration signals have become a crucial research issue in the field of mechanical fault diagnosis. Based on the theory of sparse decomposition, Selesnick proposed a novel nonlinear signal processing method: resonance-based sparse signal decomposition (RSSD). Since being put forward, RSSD has become widely recognized, and many RSSD-based methods have been developed to guide mechanical fault diagnosis. This paper attempts to summarize and review the theoretical developments and application advances of RSSD in mechanical fault diagnosis, and to provide a more comprehensive reference for those interested in RSSD and mechanical fault diagnosis. Followed by a brief introduction of RSSD's theoretical foundation, based on different optimization directions, applications of RSSD in mechanical fault diagnosis are categorized into five aspects: original RSSD, parameter optimized RSSD, subband optimized RSSD, integrated optimized RSSD, and RSSD combined with other methods. On this basis, outstanding issues in current RSSD study are also pointed out, as well as corresponding instructional solutions. We hope this review will provide an insightful reference for researchers and readers who are interested in RSSD and mechanical fault diagnosis.

  6. A Dynamical System Exhibits High Signal-to-noise Ratio Gain by Stochastic Resonance

    Science.gov (United States)

    Makra, Peter; Gingl, Zoltan

    2003-05-01

    On the basis of mixed-signal simulations, we demonstrate that signal-to-noise ratio (SNR) gains much greater than unity can be obtained in the double-well potential through stochastic resonance (SR) with a symmetric periodic pulse train as deterministic and Gaussian white noise as random excitation. We also show that significant SNR improvement is possible in this system even for a sub-threshold sinusoid input if, instead of the commonly used narrow-band SNR, we apply an equally simple but much more realistic wide-band SNR definition. Using the latter result as an argument, we draw attention to the fact that the choice of the measure to reflect signal quality is critical with regard to the extent of signal improvement observed, and urge reconsideration of the practice prevalent in SR studies that most often the narrow-band SNR is used to characterise SR. Finally, we pose some questions concerning the possibilities of applying SNR improvement in practical set-ups.

  7. Biomechanics of the Peacock’s Display: How Feather Structure and Resonance Influence Multimodal Signaling

    Science.gov (United States)

    Dakin, Roslyn; McCrossan, Owen; Hare, James F.; Montgomerie, Robert; Amador Kane, Suzanne

    2016-01-01

    Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus) perform a complex, multimodal “train-rattling” display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock’s visual display by allowing the colorful iridescent eyespots–which strongly influence female mate choice–to remain nearly stationary against a dynamic iridescent background. PMID:27119380

  8. Biomechanics of the Peacock's Display: How Feather Structure and Resonance Influence Multimodal Signaling.

    Science.gov (United States)

    Dakin, Roslyn; McCrossan, Owen; Hare, James F; Montgomerie, Robert; Amador Kane, Suzanne

    2016-01-01

    Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus) perform a complex, multimodal "train-rattling" display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock's visual display by allowing the colorful iridescent eyespots-which strongly influence female mate choice-to remain nearly stationary against a dynamic iridescent background.

  9. Biomechanics of the Peacock's Display: How Feather Structure and Resonance Influence Multimodal Signaling.

    Directory of Open Access Journals (Sweden)

    Roslyn Dakin

    Full Text Available Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus perform a complex, multimodal "train-rattling" display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock's visual display by allowing the colorful iridescent eyespots-which strongly influence female mate choice-to remain nearly stationary against a dynamic iridescent background.

  10. Primary Study about Intensity Signal of Electron Paramagnetic Resonance in vivo Tooth Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hoon; Gang, Seo Gon; Kim, Jeong In; Lee, Byung Il [KHNP Radiation Health Institute, Gyeongju (Korea, Republic of)

    2017-04-15

    The signal of Electron Paramagnetic Resonance(EPR) dosimetry system using human tooth has been well introduced as one of the efficient tool to evaluate radiation exposure. But, EPR dosimetry, even in the case of classical in vitro EPR system using tooth sample(measured molars), was regarded as having big signal fluctuation. One of reason for such difficulty in getting accurate intensity was the big effect of organic materials mixed in enamel part of teeth samples. They are mainly caused by the adaptation process of system itself to the movement of measured human subject. Generally, when we measured human teeth in vivo, five of six teeth spectrum were gathered and averaged for real evaluation. The these spectrum are measured under very different environment like angle of external magnet making magnetic filed with teeth(incisor). Random movement of these signals should be considered in different view point to understand and compare each EPR in vivo EPR spectrum. The peak to peak value of obtained five or six in vivo EPR system to get averaged value for final quantity of free radicals in hydroxy apatite crystal construction in enamel part of human teeth looks so randomly changed without regulation. But, in overall view, the EPR signal, especially at no irradiation level, is almost same for every measurement trial which is mainly composed of big noise and very small signal from real free radicals. The peak to peak value of obtained five or six in vivo EPR system to get averaged value for final quantity of free radicals in hydroxy apatite crystal construction in enamel part of human teeth looks so randomly changed without regulation.

  11. Resonance

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  12. Non-cyclic geometric phase of nuclear quadrupole resonance signals of powdered samples.

    Science.gov (United States)

    Glotova, O; Ponamareva, N; Sinyavsky, N; Nogaj, B

    2011-01-01

    The non-cyclic geometric phase of ¹⁴N and ³⁵Cl NQR signals induced by the character of trajectory of nuclear magnetization motion upon pulse r.f. excitation of powdered samples is studied. Analytical expressions for the geometric phases of NQR signals of the nuclei of spins I=1 and 3/2 upon nuclear magnetization rotation induced by means of r.f. pulses with frequency detuned from the resonance and for any impulse duration for a separate crystallite are obtained. It is shown that the geometric phase recorded for the signal from a powdered sample at Δω=0 can be different from zero and can oscillate upon changes in duration of the r.f. excitation pulse. An alternative variant of the nutation experiment aimed at obtaining the asymmetry parameter η from locations of frequency singularities in the nutation phase spectrum for nuclei of spin I=3/2 in powder substances is proposed. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Signal acquisition module design for multi-channel surface magnetic resonance sounding system.

    Science.gov (United States)

    Lin, Tingting; Chen, Wuqiang; Du, Wenyuan; Zhao, Jing

    2015-11-01

    To obtain a precise 2D/3D image of fissure or karst water, multi-channel magnetic resonance sounding (MRS) systems using edge-to-edge or overlapping receiving coils are needed. Thus, acquiring a nano-volt signal for a small amount of the aquifer and suppressing the mutual coupling between adjacent coils are two important issues for the design of the signal acquisition module in the system. In the present study, we propose to use a passive low pass filter, consisted of a resistance (R) and capacitance (C), to inhibit the mutual coupling effects of the coils. Four low-noise operational amplifiers LT1028, OPA124, AD745, and OP27 were compared with respect to achieving the lowest system noise. As a result, 3 pieces of LT1028 were chosen and connected in parallel to serve as preamplifier, with a sensitivity of 1.4 nV/√Hz at 2 kHz. Experimental results are presented for 2D MRS groundwater investigations conducted in the suburb of Changchun, China. The inversion result is consistent with the result of drilling log, suggesting that the signal acquisition module is well developed.

  14. One-thousand-fold enhancement of high field liquid nuclear magnetic resonance signals at room temperature

    Science.gov (United States)

    Liu, Guoquan; Levien, Marcel; Karschin, Niels; Parigi, Giacomo; Luchinat, Claudio; Bennati, Marina

    2017-07-01

    Nuclear magnetic resonance (NMR) is a fundamental spectroscopic technique for the study of biological systems and materials, molecular imaging and the analysis of small molecules. It detects interactions at very low energies and is thus non-invasive and applicable to a variety of targets, including animals and humans. However, one of its most severe limitations is its low sensitivity, which stems from the small interaction energies involved. Here, we report that dynamic nuclear polarization in liquid solution and at room temperature can enhance the NMR signal of 13C nuclei by up to three orders of magnitude at magnetic fields of ∼3 T. The experiment can be repeated within seconds for signal averaging, without interfering with the sample magnetic homogeneity. The method is therefore compatible with the conditions required for high-resolution NMR. Enhancement of 13C signals on various organic compounds opens up new perspectives for dynamic nuclear polarization as a general tool to increase the sensitivity of liquid NMR.

  15. Integration of digital signal processing technologies with pulsed electron paramagnetic resonance imaging

    Science.gov (United States)

    Pursley, Randall H.; Salem, Ghadi; Devasahayam, Nallathamby; Subramanian, Sankaran; Koscielniak, Janusz; Krishna, Murali C.; Pohida, Thomas J.

    2006-01-01

    The integration of modern data acquisition and digital signal processing (DSP) technologies with Fourier transform electron paramagnetic resonance (FT-EPR) imaging at radiofrequencies (RF) is described. The FT-EPR system operates at a Larmor frequency (Lf) of 300 MHz to facilitate in vivo studies. This relatively low frequency Lf, in conjunction with our ~10 MHz signal bandwidth, enables the use of direct free induction decay time-locked subsampling (TLSS). This particular technique provides advantages by eliminating the traditional analog intermediate frequency downconversion stage along with the corresponding noise sources. TLSS also results in manageable sample rates that facilitate the design of DSP-based data acquisition and image processing platforms. More specifically, we utilize a high-speed field programmable gate array (FPGA) and a DSP processor to perform advanced real-time signal and image processing. The migration to a DSP-based configuration offers the benefits of improved EPR system performance, as well as increased adaptability to various EPR system configurations (i.e., software configurable systems instead of hardware reconfigurations). The required modifications to the FT-EPR system design are described, with focus on the addition of DSP technologies including the application-specific hardware, software, and firmware developed for the FPGA and DSP processor. The first results of using real-time DSP technologies in conjunction with direct detection bandpass sampling to implement EPR imaging at RF frequencies are presented. PMID:16243552

  16. Integration of digital signal processing technologies with pulsed electron paramagnetic resonance imaging.

    Science.gov (United States)

    Pursley, Randall H; Salem, Ghadi; Devasahayam, Nallathamby; Subramanian, Sankaran; Koscielniak, Janusz; Krishna, Murali C; Pohida, Thomas J

    2006-02-01

    The integration of modern data acquisition and digital signal processing (DSP) technologies with Fourier transform electron paramagnetic resonance (FT-EPR) imaging at radiofrequencies (RF) is described. The FT-EPR system operates at a Larmor frequency (L(f)) of 300MHz to facilitate in vivo studies. This relatively low frequency L(f), in conjunction with our approximately 10MHz signal bandwidth, enables the use of direct free induction decay time-locked subsampling (TLSS). This particular technique provides advantages by eliminating the traditional analog intermediate frequency downconversion stage along with the corresponding noise sources. TLSS also results in manageable sample rates that facilitate the design of DSP-based data acquisition and image processing platforms. More specifically, we utilize a high-speed field programmable gate array (FPGA) and a DSP processor to perform advanced real-time signal and image processing. The migration to a DSP-based configuration offers the benefits of improved EPR system performance, as well as increased adaptability to various EPR system configurations (i.e., software configurable systems instead of hardware reconfigurations). The required modifications to the FT-EPR system design are described, with focus on the addition of DSP technologies including the application-specific hardware, software, and firmware developed for the FPGA and DSP processor. The first results of using real-time DSP technologies in conjunction with direct detection bandpass sampling to implement EPR imaging at RF frequencies are presented.

  17. Incidence and Evaluation of Incidental Abnormal Bone Marrow Signal on Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Gunjan L. Shah

    2014-01-01

    Full Text Available Purpose. The increased use of magnetic resonance imaging (MRI has resulted in reports of incidental abnormal bone marrow (BM signal. Our goal was to determine the evaluation of an incidental abnormal BM signal on MRI and the prevalence of a subsequent oncologic diagnosis. Methods. We conducted a retrospective cohort study of patients over age 18 undergoing MRI between May 2005 and October 2010 at Tufts Medical Center (TMC with follow-up through November 2013. The electronic medical record was queried to determine imaging site, reason for scan, evaluation following radiology report, and final diagnosis. Results. 49,678 MRIs were done with 110 patients meeting inclusion criteria. Twenty two percent underwent some evaluation, most commonly a complete blood count, serum protein electrophoresis, or bone scan. With median follow-up of 41 months, 6% of patients were diagnosed with malignancies including multiple myeloma, non-Hodgkins lymphoma, metastatic non-small cell lung cancer, and metastatic adenocarcinoma. One patient who had not undergone evaluation developed breast cancer 24 months after the MRI. Conclusions. Incidentally noted abnormal or heterogeneous bone marrow signal on MRI was not inconsequential and should prompt further evaluation.

  18. A Linearized Large Signal Model of an LCL-Type Resonant Converter

    Directory of Open Access Journals (Sweden)

    Hong-Yu Li

    2015-03-01

    Full Text Available In this work, an LCL-type resonant dc/dc converter with a capacitive output filter is modeled in two stages. In the first high-frequency ac stage, all ac signals are decomposed into two orthogonal vectors in a synchronous rotating d–q frame using multi-frequency modeling. In the dc stage, all dc quantities are represented by their average values with average state-space modeling. A nonlinear two-stage model is then created by means of a non-linear link. By aligning the transformer voltage on the d-axis, the nonlinear link can be eliminated, and the whole converter can be modeled by a single set of linear state-space equations. Furthermore, a feedback control scheme can be formed according to the steady-state solutions. Simulation and experimental results have proven that the resulted model is good for fast simulation and state variable estimation.

  19. Repeated amphetamine treatment alters spinal magnetic resonance signals and pain sensitivity in mice.

    Science.gov (United States)

    Lei, Bing-Hsuan; Chen, Jyh-Horng; Yin, Hsiang-Shu

    2014-11-07

    Manganese-enhanced magnetic resonance imaging (MEMRI) has been extensively used in studying the structural and functional features of the central nervous system (CNS). Divalent manganese ion (Mn(2+)) not only enhances MRI contrast, but also enters cells via voltage-gated calcium channels or ionotropic glutamate receptors, which represents an index of neural activities. In the current mouse model, following the repeated amphetamine (Amph) treatment, a reduction of reactivity to thermal pain stimulus was noticed. Since the spinal dorsal horn is the first relay station for pain transmission in CNS, we examined the changes of neural activity in the dorsal spinal cord, particularly the superficial dorsal horn, by analyzing manganese-enhanced T1-weighted MR images (T1WIs). Our data revealed a temporal correlation between reduced pain sensitivity and increased MEMR signals in the spinal dorsal horn subsequent to repeated Amph treatments. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...... theoretical consciousness through historical narrative ‘in practice’, by discussing selected historical topics from Western cultural history, within the disciplines of history, literature, visual arts, musicology, archaeology, philosophy, and theology. The title Resonances indicates the overall perspective...... of the book: how connotations of past meanings may resonate through time, in new contexts, assuming new meanings without surrendering the old....

  1. Mathematical models for the diffusion magnetic resonance signal abnormality in patients with prion diseases

    Directory of Open Access Journals (Sweden)

    Matteo Figini

    2015-01-01

    Full Text Available In clinical practice signal hyperintensity in the cortex and/or in the striatum on magnetic resonance (MR diffusion-weighted images (DWIs is a marker of sporadic Creutzfeldt–Jakob Disease (sCJD. MR diagnostic accuracy is greater than 90%, but the biophysical mechanisms underpinning the signal abnormality are unknown. The aim of this prospective study is to combine an advanced DWI protocol with new mathematical models of the microstructural changes occurring in prion disease patients to investigate the cause of MR signal alterations. This underpins the later development of more sensitive and specific image-based biomarkers. DWI data with a wide a range of echo times and diffusion weightings were acquired in 15 patients with suspected diagnosis of prion disease and in 4 healthy age-matched subjects. Clinical diagnosis of sCJD was made in nine patients, genetic CJD in one, rapidly progressive encephalopathy in three, and Gerstmann–Sträussler–Scheinker syndrome in two. Data were analysed with two bi-compartment models that represent different hypotheses about the histopathological alterations responsible for the DWI signal hyperintensity. A ROI-based analysis was performed in 13 grey matter areas located in affected and apparently unaffected regions from patients and healthy subjects. We provide for the first time non-invasive estimate of the restricted compartment radius, designed to reflect vacuole size, which is a key discriminator of sCJD subtypes. The estimated vacuole size in DWI hyperintense cortex was in the range between 3 and 10 µm that is compatible with neuropathology measurements. In DWI hyperintense grey matter of sCJD patients the two bi-compartment models outperform the classic mono-exponential ADC model. Both new models show that T2 relaxation times significantly increase, fast and slow diffusivities reduce, and the fraction of the compartment with slow/restricted diffusion increases compared to unaffected grey matter of

  2. Effect of Rabi splitting on the low-temperature electron paramagnetic resonance signal of anthracite.

    Science.gov (United States)

    Fedaruk, Ryhor; Strzelczyk, Roman; Tadyszak, Krzysztof; Markevich, Siarhei A; Augustyniak-Jabłokow, Maria Aldona

    2017-01-01

    Specific distortions of the EPR signal of bulk anthracite are observed at low temperatures. They are accompanied by variations in the microwave oscillator frequency and are explained by the manifestation of the Rabi splitting due to the strong coupling between electron spins and the cavity, combined with the use of an automatic frequency-control (AFC) system. EPR signals are recorded at negligible saturation in the temperature range of 4-300K with use of the AFC system to keep the oscillator frequency locked to the resonant frequency of the TM110 cylinder cavity loaded with the sample. For the sample with a mass of 3.6mg the line distortions are observed below 50K and increase with temperature lowering. The oscillator frequency variations are used to estimate the coupling strength as well as the number of spins in the sample. It is shown that the spin-cavity coupling strength is inversely proportional to temperature and can be used for the absolute determination of the number of spins in a sample. Our results indicate that at low temperatures even 10 16 spins of the anthracite sample, with a mass of about 0.5mg, can distort the EPR line. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. First Signal on the Cryogenic Fourier-Transform Ion Cyclotron Resonance Mass Spectrometer

    Science.gov (United States)

    Lin, Cheng; Mathur, Raman; Aizikov, Kostantin; O'Connor, Peter B.

    2009-01-01

    The construction and achievement of the first signal on a cryogenic Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) are reported here, demonstrating proof-of-concept of this new instrument design. Building the FTICR cell into the cold bore of a superconducting magnet provided advantages over conventional warm bore design. At 4.2 K, the vacuum system cryopumps itself, thus removing the requirement for a large bore to achieve the desired pumping speed for maintaining base pressure. Furthermore, because the bore diameter has been reduced, the amount of magnet wire needed to achieve high field and homogeneity was also reduced, greatly decreasing the cost/Tesla of the magnet. The current instrument implements an actively shielded 14-Tesla magnet of vertical design with an external matrix assisted laser desorption/ionization (MALDI) source. The first signal was obtained by detecting the laser desorbed/ionized (LDI) C60+• ions, with the magnet at 7 Tesla, unshimmed, and the preamplifier mounted outside of the vacuum chamber at room temperature. A subsequent experiment done with the magnet at 14 Tesla and properly shimmed produced a C60 spectrum showing ∼350,000 resolving power at m/z ∼720. Increased magnetic field strength improves many FTMS performance parameters simultaneously, particularly mass resolving power and accuracy. PMID:17931882

  4. Glioblastoma multiforme versus solitary supratentorial brain metastasis. Differentiation based on morphology and magnetic resonance signal characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Martin H.; Wuestefeld, J.; Schaefer, M.L.; Wiener, E. [Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum (Germany). Klinik fuer Diagnostische und Interventionelle Radiologie; Synowitz, M.; Lohkamp, L.N. [Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum (Germany). Klinik fuer Neurochirurgie; Badakshi, H. [Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum (Germany). Klinik fuer Strahlentherapie

    2013-03-15

    Purpose: To evaluate the diagnostic potential of a multi-factor analysis of morphometric parameters and magnetic resonance (MR) signal characteristics of a mass and peritumoral area to distinguish solitary supratentorial metastasis from glioblastoma multiforme (GBM). Materials and Methods: MR examinations of 51 patients with histologically proven GBM and 44 with a single supratentorial metastasis were evaluated. A large variety of morphologic criteria and MR signal characteristics in different sequences were analyzed. The data were subjected to logistic regression to investigate their ability to discriminate between GBM and cerebral metastasis. Receiver-operating characteristic (ROC) analysis was used to select an optimal cut-off point for prediction and to assess the predictive value in terms of sensitivity, specificity, and accuracy of the final model. Results: The logistic regression analysis revealed that the ratio of the maximum diameter of the peritumoral area measured on T2-weighted images (d T2) to the maximum diameter of the enhancing mass area (d T1, post-contrast) is the only useful criterion to distinguish single supratentorial brain metastasis from GBM with a lower ratio favoring GBM (accuracy 68 %, sensitivity 84 % and specificity 45 %). The cut-off point for the ratio d T2/d T1 post-contrast was calculated as 2.35. Conclusion: Measurement of maximum diameters of the peritumoral area in relation to the enhancing mass can be evaluated easily in the clinical routine to discriminate GBM from solitary supratentorial metastasis with an accuracy comparable to that of advanced MRI techniques. (orig.)

  5. Variability of electron spin resonance (ESR) signal of γ -irradiated starches

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Gilberto D.; Rodrigues Junior, Orlando; Mastro, Nelida L. del, E-mail: nlmastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    Food preservation is one of the practical applications of radiation processing of materials. Starch is an abundant and cheap nutritious biopolymer and also is the material for appropriate food systems and for technical industries. Starch granules are partially crystalline structures composed mainly of two types of starch: amylose, an essentially linear polymer, and amylopectin, with 3-44% of branch points. Electron spin resonance (ESR) spectroscopy is a very powerful and sensitive method for the characterization of the electronic structures of materials with unpaired electrons. The aim of the present work was to monitor the disappearance of the short life and long-life free radicals formed during γ-irradiation of 3 different starches. Corn, potato and fermented cassava starches were irradiated in a {sup 60}Co source Gammacell 220 with 20 kGy, dose rate around 1 kGy h{sup -1}. EPR spectra were obtained at room temperature using a Bruker EMX plus model, X band equipment. The main type of ESR signal from irradiated starch is a singlet with a g-value of about 2.0. The fading of ESR signals was followed for 350 hours, and presents differences among the different starch type reflecting differences in molecular arrangements of starch crystalline and amorphous fractions, although ESR spectra seemed to be common for all starches. (author)

  6. Theoretical studies of the properties of magnetic resonance signal formed under the influence of distant dipolar field

    Science.gov (United States)

    Wong, Chung Ki

    This dissertation studies the properties of nuclear magnetic resonance (NMR) signals of biological samples formed under the influence of distant dipolar field (DDF). The use of DDF effect for magnetic resonance imaging (MRI) has aroused substantial research interests in recent years because of the unique contrast features of DDF signal. The main research activities on this topic are to improve the DDF signal level, and to characterize the use of DDF effect on probing tissue structures and functional MRI in brain studies. Issues of both directions are addressed in this dissertation. After a brief introduction to basic spin dynamics related to MR, the classical Bloch equation with the nonlinear DDF effect incorporated is solved analytically. The mechanism of separating the DDF signal from the whole signal of the sample based on the correlation spectroscopy revamped by asymmetric z-gradient echo detection (CRAZED) is first reviewed. That the sensitivity of the signal to physical parameters such as static magnetic field and transverse relaxation time are examined, and parameters for optimal signal-to-noise and contrast are obtained. The technique of multiple spin-echo acquisition to increase the signal magnitude and time efficiency is analyzed, and optimal conditions are found. Finally the problem of the sensitivity of DDF signal to variations in local magnetic field on a particular length scale is treated using a perturbation method. The results suggest that such sensitivity exists in a simple field distribution.

  7. Quantification of ethanol methyl 1H magnetic resonance signal intensity following intravenous ethanol administration in primate brain

    OpenAIRE

    Flory, Graham S.; O’Malley, Jean; Grant, Kathleen A.; Park, Byung; Kroenke, Christopher D.

    2009-01-01

    In vivo 1H magnetic resonance spectroscopy (MRS) can be used to directly monitor brain ethanol. Previously, studies of human subjects have lead to the suggestion that the ethanol methyl 1H MRS signal intensity relates to tolerance to ethanol’s intoxicating effects. More recently, the ethanol 1H MRS signal intensity has been recognized to vary between brain gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) due to differences in T2 within these environments. The methods present...

  8. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, M.; Sakamoto, S.; Ishii, K. [Division of Neuroimaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders (Japan); Imamura, T.; Kazui, H.; Mori, E. [Division of Clinical Neurosciences, Hyogo Institute for Aging Brain and Cognitive Disorders, Hyogo (Japan)

    2002-03-01

    We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)

  9. Improvement of Information Transmission of Suprathreshold Input Signal with Stochastic Resonance in Hippocampal CA1 Neuron Network

    Science.gov (United States)

    Kawaguchi, Minato; Mino, Hiroyuki; Momose, Keiko; Durand, Dominique M.

    We investigate if and how SR (stochastic resonance) can be shown in the presence of supra-threshold signals (SSR) in physiologically realistic neural networks. The mutual information was maximized at a specific amplitude of noise in larger neural networks, implying SSR.

  10. RESONANCE

    Indian Academy of Sciences (India)

    Nuclear magnetic resonance (NMR) is a mani- festation of an intrinsic property of the nucleus, i.e. nuclear spin angular momen- tum. Spin angular momentum gives rise to magnetic moments. Thus, nuclei that pos- sess net magnetic moments behave like very small bar magnets. NMR spectroscopy in- volves the study of the ...

  11. Research and implementation of a special signal source of open-loop testing system of resonant microsensor

    Science.gov (United States)

    Fan, Shangchun; Wang, Yijun

    2006-11-01

    As a core component for open-loop characteristics testing system of micro-sensor, quality of signal source influences the integer performances of testing system directly. The method to generate special signal of open-loop testing system of resonant micro-sensor are discussed in this paper, and a method of direct digital frequency synthesize (DDS) to develop the special signal source of the testing system is proposed. A designation approach based on DSP and FPGA in the realization of DDS is advocated. Finally a simulation is made using the MATLAB. The principle of DDS is also introduced.

  12. External Noise and External Signal Induced Transition of Gene Switch and Coherence Resonance in the Genetic Regulatory System.

    Science.gov (United States)

    Shi, Jian-Cheng; Luo, Min; Dong, Tao; Huang, Chu-Sheng

    2017-06-01

    The transition of gene switch induced by external noises (multiplicative external noise and additive external noise) and external signals is investigated in the genetic regulatory system. Results show that the state-to-state transition of gene switch as well as resonant behaviors, such as the explicit coherence resonance (ECR), implicit coherence resonance (ICR) and control parameter coherence biresonance (CPCBR), can appear when noises are injected into the genetic regulatory system. The ECR is increased with the increase of the control parameter value when starting from the supercritical Hopf bifurcation parameter point, and there exists a critical control parameter value for the occurrence of ECR. However, the ICR is decreased as the control parameter value is increased when starting from the subcritical Hopf bifurcation point. In particular, the coherence of ECR is higher and more sensitive to noise than that of ICR. When an external signal is introduced into the system, the enhancement or suppression of the CPCBR and the number of peaks strongly depend on the frequency and amplitude of the external signal. Furthermore, the gene regulation system can selectively enhance or decrease the noise-induced oscillation signals at preferred frequency and amplitude of an external signal.

  13. Signal Amplification by Enzymatic Reaction in an Immunosensor Based on Localized Surface Plasmon Resonance (LSPR

    Directory of Open Access Journals (Sweden)

    Yong-Beom Shin

    2010-03-01

    Full Text Available An enzymatic reaction was employed as a means to enhance the sensitivity of an immunosensor based on localized surface plasmon resonance (LSPR. The reaction occurs after intermolecular binding between an antigen and an antibody on gold nano-island (NI surfaces. For LSPR sensing, the gold NI surface was fabricated on glass substrates using vacuum evaporation and heat treatment. The interferon-g (IFN-g capture antibody was immobilized on the gold NIs, followed by binding of IFN-g to the antibody. Subsequently, a biotinylated antibody and a horseradish peroxidase (HRP conjugated with avidin were simultaneously introduced. A solution of 4-chloro-1-naphthol (4-CN was then used for precipitation; precipitation was the result of the enzymatic reaction catalyzed the HRP on gold NIs. The LSPR spectra were obtained after each binding process. Using this method, the enzyme-catalyzed precipitation reaction on the gold NI surface was found to effectively amplify the change in the signal of the LSPR immunosensor after intermolecular binding.

  14. Assembling a prototype resonance electrical impedance spectroscopy system for breast tissue signal detection: preliminary assessment

    Science.gov (United States)

    Sumkin, Jules; Zheng, Bin; Gruss, Michelle; Drescher, John; Leader, Joseph; Good, Walter; Lu, Amy; Cohen, Cathy; Shah, Ratan; Zuley, Margarita; Gur, David

    2008-03-01

    Using electrical impedance spectroscopy (EIS) technology to detect breast abnormalities in general and cancer in particular has been attracting research interests for decades. Large clinical tests suggest that current EIS systems can achieve high specificity (>= 90%) at a relatively low sensitivity ranging from 15% to 35%. In this study, we explore a new resonance frequency based electrical impedance spectroscopy (REIS) technology to measure breast tissue EIS signals in vivo, which aims to be more sensitive to small tissue changes. Through collaboration between our imaging research group and a commercial company, a unique prototype REIS system has been assembled and preliminary signal acquisition has commenced. This REIS system has two detection probes mounted in the two ends of a Y-shape support device with probe separation of 60 mm. During REIS measurement, one probe touches the nipple and the other touches to an outer point of the breast. The electronic system continuously generates sweeps of multi-frequency electrical pulses ranging from 100 to 4100 kHz. The maximum electric voltage and the current applied to the probes are 1.5V and 30mA, respectively. Once a "record" command is entered, multi-frequency sweeps are recorded every 12 seconds until the program receives a "stop recording" command. In our imaging center, we have collected REIS measurements from 150 women under an IRB approved protocol. The database includes 58 biopsy cases, 78 screening negative cases, and other "recalled" cases (for additional imaging procedures). We measured eight signal features from the effective REIS sweep of each breast. We applied a multi-feature based artificial neural network (ANN) to classify between "biopsy" and normal "non-biopsy" breasts. The ANN performance is evaluated using a leave-one-out validation method and ROC analysis. We conducted two experiments. The first experiment attempted to classify 58 "biopsy" breasts and 58 "non-biopsy" breasts acquired on 58 women

  15. Incidental Memory Encoding Assessed with Signal Detection Theory and Functional Magnetic Resonance Imaging (fMRI).

    Science.gov (United States)

    Clemens, Benjamin; Regenbogen, Christina; Koch, Kathrin; Backes, Volker; Romanczuk-Seiferth, Nina; Pauly, Katharina; Shah, N Jon; Schneider, Frank; Habel, Ute; Kellermann, Thilo

    2015-01-01

    In functional magnetic resonance imaging (fMRI) studies that apply a "subsequent memory" approach, successful encoding is indicated by increased fMRI activity during the encoding phase for hits vs. misses, in areas underlying memory encoding such as the hippocampal formation. Signal-detection theory (SDT) can be used to analyze memory-related fMRI activity as a function of the participant's memory trace strength (d(')). The goal of the present study was to use SDT to examine the relationship between fMRI activity during incidental encoding and participants' recognition performance. To implement a new approach, post-experimental group assignment into High- or Low Performers (HP or LP) was based on 29 healthy participants' recognition performance, assessed with SDT. The analyses focused on the interaction between the factors group (HP vs. LP) and recognition performance (hits vs. misses). A whole-brain analysis revealed increased activation for HP vs. LP during incidental encoding for remembered vs. forgotten items (hits > misses) in the insula/temporo-parietal junction (TPJ) and the fusiform gyrus (FFG). Parameter estimates in these regions exhibited a significant positive correlation with d('). As these brain regions are highly relevant for salience detection (insula), stimulus-driven attention (TPJ), and content-specific processing of mnemonic stimuli (FFG), we suggest that HPs' elevated memory performance was associated with enhanced attentional and content-specific sensory processing during the encoding phase. We provide first correlative evidence that encoding-related activity in content-specific sensory areas and content-independent attention and salience detection areas influences memory performance in a task with incidental encoding of facial stimuli. Based on our findings, we discuss whether the aforementioned group differences in brain activity during incidental encoding might constitute the basis of general differences in memory performance between HP and

  16. Simulation of the S2 state multiline electron paramagnetic resonance signal of photosystem II: a multifrequency approach.

    OpenAIRE

    Ahrling, K A; Pace, R J

    1995-01-01

    The S2 state electron paramagnetic resonance (EPR) multiline signal of Photosystem II has been simulated at Q-band (35 Ghz), X-band (9 GHz) and S-band (4 GHz) frequencies. The model used for the simulation assumes that the signal arises from an essentially magnetically isolated MnIII-MnIV dimer, with a ground state electronic spin ST = 1/2. The spectra are generated from exact numerical solution of a general spin Hamiltonian containing anisotropic hyperfine and quadrupolar interactions at bot...

  17. Changes in signal intensity of cerebral hematoma in magnetic resonance. Claves en la semiologia del hematoma cerebral en resonancia magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Galant, J.; Poyatos, C.; Marti-Bonmarti, L.; Martinez, J.; Ferrer, D.; Dualde, D.; Talens, A. (Universidad de Valencia (Spain). Facultad de Ciencias Quimicas)

    1992-01-01

    Magnetic resonance is highly sensitive for the detection of intraparenchymatous hemorrhage. The evolution of hematoma over time translates into changes in signal intensity. This means that we can determine when the hematoma presented and, in addition. follow its course. On the other hand, many intracranial processes developing association with hemorrhage, the recognition of which is, in some cases, of importance. We have studied 60 cerebral hematomas and have described the changes that will take place in their signal and the reasons for them. (author)

  18. Honest signaling in domestic piglets (Sus scrofa domesticus): vocal allometry and the information content of grunt calls.

    Science.gov (United States)

    Garcia, Maxime; Wondrak, Marianne; Huber, Ludwig; Fitch, W Tecumseh

    2016-06-15

    The information conveyed in acoustic signals is a central topic in mammal vocal communication research. Body size is one form of information that can be encoded in calls. Acoustic allometry aims to identify the specific acoustic correlates of body size within the vocalizations of a given species, and formants are often a useful acoustic cue in this context. We conducted a longitudinal investigation of acoustic allometry in domestic piglets (Sus scrofa domesticus), asking whether formants of grunt vocalizations provide information concerning the caller's body size over time. On four occasions, we recorded grunts from 20 kunekune piglets, measured their vocal tract length by means of radiographs (X-rays) and weighed them. Controlling for effects of age and sex, we found that body weight strongly predicts vocal tract length, which in turn determines formant frequencies. We conclude that grunt formant frequencies could allow domestic pigs to assess a signaler's body size as it grows. Further research using playback experiments is needed to determine the perceptual role of formants in domestic pig communication. © 2016. Published by The Company of Biologists Ltd.

  19. Paradoxical correlation between signal in functional magnetic resonance imaging and deoxygenated haemoglobin content in capillaries: a new theoretical explanation

    Science.gov (United States)

    Yamamoto, Toru; Kato, Toshinori

    2002-04-01

    Signal increases in functional magnetic resonance imaging (fMRI) are believed to be a result of decreased paramagnetic deoxygenated haemoglobin (deoxyHb) content in the neural activation area. However, discrepancies in this canonical blood oxygenation level dependent (BOLD) theory have been pointed out in studies using optical techniques, which directly measure haemoglobin changes. To explain the discrepancies, we developed a new theory bridging magnetic resonance (MR) signal and haemoglobin changes. We focused on capillary influences, which have been neglected in most previous fMRI studies and performed a combined fMRI and near-infrared spectroscopy (NIRS) study using a language task. Paradoxically, both the MR signal and deoxyHb content increased in Broca's area. On the other hand, fMRI activation in the auditory area near large veins correlated with a mirror-image decrease in deoxyHb and increase in oxygenated haemoglobin (oxyHb), in agreement with canonical BOLD theory. All fMRI signal changes correlated consistently with changes in oxyHb, the diamagnetism of which is insensitive to MR. We concluded that the discrepancy with the canonical BOLD theory is caused by the fact that the BOLD theory ignores the effect of the capillaries. Our theory explains the paradoxical phenomena of the oxyHb and deoxyHb contributions to the MR signal and gives a new insight into the precise haemodynamics of activation by analysing fMRI and NIRS data.

  20. Paradoxical correlation between signal in functional magnetic resonance imaging and deoxygenated haemoglobin content in capillaries: a new theoretical explanation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Toru [College of Medical Technology, Hokkaido University, Sapporo (Japan)]. E-mail: yamamoto@cme.hokudai.ac.jp; Kato, Toshinori [Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN (US) and Ogawa Laboratories for Brain Function Research, Hamano Life Science Research Foundation, Shinjuku-ku, Tokyo (Japan)]. E-mail: kato@hlsrf.or.jp

    2002-04-01

    Signal increases in functional magnetic resonance imaging (fMRI) are believed to be a result of decreased paramagnetic deoxygenated haemoglobin (deoxyHb) content in the neural activation area. However, discrepancies in this canonical blood oxygenation level dependent (BOLD) theory have been pointed out in studies using optical techniques, which directly measure haemoglobin changes. To explain the discrepancies, we developed a new theory bridging magnetic resonance (MR) signal and haemoglobin changes. We focused on capillary influences, which have been neglected in most previous fMRI studies and performed a combined fMRI and near-infrared spectroscopy (NIRS) study using a language task. Paradoxically, both the MR signal and deoxyHb content increased in Broca's area. On the other hand, fMRI activation in the auditory area near large veins correlated with a mirror-image decrease in deoxyHb and increase in oxygenated haemoglobin (oxyHb), in agreement with canonical BOLD theory. All fMRI signal changes correlated consistently with changes in oxyHb, the diamagnetism of which is insensitive to MR. We concluded that the discrepancy with the canonical BOLD theory is caused by the fact that the BOLD theory ignores the effect of the capillaries. Our theory explains the paradoxical phenomena of the oxyHb and deoxyHb contributions to the MR signal and gives a new insight into the precise haemodynamics of activation by analysing fMRI and NIRS data. (author)

  1. Magnetic resonance imaging signal intensity of temporomandibular joint disk and posterior attachment in patients with internal derangement

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yeon Hwa [Yeojoo Univ., Yeojoo (Korea, Republic of); Cho, Bong Hae [Pusan National Univ. School of Dentistry, Pusan (Korea, Republic of)

    2001-06-15

    To analyze the possible association between magnetic resonance imaging signal intensity of temporomandibular joint disk and posterior attachment, and the type and extent of disk displacement, disk donfiguration, effusion and clinical signs in patients with internal derangement. Magnetic resonance images of the 132 temporomandibular joints of 66 patients with temporomandibular joint displacement were analyzed. The clinical findings were obtained by retrospective review of the patients' records. The type and extent of disk displacement, disk configuration and effusion were evaluated on the proton density MR images. The signal intensity from the anterior band, posterior band and posterior attachment were measured on MR images. The associations between the type and extent of disk displacement, disk configuration, effusion and clinical signs and the MR signal intensity of disk and posterior attachment were statistically analyzed by student's t-test. Of 132 joints, 87 (65.9%) showed anterior disk displacement with reduction (ADR) and 45 (34.1%) showed anterior disk displacement without reduction (ADnR). This signals from posterior attachments were lower in joints with ADnR than those of ADR (p<0.05). The results showed statistically significant (p<0.05) association between the type and extent of disk displacement and disk configuration, and decreased signal intensity of posterior attachment. There were no statistical associations between pain, noise and limited mouth opening, and signal intensity of disk and posterior attachment. The average signal from posterior attachment was lower in joints with ADnR than that of ADR. The type and extent of disk displacement and disk configuration appeared to be correlated with the signal intensity from posterior attachment.

  2. Functionally determined changes in area of the oro-pharyngeal-laryngeal vocal tract in singers as shown by MRI; Funktionsbedingte Flaechenaenderungen des oro-pharyngo-laryngealen Vokaltraktes bei Saengern in der Magnetresonanztomographie

    Energy Technology Data Exchange (ETDEWEB)

    Wein, B. [Klinik fuer Radiologische Diagnostik, RWTH, Aachen (Germany); Neuschaefer-Rube, C. [Klinik fuer Phoniatrie und Paedaudiologie, RWTH, Aachen (Germany); Angerstein, W. [Klinik fuer Phoniatrie und Paedaudiologie, RWTH, Aachen (Germany); Klajman, S. [Klinik fuer Phoniatrie und Paedaudiologie, RWTH, Aachen (Germany); Guenther, R.W. [Klinik fuer Radiologische Diagnostik, RWTH, Aachen (Germany)

    1995-02-01

    The oro-pharyngeal-laryngeal resonating spaces were studied in 12 singers at varying stages of their training by means of medio-sagittal MRI images, and the results were compared. The singers were requested to sing /a/, /u/ and /i/ at various pitches and with increasing loudness. The total oro-pharyngo-laryngeal areas were integrated by means of the MRI sections. The relationship between the oro-pharyngeal and pharyngo-laryngeal areas was determined, as well as their ratio to total area. With increasing volume there was increase in the area of the oro-pharyngeal component with no change in the pharyngo-laryngeal component. The relationship of the partial areas depends on the extent of training of the singer. (orig.) [Deutsch] Anhand kernspintomographischer medio-sagittaler Schnittbilder wurden die oro-pharyngo-laryngealen Resonanzraeume in unterschiedlichen Funktionsstellungen von 12 Saengern verschiedenen Ausbildungsstandes vermessen und miteinander verglichen. Die Saenger wurden aufgefordert, die Vokale /a/, /u/ und /i/ in unterschiedlichen Tonhoehen und steigender Lautstaerke zu singen. In den Kernspintomogrammen wurden die oro-pharyngo-laryngealen Gesamtflaechen planimetriert. Die Relationen der oro-pharyngealen und pharyngo-laryngealen Teilflaechen zueinander sowie zur Gesamtflaeche wurden bestimmt. Mit zunehmender Lautstaerke fand sich eine Flaechenzunahme des oro-pharyngealen Kompartimentes bei weitgehend gleichbleibender Flaeche des pharyngo-laryngealen Kompartiments. Die Konstanz der Relation der Teilflaechen war abhaengig vom Ausbildungsstand der Saenger. (orig.)

  3. Impact of resonance decays on critical point signals in net-proton fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, Marcus; Schaefer, Thomas [North Carolina State University, Department of Physics, Raleigh, NC (United States); Nahrgang, Marlene [SUBATECH, UMR 6457, Universite de Nantes, Ecole des Mines de Nantes, IN2P3/CNRS, Nantes (France); Duke University, Department of Physics, Durham, NC (United States); Bass, Steffen A. [Duke University, Department of Physics, Durham, NC (United States)

    2017-04-15

    The non-monotonic beam energy dependence of the higher cumulants of net-proton fluctuations is a widely studied signature of the conjectured presence of a critical point in the QCD phase diagram. In this work we study the effect of resonance decays on critical fluctuations. We show that resonance effects reduce the signatures of critical fluctuations, but that for reasonable parameter choices critical effects in the net-proton cumulants survive. The relative role of resonance decays has a weak dependence on the order of the cumulants studied with a slightly stronger suppression of critical effects for higher-order cumulants. (orig.)

  4. VXIbus-based signal generator for resonant power supply system of the 3 GeV RCS

    CERN Document Server

    Zhang, F; Koseki, S; Someya, H; Tani, N; Watanabe, Y

    2002-01-01

    The 3 GeV Proton RCS of the JAERI-KEK Joint Project is a 25 Hz separate-function rapid cycling synchrotron under design. Bending magnets (BM) and quadrupole magnets (QM) are excited separately. The 3 GeV RCS requests above 10 families of magnets excited independently, far beyond 3 families in practical RCS's. Difficulty of field tracking between BM and QM is significantly increased. Magnet strings are grouped into resonant networks and excited resonantly with power supplies driven by a waveform pattern, typically a DC-biased sinusoidal signal. To achieve a close tracking between many families, the driving signal of each power supply should be adjusted in phase and amplitude flexibly and dynamically. This report proposes a signal generator based on VXIbus. The VXIbus, an extension of VMEbus (VME eXtensions for Instrument), provides an open architecture with shared process bus and timing. The VXIbus-based signal generator facilitates the timing synchronization and is easy to extend to many channels needed by th...

  5. Effects of iodinated contrast agent, xylocaine and gadolinium concentration on the signal emitted in magnetic resonance arthrography: a samples study

    Directory of Open Access Journals (Sweden)

    Yvana Lopes Pinheiro da Silva

    2015-04-01

    Full Text Available Objective: To investigate the effects of dilution of paramagnetic contrast agent with iodinated contrast and xylocaine on the signal intensity during magnetic resonance arthrography, and to improve the paramagnetic contrast agent concentration utilized in this imaging modality. Materials and Methods: Samples specially prepared for the study with three different concentrations of paramagnetic contrast agent diluted in saline, iodinated contrast agent and xylocaine were imaged with fast spin echo T1-weighted sequences with fat saturation. The samples were placed into flasks and graphical analysis of the signal intensity was performed as a function of the paramagnetic contrast concentration. Results: As compared with samples of equal concentrations diluted only with saline, the authors have observed an average signal intensity decrease of 20.67% for iodinated contrast agent, and of 28.34% for xylocaine. However, the increased gadolinium concentration in the samples caused decrease in signal intensity with all the dilutions. Conclusion: Minimizing the use of iodinated contrast media and xylocaine and/or the use of a gadolinium concentration of 2.5 mmol/L diluted in saline will improve the sensitivity of magnetic resonance arthrography.

  6. Magnetic Resonance Signal, Rather Than Tendon Volume, Correlates to Pain and Functional Impairment in Chronic Achilles Tendinopathy

    Energy Technology Data Exchange (ETDEWEB)

    Gaerdin, A.; Bruno, J.; Movin, T.; Kristoffersen-Wiberg, M.; Shalabi, A. [Karolinska Univ. Hospital, Stockholm (Sweden). Depts. of Radiology and Orthopedics

    2006-09-15

    Purpose: To depict abnormal tendon matrix composition using magnetic resonance imaging (MRI) in chronic Achilles tendinopathy, and correlate intratendinous signal alterations to pain and functional impairment. Material and Methods: MRI of the Achilles tendon was performed on 25 patients with chronic Achilles tendinopathy (median age 50, range 37-71 years). All patients suffered from pain in the mid-portion of the Achilles tendon. Intratendinous signal was calculated from five different sagittal sequences, using a computerized 3D seed-growing technique. Pain and functional impairment were evaluated using a questionnaire completed by patients. Results: Severity of pain and functional impairment correlated to increased mean intratendinous signal in the painful tendon in all MR sequences (P 0.05). Difference in mean intratendinous signal between symptomatic and contralateral asymptomatic tendons was highly significant in all sequences (P <0.05) except on T2-weighted images (P = 0.6). Conclusion: Severity of pain and disability correlated to increased MR signal rather than to tendon volume in patients with unilateral mid-portion chronic Achilles tendinopathy.

  7. All-optical clock recovery of NRZ-DPSK signals using optical resonator-type filters

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Seoane, Jorge; Ji, Hua

    2009-01-01

    It is shown how introducing a limited rise time to the driving signal enables all-optical clock recovery of NRZ-DPSK signals generated using a phase modulator. A Fabry-Perot filter is used to generate the optical clock....

  8. Unusual signal intensity of congenital pulmonary airway malformation on fetal magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Owada, Keiho; Miyazaki, Osamu; Nosaka, Shunsuke [National Center for Child Health and Development, Department of Radiology, Tokyo (Japan); Matsuoka, Kentaro [National Center for Child Health and Development, Department of Pathology, Tokyo (Japan); Sago, Haruhiko [National Center for Child Health and Development, Department of Perinatal Medicine and Maternal Care, Tokyo (Japan)

    2015-05-01

    Congenital pulmonary airway malformation (CPAM) is classified into pathologically different types. These types are sometimes distinguishable by fetal lung MRI and are usually observed as higher-signal lesions on T2-weighted images than normal lung. We describe a case of unusual CPAM resembling neoplasms, with a lower signal than is found in normal lung. Histopathology showed a large number of mucogenic cells but found no evidence that could explain this feature on fetal MRI. An unusual low-signal mass associated with a pulmonary cyst in fetal lung on MRI may suggest an unusual type 1 CPAM. (orig.)

  9. On chip complex signal processing devices using coupled phononic crystal slab resonators and waveguides

    National Research Council Canada - National Science Library

    Mohammadi, Saeed; Adibi, Ali

    2011-01-01

    In this paper, we report the evidence for the possibility of achieving complex signal processing functionalities such as multiplexing/demultiplexing at high frequencies using phononic crystal (PnC) slabs...

  10. The influence of pressure in paracetamol tablet compaction on [sup]14N nuclear quadrupole resonance signal

    OpenAIRE

    Jazbinšek, Vojko; Srčič, Stanko; Pirnat, Janez; Lavrič, Zoran; Lužnik, Janko; Trontelj, Zvonko

    2015-01-01

    [Sup]14N nuclear quadrupole resonance [sup](14 N NQR) of several commercially available paracetamol tablets was measured. The spectra of two polymorphs are presented. The linewidths of the correspondent [sup]14N NQR lines in all the measured samples containing the room-temperature stable monoclinic polymorph were noticeably different. We proved experimentally that the linewidth differences are the consequence of different compacting pressure in the production of tablets.

  11. PCATMIP: Enhancing Signal Intensity in Diffusion-Weighted Magnetic Resonance Imaging

    Science.gov (United States)

    Pai, V. M.; Rapacchi, S.; Kellman, P.; Croisille, P.; Wen, H.

    2010-01-01

    Diffusion-weighted MRI studies generally lose signal intensity to physiological motion which can adversely affect quantification/diagnosis. Averaging over multiple repetitions, often used to improve image quality, does not eliminate the signal loss. In this paper, PCATMIP, a combined principal component analysis (PCA) and temporal maximum intensity projection (TMIP) approach is developed to address this problem. Data is first acquired for a fixed number of repetitions. Assuming that physiological fluctuations of image intensities locally are likely temporally-correlated unlike random noise, a local moving boxcar in the spatial domain is used to reconstruct low-noise images by considering the most relevant principal components in the temporal domain. Subsequently, a temporal maximum intensity projection yields a high signal-intensity image. Numerical and experimental studies were performed for validation and to determine optimal parameters for increasing signal intensity and minimizing noise. Subsequently, PCATMIP was used to analyze diffusion-weighted porcine liver MRI scans. In these scans, the variability of ADC values among repeated measurements was reduced by 59% relative to averaging and there was an increase in the signal intensity with higher intensity differences observed at higher b-values. In summary, PCATMIP is a post-processing approach that corrects for bulk motion-induced signal loss and improves ADC measurement reproducibility. PMID:21590803

  12. Comparison of vocal tract formants in singing and nonperiodic phonation

    NARCIS (Netherlands)

    Miller, DG; Sulter, AM; Schutte, HK; Wolf, RF

    The skilled use of nonperiodic phonation techniques in combination with spectrum analysis has been proposed here as a practical method for locating formant frequencies in the singing voice. The study addresses the question of the degree of similarity between sung phonations and their nonperiodic

  13. Vocal Tract Discomfort and Risk Factors in University Teachers.

    Science.gov (United States)

    Korn, Gustavo Polacow; Augusto de Lima Pontes, Antonio; Abranches, Denise; Augusto de Lima Pontes, Paulo

    2016-07-01

    To characterize the presence of and risk factors for throat pain or irritation among male and female university teachers in private institutions within the city of São Paulo. This is a cross-sectional survey. Voice self-evaluation forms prepared by the Brazilian Ministry of Labor were administered to 846 university teachers in a private institution in the city of São Paulo, Brazil. The prevalence of throat pain or irritation was 50.8% and was higher in the women (62.7%) than in the men (43.5%). The prevalence of throat pain or irritation was higher among professionals ≤60 years old and among those who spent most of their time teaching compared with those who spent most of their time performing other professional activities. Other factors, such as noise and sound competition, air pollution, stress and anxiety, personal habits, and lifestyle/quality of life, were related to the presence of throat pain or irritation. University teachers demonstrated a high prevalence of throat pain or irritation. Factors such as age ≤60 years, female gender, time-consuming professional activities, noise and sound competition in the work environment, stress and anxiety, air pollution, access to water, personal habits, and lifestyle/quality of life were related to the presence of throat pain or irritation. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  14. The Challenge of Ovarian Cancer: Steps Toward Early Detection Through Advanced Signal Processing in Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Belkić, Karen; Belkić, Dževad

    2017-08-01

    Ovarian cancer is a major cause of cancer death among women worldwide, and particularly in Israel. Although the disease at stage IA has 5 year survival rates of over 90%, early detection methods are not sufficiently accurate. Consequently, ovarian cancer is typically diagnosed late, which results in high fatality rates. An excellent candidate for early ovarian cancer detection would be in vivo magnetic resonance spectroscopy (MRS) because it is non-invasive and free of ionizing radiation. In addition, it potentially identifies metabolic features of cancer. Detecting these metabolic features depends on adequate processing of encoded MRS time signals for reconstructing interpretable information. The conventional Fourier-based method currently used in all clinical scanners is inadequate for this task. Thus, cancerous and benign ovarian lesions are not well distinguished. Advanced signal processing, such as the fast Padé transform (FPT) with high-resolution and clinically reliable quantification, is needed. The effectiveness of the FPT was demonstrated in proof-of-concept studies on noise-controlled MRS data associated with benign and cancerous ovaries. The FPT has now been successfully applied to MRS time signals encoded in vivo from a borderline serous cystic ovarian tumor. Noise was effectively separated out to identify and quantify genuine spectral constituents that are densely packed and often overlapping. Among these spectral constituents are recognized and possible cancer biomarkers including phosphocholine, choline, isoleucine, valine, lactate, threonine, alanine, and myoinositol. Most of these resonances remain undetected with Fourier-based in vivo MRS of the ovary. With Padé optimization, in vivo MRS could become a key method for assessing ovarian lesions, more effectively detecting ovarian cancer early, thereby improving survival for women afflicted with this malignancy.

  15. Diffuse phalangeal signal abnormality on magnetic resonance imaging: phalangeal microgeodic disease

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, Rupa; Emery, Kathleen H.; Merrow, Arnold C. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States)

    2017-03-15

    Phalangeal microgeodic disease is a rare and benign self-limited condition involving the phalanges, often in the setting of cold exposure, with characteristic MR imaging abnormalities. Radiographic case descriptions are predominantly from Asia and Europe, with only seven cases using MR to characterize phalangeal microgeodic disease. In this study we describe the MR imaging appearance of unusual and striking phalangeal signal abnormality compatible with phalangeal microgeodic disease at our institution in North America. We retrospectively reviewed cases presenting at our institution with unusual or unexplained phalangeal signal abnormalities between 2001 and 2014. We reviewed the MR imaging appearances in conjunction with radiographs and any other available imaging investigations. Of 189 examinations reviewed during the study period, 8 imaging studies in 6 patients met the study inclusion criteria. Signal abnormality was present in 57 of 112 phalanges (51%), frequently involving the distal phalanges (70%, 28 of 40), followed by the middle phalanges (56%, 18 of 32) and the proximal phalanges (28%, 11 of 40). The pattern of involvement was most commonly diaphysis (38%), followed by metaphysis (32%) and epiphysis (30%). The extent of MR signal abnormality was greater than that suspected based on clinical presentation or on radiographs. The presence of unexplained diffuse characteristic marrow involvement of multiple painful phalanges on MR images, often in the setting of cold exposure, should raise the possibility of phalangeal microgeodic disease. Consideration of this diagnosis based on MR findings would lead to a more conservative management and avoid unnecessary invasive diagnostic procedures. (orig.)

  16. Magnetic resonance signal intensity ratio of gray/white matter in children; Quantitative assessment in developing brain

    Energy Technology Data Exchange (ETDEWEB)

    Maezawa, Mariko (Tokyo Saiseikai Central Hospital (Japan)); Seki, Tohru; Imura, Soichi; Akiyama, Kazunori; Takikawa, Itsuro; Yuasa, Yuji

    Magnetic resonance imaging (MRI) findings in 87 children with various clinical entities were used to determine the signal intensity ratio of gray/white matter in T[sub 1]-weighted and T[sub 2]-weighted images using a 1.5 T MR scanner. Signal intensity ratio changes in both T[sub 1]- and T[sub 2]-weighted images correlated well with advancing age (y=0.9349-0.001575, r=0.584, P<0.0001 in T[sub 1]-weighted images; y=0.9798+0.002854, r=0.723, P<0.0001 in T[sub 2]-weighted images), but the correlation was more linear when we included only normally developed (34) children (y=0.9689-0.001967, r=-0.654, P<0.0001 in T[sub 1]-weighted images; y=0.9882+0.002965, r=0.747, P<0.0001 in T[sub 2]-weighted images). Abnormal ratios were observed in patients with congenital hydrocephalus, inherited metabolic diseases and cerebral palsy. Although the gray/white matter differentiation would not delineate the myelination itself, measurement of the signal intensity ratio of gray/white matters is a practical way to evaluate delayed myelination in a busy MR center. (author).

  17. Accuracy and effectiveness of self-gating signals in free-breathing three-dimensional cardiac cine magnetic resonance imaging

    Science.gov (United States)

    Li, Shuo; Wang, Lei; Zhu, Yan-Chun; Yang, Jie; Xie, Yao-Qin; Fu, Nan; Wang, Yi; Gao, Song

    2016-12-01

    Conventional multiple breath-hold two-dimensional (2D) balanced steady-state free precession (SSFP) presents many difficulties in cardiac cine magnetic resonance imaging (MRI). Recently, a self-gated free-breathing three-dimensional (3D) SSFP technique has been proposed as an alternative in many studies. However, the accuracy and effectiveness of self-gating signals have been barely studied before. Since self-gating signals are crucially important in image reconstruction, a systematic study of self-gating signals and comparison with external monitored signals are needed. Previously developed self-gated free-breathing 3D SSFP techniques are used on twenty-eight healthy volunteers. Both electrocardiographic (ECG) and respiratory bellow signals are also acquired during the scan as external signals. Self-gating signal and external signal are compared by trigger and gating window. Gating window is proposed to evaluate the accuracy and effectiveness of respiratory self-gating signal. Relative deviation of the trigger and root-mean-square-deviation of the cycle duration are calculated. A two-tailed paired t-test is used to identify the difference between self-gating and external signals. A Wilcoxon signed rank test is used to identify the difference between peak and valley self-gating triggers. The results demonstrate an excellent correlation (P = 0, R > 0.99) between self-gating and external triggers. Wilcoxon signed rank test shows that there is no significant difference between peak and valley self-gating triggers for both cardiac (H = 0, P > 0.10) and respiratory (H = 0, P > 0.44) motions. The difference between self-gating and externally monitored signals is not significant (two-tailed paired-sample t-test: H = 0, P > 0.90). The self-gating signals could demonstrate cardiac and respiratory motion accurately and effectively as ECG and respiratory bellow. The difference between the two methods is not significant and can be explained. Furthermore, few ECG trigger errors

  18. Single-resonance diffraction gratings for time-domain pulse transformations: integration of optical signals.

    Science.gov (United States)

    Bykov, Dmitry A; Doskolovich, Leonid L; Soifer, Victor A

    2012-08-01

    A general transformation of the optical pulse envelope implemented by a single-resonance diffraction grating is studied. The particular cases considered include optical pulse integration and differentiation implemented by the grating in the Wood anomalies and the fractional integration and differentiation of order 1/2 implemented in the Rayleigh-Wood anomalies. The extraordinary-optical-transmission plasmonic gratings are shown to be well suited for the integration in the transmission. Diffraction gratings to perform the integration and semi-integration of optical pulses with temporal features in the picosecond range are designed. Numerical simulations based on the rigorous coupled-wave analysis of Maxwell's equations are in good agreement with presented theoretical analysis.

  19. Exploiting magnetic resonance angiography imaging improves model estimation of BOLD signal.

    Directory of Open Access Journals (Sweden)

    Zhenghui Hu

    Full Text Available The change of BOLD signal relies heavily upon the resting blood volume fraction ([Formula: see text] associated with regional vasculature. However, existing hemodynamic data assimilation studies pretermit such concern. They simply assign the value in a physiologically plausible range to get over ill-conditioning of the assimilation problem and fail to explore actual [Formula: see text]. Such performance might lead to unreliable model estimation. In this work, we present the first exploration of the influence of [Formula: see text] on fMRI data assimilation, where actual [Formula: see text] within a given cortical area was calibrated by an MR angiography experiment and then was augmented into the assimilation scheme. We have investigated the impact of [Formula: see text] on single-region data assimilation and multi-region data assimilation (dynamic cause modeling, DCM in a classical flashing checkerboard experiment. Results show that the employment of an assumed [Formula: see text] in fMRI data assimilation is only suitable for fMRI signal reconstruction and activation detection grounded on this signal, and not suitable for estimation of unobserved states and effective connectivity study. We thereby argue that introducing physically realistic [Formula: see text] in the assimilation process may provide more reliable estimation of physiological information, which contributes to a better understanding of the underlying hemodynamic processes. Such an effort is valuable and should be well appreciated.

  20. Contributions of structural connectivity and cerebrovascular parameters to functional magnetic resonance imaging signals in mice at rest and during sensory paw stimulation.

    Science.gov (United States)

    Schroeter, Aileen; Grandjean, Joanes; Schlegel, Felix; Saab, Bechara J; Rudin, Markus

    2017-07-01

    Previously, we reported widespread bilateral increases in stimulus-evoked functional magnetic resonance imaging signals in mouse brain to unilateral sensory paw stimulation. We attributed the pattern to arousal-related cardiovascular changes overruling cerebral autoregulation thereby masking specific signal changes elicited by local neuronal activity. To rule out the possibility that interhemispheric neuronal communication might contribute to bilateral functional magnetic resonance imaging responses, we compared stimulus-evoked functional magnetic resonance imaging responses to unilateral hindpaw stimulation in acallosal I/LnJ, C57BL/6, and BALB/c mice. We found bilateral blood-oxygenation-level dependent signal changes in all three strains, ruling out a dominant contribution of transcallosal communication as reason for bilaterality. Analysis of functional connectivity derived from resting-state functional magnetic resonance imaging, revealed that bilateral cortical functional connectivity is largely abolished in I/LnJ animals. Cortical functional connectivity in all strains correlated with structural connectivity in corpus callosum as revealed by diffusion tensor imaging. Given the profound influence of systemic hemodynamics on stimulus-evoked functional magnetic resonance imaging outcomes, we evaluated whether functional connectivity data might be affected by cerebrovascular parameters, i.e. baseline cerebral blood volume, vascular reactivity, and reserve. We found that effects of cerebral hemodynamics on functional connectivity are largely outweighed by dominating contributions of structural connectivity. In contrast, contributions of transcallosal interhemispheric communication to the occurrence of ipsilateral functional magnetic resonance imaging response of equal amplitude to unilateral stimuli seem negligible.

  1. Propagating tsunami wave and subsequent resonant response signals detected by HF radar in the Kii Channel, Japan

    Science.gov (United States)

    Hinata, Hirofumi; Fujii, Satoshi; Furukawa, Keita; Kataoka, Tomoya; Miyata, Masafumi; Kobayashi, Takashi; Mizutani, Masahiro; Kokai, Takahiro; Kanatsu, Nobuyoshi

    2011-11-01

    Signals from the tsunami waves induced by the March 11, 2011 moment magnitude ( M w) 9.0 Tohoku-Oki earthquake and from subsequent resonances were detected as radial velocity variability by a high-frequency ocean surface radar (HF radar) installed on the eastern coast of the Kii Channel, at a range of about 1000 km from the epicenter along the eastern to southern coasts of Honshu Island. A time-distance diagram of band-passed (9-200 min) radial velocity along the beam reveals that the tsunami waves propagated from the continental shelf slope to the inner channel as progressive waves for the first three waves, and then natural oscillations were excited by the waves; and that the direction of the tsunami wave propagation and the axis of the natural oscillations differed from that of the radar beam. In addition, spectral analyses of the radial velocities and sea surface heights obtained in the channel and on the continental shelf slope suggest complex natural oscillation modes excited by the tsunami waves. The major advantage of the HF radars as tsunami detection is early warning as the tsunami is still far offshore. There is no doubt on this importance beside still technical and operational studies are needed. Our results adds a new role of the HF radars to measure the detailed surface current fields with high spatiotemporal resolution toward understanding detailed processes of resonant response to tsunami waves in coastal regions.

  2. Quantification of ethanol methyl (1)H magnetic resonance signal intensity following intravenous ethanol administration in primate brain.

    Science.gov (United States)

    Flory, Graham S; O'Malley, Jean; Grant, Kathleen A; Park, Byung; Kroenke, Christopher D

    2010-03-01

    In vivo(1)H magnetic resonance spectroscopy (MRS) can be used to directly monitor brain ethanol. Previously, studies of human subjects have lead to the suggestion that the ethanol methyl (1)H MRS signal intensity relates to tolerance to ethanol's intoxicating effects. More recently, the ethanol (1)H MRS signal intensity has been recognized to vary between brain gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) due to differences in T(2) within these environments. The methods presented here extend ethanol MRS techniques to non-human primate subjects. Twelve monkeys were administered ethanol while sedated and positioned within a 3T MRI system. Chemical shift imaging (CSI) measurements were performed following intravenous infusion of 1g/kg ethanol. Magnetic resonance imaging (MRI) data were also recorded for each monkey to provide volume fractions of GM, WM, and CSF for each CSI spectrum. To estimate co-variance of ethanol MRS intensity with GM, WM, and CSF volume fractions, the relative contribution of each tissue subtype was determined following corrections for radiofrequency pulse profile non-uniformity, chemical shift artifacts, and differences between the point spread function in the CSI data and the imaging data. The ethanol MRS intensity per unit blood ethanol concentration was found to differ between GM, WM, and CSF. Individual differences in MRS intensity were larger in GM than WM. This methodology demonstrates the feasibility of ethanol MRS experiments and analysis in non-human primate subjects, and suggests GM may be a site of significant variation in ethanol MRS intensity between individuals. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Aliasing of the Schumann resonance background signal by sprite-associated Q-bursts

    Science.gov (United States)

    Guha, Anirban; Williams, Earle; Boldi, Robert; Sátori, Gabriella; Nagy, Tamás; Bór, József; Montanyà, Joan; Ortega, Pascal

    2017-12-01

    The Earth's naturally occurring Schumann resonances (SR) are composed of a quasi-continuous background component and a larger-amplitude, short-duration transient component, otherwise called 'Q-burst' (Ogawa et al., 1967). Sprites in the mesosphere are also known to accompany the energetic positive ground flashes that launch the Q-bursts (Boccippio et al., 1995). Spectra of the background Schumann Resonances (SR) require a natural stabilization period of ∼10-12 min for the three conspicuous modal parameters to be derived from Lorentzian fitting. Before the spectra are computed and the fitting process is initiated, the raw time series data need to be properly filtered for local cultural noise, narrow band interference as well as for large transients in the form of global Q-bursts. Mushtak and Williams (2009) describe an effective technique called Isolated Lorentzian (I-LOR), in which, the contributions from local cultural and various other noises are minimized to a great extent. An automated technique based on median filtering of time series data has been developed. These special lightning flashes are known to have greater contribution in the ELF range (below 1 kHz) compared to general negative CG strikes (Huang et al., 1999; Cummer et al., 2006). The global distributions of these Q-bursts have been studied by Huang et al. (1999) Rhode Island, USA by wave impedance methods from single station ELF measurements at Rhode Island, USA and from Japan Hobara et al. (2006). The present work aims to demonstrate the effect of Q-bursts on SR background spectra using GPS time-stamped observation of TLEs. It is observed that the Q-bursts selected for the present work do alias the background spectra over a 5-s period, though the amplitudes of these Q-bursts are far below the background threshold of 16 Core Standard Deviation (CSD) so that they do not strongly alias the background spectra of 10-12 min duration. The examination of one exceptional Q-burst shows that appreciable

  4. Nuclear magnetic resonance signal dynamics of liquids in the presence of distant dipolar fields, revisited.

    Science.gov (United States)

    Barros, Wilson; Gochberg, Daniel F; Gore, John C

    2009-05-07

    The description of the nuclear magnetic resonance magnetization dynamics in the presence of long-range dipolar interactions, which is based upon approximate solutions of Bloch-Torrey equations including the effect of a distant dipolar field, has been revisited. New experiments show that approximate analytic solutions have a broader regime of validity as well as dependencies on pulse-sequence parameters that seem to have been overlooked. In order to explain these experimental results, we developed a new method consisting of calculating the magnetization via an iterative formalism where both diffusion and distant dipolar field contributions are treated as integral operators incorporated into the Bloch-Torrey equations. The solution can be organized as a perturbative series, whereby access to higher order terms allows one to set better boundaries on validity regimes for analytic first-order approximations. Finally, the method legitimizes the use of simple analytic first-order approximations under less demanding experimental conditions, it predicts new pulse-sequence parameter dependencies for the range of validity, and clarifies weak points in previous calculations.

  5. Discoscopic Findings of High Signal Intensity Zones on Magnetic Resonance Imaging of Lumbar Intervertebral Discs

    Directory of Open Access Journals (Sweden)

    Kosuke Sugiura

    2014-01-01

    Full Text Available A 32-year-old man underwent radiofrequency thermal annuloplasty (TA with percutaneous endoscopic discectomy (PED under local anesthesia for chronic low back pain. His diagnosis was discogenic pain with a high signal intensity zone (HIZ in the posterior corner of the L4-5 disc. Flexion pain was sporadic, and steroid injection was given twice for severe pain. After the third episode of strong pain, PED and TA were conducted. The discoscope was inserted into the posterior annulus and revealed a migrated white nucleus pulposus which was stained blue. Then, after moving the discoscope to the site of the HIZ, a migrated slightly red nucleus pulposus was found, suggesting inflammation and/or new vessels penetrating the mass. After removing the fragment, the HIZ site was ablated by TA. To our knowledge, this is the first report of the discoscopic findings of HIZ of the lumbar intervertebral disc.

  6. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  7. Amplifying the signal of localized surface plasmon resonance sensing for the sensitive detection of Escherichia coli O157:H7.

    Science.gov (United States)

    Song, Liping; Zhang, Lei; Huang, Youju; Chen, Liming; Zhang, Ganggang; Shen, Zheyu; Zhang, Jiawei; Xiao, Zhidong; Chen, Tao

    2017-06-12

    Gold nanorods (Au NRs) based localized surface plasmon resonance (LSPR) sensors have been widely employed in various fields including biology, environment and food safety detection, but their size- and shape-dependent sensitivity limits their practical applications in sensing and biological detection. In our present work, we proposed an approach to maximally amplify the signal of Au NRs based LSPR sensing by coating an optimized thickness of mesoporous silica onto Au NRs. The plasmonic peaks of Au NRs@SiO 2 with different shell thickness showed finely linear response to the change of surrounding refractive index. The optimized thickness of mesoporous silica of Au NRs@SiO 2 not only provided high stability for LSPR sensor,but also displayed much higher sensitivity (390 nm/RIU) than values of Au NRs from previous reports. The obtained Au NRs@SiO 2 based LSPR sensor was further used in practical application for selectively detection of the E. coli O157:H7, and the detection limit achieved 10 CFU, which is much lower than conventional methods such as electrochemical methods and lateral-flow immunochromatography.

  8. Indian Hedgehog signaling pathway members are associated with magnetic resonance imaging manifestations and pathological scores in lumbar facet joint osteoarthritis

    Science.gov (United States)

    Shuang, Feng; Zhou, Ying; Hou, Shu-Xun; Zhu, Jia-Liang; Liu, Yan; Zhang, Chun-Li; Tang, Jia-Guang

    2015-05-01

    Indian Hedgehog (HH) has been shown to be involved in osteoarthritis (OA) in articular joints, where there is evidence that Indian HH blockade could ameliorate OA. It seems to play a prominent role in development of the intervertebral disc (IVD) and in postnatal maintenance. There is little work on IHH in the IVD. Hence the aim of the current study was to investigate the role of Indian Hedgehog in the pathology of facet joint (FJ) OA. 24 patients diagnosed with lumbar intervertebral disk herniation or degenerative spinal stenosis were included. Preoperative magnetic resonance imaging (MRI) and Osteoarthritis Research Society International (OARSI) histopathology grading system was correlated to the mRNA levels of GLI1, PTCH1, and HHIP in the FJs. The Weishaupt grading and OARSI scores showed high positive correlation (r = 0.894) (P < 0.01). MRI Weishaupt grades showed positive correlation with GLI1 (r = 0.491), PTCH1 (r = 0.444), and HHIP (r = 0.654) mRNA levels (P < 0.05 in each case). OARSI scores were also positively correlated with GLI1 (r = 0. 646), PTCH1 (r = 0. 518), and HHIP (r = 0.762) mRNA levels (P < 0.01 in each case). Cumulatively our findings indicate that Indian HH signaling is increased in OA and is perhaps a key component in OA pathogenesis and progression.

  9. The Clinical Value of High-Intensity Signals on the Coronary Atherosclerotic Plaques: Noncontrast T1-Weighted Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Shoichi Ehara

    2016-07-01

    Full Text Available Over the past several decades, significant progress has been made in the pathohistological assessment of vulnerable plaques and in invasive intravascular imaging techniques. However, the assessment of plaque morphology by invasive modalities is of limited value for the detection of subclinical coronary atherosclerosis and the subsequent prediction or prevention of acute cardiovascular events. Recently, magnetic resonance (MR imaging technology has reached a sufficient level of spatial resolution, which allowed the plaque visualization of large and static arteries such as the carotids and aorta. However, coronary wall imaging by MR is still challenging due to the small size of coronary arteries, cardiac and respiratory motion, and the low contrast-to-noise ratio between the coronary artery wall and the surrounding structures. Following the introduction of carotid plaque imaging with noncontrast T1-weighted imaging (T1WI, some investigators have reported that coronary artery high-intensity signals on T1WI are associated with vulnerable plaque morphology and an increased risk of future cardiac events. Although there are several limitations and issues that need to be resolved, this novel MR technique for coronary plaque imaging could influence treatment strategies for atherothrombotic disease and may be useful for understanding the pathophysiological mechanisms of atherothrombotic plaque formation.

  10. A digital signal processor-based pulse programmer with performance of run-time information handling for magnetic resonance imaging

    Science.gov (United States)

    Xiao, Liang; Li, Lin; Nie, Wei; Xie, Xiaoming; Wan, Hongjie

    2015-06-01

    A pulse programmer for magnetic resonance imaging based on a digital signal processor (DSP) is described. The pulse programmer not only implements event triggering and control line generation, but also performs the run-time information handling. The DSP, which has features that include a 32-bit data bus, a 24-bit address bus and a clock rate of 60 MHz, is used as the sequence operator. The DSP connects the field programmable gate array (FPGA) devices of all the spectrometer modules via its external bus, and manipulates the operation of each module via setting the control port of the corresponding FPGA. In addition, the run-time information of the spectrometer, which includes the operation status of each module and the external triggers, can be obtained easily using the read instruction, and the operation exceptions of the spectrometer can be treated quickly via the DSP’s interrupt mechanism. Up to 32 control lines can be generated simultaneously in an event, and the minimum interval between successive events is 50 ns. The pulse sequence program is written in the C++ language and is mainly composed of several predefined procedures. The performance of the proposed pulse programmer is validated by multiple imaging experiments.

  11. More Specific Signal Detection in Functional Magnetic Resonance Imaging by False Discovery Rate Control for Hierarchically Structured Systems of Hypotheses.

    Directory of Open Access Journals (Sweden)

    Konstantin Schildknecht

    Full Text Available Signal detection in functional magnetic resonance imaging (fMRI inherently involves the problem of testing a large number of hypotheses. A popular strategy to address this multiplicity is the control of the false discovery rate (FDR. In this work we consider the case where prior knowledge is available to partition the set of all hypotheses into disjoint subsets or families, e. g., by a-priori knowledge on the functionality of certain regions of interest. If the proportion of true null hypotheses differs between families, this structural information can be used to increase statistical power. We propose a two-stage multiple test procedure which first excludes those families from the analysis for which there is no strong evidence for containing true alternatives. We show control of the family-wise error rate at this first stage of testing. Then, at the second stage, we proceed to test the hypotheses within each non-excluded family and obtain asymptotic control of the FDR within each family at this second stage. Our main mathematical result is that this two-stage strategy implies asymptotic control of the FDR with respect to all hypotheses. In simulations we demonstrate the increased power of this new procedure in comparison with established procedures in situations with highly unbalanced families. Finally, we apply the proposed method to simulated and to real fMRI data.

  12. Effect of Fe3O4 Magnetic Nanoparticle Concentration on the Signal of Surface Plasmon Resonance (SPR) Spectroscopy

    Science.gov (United States)

    Oktivina, M.; Nurrohman, D. T.; Rinto, A. N. Q. Z.; Suharyadi, E.; Abraha, K.

    2017-05-01

    Effect of Fe3O4 magnetic nanoparticle concentration on the signal of surface plasmon resonance (SPR) spectra has been successfully observed. The Fe3O4 nanoparticles with a particle size of about 10.5 ± 0.2 nm were used as active materials to increase the SPR response. X-ray diffraction (XRD) pattern showed that Fe3O4 nanoparticles have a high degree of crystallinity with spinel structure. The SPR system was successfully set up by using a glass prism coupler in a Kretschmann configuration in which gold (Au) thin film was thermally evaporated on the prism base. A green laser of wavelength 543 nm was used as light source. The angular scan in the attenuated total reflection (ATR) spectra showed a dropping intensity. Those things clearly indicated the appearance of SPR coupling phenomenon on the interface of Au thin film. The SPR spectra of fixed Au masses were also performed with same angular positions of dips. The Fe3O4 nanoparticles were deposited on gold thin film as a third layer which was synthesized via co-precipitation method. Hence, it was observed that the variation of Fe3O4 concentration affected the SPR spectra profile. The concentrations of Fe3O4 nanoparticles are 1, 3, 5, 7, 9, and 11 mg/ml which correspond to the angle shift of 0.1°, 0.3°, 0.5°, 0.7°, 0.9°, and 1.0°, respectively. The SPR angle of the dip was shifted to higher value due to change of refractive index of the medium as Fe3O4 nanoparticles concentration increases. Based on this result, we can conclude that the angle shift of SPR increases with increasing concentration of Fe3O4 nanoparticles.

  13. A clinico-radiological study on 254 cases of pontine high signals on magnetic resonance imaging in relation to brain stem semiology

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masaki; Takahashi, Akira (Nagoya Univ. (Japan). Faculty of Medicine); Arahata, Yutaka; Motegi, Yoshimasa; Furuse, Masahiro

    1993-11-01

    A total of 254 patients who were proved to have pontine high intensity areas on T[sub 2]-weighted magnetic resonance imaging (MRI) were analyzed in relation to brain stem semiology. A comparative study on MRI and MR angiography was made between 254 patients with pontine high signals and 276 control cases showing no abnormality either on T[sub 1] or T[sub 2]-weighted images. Of the 254 patients, 62 had transient subjective complaints such as vertigo-dizziness. Supratentorial high signals, basilar artery tortuousness and vertebral artery asymmetry on MR angiography were seen more frequently in patients with pontine high signals than in the controls. In conclusion, pontine high signals may result from diffuse arteriosclerosis and MR angiography is considered to be a useful screening method. (author).

  14. Enhancement of information transmission of sub-threshold signals applied to distal positions of dendritic trees in hippocampal CA1 neuron models with stochastic resonance.

    Science.gov (United States)

    Mino, Hiroyuki; Durand, Dominique M

    2010-09-01

    Stochastic resonance (SR) has been shown to enhance the signal-to-noise ratio and detection of low level signals in neurons. It is not yet clear how this effect of SR plays an important role in the information processing of neural networks. The objective of this article is to test the hypothesis that information transmission can be enhanced with SR when sub-threshold signals are applied to distal positions of the dendrites of hippocampal CA1 neuron models. In the computer simulation, random sub-threshold signals were presented repeatedly to a distal position of the main apical branch, while the homogeneous Poisson shot noise was applied as a background noise to the mid-point of a basal dendrite in the CA1 neuron model consisting of the soma with one sodium, one calcium, and five potassium channels. From spike firing times recorded at the soma, the mutual information and information rate of the spike trains were estimated. The simulation results obtained showed a typical resonance curve of SR, and that as the activity (intensity) of sub-threshold signals increased, the maximum value of the information rate tended to increased and eventually SR disappeared. It is concluded that SR can play a key role in enhancing the information transmission of sub-threshold stimuli applied to distal positions on the dendritic trees.

  15. Continuously tunable photonic fractional Hilbert transformer using ring resonators for on-chip microwave photonic signal processing

    NARCIS (Netherlands)

    Zhuang, L.; Beeker, Willem; Beeker, W.P.; Leinse, Arne; Heideman, Rene; Roeloffzen, C.G.H.

    2012-01-01

    We propose and demonstrate a wideband photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonators allows variable and arbitrary fractional order of the Hilbert transformer. The implemented all-pass filter

  16. Evaluation of low signal intensity in the posterior disc attachment of the temporomandibular joint on T1-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Masatoshi; Echigo, Seishi [Tohoku Univ., Sendai (Japan). School of Dentistry; Kumagai, Masahiro; Takahashi, Tetsu; Nagai, Hirokazu; Kochi, Shoko

    1996-04-01

    The posterior disc attachment (PA) of the temporomandibular joint (TMJ) has relatively high signal intensity on T1-weighted or proton density-weighted magnetic resonance imaging (MRI). Sometimes, however, low signal intensity of the PA is observed in patients with chronic disc displacement. On the basis of previous histopathological studies, the areas of low signal intensity in the PA may be consistent with pseudodisc formation associated with fibrous metaplasia of the PA. The purpose of this study was to evaluate the relations between MR signal intensity of the PA and MRI findings, including the degree of disc displacement, disc reduction, disc shape, bone change, and condylar translation, as well as clinical findings, including the duration of symptoms, joint pain, and range of motion. The study was based on MRI of 216 TMJ in 184 patients with anterior disc displacement. The sagittal closed-mouth T1-weighted SE images were used to determine the presence or absence of low signal intensity in the PA. Low signal intensity in the PA was seen in 33 joints in 32 patients (15.3%). The incidence of low signal intensity was significantly higher in males (27.8%) than in females (12.8%). No statistical difference was found between anterior disc displacement with reduction (10.5%), anterior disc displacement without reduction (21.5%), and anterior disc displacement without reduction with osteoarthrosis (14.3%). Low signal intensity in the PA was seen only in moderate or severe disc displacement. Low signal intensity in the PA was not associated with specific clinical or MRI findings except for the degree of disc displacement. In conclusion, low signal intensity in the PA is directly correlated with disc displacement, and there was no apparent correlation with clinical findings. Low signal intensity of the PA is not necessarily related to adaptation of the joint in disc displacement. (author).

  17. Double Fourier analysis for Emotion Identification in Voiced Speech

    OpenAIRE

    Sierra-Sosa, D; Bastidas, M.; Ortiz P., D.; Quintero, O.L.

    2016-01-01

    We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech -- Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions -- A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds -- Emotions i...

  18. Diffusion-weighted whole-body magnetic resonance imaging with background body signal suppression/T2 image fusion for the diagnosis of acute cholecystitis.

    Science.gov (United States)

    Tomizawa, Minoru; Shinozaki, Fuminobu; Tanaka, Satomi; Sunaoshi, Takafumi; Kano, Daisuke; Sugiyama, Eriko; Shite, Misaki; Haga, Ryouta; Fukamizu, Yoshiya; Fujita, Toshiyuki; Kagayama, Satoshi; Hasegawa, Rumiko; Shirai, Yoshinori; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Ishige, Naoki

    2017-07-01

    Prompt and accurate diagnosis is critical in the treatment of acute cholecystitis. Diffusion-weighted whole-body magnetic resonance imaging with background body signal suppression/T2 image fusion (DWIBS/T2) identifies areas with high signal intensity, corresponding to inflammation. In the present study, the records and images of patients with acute cholecystitis who underwent DWIBS/T2 between January 2013 and March 2014 were retrospectively analyzed. A total of 11 patients with acute cholecystitis were enrolled. In one patient, DWIBS/T2 identified a thickened wall and high signal intensity, with high signal intensity in the pericholecystic space that suggested localized peritonitis. Positive DWIBS/T2 results indicating acute cholecystitis were obtained in 10/11 patients, with a sensitivity of 90.9%. In addition, wall thickening and high signal intensity were absent in DWIBS/T2 images when wall thickening was not detected by computed tomography. Wall thickening and high signal intensity was attenuated when patients with acute cholecystitis were clinically treated. These data suggest that a thickened gallbladder wall and high signal intensity are indicative of acute cholecystitis and that DWIBS/T2 may be a useful technique in evaluating the severity of acute cholecystitis.

  19. Fluorescence Resonance Energy Transfer in Living Cells Reveals Dynamic Membrane Changes in the Initiation of B Cell Signaling

    National Research Council Canada - National Science Library

    Hea Won Sohn; Pavel Tolar; Tian Jin; Susan K. Pierce

    2006-01-01

    .... Here we use fluorescence resonance energy transfer (FRET) in living cells to detect the interaction of the BCR with a Lyn-based membrane-targeted reporter in the first several seconds after BCR clustering...

  20. Signal-to-noise ratio evaluation of magnetic resonance images in the presence of an ultrasonic motor

    National Research Council Canada - National Science Library

    Peyman Shokrollahi; James M Drake; Andrew A Goldenberg

    2017-01-01

    Background Safe robot-assisted intervention using magnetic resonance imaging (MRI) guidance requires the precise control of assistive devices, and most currently available tools are rarely MRI-compatible...

  1. High-resolution wave number spectrum using multi-point measurements in space – the Multi-point Signal Resonator (MSR technique

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2011-02-01

    Full Text Available A new analysis method is presented that provides a high-resolution power spectrum in a broad wave number domain based on multi-point measurements. The analysis technique is referred to as the Multi-point Signal Resonator (MSR and it benefits from Capon's minimum variance method for obtaining the proper power spectral density of the signal as well as the MUSIC algorithm (Multiple Signal Classification for considerably reducing the noise part in the spectrum. The mathematical foundation of the analysis method is presented and it is applied to synthetic data as well as Cluster observations of the interplanetary magnetic field. Using the MSR technique for Cluster data we find a wave in the solar wind propagating parallel to the mean magnetic field with relatively small amplitude, which is not identified by the Capon spectrum. The Cluster data analysis shows the potential of the MSR technique for studying waves and turbulence using multi-point measurements.

  2. Investigation of Resonance Effect Caused by Local Exposure of Extremely Low Frequency Magnetic Field on Brain Signals: A Randomize Clinical Trial

    Directory of Open Access Journals (Sweden)

    Rasul Zadeh Tabataba’ei K

    2011-03-01

    Full Text Available Background and Objectives: Some studies have investigated the effects of extremely low frequency magnetic fields (ELF-MFs on brain signals, but only few of them have reported that humans exposed to magnetic fields exhibit changes in brain signals at the frequency of stimulation, i.e. resonance effect. In most investigations, researchers usually take advantage of a uniform field which encompasses the head. The aim of present study was to expose different parts of the brain to ELF-MFs locally and to investigate variation of brain signal and resonance effect.Methods: The subjects consisting of 19 male-students with the mean age of 25.6±1.6 years participated in this study. Local ELF-MFs with 3, 5, 10, 17 and 45Hz frequencies and 240 μT intensity was applied on five points (T3, T4, Cz, F3 and F4 of participants scalp Separately in 10-20 system. In the end, relative power over this points in common frequency bands and at the frequency of magnetic fields was evaluated by paired t-test.Results: Exposure of Central area by local magnetic field caused significant change (p<0.05 in the forehead alpha band. Reduction in the alpha band over central area was observed when temporal area was exposed to ELF MF.Conclusion: The results showed that resonance effect in the brain signals caused by local magnetic field exposure was not observed and change in every part of the relative power spectrum might occur. The changes in the EEG bands were not limited necessarily to the exposure point.

  3. Predictive Value of Magnetic Resonance Imaging Signal and Contrast-enhancement Characteristics on Post-embolization Volume Reduction of Uterine Fibroids

    Energy Technology Data Exchange (ETDEWEB)

    Harman, M.; Zeteroglu, S.; Arslan, H.; Senguel, M.; Etlik, Oe. [Univ. of Yuezuencue Yil, Van (Turkey). Depts. of Radiology and Obstetrics and Gynecology

    2006-07-15

    Purpose: To assess the magnetic resonance imaging (MRI) signal and contrast-enhancement features of uterine fibroids before and after embolization, and to determine whether or not there are pre-embolization MRI characteristics that predict the volume reduction of fibroids. Material and Methods: Uterine fibroid embolization (UFE) was carried out in 28 fibroids of 20 patients, all of whom were symptomatic. The patients were prospectively evaluated with T1-weighted, T2-weighted, and gadolinium-enhanced T1 MRI sequences before and 6 months after embolization. The relationship between the characteristics of MRI signal and contrast-enhancement features of fibroids before the procedure and the change in size of the lesions after treatment was investigated. Results: Before embolization, the mean volume of fibroids was 123 cm{sup 3} (8-560 cm{sup 3} ). The decrease rate in fibroid volumes was 44.6% (range 7-70%) 6 months after embolization. Volume reduction was more prominent in fibroids that had a high signal intensity on T2-weighted images and a marked contrast enhancement on T1-weighted images ( P <0.001). However, the volume reduction was insufficient in fibroids with high signal characteristics on pre-contrast T1-weighted images ( P <0.001). Conclusion: MRI is an effective method for revealing size and signal changes of fibroids after embolization. MRI signal characteristics and the contrast-enhancement pattern of fibroids before embolization can predict tumor volume reduction after embolization.

  4. High-temperature superconducting quantum interference device with cooled LC resonant circuit for measuring alternating magnetic fields with improved signal-to-noise ratio.

    Science.gov (United States)

    Qiu, Longqing; Zhang, Yi; Krause, Hans-Joachim; Braginski, Alex I; Usoskin, Alexander

    2007-05-01

    Certain applications of superconducting quantum interference devices (SQUIDs) require a magnetic field measurement only in a very narrow frequency range. In order to selectively improve the alternating-current (ac) magnetic field sensitivity of a high-temperature superconductor SQUID for a distinct frequency, a single-coil LC resonant circuit has been used. Within the liquid nitrogen bath, the coil surrounds the SQUID and couples to it inductively. Copper coils with different numbers of windings were used to cover the frequency range from circuit, the signal-to-noise ratio of measurements could be improved typically by one order of magnitude or more in a narrow frequency band around the resonance frequency exceeding a few kilohertz. The best attained equivalent magnetic field resolution was 2.5 fT/radicalHz at 88 kHz. The experimental findings are in good agreement with mathematical analysis of the circuit with copper coil.

  5. Dynamics of the mean signal amplitude of a crystal oscillator with a nonlinear resonator and low drives

    Science.gov (United States)

    Shmaliy, Yuriy S.; Rosales, Juan

    2004-09-01

    Dynamics of the mean amplitude of oscillations of a crystal oscillator with a linear feedback is outlined for low drives when the losses (friction) of a resonator become large and nonlinear after a long storage. The drive-level-dependence (DLD) of the crystal resonator losses is assumed to change inversely to the piezoelectric current. A stochastic differential equation for the mean amplitude is derived and solved in a sense of Ito. The development and attenuation processes are learned and it is shown that attenuation finishes at some non-zero level associated with the effect termed "sleeping sickness." The critical value of the friction is calculated and the conditions are discussed to avoid attenuation. Based upon, we show in that (1) if the value of the DLD coefficient of the resonator losses ranges below the critical point, the effect occurs primarilly in a delay of self-excitation; (2) contrary, noise drives the crystal oscillator.

  6. High Signal Intensity on T2-Weighted Cardiovascular Magnetic Resonance Imaging Predicts Life-Threatening Arrhythmic Events in Hypertrophic Cardiomyopathy Patients.

    Science.gov (United States)

    Hen, Yasuki; Takara, Ayako; Iguchi, Nobuo; Utanohara, Yuko; Teraoka, Kunihiko; Takada, Kaori; Machida, Haruhiko; Takamisawa, Itaru; Takayama, Morimasa; Yoshikawa, Tsutomu

    2018-02-21

    The prognostic value of high signal intensity on T2-weighted cardiovascular magnetic resonance imaging (T2 high signal) in hypertrophic cardiomyopathy (HCM) patients in a single-center cohort was investigated.Methods and Results:A total of 237 HCM patients (median age, 62 years; 143 male) underwent T2-weighted, cine and late gadolinium enhancement (LGE) imaging, and were followed (median duration, 3.4 years) for life-threatening arrhythmic events. The clinical and magnetic resonance imaging characteristics were extracted, and predictors of life-threatening arrhythmic events were assessed on multivariate analysis. LGE was present in 180 patients (75.9%). Median LGE score was 3 in a left ventricle 17-segment model. T2 high signal was present in 49 patients (20.7%). The annual events rate was significantly higher in patients with extensive LGE (score ≥4) than in those without (3.0%/year vs. 0.5%/year, P=0.011). On multivariate analysis, extensive LGE (hazard ratio, 5.650; 95% CI: 1.263-25.000, P=0.024) as an independent predictor for life-threatening arrhythmic events. In patients with extensive LGE, the annual events rate was significantly higher in patients with T2 high signal than in those without (5.8%/year vs. 0.9%/year, P=0.008). Extensive LGE was an independent predictor of life-threatening arrhythmic events in HCM patients. Furthermore, T2 high signal is useful for the risk stratification of serious arrhythmic events in patients with extensive LGE.

  7. Cerium Dioxide-Mediated Signal "On-Off" by Resonance Energy Transfer on a Lab-On-Paper Device for Ultrasensitive Detection of Lead Ions.

    Science.gov (United States)

    Huang, Yuzhen; Li, Li; Zhang, Yan; Zhang, Lina; Ge, Shenguang; Li, Hao; Yu, Jinghua

    2017-09-27

    In this report, a 3D microfluidic lab-on-paper device for ultrasensitive detection of lead cation was designed using phoenix tree fruit-shaped CeO2 nanoparticles (PFCeO2 NPs) as the catalyst and 50 nm silver NPs (Ag NPs) as the quencher. First, snowflake-like Ag NPs were grown on the paper working electrode through an in situ growth method and used as a matrix for DNAzymes that were specific for lead ions (Pb(2+)). After the addition of Ag NP-labeled substrate strands, the Ag NPs restrained the electrochemiluminescence (ECL) intensity of luminol greatly through the resonance energy transfer from luminol to Ag NPs. However, under the existence of Pb(2+), the substrate strands were separated, and then PFCeO2 NP-labeled signal strands were hybridized with the DNAzymes. The ECL signal was improved greatly under the fast catalytic reaction between PFCeO2 NPs and H2O2, which converted the response from signal off to signal on state, resulting in sensitive detection of Pb(2+). Under the optimal conditions, the ECL signal response exhibited a good linear relationship with the logarithm of lead cation in a wide linear range of 0.05-2000 nM and an ultralow detection limit of 0.016 nM. Meanwhile, a sensor featured with good specificity, acceptable stability, reproducibility, and low cost provides a promising portable, simple, and effective strategy for Pb(2+) detection.

  8. Orbital oncocytoma: evaluation with dynamic contrast-enhanced magnetic resonance imaging using a time-signal intensity curve and positive enhancement integral images.

    Science.gov (United States)

    Jittapiromsak, Nutchawan; Hou, Ping; Williams, Michelle D; Chi, T Linda

    Oncocytomas, which are benign epithelial tumors filled with abundant mitochondria, arise from ductal cells. Oncocytomas rarely occur in the orbit. We present a case of pathologically proven orbital oncocytoma of the lacrimal gland studied by dynamic contrast-enhanced magnetic resonance imaging (DCE MRI). DCE MRI has potential as an adjunct to conventional MRI in the differential diagnosis and tumor margin delineation of orbital oncocytoma. Simple assessments of the time-signal intensity curve, semiquantitative parameters, and post-processing positive enhancement integral images should be considered in the evaluation of orbital masses found on MRI. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A new method for the study of velopharyngeal function using gated magnetic resonance imaging.

    Science.gov (United States)

    Kane, Alex A; Butman, John A; Mullick, Rakesh; Skopec, Marlene; Choyke, Peter

    2002-02-01

    The purpose of this project was to assess the feasibility of imaging the velopharynx of adult volunteers during repetitive speech, using gated magnetic resonance imaging (MRI). Although a number of investigators have used conventional MRI in the study of the human vocal tract, the mismatch between the lengthy time necessary to acquire sufficiently detailed images and the rapidity of movement of the vocal tract during speech has forced investigators to acquire images either while the subject is at rest or during sustained utterances. The technique used here acquired a portion of each image during repetitive utterances, building the full image over multiple utterance cycles. The velopharyngeal portal was imaged on a 1.5-Tesla GE Signa LX 8.2 platform with gated fast spoiled gradient echo protocol. An external 1-Hertz trigger was fed to the cardiac gate. Subjects synchronized utterance of consonant-vowel syllables to a flashing light synchronized with the external trigger. Each acquisition of 30 phases per second at a single-slice location took 22 to 29 seconds. Four consonant-vowel syllables (/pa/, /ma/, /sa/, and /ka/) were evaluated. Subjects vocalized throughout the acquisition, beginning 5 to 6 seconds beforehand to establish a regular rhythm. Imaging of the velopharyngeal portal was performed for sagittal, velopharyngeal axial (aligned perpendicular to the "knee" of the velum), axial, and coronal planes. Volumes were obtained by sequential acquisition of six to 10 slices (each with 30 phases) in the axial or sagittal planes during repetition of the /pa/ syllable. Spatiotemporal volumes of the single-slice data were sectioned to provide time-motion images (analogous to M-mode echocardiograms). Three-dimensional dynamic volume renderings of palate motion were displayed interactively (Vortex; CieMed, Singapore). A method suitable for the collection and visualization of four-dimensional information regarding monosyllabic speech using gated MRI was developed. These

  10. 5-HT(2C) antagonism blocks blood oxygen level-dependent pharmacological-challenge magnetic resonance imaging signal in rat brain areas related to feeding.

    Science.gov (United States)

    Stark, Jennifer A; McKie, Shane; Davies, Karen E; Williams, Steve R; Luckman, Simon M

    2008-01-01

    In this study, pharmacological-challenge magnetic resonance imaging was used to further characterize the central action of serotonin on feeding. In both feeding and pharmacological-challenge magnetic resonance imaging experiments, we combined 5-HT(1B/2C) agonist m-chlorophenylpiperazine (mCPP) challenge with pre-treatment with the selective 5-HT(1B) and 5-HT(2C) receptor antagonists, SB 224289 (2.5 mg/kg) and SB 242084 (2 mg/kg), respectively. Subcutaneous injection of mCPP (3 mg/kg) completely blocked fast-induced refeeding in freely behaving, non-anaesthetized male rats, an effect that was not modified by the 5-HT(1B) receptor antagonist but was partially reversed by the 5-HT(2C) receptor antagonist. mCPP alone induced both positive and negative blood oxygen level-dependent (BOLD) responses in the brains of anaesthetized rats, including in the limbic system and basal ganglia. Overall, the 5-HT(2C) antagonist SB 242084 reversed the effects elicited by mCPP, whereas the 5-HT(1B) antagonist SB 224289 had virtually no impact. SB 242084 eliminated BOLD signal in nuclei associated with the limbic system and diminished activation in basal ganglia. In addition, BOLD signal was returned to baseline levels in the cortical regions and cerebellum. These results suggest that mCPP may reduce food intake by acting specifically on brain circuits that are modulated by 5-HT(2C) receptors in the rat.

  11. Diffusion-weighted magnetic resonance imaging reflects activation of signal transducer and activator of transcription 3 during focal cerebral ischemia/reperfusion

    Directory of Open Access Journals (Sweden)

    Wen-juan Wu

    2017-01-01

    Full Text Available Signal transducer and activator of transcription (STAT is a unique protein family that binds to DNA, coupled with tyrosine phosphorylation signaling pathways, acting as a transcriptional regulator to mediate a variety of biological effects. Cerebral ischemia and reperfusion can activate STATs signaling pathway, but no studies have confirmed whether STAT activation can be verified by diffusion-weighted magnetic resonance imaging (DWI in rats after cerebral ischemia/reperfusion. Here, we established a rat model of focal cerebral ischemia injury using the modified Longa method. DWI revealed hyperintensity in parts of the left hemisphere before reperfusion and a low apparent diffusion coefficient. STAT3 protein expression showed no significant change after reperfusion, but phosphorylated STAT3 expression began to increase after 30 minutes of reperfusion and peaked at 24 hours. Pearson correlation analysis showed that STAT3 activation was correlated positively with the relative apparent diffusion coefficient and negatively with the DWI abnormal signal area. These results indicate that DWI is a reliable representation of the infarct area and reflects STAT phosphorylation in rat brain following focal cerebral ischemia/reperfusion.

  12. Multifunctional reduced graphene oxide trigged chemiluminescence resonance energy transfer: Novel signal amplification strategy for photoelectrochemical immunoassay of squamous cell carcinoma antigen.

    Science.gov (United States)

    Zhang, Yan; Sun, Guoqiang; Yang, Hongmei; Yu, Jinghua; Yan, Mei; Song, Xianrang

    2016-05-15

    Herein, a photoelectrochemical (PEC) immunoassay is constructed for squamous cell carcinoma antigen (SCCA) detection using zinc oxide nanoflower-bismuth sulfide (Bi2S3) composites as photoactive materials and reduced graphene oxide (rGO) as signal labels. Horseradish peroxidase is used to block sites against nonspecific binding, and then participated in luminol-based chemiluminescence (CL) system. The induced CL emission is acted as an inner light source to excite photoactive materials, simplifying the instrument. A novel signal amplification strategy is stem from rGO because of the rGO acts as an energy acceptor, while luminol serves as a donor to rGO, triggering the CL resonance energy transfer phenomenon between luminol and rGO. Thus, the efficient CL emission to photoactive materials decreases. Furthermore, the signal amplification caused by rGO labeled signal antibodies is related to photogenerated electron-hole pairs: perfect matching of energy levels between rGO and Bi2S3 makes rGO a sink to capture photogenerated electrons from Bi2S3; the increased steric hindrance hinders the electron donor to the surface of Bi2S3 for reaction with the photogenerated holes. On the basis of the novel signal amplification strategy, the proposed immunosensor exhibits excellent analytical performance for PEC detection of SCCA, ranging from 0.8 pg mL(-1) to 80 ng mL(-1) with a low detection limit of 0.21 pg mL(-1). Meanwhile, the designed signal amplification strategy provides a general format for future development of PEC assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Paralinguistic mechanisms of production in human "beatboxing": a real-time magnetic resonance imaging study.

    Science.gov (United States)

    Proctor, Michael; Bresch, Erik; Byrd, Dani; Nayak, Krishna; Narayanan, Shrikanth

    2013-02-01

    Real-time magnetic resonance imaging (rtMRI) was used to examine mechanisms of sound production by an American male beatbox artist. rtMRI was found to be a useful modality with which to study this form of sound production, providing a global dynamic view of the midsagittal vocal tract at frame rates sufficient to observe the movement and coordination of critical articulators. The subject's repertoire included percussion elements generated using a wide range of articulatory and airstream mechanisms. Many of the same mechanisms observed in human speech production were exploited for musical effect, including patterns of articulation that do not occur in the phonologies of the artist's native languages: ejectives and clicks. The data offer insights into the paralinguistic use of phonetic primitives and the ways in which they are coordinated in this style of musical performance. A unified formalism for describing both musical and phonetic dimensions of human vocal percussion performance is proposed. Audio and video data illustrating production and orchestration of beatboxing sound effects are provided in a companion annotated corpus.

  14. Partially orthogonal resonators for magnetic resonance imaging

    Science.gov (United States)

    Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R.

    2017-02-01

    Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density.

  15. Magnetic resonance imaging signal changes of alar and transverse ligaments not correlated with whiplash-associated disorders: a meta-analysis of case-control studies.

    Science.gov (United States)

    Li, Quan; Shen, Hongxing; Li, Ming

    2013-01-01

    Hypothesis that loss of integrity of the membranes in the craniocervical junction might be the cause of neck pain in patients with whiplash-associated disorders (WADs) has been proposed. In recent years, with development of more detailed magnetic resonance imaging (MRI) techniques, morphologic changes of the ligaments and membranes in the craniocervical junction, especially alar and transverse ligaments have been discussed. A meta-analysis was performed to evaluate the relationship of MRI signal changes of alar and transverse ligaments and WADs. A systematic search of EMBASE, PUBMED, and Cochrane Library and references from eligible articles were conducted. Comparative studies reporting on evaluating the relationship between MRI high-signal changes of alar and transverse ligaments and WADs were regarded eligible. A pooled estimate of effect size was produced. Alar ligaments: Six studies (total n = 622) were included. MRI signal changes of alar ligaments did not appear to be related with WADs (P = 0.20, OR = 1.54, 95 % CI = 0.80-2.94). Heterogeneity was present (I (2) = 46 %, P = 0.10), which was eliminated upon sensitivity analysis bringing the OR to 1.27 (95 % CI = 0.87-1.86, I (2) = 0 %). Transverse ligaments: Four studies (total n = 489) were included. MRI signal changes of transverse ligament did not appear to be related with WADs (P = 0.51, OR = 1.44, 95 % CI = 0.49-4.21). Heterogeneity was present (I (2) = 77 %, P = 0.005), which was eliminated upon sensitivity analysis bringing the OR to 0.79 (95 % CI = 0.49-1.28, I (2) = 0 %). MRI signal changes of alar and transverse ligaments are not supposed to be caused by whiplash injury, and MRI examination of alar and transverse ligaments should not be used as the routine workup of patients with WADs.

  16. Parallel Array Bistable Stochastic Resonance System with Independent Input and Its Signal-to-Noise Ratio Improvement

    Directory of Open Access Journals (Sweden)

    Wei Li

    2014-01-01

    with independent components and averaged output; second, we give a deduction of the output signal-to-noise ratio (SNR for this system to show the performance. Our examples show the enhancement of the system and how different parameters influence the performance of the proposed parallel array.

  17. Association between duration of coronary occlusion and high-intensity signal on T1-weighted magnetic resonance imaging among patients with angiographic total occlusion

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Kenji; Ehara, Shoichi; Hasegawa, Takao; Sakaguchi, Mikumo; Shimada, Kenei [Osaka City University Graduate School of Medicine, Department of Cardiovascular Medicine, Abeno-ku, Osaka (Japan)

    2017-09-15

    To evaluate the association between duration of the coronary occlusion and high-intensity signal (HIS) on noncontrast T1-weighted imaging using a 1.5-T magnetic resonance imager among patients with angiographic coronary total occlusion. The signal intensity of the coronary target area divided by the signal intensity of the left ventricular muscle near the target area at each site (TMR) was measured. Areas with a TMR >1.0 were defined as HIS. Thirty five lesions from 33 patients were divided into the following three groups: subacute occlusion (up to 3 months; n = 7), short-duration chronic total occlusion (SD-CTO: 3-6 months; n = 9) and long-duration CTO (LD-CTO: ≥6 months; n = 19). All subacute occlusion lesions showed a HIS within the occlusion site. Among patients with CTO, the frequency of a HIS within the occlusion site was significantly higher in SD-CTO than in LD-CTO lesions (p = 0.013). In multivariate analyses, only an occlusion duration of less than 6 months was an independent factor associated with the presence of HIS (odds ratio 7.6, 95% CI 1.1-54.5; p = 0.044). The presence of a HIS in the occlusion site was associated more with SD-CTO than with LD-CTO among patients with CTO. (orig.)

  18. Central cannabinoid signaling mediating food intake: a pharmacological-challenge magnetic resonance imaging and functional histology study in rat.

    Science.gov (United States)

    Dodd, G T; Stark, J A; McKie, S; Williams, S R; Luckman, S M

    2009-11-10

    Endocannabinoids have a variety of effects by acting through cannabinoid 1 (CB1) receptors located throughout the brain. However, since CB1 receptors are located presynaptically, and because the strength of downstream coupling varies with brain region, expression studies alone do not provide a firm basis for interpreting sites of action. Likewise, to date most functional studies have used high doses of drugs, which can bias results toward non-relevant adverse effects, and which mask more behaviourally-relevant actions. Here we use a low, orexigenic dose of the full CB1 agonist, CP55940, to map responsive brain regions using the complementary techniques of pharmacological-challenge functional magnetic resonance imaging (phMRI) and immediate-early gene activity. Areas of interest demonstrate a drug interaction when the CB1 receptor inverse agonist, rimonabant, is co-administered. This analysis highlights the corticostriatal-hypothalamic pathway, which is central to the motivational drive to eat.

  19. Logical Stochastic Resonance

    Indian Academy of Sciences (India)

    andoh

    input signals, consisting of random square waves. We find that, in an optimal band of noise, the output consistently is a logical combination of the input signals: Logical Stochastic Resonance. (LSR) with K. Murali, W.L. Ditto, A. Bulsara. Physical Review Letters, March 2009. Sudeshna Sinha. Logical Stochastic Resonance ...

  20. Direct Assessment of Wall Shear Stress by Signal Intensity Gradient from Time-of-Flight Magnetic Resonance Angiography.

    Science.gov (United States)

    Han, Kap-Soo; Lee, Sang Hyuk; Ryu, Han Uk; Park, Se-Hyoung; Chung, Gyung-Ho; Cho, Young I; Jeong, Seul-Ki

    2017-01-01

    The aim of the study was to calculate the arterial wall signal intensity gradient (SIG) from time-of-flight MR angiography (TOF-MRA) and represent arterial wall shear stress. We developed a new algorithm that uses signal intensity (SI) of a TOF-MRA to directly calculate the signal intensity gradient (SIG). The results from our phantom study showed that the TOF-MRA SIG could be used to distinguish the magnitude of blood flow rate as high (mean SIG ± SD, 2.2 ± 0.4 SI/mm for 12.5 ± 2.3 L/min) and low (0.9 ± 0.3 SI/mm for 8.5 ± 2.6 L/min) in vessels (p SIG values were highly correlated with various flow rates (β = 0.96, p SIG was greater than 0.8 in each section at the carotid artery (p SIG and thereby the WSS. Thus, the TOF-MRA SIG can provide clinicians with an accurate and efficient screening method for making rapid decisions on the risk of vascular disease for a patient in clinical practice.

  1. Gold Nanoparticles Surface Plasmon Resonance Enhanced Signal for the Detection of Small Molecules on Split-Aptamer Microarrays (Small Molecules Detection from Split-Aptamers

    Directory of Open Access Journals (Sweden)

    Feriel Melaine

    2015-02-01

    Full Text Available The detection of small molecules by biosensors remains a challenge for diagnostics in many areas like pharmacology, environment or homeland security. The main difficulty comes from both the low molecular weight and low concentrations of most targets, which generally requires an indirect detection with an amplification or a sandwich procedure. In this study, we combine both strategies as the amplification of Surface Plasmon Resonance imaging (SPRi signal is obtained by the use of gold nanoparticles and the sequence engineering of split-aptamers, short oligonucleotides strands with strong affinity towards small targets, allows for a sandwich structure. Combining those two strategies, we obtained state-of-the-art results in the limit of detection (LOD = 50 nM with the model target adenosine. Furthermore, the SPRi detection led on aptamer microarrays paves the way for potential multi-target detections thanks to the multi-probe imaging approach.

  2. Fluorescence resonance energy transfer imaging of cell signaling from in vitro to in vivo: basis of biosensor construction, live imaging, and image processing.

    Science.gov (United States)

    Aoki, Kazuhiro; Kamioka, Yuji; Matsuda, Michiyuki

    2013-05-01

    The progress in imaging technology with fluorescent proteins has uncovered a wide range of biological processes in developmental biology. In particular, genetically-encoded biosensors based on the principle of fluorescence resonance energy transfer (FRET) have been used to visualize spatial and temporal dynamics of intracellular signaling in living cells. However, development of sensitive FRET biosensors and their application to developmental biology remain challenging tasks, which has prevented their widespread use in developmental biology. In this review, we first overview general procedures and tips of imaging with FRET biosensors. We then describe recent advances in FRET imaging - namely, the use of optimized backbones for intramolecular FRET biosensors and transposon-mediated gene transfer to generate stable cell lines and transgenic mice expressing FRET biosensors. Finally, we discuss future perspectives of FRET imaging in developmental biology. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  3. Evidence of Spin Resonance Signal in Oxygen Free Superconducting CaFe0.88Co0.12AsF: An Inelastic Neutron Scattering Study

    Science.gov (United States)

    Price, Stephen; Su, Yixi; Xiao, Yinguo; Adroja, Devashibhai T.; Guidi, Tatiana; Mittal, Ranjan; Nandi, Shibabrata; Matsuishi, Satoru; Hosono, Hideo; Brückel, Thomas

    2013-10-01

    The spin excitation spectrum of optimally doped superconducting CaFe0.88Co0.12AsF (Tc˜ 22 K) was studied by means of time-of-flight (ToF) inelastic neutron scattering experiments on a powder sample for temperatures above and below Tc and energies up to 15 meV. In the superconducting state, the spin resonance signal is observed as an enhancement of spectral weight of particle hole excitations of approximately 1.5 times relative to normal state excitations. The resonance energy ER˜ 7 meV scales to Tc via 3.7 kBTc which is in reasonable agreement to the scaling relation reported for other Fe-based compositions. For energies below 5 meV the spectrum of spin flip particle hole excitations in the superconducting state exhibits a strong reduction in spectral weight, indicating the opening of the spin gap. Nonetheless, a complete suppression of magnetic response cannot be observed. In contrast, the normal state spin excitations are not gapped and strongly two dimensional spin fluctuations persist up to temperatures at least as high as 150 K.

  4. Spectral models of additive and modulation noise in speech and phonatory excitation signals

    Science.gov (United States)

    Schoentgen, Jean

    2003-01-01

    The article presents spectral models of additive and modulation noise in speech. The purpose is to learn about the causes of noise in the spectra of normal and disordered voices and to gauge whether the spectral properties of the perturbations of the phonatory excitation signal can be inferred from the spectral properties of the speech signal. The approach to modeling consists of deducing the Fourier series of the perturbed speech, assuming that the Fourier series of the noise and of the clean monocycle-periodic excitation are known. The models explain published data, take into account the effects of supraglottal tremor, demonstrate the modulation distortion owing to vocal tract filtering, establish conditions under which noise cues of different speech signals may be compared, and predict the impossibility of inferring the spectral properties of the frequency modulating noise from the spectral properties of the frequency modulation noise (e.g., phonatory jitter and frequency tremor). The general conclusion is that only phonatory frequency modulation noise is spectrally relevant. Other types of noise in speech are either epiphenomenal, or their spectral effects are masked by the spectral effects of frequency modulation noise.

  5. Live imaging of extracellular signal-regulated kinase and protein kinase A activities during thrombus formation in mice expressing biosensors based on Förster resonance energy transfer.

    Science.gov (United States)

    Hiratsuka, T; Sano, T; Kato, H; Komatsu, N; Imajo, M; Kamioka, Y; Sumiyama, K; Banno, F; Miyata, T; Matsuda, M

    2017-07-01

    Essentials Spatiotemporal regulation of protein kinases during thrombus formation remains elusive in vivo. Activities of protein kinases were live imaged in mouse platelets at laser-ablated arterioles. Protein kinase A was activated in the dislodging platelets at the downstream side of the thrombus. Extracellular signal-regulated kinase was activated at the core of contracting platelet aggregates. Background The dynamic features of thrombus formation have been visualized by conventional video widefield microscopy or confocal microscopy in live mice. However, owing to technical limitations, the precise spatiotemporal regulation of intracellular signaling molecule activities, which have been extensively studied in vitro, remains elusive in vivo. Objectives To visualize, by the use of two-photon excitation microscopy of transgenic mice expressing Förster resonance energy transfer (FRET) biosensors for extracellular signal-regulated kinase (ERK) and protein kinase A (PKA), ERK and PKA activities during thrombus formation in laser-injured subcutaneous arterioles. Results When a core of densely packed platelets had developed, ERK activity was increased from the basal region close to the injured arterioles. PKA was activated at the downstream side of an unstable shell overlaying the core of platelets. Intravenous administration of a MEK inhibitor, PD0325901, suppressed platelet tethering and dislodged platelet aggregates, indicating that ERK activity is indispensable for both initiation and maintenance of the thrombus. A cAMP analog, dbcAMP, inhibited platelet tethering but failed to dislodge the preformed platelet aggregates, suggesting that PKA can antagonize thrombus formation only in the early phase. Conclusion In vivo imaging of transgenic mice expressing FRET biosensors will open a new opportunity to visualize the spatiotemporal changes in signaling molecule activities not only during thrombus formation but also in other hematologic disorders. © 2017 International

  6. Signal enhancement of surface enhanced Raman scattering and surface enhanced resonance Raman scattering using in situ colloidal synthesis in microfluidics.

    Science.gov (United States)

    Wilson, Rab; Bowden, Stephen A; Parnell, John; Cooper, Jonathan M

    2010-03-01

    We demonstrate the enhanced analytical sensitivity of both surface enhanced Raman scattering (SERS) and surface enhanced resonance Raman scattering (SERRS) responses, resulting from the in situ synthesis of silver colloid in a microfluidic flow structure, where both mixing and optical interrogation were integrated on-chip. The chip-based sensor was characterized with a model Raman active label, rhodamine-6G (R6G), and had a limit of detection (LOD) of ca. 50 fM (equivalent to single molecule detection). The device was also used for the determination of the natural pigment, scytonemin, from cyanobacteria (as an analogue for extraterrestrial life existing in extreme environments). The observed LOD of approximately 10 pM (ca. <400 molecules) demonstrated the analytical advantages of working with freshly synthesized colloid in such a flow system. In both cases, sensitivities were between 1 and 2 orders of magnitude greater in the microfluidic system than those measured using the same experimental parameters, with colloid synthesized off-chip, under quiescent conditions.

  7. Oxygen-enhanced lung magnetic resonance imaging: influence of inversion pulse slice selectivity on inversion recovery half-Fourier single-shot turbo spin-echo signal.

    Science.gov (United States)

    Takenaka, Daisuke; Puderbach, Michael; Ohno, Yoshiharu; Risse, Frank; Ley, Sebastian; Sugimura, Kazuro; Kauczor, Hans-Ulrich

    2011-05-01

    The purpose of this study was to evaluate in vivo the influence of inversion pulse slice selectivity on oxygen-enhanced magnetic resonance imaging (MRI). Thirteen healthy volunteers were studied with a two-dimensional cardiac- and respiratory-gated adiabatic inversion-recovery half-Fourier single-shot turbo spin-echo (HASTE) sequence with either slice-selective or non-slice-selective inversion recovery (IR) pulse at inversion times increasing from 300 to 1400 ms. The signal-to-noise ratio (SNR) at every inversion time (TI), real signal difference (ΔSI), and relative enhancement ratio of lung parenchyma at TI ≥ 800 ms were statistically compared for oxygen-enhanced and non-oxygen-enhanced MR images with slice-selective or non-slice-selective IR pulses. The SNRs of acquisitions with slice-selective IR pulses were significantly higher than those of non-slice-selective IR pulses (P < 0.05). At TI 800 ms, the ΔSI of lung parenchyma on IR-HASTE images with slice-selective inversion pulse type was significantly higher than on that with the non-slice-selective type (P < 0.05). Relative enhancement ratios of the slice-selective IR pulses were significantly lower than those of non-slice-selective IR pulses at TIs between 800 and 1400 ms (P < 0.05). Slice selectivity of inversion pulse type affects oxygen-enhanced MRI in vivo.

  8. In vivo imaging of signal transduction cascades with probes based on Förster Resonance Energy Transfer (FRET).

    Science.gov (United States)

    Nakamura, Takeshi; Matsuda, Michiyuki

    2009-12-01

    Genetically encoded FRET probes enable us to visualize a variety of signaling events such as protein phosphorylation and G-protein activation in living cells. This unit focuses on FRET probes wherein both the donor and acceptor are fluorescence proteins and incorporated into a single molecule, i.e., a unimolecular probe. Advantages of these probes lie in their easy loading into cells, simple acquisition of FRET images, and clear evaluation of data. We have developed FRET probes for Ras-superfamily GTPases, designated Ras and interacting protein chimeric unit (Raichu) probes. We hereby describe strategies to develop Raichu-type FRET probes, procedures for their characterization, and acquisition and processing of images. Although improvements upon FRET probes are still based on trial-and-error, we provide practical tips for their optimization and briefly discuss the theory and applications of unimolecular FRET probes.

  9. The significance of increased fluid signal on magnetic resonance imaging in lumbar facets in relationship to degenerative spondylolisthesis.

    Science.gov (United States)

    Chaput, Christopher; Padon, Derek; Rush, Jeremy; Lenehan, Eric; Rahm, Mark

    2007-08-01

    Retrospective radiographic review of consecutive patients with universally applied standard. To define MRI findings at the facet joints that may suggest abnormal sagittal plane translation seen on standing lateral flexion-extension (SLFE) radiographs. MRI findings, including facet joint orientation, facet joint osteoarthritis, and the presence of synovial cysts, have all been linked with degenerative spondylolisthesis (DS). MRI can also detect facet joint effusion; however, there has not been a study specifically addressing the association of facet fluid signal to degenerative spondylolisthesis (DS). MRI and SLFE films of all patients seen at a single institution for an orthopedic spine consultation over a 2-year period were analyzed. The presence of facet effusions, synovial cysts, increased intensity within the interspinous ligament, degenerative changes at the facets, and anterior sagittal plane translation were all recorded. The data were analyzed to determine if there was a significant association between the presence of DS and the following: facet effusion, degenerative changes of the facets, synovial cysts, increased signal in the interspinous ligament, age, and gender. There were 139 patients without DS at (NegDS) and 54 with DS (PosDS) on SLFE films at L4-L5 (n = 193). PosDS patients were more likely to be older (P 1.5 mm) facet effusions are highly predictive of degenerative spondylolisthesis at L4-L5 in the absence of measurable anterolisthesis on supine MRI. A clinically measurable facet effusion (> or = 1 mm) suggests the need for SLFE films to diagnose degenerative spondylolisthesis that can be missed with supine positioning on MRI.

  10. Magnetic resonance imaging signal reduction may precede volume loss in the pituitary gland of transfusion-dependent beta-thalassemic patients

    Energy Technology Data Exchange (ETDEWEB)

    Hekmatnia, Ali; Rahmani, Ali Asghar; Adibi, Atoosa (Image Processing and Signal Research Center, Dept. of Radiology, Isfahan Univ. of Medical Sciences, Isfahan (Iran)); Radmard, Amir Reza (Dept. of Radiology, Shariati Hospital, Tehran Univ. of Medical Sciences, Tehran (Iran)); Khademi, Hooman (Shariati Hospital, Tehran Univ. of Medical Sciences, Tehran (Iran)), e-mail: radmard@ams.ac.ir

    2010-01-15

    Background: Pituitary iron overload in patients with transfusion-dependent beta-thalassemia may lead to delayed puberty. Magnetic resonance imaging (MRI) has the potential to estimate tissue iron concentration by detecting its paramagnetic effect and hypophyseal damage by measuring its dimensions indirectly. Purpose: To investigate the association of pituitary MRI findings and pubertal status in thalassemic patients as well as to demonstrate any priority in appearance of them. Material and Methods: Twenty-seven beta-thalassemic patients, aged 15-25 years, were divided into 13 with (group A) and 14 without hypogonadism (group B), matched by age, gender, duration of transfusion, and chelation therapy. Thirty-eight age- and sex-adjusted healthy control individuals were also included (group C). All participants underwent pituitary MRI using a 1.5T unit. Pituitary-to-fat signal intensity ratios (SIR) were calculated from coronal T2-weighted images. Estimated pituitary volumes were measured using pituitary height, width, and length on T1-weighted images. Results: The mean values of pituitary-to-fat SIRs were significantly lower in group A as compared with group B (P <0.001), and likewise group B had statistically lower values than group C (P=0.03). The pituitary height and volume were significantly decreased in group A compared to group B (P = 0.006 and P = 0.002, respectively), while these differences did not demonstrate statistically significance between groups B and C. Conclusion: Pituitary MRI findings such as signal intensity reduction and decrease in volume can be useful markers in estimating pituitary dysfunction in beta-thalassemic patients. Compared to healthy controls, lower values of pituitary-to-fat SIRs in thalassemic patients experiencing normal puberty, without marked decrease in volume, indicate that signal reduction may precede volume loss and could be expected first on MRI

  11. Perturbation-free measurement of the harmonics-to-noise ratio in voice signals using pitch synchronous harmonic analysis.

    Science.gov (United States)

    Murphy, P J

    1999-05-01

    The measurement of the harmonics-to-noise ratio (HNR) in speech signals gives an indication of the aperiodicity of the speech waveform. This may be due to the presence of jitter, shimmer, additive noise, waveshape change, or some unknown combination of these factors. In order to estimate the HNR as a measure of the additive noise component only, the contaminating effects of the other contributory components must first be removed. A pitch synchronous harmonic analysis is proposed to overcome this problem. The procedure takes advantage of the time scale compression-frequency expansion property of the Fourier series in order to eliminate jitter and shimmer. Successive spectra are added by harmonic number as opposed to frequency location, and perturbation is removed due to the fact that the relative heights of the harmonic components remain the same for scaled signals. The technique is examined on synthetically generated voice signals. A discussion of the results is given in terms of human voice signals, characterization of jitter, vocal tract filtering effects, perturbation mechanisms, nonlinear dynamics, and the possibility of developing the method for use with inverse filtering strategies.

  12. Localized surface plasmon resonance-mediated fluorescence signals in plasmonic nanoparticle-quantum dot hybrids for ultrasensitive Zika virus RNA detection via hairpin hybridization assays.

    Science.gov (United States)

    Adegoke, Oluwasesan; Morita, Masahiro; Kato, Tatsuya; Ito, Masahito; Suzuki, Tetsuro; Park, Enoch Y

    2017-08-15

    The current epidemic caused by the Zika virus (ZIKV) and the devastating effects of this virus on fetal development, which result in an increased incidence of congenital microcephaly symptoms, have prompted the World Health Organization (WHO) to declare the ZIKV a public health issue of global concern. Efficient probes that offer high detection sensitivity and specificity are urgently required to aid in the point-of-care treatment of the virus. In this study, we show that localized surface plasmon resonance (LSPR) signals from plasmonic nanoparticles (NPs) can be used to mediate the fluorescence signal from semiconductor quantum dot (Qdot) nanocrystals in a molecular beacon (MB) biosensor probe for ZIKV RNA detection. Four different plasmonic NPs functionalized with 3-mercaptopropionic acid (MPA), namely MPA-AgNPs, MPA-AuNPs, core/shell (CS) Au/AgNPs, and alloyed AuAgNPs, were synthesized and conjugated to L-glutathione-capped CdSeS alloyed Qdots to form the respective LSPR-mediated fluorescence nanohybrid. The concept of the plasmonic NP-Qdot-MB biosensor involves using LSPR from the plasmonic NPs to mediate a fluorescence signal to the Qdots, triggered by the hybridization of the target ZIKV RNA with the DNA loop sequence of the MB. The extent of the fluorescence enhancement based on ZIKV RNA detection was proportional to the LSPR-mediated fluorescence signal. The limits of detection (LODs) of the nanohybrids were as follows: alloyed AuAgNP-Qdot646-MB (1.7 copies/mL)) > CS Au/AgNP-Qdot646-MB (LOD =2.4 copies/mL) > AuNP-Qdot646-MB (LOD =2.9 copies/mL) > AgNP-Qdot646-MB (LOD =7.6 copies/mL). The LSPR-mediated fluorescence signal was stronger for the bimetallic plasmonic NP-Qdots than the single metallic plasmonic NP-Qdots. The plasmonic NP-Qdot-MB biosensor probes exhibited excellent selectivity toward ZIKV RNA and could serve as potential diagnostic probes for the point-of care detection of the virus. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Paralinguistic mechanisms of production in human “beatboxing”: A real-time magnetic resonance imaging study

    Science.gov (United States)

    Proctor, Michael; Bresch, Erik; Byrd, Dani; Nayak, Krishna; Narayanan, Shrikanth

    2013-01-01

    Real-time Magnetic Resonance Imaging (rtMRI) was used to examine mechanisms of sound production by an American male beatbox artist. rtMRI was found to be a useful modality with which to study this form of sound production, providing a global dynamic view of the midsagittal vocal tract at frame rates sufficient to observe the movement and coordination of critical articulators. The subject's repertoire included percussion elements generated using a wide range of articulatory and airstream mechanisms. Many of the same mechanisms observed in human speech production were exploited for musical effect, including patterns of articulation that do not occur in the phonologies of the artist's native languages: ejectives and clicks. The data offer insights into the paralinguistic use of phonetic primitives and the ways in which they are coordinated in this style of musical performance. A unified formalism for describing both musical and phonetic dimensions of human vocal percussion performance is proposed. Audio and video data illustrating production and orchestration of beatboxing sound effects are provided in a companion annotated corpus. PMID:23363120

  14. Impact of low signal intensity assessed by cine magnetic resonance imaging on detection of poorly viable myocardium in patients with prior myocardial infarction.

    Science.gov (United States)

    Ota, Shingo; Tanimoto, Takashi; Orii, Makoto; Hirata, Kumiko; Shiono, Yasutsugu; Shimamura, Kunihiro; Matsuo, Yoshiki; Yamano, Takashi; Ino, Yasushi; Kitabata, Hironori; Yamaguchi, Tomoyuki; Kubo, Takashi; Tanaka, Atsushi; Imanishi, Toshio; Akasaka, Takashi

    2015-05-13

    Late gadolinium enhancement magnetic resonance imaging (LGE-MRI) has been established as a modality to detect myocardial infarction (MI). However, the use of gadolinium contrast is limited in patients with advanced renal dysfunction. Although the signal intensity (SI) of infarct area assessed by cine MRI is low in some patients with prior MI, the prevalence and clinical significance of low SI has not been evaluated. The aim of this study was to evaluate how low SI assessed by cine MRI may relate to the myocardial viability in patients with prior MI. Fifty patients with prior MI underwent both cine MRI and LGE-MRI. The left ventricle was divided into 17 segments. The presence of low SI and the wall motion score (WMS) of each segment were assessed by cine MRI. The transmural extent of infarction was evaluated by LGE-MRI. LGE was detected in 329 of all 850 segments (39%). The low SI assessed by cine MRI was detected in 105 of 329 segments with LGE (32%). All segments with low SI had LGE. Of all 329 segments with LGE, the segments with low SI showed greater transmural extent of infarction (78 [72 - 84] % versus 53 [38 - 72] %, P cine MRI may be effective for detecting poorly viable myocardium in patients with prior MI.

  15. Speech perception of sine-wave signals by children with cochlear implants.

    Science.gov (United States)

    Nittrouer, Susan; Kuess, Jamie; Lowenstein, Joanna H

    2015-05-01

    Children need to discover linguistically meaningful structures in the acoustic speech signal. Being attentive to recurring, time-varying formant patterns helps in that process. However, that kind of acoustic structure may not be available to children with cochlear implants (CIs), thus hindering development. The major goal of this study was to examine whether children with CIs are as sensitive to time-varying formant structure as children with normal hearing (NH) by asking them to recognize sine-wave speech. The same materials were presented as speech in noise, as well, to evaluate whether any group differences might simply reflect general perceptual deficits on the part of children with CIs. Vocabulary knowledge, phonemic awareness, and "top-down" language effects were all also assessed. Finally, treatment factors were examined as possible predictors of outcomes. Results showed that children with CIs were as accurate as children with NH at recognizing sine-wave speech, but poorer at recognizing speech in noise. Phonemic awareness was related to that recognition. Top-down effects were similar across groups. Having had a period of bimodal stimulation near the time of receiving a first CI facilitated these effects. Results suggest that children with CIs have access to the important time-varying structure of vocal-tract formants.

  16. Ontogeny of individual and litter identity signaling in grunts of piglets.

    Science.gov (United States)

    Syrová, Michaela; Policht, Richard; Linhart, Pavel; Špinka, Marek

    2017-11-01

    Many studies have shown that animal vocalizations can signal individual identity and group/family membership. However, much less is known about the ontogeny of identity information-when and how this individual/group distinctiveness in vocalizations arises and how it changes during the animal's life. Recent findings suggest that even species that were thought to have limited vocal plasticity could adjust their calls to sound more similar to each other within a group. It has already been shown that sows can acoustically distinguish their own offspring from alien piglets and that litters differ in their calls. Surprisingly, individual identity in piglet calls has not been reported yet. In this paper, this gap is filled, and it is shown that there is information about piglet identity. Information about litter identity is confirmed as well. Individual identity increased with age, but litter vocal identity did not increase with age. The results were robust as a similar pattern was apparent in two situations differing in arousal: isolation and back-test. This paper argues that, in piglets, increased individual discrimination results from the rapid growth of piglets, which is likely to be associated with growth and diversification of the vocal tract rather than from social effects and vocal plasticity.

  17. Comparison of multi-echo dixon methods with volume interpolated breath-hold gradient magnetic resonance imaging in fat-signal fraction quantification of paravaertebral muscle

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Yeon Hwa; Kim, Hak Sun; Lee, Young Han [Dept. of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); and others

    2015-10-15

    To assess whether multi-echo Dixon magnetic resonance (MR) imaging with simultaneous T2{sup *} estimation and correction yields more accurate fat-signal fraction (FF) measurement of the lumbar paravertebral muscles, in comparison with non-T2{sup *}-corrected two-echo Dixon or T2{sup *}-corrected three-echo Dixon, using the FF measurements from single-voxel MR spectroscopy as the reference standard. Sixty patients with low back pain underwent MR imaging with a 1.5T scanner. FF mapping images automatically obtained using T2{sup *}-corrected Dixon technique with two (non-T2{sup *}-corrected), three, and six echoes, were compared with images from single-voxel MR spectroscopy at the paravertebral muscles on levels L4 through L5. FFs were measured directly by two radiologists, who independently drew the region of interest on the mapping images from the three sequences. A total of 117 spectroscopic measurements were performed either bilaterally (57 of 60 subjects) or unilaterally (3 of 60 subjects). The mean spectroscopic FF was 14.3 ± 11.7% (range, 1.9-63.7%). Interobserver agreement was excellent between the two radiologists. Lin's concordance correlation between the spectroscopic findings and all the imaging-based FFs were statistically significant (p < 0.001). FFs obtained from the T2*-corrected six-echo Dixon sequences showed a significantly better concordance with the spectroscopic data, with its concordance correlation coefficient being 0.99 and 0.98 (p < 0.001), as compared with two- or three-echo methods. T2{sup *}-corrected six-echo Dixon sequence would be a better option than two- or three-echo methods for noninvasive quantification of lumbar muscle fat quantification.

  18. Capturing amplitude changes of low-frequency fluctuations in functional magnetic resonance imaging signal: a pilot acupuncture study on NeiGuan (PC6).

    Science.gov (United States)

    Zhang, Gang; Yin, Hao; Zhou, You-Long; Han, Hong-Yan; Wu, Yun-Hu; Xing, Wei; Xu, Hong-Zhou; Zuo, Xi-Nian

    2012-04-01

    This study aims to examine amplitude changes of low-frequency oscillations (fALFF) in the blood-oxygen level-dependent (BOLD) signal associated with acupuncture on NeiGuan (PC6). Ten (10) healthy adults participated in a functional magnetic resonance imaging (i.e., nuclear medicine; fMRI) study. During the brain-imaging procedure, the participants were instructed to lie quietly; they did not perform any cognitive task. Three (3) fMRI scans were conducted for each participant: a first resting-state scan (R1), a stimulating-acupoint scan (AP), and a second resting-state scan (R2) after AP. Individual fALFF maps were calculated for each scan. During R1, consistent with previous studies, the default network regions showed significantly detectable fALFF amplitudes. Acupuncture on PC6 increased fALFF amplitudes within the anterior cingulate cortex (ACC), occipital fusiform gyrus, posterior cingulate cortex, and precuneus (PCC/PCU). In contrast, during R2, fALFF within PCC is still significantly higher than R1 while ACC and cerebellum showed decreased fALFF. These findings imply that stimulating PC6 can change the amplitude of the intrinsic cortical activity of the brain. In particular, a continuous and temporally consistent effect of acupuncture within PCC not the common brain circuit of pain including ACC and cerebellum was observed. Considering the cognitive functions and deficits of the relevant areas in mild cognitive impairment and Alzheimer disease, acupuncture on PC6 could potentially affect both psychiatric and neurological disorders. Thus, stimulating PC6 may be a candidate method for improving cognitive impairment.

  19. Integrated unaligned resonant modulator tuning

    Science.gov (United States)

    Zortman, William A.; Lentine, Anthony L.

    2017-10-03

    Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, from the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.

  20. Ultrax:An Animated Midsagittal Vocal Tract Display for Speech Therapy

    OpenAIRE

    Richmond, K; Renals, S.

    2012-01-01

    Speech sound disorders (SSD) are the most common communication impairment in childhood, and can hamper social development and learning. Current speech therapy interventions rely predominantly on the auditory skills of the child, as little technology is available to assist in diagnosis and therapy of SSDs. Realtime visualisation of tongue movements has the potential to bring enormous benefit to speech therapy. Ultrasound scanning offers this possibility, although its display may be hard to int...

  1. Factors limiting vocal-tract length discrimination in cochlear implant simulations

    NARCIS (Netherlands)

    Gaudrain, Etienne; Başkent, Deniz

    Perception of voice characteristics allows normal hearing listeners to identify the gender of a speaker, and to better segregate speakers from each other in cocktail party situations. This benefit is largely driven by the perception of two vocal characteristics of the speaker: The fundamental

  2. Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors

    NARCIS (Netherlands)

    Zhuang, L.; Hoekman, M.; Beeker, Willem; Leinse, Arne; Heideman, Rene; van Dijk, Paulus; Roeloffzen, C.G.H.

    2013-01-01

    In this paper, novel photonic delay lines (DLs) using Vernier/non-identical ring resonators (VRRs) are proposed and demonstrated, which are capable of simultaneous generation of multiple different delays at different wavelengths (frequencies). The simple device architectures and full

  3. Quantitative study of signal intensity in hepatic hemangioma: a new parameter in high field magnetic resonance; Estudo quantitativo da intensidade de sinal do hemangioma hepatico: um novo parametro utilizado em ressonancia magnetica de alto campo

    Energy Technology Data Exchange (ETDEWEB)

    D`Ippolito, Giuseppe; Tiferes, Dario Ariel [Escola Paulista de Medicina, Sao Paulo, SP (Brazil)

    1995-05-01

    Prospective study of morphologic and quantitative parameters of hepatic hemangiomas in high field magnetic resonance, establishing their isolated efficacy and the best sequence for high diagnostic accuracy. Sixteen hepatic hemangiomas were examined in spin-echo and multiecho sequences. The morphologic aspects of the lesion were analyzed and lesion /liver signal intensity ratio was computed. Results showed that, although high field magnetic resonance is highly sensible in the detection of hepatic hemangiomas (94%), the great variety of appearances may cause diagnostic doubts (66.7% of atypic hemangiomas) when morphologic parameters are used only. On the other hand, the exclusive use of lesion/liver intensity ratio suggested the diagnosis of hemangioma in all cases. (author). 30 refs., 3 figs., 4 tabs.

  4. Resonant halide perovskite nanoparticles

    Science.gov (United States)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  5. Speech across species: on the mechanistic fundamentals of vocal production and perception

    OpenAIRE

    Ohms, Verena Regina

    2011-01-01

    Birdsong and human speech are both complex behaviours which show striking similarities mainly thought to be present in the area of development and learning. The most important parameters in human speech are vocal tract resonances, called formants. Different formant patterns characterize different vowels and are produced by moving articulators such as tongue and lips. However, not much is known about the production and perception of vocal tract resonances by birds. In this thesis I show that b...

  6. Direct measurement of the signal intensity of diffusion-weighted magnetic resonance imaging for preoperative grading and treatment guidance for brain gliomas

    Directory of Open Access Journals (Sweden)

    Chih-Chun Wu

    2012-11-01

    Conclusion: The proposed method – direct measuring of tumor signal intensity of DWI on PACS monitors – is feasible for grading gliomas in clinical neuro-oncology imaging services and has a high level of reliability and reproducibility.

  7. Scaled signal intensity of uterine fibroids based on T2-weighted MR images: a potential objective method to determine the suitability for magnetic resonance-guided focused ultrasound surgery of uterine fibroids.

    Science.gov (United States)

    Park, Hyun; Yoon, Sang-Wook; Sokolov, Amit

    2015-12-01

    Magnetic Resonance-guided Focused Ultrasound Surgery (MRgFUS) is a non-invasive method to treat uterine fibroids. To help determine the patient suitability for MRgFUS, we propose a new objective measure: the scaled signal intensity (SSI) of uterine fibroids in T2 weighted MR images (T2WI). Forty three uterine fibroids in 40 premenopausal women were included in this retrospective study. SSI of each fibroid was measured from the screening T2WI by standardizing its mean signal intensity to a 0-100 scale, using reference intensities of rectus abdominis muscle (0) and subcutaneous fat (100). Correlation between the SSI and the non-perfused volume (NPV) ratio (a measure for treatment success) was calculated. Pre-treatment SSI showed a significant inverse-correlation with post treatment NPV ratio (p < 0.05). When dichotomizing NPV ratio at 45 %, the optimal cut off value of the SSI was found to be 16.0. A fibroid with SSI value 16.0 or less can be expected to have optimal responses. The SSI of uterine fibroids in T2WI can be suggested as an objective parameter to help in patient selection for MRgFUS. • Signal intensity of fibroid in MR images predicts treatment response to MRgFUS. • Signal intensity is standardized into scaled form using adjacent tissues as references. • Fibroids with SSI less than 16.0 are expected to have optimal responses.

  8. Generation and transmission of 3 × 3 W-Band multi-input multi-output orthogonal frequency division multiplexing-radio-over-fiber signals using micro-ring resonators.

    Science.gov (United States)

    Alavi, S E; Amiri, I S; Ahmad, H; Supa'at, A S M; Fisal, N

    2014-12-01

    Using the micro-ring resonator (MRR) system, the single and multi-carriers at frequencies of f(1)=192.898, f(2)=192.990, f(3)=193.1, f(4)=193.315, and f(5)=193.537  THz with a free spectral range (FSR) of 92, 110, 215, and 222 GHz, respectively, are generated to be suitable for a radio-over-fiber (RoF) system based on multi-input multi-output (MIMO) with orthogonal frequency division multiplexing (OFDM). Demonstrated are the concepts of all-optical MIMO signal generation and its transmission over a 50 km single mode fiber (SMF) optical link and an up to 3 m wireless link. Sixty-four multi-carriers are used in the all-optical generation of three MIMO W-Band RF signals, where the single carriers (f(3)-f(5)) transport the signals over the RoF link. The bit error rate (BER) of the overall system performance is discussed; thus, the transmission of MIMO signals is feasible for up to an SMF path 50 km long and a wireless distance of 3 m.

  9. Metamaterial Combining Electric- and Magnetic-Dipole-Based Configurations for Unique Dual-Band Signal Enhancement in Ultrahigh-Field Magnetic Resonance Imaging.

    Science.gov (United States)

    Schmidt, Rita; Webb, Andrew

    2017-10-11

    Magnetic resonance imaging and spectroscopy (MRI and MRS) are both widely used techniques in medical diagnostics and research. One of the major thrusts in recent years has been the introduction of ultrahigh-field magnets in order to boost the sensitivity. Several MRI studies have examined further potential improvements in sensitivity using metamaterials, focusing on single frequency applications. However, metamaterials have yet to reach a level that is practical for routine MRI use. In this work, we explore a new metamaterial implementation for MRI, a dual-nuclei resonant structure, which can be used for both proton and heteronuclear magnetic resonance. Our approach combines two configurations, one based on a set of electric dipoles for the low frequency band, and the second based on a set of magnetic dipoles for the high frequency band. We focus on the implementation of a dual-nuclei metamaterial for phosphorus and proton imaging and spectroscopy at an ultrahigh-field strength of 7 T. In vivo scans using this flexible and compact structure show that it locally enhances both the phosphorus and proton transmit and receive sensitivities.

  10. Residual analysis of the water resonance signal in breast lesions imaged with high spectral and spatial resolution (HiSS) MRI: A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, William A., E-mail: willw00@uchicago.edu; Medved, Milica; Karczmar, Gregory S.; Giger, Maryellen L. [Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637 (United States)

    2014-01-15

    Purpose: High spectral and spatial resolution magnetic resonance imaging (HiSS MRI) yields information on the local environment of suspicious lesions. Previous work has demonstrated the advantages of HiSS (complete fat-suppression, improved image contrast, no required contrast agent, etc.), leading to initial investigations of water resonance lineshape for the purpose of breast lesion classification. The purpose of this study is to investigate a quantitative imaging biomarker, which characterizes non-Lorentzian components of the water resonance in HiSS MRI datasets, for computer-aided diagnosis (CADx). Methods: The inhomogeneous broadening and non-Lorentzian or “off-peak” components seen in the water resonance of proton spectra of breast HiSS images are analyzed by subtracting a Lorentzian fit from the water peak spectra and evaluating the difference spectrum or “residual.” The maxima of these residuals (referred to hereafter as “off-peak components”) tend to be larger in magnitude in malignant lesions, indicating increased broadening in malignant lesions. The authors considered only those voxels with the highest magnitude off-peak components in each lesion, with the number of selected voxels dependent on lesion size. Our voxel-based method compared the magnitudes and frequencies of off-peak components of all voxels from all lesions in a database that included 15 malignant and 8 benign lesions (yielding ∼3900 voxels) based on the lesions’ biopsy-confirmed diagnosis. Lesion classification was accomplished by comparing the average off-peak component magnitudes and frequencies in malignant and benign lesions. The area under the ROC curve (AUC) was used as a figure of merit for both the voxel-based and lesion-based methods. Results: In the voxel-based task of distinguishing voxels from malignant and benign lesions, off-peak magnitude yielded an AUC of 0.88 (95% confidence interval [0.84, 0.91]). In the lesion-based task of distinguishing malignant and

  11. Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals.

    Science.gov (United States)

    Naressi, A; Couturier, C; Castang, I; de Beer, R; Graveron-Demilly, D

    2001-07-01

    This article describes a Java-based graphical user interface for the magnetic resonance user interface (MRUI) quantitation package. This package allows MR spectroscopists to easily perform time-domain analysis of in vivo/medical MR spectroscopy data. We have found that the Java programming language is very well suited for developing highly interactive graphical software applications such as the MRUI system. We also have established that MR quantitation algorithms, programmed in the past in other languages, can easily be embedded into the Java-based MRUI by using the Java native interface (JNI).

  12. Separation of components of a broad 1H-NMR composite signal by means of nutation experiments under low amplitude radiofrequency fields. Application to the water signal in synthetic clays; Developpement et mise en oeuvre d'une nouvelle methode fondee sur le phenomene de nutation pour la decomposition d'un signal composite de resonance magnetique nucleaire. Application au signal 1h de l'eau dans des argiles synthetiques

    Energy Technology Data Exchange (ETDEWEB)

    Trausch, G

    2006-11-15

    Nowadays, geologic nuclear waste storage is envisioned according to a multi-layer model which implies clays. The latter exhibit retention capacities and low permeability to water; that is why they are considered as a good candidate for engineered barriers to radioactive waste disposal. The present work here aims at studying transport phenomena which involve water molecules in three samples of synthetic clays (two of them exhibiting a Pake doublet) by means of Nuclear Magnetic Resonance (NMR). The first chapter describes structural properties of clays and presents the state-of-art of NMR and other experimental techniques used for such systems. The second chapter deals with the interpretation and the simulation of each conventional proton spectrum. These simulations allow us to evidence and to characterize a chemical exchange phenomenon. The third chapter is dedicated to original nutation experiments performed under low radiofrequency field in the case of broad NMR signal. It is shown that this type of NMR experiment can yield the number and the proportion of each species contributing to the whole signal. These results are exploited in the fourth chapter for processing relaxation and diffusion experiments. Finally, the diffusion coefficients obtained by NMR are divided by a factor 4 with respect to pure water while relaxation rates are two orders of magnitude greater. (author)

  13. 849 RESONANCE | September 2013

    Indian Academy of Sciences (India)

    IAS Admin

    849. RESONANCE | September 2013. Page 2. 850. RESONANCE | September 2013. Page 3. 851. RESONANCE | September 2013. Page 4. 852. RESONANCE | September 2013. Page 5. 853. RESONANCE | September 2013. Page 6. 854. RESONANCE | September 2013. Page 7. 855. RESONANCE | September 2013.

  14. Short-term temporal alterations in magnetic resonance signal occur in primary lesions identified in the deep digital flexor tendon of the equine digit.

    Science.gov (United States)

    Milner, P I; Sidwell, S; Talbot, A M; Clegg, P D

    2012-03-01

    Primary lesions of the deep digital flexor tendon (DDFT) within the digit are an important cause of lameness diagnosed using magnetic resonance imaging (MRI) but appearance of these lesions over time has not been documented. To determine whether the magnetic resonance (MR) appearance of different primary DDFT lesions alter over a 6 month period and whether lesion type is a determinant of these changes. Cases included had lameness attributable to a primary lesion involving the DDFT in the digit diagnosed on MRI. Lesions were typed into parasagittal, dorsal border and core lesions. Approximate volumes and intensities were quantified for each lesion type using T2* scan sequences. Follow-up examinations and measurements were repeated at 3 and 6 month periods following conservative management. Twenty-three horses fitted the inclusion criteria. Lesion distribution included: parasagittal (n = 7), dorsal border (n = 11) and core lesions (n = 5). No association was found between age of horse, degree of lameness and lesion type. Only dorsal border lesions showed statistically significant reduction both in volume (initial scan: 0.18 ± 0.14 cm(3) ) at 3 months (0.11 ± 0.10 cm(3) , Plesions showed no difference in lesion volume or ratiometric intensity. Lameness improved in all lesion types following conservative management. Dorsal border lesions of the DDFT show reduction in both volume and intensity whereas parasagittal and core lesions do not. Lesion typing may be important in predicting lesion behaviour and short-term outcome using MR imaging. © 2011 EVJ Ltd.

  15. Are Articulatory Settings Mechanically Advantageous for Speech Motor Control?

    OpenAIRE

    Vikram Ramanarayanan; Adam Lammert; Louis Goldstein; Shrikanth Narayanan

    2014-01-01

    We address the hypothesis that postures adopted during grammatical pauses in speech production are more "mechanically advantageous" than absolute rest positions for facilitating efficient postural motor control of vocal tract articulators. We quantify vocal tract posture corresponding to inter-speech pauses, absolute rest intervals as well as vowel and consonant intervals using automated analysis of video captured with real-time magnetic resonance imaging during production of read and spontan...

  16. Effects of the epilarynx area on vocal fold dynamics and the primary voice signal.

    Science.gov (United States)

    Döllinger, Michael; Berry, David A; Luegmair, Georg; Hüttner, Björn; Bohr, Christopher

    2012-05-01

    For the analysis of vocal fold dynamics, sub- and supraglottal influences must be taken into account, as recent studies have shown. In this work, we analyze the influence of changes in the epilaryngeal area on vocal fold dynamics. We investigate two excised female larynges in a hemilarynx setup combined with a synthetic vocal tract consisting of hard plastic and simulating the vowel /a/. Eigenmodes, amplitudes, and velocities of the oscillations, the subglottal pressures (P(sub)), and sound pressure levels (SPLs) of the generated signal are investigated as a function of three distinctive epilaryngeal areas (28.4 mm(2), 71.0 mm(2), and 205.9 mm(2)). The results showed that the SPL is independent of the epilarynx cross section and exhibits a nonlinear relation to the insufflated airflow. The P(sub) decreased with an increase in the epilaryngeal area and displayed linear relations to the airflow. The principal eigenfunctions (EEFs) from the vocal fold dynamics exhibited lateral movement for the first EEF and rotational motion for the second EEF. In total, the first two EEFs covered a minimum of 60% of the energy, with an average of more than 50% for the first EEF. Correlations to the epilarynx areas were not found. Maximal values for amplitudes (up to 2.5 mm) and velocities (up to 1.57 mm/ms) changed with varying epilaryngeal area but did not show consistent behavior for both larynges. We conclude that the size of the epilaryngeal area has significant influence on vocal fold dynamics but does not significantly affect the resultant SPL. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  17. Cepstral domain modification of audio signals for data embedding: preliminary results

    Science.gov (United States)

    Gopalan, Kaliappan

    2004-06-01

    A method of embedding data in an audio signal using cepstral domain modification is described. Based on successful embedding in the spectral points of perceptually masked regions in each frame of speech, first the technique was extended to embedding in the log spectral domain. This extension resulted at approximately 62 bits /s of embedding with less than 2 percent of bit error rate (BER) for a clean cover speech (from the TIMIT database), and about 2.5 percent for a noisy speech (from an air traffic controller database), when all frames - including silence and transition between voiced and unvoiced segments - were used. Bit error rate increased significantly when the log spectrum in the vicinity of a formant was modified. In the next procedure, embedding by altering the mean cepstral values of two ranges of indices was studied. Tests on both a noisy utterance and a clean utterance indicated barely noticeable perceptual change in speech quality when lower range of cepstral indices - corresponding to vocal tract region - was modified in accordance with data. With an embedding capacity of approximately 62 bits/s - using one bit per each frame regardless of frame energy or type of speech - initial results showed a BER of less than 1.5 percent for a payload capacity of 208 embedded bits using the clean cover speech. BER of less than 1.3 percent resulted for the noisy host with a capacity was 316 bits. When the cepstrum was modified in the region of excitation, BER increased to over 10 percent. With quantization causing no significant problem, the technique warrants further studies with different cepstral ranges and sizes. Pitch-synchronous cepstrum modification, for example, may be more robust to attacks. In addition, cepstrum modification in regions of speech that are perceptually masked - analogous to embedding in frequency masked regions - may yield imperceptible stego audio with low BER.

  18. Magnetic resonance imaging the basics

    CERN Document Server

    Constantinides, Christakis

    2014-01-01

    Magnetic resonance imaging (MRI) is a rapidly developing field in basic applied science and clinical practice. Research efforts in this area have already been recognized with five Nobel prizes awarded to seven Nobel laureates in the past 70 years. Based on courses taught at The Johns Hopkins University, Magnetic Resonance Imaging: The Basics provides a solid introduction to this powerful technology. The book begins with a general description of the phenomenon of magnetic resonance and a brief summary of Fourier transformations in two dimensions. It examines the fundamental principles of physics for nuclear magnetic resonance (NMR) signal formation and image construction and provides a detailed explanation of the mathematical formulation of MRI. Numerous image quantitative indices are discussed, including (among others) signal, noise, signal-to-noise, contrast, and resolution. The second part of the book examines the hardware and electronics of an MRI scanner and the typical measurements and simulations of m...

  19. Nanoantenna using mechanical resonance

    KAUST Repository

    Chang Hwa Lee,

    2010-11-01

    Nanoantenna using mechanical resonance vibration is made from an indium tin oxide (ITO) coated vertically aligned nanorod array. Only this structure works as a radio with demodulator without any electrical circuit using field emission phenomenon. A top-down fabrication method of an ITO coated nanorod array is proposed using a modified UV lithography. The received radio frequency and the resonance frequency of nanoantenna can be controlled by the fabrication condition through the height of a nanorod array. The modulated signals are received successfully with the transmission carrier wave frequency (248MHz) and the proposed nanoantenna is expected to be used in communication system for ultra small scale sensor. ©2010 IEEE.

  20. Scaled signal intensity of uterine fibroids based on T2-weighted MR images: a potential objective method to determine the suitability for magnetic resonance-guided focused ultrasound surgery of uterine fibroids

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun [CHA University, Comprehensive Gynecologic Cancer Center, CHA Bundang Medical Center, Gyunggi-do (Korea, Republic of); Yoon, Sang-Wook [CHA University, Department of Diagnostic Radiology, CHA Bundang Medical Center, Sungnam-si, Gyunggi-do (Korea, Republic of); Sokolov, Amit [InSightec Ltd., Haifa (Israel)

    2015-12-15

    Magnetic Resonance-guided Focused Ultrasound Surgery (MRgFUS) is a non-invasive method to treat uterine fibroids. To help determine the patient suitability for MRgFUS, we propose a new objective measure: the scaled signal intensity (SSI) of uterine fibroids in T2 weighted MR images (T2WI). Forty three uterine fibroids in 40 premenopausal women were included in this retrospective study. SSI of each fibroid was measured from the screening T2WI by standardizing its mean signal intensity to a 0-100 scale, using reference intensities of rectus abdominis muscle (0) and subcutaneous fat (100). Correlation between the SSI and the non-perfused volume (NPV) ratio (a measure for treatment success) was calculated. Pre-treatment SSI showed a significant inverse-correlation with post treatment NPV ratio (p < 0.05). When dichotomizing NPV ratio at 45 %, the optimal cut off value of the SSI was found to be 16.0. A fibroid with SSI value 16.0 or less can be expected to have optimal responses. The SSI of uterine fibroids in T2WI can be suggested as an objective parameter to help in patient selection for MRgFUS. (orig.)

  1. Network Modeling for Functional Magnetic Resonance Imaging (fMRI) Signals during Ultra-Fast Speech Comprehension in Late-Blind Listeners.

    Science.gov (United States)

    Dietrich, Susanne; Hertrich, Ingo; Ackermann, Hermann

    2015-01-01

    In many functional magnetic resonance imaging (fMRI) studies blind humans were found to show cross-modal reorganization engaging the visual system in non-visual tasks. For example, blind people can manage to understand (synthetic) spoken language at very high speaking rates up to ca. 20 syllables/s (syl/s). FMRI data showed that hemodynamic activation within right-hemispheric primary visual cortex (V1), bilateral pulvinar (Pv), and left-hemispheric supplementary motor area (pre-SMA) covaried with their capability of ultra-fast speech (16 syllables/s) comprehension. It has been suggested that right V1 plays an important role with respect to the perception of ultra-fast speech features, particularly the detection of syllable onsets. Furthermore, left pre-SMA seems to be an interface between these syllabic representations and the frontal speech processing and working memory network. So far, little is known about the networks linking V1 to Pv, auditory cortex (A1), and (mesio-) frontal areas. Dynamic causal modeling (DCM) was applied to investigate (i) the input structure from A1 and Pv toward right V1 and (ii) output from right V1 and A1 to left pre-SMA. As concerns the input Pv was significantly connected to V1, in addition to A1, in blind participants, but not in sighted controls. Regarding the output V1 was significantly connected to pre-SMA in blind individuals, and the strength of V1-SMA connectivity correlated with the performance of ultra-fast speech comprehension. By contrast, in sighted controls, not understanding ultra-fast speech, pre-SMA did neither receive input from A1 nor V1. Taken together, right V1 might facilitate the "parsing" of the ultra-fast speech stream in blind subjects by receiving subcortical auditory input via the Pv (= secondary visual pathway) and transmitting this information toward contralateral pre-SMA.

  2. Network Modeling for Functional Magnetic Resonance Imaging (fMRI Signals during Ultra-Fast Speech Comprehension in Late-Blind Listeners.

    Directory of Open Access Journals (Sweden)

    Susanne Dietrich

    Full Text Available In many functional magnetic resonance imaging (fMRI studies blind humans were found to show cross-modal reorganization engaging the visual system in non-visual tasks. For example, blind people can manage to understand (synthetic spoken language at very high speaking rates up to ca. 20 syllables/s (syl/s. FMRI data showed that hemodynamic activation within right-hemispheric primary visual cortex (V1, bilateral pulvinar (Pv, and left-hemispheric supplementary motor area (pre-SMA covaried with their capability of ultra-fast speech (16 syllables/s comprehension. It has been suggested that right V1 plays an important role with respect to the perception of ultra-fast speech features, particularly the detection of syllable onsets. Furthermore, left pre-SMA seems to be an interface between these syllabic representations and the frontal speech processing and working memory network. So far, little is known about the networks linking V1 to Pv, auditory cortex (A1, and (mesio- frontal areas. Dynamic causal modeling (DCM was applied to investigate (i the input structure from A1 and Pv toward right V1 and (ii output from right V1 and A1 to left pre-SMA. As concerns the input Pv was significantly connected to V1, in addition to A1, in blind participants, but not in sighted controls. Regarding the output V1 was significantly connected to pre-SMA in blind individuals, and the strength of V1-SMA connectivity correlated with the performance of ultra-fast speech comprehension. By contrast, in sighted controls, not understanding ultra-fast speech, pre-SMA did neither receive input from A1 nor V1. Taken together, right V1 might facilitate the "parsing" of the ultra-fast speech stream in blind subjects by receiving subcortical auditory input via the Pv (= secondary visual pathway and transmitting this information toward contralateral pre-SMA.

  3. Diffusion-weighted magnetic resonance imaging for the initial characterization of non-fatty soft tissue tumors: correlation between T2 signal intensity and ADC values

    Energy Technology Data Exchange (ETDEWEB)

    Gondim Teixeira, Pedro Augusto [Service d' Imagerie Guilloz, CHU Nancy, Nancy (France); Universite de Lorraine, IADI, UMR S 947, Vandoeuvre-les-Nancy (France); Gay, Frederique; Blum, Alain [Service d' Imagerie Guilloz, CHU Nancy, Nancy (France); Chen, Bailiang; Felblinger, Jacques [Universite de Lorraine, IADI, UMR S 947, Vandoeuvre-les-Nancy (France); Zins, Marie [University Versailles St-Quentin, Versailles (France); Inserm, Centre for research in Epidemiology and Population Health (CESP), U1018, Villejuif (France); Sirveaux, Francois [Centre Chirurgical Emile Galle, Service de Chirurgie Traumatologique et Orthopedique, Nancy (France)

    2016-02-15

    To evaluate the performance of quantitative diffusion-weighted imaging (DWI) correlated with T2 signal in differentiating non-fatty benign from malignant tumors. A total of 76 patients with a histologically confirmed non-fatty soft tissue tumors (46 benign and 30 malignant) were prospectively included in this ethics committee approved study. All patients signed an informed consent and underwent MRI with DWI with two b values (0 and 600). ADC values from the solid components of these tumors were obtained and were correlated with the lesion's signal intensity on T2-weighted fat-saturated sequences. ADC values were obtained from adjacent normal muscle to allow calculation of tumor/muscle ADC ratios. There were 58 hyperintense and 18 iso or hypointense lesions. All hypointense lesions were benign. The mean ADC values for benign and malignant tumors were 1.47 ± 0.54 x 10{sup -3} and 1.17 ± 0.38 x 10{sup -3} mm{sup 2}/s respectively (p < 0.005). The mean ADC ratio in benign iso or hypointense tumors was significantly lower than that of hyperintense ones (0.76 ± 0.21 versus 1.58 ± 0.82 - p < 0.0001). An ADC ratio lower than 0.915 was highly specific for malignancy (96.4 %), whereas an ADC ratio higher than 1.32 was highly sensitive for benign lesions (90 %). ADC analysis can be useful in the initial characterization of T2 hyperintense non-fatty soft tissue masses, although this technique alone is not likely to change patient management. (orig.)

  4. Usefulness of perfusion weighted magnetic resonance imaging with signal-intensity curves analysis in the differential diagnosis of sellar and parasellar tumors: Preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Bladowska, Joanna, E-mail: asia.bladowska@gmail.com [Department of General Radiology, Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw (Poland); Zimny, Anna, E-mail: abernac@wp.pl [Department of General Radiology, Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw (Poland); Guziński, Maciej, E-mail: guziol@wp.pl [Department of General Radiology, Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw (Poland); Hałoń, Agnieszka, E-mail: ahalon2@gmail.com [Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw (Poland); Tabakow, Paweł, E-mail: p.tabakov@wp.pl [Department of Neurosurgery, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw (Poland); Czyż, Marcin, E-mail: mt.czyz@gmail.com [Department of Neurosurgery, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw (Poland); Czapiga, Bogdan, E-mail: bogdanczapiga@op.pl [Department of Neurosurgery, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw (Poland); Jarmundowicz, Włodzimierz, E-mail: jarmund@wp.pl [Department of Neurosurgery, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw (Poland); Sąsiadek, Marek J., E-mail: marek.sasiadek@am.wroc.pl [Department of General Radiology, Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw (Poland)

    2013-08-15

    Purpose: The most common pituitary tumors are adenomas, which however may be mimicked by other tumors that can show a very similar appearance in plain MRI. The aim of our study was to evaluate the usefulness of perfusion weighted MR imaging (PWI), including signal-intensity curves analysis in the differential diagnosis of sellar/parasellar tumors. Methods: Forty-one patients with sellar/parasellar tumors (23 macroadenomas, 10 meningiomas, 5 craniopharyngiomas, 1 intrasellar hemangioblastoma, 1 intrasellar prostate cancer metastasis, 1 suprasellar glioma), underwent plain MRI followed by PWI using a 1.5T unit. In each tumor, the mean and maximum values of relative cerebral blood volume (rCBV), as well as the relative peak height (rPH) and the relative percentage of signal intensity recovery (rPSR) were calculated. Results: The high perfusion tumors were: macroadenomas, meningiomas, squamous-papillary type of craniopharyngiomas, hemangioblastoma, glioma and metastasis. The low perfusion neoplasms included adamantinomatous type of craniopharyngiomas. By comparing adenomas and meningiomas, we found statistically significant differences in the mean and maximum rCBV values (p = 0.026 and p = 0.019, respectively), but not in rPH and rPSR. The maximum rCBV values >7.14 and the mean rCBV values >5.74 with the typical perfusion curve were very suggestive of the diagnosis of meningioma. There were differences between adenomas and other high perfusion tumors in rPH and rPSR values. Conclusions: PWI can provide additional information helpful in differential diagnosis of sellar/parasellar tumors. In our opinion PWI, as an easy to perform and fast technique should be incorporated into the MR protocol of all intracranial neoplasms including sellar/parasellar tumors.

  5. Photothermal resonance

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a method for detecting photo-thermal absorbance of a material utilising a mechanically temperature sensitive resonator (20) and a sample being arrange in thermal communication with the temperature sensitive resonator. The present invention further relates...

  6. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  7. Nonstationary weak signal detection based on normalization ...

    Indian Academy of Sciences (India)

    ... than the traditional stochastic resonance. The method develops the area of time-varying signal detection with stochastic resonance and presents new strategy for detection and denoising of a time-varying signal. It can be expected to be widely used in the areas of aperiodic signal processing, radar communication,etc ...

  8. Neuroaesthetic Resonance

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis

    2013-01-01

    Neuroaesthetic Resonance emerged from a mature body of patient- centered gesture-control research investigating non-formal rehabilitation via ICT-enhanced-Art to question ‘Aesthetic Resonance’. Motivating participation, ludic engagement, and augmenting physical motion in non-formal (fun) treatment...... the unencumbered motion-to-computer-generated activities - ‘Music Making’, ‘Painting’, ‘Robotic’ and ‘Video Game’ control. A focus of this position paper is to highlight how Aesthetic Resonance, in this context, relates to the growing body of research on Neuroaesthetics to evolve Neuroaesthetic Resonance....

  9. Return to Oz: voice pitch facilitates assessments of men's body size.

    Science.gov (United States)

    Pisanski, Katarzyna; Fraccaro, Paul J; Tigue, Cara C; O'Connor, Jillian J M; Feinberg, David R

    2014-08-01

    Listeners associate low voice pitch (fundamental frequency and/or harmonics) and formants (vocal-tract resonances) with large body size. Although formants reliably predict size within sexes, pitch does not reliably predict size in groups of same-sex adults. Voice pitch has therefore long been hypothesized to confound within-sex size assessment. Here we performed a knockout test of this hypothesis using whispered and 3-formant sine-wave speech devoid of pitch. Listeners estimated the relative size of men with above-chance accuracy from voiced, whispered, and sine-wave speech. Critically, although men's pitch and physical height were unrelated, the accuracy of listeners' size assessments increased in the presence rather than absence of pitch. Size assessments based on relatively low pitch yielded particularly high accuracy (70%-80%). Results of Experiment 2 revealed that amplitude, noise, and signal degradation of unvoiced speech could not explain this effect; listeners readily perceived formant shifts in manipulated whispered speech. Rather, in Experiment 3, we show that the denser harmonic spectrum provided by low pitch allowed for better resolution of formants, aiding formant-based size assessment. These findings demonstrate that pitch does not confuse body size assessment as has been previously suggested, but instead facilitates accurate size assessment by providing a carrier signal for vocal-tract resonances.

  10. Advances in magnetic resonance 2

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 2, features a mixture of experimental and theoretical contributions. The book contains four chapters and begins with an ambitious and general treatment of the problem of signal-to-noise ratio in magnetic resonance. This is followed by separate chapters on the interpretation of nuclear relaxation in fluids, with special reference to hydrogen; and various aspects of molecular theory of importance in NMR.

  11. Superresolution Imaging Using Resonant Multiples

    KAUST Repository

    Guo, Bowen

    2017-12-22

    A resonant multiple is defined as a multiple reflection that revisits the same subsurface location along coincident reflection raypaths. We show that resonant first-order multiples can be migrated with either Kirchhoff or wave-equation migration methods to give images with approximately twice the spatial resolution compared to post-stack primary-reflection images. A moveout-correction stacking method is proposed to enhance the signal-to-noise ratios (SNRs) of the resonant multiples before superresolution migration. The effectiveness of this procedure is validated by synthetic and field data tests.

  12. Off-resonance NOVEL

    Science.gov (United States)

    Jain, Sheetal K.; Mathies, Guinevere; Griffin, Robert G.

    2017-10-01

    Dynamic nuclear polarization (DNP) is theoretically able to enhance the signal in nuclear magnetic resonance (NMR) experiments by a factor γe/γn, where γ 's are the gyromagnetic ratios of an electron and a nuclear spin. However, DNP enhancements currently achieved in high-field, high-resolution biomolecular magic-angle spinning NMR are well below this limit because the continuous-wave DNP mechanisms employed in these experiments scale as ω0-n where n ˜ 1-2. In pulsed DNP methods, such as nuclear orientation via electron spin-locking (NOVEL), the DNP efficiency is independent of the strength of the main magnetic field. Hence, these methods represent a viable alternative approach for enhancing nuclear signals. At 0.35 T, the NOVEL scheme was demonstrated to be efficient in samples doped with stable radicals, generating 1H NMR enhancements of ˜430. However, an impediment in the implementation of NOVEL at high fields is the requirement of sufficient microwave power to fulfill the on-resonance matching condition, ω0I = ω1S, where ω0I and ω1S are the nuclear Larmor and electron Rabi frequencies, respectively. Here, we exploit a generalized matching condition, which states that the effective Rabi frequency, ω1S e f f, matches ω0I. By using this generalized off-resonance matching condition, we generate 1H NMR signal enhancement factors of 266 (˜70% of the on-resonance NOVEL enhancement) with ω1S/2π = 5 MHz. We investigate experimentally the conditions for optimal transfer of polarization from electrons to 1H both for the NOVEL mechanism and the solid-effect mechanism and provide a unified theoretical description for these two historically distinct forms of DNP.

  13. Estimation of glottal source features from the spectral envelope of the acoustic speech signal

    Science.gov (United States)

    Torres, Juan Felix

    Speech communication encompasses diverse types of information, including phonetics, affective state, voice quality, and speaker identity. From a speech production standpoint, the acoustic speech signal can be mainly divided into glottal source and vocal tract components, which play distinct roles in rendering the various types of information it contains. Most deployed speech analysis systems, however, do not explicitly represent these two components as distinct entities, as their joint estimation from the acoustic speech signal becomes an ill-defined blind deconvolution problem. Nevertheless, because of the desire to understand glottal behavior and how it relates to perceived voice quality, there has been continued interest in explicitly estimating the glottal component of the speech signal. To this end, several inverse filtering (IF) algorithms have been proposed, but they are unreliable in practice because of the blind formulation of the separation problem. In an effort to develop a method that can bypass the challenging IF process, this thesis proposes a new glottal source information extraction method that relies on supervised machine learning to transform smoothed spectral representations of speech, which are already used in some of the most widely deployed and successful speech analysis applications, into a set of glottal source features. A transformation method based on Gaussian mixture regression (GMR) is presented and compared to current IF methods in terms of feature similarity, reliability, and speaker discrimination capability on a large speech corpus, and potential representations of the spectral envelope of speech are investigated for their ability represent glottal source variation in a predictable manner. The proposed system was found to produce glottal source features that reasonably matched their IF counterparts in many cases, while being less susceptible to spurious errors. The development of the proposed method entailed a study into the aspects

  14. Micromechanical Signal Processors

    Science.gov (United States)

    Nguyen, Clark Tu-Cuong

    Completely monolithic high-Q micromechanical signal processors constructed of polycrystalline silicon and integrated with CMOS electronics are described. The signal processors implemented include an oscillator, a bandpass filter, and a mixer + filter--all of which are components commonly required for up- and down-conversion in communication transmitters and receivers, and all of which take full advantage of the high Q of micromechanical resonators. Each signal processor is designed, fabricated, then studied with particular attention to the performance consequences associated with miniaturization of the high-Q element. The fabrication technology which realizes these components merges planar integrated circuit CMOS technologies with those of polysilicon surface micromachining. The technologies are merged in a modular fashion, where the CMOS is processed in the first module, the microstructures in a following separate module, and at no point in the process sequence are steps from each module intermixed. Although the advantages of such modularity include flexibility in accommodating new module technologies, the developed process constrained the CMOS metallization to a high temperature refractory metal (tungsten metallization with TiSi _2 contact barriers) and constrained the micromachining process to long-term temperatures below 835^circC. Rapid-thermal annealing (RTA) was used to relieve residual stress in the mechanical structures. To reduce the complexity involved with developing this merged process, capacitively transduced resonators are utilized. High-Q single resonator and spring-coupled micromechanical resonator filters are also investigated, with particular attention to noise performance, bandwidth control, and termination design. The noise in micromechanical filters is found to be fairly high due to poor electromechanical coupling on the micro-scale with present-day technologies. Solutions to this high series resistance problem are suggested, including smaller

  15. Multiquark Resonances

    CERN Document Server

    Esposito, A.; Polosa, A.D.

    2016-01-01

    Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties has been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.

  16. 996 RESONANCE November 2013

    Indian Academy of Sciences (India)

    IAS Admin

    996. RESONANCE. November 2013. Page 2. 997. RESONANCE. November 2013. Page 3. 998. RESONANCE. November 2013. Page 4. 999. RESONANCE. November 2013. Page 5. 1000. RESONANCE. November 2013. Page 6. 1001. RESONANCE. November 2013. Page 7. 1002. RESONANCE. November 2013 ...

  17. 817 RESONANCE September 2013

    Indian Academy of Sciences (India)

    IAS Admin

    817. RESONANCE ⎜ September 2013. Page 2. 818. RESONANCE ⎜ September 2013. Page 3. 819. RESONANCE ⎜ September 2013. Page 4. 820. RESONANCE ⎜ September 2013. Page 5. 821. RESONANCE ⎜ September 2013. Page 6. 822. RESONANCE ⎜ September 2013. Page 7. 823. RESONANCE ⎜ September ...

  18. 369 RESONANCE April 2016

    Indian Academy of Sciences (India)

    IAS Admin

    369. RESONANCE ⎜ April 2016. Page 2. 370. RESONANCE ⎜ April 2016. Page 3. 371. RESONANCE ⎜ April 2016. Page 4. 372. RESONANCE ⎜ April 2016. Page 5. 373. RESONANCE ⎜ April 2016. Page 6. 374. RESONANCE ⎜ April 2016. Page 7. 375. RESONANCE ⎜ April 2016.

  19. Autostereogram resonators

    Science.gov (United States)

    Leavey, Sean; Rae, Katherine; Murray, Adam; Courtial, Johannes

    2012-09-01

    Autostereograms, or "Magic Eye" pictures, are repeating patterns designed to give the illusion of depth. Here we discuss optical resonators that create light patterns which, when viewed from a suitable position by a monocular observer, are autostereograms of the three-dimensional shape of one of the mirror surfaces.

  20. COMPARISON OF VOCAL TRACT DISCOMFORT SCALE RESULTS WITH OBJECTIVE AND INSTRUMENTAL PHONIATRIC PARAMETERS AMONG TEACHER REHABILITEES FROM VOICE DISORDERS

    National Research Council Canada - National Science Library

    Woźnicka, Ewelina; Niebudek-Bogusz, Ewa; Wiktorowicz, Justyna; Śliwińska-Kowalska, Mariola

    2013-01-01

    Background: Diagnostic and therapeutic procedures of occupational dysphonia play a major role in voice self-assessment, which is one of the elements of a comprehensive evaluation of voice disorders...

  1. Drought Signaling in Plants

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 6. Drought Signaling in Plants. G Sivakumar Swamy. General Article Volume 4 Issue 6 June 1999 pp 34-44. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/004/06/0034-0044. Author Affiliations.

  2. Low field magnetic resonance imaging

    Science.gov (United States)

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  3. Resonant behavior of dielectric objects (electrostatic resonances).

    Science.gov (United States)

    Fredkin, D R; Mayergoyz, I D

    2003-12-19

    Resonant behavior of dielectric objects occurs at certain frequencies for which the object permittivity is negative and the free-space wavelength is large in comparison with the object dimensions. Unique physical features of these resonances are studied and a novel technique for the calculation of resonance values of permittivity, and hence resonance frequencies, is proposed. Scale invariance of resonance frequencies, unusually strong orthogonality properties of resonance modes, and a two-dimensional phenomenon of "twin" spectra are reported. The paper concludes with brief discussions of optical controllability of these resonances in semiconductor nanoparticles and a plausible, electrostatic resonance based, mechanism for nucleation and formation of ball lightning.

  4. Neuroaesthetic Resonance

    OpenAIRE

    Brooks, Anthony Lewis

    2013-01-01

    Neuroaesthetic Resonance emerged from a mature body of patient- centered gesture-control research investigating non-formal rehabilitation via ICT-enhanced-Art to question ‘Aesthetic Resonance’. Motivating participation, ludic engagement, and augmenting physical motion in non-formal (fun) treatment sessions are achieved via adaptive action-analyzed activities. These interactive virtual environments are designed to empower patients’ creative and/or playful expressions via digital feedback stimu...

  5. Magnetic Resonance (MR) Defecography

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Magnetic Resonance (MR) Defecography Magnetic resonance (MR) defecography is a ... the limitations of MRI defecography? What is magnetic resonance (MR) defecography? Magnetic resonance imaging (MRI) is a ...

  6. 1004 RESONANCE November 2013

    Indian Academy of Sciences (India)

    IAS Admin

    1004. RESONANCE │ November 2013. Page 2. 1005. RESONANCE │ November 2013. Page 3. 1006. RESONANCE │ November 2013. Page 4. 1007. RESONANCE │ November 2013. Page 5. 1008. RESONANCE │ November 2013. Page 6. 1009. RESONANCE │ November 2013. Page 7. 1010. RESONANCE ...

  7. [Nuclear magnetic resonance tomography].

    Science.gov (United States)

    Ganssen, A; Loeffler, W; Oppelt, A; Schmidt, F

    1981-04-01

    Imaging methods based on nuclear magnetic resonance allow the production of sectional images of the human body without ionizing radiation. It is possible to measure the density and relaxation times of the water protons in body fluids or tissue. This allows not only to obtain morphological information but also to get some insight into the spatial distribution of physiological data. Starting with a review of the principles of nuclear magnetic resonance it is explained how the measured signal can be associated with an image point; it is also explained what type of apparatus is necessary and what the physical limitations are. Possible risks the patient may be exposed to in an examination using nuclear magnetic resonance are discussed. The present state of the technical development enables the production of whole-body sectional images of a living person within about one minute. By means of some typical examples the nature and properties of these images are explained. Although extensive clinical studies will be necessary before a more general assessment can be made of this method, an outlook is provided on expected further developments and possible future fields of application.

  8. Cues to body size in the formant spacing of male koala (Phascolarctos cinereus) bellows: honesty in an exaggerated trait.

    Science.gov (United States)

    Charlton, Benjamin D; Ellis, William A H; McKinnon, Allan J; Cowin, Gary J; Brumm, Jacqui; Nilsson, Karen; Fitch, W Tecumseh

    2011-10-15

    Determining the information content of vocal signals and understanding morphological modifications of vocal anatomy are key steps towards revealing the selection pressures acting on a given species' vocal communication system. Here, we used a combination of acoustic and anatomical data to investigate whether male koala bellows provide reliable information on the caller's body size, and to confirm whether male koalas have a permanently descended larynx. Our results indicate that the spectral prominences of male koala bellows are formants (vocal tract resonances), and show that larger males have lower formant spacing. In contrast, no relationship between body size and the fundamental frequency was found. Anatomical investigations revealed that male koalas have a permanently descended larynx: the first example of this in a marsupial. Furthermore, we found a deeply anchored sternothyroid muscle that could allow male koalas to retract their larynx into the thorax. While this would explain the low formant spacing of the exhalation and initial inhalation phases of male bellows, further research will be required to reveal the anatomical basis for the formant spacing of the later inhalation phases, which is predictive of vocal tract lengths of around 50 cm (nearly the length of an adult koala's body). Taken together, these findings show that the formant spacing of male koala bellows has the potential to provide receivers with reliable information on the caller's body size, and reveal that vocal adaptations allowing callers to exaggerate (or maximise) the acoustic impression of their size have evolved independently in marsupials and placental mammals.

  9. Ultraminiature resonator accelerometer

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, D.R.; Kravitz, S.H.; Vianco, P.T.

    1996-04-01

    A new family of microminiature sensors and clocks is being developed with widespread application potential for missile and weapons applications, as biomedical sensors, as vehicle status monitors, and as high-volume animal identification and health sensors. To satisfy fundamental technology development needs, a micromachined clock and an accelerometer have initially been undertaken as development projects. A thickness-mode quartz resonator housed in a micromachined silicon package is used as the frequency-modulated basic component of the sensor family. Resonator design philosophy follows trapped energy principles and temperature compensation methodology through crystal orientation control, with operation in the 20--100 MHz range, corresponding to quartz wafer thicknesses in the 75--15 micron range. High-volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Chemical etching of quartz, as well as micromachining of silicon, achieves the surface and volume mechanical features necessary to fashion the resonating element and the mating package. Integration of the associated oscillator and signal analysis circuitry into the silicon package is inherent to the realization of a size reduction requirement. A low temperature In and In/Sn bonding technology allows assembly of the dissimilar quartz and silicon materials, an otherwise challenging task. Unique design features include robust vibration and shock performance, capacitance sensing with micromachined diaphragms, circuit integration, capacitance-to-frequency transduction, and extremely small dimensioning. Accelerometer sensitivities were measured in the 1--3 ppm/g range for the milligram proof-mass structures employed in the prototypes evaluated to date.

  10. Double Fourier analysis for Emotion Identification in Voiced Speech

    Science.gov (United States)

    Sierra-Sosa, D.; Bastidas, M.; Ortiz P., D.; Quintero, O. L.

    2016-04-01

    We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech. Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions. A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds. Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions. Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it. Finally features related with emotions in voiced speech are extracted and presented.

  11. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... and Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options ... usually given through an IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) ...

  12. Magnetic Resonance Imaging

    Science.gov (United States)

    ... specific information about your own examination. What is magnetic resonance imaging (MRI)? What is MRI used for? How safe ... What is the MRI examination like? What is magnetic resonance imaging (MRI)? MRI, or magnetic resonance imaging, is a ...

  13. Magnetic resonance imaging in hemosiderosis

    Energy Technology Data Exchange (ETDEWEB)

    Kessing, P.H.L.; Falke, T.H.M.; Steiner, R.M.; Bloem, H.; Peters, A. (Rijksuniversiteit Leiden (Netherlands). Academisch Ziekenhuis)

    1985-01-15

    The case of a patient with iron deposition disease is presented to illustrate the value of magnetic resonance imaging (MRI) in the evaluation of this entity. The image characteristics of MRI are discussed and the results are compared with those of computer tomography (CT). The importance of a decrease in T2 relaxation time as the determinant parameter for signal intensity in MRI of the liver in such patients is emphasized.

  14. Automated Nuclear Quadruple Resonance Spectrometer

    Directory of Open Access Journals (Sweden)

    IVANCHUK, M.

    2008-06-01

    Full Text Available Improvement of an autodyne Nuclear quadruple resonance spectrometer is offered. The change of frequency of oscillatory LC circuit of the spectrometer is carried out in two ways: by varicap and variable capacitor. A processor module for the capacitor and varicap control is developed. The unit allows to scan and measure the level and frequency of the NQR-signal. The unit is controlled by the personal computer.

  15. Signal Words

    Science.gov (United States)

    SIGNAL WORDS TOPIC FACT SHEET NPIC fact sheets are designed to answer questions that are commonly asked by the ... making decisions about pesticide use. What are Signal Words? Signal words are found on pesticide product labels, ...

  16. Resonances in pi-K scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, David J. [Old Dominion University, Norfolk, VA

    2014-06-23

    We have obtained clear signals of resonances in coupled-channel pi K - eta K scattering. Using distillation and a large basis of operators we are able to extract a precise spectrum of energy levels using the variational method. These energies are analysed using inelastic extensions of the Luescher method to obtain scattering amplitudes that clearly describe S, P and D wave resonances, corresponding to the physical K_0^*(1430), the K^*(892) and the K_2^*(1430).

  17. Magnetic resonance imaging of infectious myositis

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Ji Young; Kim, Jee Young; Kim, Sang Heum; Jung, Youn Ju; Cha, Eun Suk; Park, Joung Mi; Park, Young Ha [The Catholic Univ., College of Medicine, Suwon (Korea, Republic of)

    1998-09-01

    To describe the findings of magnetic resonance imaging in infectious myositis and to determine their value for differentiation between ruberculous and bacterial myositis. Magnetic resonance images of ten proven cases of infectious myositis (five tuberculous and five bacterial) were retrospectively reviewed in the light of clinical and laboratory findings. On the basis of magnetic resonance images, signal intensity of the mass, the presence or absence of an abscess, signal intensity of the peripheral wall, patterns of contrast enhancement, and associated findings were evaluated. Compared with those of bacterial myositis, the symptoms of tuberculous myositis lasted longer but there were no difinite local inflammatory signs. In three of five cases of bacterial myositis there were specific medical records;trauma in two cases and systemic lupus erythematosus in one. All tuberculous myositis cases involved a single muscle, but bacterial myositis affected multipe muscles in three cases(60%). All but one case showed a mass in the involved muscles. In one bacterial case, there was diffuse swelling in the involved muscle. On T1-weighted images, eight infectious cases showed low signal intensity;two, of the bactrerial type, showed subtle increased signal intensity. all cases demonstrated high signal intensity on t2-weighted images. The signal intensity of peripheral wall was slightly increased on T1-weighted images, but low on T2-weighted. In four cases there was associated cellulitis, and in one case each, adjacent joint effusion and deep vein thrombosis were seen. After gadolinium infusion, peripheral rim enhancement was noted in nine cases and heterogeneous enhancement in one. After magnetic resonance imaging of infectious myositis, the characteristic finding was an abscessed lesion, with the peripheral wall showing high signal intensity on T1-weighted images and low signal intensity on T2 weighted. Although we found it difficult to differentiate bacterial from tuberculous

  18. Signal intensity at unenhanced T1-weighted magnetic resonance in the globus pallidus and dentate nucleus after serial administrations of a macrocyclic gadolinium-based contrast agent in children.

    Science.gov (United States)

    Rossi Espagnet, Maria Camilla; Bernardi, Bruno; Pasquini, Luca; Figà-Talamanca, Lorenzo; Tomà, Paolo; Napolitano, Antonio

    2017-09-01

    Few studies have been conducted on the relations between T1-weighted signal intensity changes in the pediatric brain following gadolinium-based contrast agent (GBCA) exposure. The purpose of this study is to investigate the effect of multiple administrations of a macrocyclic GBCA on signal intensity in the globus pallidus and dentate nucleus of the pediatric brain on unenhanced T1-weighted MR images. This retrospective study included 50 patients, mean age: 8 years (standard deviation: 4.8 years), with normal renal function exposed to ≥6 administrations of the same macrocyclic GBCA (gadoterate meglumine) and a control group of 59 age-matched GBCA-naïve patients. The globus pallidus-to-thalamus signal intensity ratio and dentate nucleus-to-pons signal intensity ratio were calculated from unenhanced T1-weighted images for both patients and controls. A mixed linear model was used to evaluate the effects on signal intensity ratios of the number of GBCA administrations, the time interval between administrations, age, radiotherapy and chemotherapy. T-test analyses were performed to compare signal intensity ratio differences between successive administrations and baseline MR signal intensity ratios in patients compared to controls. P-values were considered significant if <0.05. A significant effect of the number of GBCA administrations on relative signal intensities globus pallidus-to-thalamus (F[8]=3.09; P=0.002) and dentate nucleus-to-pons (F[8]=2.36; P=0.021) was found. The relative signal intensities were higher at last MR examination than at baseline (P<0.001). Quantitative analysis evaluation of globus pallidus:thalamus and dentate nucleus:pons of the pediatric brain demonstrated an increase after serial administrations of macrocyclic GBCA. Further research is necessary to fully understand GBCA pharmacokinetic in children.

  19. Signal intensity at unenhanced T1-weighted magnetic resonance in the globus pallidus and dentate nucleus after serial administrations of a macrocyclic gadolinium-based contrast agent in children

    Energy Technology Data Exchange (ETDEWEB)

    Rossi Espagnet, Maria Camilla; Bernardi, Bruno; Figa-Talamanca, Lorenzo [Ospedale Pediatrico Bambino Gesu, IRCCS, Neuroradiology Unit, Imaging Department, Rome (Italy); Pasquini, Luca [Ospedale Pediatrico Bambino Gesu, IRCCS, Neuroradiology Unit, Imaging Department, Rome (Italy); University Sapienza, Neuroradiology Unit, Azienda Ospedaliera Sant' Andrea, Rome (Italy); Toma, Paolo [Ospedale Pediatrico Bambino Gesu, IRCCS, Department of Imaging, Rome (Italy); Napolitano, Antonio [Ospedale Pediatrico Bambino Gesu, IRCCS, Enterprise Risk Management, Medical Physics Department, Rome (Italy)

    2017-09-15

    Few studies have been conducted on the relations between T1-weighted signal intensity changes in the pediatric brain following gadolinium-based contrast agent (GBCA) exposure. The purpose of this study is to investigate the effect of multiple administrations of a macrocyclic GBCA on signal intensity in the globus pallidus and dentate nucleus of the pediatric brain on unenhanced T1-weighted MR images. This retrospective study included 50 patients, mean age: 8 years (standard deviation: 4.8 years), with normal renal function exposed to ≥6 administrations of the same macrocyclic GBCA (gadoterate meglumine) and a control group of 59 age-matched GBCA-naive patients. The globus pallidus-to-thalamus signal intensity ratio and dentate nucleus-to-pons signal intensity ratio were calculated from unenhanced T1-weighted images for both patients and controls. A mixed linear model was used to evaluate the effects on signal intensity ratios of the number of GBCA administrations, the time interval between administrations, age, radiotherapy and chemotherapy. T-test analyses were performed to compare signal intensity ratio differences between successive administrations and baseline MR signal intensity ratios in patients compared to controls. P-values were considered significant if <0.05. A significant effect of the number of GBCA administrations on relative signal intensities globus pallidus-to-thalamus (F[8]=3.09; P=0.002) and dentate nucleus-to-pons (F[8]=2.36; P=0.021) was found. The relative signal intensities were higher at last MR examination than at baseline (P<0.001). Quantitative analysis evaluation of globus pallidus:thalamus and dentate nucleus:pons of the pediatric brain demonstrated an increase after serial administrations of macrocyclic GBCA. Further research is necessary to fully understand GBCA pharmacokinetic in children. (orig.)

  20. Stochastic resonance in noisy threshold neurons.

    Science.gov (United States)

    Kosko, Bart; Mitaim, Sanya

    2003-01-01

    Stochastic resonance occurs when noise improves how a nonlinear system performs. This paper presents two general stochastic-resonance theorems for threshold neurons that process noisy Bernoulli input sequences. The performance measure is Shannon mutual information. The theorems show that small amounts of independent additive noise can increase the mutual information of threshold neurons if the neurons detect subthreshold signals. The first theorem shows that this stochastic-resonance effect holds for all finite-variance noise probability density functions that obey a simple mean constraint that the user can control. A corollary shows that this stochastic-resonance effect occurs for the important family of (right-sided) gamma noise. The second theorem shows that this effect holds for all infinite-variance noise types in the broad family of stable distributions. Stable bell curves can model extremely impulsive noise environments. So the second theorem shows that this stochastic-resonance effect is robust against violent fluctuations in the additive noise process.

  1. Experimental evidence of vibrational resonance in a multistable system

    Science.gov (United States)

    Chizhevsky, V. N.

    2014-06-01

    Experimental evidence of vibrational resonance in a multistable vertical-cavity surface-emitting laser (VCSEL) is reported. The VCSEL is characterized by a coexistence of four polarization states and driven by low-frequency (LF) and high-frequency (HF) periodic signals. In these conditions a series of resonances on the low frequency depending on the HF amplitude is observed. The location of resonances in a parameter space (dc current, amplitude of HF signal) is experimentally studied. For a fixed value of the dc current an evolution of the resonance curves with an increase of the LF amplitude is experimentally investigated.

  2. Resonant optical device with a microheater

    Science.gov (United States)

    Lentine, Anthony L.; DeRose, Christopher

    2017-04-04

    A resonant photonic device is provided. The device comprises an optical waveguiding element, such as an optical resonator, that includes a diode junction region, two signal terminals configured to apply a bias voltage across the junction region, and a heater laterally separated from the optical waveguiding element. A semiconductor electrical barrier element is juxtaposed to the heater. A metallic strip is electrically and thermally connected at one end to a signal terminal of the optical waveguiding element and thermally connected at another end to the barrier element.

  3. The research status and development trend of stochastic resonance

    Science.gov (United States)

    Xu, Lei; Peng, Yueping; Liu, Man

    2017-12-01

    The synergistic reaction under specific conditions of the nonlinear system, weak driving signal and moderate noise can make noise to be advantageous in a certain extent, so as to achieve the purpose of signal enhancement, this seemingly anomalous phenomenon is defined as stochastic resonance. In this paper, the weak signal detection under strong noise background is the main line. The principle of white noise to counteract external noise is expounded, and the present research situation and development trend of stochastic resonance are reviewed in that paper, it also pointed out the direction of further research of stochastic resonance technology.

  4. Resonance Energy Transfer Molecular Imaging Application in Biomedicine

    Directory of Open Access Journals (Sweden)

    NIE Da-hong1,2;TANG Gang-hua1,3

    2016-11-01

    Full Text Available Resonance energy transfer molecular imaging (RETI can markedly improve signal intensity and tissue penetrating capacity of optical imaging, and have huge potential application in the deep-tissue optical imaging in vivo. Resonance energy transfer (RET is an energy transition from the donor to an acceptor that is in close proximity, including non-radiative resonance energy transfer and radiative resonance energy transfer. RETI is an optical imaging technology that is based on RET. RETI mainly contains fluorescence resonance energy transfer imaging (FRETI, bioluminescence resonance energy transfer imaging (BRETI, chemiluminescence resonance energy transfer imaging (CRETI, and radiative resonance energy transfer imaging (RRETI. RETI is the hot field of molecular imaging research and has been widely used in the fields of biology and medicine. This review mainly focuses on RETI principle and application in biomedicine.

  5. Resistive cooling circuits for charged particle traps using crystal resonators

    CERN Document Server

    Kaltenbacher, T; Doser, M; Kellerbauer, A; Pribyl, W

    2011-01-01

    The paper addresses a novel method to couple a signal from charged particles in a Penning trap to a high Q resonant circuit using a crystal resonator. Traditionally the trap capacity is converted into a resonator by means of an inductance. When normal conducting wires (e.g. copper) are applied to build up a coil, the unloaded Q value is limited to a value in the order of 1000. The tuned circuit’s Q factor is directly linked to the input impedance “seen” by the trapped particles at resonance frequency. This parallel resonance impedance is a measure of the efficiency of resistive cooling and thus it should be optimized. We propose here a commercially available crystal resonator since it exhibits a very high Q value and a parallel resonance impedance of several MOhm. The possibility to tune the parallel resonance frequency of the quartz results in filter behavior that allows covering a broad range of frequencies.

  6. Solid state proton imaging detected by quadrupole resonance.

    Science.gov (United States)

    Perlo, J; Casanova, F; Robert, H; Pusiol, D J

    2001-06-01

    A double resonance method for imaging of solid materials containing quadrupole nuclei via the coupled protons is reported. The technique uses a static field gradient to encode the position on the protons and the method of double resonance spin-echo to detect the occurrence of proton resonances by affecting the zero-field echo signal from the quadrupole system. The double resonance imaging method offers the advantages of higher spatial resolution and straightforward image reconstruction for powder samples compared with rotating-frame and Zeeman-perturbated nuclear quadrupole resonance encoding techniques. Copyright 2001 Academic Press.

  7. Thermoelastic dissipation in MEMS/NEMS flexural mode resonators.

    Science.gov (United States)

    Yan, Jize; Seshia, Ashwin A

    2009-02-01

    Understanding the energy dissipation mechanisms in single-crystal silicon MEMS/NEMS resonators are particularly important to maximizing an important figure of merit relevant for miniature sensor and signal processing applications: the Quality factor (Q) of resonance. This paper discusses thermoelastic dissipation (TED) as the dominant internal-friction mechanism in flexural mode MEMS/NEMS resonators. Criteria for optimizing the geometrical design of flexural mode MEMS/NEMS resonators are theoretically established with a view towards minimizing the TED for single-crystal silicon MEMS/NEMS flexural mode resonators.

  8. Cardiovascular Magnetic Resonance Imaging

    Science.gov (United States)

    Pelc, Norbert

    2000-03-01

    Cardiovascular diseases are a major source of morbidity and mortality in the United States. Early detection of disease can often be used to improved outcomes, either through direct interventions (e.g. surgical corrections) or by causing the patient to modify his or her behavior (e.g. smoking cessation or dietary changes). Ideally, the detection process should be noninvasive (i.e. it should not be associated with significant risk). Magnetic Resonance Imaging (MRI) refers to the formation of images by localizing NMR signals, typically from protons in the body. As in other applications of NMR, a homogeneous static magnetic field ( ~0.5 to 4 T) is used to create ``longitudinal" magnetization. A magnetic field rotating at the Larmor frequency (proportional to the static field) excites spins, converting longitudinal magnetization to ``transverse" magnetization and generating a signal. Localization is performed using pulsed gradients in the static field. MRI can produce images of 2-D slices, 3-D volumes, time-resolved images of pseudo-periodic phenomena such as heart function, and even real-time imaging. It is also possible to acquire spatially localized NMR spectra. MRI has a number of advantages, but perhaps the most fundamental is the richness of the contrast mechanisms. Tissues can be differentiated by differences in proton density, NMR properties, and even flow or motion. We also have the ability to introduce substances that alter NMR signals. These contrast agents can be used to enhance vascular structures and measure perfusion. Cardiovascular MRI allows the reliable diagnosis of important conditions. It is possible to image the blood vessel tree, quantitate flow and perfusion, and image cardiac contraction. Fundamentally, the power of MRI as a diagnostic tool stems from the richness of the contrast mechanisms and the flexibility in control of imaging parameters.

  9. Jet-associated resonance spectroscopy

    Science.gov (United States)

    Englert, Christoph; Ferretti, Gabriele; Spannowsky, Michael

    2017-12-01

    We present a model-independent study aimed at characterising the nature of possible resonances in the jet-photon or jet- Z final state at hadron colliders. Such resonances are expected in many models of compositeness and would be a clear indication of new physics. At leading order, in the narrow width approximation, the matrix elements are parameterised by just a few constants describing the coupling of the various helicities to the resonance. We present the full structure of such amplitudes up to spin 2 and use them to simulate relevant kinematic distributions that could serve to constrain the coupling structure. This also generalises the signal generation strategy that is currently pursued by ATLAS and CMS to the most general case in the considered channels. While the determination of the P/CP properties of the interaction seems to be out of reach within this framework, there is a wealth of information to be gained about the spin of the resonance and the relative couplings of the helicities.

  10. Improved Tracking of an Atomic-Clock Resonance Transition

    Science.gov (United States)

    Prestage, John D.; Chung, Sang K.; Tu, Meirong

    2010-01-01

    An improved method of making an electronic oscillator track the frequency of an atomic-clock resonance transition is based on fitting a theoretical nonlinear curve to measurements at three oscillator frequencies within the operational frequency band of the transition (in other words, at three points within the resonance peak). In the measurement process, the frequency of a microwave oscillator is repeatedly set at various offsets from the nominal resonance frequency, the oscillator signal is applied in a square pulse of the oscillator signal having a suitable duration (typically, of the order of a second), and, for each pulse at each frequency offset, fluorescence photons of the transition in question are counted. As described below, the counts are used to determine a new nominal resonance frequency. Thereafter, offsets are determined with respect to the new resonance frequency. The process as described thus far is repeated so as to repeatedly adjust the oscillator to track the most recent estimate of the nominal resonance frequency.

  11. Integral resonator gyroscope

    Science.gov (United States)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)

    2008-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  12. Categorization of aortic aneurysm thrombus morphology by magnetic resonance imaging

    DEFF Research Database (Denmark)

    de la Motte, Louise; Pedersen, Mads Møller; Thomsen, Carsten

    2013-01-01

    Magnetic resonance imaging (MRI) has been proposed for qualitative categorization of intraluminal thrombus morphology. We aimed to correlate the qualitative MRI categorization previously described to quantitative measurements of signal intensity and to compare morphological characteristics...... of intraluminal thrombus specimens to the appearance on magnetic resonance imaging....

  13. Magnetic resonance advection imaging of cerebrovascular pulse dynamics.

    Science.gov (United States)

    Voss, Henning U; Dyke, Jonathan P; Tabelow, Karsten; Schiff, Nicholas D; Ballon, Douglas J

    2017-04-01

    We analyze the pulsatile signal component of dynamic echo planar imaging data from the brain by modeling the dependence between local temporal and spatial signal variability. The resulting magnetic resonance advection imaging maps depict the location of major arteries. Color direction maps allow for visualization of the direction of blood vessels. The potential significance of magnetic resonance advection imaging maps is demonstrated on a functional magnetic resonance imaging data set of 19 healthy subjects. A comparison with the here introduced pulse coherence maps, in which the echo planar imaging signal is correlated with a cardiac pulse signal, shows that the magnetic resonance advection imaging approach results in a better spatial definition without the need for a pulse reference. In addition, it is shown that magnetic resonance advection imaging velocities can be estimates of pulse wave velocities if certain requirements are met, which are specified. Although for this application magnetic resonance advection imaging velocities are not quantitative estimates of pulse wave velocities, they clearly depict local pulsatile dynamics. Magnetic resonance advection imaging can be applied to existing dynamic echo planar imaging data sets with sufficient spatiotemporal resolution. It is discussed whether magnetic resonance advection imaging might have the potential to evolve into a biomarker for the health of the cerebrovascular system.

  14. Modulational-instability sigma-resonator fiber laser.

    Science.gov (United States)

    Honzatko, P; Peterka, P; Kanka, J

    2001-06-01

    A modulational-instability laser with a resonator in a sigma configuration has been developed. The importance of a suitable intracavity filter for removing the autocorrelation background of the output signal is shown. A pulse train with a repetition rate of 107 GHz determined by the Fabry-Perot etalon used in the resonator was obtained at 1.56mum .

  15. Photo-electon paramagnetic resonance and photoacoustic

    Indian Academy of Sciences (India)

    The former appears less probable in view of the relatively slower recovery of. EPR signal. Keywords. Electron paramagnetic resonance; photoacoustic spectroscopy; polyvinyl alcohol. PACS Nos 76.30; 62.65; 61.40. 1. Introduction. Development of materials for holography and non-linear optics, that respond in real time.

  16. Monitoring angiogenesis using magnetic resonance methods

    DEFF Research Database (Denmark)

    Peters, David Alberg

    2008-01-01

    and the involved signaling molecules. Subsequently, a short review of contrast agents and perfusion measurements is given. Finally, methods for monitoring angiogenesis using magnetic resonance imaging are reviewed. A method for monitoring early stages of angiogenesis as well as the effect of anti...

  17. Nuclear Magnetic Resonance Technology for Medical Studies.

    Science.gov (United States)

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  18. Crossing a Nonlinear Resonance

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Crossing a Nonlinear Resonance: Adiabatic Invariants and the Melnikov-Arnold Integral. Sudhir R Jain. General Article Volume 19 Issue 9 September 2014 pp 797-813 ...

  19. Nanomechanical resonance detector

    Science.gov (United States)

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  20. Magnetic resonance angiography

    Science.gov (United States)

    MRA; Angiography - magnetic resonance ... Kwong RY. Cardiovascular magnetic resonance imaging. In: Bonow RO, Mann DL, Zipes DP, Libby P, Braunwald E, eds. Braunwald's Heart Disease: A Textbook of Cardiovascular ...

  1. Stochastic resonance enhanced by dichotomic noise in a bistable system

    Energy Technology Data Exchange (ETDEWEB)

    Rozenfeld, Robert [Institute for Physics, Humboldt University at Berlin, D-10115, Berlin, (Germany); Neiman, Alexander [Center for Neurodynamics, University of Missouri at St. Louis, St. Louis, Missouri 63121 (United States); Schimansky-Geier, Lutz [Institute for Physics, Humboldt University at Berlin, D-10115, Berlin, (Germany)

    2000-09-01

    We study linear responses of a stochastic bistable system driven by dichotomic noise to a weak periodic signal. We show that the effect of stochastic resonance can be greatly enhanced in comparison with the conventional case when dichotomic forcing is absent, that is, both the signal-to-noise ratio and the spectral power amplification reach much greater values than in the standard stochastic resonance setup. (c) 2000 The American Physical Society.

  2. Inversion recovery ultrashort echo time magnetic resonance imaging: A method for simultaneous direct detection of myelin and high signal demonstration of iron deposition in the brain - A feasibility study.

    Science.gov (United States)

    Sheth, Vipul R; Fan, Shujuan; He, Qun; Ma, Yajun; Annese, Jacopo; Switzer, Robert; Corey-Bloom, Jody; Bydder, Graeme M; Du, Jiang

    2017-05-01

    Multiple sclerosis (MS) causes demyelinating lesions in the white matter and increased iron deposition in the subcortical gray matter. Myelin protons have an extremely short T2* (brain of healthy volunteers shows a rapid signal decay with a short T2* of ~300μs, consistent with the T2* values of myelin protons in the synthetic myelin phantom. IR-UTE imaging in MS brain specimens and patients showed multiple white matter lesions as well as areas of high signal in subcortical gray matter. This in specimens corresponded in position to Perl's diaminobenzide staining results, consistent with increased iron deposition. IR-UTE imaging simultaneously detects lesions with myelin loss in the white matter and iron deposition in the gray matter. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    Directory of Open Access Journals (Sweden)

    Toru Tomimatsu

    2015-08-01

    Full Text Available Electric-field-induced nuclear resonance (NER: nuclear electric resonance involving quantum Hall states (QHSs was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs.

  4. Magnetic resonance tomography in syringomyelia

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, D.; Treisch, J.; Hertel, G.; Schoerner, W.; Fiegler, W.

    1985-12-01

    Thirteen patients with a clinical diagnosis of syringomyelia were examined by nuclear tomography (0.35 T magnet) in the spin-echo mode. In all thirteen patients, the T1 images (Se 400/35) showed a longitudinal cavity with a signal intensity of CSF. The shape and extent of the syrinx could be adequately demonstrated in 12 of the 13 examinations. Downward displacement of the cerebellar tonsils was seen in eight cases. The examination took between half and one hour. Advantages of magnetic resonance tomography (nuclear tomography) include the absence of artifacts, images in the line of the lesion and its non-invasiveness.

  5. Bimetallic Layers Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Yuri M. Shirshov

    2002-02-01

    Full Text Available Two metals are used in resonant layers for chemical sensors based on surface plasmon resonance (SPR - gold and silver. Gold displays higher shift of the resonance angle to changes of ambient refraction index and is chemically stable. Silver posses narrower resonance curve thus providing a higher signal/noise ratio of SPR chemical sensors, but has a poor chemical stability. A new structure of resonant metallic film based on bimetallic silver/gold layers (gold as an outer layer is suggested. It combines advantages of both gold and silver resonant layers. Bimetallic resonant films display so high shift of resonance angle on changes of ambient refraction index as gold films, but show narrower resonance curve, thus providing a higher signal / noise ratio. Additionally, the outer gold layer protects silver against oxidation.

  6. Speech across species : on the mechanistic fundamentals of vocal production and perception

    NARCIS (Netherlands)

    Ohms, Verena Regina

    2011-01-01

    Birdsong and human speech are both complex behaviours which show striking similarities mainly thought to be present in the area of development and learning. The most important parameters in human speech are vocal tract resonances, called formants. Different formant patterns characterize different

  7. Stochastic resonance in feedforward acupuncture networks

    Science.gov (United States)

    Qin, Ying-Mei; Wang, Jiang; Men, Cong; Deng, Bin; Wei, Xi-Le; Yu, Hai-Tao; Chan, Wai-Lok

    2014-10-01

    Effects of noises and some other network properties on the weak signal propagation are studied systematically in feedforward acupuncture networks (FFN) based on FitzHugh-Nagumo neuron model. It is found that noises with medium intensity can enhance signal propagation and this effect can be further increased by the feedforward network structure. Resonant properties in the noisy network can also be altered by several network parameters, such as heterogeneity, synapse features, and feedback connections. These results may also provide a novel potential explanation for the propagation of acupuncture signal.

  8. Signaling aggression.

    Science.gov (United States)

    van Staaden, Moira J; Searcy, William A; Hanlon, Roger T

    2011-01-01

    From psychological and sociological standpoints, aggression is regarded as intentional behavior aimed at inflicting pain and manifested by hostility and attacking behaviors. In contrast, biologists define aggression as behavior associated with attack or escalation toward attack, omitting any stipulation about intentions and goals. Certain animal signals are strongly associated with escalation toward attack and have the same function as physical attack in intimidating opponents and winning contests, and ethologists therefore consider them an integral part of aggressive behavior. Aggressive signals have been molded by evolution to make them ever more effective in mediating interactions between the contestants. Early theoretical analyses of aggressive signaling suggested that signals could never be honest about fighting ability or aggressive intentions because weak individuals would exaggerate such signals whenever they were effective in influencing the behavior of opponents. More recent game theory models, however, demonstrate that given the right costs and constraints, aggressive signals are both reliable about strength and intentions and effective in influencing contest outcomes. Here, we review the role of signaling in lieu of physical violence, considering threat displays from an ethological perspective as an adaptive outcome of evolutionary selection pressures. Fighting prowess is conveyed by performance signals whose production is constrained by physical ability and thus limited to just some individuals, whereas aggressive intent is encoded in strategic signals that all signalers are able to produce. We illustrate recent advances in the study of aggressive signaling with case studies of charismatic taxa that employ a range of sensory modalities, viz. visual and chemical signaling in cephalopod behavior, and indicators of aggressive intent in the territorial calls of songbirds. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Ovenized microelectromechanical system (MEMS) resonator

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

  10. Sinusoidal Coding.

    Science.gov (United States)

    1995-01-01

    samples of an underlying vocal tract envelope, in MBE they are allowed to be un- constrained free variables and are chosen to render s(n) a minimum-mean...Bandwidth Reduction and Time Scaling of Spech Signals," in IEEE Trans. Acoust., Speech and Signal Proc, ASSP-27, (2), 1979, pp. 121-133. [7] P. Hedelin

  11. The Role of the Listener's State in Speech Perception

    Science.gov (United States)

    Viswanathan, Navin

    2009-01-01

    Accounts of speech perception disagree on whether listeners perceive the acoustic signal (Diehl, Lotto, & Holt, 2004) or the vocal tract gestures that produce the signal (e.g., Fowler, 1986). In this dissertation, I outline a research program using a phenomenon called "perceptual compensation for coarticulation" (Mann, 1980) to examine this…

  12. Long Lived NMR Signal in Bone

    CERN Document Server

    Zhang, Boyang; Khitrin, Anatoly; Jerschow, Alexej

    2012-01-01

    Solids and rigid tissues such as bone, ligaments, and tendons, typically appear dark in magnetic resonance imaging (MRI), which is due to the extremely short-lived proton nuclear magnetic resonance (NMR) signals. This short lifetime is due to strong dipolar interactions between immobilized proton spins, which render it challenging to detect these signals with sufficient resolution and sensitivity. Here we show the possibility of exciting long-lived signals in cortical bone tissue with a signature consistent with that of bound water signals. Contrary to long-standing belief, it is further shown that dipolar coupling networks are an integral requirement for the excitation of these long-lived signals. The use of these signals could enhance the ability to visualize rigid tissues and solid samples with high sensitivity, resolution, and specificity via MRI.

  13. Controlling Parametric Resonance

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Pettersen, Kristin Ytterstad

    2012-01-01

    Parametric resonance is a resonant phenomenon which takes place in systems characterized by periodic variations of some parameters. While seen as a threatening condition, whose onset can drive a system into instability, this chapter advocates that parametric resonance may become an advantage...... if the system undergoing it could transform the large amplitude motion into, for example, energy. Therefore the development of control strategies to induce parametric resonance into a system can be as valuable as those which aim at stabilizing the resonant oscillations. By means of a mechanical equivalent...... the authors review the conditions for the onset of parametric resonance, and propose a nonlinear control strategy in order to both induce the resonant oscillations and to stabilize the unstable motion. Lagrange’s theory is used to derive the dynamics of the system and input–output feedback linearization...

  14. Ring resonator systems to perform optical communication enhancement using soliton

    CERN Document Server

    Amiri, Iraj Sadegh

    2014-01-01

    The title explain new technique of secured and high capacity optical communication signals generation by using the micro and nano ring resonators. The pulses are known as soliton pulses which are more secured due to having the properties of chaotic and dark soliton signals with ultra short bandwidth. They have high capacity due to the fact that ring resonators are able to generate pulses in the form of solitons in multiples and train form. These pulses generated by ring resonators are suitable in optical communication due to use the compact and integrated rings system, easy to control, flexibi

  15. Microprocessor-based boxcar signal averager

    Science.gov (United States)

    Bano, S. S.; Reddy, P. N.; Reddy, B. P. N.; Eswara Reddy, N. C.

    1987-10-01

    A boxcar signal averager using Intel 8085AH, an 8-bit microprocessor developed for processing free-induction decay (FID) signals from a pulsed nuclear-magnetic-resonance (NMR) spectrometer, is described. The boxcar signal averager works either in single-point mode or in scan mode. In addition to the software developed, the constructional features, circuit details, and the operation of the boxcar are discussed in detail.

  16. Resonant soft x-ray scattering from stepped surfaces of SrTiO3

    NARCIS (Netherlands)

    Schlappa, J.; Chang, C.F.; Hu, Z.; Schierle, E.; Ott, H.; Weschke, E.; Kaindl, G.; Huijben, Mark; Rijnders, Augustinus J.H.M.; Blank, David H.A.; Tjeng, L.H.; Schüssler-Langeheine, C.

    2012-01-01

    We studied the resonant diffraction signal from stepped surfaces of SrTiO3 at the Ti 2p ¿ 3d (L2,3) resonance in comparison with x-ray absorption (XAS) and specular reflectivity data. The steps on the surface form an artificial superstructure suitable as a model system for resonant soft x-ray

  17. Improving the detection sensitivity of chromatography by stochastic resonance.

    Science.gov (United States)

    Zhang, Wei; Guo, Jianru; Xiang, Bingren; Fan, Hongyan; Xu, Fengguo

    2014-05-07

    Improving the detection sensitivity of analytical instruments has been a challenging task for chemometricians since undetectability has been almost unavoidable in trace analysis, even under optimized experimental conditions and with the use of modern instruments. Various chemometrics methods have been developed which attempt to address this detection problem but with limited success (e.g., fast Fourier transform and wavelet transform). However, the application of stochastic resonance (SR) creates an entirely new and effective methodology. Stochastic resonance is a phenomenon which is manifested in non-linear systems where a weak signal can be amplified and optimized with the assistance of noise. In this review, we summarize the use of basic SR, optimization of parameters and its modifications, including periodic modulation stochastic resonance (PSRA), linear modulation stochastic resonance (LSRA), single-well potential stochastic resonance (SSR) and the Duffing oscillator algorithm (DOA) for amplifying sub-threshold small signals. We also review the advantages and the disadvantages of various SR procedures.

  18. Resonance and aspect matched adaptive radar (RAMAR)

    CERN Document Server

    Barrett, Terence William

    2012-01-01

    The book describes a new form of radar for which the target response is frequency, i.e., resonance-dependent. The book provides both prototype designs and empirical results collected from a variety of targets. The new form of radar, called RAMAR (Resonance and Aspect Matched Adaptive Radar) advances radar - mere ranging and detection - to the level of RF spectroscopy, and permits an advance of spectroscopic methods from optical, through infra-red and into the RF spectral range. The book will describe how a target's response can be a function of frequency components in the transmitted signal's

  19. Theory of experiments in paramagnetic resonance

    CERN Document Server

    Talpe, Jan

    1971-01-01

    International Series of Monographs in Natural Philosophy, Volume 33: Theory of Experiments in Paramagnetic Resonance discusses the technique for studying materials with unpaired electrons. This book is divided into four chapters. Chapter 1 provides a general introduction to examining matter through applying a magnetic field. The paramagnetic resonance line, such as the HF susceptibility as a function of certain parameters, is analyzed in the next chapter. Chapter 3 deals with the electronic signal that produces the HF susceptibility. The last chapter is devoted to the enhancement of the electr

  20. Atlas of neutron resonances

    CERN Document Server

    Mughabghab, Said

    2018-01-01

    Atlas of Neutron Resonances: Resonance Properties and Thermal Cross Sections Z= 1-60, Sixth Edition, contains an extensive list of detailed individual neutron resonance parameters for Z=1-60, as well as thermal cross sections, capture resonance integrals, average resonance parameters and a short survey of the physics of thermal and resonance neutrons. The long introduction contains: nuclear physics formulas aimed at neutron physicists; topics of special interest such as valence neutron capture, nuclear level density parameters, and s-, p-, and d-wave neutron strength functions; and various comparisons of measured quantities with the predictions of nuclear models, such as the optical model. As in the last edition, additional features have been added to appeal to a wider spectrum of users. These include: spin-dependent scattering lengths that are of interest to solid-state physicists, nuclear physicists and neutron evaluators; calculated and measured Maxwellian average 5-keV and 30-keV capture cross sections o...

  1. Electron paramagnetic resonance

    CERN Document Server

    Al'tshuler, S A

    2013-01-01

    Electron Paramagnetic Resonance is a comprehensive text on the field of electron paramagnetic resonance, covering both the theoretical background and the results of experiment. This book is composed of eight chapters that cover theoretical materials and experimental data on ionic crystals, since these are the materials that have been most extensively studied by the methods of paramagnetic resonance. The opening chapters provide an introduction to the basic principles of electron paramagnetic resonance and the methods of its measurement. The next chapters are devoted to the theory of spectra an

  2. Unusual Presentation of Popliteal Cyst on Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ohishi

    2016-01-01

    Full Text Available Popliteal cyst commonly presents as an ellipsoid mass with uniform low signal intensity on T1-weighted magnetic resonance images and high signal intensity on T2-weighted images. Here, we describe a popliteal cyst with unusual appearance on magnetic resonance imaging, including heterogeneous intermediate signal intensity on T2-weighted images. Arthroscopic cyst decompression revealed that the cyst was filled with necrotic synovial villi, indicative of rheumatoid arthritis. Arthroscopic enlargement of unidirectional valvular slits with synovectomy was useful for the final diagnosis and treatment.

  3. Mixed frequency excitation of an electrostatically actuated resonator

    KAUST Repository

    Ramini, Abdallah

    2015-04-24

    We investigate experimentally and theoretically the dynamics of a capacitive resonator under mixed frequency excitation of two AC harmonic signals. The resonator is composed of a proof mass suspended by two cantilever beams. Experimental measurements are conducted using a laser Doppler vibrometer to reveal the interesting dynamics of the system when subjected to two-source excitation. A nonlinear single-degree-of-freedom model is used for the theoretical investigation. The results reveal combination resonances of additive and subtractive type, which are shown to be promising to increase the bandwidth of the resonator near primary resonance frequency. Our results also demonstrate the ability to shift the combination resonances to much lower or much higher frequency ranges. We also demonstrate the dynamic pull-in instability under mixed frequency excitation. © 2015 Springer-Verlag Berlin Heidelberg

  4. Noise-free stochastic resonance at an interior crisis.

    Science.gov (United States)

    Jüngling, Thomas; Benner, Hartmut; Stemler, Thomas; Just, Wolfram

    2008-03-01

    We report on the observation of noise-free stochastic resonance in an externally driven diode resonator close to an interior crisis. At sufficiently high excitation amplitudes the diode resonator shows a strange attractor which after the collision with an unstable period-three orbit exhibits crisis-induced intermittency. In the intermittency regime the system jumps between the previously stable chaotic attractor and the phase space region which has been made accessible by the crisis. This random process can be used to amplify a weak periodic signal through the mechanism of stochastic resonance. In contrast to conventional stochastic resonance no external noise is needed. The chaotic intrinsic dynamics plays the role of the stochastic forcing. Our data obtained from the diode resonator are compared with numerical simulations of the logistic map where a similar crisis-induced intermittency is observed.

  5. Parametric amplification in MoS2drum resonator.

    Science.gov (United States)

    Prasad, Parmeshwar; Arora, Nishta; Naik, A K

    2017-11-30

    Parametric amplification is widely used in diverse areas from optics to electronic circuits to enhance low level signals by varying relevant system parameters. Parametric amplification has also been performed in several micro-nano resonators including nano-electromechanical system (NEMS) resonators based on a two-dimensional (2D) material. Here, we report the enhancement of mechanical response in a MoS 2 drum resonator using degenerate parametric amplification. We use parametric pumping to modulate the spring constant of the MoS 2 resonator and achieve a 10 dB amplitude gain. We also demonstrate quality factor enhancement in the resonator with parametric amplification. We investigate the effect of cubic nonlinearity on parametric amplification and show that it limits the gain of the mechanical resonator. Amplifying ultra-small displacements at room temperature and understanding the limitations of the amplification in these devices is key for using these devices for practical applications.

  6. Active cancellation of acoustical resonances with an FPGA FIR filter

    Science.gov (United States)

    Ryou, Albert; Simon, Jonathan

    2017-01-01

    We present a novel approach to enhancing the bandwidth of a feedback-controlled mechanical system by digitally canceling acoustical resonances (poles) and anti-resonances (zeros) in the open-loop response via an FPGA FIR filter. By performing a real-time convolution of the feedback error signal with an inverse filter, we can suppress arbitrarily many poles and zeros below 100 kHz, each with a linewidth down to 10 Hz. We demonstrate the efficacy of this technique by canceling the ten largest mechanical resonances and anti-resonances of a high-finesse optical resonator, thereby enhancing the unity gain frequency by more than an order of magnitude. This approach is applicable to a broad array of stabilization problems including optical resonators, external cavity diode lasers, and scanning tunneling microscopes and points the way to applying modern optimal control techniques to intricate linear acoustical systems.

  7. Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol

    Energy Technology Data Exchange (ETDEWEB)

    Stojanov, Dragan A. [University of Nis, Faculty of Medicine, Nis (Serbia); Clinical Center Nis, Center for Radiology, Nis (Serbia); Aracki-Trenkic, Aleksandra [Clinical Center Nis, Center for Radiology, Nis (Serbia); Vojinovic, Slobodan; Ljubisavljevic, Srdjan [University of Nis, Faculty of Medicine, Nis (Serbia); Clinical Center Nis, Clinic for Neurology, Nis (Serbia); Benedeto-Stojanov, Daniela [University of Nis, Faculty of Medicine, Nis (Serbia)

    2016-03-15

    To evaluate correlation between cumulative dose of gadobutrol and signal intensity (SI) within dentate nucleus and globus pallidus on unenhanced T1-weighted images in patients with relapsing-remitting multiple sclerosis (RRMS). Dentate nucleus-to-pons and globus pallidus-to-thalamus SI ratios, and renal and liver functions, were evaluated after multiple intravenous administrations of 0.1 mmol/kg gadobutrol at 27, 96-98, and 168 weeks. We compared SI ratios based on the number of administrations, total amount of gadobutrol administered, and time between injections. Globus pallidus-to-thalamus (p = 0.025) and dentate nucleus-to-pons (p < 0.001) SI ratios increased after multiple gadobutrol administrations, correlated with the number of administrations (ρ = 0.263, p = 0.046, respectively) and depended on the length of administration (p = 0.017, p = 0.037, respectively). Patients receiving gadobutrol at 27 weeks showed the greatest increase in both SI ratios (p = 0.006; p = 0.014, respectively, versus 96-98 weeks). GGT increased at the end of the study (p = 0.004). In patients with RRMS, SI within the dentate nucleus and globus pallidus increased on unenhanced T1-weighted images after multiple gadobutrol injections. Administration of the same total amount of gadobutrol over a shorter period caused greater SI increase. (orig.)

  8. Measurement of anisotropic elasticity of cortical bone with resonant ultrasound spectroscopy

    OpenAIRE

    de Bernard, Simon; GRIMAL, Quentin; Haupert, Sylvain; Laugier, Pascal

    2012-01-01

    International audience; Resonant Ultrasound Spectroscopy (RUS) is a method able to precisely characterise all the terms of the stiffness tensor of an anisotropic material from a single measurement of the mechanical resonant frequencies of a sample. A previous attempt to apply this method to bone was unsuccessful due to high mechanical damping of bone which causes resonance peaks to overlap. We built a custom RUS setup and applied a signal processing method which allows retrieving resonant fre...

  9. Point-Wise Phase Matching for Nonlinear Frequency Generation in Dielectric Resonators

    Science.gov (United States)

    Yu, Nan (Inventor); Strekalov, Dmitry V. (Inventor); Lin, Guoping (Inventor)

    2016-01-01

    An optical resonator fabricated from a uniaxial birefringent crystal, such as beta barium borate. The crystal is cut with the optical axis not perpendicular to a face of the cut crystal. In some cases the optical axis lies in the plane of the cut crystal face. An incident (input) electromagnetic signal (which can range from the infrared through the visible to the ultraviolet) is applied to the resonator. An output signal is recovered which has a frequency that is an integer multiple of the frequency of the input signal. In some cases a prism is used to evanescently couple the input and the output signals to the resonator.

  10. A New Resonance Tube

    Science.gov (United States)

    Bates, Alan

    2017-01-01

    The measurement of the speed of sound in air with the resonance tube is a popular experiment that often yields accurate results. One approach is to hold a vibrating tuning fork over an air column that is partially immersed in water. The column is raised and lowered in the water until the generated standing wave produces resonance: this occurs at…

  11. Resonance and Fractal Geometry

    NARCIS (Netherlands)

    Broer, Henk W.

    The phenomenon of resonance will be dealt with from the viewpoint of dynamical systems depending on parameters and their bifurcations. Resonance phenomena are associated to open subsets in the parameter space, while their complement corresponds to quasi-periodicity and chaos. The latter phenomena

  12. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Electron Paramagnetic Resonance Spectroscopy: Biological Applications. B G Hegde. General Article Volume 20 Issue 11 November 2015 pp 1017-1032. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. Nuclear Magnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Nuclear Magnetic Resonance Spectroscopy. Susanta Das. General Article Volume 9 Issue 1 January 2004 pp 34-49. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/009/01/0034-0049. Keywords.

  14. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    Science.gov (United States)

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  15. Resonant snubber inverter

    Science.gov (United States)

    Lai, J.S.; Young, R.W. Sr.; Chen, D.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; McKeever, J.W.

    1997-06-24

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 14 figs.

  16. Writing with resonance

    DEFF Research Database (Denmark)

    Meier, Ninna; Wegener, Charlotte

    2017-01-01

    In this article, we explore what organization and management scholars can do to write with resonance and to facilitate an emotional, bodily, or in other ways sensory connection between the text and the reader. We propose that resonance can be relevant for organization and management scholars in t......, and thus bring forward the field of research in question. We propose that writing with resonance may be a way to further the impact of academic work by extending the modalities with which our readers can relate to and experience our work.......In this article, we explore what organization and management scholars can do to write with resonance and to facilitate an emotional, bodily, or in other ways sensory connection between the text and the reader. We propose that resonance can be relevant for organization and management scholars in two...

  17. Fundamentals of nanomechanical resonators

    CERN Document Server

    Schmid, Silvan; Roukes, Michael Lee

    2016-01-01

    This authoritative book introduces and summarizes the latest models and skills required to design and optimize nanomechanical resonators, taking a top-down approach that uses macroscopic formulas to model the devices. The authors cover the electrical and mechanical aspects of nano electromechanical system (NEMS) devices. The introduced mechanical models are also key to the understanding and optimization of nanomechanical resonators used e.g. in optomechanics. Five comprehensive chapters address: The eigenmodes derived for the most common continuum mechanical structures used as nanomechanical resonators; The main sources of energy loss in nanomechanical resonators; The responsiveness of micro and nanomechanical resonators to mass, forces, and temperature; The most common underlying physical transduction mechanisms; The measurement basics, including amplitude and frequency noise. The applied approach found in this book is appropriate for engineering students and researchers working with micro and nanomechanical...

  18. Glottal inverse filtering analysis of human voice production—A ...

    Indian Academy of Sciences (India)

    Glottal inverse filtering (GIF) refers to methods of estimating the source of voiced speech, the glottal volume velocity waveform. GIF is based on the idea of inversion, in which the effects of the vocal tract and lip radiation are cancelled from the output of the voice production mechanism, the speech signal. This article provides ...

  19. Multilevel Analysis in Analyzing Speech Data

    Science.gov (United States)

    Guddattu, Vasudeva; Krishna, Y.

    2011-01-01

    The speech produced by human vocal tract is a complex acoustic signal, with diverse applications in phonetics, speech synthesis, automatic speech recognition, speaker identification, communication aids, speech pathology, speech perception, machine translation, hearing research, rehabilitation and assessment of communication disorders and many…

  20. Seismic resonances of acoustic cavities

    Science.gov (United States)

    Schneider, F. M.; Esterhazy, S.; Perugia, I.; Bokelmann, G.

    2016-12-01

    The goal of an On-Site Inspection (OSI) is to clarify at a possible testsite whether a member state of the Comprehensive nuclear Test Ban Treaty (CTBT)has violated its rules by conducting a underground nuclear test. Compared toatmospheric and underwater tests underground nuclear explosions are the mostdifficult to detect.One primary structural target for the field team during an OSI is the detectionof an underground cavity, created by underground nuclear explosions. Theapplication of seismic-resonances of the cavity for its detection has beenproposed in the CTBT by mentioning "resonance seismometry" as possibletechnique during OSIs. We modeled the interaction of a seismic wave-field withan underground cavity by a sphere filled with an acoustic medium surrounded byan elastic full space. For this setting the solution of the seismic wave-fieldcan be computed analytically. Using this approach the appearance of acousticresonances can be predicted in the theoretical calculations. Resonance peaksappear in the spectrum derived for the elastic domain surrounding the acousticcavity, which scale in width with the density of the acoustic medium. For lowdensities in the acoustic medium as for an gas-filled cavity, the spectralpeaks become very narrow and therefore hard to resolve. The resonancefrequencies, however can be correlated to the discrete set of eigenmodes of theacoustic cavity and can thus be predicted if the dimension of the cavity isknown. Origin of the resonance peaks are internal reverberations of wavescoupling in the acoustic domain and causing an echoing signal that couples outto the elastic domain again. In the gas-filled case the amplitudes in timedomain are very low.Beside theoretical considerations we seek to find real data examples fromsimilar settings. As example we analyze a 3D active seismic data set fromFelsőpetény, Hungary that has been conducted between 2012 and 2014 on behalf ofthe CTBTO. In the subsurface of this area a former clay mine is

  1. Reverse stochastic resonance in a hippocampal CA1 neuron model.

    Science.gov (United States)

    Durand, Dominique M; Kawaguchi, Minato; Mino, Hiroyuki

    2013-01-01

    Stochastic resonance (SR) is a ubiquitous and counter- intuitive phenomenon whereby the addition of noise to a non-linear system can improve the detection of sub-threshold signals. The "signal" is normally periodic or deterministic whereas the "noise" is normally stochastic. However, in neural systems, signals are often stochastic. Moreover, periodic signals are applied near neurons to control neural excitability (i.e. deep brain stimulation). We therefore tested the hypothesis that a quasi-periodic signal applied to a neural network could enhance the detection of a stochastic neural signal (reverse stochastic resonance). Using computational methods, a CA1 hippocampal neuron was simulated and a Poisson distributed subthreshold synaptic input ("signal") was applied to the synaptic terminals. A periodic or quasi periodic pulse train at various frequencies ("noise") was applied to an extracellular electrode located near the neuron. The mutual information and information transfer rate between the output and input of the neuron were calculated. The results display the signature of stochastic resonance with information transfer reaching a maximum value for increasing power (or frequency) of the "noise". This result shows that periodic signals applied extracellularly can improve the detection of subthreshold stochastic neural signals. The optimum frequency (110 Hz) is similar to that used in patients with Parkinson's suggesting that this phenomenon could play a role in the therapeutic effect of high frequency stimulation.

  2. Gibberellin signaling.

    Science.gov (United States)

    Hartweck, Lynn M

    2008-12-01

    This review covers recent advances in gibberellin (GA) signaling. GA signaling is now understood to hinge on DELLA proteins. DELLAs negatively regulate GA response by activating the promoters of several genes including Xerico, which upregulates the abscisic acid pathway which is antagonistic to GA. DELLAs also promote transcription of the GA receptor, GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and indirectly regulate GA biosynthesis genes enhancing GA responsiveness and feedback control. A structural analysis of GID1 provides a model for understanding GA signaling. GA binds within a pocket of GID1, changes GID1 conformation and increases the affinity of GID1 for DELLA proteins. GA/GID1/DELLA has increased affinity for an F-Box protein and DELLAs are subsequently degraded via the proteasome. Therefore, GA induces growth through degradation of the DELLAs. The binding of DELLA proteins to three of the PHYTOCHROME INTERACTING FACTOR (PIF) proteins integrates light and GA signaling pathways. This binding prevents PIFs 3, 4, and 5 from functioning as positive transcriptional regulators of growth in the dark. Since PIFs are degraded in light, these PIFs can only function in the combined absence of light and presence of GA. New analyses suggest that GA signaling evolved at the same time or just after the plant vascular system and before plants acquired the capacity for seed reproduction. An analysis of sequences cloned from Physcomitrella suggests that GID1 and DELLAs were the first to evolve but did not initially interact. The more recently diverging spike moss Selaginella has all the genes required for GA biosynthesis and signaling, but the role of GA response in Selaginella physiology remains a mystery.

  3. Electron paramagnetic resonance study of nanostructured graphite

    Science.gov (United States)

    Kausteklis, Jonas; Cevc, Pavel; Arčon, Denis; Nasi, Lucia; Pontiroli, Daniele; Mazzani, Marcello; Riccò, Mauro

    2011-09-01

    We report on a systematic temperature-dependent x-band electron paramagnetic resonance (EPR) study of nanosized graphite particles prepared by ball milling. In as-prepared samples a very intense and sharp EPR resonance at g=2.0035 has been measured. The EPR line width shows a Korringa-like linear temperature dependence arising due to the coexistence and strong exchange coupling of itinerant and localized edge states. With a prolonged aging in inert atmosphere, changes in the EPR signal suggest gradual structural reconstruction where the localized edge states dominate the EPR signal. In this case the EPR spin susceptibility shows a maximum at ≈23K indicating the development of antiferromagnetic correlations as expected for the graphene lattice with a bipartite symmetry.

  4. Magnetic resonance imaging of pericardial diseases

    Energy Technology Data Exchange (ETDEWEB)

    Niwa, Koichiro; Tashima, Kazuyuki; Okajima, Yoshitomo; Nakajima, Hiromichi; Terai, Masaru; Nakajima, Hironori

    1988-10-01

    We performed magnetic resonance imaging (MRI) in 4 patients, ranged from 4 to 15 years in age, with pericardial disease (1 with pericaditis with JRA, 1 with chylopericardium, and 2 with pericarditis) for morphological and histological evaluation of the percardial disease. ECG-gated MRI was performed by the spin echo method using a superconducting MRI system operating at 0.5 tesla. In all the patients pericardial diseases were clearly demonstrated. MRI visualized the thickened pericardium as 2 to 4 mm thick curvilinear line of high signal intensity in all the patients. Pericardial effusion was detected in all the patients. Two of them showed low signal intensity and 1 showed high signal intensity. Pericardial effusion in patient with chylopericardium had markedly high signal intensity, similar to that of the subcutaneous far tissue. MRI appears to be an important modality for the evaluation of pericardial disease.

  5. Enhanced quadruple-resonant terahertz metamaterial with asymmetric hybrid resonators

    Science.gov (United States)

    Shi, Minglei; Lan, Feng; Mazumder, Pinaki; Aghadjani, Mahdi; Yang, Ziqiang; Meng, Lin; Zhou, Jun

    2018-01-01

    This paper presents the design, fabrication and investigation of a quadruple-resonant terahertz metamaterial that comprises two different Electric-inductance capacitance (ELC) resonators in a vertical configuration. Owing to asymmetric electric field coupling between the two resonators, the combined structure exhibits better performance in terms of transmission minima and bandwidths than the individual particles. The distributions of the surface current and electric field reveal quasi-quadrupole resonance, electric dipolar resonance and coupling between these resonances at different resonant frequencies. Moreover, the resonant frequencies are tunable by adjusting the corresponding geometrical parameters. Above all, the excellent performance of the proposed structure makes it promising for application in multiband terahertz devices.

  6. Magnetic Resonance Imaging (MRI) -- Head

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head ... limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is ...

  7. Magnetic Resonance Imaging (MRI) - Spine

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Spine Magnetic resonance imaging (MRI) of the spine ... limitations of MRI of the Spine? What is MRI of the Spine? Magnetic resonance imaging (MRI) is ...

  8. Resonant detectors for gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Pizzella, G. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[Istituto di Fisica Nucleare, Frascati, Rome (Italy)

    1995-11-01

    The principles of the gravitational wave detection by means of resonant antennas are illustrated and a review of the resonant antenna experiments in the world is given. Possible plans for the future resonant antennas are indicated.

  9. LABCOM resonator Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Keres, L.J.

    1990-11-01

    The purpose of this project was to develop quartz crystal resonator designs, production processes, and test capabilities for 5-MHz, 6.2-MHz, and 10-MHz resonators for Tactical Miniature Crystal Oscillator (TMXO) applications. GE Neutron Devices (GEND) established and demonstrated the capability to produce and test quartz crystal resonators for use in the TMXO developed by the US Army ERADCOM (now LABCOM). The goals in this project were based on the ERADCOM statement of work. The scope of work indicated that the resonator production facilities for this project would not be completely independent, but that they would be supported in part by equipment and processes in place at GEND used in US Department of Energy (DOE) work. In addition, provisions for production test equipment or or eventual technology transfer costs to a commercial supplier were clearly excluded from the scope of work. The demonstrated technical capability of the deep-etched blank design is feasible and practical. It can be manufactured in quantity with reasonable yield, and its performance is readily predictable. The ceramic flatpack is a very strong package with excellent hermeticity. The four-point mount supports the crystal to reasonable shock levels and does not perturb the resonator's natural frequency-temperature behavior. The package can be sealed with excellent yields. The high-temperature, high-vacuum processing developed for the TMXO resonator, including bonding the piezoid to its mount with conductive polyimide adhesive, is consistent with precision resonator fabrication. 1 fig., 6 tabs.

  10. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  11. Microscopic FMR Using Magnetic Resonance Force Microscopy

    Science.gov (United States)

    Zhang, Z.; Hammel, P. C.; Wigen, P. E.

    1996-03-01

    Magnetic resonance force microscopy (MRFM) is a new 3-D imaging technique with ultra-high spatial resolution. This technique, discussed primarily in the context of nuclear magnetic resonance, can also be applied as a microscopic ferromagnetic resonance probe to investigate the distributions of magnetic anisotropy and magnetic exchange interactions within magnetic materials (for example, magnetic multilayer systems). We report the first MRFM experiment on a single crystal Yittrium Iron Garnet film. A non-resonance mode and a family of magneto-static modes were observed in the MRFM spectra. The non-resonance mode is due to the response of the sample magnetization to the applied, time dependent bias field. This will be the main noise source when a magnet is mounted on the cantilever, an arrangement which is necessary in order to perform 3-D imaging in MRFM. The behavior of the magneto-static modes is in qualitative accord with theoretical expectations. The MRFM signal intensity is so large that the experiment is performed under ambient pressure instead of vacuum to reduce the response of the detector (cantilever). This indicates that MRFM will allow micron or sub-micron spatial resolution in studies of a wide variety of magnetic materials.

  12. Tunable multiwalled nanotube resonator

    Science.gov (United States)

    Jensen, Kenneth J; Girit, Caglar O; Mickelson, William E; Zettl, Alexander K; Grossman, Jeffrey C

    2013-11-05

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  13. Resonant power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2012-01-01

    This book is devoted to resonant energy conversion in power electronics. It is a practical, systematic guide to the analysis and design of various dc-dc resonant inverters, high-frequency rectifiers, and dc-dc resonant converters that are building blocks of many of today's high-frequency energy processors. Designed to function as both a superior senior-to-graduate level textbook for electrical engineering courses and a valuable professional reference for practicing engineers, it provides students and engineers with a solid grasp of existing high-frequency technology, while acquainting them wit

  14. Single-Molecule Stochastic Resonance

    Directory of Open Access Journals (Sweden)

    K. Hayashi

    2012-08-01

    Full Text Available Stochastic resonance (SR is a well-known phenomenon in dynamical systems. It consists of the amplification and optimization of the response of a system assisted by stochastic (random or probabilistic noise. Here we carry out the first experimental study of SR in single DNA hairpins which exhibit cooperatively transitions from folded to unfolded configurations under the action of an oscillating mechanical force applied with optical tweezers. By varying the frequency of the force oscillation, we investigate the folding and unfolding kinetics of DNA hairpins in a periodically driven bistable free-energy potential. We measure several SR quantifiers under varied conditions of the experimental setup such as trap stiffness and length of the molecular handles used for single-molecule manipulation. We find that a good quantifier of the SR is the signal-to-noise ratio (SNR of the spectral density of measured fluctuations in molecular extension of the DNA hairpins. The frequency dependence of the SNR exhibits a peak at a frequency value given by the resonance-matching condition. Finally, we carry out experiments on short hairpins that show how SR might be useful for enhancing the detection of conformational molecular transitions of low SNR.

  15. Classical and Quantum Stochastic Resonance

    Science.gov (United States)

    Hänggi, Peter

    1996-03-01

    The idea that noise can assist the formation of order might sound paradoxical but does indeed occur in nonlinear systems with the phenomenon of Stochastic Resonance (SR)(F. Moss et al., Stochastic Resonance: Tutorial and Update), Int. J. Bif. and Chaos 4, 1383 (1994); K. Wiesenfeld and F. Moss, Nature 373, 33 (1995); P. Jung, Phys. Rep. 234 C, 175 (1993). This term is given to the effect where the detection of weak periodic signals is enhanced in presence of noise activated crossings of barriers or threshold levels. After introducing the audience into the common characterization of SR by use of the power spectrum of the output signal and/or the probability density of correponding residence times, I shall report new features for nonlinear SR where strong driving can give rise to anomalous amplification of higher harmonics, hole-burning in power spectra, or SR-induced, almost complete deletion of higher harmonics(R. Bartussek, P. Jung, P. Hänggi, Phys. Rev. E49), 3930 (1994); V. Shneidman, P. Jung, P. Hänggi, Phys. Rev. Lett. 72, 2682 (1994). These novel effects have recently been confirmed experimentally in a magnetic flux driven sensitive detection device (superconducting quantum-interference device)(R. Rouse, S. Han, J.E. Lukens, Appl. Phys. Lett. 66), 108 (1995). This device constitutes a macroscopic quantum system where with decreasing temperature quantum tunneling transitions begin to modify and blur the classical SR-responce. Recent progress in the quest of SR phenomena in the deep quantum regime(M. Grifoni and P. Hänggi, submitted to PRL) is reviewed together with experimental proposals where Quantum-SR induced manipulation of individual atoms, or whole molecular groups, can be observed.

  16. Subvoxel limits of magnetic resonance angiography: One-dimensional case

    Science.gov (United States)

    Takeuchi, Michihiro; Kim, Dongmin; Sekino, Masaki; Ueno, Shoogo; Ohsaki, Hiroyuki; Iriguchi, Norio

    2010-05-01

    Although the pixel size of magnetic resonance angiography (MRA) defines the spatial resolution of measured images, MRA visualizes blood vessels whose diameters are comparable to or smaller than the pixel size. In the present study, we carried out simplified one-dimensional numerical simulations and two-dimensional imaging experiments to show that discretization errors significantly appear in the measurement of very thin samples, or samples having subpixel structures. Magnetic resonance signals were calculated for a numerical model of blood vessel. The signal intensity was significantly affected by the small displacements. The experimentally obtained signal intensities agreed well with numerical simulations. The signals were summed within a region-of-interest (ROI) covering several pixels. A decrease in the number of pixels included in the ROI led to a decrease in the fluctuation of signal intensity.

  17. Micromechanical microphone using sideband modulation of nonlinear resonators

    Science.gov (United States)

    Boales, Joseph A.; Mateen, Farrukh; Mohanty, Pritiraj

    2017-08-01

    We report successful detection of an audio signal via sideband modulation of a nonlinear piezoelectric micromechanical resonator. The 270 × 96-μm resonator was shown to be reliable in audio detection for sound intensity levels as low as ambient room noise and to have an unamplified sensitivity of 23.9 μV/Pa. Such an approach may be adapted in acoustic sensors and microphones for consumer electronics or medical equipment such as hearing aids.

  18. Stochastic resonance in neuron models: endogenous stimulation revisited.

    Science.gov (United States)

    Plesser, H E; Geisel, T

    2001-03-01

    The paradigm of stochastic resonance (SR)-the idea that signal detection and transmission may benefit from noise-has met with great interest in both physics and the neurosciences. We investigate here the consequences of reducing the dynamics of a periodically driven neuron to a renewal process (stimulation with reset or endogenous stimulation). This greatly simplifies the mathematical analysis, but we show that stochastic resonance as reported earlier occurs in this model only as a consequence of the reduced dynamics.

  19. Tuning piezoresistive transduction in nanomechanical resonators by geometrical asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Llobet, J.; Sansa, M.; Lorenzoni, M.; Pérez-Murano, F., E-mail: francesc.perez@csic.es [Institut de Microelectrònica de Barcelona (IMB-CNM CSIC), Campus UAB, 08193 Bellaterra (Spain); Borrisé, X. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, 08193 Bellaterra Spain (Spain); San Paulo, A. [Instituto de Microelectrónica de Madrid (IMM-CSIC), 28760 Tres Cantos, Madrid (Spain)

    2015-08-17

    The effect of geometrical asymmetries on the piezoresistive transduction in suspended double clamped beam nanomechanical resonators is investigated. Tapered silicon nano-beams, fabricated using a fast and flexible prototyping method, are employed to determine how the asymmetry affects the transduced piezoresistive signal for different mechanical resonant modes. This effect is attributed to the modulation of the strain in pre-strained double clamped beams, and it is confirmed by means of finite element simulations.

  20. Schumann Resonances and Their Potential Applications: a Review Article

    Directory of Open Access Journals (Sweden)

    Amal Fathi Alrais

    2017-12-01

    Full Text Available Introduction: Schumann resonances is an important topic gains great interest in research areas which has extensive use of Schumann resonances in a variety of desplines such as biological evolutionary processes, the optimal functioning of the human brain waves and lightning-related studies. Materials and Methods: This dictates the major emphasis on economic, environmental, and engineering applications and hazard assessments in the form of earthquake and volcano monitoring. Results: This review is aimed at the reader generally unfamiliar with the Schumann Resonances. It is our hope that this review will increase the interest in SR among researchers previously unfamiliar with this phenomenon. Discussion and Conclusions: In this review paper, a brief introduction about Schumann resonances is presented. A general description of Earth’s ionosphere is outlined. The electromagnetic waves spectrum from lightning is discussed. The history of Schumann resonances is briefly presented. The connection of man with nature through Schumann resonances is introduced. Present Schumann resonances researches are briefly outlined. Schumann (global electromagnetic resonances in the cavity Earth – ionosphere play a critical role in all biological evolutionary processes. However, there is a great need for independent research into the bio-compatibility between natural and manmade signals. Serious attention must now be paid to the possible biological role of standing waves in the atmosphere. Being a global phenomenon, Schumann resonances have numerous applications in lightning research.

  1. Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Robert H. Morris

    2014-11-01

    Full Text Available Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medical point of care diagnostics. This great diversity is seeing exciting developments in magnetic resonance sensing technology published in application specific journals where they are often not seen by the wider sensor community. It is clear that there is enormous interest in magnetic resonance sensors which represents a significant growth area. The aim of this special edition of Sensors was to address the wide distribution of relevant articles by providing a forum to disseminate cutting edge research in this field in a single open source publication.[...

  2. Resonant Thermoelectric Nanophotonics

    CERN Document Server

    Mauser, Kelly W; Kim, Seyoon; Fleischman, Dagny; Atwater, Harry A

    2016-01-01

    Photodetectors are typically based on photocurrent generation from electron-hole pairs in semiconductor structures and on bolometry for wavelengths that are below bandgap absorption. In both cases, resonant plasmonic and nanophotonic structures have been successfully used to enhance performance. In this work, we demonstrate subwavelength thermoelectric nanostructures designed for resonant spectrally selective absorption, which creates large enough localized temperature gradients to generate easily measureable thermoelectric voltages. We show that such structures are tunable and are capable of highly wavelength specific detection, with an input power responsivity of up to 119 V/W (referenced to incident illumination), and response times of nearly 3 kHz, by combining resonant absorption and thermoelectric junctions within a single structure, yielding a bandgap-independent photodetection mechanism. We report results for both resonant nanophotonic bismuth telluride-antimony telluride structures and chromel-alumel...

  3. Piezoelectric MEMS resonators

    CERN Document Server

    Piazza, Gianluca

    2017-01-01

    This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associate...

  4. Ghost magnetic resonance angiography

    National Research Council Canada - National Science Library

    Koktzoglou, Ioannis; Edelman, Robert R

    2009-01-01

    Traditional methods for magnetic resonance angiography (MRA) involve the radiofrequency excitation of vascular spins within a selected region of tissue, followed by gradient localization and imaging of those spins within that same region...

  5. Triple-resonant transducers.

    Science.gov (United States)

    Butler, Stephen C

    2012-06-01

    A detailed analysis is presented of two novel multiple-resonant transducers which produce a wider transmit response than that of a conventional Tonpilz-type transducer. These multi-resonant transducers are Tonpilz-type longitudinal vibrators that produce three coupled resonances and are referred to as triple-resonant transducers (TRTs). One of these designs is a mechanical series arrangement of a tail mass, piezoelectric ceramic stack, central mass, compliant spring, second central mass, second compliant spring, and a piston-radiating head mass. The other TRT design is a mechanical series arrangement of a tail mass, piezoelectric ceramic stack, central mass, compliant spring, and head mass with a quarter-wave matching layer of poly(methyl methacrylate) on the head mass. Several prototype transducer element designs were fabricated that demonstrated proof-of-concept.

  6. Resonant diphoton phenomenology simplified

    Energy Technology Data Exchange (ETDEWEB)

    Panico, Giuliano [IFAE, Universitat Autònoma de Barcelona,E-08193 Bellaterra, Barcelona (Spain); Vecchi, Luca [SISSA,via Bonomea 265, 34136, Trieste (Italy); Dipartimento di Fisica e Astronomia, Università di Padova and INFN - Sezione di Padova,via Marzolo 8, I-35131 Padova (Italy); Wulzer, Andrea [Dipartimento di Fisica e Astronomia, Università di Padova and INFN - Sezione di Padova,via Marzolo 8, I-35131 Padova (Italy)

    2016-06-30

    A framework is proposed to describe resonant diphoton phenomenology at hadron colliders in full generality. It can be employed for a comprehensive model-independent interpretation of the experimental data. Within the general framework, few benchmark scenarios are defined as representative of the various phenomenological options and/or of motivated new physics scenarios. Their usage is illustrated by performing a characterization of the 750 GeV excess, based on a recast of available experimental results. We also perform an assessment of which properties of the resonance could be inferred, after discovery, by a careful experimental study of the diphoton distributions. These include the spin J of the new particle and its dominant production mode. Partial information on its CP-parity can also be obtained, but only for J≥2. The complete determination of the resonance CP properties requires studying the pattern of the initial state radiation that accompanies the resonant diphoton production.

  7. Lattices of dielectric resonators

    CERN Document Server

    Trubin, Alexander

    2016-01-01

    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  8. Resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  9. Measures of distance between speech signals in the frequency domain

    Science.gov (United States)

    Deseta, D.

    1984-02-01

    The energy density spectra and the time behavior of the autoregressive model of voice signals are studied. The first is a complete representation of the voice signal in the frequency domain, derived from the application of the Fourier transform to the sampled signal. The second is based on a voice signal generation model in which the channel is represented by poles only (resonances). A symmetrical version of the Itakura distance is the best compromise between conflicting requirements.

  10. Non-Invasive Optical Biosensor for Probing Cell Signaling

    OpenAIRE

    Fang, Ye

    2007-01-01

    Cell signaling mediated through a cellular target is encoded by spatial and temporal dynamics of downstream signaling networks. The coupling of temporal dynamics with spatial gradients of signaling activities guides cellular responses upon stimulation. Monitoring the integration of cell signaling in real time, if realized, would provide a new dimension for understanding cell biology and physiology. Optical biosensors including resonant waveguide grating (RWG) biosensor manifest a physiologica...

  11. Mechanical detection of EPR dispersion signals

    Energy Technology Data Exchange (ETDEWEB)

    Giulietti, D.; Lucchesi, M.; Zambon, B. (Pisa Univ. (Italy). Ist. di Fisica)

    1979-01-11

    A new experimental apparatus for the mechanical detection of paramagnetic dispersion has been worked out. This technique is particularly suitable for the detection of resonances in which the relaxation time is very large, as in the NMR. In fact, the dispersion signal, when ..gamma../sup 2/H/sub 1//sup 2/T/sub 1/T/sub 2/>>1, increases linearly with the oscillating field H/sub 1/, whereas the absorption signal approaches an asymptotic constant value.

  12. Magnetic Resonance Sensors

    OpenAIRE

    Morris, RH; Newton, MI

    2014-01-01

    Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medica...

  13. Resonant dielectric metamaterials

    Science.gov (United States)

    Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B

    2014-12-02

    A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.

  14. Hexagonal quartz resonator

    Science.gov (United States)

    Peters, Roswell D. M.

    1982-01-01

    A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively .+-.60.degree. away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency.

  15. Bolometric detection of ferromagnetic resonance in YIG slab

    Science.gov (United States)

    Tu, Sa; Białek, Marcin; Zhang, Youguang; Zhao, Weisheng; Yu, Haiming; Ansermet, Jean-Philippe

    2017-10-01

    The resistance of the Pt bar deposited on the YIG slab was monitored while the magnetic field was ramped through the ferromagnetic resonance with the YIG slab facing a coplanar waveguide resonator excited at 4.3 GHz excitation. The resistance change provides detection of the ferromagnetic resonance with a high signal-to-noise ratio. It is ascribed to a change in the temperature of the Pt bars. The thermal origin of the signal is confirmed by the observation that the signal vanishes when field modulation is applied at frequencies above 6 Hz. The spin pumping effect was vanishingly small, and the anisotropic magnetoresistance of the Pt bar, though quite easily observed, would imply a rectification voltage that is much smaller than the bolometric effect.

  16. Implications of perturbative unitarity for scalar di-boson resonance searches at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Di Luzio, Luca [Universita di Genova, Dipartimento di Fisica, Genova (Italy); Durham University, Institute for Particle Physics Phenomenology, Department of Physics, Durham (United Kingdom); INFN, Sezione di Genova (Italy); Kamenik, Jernej F. [Jozef Stefan Institute, Ljubljana (Slovenia); University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana (Slovenia); Nardecchia, Marco [DAMTP, University of Cambridge, Cambridge (United Kingdom); CERN, Theoretical Physics Department, Geneva (Switzerland)

    2017-01-15

    We study the constraints implied by partial wave unitarity on new physics in the form of spin-zero di-boson resonances at LHC. We derive the scale where the effective description in terms of the SM supplemented by a single resonance is expected to break down depending on the resonance mass and signal cross section. Likewise, we use unitarity arguments in order to set perturbativity bounds on renormalizable UV completions of the effective description. We finally discuss under which conditions scalar di-boson resonance signals can be accommodated within weakly coupled models. (orig.)

  17. Synchronization of oscillations in resonance systems with distributed interaction

    Science.gov (United States)

    Vavriv, D. M.; Tretiakov, O. A.

    1984-09-01

    The region of existence of a synchronous regime in millimeter-wave resonance oscillators with distributed interaction (diffraction-radiation generators, orotrons, and resonance BWTs) is determined in the case when a weak external signal modulates the beam at the entrance to the interaction space. Explicit expressions are derived for the width of the synchronization band and the amplitude of forced oscillations, and the dependence of these expressions on the beam and resonator parameters is analyzed. The synchronous oscillation regime at high beam currents is considered, and the effect of accelerating voltage on the synchronization regime is assessed.

  18. Terahertz Sensor Using Photonic Crystal Cavity and Resonant Tunneling Diodes

    Science.gov (United States)

    Okamoto, Kazuma; Tsuruda, Kazuisao; Diebold, Sebastian; Hisatake, Shintaro; Fujita, Masayuki; Nagatsuma, Tadao

    2017-09-01

    In this paper, we report on a terahertz (THz) sensing system. Compared to previously reported systems, it has increased system sensitivity and reduced size. Both are achieved by using a photonic crystal (PC) cavity as a resonator and compact resonant tunneling diodes (RTDs) as signal source and as detector. The measured quality factor of the PC cavity is higher than 10,000, and its resonant frequency is 318 GHz. To demonstrate the operation of the refractive index sensing system, dielectric tapes of various thicknesses are attached to the PC cavity and the change in the resonator's refractive index is measured. The figure of merit of refractive index sensing using the developed system is one order higher than that of previous studies, which used metallic metamaterial resonators. The frequency of the RTD-based source can be swept from 316 to 321 GHz by varying the RTD direct current voltage. This effect is used to realize a compact frequency tunable signal source. Measurements using a commercial signal source and detector are carried out to verify the accuracy of the data obtained using RTDs as a signal source and as a detector.

  19. Nonlinear Resonance Islands and Modulational Effects in a Proton Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Satogata, Todd Jeffrey [Northwestern Univ., Evanston, IL (United States)

    1993-01-01

    We examine both one-dimensional and two-dimensional nonlinear resonance islands created in the transverse phase space of a proton synchrotron by nonlinear magnets. We also examine application of the theoretical framework constructed to the phenomenon of modulational diffusion in a collider model of the Fermilab Tevatron. For the one-dimensional resonance island system, we examine the effects of two types of modulational perturbations on the stability of these resonance islands: tune modulation and beta function modulation. Hamiltonian models are presented which predict stability boundaries that depend on only three paramders: the strength and frequency of the modulation and the frequency of small oscillations inside the resonance island. These. models are compared to particle tracking with excellent agreement. The tune modulation model is also successfully tested in experiment, where frequency domain analysis coupled with tune modulation is demonstrated to be useful in measuring the strength of a nonlinear resonance. Nonlinear resonance islands are also examined in two transverse dimensions in the presence of coupling and linearly independent crossing resonances. We present a first-order Hamiltonian model which predicts fixed point locations, but does not reproduce small oscillation frequencies seen in tracking; therefore in this circumstance such a model is inadequate. Particle tracking is presented which shows evidence of two-dimensional persistent signals, and we make suggestions on methods for observing such signals in future experiment.

  20. Stochastic resonance crossovers in complex networks.

    Directory of Open Access Journals (Sweden)

    Giovanni Pinamonti

    Full Text Available Here we numerically study the emergence of stochastic resonance as a mild phenomenon and how this transforms into an amazing enhancement of the signal-to-noise ratio at several levels of a disturbing ambient noise. The setting is a cooperative, interacting complex system modelled as an Ising-Hopfield network in which the intensity of mutual interactions or "synapses" varies with time in such a way that it accounts for, e.g., a kind of fatigue reported to occur in the cortex. This induces nonequilibrium phase transitions whose rising comes associated to various mechanisms producing two types of resonance. The model thus clarifies the details of the signal transmission and the causes of correlation among noise and signal. We also describe short-time persistent memory states, and conclude on the limited relevance of the network wiring topology. Our results, in qualitative agreement with the observation of excellent transmission of weak signals in the brain when competing with both intrinsic and external noise, are expected to be of wide validity and may have technological application. We also present here a first contact between the model behavior and psychotechnical data.

  1. Phase Stochastic Resonance in a Forced Nanoelectromechanical Membrane.

    Science.gov (United States)

    Chowdhury, Avishek; Barbay, Sylvain; Clerc, Marcel G; Robert-Philip, Isabelle; Braive, Rémy

    2017-12-08

    Stochastic resonance is a general phenomenon usually observed in one-dimensional, amplitude modulated, bistable systems. We show experimentally the emergence of phase stochastic resonance in the bidimensional response of a forced nanoelectromechanical membrane by evidencing the enhancement of a weak phase modulated signal thanks to the addition of phase noise. Based on a general forced Duffing oscillator model, we demonstrate experimentally and theoretically that phase noise acts multiplicatively, inducing important physical consequences. These results may open interesting prospects for phase noise metrology or coherent signal transmission applications in nanomechanical oscillators. Moreover, our approach, due to its general character, may apply to various systems.

  2. Prosocial Signalling

    DEFF Research Database (Denmark)

    Kahsay, Goytom Abraha

    In contrast to the standard economic theory predictions, it seems clear that people do spend their time and resource to benefit others. Many lab and field experiment studies show that people display prosocial preferences such as altruism, reciprocity and conditional cooperation, fairness, etc...... signalling can cause reverse price reactions resembling the crowding-out of pre-existing motives for prosocial behavior seen in situations of volunteering and charitable giving. Using a unique combination of questionnaire and purchase panel data, it presents evidence of such reputation-driven reverse price...

  3. Magnetic resonance imaging; Imagerie par resonance magnetique

    Energy Technology Data Exchange (ETDEWEB)

    Fontanel, F. [Centre Hospitalier, 40 - Mont-de -Marsan (France); Clerc, T. [Centre Hospitalier Universitaire, 76 - Rouen (France); Theolier, S. [Hospice Civils de Lyon, 69 - Lyon (France); Verdenet, J. [Centre Hospitalier Universitaire, 25 - Besancon (France)

    1997-04-01

    The last improvements in nuclear magnetic resonance imaging are detailed here, society by society with an expose of their different devices. In the future the different technological evolutions will be on a faster acquisition, allowing to reduce the examination time, on the development of a more acute cardiac imaging, of a functional neuro-imaging and an interactive imaging for intervention. With the contrast products, staying a longer time in the vascular area, the angiography will find its place. Finally, the studies on magnetic fields should allow to increase the volume to examine. (N.C.).

  4. Role of multipolar plasmon resonances during surface-enhanced Raman spectroscopy on Au micro-patches

    DEFF Research Database (Denmark)

    Dowd, Annette; Geisler, Mathias; Zhu, Shaoli

    2016-01-01

    The enhancement of a Raman signal by multipolar plasmon resonances – as opposed to the more common practice of using dipolar resonances – is investigated. A wide range of gold stars, triangles, circles and squares with multipolar resonances in the visible region were designed and then produced...... by electron beam lithography. We used 633 nm excitation and Rhodamine 6G as a probe molecule to confirm that, although the dipolar resonances of these shapes lie well into the infrared, SERS in the visible can still be obtained by coupling to their ‘dark mode’ multipolar resonances. However, the magnitude...

  5. Detection of magnetic resonance signals using a magnetoresistive sensor

    Energy Technology Data Exchange (ETDEWEB)

    Budker, Dmitry; Pines, Alexander; Xu, Shoujun; Hilty, Christian; Ledbetter, Micah P; Bouchard, Louis S

    2013-10-01

    A method and apparatus are described wherein a micro sample of a fluidic material may be assayed without sample contamination using NMR techniques, in combination with magnetoresistive sensors. The fluidic material to be assayed is first subject to pre-polarization, in one embodiment, by passage through a magnetic field. The magnetization of the fluidic material is then subject to an encoding process, in one embodiment an rf-induced inversion by passage through an adiabatic fast-passage module. Thereafter, the changes in magnetization are detected by a pair of solid-state magnetoresistive sensors arranged in gradiometer mode. Miniaturization is afforded by the close spacing of the various modules.

  6. LHC Signals from Cascade Decays of Warped Vector Resonances

    CERN Document Server

    Agashe, Kaustubh S.; Du, Peizhi; Hong, Sungwoo; Kim, Doojin; Mishra, Rashmish K.

    2017-01-01

    Recently (arXiv:1608.00526), a new framework for warped higher-dimensional compactifications with "bulk" standard model (SM) was proposed: in addition to the UV (Planck scale) and IR (a couple of TeV) branes, there is an intermediate brane, taken to be around 10 TeV. The SM matter and Higgs fields propagate from the UV brane down to this intermediate brane only, while gauge and gravity fields propagate in the entire bulk. Such a configuration renders the lightest gauge Kaluza-Klein (KK) states within LHC reach, simultaneously satisfying flavor and CP constraints. In addition, the usual leading decay modes of the lightest KK gauge bosons into top and Higgs bosons are suppressed. This effect permits erstwhile subdominant channels to become significant. These include flavor-universal decays to SM fermions and Higgs bosons, and a novel channel - decay to a radion and a SM gauge boson, followed by radion decay to a pair of SM gauge bosons. In this work, we first delineate the parameter space where the above mentio...

  7. Overview of baryon resonances

    Directory of Open Access Journals (Sweden)

    Downie E.J.

    2014-06-01

    Full Text Available The quest to understand the physics of any system cannot be said to be complete as long as one cannot predict and fully understand its resonance spectrum. Despite this, due to the experimental challenge of the required double polarization measurements and the difficulty in achieving unambiguous, model-independent extraction and interpretation of the nucleon resonance spectrum of many broad and overlapping resonances, understanding of the structure and dynamics of the nucleon has suffered. The recent improvement in statistical quality and kinematic range of the data made available by such full-solid-angle systems as the CB and TAPS constellation at MAMI, coupled with the high flux polarized photon beam provided by the Glasgow Photon Tagger, and the excellent properties of the Mainz Frozen Spin Target, when paired with new developments in Partial Wave Analysis (PWA methodology make this a very exciting and fruitful time in nucleon resonance studies. Here the recent influx of data and PWA developments are summarized, and the requirements for a complete, unambiguous PWA solution over the first and second resonance region are briefly reviewed.

  8. Electrothermally Tunable Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2017-03-18

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated microelectromechanical arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. An electrothermal voltage is applied between the anchors of the beam generating a current that controls the axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to an increase in its curvature, thereby increasing its resonance frequencies. We show here that the first resonance frequency can increase monotonically up to twice its initial value. We show also that after some electrothermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators. Analytical results based on the nonlinear Euler Bernoulli beam theory are generated and compared with the experimental data and the results of a multi-physics finite-element model. A good agreement is found among all the results. [2016-0291

  9. Optimal sequence for magnetic resonance cholangiopancreatography

    Energy Technology Data Exchange (ETDEWEB)

    Kanzaki, Hiroshi; Akata, Soichi; Ozuki, Taizo; Abe, Kimihiko [Tokyo Medical Coll. (Japan)

    2001-09-01

    Magnetic resonance cholangiopancreatography (MRCP) has attracted attention as a useful examination for abnormalities of the pancreaticobiliary system, because it is a simple procedure. Since there are few detailed reports on optimal sequences for MRCP, we attempted to clarify the topic. The magnetic resonance imaging (MRI) equipment we used was a 1.0 Tesla super-conductive type. A fast spin echo (16 echo train) was used, and the echo space was set at 17 msec. TE was changed from 17 msec to 272 msec in 17 msec increments. TR was changed from 1,000 msec to 9,000 msec by 1,000 msec increments. Bile juice which had been collected from the PTCD tube of a patient with common bile duct cancer, was put in a test tube of 10 mm internal diameter. Saline was used as a substitute for pancreatic juice, because collection of pancreatic juice was difficult. Fat was used for contrast. Each signal intensity inside the test tube was measured and evaluated. We attempted to evaluate the signal of gastric juice by adding blueberry juice, making use of its manganese ion (Mn{sup ++}). With longer TR, the signal intensities of bile and pancreas juice increased. As TE became longer, the signal intensities of bile and pancreas juice decreased slightly, while that of fat decreased much more. In MRCP, it is necessary to set up a long TE to increase the relative signal intensity difference of fat in bile and pancreas juice. The signal intensity of gastric juice was made to disappear by the addition of blueberry juice diluted to a ratio of 1:3. (author)

  10. Stochastic resonance in hippocampal CA1 neurons

    Science.gov (United States)

    Stacey, William Charles

    Stochastic Resonance (SR) is a phenomenon observed in nonlinear systems whereby the introduction of noise enhances the detection of a subthreshold signal for a certain range of noise intensity. Many central neurons, such as hippocampal CAI cells, are good candidates for SR due to their function of signal detection in a noisy environment, but the role of SR in the CNS is unclear. Physiological levels of noise are able to improve signal detection through SR, as found in simulated CAI neurons and in vitro rat hippocampal slices. Further investigation, utilizing a novel method of in vitro noise modulation, shows that endogenous noise sources can generate SR activity. These results suggest SR may provide a means for the hippocampus to modulate detection of specific inputs through endogenous noise sources. The role of noise in signal detection for a network of CAI cells is tested with a network simulation. The network shows improved detection as the number of cells and coupling increase for noise with low variance. One cell receiving the signal cannot recruit the remaining cells unless the network is very active and tuned by the coupling and noise. Periodic oscillations at high noise amplitudes corrupt all outputs. These oscillations develop into synchronized, periodic bursts as a function of both noise and coupling. These findings are relevant for the analysis of the role of physiological noise in signal processing in the brain and in the synchronization of neural activity as in epilepsy.

  11. Electrothermally Tunable Bridge Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2016-12-05

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.

  12. Quartz resonator processing system

    Science.gov (United States)

    Peters, Roswell D. M.

    1983-01-01

    Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

  13. Pygmy Dipole Resonances

    Science.gov (United States)

    Krewald, S.; Speth, J.

    Electric dipole strength below the particle emission threshold both in stable nuclei and short-lived isotopes has received increasing interest due to its astrophysical impact. In analogy to the giant dipole resonance, this strength is commonly referred to as pygmy resonance. Coulomb dissociation of neutron-rich unstable isotopes and nuclear resonance fluorescence photon scattering have begun to provide systematic data on electric dipole strength in various isotope chains. We review the present state of the art of theoretical approaches and point out some open problems. We emphasize the necessity of a simultaneous theoretical treatment of the nucleon separation energies and the energetically low-lying dipole strength because the presently available data do not exclude a non-collective nature of the pygmy strength.

  14. Reconfigurable optical routers based on Coupled Resonator Induced Transparency resonances.

    Science.gov (United States)

    Mancinelli, M; Bettotti, P; Fedeli, J M; Pavesi, L

    2012-10-08

    The interferometric coupling of pairs of resonators in a resonator sequence generates coupled ring induced transparency (CRIT) resonances. These have quality factors an order of magnitude greater than those of single resonators. We show that it is possible to engineer CRIT resonances in tapered SCISSOR (Side Coupled Integrated Space Sequence of Resonator) to realize fast and efficient reconfigurable optical switches and routers handling several channels while keeping single channel addressing capabilities. Tapered SCISSORs are fabricated in silicon-on-insulator technology. Furthermore, tapered SCISSORs show multiple-channel switching behavior that can be exploited in DWDM applications.

  15. Higgs-photon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Dobrescu, Bogdan A.; Fox, Patrick J.; Kearney, John [Fermilab, Theoretical Physics Department, Batavia, IL (United States)

    2017-10-15

    We study models that produce a Higgs boson plus photon (h{sup 0}γ) resonance at the LHC. When the resonance is a Z{sup '} boson, decays to h{sup 0}γ occur at one loop. If the Z{sup '} boson couples at tree level to quarks, then the h{sup 0}γ branching fraction is typically of order 10{sup -5} or smaller. Nevertheless, there are models that would allow the observation of Z{sup '} → h{sup 0}γ at √(s) = 13 TeV with a cross section times branching fraction larger than 1 fb for a Z{sup '} mass in the 200-450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The one-loop decay of the Z{sup '} into lepton pairs competes with h{sup 0}γ, even if the Z{sup '} couplings to leptons vanish at tree level. We also present a model in which a Z{sup '} boson decays into a Higgs boson and a pair of collimated photons, mimicking an h{sup 0}γ resonance. In this model, the h{sup 0}γ resonance search would be the discovery mode for a Z{sup '} as heavy as 2 TeV. When the resonance is a scalar, although decay to h{sup 0}γ is forbidden by angular momentum conservation, the h{sup 0} plus collimated photons channel is allowed. We comment on prospects of observing an h{sup 0}γ resonance through different Higgs decays, on constraints from related searches, and on models where h{sup 0} is replaced by a nonstandard Higgs boson. (orig.)

  16. Higgs-photon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Dobrescu, Bogdan A. [Fermilab; Fox, Patrick J. [Fermilab; Kearney, John [Fermilab

    2017-05-23

    We study models that produce a Higgs boson plus photon ($h^0 \\gamma$) resonance at the LHC. When the resonance is a $Z'$ boson, decays to $h^0 \\gamma$ occur at one loop. If the $Z'$ boson couples at tree-level to quarks, then the $h^0 \\gamma$ branching fraction is typically of order $10^{-5}$ or smaller. Nevertheless, there are models that would allow the observation of $Z' \\to h^0 \\gamma$ at $\\sqrt{s} = 13$ TeV with a cross section times branching fraction larger than 1 fb for a $Z'$ mass in the 200--450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The 1-loop decay of the $Z'$ into lepton pairs competes with $h^0 \\gamma$, even if the $Z'$ couplings to leptons vanish at tree level. We also present a model in which a $Z'$ boson decays into a Higgs boson and a pair of collimated photons, mimicking an $h^0 \\gamma$ resonance. In this model, the $h^0 \\gamma$ resonance search would be the discovery mode for a $Z'$ as heavy as 2 TeV. When the resonance is a scalar, although decay to $h^0 \\gamma$ is forbidden by angular momentum conservation, the $h^0$ plus collimated photons channel is allowed. We comment on prospects of observing an $h^0 \\gamma$ resonance through different Higgs decays, on constraints from related searches, and on models where $h^0$ is replaced by a nonstandard Higgs boson.

  17. Electrostatically actuated resonant switches for earthquake detection

    KAUST Repository

    Ramini, Abdallah H.

    2013-04-01

    The modeling and design of electrostatically actuated resonant switches (EARS) for earthquake and seismic applications are presented. The basic concepts are based on operating an electrically actuated resonator close to instability bands of frequency, where it is forced to collapse (pull-in) if operated within these bands. By careful tuning, the resonator can be made to enter the instability zone upon the detection of the earthquake signal, thereby pulling-in as a switch. Such a switching action can be functionalized for useful functionalities, such as shutting off gas pipelines in the case of earthquakes, or can be used to activate a network of sensors for seismic activity recording in health monitoring applications. By placing a resonator on a printed circuit board (PCB) of a natural frequency close to that of the earthquake\\'s frequency, we show significant improvement on the detection limit of the EARS lowering it considerably to less than 60% of the EARS by itself without the PCB. © 2013 IEEE.

  18. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Short Jr., Billy Joe [Naval Postgraduate School, Monterey, CA (United States)

    2009-06-01

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided ~2000-fold enhancement at 244 nm and ~800-fold improvement at 229 nm while PETN showed a maximum of ~25-fold at 244 nm and ~190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  19. Hadronic Resonances from STAR

    Directory of Open Access Journals (Sweden)

    Wada Masayuki

    2012-11-01

    Full Text Available The results of resonance particle productions (ρ0, ω, K*, ϕ, Σ*, and Λ* measured by the STAR collaboration at RHIC from various colliding systems and energies are presented. Measured mass, width, 〈pT〉, and yield of those resonances are reviewed. No significant mass shifts or width broadening beyond the experiment uncertainties are observed. New measurements of ϕ and ω from leptonic decay channels are presented. The yields from leptonic decay channels are compared with the measurements from hadronic decay channels and the two results are consistent with each other.

  20. Acoustic Fano resonators

    KAUST Repository

    Amin, Muhammad

    2014-07-01

    The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state with a continuum one. During the last decade this concept has been applied in plasmonics where the interference between a narrowband polariton and a broader one has been used to generate electromagnetically induced transparency (EIT) (M. Rahmani, et al., Laser Photon. Rev., 7, 329-349, 2013).

  1. Carotid Plaque Evaluation Using Gemstone Spectral Imaging: Comparison with Magnetic Resonance Angiography.

    Science.gov (United States)

    Shinohara, Yuki; Sakamoto, Makoto; Kuya, Keita; Kishimoto, Junichi; Yamashita, Eijiro; Fujii, Shinya; Kurosaki, Masamichi; Ogawa, Toshihide

    2017-07-01

    The present study compared the applicability of computed tomography carotid plaque imaging using effective Z maps with gemstone spectral imaging (GSI) to that of magnetic resonance plaque imaging using 3-dimensional time-of-flight magnetic resonance angiography. Stenosis was assessed in 18 carotid arteries of 14 patients, and the effective Z values of noncalcified carotid plaques were compared with the signal intensities of magnetic resonance angiography. It was found that the effective Z value of noncalcified carotid plaques was significantly lower for a group with high signal intensity than for a group with low signal intensity on magnetic resonance angiography (P magnetic resonance angiography was 7.83. The effective Z value generated by GSI is a useful parameter to detect vulnerable carotid plaque materials. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  2. Inelastic vibrational signals in electron transport across graphene nanoconstrictions

    DEFF Research Database (Denmark)

    Gunst, Tue; Markussen, Troels; Stokbro, Kurt

    2016-01-01

    We present calculations of the inelastic vibrational signals in the electrical current through a graphene nanoconstriction. We find that the inelastic signals are only present when the Fermi-level position is tuned to electron transmission resonances, thus, providing a fingerprint which can link ...

  3. Magnetic resonance imaging of valvular heart disease

    DEFF Research Database (Denmark)

    Søndergaard, Lise; Ståhlberg, F; Thomsen, C

    1999-01-01

    The optimum management of patients with valvular heart diseases requires accurate and reproducible assessment of the valvular lesion and its hemodynamic consequences. Magnetic resonance imaging (MRI) techniques, such as volume measurements, signal-void phenomena, and velocity mapping, can be used...... in an integrated approach to gain qualitative and quantitative information on valvular heart disease as well as ventricular dimensions and functions. Thus, MRI may be advantageous to the established diagnostic tools in assessing the severity of valvular heart disease as well as monitoring the lesion and predicting...... the optimal timing for valvular surgery. This paper reviews the validation of these MRI techniques in assessing valvular heart disease and discusses some typical pitfalls of the techniques, including suggestions for solutions.J. Magn. Reson. Imaging 1999;10:627-638....

  4. Magnetic resonance imaging findings in tuberculous meningoencephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Pui, M.H.; Memon, W.A. [Aga Khan Univ. Hospital, Dept. of Radiology, Karachi (Pakistan)

    2001-02-01

    To evaluate the efficacy of magnetic resonance imaging (MRI) for distinguishing tuberculosis from other types of meningoencephalitis. MRIs of 100 patients with tuberculous (50), pyogenic (33), viral (14), or fungal (3) meningoencephalitis were analyzed independently by 2 radiologists. Number, size, location, signal characteristics, surrounding edema, and contrast enhancement pattern of nodular lesions; location and pattern of meningeal enhancement; extent of infarct or encephalitis and hydrocephalus were evaluated. Contrast-enhancing nodular lesions were detected in patients with tuberculous (43 of 50 patients), pyogenic (9 of 33), and fungal (3 of 3) infections. No nodules were detected in patients with viral meningoencephalitis. Using the criteria of 1 or more solid rim or homogeneously enhancing nodules smaller than 2 cm, the sensitivity, specificity and accuracy for diagnosing tuberculous meningitis were 86.0%, 90.0% and 88.0%, respectively. Magnetic resonance imaging is useful in distinguishing tuberculous from pyogenic, viral and fungal meningoencephalitis. (author)

  5. Magnetic resonance imaging of aneurysmal subarachnoid hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Toshihide; Shimosegawa, Eku; Inugami, Atsushi; Shishido, Fumio; Fujita, Hideaki; Ito, Hiroshi; Uemura, Kazuo; Yasui, Nobuyuki (Research Inst. of Brain and Blood Vessels, Akita (Japan))

    1991-11-01

    Magnetic resonance imaging of subarachnoid hemorrhage (SAH) due to aneurysm rupture was evaluated in relation to CT findings in nine patients. Six patients were studied within 3 days and the other three patients were studied 4 to 6 days from the ictus of SAH using a 0.5 Tesla superconducting unit. In all of the patients, hematoma in the subarachnoid space and ventricles was demonstrated by the proton density-weighted spin echo sequence, which showed that bloody cerebrospinal fluid (CSF) had a higher signal intensity than brain tissue or normal CSF. Magnetic resonance imaging was more sensitive in detecting SAH and more informative as to the site of the ruptured aneurysm than CT. Despite some limitations in applying it to patients with acute SAH, magnetic resonace imaging has clear advantages in the diagnosis of SAH. (author).

  6. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    IAS Admin

    Resonance Imaging (MRI). Unlike MRI which addresses the naturally occurring abundant water protons in vivo, EPRI re- quires the administration of non-toxic paramagnetic free radicals into the living system prior to monitoring their distribution. The principle behind imaging is to generate profiles of EPR spectra in presence ...

  7. Nuclear Magnetic Resonance

    Indian Academy of Sciences (India)

    IAS Admin

    This article summarizes the early history of nuclear magnetic resonance (NMR) during the first 25–30 years. The method- ology went through vigorous growth and development during this time, laying the theoretical basis for understanding a wide array of applications. The stage was set for the breath- taking advances the ...

  8. Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  9. Neutron resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  10. Editorial -RE-SONANCE

    Indian Academy of Sciences (India)

    having seen the initial issues of Resonance. They have also made several valuable suggestions for improvements. We are grateful for the former, and ... back cover), in a burst of enthusiasm we described his principle of least time in optics as the earliest example of a minimum principle in physics. This was a fortunate error, ...

  11. r-es-onance

    Indian Academy of Sciences (India)

    molecules, D-D, N-D, D-N and N-N and one fourth of the total molecules will be functional. That is, out of 3000, only 750 will be functional. Whose statement do you think is correct? The biochemist's or the mathematician's? And why?,. 2. Organic Readion Mechanisms. In the February 1997 issue of Resonance, two multi-step.

  12. Electrically detected ferromagnetic resonance

    NARCIS (Netherlands)

    Goennenwein, S.T.B.; Schink, S.W.; Brandlmaier, A.; Boger, A.; Opel, M.; Gross, R.; Keizer, R.S.; Klapwijk, T.M.; Gupta, A.; Huebl, H.; Bihler, C.; Brandt, M.S.

    2007-01-01

    We study the magnetoresistance properties of thin ferromagnetic CrO2 and Fe3O4 films under microwave irradiation. Both the sheet resistance ? and the Hall voltage VHall characteristically change when a ferromagnetic resonance (FMR) occurs in the film. The electrically detected ferromagnetic

  13. Resonant MEMS tunable VCSEL

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Chung, Il-Sug; Semenova, Elizaveta

    2013-01-01

    We demonstrate how resonant excitation of a microelectro-mechanical system can be used to increase the tuning range of a vertical-cavity surface-emitting laser two-fold by enabling both blue- and red-shifting of the wavelength. In this way a short-cavity design enabling wide tuning range can be r...

  14. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation...

  15. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    Recently, electron paramagnetic resonance (EPR) spectros- copy has emerged as a powerful tool to study the structure and dynamics of biological macromolecules such as proteins, protein aggregates, RNA and DNA. It is used in combination with molecular modelling to study complex systems such as soluble proteins ...

  16. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    IAS Admin

    Electron Paramagnetic Resonance Imaging. 2. Radiofrequency FT-EPR Imaging. Sankaran Subramanian and Murali C Krishna. Keywords. FT-EPR, Hahn-echo, acquisition delay, single-point imaging (SPI), gradient-echo, k-space, echo-SPI, carbogen, oxygen relaxivity, T2*. T2- and T1-based oximetry, co- registration ...

  17. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    Twentieth century bore witness to remarkable scientists whohave advanced our understanding of the brain. Among them,EPR (Electron Paramagnetic Resonance) imaging is particularlyuseful in monitoring hypoxic zones in tumors which arehighly resistant to radiation and chemotherapeutic treatment.This first part of the ...

  18. Frequency-difference-dependent stochastic resonance in neural systems

    Science.gov (United States)

    Guo, Daqing; Perc, Matjaž; Zhang, Yangsong; Xu, Peng; Yao, Dezhong

    2017-08-01

    Biological neurons receive multiple noisy oscillatory signals, and their dynamical response to the superposition of these signals is of fundamental importance for information processing in the brain. Here we study the response of neural systems to the weak envelope modulation signal, which is superimposed by two periodic signals with different frequencies. We show that stochastic resonance occurs at the beat frequency in neural systems at the single-neuron as well as the population level. The performance of this frequency-difference-dependent stochastic resonance is influenced by both the beat frequency and the two forcing frequencies. Compared to a single neuron, a population of neurons is more efficient in detecting the information carried by the weak envelope modulation signal at the beat frequency. Furthermore, an appropriate fine-tuning of the excitation-inhibition balance can further optimize the response of a neural ensemble to the superimposed signal. Our results thus introduce and provide insights into the generation and modulation mechanism of the frequency-difference-dependent stochastic resonance in neural systems.

  19. Prediction of resonant oscillation

    DEFF Research Database (Denmark)

    2010-01-01

    oscillations and compare the measured oscillations using FFT analysis of signal correlations, variance analysis of signals and other comparisons. As an example, the presence of a growing peak around a frequency that doubles the roll natural frequency indicates the possibility that parametric roll is going...

  20. String resonances at hadron colliders

    Science.gov (United States)

    Anchordoqui, Luis A.; Antoniadis, Ignatios; Dai, De-Chang; Feng, Wan-Zhe; Goldberg, Haim; Huang, Xing; Lüst, Dieter; Stojkovic, Dejan; Taylor, Tomasz R.

    2014-09-01

    We consider extensions of the standard model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. Assuming that the fundamental string mass scale Ms is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (integrated luminosity =3000 fb-1) with a center-of-mass energy of √s =14 TeV and at potential future pp colliders, HE-LHC and VLHC, operating at √s =33 and 100 TeV, respectively (with the same integrated luminosity). In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and γ +jet are completely independent of the details of compactification and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first (n=1) and second (n=2) resonant poles to determine the discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD stack. We show that for string scales as large as 7.1 TeV (6.1 TeV) lowest massive Regge excitations are open to discovery at the ≥5σ in dijet (γ +jet) HL-LHC data. We also show that for n=1 the dijet discovery potential at HE-LHC and VLHC exceedingly improves: up to 15 TeV and 41 TeV, respectively. To compute the signal-to-noise ratio for n=2 resonances, we first carry out a complete calculation of all relevant decay widths of the second massive level string states (including decays into massless particles and a massive n=1 and a massless particle), where we rely on factorization and conformal field theory techniques. Helicity wave functions of arbitrary higher spin massive bosons are also constructed. We demonstrate that for string scales Ms≲10.5 TeV (Ms≲28 TeV) detection of n =2 Regge recurrences at HE-LHC (VLHC) would become the smoking gun for D

  1. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans

    Science.gov (United States)

    Objective: In animals, intracerebroventricular glucose and fructose have opposing effects on appetite and weight regulation. In humans, functional brain magnetic resonance imaging (fMRI) studies during carbohydrate ingestion suggest that glucose may regulate HT signaling but are potentially confoun...

  2. Resonant photothermal IR spectroscopy of picogram samples with microstring resonator

    DEFF Research Database (Denmark)

    Yamada, Shoko; Schmid, Silvan; Boisen, Anja

    2013-01-01

    an in-situ sampling method and the resonance frequency of the string is measured optically. Resonance frequency shifts, proportional to the absorbed heat, are recorded in real time as monochromatic infrared light is being scanned over the mid-infrared range. These resonant photothermal IR spectroscopy...

  3. Thermal self-frequency locking of doubly-resonant optical parametric oscillator

    DEFF Research Database (Denmark)

    Hansen, P.L.; Buchhave, Preben

    1997-01-01

    the refractice index of the crystal and alters the optical path length of the cavity. This effect may lend to self-frequency locking of the OPO to a specific resonance of the signal and idler fields, and it also results in peculiarities in the transient response of the system as it is scanned through resonance...

  4. Imaging using long range dipolar field effects Nuclear magnetic resonance

    CERN Document Server

    Gutteridge, S

    2002-01-01

    The work in this thesis has been undertaken by the except where indicated in reference, within the Magnetic Resonance Centre, at the University of Nottingham during the period from October 1998 to March 2001. This thesis details the different characteristics of the long range dipolar field and its application to magnetic resonance imaging. The long range dipolar field is usually neglected in nuclear magnetic resonance experiments, as molecular tumbling decouples its effect at short distances. However, in highly polarised samples residual long range components have a significant effect on the evolution of the magnetisation, giving rise to multiple spin echoes and unexpected quantum coherences. Three applications utilising these dipolar field effects are documented in this thesis. The first demonstrates the spatial sensitivity of the signal generated via dipolar field effects in structured liquid state samples. The second utilises the signal produced by the dipolar field to create proton spin density maps. Thes...

  5. Search for the pentaquark resonance signature in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    B. G. Lasscock; J. Hedditch; D. B. Leinweber; W. Melnitchouk; A. W. Thomas; A. G. Williams; R. D. Young; J. M. Zanotti

    2005-03-01

    Claims concerning the possible discovery of the $\\Theta^+$ pentaquark, with minimal quark content $uudd\\bar{s}$, have motivated our comprehensive study into possible pentaquark states using lattice QCD. We review various pentaquark interpolating fields in the literature and create a new candidate ideal for lattice QCD simulations. Using these interpolating fields we attempt to isolate a signal for a five-quark resonance. Calculations are performed using improved actions on a large $20^{3} \\times 40$ lattice in the quenched approximation. The standard lattice resonance signal of increasing attraction between baryon constituents for increasing quark mass is not observed for spin-1/2 pentaquark states. We conclude that evidence supporting the existence of a spin-1/2 pentaquark resonance does not exist in quenched QCD.

  6. Digital Cavity Resonance Monitor, alternative method of measuring cavity microphonics

    Energy Technology Data Exchange (ETDEWEB)

    Tomasz Plawski; G. Davis; Hai Dong; J. Hovater; John Musson; Thomas Powers

    2005-09-20

    As is well known, mechanical vibration or microphonics in a cryomodule causes the cavity resonance frequency to change at the vibration frequency. One way to measure the cavity microphonics is to drive the cavity with a Phase Locked Loop. Measurement of the instantaneous frequency or PLL error signal provides information about the cavity microphonic frequencies. Although the PLL error signal is available directly, precision frequency measurements require additional instrumentation, a Cavity Resonance Monitor (CRM). The analog version of such a device has been successfully used for several cavity tests [1]. In this paper we present a prototype of a Digital Cavity Resonance Monitor designed and built in the last year. The hardware of this instrument consists of an RF downconverter, digital quadrature demodulator and digital processor motherboard (Altera FPGA). The motherboard processes received data and computes frequency changes with a resolution of 0.2 Hz, with a 3 kHz output bandwidth.

  7. Aspects of stochastic resonance in Josephson junction, bimodal ...

    Indian Academy of Sciences (India)

    The phenomenon of stochastic resonance (SR) is the noise-induced detection of sub- threshold signals or ... the noise amplitude helps to define maximum SNR or peak SNR for an optimum amplitude of input noise. ... damping arises from the inverse dependence of the junction resistance on voltage. One of us (GA) has ...

  8. Stochastic resonance in neuron models : Endogenous stimulation revisited

    NARCIS (Netherlands)

    Plesser, HE; Geisel, T

    The paradigm of stochastic resonance (SR)-the idea that signal detection and transmission may benefit from noise-has met with great interest in both physics and the neurosciences. We investigate here the consequences of reducing the dynamics of a periodically driven neuron to a renewal process

  9. Surface Plasmon Resonance Spectroscopy: A Versatile Technique in a

    Science.gov (United States)

    Bakhtiar, Ray

    2013-01-01

    Surface plasmon resonance (SPR) spectroscopy is a powerful, label-free technique to monitor noncovalent molecular interactions in real time and in a noninvasive fashion. As a label-free assay, SPR does not require tags, dyes, or specialized reagents (e.g., enzymes-substrate complexes) to elicit a visible or a fluorescence signal. During the last…

  10. Multi-component quantitative magnetic resonance imaging by phasor representation

    NARCIS (Netherlands)

    Vergeldt, Frank J.; Prusova, Alena; Fereidouni, Farzad; Amerongen, Van Herbert; As, Van Henk; Scheenen, Tom W.J.; Bader, Arjen N.

    2017-01-01

    Quantitative magnetic resonance imaging (qMRI) is a versatile, non-destructive and non-invasive tool in life, material, and medical sciences. When multiple components contribute to the signal in a single pixel, however, it is difficult to quantify their individual contributions and characteristic

  11. Multi-component quantitative magnetic resonance imaging by phasor representation

    NARCIS (Netherlands)

    Vergeldt, F.J.; Prusova, A.; Fereidouni, F.; Amerongen, H.V.; As, H. Van; Scheenen, T.W.J.; Bader, A.N.

    2017-01-01

    Quantitative magnetic resonance imaging (qMRI) is a versatile, non-destructive and non-invasive tool in life, material, and medical sciences. When multiple components contribute to the signal in a single pixel, however, it is difficult to quantify their individual contributions and characteristic

  12. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses a powerful magnetic field, radio waves ...

  13. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... information on the chemicals present in the body's cells, may also be performed during the MRI exam ... and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic Resonance Imaging ( ...

  14. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful magnetic field, radio waves and a computer to produce ...

  15. Magnetic Resonance Imaging (MRI) Safety

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how does it ... and MRI Breast-feeding and MRI What is MRI and how does it work? Magnetic resonance imaging, ...

  16. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses a powerful magnetic field, radio ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... content. Related Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain ...

  18. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... the same effect. A very irregular heartbeat may affect the quality of images obtained using techniques that ... and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic Resonance Imaging ( ...

  19. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to ...

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... data suggest that it is safe to continue breastfeeding after receiving intravenous contrast. For further information please ... Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to Magnetic Resonance Imaging ( ...

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... for Brain Tumors Radiation Therapy for Head and Neck Cancer Others : American Stroke Association National Stroke Association ... MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging ( ...

  2. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... techniques that time the imaging based on the electrical activity of the heart, such as electrocardiography (ECG). ... Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic Resonance Imaging (MRI) Safety Contrast Materials Children ...

  3. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... may sense a temporary metallic taste in their mouth after the contrast injection. If you do not ... Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to Magnetic Resonance Imaging ( ...

  4. RESONANCE METHOD OF ELECTRIC-DIPOLE-MOMENT MEASUREMENTS IN STORAGE RINGS.

    Energy Technology Data Exchange (ETDEWEB)

    ORLOV, Y.F.; MORSE, W.M.; SEMERTZIDIS, Y.K.

    2006-05-10

    A ''resonance method'' of measuring the electric dipole moment (EDM) of nuclei in storage rings is described, based on two new ideas: (1) Oscillating particles velocities in resonance with spin precession, and (2) alternately producing two sub-beams with different betatron tunes--one sub-beam to amplify and thus make it easier to correct ring imperfections that produce false signals imitating EDM signals, and the other to make the EDM measurement.

  5. Resonant difference-frequency atomic force ultrasonic microscope

    Science.gov (United States)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  6. Axially modulated arch resonator for logic and memory applications

    KAUST Repository

    Hafiz, Md Abdullah Al

    2018-01-17

    We demonstrate reconfigurable logic and random access memory devices based on an axially modulated clamped-guided arch resonator. The device is electrostatically actuated and the motional signal is capacitively sensed, while the resonance frequency is modulated through an axial electrostatic force from the guided side of the microbeam. A multi-physics finite element model is used to verify the effectiveness of the axial modulation. We present two case studies: first, a reconfigurable two-input logic gate based on the linear resonance frequency modulation, and second, a memory element based on the hysteretic frequency response of the resonator working in the nonlinear regime. The energy consumptions of the device for both logic and memory operations are in the range of picojoules, promising for energy efficient alternative computing paradigm.

  7. Low-frequency NMR with a non-resonant circuit.

    Science.gov (United States)

    Hopper, Timothy; Mandal, Soumyajit; Cory, David; Hürlimann, Martin; Song, Yi-Qiao

    2011-05-01

    Nuclear magnetic resonance typically utilizes a tuned resonance circuit with impedance matching to transmit power and receive signal. The efficiency of such a tuned coil is often described in terms of the coil quality factor, Q. However, in field experiments such as in well-logging, the circuit Q can vary dramatically throughout the depth of the wellbore due to temperature or fluid salinity variations. Such variance can result in erroneous setting of NMR circuit parameters (tuning and matching) and subsequent errors in measurements. This paper investigates the use of a non-resonant transmitter to reduce the circuit sensitivity on Q and demonstrates that such circuits can be efficient in delivering power and current to the coil. We also describe a tuned receiver circuit whose resonant frequency can be controlled digitally. Experimental results show that a range of common NMR experiments can be performed with our circuits. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Multiplexed infrared photodetection using resonant radio-frequency circuits

    Energy Technology Data Exchange (ETDEWEB)

    Liu, R.; Lu, R.; Gong, S.; Wasserman, D. [Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801 (United States); Roberts, C. [Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Allen, J. W.; Allen, M. S. [Air Force Research Laboratory, Munitions Directorate, Eglin Air Force Base, Florida 32542 (United States); Wenner, B. R. [Air Force Research Laboratory, Sensors Directorate, Wright Patterson Air Force Base, Ohio 45433 (United States)

    2016-02-08

    We demonstrate a room-temperature semiconductor-based photodetector where readout is achieved using a resonant radio-frequency (RF) circuit consisting of a microstrip split-ring resonator coupled to a microstrip busline, fabricated on a semiconductor substrate. The RF resonant circuits are characterized at RF frequencies as function of resonator geometry, as well as for their response to incident IR radiation. The detectors are modeled analytically and using commercial simulation software, with good agreement to our experimental results. Though the detector sensitivity is weak, the detector architecture offers the potential for multiplexing arrays of detectors on a single read-out line, in addition to high speed response for either direct coupling of optical signals to RF circuitry, or alternatively, carrier dynamics characterization of semiconductor, or other, material systems.

  9. Dynamical Nuclear Magnetic Resonance Imaging of Micron-scale Liquids

    Science.gov (United States)

    Sixta, Aimee; Choate, Alexandra; Maeker, Jake; Bogat, Sophia; Tennant, Daniel; Mozaffari, Shirin; Markert, John

    We report our efforts in the development of Nuclear Magnetic Resonance Force Microscopy (NMRFM) for dynamical imaging of liquid media at the micron scale. Our probe contains microfluidic samples sealed in thin-walled (µm) quartz tubes, with a micro-oscillator sensor nearby in vacuum to maintain its high mechanical resonance quality factor. Using 10 µm spherical permalloy magnets at the oscillator tips, a 3D T1-resolved image of spin density can be obtained by reconstruction from our magnetostatics-modelled resonance slices; as part of this effort, we are exploring single-shot T1 measurements for faster dynamical imaging. We aim to further enhance imaging by using a 2 ω technique to eliminate artifact signals during the cyclic inversion of nuclear spins. The ultimate intent of these efforts is to perform magnetic resonance imaging of individual biological cells.

  10. On Frequency Combs in Monolithic Resonators

    Directory of Open Access Journals (Sweden)

    Savchenkov A. A.

    2016-06-01

    Full Text Available Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.

  11. Resonance Searches with an Updated Top Tagger

    CERN Document Server

    Kasieczka, Gregor; Schell, Torben; Strebler, Thomas; Salam, Gavin P

    2015-01-01

    The performance of top taggers, for example in resonance searches, can be significantly enhanced through an increased set of variables, with a special focus on final-state radiation. We study the production and the decay of a heavy gauge boson in the upcoming LHC run. For constant signal efficiency, the multivariate analysis achieves an increased background rejection by up to a factor 30 compared to our previous tagger. Based on this study and the documentation in the Appendix we release a new HEPTopTagger2 for the upcoming LHC run. It now includes an optimal choice of the size of the fat jet, N-subjettiness, and different modes of Qjets.

  12. Magnetic resonance images of chronic patellar tendinitis

    Energy Technology Data Exchange (ETDEWEB)

    Bodne, D.; Quinn, S.F.; Murray, W.T.; Cochran, C.; Bolton, T.; Rudd, S.; Lewis, K.; Daines, P.; Bishop, J.

    1988-01-01

    Chronic patellar tendinitis can be a frustrating diagnostic and therapeutic problem. This report evaluates seven tendons in five patients with chronic patellar tendinitis. The etiologies included 'jumper's knee' and Osgood-Schlatter disease. In all cases magnetic resonance images (MRI) showed thickening of the tendon. Some of the tendons had focal areas of thickening which helped establish the etiology. All cases had intratendinous areas of increased signal which, in four cases, proved to be chronic tendon tears. MRI is useful in evaluating chronic patellar tendinitis because it establishes the diagnosis, detects associated chronic tears, and may help determine appropriate rehabilitation. (orig.)

  13. Hair product artifact in magnetic resonance imaging.

    Science.gov (United States)

    Chenji, Sneha; Wilman, Alan H; Mah, Dennell; Seres, Peter; Genge, Angela; Kalra, Sanjay

    2017-01-01

    The presence of metallic compounds in facial cosmetics and permanent tattoos may affect the quality of magnetic resonance imaging. We report a case study describing a signal artifact due to the use of a leave-on powdered hair dye. On reviewing the ingredients of the product, it was found to contain several metallic compounds. In lieu of this observation, we suggest that MRI centers include the use of metal- or mineral-based facial cosmetics or hair products in their screening protocols. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head ... limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is ...

  15. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses a powerful ... of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive medical ...

  16. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging ( ... the limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  18. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) ... limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive ...

  19. Linewidth broadening and emission saturation of a resonantly excited quantum dot monitored via an off-resonant cavity mode

    DEFF Research Database (Denmark)

    Ulhaq, A.; Ates, Serkan; Weiler, S.

    2010-01-01

    We report on the robustness of a detuned mode channel for reading out the relevant s-shell properties of a resonantly excited coupled quantum dot (QD) in a pillar microcavity. The line broadening of the QD s-shell is “monitored” by the mode signal with high conformity to the directly measured QD...

  20. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Mett, Richard R. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin 53202 (United States); Swarts, Steven G. [Department of Radiation Oncology, University of Florida, Gainesville, Florida, 32610 (United States); Swartz, Harold M. [Department of Radiology, Geisel Medical School at Dartmouth, Hanover, New Hampshire 03755 (United States)

    2014-10-15

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  1. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces.

    Science.gov (United States)

    Sidabras, Jason W; Varanasi, Shiv K; Mett, Richard R; Swarts, Steven G; Swartz, Harold M; Hyde, James S

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg(2+) doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  2. String Resonances at Hadron Colliders

    CERN Document Server

    Anchordoqui, Luis A; Dai, De-Chang; Feng, Wan-Zhe; Goldberg, Haim; Huang, Xing; Lust, Dieter; Stojkovic, Dejan; Taylor, Tomasz R

    2014-01-01

    [Abridged] We consider extensions of the standard model based on open strings ending on D-branes. Assuming that the fundamental string mass scale M_s is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (3000 fb^{-1}) with \\sqrt{s} = 14 TeV, and at potential future pp colliders, HE-LHC and VLHC, operating at \\sqrt{s} = 33 and 100 TeV, respectively. In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and \\gamma + jet are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first (n=1) and second (n=2) resonant poles to determine the discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD stack. We show that for string scales as large as 7.1 TeV (6.1 TeV), lowest massive Regge exc...

  3. Molecular Cardiovascular Magnetic Resonance

    DEFF Research Database (Denmark)

    Bender, Yvonne Y; Pfeifer, Andreas; Ebersberger, Hans U

    2016-01-01

    In the Western world and developing countries, the number one causes of mortality and morbidity result from cardiovascular diseases. Cardiovascular diseases represent a wide range of pathologies, including myocardial infarction, peripheral vascular disease, and cerebrovascular disease, which...... impact on society, there are still limitations in the early diagnosis and the prevention of the disease. Current imaging methods mainly focus on morphological changes that occur at an advanced disease stage, e.g., degree of stenosis. Cardiovascular magnetic resonance imaging and specifically molecular...... cardiovascular magnetic resonance imaging are capable to reveal pathophysiological changes already occurring during early atherosclerotic plaque formation. This allows for the assessment of cardiovascular disease on a level, which goes beyond morphological or anatomical criteria. In this review, we...

  4. Nanowire resonant tunneling diodes

    Science.gov (United States)

    Björk, M. T.; Ohlsson, B. J.; Thelander, C.; Persson, A. I.; Deppert, K.; Wallenberg, L. R.; Samuelson, L.

    2002-12-01

    Semiconductor heterostructures and their implementation into electronic and photonic devices have had tremendous impact on science and technology. In the development of quantum nanoelectronics, one-dimensional (1D) heterostructure devices are receiving a lot of interest. We report here functional 1D resonant tunneling diodes obtained via bottom-up assembly of designed segments of different semiconductor materials in III/V nanowires. The emitter, collector, and the central quantum dot are made from InAs and the barrier material from InP. Ideal resonant tunneling behavior, with peak-to-valley ratios of up to 50:1 and current densities of 1 nA/μm2 was observed at low temperatures.

  5. OPTIMIZATION OF HEMISPHERICAL RESONATOR GYROSCOPE STANDING WAVE PARAMETERS

    Directory of Open Access Journals (Sweden)

    Olga Sergeevna Khalyutina

    2017-01-01

    Full Text Available Traditionally, the problem of autonomous navigation is solved by dead reckoning navigation flight parameters (NFP of the aircraft (AC. With increasing requirements to accuracy of definition NFP improved the sensors of the prima- ry navigation information: gyroscopes and accelerometers. the gyroscopes of a new type, the so-called solid-state wave gyroscopes (SSVG are currently developed and put into practice. The work deals with the problem of increasing the accu- racy of measurements of angular velocity of the hemispherical resonator gyroscope (HRG. The reduction in the accuracy characteristics of HRG is caused by the presence of defects in the distribution of mass in the volume of its design. The syn- thesis of control system for optimal damping of the distortion parameters of the standing wave due to the influence of the mass defect resonator is adapted. The research challenge was: to examine and analytically offset the impact of the standing wave (amplitude and frequency parameters defect. Research was performed by mathematical modeling in the environment of SolidWorks Simulation for the case when the characteristics of the sensitive element of the HRG met the technological drawings of a particular type of resonator. The method of the inverse dynamics was chosen for synthesis. The research re- sults are presented in graphs the amplitude-frequency characteristics (AFC of the resonator output signal. Simulation was performed for the cases: the perfect distribution of weight; the presence of the mass defect; the presence of the mass defects are shown using the synthesized control action. Evaluating the effectiveness of the proposed control algorithm is deter- mined by the results of the resonator output signal simulation provided the perfect constructive and its performance in the presence of a mass defect in it. It is assumed that the excitation signals are standing waves in the two cases are identical in both amplitude and frequency. In this

  6. Ghost magnetic resonance angiography

    National Research Council Canada - National Science Library

    Koktzoglou, Ioannis; Edelman, Robert R

    2009-01-01

    .... Signals that unfaithfully localize within the imaging volume, so-called "ghost artifacts", have historically been considered undesirable since they degrade image quality and every effort is made to suppress...

  7. Resonant state expansions

    Energy Technology Data Exchange (ETDEWEB)

    Lind, P.

    1993-02-01

    The completeness properties of the discrete set of bound state, virtual states and resonances characterizing the system of a single nonrelativistic particle moving in a central cutoff potential is investigated. From a completeness relation in terms of these discrete states and complex scattering states one can derive several Resonant State Expansions (RSE). It is interesting to obtain purely discrete expansion which, if valid, would significantly simplify the treatment of the continuum. Such expansions can be derived using Mittag-Leffler (ML) theory for a cutoff potential and it would be nice to see if one can obtain the same expansions starting from an eigenfunction theory that is not restricted to a finite sphere. The RSE of Greens functions is especially important, e.g. in the continuum RPA (CRPA) method of treating giant resonances in nuclear physics. The convergence of RSE is studied in simple cases using square well wavefunctions in order to achieve high numerical accuracy. Several expansions can be derived from each other by using the theory of analytic functions and one can the see how to obtain a natural discretization of the continuum. Since the resonance wavefunctions are oscillating with an exponentially increasing amplitude, and therefore have to be interpreted through some regularization procedure, every statement made about quantities involving such states is checked by numerical calculations.Realistic nuclear wavefunctions, generated by a Wood-Saxon potential, are used to test also the usefulness of RSE in a realistic nuclear calculation. There are some fundamental differences between different symmetries of the integral contour that defines the continuum in RSE. One kind of symmetry is necessary to have an expansion of the unity operator that is idempotent. Another symmetry must be used if we want purely discrete expansions. These are found to be of the same form as given by ML. (29 refs.).

  8. Tandem resonator reflectance modulator

    Science.gov (United States)

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  9. Magnetic Resonance Safety

    OpenAIRE

    Sammet, Steffen

    2016-01-01

    Magnetic Resonance Imaging (MRI) has a superior soft-tissue contrast compared to other radiological imaging modalities and its physiological and functional applications have led to a significant increase in MRI scans worldwide. A comprehensive MRI safety training to protect patients and other healthcare workers from potential bio-effects and risks of the magnetic fields in an MRI suite is therefore essential. The knowledge of the purpose of safety zones in an MRI suite as well as MRI appropri...

  10. Particle model for optical noisy image recovery via stochastic resonance

    Science.gov (United States)

    Zhang, Yongbin; Liu, Hongjun; Huang, Nan; Wang, Zhaolu; Han, Jing

    2017-10-01

    We propose a particle model for investigating the optical noisy image recovery via stochastic resonance. The light propagating in nonlinear media is regarded as moving particles, which are used for analyzing the nonlinear coupling of signal and noise. Owing to nonlinearity, a signal seeds a potential to reinforce itself at the expense of noise. The applied electric field, noise intensity, and correlation length are important parameters that influence the recovery effects. The noise-hidden image with the signal-to-noise intensity ratio of 1:30 is successfully restored and an optimal cross-correlation gain of 6.1 is theoretically obtained.

  11. Optical resonator theory

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaeg Won; Cho, Sunh Oh; Jeong, Young Uk; Lee, Byung Cheol; Lee, Jong Min

    2000-10-01

    In this report we present a theoretical study of bare optical resonators having in mind to extend it to active resonators. To compute diffractional losses, phase shifts, intensity distributions and phases of radiation fields on mirrors, we coded a package of numerical procedures on bases of a pair of integral equations. Two numerical schemes, a matrix formalism and an iterative method, are programmed for finding numeric solutions to the pair of integral equations. The iterative method had been tried by Fox and Li, but it was not applicable to cases for high Fresnel numbers since the numerical errors involved propagate and accumulate uncontrollably. In this report, we implemented the matrix method to extend the computational limit further. A great deal of case studies are carried out with various configurations of stable and unstable resonators. Our results presented in this report show not only a good agreement with the results previously obtained by Fox and Li, but also a legitimacy of our numerical procedures in high Fresnel numbers.

  12. Integrated Ring Resonators The Compendium

    CERN Document Server

    Rabus, Dominik G

    2007-01-01

    The optical filter, which has emerged in the last few years in integrated optics, is resonator based. Ring-resonator filters do not require facets or gratings for optical feedback and are thus particularly suited for monolithic integration with other components. Ring resonators find applications not only in optical networks, but also as sensors. The required passband shape of ring resonator-filters can be custom designed by the use of configurations of various ring coupled resonators. This book describes the current state-of-the-art on these devices with respect to design, fabrication and application.

  13. The importance of correcting for signal drift in diffusion MRI.

    Science.gov (United States)

    Vos, Sjoerd B; Tax, Chantal M W; Luijten, Peter R; Ourselin, Sebastien; Leemans, Alexander; Froeling, Martijn

    2017-01-01

    To investigate previously unreported effects of signal drift as a result of temporal scanner instability on diffusion MRI data analysis and to propose a method to correct this signal drift. We investigated the signal magnitude of non-diffusion-weighted EPI volumes in a series of diffusion-weighted imaging experiments to determine whether signal magnitude changes over time. Different scan protocols and scanners from multiple vendors were used to verify this on phantom data, and the effects on diffusion kurtosis tensor estimation in phantom and in vivo data were quantified. Scalar metrics (eigenvalues, fractional anisotropy, mean diffusivity, mean kurtosis) and directional information (first eigenvectors and tractography) were investigated. Signal drift, a global signal decrease with subsequently acquired images in the scan, was observed in phantom data on all three scanners, with varying magnitudes up to 5% in a 15-min scan. The signal drift has a noticeable effect on the estimation of diffusion parameters. All investigated quantitative parameters as well as tractography were affected by this artifactual signal decrease during the scan. By interspersing the non-diffusion-weighted images throughout the session, the signal decrease can be estimated and compensated for before data analysis; minimizing the detrimental effects on subsequent MRI analyses. Magn Reson Med 77:285-299, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  14. Persistence, resistance, resonance

    Science.gov (United States)

    Tsadka, Maayan

    Sound cannot travel in a vacuum, physically or socially. The ways in which sound operates are a result of acoustic properties, and the ways by which it is considered to be music are a result of social constructions. Therefore, music is always political, regardless of its content: the way it is performed and composed; the choice of instrumentation, notation, tuning; the medium of its distribution; its inherent hierarchy and power dynamics, and more. My compositional praxis makes me less interested in defining a relationship between music and politics than I am in erasing---or at least blurring---the borders between them. In this paper I discuss the aesthetics of resonance and echo in their metaphorical, physical, social, and musical manifestations. Also discussed is a political aesthetic of resonance, manifested through protest chants. I transcribe and analyze common protest chants from around the world, categorizing and unifying them as universal crowd-mobilizing rhythms. These ideas are explored musically in three pieces. Sumud: Rhetoric of Resistance in Three Movements, for two pianos and two percussion players, is a musical interpretation of the political/social concept of sumud, an Arabic word that literally means "steadfastness" and represents Palestinian non-violent resistance. The piece is based on common protest rhythms and uses the acoustic properties inherent to the instruments. The second piece, Three Piano Studies, extends some of the musical ideas and techniques used in Sumud, and explores the acoustic properties and resonance of the piano. The final set of pieces is part of my Critical Mess Music Project. These are site-specific musical works that attempt to blur the boundaries between audience, performers and composer, in part by including people without traditional musical training in the process of music making. These pieces use the natural structure and resonance of an environment, in this case, locations on the UCSC campus, and offer an active

  15. Sparse Signal Representations of Bearing Fault Signals for Exhibiting Bearing Fault Features

    Directory of Open Access Journals (Sweden)

    Wei Peng

    2016-01-01

    Full Text Available Sparse signal representations attract much attention in the community of signal processing because only a few coefficients are required to represent a signal and these coefficients make the signal understandable. For bearing faults’ diagnosis, bearing faults signals collected from transducers are often overwhelmed by strong low-frequency periodic signals and heavy noises. In this paper, a joint signal processing method is proposed to extract sparse envelope coefficients, which are the sparse signal representations of bearing fault signals. Firstly, to enhance bearing fault signals, particle swarm optimization is introduced to tune the parameters of wavelet transform and the optimal wavelet transform is used for retaining one of the resonant frequency bands. Thus, sparse wavelet coefficients are obtained. Secondly, to reduce the in-band noises existing in the sparse wavelet coefficients, an adaptive morphological analysis with an iterative local maximum detection method is developed to extract sparse envelope coefficients. Simulated and real bearing fault signals are investigated to illustrate how the sparse envelope coefficients are extracted. The results show that the sparse envelope coefficients can be used to represent bearing fault features and identify different localized bearing faults.

  16. Parametric Resonance in Dynamical Systems

    CERN Document Server

    Nijmeijer, Henk

    2012-01-01

    Parametric Resonance in Dynamical Systems discusses the phenomenon of parametric resonance and its occurrence in mechanical systems,vehicles, motorcycles, aircraft and marine craft, and micro-electro-mechanical systems. The contributors provide an introduction to the root causes of this phenomenon and its mathematical equivalent, the Mathieu-Hill equation. Also included is a discussion of how parametric resonance occurs on ships and offshore systems and its frequency in mechanical and electrical systems. This book also: Presents the theory and principles behind parametric resonance Provides a unique collection of the different fields where parametric resonance appears including ships and offshore structures, automotive vehicles and mechanical systems Discusses ways to combat, cope with and prevent parametric resonance including passive design measures and active control methods Parametric Resonance in Dynamical Systems is ideal for researchers and mechanical engineers working in application fields such as MEM...

  17. A Siren Detection System based on Mechanical Resonant Filters

    Directory of Open Access Journals (Sweden)

    John N. Avaritsiotis

    2001-09-01

    Full Text Available A system based on mechanical resonant filters is proposed that can be used for the detection of acoustical signals the frequency components of which vary according to specific periodic patterns. Usually, signals of this category produced by the siren of an emergency vehicle. The device essentially implements a mechanical narrow filter bank that covers the frequency range of a typical siren sound. Signal detection is obtained by measuring the time delay between successive activation of the filters of the bank. The whole analysis reveals how a set of simple, low-cost mechanical resonant filters can replace an electronic analog or digital system for the implementation of a filter bank. Moreover, a scaling down procedure is proposed so that a microsystem may be developed.

  18. Superconducting coplanar waveguide resonators for electron spin resonance applications

    Science.gov (United States)

    Sigillito, A. J.; Jock, R. M.; Tyryshkin, A. M.; Malissa, H.; Lyon, S. A.

    2013-03-01

    Superconducting coplanar waveguide (CPW) resonators are a promising alternative to conventional volume resonators for electron spin resonance (ESR) experiments where the sample volume and thus the number of spins is small. However, the magnetic fields required for ESR could present a problem for Nb superconducting resonators, which can be driven normal. Very thin Nb films (50 nm) and careful alignment of the resonators parallel to the magnetic field avoid driving the Nb normal, but flux trapping can still be an issue. Trapped flux reduces the resonator Q-factor, can lead to resonant frequency instability, and can lead to magnetic field inhomogeneities. At temperatures of 1.9 K and in a magnetic field 0.32 T, we have tested X-band resonators fabricated directly on the surface of a silicon sample. Q-factors in excess of 15,000 have been obtained. A thin layer of GE varnish applied directly to the resonator has been used to glue a sapphire wafer to its surface, and we still find Q-factors of 16,000 or more in the 0.32 T field. ESR applications of these resonators will be discussed. Supported in part by the ARO.

  19. Communication through resonance in spiking neuronal networks.

    Science.gov (United States)

    Hahn, Gerald; Bujan, Alejandro F; Frégnac, Yves; Aertsen, Ad; Kumar, Arvind

    2014-08-01

    The cortex processes stimuli through a distributed network of specialized brain areas. This processing requires mechanisms that can route neuronal activity across weakly connected cortical regions. Routing models proposed thus far are either limited to propagation of spiking activity across strongly connected networks or require distinct mechanisms that create local oscillations and establish their coherence between distant cortical areas. Here, we propose a novel mechanism which explains how synchronous spiking activity propagates across weakly connected brain areas supported by oscillations. In our model, oscillatory activity unleashes network resonance that amplifies feeble synchronous signals and promotes their propagation along weak connections ("communication through resonance"). The emergence of coherent oscillations is a natural consequence of synchronous activity propagation and therefore the assumption of different mechanisms that create oscillations and provide coherence is not necessary. Moreover, the phase-locking of oscillations is a side effect of communication rather than its requirement. Finally, we show how the state of ongoing activity could affect the communication through resonance and propose that modulations of the ongoing activity state could influence information processing in distributed cortical networks.

  20. Perspective: Two-dimensional resonance Raman spectroscopy

    Science.gov (United States)

    Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.

    2016-11-01

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.