WorldWideScience

Sample records for vocal motor control

  1. Neural Correlates of Vocal Production and Motor Control in Human Heschl's Gyrus.

    Science.gov (United States)

    Behroozmand, Roozbeh; Oya, Hiroyuki; Nourski, Kirill V; Kawasaki, Hiroto; Larson, Charles R; Brugge, John F; Howard, Matthew A; Greenlee, Jeremy D W

    2016-02-17

    The present study investigated how pitch frequency, a perceptually relevant aspect of periodicity in natural human vocalizations, is encoded in Heschl's gyrus (HG), and how this information may be used to influence vocal pitch motor control. We recorded local field potentials from multicontact depth electrodes implanted in HG of 14 neurosurgical epilepsy patients as they vocalized vowel sounds and received brief (200 ms) pitch perturbations at 100 Cents in their auditory feedback. Event-related band power responses to vocalizations showed sustained frequency following responses that tracked voice fundamental frequency (F0) and were significantly enhanced in posteromedial HG during speaking compared with when subjects listened to the playback of their own voice. In addition to frequency following responses, a transient response component within the high gamma frequency band (75-150 Hz) was identified. When this response followed the onset of vocalization, the magnitude of the response was the same for the speaking and playback conditions. In contrast, when this response followed a pitch shift, its magnitude was significantly enhanced during speaking compared with playback. We also observed that, in anterolateral HG, the power of high gamma responses to pitch shifts correlated with the magnitude of compensatory vocal responses. These findings demonstrate a functional parcellation of HG with neural activity that encodes pitch in natural human voice, distinguishes between self-generated and passively heard vocalizations, detects discrepancies between the intended and heard vocalization, and contains information about the resulting behavioral vocal compensations in response to auditory feedback pitch perturbations. The present study is a significant contribution to our understanding of sensor-motor mechanisms of vocal production and motor control. The findings demonstrate distinct functional parcellation of core and noncore areas within human auditory cortex on Heschl

  2. Singing ability is rooted in vocal-motor control of pitch.

    Science.gov (United States)

    Hutchins, Sean; Larrouy-Maestri, Pauline; Peretz, Isabelle

    2014-11-01

    The inability to vocally match a pitch can be caused by poor pitch perception or by poor vocal-motor control. Although previous studies have tried to examine the relationship between pitch perception and vocal production, they have failed to control for the timbre of the target to be matched. In the present study, we compare pitch-matching accuracy with an unfamiliar instrument (the slider) and with the voice, designed such that the slider plays back recordings of the participant's own voice. We also measured pitch accuracy in singing a familiar melody ("Happy Birthday") to assess the relationship between single-pitch-matching tasks and melodic singing. Our results showed that participants (all nonmusicians) were significantly better at matching recordings of their own voices with the slider than with their voice, indicating that vocal-motor control is an important limiting factor on singing ability. We also found significant correlations between the ability to sing a melody in tune and vocal pitch matching, but not pitch matching on the slider. Better melodic singers also tended to have higher quality voices (as measured by acoustic variables). These results provide important evidence about the role of vocal-motor control in poor singing ability and demonstrate that single-pitch-matching tasks can be useful in measuring general singing abilities.

  3. Functional connectivity associated with acoustic stability during vowel production: implications for vocal-motor control.

    Science.gov (United States)

    Sidtis, John J

    2015-03-01

    Vowels provide the acoustic foundation of communication through speech and song, but little is known about how the brain orchestrates their production. Positron emission tomography was used to study regional cerebral blood flow (rCBF) during sustained production of the vowel /a/. Acoustic and blood flow data from 13, normal, right-handed, native speakers of American English were analyzed to identify CBF patterns that predicted the stability of the first and second formants of this vowel. Formants are bands of resonance frequencies that provide vowel identity and contribute to voice quality. The results indicated that formant stability was directly associated with blood flow increases and decreases in both left- and right-sided brain regions. Secondary brain regions (those associated with the regions predicting formant stability) were more likely to have an indirect negative relationship with first formant variability, but an indirect positive relationship with second formant variability. These results are not definitive maps of vowel production, but they do suggest that the level of motor control necessary to produce stable vowels is reflected in the complexity of an underlying neural system. These results also extend a systems approach to functional image analysis, previously applied to normal and ataxic speech rate that is solely based on identifying patterns of brain activity associated with specific performance measures. Understanding the complex relationships between multiple brain regions and the acoustic characteristics of vocal stability may provide insight into the pathophysiology of the dysarthrias, vocal disorders, and other speech changes in neurological and psychiatric disorders.

  4. Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control.

    Science.gov (United States)

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A; Larson, Charles R

    2015-01-01

    The answer to the question of how the brain incorporates sensory feedback and links it with motor function to achieve goal-directed movement during vocalization remains unclear. We investigated the mechanisms of voice pitch motor control by examining the spectro-temporal dynamics of EEG signals when non-musicians (NM), relative pitch (RP), and absolute pitch (AP) musicians maintained vocalizations of a vowel sound and received randomized ± 100 cents pitch-shift stimuli in their auditory feedback. We identified a phase-synchronized (evoked) fronto-central activation within the theta band (5-8 Hz) that temporally overlapped with compensatory vocal responses to pitch-shifted auditory feedback and was significantly stronger in RP and AP musicians compared with non-musicians. A second component involved a non-phase-synchronized (induced) frontal activation within the delta band (1-4 Hz) that emerged at approximately 1 s after the stimulus onset. The delta activation was significantly stronger in the NM compared with RP and AP groups and correlated with the pitch rebound error (PRE), indicating the degree to which subjects failed to re-adjust their voice pitch to baseline after the stimulus offset. We propose that the evoked theta is a neurophysiological marker of enhanced pitch processing in musicians and reflects mechanisms by which humans incorporate auditory feedback to control their voice pitch. We also suggest that the delta activation reflects adaptive neural processes by which vocal production errors are monitored and used to update the state of sensory-motor networks for driving subsequent vocal behaviors. This notion is corroborated by our findings showing that larger PREs were associated with greater delta band activity in the NM compared with RP and AP groups. These findings provide new insights into the neural mechanisms of auditory feedback processing for vocal pitch motor control.

  5. Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control

    Directory of Open Access Journals (Sweden)

    Roozbeh eBehroozmand

    2015-03-01

    Full Text Available The answer to the question of how the brain incorporates sensory feedback and links it with motor function to achieve goal-directed movement during vocalization remains unclear. We investigated the mechanisms of voice pitch motor control by examining the spectro-temporal dynamics of EEG signals when non-musicians (NM, relative pitch (RP and absolute pitch (AP musicians maintained vocalizations of a vowel sound and received randomized ±100 cents pitch-shift stimuli in their auditory feedback. We identified a phase-synchronized (evoked fronto-central activation within the theta band (5-8 Hz that temporally overlapped with compensatory vocal responses to pitch-shifted auditory feedback and was significantly stronger in RP and AP musicians compared with non-musicians. A second component involved a non-phase-synchronized (induced frontal activation within the delta band (1-4 Hz that emerged at approximately 1 second after the stimulus onset. The delta activation was significantly stronger in the NM compared with RP and AP groups and correlated with the pitch rebound error (PRE, indicating the degree to which subjects failed to re-adjust their voice pitch to baseline after the stimulus offset. We propose that the evoked theta is a neurophysiological marker of enhanced pitch processing in musicians and reflects mechanisms by which humans incorporate auditory feedback to control their voice pitch. We also suggest that the delta activation reflects adaptive neural processes by which vocal production errors are monitored and used to update the state of sensory-motor networks for driving subsequent vocal behaviors. This notion is corroborated by our findings showing that larger PREs were associated with greater delta band activity in the NM compared with RP and AP groups. These findings provide new insights into the neural mechanisms of auditory feedback processing for vocal pitch motor control.

  6. Bupropion XL-induced motor and vocal tics.

    Science.gov (United States)

    Kayhan, Fatih; Uguz, Faruk; Kayhan, Ayşegül; Toktaş, Fikriye Ilay

    2014-01-01

    Tics are stereotypical repetitive involuntary movements (motor tics) or sounds (vocal tics). Although the emergence of tics were reported in a few cases with the use of selective serotonin reuptake inhibitors, there was no case with bupropion extended-release (Bupropion XL). The current case report presents a male patient developing motor and vocal tics with the use of bupropion XL.

  7. Motor planning for vocal production in common marmosets.

    Science.gov (United States)

    Miller, Cory T; Eliades, Steven J; Wang, Xiaoqin

    2009-11-01

    The vocal motor plan is one of the most fundamental and poorly understood elements of primate vocal production. Here we tested whether a single vocal motor plan comprises the full length of a vocalization. We hypothesized that if a single motor plan was determined at vocal onset, the acoustic features early in the call should be predictive of the subsequent call structure. Analyses were performed on two classes of features in marmoset phee calls: continuous and discrete. We first generated correlation matrices of all the continuous features of phee calls. Results showed that the start frequency of a phee's first pulse significantly correlated with all subsequent spectral features. Moreover, significant correlations were evident within the spectral features as well as within the temporal features, but there was little relationship between these measures. Using a discrete feature, 'the number of pulses in the phee call', a discriminant function was able to correctly classify the number of pulses in the calls well above chance based solely on the acoustic structure of the call's first pulse. Together, these data suggest that a vocal motor plan for the complete call structure is established at call onset. These findings provide a key insight into the mechanisms underlying vocal production in nonhuman primates.

  8. Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin.

    Science.gov (United States)

    Feenders, Gesa; Liedvogel, Miriam; Rivas, Miriam; Zapka, Manuela; Horita, Haruhito; Hara, Erina; Wada, Kazuhiro; Mouritsen, Henrik; Jarvis, Erich D

    2008-03-12

    Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls

  9. Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin.

    Directory of Open Access Journals (Sweden)

    Gesa Feenders

    Full Text Available Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor

  10. Millisecond-Scale Motor Encoding in a Cortical Vocal Area

    Science.gov (United States)

    Nemenman, Ilya; Tang, Claire; Chehayeb, Diala; Srivastava, Kyle; Sober, Samuel

    2015-03-01

    Studies of motor control have almost universally examined firing rates to investigate how the brain shapes behavior. In principle, however, neurons could encode information through the precise temporal patterning of their spike trains as well as (or instead of) through their firing rates. Although the importance of spike timing has been demonstrated in sensory systems, it is largely unknown whether timing differences in motor areas could affect behavior. We tested the hypothesis that significant information about trial-by-trial variations in behavior is represented by spike timing in the songbird vocal motor system. We found that neurons in motor cortex convey information via spike timing far more often than via spike rate and that the amount of information conveyed at the millisecond timescale greatly exceeds the information available from spike counts. These results demonstrate that information can be represented by spike timing in motor circuits and suggest that timing variations evoke differences in behavior. This work was supported in part by the National Institutes of Health, National Science Foundation, and James S. McDonnell Foundation

  11. Auditory-motor entrainment in vocal mimicking species: Additional ontogenetic and phylogenetic factors

    OpenAIRE

    Schachner, Adena

    2010-01-01

    We have recently found robust evidence of motor entrainment to auditory stimuli in multiple species of non-human animal, all of which were capable of vocal mimicry. In contrast, the ability remained markedly absent in many closely related species incapable of vocal mimicry. This suggests that vocal mimicry may be a necessary precondition for entrainment. However, within the vocal mimicking species, entrainment appeared non-randomly, suggesting that other components besides vocal mimicry play ...

  12. Neurons controlling voluntary vocalization in the macaque ventral premotor cortex.

    Directory of Open Access Journals (Sweden)

    Gino Coudé

    Full Text Available The voluntary control of phonation is a crucial achievement in the evolution of speech. In humans, ventral premotor cortex (PMv and Broca's area are known to be involved in voluntary phonation. In contrast, no neurophysiological data are available about the role of the oro-facial sector of nonhuman primates PMv in this function. In order to address this issue, we recorded PMv neurons from two monkeys trained to emit coo-calls. Results showed that a population of motor neurons specifically fire during vocalization. About two thirds of them discharged before sound onset, while the remaining were time-locked with it. The response of vocalization-selective neurons was present only during conditioned (voluntary but not spontaneous (emotional sound emission. These data suggest that the control of vocal production exerted by PMv neurons constitutes a newly emerging property in the monkey lineage, shedding light on the evolution of phonation-based communication from a nonhuman primate species.

  13. Vocal tract motor patterns and resonance during constant frequency song: the white-throated sparrow.

    Science.gov (United States)

    Riede, Tobias; Suthers, Roderick A

    2009-02-01

    Bird song is a complex behavior that requires the coordination of several motor systems. Sound is produced in the syrinx and then modified by the upper vocal tract. Movements of the hyoid skeleton have been shown in the northern cardinal (Cardinalis cardinalis) to be extensively involved in forming an oropharyngeal-esophageal cavity (OEC), which contributes a major resonance to the vocal tract transfer function. Here we report that a similar relationship exists between the volume of the OEC and the fundamental frequency in the white-throated sparrow (Zonotrichia albicollis) whose song, unlike that of the cardinal, consists of a series of almost constant frequency notes. Cineradiography of singing sparrows shows that the oropharyngeal cavity and cranial end of the esophagus expand abruptly at the start of each note and maintain a relatively constant volume until the end of the note. Computation of the vocal tract transfer function suggests a major resonance of the OEC follows the fundamental frequency, making sound transmission more efficient. The presence of similar prominent song-related vocal tract motor patterns in two Oscine families suggests that the active control of the vocal tract resonance by varying the volume of the OEC may be widespread in songbirds.

  14. Acetylcholinesterase in central vocal control nuclei of the zebra finch (Taeniopygia guttata)

    Indian Academy of Sciences (India)

    Monika Sadananda

    2004-06-01

    The distribution of acetylcholinesterase (AChE) in the central vocal control nuclei of the zebra finch was studied using enzyme histochemistry. AChE fibres and cells are intensely labelled in the forebrain nucleus area X, strongly labelled in high vocal centre (HVC) perikarya, and moderately to lightly labelled in the somata and neuropil of vocal control nuclei robust nucleus of arcopallium (RA), medial magnocellular nucleus of the anterior nidopallium (MMAN) and lateral magnocellular nucleus of the anterior nidopallium (LMAN). The identified sites of cholinergic and/or cholinoceptive neurons are similar to the cholinergic presence in vocal control regions of other songbirds such as the song sparrow, starling and another genus of the zebra finch (Poephila guttata), and to a certain extent in parallel vocal control regions in vocalizing birds such as the budgerigar. AChE presence in the vocal control system suggests innervation by either afferent projecting cholinergic systems and/or local circuit cholinergic neurons. Co-occurrence with choline acetyltransferase (ChAT) indicates efferent cholinergic projections. The cholinergic presence in parts of the zebra finch vocal control system, such as the area X, that is also intricately wired with parts of the basal ganglia, the descending fibre tracts and brain stem nuclei could underlie this circuitry’s involvement in sensory processing and motor control of song.

  15. Gross motor control

    Science.gov (United States)

    Gross motor control is the ability to make large, general movements (such as waving an arm or lifting a leg). ... Gross motor control is a milestone in the development of an infant. Infants develop gross motor control before they develop ...

  16. Multifunctional and Context-Dependent Control of Vocal Acoustics by Individual Muscles.

    Science.gov (United States)

    Srivastava, Kyle H; Elemans, Coen P H; Sober, Samuel J

    2015-10-21

    The relationship between muscle activity and behavioral output determines how the brain controls and modifies complex skills. In vocal control, ensembles of muscles are used to precisely tune single acoustic parameters such as fundamental frequency and sound amplitude. If individual vocal muscles were dedicated to the control of single parameters, then the brain could control each parameter independently by modulating the appropriate muscle or muscles. Alternatively, if each muscle influenced multiple parameters, a more complex control strategy would be required to selectively modulate a single parameter. Additionally, it is unknown whether the function of single muscles is fixed or varies across different vocal gestures. A fixed relationship would allow the brain to use the same changes in muscle activation to, for example, increase the fundamental frequency of different vocal gestures, whereas a context-dependent scheme would require the brain to calculate different motor modifications in each case. We tested the hypothesis that single muscles control multiple acoustic parameters and that the function of single muscles varies across gestures using three complementary approaches. First, we recorded electromyographic data from vocal muscles in singing Bengalese finches. Second, we electrically perturbed the activity of single muscles during song. Third, we developed an ex vivo technique to analyze the biomechanical and acoustic consequences of single-muscle perturbations. We found that single muscles drive changes in multiple parameters and that the function of single muscles differs across vocal gestures, suggesting that the brain uses a complex, gesture-dependent control scheme to regulate vocal output.

  17. Neuronal Control of Mammalian Vocalization, with Special Reference to the Squirrel Monkey

    Science.gov (United States)

    Jürgens, Uwe

    Squirrel monkey vocalization can be considered as a suitable model for the study in humans of the neurobiological basis of nonverbal emotional vocal utterances, such as laughing, crying, and groaning. Evaluation of electrical and chemical brain stimulation data, lesioning studies, single-neurone recordings, and neuroanatomical tracing work leads to the following conclusions: The periaqueductal gray and laterally bordering tegmentum of the midbrain represent a crucial area for the production of vocalization. This area collects the various vocalization-triggering stimuli, such as auditory, visual, and somatosensory input from diverse sensory-processing structures, motivation-controlling input from some limbic structures, and volitional impulses from the anterior cingulate cortex. Destruction of this area causes mutism. It is still under dispute whether the periaqueductal region harbors the vocal pattern generator or merely couples vocalization-triggering information to motor-coordinating structures further downward in the brainstem. The periaqueductal region is connected with the phonatory motoneuron pools indirectly via one or several interneurons. The nucleus retroambiguus represents a crucial relay station for the laryngeal and expiratory component of vocalization. The articulatory component reaches the orofacial motoneuron pools via the parvocellular reticular formation. Essential proprioceptive feedback from the larynx and lungs enter the vocal-controlling network via the solitary tract nucleus.

  18. Auditory-motor entrainment in vocal mimicking species: Additional ontogenetic and phylogenetic factors.

    Science.gov (United States)

    Schachner, Adena

    2010-05-01

    We have recently found robust evidence of motor entrainment to auditory stimuli in multiple species of non-human animal, all of which were capable of vocal mimicry. In contrast, the ability remained markedly absent in many closely related species incapable of vocal mimicry. This suggests that vocal mimicry may be a necessary precondition for entrainment. However, within the vocal mimicking species, entrainment appeared non-randomly, suggesting that other components besides vocal mimicry play a role in the capacity and tendency to entrain. Here we discuss potential additional factors involved in entrainment. New survey data show that both male and female parrots are able to entrain, and that the entrainment capacity appears throughout the lifespan. We suggest routes for future study of entrainment, including both developmental studies in species known to entrain and further work to detect entrainment in species not well represented in our dataset. These studies may shed light on additional factors necessary for entrainment in addition to vocal mimicry.

  19. Spontaneous motor entrainment to music in multiple vocal mimicking species.

    Science.gov (United States)

    Schachner, Adena; Brady, Timothy F; Pepperberg, Irene M; Hauser, Marc D

    2009-05-26

    The human capacity for music consists of certain core phenomena, including the tendency to entrain, or align movement, to an external auditory pulse [1-3]. This ability, fundamental both for music production and for coordinated dance, has been repeatedly highlighted as uniquely human [4-11]. However, it has recently been hypothesized that entrainment evolved as a by-product of vocal mimicry, generating the strong prediction that only vocal mimicking animals may be able to entrain [12, 13]. Here we provide comparative data demonstrating the existence of two proficient vocal mimicking nonhuman animals (parrots) that entrain to music, spontaneously producing synchronized movements resembling human dance. We also provide an extensive comparative data set from a global video database systematically analyzed for evidence of entrainment in hundreds of species both capable and incapable of vocal mimicry. Despite the higher representation of vocal nonmimics in the database and comparable exposure of mimics and nonmimics to humans and music, only vocal mimics showed evidence of entrainment. We conclude that entrainment is not unique to humans and that the distribution of entrainment across species supports the hypothesis that entrainment evolved as a by-product of selection for vocal mimicry.

  20. Vocal tract motor patterns and resonance during constant frequency song: the white-throated sparrow

    OpenAIRE

    Riede, Tobias; Suthers, Roderick A.

    2008-01-01

    Bird song is a complex behavior that requires the coordination of several motor systems. Sound is produced in the syrinx and then modified by the upper vocal tract. Movements of the hyoid skeleton have been shown in the northern cardinal (Cardinalis cardinalis) to be extensively involved in forming an oropharyngeal–esophageal cavity (OEC), which contributes a major resonance to the vocal tract transfer function. Here we report that a similar relationship exists between the volume of the OEC a...

  1. Specialized motor-driven dusp1 expression in the song systems of multiple lineages of vocal learning birds.

    Directory of Open Access Journals (Sweden)

    Haruhito Horita

    Full Text Available Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1 was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits.

  2. Induction motor control design

    CERN Document Server

    Marino, Riccardo; Verrelli, Cristiano M

    2010-01-01

    ""Nonlinear and Adaptive Control Design for Induction Motors"" is a unified exposition of the most important steps and concerns in the design of estimation and control algorithms for induction motors. A single notation and modern nonlinear control terminology is used to make the book accessible to readers who are not experts in electric motors at the same time as giving a more theoretical control viewpoint to those who are. In order to increase readability, the book concentrates on the induction motor, eschewing the much more complex and less-well-understood control of asynchronous motors. The

  3. Multifunctional and context-dependent control of vocal acoustics by individual muscles

    DEFF Research Database (Denmark)

    Srivastava, Kyle H; Elemans, Coen P H; Sober, Samuel J

    2015-01-01

    The relationship between muscle activity and behavioral output determines how the brain controls and modifies complex skills. In vocal control, ensembles of muscles are used to precisely tune single acoustic parameters such as fundamental frequency and sound amplitude. If individual vocal muscles...... a context-dependent scheme would require the brain to calculate different motor modifications in each case. We tested the hypothesis that single muscles control multiple acoustic parameters and that the function of single muscles varies across gestures using three complementary approaches. First, we...... recorded electromyographic data from vocal muscles in singing Bengalese finches. Second, we electrically perturbed the activity of single muscles during song. Third, we developed an ex vivo technique to analyze the biomechanical and acoustic consequences of single-muscle perturbations. We found that single...

  4. At the interface of the auditory and vocal motor systems: NIf and its role in vocal processing, production and learning.

    Science.gov (United States)

    Lewandowski, Brian; Vyssotski, Alexei; Hahnloser, Richard H R; Schmidt, Marc

    2013-06-01

    Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC's auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf's involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans.

  5. Characterization of neonatal vocal and motor repertoire of reelin mutant mice.

    Science.gov (United States)

    Romano, Emilia; Michetti, Caterina; Caruso, Angela; Laviola, Giovanni; Scattoni, Maria Luisa

    2013-01-01

    Reelin is a large secreted extracellular matrix glycoprotein playing an important role in early neurodevelopment. Several genetic studies found an association between RELN gene and increased risk of autism suggesting that reelin deficiency may be a vulnerability factor in its etiology. Moreover, a reduced reelin expression has been observed in several brain regions of subjects with Autism Spectrum Disorders. Since a number of reports have documented presence of vocal and neuromotor abnormalities in patients with autism and suggested that these dysfunctions predate the onset of the syndrome, we performed a fine-grain characterization of the neonatal vocal and motor repertoire in reelin mutant mice to explore the developmental precursors of the disorder. Our findings evidence a general delay in motor and vocal development in heterozygous (50% reduced reelin) and reeler (lacking reelin gene) mutant mice. As a whole, an increased number of calls characterized heterozygous pup's emission. Furthermore, the typical ontogenetic peak in the number of calls characterizing wild-type pups on postnatal day 4 appeared slightly delayed in heterozygous pups (to day 6) and was quite absent in reeler littermates, which exhibited a flat profile during development. We also detected a preferential use of a specific call category (two-components) by heterozygous and reeler mice at postnatal days 6 and 8 as compared to their wild-type littermates. With regard to the analysis of spontaneous movements, a differential profile emerged early in development among the three genotypes. While only slight coordination difficulties are exhibited by heterozygous pups, all indices of motor development appear delayed in reeler mice. Overall, our results evidence a genotype-dependent deviation in ultrasonic vocal repertoire and a general delay in motor development in reelin mutant pups.

  6. Characterization of neonatal vocal and motor repertoire of reelin mutant mice.

    Directory of Open Access Journals (Sweden)

    Emilia Romano

    Full Text Available Reelin is a large secreted extracellular matrix glycoprotein playing an important role in early neurodevelopment. Several genetic studies found an association between RELN gene and increased risk of autism suggesting that reelin deficiency may be a vulnerability factor in its etiology. Moreover, a reduced reelin expression has been observed in several brain regions of subjects with Autism Spectrum Disorders. Since a number of reports have documented presence of vocal and neuromotor abnormalities in patients with autism and suggested that these dysfunctions predate the onset of the syndrome, we performed a fine-grain characterization of the neonatal vocal and motor repertoire in reelin mutant mice to explore the developmental precursors of the disorder. Our findings evidence a general delay in motor and vocal development in heterozygous (50% reduced reelin and reeler (lacking reelin gene mutant mice. As a whole, an increased number of calls characterized heterozygous pup's emission. Furthermore, the typical ontogenetic peak in the number of calls characterizing wild-type pups on postnatal day 4 appeared slightly delayed in heterozygous pups (to day 6 and was quite absent in reeler littermates, which exhibited a flat profile during development. We also detected a preferential use of a specific call category (two-components by heterozygous and reeler mice at postnatal days 6 and 8 as compared to their wild-type littermates. With regard to the analysis of spontaneous movements, a differential profile emerged early in development among the three genotypes. While only slight coordination difficulties are exhibited by heterozygous pups, all indices of motor development appear delayed in reeler mice. Overall, our results evidence a genotype-dependent deviation in ultrasonic vocal repertoire and a general delay in motor development in reelin mutant pups.

  7. Induction motor control

    Science.gov (United States)

    Hansen, Irving G.

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  8. Induction motor control

    Science.gov (United States)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  9. Motor control for a brushless DC motor

    Science.gov (United States)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  10. Superfast vocal muscles control song production in songbirds.

    Directory of Open Access Journals (Sweden)

    Coen P H Elemans

    Full Text Available Birdsong is a widely used model for vocal learning and human speech, which exhibits high temporal and acoustic diversity. Rapid acoustic modulations are thought to arise from the vocal organ, the syrinx, by passive interactions between the two independent sound generators or intrinsic nonlinear dynamics of sound generating structures. Additionally, direct neuromuscular control could produce such rapid and precisely timed acoustic features if syringeal muscles exhibit rare superfast muscle contractile kinetics. However, no direct evidence exists that avian vocal muscles can produce modulations at such high rates. Here, we show that 1 syringeal muscles are active in phase with sound modulations during song over 200 Hz, 2 direct stimulation of the muscles in situ produces sound modulations at the frequency observed during singing, and that 3 syringeal muscles produce mechanical work at the required frequencies and up to 250 Hz in vitro. The twitch kinematics of these so-called superfast muscles are the fastest measured in any vertebrate muscle. Superfast vocal muscles enable birds to directly control the generation of many observed rapid acoustic changes and to actuate the millisecond precision of neural activity into precise temporal vocal control. Furthermore, birds now join the list of vertebrate classes in which superfast muscle kinetics evolved independently for acoustic communication.

  11. Step Motor Control System

    Institute of Scientific and Technical Information of China (English)

    ZhangShuochengt; WangDan; QiaoWeimin; JingLan

    2003-01-01

    All kinds of step motors and servomotors are widely used in CSR control system, such as many vacuum valves control that set on the HIRFL-CSR; all kinds of electric switches and knobs of ECR Ion Source; equipment of CSR Beam Diagnostics and a lot of large equipment like Inside Gun Toroid and Collector Toroid of HIRFL. A typical control system include up to 32 16-I/O Control boards, and each 16-I/O Control board can control 4 motors at the same time (including 8 Limit Switches).

  12. Advanced AC Motor Control

    Energy Technology Data Exchange (ETDEWEB)

    Kazmierkowski, M.P. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warszawa (Poland)

    1997-12-31

    In this paper a review of control methods for high performance PWM inverter-fed induction motor drives is presented. Starting from the description of an induction motor by the help of the space vectors, three basic control strategic are discussed. As first, the most popular Field Oriented Control (FOC) is described. Secondly, the Direct Torque and Flux vector Control (DTFC) method, which - in contrast to FOC - depart from idea of coordinate transformation and analogy with DC motor, is briefly characterized. The last group is based on Feedback Linearization Control (FLC) and can be easy combined with sliding mode control. The simulation and experimental oscillograms that illustrate the performance of the discussed control strategies are shown. (orig.) 35 refs.

  13. Human spinal motor control

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo

    2016-01-01

    interneurons and exert a direct (willful) muscle control with the aid of a context-dependent integration of somatosensory and visual information at cortical level. However, spinal networks also play an important role. Sensory feedback through spinal circuitries is integrated with central motor commands...... the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior. Expected final online...... and contributes importantly to the muscle activity underlying voluntary movements. Regulation of spinal interneurons is used to switch between motor states such as locomotion (reciprocal innervation) and stance (coactivation pattern). Cortical regulation of presynaptic inhibition of sensory afferents may focus...

  14. Physiologically driven avian vocal synthesizer

    Science.gov (United States)

    Sitt, Jacobo D.; Arneodo, Ezequiel M.; Goller, Franz; Mindlin, Gabriel B.

    2010-03-01

    In this work, we build an electronic syrinx, i.e., a programmable electronic device capable of integrating biomechanical model equations for the avian vocal organ in order to synthesize song. This vocal prosthesis is controlled by the bird’s neural instructions to respiratory and the syringeal motor systems, thus opening great potential for studying motor control and its modification by sensory feedback mechanisms. Furthermore, a well-functioning subject-controlled vocal prosthesis can lay the foundation for similar devices in humans and thus provide directly health-related data and procedures.

  15. Singing modulates parvalbumin interneurons throughout songbird forebrain vocal control circuitry

    Science.gov (United States)

    Zengin-Toktas, Yildiz

    2017-01-01

    Across species, the performance of vocal signals can be modulated by the social environment. Zebra finches, for example, adjust their song performance when singing to females (‘female-directed’ or FD song) compared to when singing in isolation (‘undirected’ or UD song). These changes are salient, as females prefer the FD song over the UD song. Despite the importance of these performance changes, the neural mechanisms underlying this social modulation remain poorly understood. Previous work in finches has established that expression of the immediate early gene EGR1 is increased during singing and modulated by social context within the vocal control circuitry. Here, we examined whether particular neural subpopulations within those vocal control regions exhibit similar modulations of EGR1 expression. We compared EGR1 expression in neurons expressing parvalbumin (PV), a calcium buffer that modulates network plasticity and homeostasis, among males that performed FD song, males that produced UD song, or males that did not sing. We found that, overall, singing but not social context significantly affected EGR1 expression in PV neurons throughout the vocal control nuclei. We observed differences in EGR1 expression between two classes of PV interneurons in the basal ganglia nucleus Area X. Additionally, we found that singing altered the amount of PV expression in neurons in HVC and Area X and that distinct PV interneuron types in Area X exhibited different patterns of modulation by singing. These data indicate that throughout the vocal control circuitry the singing-related regulation of EGR1 expression in PV neurons may be less influenced by social context than in other neuron types and raise the possibility of cell-type specific differences in plasticity and calcium buffering. PMID:28235074

  16. Control linear motor with DSP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Han

    2003-06-15

    This book consists of control linear motor with DSP, which is composed of two parts. The title of the first part is control Algorithm and software with introduction and tracking controller, drive profile on decision of motion time, floating point DSP and quantization effect, motion override Algorithm and drive profile summary, design of digital controller on design for controller structure and analysis of PID control Loop and Motor turning, design for IIR digital filter and protocol structure for communication wit host. The second part describes control hardware, which mentions Linear motor and Amplifier, motor and power supply, DSP board and interface, control of Micro Linear Stepping Motor and conclusion.

  17. Control of vocal-tract length in speech

    Energy Technology Data Exchange (ETDEWEB)

    Riordan, C.J.

    1977-10-01

    Essential for the correct production of vowels is the accurate control of vocal-tract length. Perkell (Psychology of Speech Production (MIT, Cambridge, MA, 1969)) has suggested that two important determinants of vocal-tract length are vertical larynx position and lip spreading/protrusion, often acting together. The present study was designed to determine whether constraining lip spreading/protrusion induces compensatory vertical larynx displacements, particularly on rounded vowels. Upper lip and larynx movement were monitored photoelectrically while French and Mandarin native speakers produced the vowels /i,y,u/ first under normal-speech conditions and then with lip activity constrained. Significant differences were found in upper-lip protrusion and larynx position depending on the vowel uttered. Moreover, the generally low-larynx position of rounded vowels became even lower when lip protrusion was constrained. These results imply that compensatory articulations contribute to a contrast-preserving strategy in speech production.

  18. Modularity for Motor Control and Motor Learning.

    Science.gov (United States)

    d'Avella, Andrea

    2016-01-01

    How the central nervous system (CNS) overcomes the complexity of multi-joint and multi-muscle control and how it acquires or adapts motor skills are fundamental and open questions in neuroscience. A modular architecture may simplify control by embedding features of both the dynamic behavior of the musculoskeletal system and of the task into a small number of modules and by directly mapping task goals into module combination parameters. Several studies of the electromyographic (EMG) activity recorded from many muscles during the performance of different tasks have shown that motor commands are generated by the combination of a small number of muscle synergies, coordinated recruitment of groups of muscles with specific amplitude balances or activation waveforms, thus supporting a modular organization of motor control. Modularity may also help understanding motor learning. In a modular architecture, acquisition of a new motor skill or adaptation of an existing skill after a perturbation may occur at the level of modules or at the level of module combinations. As learning or adapting an existing skill through recombination of modules is likely faster than learning or adapting a skill by acquiring new modules, compatibility with the modules predicts learning difficulty. A recent study in which human subjects used myoelectric control to move a mass in a virtual environment has tested this prediction. By altering the mapping between recorded muscle activity and simulated force applied on the mass, as in a complex surgical rearrangement of the tendons, it has been possible to show that it is easier to adapt to a perturbation that is compatible with the muscle synergies used to generate hand force than to a similar but incompatible perturbation. This result provides direct support for a modular organization of motor control and motor learning.

  19. Control of synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Synchronous motors are indubitably the most effective device to drive industrial production systems and robots with precision and rapidity. Their control law is thus critical for combining at the same time high productivity to reduced energy consummation. As far as possible, the control algorithms must exploit the properties of these actuators. Therefore, this work draws on well adapted models resulting from the Park's transformation, for both the most traditional machines with sinusoidal field distribution and for machines with non-sinusoidal field distribution which are more and more used in

  20. COMPUTER CONTROL OF AN ANALOG VOCAL TRACT

    Science.gov (United States)

    electrically controlled by a nasal coupling signal, and represent the action of the velum . The remaining sections are fixed as they do not vary significantly during the production of speech sounds. (Author)

  1. Sensorimotor control of vocal pitch production in Parkinson's disease.

    Science.gov (United States)

    Chen, Xi; Zhu, Xiaoxia; Wang, Emily Q; Chen, Ling; Li, Weifeng; Chen, Zhaocong; Liu, Hanjun

    2013-08-21

    The present study was designed to investigate the sensorimotor control of voice fundamental frequency (F0) in individuals with Parkinson's diseases (PD). Fifteen Cantonese individuals with PD, and fifteen age- and sex-matched healthy Cantonese individuals participated in the experiment. Participants were asked to vocalize a vowel sound while hearing their voice auditory feedback unexpectedly pitch-shifted upwards or downwards through headphones. The size of pitch shifts varied from 50, 100, to 200 cents. One novel averaging method was used to categorize the individual trials such that only those trials that opposed the perturbation direction were averaged to generate an overall response. The results showed that Cantonese individuals with PD produced significantly larger magnitudes of vocal compensation for pitch perturbations than healthy participants. Both groups showed systematic changes in compensation magnitude as a function of perturbation size and direction: larger perturbation size or upward direction elicited greater compensation magnitude. Moreover, pitch variability indexed by the standard deviations of the baseline F0 was significantly correlated with the magnitude of vocal compensation in individuals with PD, whereas this correlation failed to reach significance for healthy participants. This study presents the first data demonstrating the abnormal processing of auditory feedback in the sensorimotor control of voice F0 for Cantonese individuals with PD. It is suggested that the abnormal sensorimotor integration of voice F0 control in PD may be caused by the increased weighting of auditory feedback control resulting from dysfunction of feedforward control and somatosensory feedback caused by the impairment of the basal ganglia. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. The song must go on: resilience of the songbird vocal motor pathway.

    Directory of Open Access Journals (Sweden)

    Barish Poole

    Full Text Available Stereotyped sequences of neural activity underlie learned vocal behavior in songbirds; principle neurons in the cortical motor nucleus HVC fire in stereotyped sequences with millisecond precision across multiple renditions of a song. The geometry of neural connections underlying these sequences is not known in detail though feed-forward chains are commonly assumed in theoretical models of sequential neural activity. In songbirds, a well-defined cortical-thalamic motor circuit exists but little is known the fine-grain structure of connections within each song nucleus. To examine whether the structure of song is critically dependent on long-range connections within HVC, we bilaterally transected the nucleus along the anterior-posterior axis in normal-hearing and deafened birds. The disruption leads to a slowing of song as well as an increase in acoustic variability. These effects are reversed on a time-scale of days even in deafened birds or in birds that are prevented from singing post-transection. The stereotyped song of zebra finches includes acoustic details that span from milliseconds to seconds--one of the most precise learned behaviors in the animal kingdom. This detailed motor pattern is resilient to disruption of connections at the cortical level, and the details of song variability and duration are maintained by offline homeostasis of the song circuit.

  3. A circular model for song motor control in Serinus canaria

    OpenAIRE

    2015-01-01

    Song production in songbirds is controlled by a network of nuclei distributed across several brain regions, which drives respiratory and vocal motor systems to generate sound. We built a model for birdsong production, whose variables are the average activities of different neural populations within these nuclei of the song system. We focus on the predictions of respiratory patterns of song, because these can be easily measured and therefore provide a validation for the model. We test the hypo...

  4. Speech intelligibility measure for vocal control of an automaton

    Science.gov (United States)

    Naranjo, Michel; Tsirigotis, Georgios

    1998-07-01

    The acceleration of investigations in Speech Recognition allows to augur, in the next future, a wide establishment of Vocal Control Systems in the production units. The communication between a human and a machine necessitates technical devices that emit, or are submitted to important noise perturbations. The vocal interface introduces a new control problem of a deterministic automaton using uncertain information. The purpose is to place exactly the automaton in a final state, ordered by voice, from an unknown initial state. The whole Speech Processing procedure, presented in this paper, has for input the temporal speech signal of a word and for output a recognised word labelled with an intelligibility index given by the recognition quality. In the first part, we present the essential psychoacoustic concepts for the automatic calculation of the loudness of a speech signal. The architecture of a Time Delay Neural Network is presented in second part where we also give the results of the recognition. The theory of the fuzzy subset, in third part, allows to extract at the same time a recognised word and its intelligibility index. In the fourth part, an Anticipatory System models the control of a Sequential Machine. A prediction phase and an updating one appear which involve data coming from the information system. A Bayesian decision strategy is used and the criterion is a weighted sum of criteria defined from information, minimum path functions and speech intelligibility measure.

  5. Auditory feedback control of vocal pitch during sustained vocalization: a cross-sectional study of adult aging.

    Directory of Open Access Journals (Sweden)

    Peng Liu

    Full Text Available BACKGROUND: Auditory feedback has been demonstrated to play an important role in the control of voice fundamental frequency (F(0, but the mechanisms underlying the processing of auditory feedback remain poorly understood. It has been well documented that young adults can use auditory feedback to stabilize their voice F(0 by making compensatory responses to perturbations they hear in their vocal pitch feedback. However, little is known about the effects of aging on the processing of audio-vocal feedback during vocalization. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we recruited adults who were between 19 and 75 years of age and divided them into five age groups. Using a pitch-shift paradigm, the pitch of their vocal feedback was unexpectedly shifted ±50 or ±100 cents during sustained vocalization of the vowel sound/u/. Compensatory vocal F(0 response magnitudes and latencies to pitch feedback perturbations were examined. A significant effect of age was found such that response magnitudes increased with increasing age until maximal values were reached for adults 51-60 years of age and then decreased for adults 61-75 years of age. Adults 51-60 years of age were also more sensitive to the direction and magnitude of the pitch feedback perturbations compared to younger adults. CONCLUSION: These findings demonstrate that the pitch-shift reflex systematically changes across the adult lifespan. Understanding aging-related changes to the role of auditory feedback is critically important for our theoretical understanding of speech production and the clinical applications of that knowledge.

  6. Distributed Stepping Motor Control System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The beam diagnostic devices used at RIBLL are driven by stepper motors, which are controlled by I/O modules based on ISA-bus in an industrial computer. The disadvantages of such mode are that a large number of long cables are used and one computer to control is unsafe. We have developed a distributed stepping motor control system for the remote, local and centralized control of the stepping motors. RS-485 bus is used for the connection between the remote control unit and the local control units. The con...

  7. Power control for ac motor

    Science.gov (United States)

    Dabney, R. W. (Inventor)

    1984-01-01

    A motor controller employing a triac through which power is supplied to a motor is described. The open circuit voltage appearing across the triac controls the operation of a timing circuit. This timing circuit triggers on the triac at a time following turn off which varies inversely as a function of the amplitude of the open circuit voltage of the triac.

  8. Audio-vocal interaction in single neurons of the monkey ventrolateral prefrontal cortex.

    Science.gov (United States)

    Hage, Steffen R; Nieder, Andreas

    2015-05-06

    Complex audio-vocal integration systems depend on a strong interconnection between the auditory and the vocal motor system. To gain cognitive control over audio-vocal interaction during vocal motor control, the PFC needs to be involved. Neurons in the ventrolateral PFC (VLPFC) have been shown to separately encode the sensory perceptions and motor production of vocalizations. It is unknown, however, whether single neurons in the PFC reflect audio-vocal interactions. We therefore recorded single-unit activity in the VLPFC of rhesus monkeys (Macaca mulatta) while they produced vocalizations on command or passively listened to monkey calls. We found that 12% of randomly selected neurons in VLPFC modulated their discharge rate in response to acoustic stimulation with species-specific calls. Almost three-fourths of these auditory neurons showed an additional modulation of their discharge rates either before and/or during the monkeys' motor production of vocalization. Based on these audio-vocal interactions, the VLPFC might be well positioned to combine higher order auditory processing with cognitive control of the vocal motor output. Such audio-vocal integration processes in the VLPFC might constitute a precursor for the evolution of complex learned audio-vocal integration systems, ultimately giving rise to human speech.

  9. Remote control for motor vehicle

    Science.gov (United States)

    Johnson, Dale R. (Inventor); Ciciora, John A. (Inventor)

    1984-01-01

    A remote controller is disclosed for controlling the throttle, brake and steering mechanism of a conventional motor vehicle, with the remote controller being particularly advantageous for use by severely handicapped individuals. The controller includes a remote manipulator which controls a plurality of actuators through interfacing electronics. The remote manipulator is a two-axis joystick which controls a pair of linear actuators and a rotary actuator, with the actuators being powered by electric motors to effect throttle, brake and steering control of a motor vehicle adapted to include the controller. The controller enables the driver to control the adapted vehicle from anywhere in the vehicle with one hand with minimal control force and range of motion. In addition, even though a conventional vehicle is adapted for use with the remote controller, the vehicle may still be operated in the normal manner.

  10. Voice Modulation: A Window into the Origins of Human Vocal Control?

    Science.gov (United States)

    Pisanski, Katarzyna; Cartei, Valentina; McGettigan, Carolyn; Raine, Jordan; Reby, David

    2016-04-01

    An unresolved issue in comparative approaches to speech evolution is the apparent absence of an intermediate vocal communication system between human speech and the less flexible vocal repertoires of other primates. We argue that humans' ability to modulate nonverbal vocal features evolutionarily linked to expression of body size and sex (fundamental and formant frequencies) provides a largely overlooked window into the nature of this intermediate system. Recent behavioral and neural evidence indicates that humans' vocal control abilities, commonly assumed to subserve speech, extend to these nonverbal dimensions. This capacity appears in continuity with context-dependent frequency modulations recently identified in other mammals, including primates, and may represent a living relic of early vocal control abilities that led to articulated human speech.

  11. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or...

  12. Expression of androgen receptor mRNA in the brain of Gekko gecko: implications for understanding the role of androgens in controlling auditory and vocal processes.

    Science.gov (United States)

    Tang, Y Z; Piao, Y S; Zhuang, L Z; Wang, Z W

    2001-09-17

    The neuroanatomical distribution of androgen receptor (AR) mRNA-containing cells in the brain of a vocal lizard, Gekko gecko, was mapped using in situ hybridization. Particular attention was given to auditory and vocal nuclei. Within the auditory system, the cochlear nuclei, the central nucleus of the torus semicircularis, the nucleus medialis, and the medial region of the dorsal ventricular ridge contained moderate numbers of labeled neurons. Neurons labeled with the AR probe were located in many nuclei related to vocalization. Within the hindbrain, the mesencephalic nucleus of the trigeminal nerve, the vagal part of the nucleus ambiguus, and the dosal motor nucleus of the vagus nerve contained many neurons that exhibited strong expression of AR mRNA. Neurons located in the peripheral nucleus of the torus in the mesencephalon exhibited moderate levels of hybridization. Intense AR mRNA expression was also observed in neurons within two other areas that may be involved in vocalization, the medial preoptic area and the hypoglossal nucleus. The strongest mRNA signals identified in this study were found in cells of the pallium, hypothalamus, and inferior nucleus of the raphe. The expression patterns of AR mRNA in the auditory and vocal control nuclei of G. gecko suggest that neurons involved in acoustic communication in this species, and perhaps related species, are susceptible to regulation by androgens during the breeding season. The significance of these results for understanding the evolution of reptilian vocal communication is discussed.

  13. Space Digital Controller for Improved Motor Control

    Science.gov (United States)

    Alves-Nunes, Samuel; Daras, Gaetan; Dehez, Bruno; Maillard, Christophe; Bekemans, Marc; Michel, Raymond

    2014-08-01

    Performing digital motor control into space equipment is a new challenge. The new DPC (Digital Programmable Controller) is the first chip that we can use as a micro-controller, allowing us to drive motors with digital control schemes. In this paper, the digital control of hybrid stepper motors is considered. This kind of motor is used for solar array rotation and antenna actuation. New digital control technology brings a lot of advantages, allowing an important reduction of thermal losses inside the motor, and a reduction of thermal constraints on power drive electronic components. The opportunity to drive motors with a digital controller also brings many new functionalities like post-failure torque analysis, micro- vibrations and cogging torque reduction, or electro- mechanical damping of solar array oscillations. To evaluate the performance of the system, Field-Oriented Control (FOC) is implemented on a hybrid stepper motor. A test-bench, made of an active load, has been made to emulate the mechanical behaviour of the solar array, by the use of a torsionally-compliant model. The experimental results show that we can drastically reduce electrical power consumption, compared with the currently used open-loop control scheme.

  14. Sensorimotor nucleus NIf is necessary for auditory processing but not vocal motor output in the avian song system.

    Science.gov (United States)

    Cardin, Jessica A; Raksin, Jonathan N; Schmidt, Marc F

    2005-04-01

    Sensorimotor integration in the avian song system is crucial for both learning and maintenance of song, a vocal motor behavior. Although a number of song system areas demonstrate both sensory and motor characteristics, their exact roles in auditory and premotor processing are unclear. In particular, it is unknown whether input from the forebrain nucleus interface of the nidopallium (NIf), which exhibits both sensory and premotor activity, is necessary for both auditory and premotor processing in its target, HVC. Here we show that bilateral NIf lesions result in long-term loss of HVC auditory activity but do not impair song production. NIf is thus a major source of auditory input to HVC, but an intact NIf is not necessary for motor output in adult zebra finches.

  15. Audio-vocal responses of vocal fundamental frequency and formant during sustained vowel vocalizations in different noises.

    Science.gov (United States)

    Lee, Shao-Hsuan; Hsiao, Tzu-Yu; Lee, Guo-She

    2015-06-01

    Sustained vocalizations of vowels [a], [i], and syllable [mə] were collected in twenty normal-hearing individuals. On vocalizations, five conditions of different audio-vocal feedback were introduced separately to the speakers including no masking, wearing supra-aural headphones only, speech-noise masking, high-pass noise masking, and broad-band-noise masking. Power spectral analysis of vocal fundamental frequency (F0) was used to evaluate the modulations of F0 and linear-predictive-coding was used to acquire first two formants. The results showed that while the formant frequencies were not significantly shifted, low-frequency modulations (production, the motor speech controls on F0 may depend on a feedback mechanism while articulation should rely more on a feedforward mechanism. Power spectral analysis of F0 might be applied to evaluate audio-vocal control for various hearing and neurological disorders in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Self-Organization of Early Vocal Development in Infants and Machines: The Role of Intrinsic Motivation

    Directory of Open Access Journals (Sweden)

    Clément eMoulin-Frier

    2014-01-01

    Full Text Available We bridge the gap between two issues in infant development: vocal development and intrinsic motivation. We propose and experimentally test the hypothesis that general mechanisms of intrinsically motivated spontaneous exploration, also called curiosity-driven learning, can self-organize developmental stages during early vocal learning. We introduce a computational model of intrinsically motivated vocal exploration, which allows the learner to autonomously structure its own vocal experiments, and thus its own learning schedule, through a drive to maximize competence progress. This model relies on a physical model of the vocal tract, the auditory system and the agent's motor control as well as vocalizations of social peers. We present computational experiments that show how such a mechanism can explain the adaptive transition from vocal self-exploration with little influence from the speech environment, to a later stage where vocal exploration becomes influenced by vocalizations of peers. Within the initial self-exploration phase, we show that a sequence of vocal production stages self-organizes, and shares properties with data from infant developmental psychology: the vocal learner first discovers how to control phonation, then focuses on vocal variations of unarticulated sounds, and finally automatically discovers and focuses on babbling with articulated proto-syllables. As the vocal learner becomes more proficient at producing complex sounds, imitating vocalizations of peers starts to provide high learning progress explaining an automatic shift from self-exploration to vocal imitation.

  17. Improving Control of Two Motor Controllers

    Science.gov (United States)

    Toland, Ronald W.

    2004-01-01

    A computer program controls motors that drive translation stages in a metrology system that consists of a pair of two-axis cathetometers. This program is specific to Compumotor Gemini (or equivalent) motors and the Compumotor 6K-series (or equivalent) motor controller. Relative to the software supplied with the controller, this program affords more capabilities and is easier to use. Written as a Virtual Instrument in the LabVIEW software system, the program presents an imitation control panel that the user can manipulate by use of a keyboard and mouse. There are three modes of operation: command, movement, and joystick. In command mode, single commands are sent to the controller for troubleshooting. In movement mode, distance, speed, and/or acceleration commands are sent to the controller. Position readouts from the motors and from position encoders on the translation stages are displayed in marked fields. At any time, the position readouts can be recorded in a file named by the user. In joystick mode, the program yields control of the motors to a joystick. The program sends commands to, and receives data from, the controller via a serial cable connection, using the serial-communication portion of the software supplied with the controller.

  18. Reinforcement of vocalizations through contingent vocal imitation.

    Science.gov (United States)

    Pelaez, Martha; Virues-Ortega, Javier; Gewirtz, Jacob L

    2011-01-01

    Maternal vocal imitation of infant vocalizations is highly prevalent during face-to-face interactions of infants and their caregivers. Although maternal vocal imitation has been associated with later verbal development, its potentially reinforcing effect on infant vocalizations has not been explored experimentally. This study examined the reinforcing effect of maternal vocal imitation of infant vocalizations using a reversal probe BAB design. Eleven 3- to 8-month-old infants at high risk for developmental delays experienced contingent maternal vocal imitation during reinforcement conditions. Differential reinforcement of other behavior served as the control condition. The behavior of 10 infants showed evidence of a reinforcement effect. Results indicated that vocal imitations can serve to reinforce early infant vocalizations.

  19. Prosthetic Avian Vocal Organ Controlled by a Freely Behaving Bird Based on a Low Dimensional Model of the Biomechanical Periphery

    Science.gov (United States)

    Arneodo, Ezequiel M.; Perl, Yonatan Sanz; Goller, Franz; Mindlin, Gabriel B.

    2012-01-01

    Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform. PMID:22761555

  20. Prosthetic avian vocal organ controlled by a freely behaving bird based on a low dimensional model of the biomechanical periphery.

    Directory of Open Access Journals (Sweden)

    Ezequiel M Arneodo

    Full Text Available Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform.

  1. Biomechanical control of vocal plasticity in an echolocating bat.

    Science.gov (United States)

    Luo, Jinhong; Wiegrebe, Lutz

    2016-03-01

    Many animal species adjust the spectral composition of their acoustic signals to variable environments. However, the physiological foundation of such spectral plasticity is often unclear. The source-filter theory of sound production, initially established for human speech, applies to vocalizations in birds and mammals. According to this theory, adjusting the spectral structure of vocalizations could be achieved by modifying either the laryngeal/syringeal source signal or the vocal tract, which filters the source signal. Here, we show that in pale spear-nosed bats, spectral plasticity induced by moderate level background noise is dominated by the vocal tract rather than the laryngeal source signal. Specifically, we found that with increasing background noise levels, bats consistently decreased the spectral centroid of their echolocation calls up to 3.2 kHz, together with other spectral parameters. In contrast, noise-induced changes in fundamental frequency were small (maximally 0.1 kHz) and were inconsistent across individuals. Changes in spectral centroid did not correlate with changes in fundamental frequency, whereas they correlated negatively with changes in call amplitude. Furthermore, while bats consistently increased call amplitude with increasing noise levels (the Lombard effect), increases in call amplitude typically did not lead to increases in fundamental frequency. In summary, our results suggest that at least to a certain degree echolocating bats are capable of adjusting call amplitude, fundamental frequency and spectral parameters independently. © 2016. Published by The Company of Biologists Ltd.

  2. Sensorimotor control of vocal pitch and formant frequencies in Parkinson's disease.

    Science.gov (United States)

    Mollaei, Fatemeh; Shiller, Douglas M; Baum, Shari R; Gracco, Vincent L

    2016-09-01

    Auditory feedback reflects information on multiple speech parameters including fundamental frequency (pitch) and formant properties. Inducing auditory errors in these acoustic parameters during speech production has been used to examine the manner in which auditory feedback is integrated with ongoing speech motor processes. This integration has been shown to be impaired in disorders such as Parkinson's disease (PD), in which individuals exhibit difficulty adjusting to altered sensory-motor relationships. The current investigation examines whether such sensorimotor impairments affect fundamental frequency and formant parameters of speech differentially. We employed a sensorimotor compensation paradigm to investigate the mechanisms underlying the control of vocal pitch and formant parameters. Individuals with PD and age-matched controls prolonged a speech vowel in the context of a word while the fundamental or first formant frequency of their auditory feedback was altered unexpectedly on random trials, using two magnitudes of perturbation. Compared with age-matched controls, individuals with PD exhibited a larger compensatory response to fundamental frequency perturbations, in particular in response to the smaller magnitude alteration. In contrast, the group with PD showed reduced compensation to first formant frequency perturbations. The results demonstrate that the neural processing impairment of PD differentially affects the processing of auditory feedback for the control of fundamental and formant frequency. The heightened modulation of fundamental frequency in response to auditory perturbations may reflect a change in sensory weighting due to somatosensory deficits associated with the larynx, while the reduced ability to modulate vowel formants may result from impaired activation of the oral articulatory musculature. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Cerebellum and Ocular Motor Control

    Directory of Open Access Journals (Sweden)

    Amir eKheradmand

    2011-09-01

    Full Text Available An intact cerebellum is a prerequisite for optimal ocular motor performance. The cerebellum fine-tunes each of the subtypes of eye movements so they work together to bring and maintain images of objects of interest on the fovea. Here we review the major aspects of the contribution of the cerebellum to ocular motor control. The approach will be based on structural-functional correlation, combining the effects of lesions and the results from physiologic studies, with the emphasis on the cerebellar regions known to be most closely related to ocular motor function: 1 the flocculus/paraflocculus for high-frequency (brief vestibular responses, sustained pursuit eye movements and gaze-holding, 2 the nodulus/ventral uvula for low-frequency (sustained vestibular responses, and 3 the dorsal oculomotor vermis and its target in the posterior portion of the fastigial nucleus (the fastigial oculomotor region for saccades and pursuit initiation.

  4. Advanced motor-controller development

    Science.gov (United States)

    Lesster, L. E.; Zeitlin, D. B.; Hall, W. B.

    1983-06-01

    The purpose of this development program was to investigate a promising alternative technique for control of a squirrel cage induction motor for subsea propulsion or hydraulic power applications. The technique uses microprocessor based generation of the pulse width modulation waveforms, which in turn permits use of a true integral volt-second pulse width control for the generation of low harmonic content sine waves from a 3 phase Graetz transistor power bridge.

  5. Motor power control circuit for ac induction motors

    Science.gov (United States)

    Nola, F. J. (Inventor)

    1983-01-01

    A motor power control of the type which functions by controlling the power factor wherein one of the parameters of power factor current on time is determined by the on time of a triac through which current is supplied to the motor. By means of a positive feedback circuit, a wider range of control is effected.

  6. The Effect of Voice Ambulatory Biofeedback on the Daily Performance and Retention of a Modified Vocal Motor Behavior in Participants with Normal Voices

    Science.gov (United States)

    Van Stan, Jarrad H.; Mehta, Daryush D.; Hillman, Robert E.

    2015-01-01

    Purpose: Ambulatory biofeedback has potential to improve carryover of newly established vocal motor behaviors into daily life outside of the clinic and warrants systematic research that is lacking in the literature. This proof-of-concept study was designed to establish an empirical basis for future work in this area by formally assessing whether…

  7. The Effect of Voice Ambulatory Biofeedback on the Daily Performance and Retention of a Modified Vocal Motor Behavior in Participants with Normal Voices

    Science.gov (United States)

    Van Stan, Jarrad H.; Mehta, Daryush D.; Hillman, Robert E.

    2015-01-01

    Purpose: Ambulatory biofeedback has potential to improve carryover of newly established vocal motor behaviors into daily life outside of the clinic and warrants systematic research that is lacking in the literature. This proof-of-concept study was designed to establish an empirical basis for future work in this area by formally assessing whether…

  8. Motor Control: The Heart of Kinesiology

    Science.gov (United States)

    Latash, Mark L.

    2008-01-01

    This brief review presents the subjective view of the author on the history of motor control and its current state among the subdisciplines of kinesiology. It summarizes the current controversies and challenges in motor control and emphasizes the necessity for an adequate set of notions that would make motor control (and kinesiology) a science.…

  9. Motor Control: The Heart of Kinesiology

    Science.gov (United States)

    Latash, Mark L.

    2008-01-01

    This brief review presents the subjective view of the author on the history of motor control and its current state among the subdisciplines of kinesiology. It summarizes the current controversies and challenges in motor control and emphasizes the necessity for an adequate set of notions that would make motor control (and kinesiology) a science.…

  10. Sensory-motor networks involved in speech production and motor control: an fMRI study.

    Science.gov (United States)

    Behroozmand, Roozbeh; Shebek, Rachel; Hansen, Daniel R; Oya, Hiroyuki; Robin, Donald A; Howard, Matthew A; Greenlee, Jeremy D W

    2015-04-01

    Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory-motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch-shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A California sea lion (Zalophus californianus) can keep the beat: motor entrainment to rhythmic auditory stimuli in a non vocal mimic.

    Science.gov (United States)

    Cook, Peter; Rouse, Andrew; Wilson, Margaret; Reichmuth, Colleen

    2013-11-01

    Is the ability to entrain motor activity to a rhythmic auditory stimulus, that is "keep a beat," dependent on neural adaptations supporting vocal mimicry? That is the premise of the vocal learning and synchronization hypothesis, recently advanced to explain the basis of this behavior (A. Patel, 2006, Musical Rhythm, Linguistic Rhythm, and Human Evolution, Music Perception, 24, 99-104). Prior to the current study, only vocal mimics, including humans, cockatoos, and budgerigars, have been shown to be capable of motoric entrainment. Here we demonstrate that a less vocally flexible animal, a California sea lion (Zalophus californianus), can learn to entrain head bobbing to an auditory rhythm meeting three criteria: a behavioral response that does not reproduce the stimulus; performance transfer to a range of novel tempos; and entrainment to complex, musical stimuli. These findings show that the capacity for entrainment of movement to rhythmic sounds does not depend on a capacity for vocal mimicry, and may be more widespread in the animal kingdom than previously hypothesized.

  12. Control of non-conventional synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors,

  13. Role of the Internal Superior Laryngeal Nerve in the Motor Responses of Vocal Cords and the Related Voice Acoustic Changes

    Directory of Open Access Journals (Sweden)

    Sadegh Seifpanahi

    2016-09-01

    Full Text Available Background: Repeated efforts by researchers to impose voice changes by laryngeal surface electrical stimulation (SES have come to no avail. This present pre-experimental study employed a novel method for SES application so as to evoke the motor potential of the internal superior laryngeal nerve (ISLN and create voice changes. Methods: Thirty-two normal individuals (22 females and 10 males participated in this study. The subjects were selected from the students of Iran University of Medical Sciences in 2014. Two monopolar active electrodes were placed on the thyrohyoid space at the location of the ISLN entrance to the larynx and 1 dispersive electrode was positioned on the back of the neck. A current with special programmed parameters was applied to stimulate the ISLN via the active electrodes and simultaneously the resultant acoustic changes were evaluated. All the means of the acoustic parameters during SES and rest periods were compared using the paired t-test. Results: The findings indicated significant changes (P=0.00 in most of the acoustic parameters during SES presentation compared to them at rest. The mean of fundamental frequency standard deviation (SD F0 at rest was 1.54 (SD=0.55 versus 4.15 (SD=3.00 for the SES period. The other investigated parameters comprised fundamental frequency (F0, minimum F0, jitter, shimmer, harmonic-to-noise ratio (HNR, mean intensity, and minimum intensity. Conclusion: These findings demonstrated significant changes in most of the important acoustic features, suggesting that the stimulation of the ISLN via SES could induce motor changes in the vocal folds. The clinical applicability of the method utilized in the current study in patients with vocal fold paralysis requires further research.

  14. A temporal predictive code for voice motor control: Evidence from ERP and behavioral responses to pitch-shifted auditory feedback.

    Science.gov (United States)

    Behroozmand, Roozbeh; Sangtian, Stacey; Korzyukov, Oleg; Larson, Charles R

    2016-04-01

    The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions and sensory feedback is detected and used to correct vocal motor behavior. In this study, we investigated how predictions about timing of pitch perturbations in voice auditory feedback would modulate ERP and behavioral responses during vocal production. We designed six counterbalanced blocks in which a +100 cents pitch-shift stimulus perturbed voice auditory feedback during vowel sound vocalizations. In three blocks, there was a fixed delay (500, 750 or 1000 ms) between voice and pitch-shift stimulus onset (predictable), whereas in the other three blocks, stimulus onset delay was randomized between 500, 750 and 1000 ms (unpredictable). We found that subjects produced compensatory (opposing) vocal responses that started at 80 ms after the onset of the unpredictable stimuli. However, for predictable stimuli, subjects initiated vocal responses at 20 ms before and followed the direction of pitch shifts in voice feedback. Analysis of ERPs showed that the amplitudes of the N1 and P2 components were significantly reduced in response to predictable compared with unpredictable stimuli. These findings indicate that predictions about temporal features of sensory feedback can modulate vocal motor behavior. In the context of the predictive coding model, temporally-predictable stimuli are learned and reinforced by the internal feedforward system, and as indexed by the ERP suppression, the sensory feedback contribution is reduced for their processing. These findings provide new insights into the neural mechanisms of vocal production and motor control.

  15. Flux Tracking Control of Induction Motors

    Institute of Scientific and Technical Information of China (English)

    LanLin; XiaowuMu; ChunxiaBu

    2004-01-01

    This paper deals with flux tracking control of induction motors. Firstly,we analyze convergency of non-homogeneous linear time-varying systems and a sufficient condition is given. Finally, the flux regulator of induction motors is discussed.

  16. Vocal mechanisms in birds and bats: a comparative view

    Directory of Open Access Journals (Sweden)

    Suthers Roderick A.

    2004-01-01

    Full Text Available Vocal signals play a very important role in the life of both birds and echolocating bats, but these two unrelated groups of flying vertebrates have very different vocal systems. They nevertheless must solve many of the same problems in producing sound. This brief review examines avian and microchiropteran motor mechanisms for: 1 coordinating the timing of phonation with the vocal motor pattern that controls its acoustic properties, and 2 achieving respiratory strategies that provide adequate ventilation for pulmonary gas exchange, while also facilitating longer duration songs or trains of sonar pulses.

  17. Classifications of Vocalic Segments from Articulatory Kinematics: Healthy Controls and Speakers with Dysarthria

    Science.gov (United States)

    Yunusova, Yana; Weismer, Gary G.; Lindstrom, Mary J.

    2011-01-01

    Purpose: In this study, the authors classified vocalic segments produced by control speakers (C) and speakers with dysarthria due to amyotrophic lateral sclerosis (ALS) or Parkinson's disease (PD); classification was based on movement measures. The researchers asked the following questions: (a) Can vowels be classified on the basis of selected…

  18. Are articulatory settings mechanically advantageous for speech motor control?

    Directory of Open Access Journals (Sweden)

    Vikram Ramanarayanan

    Full Text Available We address the hypothesis that postures adopted during grammatical pauses in speech production are more "mechanically advantageous" than absolute rest positions for facilitating efficient postural motor control of vocal tract articulators. We quantify vocal tract posture corresponding to inter-speech pauses, absolute rest intervals as well as vowel and consonant intervals using automated analysis of video captured with real-time magnetic resonance imaging during production of read and spontaneous speech by 5 healthy speakers of American English. We then use locally-weighted linear regression to estimate the articulatory forward map from low-level articulator variables to high-level task/goal variables for these postures. We quantify the overall magnitude of the first derivative of the forward map as a measure of mechanical advantage. We find that postures assumed during grammatical pauses in speech as well as speech-ready postures are significantly more mechanically advantageous than postures assumed during absolute rest. Further, these postures represent empirical extremes of mechanical advantage, between which lie the postures assumed during various vowels and consonants. Relative mechanical advantage of different postures might be an important physical constraint influencing planning and control of speech production.

  19. Pain relativity in motor control.

    Science.gov (United States)

    Kurniawan, I T; Seymour, B; Vlaev, I; Trommershäuser, J; Dolan, R J; Chater, N

    2010-06-01

    Motivational theories of pain highlight its role in people's choices of actions that avoid bodily damage. By contrast, little is known regarding how pain influences action implementation. To explore this less-understood area, we conducted a study in which participants had to rapidly point to a target area to win money while avoiding an overlapping penalty area that would cause pain in their contralateral hand. We found that pain intensity and target-penalty proximity repelled participants' movement away from pain and that motor execution was influenced not by absolute pain magnitudes but by relative pain differences. Our results indicate that the magnitude and probability of pain have a precise role in guiding motor control and that representations of pain that guide action are, at least in part, relative rather than absolute. Additionally, our study shows that the implicit monetary valuation of pain, like many explicit valuations (e.g., patients' use of rating scales in medical contexts), is unstable, a finding that has implications for pain treatment in clinical contexts.

  20. Applied intelligent control of induction motor drives

    CERN Document Server

    Chan, Tze Fun

    2011-01-01

    Induction motors are the most important workhorses in industry. They are mostly used as constant-speed drives when fed from a voltage source of fixed frequency. Advent of advanced power electronic converters and powerful digital signal processors, however, has made possible the development of high performance, adjustable speed AC motor drives.This book aims to explore new areas of induction motor control based on artificial intelligence (AI) techniques in order to make the controller less sensitive to parameter changes. Selected AI techniques are applied for different induction motor control s.

  1. Conversational Rate of a Non-Vocal Person with Motor Neurone Disease Using the 'TALK' System.

    Science.gov (United States)

    Todman, J.; Lewins, E.

    1996-01-01

    This study evaluated the use of TALK, a computer-based augmentative and alternative communication (AAC) system, in the social communications of a nonvocal woman with motor neurone disease. She was able to achieve an average conversational rate of 42 words per minute (wpm) using TALK, compared with 2 to 10 wpm with other AAC systems using…

  2. Controller for computer control of brushless dc motors. [automobile engines

    Science.gov (United States)

    Hieda, L. S. (Inventor)

    1981-01-01

    A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.

  3. Auditory experience refines cortico-basal ganglia inputs to motor cortex via remapping of single axons during vocal learning in zebra finches.

    Science.gov (United States)

    Miller-Sims, Vanessa C; Bottjer, Sarah W

    2012-02-01

    Experience-dependent changes in neural connectivity underlie developmental learning and result in life-long changes in behavior. In songbirds axons from the cortical region LMAN(core) (core region of lateral magnocellular nucleus of anterior nidopallium) convey the output of a basal ganglia circuit necessary for song learning to vocal motor cortex [robust nucleus of the arcopallium (RA)]. This axonal projection undergoes remodeling during the sensitive period for learning to achieve topographic organization. To examine how auditory experience instructs the development of connectivity in this pathway, we compared the morphology of individual LMAN(core)→RA axon arbors in normal juvenile songbirds to those raised in white noise. The spatial extent of axon arbors decreased during the first week of vocal learning, even in the absence of normal auditory experience. During the second week of vocal learning axon arbors of normal birds showed a loss of branches and varicosities; in contrast, experience-deprived birds showed no reduction in branches or varicosities and maintained some arbors in the wrong topographic location. Thus both experience-independent and experience-dependent processes are necessary to establish topographic organization in juvenile birds, which may allow birds to modify their vocal output in a directed manner and match their vocalizations to a tutor song. Many LMAN(core) axons of juvenile birds, but not adults, extended branches into dorsal arcopallium (Ad), a region adjacent to RA that is part of a parallel basal ganglia pathway also necessary for vocal learning. This transient projection provides a point of integration between the two basal ganglia pathways, suggesting that these branches convey corollary discharge signals as birds are actively engaged in learning.

  4. Motor Control Research Requires Nonlinear Dynamics

    Science.gov (United States)

    Guastello, Stephen J.

    2006-01-01

    The author comments on the original article "The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior," by D. A. Rosenbaum. Rosenbaum draws attention to the study of motor control and evaluates seven possible explanations for why the topic has been relatively neglected. The point of this comment is that…

  5. Motor Control Research Requires Nonlinear Dynamics

    Science.gov (United States)

    Guastello, Stephen J.

    2006-01-01

    The author comments on the original article "The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior," by D. A. Rosenbaum. Rosenbaum draws attention to the study of motor control and evaluates seven possible explanations for why the topic has been relatively neglected. The point of this comment is that…

  6. Speed Control of Bldc Motor Drive By Using Pid Controllers

    Directory of Open Access Journals (Sweden)

    Y.Narendra Kumar,

    2014-04-01

    Full Text Available This paper mainly deals with the Brushless DC (BLDC motor speed driving systems have sprouted in various small scale and large scale applications like automobile industries, domestic appliances etc. This leads to the development in Brushless DC motor (BLDCM. The usage of BLDC Motor enhances various performance factors ranging from higher efficiency, higher torque in low-speed range, high power density ,low maintenance and less noise than other motors. The BLDC Motor can act as an alternative for traditional motors like induction and switched reluctance motors. In this paper PID controller is implemented with speed feedback loop and it is observe that torque ripples are minimized. Simulation is carried out using MATLAB / SIMULINK. The results show that the performance of BLDC Motor is quite satisfactory for various loading conditions. Brushless DC motor drives are typically employed in speed controlled applications.

  7. Universal mechanisms of sound production and control in birds and mammals

    DEFF Research Database (Denmark)

    Elemans, Coen; Rasmussen, Jeppe Have; Herbst, Christian T.

    2015-01-01

    As animals vocalize, their vocal organ transforms motor commands into vocalizations for social communication. In birds, the physical mechanisms by which vocalizations are produced and controlled remain unresolved because of the extreme difficulty in obtaining in vivo measurements. Here, we introd...

  8. Energy Optimal Control of Induction Motor Drives

    DEFF Research Database (Denmark)

    Abrahamsen, Flemming

    This thesis deals with energy optimal control of small and medium-size variable speed induction motor drives for especially Heating, Ventilation and Air-Condition (HVAC) applications. Optimized efficiency is achieved by adapting the magnetization level in the motor to the load, and the basic...... purpose is demonstrate how this can be done for low-cost PWM-VSI drives without bringing the robustness of the drive below an acceptable level. Four drives are investigated with respect to energy optimal control: 2.2 kW standard and high-efficiency motor drives, 22 kW and 90 kW standard motor drives....... The method has been to make extensive efficiency measurements within the specified operating area with optimized efficiency and with constant air-gap flux, and to establish reliable converter and motor loss models based on those measurements. The loss models have been used to analyze energy optimal control...

  9. Motor Control: CRF Regulates Coordination and Gait.

    Science.gov (United States)

    Manto, Mario

    2017-09-11

    The function of the olivo-cerebellar tract is not restricted to the supervision of plasticity in the cerebellar cortex. There is growing evidence that the climbing fibers also tune motor commands. A novel study unravels a role of corticotropin-releasing factor (CRF) in motor coordination and gait control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Convergent differential regulation of SLIT-ROBO axon guidance genes in the brains of vocal learners.

    Science.gov (United States)

    Wang, Rui; Chen, Chun-Chun; Hara, Erina; Rivas, Miriam V; Roulhac, Petra L; Howard, Jason T; Chakraborty, Mukta; Audet, Jean-Nicolas; Jarvis, Erich D

    2015-04-15

    Only a few distantly related mammals and birds have the trait of complex vocal learning, which is the ability to imitate novel sounds. This ability is critical for speech acquisition and production in humans, and is attributed to specialized forebrain vocal control circuits that have several unique connections relative to adjacent brain circuits. As a result, it has been hypothesized that there could exist convergent changes in genes involved in neural connectivity of vocal learning circuits. In support of this hypothesis, expanding on our related study (Pfenning et al. [2014] Science 346: 1256846), here we show that the forebrain part of this circuit that makes a relatively rare direct connection to brainstem vocal motor neurons in independent lineages of vocal learning birds (songbird, parrot, and hummingbird) has specialized regulation of axon guidance genes from the SLIT-ROBO molecular pathway. The SLIT1 ligand was differentially downregulated in the motor song output nucleus that makes the direct projection, whereas its receptor ROBO1 was developmentally upregulated during critical periods for vocal learning. Vocal nonlearning bird species and male mice, which have much more limited vocal plasticity and associated circuits, did not show comparable specialized regulation of SLIT-ROBO genes in their nonvocal motor cortical regions. These findings are consistent with SLIT and ROBO gene dysfunctions associated with autism, dyslexia, and speech sound language disorders and suggest that convergent evolution of vocal learning was associated with convergent changes in the SLIT-ROBO axon guidance pathway.

  11. Efficient foot motor control by Neymar's brain.

    Science.gov (United States)

    Naito, Eiichi; Hirose, Satoshi

    2014-01-01

    How very long-term (over many years) motor skill training shapes internal motor representation remains poorly understood. We provide valuable evidence that the football brain of Neymar da Silva Santos Júnior (the Brasilian footballer) recruits very limited neural resources in the motor-cortical foot regions during foot movements. We scanned his brain activity with a 3-tesla functional magnetic resonance imaging (fMRI) while he rotated his right ankle at 1 Hz. We also scanned brain activity when three other age-controlled professional footballers, two top-athlete swimmers and one amateur footballer performed the identical task. A comparison was made between Neymar's brain activity with that obtained from the others. We found activations in the left medial-wall foot motor regions during the foot movements consistently across all participants. However, the size and intensity of medial-wall activity was smaller in the four professional footballers than in the three other participants, despite no difference in amount of foot movement. Surprisingly, the reduced recruitment of medial-wall foot motor regions became apparent in Neymar. His medial-wall activity was smallest among all participants with absolutely no difference in amount of foot movement. Neymar may efficiently control given foot movements probably by largely conserving motor-cortical neural resources. We discuss this possibility in terms of over-years motor skill training effect, use-dependent plasticity, and efficient motor control.

  12. Backstepping Sliding Mode Control for Induction Motor

    Directory of Open Access Journals (Sweden)

    Othmane Boughazi

    2014-12-01

    Full Text Available This work treats the modeling and simulation of non-linear system behavior of an induction motor using backstepping sliding mode control. First, the direct field oriented control IM is derived. Then, a sliding for direct field oriented control is proposed to compensate the uncertainties, which occur in the control.Finally, the study of Backstepping sliding controls strategy of the induction motor drive. Our non linear system is simulated in MATLAB SIMULINK environment, the results obtained illustrate the efficiency of the proposed control with no overshoot, and the rising time is improved with good disturbances rejections comparing with the classical control law.

  13. Linearizing Control of Induction Motor Based on Networked Control Systems

    Institute of Scientific and Technical Information of China (English)

    Jun Ren; Chun-Wen Li; De-Zong Zhao

    2009-01-01

    A new approach to speed control of induction motors is developed by introducing networked control systems (NCSs) into the induction motor driving system. The control strategy is to stabilize and track the rotor speed of the induction motor when the network time delay occurs in the transport medium of network data. First, a feedback linearization method is used to achieve input-output linearization and decoupling control of the induction motor driving system based on rotor flux model, and then the characteristic of network data is analyzed in terms of the inherent network time delay. A networked control model of an induction motor is established. The sufficient condition of asymptotic stability for the networked induction motor driving system is given, and the state feedback controller is obtained by solving the linear matrix inequalities (LMIs). Simulation results verify the efficiency of the proposed scheme.

  14. Four quadrant control of induction motors

    Science.gov (United States)

    Hansen, Irving G.

    1991-03-01

    Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.

  15. Computer-Controlled, Motorized Positioning System

    Science.gov (United States)

    Vargas-Aburto, Carlos; Liff, Dale R.

    1994-01-01

    Computer-controlled, motorized positioning system developed for use in robotic manipulation of samples in custom-built secondary-ion mass spectrometry (SIMS) system. Positions sample repeatably and accurately, even during analysis in three linear orthogonal coordinates and one angular coordinate under manual local control, or microprocessor-based local control or remote control by computer via general-purpose interface bus (GPIB).

  16. Linear Parameter Varying Control of Induction Motors

    DEFF Research Database (Denmark)

    Trangbæk, Klaus

    for high performance applications. This thesis demonstrates how LPV control theory provides a systematic way to achieve good performance for these problems. The main contributions of this thesis are the application of the LPV control theory to induction motor control as well as various contributions...... to the field of LPV control theory itself...

  17. Two Archetypes of Motor Control Research.

    Science.gov (United States)

    Latash, Mark L

    2010-07-01

    This reply to the Commentaries is focused on two archetypes of motor control research, one based on physics and physiology and the other based on control theory and ideas of neural computations. The former approach, represented by the equilibrium-point hypothesis, strives to discover the physical laws and salient physiological variables that make purposeful coordinated movements possible. The latter approach, represented by the ideas of internal models and optimal control, tries to apply methods of control developed for man-made inanimate systems to the human body. Specific issues related to control with subthreshold membrane depolarization, motor redundancy, and the idea of synergies are briefly discussed.

  18. Chaos control by using Motor Maps.

    Science.gov (United States)

    Arena, Paolo; Fortuna, Luigi; Frasca, Mattia

    2002-09-01

    In this paper a new method for chaos control is proposed, consisting of an unsupervised neural network, namely a Motor Map. In particular a feedback entrainment scheme is adopted: a chaotic system with a given parameter set generates the reference trajectory for another chaotic system with different parameters to be controlled: the Motor Map is required to provide the appropriate time-varying gain value for the feedback signal. The state of the controlled system is considered as input to the Motor Map. Particular efforts have been paid to the feasibility of the implementation. Indeed, the simulations performed have been oriented to design a Motor Map suitable for an hardware realization, thus some restrictive hypotheses, such as for example a low number of neurons, have been assumed. A huge number of simulations has been carried out by considering as system to be controlled a Double Scroll Chua Attractor as well as other chaotic attractors. Several reference trajectories have also been considered: a limit cycle generated by a Chua's circuit with different parameters values, a double scroll Chua attractor, a chaotic attractor of the family of the Chua's circuit attractors. In all the simulations instead of controlling the whole state space, only two state variables have been fed back. Good results in terms of settling time (namely, the period in which the map learns the control task) and steady state errors have been obtained with a few neurons. The Motor Map based adaptive controller offers high performances, specially in the case when the reference trajectory is switched into another one. In this case, a specialization of the neurons constituting the Motor Map is observed: while a group of neurons learns the appropriate control law for a reference trajectory, another group specializes itself to control the system when the other trajectory is used as a reference. A discrete components electronic realization of the Motor Map is presented and experimental results

  19. Stepper motor control that adjusts to motor loading

    Science.gov (United States)

    Howard, David E. (Inventor); Nola, Frank J. (Inventor)

    2000-01-01

    A system and method are provided for controlling a stepper motor having a rotor and a multi-phase stator. Sinusoidal command signals define a commanded position of the motor's rotor. An actual position of the rotor is sensed as a function of an electrical angle between the actual position and the commanded position. The actual position is defined by sinusoidal position signals. An adjustment signal is generated using the sinusoidal command signals and sinusoidal position signals. The adjustment signal is defined as a function of the cosine of the electrical angle. The adjustment signal is multiplied by each sinusoidal command signal to generate a corresponding set of excitation signals, each of which is applied to a corresponding phase of the multi-phase stator.

  20. Backstepping Strategy for Induction Motor Control

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    2000-01-01

    Using backstepping, which is a recursive nonlinear design method, a novel approach to control of induction motors is developed. The resulting scheme leads to a nonlinear controller for the torque and the amplitude of the field. A combination of nonlinear damping and observer backstepping with a s...... with a simple flux observer is used in the design. Assuming known motor parameters the design achieves stability with guaranteed region of attraction. It is also shown how a conventional field oriented controller may be obtained by omitting parts of the nonlinear controller....

  1. Backstepping Strategy for Induction Motor Control

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    2000-01-01

    Using backstepping, which is a recursive nonlinear design method, a novel approach to control of induction motors is developed. The resulting scheme leads to a nonlinear controller for the torque and the amplitude of the field. A combination of nonlinear damping and observer backstepping with a s......Using backstepping, which is a recursive nonlinear design method, a novel approach to control of induction motors is developed. The resulting scheme leads to a nonlinear controller for the torque and the amplitude of the field. A combination of nonlinear damping and observer backstepping...

  2. Backstepping Strategy for Induction Motor Control

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    2000-01-01

    Using backstepping, which is a recursive nonlinear design method, a novel approach to control of induction motors is developed. The resulting scheme leads to a nonlinear controller for the torque and the amplitude of the field. A combination of nonlinear damping and observer backstepping...... with a simple flux observer is used in the design. Assuming known motor parameters the design achieves stability with guaranteed region of attraction. It is also shown how a conventional field oriented controller may be obtained by omitting parts of the nonlinear controller....

  3. FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY

    Science.gov (United States)

    The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...

  4. Serotonergic modulation of spinal motor control

    DEFF Research Database (Denmark)

    Perrier, Jean-Francois Marie; Cotel, Florence

    2015-01-01

    Serotonin (5-HT) is a monoamine that powerfully modulates spinal motor control by acting on intrasynaptic and extrasynaptic receptors. Here we review the diversity of 5-HT actions on locomotor and motoneuronal activities. Two approaches have been used on in vitro spinal cord preparations: either...... and promotes the excitability of motoneurons, while stronger release inhibits rhythmic activity and motoneuron firing. This latter effect is responsible for central fatigue and secures rotation of motor units....

  5. Efficient Power Amplifier for Motor Control

    Science.gov (United States)

    Brown, R. J.

    1986-01-01

    Pulse-width-modulated amplifier supplies high current as efficiently as low current needed for starting and running motor. Key to efficiency of motor-control amplifier is V-channel metal-oxide/semiconductor transistor Q1. Device has low saturation resistance. However, has large gate input capacitance and small margin between its turn-on voltage and maximum allowable gate-to-source voltage. Circuits for output stages overcome limitations of VMOS device.

  6. Neural Control Adaptation to Motor Noise Manipulation

    Directory of Open Access Journals (Sweden)

    Christopher J Hasson

    2016-03-01

    Full Text Available Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in twelve young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g. delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability.

  7. Spinal Metaplasticity in Respiratory Motor Control

    Directory of Open Access Journals (Sweden)

    Gordon S Mitchell

    2015-02-01

    Full Text Available A hallmark feature of the neural system controlling breathing is its ability to exhibit plasticity. Less appreciated is the ability to exhibit metaplasticity, a change in the capacity to express plasticity (ie. plastic plasticity. Recent advances in our understanding of cellular mechanisms giving rise to respiratory motor plasticity lay the groundwork for (ongoing investigations of metaplasticity. This detailed understanding of respiratory metaplasticity will be essential as we harness metaplasticity to restore breathing capacity in clinical disorders that compromise breathing, such as cervical spinal injury, motor neuron disease and other neuromuscular diseases. In this brief review, we discuss key examples of metaplasticity in respiratory motor control, and our current understanding of mechanisms giving rise to spinal plasticity and metaplasticity in phrenic motor output; particularly after pre-conditioning with intermittent hypoxia. Progress in this area has led to the realization that similar mechanisms are operative in other spinal motor networks, including those governing limb movement. Further, these mechanisms can be harnessed to restore respiratory and non-respiratory motor function after spinal injury.

  8. Backstepping Strategy for Induction Motor Control

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    2000-01-01

    Using backstepping, which is a recursive nonlinear design method, a novel approach to control of induction motors is developed. The resulting scheme leads to a nonlinear controller for the torque and the amplitude of the field. A combination of nonlinear damping and observer backstepping with a s...

  9. Convergent differential regulation of parvalbumin in the brains of vocal learners.

    Directory of Open Access Journals (Sweden)

    Erina Hara

    Full Text Available Spoken language and learned song are complex communication behaviors found in only a few species, including humans and three groups of distantly related birds--songbirds, parrots, and hummingbirds. Despite their large phylogenetic distances, these vocal learners show convergent behaviors and associated brain pathways for vocal communication. However, it is not clear whether this behavioral and anatomical convergence is associated with molecular convergence. Here we used oligo microarrays to screen for genes differentially regulated in brain nuclei necessary for producing learned vocalizations relative to adjacent brain areas that control other behaviors in avian vocal learners versus vocal non-learners. A top candidate gene in our screen was a calcium-binding protein, parvalbumin (PV. In situ hybridization verification revealed that PV was expressed significantly higher throughout the song motor pathway, including brainstem vocal motor neurons relative to the surrounding brain regions of all distantly related avian vocal learners. This differential expression was specific to PV and vocal learners, as it was not found in avian vocal non-learners nor for control genes in learners and non-learners. Similar to the vocal learning birds, higher PV up-regulation was found in the brainstem tongue motor neurons used for speech production in humans relative to a non-human primate, macaques. These results suggest repeated convergent evolution of differential PV up-regulation in the brains of vocal learners separated by more than 65-300 million years from a common ancestor and that the specialized behaviors of learned song and speech may require extra calcium buffering and signaling.

  10. Convergent differential regulation of parvalbumin in the brains of vocal learners.

    Science.gov (United States)

    Hara, Erina; Rivas, Miriam V; Ward, James M; Okanoya, Kazuo; Jarvis, Erich D

    2012-01-01

    Spoken language and learned song are complex communication behaviors found in only a few species, including humans and three groups of distantly related birds--songbirds, parrots, and hummingbirds. Despite their large phylogenetic distances, these vocal learners show convergent behaviors and associated brain pathways for vocal communication. However, it is not clear whether this behavioral and anatomical convergence is associated with molecular convergence. Here we used oligo microarrays to screen for genes differentially regulated in brain nuclei necessary for producing learned vocalizations relative to adjacent brain areas that control other behaviors in avian vocal learners versus vocal non-learners. A top candidate gene in our screen was a calcium-binding protein, parvalbumin (PV). In situ hybridization verification revealed that PV was expressed significantly higher throughout the song motor pathway, including brainstem vocal motor neurons relative to the surrounding brain regions of all distantly related avian vocal learners. This differential expression was specific to PV and vocal learners, as it was not found in avian vocal non-learners nor for control genes in learners and non-learners. Similar to the vocal learning birds, higher PV up-regulation was found in the brainstem tongue motor neurons used for speech production in humans relative to a non-human primate, macaques. These results suggest repeated convergent evolution of differential PV up-regulation in the brains of vocal learners separated by more than 65-300 million years from a common ancestor and that the specialized behaviors of learned song and speech may require extra calcium buffering and signaling.

  11. Digital Signal Controller Based Digital Control of Brushless DC Motor

    Directory of Open Access Journals (Sweden)

    Anjana Elizabeth Thomas

    2013-07-01

    Full Text Available This paper presents the digital control of a brushless dc (BLDC motor using TMS320F2812 DSP controller and an EPROM. The real-time control of electrical motors is an application area that is not usually the domain of Digital Signal Processors. The TMS320F2812 has got dedicated modules for digital motor control. Control algorithms used for the control has been in TMS320F2812 DSP controller. The output of the driver is 6 independent PWM pulses that have to be given to the corresponding gates of the six MOSFETs power switches used in the three-phase bridge driving circuit whose output is given to the stator of the Brushless DC Motor. The commutation technique used in this work is the trapezoidal commutation owing to its excellent speed and current control and it has been implemented using an EPROM

  12. Deep networks for motor control functions

    Directory of Open Access Journals (Sweden)

    Max eBerniker

    2015-03-01

    Full Text Available The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body’s state (forward and inverse models, and control policies that must be integrated forward to generate feedforward time-varying commands; thus these are representations across space, but not time. Here we examine a new approach that directly represents both time-varying commands and the resulting state trajectories with a function; a representation across space and time. Since the output of this function includes time, it necessarily requires more parameters than a typical dynamical model. To avoid the problems of local minima these extra parameters introduce, we exploit recent advances in machine learning to build our function using a stacked autoencoder, or deep network. With initial and target states as inputs, this deep network can be trained to output an accurate temporal profile of the optimal command and state trajectory for a point-to-point reach of a nonlinear limb model, even when influenced by varying force fields. In a manner that mirrors motor babble, the network can also teach itself to learn through trial and error. Lastly, we demonstrate how this network can learn to optimize a cost objective. This functional approach to motor control is a sharp departure from the standard dynamical approach, and may offer new insights into the neural implementation of motor control.

  13. High-temperature brushless DC motor controller

    Energy Technology Data Exchange (ETDEWEB)

    Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan

    2017-05-16

    A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.

  14. Hand motor control: maturing an immature science.

    Science.gov (United States)

    Cole, Kelly J

    2015-04-01

    In the target article Mark Latash has argued that there is but a single bona-fide theory for hand motor control (referent configuration theory). If this is true, and research is often phenomenological, then we must admit that the science of hand motor control is immature. While describing observations under varying conditions is a crucial (but early) stage of the science of any field, it is also true that the key to maturing any science is to vigorously subject extant theories and budding laws to critical experimentation. If competing theories are absent at the present time is it time for scientists to focus their efforts on maturing the science of hand motor control through critical testing of this long-standing theory (and related collections of knowledge such as the uncontrolled manifold)?

  15. Implementing two DC motor speed control strategies

    Directory of Open Access Journals (Sweden)

    José Danilo Rairán Antolines

    2010-05-01

    Full Text Available While linear control techniques for dynamic systems have been widely tested, systems are not linear in practice. This means that controllers must be re-tuned to make them useful in an experimental setup. This article presents the tuning and re-tuning process for two control strategies: a PID and an algorithm based on the choice of overall transfer function controlling a DC permanent magnet motor. The algorithms’ performance is evaluated and some recommendations are made.

  16. Sliding Mode Control of Induction Motor Phase Currents

    DEFF Research Database (Denmark)

    Hansen, R.B.; Hattel, T.; Bork, J

    1995-01-01

    Sliding mode control of induction motor phase currents are investigated through development of two control concepts.......Sliding mode control of induction motor phase currents are investigated through development of two control concepts....

  17. Sliding Mode Control of Induction Motor Phase Currents

    DEFF Research Database (Denmark)

    Hansen, R.B.; Hattel, T.; Bork, J

    1995-01-01

    Sliding mode control of induction motor phase currents are investigated through development of two control concepts.......Sliding mode control of induction motor phase currents are investigated through development of two control concepts....

  18. Summary of electric vehicle dc motor-controller tests

    Science.gov (United States)

    Mcbrien, E. F.; Tryon, H. B.

    1982-01-01

    The differences in the performance of dc motors are evaluated when operating with chopper type controllers, and when operating on direct current. The interactions between the motor and the controller which cause these differences are investigated. Motor-controlled tests provided some of the data the quantified motor efficiency variations for both ripple free and chopper modes of operation.

  19. Vocal Motor Schemes.

    Science.gov (United States)

    McCune, Lorraine; Vihman, Marilyn May

    A study examined the consistency of consonant use in the infant's transition period from babbling to early words. Phonetic data were collected from the speech of 10 infants aged 9 to 15 months. Analysis of consonant distribution patterns indicate striking segmental preferences in all 10 children, with some segments more prominent for the sample as…

  20. Field oriented control of induction motors

    Science.gov (United States)

    Burrows, Linda M.; Zinger, Don S.; Roth, Mary Ellen

    1990-01-01

    Induction motors have always been known for their simple rugged construction, but until lately were not suitable for variable speed or servo drives due to the inherent complexity of the controls. With the advent of field oriented control (FOC), however, the induction motor has become an attractive option for these types of drive systems. An FOC system which utilizes the pulse population modulation method to synthesize the motor drive frequencies is examined. This system allows for a variable voltage to frequency ratio and enables the user to have independent control of both the speed and torque of an induction motor. A second generation of the control boards were developed and tested with the next point of focus being the minimization of the size and complexity of these controls. Many options were considered with the best approach being the use of a digital signal processor (DSP) due to its inherent ability to quickly evaluate control algorithms. The present test results of the system and the status of the optimization process using a DSP are discussed.

  1. Control system for bearingless motor-generator

    Science.gov (United States)

    Kascak, Peter E. (Inventor); Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor)

    2010-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  2. Bifurcation and control of chaos in Induction motor drives

    OpenAIRE

    Chakrabarty, Krishnendu; Kar, Urmila

    2014-01-01

    The induction motor controlled by Indirect Field Oriented Control (IFOC) is known to have high performance and better stability. This paper reports the dynamical behavior of an indirect field oriented control (IFOC) induction motor drive in the light of bifurcation theory. The speed of high performance induction motor drive is controlled by IFOC method. The knowledge of qualitative change of the behavior of the motor such as equilibrium points, limit cycles and chaos with the change of motor ...

  3. Vocal control area-related expression of neuropilin-1, plexin-A4, and the ligand semaphorin-3A has implications for the evolution of the avian vocal system.

    Science.gov (United States)

    Matsunaga, Eiji; Okanoya, Kazuo

    2009-01-01

    The avian vocal system is a good model for exploring the molecular basis of neural circuit evolution related to behavioral diversity. Previously, we conducted a comparative gene expression analysis among two different families of vocal learner, the Bengalese finch (Lonchura striata var. domestica), a songbird, and the budgerigar (Melopsittacus undulatus), a parrot; and a non-learner, the quail (Coturnix coturnix), to identify various axon guidance molecules such as cadherin and neuropilin-1 as vocal control area-related genes. Here, we continue with this study and examine the expression of neuropilin and related genes in these species in more detail. We found that neuropilin-1 and its coreceptor, plexin-A4, were expressed in several vocal control areas in both Bengalese finch and budgerigar brains. In addition, semaphorin-3A, the ligand of neuropilin-1, expression was not detected in vocal control areas in both species. Furthermore, there was some similar gene expression in the quail brain. These results suggest the possibility that a change in the expression of a combination of semaphorin/neuropilin/plexin was involved in the acquisition of vocal learning ability during evolution.

  4. Motor control theories and their applications.

    Science.gov (United States)

    Latash, Mark L; Levin, Mindy F; Scholz, John P; Schöner, Gregor

    2010-01-01

    We describe several influential hypotheses in the field of motor control including the equilibrium-point (referent configuration) hypothesis, the uncontrolled manifold hypothesis, and the idea of synergies based on the principle of motor abundance. The equilibrium-point hypothesis is based on the idea of control with thresholds for activation of neuronal pools; it provides a framework for analysis of both voluntary and involuntary movements. In particular, control of a single muscle can be adequately described with changes in the threshold of motor unit recruitment during slow muscle stretch (threshold of the tonic stretch reflex). Unlike the ideas of internal models, the equilibrium-point hypothesis does not assume neural computations of mechanical variables. The uncontrolled manifold hypothesis is based on the dynamic system approach to movements; it offers a toolbox to analyze synergic changes within redundant sets of elements related to stabilization of potentially important performance variables. The referent configuration hypothesis and the principle of abundance can be naturally combined into a single coherent scheme of control of multi-element systems. A body of experimental data on healthy persons and patients with movement disorders are reviewed in support of the mentioned hypotheses. In particular, movement disorders associated with spasticity are considered as consequences of an impaired ability to shift threshold of the tonic stretch reflex within the whole normal range. Technical details and applications of the mentioned hypo-theses to studies of motor learning are described. We view the mentioned hypotheses as the most promising ones in the field of motor control, based on a solid physical and neurophysiological foundation.

  5. Timing and motor control in drumming

    DEFF Research Database (Denmark)

    Dahl, Sofia; Grossbach, Michael; Altenmüller, Eckart

    the stick movement becomes increasingly difficult, sometimes resulting in irregularities in timing and/or striking force. Timing irregularities can also be a revealing sign of motor control problems, such as focal dystonia (Jabusch, Vauth & Altenmüller, 2004). The "breakdown" in motor control can therefore......The ability to keep a steady tempo is influenced by individual prerequisites as well as the playing conditions at hand. Percussionists have to acquire playing techniques that allow them to perform at the required tempi and dynamic levels. For more extreme tempi and dynamic levels controlling......) and dynamic levels (p, mf, f) were recorded. The motion data was analyzed with respect to general movement pattern, variability in timing and striking force. Preliminary results confirm deterioration in movement patterns for the faster tempi, typically displaying stiffened joints and lack of timing control...

  6. Serial in-office laser treatment of vocal fold leukoplakia: Disease control and voice outcomes.

    Science.gov (United States)

    Koss, Shira L; Baxter, Peter; Panossian, Haig; Woo, Peak; Pitman, Michael J

    2017-07-01

    Although vocal fold (VF) leukoplakia is commonly treated with in-office laser, there is no data on its long-term effectiveness. This study hypothesizes that VF leukoplakia treated by serial in-office laser results in long-term disease control with maintenance of voice and minimal morbidity. Retrospective review (2008-2015). Forty-six patients with VF leukoplakia treated by in-office KTP (potassium titanyl phosphate) or PDL (pulsed dye laser) were included. Median follow-up from final laser treatment was 19.6 months. Main outcomes included: 1) rate of disease control, 2) percentage of disease regression using ImageJ analysis. Secondary outcomes included vocal assessment using the Voice Handicap Index-10 (VHI-10). Patients underwent a median of 2 (range: 1-6) in-office laser treatments. Time between treatments was median 7.6 months. After final treatment, 19 patients (41.3%) had no disease; two patients (4.3%) progressed to invasive cancer; overall disease regression was median 77.1% (P office treatment only); failures were 13 patients (28.3%) who required operative intervention and two patients (4%) who underwent radiation. Compared to responders, failures demonstrated significantly shorter duration between treatments (median 2.3 vs. 8.9 months, P = 0.038) and significantly less regression (median 49.3% vs. 100%, P = 0.006). Serial outpatient KTP or PDL treatment of VF leukoplakia is effective for disease control with minimal morbidity and preservation of voice quality. We suggest that patients requiring repeated in-office treatment every 6 months may benefit from earlier operative intervention; other factors associated with in-office success remain unclear. 4. Laryngoscope, 127:1644-1651, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  7. Outcome analysis of benign vocal cord tumors treated by laryngeal endoscopy under low temperature-controlled radiofrequency

    Directory of Open Access Journals (Sweden)

    Z Y Wang

    2014-01-01

    Full Text Available Objective: This study aimed to evaluate the outcome of benign vocal cord tumors treated using a laryngeal endoscopy under low temperature-controlled radiofrequency and to elucidate the application of a dynamic laryngoendoscopy in the operation. Materials and Methods: 85 patients with benign vocal cord tumors were treated by laryngeal endoscopy under low temperature-controlled radiofrequency from September 2011 to October 2013. A XION electronic dynamic laryngoendoscopy (Germany was used to observe curative effects 3 months after operation. Wave images were recorded with larynx-wave recording software to analyze tumor characteristics. Results: Among the 85 patients, 81 showed smooth surface of operation wounds without any residue. The mucosal wave was also basically normal. Sound was generally recovered after 1-3 months. Three cases presented improved pronunciation function after the operation, whereas 1 patient with residual tumor at the front of vocal chords underwent another operation after 6 months. Conclusion: Low temperature-controlled radiofrequency exhibited many advantages, including minimal trauma, minimal bleeding, high safety, and few complications. Moreover, treatment of benign vocal cord tumors with a laryngeal endoscopy presented satisfactory outcomes. Therefore, this technology has broad application prospects.

  8. Integrated Control of Axonemal Dynein AAA+ Motors

    Science.gov (United States)

    King, Stephen M.

    2012-01-01

    Axonemal dyneins are AAA+ enzymes that convert ATP hydrolysis to mechanical work. This leads to the sliding of doublet microtubules with respect to each other and ultimately the generation of ciliary/flagellar beating. However, in order for useful work to be generated, the action of individual dynein motors must be precisely controlled. In addition, cells modulate the motility of these organelles through a variety of second messenger systems and these signals too must be integrated by the dynein motors to yield an appropriate output. This review describes the current status of efforts to understand dynein control mechanisms and their connectivity focusing mainly on studies of the outer dynein arm from axonemes of the unicellular biflagellate green alga Chlamydomonas. PMID:22406539

  9. A New Approach to Laboratory Motor Control MMCS: The Modular Motor Control System

    Science.gov (United States)

    1989-02-01

    encB2 encl2 h/beat2 J2 . h/ beatl encll encBl encAl 0 = LED indicator connectors to motor/enc Figure 5.2: Motor interface board layout something is...signal for joint 1. h/ beatl Green Heartbeat signal for joint 1. h/beat2 Green Heartbeat signal for joint 2. gpl Red General purpose (software controllable

  10. Optimal speech motor control and token-to-token variability: a Bayesian modeling approach.

    Science.gov (United States)

    Patri, Jean-François; Diard, Julien; Perrier, Pascal

    2015-12-01

    The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the central nervous system selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of this approach, one of its drawbacks is the intrinsic contradiction between the concept of optimality and the observed experimental intra-speaker token-to-token variability. The present paper proposes an alternative approach by formulating feedforward optimal control in a probabilistic Bayesian modeling framework. This is illustrated by controlling a biomechanical model of the vocal tract for speech production and by comparing it with an existing optimal control model (GEPPETO). The essential elements of this optimal control model are presented first. From them the Bayesian model is constructed in a progressive way. Performance of the Bayesian model is evaluated based on computer simulations and compared to the optimal control model. This approach is shown to be appropriate for solving the speech planning problem while accounting for variability in a principled way.

  11. Position Control of Motor Drive Systems: A Data Driven Approach

    Directory of Open Access Journals (Sweden)

    Hossein Parastvand

    2015-08-01

    Full Text Available This paper presents a new model free approach to the design of robust PID controller for the position control of electrical machines, such as induction motor, synchronous motor and DC motor faced to un-modeled dynamics. It is illustrated that knowing the frequency response data is sufficient to calculate the family of robust PID controllers that satisfy -norm on the complementary sensitivity function. The usefulness of the proposed approach is demonstrated through simulation on an induction motor drive system.

  12. Brushless DC Motor Speed Control Based on Emotional Intelligent Controller

    Directory of Open Access Journals (Sweden)

    Gholamreza ArabMarkadeh

    2014-03-01

    Full Text Available This paper presents an emotional controller for brushless DC motor (BLDC drive. The proposed controller is called brain emotional learning based intelligent controller (BELBIC. The utilization of the new controller is based on the emotion processing mechanism in brain. This intelligent control is inspired by the limbic system of mammalian brain, especially amygdala. The controller is successfully implemented in simulation using MATLAB software, brushless dc drive with trapezoidal back-emf. In this work, a novel and simple implementation of BLDC motor drive system is achieved by using the intelligent controller, which controls the motor speed accurately. This emotional intelligent controller has simple structure with high auto learning feature. Simulation results show that both accurate steady state and fast transient speed responses can be achieved in wide range of speed from 20 to 300 [rpm]. Moreover, to evaluate this emotional controller, the performance of the proposed control scheme is compared with both Fuzzy Logic (FL and PID controllers, in different conditions. This indicates proper operating in comparison to the FLC and PID controllers. And also shows excellent promise for industrial scale utilization.

  13. Research on DSP-based Asynchronous Motor Control Technology

    Directory of Open Access Journals (Sweden)

    Jun Yao

    2013-05-01

    Full Text Available The Motor in a variety of electrical transmission and position servo system occupies an extremely important position. After the DSP technology being applied to the motor control, the unification of the hardware and the flexibility of the software can be combined. Take the brushless DC motor for example, studied the mathematical model and the structure of the motor control system, also obtained the design scheme of the DSP-based asynchronous motor control system. With TI's 32 bit fixed point DSPTMS320F2812 as the core design of the hardware system, we wrote the system software, debug the motor control system and the results show that the system achieves the expected effect. The results of the research can be applied to brushless DC motor and other motor control, it will have a wide application prospects.

  14. Permanent magnet brushless DC motor drives and controls

    CERN Document Server

    Xia, Chang-liang

    2012-01-01

    An advanced introduction to the simulation and hardware implementation of BLDC motor drives A thorough reference on the simulation and hardware implementation of BLDC motor drives, this book covers recent advances in the control of BLDC motor drives, including intelligent control, sensorless control, torque ripple reduction and hardware implementation. With the guidance of the expert author team, readers will understand the principle, modelling, design and control of BLDC motor drives. The advanced control methods and new achievements of BLDC motor drives, of interest to more a

  15. Brushless DC Motors, Velocity and Position Control of the Brushless DC Motor.

    Science.gov (United States)

    1986-06-01

    DC motor was designed using the Hall effect sensors. In addition, the position control of the brushless DC motor was developed using an optical encoder to sense angular position changes and a microprocessor to provide the desired position control. A Pittman 5111 wdg 1 brushless DC motor was used for this study. The design of the digital tachometer and pulse width modulator for velocity control and the design of the Z-80 based microprocessor controller and software design are described in

  16. Quantitative measurement of vocal fold vibration in male radio performers and healthy controls using high-speed videoendoscopy.

    Directory of Open Access Journals (Sweden)

    Samantha Warhurst

    Full Text Available Acoustic and perceptual studies show a number of differences between the voices of radio performers and controls. Despite this, the vocal fold kinematics underlying these differences are largely unknown. Using high-speed videoendoscopy, this study sought to determine whether the vocal vibration features of radio performers differed from those of non-performing controls.Using high-speed videoendoscopy, recordings of a mid-phonatory/i/ in 16 male radio performers (aged 25-52 years and 16 age-matched controls (aged 25-52 years were collected. Videos were extracted and analysed semi-automatically using High-Speed Video Program, obtaining measures of fundamental frequency (f0, open quotient and speed quotient. Post-hoc analyses of sound pressure level (SPL were also performed (n = 19. Pearson's correlations were calculated between SPL and both speed and open quotients.Male radio performers had a significantly higher speed quotient than their matched controls (t = 3.308, p = 0.005. No significant differences were found for f0 or open quotient. No significant correlation was found between either open or speed quotient with SPL.A higher speed quotient in male radio performers suggests that their vocal fold vibration was characterised by a higher ratio of glottal opening to closing times than controls. This result may explain findings of better voice quality, higher equivalent sound level and greater spectral tilt seen in previous research. Open quotient was not significantly different between groups, indicating that the durations of complete vocal fold closure were not different between the radio performers and controls. Further validation of these results is required to determine the aetiology of the higher speed quotient result and its implications for voice training and clinical management in performers.

  17. Trade Electricity. Motors & Controls--Level 3. Standardized Curriculum.

    Science.gov (United States)

    New York City Board of Education, Brooklyn, NY. Office of Occupational and Career Education.

    This curriculum guide consists of seven modules on motors and controls, one of the three divisions of the standardized trade electricity curriculum in high schools in New York City. The seven modules cover the following subjects: energy conservation wiring, direct current (DC) motor repair and rewinding, DC motor controls, alternating current (AC)…

  18. Improved Rotor Speed Brushless DC Motor using Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Jafar Mostafapour

    2016-03-01

    Full Text Available A brushless DC (BLDC Motors have advantages over brushed, direct current (DC motors and Induction motor (IM. They have better speed verses torque characteristics, high dynamic response, high efficiency, long operating life, noiseless operation, higher speed ranges, and rugged construction. Also, torque delivered to motor size is higher, making it useful in application where space and weight are critical factors. With these advantages BLDC motors find wide spread application in automotive appliance, aerospace medical, and instrumentation and automation industries This paper can be seen as fuzzy controllers compared to PI control BLDC motor rotor speed has improved significantly and better result can be achieve.

  19. Improved Rotor Speed Brushless DC Motor Using Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Jafar Mostafapour

    2015-04-01

    Full Text Available A brushless DC (BLDC Motors have advantages over brushed, Direct current (DC Motors and , Induction motor (IM. They have better speed verses torque characteristics, high dynamic response, high efficiency, long operating life, noiseless operation, higher speed ranges, and rugged construction. Also, torque delivered to motor size is higher, making it useful in application where space and weight are critical factors. With these advantages BLDC motors find wide spread application in automotive appliance, aerospace medical, and instrumentation and automation industries This paper can be seen as fuzzy controllers compared to PI control BLDC motor rotor speed has improved significantly and beter result can be achieve.

  20. Grasshopper mice employ distinct vocal production mechanisms in different social contexts.

    Science.gov (United States)

    Pasch, Bret; Tokuda, Isao T; Riede, Tobias

    2017-07-26

    Functional changes in vocal organ morphology and motor control facilitate the evolution of acoustic signal diversity. Although many rodents produce vocalizations in a variety of social contexts, few studies have explored the underlying production mechanisms. Here, we describe mechanisms of audible and ultrasonic vocalizations (USVs) produced by grasshopper mice (genus Onychomys). Grasshopper mice are predatory rodents of the desert that produce both loud, long-distance advertisement calls and USVs in close-distance mating contexts. Using live-animal recording in normal air and heliox, laryngeal and vocal tract morphological investigations, and biomechanical modelling, we found that grasshopper mice employ two distinct vocal production mechanisms. In heliox, changes in higher-harmonic amplitudes of long-distance calls indicate an airflow-induced tissue vibration mechanism, whereas changes in fundamental frequency of USVs support a whistle mechanism. Vocal membranes and a thin lamina propria aid in the production of long-distance calls by increasing glottal efficiency and permitting high frequencies, respectively. In addition, tuning of fundamental frequency to the second resonance of a bell-shaped vocal tract increases call amplitude. Our findings indicate that grasshopper mice can dynamically adjust motor control to suit the social context and have novel morphological adaptations that facilitate long-distance communication. © 2017 The Author(s).

  1. T'ain't what you say, it's the way that you say it--left insula and inferior frontal cortex work in interaction with superior temporal regions to control the performance of vocal impersonations.

    Science.gov (United States)

    McGettigan, Carolyn; Eisner, Frank; Agnew, Zarinah K; Manly, Tom; Wisbey, Duncan; Scott, Sophie K

    2013-11-01

    Historically, the study of human identity perception has focused on faces, but the voice is also central to our expressions and experiences of identity [Belin, P., Fecteau, S., & Bedard, C. Thinking the voice: Neural correlates of voice perception. Trends in Cognitive Sciences, 8, 129-135, 2004]. Our voices are highly flexible and dynamic; talkers speak differently, depending on their health, emotional state, and the social setting, as well as extrinsic factors such as background noise. However, to date, there have been no studies of the neural correlates of identity modulation in speech production. In the current fMRI experiment, we measured the neural activity supporting controlled voice change in adult participants performing spoken impressions. We reveal that deliberate modulation of vocal identity recruits the left anterior insula and inferior frontal gyrus, supporting the planning of novel articulations. Bilateral sites in posterior superior temporal/inferior parietal cortex and a region in right middle/anterior STS showed greater responses during the emulation of specific vocal identities than for impressions of generic accents. Using functional connectivity analyses, we describe roles for these three sites in their interactions with the brain regions supporting speech planning and production. Our findings mark a significant step toward understanding the neural control of vocal identity, with wider implications for the cognitive control of voluntary motor acts.

  2. SPEED CONTROL OF DC MOTOR WITH PIC 16F877

    OpenAIRE

    ÇOLAK, İlhami; Ramazan BAYINDIR

    2005-01-01

    In this study, a PI controlled separately excited direct current (DC) motor speed has been controlled using PIC 16F877 controller. In the PIC 16F877 programming as a PI controller, the speed of the motor is expected to follow the reference speed. Speed of the motor is measured by a tacho generator and then, the voltage applied to the motor is adjusted by a semiconductor power switch using pulse width modulation (PWM) technique. Drive circuit was tested with 0.9 kW DC motor. Experimental resul...

  3. Comparison On Sensorless Control Of Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Liviu KREINDLER

    2002-12-01

    Full Text Available The paper compares two different methods for speed and position estimation in AC permanent magnet synchronous motors vector control applications. The first method implies two observer blocks — one for the speed, and the other for the electrical position, using the voltage equations in the (d,q reference frames. The second method estimates the same variables starting from the calculation of instantaneous reactive power. The tests have proved excellent behaviour in steady state (method 1 as well as in transient state (method 2. The implementation has been made on the 16 bits fixed-point DSP - TMS320F240 from Texas Instruments.

  4. A centre for accommodative vergence motor control

    Science.gov (United States)

    Wilson, D.

    1973-01-01

    Latencies in accommodation, accommodative-vergence, and pupil-diameter responses to changing accommodation stimuli, as well as latencies in pupil response to light-intensity changes were measured. From the information obtained, a block diagram has been derived that uses the least number of blocks for representing the accommodation, accommodative-vergence, and pupil systems. The signal transmission delays over the various circuits of the model have been determined and compared to known experimental physiological-delay data. The results suggest the existence of a motor center that controls the accommodative vergence and is completely independent of the accommodation system.

  5. Exploring vocal recovery after cranial nerve injury in Bengalese finches.

    Science.gov (United States)

    Urbano, Catherine M; Peterson, Jennifer R; Cooper, Brenton G

    2013-02-08

    Songbirds and humans use auditory feedback to acquire and maintain their vocalizations. The Bengalese finch (Lonchura striata domestica) is a songbird species that rapidly modifies its vocal output to adhere to an internal song memory. In this species, the left side of the bipartite vocal organ is specialized for producing louder, higher frequencies (≥2.2kHz) and denervation of the left vocal muscles eliminates these notes. Thus, the return of higher frequency notes after cranial nerve injury can be used as a measure of vocal recovery. Either the left or right side of the syrinx was denervated by resection of the tracheosyringeal portion of the hypoglossal nerve. Histologic analyses of syringeal muscle tissue showed significant muscle atrophy in the denervated side. After left nerve resection, songs were mainly composed of lower frequency syllables, but three out of five birds recovered higher frequency syllables. Right nerve resection minimally affected phonology, but it did change song syntax; syllable sequence became abnormally stereotyped after right nerve resection. Therefore, damage to the neuromuscular control of sound production resulted in reduced motor variability, and Bengalese finches are a potential model for functional vocal recovery following cranial nerve injury.

  6. Social ultrasonic vocalization in awake head-restrained mouse

    Directory of Open Access Journals (Sweden)

    Benjamin Weiner

    2016-12-01

    Full Text Available Numerous animal species emit vocalizations in response to various social stimuli. The neural basis of vocal communication has been investigated in monkeys, songbirds, rats, bats and invertebrates resulting in deep insights into motor control, neural coding and learning. Mice, which recently became very popular as a model system for mammalian neuroscience, also utilize ultrasonic vocalizations (USVs during mating behavior. However, our knowledge is lacking of both the behavior and its underlying neural mechanism. We developed a novel method for head-restrained male mice (HRMM to interact with non-restrained female mice (NRFM and show that mice can emit USVs in this context. We first recorded USVs in free arena with non-restrained male mice (NRMM and NRFM. Of the NRMM, which vocalized in the free arena, the majority could be habituated to also vocalize while head-restrained but only when a female mouse was present in proximity. The USVs emitted by HRMM are similar to the USVs of NRMM in the presence of a female mouse in their spectral structure, inter syllable interval distribution and USV sequence length, and therefore are interpreted as social USVs. By analyzing vocalizations of NRMM, we established criteria to predict which individuals are likely to vocalize while head fixed based on the USV rate and average syllable duration. To characterize the USVs emitted by HRMM, we analyzed the syllable composition of HRMM and NRMM and found that USVs emitted by HRMM have higher proportions of USVs with complex spectral representation, supporting previous studies showing that mice social USVs are context dependent. Our results suggest a way to study the neural mechanisms of production and control of social vocalization in mice using advanced methods requiring head fixation.

  7. Integrated-Circuit Controller For Brushless dc Motor

    Science.gov (United States)

    Le, Dong Tuan

    1994-01-01

    Generic circuit performs commutation-logic and power-switching functions for control of brushless dc motor. Controller includes commutation-logic and associated control circuitry, power supply, and inverters containing power transistors. Major advantages of controller are size, weight, and power consumption can be made less than other brushless-dc-motor controllers.

  8. control of a dc motor using fuzzy logic control algorithm

    African Journals Online (AJOL)

    user

    conditions such as changes in motor load demand, non- linearity ... Figure 1: Structure of a fuzzy logic controller (Source. [6]). A typical fuzzy logic ... mathematical modeling based on first principles; and via ..... applied. On the premise of these findings, it would be tactful in ... and Sugeno Type Fuzzy Inference Systems for Air.

  9. Controller for a High-Power, Brushless dc Motor

    Science.gov (United States)

    Fleming, David J.; Makdad, Terence A.

    1987-01-01

    Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.

  10. 78 FR 20881 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards...

    Science.gov (United States)

    2013-04-08

    ... AGENCY 40 CFR Part 80 RIN 2060-AQ86 Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle... hearings to be held for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor... 2017, as part of a systems approach to addressing the impacts of motor vehicles and fuels on air...

  11. Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps

    OpenAIRE

    Deep Parikh; Jignesh Patel; Jayesh Barve

    2015-01-01

    This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current) motors used in quad-copter UAV (Unmanned Aerial Vehicles). The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM).  Traditionally, quad-copter BLDC motor speed control uses simple linear motor-cont...

  12. Vector Controlled Two Phase Induction Motor and To A Three Phase Induction Motor

    Directory of Open Access Journals (Sweden)

    K.krishna Rao (PG student

    2014-12-01

    Full Text Available This paper presents vector controlled of single phase induction motor. some problems are with vector controlled SPIM.As SPIM’s are typically to maintain speed and also about the complex implementation of vector controlled SPIM.the implemantion of the proposed vector controlled TPIM compared to the vector controlled SPIM. The general modal sutable for vector control of the unsymmentrical two phase induction motor and also stator flux oriented controlled strategies are analized. the comparative performance of both has been presented in this work with help of a practical three phase motor.

  13. Voice-Based Control of a DC Servo Motor

    Directory of Open Access Journals (Sweden)

    Musaab Hassan

    2012-01-01

    Full Text Available Problem statement: Motors play a very important role in our life and among which is the DC servo motors. The techniques of controlling these DC motors are plenty, among which is sound. In this study, a voce-based technique was implemented to control the speed and the direction of rotation for a DC motor. Approach: A Microcontroller-based electronic control circuit was designed and implemented to achieve this goal. Results: The speed of the motor was controlled, in both directions, using pulse width modulation and a microcontroller was used to generate the right signal to be applied to the motor. Conclusion: The loudness of human voice was successfully divided into different levels where each level drives the motor at different speed."

  14. Simulation of Brushless DC Motor using Direct Torque Control

    OpenAIRE

    Kusuma, G.; S. Rukhsana Begum

    2014-01-01

    This paper deals with modelling of three phases brushless dc motor with MATLAB/SIMULINK software BLDC motor have advantages according to brushless dc motor and induction motor’s. They have improve speed torque charactistics, high efficiency high transient response and small size. It approaches for reducing the torque ripples of BLDC motor using DTC, by using control technique’s ,but present work mainly concentrate on advanced method. The whole drive system is simulated based o...

  15. Real Time Flux Control in PM Motors

    Energy Technology Data Exchange (ETDEWEB)

    Otaduy, P.J.

    2005-09-27

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the

  16. Roles of the orexin system in central motor control.

    Science.gov (United States)

    Hu, Bo; Yang, Nian; Qiao, Qi-Cheng; Hu, Zhi-An; Zhang, Jun

    2015-02-01

    The neuropeptides orexin-A and orexin-B are produced by one group of neurons located in the lateral hypothalamic/perifornical area. However, the orexins are widely released in entire brain including various central motor control structures. Especially, the loss of orexins has been demonstrated to associate with several motor deficits. Here, we first summarize the present knowledge that describes the anatomical and morphological connections between the orexin system and various central motor control structures. In the next section, the direct influence of orexins on related central motor control structures is reviewed at molecular, cellular, circuitry, and motor activity levels. After the summarization, the characteristic and functional relevance of the orexin system's direct influence on central motor control function are demonstrated and discussed. We also propose a hypothesis as to how the orexin system orchestrates central motor control in a homeostatic regulation manner. Besides, the importance of the orexin system's phasic modulation on related central motor control structures is highlighted in this regulation manner. Finally, a scheme combining the homeostatic regulation of orexin system on central motor control and its effects on other brain functions is presented to discuss the role of orexin system beyond the pure motor activity level, but at the complex behavioral level.

  17. Variable Rail Voltage Control of a Brushless DC (BLDC) Motor

    Science.gov (United States)

    2013-01-01

    Variable Rail Voltage Control of a Brushless DC (BLDC) Motor by Yuan Chen, Joseph Conroy, and William Nothwang ARL-TR-6308 January 2013...TR-6308 January 2013 Variable Rail Voltage Control of a Brushless DC (BLDC) Motor Yuan Chen, Joseph Conroy, and William Nothwang Sensors...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Variable Rail Voltage Control of a Brushless DC (BLDC) Motor 5a. CONTRACT NUMBER 5b. GRANT

  18. Motor Control of Drosophila Courtship Song

    Directory of Open Access Journals (Sweden)

    Troy R. Shirangi

    2013-11-01

    Full Text Available Many animals utilize acoustic signals—or songs—to attract mates. During courtship, Drosophila melanogaster males vibrate a wing to produce trains of pulses and extended tone, called pulse and sine song, respectively. Courtship songs in the genus Drosophila are exceedingly diverse, and different song features appear to have evolved independently of each other. How the nervous system allows such diversity to evolve is not understood. Here, we identify a wing muscle in D. melanogaster (hg1 that is uniquely male-enlarged. The hg1 motoneuron and the sexually dimorphic development of the hg1 muscle are required specifically for the sine component of the male song. In contrast, the motoneuron innervating a sexually monomorphic wing muscle, ps1, is required specifically for a feature of pulse song. Thus, individual wing motor pathways can control separate aspects of courtship song and may provide a “modular” anatomical substrate for the evolution of diverse songs.

  19. Power factor control system for ac induction motors

    Science.gov (United States)

    Nola, F. J. (Inventor)

    1981-01-01

    A power control circuit for an induction motor is disclosed in which a servo loop is used to control power input by controlling the power factor of motor operation. The power factor is measured by summing the voltage and current derived square wave signals.

  20. A Vowel-Based Method for Vocal Tract Control in Clarinet Pedagogy

    Science.gov (United States)

    González, Darleny; Payri, Blas

    2017-01-01

    Our review of scientific literature shows that the activity inside the clarinetist's vocal tract (VT) affects pitch and timbre, while also facilitating technical exercises. Clarinetists adapt their VT intuitively and, in some cases, may compensate an inadequate VT configuration through unnecessary pressure, resulting in technical blockage,…

  1. CAN-based Synchronized Motion Control for Induction Motors

    Institute of Scientific and Technical Information of China (English)

    Jun Ren; Chun-Wen Li; De-Zong Zhao

    2009-01-01

    A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed.The strategy is to incorporate the adjacent cross-coupling control strategy into the sliding mode control architecture. As illustrated by the four-induction-motor-based experimental results,the multi-motor synchronized motion control system,via the CAN bus,has been successfully implemented.With the employment of the advanced synchronized motion control strategy,the synchronization performance can be significantly improved.

  2. Simulation of Brushless DC Motor using Direct Torque Control

    Directory of Open Access Journals (Sweden)

    Mrs.G. Kusuma

    2014-04-01

    Full Text Available This paper deals with modelling of three phases brushless dc motor with MATLAB/SIMULINK software BLDC motor have advantages according to brushless dc motor and induction motor’s. They have improve speed torque charactistics, high efficiency high transient response and small size. It approaches for reducing the torque ripples of BLDC motor using DTC, by using control technique’s ,but present work mainly concentrate on advanced method. The whole drive system is simulated based on the system devices, BLDC motor source inverter, space vector modulation.

  3. Direct energy converter controllers for switched reluctance motor operation

    OpenAIRE

    Goodman, Andrew Simon

    2007-01-01

    There is increasing demand for simple motor drives offering high reliability and fault tolerance in applications such as the aerospace actuator industry, with the development of `more electric aircraft'. This thesis presents a motor drive employing a switched reluctance motor, the novel single sided matrix converter, and a novel double band hysteresis based control scheme for control of the converter, implemented using a field programmable gate array (FPGA). The single sided matrix co...

  4. Speed Control of Induction Motor by Using Variable Frequency

    OpenAIRE

    Drive Pooja Shinde; Rupali Burungale

    2014-01-01

    The variable speed drive is focused on voltage amplitude control. However, its only control speed in constraint limits. The load on Induction Motor is not constant & vary as per load requirement. so speed must be change as per load. If the supply voltage decreased motor torque also decreases, for maintaining same torque, slip decreases hence speed falls and motor speed is directly proportional to supply frequency, hence to maintain a speed, the supply V/F ratio must be vary ac...

  5. Neuronal control of turtle hindlimb motor rhythms.

    Science.gov (United States)

    Stein, P S G

    2005-03-01

    The turtle, Trachemys scripta elegans, uses its hindlimb during the rhythmic motor behaviors of walking, swimming, and scratching. For some tasks, one or more motor strategies or forms may be produced, e.g., forward swimming or backpaddling. This review discusses experiments that reveal characteristics of the spinal neuronal networks producing these motor behaviors. Limb-movement studies show shared properties such as rhythmic alternation between hip flexion and hip extension, as well as variable properties such as the timing of knee extension in the cycle of hip movements. Motor-pattern studies show shared properties such as rhythmic alternation between hip flexor and hip extensor motor activities, as well as variable properties such as modifiable timing of knee extensor motor activity in the cycle of hip motor activity. Motor patterns also display variations such as the hip-extensor deletion of rostral scratching. Neuronal-network studies reveal mechanisms responsible for movement and motor-pattern properties. Some interneurons in the spinal cord have shared activities, e.g., each unit is active during more than one behavior, and have distinct characteristics, e.g., each unit is most excited during a specific behavior. Interneuronal recordings during variations support the concept of modular organization of central pattern generators in the spinal cord.

  6. Studies in Motor Behavior: 75 Years of Research in Motor Development, Learning, and Control

    Science.gov (United States)

    Ulrich, Beverly D.; Reeve, T. Gilmour

    2005-01-01

    Research focused on human motor development, learning, and control has been a prominent feature in the Research Quarterly for Exercise and Sport (RQES) since it was first published in 1930. The purpose of this article is to provide an overview of the papers in the RQES that demonstrate the journal's contributions to the study of motor development,…

  7. Design and advanced control of switched reluctance motor; Design og avanceret styring af switched reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Blaabjerg, F.; Jensen, F.; Kierkegaard, P.; Pedersen, J.K.; Rasmussen, P.O.; Simonsen, L.

    1999-03-01

    The aim of the project is to design, construct and optimise the control of Switched Reluctance Motors with and without permanent magnets. The expectation was an increased efficiency and a decreased material consumption. The project included originally three types of SR-motors, two with a nominal number of revolutions of 3.000 rpm and one motor with a nominal number of revolutions of 50.000 rpm. The project was changed to focus on one motor with a nominal number of revolutions of 6.000 rpm, one with a nominal number of revolutions of 50.000 rpm and one two-phased low-voltage motor with a nominal number of revolutions of 2.000 rpm. The motors had different outputs of 2,7 kW, 0,9 kW and 3 kW, respectively. For this purpose an advanced simulation programme for Switched Reluctance Motors is developed. The programme differs from other programmes by being able to simulate multi-disciplinary such as vibrations and acoustic noise. It is even possible to play the sound. In this connection completely new models are developed. It is also possible to simulate different grid connected converters. Input to the simulation programme is finite element calculations, geometry of the motor and calculations or data from an advanced characterisation system for Switched Reluctance Motors. New methods to control the current in Switched Reluctance Motors are developed, which particularly make quick dynamics possible in a digitally controlled current without use of special noise filters. The method will soon have industrial use. Other new methods have emerged, which secure that the system all the time works with the maximum efficiency irrespective of load. In some cases an efficiency improvement of 10 % is obtained compared to a classic control of the Switched Reluctance Motor. (EHS) EFP-94; EFP-95; EFP-98. 16 refs.

  8. Time Processing and Motor Control in Movement Disorders.

    Science.gov (United States)

    Avanzino, Laura; Pelosin, Elisa; Vicario, Carmelo M; Lagravinese, Giovanna; Abbruzzese, Giovanni; Martino, Davide

    2016-01-01

    The subjective representation of "time" is critical for cognitive tasks but also for several motor activities. The neural network supporting motor timing comprises: lateral cerebellum, basal ganglia, sensorimotor and prefrontal cortical areas. Basal ganglia and associated cortical areas act as a hypothetical "internal clock" that beats the rhythm when the movement is internally generated. When timing information is processed to make predictions on the outcome of a subjective or externally perceived motor act, cerebellar processing and outflow pathways appear to be primarily involved. Clinical and experimental evidence on time processing and motor control points to a dysfunction of the neural networks involving basal ganglia and cerebellum in movement disorders. In some cases, temporal processing deficits could directly contribute to core motor features of the movement disorder, as in the case of bradykinesia in Parkinson's disease. For other movement disorders, the relationship between abnormal time processing and motor performance is less obvious and requires further investigation, as in the reduced accuracy in predicting the temporal outcome of a motor act in dystonia. We aim to review the literature on time processing and motor control in Parkinson's disease, dystonia, Huntington's disease, and Tourette syndrome, integrating the available findings with current pathophysiological models; we will highlight the areas in which future explorations are warranted, as well as the aspects of time processing in motor control that present translational aspects in future rehabilitation strategies. The subjective representation of "time" is critical for cognitive tasks but also for motor activities. Recently, greater attention has been devoted to improve our understanding of how temporal information becomes integrated within the mechanisms of motor control. Experimental evidence recognizes time processing in motor control as a complex neural function supported by diffuse

  9. Electrifying the motor engram: effects of tDCS on motor learning and control

    Science.gov (United States)

    de Xivry, Jean-Jacques Orban; Shadmehr, Reza

    2014-01-01

    Learning to control our movements accompanies neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e. the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: 1) firing rates are increased by anodal polarization and decreased by cathodal polarization, 2) anodal polarization strengthens newly formed associations, and 3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning. PMID:25200178

  10. Pneumatic motor speed control by trajectory tracking fuzzy logic controller

    Indian Academy of Sciences (India)

    Cengiz Safak; Vedat Topuz; A Fevzi Baba

    2010-02-01

    In this study, trajectory tracking fuzzy logic controller (TTFLC) is proposed for the speed control of a pneumatic motor (PM). A third order trajectory is defined to determine the trajectory function that has to be tracked by the PM speed. Genetic algorithm (GA) is used to find the TTFLC boundary values of membership functions (MF) and weights of control rules. In addition, artificial neural networks (ANN) modelled dynamic behaviour of PM is given. This ANN model is used to find the optimal TTFLC parameters by offline GA approach. The experimental results show that designed TTFLC successfully enables the PM speed track the given trajectory under various working conditions. The proposed approach is superior to PID controller. It also provides simple and easy design procedure for the PM speed control problem.

  11. Development of auditory-vocal perceptual skills in songbirds.

    Directory of Open Access Journals (Sweden)

    Vanessa C Miller-Sims

    Full Text Available Songbirds are one of the few groups of animals that learn the sounds used for vocal communication during development. Like humans, songbirds memorize vocal sounds based on auditory experience with vocalizations of adult "tutors", and then use auditory feedback of self-produced vocalizations to gradually match their motor output to the memory of tutor sounds. In humans, investigations of early vocal learning have focused mainly on perceptual skills of infants, whereas studies of songbirds have focused on measures of vocal production. In order to fully exploit songbirds as a model for human speech, understand the neural basis of learned vocal behavior, and investigate links between vocal perception and production, studies of songbirds must examine both behavioral measures of perception and neural measures of discrimination during development. Here we used behavioral and electrophysiological assays of the ability of songbirds to distinguish vocal calls of varying frequencies at different stages of vocal learning. The results show that neural tuning in auditory cortex mirrors behavioral improvements in the ability to make perceptual distinctions of vocal calls as birds are engaged in vocal learning. Thus, separate measures of neural discrimination and behavioral perception yielded highly similar trends during the course of vocal development. The timing of this improvement in the ability to distinguish vocal sounds correlates with our previous work showing substantial refinement of axonal connectivity in cortico-basal ganglia pathways necessary for vocal learning.

  12. Development of auditory-vocal perceptual skills in songbirds.

    Science.gov (United States)

    Miller-Sims, Vanessa C; Bottjer, Sarah W

    2012-01-01

    Songbirds are one of the few groups of animals that learn the sounds used for vocal communication during development. Like humans, songbirds memorize vocal sounds based on auditory experience with vocalizations of adult "tutors", and then use auditory feedback of self-produced vocalizations to gradually match their motor output to the memory of tutor sounds. In humans, investigations of early vocal learning have focused mainly on perceptual skills of infants, whereas studies of songbirds have focused on measures of vocal production. In order to fully exploit songbirds as a model for human speech, understand the neural basis of learned vocal behavior, and investigate links between vocal perception and production, studies of songbirds must examine both behavioral measures of perception and neural measures of discrimination during development. Here we used behavioral and electrophysiological assays of the ability of songbirds to distinguish vocal calls of varying frequencies at different stages of vocal learning. The results show that neural tuning in auditory cortex mirrors behavioral improvements in the ability to make perceptual distinctions of vocal calls as birds are engaged in vocal learning. Thus, separate measures of neural discrimination and behavioral perception yielded highly similar trends during the course of vocal development. The timing of this improvement in the ability to distinguish vocal sounds correlates with our previous work showing substantial refinement of axonal connectivity in cortico-basal ganglia pathways necessary for vocal learning.

  13. Design of dual DC motor control system based on DSP

    Science.gov (United States)

    Shi, Peicheng; Wang, Suo; Xu, Zengwei; Xiao, Ping

    2017-08-01

    Multi-motor control systems are widely used in actual production and life, such as lifting stages, robots, printing systems. This paper through serial communication between PC and DSP, dual DC motor control system consisting of PC as the host computer, DSP as the lower computer with synchronous PWM speed regulation, commutation and selection functions is designed. It sends digital control instructions with host computer serial debugger to lower computer, to instruct the motor to complete corresponding actions. The hardware and software design of the control system are given, and feasibility and validity of the control system are verified by experiments. The expected design goal is achieved.

  14. AC electric motors control advanced design techniques and applications

    CERN Document Server

    Giri, Fouad

    2013-01-01

    The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var

  15. DC motor proportional control system for orthotic devices

    Science.gov (United States)

    Blaise, H. T.; Allen, J. R.

    1972-01-01

    Multi-channel proportional control system for operation of dc motors for use with externally-powered orthotic arm braces is described. Components of circuitry and principles of operation are described. Schematic diagram of control circuit is provided.

  16. Sensorless Control of PM Synchronous Motors and Brushless DC Motors

    DEFF Research Database (Denmark)

    Montesinos, D.; Galceran, Samuel; Blaabjerg, Frede

    2005-01-01

    This paper provides a review of the literature addressing sensorless operation methods of PM brushless machines. The methods explained are state-of-the-art of open and closed loop control strategies. The closed loop review includes those methods based on voltage and current measurements, those...... methods based on back emf measurements, and those methods based on novel techniques not included in the previous categories. The paper concludes with a comparison table including all main features for all control strategies....

  17. Brushless DC motor Drive during Speed regulation with Current Controller

    OpenAIRE

    Bhikshalu Manchala; T.Amar Kiran

    2015-01-01

    Brushless DC Motor (BLDC) is one of the best electrical drives that have increasing popularity, due to their high efficiency, reliability, good dynamic response and very low maintenance. Due to the increasing demand for compact & reliable motors and the evolution of low cost power semiconductor switches and permanent magnet (PM) materials, brushless DC motors become popular in every application from home appliances to aerospace industry. The conventional techniques for controlling...

  18. Limb versus Speech Motor Control: A Conceptual Review

    OpenAIRE

    Grimme, Britta; Fuchs, Susanne; Perrier, Pascal; Schöner, Gregor

    2011-01-01

    International audience; This paper presents a comparative conceptual review of speech and limb motor control. Speech is essentially cognitive in nature and constrained by the rules of language, while limb movement is often oriented to physical objects. We discuss the issue of intrinsic vs. extrinsic variables underlying the representations of motor goals as well as whether motor goals specify terminal postures or entire trajectories. Timing and coordination is recognized as an area of strong ...

  19. ARDOLORES: an Arduino based motors control system for DOLORES

    Science.gov (United States)

    Gonzalez, Manuel; Ventura, H.; San Juan, J.; Di Fabrizio, L.

    2014-07-01

    We present ARDOLORES a custom made motor control system for the DOLORES instrument in use at the TNG telescope. ARDOLORES replaced the original PMAC based motor control system at a fraction of the cost. The whole system is composed by one master Arduino ONE with its Ethernet shield, to handle the communications with the external world through an Ethernet socket, and by one Arduino ONE with its custom motor shield for each axis to be controlled. The communication between the master and slaves Arduinos is made possible through the I2C bus. Also a Java web-service has been written to control the motors from an higher level and provides an external API for the scientific GUI. The system has been working since January 2012 handling the DOLORES motors and has demonstrated to be stable, reliable, and with easy maintenance in both the hardware and the software parts.

  20. Genetic Algorithm Based Proportional Integral Controller Design for Induction Motor

    Directory of Open Access Journals (Sweden)

    Mohanasundaram Kuppusamy

    2011-01-01

    Full Text Available Problem statement: This study has expounded the application of evolutionary computation method namely Genetic Algorithm (GA for estimation of feedback controller parameters for induction motor. GA offers certain advantages such as simple computational steps, derivative free optimization, reduced number of iterations and assured near global optima. The development of the method is well documented and computed and measured results are presented. Approach: The design of PI controller parameter for three phase induction motor drives was done using Genetic Algorithm. The objective function of motor current reduction, using PI controller, at starting is formulated as an optimization problem and solved with Genetic Algorithm. Results: The results showed the selected values of PI controller parameter using genetic algorithm approach, with objective of induction motor starting current reduction. Conclusions/Recommendation: The results proved the robustness and easy implementation of genetic algorithm selection of PI parameters for induction motor starting.

  1. Design of BLDCM Driving and Control System for Motorized Treadmill

    Institute of Scientific and Technical Information of China (English)

    Qi Zhang; Hui Li; Li-Bin Wang

    2007-01-01

    To satisfy the requirement of developing a new generation of motorized treadmill for a famous domestic manufacturer, a brushless DC motor (BLDCM) driving and control system for motorized treadmill is developed. High integration and reliability of this system are ensured under the condition that intelligent power module (TPM) is used and the protection module is included. Periodic current control method is applied to reduce the average current flowing through the armature winding of the motor when the treadmill is required to start with low speed while large load is added. Piecewise proportion-integration-differentiation (PID) control algorithm is applied to solve the problem of speed fluctuation when impulse load is added. The motorized treadmill of a new generation with the driving and control system has the advantages of high reliability, good speed stability, wide timing scope, low cost, and long life-span. And it is very promising for practical applications.

  2. Attentional demands influence vocal compensations to pitch errors heard in auditory feedback.

    Directory of Open Access Journals (Sweden)

    Anupreet K Tumber

    Full Text Available Auditory feedback is required to maintain fluent speech. At present, it is unclear how attention modulates auditory feedback processing during ongoing speech. In this event-related potential (ERP study, participants vocalized/a/, while they heard their vocal pitch suddenly shifted downward a ½ semitone in both single and dual-task conditions. During the single-task condition participants passively viewed a visual stream for cues to start and stop vocalizing. In the dual-task condition, participants vocalized while they identified target stimuli in a visual stream of letters. The presentation rate of the visual stimuli was manipulated in the dual-task condition in order to produce a low, intermediate, and high attentional load. Visual target identification accuracy was lowest in the high attentional load condition, indicating that attentional load was successfully manipulated. Results further showed that participants who were exposed to the single-task condition, prior to the dual-task condition, produced larger vocal compensations during the single-task condition. Thus, when participants' attention was divided, less attention was available for the monitoring of their auditory feedback, resulting in smaller compensatory vocal responses. However, P1-N1-P2 ERP responses were not affected by divided attention, suggesting that the effect of attentional load was not on the auditory processing of pitch altered feedback, but instead it interfered with the integration of auditory and motor information, or motor control itself.

  3. A Metric Observer for Induction Motors Control

    Directory of Open Access Journals (Sweden)

    Mohamed Benbouzid

    2016-01-01

    Full Text Available This paper deals with metric observer application for induction motors. Firstly, assuming that stator currents and speed are measured, a metric observer is designed to estimate the rotor fluxes. Secondly, assuming that only stator currents are measured, another metric observer is derived to estimate rotor fluxes and speed. The proposed observer validity is checked throughout simulations on a 4 kW induction motor drive.

  4. ANN Speed Sensorless Fuzzy Control of DRFOC Induction Motor Drives

    Directory of Open Access Journals (Sweden)

    Mouna BEN HAMED

    2010-12-01

    Full Text Available The aim of this paper is to present a full digital implementation of a sensorless speed direct orientation field controlled induction motor drive. Thanks to their advantages, the fuzzy logic is used to control the Squirrel Cage Induction Motor rotor speed and a neural network is used to reconstruct it. Experimental results for a 1kw induction motor are presented and analyzed using a dSpace system with DS1104 controller board based on digital signal processors (DSP. Obtained results demonstrated that the proposed sensorless control scheme is able to obtain high performances.

  5. Influences of laryngeal afferent inputs on intralaryngeal muscle activity during vocalization in the cat.

    Science.gov (United States)

    Shiba, K; Yoshida, K; Nakajima, Y; Konno, A

    1997-01-01

    The present study was undertaken to elucidate the possible role of the laryngeal afferent inputs in the regulation of intralaryngeal muscle activity during vocalization. We studied the influences of airflow and/or pressure applied to the larynx on intralaryngeal muscle activity during vocalization in ketamine-anesthetized cats. Vocalization was induced by airflow applied to the upper airway, which was isolated from the lower airway, during pontine call site stimulation. When the upper airway was open to the atmosphere through the nostrils and mouth, the airflow increased not only the vocal fold adductor and tensor activities but also the duration of these activities. The adductor and tensor activities were increased suddenly at a critical subglottic pressure level equivalent to the subglottic pressure threshold for vocalization. These effects were significantly reduced by sectioning of the internal branch of the superior laryngeal nerve or by lidocaine application to the laryngeal mucosa. Sustained pressure applied to the isolated upper airway, when the mouth and nostrils were occluded, did not affect adductor or tensor activities. These results indicate that the afferent inputs evoked by vocal fold stretching or vibration play an important role in the motor control of intralaryngeal and respiratory muscles during vocalization.

  6. Regaining motor control in musician's dystonia by restoring sensorimotor organization.

    Science.gov (United States)

    Rosenkranz, Karin; Butler, Katherine; Williamon, Aaron; Rothwell, John C

    2009-11-18

    Professional musicians are an excellent model of long-term motor learning effects on structure and function of the sensorimotor system. However, intensive motor skill training has been associated with task-specific deficiency in hand motor control, which has a higher prevalence among musicians (musician's dystonia) than in the general population. Using a transcranial magnetic stimulation paradigm, we previously found an expanded spatial integration of proprioceptive input into the hand motor cortex [sensorimotor organization (SMO)] in healthy musicians. In musician's dystonia, however, this expansion was even larger. Whereas motor skills of musicians are likely to be supported by a spatially expanded SMO, we hypothesized that in musician's dystonia this might have developed too far and now disrupts rather than assists task-specific motor control. If so, motor control should be regained by reversing the excessive reorganization in musician's dystonia. Here, we test this hypothesis and show that a 15 min intervention with proprioceptive input (proprioceptive training) restored SMO in pianists with musician's dystonia to the pattern seen in healthy pianists. Crucially, task-specific motor control improved significantly and objectively as measured with a MIDI (musical instrument digital interface) piano, and the amount of behavioral improvement was significantly correlated to the degree of sensorimotor reorganization. In healthy pianists and nonmusicians, the SMO and motor performance remained essentially unchanged. These findings suggest that the differentiation of SMO in the hand motor cortex and the degree of motor control of intensively practiced tasks are significantly linked and finely balanced. Proprioceptive training restored this balance in musician's dystonia to the behaviorally beneficial level of healthy musicians.

  7. Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps

    Directory of Open Access Journals (Sweden)

    Deep Parikh

    2015-08-01

    Full Text Available This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current motors used in quad-copter UAV (Unmanned Aerial Vehicles. The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM.  Traditionally, quad-copter BLDC motor speed control uses simple linear motor-control map defined by the motor-constant specification. However, practical BLDC motors show non-linear characteristic, particularly when operated across wide operating speed-range as is commonly required in quad-copter UAV flight operations. In this paper, our investigations to compare performance of linear versus non-linear motor-control maps are presented. The investigations cover simulation-based and experimental study of BLDC motor speed control systems for  quad-copter vehicle available. First the non-linear map relating rotor RPM to motor voltage for quad-copter BLDC motor is obtained experimentally using an optical speed encoder. The performance of the linear versus non-linear motor-control-maps for the speed control are studied. The investigations also cover study of time-responses for various standard test input-signals e.g. step, ramp and pulse inputs, applied as the reference speed-commands. Also, simple 2-degree of freedom test-bed is developed in our laboratory to help test the open-loop and closed-loop experimental investigations. The non-linear motor-control map is found to perform better in BLDC motor speed tracking control performance and thereby helping achieve better quad-copter roll-angle attitude control.

  8. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.

    Science.gov (United States)

    Zhang, Zhaoyan

    2015-02-01

    Maintaining a small glottal opening across a large range of voice conditions is critical to normal voice production. This study investigated the effectiveness of vocal fold approximation and stiffening in regulating glottal opening and airflow during phonation, using a three-dimensional numerical model of phonation. The results showed that with increasing subglottal pressure the vocal folds were gradually pushed open, leading to increased mean glottal opening and flow rate. A small glottal opening and a mean glottal flow rate typical of human phonation can be maintained against increasing subglottal pressure by proportionally increasing the degree of vocal fold approximation for low to medium subglottal pressures and vocal fold stiffening at high subglottal pressures. Although sound intensity was primarily determined by the subglottal pressure, the results suggest that, to maintain small glottal opening as the sound intensity increases, one has to simultaneously tighten vocal fold approximation and/or stiffen the vocal folds, resulting in increased glottal resistance, vocal efficiency, and fundamental frequency.

  9. Dynamic Model Identification for Ultrasonic Motor Frequency-Speed Control

    Institute of Scientific and Technical Information of China (English)

    Shi Jingzhuo; Song Le

    2015-01-01

    The mathematical model of ultrasonic motor (USM ) is the foundation of the motor high performance control .Considering the motor speed control requirements ,the USM control model identification is established with frequency as the independent variable .The frequency-speed control model of USM system is developed ,thus laying foundation for the motor high performance control .The least square method and the extended least square method are used to identify the model .By comparing the results of the identification and measurement ,and fitting the time-varying parameters of the model ,one can show that the model obtained by using the extended least square method is reasonable and possesses high accuracy .Finally ,the frequency-speed control model of USM contains the nonlinear information .

  10. A novel robust speed controller scheme for PMBLDC motor.

    Science.gov (United States)

    Thirusakthimurugan, P; Dananjayan, P

    2007-10-01

    The design of speed and position controllers for permanent magnet brushless DC motor (PMBLDC) drive remains as an open problem in the field of motor drives. A precise speed control of PMBLDC motor is complex due to nonlinear coupling between winding currents and rotor speed. In addition, the nonlinearity present in the developed torque due to magnetic saturation of the rotor further complicates this issue. This paper presents a novel control scheme to the conventional PMBLDC motor drive, which aims at improving the robustness by complete decoupling of the design besides minimizing the mutual influence among the speed and current control loops. The interesting feature of this robust control scheme is its suitability for both static and dynamic aspects. The effectiveness of the proposed robust speed control scheme is verified through simulations.

  11. A brushless dc spin motor for momentum exchange altitude control

    Science.gov (United States)

    Stern, D.; Rosenlieb, J. W.

    1972-01-01

    Brushless dc spin motor is designed to use Hall effect probes as means of revolving rotor position and controlling motor winding currents. This results in 3 to 1 reduction in watt-hours required for wheel acceleration, a 2 to 1 reduction in power to run wheel, and a 10 to 1 reduction in the electronics size and weight.

  12. Gestalt Principles in the Control of Motor Action

    Science.gov (United States)

    Klapp, Stuart T.; Jagacinski, Richard J.

    2011-01-01

    We argue that 4 fundamental gestalt phenomena in perception apply to the control of motor action. First, a motor gestalt, like a perceptual gestalt, is holistic in the sense that it is processed as a single unit. This notion is consistent with reaction time results indicating that all gestures for a brief unit of action must be programmed prior to…

  13. Control Systems Lab Using a LEGO Mindstorms NXT Motor System

    Science.gov (United States)

    Kim, Y.

    2011-01-01

    This paper introduces a low-cost LEGO Mindstorms NXT motor system for teaching classical and modern control theories in standard third-year undergraduate courses. The LEGO motor system can be used in conjunction with MATLAB, Simulink, and several necessary toolboxes to demonstrate: 1) a modeling technique; 2) proportional-integral-differential…

  14. Gestalt Principles in the Control of Motor Action

    Science.gov (United States)

    Klapp, Stuart T.; Jagacinski, Richard J.

    2011-01-01

    We argue that 4 fundamental gestalt phenomena in perception apply to the control of motor action. First, a motor gestalt, like a perceptual gestalt, is holistic in the sense that it is processed as a single unit. This notion is consistent with reaction time results indicating that all gestures for a brief unit of action must be programmed prior to…

  15. Aging and Concurrent Task Performance: Cognitive Demand and Motor Control

    Science.gov (United States)

    Albinet, Cedric; Tomporowski, Phillip D.; Beasman, Kathryn

    2006-01-01

    A motor task that requires fine control of upper limb movements and a cognitive task that requires executive processing--first performing them separately and then concurrently--was performed by 18 young and 18 older adults. The motor task required participants to tap alternatively on two targets, the sizes of which varied systematically. The…

  16. Control Systems Lab Using a LEGO Mindstorms NXT Motor System

    Science.gov (United States)

    Kim, Y.

    2011-01-01

    This paper introduces a low-cost LEGO Mindstorms NXT motor system for teaching classical and modern control theories in standard third-year undergraduate courses. The LEGO motor system can be used in conjunction with MATLAB, Simulink, and several necessary toolboxes to demonstrate: 1) a modeling technique; 2) proportional-integral-differential…

  17. Control of rotor function in light-driven molecular motors

    NARCIS (Netherlands)

    Lubbe, Anouk S.; Ruangsupapichat, Nopporn; Caroli, Giuseppe; Feringa, Ben L.

    2011-01-01

    A study is presented on the control of rotary motion of an appending rotor unit in a light-driven molecular motor. Two new light driven molecular motors were synthesized that contain aryl groups connected to the stereogenic centers. The aryl groups behave as bidirectional free rotors in three of the

  18. Speech motor control and acute mountain sickness

    Science.gov (United States)

    Cymerman, Allen; Lieberman, Philip; Hochstadt, Jesse; Rock, Paul B.; Butterfield, Gail E.; Moore, Lorna G.

    2002-01-01

    BACKGROUND: An objective method that accurately quantifies the severity of Acute Mountain Sickness (AMS) symptoms is needed to enable more reliable evaluation of altitude acclimatization and testing of potentially beneficial interventions. HYPOTHESIS: Changes in human articulation, as quantified by timed variations in acoustic waveforms of specific spoken words (voice onset time; VOT), are correlated with the severity of AMS. METHODS: Fifteen volunteers were exposed to a simulated altitude of 4300 m (446 mm Hg) in a hypobaric chamber for 48 h. Speech motor control was determined from digitally recorded and analyzed timing patterns of 30 different monosyllabic words characterized as voiced and unvoiced, and as labial, alveolar, or velar. The Environmental Symptoms Questionnaire (ESQ) was used to assess AMS. RESULTS: Significant AMS symptoms occurred after 4 h, peaked at 16 h, and returned toward baseline after 48 h. Labial VOTs were shorter after 4 and 39 h of exposure; velar VOTs were altered only after 4 h; and there were no changes in alveolar VOTs. The duration of vowel sounds was increased after 4 h of exposure and returned to normal thereafter. Only 1 of 15 subjects did not increase vowel time after 4 h of exposure. The 39-h labial (p = 0.009) and velar (p = 0.037) voiced-unvoiced timed separations consonants and the symptoms of AMS were significantly correlated. CONCLUSIONS: Two objective measures of speech production were affected by exposure to 4300 m altitude and correlated with AMS severity. Alterations in speech production may represent an objective measure of AMS and central vulnerability to hypoxia.

  19. Nonlinear Control of Induction Motors: A Performance Study

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1998-01-01

    A novel approach to control of induction motors based on nonlinear state feedback has previously been presented by the authors. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers...... for the field amplitude and the motor torque. The method is compared with the traditional Rotor Field Oriented Control method as regards variations in rotor resistance an magnetizing inductance...

  20. Switch Reluctance Motor Control Based on Fuzzy Logic System

    Directory of Open Access Journals (Sweden)

    S. Aleksandrovsky

    2012-01-01

    Full Text Available Due to its intrinsic simplicity and reliability, the switched reluctance motor (SRM has now become a promising candidate for variable-speed drive applications as an alternative induction motor in various industrial application. However, the SRM has the disadvantage of nonlinear characteristic and control. It is suggested to use controller based on fuzzy logic system. Design of FLS controller and simulation model presented.

  1. Touch Screen based Speed Control of Single Phase Induction Motor

    Directory of Open Access Journals (Sweden)

    S. Mallika

    2010-12-01

    Full Text Available This paper gives a brief idea of touch screen technology and its interfacing with a controller to control the speed of single phase induction motor. Here touch screen technology and Programmable System on Chip (PSOC microcontroller concept is utilized which is less spaceconsumption and easy to design. The aim of this paper is to have remote sensing and speed control of an AC motor.

  2. Practical approaches to exploiting body dynamics in robot motor control

    OpenAIRE

    Dambre, Joni

    2015-01-01

    Motor control systems in the brain of humans and mammals are hierarchically organised, with each level controlling increasingly complex motor actions. Each level is controlled by the higher levels and also receives sensory and/or proprioceptive feedback. Through learning, this hierarchical structure adapts to its body, its sensors and the way these interact with the environment. An even more integrated view is taken in morphological or embodied computation. On the one hand, there is both ...

  3. Speed Control of Induction Motor by V/F Method

    Directory of Open Access Journals (Sweden)

    Pallavi shrikant Alagur

    2016-09-01

    Full Text Available This paper presents the design & implementation of voltage & frequency ratio constant & controller based on sinusoidal pulse width modulation technique for a single phase induction motor using fuzzy logic. The work involves implementation of an closed loop control scheme for an induction motor. The technique is used extensively in the industry as it provides the accuracy required at minimal cost. V/f controlled motors fall under the category of variable voltage variable frequency drives. The ratio of voltage & frequency must be constant.

  4. Costs of control: decreased motor cortex engagement during a Go/NoGo task in Tourette's syndrome.

    Science.gov (United States)

    Thomalla, Götz; Jonas, Melanie; Bäumer, Tobias; Siebner, Hartwig R; Biermann-Ruben, Katja; Ganos, Christos; Orth, Michael; Hummel, Friedhelm C; Gerloff, Christian; Müller-Vahl, Kirsten; Schnitzler, Alfons; Münchau, Alexander

    2014-01-01

    Gilles de la Tourette syndrome is a neuropsychiatric disorder characterized by an impaired ability to inhibit unwanted behaviour. Although the presence of chronic motor and vocal tics defines Tourette's syndrome, other distinctive behavioural features like echo- and coprophenomena, and non-obscene socially inappropriate behaviour are also core features. We investigated neuronal activation during stimulus-driven execution and inhibition of prepared movements in Tourette's syndrome. To this end, we performed event-related functional magnetic resonance imaging and structural diffusion tensor imaging in 15 moderately affected uncomplicated patients with 'pure' Tourette's syndrome and 15 healthy control participants matched for age and gender. Subjects underwent functional magnetic resonance imaging during a Go/NoGo reaction time task. They had to withhold a prepared finger movement for a variable time until a stimulus instructed them to either execute (Go) or inhibit it (NoGo). Tics were monitored throughout the experiments, combining surface electromyogram, video recording, and clinical assessment in the scanner. Patients with Tourette's syndrome had longer reaction times than healthy controls in Go trials and made more errors in total. Their functional brain activation was decreased in left primary motor cortex and secondary motor areas during movement execution (Go trials) but not during response inhibition (NoGo trials) compared with healthy control subjects. Volume of interest analysis demonstrated less task-related activation in patients with Tourette's syndrome in primary and secondary motor cortex bilaterally, but not in the basal ganglia and cortical non-motor areas. They showed reduced co-activation between the left primary sensory-motor hand area and a network of contralateral sensory-motor areas and ipsilateral cerebellar regions. There were no between-group differences in structural connectivity of the left primary sensory-motor cortex as measured by

  5. Efficient foot motor control by Neymar’s brain

    Directory of Open Access Journals (Sweden)

    Eiichi eNaito

    2014-08-01

    Full Text Available How very long-term (over many years motor skill training shapes internal motor representation remains poorly understood. We provide valuable evidence that the football brain of Neymar da Silva Santos Júnior (the Brasilian footballer recruits very limited neural resources in the motor-cortical foot regions during foot movements. We scanned his brain activity with a 3-tesla functional magnetic resonance imaging (fMRI while he rotated his right ankle at 1Hz. We also scanned brain activity when three other age-controlled professional footballers, two top-athlete swimmers and one amateur footballer performed the identical task. A comparison was made between Neymar’s brain activity with that obtained from the others. We found activations in the left medial-wall foot motor regions during the foot movements consistently across all participants. However, the size and intensity of medial-wall activity was smaller in the four professional footballers than in the three other participants, despite no difference in amount of foot movement. Surprisingly, the reduced recruitment of medial-wall foot motor regions became apparent in Neymar. His medial-wall activity was smallest among all participants with absolutely no difference in amount of foot movement. Neymar may efficiently control given foot movements probably by largely conserving motor-cortical neural resources. We discuss this possibility in terms of over-years motor skill training effect, use-dependent plasticity, and efficient motor control.

  6. Hierarchical control of motor units in voluntary contractions.

    Science.gov (United States)

    De Luca, Carlo J; Contessa, Paola

    2012-01-01

    For the past five decades there has been wide acceptance of a relationship between the firing rate of motor units and the afterhyperpolarization of motoneurons. It has been promulgated that the higher-threshold, larger-soma, motoneurons fire faster than the lower-threshold, smaller-soma, motor units. This relationship was based on studies on anesthetized cats with electrically stimulated motoneurons. We questioned its applicability to motor unit control during voluntary contractions in humans. We found that during linearly force-increasing contractions, firing rates increased as exponential functions. At any time and force level, including at recruitment, the firing rate values were inversely related to the recruitment threshold of the motor unit. The time constants of the exponential functions were directly related to the recruitment threshold. From the Henneman size principle it follows that the characteristics of the firing rates are also related to the size of the soma. The "firing rate spectrum" presents a beautifully simple control scheme in which, at any given time or force, the firing rate value of earlier-recruited motor units is greater than that of later-recruited motor units. This hierarchical control scheme describes a mechanism that provides an effective economy of force generation for the earlier-recruited lower force-twitch motor units, and reduces the fatigue of later-recruited higher force-twitch motor units-both characteristics being well suited for generating and sustaining force during the fight-or-flight response.

  7. On the role of emerging voluntary control of vocalization in language evolution. Comment on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain" by Michael A. Arbib

    Science.gov (United States)

    Coudé, Gino

    2016-03-01

    This comment will be focused on the role of monkey vocal control in the evolution of language. I will essentially reiterate the observations expressed in a commentary [1] about the book "How the brain got language: the mirror system hypothesis", written by Arbib [2]. I will hopefully clarify our suggestion that non-human primates vocal communication, in conjunction with gestures, could have had an active role in the emergence of the first voluntary forms of utterances that will later shape protospeech. This suggestion is mainly rooted in neurophysiological data about vocal control in monkey. I will very briefly summarize how neurophysiological data allowed us to suggest a possible role for monkey vocalization in language evolution. We conducted a study [3] in which we recorded from ventral premotor cortex (PMv) of macaques trained to emit vocalizations (i.e. coo-calls). The results showed that the rostro-lateral part of PMv contains neurons that fire during conditioned vocalization. The involvement of PMv in vocalization production was further supported by electrical microstimulation of the cortical sector where some of the vocalization neurons were found. Microstimulation elicited in some cases a combination of jaw, tongue and larynx movements. To us, the evolutionary implications of those results were obvious: a partial voluntary vocal control was already taking place in the primate PMv cortex some 25 million years ago.

  8. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2003-01-01

    further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as on the actual induction motor, both in open-loop current control and when an outer speed control loop......In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... as a set of linear matrix inequalities with full-block multipliers. A standard nonlinear model of the motor is constructed and written on LPV form. We then show that, although originally developed in continuous time, the controller synthesis results can be applied to a discrete-time model as well without...

  9. Brushless DC Motor Control System Design Based on DSP2812

    Directory of Open Access Journals (Sweden)

    Wei Min

    2016-01-01

    Full Text Available By comparison various control methods currently for permanent magnet brushless DC motor, on the basis of motor principle analysis, a current smallest and most real-time all-digital rare earth permanent magnet brushless DC motor control system is designed. The high-speed digital signal processor DSP2812 is applied as the main control unit. The fuzzy PID control algorithm is used to control rectifier regulator and speed, which the speed and current is double closed loop in the system. The principle of control system, control strategy and software is analyzed in this paper. The system has some features such as less overshoot, rapid response speed, good performance of anti-jamming, simple structure, high control precision, flexible in changing control policies and so on. Validity of the design is verified by prototype test.

  10. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2003-01-01

    In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... as a set of linear matrix inequalities with full-block multipliers. A standard nonlinear model of the motor is constructed and written on LPV form. We then show that, although originally developed in continuous time, the controller synthesis results can be applied to a discrete-time model as well without...... further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as on the actual induction motor, both in open-loop current control and when an outer speed control loop...

  11. Multicore Based Open Loop Motor Controller Embedded System for Permanent Magnet Direct Current Motor

    Directory of Open Access Journals (Sweden)

    K. Baskaran

    2012-01-01

    Full Text Available Problem statement: In an advanced electronics world most of the applications are developed by microcontroller based embedded system. Approach: Multicore processor based motor controller was presented to improve the processing speed of the controller and improve the efficiency of the motor by maintaining constant speed. It was based on the combination of Cortex processor (Software core and Field Programmable Gate Arrays (FPGA, Hardware core. These multicore combination were help to design efficient low power motor controller. Results: A functional design of cortex processor and FPGA in this system was completed by using Actel libero IDE and IAR embedded IDE software PWM signal was generated by the proposed processor to control the motor driver circuit. All the function modules were programmed by Very-High-Speed Integrated Circuit Hardware Description Language (VHDL. The advantage of the proposed system was optimized operational performance and low power utility. Multicore processor was used to improve the speed of execution and optimize the performance of the controller. Conclusion: Without having the architectural concept of any motor we can control it by using this method.This is an low cost low power controller and easy to use. The simulation and experiment results verified its validity.

  12. Spatial constancy mechanisms in motor control

    NARCIS (Netherlands)

    Medendorp, W.P.

    2011-01-01

    The success of the human species in interacting with the environment depends on the ability to maintain spatial stability despite the continuous changes in sensory and motor inputs owing to movements of eyes, head and body. In this paper, I will review recent advances in the understanding of how the

  13. Motor control by precisely timed spike patterns

    DEFF Research Database (Denmark)

    Srivastava, Kyle H; Holmes, Caroline M; Vellema, Michiel

    2017-01-01

    A fundamental problem in neuroscience is understanding how sequences of action potentials ("spikes") encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time...

  14. Motion interactive games for children with motor disorders : motivation, physical activity, and motor control

    OpenAIRE

    Sandlund, Marlene

    2011-01-01

    As motion interactive games have become more widespread the interest in using these games in rehabilitation of children with motor disorders has increased among both clinical professionals and the families of these children. The general aim of this thesis was to evaluate the feasibility of using interactive games in rehabilitation of children to promote motivation for practice, physical activity, and motor control. A systematic review of published intervention studies was conducted to obtain ...

  15. Universal Brushless-DC Motor Controller for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this SBIR is to adapt an initial prototype ultra-miniature high-performance brushless-DC-motor controller, code named 'Puck', for use by NASA across a...

  16. Broad Application of a Reconfigurable Motor Controller Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An ultra-miniature (<50 grams) high-performance brushless-motor controller, code named 'Puck', has been developed by Barrett for Earth-based mobile-manipulation...

  17. Lateralised motor control: hemispheric damage and the loss of deftness

    OpenAIRE

    Hanna-Pladdy, B.; Mendoza, J; Apostolos, G; Heilman, K

    2002-01-01

    Objective: To learn if the left compared with the right hemisphere of right handed subjects exerts bilateral compared with contralateral motor control when performing precise and coordinated finger movements.

  18. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2001-01-01

    In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... as a set of linear matrix inequalities with full-block multipliers. A standard nonlinear model of the motor is then constructed and written on LPV form. We then show that, although originally developed in continuous time, the controller synthesis results can be applied to a discrete-time model as well...... without further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as experimentally on the actual induction motor, both in open-loop current control and when an outer...

  19. A New Torque Control System of Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Evstratov Andrey

    2017-01-01

    Full Text Available The article describes a new approach to control of permanent magnet synchronous motor drive based on the analysis of the electromechanical transformation. The proposed control system provides quick response and low ripple of the motor torque and flux. To synthesis this control system, the authors put the electromagnetic torque and the modulus of stator flux vector as controlled values and use the Lyapunov’s second method. In addition, the stator voltage constriction and ability of low-pass filtration are taken into account. The investigation of the proposed control system has carried out with the simulation and the experimental research which have confirmed that the proposed control system correspond to all above-mentioned control tasks and the permanent magnet synchronous motor controlled under this system may be recommended to use in robotics.

  20. A novel induction motor control scheme using IDA-PBC

    Institute of Scientific and Technical Information of China (English)

    Humberto GONZ(A)LEZ; Manuel A. DUARTE-MERMOUD; Ian PELISSIER; Juan Carlos TRAVIESO-TORRES; Romeo ORTEGA

    2008-01-01

    A new control scheme for induction motors is proposed in the present paper, applying the interconnection and damping assignment-passivity based control (IDA-PBC) method. The scheme is based exclusively on passivity based control, without restricting the input frequency as it is done in field oriented control (FOC). A port-controlled Hamiltonian (PCH) model of the induction motor is deduced to make the interconnection and damping of energy explicit on the scheme. The proposed controller is validated under computational simulations and experimental tests using an inverter prototype.

  1. 77 FR 9916 - California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Mobile Cargo...

    Science.gov (United States)

    2012-02-21

    ... AGENCY California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Mobile Cargo... to the control of emissions from new motor vehicles or new motor vehicle engines ] EPA is, pursuant... standards relating to the control of emissions for new motor vehicles and new motor vehicle engines...

  2. 77 FR 53199 - California State Motor Vehicle Pollution Control Standards; Advanced Clean Car Program; Request...

    Science.gov (United States)

    2012-08-31

    ... AGENCY California State Motor Vehicle Pollution Control Standards; Advanced Clean Car Program; Request... control of emissions from new motor vehicles or new motor vehicle engines subject to this part. No state... crankcase emission standards) for the control of emissions from new motor vehicles or new motor vehicle...

  3. The Roles of the Olivocerebellar Pathway in Motor Learning and Motor Control. A Consensus Paper.

    Science.gov (United States)

    Lang, Eric J; Apps, Richard; Bengtsson, Fredrik; Cerminara, Nadia L; De Zeeuw, Chris I; Ebner, Timothy J; Heck, Detlef H; Jaeger, Dieter; Jörntell, Henrik; Kawato, Mitsuo; Otis, Thomas S; Ozyildirim, Ozgecan; Popa, Laurentiu S; Reeves, Alexander M B; Schweighofer, Nicolas; Sugihara, Izumi; Xiao, Jianqiang

    2017-02-01

    For many decades, the predominant view in the cerebellar field has been that the olivocerebellar system's primary function is to induce plasticity in the cerebellar cortex, specifically, at the parallel fiber-Purkinje cell synapse. However, it has also long been proposed that the olivocerebellar system participates directly in motor control by helping to shape ongoing motor commands being issued by the cerebellum. Evidence consistent with both hypotheses exists; however, they are often investigated as mutually exclusive alternatives. In contrast, here, we take the perspective that the olivocerebellar system can contribute to both the motor learning and motor control functions of the cerebellum and might also play a role in development. We then consider the potential problems and benefits of it having multiple functions. Moreover, we discuss how its distinctive characteristics (e.g., low firing rates, synchronization, and variable complex spike waveforms) make it more or less suitable for one or the other of these functions, and why having multiple functions makes sense from an evolutionary perspective. We did not attempt to reach a consensus on the specific role(s) the olivocerebellar system plays in different types of movements, as that will ultimately be determined experimentally; however, collectively, the various contributions highlight the flexibility of the olivocerebellar system, and thereby suggest that it has the potential to act in both the motor learning and motor control functions of the cerebellum.

  4. Hardware Evolution of Analog Speed Controllers for a DC Motor

    Science.gov (United States)

    Gwaltney, David A.; Ferguson, Michael I.

    2003-01-01

    This viewgraph presentation provides information on the design of analog speed controllers for DC motors on aerospace systems. The presentation includes an overview of controller evolution, evolvable controller configuration, an emphasis on proportion integral (PI) controllers, schematic diagrams, and experimental results.

  5. Closed Loop Speed Control of a BLDC Motor Drive Using Adaptive Fuzzy Tuned PI Controller

    Directory of Open Access Journals (Sweden)

    Sri Latha Eti

    2014-11-01

    Full Text Available Brushless DC Motors are widely used for many industrial applications because of their high efficiency, high torque and low volume. This paper proposed an improved Adaptive Fuzzy PI controller to control the speed of BLDC motor. This paper provides an overview of different tuning methods of PID Controller applied to control the speed of the transfer function model of the BLDC motor drive and then to the mathematical model of the BLDC motor drive. It is difficult to tune the parameters and get satisfied control characteristics by using normal conventional PI controller. The experimental results verify that Adaptive Fuzzy PI controller has better control performance than the conventional PI controller. The modeling, control and simulation of the BLDC motor have been done using the MATLAB/SIMULINK software. Also, the dynamic characteristics of the BLDC motor (i.e. speed and torque as well as currents and voltages of the inverter components are observed by using the developed model.

  6. The Psychological Analysis of the Phenomenon of Vocal Control Disorder%歌唱失控的心理学分析

    Institute of Scientific and Technical Information of China (English)

    于贵祥

    2012-01-01

    歌唱失控影响声音美感和声乐作品的完整表现,带来糟糕的艺术效果,需要加以有效解决,这是声乐教学与演唱的核心问题。焦虑心理是歌唱失控的主要成因,它会带来诸多的不良后果,甚至毁掉歌唱者的艺术生命。而歌唱焦虑的产生是由多方面因素促成的,它包含声乐教学的教育者与受教育者、歌唱者与观众之间的心理关系以及歌唱者个人专业素质、个性、成长历程、社会关系等内容。利用心理学手段研究焦虑与歌唱失控的内在联系,寻找其形成的心理架构,探索从日常声乐技术训练入手对歌唱者进行心理能力培养,完善歌唱者个性心智,培养其对歌唱的热情和信心,从而对歌唱失控现象加以规避和疏导。%The phenomenon of vocal control disorder caused by tension influences the beauty of sound and the complete performance, which is the key issue of vocal teaching and requires a solution. Anxiety is the main cause of vocal control disorder, which causes many bad results, even ruining the singer's artistic life. This anxiety is caused by many factors such as its psychological relationships between vocal education, vo- cal educationists and receivers of vocal training, and between singers and the audience. This paper also looks into the professional quality, characteristics, path of growing-up, and social relationship of a singer to search for the effective ways to deal with vocal control disorder from the psychological perspective. That is to train the singer's psychological competence from daily vocal training, to build the confidence and a- rouse the passion of the singer in order to find the effective psychological adjustment in singing practice and to get rid of vocal control disorder.

  7. Simple Motor Control Concept Results High Efficiency at High Velocities

    Science.gov (United States)

    Starin, Scott; Engel, Chris

    2013-09-01

    The need for high velocity motors in space applications for reaction wheels and detectors has stressed the limits of Brushless Permanent Magnet Motors (BPMM). Due to inherent hysteresis core losses, conventional BPMMs try to balance the need for torque verses hysteresis losses. Cong-less motors have significantly less hysteresis losses but suffer from lower efficiencies. Additionally, the inherent low inductance in cog-less motors result in high ripple currents or high switching frequencies, which lowers overall efficiency and increases performance demands on the control electronics.However, using a somewhat forgotten but fully qualified technology of Isotropic Magnet Motors (IMM), extremely high velocities may be achieved at low power input using conventional drive electronics. This paper will discuss the trade study efforts and empirical test data on a 34,000 RPM IMM.

  8. Bearingless Permanent Magnet Synchronous Motor using Independent Control

    Directory of Open Access Journals (Sweden)

    Normaisharah Mamat

    2015-06-01

    Full Text Available Bearingless permanent magnet synchronous motor (BPMSM combines the characteristic of the conventional permanent magent synchronous motor and magnetic bearing in one electric motor. BPMSM is a kind of high performance motor due to having both advantages of PMSM and magnetic bearing with simple structure, high efficiency, and reasonable cost. The research on BPMSM is to design and analyse BPMSM by using Maxwell 2-Dimensional of ANSYS Finite Element Method (FEM. Independent suspension force model and bearingless PMSM model are developed by using the method of suspension force. Then, the mathematical model of electromagnetic torque and radial suspension force has been developed by using Matlab/Simulink. The relation between force, current, distance and other parameter are determined. This research covered the principle of suspension force, the mathematical model, FEM analysis and digital control system of bearingless PMSM. This kind of motor is widely used in high speed application such as compressors, pumps and turbines.

  9. Chronic motor tic disorder

    Science.gov (United States)

    Chronic vocal tic disorder; Tic - chronic motor tic disorder ... Chronic motor tic disorder is more common than Tourette syndrome . Chronic tics may be forms of Tourette syndrome. Tics usually start ...

  10. Self-controlled practice benefits motor learning in older adults.

    Science.gov (United States)

    Lessa, Helena Thofehrn; Chiviacowsky, Suzete

    2015-04-01

    Providing learners with the chance to choose over certain aspects of practice has been consistently shown to facilitate the acquisition of motor skills in several populations. However, studies investigating the effects of providing autonomy support during the learning process of older adults remain scarce. The objective of the present study was to investigate the effects of self-controlled amount of practice on the learning of a sequential motor task in older adults. Participants in the self-control group were able to choose when to stop practicing a speed cup stacking task, while the number of practice trials for a yoked group was pre-determined, mirroring the self-control group. The opportunity to choose when stop practicing facilitated motor performance and learning compared to the yoked condition. The findings suggest that letting older adult learners choose the amount of practice, supporting their autonomy needs, has a positive influence on motor learning.

  11. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2003-01-01

    In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... as a set of linear matrix inequalities with full-block multipliers. A standard nonlinear model of the motor is constructed and written on LPV form. We then show that, although originally developed in continuous time, the controller synthesis results can be applied to a discrete-time model as well without...

  12. Steering Control of Wheeled Armored Vehicle with Brushless DC Motor

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind of algorithm, which combines the fuzzy logic control with the self-adapting PID control and the startup and pre-brake control, is put forward. Then a test-bed is constructed, and an experiment is conducted. The result of experiment confirms the validity of this algorithm in steering control of wheeled armored vehicle with brushless DC motor.

  13. Gestalt principles in the control of motor action.

    Science.gov (United States)

    Klapp, Stuart T; Jagacinski, Richard J

    2011-05-01

    We argue that 4 fundamental gestalt phenomena in perception apply to the control of motor action. First, a motor gestalt, like a perceptual gestalt, is holistic in the sense that it is processed as a single unit. This notion is consistent with reaction time results indicating that all gestures for a brief unit of action must be programmed prior to initiation of any part of the movement. Additional reaction time results related to initiation of longer responses are consistent with processing in terms of a sequence of indivisible motor gestalts. Some actions (e.g., many involving coordination of the hands) can be carried out effectively only if represented as a unitary gestalt. Second, a perceptual gestalt is independent of specific sensory receptors, as evidenced by perceptual constancy. In a similar manner a motor gestalt can be represented independently of specific muscular effectors, thereby allowing motor constancy. Third, just as a perceptual pattern (e.g., a Necker cube) is exclusively structured into only 1 of its possible configurations at any moment in time, processing prior to action is limited to 1 motor gestalt. Fourth, grouping in apparent motion leads to stream segregation in visual and auditory perception; this segregation is present in motor action and is dependent on the temporal rate. We discuss congruence of gestalt phenomena across perception and motor action (a) in relation to a unitary perceptual-motor code, (b) with respect to differences in the role of awareness, and (c) in conjunction with separate neural pathways for conscious perception and motor control.

  14. Development of Motor Model of Rotor Slot Harmonics for Speed Sensorless Control of Induction Motor

    Science.gov (United States)

    Okubo, Tatsuya; Ishida, Muneaki; Doki, Shinji

    This paper proposes a novel mathematical dynamic model to represent steady-state and transient-state characteristics of rotor slot harmonics of an induction motor for sensorless control. Although it is well known that the rotor slot harmonics originate from the mechanical structure of the induction motor, a mathematical model that describes the relationship between stator/rotor currents of the induction motor and the slot harmonics has not yet been proposed. Therefore, in this paper, a three-phase model of the induction motor that depicts the rotor slot harmonics is developed by taking into consideration the magnetomotive force harmonics and the change in the magnetic air gap caused by the rotor slots. Moreover, the validity of the proposed model is verified by comparing the experimental results and the calculated values.

  15. Implementation of motor speed control using PID control in programmable logic controller

    Science.gov (United States)

    Samin, R. E.; Azmi, N. A.; Ahmad, M. A.; Ghazali, M. R.; Zawawi, M. A.

    2012-11-01

    This paper presents the implementation of motor speed control using Proportional Integral Derrivative (PID) controller using Programmable Logic Controller (PLC). Proportional Integral Derrivative (PID) controller is the technique used to actively control the speed of the motor. An AC motor is used in the research together with the PLC, encoder and Proface touch screen. The model of the PLC that has been used in this project is OMRON CJIG-CPU42P where this PLC has a build in loop control that can be made the ladder diagram quite simple using function block in CX-process tools. A complete experimental analysis of the technique in terms of system response is presented. Comparative assessment of the impact of Proportional, Integral and Derivative in the controller on the system performance is presented and discussed.

  16. Precision electronic speed controller for an alternating-current motor

    Science.gov (United States)

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  17. Auditory–vocal mirroring in songbirds

    Science.gov (United States)

    Mooney, Richard

    2014-01-01

    Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory–vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory–vocal mirror neurons in a sensorimotor region of the songbird's brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory–vocal mirroring in the songbird's brain. PMID:24778375

  18. Distributed Motor Controller (DMC) for Operation in Extreme Environments

    Science.gov (United States)

    McKinney, Colin M.; Yager, Jeremy A.; Mojarradi, Mohammad M.; Some, Rafi; Sirota, Allen; Kopf, Ted; Stern, Ryan; Hunter, Don

    2012-01-01

    This paper presents an extreme environment capable Distributed Motor Controller (DMC) module suitable for operation with a distributed architecture of future spacecraft systems. This motor controller is designed to be a bus-based electronics module capable of operating a single Brushless DC motor in extreme space environments: temperature (-120 C to +85 C required, -180 C to +100 C stretch goal); radiation (>;20K required, >;100KRad stretch goal); >;360 cycles of operation. Achieving this objective will result in a scalable modular configuration for motor control with enhanced reliability that will greatly lower cost during the design, fabrication and ATLO phases of future missions. Within the heart of the DMC lies a pair of cold-capable Application Specific Integrated Circuits (ASICs) and a Field Programmable Gate Array (FPGA) that enable its miniaturization and operation in extreme environments. The ASICs are fabricated in the IBM 0.5 micron Silicon Germanium (SiGe) BiCMOS process and are comprised of Analog circuitry to provide telemetry information, sensor interface, and health and status of DMC. The FPGA contains logic to provide motor control, status monitoring and spacecraft interface. The testing and characterization of these ASICs have yielded excellent functionality in cold temperatures (-135 C). The DMC module has demonstrated successful operation of a motor at temperature.

  19. Control de un motor paso a paso: PIC, USB, C#

    OpenAIRE

    Fernández Aragón, Iñigo

    2011-01-01

    El objetivo de este proyecto fin de carrera es crear un equipo con el que comprender y controlar, desde el ordenador, el funcionamiento de un motor paso a paso bifásico de imanes permanentes, a través de una comunicación USB, la ayuda de un microprocesador y el imprescindible driver del motor paso a paso. Uno de los elementos utilizados en el control de un motor paso a paso es el microprocesador, encargado tanto de enviar las consignas al controlador (driver), como de captar...

  20. Control of BLDC motors for a terrestrial lunar rover prototype

    OpenAIRE

    Serrano Gónzalez, Cristina

    2014-01-01

    A lo largo de los años se han utilizado varios tipos de motores eléctricos. Hoy en día, los motores BLDC son cada vez más importantes en las aplicaciones industriales, en la investigación y exploración espacial. El objetivo de este Proyecto Fin de Máster es el desarrollo de un control de motores BLDC en un microprocesador ARM Cortex-A8 que se encuentra dentro de la plataforma de desarollo BeagleBone Black, y el uso de MatLab/Simulink para crear un regulador Proporcional-Integral que se utiliz...

  1. Speed Control of Induction Motor Using PLC and SCADA System

    Directory of Open Access Journals (Sweden)

    Ayman Seksak Elsaid,

    2016-01-01

    Full Text Available Automation or automatic control is the use of various control systems for operating equipment such as machinery, processes in factories, boilers and heat-treating ovens, switching in telephone networks, steering and stabilization of ships, aircraft and other applications with minimal or reduced human intervention. Some processes have been completely automated. The motor speed is controlled via the driver as an open loop control. To make a more precise closed loop control of motor speed we will use a tachometer to measure the speed and feed it back to the PLC, which compares to the desired value and take a control action, then the signal is transferred to the motor – via driver – to increase / decrease the speed. We will measure the speed of the motor using an incremental rotary encoder by adjusting parameters (PLC, driver and also we need to reduce the overall cost of the system. Our control system will be held using the available Siemens PLC. In addition, we will monitor motor parameters via SCADA system.

  2. Motor Learning and Control Foundations of Kinesiology: Defining the Academic Core

    Science.gov (United States)

    Fischman, Mark G.

    2007-01-01

    This paper outlines the kinesiological foundations of the motor behavior subdisciplines of motor learning and motor control. After defining the components of motor behavior, the paper addresses the undergraduate major and core knowledge by examining several classic textbooks in motor learning and control, as well as a number of contemporary…

  3. Motor Learning and Control Foundations of Kinesiology: Defining the Academic Core

    Science.gov (United States)

    Fischman, Mark G.

    2007-01-01

    This paper outlines the kinesiological foundations of the motor behavior subdisciplines of motor learning and motor control. After defining the components of motor behavior, the paper addresses the undergraduate major and core knowledge by examining several classic textbooks in motor learning and control, as well as a number of contemporary…

  4. Frequency and significance of vocalizations in Sydenham's chorea.

    Science.gov (United States)

    de Teixeira, Antonio Lúcio; Cardoso, Francisco; Maia, Débora P; Sacramento, Daniel R; Mota, Cleonice de Carvalho Coelho; Meira, Zilda Maria Alves; Lees, Andrew

    2009-01-01

    Sydenham's chorea (SC) is a complication of Streptococcus infection characterized by a combination of motor and non-motor features. We have investigated the presence of vocalizations in 89 consecutive patients with SC evaluated during a one-year period in the UFMG Movement Disorders Clinic. Seven (4/3 M/F) of the 89 patients (29/60 M/F) presented with simple vocalizations not preceded by premonitory sensations but in association with facial chorea in five patients. These findings suggest that vocalizations are not a common feature in SC and their phenomenology is quite distinct from the characteristics of vocal tics in tic disorders.

  5. Programmable logic controller based synchronous motor excitation system

    Directory of Open Access Journals (Sweden)

    Janda Žarko

    2011-01-01

    Full Text Available This paper presents a 3.5 MW synchronous motor excitation system reconstruction. In the proposed solution programmable logic controller is used to control motor, which drives the turbo compressor. Comparing to some other solutions that are used in similar situations, the proposed solution is superior due to its flexibility and usage of mass-production hardware. Moreover, the implementation of PLC enables easy integration of the excitation system with the other technological processes in the plant as well as in the voltage regulation of 'smart grid' system. Also, implementation of various optimization algorithms can be done comfortably and it does not require additional investment in hardware. Some experimental results that depict excitation current during motor start-up, as well as, measured static characteristics of the motor, were presented.

  6. Fault tolerant vector control of induction motor drive

    Science.gov (United States)

    Odnokopylov, G.; Bragin, A.

    2014-10-01

    For electric composed of technical objects hazardous industries, such as nuclear, military, chemical, etc. an urgent task is to increase their resiliency and survivability. The construction principle of vector control system fault-tolerant asynchronous electric. Displaying recovery efficiency three-phase induction motor drive in emergency mode using two-phase vector control system. The process of formation of a simulation model of the asynchronous electric unbalance in emergency mode. When modeling used coordinate transformation, providing emergency operation electric unbalance work. The results of modeling transient phase loss motor stator. During a power failure phase induction motor cannot save circular rotating field in the air gap of the motor and ensure the restoration of its efficiency at rated torque and speed.

  7. Chaos Suppression in Fractional Order Permanent Magnet Synchronous Motor and PI controlled Induction motor by Extended Back stepping Control

    Science.gov (United States)

    Rajagopal, Karthikeyan; Karthikeyan, Anitha; Duraisamy, Prakash

    2016-12-01

    In this paper we investigate the control of three-dimensional non-autonomous fractional-order model of a permanent magnet synchronous motor (PMSM) and PI controlled fractional order Induction motor via recursive extended back stepping control technique. A robust generalized weighted controllers are derived to suppress the chaotic oscillations of the fractional order model. As the direct Lyapunov stability analysis of the controller is difficult for a fractional order first derivative, we have derived a new lemma to analyze the stability of the system. Numerical simulations of the proposed chaos suppression methodology are given to prove the analytical results.

  8. Adaptive neuro-fuzzy controller of switched reluctance motor

    Directory of Open Access Journals (Sweden)

    Tahour Ahmed

    2007-01-01

    Full Text Available This paper presents an application of adaptive neuro-fuzzy (ANFIS control for switched reluctance motor (SRM speed. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. An adaptive neuro-fuzzy controller of the motor speed is then designed and simulated. Digital simulation results show that the designed ANFIS speed controller realizes a good dynamic behaviour of the motor, a perfect speed tracking with no overshoot and a good rejection of impact loads disturbance. The results of applying the adaptive neuro-fuzzy controller to a SRM give better performance and high robustness than those obtained by the application of a conventional controller (PI.

  9. Developmental kinesiology: three levels of motor control in the assessment and treatment of the motor system.

    Science.gov (United States)

    Kobesova, Alena; Kolar, Pavel

    2014-01-01

    Three levels of sensorimotor control within the central nervous system (CNS) can be distinguished. During the neonatal stage, general movements and primitive reflexes are controlled at the spinal and brain stem levels. Analysis of the newborn's spontaneous general movements and the assessment of primitive reflexes is crucial in the screening and early recognition of a risk for abnormal development. Following the newborn period, the subcortical level of the CNS motor control emerges and matures mainly during the first year of life. This allows for basic trunk stabilization, a prerequisite for any phasic movement and for the locomotor function of the extremities. At the subcortical level, orofacial muscles and afferent information are automatically integrated within postural-locomotor patterns. Finally, the cortical (the highest) level of motor control increasingly becomes activated. Cortical control is important for the individual qualities and characteristics of movement. It also allows for isolated segmental movement and relaxation. A child with impaired cortical motor control may be diagnosed with developmental dyspraxia or developmental coordination disorder. Human ontogenetic models, i.e., developmental motor patterns, can be used in both the diagnosis and treatment of locomotor system dysfunction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Performance Comparison of Starting Speed Control of Induction Motor

    Directory of Open Access Journals (Sweden)

    Deddy Kusbianto

    2011-09-01

    Full Text Available In the induction motor speed control without sensors operated by the method Field Oriented Control (FOC was required an observer to estimate the speed. Obsever methods have been developed, among others, was the method of Self-Constructing Fuzzy Neural Network (SCFNN with some training algorithms such as backpropagasi (BP. Levenberg Marquard (LM etc.. In the induction motor control techniques were also developed methods of Direct Torque Control (DTC with observer Recurrent Neural Network (RNN. This paper compares the performance of the motor response to initial rotation between SCFNN observer method that uses the LM training algorithm with DTC control technique with RNN observer. From the observation performance of the motor response to initial rotation of the two methods shows that the LM method has better performances than the RNN. This can be seen on both the parameters : overshoot, rise time, settling time, peak and peak time. With the right method, can enhance better performance of the system. With the improvement of system performance, is expected to increase work efficiency in the industrial world, so overall, particularly for systems that require high precision, FNN methodcan be said to be better. Keywords: Motor Speed control without sensors, FOC, SCFNNO, DTC, Levenberg Marquardt and RNN

  11. Brushless DC motor Drive during Speed regulation with Current Controller

    Directory of Open Access Journals (Sweden)

    Bhikshalu Manchala

    2015-04-01

    Full Text Available Brushless DC Motor (BLDC is one of the best electrical drives that have increasing popularity, due to their high efficiency, reliability, good dynamic response and very low maintenance. Due to the increasing demand for compact & reliable motors and the evolution of low cost power semiconductor switches and permanent magnet (PM materials, brushless DC motors become popular in every application from home appliances to aerospace industry. The conventional techniques for controlling the stator phase current in a brushless DC drive are practically effective in low speed and cannot reduce the commutation torque ripple in high speed range. This paper presents the PI controller for speed control of BLDC motor. The output of the PI controllers is summed and is given as the input to the current controller. The BLDC motor is fed from the inverter where the rotor position and current controller is the input. The complete model of the proposed drive system is developed and simulated using MATLAB/Simulink software. The operation principle of using component is analysed and the simulation results are presented in this to verify the theoretical analysis.

  12. Advanced dc motor controller for battery-powered electric vehicles

    Science.gov (United States)

    Belsterling, C. A.

    1981-01-01

    A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle.

  13. Limb versus speech motor control: a conceptual review.

    Science.gov (United States)

    Grimme, Britta; Fuchs, Susanne; Perrier, Pascal; Schöner, Gregor

    2011-01-01

    This paper presents a comparative conceptual review of speech and limb motor control. Speech is essentially cognitive in nature and constrained by the rules of language, while limb movement is often oriented to physical objects. We discuss the issue of intrinsic vs. extrinsic variables underlying the representations of motor goals as well as whether motor goals specify terminal postures or entire trajectories. Timing and coordination is recognized as an area of strong interchange between the two domains. Although coordination among different motor acts within a sequence and coarticulation are central to speech motor control, they have received only limited attention in manipulatory movements. The biomechanics of speech production is characterized by the presence of soft tissue, a variable number of degrees of freedom, and the challenges of high rates of production, while limb movements deal more typically with inertial constraints from manipulated objects. This comparative review thus leads us to identify many strands of thinking that are shared across the two domains, but also points us to issues on which approaches in the two domains differ. We conclude that conceptual interchange between the fields of limb and speech motor control has been useful in the past and promises continued benefit.

  14. The relationship between motor control and phonology in dyslexic children.

    Science.gov (United States)

    Ramus, Franck; Pidgeon, Elizabeth; Frith, Uta

    2003-07-01

    The goal of this study was to investigate the automaticity/cerebellar theory of dyslexia. We tested phonological skills and cerebellar function in a group of dyslexic 8-12-year-old children and their matched controls. Tests administered included the Phonological Assessment Battery, postural stability, bead threading, finger to thumb and time estimation. Dyslexic children were found to be significantly poorer than the controls at all tasks but time estimation. About 77% of dyslexics were more than one standard deviation below controls in phonological ability, and 59% were similarly impaired in motor skills. However, at least part of the discrepancy in motor skills was due to dyslexic individuals who had additional disorders (ADHD and/or DCD). The absence of evidence for a time estimation deficit also casts doubt on the cerebellar origin of the motor deficiency. About half the dyslexic children didn't have any motor problem, and there was no evidence for a causal relationship between motor skills on the one hand and phonological and reading skills on the other. This study provides partial support for the presence of motor problems in dyslexic children, but does not support the hypothesis that a cerebellar dysfunction is the cause of their phonological and reading impairment.

  15. AN INVESTIGATION ON SWITCHING BEHAVIOURS OF VECTOR CONTROLLED INDUCTION MOTORS

    Directory of Open Access Journals (Sweden)

    Yilmaz Korkmaz

    2014-11-01

    Full Text Available Field oriented control and direct torque control are the most popular methods in high performance industrial control applications for induction motors. Naturally, the strengths and weaknesses of each control method are available. Therefore, the selection of optimum control method is vitally important for many industrial applications. So, the advantages and the disadvantages of both control methods have to be well defined. In this paper, a new and different perspective has been presented regarding the comparison of the inverter switching behaviours on the FOC and the DTC drivers. For this purpose, the experimental studies have been carried out to compare the inverter switching frequencies and torque responses of induction motors in the FOC and the DTC systems. The dSPACE 1103 controller board has been programmed with Matlab/Simulink software. As expected, the experimental studies have showed that the FOC controlled motors have had a lessened torque ripple. On the other hand, the FOC controlled motor switching frequency has about 75% more than the DTC controlled.

  16. Permanent magnet brushless motor control based on ADRC

    Directory of Open Access Journals (Sweden)

    Li Xiaokun

    2016-01-01

    Full Text Available Permanent magnet brushless motor is a nonlinear system with multiple variables, the mathematical model of Permanent magnet brushless motor is difficult to establish, and since that the classic PID control is hard to precisely control the motor. Active disturbance rejection control (ADRC technique is a new nonlinear controller which does not depend on the system model. It is starting from the classic PID control, and establishing the loop control system by error negative feedback, the ESO(extended state observer observing system which comes from the observer theory of modern control theory to observe internal and external perturbations. ADRC inherits the advantages of PID with little overshoot, high convergence speed, high accuracy, strong anti-interference ability and other characteristics, and it has a strong disturbance adaptability and robustness as for the uncertainty perturbation and their internal disturbance of control objects. Therefore, This paper attempts to use Active disturbance rejection control(ADRC, in order to improve the control of permanent magnet brushless motor. In this design of control system, the simulation of the system is realized based on MATLAB, and then the discrete control algorithm is transplanted to the embedded system to control the permanent magnet brushless DC motor (PMBLDCM. The control system is implemented on the DSP-F28335 digital signal processor, and the DSP also provides the functions like voltage and current AD sampling, PWM driver generation, speed and rotor position calculation, etc. The simulation and experiment results indicate that, the system has good dynamic performance and anti-disturbance performance.

  17. ON THE ISSUE OF VECTOR CONTROL OF THE ASYNCHRONOUS MOTORS

    Directory of Open Access Journals (Sweden)

    B. I. Firago

    2015-01-01

    Full Text Available The paper considers the issue of one of the widespread types of vector control realization for the asynchronous motors with a short-circuited rotor. Of all more than 20 vector control types known presently, the following are applied most frequently: direct vector control with velocity pickup (VP, direct vector control without VP, indirect vector control with VP and indirect vector control without VP. Despite the fact that the asynchronous-motor indirect vector control without VP is the easiest and most spread, the absence of VP does not allow controlling the motor electromagnetic torque at zero velocity. This is the reason why for electric motor drives of such requirements they utilize the vector control with a velocity transducer. The systems of widest dissemination became the direct and indirect vector control systems with X-axis alignment of the synchronously rotating x–y-coordinate frame along the rotor flux-linkage vector inasmuch as this provides the simplest correlations for controlling variables. Although these two types of vector control are well presented in literature, a number of issues concerning their realization and practical application require further elaboration. These include: the block schemes adequate representation as consisted with the modern realization of vector control and clarification of the analytical expressions for evaluating the regulator parameters.The authors present a technique for evaluating the dynamics of an asynchronous electric motor drive with direct vector control and x-axis alignment along the vector of rotor flux linkage. The article offers a generalized structure of this vector control type with detailed description of its principal blocks: controlling system, frequency converter, and the asynchronous motor.The paper presents a direct vector control simulating model developed in the MatLab environment on the grounds of this structure. The authors illustrate the described technique with the results

  18. Representational Similarity Analysis Reveals Heterogeneous Networks Supporting Speech Motor Control

    DEFF Research Database (Denmark)

    Zheng, Zane; Cusack, Rhodri; Johnsrude, Ingrid

    The everyday act of speaking involves the complex processes of speech motor control. One important feature of such control is regulation of articulation when auditory concomitants of speech do not correspond to the intended motor gesture. While theoretical accounts of speech monitoring posit...... is supported by a complex neural network that is involved in linguistic, motoric and sensory processing. With the aid of novel real-time acoustic analyses and representational similarity analyses of fMRI signals, our data show functionally differentiated networks underlying auditory feedback control of speech....... multiple functional components required for detection of errors in speech planning (e.g., Levelt, 1983), neuroimaging studies generally indicate either single brain regions sensitive to speech production errors, or small, discrete networks. Here we demonstrate that the complex system controlling speech...

  19. Finding the beat: From socially coordinated vocalizations in songbirds to rhythmic entrainment in humans.

    Directory of Open Access Journals (Sweden)

    Jonathan Isaac Benichov

    2016-06-01

    Full Text Available Humans and oscine songbirds share the rare capacity for vocal learning. Songbirds have the ability to acquire songs and calls of various rhythms through imitation. In several species, birds can even coordinate the timing of their vocalizations with other individuals in duets that are synchronized with millisecond-accuracy. It is not known, however, if songbirds can perceive rhythms holistically nor if they are capable of spontaneous entrainment to complex rhythms, in a manner similar to humans. Here we review emerging evidence from studies of rhythm generation and vocal coordination across songbirds and humans. In particular, recently developed experimental methods have revealed neural mechanisms underlying the temporal structure of song and have allowed us to test birds’ abilities to predict the timing of rhythmic social signals. Surprisingly, zebra finches can readily learn to anticipate the calls of a vocal robot partner and alter the timing of their answers to avoid jamming, even in reference to complex rhythmic patterns. This capacity resembles, to some extent, human predictive motor response to an external beat. In songbirds, this is driven, at least in part, by the forebrain song system, which controls song timing and is essential for vocal learning. Building upon previous evidence for spontaneous entrainment in human and non-human vocal learners, we propose a comparative framework for future studies aimed at identifying shared mechanism of rhythm production and perception across songbirds and humans.

  20. Implementation of a new fuzzy vector control of induction motor.

    Science.gov (United States)

    Rafa, Souad; Larabi, Abdelkader; Barazane, Linda; Manceur, Malik; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2014-05-01

    The aim of this paper is to present a new approach to control an induction motor using type-1 fuzzy logic. The induction motor has a nonlinear model, uncertain and strongly coupled. The vector control technique, which is based on the inverse model of the induction motors, solves the coupling problem. Unfortunately, in practice this is not checked because of model uncertainties. Indeed, the presence of the uncertainties led us to use human expertise such as the fuzzy logic techniques. In order to maintain the decoupling and to overcome the problem of the sensitivity to the parametric variations, the field-oriented control is replaced by a new block control. The simulation results show that the both control schemes provide in their basic configuration, comparable performances regarding the decoupling. However, the fuzzy vector control provides the insensitivity to the parametric variations compared to the classical one. The fuzzy vector control scheme is successfully implemented in real-time using a digital signal processor board dSPACE 1104. The efficiency of this technique is verified as well as experimentally at different dynamic operating conditions such as sudden loads change, parameter variations, speed changes, etc. The fuzzy vector control is found to be a best control for application in an induction motor.

  1. Performance of Networked DC Motor with Fuzzy Logic Controller

    Directory of Open Access Journals (Sweden)

    B. Sharmila

    2010-07-01

    Full Text Available In the recent years the usage of data networks has been increased due to its cost effective and flexible applications. A shared data network can effectively reduce complicated wiring connections, installation and maintenance for connecting a complex control system with various sensors, actuators, and controllers as a networked control system. For the time-sensitive application with networked control system the remote dc motor actuation control has been chosen. Due to time-varying network traffic demands and disturbances, the guarantee of transmitting signals without any delays or data losses plays a vital role for the performances in using networked control systems. This paper proposes Fuzzy Logic Controller methodology in the networked dc motor control and the results are compared with the performance of the system with Ziegler-Nichols Tuned Proportional-Integral-Derivative Controller and Fuzzy Modulated Proportional-Integral-Derivative Controller. Simulations results are presented to demonstrate the proposed schemes in a closed loop control. The effective results show that the performance of networked control dc motor is improved by using Fuzzy Logic Controller than the other controllers.

  2. Engineering controllable bidirectional molecular motors based on myosin.

    Science.gov (United States)

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D; Parker, David; Bryant, Zev

    2012-02-19

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.

  3. Functional Neuroimaging of Motor Control inParkinson’s Disease

    DEFF Research Database (Denmark)

    Herz, Damian M; Eickhoff, Simon B; Løkkegaard, Annemette

    2014-01-01

    and yielded consistent alterations in neural activity in patients with PD. Differences in cortical activation between PD patients and healthy controls converged in a left-lateralized fronto-parietal network comprising the presupplementary motor area, primary motor cortex, inferior parietal cortex......Functional neuroimaging has been widely used to study the activation patterns of the motor network in patients with Parkinson's disease (PD), but these studies have yielded conflicting results. This meta-analysis of previous neuroimaging studies was performed to identify patterns of abnormal...... movement-related activation in PD that were consistent across studies. We applied activation likelihood estimation (ALE) of functional neuroimaging studies probing motor function in patients with PD. The meta-analysis encompassed data from 283 patients with PD reported in 24 functional neuroimaging studies...

  4. Design and Comparison Direct Torque Control Techniques for Induction Motors

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Kazmierkowski, Marian P.; Zelechowski, Marcin

    2005-01-01

    In this paper a comparison of two significant control methods of induction motor are presented. The first one is a classical Direct Torque and Flux Control (DTC) and is compared with a scheme, which uses Space Vector Modulator (DTC-SVM). A comparison in respect to dynamic and steady state...

  5. Application of Fuzzy Logic in Control of Switched Reluctance Motor

    Directory of Open Access Journals (Sweden)

    Pavel Brandstetter

    2006-01-01

    Full Text Available The flux linkage of switched reluctance motor (SRM depends on the stator current and position between the rotor and stator poles. The fact determines that during control of SRM current with the help of classical PI controllers in a wide regulation range unsatisfied results occur. The main reasons of the mentioned situation are big changes of the stator inductance depending on the stator current and rotor position. In a switched reluctance motor the stator phase inductance is a non-linear function of the stator phase current and rotor position. Fuzzy controller and fuzzy logic are generally non-linear systems; hence they can provide better performance in this case. Fuzzy controller is mostly presented as a direct fuzzy controller or as a system, which realizes continued changing parameters of other controller, so-called fuzzy supervisor. Referring to the usage of fuzzy logic as a supervisor of conventional PI controller in control of SRM possible improvement occurs.

  6. Robust linear parameter varying induction motor control with polytopic models

    Directory of Open Access Journals (Sweden)

    Dalila Khamari

    2013-01-01

    Full Text Available This paper deals with a robust controller for an induction motor which is represented as a linear parameter varying systems. To do so linear matrix inequality (LMI based approach and robust Lyapunov feedback controller are associated. This new approach is related to the fact that the synthesis of a linear parameter varying (LPV feedback controller for the inner loop take into account rotor resistance and mechanical speed as varying parameter. An LPV flux observer is also synthesized to estimate rotor flux providing reference to cited above regulator. The induction motor is described as a polytopic model because of speed and rotor resistance affine dependence their values can be estimated on line during systems operations. The simulation results are presented to confirm the effectiveness of the proposed approach where robustness stability and high performances have been achieved over the entire operating range of the induction motor.

  7. How do glial cells contribute to motor control?

    DEFF Research Database (Denmark)

    Christensen, Rasmus Kordt; Petersen, Anders Victor; Perrier, Jean-Francois Marie

    2013-01-01

    including glutamate, ATP, GABA or serine. In the present review we will focus on astrocytes and review the evidence suggesting and demonstrating their role in motor control. Rhythmic motor behaviors such as locomotion, swimming or chewing are generated by networks of neurons termed central pattern....... These data suggest that astrocytes play an essential role in motor control and we believe that a range of studies will confirm this view in the near future....... generators (CPG). These networks are highly flexible and adjust the frequency of their output to the external environment. In the case of respiration, the CPG reacts when changes in the pH of the blood occur. The chemosensory control of breathing is ensured by astrocytes, which react to variation...

  8. Human mutant huntingtin disrupts vocal learning in transgenic songbirds.

    Science.gov (United States)

    Liu, Wan-Chun; Kohn, Jessica; Szwed, Sarah K; Pariser, Eben; Sepe, Sharon; Haripal, Bhagwattie; Oshimori, Naoki; Marsala, Martin; Miyanohara, Atsushi; Lee, Ramee

    2015-11-01

    Speech and vocal impairments characterize many neurological disorders. However, the neurogenetic mechanisms of these disorders are not well understood, and current animal models do not have the necessary circuitry to recapitulate vocal learning deficits. We developed germline transgenic songbirds, zebra finches (Taneiopygia guttata) expressing human mutant huntingtin (mHTT), a protein responsible for the progressive deterioration of motor and cognitive function in Huntington's disease (HD). Although generally healthy, the mutant songbirds had severe vocal disorders, including poor vocal imitation, stuttering, and progressive syntax and syllable degradation. Their song abnormalities were associated with HD-related neuropathology and dysfunction of the cortical-basal ganglia (CBG) song circuit. These transgenics are, to the best of our knowledge, the first experimentally created, functional mutant songbirds. Their progressive and quantifiable vocal disorder, combined with circuit dysfunction in the CBG song system, offers a model for genetic manipulation and the development of therapeutic strategies for CBG-related vocal and motor disorders.

  9. Rapid Control Prototyping Plataform for Didactic Plant Motor DC

    Directory of Open Access Journals (Sweden)

    Cristian Bazán-Orobio

    2013-06-01

    Full Text Available In this paper a design, implementation and validation of a Rapid Control Prototype platform for a plant based on a DC motor is proposed. This low-cost prototype provides of an electronic card (with a motor DC and sensors manipulated by PC with free software tools using Linux, Scilab / Scicos and RTAI-Lab. This RCP System allows developing speed -position control trainings by using different types of PID industrial controllers with anti – wind up and bump less transfer schemes. We develop a speed control application structured in four steps: identification, controller design, simulation and real time control, where there are pedagogical advantages of a platform that not only allows simulation but also real-time control of a plant.

  10. PMBLDC motor drive with power factor correction controller

    DEFF Research Database (Denmark)

    George, G.J.; Ramachandran, Rakesh; Arun, N.

    2012-01-01

    This paper presents a boost converter configuration, control scheme and design of single phase power factor controller for permanent magnet brushless DC motor (PMBLDCM) drive. PMBLDC motors are the latest choice of researchers, due to the high efficiency, silent operation, compact size, high...... reliability, and low maintenance requirements. The proposed Power Factor Controller topology improves power quality by improving performance of PMBLDCM drive, such as reduction of AC main current harmonics, near unity power factor. PFC converter forces the drive to draw sinusoidal supply current in phase...... with supply voltage. It uses a boost converter to obtain unity power factor with improved performance. The system includes a speed controller for PMBLDC drive and a voltage controller for boost converter.. The voltage or speed controllers can be realized using proportional integral (PI) controller...

  11. Discrete Current Control Strategy of Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Yan Dong

    2013-01-01

    Full Text Available A control strategy of permanent magnet synchronous motors (PMSMs, which is different from the traditional vector control (VC and direct torque control (DTC, is proposed. Firstly, the circular rotating magnetic field is analyzed on the simplified model and discredited into stepping magnetic field. The stepping magnetomotive force will drive the rotor to run as the stepping motor. Secondly, the stator current orientation is used to build the control model instead of rotor flux orientation. Then, the discrete current control strategy is set and adopted in positioning control. Three methods of the strategy are simulated in computer and tested on the experiment platform of PMSM. The control precision is also verified through the experiment.

  12. Vocal learning in elephants: neural bases and adaptive context.

    Science.gov (United States)

    Stoeger, Angela S; Manger, Paul

    2014-10-01

    In the last decade clear evidence has accumulated that elephants are capable of vocal production learning. Examples of vocal imitation are documented in African (Loxodonta africana) and Asian (Elephas maximus) elephants, but little is known about the function of vocal learning within the natural communication systems of either species. We are also just starting to identify the neural basis of elephant vocalizations. The African elephant diencephalon and brainstem possess specializations related to aspects of neural information processing in the motor system (affecting the timing and learning of trunk movements) and the auditory and vocalization system. Comparative interdisciplinary (from behavioral to neuroanatomical) studies are strongly warranted to increase our understanding of both vocal learning and vocal behavior in elephants.

  13. 77 FR 9239 - California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Truck Idling...

    Science.gov (United States)

    2012-02-16

    ... AGENCY California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Truck Idling... relating to the control of emissions from new motor vehicles or new motor vehicle engines subject to this... standards (other than crankcase emission standards) for the control of emissions from new motor vehicles or...

  14. 76 FR 5368 - California State Motor Vehicle Pollution Control Standards; Greenhouse Gas Regulations; Within...

    Science.gov (United States)

    2011-01-31

    ... AGENCY California State Motor Vehicle Pollution Control Standards; Greenhouse Gas Regulations; Within-the... thereof shall adopt or attempt to enforce any standard relating to the control of emissions from new motor..., inspection or any other approval relating to the control of emissions from any new motor vehicle or new motor...

  15. 78 FR 51724 - California State Motor Vehicle Pollution Control Standards; Tractor-Trailer Greenhouse Gas...

    Science.gov (United States)

    2013-08-21

    ... AGENCY California State Motor Vehicle Pollution Control Standards; Tractor-Trailer Greenhouse Gas... shall adopt or attempt to enforce any standard relating to the control of emissions from new motor..., inspection or any other approval relating to the control of emissions from any new motor vehicle or new motor...

  16. 76 FR 70128 - California State Motor Vehicle Pollution Control Standards; Amendments to the California Heavy...

    Science.gov (United States)

    2011-11-10

    ... AGENCY California State Motor Vehicle Pollution Control Standards; Amendments to the California Heavy... thereof shall adopt or attempt to enforce any standard relating to the control of emissions from new motor..., inspection or any other approval relating to the control of emissions from any new motor vehicle or new motor...

  17. 76 FR 34693 - California State Motor Vehicle Pollution Control Standards; Within-the-Scope Determination for...

    Science.gov (United States)

    2011-06-14

    ... AGENCY California State Motor Vehicle Pollution Control Standards; Within-the-Scope Determination for... or attempt to enforce any standard relating to the control of emissions from new motor vehicles or... any other approval relating to the control of emissions from any new motor vehicle or new motor...

  18. 76 FR 61095 - California State Motor Vehicle Pollution Control Standards; Within the Scope Determination and...

    Science.gov (United States)

    2011-10-03

    ... AGENCY California State Motor Vehicle Pollution Control Standards; Within the Scope Determination and... certification, inspection or any other approval relating to the control of emissions from any new motor vehicle...) for the control of emissions from new motor vehicles or new motor engines prior to March 30, 1966,\\9...

  19. 75 FR 11878 - California State Motor Vehicle Pollution Control Standards; Amendments to the California Zero...

    Science.gov (United States)

    2010-03-12

    ... AGENCY California State Motor Vehicle Pollution Control Standards; Amendments to the California Zero... certification, inspection or any other approval relating to the control of emissions from any new motor vehicle... standards) for the control of emissions from new motor vehicles or new motor vehicle engines prior to March...

  20. 75 FR 43975 - California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Truck Idling...

    Science.gov (United States)

    2010-07-27

    ... AGENCY California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Truck Idling... certification, inspection or any other approval relating to the control of emissions from any new motor vehicle... standards) for the control of emissions from new motor vehicles or new motor vehicle engines prior to March...

  1. Dynamically Reconfigurable Control Struture for Three Phase Induction Motor Drives

    Directory of Open Access Journals (Sweden)

    Rajendran Ramasamy

    2012-01-01

    Full Text Available Field Programmable Gate Arrays (FPGAs are a suitable hardware platform for the industrial control systems. These dynamically reconfigurable FPGAs can be used as an alternative digital solution to conventional microcontrollers and DSPs to ensure fast operation. This paper presents the feasibility of embedding the Direct Torque Control with Space Vector Modulation (DTC-SVM of an induction motor into FPGA.The DTC-SVM of induction motor drives is simulated in a Matlab/Simulink environment using a Xilinx System Generator.

  2. Motor skill learning, retention, and control deficits in Parkinson's disease.

    Science.gov (United States)

    Pendt, Lisa Katharina; Reuter, Iris; Müller, Hermann

    2011-01-01

    Parkinson's disease, which affects the basal ganglia, is known to lead to various impairments of motor control. Since the basal ganglia have also been shown to be involved in learning processes, motor learning has frequently been investigated in this group of patients. However, results are still inconsistent, mainly due to skill levels and time scales of testing. To bridge across the time scale problem, the present study examined de novo skill learning over a long series of practice sessions that comprised early and late learning stages as well as retention. 19 non-demented, medicated, mild to moderate patients with Parkinson's disease and 19 healthy age and gender matched participants practiced a novel throwing task over five days in a virtual environment where timing of release was a critical element. Six patients and seven control participants came to an additional long-term retention testing after seven to nine months. Changes in task performance were analyzed by a method that differentiates between three components of motor learning prominent in different stages of learning: Tolerance, Noise and Covariation. In addition, kinematic analysis related the influence of skill levels as affected by the specific motor control deficits in Parkinson patients to the process of learning. As a result, patients showed similar learning in early and late stages compared to the control subjects. Differences occurred in short-term retention tests; patients' performance constantly decreased after breaks arising from poorer release timing. However, patients were able to overcome the initial timing problems within the course of each practice session and could further improve their throwing performance. Thus, results demonstrate the intact ability to learn a novel motor skill in non-demented, medicated patients with Parkinson's disease and indicate confounding effects of motor control deficits on retention performance.

  3. Motor skill learning, retention, and control deficits in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Lisa Katharina Pendt

    Full Text Available Parkinson's disease, which affects the basal ganglia, is known to lead to various impairments of motor control. Since the basal ganglia have also been shown to be involved in learning processes, motor learning has frequently been investigated in this group of patients. However, results are still inconsistent, mainly due to skill levels and time scales of testing. To bridge across the time scale problem, the present study examined de novo skill learning over a long series of practice sessions that comprised early and late learning stages as well as retention. 19 non-demented, medicated, mild to moderate patients with Parkinson's disease and 19 healthy age and gender matched participants practiced a novel throwing task over five days in a virtual environment where timing of release was a critical element. Six patients and seven control participants came to an additional long-term retention testing after seven to nine months. Changes in task performance were analyzed by a method that differentiates between three components of motor learning prominent in different stages of learning: Tolerance, Noise and Covariation. In addition, kinematic analysis related the influence of skill levels as affected by the specific motor control deficits in Parkinson patients to the process of learning. As a result, patients showed similar learning in early and late stages compared to the control subjects. Differences occurred in short-term retention tests; patients' performance constantly decreased after breaks arising from poorer release timing. However, patients were able to overcome the initial timing problems within the course of each practice session and could further improve their throwing performance. Thus, results demonstrate the intact ability to learn a novel motor skill in non-demented, medicated patients with Parkinson's disease and indicate confounding effects of motor control deficits on retention performance.

  4. Noninvasive Reactivation of Motor Descending Control after Paralysis.

    Science.gov (United States)

    Gerasimenko, Yury P; Lu, Daniel C; Modaber, Morteza; Zdunowski, Sharon; Gad, Parag; Sayenko, Dimitry G; Morikawa, Erika; Haakana, Piia; Ferguson, Adam R; Roy, Roland R; Edgerton, V Reggie

    2015-12-15

    The present prognosis for the recovery of voluntary control of movement in patients diagnosed as motor complete is generally poor. Herein we introduce a novel and noninvasive stimulation strategy of painless transcutaneous electrical enabling motor control and a pharmacological enabling motor control strategy to neuromodulate the physiological state of the spinal cord. This neuromodulation enabled the spinal locomotor networks of individuals with motor complete paralysis for 2-6 years American Spinal Cord Injury Association Impairment Scale (AIS) to be re-engaged and trained. We showed that locomotor-like stepping could be induced without voluntary effort within a single test session using electrical stimulation and training. We also observed significant facilitation of voluntary influence on the stepping movements in the presence of stimulation over a 4-week period in each subject. Using these strategies we transformed brain-spinal neuronal networks from a dormant to a functional state sufficiently to enable recovery of voluntary movement in five out of five subjects. Pharmacological intervention combined with stimulation and training resulted in further improvement in voluntary motor control of stepping-like movements in all subjects. We also observed on-command selective activation of the gastrocnemius and soleus muscles when attempting to plantarflex. At the end of 18 weeks of weekly interventions the mean changes in the amplitude of voluntarily controlled movement without stimulation was as high as occurred when combined with electrical stimulation. Additionally, spinally evoked motor potentials were readily modulated in the presence of voluntary effort, providing electrophysiological evidence of the re-establishment of functional connectivity among neural networks between the brain and the spinal cord.

  5. Chaotic operation and chaos control of travelling wave ultrasonic motor.

    Science.gov (United States)

    Shi, Jingzhuo; Zhao, Fujie; Shen, Xiaoxi; Wang, Xiaojie

    2013-08-01

    The travelling wave ultrasonic motor, which is a nonlinear dynamic system, has complex chaotic phenomenon with some certain choices of system parameters and external inputs, and its chaotic characteristics have not been studied until now. In this paper, the preliminary study of the chaos phenomenon in ultrasonic motor driving system has been done. The experiment of speed closed-loop control is designed to obtain several groups of time sampling data sequence of the amplitude of driving voltage, and phase-space reconstruction is used to analyze the chaos characteristics of these time sequences. The largest Lyapunov index is calculated and the result is positive, which shows that the travelling wave ultrasonic motor has chaotic characteristics in a certain working condition Then, the nonlinear characteristics of travelling wave ultrasonic motor are analyzed which includes Lyapunov exponent map, the bifurcation diagram and the locus of voltage relative to speed based on the nonlinear chaos model of a travelling wave ultrasonic motor. After that, two kinds of adaptive delay feedback controllers are designed in this paper to control and suppress chaos in USM speed control system. Simulation results show that the method can control unstable periodic orbits, suppress chaos in USM control system. Proportion-delayed feedback controller was designed following and arithmetic of fuzzy logic was used to adaptively adjust the delay time online. Simulation results show that this method could fast and effectively change the chaos movement into periodic or fixed-point movement and make the system enter into stable state from chaos state. Finally the chaos behavior was controlled.

  6. Embedded target toolbox for DSP control applications of BLDC motor

    Directory of Open Access Journals (Sweden)

    Benk Enikö

    2009-10-01

    Full Text Available This paper presents a Matlab embedded target toolbox used for the DC brushless (BLDC motor applications. The synthesis, code generation, and the implementation of the control program, and also the control task itself are carried out on the host PC, under the Simulink. The target system is a brushless DC motor control kit – MSK243, connected on serial port COM to the host computer. With this real time library, it is possible to develop a Rapid Control Prototyping and Hardware-in-the-Loop Simulations. During the running control task on the target, the full functionality of Matlab/Simulink can be used for parameter’s visualization without interrupting or impeding the control process on the MSK240 board.

  7. Flux-weakening control methods for hybrid excitation synchronous motor

    Directory of Open Access Journals (Sweden)

    Mingming Huang

    2015-09-01

    Full Text Available The hybrid excitation synchronous motor (HESM, which aim at combining the advantages of permanent magnet motor and wound excitation motor, have the characteristics of low-speed high-torque hill climbing and wide speed range. Firstly, a new kind of HESM is presented in the paper, and its structure and mathematical model are illustrated. Then, based on a space voltage vector control, a novel flux-weakening method for speed adjustment in the high speed region is presented. The unique feature of the proposed control method is that the HESM driving system keeps the q-axis back-EMF components invariable during the flux-weakening operation process. Moreover, a copper loss minimization algorithm is adopted to reduce the copper loss of the HESM in the high speed region. Lastly, the proposed method is validated by the simulation and the experimental results.

  8. Attentional control theory: anxiety, emotion, and motor planning.

    Science.gov (United States)

    Coombes, Stephen A; Higgins, Torrie; Gamble, Kelly M; Cauraugh, James H; Janelle, Christopher M

    2009-12-01

    The present study investigated how trait anxiety alters the balance between attentional control systems to impact performance of a discrete preplanned goal-directed motor task. Participants executed targeted force contractions (engaging the goal-directed attentional system) at the offset of emotional and non-emotional distractors (engaging the stimulus-driven attentional system). High and low anxious participants completed the protocol at two target force levels (10% and 35% of maximum voluntary contraction). Reaction time (RT), performance accuracy, and rate of change of force were calculated. Expectations were confirmed at the 10% but not the 35% target force level: (1) high anxiety was associated with slower RTs, and (2) threat cues lead to faster RTs independently of trait anxiety. These new findings suggest that motor efficiency, but not motor effectiveness is compromised in high relative to low anxious individuals. We conclude that increased stimulus-driven attentional control interferes with movements that require greater attentional resources.

  9. Fuzzy logic based DSP controlled servo position control for ultrasonic motor

    Energy Technology Data Exchange (ETDEWEB)

    Bal, G.; Demirbas, S.; Colak, I. [Gazi University, Ankara (Turkey). Electrical Dept.; Bekiroglu, E. [Abant Izzet Baysal University, Bolu (Turkey). Dept. of Electrical and Electronics Engineering

    2004-12-01

    In this paper, position control of an ultrasonic motor was implemented on the basis of fuzzy reasoning. A digitally controllable two phase serial resonant inverter was developed to drive the ultrasonic motor by using a TMS320F243 digital signal processor. The driving frequency was used as a control input in the position control loop. The position characteristics obtained from the proposed drive and control system were demonstrated and evaluated by experiments. The experimental results verify that the developed position control scheme is highly effective, reliable and applicable for the ultrasonic motor. (author)

  10. Smooth operator: avoidance of subharmonic bifurcations through mechanical mechanisms simplifies song motor control in adult zebra finches.

    Science.gov (United States)

    Elemans, Coen P H; Laje, Rodrigo; Mindlin, Gabriel B; Goller, Franz

    2010-10-06

    Like human infants, songbirds acquire their song by imitation and eventually generate sounds that result from complicated neural networks and intrinsically nonlinear physical processes. Signatures of low-dimensional chaos such as subharmonic bifurcations have been reported in adult and developing zebra finch song. Here, we use methods from nonlinear dynamics to test whether adult male zebra finches (Taenopygia guttata) use the intrinsic nonlinear properties of their vocal organ, the syrinx, to insert subharmonic transitions in their song. In contrast to previous data on the basis of spectrographic evidence, we show that subharmonic transitions do not occur in adult song. Subharmonic transitions also do not arise in artificially induced sound in the intact syrinx, but are commonly generated in the excised syrinx. These findings suggest that subharmonic transitions are not used to increase song complexity, and that the brain controls song in a surprisingly smooth control regimen. Fast, smooth changes in acoustic elements can be produced by direct motor control in a stereotyped fashion, which is a more reliable indicator of male fitness than abrupt acoustic changes that do not require similarly precise control. Consistent with this view is the presence of high fidelity at every level of motor control, from telencephalic premotor areas to superfast syringeal muscles.

  11. Speed tracking and synchronization of multiple motors using ring coupling control and adaptive sliding mode control.

    Science.gov (United States)

    Li, Le-Bao; Sun, Ling-Ling; Zhang, Sheng-Zhou; Yang, Qing-Quan

    2015-09-01

    A new control approach for speed tracking and synchronization of multiple motors is developed, by incorporating an adaptive sliding mode control (ASMC) technique into a ring coupling synchronization control structure. This control approach can stabilize speed tracking of each motor and synchronize its motion with other motors' motion so that speed tracking errors and synchronization errors converge to zero. Moreover, an adaptive law is exploited to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort and attenuate chattering. Performance comparisons with parallel control, relative coupling control and conventional PI control are investigated on a four-motor synchronization control system. Extensive simulation results show the effectiveness of the proposed control scheme.

  12. Brain mechanisms controlling decision making and motor planning.

    Science.gov (United States)

    Ramakrishnan, Arjun; Murthy, Aditya

    2013-01-01

    Accumulator models of decision making provide a unified framework to understand decision making and motor planning. In these models, the evolution of a decision is reflected in the accumulation of sensory information into a motor plan that reaches a threshold, leading to choice behavior. While these models provide an elegant framework to understand performance and reaction times, their ability to explain complex behaviors such as decision making and motor control of sequential movements in dynamic environments is unclear. To examine and probe the limits of online modification of decision making and motor planning, an oculomotor "redirect" task was used. Here, subjects were expected to change their eye movement plan when a new saccade target appeared. Based on task performance, saccade reaction time distributions, computational models of behavior, and intracortical microstimulation of monkey frontal eye fields, we show how accumulator models can be tested and extended to study dynamic aspects of decision making and motor control. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Controller Design for Direct Torque Controlled Space Vector Modulated (DTC-SVM) Induction Motor Drives

    DEFF Research Database (Denmark)

    Zelechowski, M.; Kazmierkowski, M.P.; Blaabjerg, Frede

    2005-01-01

    In this paper two different methods of PI controllers for direct torque controlled-space vector modulated induction motor drives have been studied. The first one is simple method based only on symmetric optimum criterion. The second approach takes into account the full model of induction motor in...

  14. Oral and vocal fold diadochokinesis in dysphonic women

    Directory of Open Access Journals (Sweden)

    Talita Louzada

    2011-12-01

    Full Text Available The evaluation of oral and vocal fold diadochokinesis (DDK in individuals with voice disorders may contribute to the understanding of factors that affect the balanced vocal production. Scientific studies that make use of this assessment tool support the knowledge advance of this area, reflecting the development of more appropriate therapeutic planning. Objective: To compare the results of oral and vocal fold DDK in dysphonic women and in women without vocal disorders. Material and methods: For this study, 28 voice recordings of women from 19 to 54 years old, diagnosed with dysphonia and submitted to a voice assessment from speech pathologist and otorhinolaryngologist, were used. The control group included 30 nondysphonic women evaluated in prior research from normal adults. The analysis parameters like number and duration of emissions, as well as the regularity of the repetition of syllables "pa", "ta", "ka" and the vowels "a" and "i," were provided by the Advanced Motor Speech Profile program (MSP Model-5141, version-2.5.2 (KayPentax. The DDK sequence "pataka" was analyzed quantitatively through the Sound Forge 7.0 program, as well as manually with the audio-visual help of sound waves. Average values of oral and vocal fold DDK dysphonic and nondysphonic women were compared using the "t Student" test and were considered significant when p<0.05. Results: The findings showed no significant differences between populations; however, the coefficient of variation of period (CvP and jitter of period (JittP average of the "ka," "a" and "i" emissions, respectively, were higher in dysphonic women (CvP=10.42%, 12.79%, 12.05%; JittP=2.05%, 6.05%, 3.63% compared to the control group (CvP=8.86%; 10.95%, 11.20%; JittP=1.82%, 2.98%, 3.15%. Conclusion: Although the results do not indicate any difficulties in oral and laryngeal motor control in the dysphonic group, the largest instability in vocal fold DDK in the experimental group should be considered, and

  15. Mean deviation coupling synchronous control for multiple motors via second-order adaptive sliding mode control.

    Science.gov (United States)

    Li, Lebao; Sun, Lingling; Zhang, Shengzhou

    2016-05-01

    A new mean deviation coupling synchronization control strategy is developed for multiple motor control systems, which can guarantee the synchronization performance of multiple motor control systems and reduce complexity of the control structure with the increasing number of motors. The mean deviation coupling synchronization control architecture combining second-order adaptive sliding mode control (SOASMC) approach is proposed, which can improve synchronization control precision of multiple motor control systems and make speed tracking errors, mean speed errors of each motor and speed synchronization errors converge to zero rapidly. The proposed control scheme is robustness to parameter variations and random external disturbances and can alleviate the chattering phenomena. Moreover, an adaptive law is employed to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort. Performance comparisons with master-slave control, relative coupling control, ring coupling control, conventional PI control and SMC are investigated on a four-motor synchronization control system. Extensive comparative results are given to shown the good performance of the proposed control scheme.

  16. Position Control of Switched Reluctance Motor Using Super Twisting Algorithm

    Directory of Open Access Journals (Sweden)

    Muhammad Rafiq Mufti

    2016-01-01

    Full Text Available The inherent problem of chattering in traditional sliding mode control is harmful for practical application of control system. This paper pays a considerable attention to a chattering-free control method, that is, higher-order sliding mode (super twisting algorithm. The design of a position controller for switched reluctance motor is presented and its stability is assured using Lyapunov stability theorem. In order to highlight the advantages of higher-order sliding mode controller (HOSMC, a classical first-order sliding mode controller (FOSMC is also applied to the same system and compared. The simulation results reflect the effectiveness of the proposed technique.

  17. Gait variability and motor control in people with knee osteoarthritis

    DEFF Research Database (Denmark)

    Alkjaer, Tine; Raffalt, Peter C; Dalsgaard, Helle

    2015-01-01

    Knee osteoarthritis (OA) is a common disease that impairs walking ability and function. We compared the temporal gait variability and motor control in people with knee OA with healthy controls. The purpose was to test the hypothesis that the temporal gait variability would reflect a more...... fluctuation analysis. The motor control was assessed by the soleus (SO) Hoffmann (H)-reflex modulation and muscle co-activation during walking. The results showed no statistically significant mean group differences in any of the gait variability measures or muscle co-activation levels. The SO H......-reflex amplitude was significantly higher in the knee OA group around heel strike when compared with the controls. The mean group difference in the H-reflex in the initial part of the stance phase (control-knee OA) was -6.6% Mmax (95% CI: -10.4 to -2.7, p=0.041). The present OA group reported relatively small...

  18. Effective and Robust Generalized Predictive Speed Control of Induction Motor

    Directory of Open Access Journals (Sweden)

    Patxi Alkorta

    2013-01-01

    Full Text Available This paper presents and validates a new proposal for effective speed vector control of induction motors based on linear Generalized Predictive Control (GPC law. The presented GPC-PI cascade configuration simplifies the design with regard to GPC-GPC cascade configuration, maintaining the advantages of the predictive control algorithm. The robust stability of the closed loop system is demonstrated by the poles placement method for several typical cases of uncertainties in induction motors. The controller has been tested using several simulations and experiments and has been compared with Proportional Integral Derivative (PID and Sliding Mode (SM control schemes, obtaining outstanding results in speed tracking even in the presence of parameter uncertainties, unknown load disturbance, and measurement noise in the loop signals, suggesting its use in industrial applications.

  19. Fuzzy Mixed-Sensitivity Control of Uncertain Nonlinear Induction Motor

    Directory of Open Access Journals (Sweden)

    Vahid Azimi

    2014-06-01

    Full Text Available In this article we investigate on robust mixed-sensitivity H∞ control for speed and torque control of inductional motor (IM. In order to simplify the design procedure the Takagi–Sugeno (T–S fuzzy approach is introduced to solve the nonlinear model Problem. Loop-shaping methodology and Mixed-sensitivity problem are developed to formulate frequency-domain specifications. Then a regional pole-placement output feedback H∞ controller is employed by using linear matrix inequalities(LMIs teqnique for each linear subsystem of IM T-S fuzzy model. Parallel Distributed Compensation (PDC is used to design the controller for the overall system . Simulation results are presented to validate the effectiveness of the proposed controller even in the presence of motor parameter variations and unknown load disturbance.

  20. Simple Approach For Induction Motor Control Using Reconfigurable Hardware

    Directory of Open Access Journals (Sweden)

    József VÁSÁRHELYI

    2002-12-01

    Full Text Available The paper deals with rotor-field-oriented vector control structures for the induction motor drives fed by the so-called tandem frequency converter. It is composed of two different types of DC-link converters connected in parallel arrangement. The larger-power one has current-source character and is operating synchronized in time and in amplitude with the stator currents. The other one has voltage-source character and it is the actuator of the motor control system. The drive is able to run also with partial-failed tandem converter, if the control strategy corresponds to the actual operating mode. A reconfigurable hardware implemented in configurable logic cells ensures the changing of the vector-control structure. The proposed control schemes were tested by simulation based on Matlab-Simulink model.

  1. Hysteresis Current Control of Switched Reluctance Motor in Aircraft Applications

    Directory of Open Access Journals (Sweden)

    Maged N. F. Nashed

    2014-05-01

    Full Text Available The switched reluctance motor (SRM drives have been widely used in aircraft applications due to the motor advantages like high speed operation, simple construction, no windings on rotor. But high torque ripples and acoustic noise are main disadvantages. The current hysteresis chopping control is one of the important control methods for SRM drives. These disadvantages can be limited using the hysteresis or chopping current control. This control strategy makes the torque of SRM maintained within a set of hysteresis bands by applying suitable source voltage. This paper introduces two hysteresis control modes; hard chopping and soft chopping mode. The SRM drive system is modeled in Simulink model using MATLAB/SIMULINK software package.

  2. Two-voice complexity from a single side of the syrinx in northern mockingbird Mimus polyglottos vocalizations.

    Science.gov (United States)

    Zollinger, Sue Anne; Riede, Tobias; Suthers, Roderick A

    2008-06-01

    The diverse vocal signals of songbirds are produced by highly coordinated motor patterns of syringeal and respiratory muscles. These muscles control separate sound generators on the right and left side of the duplex vocal organ, the syrinx. Whereas most song is under active neural control, there has been a growing interest in a different class of nonlinear vocalizations consisting of frequency jumps, subharmonics, biphonation and deterministic chaos that are also present in the vocal repertoires of many vertebrates, including many birds. These nonlinear phenomena may not require active neural control, depending instead on the intrinsic nonlinear dynamics of the oscillators housed within each side of the syrinx. This study investigates the occurrence of these phenomena in the vocalizations of intact northern mockingbirds Mimus polyglottos. By monitoring respiratory pressure and airflow on each side of the syrinx, we provide the first analysis of the contribution made by each side of the syrinx to the production of nonlinear phenomena and are able to reliably discriminate two-voice vocalizations from potentially similar appearing, unilaterally produced, nonlinear events. We present the first evidence of syringeal lateralization of nonlinear dynamics during bilaterally produced chaotic calls. The occurrence of unilateral nonlinear events was not consistently correlated with fluctuations in air sac pressure or the rate of syringeal airflow. Our data support previous hypotheses for mechanical and acoustic coupling between the two sides of the syrinx. These results help lay a foundation upon which to understand the communicative functions of nonlinear phenomena.

  3. Control systems are General Motors' biggest energy saver

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    In 1978, General Motors Corp. used almost 3% less energy than it did in 1972, even though production had increased about 25%. Most of the savings are the result of improved technology and design changes in buildings, equipment, and processes. Computerized energy management control systems are now in operation or being installed in 78 GM buildings.

  4. Review of Apraxia: The cognitive side of motor control

    DEFF Research Database (Denmark)

    Martínez-Ferreiro, Silvia

    2014-01-01

    Reviews the book, Apraxia: The Cognitive Side of Motor Control by G. Goldenberg (see record 2013-31133-000). The book makes a significant contribution to the study of this multifaceted syndrome, especially in relation to limb apraxia, the author’s main research area. Despite more than 100 years...

  5. Motor and Executive Control in Repetitive Timing of Brief Intervals

    Science.gov (United States)

    Holm, Linus; Ullen, Fredrik; Madison, Guy

    2013-01-01

    We investigated the causal role of executive control functions in the production of brief time intervals by means of a concurrent task paradigm. To isolate the influence of executive functions on timing from motor coordination effects, we dissociated executive load from the number of effectors used in the dual task situation. In 3 experiments,…

  6. Velocity control in three-phase induction motors using PIC; Controle de velocidade de motor de inducao trifasico usando PIC

    Energy Technology Data Exchange (ETDEWEB)

    Marcelino, M.A.; Silva, G.B.S.; Grandinetti, F.J. [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil). Fac. de Engenharia; Universidade de Taubate (UNITAU), SP (Brazil)], Emails: abud@feg.unesp.br, gabonini@yahoo.com.br, grandinetti@unitau.br

    2009-07-01

    This paper presents a technique for speed control three-phase induction motor using the pulse width modulation (PWM), in open loop while maintaining the tension for constant frequency. The technique is adapted from a thesis entitled 'Control of the three-phase induction motor, using discrete PWM generation, optimized and synchronized', where studies are presented aimed at their application in home appliances, to eliminate mechanical parts, replaced by low cost electronic control, thus having a significant reduction in power consumption. Initially the experiment was done with the Intel 80C31 micro controller. In this paper, the PWM modulation is implemented using a PIC micro controller, and the speed control kept a low profile, based on tables, synchronized with transitions and reduced generation of harmonics in the network. Confirmations were made using the same process of building tables, but takes advantage of the program of a RISC device.

  7. Brain mechanisms underlying automatic and unconscious control of motor action

    Directory of Open Access Journals (Sweden)

    Kevin eD'ostilio

    2012-09-01

    Full Text Available Are we in command of our motor acts? The popular belief holds that our conscious decisions are the direct causes of our actions. However, overwhelming evidence from neurosciences demonstrates that our actions are instead largely driven by brain processes that unfold outside of our consciousness. To study these brain processes, scientists have used a range of different functional brain imaging techniques and experimental protocols, such as subliminal priming. Here, we review recent advances in the field and propose a theoretical model of motor control that may contribute to a better understanding of the pathophysiology of movement disorders such as Parkinson’s disease.

  8. Control and Diagnostic Model of Brushless Dc Motor

    Science.gov (United States)

    Abramov, Ivan V.; Nikitin, Yury R.; Abramov, Andrei I.; Sosnovich, Ella V.; Božek, Pavol

    2014-09-01

    A simulation model of brushless DC motor (BLDC) control and diagnostics is considered. The model has been developed using a freeware complex "Modeling in technical devices". Faults and diagnostic parameters of BLDC are analyzed. A logicallinguistic diagnostic model of BLDC has been developed on basis of fuzzy logic. The calculated rules determine dependence of technical condition on diagnostic parameters, their trends and utilized lifetime of BLDC. Experimental results of BLDC technical condition diagnostics are discussed. It is shown that in the course of BLDC degradation the motor condition change depends on diagnostic parameter values

  9. A Neural Code That Is Isometric to Vocal Output and Correlates with Its Sensory Consequences

    Science.gov (United States)

    Vyssotski, Alexei L.; Stepien, Anna E.; Keller, Georg B.; Hahnloser, Richard H. R.

    2016-01-01

    What cortical inputs are provided to motor control areas while they drive complex learned behaviors? We study this question in the nucleus interface of the nidopallium (NIf), which is required for normal birdsong production and provides the main source of auditory input to HVC, the driver of adult song. In juvenile and adult zebra finches, we find that spikes in NIf projection neurons precede vocalizations by several tens of milliseconds and are insensitive to distortions of auditory feedback. We identify a local isometry between NIf output and vocalizations: quasi-identical notes produced in different syllables are preceded by highly similar NIf spike patterns. NIf multiunit firing during song precedes responses in auditory cortical neurons by about 50 ms, revealing delayed congruence between NIf spiking and a neural representation of auditory feedback. Our findings suggest that NIf codes for imminent acoustic events within vocal performance. PMID:27723764

  10. A Neural Code That Is Isometric to Vocal Output and Correlates with Its Sensory Consequences.

    Science.gov (United States)

    Vyssotski, Alexei L; Stepien, Anna E; Keller, Georg B; Hahnloser, Richard H R

    2016-10-01

    What cortical inputs are provided to motor control areas while they drive complex learned behaviors? We study this question in the nucleus interface of the nidopallium (NIf), which is required for normal birdsong production and provides the main source of auditory input to HVC, the driver of adult song. In juvenile and adult zebra finches, we find that spikes in NIf projection neurons precede vocalizations by several tens of milliseconds and are insensitive to distortions of auditory feedback. We identify a local isometry between NIf output and vocalizations: quasi-identical notes produced in different syllables are preceded by highly similar NIf spike patterns. NIf multiunit firing during song precedes responses in auditory cortical neurons by about 50 ms, revealing delayed congruence between NIf spiking and a neural representation of auditory feedback. Our findings suggest that NIf codes for imminent acoustic events within vocal performance.

  11. Sensorless Control of Electric Motors with Kalman Filters: Applications to Robotic and Industrial Systems

    Directory of Open Access Journals (Sweden)

    Gerasimos G. Rigatos

    2011-12-01

    Full Text Available The paper studies sensorless control for DC and induction motors, using Kalman Filtering techniques. First the case of a DC motor is considered and Kalman Filter-based control is implemented. Next the nonlinear model of a field-oriented induction motor is examined and the motor

  12. Peripheral Mechanisms for Vocal Production in Birds--Differences and Similarities to Human Speech and Singing

    Science.gov (United States)

    Riede, Tobias; Goller, Franz

    2010-01-01

    Song production in songbirds is a model system for studying learned vocal behavior. As in humans, bird phonation involves three main motor systems (respiration, vocal organ and vocal tract). The avian respiratory mechanism uses pressure regulation in air sacs to ventilate a rigid lung. In songbirds sound is generated with two independently…

  13. Perinatal Development of the Motor Systems Involved in Postural Control

    Directory of Open Access Journals (Sweden)

    Laurent Vinay

    2005-01-01

    Full Text Available Motor behaviors of some species, such as the rat and the human baby, are quite immature at birth. Here we review recent data on some of the mechanisms underlying the postnatal maturation of posture in the rat, in particular the development of pathways descending from the brain stem and projecting onto the lumbar enlargement of the spinal cord. A short-lasting depletion in serotonin affects both posture and the excitability of motoneurons. Here we try to extrapolate to human development and suggest that the abnormalities in motor control observed in childhood—e.g, deficits in motor coordination—might have their roots in the prenatal period, in particular serotonin depletion due to exposure to several environmental and toxicological factors during pregnancy.

  14. Perinatal development of the motor systems involved in postural control.

    Science.gov (United States)

    Vinay, Laurent; Ben-Mabrouk, Faïza; Brocard, Frédéric; Clarac, François; Jean-Xavier, Céline; Pearlstein, Edouard; Pflieger, Jean-François

    2005-01-01

    Motor behaviors of some species, such as the rat and the human baby, are quite immature at birth. Here we review recent data on some of the mechanisms underlying the postnatal maturation of posture in the rat, in particular the development of pathways descending from the brain stem and projecting onto the lumbar enlargement of the spinal cord. A short-lasting depletion in serotonin affects both posture and the excitability of motoneurons. Here we try to extrapolate to human development and suggest that the abnormalities in motor control observed in childhood--e.g. deficits in motor coordination--might have their roots in the prenatal period, in particular serotonin depletion due to exposure to several environmental and toxicological factors during pregnancy.

  15. Controlled Rotation and Manipulation of Individual Molecular Motors

    Science.gov (United States)

    Kersell, Heath; Perera, U. G. E.; Ample, F.; Zhang, Y.; Vives, G.; Echeverria, J.; Grisolia, M.; Rapenne, G.; Joachim, C.; Hla, S.-W.

    2015-03-01

    The design of artificial molecular machines often takes inspiration from macroscopic machines, but the parallels between the two are frequently only superficial because many molecular machines are governed by quantum processes. Previously, chemically and light driven rotary molecular motors have been developed. For electrically driven motors, tunneling electrons from the tip of a scanning tunneling microscope (STM) have been used to drive rotation in a simple rotor into a single direction and to move a wheeled molecule across a surface. Here, we show that a single standalone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or counterclockwise direction [1] by selective inelastic electron tunneling through different sub-units of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotator for controlled rotations, and a Ru atomic ball bearing connecting the static and rotational parts. The directional rotation originates from saw-tooth-like rotational potentials, which are determined by the internal molecular structure and are independent of the surface adsorption site. This project is supported by the US DOE, BES grant: DE-FG02-02ER46012.

  16. Myoelectric hand prosthesis force control through servo motor current feedback.

    Science.gov (United States)

    Sono, Tálita Saemi Payossim; Menegaldo, Luciano Luporini

    2009-10-01

    This paper presents the prehension force closed-loop control design of a mechanical finger commanded by electromyographic signal (EMG) from a patient's arm. The control scheme was implemented and tested in a mechanical finger prototype with three degrees of freedom and one actuator, driven by arm muscles EMG of normal volunteers. Real-time indirect estimation of prehension force was assessed by measuring the DC servo motor actuator current. A model of the plant comprising finger, motor, and grasped object was proposed. Model parameters were identified experimentally and a classical feedback phase-lead compensator was designed. The controlled mechanical finger was able to provide a more accurate prehension force modulation of a compliant object when compared to open-loop control.

  17. Simulation of Field Oriented Control in Induction Motor Drive System

    Directory of Open Access Journals (Sweden)

    Xiang Zhao

    2013-07-01

    Full Text Available In this paper, a 3-phase induction motor model for simulation the field oriented control (FOC system based on space vector pulse width modulation (SVPWM is established in Ansoft/Simplorer software. The theory of field oriented control (FOC and the principle of space vector pulse width modulation (SVPWM were introduced. The simulation results are presented and analyzed. A Simulink simulation model of field oriented control system is presented as a comparison under the same conditions. The results indicated that the Simplorer model had quick response speed, small torque fluctuations and good performance both in steady and dynamic states. Furthermore, the Simplorer model can be coupled with the finite element model of the motor to achieve field-circuit coupling simulation of induction motor’s field oriented control system.    

  18. Integration simulation method concerning speed control of ultrasonic motor

    Science.gov (United States)

    Miyauchi, R.; Yue, B.; Matsunaga, N.; Ishizuka, S.

    2016-09-01

    In this paper, the configuration of control system of the ultrasonic motor (USM) from finite element method (FEM) model by applying the nonlinear model order reduction (MOR) is proposed. First, the USM and the FEM model is introduced. Second, FEM model order reduction method is described. Third, the result of comparing the computing time and accuracy of the FEM model and reduced order model is shown. Finaly, nominal model for control is derived by system identification from reduced order model. Nonlinear model predictive control (NMPC) is applied to the nominal model, and speed is controlled. the controller effect is comfirmed by applying the proposed reduced order model.

  19. Microgravity induced changes in the control of motor units

    Science.gov (United States)

    de Luca, C.; Roy, S.

    The goal of this project is to understand the effects of microgravity on the control of muscles. It is motivated by the notion that in order to adequately address microgravity-induced deterioration in the force generating capacity of muscles, one needs to understand the changes in the control aspects in addition to histochemical and morphological changes. The investigations into muscle control need to include the regulation of the firing activity of motor units that make up a muscle and the coordination of different muscles responsible for the control of a joint. In order to understand the effects of microgravity on these two aspects of muscle control, we will test astronauts before and after spaceflight. The investigations of the control of motor units will involve intramuscular EMG techniques developed in our laboratory. We will use a quadrifilar electrode to detect simultaneously three differential channels of EMG activity. These data will be decomposed accurately using a sophisticated set of algorithms constructed with artificial intelligence knowledge- based techniques. Particular attention will be paid to the firing rate and recruitment behavior of motor units and we will study the degree of cross-correlation of the firing rates. This approach will enable us to study the firing behavior of several (approx. 10) concurrently active motor units. This analysis will enable us to detect modifications in the control of motor units. We will perform these investigations in a hand muscle, which continues being used in prehensile tasks in space, and a leg muscle whose antigravity role is not needed in space. The comparison of the effects of weightlessness on these muscles will determine if continued use of muscles in space deters the possible deleterious effects of microgravity on the control of motor units, in addition to slowing down atrophy. We are particularly interested in comparing the results of this study to similar data already obtained from elderly subjects

  20. Device for controlling a wind motor

    Energy Technology Data Exchange (ETDEWEB)

    Zelenov, V.Ye.; Fedotov, V.Ye.; Khritonov, V.P.; Kuntsevich, P.A.; Ostrovskiy, A.S.; Terentyev, L.I.

    1982-01-01

    A block diagram is proposed of the device for preventing sharp turns of the head ''H'' of the wind unit when it is installed in the wind. The device contains a brake with electromagnetic drive. When the electromagnetic is engaged, the H is connected to the support tower through a shock absorber with damper, and with disengaged electromagnetic, the H can turn in relation to the vertical axis. The controlling signal to the electromagnetic drive is fed from the key element which has 3 inlets.

  1. DIRECT TORQUE CONTROL FOR INDUCTION MOTOR USING INTELLIGENT TECHNIQUES

    Directory of Open Access Journals (Sweden)

    R.Toufouti

    2007-09-01

    Full Text Available In this paper, we propose two approach intelligent techniques of improvement of Direct Torque Control (DTC of Induction motor such as fuzzy logic (FL and artificial neural network (ANN, applied in switching select voltage vector .The comparison with conventional direct torque control (DTC, show that the use of the DTC_FL and DTC_ANN, reduced the torque, stator flux, and current ripples. The validity of the proposed methods is confirmed by the simulative results.

  2. Speed Control of Induction Motor using FOC Method

    Directory of Open Access Journals (Sweden)

    Hafeezul Haq

    2015-03-01

    Full Text Available An increasing number of applications in high performing electrical drive systems use nowadays, squirrel-cage induction motors. This paper describes a simplified method for the speed control of a three phase AC drive using Proportional-Integral controller. The simulation results show that the step response of the model is very fast, steady and able to work in four quadrants, and robustness and high performance is achieved.

  3. A sensorimotor area in the songbird brain is required for production of vocalizations in the song learning period of development.

    Science.gov (United States)

    Piristine, Hande C; Choetso, Tenzin; Gobes, Sharon M H

    2016-11-01

    Sensory feedback is essential for acquiring and maintaining complex motor behaviors, including birdsong. In zebra finches, auditory feedback reaches the song control circuits primarily through the nucleus interfacialis nidopalii (Nif), which provides excitatory input to HVC (proper name)-a premotor region essential for the production of learned vocalizations. Despite being one of the major inputs to the song control pathway, the role of Nif in generating vocalizations is not well understood. To address this, we transiently inactivated Nif in late juvenile zebra finches. Upon Nif inactivation (in both hemispheres or on one side only), birds went from singing stereotyped zebra finch song to uttering highly variable and unstructured vocalizations resembling sub-song, an early juvenile song form driven by a basal ganglia circuit. Simultaneously inactivating Nif and LMAN (lateral magnocellular nucleus of the anterior nidopallium), the output nucleus of a basal ganglia circuit, inhibited song production altogether. These results suggest that Nif is required for generating the premotor drive for song. Permanent Nif lesions, in contrast, have only transient effects on vocal production, with song recovering within a day. The sensorimotor nucleus Nif thus produces a premotor drive to the motor pathway that is acutely required for generating learned vocalizations, but once permanently removed, the song system can compensate for its absence. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1213-1225, 2016.

  4. The Development and Validation of the Vocalic Sensitivity Test.

    Science.gov (United States)

    Villaume, William A.; Brown, Mary Helen

    1999-01-01

    Notes that presbycusis, hearing loss associated with aging, may be marked by a second dimension of hearing loss, a loss in vocalic sensitivity. Reports on the development of the Vocalic Sensitivity Test, which controls for the verbal elements in speech while also allowing for the vocalics to exercise their normal metacommunicative function of…

  5. Visual-Motor Control in Baseball Batting

    Directory of Open Access Journals (Sweden)

    Rob Gray

    2011-05-01

    Full Text Available With margins for error of a few milliseconds and fractions of an inch it is not surprising that hitting a baseball is considered to be one of the most difficult acts in all of sports. We have been investigating this challenging behavior using a virtual baseball batting setup in which simulations of an approaching ball, pitcher, and field are combined with real-time recording of bat and limb movements. I will present evidence that baseball batting involves variable pre-programmed control in which the swing direction and movement time (MT are set prior to the initiation of the action but can take different values from swing-to-swing. This programming process utilizes both advance information (pitch history and count and optical information picked-up very early in the ball's flight (ball time to contact TTC and rotation direction. The pre-programmed value of MT is used to determine a critical value of TTC for swing initiation. Finally, because a baseball swing is an action that is occasionally interrupted online (i.e., a “check swing”, I will discuss experiments that examine when this pre-programmed action can be stopped and the sources of optical information that trigger stopping.

  6. Effects of muscle atrophy on motor control

    Science.gov (United States)

    Stuart, D. G.

    1985-01-01

    As a biological tissue, muscle adapts to the demands of usage. One traditional way of assessing the extent of this adaptation has been to examine the effects of an altered-activity protocol on the physiological properties of muscles. However, in order to accurately interpret the changes associated with an activity pattern, it is necessary to employ an appropriate control model. A substantial literature exists which reports altered-use effects by comparing experimental observations with those from animals raised in small laboratory cages. Some evidence suggests that small-cage-reared animals actually represent a model of reduced use. For example, laboratory animals subjected to limited physical activity have shown resistance to insulin-induced glucose uptake which can be altered by exercise training. This project concerned itself with the basic mechanisms underlying muscle atrophy. Specifically, the project addressed the issue of the appropriateness of rats raised in conventional-sized cages as experimental models to examine this phenomenon. The project hypothesis was that rats raised in small cages are inappropriate models for the study of muscle atrophy. The experimental protocol involved: 1) raising two populations of rats, one group in conventional (small)-sized cages and the other group in a much larger (133x) cage, from weanling age (21 days) through to young adulthood (125 days); 2) comparison of size- and force-related characteristics of selected test muscles in an acute terminal paradigm.

  7. Signal differentiation in position tracking control of dc motors

    Science.gov (United States)

    Beltran-Carbajal, F.; Valderrabano-Gonzalez, A.; Rosas-Caro, J. C.

    2015-01-01

    An asymptotic differentiation approach with respect to time is used for on-line estimation of velocity and acceleration signals in controlled dc motors. The attractive feature of this differentiator of signals is that it does not require any system mathematical model, which allows its use in engineering systems that require the signal differentiation for its control, identification, fault detection, among other applications. Moreover, it is shown that the differentiation approach can be applied for output signals showing a chaotic behavior. In addition a differential flatness control scheme with additional integral compensation of the output error is proposed for tracking tasks of position reference trajectories for direct current electric motors using angular position measurements only.

  8. Advanced induction motor drive control with single current sensor

    Directory of Open Access Journals (Sweden)

    Adžić Evgenije M.

    2016-01-01

    Full Text Available This paper proposes induction motor drive control method which uses minimal number of sensors, providing only DC-link current as a feedback signal. Improved DC-link current sampling scheme and modified asymmetrical switching pattern cancels characteristic waveform errors which exist in all three reconstructed motor line-currents. Motor linecurrent harmonic content is reduced to an acceptable level, eliminating torque and speed oscillations which were inherent for conventional single sensor drives. Consequently, use of single current sensor and line-current reconstruction technique is no longer acceptable only for low and medium performance drives, but also for drives where priority is obtaining a highly accurate, stable and fast response. Proposed control algorithm is validated using induction motor drive hardware prototype based on TMS320F2812 digital signal processor. [Projekat Ministarstva nauke Republike Srbije, br. III 042004 and by the Provincial Secretariat for Science and Technological Development of AP Vojvodina under contract No. 114-451-3508/2013-04

  9. Speed Control of Induction Motor by Using Variable Frequency

    Directory of Open Access Journals (Sweden)

    Drive Pooja Shinde

    2014-04-01

    Full Text Available The variable speed drive is focused on voltage amplitude control. However, its only control speed in constraint limits. The load on Induction Motor is not constant & vary as per load requirement. so speed must be change as per load. If the supply voltage decreased motor torque also decreases, for maintaining same torque, slip decreases hence speed falls and motor speed is directly proportional to supply frequency, hence to maintain a speed, the supply V/F ratio must be vary accordingly. But the speed is not vary proportion to application so it consume the rated power and it becomes economically disadvantages. To overcome above problem a new concept of Variable Frequency Drive (VFD is introduced. Adding a Variable Frequency Drive (VFD to a motor driven system can offer potential energy saving in a system in which the load vary with time. The primary function of VFD in application is to provide energy saving, speed reduction of 20% can save energy upto 50%.

  10. The effect of musculoskeletal pain on motor activity and control.

    Science.gov (United States)

    Sterling, M; Jull, G; Wright, A

    2001-06-01

    Aberrant movement patterns and postures are obvious to clinicians managing patients with musculoskeletal pain. However, some changes in motor function that occur in the presence of pain are less apparent. Clinical and basic science investigations have provided evidence of the effects of nociception on aspects of motor function. Both increases and decreases in muscle activity have been shown, along with alterations in neuronal control mechanisms, proprioception, and local muscle morphology. Various models have been proposed in an attempt to provide an explanation for some of these changes. These include the vicious cycle and pain adaptation models. Recent research has seen the emergence of a new model in which patterns of muscle activation and recruitment are altered in the presence of pain (neuromuscular activation model). These changes seem to particularly affect the ability of muscles to perform synergistic functions related to maintaining joint stability and control. These changes are believed to persist into the period of chronicity. This review shows current knowledge of the effect of musculoskeletal pain on the motor system and presents the various proposed models, in addition to other shown effects not covered by these models. The relevance of these models to both acute and chronic pain is considered. It is apparent that people experiencing musculoskeletal pain exhibit complex motor responses that may show some variation with the time course of the disorder.

  11. Motor Control and Regulation for a Flywheel Energy Storage System

    Science.gov (United States)

    Kenny, Barbara; Lyons, Valerie

    2003-01-01

    This talk will focus on the motor control algorithms used to regulate the flywheel system at the NASA Glenn Research Center. First a discussion of the inner loop torque control technique will be given. It is based on the principle of field orientation and is implemented without a position or speed sensor (sensorless control). Then the outer loop charge and discharge algorithm will be presented. This algorithm controls the acceleration of the flywheel during charging and the deceleration while discharging. The algorithm also allows the flywheel system to regulate the DC bus voltage during the discharge cycle.

  12. Permanent Magnetic Synchronous Motor Control System Based on ADRC

    Directory of Open Access Journals (Sweden)

    Song Wang

    2013-06-01

    Full Text Available Permanent magnetic synchronous motor (PMSM is a strong coupling and non-linear system. In the PMSM speed-regulation system, PID controller is the conventional one, it is difficult to decide the parameters of PID. Moreover, the performance of PID controller is not very well in large disturbance. In the paper, the Active Disturbance Rejection Controller (ADRC is applied to the PMSM speed-regulation system. The result of simulations and experiments show that this algorithm has better anti-load-disturbance performance than PID controller.

  13. Arm coordination in octopus crawling involves unique motor control strategies.

    Science.gov (United States)

    Levy, Guy; Flash, Tamar; Hochner, Binyamin

    2015-05-04

    To cope with the exceptional computational complexity that is involved in the control of its hyper-redundant arms [1], the octopus has adopted unique motor control strategies in which the central brain activates rather autonomous motor programs in the elaborated peripheral nervous system of the arms [2, 3]. How octopuses coordinate their eight long and flexible arms in locomotion is still unknown. Here, we present the first detailed kinematic analysis of octopus arm coordination in crawling. The results are surprising in several respects: (1) despite its bilaterally symmetrical body, the octopus can crawl in any direction relative to its body orientation; (2) body and crawling orientation are monotonically and independently controlled; and (3) contrasting known animal locomotion, octopus crawling lacks any apparent rhythmical patterns in limb coordination, suggesting a unique non-rhythmical output of the octopus central controller. We show that this uncommon maneuverability is derived from the radial symmetry of the arms around the body and the simple pushing-by-elongation mechanism by which the arms create the crawling thrust. These two together enable a mechanism whereby the central controller chooses in a moment-to-moment fashion which arms to recruit for pushing the body in an instantaneous direction. Our findings suggest that the soft molluscan body has affected in an embodied way [4, 5] the emergence of the adaptive motor behavior of the octopus.

  14. Functional MRI in human motor control studies and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Toma, Keiichiro [Kyoto Univ. (Japan). Graduate School of Medicine; Nakai, Toshiharu [Inst. of Biomedical Research and Innovation, Kobe (Japan)

    2002-07-01

    Functional magnetic resonance imaging (fMRI) has been a useful tool for the noninvasive mapping of brain function associated with various motor and cognitive tasks. Because fMRI is based on the blood oxygenation level dependent (BOLD) effect, it does not directly record neural activity. With the fMRI technique, distinguishing BOLD signals creased by cortical projection neurons from those created by intracortical neurons appears to be difficult. Two major experimental designs are used in fMRI studies: block designs and event-related designs. Block-designed fMRI presupposes the steady state of regional cerebral blood flow and has been applied to examinations of brain activation caused by tasks requiring sustained or repetitive movements. By contrast, the more recently developed event-related fMRI with time resolution of a few seconds allows the mapping of brain activation associated with a single movement according to the transient aspects of the hemodynamic response. Increasing evidence suggests that multiple motor areas are engaged in a networked manner to execute various motor acts. In order to understand functional brain maps, it is important that one understands sequential and parallel organizations of anatomical connections between multiple motor areas. In fMRI studies of complex motor tasks, elementary parameters such as movement length, force, velocity, acceleration and frequency should be controlled, because inconsistency in those parameters may alter the extent and intensity of motor cortical activation, confounding interpretation of the findings obtained. In addition to initiation of movements, termination of movements plays an important role in the successful achievement of complex movements. Brain areas exclusively related to the termination of movements have been, for the first time, uncovered with an event-related fMRI technique. We propose the application of fMRI to the elucidation of the pathophysiology of movement disorders, particularly dystonia

  15. speed control of dc motor on load using fuzzy logic controller

    African Journals Online (AJOL)

    HP

    This paper presents the development of a fuzzy logic controller for the driver DC motor in the lube oil ..... The system has a rapid and smooth response to step input ... Tm(s). TL(s) w(s) theta. 60/(2*pi) rad/s-rpm. 0 Td. 1. J.s+b. Motor-Pump. Load.

  16. A 3D biomechanical vocal tract model to study speech production control: How to take into account the gravity?

    CERN Document Server

    Buchaillard, S; Payan, Y; Buchaillard, St\\'{e}phanie; Perrier, Pascal; Payan, Yohan

    2007-01-01

    This paper presents a modeling study of the way speech motor control can deal with gravity to achieve steady-state tongue positions. It is based on simulations carried out with the 3D biomechanical tongue model developed at ICP, which is now controlled with the Lambda model (Equilibrium-Point Hypothesis). The influence of short-delay orosensory feedback on posture stability is assessed by testing different muscle force/muscle length relationships (Invariant Characteristics). Muscle activation patterns necessary to maintain the tongue in a schwa position are proposed, and the relations of head position, tongue shape and muscle activations are analyzed.

  17. Control Code for Bearingless Switched-Reluctance Motor

    Science.gov (United States)

    Morrison, Carlos R.

    2007-01-01

    A computer program has been devised for controlling a machine that is an integral combination of magnetic bearings and a switched-reluctance motor. The motor contains an eight-pole stator and a hybrid rotor, which has both (1) a circular lamination stack for levitation and (2) a six-pole lamination stack for rotation. The program computes drive and levitation currents for the stator windings with real-time feedback control. During normal operation, two of the four pairs of opposing stator poles (each pair at right angles to the other pair) levitate the rotor. The remaining two pairs of stator poles exert torque on the six-pole rotor lamination stack to produce rotation. This version is executable in a control-loop time of 40 s on a Pentium (or equivalent) processor that operates at a clock speed of 400 MHz. The program can be expanded, by addition of logic blocks, to enable control of position along additional axes. The code enables adjustment of operational parameters (e.g., motor speed and stiffness, and damping parameters of magnetic bearings) through computer keyboard key presses.

  18. Robust Adaptive Speed Control of Induction Motor Drives

    DEFF Research Database (Denmark)

    Bidstrup, N.

    This thesis concerns speed control of current vector controlled induction motor drives (CVC drives). The CVC drive is an existing prototype drive developed by Danfoss A/S, Transmission Division. Practical tests have revealed that the open loop dynamical properties of the CVC drive are highly...... dependent of the operating point, which is characterised by the speed and load. If the requirements to the controller performance is large, then it is difficult to maintain specified controller performance with a fixed controller, because of the open loop variations. An auto-tuner based on least squares......, (LS) identification and generalized predictive control (GPC) has been implemented and tested on the CVC drive. Allthough GPC is a robust control method, it was not possible to maintain specified controller performance in the entire operating range. This was the main reason for investigating truly...

  19. Robust Adaptive Speed Control of Induction Motor Drives

    DEFF Research Database (Denmark)

    Bidstrup, N.

    This thesis concerns speed control of current vector controlled induction motor drives (CVC drives). The CVC drive is an existing prototype drive developed by Danfoss A/S, Transmission Division. Practical tests have revealed that the open loop dynamical properties of the CVC drive are highly...... dependent of the operating point, which is characterised by the speed and load. If the requirements to the controller performance is large, then it is difficult to maintain specified controller performance with a fixed controller, because of the open loop variations. An auto-tuner based on least squares......, (LS) identification and generalized predictive control (GPC) has been implemented and tested on the CVC drive. Allthough GPC is a robust control method, it was not possible to maintain specified controller performance in the entire operating range. This was the main reason for investigating truly...

  20. Vector Control Algorithm for Electric Vehicle AC Induction Motor Based on Improved Variable Gain PID Controller

    Directory of Open Access Journals (Sweden)

    Gang Qin

    2015-01-01

    Full Text Available The acceleration performance of EV, which affects a lot of performances of EV such as start-up, overtaking, driving safety, and ride comfort, has become increasingly popular in recent researches. An improved variable gain PID control algorithm to improve the acceleration performance is proposed in this paper. The results of simulation with Matlab/Simulink demonstrate the effectiveness of the proposed algorithm through the control performance of motor velocity, motor torque, and three-phase current of motor. Moreover, it is investigated that the proposed controller is valid by comparison with the other PID controllers. Furthermore, the AC induction motor experiment set is constructed to verify the effect of proposed controller.

  1. Efficiency optimized control of medium-size induction motor drives

    DEFF Research Database (Denmark)

    Abrahamsen, F.; Blaabjerg, Frede; Pedersen, John Kim

    2000-01-01

    The efficiency of a variable speed induction motor drive can be optimized by adaption of the motor flux level to the load torque. In small drives (... not be disregarded without further analysis. The importance of the converter losses on efficiency optimization in medium-size drives is analyzed in this paper. Based on the experiments with a 90 kW drive it is found that it is not critical if the converter losses are neglected in the control, except...... that the robustness towards load disturbances may unnecessarily be reduced. Both displacement power factor and model-based efficiency optimizing control methods perform well in medium-size drives. The last strategy is also tested on a 22 kW drive with good results....

  2. Efficiency optimized control of medium-size induction motor drives

    DEFF Research Database (Denmark)

    Abrahamsen, F.; Blaabjerg, Frede; Pedersen, John Kim;

    2000-01-01

    The efficiency of a variable speed induction motor drive can be optimized by adaption of the motor flux level to the load torque. In small drives (... not be disregarded without further analysis. The importance of the converter losses on efficiency optimization in medium-size drives is analyzed in this paper. Based on the experiments with a 90 kW drive it is found that it is not critical if the converter losses are neglected in the control, except...... that the robustness towards load disturbances may unnecessarily be reduced. Both displacement power factor and model-based efficiency optimizing control methods perform well in medium-size drives. The last strategy is also tested on a 22 kW drive with good results....

  3. Low speed phaselock speed control system. [for brushless dc motor

    Science.gov (United States)

    Fulcher, R. W.; Sudey, J. (Inventor)

    1975-01-01

    A motor speed control system for an electronically commutated brushless dc motor is provided which includes a phaselock loop with bidirectional torque control for locking the frequency output of a high density encoder, responsive to actual speed conditions, to a reference frequency signal, corresponding to the desired speed. The system includes a phase comparator, which produces an output in accordance with the difference in phase between the reference and encoder frequency signals, and an integrator-digital-to-analog converter unit, which converts the comparator output into an analog error signal voltage. Compensation circuitry, including a biasing means, is provided to convert the analog error signal voltage to a bidirectional error signal voltage which is utilized by an absolute value amplifier, rotational decoder, power amplifier-commutators, and an arrangement of commutation circuitry.

  4. Techniques for Vocal Health.

    Science.gov (United States)

    Wiest, Lori

    1997-01-01

    Outlines a series of simple yet effective practices, techniques, and tips for improving the singing voice and minimizing stress on the vocal chords. Describes the four components for producing vocal sound: respiration, phonation, resonation, and articulation. Provides exercises for each and lists symptoms of sickness and vocal strain. (MJP)

  5. Self-Controlled Feedback for a Complex Motor Task

    Directory of Open Access Journals (Sweden)

    Wolf Peter

    2011-12-01

    Full Text Available Self-controlled augmented feedback enhances learning of simple motor tasks. Thereby, learners tend to request feedback after trials that were rated as good by themselves. Feedback after good trials promotes positive reinforcement, which enhances motor learning. The goal of this study was to investigate when naïve learners request terminal visual feedback in a complex motor task, as conclusions drawn on simple tasks can hardly be transferred to complex tasks. Indeed, seven of nine learners stated to have intended to request feedback predominantly after good trials, but in contrast to their intention, kinematic analysis showed that feedback was rather requested randomly (23% after good, 44% after intermediate, 33% after bad trials. Moreover, requesting feedback after good trials did not correlate with learning success. It seems that self-estimation of performance in complex tasks is challenging. As a consequence, learners might have focused on certain movement aspects rather than on the overall movement. Further studies should assess the current focus of the learner in detail to gain more insight in self-estimation capabilities during complex motor task learning.

  6. Vowel production, speech-motor control, and phonological encoding in people who are lesbian, bisexual, or gay, and people who are not

    Science.gov (United States)

    Munson, Benjamin; Deboe, Nancy

    2003-10-01

    A recent study (Pierrehumbert, Bent, Munson, and Bailey, submitted) found differences in vowel production between people who are lesbian, bisexual, or gay (LBG) and people who are not. The specific differences (more fronted /u/ and /a/ in the non-LB women; an overall more-contracted vowel space in the non-gay men) were not amenable to an interpretation based on simple group differences in vocal-tract geometry. Rather, they suggested that differences were either due to group differences in some other skill, such as motor control or phonological encoding, or learned. This paper expands on this research by examining vowel production, speech-motor control (measured by diadochokinetic rates), and phonological encoding (measured by error rates in a tongue-twister task) in people who are LBG and people who are not. Analyses focus on whether the findings of Pierrehumbert et al. (submitted) are replicable, and whether group differences in vowel production are related to group differences in speech-motor control or phonological encoding. To date, 20 LB women, 20 non-LB women, 7 gay men, and 7 non-gay men have participated. Preliminary analyses suggest that there are no group differences in speech motor control or phonological encoding, suggesting that the earlier findings of Pierrehumbert et al. reflected learned behaviors.

  7. Motor characteristics in the control of a compliant load

    Science.gov (United States)

    Harokopos, E. G.; Mayne, R. W.

    1986-02-01

    This paper considers a servomechanism consisting of a DC-motor, a gear train and an inertial mass controlled through a compliant drive. The compliance is modeled as a spring between the gear box and inertia, and the interaction between the actuator and its load is considered. Dimensionless parameters are defined to describe this interaction, and the influence of the parameters on open- and closed-loop performance is discussed. System behavior is relatively sensitive to one particular dimensionless parameter related to damping provided by electromechanical interaction. Results of this effort illustrate the concept of quantitative controllability and indicate the possibility of controlling flexible loads conveniently by an appropriate choice of actuator parameters.

  8. Mechanisms of motor adaptation in reactive balance control.

    Directory of Open Access Journals (Sweden)

    Torrence D J Welch

    Full Text Available Balance control must be rapidly modified to provide stability in the face of environmental challenges. Although changes in reactive balance over repeated perturbations have been observed previously, only anticipatory postural adjustments preceding voluntary movements have been studied in the framework of motor adaptation and learning theory. Here, we hypothesized that adaptation occurs in task-level balance control during responses to perturbations due to central changes in the control of both anticipatory and reactive components of balance. Our adaptation paradigm consisted of a Training set of forward support-surface perturbations, a Reversal set of novel countermanding perturbations that reversed direction, and a Washout set identical to the Training set. Adaptation was characterized by a change in a motor variable from the beginning to the end of each set, the presence of aftereffects at the beginning of the Washout set when the novel perturbations were removed, and a return of the variable at the end of the Washout to a level comparable to the end of the Training set. Task-level balance performance was characterized by peak center of mass (CoM excursion and velocity, which showed adaptive changes with repetitive trials. Only small changes in anticipatory postural control, characterized by body lean and background muscle activity were observed. Adaptation was found in the evoked long-latency muscular response, and also in the sensorimotor transformation mediating that response. Finally, in each set, temporal patterns of muscle activity converged towards an optimum predicted by a trade-off between maximizing motor performance and minimizing muscle activity. Our results suggest that adaptation in balance, as well as other motor tasks, is mediated by altering central sensitivity to perturbations and may be driven by energetic considerations.

  9. Review of Apraxia: The cognitive side of motor control

    DEFF Research Database (Denmark)

    Martínez-Ferreiro, Silvia

    2014-01-01

    Reviews the book, Apraxia: The Cognitive Side of Motor Control by G. Goldenberg (see record 2013-31133-000). The book makes a significant contribution to the study of this multifaceted syndrome, especially in relation to limb apraxia, the author’s main research area. Despite more than 100 years o...... and current state of apraxia research. (PsycINFO Database Record (c) 2014 APA, all rights reserved)...

  10. Robust Vector Control of Induction Motors Without Speed Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Soo; Kim, Sang Uk; Kim, Young Seok [Inha University, Inchon (Korea, Republic of)

    1998-05-01

    In this paper, a new approached to high performance variable drive system for the induction motors without speed sensor is proposed. The speed sensorless vector control realized in this paper has the robustness to the load and parameter variation and the excellent dynamic characteristics in comparison with the conventional speed sensorless vector control scheme. the conventional adaptive sliding observer based on the variable structure control theory has some disadvantages that the estimated values including the high-frequency chattering generated due to the infinite feedback gain and that the discontinuous control input result in torque chartering and excite mechanical resonance. This paper presents a new speed sensorless vector control of induction motors using the adaptive binary observer for the purpose of alleviating the high-frequency chattering in the sliding observer. The binary observer can generate the continuous control input under the effects of delay and various constraints in the switching frequency. The binary observer estimates the rotor speed and rotor flux with alleviation of the been implemented by 32-bit floating point TMS 320C31 DSP. The high performance speed control characteristics are verified by the experimental results, and the feasibility of the proposed controller without the speed and the rotor flux sensors under variable speed range is exemplified via the experiments. (author). 12 refs., 15 figs., 1 tab.

  11. Stimulation of the Basal and Central Amygdala in the Mustached Bat Triggers Echolocation and Agonistic Vocalizations within Multimodal Output

    Directory of Open Access Journals (Sweden)

    Jie eMa

    2014-03-01

    Full Text Available The neural substrate for the perception of vocalization is relatively well described, but we know much less about how the timing and specificity of vocalizations is tightly coupled with audiovocal communication behavior. In many vocal species, well-timed vocalizations accompany fear, vigilance and aggression. These emotive responses likely originate within the amygdala and other limbic structures, but the organization of motor outputs for triggering species-appropriate behaviors remains unclear. We performed electrical microstimulation at 461 highly restricted loci within the basal and central amygdala in awake mustached bats. At a subset of these sites, high frequency stimulation with weak constant current pulses presented at near-threshold levels triggered vocalization of either echolocation pulses or social calls. At the vast majority of locations, microstimulation produced a constellation of changes in autonomic and somatomotor outputs. These changes included widespread co-activation of significant tachycardia and hyperventilation and/or rhythmic ear pinna movements. In a few locations, responses were constrained to vocalization and/or pinna movements despite increases in the intensity of stimulation. The probability of eliciting echolocation pulses versus social calls decreased in a medial-posterior to anterolateral direction within the centrobasal amygdala. Microinjections of kainic acid at stimulation sites confirmed the contribution of cellular activity rather than fibers-of-passage in the control of multimodal outputs. The results suggest that multimodal clusters of neurons may simultaneously modulate the activity of multiple central pattern generators present within the brainstem.

  12. A Primary Role for Nucleus Accumbens and Related Limbic Network in Vocal Tics.

    Science.gov (United States)

    McCairn, Kevin W; Nagai, Yuji; Hori, Yukiko; Ninomiya, Taihei; Kikuchi, Erika; Lee, Ju-Young; Suhara, Tetsuya; Iriki, Atsushi; Minamimoto, Takafumi; Takada, Masahiko; Isoda, Masaki; Matsumoto, Masayuki

    2016-01-20

    Inappropriate vocal expressions, e.g., vocal tics in Tourette syndrome, severely impact quality of life. Neural mechanisms underlying vocal tics remain unexplored because no established animal model representing the condition exists. We report that unilateral disinhibition of the nucleus accumbens (NAc) generates vocal tics in monkeys. Whole-brain PET imaging identified prominent, bilateral limbic cortico-subcortical activation. Local field potentials (LFPs) developed abnormal spikes in the NAc and the anterior cingulate cortex (ACC). Vocalization could occur without obvious LFP spikes, however, when phase-phase coupling of alpha oscillations were accentuated between the NAc, ACC, and the primary motor cortex. These findings contrasted with myoclonic motor tics induced by disinhibition of the dorsolateral putamen, where PET activity was confined to the ipsilateral sensorimotor system and LFP spikes always preceded motor tics. We propose that vocal tics emerge as a consequence of dysrhythmic alpha coupling between critical nodes in the limbic and motor networks. VIDEO ABSTRACT.

  13. Minimizing motor mimicry by myself: Self-focus enhances online action-control mechanisms during motor contagion

    NARCIS (Netherlands)

    Spengler, S.; Brass, M.; Kühn, S.; Schutz-Bosbach, S.

    2010-01-01

    Ideomotor theory of human action control proposes that activation of a motor representation can occur either through internally-intended or externally-perceived actions. Critically, sometimes these alternatives of eliciting a motor response may be conflicting, for example, when Intending one action

  14. Minimizing motor mimicry by myself: Self-focus enhances online action-control mechanisms during motor contagion

    NARCIS (Netherlands)

    Spengler, S.; Brass, M.; Kuhn, S.; Schutz-Bosbach, S.

    2010-01-01

    Ideomotor theory of human action control proposes that activation of a motor representation can occur either through internally-intended or externally-perceived actions. Critically, sometimes these alternatives of eliciting a motor response may be conflicting, for example, when Intending one action

  15. 77 FR 30765 - Federal Motor Vehicle Safety Standards; Electronic Stability Control Systems for Heavy Vehicles

    Science.gov (United States)

    2012-05-23

    ... CFR Part 571 Federal Motor Vehicle Safety Standards; Electronic Stability Control Systems for Heavy... 571 RIN 2127-AK97 Federal Motor Vehicle Safety Standards; Electronic Stability Control Systems for... a new Federal Motor Vehicle Safety Standard No. 136 to require electronic stability control (ESC...

  16. 40 CFR 80.24 - Controls applicable to motor vehicle manufacturers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Controls applicable to motor vehicle... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Controls and Prohibitions § 80.24 Controls applicable to motor vehicle manufacturers. (a) (b) The manufacturer of any motor vehicle equipped with an...

  17. Motor skill experience modulates executive control for task switching.

    Science.gov (United States)

    Yu, Qiuhua; Chan, Chetwyn C H; Chau, Bolton; Fu, Amy S N

    2017-09-15

    This study aimed to investigate the effect of types of motor skills, including open and closed skills on enhancing proactive and reactive controls for task switching. Thirty-six athletes in open (n=18) or closed (n=18) sports and a control group (n=18) completed the task-switching paradigm and the simple reaction task. The task-switching paradigm drew on the proactive and reactive control of executive functions, whereas the simple reaction task assessed the processing speed. Significant Validity×Group effect revealed that the participants with open skills had a lower switch cost of response time compared to the other two groups when the task cue was 100% valid; whereas the participants regardless of motor skills had a lower switch cost of response time compared to the control group when the task cue was 50% valid. Hierarchical stepwise regression analysis further confirmed these findings. For the simple reaction task, there were no differences found among the three groups. These findings suggest that experience in open skills has benefits of promoting both proactive and reactive controls for task switching, which corresponds to the activity context exposed by the participants. In contrast, experience in closed skills appears to only benefit development of reactive control for task switching. The neural mechanisms for the proactive and reactive controls of executive functions between experts with open and closed skills call for future study. Copyright © 2017. Published by Elsevier B.V.

  18. Performance Enhancement of PID Controllers by Modern Optimization Techniques for Speed Control of PMBL DC Motor

    Directory of Open Access Journals (Sweden)

    M. Antony Freeda Rani

    2015-08-01

    Full Text Available Permanent Magnet Brushless DC motor (PMBL DC is used in a large number of industrial and automotive applications because of their high efficiency, compactness and excellent reliability. However to design an efficient PMBL DC motor, it is necessary to provide an effective controller that has to reduce the overshoot, settling and rise time. In this study, an improved PID controller has been designed by optimizing the parameters of PID controller based on two advanced optimization techniques ANFIS and Cuckoo Search optimization for speed control of a PMBL DC motor. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. The PMBL DC motor is modeled in SIMULINK implementing the algorithms in MATLAB and the performance evaluation has been studied.

  19. FUZZY SLIDING MODE CONTROLLER FOR DOUBLY FED INDUCTION MOTOR SPEED CONTROL

    Directory of Open Access Journals (Sweden)

    Y. Bekakra

    2015-08-01

    Full Text Available This paper, presents a Direct Field-Oriented Control (DFOC of doubly fed induction motor (DFIM with a fuzzy sliding mode controller (FSMC. Our aim is to make the speed control robust to parameter variations. The variation of motor parameters during operation degrades the performance of the controllers. The use of the nonlinear fuzzy sliding mode method provides very good performance for motor operation and robustness of the control law despite the external/internal perturbations. The chattering effects is eliminated by a particular function "sat" that presents a serious problem to applications of variable structure systems. The fuzzy sliding mode controller is designed in order to improve the control performances and to reduce the chattering phenomenon. In this technique the saturation function is replaced by a fuzzy inference system to smooth the control action. The proposed scheme gives fast dynamic response with no overshoot and zero static error. To show the validity and the effectiveness of the control method, simulation results are performed for the speed control of a doubly fed induction motor. Simulation results showed that improvement made by our approach compared to conventional sliding mode control (SMC with the presence of variations of the parameters of the motor, in particular the face of variation of moment of inertia and disturbances of load torque. The results show that the FSMC and SMC are robust against internal and external perturbations, but the FSMC is superior to SMC in eliminating chattering phenomena and response time.

  20. Direct Torque Control With Feedback Linearization for Induction Motor Drives

    DEFF Research Database (Denmark)

    Lascu, Cristian Vaslie; Jafarzadeh, Saeed; Fadali, Sami M.

    2017-01-01

    This paper describes a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback linearization and sliding-mode control (SMC). A new feedback linearization approach is proposed, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC-type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using SMC with proportional control in the vicinity of the sliding surface. SMC assures...... robustness as in DTC, while the proportional component eliminates the torque and flux ripple. The torque time response is similar to conventional DTC and the proposed solution is flexible and highly tunable due to the P component. The controller design is presented, and its robust stability is analyzed...

  1. CYLINDER-SPHERE 3-DOF ULTRASONIC MOTOR AND ITS CONTROL

    Institute of Scientific and Technical Information of China (English)

    HUANGWei-qing; ZHANFeng-jiang; ZHAOChun-sheng

    2004-01-01

    A three degree-of-freedom (DOF) ultrasonic motor (USM) with a cylinder-shaped stator and a spherical rotor is introduced, which uses one first order longitudinal and two second order bending nature vibration modes of the cylinder. Control strategies for the two DOF trajectory following are studied and applied to the prototype USM. Vibration amplitude control is employed for speed regulation. The first trajectory following strategy is a step-by-step interpolation. The second strategy is vector decomposition control. Three pulse width modulation (PWM) methods for the exciting voltage regulation are investigated. These methods are compared and verified by several experiments. The key is to keep the phase differences of the three vibration constants and small exciting voltage distortion while the exciting voltages are changed for simplifing the control process and obtaining good control performance. The vector control method has advantages of small trajectory following error, smooth moving and low noise.

  2. Prespeech motor learning in a neural network using reinforcement.

    Science.gov (United States)

    Warlaumont, Anne S; Westermann, Gert; Buder, Eugene H; Oller, D Kimbrough

    2013-02-01

    Vocal motor development in infancy provides a crucial foundation for language development. Some significant early accomplishments include learning to control the process of phonation (the production of sound at the larynx) and learning to produce the sounds of one's language. Previous work has shown that social reinforcement shapes the kinds of vocalizations infants produce. We present a neural network model that provides an account of how vocal learning may be guided by reinforcement. The model consists of a self-organizing map that outputs to muscles of a realistic vocalization synthesizer. Vocalizations are spontaneously produced by the network. If a vocalization meets certain acoustic criteria, it is reinforced, and the weights are updated to make similar muscle activations increasingly likely to recur. We ran simulations of the model under various reinforcement criteria and tested the types of vocalizations it produced after learning in the different conditions. When reinforcement was contingent on the production of phonated (i.e. voiced) sounds, the network's post-learning productions were almost always phonated, whereas when reinforcement was not contingent on phonation, the network's post-learning productions were almost always not phonated. When reinforcement was contingent on both phonation and proximity to English vowels as opposed to Korean vowels, the model's post-learning productions were more likely to resemble the English vowels and vice versa.

  3. SMART IRRIGATION TECHNIQUE USING VOCAL COMMANDS

    Directory of Open Access Journals (Sweden)

    V.Divya

    2013-02-01

    Full Text Available In this wireless communication era, mobile phones have become a necessity in the common man’s life. Besides being capable of making calls and sending messages, the latest advancements in mobile phones facilitate them to connect to the internet also. With these capabilities, there has been an unprecedented use of mobile phones in many areas of automation. One such area where mobile phone can help with the automation is irrigation process. The main aim of the work is to simplify the method of irrigation using vocal commands through the mobile phone. The Farmer just needs to call a fixed number and utter the control commands through his phone. The control system at the field involves a PIC microcontroller interfaced with GSM modem to receive the command from the farmer and a voice recognition unit which decodes it. The motor is turned on/off according to the decoded commands by the controller. In addition, the system also sends back a message to the farmer’s mobile about the action that has taken place. The power detection and battery backup unit helps in detecting the power availability in the field and inform the farmer about the same, even if the there is no supply at the field. The moisture sensor attached to the system helps in collecting the moisture content of the soil and switch off the motor after it reaches the required value.

  4. Control difuso de un motor de inducción

    Directory of Open Access Journals (Sweden)

    Agustín Garzón Carbonell

    2011-02-01

    Full Text Available Se presenta la simulación de un esquema de control de velocidad de un motor de inducción en coordenadas decampo, con controlador difuso sin la necesidad de realizar las compensaciones en los ejes d-q, lo que simplificasustancialmente el control. La inferencia difusa se implementó por el método de mínimo máximo. Para eldesemborronado, el método del centro de gravedad. Se muestra el comportamiento del sistema de controlsometido a cambios bruscos de carga y referencia, observándose la robustez del control difuso frente a un PIDclásico.  In this article the simulation  of speed control  of  induction motor is presented in field coordinates with fuzzycontroller without the necessity of carrying out the compensations in the d-q axes, simplifying substantially thecontrol. The diffuse inference was implemented by the maximum minimum method. For defuzzification, themethod of the center of gravity is used. The system behaviour is shown from control to abrupt changes of loadand it indexes being observed the robustness of the diffuse control in front of a classic PID.

  5. Cascade Control Solution for Traction Motor for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zsuzsa Preitl

    2007-10-01

    Full Text Available In this paper a hybrid electric vehicle is considered, which contains both aninternal combustion engine and an electric motor (EM. Without focusing on the othercomponents of the vehicle, the EM is treated in detail, both regarding modelling aspectsand control solutions.After a brief modelling of the plant, two cascade speed control solutions are presented: firsta classical PI+PI cascade control solution is presented. The control systems related totraction electric motors (used in vehicle traction must be able to cope with differentrequests, such as variation of the reference signal, load disturbances which depend on thetransport conditions and parametric disturbances regarding changes in the total mass ofthe vehicle. For this purpose, in the design of the speed controller (external loop a specificmethodology based on extension of the symmetrical optimum method is presented. Thecontrollers are developed using the Modulus–Optimum method for the inner loop, and theExtended Symmetrical Optimum Method, corrected based on the 2p-SO-method, for theouter loop (for a more efficient disturbance rejection.In order to force the behaviour of the system regarding the reference input, a correctionterm is introduced as a non-homogenous structured PI controller solution.Simulations were performed using numerical values taken from a real applicationconsisting in a hybrid vehicle prototype, showing satisfactory behaviour.

  6. Neural Network Controllers in DTC of Synchronous Motor Drives

    Directory of Open Access Journals (Sweden)

    Sudhakar Ambarapu

    2013-07-01

    Full Text Available In recent times, permanent magnet synchronous motors (PMSM have gained numerous industrial applications, because of simple structure, high efficiency and ease of maintenance. But these motors have a nonlinear mathematical model. To resolve this problem several studies have suggested the application of vector control (VC and direct torque control (DTC with soft-computing (SC techniques. This paper presents neuro direct torque control (NDTC of PMSM. Hence this paper aims to present a technique to control speed and torque with reduced ripple compared to previous techniques. The outputs of Artificial Neural Network(ANN controller mechanism is compared with that of classical DTC and the results demonstrate the influence of ANN is improved compared to classical DTC topology. The system is also verified and proved to be operated stably with reduced torque ripple, very low speed, sudden speed reversals, at low torque and at high torque. The proposed method validity and effectiveness has been verified by computer simulations using Matlab/Simulink®. These results are compared with the ones obtained with a classical DTC using PI speed controller.

  7. Synchronization of motor controller and PC system clocks

    Science.gov (United States)

    Kittmann, Frank; Bertram, Thomas; Briegel, Florian; Mohr, Lars; Berwein, Jürgen

    2010-07-01

    The power of the Large Binocular Telescope (LBT) with its two 8.4m primary mirrors sharing a common mount will unfold its full potential with the LINC-NIRVANA (LN) instrument. LINC-NIRVANA is a German-Italian beam combiner for the LBT and will interfere the light from the two 8.4m mirrors of the LBT in Fizeau mode. More than 140 motors have to be handled by custom developed Motor Controllers (MoCons). One important feature of the MoCon is the support of externally computed trajectories. Motion profiles provide information on the movement of the motor along a defined path over a certain period of time. Such profiles can be uploaded to the MoCon over Ethernet and can be started at a specific time. For field derotation it is critical that the derotation trajectories are executed with a very precise relative and absolute timing. This raises the problem of the synchronization of the MoCon internal clock with the system time of the servers that are hosting LINCNIRVANA's Instrument Control Software. The MoCon time should be known by the servers with an uncertainty of few milliseconds in order to match the start time of the motion profile and the field rotation trajectory. In this paper we will discuss how to synchronize the MoCon internal time and the PC system time.

  8. Voltage Controller Saves Energy, Prolongs Life of Motors

    Science.gov (United States)

    2007-01-01

    In 1985, Power Efficiency Corporation of Las Vegas licensed NASA voltage controller technology from Marshall Space Flight Center. In the following years, Power Efficiency made patented improvements to the technology and marketed the resulting products throughout the world as the Performance Controller and the Power Efficiency energy-saving soft start. Soft start gradually introduces power to an electric motor, thus eliminating the harsh, violent mechanical stresses of having the device go from a dormant state to one of full activity; prevents it from running too hot; and increases the motor's lifetime. The product can pay for itself through the reduction in electricity consumed (according to Power Efficiency, within 3 years), depending on the duty cycle of the motor and the prevailing power rates. In many instances, the purchaser is eligible for special utility rebates for the environmental protection it provides. Common applications of Power Efficiency's soft start include mixers, grinders, granulators, conveyors, crushers, stamping presses, injection molders, elevators with MG sets, and escalators. The device has been retrofitted onto equipment at major department store chains, hotels, airports, universities, and for various manufacturers

  9. Direct-Torque Neuro-Fuzzy Control of Induction Motor

    Institute of Scientific and Technical Information of China (English)

    徐君鹏; CHEN Yan-feng; LI Guo-hou

    2007-01-01

    Fuzzy systems are currently being used in a wide field of industrial and scientific applications. Since the design and especially the optimization process of fuzzy systems can be very time consuming, it is convenient to have algorithms which construct and optimize them automatically. In order to improve the system stability and raise the response speed, a new control scheme, direct-torque neuro-fuzzy control for induction motor drive, was put forward. The design and tuning procedure have been described. Also, the improved stator flux estimation algorithm, which guarantees eccentric estimated flux has been proposed.

  10. Voice-controlled Internet Browsing for Motor-handicapped Users

    DEFF Research Database (Denmark)

    Brøndsted, Tom; Aaskoven, Erik

    2006-01-01

    The public-funded project "Indtal" ("Speak-it") has succeeded in developing a Danish voice-controlled utility for internet browsing targeting motor-handicapped users having difficulties using a standard keyboard and/or a standard mouse. The system has been designed and implemented in collaboration...... with an advisory board of motor-handicapped (potential) end-users and underlies a number of a priori defined design criteria: learnability and memorability rather than naturalness, minimal need for maintenance after release, support for "all" web standards (not just HTML conforming to certain "recommendations......"), independency of the language on the websites being browsed, etc. These criteria have lead to a primarily message-driven system interacting with an existing browser on the end users' systems...

  11. Improved direct torque control of induction motor with dither injection

    Indian Academy of Sciences (India)

    R K Behera; S P Das

    2008-10-01

    In this paper, a three-level inverter-fed induction motor drive operating under Direct Torque Control (DTC) is presented. A triangular wave is used as dither signal of minute amplitude (for torque hysteresis band and flux hysteresis band respectively) in the error block. This method minimizes flux and torque ripple in a three-level inverter fed induction motor drive while the dynamic performance is not affected. The optimal value of dither frequency and magnitude is found out under free running condition. The proposed technique reduces torque ripple by 60% (peak to peak) compared to the case without dither injection, results in low acoustic noise and increases the switching frequency of the inverter. A laboratory prototype of the drive system has been developed and the simulation and experimental results are reported.

  12. Research of Control Method for Improving Mechanical Performance of Winding Motor

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhao-zhang; YANG Zheng-lin

    2002-01-01

    A reformed PHD (Proportional-Integral- Differential)motor controller is developed for the ideal winding performance. It is verified that the PHD motor controller can largely improve the mechanical performance and raise the production efficiency by means of the test of a winding production system driven by a motor with high internal resistance rotator. It indicates that improving the control method is one of the most effective ways to improve the winding performance of the motor in winding production.

  13. Vector Control of Three-Phase Induction Motor with Two Stator Phases Open-Circuit

    OpenAIRE

    Seyed Hesam Asgari; Mohammad Jannati; Tole Sutikno; Nik Rumzi Nik Idris

    2015-01-01

    Variable frequency drives are used to provide reliable dynamic systems and significant reduction in usage of energy and costs of the induction motors. Modeling and control of faulty or an unbalanced three-phase induction motor is obviously different from healthy three-phase induction motor. Using conventional vector control techniques such as Field-Oriented Control (FOC) for faulty three-phase induction motor, results in a significant torque and speed oscillation. This research presented a no...

  14. Variable frequency inverter for ac induction motors with torque, speed and braking control

    Science.gov (United States)

    Nola, F. J. (Inventor)

    1975-01-01

    A variable frequency inverter was designed for driving an ac induction motor which varies the frequency and voltage to the motor windings in response to varying torque requirements for the motor so that the applied voltage amplitude and frequency are of optimal value for any motor load and speed requirement. The slip frequency of the motor is caused to vary proportionally to the torque and feedback is provided so that the most efficient operating voltage is applied to the motor. Winding current surge is limited and a controlled negative slip causes motor braking and return of load energy to a dc power source.

  15. APPLICATION FEATURES OF FUZZY CONTROLLERS ON EXAMPLE OF DC MOTOR SPEED CONTROL

    Directory of Open Access Journals (Sweden)

    G. L. Demidova

    2016-09-01

    Full Text Available A prerequisite for the use of intelligent control methods, including algorithms of fuzzy logic, is increasing complexity in all industries, especially when parameters of technical systems while in operation vary in wide range. The paper provides comparative analysis of the basic types of common fuzzy direct action controllers on the example of speed control system in the DC motor drive. Design features of these types of fuzzy controllers are shown. Their comparison with traditional PI controller is carried out through the use of simulation, including the conditions of uncertainty expressed in changing of equivalent moment of inertia of the motor shaft. As a result, the conclusion about the feasibility of fuzzy PID-type controller application is made. The features of fuzzy controllers outlined in the paper can be summarized to more complex motor drive systems and to other non-linear systems that require the maintenance of any parameter within a given range.

  16. Model-Based Torque Control of Piezoelectric Ultrasonic Motors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Piezoelectric ultrasonic motors (PUMs) are ideal actuators for a variety of spaced-based robotics applications. These motors replace conventional drive systems...

  17. The speed control of DC motor under the load condition using PI and PID controllers

    Science.gov (United States)

    Corapsiz, Muhammed Reşit; Kahveci, Hakan

    2017-04-01

    In this study, it was aimed to compare PI (Proportional-Integral) and PID (Proportional-Integral-Derivative) controllers for speed control of Permanent Magnet Direct Current (PMDC) motor under both load and without load. For this purpose, firstly, the mathematical model was obtained from the dynamic equations of the PMDC motor and the obtained mathematical model was transferred to the simulation environment and modeled using Matlab/SIMULINK. Following the modeling process, PI and PID controller structures were formed, respectively. Secondly, after these structures were formed, the PMDC motor was run without any controller. Then, the control of the PMDC motor with no load was provided by using PI and PID controllers. Finally, the PMDC motor were loaded under the constant load (TL = 3 N.m.) for each condition and selected time period (t = 3 s). The obtained result for each control operations was comparatively given by observing effects of loading process on systems. When the obtained results were evaluated for each condition, it was observed that PID controller have the best performance with respect to PI controller.

  18. Non-dopaminergic treatments for motor control in Parkinson's disease.

    Science.gov (United States)

    Fox, Susan H

    2013-09-01

    The pathological processes underlying Parkinson's disease (PD) involve more than dopamine cell loss within the midbrain. These non-dopaminergic neurotransmitters include noradrenergic, serotonergic, glutamatergic, and cholinergic systems within cortical, brainstem and basal ganglia regions. Several non-dopaminergic treatments are now in clinical use to treat motor symptoms of PD, or are being evaluated as potential therapies. Agents for symptomatic monotherapy and as adjunct to dopaminergic therapies for motor symptoms include adenosine A2A antagonists and the mixed monoamine-B inhibitor (MAO-BI) and glutamate release agent safinamide. The largest area of potential use for non-dopaminergic drugs is as add-on therapy for motor fluctuations. Thus adenosine A2A antagonists, safinamide, and the antiepileptic agent zonisamide can extend the duration of action of levodopa. To reduce levodopa-induced dyskinesia, drugs that target overactive glutamatergic neurotransmission can be used, and include the non-selective N-methyl D-aspartate antagonist amantadine. More recently, selective metabotropic glutamate receptor (mGluR₅) antagonists are being evaluated in phase II randomized controlled trials. Serotonergic agents acting as 5-HT2A/2C antagonists, such as the atypical antipsychotic clozapine, may also reduce dyskinesia. 5-HT1A agonists theoretically can reduce dyskinesia, but in practice, may also worsen PD motor symptoms, and so clinical applicability has not yet been shown. Noradrenergic α2A antagonism using fipamezole can potentially reduce dyskinesia. Several non-dopaminergic agents have also been investigated to reduce non-levodopa-responsive motor symptoms such as gait and tremor. Thus the cholinesterase inhibitor donepezil showed mild benefit in gait, while the predominantly noradrenergic re-uptake inhibitor methylphenidate had conflicting results in advanced PD subjects. Tremor in PD may respond to muscarinic M4 cholinergic antagonists (anticholinergics), but

  19. Energy efficiency in speed control system for induction motors; Eficiencia energetica em sistema de controle de velocidade em motores de inducao

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Arlete Vieira da; Ribeiro, Elisangela do Nascimento; Tenorio, Iana Cavalcanti; Horta, Mario Marcos Brito [Centro Universitario de Belo Horizonte (UnBH), MG (Brazil)], e-mails: arlete.silva@prof.unibh.br, nr.elisangela@gmail.com, ianactenorio@gmail.com, mario_bhorta@yahoo.com.br

    2011-07-01

    This work has as objective the study of energy efficiency of induction motors fed by frequency inverters, since this is a practical resource that has progressively allowed the replacement of mechanical speed reducers. In this work the speed control of induction motors of the squirrel cage has steeped through the frequency inverters using scalar control. Induction motors are frequently used in industrial applications due to its simple construction, its low maintenance and reduced in size. It was possible through tests made at UNI-BH Electrical Engineering laboratory to obtain satisfactory results regarding the performance of the inverter CFW08 (WEG), speed control of induction motor. (author)

  20. 76 FR 78 - Federal Motor Vehicle Safety Standard; Engine Control Module Speed Limiter Device

    Science.gov (United States)

    2011-01-03

    ... posted speed limit of 55 mph that was in effect in 1991. \\2\\ Comercial Motor Vehicle Speed Control... improved truck designs. \\3\\ Comercial Motor Vehicle Speed Control Devices (1991), DOT HS 807 725. TCA... National Highway Traffic Safety Administration 49 CFR Part 571 Federal Motor Vehicle Safety Standard...

  1. Compromised motor control in children with DCD: A deficit in the internal model - a systematic review

    NARCIS (Netherlands)

    Adams, I.L.J.; Lust, J.M.; Wilson, P.H.; Steenbergen, B.

    2014-01-01

    A viable hypothesis to explain the compromised motor ability of children with Developmental Coordination Disorder (DCD) suggests a fundamental deficit in their ability to utilize internal models for motor control. Dysfunction in this mode of control is thought to compromise their motor learning

  2. Compromised motor control in children with DCD: A deficit in the internal model - a systematic review

    NARCIS (Netherlands)

    Adams, I.L.J.; Lust, J.M.; Wilson, P.H.; Steenbergen, B.

    2014-01-01

    A viable hypothesis to explain the compromised motor ability of children with Developmental Coordination Disorder (DCD) suggests a fundamental deficit in their ability to utilize internal models for motor control. Dysfunction in this mode of control is thought to compromise their motor learning capa

  3. Motor Control in Children and Adults during a Non-Speech Oral Task.

    Science.gov (United States)

    Clark, Heather M.; Robin, Donald A.; McCullagh, Gail; Schmidt, Richard A.

    2001-01-01

    This study examined the accuracy and stability of oral motor control in 20 adults and 20 children. Although the children were less accurate and less stable, adults and children exhibited similar variability in their generalized motor program. Results are discussed within the framework of a schema model of motor control, especially the strategic…

  4. Pulse Width Modulator Controller Design for a Brushless DC Motor Position Servo.

    Science.gov (United States)

    1987-06-01

    performance. This thesis involves computer aided design of a functionally robust brushless dc motor position controller using pulse width modulation...Recent interest in positioning cruise missile flight control surfaces using electromechanical actuation has prompted a detailed study of brushless dc ... motor performance in such an application. While the superior response characteristics of these electronically commutated motors are particularly well

  5. Power Efficient Higher Order Sliding Mode Control of SR Motor for Speed Control Applications

    Directory of Open Access Journals (Sweden)

    Muhammad Rafiq

    2011-05-01

    Full Text Available This paper presents a novel scheme for speed regulation/tracking of Switched Reluctance (SR motors based on Higher-Order Sliding-Mode technique. In particular, a Second-Order Sliding-Mode Controller (SOSMC based on Super Twisting algorithm is devel-oped. Owing to the peculiar structural properties of SRM, torque produced by each motor phase is a function of phase current as well as rotor position. More importantly, unlike many other motors the polarity of the phase torque in SR motors is solely determined by the rotor position and is independent of the polarity of the applied voltage or phase current. The proposed controller takes advantage of this property and incorporates a commutation scheme which, at any time instant, selects only those motor phases for the computation of control law, which can contribute torque of the desired polarity at that instant. This feature helps in achieving the desired speed regulation/tracking objective in a power efficient manner as control efforts are applied through selective phases and counterproductive phases are left un-energized. This approach also minimizes the power loss in the motor windings thus reducing the heat generation within the motor. In order to highlight the advantages of Higher-Order Sliding-Mode controllers, a classical First-Order Sliding-Mode controller (FOSMC is also developed and applied to the same system. The comparison of the two schemes shows much reduced chattering in case of SOSMC. The performance of the proposed SOSMC controller for speed regulation is also compared with that of another sliding mode speed controller published in the literature.

  6. Development of a Simulink/RTW-Based Realtime Control System for an Induction Motor Vector Control

    Energy Technology Data Exchange (ETDEWEB)

    Kang, M. H. [Sunmoon University, Chonan (Korea)

    2001-03-01

    In this research a Simulink/RTW-based realtime control system was developed for an induction motor vector control. On the Simulink window, the control system is designed in the form of block diagrams, program codes are produced automatically with the RTW(Real Time Workshop), then an DSP c compiles the program codes. With this automatic program producing method rapid prototyping is realized with the least time-consuming manual programming procedures. To show effectiveness of the proposed system designing scheme a DSP-based induction motor vector controller was constructed and implemented. (author). 10 refs., 15 figs., 2 tabs.

  7. Does EMG control lead to distinct motor adaptation?

    Directory of Open Access Journals (Sweden)

    Reva E Johnson

    2014-09-01

    Full Text Available Powered prostheses are controlled using electromyographic (EMG signals, which may introduce high levels of uncertainty even for simple tasks. According to Bayesian theories, higher uncertainty should influence how the brain adapts motor commands in response to perceived errors. Such adaptation may critically influence how patients interact with their prosthetic devices; however, we do not yet understand adaptation behavior with EMG control. Models of adaptation can offer insights on movement planning and feedback correction, but we first need to establish their validity for EMG control interfaces. Here we created a simplified comparison of prosthesis and able-bodied control by studying adaptation with three control interfaces: joint angle, joint torque, and EMG. Subjects used each of the control interfaces to perform a target-directed task with random visual perturbations. We investigated how control interface and visual uncertainty affected trial-by-trial adaptation. As predicted by Bayesian models, increased errors and decreased visual uncertainty led to faster adaptation. The control interface had no significant effect beyond influencing error sizes. This result suggests that Bayesian models are useful for describing prosthesis control and could facilitate further investigation to characterize the uncertainty faced by prosthesis users. A better understanding of factors affecting movement uncertainty will guide sensory feedback strategies for powered prostheses and clarify what feedback information best improves control.

  8. Research on Direct Torque Control System Based on Induction Motor

    Institute of Scientific and Technical Information of China (English)

    康劲松; 陶生桂; 毛明平

    2003-01-01

    The mathematic model of direct torque control (DTC) was deduced. Two simulating models based on the MATLAB & SIMULINK were established. The emphasis is focused on study of the performance difference of the DTC system with stator flux hexagon and circle trajectories. The simulation waveforms of flux, torque and current characters with two flux trajectories were given. Experiments were carried out in an AC drive system based on induction motor and two-level inverter. A dual-CPU structure was used and the communication with two CPUs was obtained by a dual-port RAM in this system.

  9. Direct Torque Control for Double Star Induction Motor

    OpenAIRE

    LEKHCHINE, SALIMA; BAHI, TAHAR; Soufi, Youcef

    2016-01-01

    This paper describes a direct torque control (DTC) of dual star induction motor (DSIM). This machine possesses several advantages over conventional three-phase machine and is also known as the six-phase induction machine. The research has been underway for the last two decades to investigate the various issues related to the use of six-phase machine as a potential alternative to the conventional three-phase machine. Though six-phase machines have existed for some time, in the literature very ...

  10. The Speed Control of Constant Tension Motor of Marine Crane

    Directory of Open Access Journals (Sweden)

    Chen Xinyang

    2016-01-01

    Full Text Available This article describes the working principle of the marine beacon crane hanging disc mechanical anti-sway device, and establish mathematical model on the rope controlling hanging disc of mechanical anti-sway device; Through matlab simulation analysis, this article obtains the relation curve between the velocity of traction rope of hanging disc and output frequency of the crane motor, combining rotary crane scaled model, this article carries out anti-sway experiment for the rotary crane to examine the crane’s anti-sway effects.

  11. Study on maximum efficiency control strategy for induction motor

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Two new techniques for effficiency-optimization control (EOC) of induction motor drives were proposed. The first method combined Loss Model and "golden section technique", which was faster than the available methods. Secondly, the low-frequency ripple torque due to decrease of rotor flux was compensated in a feedforward manner. If load torque or speed command changed, the efficiency search algorithm would be abandoned and the rated flux would be established to get the best transient response. The close agreement between the simulation and the experimental results confirmed the validity and usefulness of the proposed techniques.

  12. Improved Rotor Speed Brushless DC Motor using Fuzzy Controller

    OpenAIRE

    Jafar Mostafapour; Murtaza Farsadi; Ali Badri; Ebrahim Ogabi

    2016-01-01

    A brushless DC (BLDC) Motors have advantages over brushed, direct current (DC) motors and Induction motor (IM). They have better speed verses torque characteristics, high dynamic response, high efficiency, long operating life, noiseless operation, higher speed ranges, and rugged construction. Also, torque delivered to motor size is higher, making it useful in application where space and weight are critical factors. With these advantages BLDC motors find wide spread application in automotive a...

  13. Improved Rotor Speed Brushless DC Motor Using Fuzzy Controller

    OpenAIRE

    Jafar Mostafapour; Jafar Reshadat; Murtaza Farsadi

    2015-01-01

    A brushless DC (BLDC) Motors have advantages over brushed, Direct current (DC) Motors and , Induction motor (IM). They have better speed verses torque characteristics, high dynamic response, high efficiency, long operating life, noiseless operation, higher speed ranges, and rugged construction. Also, torque delivered to motor size is higher, making it useful in application where space and weight are critical factors. With these advantages BLDC motors find wide spread application in automotive...

  14. Plasticity of motor control systems demonstrated by yoga training.

    Science.gov (United States)

    Telles, S; Hanumanthaiah, B H; Nagarathna, R; Nagendra, H R

    1994-04-01

    The static motor performance was tested in two groups with 20 subjects in each (age range 17 to 22 years, and 5 females in each group). Tests were carried out at the beginning and end of a 10 day period. The test required being able to insert and hold a metal stylus within holes of varying sizes for 15 sec. Accidental contacts between the stylus and the sides of the holes, were registered on a counter as errors. During the 10 days one group (the yoga group) practised asanas (physical postures), pranayama (voluntary regulation of breathing), meditation, devotional sessions, and tratakas (visual focussing exercises). The control group followed their usual routine. At the end of 10 days the yoga group showed a significant reduction in number of errors (Wilcoxon paired signed ranks test), while the control group did not change. Our earlier study showed a similar improvement in children (9-13 years). It was interesting to note the same degree of plasticity in motor control systems in young adults. The implications for rehabilitation programmes have been discussed.

  15. What is the evidence of impaired motor skills and motor control among children with attention deficit hyperactivity disorder (ADHD)? Systematic review of the literature

    NARCIS (Netherlands)

    Kaiser, Marie-Laure; Schoemaker, M M; Albaret, J-M; Geuze, R H

    This article presents a review of the studies that have analysed the motor skills of ADHD children without medication and the influence of medication on their motor skills. The following two questions guided the study: What is the evidence of impairment of motor skills and aspects of motor control

  16. Brushless DC motor control system responsive to control signals generated by a computer or the like

    Science.gov (United States)

    Packard, Douglas T. (Inventor); Schmitt, Donald E. (Inventor)

    1987-01-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The rotor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor may be regulated by applying a separate control signal to each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  17. Influence of hemianopic visual field loss on visual motor control.

    Directory of Open Access Journals (Sweden)

    Diederick C Niehorster

    Full Text Available BACKGROUND: Homonymous hemianopia (HH is an anisotropic visual impairment characterized by the binocular inability to see one side of the visual field. Patients with HH often misperceive visual space. Here we investigated how HH affects visual motor control. METHODS AND FINDINGS: Seven patients with complete HH and no neglect or cognitive decline and seven gender- and age-matched controls viewed displays in which a target moved randomly along the horizontal or the vertical axis. They used a joystick to control the target movement to keep it at the center of the screen. We found that the mean deviation of the target position from the center of the screen along the horizontal axis was biased toward the blind side for five out of seven HH patients. More importantly, while the normal vision controls showed more precise control and larger response amplitudes when the target moved along the horizontal rather than the vertical axis, the control performance of the HH patients was not different between these two target motion experimental conditions. CONCLUSIONS: Compared with normal vision controls, HH affected patients' control performance when the target moved horizontally (i.e., along the axis of their visual impairment rather than vertically. We conclude that hemianopia affects the use of visual information for online control of a moving target specific to the axis of visual impairment. The implications of the findings for driving in hemianopic patients are discussed.

  18. Fault Tolerant Robust Control Applied for Induction Motor (LMI approach

    Directory of Open Access Journals (Sweden)

    Hamouda KHECHINI

    2007-09-01

    Full Text Available This paper foregrounds fault tolerant robust control of uncertain dynamic linear systems in the state space representation. In fact, the industrial systems are more and more complex and the diagnosis process becomes indispensable to guarantee their surety of functioning and availability, that’s why a fault tolerant control law is imperative to achieve the diagnosis. In this paper, we address the problem of state feedback H2 /H∞ mixed with regional pole placement for linear continuous uncertain system. Sufficient conditions for feasibility are derived for a general class of convex regions of the complex plan. The conditions are presented as a collection of linear matrix inequalities (LMI 's. The efficiency and performance of this approach are then tested taking into consideration the robust control of a three- phase induction motor drive with the fluctuation of its parameters during the functioning.

  19. Real Time Implementation of a DC Motor Speed Control by Fuzzy Logic Controller and PI Controller Using FPGA

    Directory of Open Access Journals (Sweden)

    G. Sakthivel

    2010-10-01

    Full Text Available Fuzzy logic control has met with growing interest in many motor control applications due to its non-linearity, handling features and independence of plant modelling. The hardware implementation of fuzzy logic controller (FLC on FPGA is very important because of the increasing number of fuzzy applications requiring highly parallel and high speed fuzzy processing. Implementation of a fuzzy logic controller and conventional PI controller on an FPGA using VHDL for DC motor speed control is presented in this paper. The proposed scheme is to improve tracking performance of D.C. motor as compared to the conventional (PI control strategy .This paper describes the hardware implementation of two inputs (error and change in error, one output fuzzy logic controller based on PI controller and conventional PI controller using VHDL. Real time implementation FLC and conventional PI controller is made on Spartan-3A DSP FPGA (XC3SD1800A FPGA for the speed control of DC motor. It is observed that fuzzy logic based controllers give better responses than the conventional PI controller for the speed control of dc motor.

  20. Central motor control failure in fibromyalgia: a surface electromyography study

    Directory of Open Access Journals (Sweden)

    Buskila Dan

    2009-07-01

    Full Text Available Abstract Background Fibromyalgia (FM is characterised by diffuse musculoskeletal pain and stiffness at multiple sites, tender points in characteristic locations, and the frequent presence of symptoms such as fatigue. The aim of this study was to assess whether the myoelectrical manifestations of fatigue in patients affected by FM are central or peripheral in origin. Methods Eight female patients aged 55.6 ± 13.6 years (FM group and eight healthy female volunteers aged 50.3 ± 9.3 years (MCG were studied by means of non-invasive surface electromyography (s-EMG involving a linear array of 16 electrodes placed on the skin overlying the biceps brachii muscle, with muscle fatigue being evoked by means of voluntary and involuntary (electrically elicited contractions. Maximal voluntary contractions (MVCs, motor unit action potential conduction velocity distributions (mean ± SD and skewness, and the mean power frequency of the spectrum (MNF were estimated in order to assess whether there were any significant differences between the two groups and contraction types. Results The motor pattern of recruitment during voluntary contractions was altered in the FM patients, who also showed fewer myoelectrical manifestations of fatigue (normalised conduction velocity rate of changes: -0.074 ± 0.052%/s in FM vs -0.196 ± 0.133%/s in MCG; normalised MNF rate of changes: -0.29 ± 0.16%/s in FM vs -0.66 ± 0.34%/s in MCG. Mean conduction velocity distribution and skewnesses values were higher (p Conclusion The apparent paradox of fewer myoelectrical manifestations of fatigue in FM is the electrophysiological expression of muscle remodelling in terms of the prevalence of slow conducting fatigue-resistant type I fibres. As the only between-group differences concerned voluntary contractions, they are probably more related to central motor control failure than muscle membrane alterations, which suggests pathological muscle fibre remodelling related to altered

  1. Combining afferent stimulation and mirror therapy for rehabilitating motor function, motor control, ambulation, and daily functions after stroke.

    Science.gov (United States)

    Lin, Keh-chung; Huang, Pai-chuan; Chen, Yu-ting; Wu, Ching-yi; Huang, Wen-ling

    2014-02-01

    Mirror therapy (MT) and mesh glove (MG) afferent stimulation may be effective in reducing motor impairment after stroke. A hybrid intervention of MT combined with MG (MT + MG) may broaden aspects of treatment benefits. To demonstrate the comparative effects of MG + MT, MT, and a control treatment (CT) on the outcomes of motor impairments, manual dexterity, ambulation function, motor control, and daily function. Forty-three chronic stroke patients with mild to moderate upper extremity impairment were randomly assigned to receive MT + MG, MT, or CT for 1.5 hours/day, 5 days/week for 4 weeks. Outcome measures were the Fugl-Meyer Assessment (FMA) and muscle tone measured by Myoton-3 for motor impairment and the Box and Block Test (BBT) and 10-Meter Walk Test (10 MWT) for motor function. Secondary outcomes included kinematic parameters for motor control and the Motor Activity Log and ABILHAND Questionnaire for daily function. FMA total scores were significantly higher and synergistic shoulder abduction during reach was less in the MT + MG and MT groups compared with the CT group. Performance on the BBT and the 10 MWT (velocity and stride length in self-paced task and velocity in as-quickly-as-possible task) were improved after MT + MG compared with MT. MT + MG improved manual dexterity and ambulation. MT + MG and MT reduced motor impairment and synergistic shoulder abduction more than CT. Future studies may integrate functional task practice into treatments to enhance functional outcomes in patients with various levels of motor severity. The long-term effects of MG + MT remain to be evaluated.

  2. Voice analysis before and after vocal rehabilitation in patients following open surgery on vocal cords

    Directory of Open Access Journals (Sweden)

    Bunijevac Mila

    2016-01-01

    Full Text Available Background/Aim. The major role of larynx in speech, respiration and swallowing makes carcinomas of this region and their treatment very influential for patients’ life quality. The aim of this study was to assess the importance of voice therapy in patients after open surgery on vocal cords. Methods. This study included 21 male patients and the control group of 19 subjects. The vowel (A was recorded and analyzed for each examinee. All the patients were recorded twice: firstly, when they contacted the clinic and secondly, after a three-month vocal therapy, which was held twice per week on an outpatient basis. The voice analysis was carried out in the Ear, Nose and Throat (ENT Clinic, Clinical Hospital Center “Zvezdara” in Belgrade. Results. The values of the acoustic parameters in the patients submitted to open surgery on the vocal cords before vocal rehabilitation and the control group subjects were significantly different in all specified parameters. These results suggest that the voice of the patients was damaged before vocal rehabilitation. The results of the acoustic parameters of the vowel (A before and after vocal rehabilitation of the patients with open surgery on vocal cords were statistically significantly different. Among the parameters - Jitter (%, Shimmer (% - the observed difference was highly statistically significant (p 0.05 . Conclusion. There was a significant improvement of the acoustic parameters of the vowel (A in the study subjects three months following vocal therapy. Only one out of five representative parameters showed no significant improvement.

  3. Hybrid model predictive control for speed control of permanent magnet synchronous motor with saturation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A discrete-time hybrid model of a permanent magnet synchronous motor (PMSM) with saturation in voltage and current is formulated.The controller design with incorporated constraints is achieved in a systematic way from modeling to control synthesis and implementation.The Hybrid System Description Language is used to obtain a mixed-logical dynamical (MLD) model.Based on the MLD model,a model predictive controller is designed for an optimal speed regulation of the motor.For reducing computation complexity and ...

  4. Predicting Achievable Fundamental Frequency Ranges in Vocalization Across Species.

    Directory of Open Access Journals (Sweden)

    Ingo Titze

    2016-06-01

    Full Text Available Vocal folds are used as sound sources in various species, but it is unknown how vocal fold morphologies are optimized for different acoustic objectives. Here we identify two main variables affecting range of vocal fold vibration frequency, namely vocal fold elongation and tissue fiber stress. A simple vibrating string model is used to predict fundamental frequency ranges across species of different vocal fold sizes. While average fundamental frequency is predominantly determined by vocal fold length (larynx size, range of fundamental frequency is facilitated by (1 laryngeal muscles that control elongation and by (2 nonlinearity in tissue fiber tension. One adaptation that would increase fundamental frequency range is greater freedom in joint rotation or gliding of two cartilages (thyroid and cricoid, so that vocal fold length change is maximized. Alternatively, tissue layers can develop to bear a disproportionate fiber tension (i.e., a ligament with high density collagen fibers, increasing the fundamental frequency range and thereby vocal versatility. The range of fundamental frequency across species is thus not simply one-dimensional, but can be conceptualized as the dependent variable in a multi-dimensional morphospace. In humans, this could allow for variations that could be clinically important for voice therapy and vocal fold repair. Alternative solutions could also have importance in vocal training for singing and other highly-skilled vocalizations.

  5. Molecular mapping of brain areas involved in parrot vocal communication.

    Science.gov (United States)

    Jarvis, E D; Mello, C V

    2000-03-27

    Auditory and vocal regulation of gene expression occurs in separate discrete regions of the songbird brain. Here we demonstrate that regulated gene expression also occurs during vocal communication in a parrot, belonging to an order whose ability to learn vocalizations is thought to have evolved independently of songbirds. Adult male budgerigars (Melopsittacus undulatus) were stimulated to vocalize with playbacks of conspecific vocalizations (warbles), and their brains were analyzed for expression of the transcriptional regulator ZENK. The results showed that there was distinct separation of brain areas that had hearing- or vocalizing-induced ZENK expression. Hearing warbles resulted in ZENK induction in large parts of the caudal medial forebrain and in 1 midbrain region, with a pattern highly reminiscent of that observed in songbirds. Vocalizing resulted in ZENK induction in nine brain structures, seven restricted to the lateral and anterior telencephalon, one in the thalamus, and one in the midbrain, with a pattern partially reminiscent of that observed in songbirds. Five of the telencephalic structures had been previously described as part of the budgerigar vocal control pathway. However, functional boundaries defined by the gene expression patterns for some of these structures were much larger and different in shape than previously reported anatomical boundaries. Our results provide the first functional demonstration of brain areas involved in vocalizing and auditory processing of conspecific sounds in budgerigars. They also indicate that, whether or not vocal learning evolved independently, some of the gene regulatory mechanisms that accompany learned vocal communication are similar in songbirds and parrots.

  6. Planar Task Space Control of a Biarticular Manipulator Driven by Spiral Motors

    Directory of Open Access Journals (Sweden)

    Ahmad Zaki bin Hj Shukor

    2012-10-01

    Full Text Available This paper elaborates upon a musculoskeletal‐inspired robot manipulator using a prototype of the spiral motor developed in our laboratory. The spiral motors represent the antagonistic muscles due to the high forward/backward drivability without any gears or mechanisms. Modelling of the biarticular structure with spiral motor dynamics was presented and simulations were carried out to compare two control methods, Inverse Kinematics (IK and direct‐Cartesian control, between monoarticular only structures and biarticular structures using the spiral motor. The results show the feasibility of the control, especially in maintaining air gaps within the spiral motor.

  7. Differences in motor control in the bronchus and extrathoracic trachea.

    Science.gov (United States)

    Kondo, T; Kobayashi, I; Hirokawa, Y; Suda, S; Ohta, Y; Arita, H

    1995-10-05

    The motor control of the bronchus and extrathoracic trachea was evaluated by continuously measuring bronchial diameter and tracheal muscle tension as well as phrenic nerve activity in decerebrated, paralyzed, artificially ventilated dogs. Spontaneous rhythmic changes in bronchial diameter and tracheal muscle tension occurred in phase with phrenic burst during mechanical ventilation and during apnea induced by disconnecting the ventilator. There was a small but consistent difference in the timing of their rhythmic activities; bronchial constriction started at mid-inspiration, whereas tracheal contraction began just prior to the end of inspiration. Both were active in the post-inspiratory phase. Both hypercapnia and apnea caused an enhanced rhythmic constriction of the bronchus, while evoking a tonic contraction of the trachea. Intermittent electric stimulation of the efferent vagus nerves revealed that repetitive stimulation with a short intermission was necessary to evoke a sustained constriction of the bronchus, and that the bronchus could maintain the sustained constriction only transiently. These results indicate that the motor control of the bronchus and extrathoracic trachea are distinct. The central nervous system may contribute to the difference in timing of the contraction between tracheal and bronchial smooth muscle. However, the difference in response to electric stimulation of the nervus vagus may be attributed to the peripheral neuromuscular system.

  8. Gait variability and motor control in people with knee osteoarthritis.

    Science.gov (United States)

    Alkjaer, Tine; Raffalt, Peter C; Dalsgaard, Helle; Simonsen, Erik B; Petersen, Nicolas C; Bliddal, Henning; Henriksen, Marius

    2015-10-01

    Knee osteoarthritis (OA) is a common disease that impairs walking ability and function. We compared the temporal gait variability and motor control in people with knee OA with healthy controls. The purpose was to test the hypothesis that the temporal gait variability would reflect a more stereotypic pattern in people with knee OA compared with healthy age-matched subjects. To assess the gait variability the temporal structure of the ankle and knee joint kinematics was quantified by the largest Lyapunov exponent and the stride time fluctuations were quantified by sample entropy and detrended fluctuation analysis. The motor control was assessed by the soleus (SO) Hoffmann (H)-reflex modulation and muscle co-activation during walking. The results showed no statistically significant mean group differences in any of the gait variability measures or muscle co-activation levels. The SO H-reflex amplitude was significantly higher in the knee OA group around heel strike when compared with the controls. The mean group difference in the H-reflex in the initial part of the stance phase (control-knee OA) was -6.6% Mmax (95% CI: -10.4 to -2.7, p=0.041). The present OA group reported relatively small impact of their disease. These results suggest that the OA group in general sustained a normal gait pattern with natural variability but with suggestions of facilitated SO H-reflex in the swing to stance phase transition. We speculate that the difference in SO H-reflex modulation reflects that the OA group increased the excitability of the soleus stretch reflex as a preparatory mechanism to avoid sudden collapse of the knee joint which is not uncommon in knee OA.

  9. Deficient grip force control in schizophrenia: behavioral and modeling evidence for altered motor inhibition and motor noise.

    Science.gov (United States)

    Teremetz, Maxime; Amado, Isabelle; Bendjemaa, Narjes; Krebs, Marie-Odile; Lindberg, Pavel G; Maier, Marc A

    2014-01-01

    Whether upper limb sensorimotor control is affected in schizophrenia and how underlying pathological mechanisms may potentially intervene in these deficits is still being debated. We tested voluntary force control in schizophrenia patients and used a computational model in order to elucidate potential cerebral mechanisms underlying sensorimotor deficits in schizophrenia. A visuomotor grip force-tracking task was performed by 17 medicated and 6 non-medicated patients with schizophrenia (DSM-IV) and by 15 healthy controls. Target forces in the ramp-hold-and-release paradigm were set to 5 N and to 10% maximal voluntary grip force. Force trajectory was analyzed by performance measures and Principal Component Analysis (PCA). A computational model incorporating neural control signals was used to replicate the empirically observed motor behavior and to explore underlying neural mechanisms. Grip task performance was significantly lower in medicated and non-medicated schizophrenia patients compared to controls. Three behavioral variables were significantly higher in both patient groups: tracking error (by 50%), coefficient of variation of force (by 57%) and duration of force release (up by 37%). Behavioral performance did not differ between patient groups. Computational simulation successfully replicated these findings and predicted that decreased motor inhibition, together with an increased signal-dependent motor noise, are sufficient to explain the observed motor deficits in patients. PCA also suggested altered motor inhibition as a key factor differentiating patients from control subjects: the principal component representing inhibition correlated with clinical severity. These findings show that schizophrenia affects voluntary sensorimotor control of the hand independent of medication, and suggest that reduced motor inhibition and increased signal-dependent motor noise likely reflect key pathological mechanisms of the sensorimotor deficit.

  10. Low-Cost Undergraduate Control Systems Experiments Using Microcontroller-Based Control of a DC Motor

    Science.gov (United States)

    Gunasekaran, M.; Potluri, R.

    2012-01-01

    This paper presents low-cost experiments for a control systems laboratory module that is worth one and a third credits. The experiments are organized around the microcontroller-based control of a permanent magnet dc motor. The experimental setups were built in-house. Except for the operating system, the software used is primarily freeware or free…

  11. Low-Cost Undergraduate Control Systems Experiments Using Microcontroller-Based Control of a DC Motor

    Science.gov (United States)

    Gunasekaran, M.; Potluri, R.

    2012-01-01

    This paper presents low-cost experiments for a control systems laboratory module that is worth one and a third credits. The experiments are organized around the microcontroller-based control of a permanent magnet dc motor. The experimental setups were built in-house. Except for the operating system, the software used is primarily freeware or free…

  12. A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs

    Directory of Open Access Journals (Sweden)

    Anton Civit-Balcells

    2012-03-01

    Full Text Available In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN, which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control.

  13. A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs.

    Science.gov (United States)

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control.

  14. Comparative gene expression analysis among vocal learners (Bengalese finch and budgerigar and non-learners (quail and ring dove reveals variable cadherin expressions in the vocal system

    Directory of Open Access Journals (Sweden)

    Eiji eMatsunaga

    2011-04-01

    Full Text Available Birds use various vocalizations to communicate with one another, and some are acquired through learning. So far, three families of birds (songbirds, parrots, and hummingbirds have been identified as having vocal learning ability. Previously, we found that cadherins, a large family of cell-adhesion molecules, show vocal control-area-related expression in a songbird, the Bengalese finch. To investigate the molecular basis of evolution in avian species, we conducted comparative analysis of cadherin expressions in the vocal and other neural systems among vocal learners (Bengalese finch and budgerigar and a non-learner (quail and ring dove. The gene expression analysis revealed that cadherin expressions were more variable in vocal and auditory areas compared to vocally unrelated areas such as the visual areas among these species. Thus, it appears that such diverse cadherin expressions might have been related to generating species diversity in vocal behavior during the evolution of avian vocal learning. 

  15. Realization of Fuzzy Logic Controlled Brushless DC Motor Drives Using Matlab/Simulink

    OpenAIRE

    Çunkas, Mehmet; Aydoğdu, Omer

    2010-01-01

    In this paper, an efficient simulation model for fuzzy logic controlled brushless direct current motor drives using Matlab/Simulink is presented. The brushless direct current (BLDC) motor is efficiently controlled by Fuzzy logic controller (FLC). The control algorithms, fuzzy logic and PID are compared. Also, the dynamic characteristics of the BLDC motor (i.e. speed and torque) and as well as currents and voltages of the inverter components are easily observed and analyzed by using the develo...

  16. Implementation of Slip-Controller for Induction Motor Drive Employing Indirect Matrix Converter

    Directory of Open Access Journals (Sweden)

    K. Ganesan, S. Subamalini, A. Dhinesh

    2014-04-01

    Full Text Available A new scheme to design the proportional integral (PI type controller for speed control of a constant Volts/Hz (V/F three phase induction motor drive employing a matrix converter has been presented. An approximate linear model of induction motor operating in constant Volts/Hz scheme is derived and a design example of a slip controller for a three phase motor is presented. Performance of the designed controller is verified with results from simulation using Mat lab

  17. Controlling DC Motor using Microcontroller (PIC16F72) with PWM

    OpenAIRE

    Shruti Shrivastava, Jageshwar Rawat, Amit Agrawal

    2012-01-01

    Motion control plays a vital role in industrial atomization. Different types of motors AC, DC, SERVO or stepper are used depending upon the application; of these DC motors are widely used because of easier controlling. Among the different control methods for DC motor armature voltage control method using pulse width modulation (PWM) is best one. We can realize the PWM using H-bridge built with IGBT switches or transistors. To generate PWM signals we use PIC16F7...

  18. Altered motor control patterns in whiplash and chronic neck pain

    Directory of Open Access Journals (Sweden)

    Vasseljen Ottar

    2008-06-01

    Full Text Available Abstract Background Persistent whiplash associated disorders (WAD have been associated with alterations in kinesthetic sense and motor control. The evidence is however inconclusive, particularly for differences between WAD patients and patients with chronic non-traumatic neck pain. The aim of this study was to investigate motor control deficits in WAD compared to chronic non-traumatic neck pain and healthy controls in relation to cervical range of motion (ROM, conjunct motion, joint position error and ROM-variability. Methods Participants (n = 173 were recruited to three groups: 59 patients with persistent WAD, 57 patients with chronic non-traumatic neck pain and 57 asymptomatic volunteers. A 3D motion tracking system (Fastrak was used to record maximal range of motion in the three cardinal planes of the cervical spine (sagittal, frontal and horizontal, and concurrent motion in the two associated cardinal planes relative to each primary plane were used to express conjunct motion. Joint position error was registered as the difference in head positions before and after cervical rotations. Results Reduced conjunct motion was found for WAD and chronic neck pain patients compared to asymptomatic subjects. This was most evident during cervical rotation. Reduced conjunct motion was not explained by current pain or by range of motion in the primary plane. Total conjunct motion during primary rotation was 13.9° (95% CI; 12.2–15.6 for the WAD group, 17.9° (95% CI; 16.1–19.6 for the chronic neck pain group and 25.9° (95% CI; 23.7–28.1 for the asymptomatic group. As expected, maximal cervical range of motion was significantly reduced among the WAD patients compared to both control groups. No group differences were found in maximal ROM-variability or joint position error. Conclusion Altered movement patterns in the cervical spine were found for both pain groups, indicating changes in motor control strategies. The changes were not related to a

  19. Comparison between Conventional and Fuzzy Logic PID Controllers for Controlling DC Motors

    Directory of Open Access Journals (Sweden)

    Essam Natsheh

    2010-09-01

    Full Text Available Fuzzy logic and proportional-integral-derivative (PID controllers are compared for use in direct current (DC motors positioning system. A simulation study of the PID position controller for the armature-controlled with fixed field and field controlled with fixed armature current DC motors is performed. Fuzzy rules and the inferencing mechanism of the fuzzy logic controller (FLC are evaluated by using conventional rule-lookup tables that encode the control knowledge in a rules form. The performance assessment of the studied position controllers is based on transient response and error integral criteria. The results obtained from the FLC are not only superior in the rise time, speed fluctuations, and percent overshoot but also much better in the controller output signal structure, which is much remarkable in terms of the hardware implementation.

  20. Direct Vector Control of Induction Motor Based on Sinusoidal PWM Inverter with Fuzzy Logic Controller

    Directory of Open Access Journals (Sweden)

    Nirban Chakraborty

    2014-04-01

    Full Text Available This paper presents the speed control scheme of direct vector control of Induction Motor drive (IM drive. The Fuzzy logic controller is (FLC used as the controller part here for the direct vector control of Induction Motor using Sinusoidal PWM Inverter (SPWM. Fuzzy logic controller has become a very popular controlling scheme in the field of Industrial application. The entire module of this IM is divided into several parts such as IM body module, Inverter module, coordinate transformation module and Sinusoidal pulse width modulation (SPWM production module and so on. With the help of this module we can analyze a variety of different simulation waveforms, which provide an effective means for the analysis and design of the IM control system using FLC technique.

  1. A hypothesis on improving foreign accents by optimizing variability in vocal learning brain circuits.

    Science.gov (United States)

    Simmonds, Anna J

    2015-01-01

    Rapid vocal motor learning is observed when acquiring a language in early childhood, or learning to speak another language later in life. Accurate pronunciation is one of the hardest things for late learners to master and they are almost always left with a non-native accent. Here, I propose a novel hypothesis that this accent could be improved by optimizing variability in vocal learning brain circuits during learning. Much of the neurobiology of human vocal motor learning has been inferred from studies on songbirds. Jarvis (2004) proposed the hypothesis that as in songbirds there are two pathways in humans: one for learning speech (the striatal vocal learning pathway), and one for production of previously learnt speech (the motor pathway). Learning new motor sequences necessary for accurate non-native pronunciation is challenging and I argue that in late learners of a foreign language the vocal learning pathway becomes inactive prematurely. The motor pathway is engaged once again and learners maintain their original native motor patterns for producing speech, resulting in speaking with a foreign accent. Further, I argue that variability in neural activity within vocal motor circuitry generates vocal variability that supports accurate non-native pronunciation. Recent theoretical and experimental work on motor learning suggests that variability in the motor movement is necessary for the development of expertise. I propose that there is little trial-by-trial variability when using the motor pathway. When using the vocal learning pathway variability gradually increases, reflecting an exploratory phase in which learners try out different ways of pronouncing words, before decreasing and stabilizing once the "best" performance has been identified. The hypothesis proposed here could be tested using behavioral interventions that optimize variability and engage the vocal learning pathway for longer, with the prediction that this would allow learners to develop new motor

  2. A hypothesis on improving foreign accents by optimizing variability in vocal learning brain circuits

    Directory of Open Access Journals (Sweden)

    Anna J Simmonds

    2015-11-01

    Full Text Available Rapid vocal motor learning is observed when acquiring a language in early childhood, or learning to speak another language later in life. Accurate pronunciation is one of the hardest things for late learners to master and they are almost always left with a non-native accent. Here I propose a novel hypothesis that this accent could be improved by optimizing variability in vocal learning brain circuits during learning. Much of the neurobiology of human vocal motor learning has been inferred from studies on songbirds. Jarvis (2004 proposed the hypothesis that as in songbirds there are two pathways in humans: one for learning speech (the striatal vocal learning pathway, and one for production of previously learnt speech (the motor pathway. Learning new motor sequences necessary for accurate non-native pronunciation is challenging and I argue that in late learners of a foreign language the vocal learning pathway becomes inactive prematurely. The motor pathway is engaged once again and learners maintain their original native motor patterns for producing speech, resulting in speaking with a foreign accent. Further, I argue that variability in neural activity within vocal motor circuitry generates vocal variability that supports accurate non-native pronunciation. Recent theoretical and experimental work on motor learning suggests that variability in the motor movement is necessary for the development of expertise. I propose that there is little trial-by-trial variability when using the motor pathway. When using the vocal learning pathway variability gradually increases, reflecting an exploratory phase in which learners try out different ways of pronouncing words, before decreasing and stabilizing once the ‘best’ performance has been identified. The hypothesis proposed here could be tested using behavioral interventions that optimize variability and engage the vocal learning pathway for longer, with the prediction that this would allow learners to

  3. Motor planning modulates sensory-motor control of collision avoidance behavior in the bullfrog, Rana catesbeiana

    Directory of Open Access Journals (Sweden)

    Hideki Nakagawa

    2012-08-01

    In this study, we examined the collision avoidance behavior of the frog, Rana catesbeiana to an approaching object in the upper visual field. The angular velocity of the frog's escape turn showed a significant positive correlation with the turn angle (r2 = 0.5741, P0.05. Thus, the frog was not able to control the velocity of the large escape turns accurately and did not complete the behavior within a constant time. In the latter case, there was a small but significant positive correlation between the threshold angular size and the angular velocity (r2 = 0.1459, P<0.05. This suggests that the threshold is controlled to compensate for the insufficient escape velocity achieved during large turn angles, and could explain a significant negative correlation between the turn angle and the threshold angular size (r2 = 0.1145, P<0.05. Thus, it is likely that the threshold angular size is also controlled by the turn angle and is modulated by motor planning.

  4. Control of rotor motion in a light-driven molecular motor : Towards a molecular gearbox

    NARCIS (Netherlands)

    Wiel, Matthijs K.J. ter; Delden, Richard A. van; Meetsma, Auke; Feringa, Bernard

    2005-01-01

    Controlled intramolecular movement and coupling of motor and rotor functions is exerted by this new molecular device. The rate of rotation of the rotor part of the molecule can be adjusted by alteration of the conformation of the motor part of the molecule. For all states of the motor part, differen

  5. Intelligent Controller Design for DC Motor Speed Control based on Fuzzy Logic-Genetic Algorithms Optimization

    OpenAIRE

    Boumediene ALLAOUA; Laoufi, Abdellah; Brahim GASBAOUI; Nasri, Abdelfatah; Abdessalam ABDERRAHMANI

    2008-01-01

    In this paper, an intelligent controller of the DC (Direct current) Motor drive is designed using fuzzy logic-genetic algorithms optimization. First, a controller is designed according to fuzzy rules such that the systems are fundamentally robust. To obtain the globally optimal values, parameters of the fuzzy controller are improved by genetic algorithms optimization model. Computer MATLAB work space demonstrate that the fuzzy controller associated to the genetic algorithms approach became ve...

  6. Theories and control models and motor learning: clinical applications in neuro-rehabilitation.

    Science.gov (United States)

    Cano-de-la-Cuerda, R; Molero-Sánchez, A; Carratalá-Tejada, M; Alguacil-Diego, I M; Molina-Rueda, F; Miangolarra-Page, J C; Torricelli, D

    2015-01-01

    In recent decades there has been a special interest in theories that could explain the regulation of motor control, and their applications. These theories are often based on models of brain function, philosophically reflecting different criteria on how movement is controlled by the brain, each being emphasised in different neural components of the movement. The concept of motor learning, regarded as the set of internal processes associated with practice and experience that produce relatively permanent changes in the ability to produce motor activities through a specific skill, is also relevant in the context of neuroscience. Thus, both motor control and learning are seen as key fields of study for health professionals in the field of neuro-rehabilitation. The major theories of motor control are described, which include, motor programming theory, systems theory, the theory of dynamic action, and the theory of parallel distributed processing, as well as the factors that influence motor learning and its applications in neuro-rehabilitation. At present there is no consensus on which theory or model defines the regulations to explain motor control. Theories of motor learning should be the basis for motor rehabilitation. The new research should apply the knowledge generated in the fields of control and motor learning in neuro-rehabilitation. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  7. Global models: Robot sensing, control, and sensory-motor skills

    Science.gov (United States)

    Schenker, Paul S.

    1989-01-01

    Robotics research has begun to address the modeling and implementation of a wide variety of unstructured tasks. Examples include automated navigation, platform servicing, custom fabrication and repair, deployment and recovery, and science exploration. Such tasks are poorly described at onset; the workspace layout is partially unfamiliar, and the task control sequence is only qualitatively characterized. The robot must model the workspace, plan detailed physical actions from qualitative goals, and adapt its instantaneous control regimes to unpredicted events. Developing robust representations and computational approaches for these sensing, planning, and control functions is a major challenge. The underlying domain constraints are very general, and seem to offer little guidance for well-bounded approximation of object shape and motion, manipulation postures and trajectories, and the like. This generalized modeling problem is discussed, with an emphasis on the role of sensing. It is also discussed that unstructured tasks often have, in fact, a high degree of underlying physical symmetry, and such implicit knowledge should be drawn on to model task performance strategies in a methodological fashion. A group-theoretic decomposition of the workspace organization, task goals, and their admissible interactions are proposed. This group-mechanical approach to task representation helps to clarify the functional interplay of perception and control, in essence, describing what perception is specifically for, versus how it is generically modeled. One also gains insight how perception might logically evolve in response to needs of more complex motor skills. It is discussed why, of the many solutions that are often mathematically admissible to a given sensory motor-coordination problem, one may be preferred over others.

  8. Torque Control of a Separate-Winding Excitation DC Motor for a Dynamometer

    Science.gov (United States)

    2010-12-01

    In this thesis, the theory behind a separate-winding excitation direct current ( DC ) motor and profile of the motor’s torque versus rotor speed is... DC motor is proportional to the armature current. From this theory, a program was written in Simulink with Xilinx embedded software to enable a user...to command the DC motor torque through a Graphical User Interface (GUI). The command is then converted to control armature current through a Field

  9. Motor Controlled Rotating Base for Directional Submarine Antennas

    Science.gov (United States)

    2012-09-28

    steel gear 172 that is attached to the rotating platform 150. [0044] Suitable motors include, but are not limited to, a brushless DC motor that...parts. Different motors and different gear heads may be used to provide different torques and operating speeds. A different model pin 26

  10. Reducing current reversal time in electric motor control

    Science.gov (United States)

    Bredemann, Michael V

    2014-11-04

    The time required to reverse current flow in an electric motor is reduced by exploiting inductive current that persists in the motor when power is temporarily removed. Energy associated with this inductive current is used to initiate reverse current flow in the motor.

  11. Electric motor noise control over the past ten years

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, J.D. (Bolt Beranek and Newman Inc., Cambridge, MA); Bruce, R.D.

    1982-01-01

    Electric motors have been recognized as a source of noise and vibration requiring solutions for almost 40 years. Noise from electric motors is not as major a source of concern today as it was 10 years ago. In this paper, the authors attempt to summarize very briefly why quiet motors are available today.

  12. Songbird: a unique animal model for studying the molecular basis of disorders of vocal development and communication.

    Science.gov (United States)

    Mori, Chihiro; Wada, Kazuhiro

    2015-01-01

    Like humans, songbirds are one of the few animal groups that learn vocalization. Vocal learning requires coordination of auditory input and vocal output using auditory feedback to guide one's own vocalizations during a specific developmental stage known as the critical period. Songbirds are good animal models for understand the neural basis of vocal learning, a complex form of imitation, because they have many parallels to humans with regard to the features of vocal behavior and neural circuits dedicated to vocal learning. In this review, we will summarize the behavioral, neural, and genetic traits of birdsong. We will also discuss how studies of birdsong can help us understand how the development of neural circuits for vocal learning and production is driven by sensory input (auditory information) and motor output (vocalization).

  13. Noradrenergic control of gene expression and long-term neuronal adaptation evoked by learned vocalizations in songbirds.

    Directory of Open Access Journals (Sweden)

    Tarciso A F Velho

    Full Text Available Norepinephrine (NE is thought to play important roles in the consolidation and retrieval of long-term memories, but its role in the processing and memorization of complex acoustic signals used for vocal communication has yet to be determined. We have used a combination of gene expression analysis, electrophysiological recordings and pharmacological manipulations in zebra finches to examine the role of noradrenergic transmission in the brain's response to birdsong, a learned vocal behavior that shares important features with human speech. We show that noradrenergic transmission is required for both the expression of activity-dependent genes and the long-term maintenance of stimulus-specific electrophysiological adaptation that are induced in central auditory neurons by stimulation with birdsong. Specifically, we show that the caudomedial nidopallium (NCM, an area directly involved in the auditory processing and memorization of birdsong, receives strong noradrenergic innervation. Song-responsive neurons in this area express α-adrenergic receptors and are in close proximity to noradrenergic terminals. We further show that local α-adrenergic antagonism interferes with song-induced gene expression, without affecting spontaneous or evoked electrophysiological activity, thus dissociating the molecular and electrophysiological responses to song. Moreover, α-adrenergic antagonism disrupts the maintenance but not the acquisition of the adapted physiological state. We suggest that the noradrenergic system regulates long-term changes in song-responsive neurons by modulating the gene expression response that is associated with the electrophysiological activation triggered by song. We also suggest that this mechanism may be an important contributor to long-term auditory memories of learned vocalizations.

  14. Microcontroller based PWM Inverter for Speed Control of a Three Phase Induction Motor

    Directory of Open Access Journals (Sweden)

    M. A. Latif

    2013-04-01

    Full Text Available Three phase induction motor has proven to be an extremely reliable electromechanical energy conversion device for over 100 years. The speed control of induction motor is a crying need for the real world industrial applications. However, there are so many options available for the precise speed control of induction motor except by changingthe frequency. Therefore to achieve the goal of speed control of induction motor, there is no alternative of inverters. With the availability of high speed power semiconductor devices, the three phase inverters play the key role for variable speed ac motor drives. In addition to the speed control, the inverter can also provide some unique features, like voltage control, torque control, power factor correction, auto breaking, built in protection system and so forth.In this paper, a three phases PWM inverter using MC3PHAC microcontroller with computer interface is proposed to run a squirrel case induction motor. Some results of the proposed inverter are presented.

  15. Temporal recalibration in vocalization induced by adaptation of delayed auditory feedback.

    Directory of Open Access Journals (Sweden)

    Kosuke Yamamoto

    Full Text Available BACKGROUND: We ordinarily perceive our voice sound as occurring simultaneously with vocal production, but the sense of simultaneity in vocalization can be easily interrupted by delayed auditory feedback (DAF. DAF causes normal people to have difficulty speaking fluently but helps people with stuttering to improve speech fluency. However, the underlying temporal mechanism for integrating the motor production of voice and the auditory perception of vocal sound remains unclear. In this study, we investigated the temporal tuning mechanism integrating vocal sensory and voice sounds under DAF with an adaptation technique. METHODS AND FINDINGS: Participants produced a single voice sound repeatedly with specific delay times of DAF (0, 66, 133 ms during three minutes to induce 'Lag Adaptation'. They then judged the simultaneity between motor sensation and vocal sound given feedback. We found that lag adaptation induced a shift in simultaneity responses toward the adapted auditory delays. This indicates that the temporal tuning mechanism in vocalization can be temporally recalibrated after prolonged exposure to delayed vocal sounds. Furthermore, we found that the temporal recalibration in vocalization can be affected by averaging delay times in the adaptation phase. CONCLUSIONS: These findings suggest vocalization is finely tuned by the temporal recalibration mechanism, which acutely monitors the integration of temporal delays between motor sensation and vocal sound.

  16. A discreet control of sliding ways of an induction motor; Control discreto de modos deslizantes de un motor de induccion

    Energy Technology Data Exchange (ETDEWEB)

    Rivera Dominguez, Jorge

    2001-12-15

    A control of sliding ways in discreet time for non-linear discreet systems is designed, also the technique of the control by histograms for non-linear discreet systems was developed, and an observer of reduced order was developed for non-linear electromechanical discreet systems. All these techniques are applied to a non-linear discreet model of an induction motor that was found here, that posses electrical and mechanical dynamics, in which the load pair is considered an unknown disturbance. With complete measurements of the states are satisfied the pursuing of the rotor velocity and the amplitude of the magnetic flux of the rotor, where the unknown load does not affect the velocity regulation. Next, an observer of reduced order is implemented where the velocity and current measurements are employed to consider the load pair and the flows that are very difficult to measure. The proposed method has a design and stability procedure of direct analyses, conserving a simple structure of the control law. The simulations predict that the system is robust with respect to several types of load pairs. The responses of velocity and amplitude of the rotor flow and the entrance references evolved very well. These references have a linear dynamics of second order with time constants that can be chosen by the motor user. The practical aspects for a future digital implementation of the control law are considered, including the velocity and currents sensors, the preparation of signals, the transformation of the current in the frame of stationary reference, PWM and inverter modules, which were seen in detail. The experimental results are left as a future work. [Spanish] Se disena un control de modos deslizantes en tiempo discreto para sistemas discretos no lineales, tambien se desarrollo la tecnica del control por bloques para sistemas discretos no lineales, y un observador de orden reducido fue desarrollado para sistemas discretos electromecanicos no lineales. Todas estas tecnicas

  17. Position Control of Synchronous Motor Drive by Modified Adaptive Two-phase Sliding Mode Controller

    Institute of Scientific and Technical Information of China (English)

    Mohamed Said Sayed Ahmed; Ping Zhang; Yun-Jie Wu

    2008-01-01

    A modified adaptive two-phase sliding mode controller for the synchronous motor drive that is highly robust to uncertain-ties and external disturbances is proposed in this paper. The proposed controller uses two-phase sliding mode control (SMC) where the 1st phase mainly controls the system in steady states and disturbed states-it is a smoothing phase. The 2nd phase is used mainly in the case of disturbed states. Also, it is an autotuning phase and uses a simple adaptive algorithm to tune the gain of conventional variable structure control (VSC). The modified controller is useful in position control of a permanent magnet synchronous drive.

  18. Position Control of Linear Synchronous Motor Drives with Exploitation of Forced Dynamics Control Principles

    Directory of Open Access Journals (Sweden)

    Jan Vittek

    2004-01-01

    Full Text Available Closed-loop position control of mechanisms directly driven by linear synchronous motors with permanent magnets is presented. The control strategy is based on forced dynamic control, which is a form of feedback linearisation, yielding a non-liner multivariable control law to obtain a prescribed linear speed dynamics together with the vector control condition of mutal orthogonality between the stator current and magnetic flux vectors (assuming perfect estimates of the plant parameters. Outer position control loop is closed via simple feedback with proportional gain. Simulations of the design control sysstem, including the drive with power electronic switching, predict the intended drive performance.

  19. Tuning of PID Controller for A Linear Brushless DC Motor using Swarm Intelligence Technique

    Directory of Open Access Journals (Sweden)

    Pooja Sharma,

    2014-05-01

    Full Text Available An Optimal Design of PID Controller is proposed in this paper. The Methodology of PSO Algorithm is utilized to search the optimal parameters of Proportional Integral Derivative (PID Controller for BLDC Motor. PSO is an Evolutionary Optimization Technique. A Linear Brushless DC Motors are known for higher efficiency and lower maintenance. The Brushless DC Motor is modeled in Simulink & tuning of PID controller using PSO is implemented in MATLAB. This Method was more efficient for Step Response Characteristics.

  20. Innovative standstill position detection combined with sensorless control of synchronous motors

    OpenAIRE

    Persson, Jan

    2005-01-01

    Sensorless control of PMSM's (Permanent Magnet Synchronous Motors) has occupied scientists for a long time. The result of this research is becoming widely accepted by the industry due to its low cost and reliability. However, the majority of today's motor drives are still equipped with some kind of position sensor. The reason is that sensorless control still have several limitations and is usually more complex than a traditional motor control. A new method to estimate the standstill position ...

  1. Motor Control of Two Flywheels Enabling Combined Attitude Control and Bus Regulation

    Science.gov (United States)

    Kenny, Barbara H.

    2004-01-01

    This presentation discussed the flywheel technology development work that is ongoing at NASA GRC with a particular emphasis on the flywheel system control. The "field orientation" motor/generator control algorithm was discussed and explained. The position-sensorless angle and speed estimation algorithm was presented. The motor current response to a step change in command at low (10 kRPM) and high (60 kRPM) was discussed. The flywheel DC bus regulation control was explained and experimental results presented. Finally, the combined attitude control and energy storage algorithm that controls two flywheels simultaneously was presented. Experimental results were shown that verified the operational capability of the algorithm. shows high speed flywheel energy storage (60,000 RPM) and the successful implementation of an algorithm to simultaneously control both energy storage and a single axis of attitude with two flywheels. Overall, the presentation demonstrated that GRC has an operational facility that

  2. Intelligent robust control law for induction motors based on field-oriented control theory

    Energy Technology Data Exchange (ETDEWEB)

    Barambones, O.; Alcorta, P.; Sevillano, G.; Garrido, A.; Garrido, I. [Univ. del Pais Vasco, Bilbao (Spain). Dpto. Ingenieri a de Sistemas y Automatica

    2009-07-01

    A sensorless adaptive control law was developed to improve the trajectory tracking performance of induction motors. The law used an integral sliding mode algorithm to avoid the necessity of calculating an upper bound for system uncertainties. The vector control theory was used to develop the induction motor drives. The sliding mode control law incorporated an adaptive switching gain and included a method of estimating rotor speeds. Rotor speed estimation errors were presented as a first order simple function based on the difference between real stator currents and estimated stator currents. The Lyapunov stability theory was used to analyze the controller under different load disturbances and parameter uncertainties. Results of the study showed that the control signal of the scheme was smaller than signals obtained using traditional variable structure control schemes. It was concluded that speed tracking objectives can be obtained under various parameter and torque uncertainties. 9 refs., 7 figs.

  3. Sensorless speed control of switched reluctance motor using brain emotional learning based intelligent controller

    Energy Technology Data Exchange (ETDEWEB)

    Dehkordi, Behzad Mirzaeian, E-mail: mirzaeian@eng.ui.ac.i [Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Hezar-Jerib St., Postal code 8174673441, Isfahan (Iran, Islamic Republic of); Parsapoor, Amir, E-mail: amirparsapoor@yahoo.co [Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Hezar-Jerib St., Postal code 8174673441, Isfahan (Iran, Islamic Republic of); Moallem, Mehdi, E-mail: moallem@cc.iut.ac.i [Department of Electrical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Lucas, Caro, E-mail: lucas@ut.ac.i [Centre of Excellence for Control and Intelligent Processing, Electrical and Computer Engineering Faculty, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2011-01-15

    In this paper, a brain emotional learning based intelligent controller (BELBIC) is developed to control the switched reluctance motor (SRM) speed. Like other intelligent controllers, BELBIC is model free and is suitable to control nonlinear systems. Motor parameter changes, operating point changes, measurement noise, open circuit fault in one phase and asymmetric phases in SRM are also simulated to show the robustness and superior performance of BELBIC. To compare the BELBIC performance with other intelligent controllers, Fuzzy Logic Controller (FLC) is developed. System responses with BELBIC and FLC are compared. Furthermore, by eliminating the position sensor, a method is introduced to estimate the rotor position. This method is based on Adaptive Neuro Fuzzy Inference System (ANFIS). The estimator inputs are four phase flux linkages. Suggested rotor position estimator is simulated in different conditions. Simulation results confirm the accurate rotor position estimation in different loads and speeds.

  4. High-Resolution, Non-Invasive Imaging of Upper Vocal Tract Articulators Compatible with Human Brain Recordings.

    Directory of Open Access Journals (Sweden)

    Kristofer E Bouchard

    Full Text Available A complete neurobiological understanding of speech motor control requires determination of the relationship between simultaneously recorded neural activity and the kinematics of the lips, jaw, tongue, and larynx. Many speech articulators are internal to the vocal tract, and therefore simultaneously tracking the kinematics of all articulators is nontrivial--especially in the context of human electrophysiology recordings. Here, we describe a noninvasive, multi-modal imaging system to monitor vocal tract kinematics, demonstrate this system in six speakers during production of nine American English vowels, and provide new analysis of such data. Classification and regression analysis revealed considerable variability in the articulator-to-acoustic relationship across speakers. Non-negative matrix factorization extracted basis sets capturing vocal tract shapes allowing for higher vowel classification accuracy than traditional methods. Statistical speech synthesis generated speech from vocal tract measurements, and we demonstrate perceptual identification. We demonstrate the capacity to predict lip kinematics from ventral sensorimotor cortical activity. These results demonstrate a multi-modal system to non-invasively monitor articulator kinematics during speech production, describe novel analytic methods for relating kinematic data to speech acoustics, and provide the first decoding of speech kinematics from electrocorticography. These advances will be critical for understanding the cortical basis of speech production and the creation of vocal prosthetics.

  5. High-Resolution, Non-Invasive Imaging of Upper Vocal Tract Articulators Compatible with Human Brain Recordings

    Science.gov (United States)

    Anumanchipalli, Gopala K.; Dichter, Benjamin; Chaisanguanthum, Kris S.; Johnson, Keith; Chang, Edward F.

    2016-01-01

    A complete neurobiological understanding of speech motor control requires determination of the relationship between simultaneously recorded neural activity and the kinematics of the lips, jaw, tongue, and larynx. Many speech articulators are internal to the vocal tract, and therefore simultaneously tracking the kinematics of all articulators is nontrivial—especially in the context of human electrophysiology recordings. Here, we describe a noninvasive, multi-modal imaging system to monitor vocal tract kinematics, demonstrate this system in six speakers during production of nine American English vowels, and provide new analysis of such data. Classification and regression analysis revealed considerable variability in the articulator-to-acoustic relationship across speakers. Non-negative matrix factorization extracted basis sets capturing vocal tract shapes allowing for higher vowel classification accuracy than traditional methods. Statistical speech synthesis generated speech from vocal tract measurements, and we demonstrate perceptual identification. We demonstrate the capacity to predict lip kinematics from ventral sensorimotor cortical activity. These results demonstrate a multi-modal system to non-invasively monitor articulator kinematics during speech production, describe novel analytic methods for relating kinematic data to speech acoustics, and provide the first decoding of speech kinematics from electrocorticography. These advances will be critical for understanding the cortical basis of speech production and the creation of vocal prosthetics. PMID:27019106

  6. Combined Sliding Mode Control with a Feedback Linearization for Speed Control of Induction Motor

    Directory of Open Access Journals (Sweden)

    Aamir Hashim Obeid Ahmed

    2011-06-01

    Full Text Available Induction Motor (IM speed control is an area of research that has been in prominence for some time now. In this paper, a nonlinear controller is presented for IM drives. The nonlinear controller is designed based on input-output feedback linearization control technique, combined with sliding mode control (SMC to obtain a robust, fast and precise control of IM speed. The input-output feedback linearization control decouples the flux control from the speed control and makes the synthesis of linear controllers possible. To validate the performances of the proposed control scheme, we provided a series of simulation results and a comparative study between the performances of the proposed control strategy and those of the feedback linearization control (FLC schemes. Simulation results show that the proposed control strategy scheme shows better performance than the FLC strategy in the face of system parameters variation

  7. Vocal training, levodopa, and environment effects on ultrasonic vocalizations in a rat neurotoxin model of Parkinson disease

    Science.gov (United States)

    Kelm-Nelson, Cynthia A.; Brauer, Alexander F.L.; Ciucci, Michelle R.

    2016-01-01

    Levodopa does not improve dysarthria in patients with Parkinson Disease (PD), although vocal exercise therapy, such as “LSVT/LOUD®”, does improve vocal communication. Most patients receive vocal exercise therapy while concurrently being treated with levodopa, although the interaction between levodopa and vocal exercise therapy on communication in PD is relatively unknown. Further, carryover of vocal exercise therapy to novel situations is critical for successful outcomes, but the influence of novel situations on rehabilitated vocal communication is not well understood. To address the influence of exercise, medications, and environment on vocal communication with precise experimental control, we employed the widely used 6-OHDA rat neurotoxin model of PD (infusion to the medial forebrain bundle), and assessed ultrasonic vocalizations after: vocal exercise, vocal exercise with levodopa, levodopa alone, and control conditions. We tested USVs in the familiar training environment of the home cage and a novel cage. We hypothesized that parkinsonian rats that undergo vocal exercise would demonstrate significant improvement of ultrasonic vocalization (USV) acoustic parameters as compared to the control exercise and levodopa-only treatment groups. We further hypothesized that vocal exercise in combination with levodopa administration, similar to what is common in humans, would lead to improvement in USV outcomes, particularly when tested in a familiar versus a novel environment. We found that the combination of exercise and levodopa lead to some improvement in USV acoustic parameters and these effects were stronger in a familiar vs. a novel environment. Our results suggest that although treatment can improve aspects of communication, environment can influence the benefits of these effects. PMID:27025445

  8. Feed-forward motor control of ultrafast, ballistic movements.

    Science.gov (United States)

    Kagaya, K; Patek, S N

    2016-02-01

    To circumvent the limits of muscle, ultrafast movements achieve high power through the use of springs and latches. The time scale of these movements is too short for control through typical neuromuscular mechanisms, thus ultrafast movements are either invariant or controlled prior to movement. We tested whether mantis shrimp (Stomatopoda: Neogonodactylus bredini) vary their ultrafast smashing strikes and, if so, how this control is achieved prior to movement. We collected high-speed images of strike mechanics and electromyograms of the extensor and flexor muscles that control spring compression and latch release. During spring compression, lateral extensor and flexor units were co-activated. The strike initiated several milliseconds after the flexor units ceased, suggesting that flexor activity prevents spring release and determines the timing of strike initiation. We used linear mixed models and Akaike's information criterion to serially evaluate multiple hypotheses for control mechanisms. We found that variation in spring compression and strike angular velocity were statistically explained by spike activity of the extensor muscle. The results show that mantis shrimp can generate kinematically variable strikes and that their kinematics can be changed through adjustments to motor activity prior to the movement, thus supporting an upstream, central-nervous-system-based control of ultrafast movement. Based on these and other findings, we present a shishiodoshi model that illustrates alternative models of control in biological ballistic systems. The discovery of feed-forward control in mantis shrimp sets the stage for the assessment of targets, strategic variation in kinematics and the role of learning in ultrafast animals. © 2016. Published by The Company of Biologists Ltd.

  9. Motor control and learning with lower-limb myoelectric control in amputees

    OpenAIRE

    2013-01-01

    Advances in robotic technology have recently enabled the development of powered lower-limb prosthetic limbs. A major hurdle in developing commercially successful powered prostheses is the control interface. Myoelectric signals are one way for prosthetic users to provide feedforward volitional control of prosthesis mechanics. The goal of this study was to assess motor learning in people with lower-limb amputation using proportional myoelectric control from residual-limb muscles. We examined in...

  10. Reinforcement of Infant Vocalizations through Contingent Vocal Imitation

    Science.gov (United States)

    Pelaez, Martha; Virues-Ortega, Javier; Gewirtz, Jacob L.

    2011-01-01

    Maternal vocal imitation of infant vocalizations is highly prevalent during face-to-face interactions of infants and their caregivers. Although maternal vocal imitation has been associated with later verbal development, its potentially reinforcing effect on infant vocalizations has not been explored experimentally. This study examined the…

  11. Stepping motor control processor reference manual. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, F.W.; VanArsdall, P.J.; Suski, G.J.; Gant, R.G.; Rash, M.

    1980-06-06

    This manual is intended to serve several purposes. The first goal is to describe the capabilities and operation of the SMC processor package from an operator or user point of view. Secondly, the manual will describe in some detail the basic hardware elements and how they can be used effectively to implement a step motor control system. Practical information on the use, installation and checkout of the hardware set is presented in the following sections along with programming suggestions. Available related system software is described in this manual for reference and as an aid in understanding the system architecture. Section two presents an overview and operations manual of the SMC processor describing its composition and functional capabilities. Section three contains hardware descriptions in some detail for the LLL-designed hardware used in the SMC processor. Basic theory of operation and important features are explained.

  12. CONSIDERATIONS ABOUT INDUCTION MOTOR CONTROL USING ELECTRONIC INVERSORS

    OpenAIRE

    JAIME ANTONIO GONZALEZ CASTELLANOS

    2000-01-01

    Os motores de indução são as máquinas mais utilizadas nos acionamentos industriais elétricas devido a sua simplicidade, robustez, maior relação torque/corrente, baixa manutenção, etc. Sua aceitação e aplicação em acionamentos com velocidade variável têm sido possível com o desenvolvimento da eletrônica de potência. Atualmente, muitos acionamentos utilizam diversas técnicas para lograr o controle de velocidade por variação da freqüência da rede de al...

  13. High temperature brushless DC motor system and its operation mode control

    Institute of Scientific and Technical Information of China (English)

    邹继斌; 胡建辉; 徐永向

    2001-01-01

    The high temperature ( 175 ℃ ) operation of a motor spells out special requirements for control algorithms, materials and elements. The stability of motor characteristic is guaranteed by the digital control strategy. Constant velocity operation is achieved by phase-locked loop ( PLL), and constant power operation is achieved by a current-restricting circuit. A motor for constant speed and constant power operation has been built and the speed control system is tuned by MATLAB simulation. Experimental and simulation results for operation mode control of brushless DC motor are presented.

  14. Motor prediction in Brain-Computer Interfaces for controlling mobile robots.

    Science.gov (United States)

    Geng, Tao; Gan, John Q

    2008-01-01

    EEG-based Brain-Computer Interface (BCI) can be regarded as a new channel for motor control except that it does not involve muscles. Normal neuromuscular motor control has two fundamental components: (1) to control the body, and (2) to predict the consequences of the control command, which is called motor prediction. In this study, after training with a specially designed BCI paradigm based on motor imagery, two subjects learnt to predict the time course of some features of the EEG signals. It is shown that, with this newly-obtained motor prediction skill, subjects can use motor imagery of feet to directly control a mobile robot to avoid obstacles and reach a small target in a time-critical scenario.

  15. Controlling the Dc-link Midpoint Potential in a Six-phase Motor-drive

    DEFF Research Database (Denmark)

    Bendixen, Flemming Buus; Blaabjerg, Frede; Rasmussen, Peter Omand;

    2004-01-01

    Traditionally electrical motors have three phases, but multiphase motors have shown to improve motor performance and efficiency. This paper concentrates about the control algorithm for a six-phase induction motor with third harmonic current injection. The problem is that typically a seventh...... inverter branch and filter inductances is needed for stabilizing the midpoint potential of the series connected dc-capacitor link. A new control strategy that pre-calculates the allowed voltage ripple and controls the motor voltage accordingly (using two standard three phase inverter modules) is suggested....... With this new control strategy the seventh branch and an inductance can be saved. It also opens the possibility to use two standard three-phase inverters to supply the six-phase motor. An experimental setup is build and the theory is verified in the test case. The proposed control strategy works satisfactory...

  16. 75 FR 70237 - California State Motor Vehicle Pollution Control Standards; California Heavy-Duty On-Highway Otto...

    Science.gov (United States)

    2010-11-17

    ... AGENCY California State Motor Vehicle Pollution Control Standards; California Heavy-Duty On-Highway Otto... thereof shall adopt or attempt to enforce any standard relating to the control of emissions from new motor..., inspection or any other approval relating to the control of emissions from any new motor vehicle or new motor...

  17. Optimal Fuzzy Controller Tuned by TV-PSO for Induction Motor Speed Control

    Directory of Open Access Journals (Sweden)

    KULIC, F.

    2011-02-01

    Full Text Available This paper reports an automated procedure for the design of an optimal fuzzy logic controller to be used as an induction motor speed controller. The procedure consists of selection of a suitable well known fuzzy logic controller and tuning via particle swarm optimization optimal for the selected criteria. In this way the time required for tuning of the controller is significantly reduced in comparison with trial and error methods. As a benchmark a proportional-integral (PI controller is used. The PI controller is tuned via the symmetrical optimum procedure, the standard procedure for tuning a speed controller of an induction motor. Simulation results are obtained via a mathematical model developed in Matlab/Simulink. Experimental verification is carried out with a laboratory model based on the DS1104 digital control card. To minimize iron losses and to provide better motor performance for low loads, flux is reduced from nominal and speed is kept below nominal. Results are presented in tables and graphics. The optimal fuzzy logic controller provides a slight practical advantage.

  18. Influence of parental deprivation on the behavioral development in Octodon degus: modulation by maternal vocalizations.

    Science.gov (United States)

    Braun, Katharina; Kremz, Petra; Wetzel, Wolfram; Wagner, Thomas; Poeggel, Gerd

    2003-04-01

    Repeated separation from the family during very early stages of life is a stressful emotional experience which induces a variety of neuronal and synaptic changes in limbic cortical areas that may be related to behavioral alterations. First, we investigated whether repeated parental separation and handling, without separation from the family, leads to altered spontaneous exploratory behavior in a novel environment (open field test) in 8-day-old Octodon degus. Second, we tested whether the parentally deprived and handled animals display different stimulus-evoked exploratory behaviors in a modified open field version, in which a positive emotional stimulus, the maternal call, was presented. In the open field test a significant influence of previous emotional experience was found for the parameters of running, rearing, and vocalization. Parentally deprived degus displayed increased horizontal (running) and vertical (rearing) motoric activities, but decreased vocalization, compared to normal and handled controls. The presentation of maternal vocalizations significantly modified running, vocalization, and grooming activities, which in the case of running activity was dependent on previous emotional experience. Both deprivation-induced locomotor hyperactivity together with the reduced behavioral response towards a familiar acoustic emotional signal are similar to behavioral disturbances observed in human attachment disorders.

  19. Effect of therapist-based constraint-induced therapy at home on motor control, motor performance and daily function in children with cerebral palsy: a randomized controlled study.

    Science.gov (United States)

    Chen, Chia-ling; Kang, Lin-ju; Hong, Wei-Hsien; Chen, Fei-Chuan; Chen, Hsieh-Ching; Wu, Ching-yi

    2013-03-01

    To determine the effect of therapist-based constraint-induced therapy at home on motor performance, daily function and reaching control for children with cerebral palsy. A single-blinded, randomized controlled trial. Forty-seven children (23 boys; 24 girls) with unilateral cerebral palsy, aged 6-12 years, were randomized to constraint-induced therapy (n = 24) or traditional rehabilitation (n = 23). Constraint-induced therapy involved intensive functional training of the more affected arm while the less affected arm was restrained. Traditional rehabilitation involved functional unilateral and bilateral arm training. Both groups received individualized therapist-based interventions at home for 3.5-4 hours/day, two days a week for four weeks. Motor performance and daily function were measured by the Peabody Developmental Motor Scale, Second Edition and the Pediatric Motor Activity Log. Reaching control was assessed by the kinematics of reaction time, movement time, movement unit and peak velocity. There were larger effects in favour of constraint-induced therapy on motor performance, daily function, and some aspects of reaching control compared with traditional rehabilitation. Children receiving constraint-induced therapy demonstrated higher scores for Peabody Developmental Motor Scale, Second Edition - Grasping (pretest mean ± SD, 39.9 ± 3.1; posttest, 44.1 ± 2.8; P Motor Activity Log (pretest, 1.8 ± 0.3; posttest, 2.5 ± 0.3; P control of reaching in children with unilateral cerebral palsy than traditional rehabilitation.

  20. Application of drive circuit based on L298N in direct current motor speed control system

    Science.gov (United States)

    Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao

    2016-10-01

    In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.

  1. Emotional Learning Based Intelligent Controllers for Rotor Flux Oriented Control of Induction Motor

    Science.gov (United States)

    Abdollahi, Rohollah; Farhangi, Reza; Yarahmadi, Ali

    2014-08-01

    This paper presents design and evaluation of a novel approach based on emotional learning to improve the speed control system of rotor flux oriented control of induction motor. The controller includes a neuro-fuzzy system with speed error and its derivative as inputs. A fuzzy critic evaluates the present situation, and provides the emotional signal (stress). The controller modifies its characteristics so that the critics stress is reduced. The comparative simulation results show that the proposed controller is more robust and hence found to be a suitable replacement of the conventional PI controller for the high performance industrial drive applications.

  2. Design of Fuzzy PID controller to control DC motor with zero overshoot

    Directory of Open Access Journals (Sweden)

    Meenakshi Chourasiya

    2014-10-01

    Full Text Available Most of the real time operation based physical system, digital PID is used in field such as servo-motor/dc motor/temperature control system, robotics, power electronics etc. need to interface with high speed constraints, higher density PLD’s such as FPGA used to integrate several logics on single IC. There are some limitations in it to overcome these limitations Fuzzy logic is introduced with PID and Fuzzy PID is formed. This paper explains experimental design of Fuzzy PID controller. We aimed to make controller power efficient, more compact, and zero overshoot. MATLAB is used to design PID controller to calculate and plot the time response of the control system and Simulink to generate a set of coefficients.

  3. Fine Motor Control Is Related to Cognitive Control in Adolescents with Down Syndrome

    Science.gov (United States)

    Chen, Chih-Chia; Ringenbach, Shannon D. R.; Albert, Andrew; Semken, Keith

    2014-01-01

    The connection between human cognitive development and motor functioning has been systematically examined in many typical and atypical populations; however, only a few studies focus on people with Down syndrome (DS). Twelve adolescents with DS participated and their cognitive control, measured by the Corsi-Block tapping test (e.g., visual working…

  4. Fine Motor Control Is Related to Cognitive Control in Adolescents with Down Syndrome

    Science.gov (United States)

    Chen, Chih-Chia; Ringenbach, Shannon D. R.; Albert, Andrew; Semken, Keith

    2014-01-01

    The connection between human cognitive development and motor functioning has been systematically examined in many typical and atypical populations; however, only a few studies focus on people with Down syndrome (DS). Twelve adolescents with DS participated and their cognitive control, measured by the Corsi-Block tapping test (e.g., visual working…

  5. Repetitive peripheral magnetic neurostimulation of multifidus muscles combined with motor training influences spine motor control and chronic low back pain.

    Science.gov (United States)

    Massé-Alarie, Hugo; Beaulieu, Louis-David; Preuss, Richard; Schneider, Cyril

    2017-03-01

    The study tested whether combining repetitive peripheral magnetic stimulation (RPMS) and motor training of the superficial multifidus muscle (MF) better improved the corticomotor control of spine than training alone in chronic low back pain (CLBP). Twenty-one participants with CLBP were randomly allocated to [RPMS+training] and [Sham+training] groups for three sessions (S1-S3) over a week where MF was stimulated before training (volitional contraction). Training was also home-practiced twice a day. Changes were tested at S1 and S3 for anticipatory postural adjustments (APAs) of MF and semi-tendinosus (ST), MF EMG activation, cortical motor plasticity (transcranial magnetic stimulation) and pain/disability. The RPMS group showed immediate decrease of pain at S1, then improvement of MF activation, ST APA, M1 facilitation, and pain/disability at S3. Changes were larger when brain excitability was lower at baseline. Disability index remained improved one month later. Combining RPMS with training of MF in CLBP impacted motor planning, MF and lumbopelvic spine motor control and pain/disability one week after the onset of protocol. Brain plasticity might have favoured motor learning and improved daily lumbopelvic spine control without pain generation. Clinically, RPMS impacted the function by improving the gains beyond those reached by training alone in CLBP. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  6. The Neural Mechanism Exploration of Adaptive Motor Control: Dynamical Economic Cell Allocation in the Primary Motor Cortex.

    Science.gov (United States)

    Li, Wei; Guo, Yangyang; Fan, Jing; Ma, Chaolin; Ma, Xuan; Chen, Xi; He, Jiping

    2017-05-01

    Adaptive flexibility is of significance for the smooth and efficient movements in goal attainment. However, the underlying work mechanism of the cerebral cortex in adaptive motor control still remains unclear. How does the cerebral cortex organize and coordinate the activity of a large population of cells in the implementation of various motor strategies? To explore this issue, single-unit activities from the M1 region and kinematic data were recorded simultaneously in monkeys performing 3D reach-to-grasp tasks with different perturbations. Varying motor control strategies were employed and achieved in different perturbed tasks, via the dynamic allocation of cells to modulate specific movement parameters. An economic principle was proposed for the first time to describe a basic rule for cell allocation in the primary motor cortex. This principle, defined as the Dynamic Economic Cell Allocation Mechanism (DECAM), guarantees benefit maximization in cell allocation under limited neuronal resources, and avoids committing resources to uneconomic investments for unreliable factors with no or little revenue. That is to say, the cells recruited are always preferentially allocated to those factors with reliable return; otherwise, the cells are dispatched to respond to other factors about task. The findings of this study might partially reveal the working mechanisms underlying the role of the cerebral cortex in adaptive motor control, wherein is also of significance for the design of future intelligent brain-machine interfaces and rehabilitation device.

  7. Output torque and temperature control technologies for an electrical screw press motor

    Institute of Scientific and Technical Information of China (English)

    LI Jun-chao; HUANG Shu-huai; FENG Yi

    2008-01-01

    The DSC (direct self control) of speed regulation technology was applied to drive a motor running at a certain overloading ratio in intermittent working conditions. To control motor temperatures rising effectively, a finite element method with an iterative approach was applied to simulate real working conditions and analyze the temperature rising of the inner part of the motor. Application of DSC speed regulation realizes the invariable torque output quickly and avoids the peak current at the start state in favor of the motor temperature decreasing. Based on an analysis with the finite limit method, some effective measures were taken to improve the ability of the motor to expel heat. The overload ability of the motor was improved and the stable motor temperature rising was obtained, fulfilling the demands of electrical screw presses.

  8. ANFIS Control Scheme for the Speed Control of the Induction Motor

    Directory of Open Access Journals (Sweden)

    Shashank D. Bonde

    2014-03-01

    Full Text Available An adaptive neuro fuzzy inference strategy (ANFIS provides a nonlinear modeling of motor drive system and motor‟s speed can accurately track the reference signal. ANFIS has the advantages of employing expert knowledge from fuzzy inference system and the learning capability of neural networks. An (ANFIS for controlling speed of induction motor is presented in this paper. Induction motors are characterized by highly non-linear, time-varying dynamics, complex and inaccessibility of some of the states and outputs provide for measurements. A control signal develop depending on fuzzy based controllers which yields on the firing of rule base, this rule base written on previous experiences & also these rules are fired as random in nature. The proper rule base is selected depending upon the situation and it can be achieved using an ANFIS controller, this becomes an integrated method for the control purposes & produces excellent results, this is the highlight of this paper. The proposed (ANFIS controller is compared with PI controller by computer simulation through the MATLAB/SIMULINK software. In ANFIS scheme, neural network techniques provide for a proper rule base, is achieved using the back propagation algorithm. This integrated approach improves the system performance, cost-effectiveness, efficiency, reliability of the designed controller.

  9. DESINGING OF ANN BASED SPEED CONTROLLER FOR PHASE CONTROLLED DC MOTOR

    Directory of Open Access Journals (Sweden)

    MR. M.V.SUDARSAN

    2011-07-01

    Full Text Available For electrical drives good dynamic performance is mandatory so as to respond to the changes in command speed and torques, so various speed control techniques are being used for real time applications. The speed of a dc motor can be controlled using various controllers like PI- Controller, Artificial Neural Network (ANNcontroller. ANN theory is recently getting increasing emphasis in process control applications. The paper describes application of ANN in a speed control system that uses a phase-controlled bridge converter and aseparately excited DC machine. The ANN controller for current and speed loops are implemented in MATLAB/SIMULINK, replacing the conventional Proportional-Integral (PI control method. The simulationstudy indicates the superiority of artificial neural network control over the conventional control methods. This control seems to have a lot of promise in the applications of power electronics.

  10. Growth hormone combined with child-specific motor training improves motor development in infants with Prader-Willi syndrome: a randomized controlled trial.

    Science.gov (United States)

    Reus, Linda; Pelzer, Ben J; Otten, Barto J; Siemensma, Elbrich P C; van Alfen-van der Velden, Janielle A A E M; Festen, Dederieke A M; Hokken-Koelega, Anita C S; Nijhuis-van der Sanden, Maria W G

    2013-10-01

    Although severe motor problems in infants with Prader-Willi syndrome (PWS) are striking, motor development has never been studied longitudinally and the results of growth hormone (GH) treatment on motor development are contradictory. The authors studied whether GH treatment can enhance the effect of physical training on motor development in infants with PWS. Twenty-two infants were followed for two years during a randomized controlled trial. The treatment and control groups began GH after baseline or following a control period, respectively. Both groups followed a child-specific physical training program. Motor performance was measured every three months. Multi-level regression analysis revealed that motor development differed significantly between infants (pchild-specific physical training on both motor developmental rate and motor developmental potential. Moreover, this effect was more pronounced when GH treatment was initiated at a younger age. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Orion Launch Abort Vehicle Attitude Control Motor Testing

    Science.gov (United States)

    Murphy, Kelly J.; Brauckmann, Gregory J.; Paschal, Keith B.; Chan, David T.; Walker, Eric L.; Foley, Robert; Mayfield, David; Cross, Jared

    2011-01-01

    Current Orion Launch Abort Vehicle (LAV) configurations use an eight-jet, solid-fueled Attitude Control Motor (ACM) to provide required vehicle control for all proposed abort trajectories. Due to the forward position of the ACM on the LAV, it is necessary to assess the effects of jet-interactions (JI) between the various ACM nozzle plumes and the external flow along the outside surfaces of the vehicle. These JI-induced changes in flight control characteristics must be accounted for in developing ACM operations and LAV flight characteristics. A test program to generate jet interaction aerodynamic increment data for multiple LAV configurations was conducted in the NASA Ames and NASA Langley Unitary Plan Wind Tunnels from August 2007 through December 2009. Using cold air as the simulant gas, powered subscale models were used to generate interaction data at subsonic, transonic, and supersonic test conditions. This paper presents an overview of the complete ACM JI experimental test program for Orion LAV configurations, highlighting ACM system modeling, nozzle scaling assumptions, experimental test techniques, and data reduction methodologies. Lessons learned are discussed, and sample jet interaction data are shown. These data, in conjunction with computational predictions, were used to create the ACM JI increments for all relevant flight databases.

  12. Linearization Method for Starting Control of Speed-Sensorless Vector-Controlled Induction Motors

    Science.gov (United States)

    Fujinami, Kazuki; Kondo, Keiichiro

    A linearization method is proposed for controlling the start-up operation of a rotating induction motor. The dynamics of this motor are deteriorated when the starting operation is carried out at high frequencies. In this method, the characteristics of the method are analyzed to reveal that the aforementioned problem is caused by the low equivalent gain of the induced voltage during the rotor flux establishment. A method to compensate for the angle of the rotor-flux-induced voltage vector is proposed to overcome this problem. The proposed method is experimentally verified by a test set, and the influence of changes in the rotor resistance is analyzed.

  13. Frequency-Speed Control Model Identification of Ultrasonic Motor Using Step Response

    Institute of Scientific and Technical Information of China (English)

    Shi Jingzhuo; Zhang Caixia

    2015-01-01

    Control model of ultrasonic motor is the foundation for high control performance .The frequency of driv-ing voltage is commonly used as control variable in the speed control system of ultrasonic motor .Speed control model with the input frequency can significantly improve speed control performance .Step response of rotating speed is tested .Then ,the transfer function model is identified through characteristic point method .Considering time-varying characteristics of the model parameters ,the variables are fitted with frequency and speed as the inde-pendent variables ,and the variable model of ultrasonic motor system is obtained ,with consideration of the nonlin-earity of ultrasonic motor system .The proposed model can be used in the design and analysis of the speed control system in ultrasonic motor .

  14. Vector Control of Three-Phase Induction Motor with Two Stator Phases Open-Circuit

    Directory of Open Access Journals (Sweden)

    Seyed Hesam Asgari

    2015-06-01

    Full Text Available Variable frequency drives are used to provide reliable dynamic systems and significant reduction in usage of energy and costs of the induction motors. Modeling and control of faulty or an unbalanced three-phase induction motor is obviously different from healthy three-phase induction motor. Using conventional vector control techniques such as Field-Oriented Control (FOC for faulty three-phase induction motor, results in a significant torque and speed oscillation. This research presented a novel method for vector control of three-phase induction motor under fault condition (two-phase open circuit fault. The proposed method for vector control of faulty machine is based on rotor FOC method. A comparison between conventional and modified controller shows that the modified controller has been significantly reduced the torque and speed oscillations.

  15. A Study of Electrical Motors Controlling Optimization Methods

    OpenAIRE

    Saeid Fatemi

    2013-01-01

    In order to design an efficient motor cooling system, it is important to accurately predict the power optimization which is normally dissipated in form of heat. This study presents an analytical method for estimating bearing frictional optimization and numerical method for estimating electromagnetic optimization for an electric vehicle electrical motor. The power optimization obtained use heat sources when evaluating the thermal performance of the motor. The results showed that electromagneti...

  16. Contralesional motor deficits after unilateral stroke reflect hemisphere-specific control mechanisms

    OpenAIRE

    Mani, Saandeep; Mutha, Pratik K.; Przybyla, Andrzej; Haaland, Kathleen Y.; Good, David C.; Sainburg, Robert L.

    2013-01-01

    We have proposed a model of motor lateralization, in which the left and right hemispheres are specialized for different aspects of motor control: the left hemisphere for predicting and accounting for limb dynamics and the right hemisphere for stabilizing limb position through impedance control mechanisms. Our previous studies, demonstrating different motor deficits in the ipsilesional arm of stroke patients with left or right hemisphere damage, provided a critical test of our model. However, ...

  17. Simplified modeling and generalized predictive position control of an ultrasonic motor.

    Science.gov (United States)

    Bigdeli, Nooshin; Haeri, Mohammad

    2005-04-01

    Ultrasonic motors (USM's) possess heavy nonlinear and load dependent characteristics such as dead-zone and saturation reverse effects, which vary with driving conditions. In this paper, behavior of an ultrasonic motor is modeled using Hammerstein model structure and experimental measurements. Also, model predictive controllers are designed to obtain precise USM position control. Simulation results indicate improved performance of the motor for both set point tracking and disturbance rejection.

  18. Contouring Control for a CNC Milling Machine Driven by Direct thrust Controlled Linear Induction Motors

    Directory of Open Access Journals (Sweden)

    Khaled N. Faris

    2015-12-01

    Full Text Available According to various advantages of linear induction motor (LIM, such as high starting thrust force, high speed operation and reduction of mechanical losses, more applications have utilized this type of motors. Direct Thrust Control (DTC technique is considered as one of the most efficient techniques that can be used for LIM. DTC is preferable to give a fast and good dynamic thrust response. So, to improve the accuracy and robustness of contouring control for CNC machine tools, linear induction motors with a direct thrust control technique are introduced for driving these machines. An industry standard motion control system is applied for reducing the tracking error and improving the desired accuracy. Different loading conditions are simulated to validate the reliability and robustness of the introduced system to match the application field. The proposed system is simulated using the MATLAB/SIMULINK Package; simulation results validated both tracking accuracy and robustness of the proposed motion control system for contouring control for a CNC (Computer Numerical Control milling machine.

  19. A Study of Electrical Motors Controlling Optimization Methods

    Directory of Open Access Journals (Sweden)

    Saeid Fatemi

    2013-11-01

    Full Text Available In order to design an efficient motor cooling system, it is important to accurately predict the power optimization which is normally dissipated in form of heat. This study presents an analytical method for estimating bearing frictional optimization and numerical method for estimating electromagnetic optimization for an electric vehicle electrical motor. The power optimization obtained use heat sources when evaluating the thermal performance of the motor. The results showed that electromagnetic optimization are dominant and contributed over 80% of all optimization, while bearing optimization contributes about 2% of the total electric motor. The results also showed that bearing optimization increase significantly with increasing speed or load.

  20. Torque Ripple Reduction in Direct Torque Control Based Induction Motor using Intelligent Controllers

    Science.gov (United States)

    Sudhakar, Ambarapu; Vijaya Kumar, M.

    2015-09-01

    This paper presents intelligent control scheme together with conventional control scheme to overcome the problems with uncertainties in the structure encountered with classical model based design of induction motor drive based on direct torque control (DTC). It allows high dynamic performance to be obtained with very simple hysteresis control scheme. Direct control of the torque and flux is achieved by proper selection of inverter voltage space vector through a lookup table. This paper also presents the application of intelligent controllers like neural network and fuzzy logic controllers to control induction machines with DTC. Intelligent controllers are used to emulate the state selector of the DTC. With implementation of intelligent controllers the system is also verified and proved to be operated stably with reduced torque ripple. The proposed method validity and effectiveness has been verified by computer simulations using Matlab/Simulink®. These results are compared with the ones obtained with a classical DTC using proportional integral speed controller.

  1. A study of EV induction motor controller based on rotor flux oriented control

    Institute of Scientific and Technical Information of China (English)

    Song Jianguo; Chen Quanshi

    2006-01-01

    Induction motor is a multi-parameter, non-linear and strong coupling system, which requires efficient control algorithms. In this paper, rotor flux oriented control (FOC) algorithm based on voltage source inverter-fed is deduced in detail, including stator voltage compensation, closed-loop PI parameters' calculation of torque and rotor flux. FOC's Simulink model is setup to simulate torque and rotor flux's response. At last, the experimental results are shown.

  2. Developing speed control for a permanent magnet DC motor using rapid control of prototyping techniques

    Directory of Open Access Journals (Sweden)

    Fredy Edimer Hoyos Velasco

    2010-10-01

    Full Text Available Virtually every engineering development for control systems is tested by simulation to predict performance. However, the final use of an algorithm is in its application in a real time system. Development tools using a DSP and Simulink RTW can be performed with real-time simulations (i.e. simulation interacting with physical plant. Testing the speed control loop of a DC motor with permanent magnets has thus been developed to appreciate the considerable advantages offered by these tools.

  3. Online MTPA Control Approach for Synchronous Reluctance Motor Drives Based on Emotional Controller

    DEFF Research Database (Denmark)

    Daryabeigi, Ehsan; Zarchi, Hossein Abootorabi; Markadeh, G. R. Arab

    2015-01-01

    In this paper, speed and torque control modes (SCM and TCM) of synchronous reluctance motor (SynRM) drives are proposed based on emotional controllers and space vector modulation under an automatic search of the maximum-torque-per-ampere (MTPA) strategy. Furthermore, in order to achieve an MTPA...... variations and external disturbances in both TCM and SCM. In addition, the proposed MTPA strategy shows a reliable and fast response to operating point change....

  4. Space motion sickness: The sensory motor controls and cardiovascular correlation

    Science.gov (United States)

    Souvestre, Philippe A.; Blaber, Andrew P.; Landrock, Clinton K.

    Background and PurposeSpace motion sickness (SMS) and related symptoms remain a major limiting factor in Space operations. A recent comprehensive literature review [J.R. Lackner, Z. DiZio, Space motion sickness, Experimental Brain Research 175 (2006) 377-399, doi 10.1007/s00221-006-0697-y] concluded that SMS does not represent a unique diagnostic entity, and there is no adequate predictor of SMS' susceptibility and severity. No countermeasure has been found reliable to prevent or treat SMS symptoms onset. Recent neurophysiological findings on sensory-motor controls monitoring [P.A. Souvestre, C. Landrock, Biomedical-performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system, Acta Astronautica, 60 (4-7) (2007) 313-321, doi:10.1016/j.actaastro.2006.08.013] and heart-rate variability (HRV) measurements relationship could explain post-flight orthostatic intolerance (PFOI) in astronauts [A.P. Blaber, R.L. Bondar, M.S. Kassam, Heart rate variability and short duration space flight: relationship to post-flight orthostatic intolerance, BMC Physiology 4 (2004) 6]. These two methodologies are generally overlooked in SMS' analysis. In this paper we present the case for a strong relationship between sensory-motor controls related symptoms, including orthostatic intolerance (OI) and SMS symptoms. MethodsThis paper expands on several previously published papers [J.R. Lackner, Z. DiZio, Space motion sickness, Experimental Brain Research 175 (2006) 377-399, doi 10.1007/s00221-006-0697-y; P.A. Souvestre, C. Landrock, Biomedical-performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system, Acta Astronautica, 60 (4-7) (2007) 313-321, doi:10.1016/j.actaastro.2006.08.013] along with an updated literature review. An analysis of a 10-year period clinical data from trauma patients experiencing postural deficiency syndrome (PDS) show assessment and monitoring techniques which successfully identify trauma

  5. Vocalization-correlated respiratory movements in the squirrel monkey.

    Science.gov (United States)

    Häusler, U

    2000-10-01

    Respiratory abdominal movements associated with vocalization were recorded in awake squirrel monkeys. Several call types, such as peeping, trilling, cackling, and err-chucks, were accompanied by large vocalization-correlated respiratory movements (VCRM) that started before vocalization. During purring, in contrast, only small VCRM were recorded that started later after vocal onset. VCRM during trill calls, a vocalization type with repetitive frequency modulation, showed a modulation in the rhythm of the frequency changes. A correlation with amplitude modulation was also present, but more variable. As high frequencies need a higher lung pressure for production than low frequencies, the modulation of VCRM seems to serve to optimize the lung pressure in relation to the vocalization frequency. The modulation, furthermore, may act as a mechanism to produce different trill variants. During err-chucks and staccato peeps, which show a large amplitude modulation, a nonmodulated VCRM occurred. This indicates the existence of a laryngeal amplitude-controlling mechanism that is independent from respiration.

  6. Imparting Motion to a Test Object Such as a Motor Vehicle in a Controlled Fashion

    Science.gov (United States)

    Southward, Stephen C. (Inventor); Reubush, Chandler (Inventor); Pittman, Bryan (Inventor); Roehrig, Kurt (Inventor); Gerard, Doug (Inventor)

    2014-01-01

    An apparatus imparts motion to a test object such as a motor vehicle in a controlled fashion. A base has mounted on it a linear electromagnetic motor having a first end and a second end, the first end being connected to the base. A pneumatic cylinder and piston combination have a first end and a second end, the first end connected to the base so that the pneumatic cylinder and piston combination is generally parallel with the linear electromagnetic motor. The second ends of the linear electromagnetic motor and pneumatic cylinder and piston combination being commonly linked to a mount for the test object. A control system for the linear electromagnetic motor and pneumatic cylinder and piston combination drives the pneumatic cylinder and piston combination to support a substantial static load of the test object and the linear electromagnetic motor to impart controlled motion to the test object.

  7. A Study on New Current Controller for 7-Phase BLDC Motor Drive System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Surk; Jeon, Ywun Seok; Mok, Hyung Soo [Konkuk University (Korea); Kim, Duk Keun [Komotek Co., Ltd. (Korea)

    2001-04-01

    Recently, the demand of motor for industrial, household machinery is increasing. As Switching devices and control technology are progressing, so the use of BLDC Motor is increasing. But 3-phase BLCD Motor generally used has pulsating torque and speed variation in commutation, so the range of its application is limited to high speed operation. Especially, to solve these problems, it is necessary to increase phase of Motor, so study of Poly-Phase BLDC Motor is progressing. However, when hysteresis current controller is used, switching frequency is highly increasing. In this paper, 7-Phase BLDC Motor drive system is designed. Also MSTC (Minimum Switching Time Controller) is proposed and with simulation and experiment, their validities are verified. (author). 10 refs., 26 figs., 1 tab.

  8. Study on self-tuning pole assignment speed control of an ultrasonic motor.

    Science.gov (United States)

    Shi, Jingzhuo; Bo, Liu; Yu, Zhang

    2011-10-01

    Ultrasonic motors have a heavy nonlinearity, which varies with driving conditions. The nonlinearity is a problem as an accurate motion actuator for industrial applications and it is important to eliminate the nonlinearity in order to improve the control performance. In general, complicated control strategies are used to deal with the nonlinearity of ultrasonic motors. This paper proposes a new speed control scheme for ultrasonic motors to overcome the nonlinearity employing a simplified self-tuning control. The speed control model which can reflect the main nonlinear characteristics is obtained using a system identification method based on the step response. Then, a pole assignment speed controller is designed. To avoid the influence of the motor's nonlinearity on the speed control performance, a control parameters' on-line self-tuning strategy utilizing the gain of the model is designed. The proposed control strategy is realized using a DSP circuit, and experiments prove the validity of the proposed speed control scheme.

  9. Fuzzy Logic Based Speed Control System for ThreePhase Induction Motor

    Directory of Open Access Journals (Sweden)

    Marwan A. Badran

    2013-05-01

    Full Text Available Three-phase induction motors have been used in a wide range of industry applications. Using modern technology, the speed of induction motor can be easily controlled by variable frequency drives (VFDs. These drives use high speed power transistors with various switching techniques, mainly PWM schemes. For several decades, conventional control systems were applied to electric drives to control the speed of induction motor. Although conventional controllers showed good results, but they still need tuning to obtain optimum results. The recent proposed control systems use fuzzy logic controller (FLC to enhance the performance of induction motor drives. In this paper, a fuzzy logic based speed control system is presented. The proposed controller has been designed with MATLAB/SIMULINK software, and it was tested for various operating conditions including load disturbance and sudden change of reference speed. The results showed better performance of the proposed controller compared with the conventional PI controller.

  10. VOCALS-UK: An overview of UK VOCALS science (Invited)

    Science.gov (United States)

    Coe, H.; Vocals-Uk Science Team

    2010-12-01

    This paper will highlight a variety of process studies, observationally led studies and modelling studies, both completed and in progress, conducted by groups in the United Kingdom, working in collaboration with international partners on the VAMOS Ocean-Cloud-Atmosphere Land Study Regional Experiment (VOCALS-REx). The VOCALS field experiment was conducted out of Arica, Chile, between October and November, 2008. The study aims to better understand the nature and variability of interactions between the ocean, atmosphere and steep topography, as well as local and long-range transport of pollutants and aerosol, in the context of their role in controlling the climate of the South East Pacific - an important region in terms of the global energy budget and which is currently poorly characterised in global climate models. Specific highlights will include a statistical representation of the SEP marine boundary layer during VOCALS-Rex to inform future modelling; an analysis of the synoptic and large-scale dynamical influences on cloud in the SEP; results from improved Met Office Unified Model forecast runs which examine aerosol-cloud interactions with a comparison to results from WRF-CHEM; and large eddy modelling of simulated gravity waves and their potential to induce open cellular convection (create pockets of open cells). In addition, early results from a number of further studies will be presented.

  11. Crossing the Border: Molecular Control of Motor Axon Exit

    Directory of Open Access Journals (Sweden)

    Arlene Bravo-Ambrosio

    2011-11-01

    Full Text Available Living organisms heavily rely on the function of motor circuits for their survival and for adapting to ever-changing environments. Unique among central nervous system (CNS neurons, motor neurons (MNs project their axons out of the CNS. Once in the periphery, motor axons navigate along highly stereotyped trajectories, often at considerable distances from their cell bodies, to innervate appropriate muscle targets. A key decision made by pathfinding motor axons is whether to exit the CNS through dorsal or ventral motor exit points (MEPs. In contrast to the major advances made in understanding the mechanisms that regulate the specification of MN subtypes and the innervation of limb muscles, remarkably little is known about how MN axons project out of the CNS. Nevertheless, a limited number of studies, mainly in Drosophila, have identified transcription factors, and in some cases candidate downstream effector molecules, that are required for motor axons to exit the spinal cord. Notably, specialized neural crest cell derivatives, referred to as Boundary Cap (BC cells, pre-figure and demarcate MEPs in vertebrates. Surprisingly, however, BC cells are not required for MN axon exit, but rather restrict MN cell bodies from ectopically migrating along their axons out of the CNS. Here, we describe the small set of studies that have addressed motor axon exit in Drosophila and vertebrates, and discuss our fragmentary knowledge of the mechanisms, which guide motor axons out of the CNS.

  12. Compensatory cerebral motor control following presumed perinatal ischemic stroke

    NARCIS (Netherlands)

    van der Hoorn, Anouk; Potgieser, Adriaan R E; Brouwer, Oebele F; de Jong, Bauke M

    2014-01-01

    Case: A fifteen year-old left-handed girl presented with right-sided focal motor seizures. Neuroimaging showed a large left hemisphere lesion compatible with a middle cerebral artery stroke of presumed perinatal origin. She was not previously diagnosed with a motor deficit, although neurological exa

  13. Artificial Neural Network Based Controller for Speed Control of An Induction Motor (IM using Indirect Vector Control Method

    Directory of Open Access Journals (Sweden)

    Ashutosh Mishra

    2012-10-01

    Full Text Available

    In this paper, an implementation of intelligent controller for speed control of an induction motor (IM using indirect vector control method has been developed and analyzed in detail. The project is complete mathematical model of field orientation control (FOC induction motor is described and simulated in MATLAB for studies a 50 HP(37KW, cage type induction motor has been considered .The comparative  performance of PI, Fuzzy and Neural network control techniques have been  presented and analyzed in this work.  The present approach avoids the use of flux and speed sensor which increase the installation cost and mechanical robustness .The neural network based controller is found to be a very useful technique to obtain a high performance speed control. The scheme consist of neural network controller, reference modal, an algorithm for changing the neural network weight in order that  speed of the derive can track performance speed.  The indirect vector controlled induction motor drive involve decoupling of the stator current in to torque and flux producing components.

  14. Motor Disorder and Anxious and Depressive Symptomatology: A Monozygotic Co-Twin Control Approach

    Science.gov (United States)

    Pearsall-Jones, Jillian G.; Piek, Jan P.; Rigoli, Daniela; Martin, Neilson C.; Levy, Florence

    2011-01-01

    The aim of this study was to investigate the relationship between poor motor ability and anxious and depressive symptomatology in child and adolescent monozygotic twins. The co-twin control design was used to explore these mental health issues in MZ twins concordant and discordant for a motor disorder, and controls. This methodology offers the…

  15. Motor control impairment of the contralateral wrist in patients with unilateral chronic wrist pain

    NARCIS (Netherlands)

    Smeulders, MJC; Kreulen, M; Hage, JJ; Ritt, MJPF; Mulder, T

    2002-01-01

    Objective: Assessment of the quality of fine motor control in patients with unilateral chronic wrist pain seldom focuses on the possibility that control of movements is effector independent at the cerebral level. This mechanism may be involved in an impairment of motor function in the unaffected wri

  16. Motor Disorder and Anxious and Depressive Symptomatology: A Monozygotic Co-Twin Control Approach

    Science.gov (United States)

    Pearsall-Jones, Jillian G.; Piek, Jan P.; Rigoli, Daniela; Martin, Neilson C.; Levy, Florence

    2011-01-01

    The aim of this study was to investigate the relationship between poor motor ability and anxious and depressive symptomatology in child and adolescent monozygotic twins. The co-twin control design was used to explore these mental health issues in MZ twins concordant and discordant for a motor disorder, and controls. This methodology offers the…

  17. Controlling a Four-Quadrant Brushless Three-Phase dc Motor

    Science.gov (United States)

    Nola, F. J.

    1986-01-01

    Control circuit commutates windings of brushless, three-phase, permanent-magnet motor operating from power supply. With single analog command voltage, controller makes motor accelerate, drive steadily, or brake regeneratively, in clockwise or counterclockwise direction. Controller well suited for use with energy-storage flywheels, actuators for aircraft-control surfaces, cranes, industrial robots, and other electromechanical systems requiring bidirectional control or sudden stopping and reversal.

  18. PI controller design for indirect vector controlled induction motor: A decoupling approach.

    Science.gov (United States)

    Jain, Jitendra Kr; Ghosh, Sandip; Maity, Somnath; Dworak, Pawel

    2017-09-01

    Decoupling of the stator currents is important for smoother torque response of indirect vector controlled induction motors. Typically, feedforward decoupling is used to take care of current coupling that requires exact knowledge of motor parameters, additional circuitry and signal processing. In this paper, a method is proposed to design the regulating proportional-integral gains that minimize coupling without any requirement of the additional decoupler. The variation of the coupling terms for change in load torque is considered as the performance measure. An iterative linear matrix inequality based H∞ control design approach is used to obtain the controller gains. A comparison between the feedforward and the proposed decoupling schemes is presented through simulation and experimental results. The results show that the proposed scheme is simple yet effective even without additional block or burden on signal processing. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Intelligent Controller Design for DC Motor Speed Control based on Fuzzy Logic-Genetic Algorithms Optimization

    Directory of Open Access Journals (Sweden)

    Boumediene ALLAOUA

    2008-12-01

    Full Text Available In this paper, an intelligent controller of the DC (Direct current Motor drive is designed using fuzzy logic-genetic algorithms optimization. First, a controller is designed according to fuzzy rules such that the systems are fundamentally robust. To obtain the globally optimal values, parameters of the fuzzy controller are improved by genetic algorithms optimization model. Computer MATLAB work space demonstrate that the fuzzy controller associated to the genetic algorithms approach became very strong, gives a very good results and possesses good robustness.

  20. Precise Speed Tracking Control of Ultrasonic Motors via Sampled-Data H∞ Control

    Science.gov (United States)

    Vongsaroj, Tharathip; Kobayashi, Yasuhide; Fujioka, Hisaya; Yanabe, Shigeo

    In this paper, we consider a synthesis problem of digital controllers for speed tracking control systems of ultrasonic motors. In previous works, a continuous-time H∞ control based synthesis involving the Tustin transformation has been utilized to solve the problem, where it has been empirically known that an over-estimation of a modeling error is needed to avoid speed fluctuations in a high frequency range. In this paper, it is shown that a desirable performance can be obtained by the sampled-data H∞ control synthesis without such conservativeness in the modeling.